
DISTRIBUTION ---............ ---.-.---.-.
C.K .. Bedient
F.A. Bischke
W.H. Braunwarth
J.B. far r
O.A. Henseler
G.J. Kramer
J.J. Krautbauer
V.V. Mahal
A.E. Murray
R.A. Peterson
f.J. Sparrow
J.f. Steiner
H.A. Wohlwend
S.C. Wood

R.B. Beeson
R.E. Erickson
K.M. Jacob
R.A. Mann

G.S. Barrett
J.C. 8ohnhoff
A.J. LaMson
l.E. leskinen
J.l. Nading
e.G. Nelson
G.W. Propp

J. Sutherland

H. McGilton
R. Westgaard

ARHZ54
ARH254
ARH25·4
ARHZ54
ARH254
ARH254
ARHZ54
ARH254
ARH254
ARH254
ARHZ:54
ARH254
ARHZ54
ARHZ54

ARHZ60
ARH260
ARH260
ARHZ60

ARH263
ARHZ63
ARH263
ARH263
ARH263
ARH263
ARHZ63

CANeDO

SVl164
SVll18

1
09117/80

PJease help keep the above distribution list current. If
your name should be removed from the list or another name
added, contact Mike Carter at ARH260 - extension 2553.

• •

• t

• •

DISTRIBUTION _ -.-.-..--.... ..-.-.-.

P.W. Haynes
R.H. Kingdon
T.e. McGee
R.M. Medin
J.R. Ruble

R.E. Dennis
J. W. Gta f'f ius
O.J. Maguire
N.E. Meyer

s. w. fewer
:E. LaRowe

O.R. Boeckting
A.W. e eg I i a
J.S. White
D. Wi 1 ,.i ams

ARH254
ARH254
ARHZ54
ARH254
ARHZ54

ARH260
ARH260
ARH260
ARH260

ARH263
ARHl63

SVlIOOE
SVll14
SVlI02
SVlI02

2
09/17/80

Please help keep the above distribution list current. If
your name should be removed from the list or another name
added, contact Mike Carter at ARH260 - extension 2553.

• • • •

3
09/17/80

"" "" EE£E'EEE "" "" 00000
C " .. M " E M PI .. " 0 0 C
0 f1 M H EEEEE 0 0 0
C M .. E f1 .. 0 0 C

M M EEEEEEE M .. 00000

DATE ; SEPTEMBER 17, 1980

TO . DISTRIBUTION LOCATION t •

FROM : M. D. CARTER LOCATION : ARH260

The Bulld J update of the Integration Procedures Notebook
is now available. Copies of this document may be obtained via
the following command sequence 1

ATTACH,IPNDOC/UN-OEVI
SES.PRINT IPNOOC

Change pages are not being distributed for this level (as
has been suggested) due to the fact that the volume of change
pages is only sligtty smaller than the document itself. Some
highlights of this revision are as follows:

Section 1 has been reduced in size as the information in
this section was either inaccurate or out of date.

- Several procedure updates have been documented in Section
2, and Section 3 has been corrected or clarification added
where necessary.

The current Regression tests and test sequence has been
documented in Section 4. The source of the tests 8S they are
actuall, run has been replicated here, and the test sequence
is exactly that used by the Integration project at this
level.

The NOS/VE Transmittal Form has been changed to provide
more information to the analyst transmitting code.

- The latest version of the S2 Machine Usage Document (or
"Helpful Hints-) has been picked up as Appendix E.
Information in this document takes precedence over that in
Appendix F as it is more up to date.

Appendix F has been reduced in size considerably, 8S
redundant and inaccurate information has been deleted. The
information in this Appendix still reflects much of the HCS
syntax and conventions, some of which are still valid for
NOS/VE at this level.

• t

• " • • •
'.

:
• t

• •
·1

" • • • t

• t

• ,
• • • • • 'f

• • • • • • • I

• t

• ,
• • • •
.. ..

1-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/1·1180

1.0 OVERVIEW OF INTEGRATION PROCESS ~NN_~ _____ N_~ ________ N~N~ _____ N ____________________________________ _

The Integration process begins with the transmittal of a
software product, the command language procedures required to
build the product, installation procedure documentation, and
baseline documentation from the software development
organization. Subsequent to this transmittal, the Integration
project is responsible for maintaining the program library,
standardizing the installation procedures, maintaining the
Installation procedure documentation, and preparing the
software release package for the Software Manufacturing and
Distribution organization. In the interim time between the
initial transmittal and the release of a software product, the
Integration project schedules periodic builds. The outputs
from these builds are detivered to software development and
test organizations and/or made part of the software release
package.

1.0.1 RELATED DOCUMENTS

NOS/VE Procedures and Conventions
NOS/VE User's Guide
NOS/VE Command Interface ERS
NOS/VE Program Interface ERS
SES User's Handbook
CVBER 180 System Interface Standard
Simufat~d NOS/VE Program Interfaces
VEGEN ERS
VElINK ERS
CYBIl language Specification
CVaER 180 CPU Assembler ERS
CVSER 180 Simulator ERS
SES Procedure Writers Guide
CVBER 180 Object Code Utilities ERS
Source Code Utility ERS

ERS

Jllut.l.tUI1.2t:

S.w. fewer
Append.1 x f
DeS .- ARH3609
Des ARH3610
Des ARH1833
Des 52196
Des ARH3125
DCS ARH2591
Des ARH2816
Des ARH2Z98
OCS ARH1693
Des - ARH1729
Des ARH2894
Des ARHZQZ2
DCS ARH1166

• •
• t

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

1.0 OVERVIEW OF INTEGRATION PROCESS
1.0.2 STANDARDS

1-2

09/17/80

--
1.0.2 STANDARDS

In order to faciljtate the Installation process, certain
standards will have to be set and adhered to by all members of
the Operating System and Product Set. These standards (to be
defined in the Systems Interface Standard) witt cover the
fotlowing items:

a) AI. program libraries will have the same format, this
will be defined by (TBO).

bl All output tapes will conform to some predetermined
format in terms of numbers of files and what each file
will contain. This will be defined by (TBO).

c) The above formats are intended to facilitate
establishment of procedura'ized installation decks.
This implies that some convenient naming conventions
must be observed. These conventions will be defined
by (TBD).

2-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/11180

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)

2.0.1 INTRODUCTION

The command language procedures corresponding to NOS/VE
builds all reside in the INTI, INT2, or DEVI catalogs
depending upon the desired level of verification the system
has attained. It is assumed that the DEVl level of
verification is the m1ntmum level of system verification
required by most users, therefore the DEVI catalog is
frequently referenced in the remajnder of this section. (A
description of the catalog management policies employed for
NOSJVE follows.) To obtain a listing of the complete set of
command language procedures provided in the Integration
catalog, execute the fottoMing command language sequenceS

ACQUIRE,PROClIB/UNz(Integration_Catalog>
SES.PRINT PROClIB

Before running the bui1d procedures as batch Jobs, a check
must be made to insure that the user number under which the
job will run has sufficient validation limits for the Job to
execute. The minimum values for certain Ii_its must be as
fo"oNs:

eM = 24378
NF = u n I i m1 ted
MS- un' imi ted
OS = 4096
EC = 200B {if simulator is to use lCMl
DB = unlimited (each library is built via batch Job)

The current values may be obtained with the LIMITS control
card. If they are not large enough, have the operations staff
change them.

2.0.2 CATALOG MANAGEMENT POLICIES

The catalog management function done by the Integration
project approximates the cycle concept of permanent file
management. New system files begin in the INTI catalog and
move to the INT2 and DEVI catalogs as some significant

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (tI)
2.0.2 CATALOG MANAGEMENT POLICIES

2-2

09/17/80

#ttl "" ____ ,., __ • ., ___ "". __ #ItI __ .,.'.N ________ ._. __ :_", ____ .. _____ N·_ ",_ ", __ ",,,,,,, #III __ No. ___ #III

verification milestone has been achieved. Each catalog is
intended to be self-contained, in that procedures executed
from either catalog will access onty those riles whlch have
the same level of verification associated with them. The INTI
cata'og will access the most recent compilers, SES tools,
etc. while the INT2 catalog only contains selected system
files from tbe fast "stable" interim build which wi"
deadstart and run a m.nlmum set of test cases. The OEVI
catalog represents the "frozen" catalog for which changes are
no longer being accepted (this is typically a snapshot of the
last build cycle). The DE VI catalog will change no more
frequently than once for each build cycle. The INT2 catalog
will change only as frequently as bug fixes or system upgrades
demand, with the objective of keeping this catalog no more
than one week out of synchronization with the INTI catalog.
The INTI catalog, however, is a "working catalog" for the
debug of new system fixes, new procedures, etc. The stability
of this catalog cannot be predicted.

This section is being replaced by a user's guide which is
targeted for inclusion as one of the appendices to this
document. The procedures being developed are based upon the
prototype Source Code Utility which is being made available in
SES Release 14.

2.2.1 INTRODUCTION

The basic version of NOS/VE consists of 5 base object files
(XlMMTR, XlJIIF, XlJI2F, XlJ13F, XlJIFF), the eYBIl runtime
routine library (CYBIlIS), and several user program
libraries. The general scheme used in modifying or replacing
existing modules and adding new modules is to apply the
changes to the appropriate base object text file and save this
modified file in the current catalog. The checkpoint file
build procedure MOSlINK wilt always attempt to obtain updated
object text files from the current user's catalog before it
attempts to get them from the Integration catalog, thereby
allowing a user to replace these object text fifes with his
own. The "quick link" option of NOSlINK cannot be used when
modifying the base object text files as It does not use these,

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (ell
2.2.1 INTRODUCTION

09111180

_ WI IN IN III WI. #111.:_ #III .#III·IN#III. #III _._,. WI _1M ________ IN_ N ____ NW_#llf" _______ IN ________ . __________ ._

directly, but rather a pre-linked form ~f these fiies.

