Terminal Definition for NOS/VE
Usage

(G2 CONTROL DATA

60464016

NOS/VE Terminal Definition

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60464016

Manual History

Revision System Version PSR Level Date

A
B
C
D

1.1.2 630 March 1985
1.2.1 664 September 1986
1.2.2 678 April 1987
1.3.1 700 April 1988

Revision D of this manual reflects NOS/VE Version 1.3.1 at PSR level
700. New for this release:

The INITIALIZE_TERMINAL command.

Support for terminals with IBM 3270 synchronous communications
and block mode operations.

APPLICATION_STRING statements you can use to maximize
system performance.

Additional terminal definitions.

©1985, 1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 Terminal Definition Revision D

. Contents

About This Manual 5
Audience 5
‘ The NOS/VE User

Manual Set. 6
Conventions 8
Submitting Comments . .. 9

CYBER Software Support
Hotline 9

Defining Your Terminal . 1-1

Terminal Capabilities . . 1-2
Using Existing Compiled
Definitions 1-4
Creating a New
Terminal Definition . . . 1-5
Compiling a Terminal
Definition File 1-10
‘ Downloading a Terminal
Definition. 1-13
Using Your Terminal
Definition. 1-14

Terminal Definition
Statements 2-1

General Format of
Terminal Definition

Statements 2-2
Required Terminal

Definition Statements. . 2-5
Attribute Statements . . . 2-6

Cursor Position
Information Statements 2-17

‘ Cursor Behavior
Statements 2-25

Screen Size Specification 2-33

Defining Functions and
. Key Labels for EDIT_

Revision D

Defining Functions and
Key Labels for
Applications other than

EDIT_FILE. 2-39
APPLICATION_STRING
Statements 2-40
Initializing Terminals . 2-44
Screen Mode Application
Statements 2-46
Input/Output Statements 2-40
Input Statements 2-60
Output Statements . . . 2-74
Glossary A-1
Related Manuals B-1
Ordering Printed
Manuals. B-1
Accessing Online
Manuals. B-1
Character Set C-1
ASCII Character Set . . . C-1

VT220 Terminal
Definition File. D-1

Contents 3

Figures

2-1. Function Key
Operation Labels and Key

Identifiers 2-60.3
Tables

1-1. Terminal Definitions . . 1-7 B-1. Related Manuals B-2
2-1. EDIT_FILE Defaults C-1. ASCII Character Set . C-2
for Function Keys . . . 2-36.1

4 Terminal Definition Revision D

About This Manual

This manual describes terminal definition procedures for the
CONTROL DATA® Network Operating System/Virtual Environment
(NOS/VE). The terminal definition statements described in this
manual allow you to set up terminals for screen mode applications
such as the EDIT_FILE utility.

A Terminal Definition Statements Index follows the last page of this
manual. The Index lists all statements alphabetically, along with the
page on which each is described.

This manual is part of a set of manuals that describe SCL. If you are
not certain this manual includes the information you need, refer to
the NOS/VE User Manual Set in this section for abstracts of the
other manuals.

Audience

This manual is written for application programmers who want to use
existing terminal definition files or create their own. Knowledge of the
System Command Language (SCL) as described in the NOS/VE
System Usage manual is assumed.

Revision D About This Manual 5

The NOS/VE User Manual Set

This manual is part of a set of user manuals that describe the
command interface to NOS/VE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOS/VE and SCL to users who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOS/VE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOS/VE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOS/VE.

NOS/VE System Usage

Describes the command interface to NOS/VE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOS/VE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

6 Terminal Definition Revision D

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOS/VE. Program
execution is described in detail. Topics include loading a program,
program attributes, object files and modules, message module
capabilities, code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOS/VE Terminal Definition

Describes the DEFINE_TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOS/VE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision D About This Manual 7

Conventions
The following conventions are used in this manual:

Boldface In a format, boldface type represents names and
required parameters.

Italics In a format, italic type represents optional
parameters.
UPPERCASE In a format, uppercase letters represent reserved

words defined by the system for specific purposes.
You must use these words exactly as shown.

lowercase In a format, lowercase letters represent values you
choose.
Blue In examples of interactive terminal sessions, blue

represents user input.

Vertical bar A vertical bar in the margin indicates a technical
change.
Numbers All numbers are decimal unless otherwise noted.

8 Terminal Definition Revision D

Submitting Comments

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual’s usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation

Technology and Publications Division ARH219
4201 North Lexington Avenue

St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use NVO (zero) as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYBER Software Support Hotline

Control Data’s CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision D About This Manual 9

il
;;’fkm}

1

b
i

J
ety

1,
5

At
b A
. Neetbriue 5
Y i 'A\(‘»“.lef“‘““)
g i ; g
it g

i
L
i ‘J%(.‘;“" i
ol

!’lw bt

il
W

Wl

e

i

i

il
L

il

AT i i,
i) e
i i RAle { i
il A \ i f A
) i I N
(P, i i
L il ik

i
At
T
ER Rk i b
g"iy?»,v ol il L M
‘ e . i
| e LA S
i . \ i |
h '1:1‘\!)‘““““ AE Il i e Ao e ;
v
i G it
el N“,“’n“ I W\L:L‘,‘ﬂ' .w‘\":'v'ﬁ‘ : ,Lw‘4")'21720,“4“,»‘;”\4 i ,H “{'(h“f]&“‘ i
ll’gmuuﬁ.’l‘{‘ e "y}h‘;’ PR R iﬁ“ﬁ"f\‘ﬂy'&ﬂ i ik ; e
Htipt it i i dr« V‘\f“,hjm il RN
b R il RO J el '%\.‘1“,‘:{- i
b A R e e ot 1
itk i j
: il B
R f ‘,“\“‘9"“ i i i Vi R Sl
L A P i UA{ i ! '?"\‘LMJ”“\'\‘
i Tl YA T i AR j
O A A {

|
h

Lo

P Rrae)

e

! e Fadt i
G i
i i il
i : A |
i i ‘,V ¥ R e AL i il
it i S i) g
I vl"b‘]:'f"‘(" R)
i c‘vn
| ,J‘M‘w?{)‘t;&{‘ﬂi}f’f?.‘r ¥ ;(J,IW"»'A] } /
G N R il fNE: % i
bl il Lt ';}v“ ‘\";“; g i s kR i Sl 'V\ll}?"“‘)““ﬂq“‘“
i | , } v ‘ ; ! ik § ik Bt . 4 I
o et e o i Mt i Wi
it N g e R) o e I e o
iy : “,ﬁ i A | i i “J iy iy i i e 1
‘v,'}ffg | i E i T G ;" Y'A‘«V«“.N i RS
»,3','{]1“'\\ Al e it
it Eli
ANl ’

%, iy it
ettt okl Wit
Hi s e
CET RN

s
T

‘ Defining Your Terminal 1

Before you can use NOS/VE applications in screen mode you need to
specify your terminal’s capabilities in a terminal definition. This
. chapter describes how to:

® Use terminal definitions that are already created and compiled by
the system.

® C(Create a new terminal definition by:

- Copying and modifying a terminal definition deck found in a
source library and then compiling it with the DEFINE_
TERMINAL command.

- Copying and editing a sample deck from a source library and
then compiling it with the DEFINE_TERMINAL command.

- Entering the appropriate terminal definition statements in a
text file.

® Download a terminal definition.
‘ ® Use terminal definitions in your job.

The terminal definition acts as an interface between screen mode
applications, NOS/VE, and your terminal. For everything to work
properly, the definition must correctly specify the capabilities of your
terminal. Any capability you do not specify is not used. If the
definition contains statements that specify the wrong information,
either the intended capability will not exist or it will not work
properly.

Revision D Defining Your Terminal 1-1

Terminal Capabilities

Terminal Capabilities .

Your terminal must have certain capabilities to operate in screen
mode. These capabilities fall into three categories: required attributes,
desired attributes, and optimum attributes.

Required Attributes
To be used in screen mode, your terminal must:

® Use asynchronous or IBM 3270 synchronous communications.

® QOperate in character mode or IBM 3270 block mode.

® Have keys that move the cursor on the screen and transmit
characters to NOS/VE so that the terminal knows the cursor
moved.

® Support direct cursor addressing.

® Provide a screen clear operation.

Desired Attributes ‘
In addition to required attributes, your terminal should also:
® Have a clear-to-end-of-line function.

® Provide at least 16 definable function keys.

1-2 Terminal Definition Revision D

Terminal Capabilities

Optimum Attributes

Your terminal can achieve optimum performance, if in addition to the
required and desired attributes, it also:

® Has up to 32 definable function keys.

® Provides function keys that transmit a unique, identifying
character sequence followed by a RETURN character. The
RETURN character at the end of function key sequences provides
added usability and is a feature of the Control Data 721, the
Control Data 722-30, the CONNECT software packages for
IBM-compatible PCs and the Apple Macintosh, and other terminals.

Functions keys on terminals with programmable function keys
must be loaded using a unique character sequence that includes
the character designated as the RETURN key. The Digital
Equipment Corporation VT'220 (hereafter referred to as the VT220)
is an example of a terminal whose function keys are loaded this
way. Refer to appendix D for further information.

® Includes host-definable tab stops for use with the EDIT_FILE
utility.

® Includes protected fields on the screen and tabbing between
unprotected fields for use with screen formatting. The tab key
must transmit characters to the host so that the system knows
when the tab key is pressed.

® Has graphic characters for drawing lines.

® Does not use a character position on the screen to enable/disable
such attributes as bright, dim, underlined or blinking characters,
inverse video, or protected fields.

There are other terminal attributes used by various screen mode
applications. However, the first four categories described here are the
attributes most frequently used.

Revision D Defining Your Terminal 1-3

Using Existing Compiled Definitions

Using Existing Compiled Definitions

Each NOS/VE release includes compiled terminal definitions. Your
installation probably has the released compiled definitions plus those
defined by your site personnel in the file
$SYSTEM.TDU.TERMINAL_DEFINITIONS. To get a list of terminal
definitions already created and compiled, enter:

/display_object_tlibrary library=$system.tdu.terminal_definitions

Each terminal definition is in a load module in an object library. The
load module name is the terminal model name prefixed with CSM$. If
your terminal’s name is in one of the module names, you can access
that module for use with a screen mode application. A list of terminal
models for which terminal definitions have been released is included
in the Modifying a Terminal Definition Deck section later in this
chapter.

Suppose you want to use the EDIT_FILE utility in screen mode at a
Zenith Z19 terminal; you would:

1. Check the module list for a name similar to Zenith Z19. Control
Data’s convention for specifying a model name is to use a
three-character abbreviation for the terminal manufacturer’s name
followed by the model number, as in ZEN_Z19.

2. Once you locate the model name, which in this example is
CSM$ZEN_Z19, enter:

/change_terminal_attribute terminal_model=zen_z19
/change_interaction_style style=screen

You can enter these commands after you log in or as part of your
user prolog.

An example of a terminal definition for the VT220 terminal is shown
in appendix D.

1-4 Terminal Definition Revision D

Creating a New Terminal Definition

Creating a New Terminal Definition
You can create a new terminal definition by:

® Entering the appropriate terminal definition statements in a text
file.

® (Copying and modifying terminal definition decks found in a source
library and then compiling them with the DEFINE_TERMINAL
command.

® (Copying and editing a sample deck from a source library and then
compiling it with the DEFINE_TERMINAL command.

Entering Terminal Definition Statements

To create a new terminal definition file, enter the appropriate
terminal definition statements in a text file and compile the file using
the DEFINE_TERMINAL command. (See Compiling a Terminal
Definition File later in this chapter.) Each terminal model must be
defined on a separate file.

These terminal definition statements are easy to read, but they can be
tedious to type. Check to see if someone has already defined your
terminal before you create your own file. Also see the next section,
which describes how to set up your terminal definition by copying and
modifying existing terminal definition decks.