2.2.2 NOS/VE PARTITIONING

The system can be thought of as being partitioned into two
sections consisting of the five object files mentioned
previously. Each partition has associated with it certain
protection, privilege and responsibility. The first partition
consists of those routines that run in monitor mode and is
known as the monitor. The second partition consists of those
routines that run in job mode and is known as task ser~ices.
The modules on file XlMMTR make up the monitor, and the
modules on files XlJI1F, XlJ12F, XlJ13F and XLJIFF make UP
task services. A single user task can perhaps be thought of
as a third type of partition.

Any XDCL'd symbol within a given partition can be XREF'd by
any module within the same partition. To allow other
partitions to XREF these same symbols, the symbols must be
gated. Gating a symbol only makes the symbol available to
other partitions during the 'inking process, it does not
necessarily mean that the XDCl'd location can actually be
referenced - that is controlled by the ring brackets. In
general, only selected XOCt'd symbols are gated. Refer to the
MAP_offset_K file for a list of the entr~ points avaitable to
a user task. This list of entry points preceeds the linkage
of user tasks and is entitled "INBOARD SYM80L TABLE ENTRY
POINTS FROM FILE: STSXOST". It should also be noted that a
similar list exists for the Monitor entry points avai'able to
Task Services and is entitled similarly with the substitution
of MTRXOST for STSXOST in the above title.

2 .2. 2. 1 .lL1:U:1I&

The packed object text file XlMMTR contains all modules
which run in monitor mode. Modules from this file execute in
ring 1 of monitor and have a ring bracket of (1_1,1). They
also execute with global privi lege.

The following modules reside in monitor:

CPMTR
SYSTEM_MONITOR
SIGNAL_MONITOR
CPERR
MMM$MEMORY_MANAGER_MONITOR_MOOE
CIPSCOMMON_INPUT_OUTPUT

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.2.1 XlMMTR

2-4

09/17/80

__ NN_~ ___ _

FAP$FILE_AttOCATION_MANAGER
SQP$SEQUENCE_MANAGER
CMSCONFIGURATION_MANAGER
CPMea
KPPRDC
TMM SMTR_flAG_SI GNAl_FUNeT IONS
MEMORY_lINK_MONITOR_MODE
MMM AS M
OSAINX
TMMSO I SPATe HER
MTMSSERVICE_ROUTINES
MSM$MCU_REQUEST_PROCESSOR

2.2.2.2 ll.J.I1E

The packed object text file XlJIIF contains al. modules
which run in ring 1 task services. Modules from this fite
execute in ring 1 and have a ring bracket of fl,l,F).

The following modules reside in ring 1 task services:

MISC_SERVICES_RING_l
MEMORY_MANAGER
SYSTEM_ROUTINE_JOB_MOOE
CONSOLE_DISPLAY_MANAGER
F I l E_ MAN AGE R
MOUST
OMPSSYSTEM_INITIAlIZATION
JOB_DEADSTART
QUEUED_filE_MODULE
INITIAlIZE_MEMORY_LINK
MEMORY_LINK_INTERFACE
KPPROC
OFMSB_DISPlAY_MANAGER
TMMSOISPOSE_OF_RINGl_PREEMPTS
Ml P $C 170_HE L PER
TMMSMANAGE_SIGNAlS
OSMSINITIAlIZE_TABlES
MMM$SEGMENT_SIGNAl_HANOlER
QUEUE_fIlE_INTERNAl_INTERFACES
STMSMOOIFY_AST._Rl
STM$REAO_AST_Rl
OMM $K E EP _MVT
OMMSRl_MOOIFY_MVT

• • • •
" • • •
• • • • • •
• • • • • • • • • •
'. •

2-5
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

--2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.2.3 XlJ12f

--
2.2.2.3 llJ.IZ£

The packed object text fite XlJ12F contains a.1 .odutes
which run in ring 2 task services. Modules frtim this file
execute in ring Z and have a ring bracket of (l,Z,F).

The following modules reside in ring 2 task services:

J 8T BlS
DMPSJOB_INI T
SEGMENT_MANAGER
PROGRAM_LOADER
SIGNAL_HANDLING_ROUTINES
TASK_MANAGE R
EXECUTE_PROCESSOR
lGMSLOCAl_lOG_MANAGER
TM2_COMMAND_INTERFACE
lOGICAl_NAME_SPACE_MANAGER
TMMSAllOCATE_EXECUTION_RINGS
TMMSOISPOSE_OF_RING2_PREEMPTS
TMMSGET_MONITOR_fAUlT
TMM$MANAGE_PREEMPTIVE_BUfFERS
JOB_INITIATOR
JOB_MONITOR
JOB_TERMINATOR
JM_PROC_R2
ClM$READ_INPUT_FIlE
lUMSSAVE_lINK_USfR_DESCRIPTOR
MLMODS
TMM$ClEAR_WAIT_INHIBITED
PMMSOEFAUlT_LOADER_PARAM_MGMT_2
fMMSlOCAl_NAMf_TABlE_MANAGER
FMMST ABLES
INTERAC TIVE_USER
IIMSREPORT_UNHANOlEO_OATA_MSG
11M ST I ME_WA IT
IIMSREPORT_UNHANDlED_SUPER_MSG
IIMSREPORT_STATUS_ERROR
IIM$REPORf_lOGICAL_fRROR
IIMSASCII_170_TO_HEX
STMSMODIfY_VST_R2
STM$REAO_VST_R2
STMSMOOIFY_JOB_ASSOC_CAT
STMSREAD_JOB_ASSOC_CAT
STM$MOOIFY_JOB_SET_TABlE
STMSREAD_JOB_SET_TABlE
STMSSET_ENO_JOB
STMSGET_MOD
STMSRING2_CREATE_SET

• •
..
• • • • • • •
• • • • • •
" • • ..
• •
~ • •
" • • • I

• • • • • • • • • t

• • • • • I

• •
" • • • • • • •
" • • • • • • t

• • • • • • • • • • • • • •
" • • • • • • • .. • • • • • • •

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/WE OPERATING SYSTEM 8UILDS (el)
2.2.2.3 XlJ12f

2-6

09/17/80

_____ NN _________ ~_N _______ NN _______________________________________ _

STMSRING2_PURGE_SET
STMSRING2_ADD_MEMBER
STMSRING2_REMOVE_MEMBER
DMM$TEHPORARY~NON_SET_COOE
PFMSR2_REQUEST_PROCESSOR
PFASCATAlOG_SEGMENT_DEfINITION

2.2.2.4 1l.Jllf

The packed object text file XlJ13F contains at. task
service modules which run in ring 3 task services. Modules
from this file execute in rlng 3 and have a ring bracket of
(1,3,f).

The foltowing modules reside in ring 3 task services:

BAMSOPEN
BUffER_MANAGER
HPPSHEAP_MANAGER
BAM$RECOR~_MANAGER
BAMSBlOCK_MANAGER
BAMSSEGMENT_POINTER
BAM$FIlE_STRUCTURE_FUNCTIONS
BAMSFETCH_TABlE
PMMSMANAGE_COHDITION_STACKS
PMMSPROGRAM_CONTROl_SERVICES
TMMSDISPOSE_OF_RING3_PREEMPTS
TMMSDISPOSE_PREEMPTIVE_COHMO
TMMSMONITOR_FAUlT_HANDlERS
lOM$lOADER_EXECUTIVE
lOM$lOAD_l I 8RAR V_MODULE S
lOMSlI8RARY_LIST_MANAGEMENT
lOM$lOAD_MAP_GENERATION
lOM$MOOUlE_lOADER
lOMSENTRY_EXTERNAl_MATCHING
lOMSTEXT_GENERATI0N
LOMSlINKAGE_GENERATION
lOM$LINKAGE_NAME_TREE_MGMT
lOMSPROGRAM_SEGMENT_MANAGEMENT
lOMSOYNAMIC_TABlE_MANAGEMENT
lOM$PROGRAM_lOAD_lIEUTENANTS
PMMSKLUDGE_LOADER_IF
D A T A_PROf It E
GET_DATA_PROFILE
lOM $l OAOER_STUBS
lOM$TASK_SERVICES_DEF_MATCHING
LOM $C ROSS_R EfERENCE_MANAGEMEN T
ClMSMANAGE_STND_INP
PMMSINTERFACE_TO_lOGGING

:
• • • • • • • • • •
t •
• • • • • • • • • •
• •
• •
" • • • • • • • • • • • • · . • •
I
I

• • • • •
'. • I

• • • • • I

·f • • • • • • • • • • I

• • • •
I • • •
t • • I

• • • •

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (CIl
2.2.2.4 XLJ13f

2-7

09/17180

--
RHMSINTERIM_SIMUlATED_IO
RHMSSIMULATED_REPlACE
RHMSSIMULATEO_GET
LUMSMANAGE_l I NK_USER_INTERFACE
ClHSCOMMAND_lIST_MANAGER
ClMSREHOVE_VARIABlE
ClMSWRITE_VARIABlE
PMMSOEBUG_STACK_MANAGERS_13f
PMMSOEBUG,_ TABLE_BUILDER
PMMSOEFAUlT_lOAOER_PARAM_MGMT
ClMSBlOCK_STACK_MANAGER
CLMSOEClARE_VARIABlE
ClMSREAO_VARIABlE
CLM$INPUT_STACK_MANAGER
OEBUG_SYSTEM_lEVEl_EXECUTION
JMMSPROGRAM_LEVEl_INTERFACES
QUEUE_FIlE_PROGRAM_INTERFACES
ClMSPROCESS_ASSIGNMENT
PMMSMANAGE_lOCAl_QUEUES
AMM$STORE_FAP_POINTER
JMQF_TEMPORARY_MOOUlE
BAMSClOSE
BAMSCONTROl
BAM SFE rCH._AR T _ TABlE_P OINTER
BAM SPA D_REC ORO
BAMSREWIND
BAMSSTORE_ART_TABlE_POINlER
RMMSREQUEST_TfRMINAl
IIMSTASK_PRIVATE_OATA
BAM SSEEK_OJ REel
AMMSSTORE_PROCEOURE_POINTER
S T M SC REA T E_ SET
STH SPURGE_SET
STMSASSOCIATE_CATAlOG
STM$MISC_SERVICE_ROUTINES
STM$AOD_MEMBER
STM$CHANGE_ACCESS_TO_SET
STMSSIMUlATEO_REST_OF_WORlD
STMSREMOVE_MEMBfR
DMMSMAKE_VQlUME
PFMSPROGRAM_INTERfAC€_PROCESSOR
PFM$PARAMETER_CHECKING
PfMSPARAMETER_CONVERSION

2.2.2.5 !Llllff

The packed object text file XlJIFF contains all modules
which run in the ring of the calter. Modules from this file
have a ring bracket of (l,F,F).

• t

• • •
"
'. ,
I • • • • • • t

• •
" • • " • • • • • ,.
• t

" • • I

• t

• •
J • • • ,
• ,
•
:f , ,
1

• •
t
t

• 1

• • • 1

• • ,
" • •
t
t

• • • " • •
1 •
t •
" • • • • t

" •
:
• •
I •

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.2.5 XLJIFF

09/11180

--
The fol1owing modules reside in the any ring task services:

MCPJTP
OCAlL
SRM$CONVERSION_SERVICE_MANAGER
MISC_SERVICES_ANY_RING
CMO_PROCeSSOR_UTILITIES
COMMAND_INTERFACE
fIlE_MGR_COMMANDS
OEBUG_USER_lEVEl_EXECUTION
PMM$RUNANYWHERE_PRG_SERVICES
MEMORY_MANAGER_REQUEST_PROCS
CPMCB
PfMSINTERIM_COMMAND_'ROCESSOR
AMMSfIlE_STRUCTURE_FUNCTIONS
PMM$CONDITION_STACK_PROCESSOR
PMM$OISPOSE_OF_CONDITI0NS
PMMSDISPOSE_Of_TRAPS
TMMSD I SPOSE_OF._MONITOR_FAUl T
ClMSANALYZE_TOKEN
ClMSANALYZE_VAlUE
eLM SSC AN_E XPRES S I ON
ClM$C ONVERT_I NTEGER_ TO_STRING
ClMSlEXICAl_PROCESSORS
CLMSCONVERT_VAlUE_TO_STRING
OSMSFORMAT_MESSAGE
OSM$SET_STATUS_ABNORMAl
OSMSTRANSlATION_TABlES
OSAINX
MMM$SEGMENT_FAUlT_HANDlER
ClMSACCEPT
ClMSCOllECT_TEXT_COMMAND
ClM$INClUOE
ClMSPROCESS_COMMANOS
ClMSSCAN_PARAMETER_lIST
ClMSSET_OBJECT_lIST
ClMSSET_PROGRAM_OPTIONS
OSMSlOCK_MANAGER
MAINT_COMMANDS
OSMSGENERATE_MESSAGE
CLM$OISPlAY_VAlUE_COMMANO
ClMSACCESS_BlOCK_STACK
ClMSACCESS_PARAMETERS
ClM$FIlE_REFERENCE_MANAGER
ClMSCONVERT_STATUS
PMMSOEBUG_STACK_MANAGERS_IFF
PMMSPROGRAM_SERVICES
PMMSSYSTEM_TIME_OECLARATIONS

• •
•
" :
• • • • • t

:
• • • t ,
" • • • t

I • • •
1 o.

• • • • • • • • • ,
" • ,
• •
" • •
'. f

• • • t

" •
" • • 1
1 • • •
I ,.
• •
" • • •
" • • • • •
• 11

:
• • .,
• • • • • • •

2-9
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09117/80

--2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.2.5 XlJlfF

PMM$5TATUS_QUEUES_DEfINED
REC_M GR_C OM M A NO S
AMMSADVANCED_ACCESS_METHODS
AMMSClOSE
AMMSFETCH_AcceSS_INFORMATION
AMMSfETCH
AMM SFLUSH
AMMSGET_NEXT
AMMSGET_SEGMENT_POINTER
AMMSOPEN
AMMSPUT_PARTIAl
AMMSPUI_NEXT
AMMSREWIND
AMMS5K I P
AMMSSET_SEGMENT_EOI
AMMSSTORE
AMM $C HECK._R EC ORO
AMMSDElETE_KEY
AMM SGE l_KEY
AMM$GE T _ME X T_KE Y
AMMSPUT_KEY
AMM$PUTREP
AMM $RE PLAC E_KE Y
AMMSSTART
AMMSSET_SEGMENT_POSITION
AMM SGE T _PAR TI Al
AMMSSEEK_DIRECT
AMMSGET_DIRECT
AMMSPUT_DIRECT
AMMSGET_PARTIAl_DIRECT
AMMSPUT_PARTIAl_DIRECT
ClMSPERMANENT_FllE_COMMANOS
ClMSDEBUG_CDMMANOS

2.2. 2. 6 ll,i.t..a_E;CS.l.djUl&.llL.l!.l.t.lm.I_b.s.~.d_M_.e,aJ:.tilijl!l

The fotlowing rules appty to static data defined by modules
in monitor or task services:

1) Only modules within monitor may declare static data that is
mainframe wired.

2) Onl, modules within ring 1 task services may declare static
data that is mainframe paged.

3) Only modules within ring 2 task services may declare static
data that is in the Job fixed segment. No modules may
declare data in Job pagable until the new system generator

• • • •
t • • • • • • • • • • • • t

• • • • • • • • • • • • • • • I

• I

,"
t,

I • • I

I • • •
• •
it
t

• • • I
t • • • • • • •

2-10
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

--2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.2.6 Data Residency/lifetime Based on Partition

--
is available.

4) Only modules within ring 3 task services may declare static
data that is in the task private segment.

5) Rules 1 through 5 also mean that.All static data for a
module in a given partition witt reside as specified.

6) Static data for modules that run in the ring of the caller
(XlJIFF) must be read only when executing above ring 3.

2.2.3 MANIPULATION OF NOS/VE PARTITIONS AND LIBRARIES

When bujlding a system, monitor must be linked first. All
gated symbols within monitor then become available to task
services, which is linked second. Although some monitor
symbols can be referenced by task services, the onty way to
execute monitor code is via the exchange jump i.e., the
CALL/RETURN mechanism is not valid for use between monitor and
job modes. User tasks are linked last and can r~ference gated
symbols defined in task services. It is important to note
that although the linker will alloM a reference to a given
symbol, the ability to actual'y reference the location is
determined by the ring brackets on both ends of the
reference.

2.2.4 SYSTEM BUILD PROCEDURE DESCRIPTIONS

In order to understand the procedure descriptions which
follow, something should be said as to the sequence in which
these procedures are used to generate systems. The following
is an attempt to accomptish this:

2.2.4.0.1 BACKGROUND INFORMATION

The procedures described below are documented as
"SES.<Procedure_Name)". In actuality, to invoke the
procedures in this manner assumes that there is a file named
'PROFIlE' in the current catalog which names the Integration
catalog to search for the procedtire (via the 'SEARCH'
directive). The alternative mechanism for invoking these
procedures is to code the procedure ca'i 8S:
"SES,<Integration_Catalog).<Procedure_Name)". Many of the
procedures use the 'PRCUNAM' value for substitutable user

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.4.0.1 BACKGROUND INFORMATION

2-11

09/17/80

____ N __ _

names, meaning that the catalog in which the procedure is
found is the catalog which is searched for files. This is as
it should be, since each of the Integration catalogs contains
a different version of the system.

All of the procedures described in this document
"HELP" documentation associated with them~ Use
SES,<Integration_Catalog),HElP.<Procedure_Name) call to
procedure documentation printed at your terminal.

have
the

have

There are two execution modes of NOS/YE which are referred
to as the "standalone" mode and the "dual-state" mode. Alt of
the NOS/VE source modules which execute in the eV180 Virtual
State are contained on a program library named tNOSYEPl'. The
program interfaces to the Virtual State system, those
described in the NOS/VE Program Interface ERS, exist as common
decks on a program library named 'OSlPll. The content of
these two program libraries Is referred to as the standalone
system. A deadstart tape can be produced of the standalone
system for execution on the hardware, or the output of the
Virtual Environment generator can be executed directly on the
Hardware System Simulator. The 110 support of this standalone
system when running on the simulator is defined in a separate
set of ~ommon decks on a program jibrary named 'CVBICHN'.
Refer to the Simulated 110 ERS for documentation of these 1/0
interfaces.

The dual-state execution of NOS/VE, in conjunction with the
NOS operating system, requIres NOS system modifications and
the presence of a set of NOS utilities and procedur~ files.
The software which supports this dual-state environment from
the 'NOS' side of the hardware is contained on a program
library named 'VE170Plf. Included in this package of NOS/VE
support programs is a software application called the Interim
Remote Host Facility which supplies job-to-job communication
between the Virtual State and NOS portions of the CY180
machine. The Interim Remote Host Facitity bui-Id procedures
are not documented here at this time.

2.2.4.0.2 THE BUILD SEQUENCE

The Integration project typically updates the base source
lib r aT i e s P r i or t 0 star tin g any r e com p j I at ion 0 r 8 sse m b I y 0 f
the system. In order for a user of these procedures to modify
the source of a system routine he/she can use the SES
'GETMODS' procedure to extract the source being modified, or

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.4.0.2 THE BUILD SEQUENCE

2-12

09/17/80

create the source in some othe~ manner. If GETMODS Mas used
to extract the source, then REPMODS can be used to put this
changed source on a MADIFY program library in the user's
catalog. Then the filename containing this program library
must be specified as the value of the 'AB' pa~ameter of the
NOSBIlD procedure. (Refer to the Source Maintenance Section
of the SES User's Handbook if you have questions about source
maintenance. »

One must first determine how much of the system is to be
compiled or assembled. If on'y a few modules (less than 5)
are being compiled, then the NOSBItO procedure should be used
with the 'M' option to update the appropriate files. If a
larger number of modules (5 or more in the same system
library) are to be recompiled, then it is "cheaper" to use the
fl' option and rebuild the entire system library from
scratch. If more than two libraries are to be recompiled,
then the NOSBIlF procedure should be used to submit a separate
execution of the NOSBIlD procedure for each library to be
rebuilt. This latter method is the one used for rebuilding
atl of the NOS/VE Virtual System from scratch.