Revision D Defining Your Terminal 1-§

Creating a New Terminal Definition

Modifying a Terminal Definition Deck

You can create a new terminal definition by copying and modifying
one of the terminal definition decks provided in source library
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. The terminal models
defined in the source library for this release are listed in table 1-1.

To copy the deck you have selected, use the SCU subcommand
EXTRACT_DECK. This subcommand produces a source file that you
can modify in your catalog.

Example

If you want to create a terminal definition for a Lear Siegler ADM5!,
make a copy of the deck containing the statements for the Zenith Z19
by entering:

/scu

sc/use_library base=$system.cybil.osf$program_interface ..
sc../result=$null

sc/extract_deck deck=csm$zen_z19 source=$user.lsi_adm5
sc/quit false

A copy of deck CSM$ZEN_Z19 is now on file $USER.LSI_ADM5
ready for modification. After you modify the file, you need to compile
it. (See Compiling a Terminal Definition File later in this chapter.)

To modify your copy of any of the decks, refer to the hardware
reference manual for your terminal. The manual should list the
available keys and attributes and the character sequence your
terminal accepts or generates for each key or attribute. You need this
information to fill in statement parameters in the file you copy.

Refer to Defining Functions and Key Labels for EDIT_FILE in
chapter 2 for information on defining function keys for that utility.
Refer also to the NOS/VE File Editor manual.

The example at the end of this chapter shows how to use the
CSM$SAMPLE deck to create a new terminal definition.

1. Control Data’s convention for specifying a model name is to use a three-character
abbreviation for the terminal manufacturer’s name followed by the model number; for
example, you might use LSI_ADMS5 for the Lear Siegler ADM5.

1-6 Terminal Definition Revision D

Table 1-1. Terminal Definitions

Creating a New Terminal Definition

Terminal

Deck Name

Apple Macintosh
(running CONNECT Version 1.0)

Apple Macintosh
(running CONNECT Version 1.1)

CDC 721

CDC 722

CDC 722-30
CYBER 910-300

Digital Equipment Corporation VT100

Digital Equipment Corporation VT220
IBM 3270

IBM 3270 model 2

IBM 3270 model 3

IBM 3270 model 4

IBM 3270 model 5

IBM PC
(running CONNECT Version 1.0)

IBM PC
(running CONNECT Version 1.1)

IBM PC
(running CONNECT Version 1.2)

CSM$MAC_CONNECT_10

CSM$MAC_CONNECT_11

CSM$CDC_"721
CSM$CDC_722
CSM$CDC_722_30
CSM$CDC_.910

CSM$DEC_VT100

(18 function keys) or
CSM$DEC_VT100_GOLD
(32 function keys)

CSM$DEC_VT220
CSM$IBM_ 3270}
CSM$IBM_3270_21
CSM$IBM_3270_3!
CSM$IBM_3270_4!
CSMS$IBM_3270_5!
CSM$PC_CONNECT_10

CSM$PC_CONNECT_11

CSM$PC_CONNECT_12

1. If you have an Intercom network, this terminal definition is not

supported.

Revision D

(Continued)

Defining Your Terminal 1-7

Creating a New Terminal Definition

Table 1-1. Terminal Definitions (Continued)
Terminal Deck Name .

IBM PC CSM$PC_CONNECT_13
(running CONNECT Version 1.3)

Sun Microsystems 3/160 CSM$SUN_160 .
Tektronix 4109 CSMS$TEK _4109
Tektronix 4115 CSMS$TEK _4115
Tektronix 4125 CSMS$TEK _4125
TeleVideo 950 CSM$TV_9502
TeleVideo 955 CSMS$TV_9552
TeleVideo 950 CSM$TV_950_
PROTECTED?
TeleVideo 955 CSMS$TV_955_
PROTECTED?
Zenith Z19 or Heathkit H19 CSM$ZEN_Z19 .
Zenith Z29 or Heathkit H29 CSMS$ZEN _Z29
2. This terminal definition defines the insert and delete keys. If you
use the EDIT_FILE utility often, you will probably need these keys.
This definition does not provide automatic positioning of the cursor
when filling in fields in a screen mode form.
3. This terminal definition makes filling in fields on forms easier to
do. After you fill in a field on a form, the cursor automatically
positions to the next field. This terminal definition does not define the
insert and delete keys, which are of use in the EDIT_FILE utility.

1-8 Terminal Definition Revision D

Creating a New Terminal Definition

Modifying the Sample Deck

To create a new file, copy and edit deck CSM$SAMPLE in source
library $SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. This deck
contains all the terminal definition statements, formatted correctly,
with directions for filling in the parameters to describe your terminal.

If you copy deck CSM$SAMPLE, carefully follow the directions for
filling in statement parameters (the directions are enclosed in
quotation marks before each statement). Deck CSM$SAMPLE lists
statements for all possible attributes and keys that can be supported
by screen mode applications. Not all attribute and key statements may
apply to your terminal. Leave those that do not apply blank. (Decks
other than CSM$SAMPLE contain only those statements needed to
define the specified terminal.)

Refer to Defining Functions and Key Labels for EDIT_FILE in
chapter 2 for information on defining function keys for that utility.
Refer also to the NOS/VE File Editor manual.

The example at the end of this chapter shows how to use the
CSM$SAMPLE deck to create a new terminal definition.

Revision D Defining Your Terminal 1-9

Compiling a Terminal Definition File

Compiling a Terminal Definition File

The DEFINE_TERMINAL command compiles your terminal definition,
and creates an object library file of terminal definition modules that
can be used by the EDIT_FILE utility and other screen mode
applications. Subsequent executions of DEFINE_TERMINAL will
merge the new terminal definition with previously compiled definitions
(assuming you use the same object library file.) Therefore, one object
library can contain all your compiled terminal definitions, even though
each definition originates from its own file.

DEFINE _TERMINAL Command Format
The format of the DEFINE_TERMINAL command is:

DEFINE _TERMINAL or DEFT
INPUT = file
BINARY =file
LIST=file

The INPUT (I) parameter specifies the terminal definition file you
want to compile. Each input file can contain only one terminal
definition. This parameter is required.

The BINARY (B) parameter specifies the object library file that is to
contain the compiled module (the description of the object library
precedes the command format). If you omit the BINARY parameter,
object library TERMINAL_DEFINITIONS under your working catalog
is assumed.

The LIST (L) parameter specifies the file you want to contain
intermediate output from the compilation process (CYBIL code). Most
users do not need to see this file. If omitted, $LIST is assumed.

1-10 Terminal Definition Revision D

Compiling a Terminal Definition File

Object Library Characteristics

In the object library file or in the terminal definition file, the
terminal definition module is identified by the name you enter on the
MODEL_NAME statement. You enter the name on the VALUE
parameter prefixed with the characters CSM$. If a module with the
same name is already in the object library, the new module replaces
the one in the library.

To delete modules from the object library, use the CREATE _
OBJECT_LIBRARY subcommand DELETE_MODULE (refer to the
NOS/VE Object Code Management manual).

To save your terminal definition, keep your object library on a
permanent file.

Example

If you want to set up your own terminal definition for the Lear
Siegler ADM52 terminal, copy sample deck CSM$SAMPLE from source
library $SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE to your own
file by entering:

/scu

sc/use_library base=$system.cybil.osf$program_interface ..
sc../result=$null

sc/extract_deck deck=csm$sample source=1si_admb

sc/quit false

2. Control Data’s convention for specifying a model name is to use a three-character
abbreviation for the terminal manufacturer’s name followed by the model number; in
this example, the Lear Siegler ADMS5 is abbreviated LSI_ADMS.

Revision D Defining Your Terminal 1-11

Compiling a Terminal Definition File

Edit the source file with the correct information for the Lear Siegler
ADMS5 terminal, using the following model name:

model_name value=’1si_adm5’
Compile the file as follows:

/define_terminal input=1si_adms5..
../binary=$user.terminal_definitions

The terminal definition for the Lear Siegler ADM5 terminal is merged
into file $USER.TERMINAL_DEFINITIONS. The entry in the
DISPLAY_OBJECT_LIBRARY listing of $USER.TERMINAL_
DEFINITIONS is CSM$LSI_ADMS5 and the model name is LSI_
ADMS.

1-12 Terminal Definition Revision D

Downloading a Terminal Definition

Downloading a Terminal Definition

If you have access to SOLVER (Control Data’s online database for
reporting problems), you can download terminal definition files set up
for terminals other than the one you are using. These files are under
the special product code CSF. You can use either the XMODEM or
CONNECT/RMF protocols to download the files with a microcomputer.

A one-line description for each file describes the terminal definition
contained in that file. Enter the SOLVER search request

product=csf,text=o0

to produce a short description of each terminal definition file that is
available.

Please have your site analyst contact CDC CYBER Software Support
if you want to place any locally developed terminal definitions on
SOLVER for other sites to access.

Revision D Defining Your Terminal 1-13

Using Your Terminal Definition

Using Your Terminal Definition

To use your own terminal definition for a screen mode application,
you must add the library containing your terminal definitions to your
job library list. This is done with the SET_PROGRAM_ATTRIBUTE
command. The format for adding libraries is:

SET_PROGRAM_ATTRIBUTE or SETPA
ADD_LIBRARY =list of file

The complete format is described in the NOS/VE Object Code
Management manual.

Example:

To add object library TERMINAL_DEFINITIONS to your job
library list, enter:

/set_program_attribute add_library=$user.terminal_definitions

To set up your own terminal definition for the Lear Siegler
ADM5,2 enter:

/change_terminal_attributes terminal_model=1si_adm5
/change_interaction_style style=screen

You may want to add the SET_PROGRAM_ATTRIBUTE, CHANGE _
TERMINAL_ATTRIBUTES, and CHANGE_INTERACTION_STYLE
commands to your user prolog. Then, each time you log in, your
library of terminal definitions will be added to the job library list
automatically as will your terminal model and interaction style.

If you want to share your definitions with others at your site, either
make your object library public and have others add it to their job
library list or talk to site personnel about adding your definitions to
the $SYSTEM.TDU.TERMINAL_DEFINITIONS file.

3. Control Data’s convention for specifying a model name is to use a three-character
abbreviation for the terminal manufacturer’s name followed by the model number; in
this example, the Lear Siegler ADM5 is abbreviated LSI_ADMS.

1-14 Terminal Definition Revision D

i
e
e A

ption

& ’
s t] v
o . fd bl e ,»
i \

|
L
i)
s

i
i
A,

m% .‘.‘ : '1‘\“” . : /h‘\;";“”;h
S h i i
; ; : : i

el e
it

ey
. i
)
i
) ME
T w-\“t,"“",

A

i A
it i i
0 T ’
i gl

f

e
5 ¥ g ey LA INHE i
Wi 'W'q’rP”‘/’"”' T Sy ot i
: y$ i i '
gt b g V"!‘x‘.“,', (ilie
il ! Gt Ana il f
e i i Pt
LA A iy
i

e

q
;

;
B

k)
def 2
i
4

ity

i
: i
, A:\’g“”ﬁ‘g’&*ﬁw;

A
i

e 4 ; A8 o i
3 “ ' i . . it li ol i (
Descriptions Al
I e “’{‘Ju I bl e Sy o A e
“ h i i iy i i
i ; s i

) “iﬂ;‘!‘ i A
I

b
5 :
i g ﬁ gl Il it W*
S 3“-" \k ““,‘ i AR b b Lt
T A] i j‘ ARSI

A b
i

e
i !

N
b
m""‘ 7

«
RLve
s

i3
& il i
LTI iy i i g ehmeiat ' j
Py e DR L
iy s ‘] e I}“ it L) 3“1"‘%‘*‘?)’"“@
R e ;‘,"lm;l’t il s il St
LR E i el
ek ke
D
i

J . i
e A i i "
ety (000 i F A sl f B
il ik i L BRI A I Gl]
S LI R e ey i i 09

e ! il 4 i A A e LS S V.9

il et e iR ik
e i bt pe il ‘f‘\"w“““ b BT it i y i ,;J mﬁ B
i i B B 'M
i Rl ",Z‘J%V:ﬁl‘v‘“““"l il
i

i iy (RIS
e i
T e e L ol
AR At o i e fin i b %»’ |
il liwn C ,/‘ " b i) ! o ""f("TJ “.V’»‘f‘; i “» G"m‘x o)
| il Pl ¥ “‘wl{ﬁi‘h?“?‘ i
[t
b b

ey A
e

i
i
'

)
il

4 b

b2\ i "
sdhb i ‘ _ ‘ el g
S ANER R s s o M T iy ,I’Vv ‘\,“‘v",,‘,"' I ,\“h ,“\Jﬁ““ gt
PR L A S ;
v i ML i P,

i
gt
*

i}

kg L
A e i

A

P
et

! el ko fe L i I
\’ L ‘v‘HM i {n AT .‘.m.‘\\u’

i i
AL

‘ Terminal Definition Statements 2

Terminal definition statements describe the capabilities of a specific
terminal and the system with which it interacts.

. This chapter:
® Describes the general format of terminal definition statements.

® Lists the statements required for proper functioning of any screen
mode application.

® Lists and describes all supported terminal definition statements.
The statement types:
® Attribute statements
® (Cursor positioning information statements
® Cursor behavior statements
. ® Screen size specification statements
® Statements that define functions and labels for applications

® A command that initializes the terminal for line or screen mode
interaction style

® Screen mode application statements
® Input/output statements
® Input statements

® Qutput statements

Revision D Terminal Definition Statements 2-1

General Format of Terminal Definition Statements

General Format of Terminal Definition
Statements

The format of a terminal definition statement conforms to the SCL
naming conventions with the following exceptions.

® The statement name BACKSPACE has no abbreviation.

® The parameter name INOUT is abbreviated to IO, rather than I,
to distinguish it from the abbreviation for IN.

® The OUT parameter of the APPLICATION_STRING statement can
be continued on more than one line under the following conditions:

— Strings that would extend over more than one line must be
broken into substrings that the system concatenates. Each
substring must be complete on a single line.

— Variables must be complete on each line.

Refer to the NOS/VE System Usage manual for more information
about naming conventions.

All terminal definition statements have the same general format.

statement_name or

abbreviated _statement__name
parameter name=value list
parameter name=value list

parameter name=value list

Most frequently, value list is a character string you can find in the
hardware reference manual for your terminal. Often these tables
represent a character in different ways; for example:

Representation Meaning

A’ The ASCII character A. Enter printable ASCII
characters as strings. (See appendix C for a
complete list of ASCII characters.)

101(8) The character A as an octal number.

41(16) The character A as a hexadecimal number.

2-2 Terminal Definition Revision D

General Format of Terminal Definition Statements

‘ Representation = Meaning

65 The character A as a decimal number.
33(8) The ASCII ESC character as an octal number.
. ESC The ASCII ESC character indicated by its

standard designation. Enter nonprintable ASCII
characters as keywords. (See the Graphic or
Mnemonic column of table C-1 in appendix C for a
list of standard designations for ASCII characters).

When you have more than one item in the value list, put the list in
parentheses with each item separated by a blank or comma.

Example:
The following are valid terminal definition statements.

model_name value="CDC721”
blink_begin out=(esc 12(16) ‘a’)

These statements show values in different ways:
‘ ® As ASCII character strings:
’CDC721’ and ’a’
® As an ASCII character mnemonic:
ESC
® As a hexadecimal number:
12(16)

If you intend to use a character string more than once, you may want
to define a variable name to have the value of that string. You can
do this by equating the variable name to its value at the beginning of
the terminal definition, before any of the statements. The format is:

. variable_name=list of character string

Revision D Terminal Definition Statements 2-3

General Format of Terminal Definition Statements

The variable name can be any string of alphanumeric characters and
the underscore, beginning with an alphabetic character. It can be up
to 256 characters. The value of the string is the sequence listed in
your terminal hardware reference manual for a particular attribute.
The separator between each item in list of character string can be
either a comma or one or more spaces.

Example:

Assume that the hardware reference manual for your terminal
specifies the following sequence be used to enable a protected field:

rs dc2 'K’
You then define a variable name to have that value by entering
‘enable_protect=(rs dc2 ‘K‘)

at the beginning of the terminal definition. Throughout the
remainder of the definition, you then use ENABLE_PROTECT as
a value in place of the character string.

2-4 Terminal Definition Revision D

Required Terminal Definition Statements

Required Terminal Definition Statements

Some statements are required in order for full screen applications to
work correctly. These are:

CHAR_PAST_LAST_POSITION
CHAR_PAST_LEFT
CHAR_PAST_RIGHT
COMMUNICATIONS
CURSOR_DOWN

CURSOR_LEFT
CURSOR_POS_BEGIN
CURSOR_POS_ENCODING
CURSOR_POS_SECOND (if applicable)

CURSOR_POS_THIRD (if applicable)
CURSOR_RIGHT

CURSOR_UP

ERASE_PAGE_STAY or ERASE_PAGE_HOME
FUNCTION_KEY_LEAVES_MARK

MODEL_NAME or TERMINAL_MODEL
MOVE_PAST_BOTTOM
MOVE_PAST_LEFT
MOVE_PAST_RIGHT
MOVE_PAST_TOP

There must also be a subset of the application function keys available
and defined (a minimum of 16).

The ERASE_END_OF_LINE statement is not required, but it is
highly recommended.

NOTE

In the brief descriptions later in this chapter, all required statements
are in bold type. Also, the format description of each required
statement states that it is required.

Revision B Terminal Definition Statements 2.5

Attribute Statements

Attribute Statements ‘

Overview

Attribute statements describe or determine general characteristics of
the terminal. A brief description of each attribute follows. Required
statements are in boldface type. (See the next section for statement
formats and detailed descriptions.)

Statement Description

AUTOMATIC_TABBING Indicates whether the terminal
supports tabbing from one completely
filled, unprotected input field to the
next, without requiring that a tab key

be pressed.
CLEARS_WHEN_ Determines whether the screen clears
CHANGE_SIZE when the screen size changes.
COMMUNICATIONS Identifies the type of terminal
communication. The only type of .
communication supported is

asynchronous (TYPE=ASYNCH). This
statement is required.

FIXED_TAB_POSITIONS Indicates the position of the fixed tab

stops.
FUNCTION_KEY _ Specifies the number of characters
LEAVES_MARK that must be repainted when you

press a function key. This statement
is required.

2-6 Terminal Definition Revision B

Statement

Attribute Statements

Description

HAS_HIDDEN

HAS_PROTECT

HOME_AT_TOP

MODEL_NAME

MULTIPLE_SIZES

PROGRAMMABLE_TAB_
STOPS

TABS_TO_HOME

Revision B

Allows you to define areas on the
screen in which something typed will
not be displayed.

Allows you to use the PROTECT_
BEGIN and PROTECT_END
statements to define protected areas
on the screen.

Determines where the CURSOR_
HOME statement sends the cursor, to
the top left of the screen or to the
bottom.

Identifies the type of terminal being
defined. Either this statement or the
TERMINAL_MODEL statement is
required.

Indicates whether your terminal
supports more than one screen size.

Identifies the number of programmable
tab stops.

Determines whether the TAB key
moves the cursor to the cursor home
position or wraps around to the first
unprotected field when the cursor is at
the last unprotected field.

Terminal Definition Statements 2.7

Attribute Statements

Statement

Description

TABS_TO_TAB_STOPS

TABS_TO_UNPROTECTED

TERMINAL_MODEL

TYPE_AHEAD

2-8 Terminal Definition

Specifies whether the terminal
supports tabbing to settable or
predefined tab stops (like typewriter
tabs).

Specifies whether the terminal
supports tabbing forward and
backward to the start of unprotected
fields.

Identifies the type of terminal being
defined. Either this statement or the
MODEL_NAME statement is
required.

Allows a full screen application to
execute in type ahead mode.

Revision B

Attribute Statements

Format Descriptions

All attribute statements except COMMUNICATIONS and
PROGRAMMABLE_TAB_STOPS have a VALUE parameter. This
parameter is used in different ways depending on the statement (refer
to individual descriptions for complete information).

AUTOMATIC _TABBING

The AUTOMATIC_TABBING statement indicates whether the
terminal supports tabbing from one completely filled, unprotected
input field to the next, without requiring that a tab key be pressed. If
omitted, it is assumed that the terminal does not have this capability.

The format is:

AUTOMATIC _TABBING or AUTT
VALUE =boolean

The VALUE (V) parameter indicates whether the terminal supports
tabbing from one input field to the next. Specify TRUE if the
terminal supports both tabbing and protected areas. Specify FALSE if
it does not support both tabbing and protected areas. This parameter
is required.

CLEARS_WHEN _CHANGE _SIZE

The CLEARS_WHEN_CHANGE_SIZE statement determines whether
the screen clears when the screen size changes. If omitted, the screen
does not clear.

The format is:

CLEARS_WHEN_CHANGE_SIZE or CLEWCS
VALUE =boolean

The VALUE (V) parameter determines whether the screen clears.
Specify TRUE to clear the screen. Specify FALSE if you do not want
the screen to clear, or if your terminal supports only one screen size.
This parameter is required.

Revision D Terminal Definition Statements 2-9

Attribute Statements

COMMUNICATIONS

The COMMUNICATIONS statement identifies the type of
communication your terminal uses. This statement is required.

The format is:

COMMUNICATIONS or COM
TYPE =keyword

The TYPE (T) parameter identifies the terminal protocol. Specify
ASYNCH, SYNCH, or SNA. This parameter is required.

FIXED _TAB_POSITIONS

The FIXED_TAB_POSITIONS statement identifies the locations of
the fixed tab positions on the terminal.

The format is:

FIXED_TAB_POSITIONS or FIXTP
POSITIONS =list of integer

The POSITIONS (P) parameter specifies the tab positions (list of
integers) that are set for the terminal. This parameter is required.

2-10 Terminal Definition Revision D

Attribute Statements

FUNCTION_KEY_LEAVES _MARK

The FUNCTION_KEY_LEAVES_MARK statement is needed for full
screen products to repaint the valid characters after a function key
press. Use this statement if the following applies:

® Pressing a function key causes characters to appear on the screen.

® Function keys require escape or control sequences that include a
character to complete the sequence.

This statement is required.
The format is:

FUNCTION_KEY_LEAVES_MARK or FUNKLM
VALUE =integer

The VALUE (V) parameter specifies the number of characters that
must be erased from the screen (in order for the original characters to
be repainted) after a function key is pressed. If your terminal does not
write characters when a function key is pressed, enter a value of 0.
This parameter is required.

HAS_HIDDEN

The HAS_HIDDEN statement allows you to use the HIDDEN_BEGIN
and HIDDEN_END statements. If your terminal has the capability,
these statements define areas on the screen in which something typed
will not be displayed. If the statement is omitted, no hidden areas can
be defined.

The format is:

HAS_HIDDEN or HASH
VALUE =boolean

The VALUE (V) parameter specifies whether the HIDDEN_BEGIN
and HIDDEN_END statements can be used. Specify TRUE if your
terminal is capable of having areas hidden. Specify FALSE if the
capability does not exist on your terminal or if the terminal uses a
character position on the screen to provide this capability. This
parameter is required.