The genera' philosopy behind the NOSBIlD procedure is to
extract the latest source of a module from a program library,
compile or assemble the source to produce the appropriate
object text, replace/add the updated object text to the
appropriate system library, and save this library in the
catalog in which the procedure is executed. The final result
of the execution of the NOSBIlO procedure should be an updated
system library in the current user's catalog which is ready
for the 'LINKER' phase of the build. Jobs which run in "user
mod e ", t hat i s the i n t e r f ace t 0 th e s y s t e m i S lull.! t h r 0 ugh us e
of the program interfaces (OStPI), are saved merely as object
text fites in the user's catalog and LINKER-LOADER directive
modifications are required to include these files as part of
the system. This latter capability will gradually be replaced
by the Virtual State LOADER and Library Generator features as
they become available.

The LINKER (SES.VELINK) and lOADER (SES.VEGEN) are packaged
together in the Integration procedure NOSlINK. This is for
convenience purposes, in that most LINKER changes· to the
system require a corresponding LOADER directive change, and
the intermediate results from the LINKER execution are not the
primary output used for system checkout. Ptior to starting
the LINKER-LOADER phase of system builds, some decisions need

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

z.o NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.4.0.2 THE BUILD SEQUENCE

2-13

09/17/80

------------~---
to be made as to the target execution environment for the
resultant output.

If the target execution environment is standalone NOS/VE,
then the default NOSlINK options should be used to produce the
file named 'lGBOK1. This file c~n be run on the simulator
using the NOSSIM procedure, or can be used to create a
deadstart tape using the 'VSNJ parameter of the NOSSYS
procedure.

If the target execution environment is a dual-state
environment, then the OFFSET parameter must be used to specify
how large the NOS system will be. The systems produced for
the Arden Hills 52 use OFFSET=256 to produce a lGB256K fi'e.
The lGB256K file is used by the MOSSYS procedure (when
OfFSET:256 is specified) to produce a deadstart tape image on
disk named 'TP256K'. This deadstart tape image must then
replace the fi'e named TPXXXK, which the dual-state deadstart
procedure UPMYVE wi" then find. Refer to Appendix E for
Dual~State and standalone deadstart procedures.

In order to generate a deadstart tape for standalone
NOS/VE, it is only necessary to run the NOSSYS procedure and
specify the VSN of the tape to be written. Prior to
generating a dual-state deadstart file, however, it is
necessary to verify that the utilities necessary to support
the dual-state deadstart have been rebuilt via the DSBIlD and
alOEI procedures. There are two portions of the dual-state
EI, the A170 portion is built using the BlDEI procedure, and
the CIBO portion is rebuild using the NOSBIlD procedure (deck
name d MlAE I) •

The procedure NOSBIlO is used to add or replace modules on
a base object text fite. NOSBIlD retrieves the source module
from a program library, using the following search order:

1) an alternate base optionally specified by the
user "ooking first in the current catalog, and
then in the (Integration) catalog)

2) OSlPI (from the (Integration) catalog)
3) NOSVEPl (from the (Integration) catalog)

This module is then compiled or assembled, and the
resulting object text is either added to or replaced on a base
file. A new version of the base file will be created in the
current catalog, along with the direct access file NOSlIST

• t

• • • •

• • • •
t • • •
• • • 'f

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (Cl)
2.2.4.1 NOSBllO Procedure Description

2-14

09/17180

------------------------------~------*------------------------------
which c~nt3ins the compilation or assembly listing(s) of· the
module(s) compiled or assembl~d (one listing per record,
headed by the matching MAOIFY module name, listed via the
lISTNVE procedure described in this document). If there are
any compilation errors, the error .isting(s) wit. be put on
the direct access file RPTERR2 (which has the same format as
NOSlIST) in the current catalog. The indirect access file
RPTERRI witl contain the message "COMPILATION ERROR IN OECK
<module>." for each module which had compilation ertors. Any
GENCOMP errors wil' cause a similar message to be written to
the indirect access fite CMPERRI.

If a specified module is to be replaced (i.e. it is
already part of the existing system), NOSBIlD witl by default
use the same compilation options and wilt replace it on the
same base object text file as when it was first added to the
system. These options may be overridden by specifying the
corresponding parameters described below_

If a specified module is new to the system, the compilation
and base object text file options may be directly specified
us i n 9 the par am e t er s des c rib e d be' 0 w • I f a !lll 0 f new
modules is specified, the compilation and base file options
must also be specified as lists, and NOSBIlD will match
everything UP positionally. If these parameters are nAt
specified, and NOSBILO is executing in LOCAL mode, 8 warning
message will be issued telling the user that the module is not
in the current system. The user wltl then be prompted for the
necessary information. If these parameters are not specified
and NOSBIlD is executing in BATCH mode, the compilation and
base file options default as specified betow_

If the 'I' parameter is specified, each module's object
text wiJI be copied to a temporary 'z' fife. The old library
file will then be purged, and the tz' file wi" be renamed as
the new library file. All compilation flstlngs wi11 be
lIBEOIT'ed onto NOSlIST from a temporary listing file at the
end of the procedure.

When an entire library is being rebuilt via the tit
parameter, the module names and their corresponding
compilation options are obtained from a file which contains
alt this information for each library. NOSBILO searches for
this file first in the current catalog, and then In the
<Integration) catalog. The name of this file mY~l be the name
of the library minus its first character (e.g. 'lJ13Ft for
thetibrary 'XlJ13F'},and the first line of this file mll.1! be
the file name. To make additional entries or change existing
entries in this file, the following procedure should be

• • • • • •

• • • • • •

• • :
• t
t • • • • I
t • • • • • • ..

2-15
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

--~---~---~-------------~~--2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.4.1 NOSBltO Procedure Description

--
fotlowed:

1) EXfRACT,<libdeks>/UN=(Integration).
(where (Iibdeks> is the name of the compilation
information fite for the library 8S described
above, and <Integration) is the Integration
catalog)

2) Edit <tibdeks) to add or change entries. The
format and spacing of each entry is important and
must be as follows:

where
m

(m),<c>,<xref>,<ll»

= a 7-character left-justified module
name

c = a i-character compilation option
('0','1','2','3', or '4') see description
of tc t parameter below)

xref & a 3-character left-justified cross
reference option (either 'YES' or 'NO .)

11 .. a 7-character left-Justified
destination library name.

the entries currentty in these fites al. follow
this format so that any additional entries may be
lined UP quite easil, with them.

3) SAVE,<libdeks).

NOSBllD (with the 'I' parameter specified) may then be used to
rebuild the library using these new/modified compilation
options.

The format of the NOSBllO is as follows:

SES.NOS8IlD (m=«module name> •• <module name» 1
[1-< library name>]

m :

• .

[c-(compilation option> •• (compilation option»]
[xref--{(xref option> •• <xref option») 1
[11 • «base file> •• <base file»]
[ab = (alternate base>]
[omit = «module name> •• <module name»]
[link: link -- (offset value>]
[test • (test file name>]
[print]
[batch]

The module name, or range of modules, or list of
module names.

The library name. Only one library at a time may

• • • ,
1 • • • • •
I •
" • • • • • • • • ,
• • • •
1 •
" • • ..
1 • • • :
I • • •
" • • t

• • :

2-16
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.2.4.1 NOSBIlO Procedure Description

--

C t

xr ef :

11 I

ab :

omit :

Ii nk

test :

print:

be sefected. To select more than one, use the
NOSBIlF procedure.

c • 0 to assemble a module
c • 1 to compile a CYBIl module (DEFAULT)
c : 2 to compile a CYBll module without range
checking
c • 3 to compile a CYBIl module using CYBICHN type
declarations
c = 4 to compile a CYBll module using CYBIeHN type
declarations, and with range checking turned off

'YES' to run a cross reference (CYBREF)
tNO' to not run a cross reference (DEFAULT)

The base file (list of base flies) onto which the
module (list of modules) is to be added or
replaced. If a new module, the default is
'XlJIFF I.

The user's alternate base program library
containing new and modified modules. The default
is 'NEWOKPLI.

Used when running a full build, a module name or
list of module names to omit from the build. The
default is none.

Option to link the newly built or modified system
using the procedure NOSLINK. Specifying simply
the keyword 'LINK' or 'LINK = 0' links a NOS/VE
stand-atone system. To 'ink a dual state system,
specify 'LINK • (offset>' where (offset> may be
given the values 256, 128, or 64. The default is
to not link the system.

The name of the file containing the NOS/VE test
commands to be input to the simulator, which wfll
be executed after the system has been linked
(using procedure NOSSIM). This parameter is
invalid if the 'LINK1 option has not also been
specified. The default is to not run the
simulator test.

Option to print the link map following the linking
of the system. The default is not to print the
link map.

2-17
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.2.4.1 NOSBIlO Procedure Description

--
batch :

t:H1IE_ :

Run NOSBILO in BATCH mode. The default is to run
it locally.

One of 'm' or 'I' parameters O.s..t be specified.

NOSBIlF is an SES procedure file which submits one batch
procedure execution of NOSBIlO for each system library, each
wjth the '" parameter specified for the library to be built.

The format of the NOSBIlF is as follows'

SES.NOSBItF [I : (I ibrary name >1
[batch]

. .

batch :

No te :

The '.' parameter specifies the library to be
built. It can be one library or 8 list of
libraries. The default is to rebuild the entire
system.

Run NOS8IlF in BATCH mode. The default is to
run it locally.

To rebui1d one library, the folloMlng
identical:
1) SES.NOSBIlF 1:< library name>
2) SES.NOSBIlD I~< library name> batch

are

lISTNVE is an SES procedure fite which extracts the
compilation listings of the modules specified by the 'M'
parameter (module names correspond to the MAOIFY deck name
given the module) from a text library file and writes them to
the file specified by the 'F' parameter in a printable
format. The 'M' parameter may select a single module, a list
of modules, and/or a range of modules on the library fite.

The Jibrary fite which contains the listings may be
selected via the 'I' parameter, and defaults to NOSlIST.
lISTNVE will search for this file in the current catalog
first, and jf it is not there it wit. go to the catalog
specified by the 'UN' parameter.

When lISTNVE has completed, the output file selected by the
• 0 ' parameter wi I 1 be a • 0 cat f i Ie. I ti s n,g! aut 0 mat i cat I y
printed unless either the 'PRINT' or 'BATCH' option is
selected.

2-18
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.2.4.3 lISTNVE Procedure Description

--
The format of the lISTNVE is as follows:

SES.lISTNVE

m :

[m • ((module name> •• <module name>)]
[i = <'ite name>]
[0 = <print file name> 1
(un • <user name>]
[print]
[batch]

The module name(s) and I or range of module
names which are to be extracted for
printing. The default is to extract and
format .all of the modules.

i : r : from: The name of the text library file from
which the compilation listings ar~ to be
extracted. The default is NOSlIST~

o : to upon: The name of the file which witl receive the

un :

prin t:

batch :

formatted listings to be printed. The
default is LISTING.

The name of the catalog to search for the
library file should it not be found in the
current catalog. The default is the
<Integration> catalog.

Option to print the 'isting file after It
is formatted. The default is to not print
the listing file.

Run lISTNVE in BATCH mode. The default is
to run it locally.

2.2.5 NOSlINK PROCEDURE DESCRIPTION

NOSlINK is an SES command tanguage procedure file which
wilt call both theVE Linker and VE Generator (using the
standard SES procedures VEt INK and VEGEN) to produce a
checkpoint flle and link map file. In order to do this it
will link monitor and task service routines from their object
text files. It will search all files that it requires 1) from
local files 2) from the current catalog, 3) from area user's
catalog (if the area parameter is specified), 4) from the
(Integration) catalog.

N OS lIN K w i til ink e i the T as tan d - a Ion e 0 r a d u a 1st ate

• • • t

• • • • • • • • • • • • • •
• •

2-}9
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/11180

2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.2.5 NOSlINK PROCEDURE DESCRIPTION

***----*---**------------------*------------------------------------
system. The choice is made via the OFfSET parameter (see
description below). NOSlINK wilt put the checkpoint file on
the direct access file lGB(offset>K, and the link map witl be
ptaced on the direct access file MAP(offset>K, where the value
given the OFFSET parameter is substituted into each name for
<offset).

To link additional user jobs into the system, create a file
in the current catalog containing the commands needed to
obtain all the necessary files as wet. as a ca" to VElIHK for
each user job to be linked. Specify this fite via the ADD
parameter, and NOSlINK will pick it up and physically insert
it into procedure command stream immediately following the
I as tc al t to V El INK. I.b~_!1.t~t_lln.c_lll._1.bl.l_!11~_lll!S.I-1l~_1b..c
!1!l:_!lam~11_

The format of the NOSlINK is as follows:

SES.NOSlINK [offset: < load offset>]
[save]

offset:

save :

quick :

uJ :

[quick]
[uj • (< user Job >, ••• ,< user job>)]
(add: < additional links fite >]
[print J
[test: < test fite name>]
[dump]
[area • < user name)]
[batch]

The load offset, used to determine whether to
link a stand-alone or a dual state system.
OFFSET • 0 links a stand-atone system (DEFAULT)
OFFEST • 2561, nks a dual state system (to u.se
on the S2)
OFFSET • 128 links a 128K dual state system
OFFSET = 64 finks a 64K dual state system

Option to save the monitor and task services
segment files created during the link for
subsequent -quick link" use by this procedure.
The default is not to save these segment files.

Option to do a "quick link". A more co_plete
description of this option can be found in the
section entitted "Quick Link Option of NOSlINK
Procedure". The default is not to do a quick
link.

File or Jist of files containing the existing

• • • • • • • •
" • • •
• • • •
t • • • • • • • • t

• •
• •
• , .. • • • • t

• • • • • • • • • •
I
t

• • • • • • • • :
t • • •
• • • • • • • •
.. •
• • • • • •
• t

2-20
ADV~NCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.2.5 NOSlINK PROCEDURE DESCRIPTION

--

add :

print:

test :

dump :

ar ea :

ba tcb t

user job binaries that are to be linked into the
system. The default is to link In.U existing
user jobs.

The name of the 'ile containing
needed to link additiona. user
system. The default is to not
additionat user Jobs.

Option to print the link map.
not to print the link map.

the commands
jobs into the
1 ink in any

The default is

The name of the 'ile containing the NOS/VE test
commands to be input to the simulator, which
wi.' be executed after the systam has been
linked (using procedure NOSSIM1. The default is
to not run the simulator test.

Option to print a memory dump of the system.
Default is no memory dump.

Option to obtain the object files or linker
parameter files from another user's catalog
(other than the current catalog in which the
procedure is executing). The default is for no
area user catalog to be searched.

Run NOSLINK in BATCH mode. The default is to
run it locally.

The LINK commands used in the NOSLINK procedure do not
specify enough information to totall, define the requirements
of the linking operation. Many additional parameters are
supplied to the linker through additional data files. This
includes information such as:

- Ring Numbers
Segment Numbers

- Segment Attributes
Execution Privilege

Currently this information is supplied to the linker via
the SES linker Parameter File (lPF) file. The linkage between
the linker and the LPF fite is activated by the lPF-lIBlCB
parameter on the LINK commands. for the monitor linkage this
information is on lPF fife MTRlCB, task services tinkage

,
• • , ,
t.

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.2.5.1 LPF File Description

2-21

09/17/80

--
information is on LPF fite STSLCR, and EI/EIE
infor~ation is on EILCS/EIfLeR respectively.

Ii nkage

The VElDCM file used by the procedure NOSlINK contains
directives to the CPF Generator which alfow it to produce a
checkpoint file from the segment fites produced by the VE
linker. These directives set UP the physical environment into
which NOS/VE is placed, and include such things as the
definition of the page size, Job and monitor exchange package
addresses, page table address and length, preallocated segment
array definitions, etc.

VElDCM is a "skeleton" file which is dynamically edited
during the execution of the NOSlINK procedure, depending upon
the specification of the OFFSET parameter. The edited rile is
then put on a direct access file named lDR(offset)K (where
(offset) is replaced by the value given to OFFSET when the
procedure was called' in the user's catalog. It contains the
directives to the CPf Generator which set UP the physical
environment for that particular 'ink. This file must remain
permanent in the user's catalog after NOSlINK has been
executed, as the procedure NOSSYS uses this file in building a
deadstart tape.

2.3.1 INTRODUCTION

A user task can be defined as a group of modules linked
together that will execute in the 'user ringl of NOS/VE,
currently ring 11. This task may make calls to any gated
entries within task services (rings 1 through 3) if the call
bracket will allow the call. Data defined within task
services may not be referenced from rings 4-15.

2.3.2 QUICK LINK OPTION OF NOSlINK PROCEDURE

To do a "quick link", specify the QUICK option on the call
to NOSLINK (see the section entitled "NOSlINK Procedure
Description). In this case NOSlINK does not link monitor and
task services from their object text files each time.
I os tea d, i t us e s .alLJtl.J1.l __ 11n!'Jui m 0 nit 0 r an d task s e r y ice
environments, and Just links the specified user object fifes.

2-22
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80
_______ N._ #111 ___ ' __ . __________ ______________________________ . ____ . ________ _

2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.3.2 QUICK LINK OPTION OF NOSlINK PROCEDURE

--
The QUICK option causes HOSLINK to run faster and requires

less reSOUf"ces than the fuf' I ink, and therefore should be
used instead of the full I ink when ALLl.x_jlaL-t.a~l"l are being
added to NOS/VE.

NOSlINK, with the QUICK option specified, should not
require any modification to execute in different user task
configurations. The user can merely name the user object text
file produced by an assembly or compilation as 'XUUSERl 1 • To
link additional user object files into the system, either
specify the existing fites to be linked via the UJ parameter,
or specify the necessary command file via the ADO parameter.
The contents of this file, Its use, and the function of the UJ
and ADO parameters are described in greater detail in the
section entitled "NOSlINK Procedure Description".

2.4.1 RUNNING A SIMULATOR TEST (NOSSIM PROCEDURE)

NOSSIM is an SES procedure file which wilt run either a
batch mode or an interactive simu.ation of NOS/VE. This
option is selected via the 'TEST- parameter. If ITEST' is not
specified, then the simulation will be run interactively. If
a batch mode simulation is desired, then 'TESTl is used to
specify the name of the file containing the NOS/VE test
commands that are to be input to the simulator. The 'BATCH'
keyword must also then be specified. If the user wants to use
his/her own simulator directives file, the 'CMOS' parameter
must be specified.

NOSSIM also allows the selection of the checkpoint file to
be used for the start of simulation. A checkpoint fite may
also be optionally saved at the end of the test. The C180
memory size may be changed via the 'MEM' parameter.