Revision C Terminal Definition Statements 2-11

Attribute Statements

HAS_PROTECT

The HAS_PROTECT statement allows you to use the PROTECT_
BEGIN and PROTECT_END statements. If your terminal has the
capability, these statements define protected areas on the screen. If
omitted, no protected areas can be defined. ‘

The format is:

HAS_PROTECT or HASP
VALUE =boolean

The VALUE (V) parameter specifies whether the PROTECT_BEGIN
and PROTECT_END statements can be used. Specify TRUE if your
terminal is capable of having areas protected. Specify FALSE if the
capability does not exist on your terminal or if the terminal uses a
character position on the screen to provide this capability. This
parameter is required.

HOME _AT_TOP

The HOME_AT_TOP statement determines whether the CURSOR_

HOME statement sends the cursor to the top left of the screen or to

the bottom. To ensure the proper functioning of the EDIT_FILE .
utility, include this statement with VALUE=TRUE. If omitted, the

cursor home position is at the bottom left of the screen.

The format is:

HOME _AT_TOP or HOMAT
VALUE =boolean

The VALUE (V) parameter determines the home position of the

cursor. Specify TRUE for the cursor home position to be at the top
left of the screen. Specify FALSE for the cursor home position to be at
the bottom left of the screen. This parameter is required.

2-12 Terminal Definition Revision C

Attribute Statements

MODEL_NAME

The MODEL_NAME statement identifies the type of terminal being
defined. This statement is required.

The format is:

MODEL_NAME or MODN
VALUE =string

The VALUE (V) parameter specifies the model name to be used:

® As the TERMINAL_MODEL on the CHANGE _TERMINAL_
ATTRIBUTES command.

® On the subcommand that activates screen mode for an application.

® As the name of the compiled terminal definition file on an object
library (the model name is prefixed by CSMS$).

The terminal model name you specify for the VALUE parameter is a
string that consists of 1 through 25 alphanumeric characters and the
underscore character, and starts with an alphabetic character. The
system does not distinguish between uppercase and lowercase
characters. CDC_721 and cdc_721 are both interpreted as CDC_721.
Control Data’s convention for specifying a model name is to use a
three-character abbreviation for the terminal manufacturer’s name
followed by the model number; for example, DEC_VT100.

The VALUE parameter is required.

MULTIPLE _SIZES

The MULTIPLE_SIZES statement specifies whether your terminal can
support more than one screen size. You must include the MULTIPLE _
SIZES statement with the SET_SIZE statement. (See the Screen Size
Specification section later in this chapter.)

The format is:

MULTIPLE _SIZES or MULS
VALUE =boolean

The VALUE (V) parameter specifies whether more than one SET_
SIZE statement can be used. If your terminal can have more than one
screen size within a screen mode application, specify TRUE. If it can
have only one screen size, specify FALSE. This parameter is required.

Revision D Terminal Definition Statements 2-13

Attribute Statements

PROGRAMMABLE _TAB_STOPS

The PROGRAMMABLE_TAB_STOPS statement identifies the number
of programmable tab stops.

The format is:

PROGRAMMABLE _TAB_STOPS or PROTS
NUMBER =integer

The NUMBER (N) parameter identifies the number of programmable
tab stops. This parameter is required.

TABS_TO_HOME

The TABS_TO_HOME statement determines whether the TAB key
moves the cursor to the cursor home position or wraps around to the
first unprotected field, when the cursor is at the last unprotected field.
(The reverse happens when you tab backward.) If omitted, the TAB
key tabs to the first unprotected field.

The format is:

TABS_TO_HOME or TABTH
VALUE =boolean

The VALUE (V) parameter determines whether the TAB key moves
the cursor to the cursor home position or wraps around to the first
unprotected field. Specify TRUE if you want the cursor to go to the
home position. Specify FALSE if you want the cursor to wrap around
to the first unprotected field, or if the terminal does not have
protected areas. This parameter is required.

2-14 Terminal Definition Revision D

Attribute Statements

TABS_TO_TAB_STOPS

The TABS_TO_TAB_STOPS statement specifies whether the terminal
supports tabbing to settable or predefined tab stops (like typewriter
tabs). If omitted, it is assumed the terminal does not have tab stops.

The format is:

TABS_TO_TAB_STOPS or TABTTS
VALUE = boolean

The VALUE (V) parameter specifies whether the terminal has tab
stops. Specify TRUE if the terminal has tab stops. Specify FALSE if it
does not have tab stops. This parameter is required.

TABS _TO_UNPROTECTED

The TABS_TO_UNPROTECTED statement specifies whether the
terminal supports tabbing forward and backward to the start of
unprotected fields. If omitted, it is assumed the terminal does not
support this type of tabbing.

The format is:

TABS_TO_UNPROTECTED or TABTU
VALUE =boolean

The VALUE (V) parameter specifies whether the terminal supports
tabbing forward and backward to the start of unprotected fields.
Specify TRUE if the terminal supports this type of tabbing. Specify
FALSE if the terminal does not support it or if the terminal does not
have protected areas. This parameter is required.

Revision D Terminal Definition Statements 2-15

Attribute Statements

TERMINAL_MODEL

The TERMINAL_MODEL statement identifies the type of terminal
being defined. Either this statement or the MODEL_NAME statement
is required.

The format is:

TERMINAL_MODEL or TERM
VALUE =string

The VALUE (V) parameter specifies the terminal model name to be
used:

® As the TERMINAL_MODEL on the CHANGE_TERMINAL_
ATTRIBUTES command.

® On the subcommand that activates screen mode in a screen mode
application.

® As the name of the compiled terminal definition file on an object
library (the model name is prefixed by CSM$).

The terminal model name you specify for the VALUE parameter is a
string that consists of 1 through 25 alphanumeric characters and the
underscore character; it must begin with an alphabetic character. The
system does not distinguish between uppercase and lowercase
characters. CDC_721 and cdc_721 are both interpreted as CDC_721.
Control Data’s convention for specifying the model name is to use a
three-character abbreviation for the terminal manufacturer’s name
followed by the model number; for example, DEC_VT100.

The VALUE parameter is required.

2-16 Terminal Definition Revision D

Attribute Statements

TYPE_AHEAD

The TYPE_AHEAD statement allows a screen mode application to
execute in type ahead mode. In type ahead mode you can enter
additional input without waiting for the system to respond to previous
input. This statement is included for compatibility with NOS terminal
definitions. NOS/VE executes applications in type ahead mode no
matter what you specify here. If omitted, type ahead mode is assumed.

The format is:

TYPE_AHEAD or TYPA
VALUE =boolean

The VALUE (V) parameter specifies type ahead mode. Enter either
TRUE or FALSE. This parameter is required.

Revision D Terminal Definition Statements 2-16.1

Cursor Position Information Statements

. Cursor Position Information Statements

The cursor position information statements define the terminal
attributes of the cursor position. A brief description of each statement
follows. Required statements are in boldface type. (See the next

. section for statement formats and detailed descriptions.)

Statement

Description

CURSOR_POS_BEGIN

CURSOR_POS_COLUMN_
FIRST

CURSOR_POS_COLUMN_
LENGTH

CURSOR_POS _
ENCODING

' CURSOR_POS_ROW_
LENGTH

CURSOR _POS_SECOND

CURSOR _POS_THIRD

Revision D

Specifies the first character string of
the cursor position sequence. This
statement is required.

Indicates the column versus row
cursor position sequence.

For ANSI type terminals, indicates the
number of bytes your terminal sends
for column values.

Indicates how your terminal encodes
the cursor position output sequence.
This statement is required.

For ANSI type terminals, indicates the
number of bytes your terminal sends
for row values.

Specifies the second character string of
the cursor position sequence. This is a
required statement if applicable to
your terminal.

Specifies the third character string of
the cursor position sequence. This is a
required statement if applicable to
your terminal.

Terminal Definition Statements 2-17

Cursor Position Information Statements

Format Descriptions

Each cursor position information statement description follows.

CURSOR_POS_BEGIN

The CURSOR_POS_BEGIN statement specifies the first character to
which the cursor is positioned. For example, in the encoding sequence
axbyc, the first character the cursor is positioned to is a. (The
description of the CURSOR_POS_ENCODING statement later in this
chapter provides more information).

The CURSOR_POS_BEGIN statement is required. It can be split into
two statements (an input and an output statement) if the character
sequence sent to the terminal differs from the sequence sent from the
terminal. Refer to Input/QOutput Statements - Format Descriptions later
in this chapter for more information.

For IBM 3270-compatible terminals, include the following two
CURSOR_POS_BEGIN statements:

cursor_pos_begin in=11(16)
cursor_pos_begin out=(11(16), 7E(16), 7E(16))

The format is:

CURSOR_POS_BEGIN or CURPB
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (IO) parameter specifies a character sequence transmitted
to and from the terminal. This value is included in the hardware
reference manual for your terminal. This parameter is required.

The LABEL (L) parameter indicates if a cursor position transmitted
from the terminal requires a response from the application to
reposition the cursor, or if the terminal repositions the cursor. If the
string is nonblank, cursor positioning requires output from an
application. (This is advisable for input devices such as touch panels.)
If the string is blank, or you omit the parameter, the terminal
positions the cursor.

2-18 Terminal Definition Revision D

Cursor Position Information Statements

CURSOR_POS_COLUMN_FIRST

The CURSOR_POS_COLUMN_FIRST statement indicates the column
versus row cursor position sequence of your terminal. This statement
applies only to terminals for which you specify either BINARY_
CURSOR or ANSI_CURSOR on the CURSOR_POS_ENCODING
statement. If omitted, it is assumed that the terminal outputs the row
first.

The format is:

CURSOR_POS_COLUMN_FIRST or CURPCF
VALUE =boolean

The VALUE (V) parameter indicates whether your terminal outputs
the column or row first.

Specify TRUE if your terminal has a cursor position sequence that
outputs the column before the row.

Specify FALSE if your terminal outputs the row before the column.
If VALUE is omitted, FALSE is assumed.

Revision D Terminal Definition Statements 2-19

Cursor Position Information Statements

CURSOR_POS_COLUMN_LENGTH

The CURSOR_POS_COLUMN_LENGTH statement indicates the .
number of bytes your terminal sends for column values. This

statement applies only to terminals for which you specify ANSI_

CURSOR on the CURSOR_POS_ENCODING statement. If omitted, it

is assumed that the terminal sends a variable number of bytes. '

The format is:

CURSOR_POS_COLUMN_LENGTH or CURPCL
VALUE =integer

The VALUE (V) parameter indicates the number of bytes your
terminal sends for column values.

Enter a number other than 0 only if your terminal is an ANSI
terminal and sends a set number of bytes for column values.

If your terminal is not ANSI or if it sends a variable number of
bytes, set the value to 0.

If VALUE is omitted, it is assumed that the terminal sends a variable

number of bytes. .

CURSOR_POS_ENCODING

The CURSOR_POS_ENCODING statement indicates the manner in
which your terminal encodes the cursor position. Most terminals use
one of the following four types of cursor position encoding.

e ANSI_CURSOR

® BINARY_CURSOR
e (CDC721_CURSOR
e [BM3720_CURSOR

These types are described later as values for the TYPE parameter.

2-20 Terminal Definition Revision D

Cursor Position Information Statements

If your terminal does not use one of these encoding types, you cannot
define the terminal for use with screen mode applications. The
CURSOR_POS_ENCODING statement is required.

The format is:

CURSOR_POS_ENCODING or CURPE
TYPE =keyword
BIAS =integer

The TYPE (T) specifies the type of encoding used by your terminal.
This parameter is required. Which keyword you select for TYPE
depends on encoding variables. These variables are used in a sequence
that has a general format:

axbyc

Variable Description

a The first character string of the cursor position sequence.
The value of a is defined in the CURSOR_POS_BEGIN
statement.

b The second character string of the cursor position

sequence. The value of b is defined in the CURSOR_
POS_SECOND statement.

c The third character string of the cursor position sequence.
The value of ¢ is defined in the CURSOR_POS_THIRD
statement.