The NOSSIM procedure will create several permanent fites in
the user's catalog if not run interactively. These are
itemized as follows:

1) IllUltUI. T his d ire c t ace e s s f i I e con t a ins a I I ,0 f the
output of the NOSSIM procedure, Including

a copy of the command file used as input to the
simulator ('TEST' parameter)
the output produced by the system

I • • • • ,
• ..
• t

2-23
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

2.0 NOS/VE OPERATING SYSTEM BUILDS (ell
2.4.1 RUNNING A SIMULATOR TeST (NOSSIM PROCEDURE)

--
the SESLOGfile
a reformatted keypoint listing
DEBUG output (if '51"086' was specified on the
NOSSIM call)
a summary of atl (paging) disk 110 (HIOLOG file)
the load map produced by the CITOII conversion and
execution of XUUTl (SIMtOAO file)
(optionally) a hex dump of the checkpoint file at
the end of simulation
the job dayfile.

This file is automatical'y sent to the line printer.

2) S..E.s.stt~f • T his d ire c t access f j 'I ec 0 n t a I os the key p 0 j n t
data produced by the sjmulator. It is reformatted by
the procedure NOSKEY before being written to the file
TOUTPUT.

3) InA,lE. The da yf i I e of the NOSS I M Job wi' I be wr i tten
to this direct access file should It terminate
abnor ma tly.

Additionally, if the 'NCPF- parameter is specified, NOSSI"
wi t J create 4 di reet access fi les which together contain the
NOS/VE environment at the end of simulation. The file
specified by the 'NCPF' parameter witl contain the current
NOS/VE checkpoint file. The other 3 files (formed by adding
the characters 0, 1, and 2 to the 'NCPF' file name which
must therefore be six or less characters tong) are used for
NOS/VE memory paging.

The format of the NOSSIM is as folloNS:

SES.NOSSIM {test· < command file>]

test :

cpf :

ncpf :

[cpf a < checkpoint file> 1
[ncpf : < new checkpoint fite >]
[mem a < memory size in hex>]
[cmds a < simulator directives file>]
{ nods]
{ simdbg]
[dump]
[batch]

The file containing the NOS/VE test commands.
The default is to run interactively.

The checkpoint file used for the start of
simulation. The default is "lGBOK".

The checkpoint file to be saved at the end of

" "

2-24
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80 ___________ "" _ __ ._l1li .. ___ . _____ .• __________ • _____ ", __________________ . _____ _

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.4.1 RUNNING A SIMULATOR TEST (NOSSIM PROCEDURE) --,----""""------",,,,---,,,..,-------------------""--------_._------.-----------

mem :

cmds:

nods :

simdbg :

dump :

batch t

simulation. The default is not to save a
checkpoint file.

The ciao machine memory size, in hex, needed to
run the simulation. The default is
"100000(16)".

Simulator directives file which should be
supplied by the user. The default is to use the
one created by the NOSSrM procedure.

Option to use the version of the cheekpoint fite
from the (Integration) catalog which has already
been deadstarted. The default is to use a
checkpoint file which has not been deadstarted.

Option to turn DEBUG on for the current
simulator run. The default is to run with DEBUG
off.

Option to include the dump of the checkpoint
file at the end of simulation as part of the
NOSSIM output. The default is not to dump the
checkpoint file.

Run NOSSIM in batch mOde. The default is to run
it locally.

2.4.2 NOSKEY PROCEDURE DESCRIPTION

NOSKEY is an SES procedure fite which creates a simulator
generated keypoint trace file. The output of this procedure
is the loca' f. Ie 'KEYFllE'.

The format of the NOSKEY is as follows:

SES.NOSKEY [kpf. < keypojnt file>]

kpf : The keypoint fite generated by the simulator
which is used as input to XXH7KEY. The default
j s 'S E S S MK F ' •

2.4.3 DUMPING A SIMULATOR CHECKPOINT FILE (NOSOUMP PROCEDURE)

NOSDUMP is an SES procedure file which makes a OSDI dump of
a simulator checkpoint file.

• • • • • •

2-25
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

~--------~--2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.4.3 DUMPING A SIMULATOR CHECKPOINT FILE (NOSDUMP PROCEDURE)

--
The format of the NOSDUMP is as foltows:

SES.NDSDUMP [cpf • < checkpoint fite > 1
[J = < output fife>]

cpf :

. .

dump :

print

batch

· •

· •

[dump = STNO : ALL]
[print]
[batch 1

The checkpoint file which is to be dumped. The
default is "CKPT".

The file which is to receive the dump output •
This fife will be a local file after the
procedure has finished execution. It is lUll
automatically printed. The default Is
"05010UT".

Option to either dump the environment according
to ASID (OUMP=STNO) or dump the entire
environment (DUMP=Atl). If "DUMP-STND" is
chosen, then the OSDI directives are taken from
the file DSOIX, which the procedure will search
for first tn the current catalog and then in the
(Integration) catalog. The defautt is
"DUMP-STND".

Option to pr in t the DSDI dump output. The
defautt is not to print the dump.

Run NOSOUMP in BATCH mode. The default i .S to
run i t locally.

2.5.1 INTRODUCTION

2.5.2 CREATING THE FILE (NOSSYS PROCEDURE)

The SES procedure NOSSYS builds a deadstart file from the
checkpoint file created by the· linking of the system. The
'OFFSET' parameter allows the option of building either a
stand-alone or a dual state deadstart fi I e. If the parameter
'VSN' is specified, then the deadstart file wjJI be written to
tape; otherwise it is written to the file TP(offset)K where

• • • •

• • • t

• • • • • •
t • • • • · .
• • • •

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.5.2 CREATING THE FILE (MOSSYS PROCEDURE)

2-26

09/17./80

_~ ___ N __ ~ __________________ _

the value of the 'OFFSET' parameter is substituted for
(offset) in the name of the fite.

NOSSYS requires additional object files for Inclusion on
the deadstart file. These object fites contain PP object code
for the following functions:

1) Deadstart (file XIDST)
2) 844 driver (fite XIDSK)
3) Console/Printer drivers (file XIDSP)
4) PP helper (file XIHlP)
5) PP Resident program (file XIRES)
6) Others to be defined later

If these files are not present in the current user catalog,
they will be obtained from the appropriate catalog.' (ie.
SES,INT2. prefixed procedure calls access INT2 level system
files only, white SES,INTI. prefixed procedure calls may
access files from either INTZ or INTI catalogs as is
appropriate for the system being built.)

A copy of the tinkmap file (linker/loader output) wi" also
be inc.uded on the stand-alone deadstart file. A copy of the
loader directives will be included on the dual state deadstart
file. These are the files MAP(offset)K and lDR(offset)K
(descriptions of these fites are included in previous
sections), and must be in the same catalog as the file
specified by the 'CPF' parameter.

The format of the NOSSYS is as follows:

SES.NOSSYS [vsn· < tape vsn >]
[offset a < load offset>]
[cpf • (checkpoint fite >]
[cyblink]
[batch]

vsn: The VSN of the tape to be Nritten. This'ile
must be available to the operator. The default
is to write the fite to a tape as specified
above.

offset: The load offset, used to determine whether to
build a stand-alone or a dual state deadstart
f i Ie.
OFFSET a 0 builds a stand-alone deadstart file
(DEFAULT)
OFFSET • 256 builds a dual state deadstart file
(to use on the 52)

2-21
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17180

--2.0 NOS/WE OPERATING SYSTEM BUILDS (CI)
2.5.2 CREATING THE fILE (MOSSYS PROCeDURE)

--.---------

cpf :

. cybl ink :

batch :

OfFSET • 128 builds a dual state deadstart fi'e
for a 128K system
OFfSET = 64 builds a dual state deadstart file
for a b4K system

The checkpoint file used in creating the
deadstart file. If the fite does not exist in
the current catalog, it wi I' be obtained from
the (Integration) catalog. The default is
lGBOK .•

Option to create a tape for CYBERlINKING to
CANCCD. The default is to build a hardware
deadstart fi Ie.

Run NOSSYS in BATCH mode. The default is to run
It 'ocally.

2.5.3 COMPILING 180 PP CODE (CPP180 PROCEDURE)

CPP180 is an SES procedure file which compiles 180 PP
code. The source for the PP code may be retrieved from a
sourcefi Ie ("SF" parameter) or a program library '-M"
parameter). If the "AB" parameter is specified, CPP180 wll'
search this Pl first before searching NOSVEPl to satisfy
externals. The "UN" parameter specifies the catalog in which
"AB" resides. NOSVEPl comes from the (Integration) catalog.

The format of the CPP180 is as follows:

SES .. CPP180

m :

sf :

ab :

[m .11 (module name>]
[sf .: < source f i Ie name > 1
[ab II < alternate base >]
[un • < user name > 1
[print]
[batch]

The module name of the PP program to be
compiled. If "M" is not specified then "SF"
must be specified.

The source fite residing in the current catalog
which contains the 180 PP source code for the PP
program to be compiled. If "SF" is not
specified then "M" must be specified.

The alternate base searched by CPP180 to satisfy

t •
• t

• • • • • • • •
• •
• •
• • • .,
• • • • • • • •
• • • • • •
• ,
• • • • • •
• •

2-28
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

2.0 NOS/VE OPERATING SYSTEM BUILDS (eI)
2.5.3 COMPILING 180 PP CODe (CPP180 PROCEDURE)
____ N_N __________________ N ___ _

un t

pr Int :

batch :

externals before searching NOSVEPl. The default
is to search only NDSVEPl.

The user name of the catalog containing the
alternate base specified by the "AB" parameter.
The default is the current catalog.

Option to print the assembly listing.
default is to not print the listing.

The

Run CPP180 in BATCH mode. The default is to run
it loca.ly.

2.6.1 SLDEI PROCEDURE DESCRIPTION

BlDEI is an SES procedure file which builds the absolute
file for duat state EI. The I parameter may be specified if 8

file containing the dual state EI .1211t..sa.e exists in the current
catalog; otherwise SLOE I retrieves EI from NOSVEPl in the
(Integration) catalog.

SlOEI uses the linker parameter file EIlCS to link EI. If
this file does not exist in the current catalog, it is
obtained from the (Integration> catalog by the procedure.

The outputs of SLOE! include the direct access absolute
file 'Elt and the direct access fite 'EILIST' which contains
the assembly listing and the link map for EI.

The format of the SlOEI is as folloNs:

SES.BLDEI

i :

[j • < EI source file>]

The fjle in the current catalog which contains
the dual state EI ~.o.w:.k.lfrom which EI is to be
built. The default is to get the EI source from
NOSVEPl tn the (Integration) catalog.

2.6.2 CPUMBLD PROCEDURE DESCRIPTION

CPUMBLO is an SES procedure file which bui1ds the dual
state binaries for CPUMTR, which wilt be put on the direct
access file XCPUMTR. The 'It parameter may be specified if

• " • •
• •
" •
" "
" " • •
• • • "

2-29
AOVANC~D SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

--2.0 NOS/VE OPERATING SYSTEM BUILDS (CI)
2.6.2 CPUMBlD PROCEDURE DESCRIPTION

--
the compile file for CPUMTR exists in the current catalog;
otherwise CPUMBlO retrieves CPUMTR from VE170Pl, searching
first in the current catalog and then in the (Integration)
catalog. The assembly listing wit. be written to the direct
access text library file DSlIST, with the heading CPUMTR.

The format of the CPUMBlO is as follows:

SES.CPUMBlD [i • < CPUMTR compile file>]
[batch]

i :

ba tch :

The file in the current· catalog which contains
the dual state CPUMTR compile file from which
the CPUMTR binaries are to be built. The
default is to get CPUMTR from VE170Pl in the
(Integration) catalog.

Run CPUM8lD in BATCH mode. The default is to
run itt ocal Iy.

2.6.3 CTSBllO PROCEDURE DESCRIPTION

CTSBIlO is an SES procedure fite which builds the dual
state binaries for CTS and MXS and puts them on the direct
access file XCTS. The assembly listings for CTS and HXS are
written as one record to the direct access text library file
OSlIST, with the heading "CTS".

The format of the CTSBILO is as follows:

SES.CTSBIlO (batch 1

batch : Run CTSBIlO in BATCH mode. The default is to
run i t I 0 c al t y •

2.6.4 DSBIlD PROCEDURE DESCRIPTION

DSBIlD is an SES procedure file which buitds the dual state
binaries XDSTVE, XRUNVE, and XTRHVE. All assembly and ISWl
compilation listings are put on the direct access text library
file DSlIST (one listing per record, each headed by the
corresponding MAOIfY deckname) and the three toad maps are
saved on the direct access fi'e OSHAP.

The format of the DS8IlD is as follows:

SES.DS8IlO [batch]

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

2.0 NOS/VE OPERATING SYSTEM BUILDS (CIl
2.6.4 OSBIlD PROCEDURE DESCRIPTION

2--30

09/11180

--
ba tch : Run OSBllD in BATCH mode. The default Is to run

t t • oc a I 'y.
2.6.5 PPBIlO PROCEDURE DESCRIPTION

PPBltO is an SES procedure fife which builds the dust state
PP binaries for MMCPP and PPHElP, which will be put on the
direct access files XMMCPP and XPPHElP respectively. 80th
assembly listings are put on the direct access text library
file OSlIST (one listing per record, each headed by the
corresponding MADIFY deck name).

The format of the PPBllO is 8S follows:

SES.PPBILD [batch 1

ba tch : Run PPBllO in BATCH mode. The defauft is to run
it locally.

3-.1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

--3.0 DUAL STATE INSTALLATION SEQUENCE

--

This section describes how to install all of the fltes
needed to run NOS/VE in Duat State mode. To do this from
"scratch" the foJtowing materia's are necessary:

1 CMSE tape
1 C TIt ap e
1 E I tape
1 Dual State NOS Deadstart tape
- The lOADPF tape(s) which contain the NOS/VE environment

If CMSE, CTI, and EI are already present and correct, then
it is only necessary to install a new deadstart sector on disk
or to .oad a new NOS/VE environment. If A170 NOS has been run
on this machine prior to the installation of NOS/VE, then
chances are excellent that the proper versions of CMSf and CTI
were used. There are incompatibilities between the A170
EI/NOS system and the Dual State environment which preclude
the usage of these same materia1s, however.

To clear the pointers, deadstart from the eTI tape which is
MT, 0=800, F=SI, lS-KU, and enter:

U---)R (Release)
Channel-xx
'Eqsxx
Un it-xx

Deadstart again and then enters

U--)1 (Install DIS module on disk)
Channel=xx
Eq=xx
Unit-xx

3-2
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

3.0 DUAL STATE INSTALLATION SEQUENCE
3.2 INSTAll CMSE
__ NNNNNN ___ N ____ N ______ N_NNN ___________ N ___________________________ _

3. 2 .mSIAlLt.lfSf

fo instal I CMSE, deadstart .from the CMSE tape which is MT,
Oa800, F~SI, and then enter:

OT=2
CHANNEl=xx (CMSE tape)
TOX

'e' option (BuIld directory in CM and copy to disk)
Oevice typeax
Channel-xx
Eq=xx
Unit=xx
HT type-)
HT channel-xx
Eq=xx
Unit-=xx
User type=02 (Shared DIS)
Instal' options-02
Options·O! (Build without 015 sector since it was

already created by CTI.)

To delete the old Error Interface (EI) file, deadstart from
the unit where CMSE is installed, then enter:

M
Then to display the list of binary files and check if EI is

there, enter:

AF.

*OP EI (will delete EI if it is there)

opt: *WK INSTRO 0 COO (to write microcode from '2 to CMSe
disk - takes a long time)

To install EI mount the EI tape which is MT, 0-800, FaSI,
LBaKU, and deadstart from the unit where CMSE is installed.
Then enter:

M
TOX

t •
t •

3-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80 ---------_._--..,----------_._-----------------------_.-----------------
3.0 DUAL STATE INSTALLATION SEQUENCE
3.4 INSTAlLEI

------.,---
{CR} (A directory for CMSE already exists, so this

wi'l update the directory.)
Disk Typeax.x
Channel-xx
Eq:xx
Device Type=fEI tape)
MT type-xx
Ch anne 11: xx

. Eq= x x
Un i t=xx
User type=02
User Options-02
Options=02 (Add a new program)

When END appears, EI is install.ed.

Deadstart from the NOS Dual State deadstart tape, using the
deadstart tape which is to be installed. Choose the '0'
option on the first display, for operator intervention. Then
choose the 'H' option on the next display to see the hardware
parameters. Enter eM-IOOOO. Optiona"y, the 'P' display may
be selected to choose a CMROECK. (CMROC14 contains the CANCOO
S2 configuration, CMROCK6 contains the ARHOPS S2
configuration.) After the system is deadstarted, enter the
following commands:

x. 0 I S.
COMMON, SYSTEM.
INSTALl,SYSTEM,EQxx.

NOTE: xx is the EST ordinat of the disk where the deadstart
sector is to be instal Jed; this is the same disk where CMSE
was insta11ed preyiously.

3. 6 JJlA.I2e.f_fll.f~

The lOADPF tapes, which are NT, O-PE, FaSI, and lSsKl,
contain the NOS/VE operating system source and binaries, tools
to assemble and link the operating system, and various other
fites. Included in these files is the DSINSTF flte which
contains the Dual State execution environment.

Deadstart from the disk upon which the NOS Dual State
system was installed, lOADPf the fjles to the desired user
number, and install the Dual State execution enyir~nment in
the following mannert

• • • • • •

• • • •
·1

• • •

3-4
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17180 l1li8._.l1li· __ .., __ l1l/i. _______ ,.,.,., __ ,., ________________________ l1li __ N",, ____ -· ________ _

3.0 DUAL STATE INSTALLATION SE~UENCE
3.6 lOAOPf FILES
_____ "" __ l1l/i_l1l/i __ """"l1li_l1li _____ l1l/il1li _____ l1l/i __ ..,.., ________________________________ _

ATTACH,OSINSTF.
8EGIN,OSINSTF,DSINST,SCAT=cat,INST=FULl.

where: cat is the user number of the catalog
execution environment is being installed. (In
the DEVI catalog.)

Check the indirect access file CMOSt to
reflects the hardware configurationS

*RElOADCH=x. x should be an empty channel.

in which the
ARHDPS this is

make sure it

*OISKCH=y. NOS cannot use channel y with Dual State active.
*SYST,DISKUz=ON. z can only be 0 through 3.

(Un i t Z 0 n c h a nne I Y 1&.inn.lll a p pe a r
in the NOS CMROECK or eST.)

After the NOS Dual State system has been deadstarted, and
the Dual State execution environment has been installed,
NOS/VE is brought up by entering the following console
command:

X .• UPMYVE{CAT=c)

where: c is the IJse.r number in which the execution
environment was installed. Enter K,n. (n .. the control
point number of the UPMYVE Job) to see the NOS IVE display.
K.*SYEVE. wi1. terminate NOS/VE. For further information
regarding the operation and execution of thi s environment
refer to the 52 Machine Usage Document.

• •

,
• • • • •
t •

4-1
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09117180

4.0 NOS/VE HARDWARE REGRESSION rESTING

--

4.1 l.t.:ilaOO.!J'IlDl!l

The verification currently performed
consists of the following:

on NOS/VE systems

1) running the simulator test input
VQlTST3 until visual examination of
test warrants that further testing

contained on file
the output from this
should be performed.

and
2) funning the S2 Regression Test Sequence, as outtlned in

the following sections, on the hardware.