X The horizontal position of the cursor.

y The vertical position of the cursor.

All terminals will have at least an a, x, and y.

Revision D Terminal Definition Statements 2-21

Cursor Position Information Statements

Select a keyword value for TYPE from the encoding descriptions that

follow:

Keyword

Description

ANSI_CURSOR

BINARY_CURSOR

CDC721_CURSOR

IBM3270_CURSOR

2-22 Terminal Definition

Specify this value if your terminal
generates the horizontal (x) and vertical
(y) cursor positions as decimal graphic
characters rather than hexadecimal
numbers [12 rather than 0C(16)] in one of
the sequences:

axby or aybxc

Specify this value if your terminal’s cursor
position sequence includes a bias
(described with the BIAS parameter) as
follows:

a (x+bias) b (y+bias) ¢
or
a (y+bias) b (x+bias) ¢

Specify this value if your terminal’s cursor
position sequence includes a bias
(described with the BIAS parameter) and
varies depending on the value of the
horizontal position of the cursor (x). If x is
less than 81, the sequence is:

a (x+bias) (y+bias)
If x is greater than 80, the sequence is:
ab (x+bias-80) (y+bias)

Specify this value for all 3270-compatible
terminals,

Revision D

Cursor Position Information Statements

The BIAS (B) parameter specifies an integer, which is added to the x
and y values. The usual number is 32, which is the value of the
ASCII space character. The purpose of a bias is to prevent the x and
y values from falling in the range of 0 through 31, which has special
meaning in communications. The BIAS parameter is required.

Examples:
The Zenith Z19 terminal CURSOR_POS_ENCODING statement is:
cursor_pos_encoding bias=(1) type=ansi_cursor
The CDC 722 terminal CURSOR_POS_ENCODING statement is:

cursor_pos_encoding bias=(32) type=binary_cursor

CURSOR_POS_ROW_LENGTH

The CURSOR_POS_ROW_LENGTH statement indicates the number
of bytes your terminal sends for row values. This statement applies
only to terminals for which you specify ANSI_CURSOR on the
CURSOR_POS_ENCODING statement. If omitted, it is assumed that
the terminal sends a variable number of bytes.

The format is:

CURSOR_POS_ROW_LENGTH or CURPRL
VALUE =integer

The VALUE (V) parameter indicates the number of bytes your
terminal sends for row values.

Specify a number other than 0 only if your terminal is an ANSI
terminal and sends a set number of bytes for row values.

If your terminal is not ANSI, or if it sends a variable number of
bytes, set the value to 0.

If VALUE is omitted, it is assumed that the terminal sends a variable
number of bytes.

Revision D Terminal Definition Statements 2-23

Cursor Position Information Statements

CURSOR_POS_SECOND

The CURSOR_POS_SECOND statement specifies the second character .
string of the cursor position sequence. In the general encoding

sequence axbyc, this is the variable b (the description of the
CURSOR_POS_ENCODING statement provides more information).

This statement is required if your terminal uses it.

The format is:

CURSOR_POS_SECOND or CURPS
OUT=list of integer, keyword, or string

The OUT (O) parameter specifies a character sequence transmitted to
the terminal. This value is listed in the hardware reference manual
for your terminal. This parameter is required.

CURSOR_POS_THIRD

The CURSOR_POS_THIRD statement specifies the third character

string of the cursor position sequence. In the general encoding

sequence axbyc, this is the variable ¢ (the CURSOR_POS_

ENCODING statement provides more information). This statement is

required if your terminal uses it. .

The format is:

CURSOR_POS_THIRD or CURPT
OUT=list of integer, keyword, or string

The OUT (O) parameter specifies a character sequence transmitted to
the terminal. This value is listed in the hardware reference manual
for your terminal. This parameter is required.

2-24 Terminal Definition Revision D

Cursor Behavior Statements

. Cursor Behavior Statements

Cursor behavior statements specify how you want the terminal to
respond when you move the cursor past the edge of the screen. A
brief description of each statement follows. All cursor behavior
statements are required. (See the next section for statement formats

and detailed descriptions.)

Statement

Description

CHAR_PAST_LAST_
POSITION

CHAR_PAST_LEFT/
CHAR_PAST_RIGHT

MOVE _PAST_BOTTOM/
MOVE_PAST_TOP

MOVE _PAST_LEFT/
MOVE_PAST_RIGHT

Revision C

Determines cursor movement past the
last position on the bottom line of the
screen (not using cursor movement
keys). This is a required statement.

Determine cursor movement past the
left or right edge of the screen (not

using cursor movement keys). These
are required statements.

Determines cursor movement past the
bottom or top edge of the screen by
using the cursor movement keys.
These are required statements.

Determines cursor movement past the
left or right edge of the screen using
the cursor movement keys. These are
required statements.

Terminal Definition Statements 2-25

Cursor Behavior Statements

Format Descriptions ‘

Each cursor behavior statement has a required TYPE parameter, that
determines the cursor movement.

CHAR _PAST_LAST_POSITION '

The CHAR_PAST_LAST_POSITION statement determines how the
terminal behaves when you move the cursor past the last position on
the bottom line of the screen (using keys other than the cursor
movement keys). This is a required statement.

The format is:

CHAR _PAST_LAST_POSITION or CHAPLP
TYPE =keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Description
HOME_NEXT The cursor moves to the home

position. .
SCROLL_NEXT The terminal scrolls all characters on

the screen (up, down, or sideways).

STOP_NEXT The cursor does not move beyond the
bottom edge of the screen.

WRAP_ADJACENT_NEXT The cursor wraps around to the first
column of the top row (home position).

WRAP_SAME_NEXT The cursor wraps around to the
opposite (left) side of the screen and
remains on the same line.

2-26 Terminal Definition Revision C

CHAR_PAST_LEFT

Cursor Behavior Statements

The CHAR_PAST_LEFT statement determines how the terminal
behaves when you move the cursor past the left edge of the screen
(using keys other than cursor movement keys). This is a required

statement.

The format is:

CHAR _PAST_LEFT or CHAPL

TYPE =keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Value

Description

HOME_NEXT

SCROLL_NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP_SAME_NEXT

Revision B

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
left edge of the screen.

The cursor reappears at the opposite
(right) side on the next line down.

The cursor wraps around to the
opposite (right) side of the screen and
remains on the same line.

Terminal Definition Statements 2-27

Cursor Behavior Statements

CHAR_PAST _RIGHT

The CHAR_PAST_RIGHT statement determines how the terminal
behaves when you move the cursor past the right edge of the screen
by typing more characters than are allowed on a row. This is a
required statement.

The format is:

CHAR_PAST_RIGHT or CHAPR
TYPE =keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Description

HOME_NEXT The cursor moves to the home
position.

SCROLL_NEXT The terminal scrolls all characters on

the screen (up, down, or sideways).

STOP_NEXT The cursor does not move beyond the
right edge of the screen.

WRAP_ADJACENT_NEXT The cursor reappears at the opposite
(left) side of the screen on the next
line down.

WRAP_SAME_NEXT The cursor wraps around to the
opposite (left) side of the screen and
remains in the same line.

2-28 Terminal Definition Revision B

Cursor Behavior Statements

. MOVE_PAST_BOTTOM

The MOVE_PAST_BOTTOM statement determines how the terminal
behaves when you move the cursor past the bottom edge of the screen
using the cursor movement keys. This is a required statement.

. The format is:

MOVE_PAST_BOTTOM or MOVPB
TYPE =keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Description
HOME_NEXT The cursor moves to the home
position.
SCROLL_NEXT The terminal scrolls all characters on
the screen (up, down, or sideways).
STOP_NEXT The cursor does not move beyond the
‘ bottom edge of the screen.

WRAP_ADJACENT_NEXT The cursor wraps around to the top
row on the screen and moves one
column to the right.

WRAP_SAME _NEXT The cursor wraps around to the top
row on the screen and remains in the
same column.

Revision B Terminal Definition Statements 2-29

Cursor Behavior Statements

MOVE_PAST_LEFT

The MOVE_PAST_LEFT statement determines how the terminal
behaves when you move the cursor past the left edge of the screen by
using the cursor movement keys. This is a required statement.

The format is:

MOVE_PAST_LEFT or MOVPL

TYPE =keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Description

HOME_NEXT The cursor moves to the home
position.

SCROLL_NEXT The terminal scrolls all characters on
the screen (up, down, or sideways).

STOP_NEXT The cursor does not move beyond the

WRAP_ADJACENT_NEXT

WRAP_SAME_NEXT

2-30 Terminal Definition

left edge of the screen.

The cursor reappears at the opposite
(right) side of the screen on the next
line down.

The cursor wraps around to the
opposite (right) side of the screen and
remains on the same line.

Revision B

MOVE_PAST_RIGHT

Cursor Behavior Statements

The MOVE_PAST_RIGHT statement determines how the terminal
behaves when you move the cursor past the right edge of the screen
by using the cursor movement keys. This is a required statement.

The format is:

MOVE_PAST_RIGHT or MOVPR

TYPE =keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword Value

Description

HOME_NEXT

SCROLL_NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP_SAME_NEXT

Revision B

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
right edge of the screen.

The cursor reappears at the opposite
(left) side of the screen on the next
line down.

The cursor wraps around to the
opposite (left) side of the screen and
remains on the same line.

Terminal Definition Statements 2-31

Cursor Behavior Statements

MOVE_PAST_TOP

The MOVE_PAST_TOP statement determines how the terminal
behaves when you move the cursor past the top edge of the screen
using the cursor movement keys. This is a required statement.

The format is:

MOVE _PAST_TOP or MOVPT

TYPE =keyword

The TYPE (T) parameter determines the movement of the cursor. This
parameter is required. The possible values for the cursor position are:

Keyword

Description

HOME_NEXT

SCROLL_NEXT

STOP_NEXT

WRAP_ADJACENT_NEXT

WRAP_SAME_NEXT

2-32 Terminal Definition

The cursor moves to the home
position.

The terminal scrolls all characters on
the screen (up, down, or sideways).

The cursor does not move beyond the
top edge of the screen.

The cursor wraps around to the
bottom row of the screen and moves
one column to the right.

The cursor wraps around to the
bottom row of the screen and remains
in the same column.

Revision B

Screen Size Specification

Screen Size Specification

The SET_SIZE statement describes the screen size or sizes supported
by your terminal and allows you to specify a pick/locate device. Refer
to the hardware reference manual for your terminal.

You must specify at least one screen size using the SET_SIZE
statement. You can specify up through four screen sizes, one size per
SET_SIZE statement.

If your terminal supports more than one screen size, you must set the
MULTIPLE_SIZES statement to TRUE; otherwise, set the statement
to FALSE.

SET_SIZE
The format is:

SET_SIZE or SETS
ROWS =integer
COLUMNS =integer
OUT =list of integer, keyword or string
CHARACTER _SPECIFICATION =list of integer
CHARACTER_POSITIONS =list of integer
LINE_SPECIFICATION =list of integer
LINE_POSITIONS =list of integer
DEVICE =string

The ROWS (R) parameter indicates the number of rows (lines) that
your terminal supports. This parameter is required.

The COLUMNS (C) parameter indicates the number of columns
(characters) that your terminal supports. This parameter is required.

The OUT (O) parameter specifies a character sequence to be
transmitted to the terminal. You obtain this sequence from the
hardware reference manual for your terminal. For terminals that can
support more than one screen size, this parameter specifies the
sequence that is sent to the terminal to switch to the indicated size.
Do not specify this parameter if your terminal supports only one
screen size.

Revision D Terminal Definition Statements 2-33

Screen Size Specification

NOTE

The following five parameters allow you to specify the name and
accuracy of a pick/locate device such as a touch panel or mouse.
(These parameters are optional.)

The CHARACTER_SPECIFICATION (CS) parameter indicates the
starting column, ending column, and character increment for
horizontal accuracy.

The CHARACTER_POSITION (CP) parameter indicates the cursor
character positions for each pick/locate operation. Use this parameter
if the character increment is not consistent between the pick/locate
positions.

The LINE_SPECIFICATION (LS) parameter indicates the starting
row, ending row, and line increment for vertical accuracy.

The LINE_POSITION (LP) parameter gives the cursor line positions
for each pick/locate operation. Use this parameter if the character
increment is inconsistent between pick/locate positions.

The DEVICE (D) parameter names the pick/locate device. If omitted,
no name is assigned.

2-34 Terminal Definition Revision D

Screen Size Specification

Examples

Enter the statements in order of increasing size, giving columns
preference over rows. For example, you might enter:

set_size rows=24 columns=80 out=(rs dc2 ‘H’ rs dc2 “~")
set_size rows=30 columns=80 out=(rs dc2 ‘H’ rs dc2 “°*)
set_size rows=24 columns=132 out=(rs dc2 *G’ rs dc2 “~*)
set_size rows=30 columns=132 out=(rs dc2 ‘G’ rs dc2 “~*)

The following example shows how you can specify the SET_SIZE
parameters for 80 column mode on a CDC 721 touch panel device.
Since this terminal has consistent character increments in 80 column
mode, you can use the CHARACTER_SPECIFICATION and LINE_
SPECIFICATION parameters. This example specifies a four character
increment between columns 11 and 70, and a two line increment
between rows 1 and 29.

set_size rows=30 columns=80 out=(rs dc2 “H’ rs dc2 “~) ..
character_specification=(11,70,4) ..
line_specification=(1,29,2) ..

device="TOUCH_PANEL~

The next example shows how you can specify the SET_SIZE
parameters for 132 column mode on a CDC 721 touchpanel device.
Since this terminal does not have consistent column character
increments in 132 column mode (the increment is either 6 or 7
characters), you must use the CHARACTER_POSITIONS parameter.
The example specifies each column character increment, and a two
line increment between rows 1 and 29.

set_size rows=30 columns=132 out=(rs dc2 "G’ rs dc2 "~“) ..

character_positions=(20,26,33,39,45,51,57,64,70,76,82,88,
95,101,107, 113)

line_specification=(1,29,2) ..

device="TOUCH_PANEL~

Revision D Terminal Definition Statements 2-35

Defining Functions and Key Labels for EDIT FILE

Defining Functions and Key Labels for
EDIT_FILE

You have three options for defining the programmable function keys
for the EDIT_FILE utility:

1. Let EDIT_FILE default to assigning the subcommands and labels
associated with the programmable function keys. The defaults used
are listed in table 2-1.

. Use a separate APPLICATION_STRING statement to define each
programmable function key. (See the section APPLICATION_
STRING Statements for details.)

3. Use the SET_FUNCTION_KEY subcommand in the editor prolog
file to define each programmable function key.

Using the APPLICATION_STRING statement is more efficient than
using the SET_FUNCTION_KEY subcommand in an editor prolog.
However, not all function keys used by EDIT_FILE can be assigned
with the APPLICATION_STRING statement. In particular, the shifted
and unshifted definitions for the DATA, DOWN, EDIT, FWD, BKW,
BACK, HELP, STOP, UNDO, and UP keys must be defined through
the SET_FUNCTION_KEY subcommand. If you defined any of these
keys for the terminal and want to override the default definition
assigned by EDIT_FILE for these keys, follow this procedure:

1. Define the programmable function keys (function keys 1 through
16) through APPLICATION_STRING statements.

2. Create an editor prolog for the definition of these keys by the
SET_FUNCTION_KEY subcommand.

2-36 Terminal Definition Revision D

Defining Functions and Key Labels for EDIT FILE

Table 2-1. EDIT_FILE Defaults for Function Keys

Cap/Op Value Used from Terminal Definition

InsCh INSERT_CHAR with nonblank LABEL, or INSERT_
MODE_BEGIN and INSERT_MODE_END with
nonblank LABEL

DelCh DELETE_CHAR with nonblank LABEL

Bkw BKW with nonblank LABEL, or F1, or F-key with IN
the same as BKW IN

First BKW_S with nonblank LABEL, or F1_S, or F-key
with IN the same as BKW_S IN

Fwd FWD with nonblank LABEL, or F2, or F-key with IN
the same as FWD IN

Last FWD_S with nonblank LABEL, or F2_S, or F-key
with IN the same as FWD_S IN

Back BACK with nonblank LABEL, or F3, or F-key with IN
the same as BACK IN

Help HELP with nonblank LABEL, or F4, or F-key with IN
the same as HELP IN

Undo UNDO with nonblank LABEL, or F5, or F-key with IN
the same as UNDO IN

Redo UNDO_S with nonblank LABEL, or F5_8S, or F-key
with IN the same as UNDO_S IN (redo is not
currently supported by EDIT_FILE)

Quit STOP with nonblank LABEL, or F6, or F-key with IN
the same as STOP IN

Exit STOP_S with nonblank LABEL, or F6_S, or F-key
with IN the same as STOP_S IN

InsLn INSERT_LINE_BOL or INSERT_LINE_STAY with
nonblank LABEL

(Continued)

Revision D Terminal Definition Statements 2-36.1

Defining Functions and Key Labels for EDIT_FILE

Table 2-1. EDIT_FILE Defaults for Function Keys (Continued)

Cap/Op Value Used from Terminal Definition

DelLn DELETE_LINE_BOL or DELETE_LINE_STAY with
nonblank LABEL

Home CURSOR_HOME with nonblank LABEL

OPS The operations Copy, Move, Mark, Unmrk, MrkCh,
MrkBzx, Locate, LocNxt, LocAll, Width, Break, Join,
and SkpEL cannot be defined through a TDU
statement, they are always assigned programmable
function keys

CIrEL ERASE_END_OF_LINE with nonblank LABEL

Middle This operation cannot be defined through a TDU
statement; it is always assigned a programmable
function key

Refrsh ERASE_PAGE_HOME or ERASE_PAGE_STAY with
nonblank LABEL

LinUp UP with nonblank LABEL

LinDn DOWN with nonblank LABEL

OPS The operations Format, Center, InsWd, DelWd, InsBKk,

DelBk, Indent, and Dedent cannot be defined through a
TDU statement; they are always assigned
programmable function keys

2-36.2 Terminal Definition Revision D

Defining Functions and Key Labels for Applications other than EDIT_FILE

Defining Functions and Key Labels for
Applications other than EDIT_FILE

Screen mode applications such as Debug, EDIT_CATALOG, EXPLAIN,
IM/Quick, and Programming Environments define both the functions
performed and labels assigned to programmable function keys through
application menus. You can change the application menu if you want
to change either the function key or the label used by these
applications. Application menus are described in the NOS/VE Object
Code Management manual.

Revision D Terminal Definition Statements 2-36.3

APPLICATION_STRING Statements

APPLICATION _STRING Statements

These statements are primarily used:

® To define the function of each key in the EDIT_FILE utility. (See
Defining Functions and Key Labels for EDIT_FILE.)

® To improve system performance (see the next section, Application
Strings for Maximizing System Performance).

® To initialize a terminal (see Initializing Terminals).
The format of the APPLICATION_STRING statement is:

APPLICATION _STRING or APPS
NAME = string
OUT=string

The NAME (N) parameter specifies the character string that the
application associates with the programmable function key. This
parameter is required. Values for user-defined applications are listed
in the manual that describes the application. Values for the EDIT_
FILE utility follow.

On a statement defining the function of a key in the EDIT_FILE
utility, determine the value for the NAME parameter as follows.

® For an unshifted key, enter:

fse_function_

followed by the number of the key. For example, the name of the
function of unshifted programmable function key F8 is:

fse_function_8

2-36.4 Terminal Definition Revision D

APPLICATION_STRING Statements

® For a shifted programmable function key, enter:

fse__function_shift__

followed by the number of the key. For example, the name
associated with shifted programmable function key F8 is:

fse_function_ shift__8

On a statement defining the label of a key, the entry is the name
of the function of the key (as just described) followed by _LABEL.

® For the unshifted F8 key label, enter:
FSE_FUNCTION_8_LABEL

® For the shifted F8 key label, enter:
FSE_FUNCTION_SHIFT_8_LABEL

The OUT (O) parameter specifies the string associated with the value
in the NAME parameter. It is sent to the application, which can use
it any way it wants. This parameter is required. The OUT parameter
can be continued on more than one line under the following
conditions:

® Strings that would extend over more than one line must be broken
into substrings that the system concatenates. Each substring must
be complete on a single line.

® Variables must be complete on each line.

You can use variable names to define lengthy subcommands, as in the
following example.

f4a=‘write_file f=$local.t$.$boi,1=m’
f4b='format_cybil_source i=$local.t$.$boi o=$local.t1$.$boi”’
fac="delete_lines 1=m’

f4d="read_file f=$local.t1$ p=b’

application_string name=(‘fse_function_4’)..

out=(f4a ”;° f4b “;° f4c *;’ fad)

For user-defined applications, refer to the manual that describes the
application. Information for the EDIT_FILE utility follows.

Revision D Terminal Definition Statements 2-36.5

APPLICATION_STRING Statements

When defining the function of a key, the string for the OUT
parameter is the subcommand executed when the key is pressed.
When you define the label of a key, the string is the label that
appears on the screen. Refer to the NOS/VE File Editor manual listed
in appendix B for both values.

Application Strings for Maximizing System
Performance

There are three application string statements that you can use with
any application to maximize the performance of your system.

® The first statement maximizes the speed and efficiency with which
your terminal repaints the screen. Without this statement, the
terminal repaints screen rows across their entire width when any
part of a row needs repainting. If you specify this statement, you
use extra CPU resources but the terminal works more efficiently,
repainting only those columns that are actually affected.

The format is:
application_string name=‘opt imization’ out=‘true’

® The second statement is applicable for these terminal definitions:

CDC_722_30
DEC_VT100
DEC_VT100_GOLD
DEC_VT220
PC_CONNECT_12
PC_CONNECT_13
MAC_CONNECT_11

It allows you to use the DEC VT100 scrolling regions feature,
which makes it possible to scroll vertically through just a portion
of screen text. This scrolling regions feature sets up top and
bottom margins and issues commands that cause the terminal to
scroll up or down within the screen margins.

To use this feature, specify:

application_string name=‘vt100_scroliling’ out="true’

This statement is particularly valuable for terminals without insert
and delete keys, such as the VT100, because it allows the EDIT_
FILE utility to scroll then repaint only one row instead of
repainting all rows below the cursor.

2-36.6 Terminal Definition Revision D

APPLICATION_STRING Statements

® The third statement allows you to use line insertion and deletion
‘ commands to scroll the screen. Use this statement with terminals
that provide insert and delete capabilities, but lack the VT100
scrolling regions feature described for the preceding statement.
The format of this statement is:
‘ application_string name=insert_delete_scrolling’ out="true’
Revision D

Terminal Definition Statements 2-36.7

Initializing Terminals

Initializing Terminals

Most terminals need to be initialized to specify hardware settings for
the desired mode of system interaction (screen or line). During
initialization, control characters are sent to the terminal through the
application statements you specify in your terminal definition to define
these settings.

Cursor wraparound is an example of a setting for which your terminal
needs to be initialized. In screen mode, you need to suppress cursor
wraparound at the edge of the screen for many terminals to prevent
unintentional scrolling of the entire screen. In line mode, you need to
enable cursor wraparound for many terminals so that you can scroll
the entire screen.

Initialization control characters are sent to the terminal to specify the
proper settings each time you enter and leave a screen mode
application. (For system performance reasons, some users require that
control characters be sent to the terminal just once per login; those
users should use the INITIALIZE_TERMINAL command which is
described in the next section.) The control characters are sent through
the following application statements, which you specify in the terminal
definition:

SCREEN_INIT
SET_SCREEN_MODE
LINE_INIT
SET_LINE_MODE

All of these statements are used when you enter and leave each
screen mode application.

Each statement lets you define up to 256 characters. You can use
additional SCREEN_INIT and LINE_INIT statements if you need to
specify more characters. (See the section Screen Mode Application
Statements for details on these statements.)

2-36.8 Terminal Definition Revision D

Initializing Terminals

Using the INITIALIZE _TERMINAL Command

For most users, initialization control characters are sent to the
terminal every time they enter and exit a screen mode application.
Some users have special system performance concerns requiring that
initialization contrel characters be sent to the terminal just once per
login. The INITIALIZE _TERMINAL command is designed to handle
terminal initialization for these users.

The format of the INITIALIZE_TERMINAL command is:

INITIALIZE _TERMINAL or INIT
STATUS =status variable

You can include INITIALIZE_TERMINAL in your user prolog if you
choose. Be sure to enter it after you name your terminal model with
the CHANGE_TERMINAL_ATTRIBUTES command and select screen
or line mode through the CHANGE_INTERACTION_STYLE
command. For example:

change_terminal_attributes ..

terminal_model=name of your terminal definition
change_interaction_style style=line or screen
initialize_terminal

INITIALIZE_TERMINAL searches the terminal definition for
application string statements you set up to initialize the terminal for
screen or line mode. It then sends the control characters from these
strings to the terminal to change the settings according to the current
mode of system interaction.

To initialize the terminal for screen mode, specify control characters
through one or more application strings of the following format:

application_string name=‘"screen_init” ..
out="characters sent to the terminal’

To initialize the terminal for line mode, specify control characters
through one or more application strings of the following format:

application_string name="1ine_init’ ..
out=‘characters sent to the terminal”

Revision D Terminal Definition Statements 2-36.9

Screen Mode Application Statements

Each APPLICATION_STRING statement is limited to 256 characters.
If you need to enter more characters, you can use multiple application
strings. They will be processed in the order that they appear in your

terminal definition. (See the next section for details on the application
string statements.)

Screen Mode Application Statements

The statements described in this section apply when you use an
application in screen mode; they are ignored for line mode.

A brief description of each statement follows. None of the statements
is required. (See the next section for statement formats and detailed
descriptions.)

Statement Description

INITIALIZE_TERMINAL Causes the specified command to be
executed each time an application is set
to screen mode.

LINE_INIT Specifies the sequence sent when a
terminal user leaves screen mode of an
application.

SCREEN_INIT Specifies the sequence sent when a
terminal user enters an application in
screen mode.

SET_LINE_MODE Specifies the string sent when a terminal
user leaves screen mode of an
application.

SET_SCREEN_MODE Specifies the string sent when a terminal
user enters an application in screen
mode.

2-36.10 Terminal Definition Revision D

Screen Mode Application Statements

When you enter an application in screen mode:

® The command specified by an INITIALIZE_TERMINAL statement
executes.

® The SET_SCREEN_MODE and SCREEN_INIT statements send
character strings to set and clear terminal settings.

When 'you leave screen mode, the SET_LINE_MODE and LINE_INIT
statements send character strings to reset the terminal to the default
line mode settings.

The SET_LINE_MODE and LINE_INIT statements are functionally
equivalent; however, you can use multiple LINE_INIT statements in a
terminal definition but only one SET_LINE_MODE statement. The
same is true for the SET_SCREEN_MODE and SCREEN_INIT
statements; they are functionally equivalent. You can use multiple
SCREEN_INIT statements, but only one SET_SCREEN_MODE
statement.

Revision D Terminal Definition Statements 2-36.11

Screen Mode Application Statements

The following example shows the application strings executed during
an EDIT_FILE utility session in screen mode.

User Enters: Statements Executed:

edit_file file=presto []
®

© display_value “hello’ °
®

°

deact ivate_screen []
°

activate_screen L]
°

quit [)
°

2-36.12 Terminal Definition

SCREEN_INIT
SET_SCREEN_MODE

SET_LINE_MODE

- hello

- Press RETURN/NEXT to continue /
SCREEN_INIT

SET_SCREEN_MODE

SET_LINE_MODE
LINE_INIT

SCREEN_INIT
SET_SCREEN_MODE

SET_LINE_MODE
LINE_INIT

Revision D

Screen Mode Application Statements

Format Descriptions

All screen mode application statements (except INITIALIZE _
TERMINAL) include a required OUT parameter, which specifies the
character sequence for your terminal from the terminal hardware
reference manual.

Statements can contain a maximum of 256 characters. If any
statement does not fit on one line, you can use continuation lines. If
you need to use more than 256 characters in a statement, you can
enter as many LINE_INIT and SCREEN_INIT statements in a
terminal definition as you need.

INITIALIZE _TERMINAL

The INITIALIZE _TERMINAL statement causes the specified NOS/VE
command (for example a CHANGE_TERMINAL_ATTRIBUTES
command) to execute automatically when you enter an application in
screen mode. The statement can contain a maximum of 256
characters.

The format is:

INITIALIZE _TERMINAL or INIT
SETTA _ COMMAND = string

The SETTA_COMMAND (SC) parameter specifies the character string
containing the NOS/VE command. For example, if you specified the
CHANGE_TERMINAL_ATTRIBUTES command, it would
automatically set the default terminal attributes.

Revision D Terminal Definition Statements 2-37

Screen Mode Application Statements

LINE_INIT
®

The LINE_INIT statement specifies the sequence sent when a

terminal user leaves the screen mode of an application. This

statement works the same as SET_LINE_MODE, but it can be

specified multiple times in a terminal definition to overcome the 256
character limit on the statement line. If omitted, no special .
initialization sequence is sent for your terminal.

The format is:

LINE_INIT or LINI
OUT=list of integer, keyword, or string

The OUT (O) parameter specifies the character sequence transmitted
to the terminal. This parameter is required.

SCREEN_INIT

The SCREEN_INIT statement specifies the sequence sent when a

terminal user enters an application in screen mode. This statement

works the same as SET_SCREEN_MODE, but it can be specified

multiple times in a terminal definition to overcome the 256 character .
limit on the statement line. If omitted, no special initialization

sequence is sent for your terminal.

The format is:

SCREEN_INIT or SCRI
OUT =list of integer, keyword, or string

The OUT (O) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

2-38 Terminal Definition Revision D

Screen Mode Application Statements

SET_LINE _MODE

The SET_LINE_MODE statement specifies the sequence sent when a
terminal user leaves the screen mode of an application.

For example, if you enter the DEACTIVATE_SCREEN subcommand
from an EDIT_FILE utility session you move from screen mode to
line mode in EDIT_FILE.

If you omit this statement, no special initialization sequence is sent.
This statement can appear only once in a terminal definition and can
contain a maximum of 256 characters.

The format is:

SET_LINE_MODE or SETLM
OUT=list of integer, keyword, or string

The OUT (O) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

SET_SCREEN_MODE

The SET_SCREEN_MODE statement specifies the sequence sent
when a terminal user enters an application in screen mode.

For example, if you enter the ACTIVATE_SCREEN subcommand from
an EDIT_FILE utility session you move from line mode to screen
mode in EDIT_FILE.

If you omit this statement, no special initialization sequence is sent.
This statement can appear only once in a terminal definition and can
include a maximum of 256 characters.

The format is:

SET_SCREEN_MODE or SETSM
OUT=list of integer, keyword, or string

The OUT (O) parameter specifies a character sequence transmitted to
the terminal. This parameter is required.

Revision D Terminal Definition Statements 2-39

Input/Output Statements

Input/Output Statements .

Input/output statements specify character sequences to be sent and/or
received by either the terminal or NOS/VE.

A brief description of each statement follows. Required statements are .
in boldface type. (See the next section for statement formats and
detailed descriptions.)

Statement Description

BACKSPACE Moves the cursor left one position.

CURSOR_DOWN Moves the cursor down one line. This
statement is required.

CURSOR_HOME Moves the cursor to the home position.

CURSOR_LEFT Moves the cursor left one column. This

statement is required.

CURSOR_RIGHT Moves the cursor right one column. This
statement is required.

CURSOR_UP Moves the cursor up one line. This .
statement is required.

DELETE_CHAR Deletes the current character and shifts
the text remaining on the current line to
the left one column.

2-40 Terminal Definition Revision D

Statement

Input/Output Statements

Description

DELETE_LINE_BOL

DELETE_LINE_STAY

ERASE_CHAR

ERASE_END_OF_

FIELD

ERASE_END_OF_LINE

ERASE_END_OF_
PAGE

ERASE _FIELD_BOF

Revision C

Deletes the current line, shifts the
remaining text up, and moves the cursor
to the beginning of the line.

Deletes the current line, shifts the
remaining text up, and leaves the cursor
where it is.

Replaces the current character with a
space and moves the cursor one column to
the left.

Erases an unprotected field from the
cursor position to its end and leaves the
cursor where it is.

Erases from the cursor position to the end
of the line and leaves the cursor where it
is.

Erases everything from the cursor position
to the bottom of the screen.

Erases the current unprotected field and
moves the cursor to the beginning of that
unprotected field.

Terminal Definition Statements 2-41

Input/Output Statements

Statement Description ‘

ERASE_FIELD_STAY Erases the current unprotected field and
leaves the cursor where it is.

ERASE_LINE_BOL Erases the current line and moves the
cursor to the beginning of the blank line. '

ERASE_LINE_STAY Erases the current line and leaves the
cursor where it is.

ERASE_PAGE_HOME Clears the screen and moves the cursor to
the home position. This statement is
required unless ERASE_PAGE_STAY is
used.

ERASE_PAGE_STAY Clears the screen and leaves the cursor
where it is. This statement is required
only if ERASE_PAGE_HOME is not used.

ERASE_UNPROTECTED Erases all the unprotected character
positions on the screen.

INSERT_CHAR Inserts a single blank character at the .
cursor position and shifts the text
remaining on the current line to the right
one column.

2-42 Terminal Definition Revision C

Statement

Input/Output Statements

Description

. INSERT_LINE_BOL

INSERT_LINE_STAY

INSERT_MODE_BEGIN

INSERT_MODE_END

INSERT_MODE _
TOGGLE
RESET

TAB_BACKWARD

TAB_CLEAR
TAB_CLEAR_ALL
TAB_FORWARD

TAB_SET

Revision D

Inserts a blank line before the current
line (subsequent lines are moved down)
and moves the cursor to the start of the
line.

Inserts a blank line before the current
line and leaves the cursor where it is.

Inserts characters the user enters at the
cursor position and shifts existing
characters to the right.

Overwrites existing characters with the
characters the user enters.

Enables switching between insert and
overwrite modes.

Resets the terminal hardware.

Moves the cursor to the previous tab stop
or unprotected field.

Clears the tab stop at the cursor position.
Clears all tab stops.

Moves the cursor to the next tab stop or
unprotected field.

Sets a tab stop at the cursor position.

Terminal Definition Statements 2-43

Input/Output Statements

Format Descriptions

All input/output statements, except BACKSPACE, have an INOUT
parameter. BACKSPACE has a required IN parameter. The character
sequences for these parameters are listed in the hardware reference
manual for your terminal.

Use the IN and OUT parameters (rather than INOUT) if you want to
specify input and output sequences separately. For example, you could
use an IN or OUT parameter alone in a statement if your terminal
sends a character sequence different from the one it receives.

A LABEL parameter, which names the keyboard key, is optional for
each statement.

Labels on Specific Editing Keys

The information in this subsection applies to the following
input/output statements:

CURSOR_HOME
DELETE_CHAR

DELETE_LIN_BOL and DELETE_LINE_STAY (whichever you
choose)

ERASE_END_OF_LINE

ERASE_PAGE_HOME and ERASE_PAGE_STAY (whichever you
choose)

INSERT_CHAR and INSERT_MODE_BEGIN (whichever you
choose)

INSERT_LINE_BOL and INSERT_LINE_STAY (whichever you
choose)

If you define the key with an IN or INOUT parameter, the system
can respond correctly when the key is pressed. If the LABEL
parameter is blank or omitted, the EDIT_FILE application considers
the key to be optional and will honor it if it is used. However, EDIT_
FILE also offers similar editing operations on a programmable
function key. The CDC-supplied definition for the VT100 uses this
technique since most VT100s lack these specific keys, although some
enhanced VT100s have them.

2-44 Terminal Definition Revision D

Input/Output Statements

If the LABEL parameter is present and nonblank, the system assumes
that the key is guaranteed to actually exist and does not offer similar
editing operations on the programmable function key menu. This
allows all available space on the menu to be used for other
operations. This technique is used with most CDC-supplied definitions
other than the VT100.

Revision C Terminal Definition Statements 2-44.1

Input/Output Statements

BACKSPACE .

The BACKSPACE statement specifies the sequence that moves the

cursor left one position. This statement is provided for terminals with

a backspace key that is different from the CURSOR_LEFT key. If

omitted, the terminal does not have this capability. .

The format is:

BACKSPACE
IN =list of integer, keyword, or string
LABEL =string

The BACKSPACE statement has no abbreviation.

The IN (I) pérameter specifies a character sequence transmitted to
NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

CURSOR _DOWN

The CURSOR_DOWN statement specifies the sequence that moves the
cursor down one line. This is a required statement.

The format is:

CURSOR_DOWN or CURD
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-44.2 Terminal Definition Revision C

Input/Output Statements

CURSOR_HOME

The CURSOR_HOME statement specifies the sequence that moves the
cursor to the home position. This statement is required.

The format is:

CURSOR_HOME or CURH
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. The output portion of this parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

CURSOR _LEFT

The CURSOR_LEFT statement specifies the sequence that moves the
cursor left one column. This is a required statement.

The format is:

CURSOR_LEFT or CURL
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string

that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-45

Input/Output Statements

CURSOR _RIGHT

The CURSOR_RIGHT statement specifies the sequence that moves the
cursor right one column. This is a required statement.

The format is:

CURSOR _RIGHT or CURR
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

CURSOR_UP

The CURSOR_UP statement specifies the sequence that moves the
cursor up one line. This is a required statement.

The format is:

CURSOR_UP or CURU
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-46 Terminal Definition Revision C

Input/Output Statements

DELETE_CHAR

The DELETE_CHAR statement specifies the sequence that deletes the
current character and shifts the text remaining on the current line to
the left one column. If omitted, the terminal does not have this
capability.

The format is:

DELETE_CHAR or DELC
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

DELETE _LINE _BOL

The DELETE_LINE_BOL statement specifies the sequence that
deletes the current line, shifts the remaining text up, and moves the
cursor to the start of the line. You can use only one of the DELETE_
LINE_STAY and DELETE_LINE_BOL statements. If you specify
neither statement, the terminal does not have this capability.

The format is:

DELETE_LINE_BOL or DELLB
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

Revision C Terminal Definition Statements 2-47

Input/Output Statements

DELETE _LINE _STAY

The DELETE_LINE_STAY statement specifies the sequence that
deletes the current line, shifts the remaining text up, and leaves the
cursor where it is. You can use only one of the DELETE_LINE_
STAY and DELETE_LINE_BOL statements. If you specify neither
statement, the terminal does not have this capability.

The format is:

DELETE _LINE _STAY or DELLS
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (10) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

ERASE_CHAR

The ERASE_CHAR statement specifies the sequence that replaces the
current character with a space and moves the cursor one column to
the left. If omitted, the terminal does not have this capability.

The format is:

ERASE_CHAR or ERAC
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-48 Terminal Definition Revision C

Input/Output Statements

ERASE _END _OF_FIELD

The ERASE_END_OF_FIELD statement specifies the sequence that
erases an unprotected field from the cursor position to its end and
leaves the cursor where it is. If omitted, the terminal does not have
this capability.

The format is:

ERASE_END_OF_FIELD or ERAEOF
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE_END _OF_LINE

The ERASE_END_OF_LINE statement specifies the sequence that
erases from the cursor position to the end of the line and leaves the
cursor where it is. If omitted, the terminal does not have this
capability.

The format is:

ERASE_END_OF_LINE or ERAEOL
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

Revision C Terminal Definition Statements 2-49

Input/Output Statements

ERASE_END_OF_PAGE

The ERASE_END_OF_PAGE statement specifies the sequence that
erases everything from the cursor position to the bottom of the screen.
If omitted, the terminal does not have this capability.

The format is:

ERASE_END_OF_PAGE or ERAEOP
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE_FIELD _BOF

The ERASE_FIELD_BOF statement specifies the sequence that
erases the current unprotected field and moves the cursor to the
beginning of that unprotected field. You can specify only one of the
ERASE_FIELD_BOF and ERASE_FIELD_STAY statements. If you
specify neither statement, the terminal does not have this capability.

The format is:

ERASE_FIELD_BOF or ERAFB
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-50 Terminal Definition Revision C

Input/Output Statements

ERASE_FIELD _STAY

The ERASE_FIELD_STAY statement specifies the sequence that
erases the current unprotected field and leaves the cursor where it is.
You can use only one of the ERASE_FIELD_BOF and ERASE_
FIELD_STAY statements. If you specify neither statement, the
terminal does not have this capability.

The format is:

ERASE_FIELD_STAY or ERAFS
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE_LINE_BOL

The ERASE__LINE_BOL statement specifies the sequence that erases
the current line and moves the cursor to the beginning of the blank
line. You can use only one of the ERASE_LINE_STAY and ERASE _
LINE_BOL statements. If you specify neither statement, the terminal
does not have this capability.

The format is:

ERASE_LINE_BOL or ERALB
INOUT=list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-51

Input/Output Statements

ERASE _LINE _STAY

The ERASE_LINE_STAY statement specifies the sequence that erases
the current line and leaves the cursor where it is. You can use only
one of the ERASE _LINE_STAY and ERASE_LINE_BOL statements.
If you specify neither statement, the terminal does not have this
capability.

The format is:

ERASE_LINE _STAY or ERALS
INOUT=list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

ERASE_PAGE_HOME

The ERASE_PAGE_HOME statement specifies the sequence that
clears the screen and moves the cursor to the home position. You can
use only one of the ERASE_PAGE_STAY and ERASE_PAGE_HOME
statements; one of the two statements is required.

The format is:

ERASE_PAGE_HOME or ERAPH
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

2-52 Terminal Definition Revision C

Input/Output Statements

ERASE _PAGE _STAY

The ERASE_PAGE_STAY statement specifies the sequence that clears
the screen and leaves the cursor where it is. You can use only one of
the ERASE_PAGE_STAY and ERASE_PAGE_HOME statements; one
of the two statements is required.

The format is:

ERASE_PAGE_STAY or ERAPS
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

ERASE_UNPROTECTED

The ERASE_UNPROTECTED statement specifies the sequence that
erases all the unprotected character positions on the screen. If
omitted, the terminal does not have this capability.

The format is:

ERASE_UNPROTECTED or ERAU
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string

that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-53

Input/Output Statements

INSERT_CHAR

The INSERT_CHAR statement specifies the sequence that inserts a
single blank character at the cursor position and shifts the text
remaining on the current line to the right one column. If omitted, the
terminal does not have this capability. ‘

The format is:

INSERT_CHAR or INSC
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

INSERT_LINE _BOL

The INSERT_LINE_BOL statement specifies the sequence that inserts .
a blank line before the current line (subsequent lines are moved

down) and moves the cursor to the start of the line. You can use only

one of the INSERT_LINE_STAY and INSERT_LINE_BOL

statements. If you specify neither statement, the terminal does not

have this capability.

The format is:

INSERT_LINE _BOL or INSLB
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

2-54 Terminal Definjtion Revision C

Input/Output Statements

INSERT_LINE _STAY

The INSERT_LINE_STAY statement specifies the sequence that
inserts a blank line before the current line (subsequent lines are
moved down) and leaves the cursor where it is. You can use only one
of the INSERT_LINE_STAY and INSERT_LINE_BOL statements. If
you specify neither statement, the terminal does not have this
capability._

The format is:

INSERT_LINE _STAY or INSLS
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

INSERT_MODE _BEGIN

The INSERT. MODE_BEGIN statement specifies the sequence that
initiates insert mode, in which characters the users enters are
inserted at the cursor position and the existing characters are shifted
to the right, rather than being overwritten. If omitted, the terminal
does not have this capability.

The format is:

INSERT_MODE _BEGIN or INSMB
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned; refer to Labels on Specific Editing Keys for further
information.

Revision D Terminal Definition Statements 2-55

Input/Output Statements

INSERT_MODE _END

The INSERT_MODE_END statement specifies the sequence that ends
insert mode. The graphic characters the user enters after this
sequence overwrite existing characters. If omitted, the terminal does
not have this capability.

The format is:

INSERT_MODE_END or INSME
INOUT=list of integer, keyword, or string
LABEL =string

The INOUT (IO) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

INSERT_MODE_TOGGLE

The INSERT_MODE_TOGGLE statement specifies the sequence that
enables switching between insert and overwrite modes. If omitted, the
terminal does not have this capability.

The format is:

INSERT_MODE _TOGGLE or INSMT
INOUT=list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-56 Terminal Definition Revision D

Input/Output Statements

RESET

The RESET statement specifies the sequence that resets the terminal
hardware. After this sequence is transmitted, the terminal must be
reinitialized. If omitted, the terminal does not have this capability.

The format is:

RESET or RES
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

TAB_BACKWARD

The TAB_BACKWARD statement specifies the sequence that moves
the cursor to the previous tab stop or unprotected field. If omitted, the
terminal does not have this capability.

The format is:

TAB_BACKWARD or TABB
INOUT=list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision B Terminal Definition Statements 2-57

Input/Output Statements

TAB_CLEAR

The TAB_CLEAR statement specifies the sequence that clears the tab
stop at the cursor position. If omitted, the terminal does not have this
capability.

The format is:

TAB_CLEAR or TABC
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

TAB_CLEAR_ALL

The TAB_CLEAR_ALL statement specifies the sequence that clears
all tab stops. If omitted, the terminal does not have this capability.

The format is:

TAB_CLEAR_ALL or TABCA
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

2-58 Terminal Definition Revision B

Input/Output Statements

TAB_FORWARD

The TAB_FORWARD statement specifies the sequence that moves the
cursor to the next tab stop or unprotected field. If omitted, the
terminal does not have this capability.

The format is:

TAB_FORWARD or TABF
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string
that labels the corresponding keyboard key. If omitted, no label is
assigned.

TAB_SET

The TAB_SET statement specifies the sequence that sets a tab stop
at the cursor position. If omitted, the terminal does not have this
capability.

The format is:

TAB_SET or TABS
INOUT =list of integer, keyword, or string
LABEL =string

The INOUT (I0) parameter specifies a character sequence transmitted
to or from NOS/VE. This parameter is required.

The LABEL (L) parameter specifies a 1- through 31-character string

that labels the corresponding keyboard key. If omitted, no label is
assigned.

Revision C Terminal Definition Statements 2-59

Input Statements

Input Statements

Input statements specify character sequences sent by the terminal to
NOS/VE.

These statements include:
® CDC standard function key statements
® Programmable function key statements

All input statements have a required IN parameter, with values
obtained from the hardware refe