4.2.1 REGTEST

REGTEST is a file containing. a sequence of HCS commands.
It runs a seri's of user test programs on the hardware, and
puts quite a heavy load on the system. REGTEST takes
approximately 20 minutes to run. The command sequence
folJows:

EX UUTl *SUlK,2*
PFSTATS
EX UUTl *CAlLER,UUTl,lO,**TESTMEM,1000000***
EX SORT *2000,100*
EX UUTl *CAlLER,SORT,5,*1000.50***
EX UUTl *TESTMOVE,lOOOOOO*
EX UUTl *A170,lO*
EX UUTl *lOOP,30000*
TMTf.RM UUTl
EX UUTl *CAllER,UUTL,10,**CYClE,30000***
IMTERM UUTl
EX UUTl *CAllER,UUTL,5,**lOOP,1800***
EX UUTl *CAllER,UUTL,5,**TIMEOUT,100,1800***
ISSET QUANTUM 5000
ISSET PITVAl 1000
EX UUTl *CAllER,UUTl,5,**SUlKNTC,2***

t • • •
I • • •
• •

• •

• • • • ,
t

• • • •

I • • • • •
" :I

• • • • • • ,
• • I

• • • •
:I • • • ,
t ,
•

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.2.1 REGTEST

09/17180

~--~----------------------
EX UUTL *CALLER,SORT,5,**lOOO,50.*.
EX UUTt *TESTMOVE,lOOOOOO*
TSTATUS
JMEXIT

4.2.2 TESTBAM

TESTSAM is a file containing the statements necessary to
execute all of the BAM test cases supplied by W. V. Hahal.
These procedures exercise various portions of the basic access
method, and are used to show some level of confidence that BAM
works as wei' as it has previously. The command sequence
follows:

EX BAMTEST
TESt
TES2
reS3
TES4
TES5
TES6
TES7
TES8
TES9
TESlO
TESll
TES13
TESl4
TES15
TES16
TESZO
BAMSTOP
JMEXIT

4.2.3 JOBI

JOBI is a file containing the NOS/VE commands which stage a
CI object file from the 170 side to the 180 side, convert this
file to an II library file, and replace the II library on the
170 side. It tests the following NOS/VE features:

LINK_USER command
GETPF 860
CITOII conversion
Object library Generator
Display library Information
REPLACE 856

• t

• •
I • • t

• •

• •
I • ,
• • • • •

• •
I • • • • • • •
• • • •
I • • • • •
~ • • • • 1

I
I

• • • • • •

• •

• • • •
I •
~ ,
• • • • • • • •

4-3
ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

09/17/80

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.2.3 JOBI

--
JMEXIT

The command sequence follows:

EX IOIS"A
SCl
lIU,USER=(INTl,NVE),PA=INTlX,A=NOTUSED,PR·NOTUSEO
HCS
GET,CITEXT180,CYBIlGO",NVE,B60
EX eITOll *CITEXT180,IITEXT180*
EX COL
ADO,OF=IITEXT180
DILIB,ON=A
GEN,lIBRARY=lIBRARYI80
END
REPlACE,lIBRARY180,CYBIIlB",NVE,B56
JMEXIT

4.2.4 JOB2

JOBl is a fi1e containing the NOS/VE commands which stage
an II library and a CI user job object fite from the 170 side
to the 180 side, convert the CI user Job object file to an II
object file, and then load and execute this user Job with the
library. It then stages the LOADMAP back to the 110 side to
be printed. J082 tests the following NOS/VE features:

LINK_USER command
SET_OBJECT_LIBRARY (SOL) command
SET_PROGRAM_OPTIONS (SPO) command
GETPf B56
GETPF 860
eITOII conversion
load/Execute User Program + library
JMROUT£ CISO print file
JMEXIT

The command sequence follows:

EX IOIS"A
SCl
lIU,USER=(INTl,NVE),PA-INTlX,A=NOTUSEO,PR-NOTUSED
SOl,ADD=NEWlIBRARY
SPO,MO-(B,E,X,S),EAaFATAL
HCS
GET,NEWlIBRARY,CYBIIlB",NVE,B56
GET,XUSORT,XUSORT",NVE,B60

• •
• •

• • • • • • • • • • • • • • • t

t
I

• • • •
• •

• •
• t

• • • • ,
• • • • • • •
1 • • • • • • • • t

• ,
• •
t •
• •

• • • t

• •
• • • • • I

ADVANCED SYSTEMS INtEGRATION PROCEDURES NOTEBOOK
09/17/80 _______ IN'" _________________ . _________ ._._ .. _________ IN·,,,, __ "". _ _ #III ___________ _

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.2.4 JOB2

EX eITOII *XUSORT,lGO*
EX LGD
JMROUTE,NOTUSED,lOAOMAP,PR,REMOTE
SCl
SOL,O El ETEa:At l
HCS
GET,CYBIlIB,CY8IILB",NVE,B56
EX LGO
JMROUTE,NOTUSEO,lOADMAP,PR,REMOTE
JMEXIT

1) Mount S2 System Scratch pack on 844 Unit 1.

2) Initialize memory:
Set the deadstart panel to disk deadstart fromt
CHal
UNIT-43
WORD 13=0106
WORD 16=0000
Push deadstart button.
Hit carriage return.
System should go through a very lengthy ftCHECK
COMPUTER MEMORY· step and then stop and display
the CMR deck.
Reset panel to desired setting and re-deadstart.

3) Deadstart A170 NOS.

4) If necessary, update the INTZ catalog and load the
latest system files into the INTI catalogJ

Mount the INTI catalog DUMPPF tape on Unit o.
X.DIS.
USER,INTl,INT1X.
CAlL,UPCATS.
DROP.

The UPCATS procedure performs the following functions:
a) Updates the INTZ catalog with the fo"owing files

'rom the INTI catalogs
- the NOS/VE deadstart file (TPXXXK)
- the ftfast files· for NOS/VE deadstart (CMIMAGE,

PPIMAGE, RGIMAGE)
- the command fites needed for NOS/VE deadstart

(CMOSl, CMOSZ, CMOS))
- the Remote Host binaries to be SYSEDITwed into

the system at the current level (RHlQEP, RHlQSO,
RHlQOQ, RHlPFP, RHtPSO)

:
• " • • • • • " • ,
• • • •
" " • •

• ,

• •
I • • I

• • • • • " " • • " • • • • • • , ,
t

"

" •
• • ,
• • • • • • • • • • • • • • •
" • • • • • • • • • • • • • • ..
• •

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

4.0 NOS/VE HAROWARE REGRESSION TESTING
4.3 S2 REGRESSION TEST SEQUENCE

09/17/80

--
the procedure to SYSEOIT the Remote Host
binaries (RHPROCS)

- the current CYBIt compiler (CYBIlI)
- the CYBll II object library (CYBlllS)

the eI object file used to create CYBIIlS
(CYBILGO)

- OSlPI
b) LOADPF's the latest system into the INTl catalog

from the DUMPPF tape mounted on Unit 0
(NT,O:PE,F-SI,LB=Kl).

c) Purges the old "fast files" from the last INTI
system.

d) SYSEOITts the newest level of Remote Host into the
system.

5) Bring up duat state:
X.UPMYVE(CAT-INTI)
K,n. (where "n" is the UPMYVE control point)

6) Test if paging 110 is workings
K.DECLARE P POINTER.
K.SMOPEN P.
K.CM P *1234*_
K.MMWMP P.
-> Disk unit light sbould flash on 844 Unit 1.
K.DM P 100.
-> If system is hung at this point then paging is
not working.
K.SMCtOSE P.

1) Bring up AI70 Remote Host:
X.IRHF170.

8) Bring up C180 Remote Hostl
K.EX RHINPUT"A.
K.EX RHOUTQ8"A.

9) Test input file route I job exit I output file route:
X.DIS.
USER,INTl,INTlX.
GET,REGTEST,TEST8AM,JOB1,JOB2.
ROUTE,REGTEST,DC-lP,FC-RH.
ROUTE,TESTBAM,DC=lP,FC-RH.
ROUTE,JOBl,OC:lP,FCaRH.

NOTE: JOB2 uses the output of JOBI tn Its execution;
hence JOB2 cannot be ROUTE'd until JOBI finishes. To
determine when JOBI is finished:

Hit ft*" key to return to K-dlsplay.

• • • ,
• I

• • • •
t
t

• • • • • • • • • • • • • • • t

• • • • • •
t
I

• •
• • • • • • • • • • • • • •
• • • •

• •
t •
:
• • • • • • • • • • • •
• • • • • • • •

ADVANCED SYSTEMS INTEGRATION PROCEDURES NOTEBOOK

4.0 NOS/VE HARDWARE REGRESSION TESTING
4.3 52 REGRESSION TEST SEQUENCE

09/17180

--". --------------------",.-----'-,,---------------------------_._--,-----_ ..
The JOBI dayfile wil' be displayed as the Job is
running. When the system has executed the JMEXIT
statement, JOBl has finished. The JOBI dayfile witt
then be staged back to the 170 side to be printed. To
print files, do:

Make sure the printer is on (i.e. the START light
is lit).
FORM3l,TH.
ON32.

(The dayfiles of the REGTEST, TESTSlM, and JOB2 Jobs
w111 also be printed when these Jobs finish.)
Now JOB2 can be submitted:

Hit "*" key to return to DIS.
ROUTE,J082,DC-lP,FC-RH.
DROP.

The JOBl dayfile wi" be displayed as it is running.
When JOBl finishes (JMEXIT has been executed) do a

K.EX ZOIS"A.
to return to the system Job. When all Jobs have
finished executing and their dayfiles have printed -
i.e. the commands

K.JMSTATUS REMOTE EX. (lists jobs executing)
K.JMSTATUS REMOTE PRe (lists Jobs In print queue)

return the status "NO ENTRIES FOUND" - then NOS/VE and
Remote Host may be terminated by doing the following:

n.DROP. (where Un" 15 the IRHF170 control point)
K.*SYEVE.

10) Bring down AI70 NOS:
AB.
CHECKPOINT SYSTEM.
E,M. (make sure that al. checkpoints complete)
STEP.

• • • • • • • • • • , , .,
•
t • • ,
• • • • • • • • • ,
..
•
:t • • •
• • • ,
• • • • • ..
• • • •
I • ,.
•

" • ,
•

Al

09/17180

Orj gi nato r _________ ._________ OA TE ___ l ___ L___ Tar ge t Buil d ____ _

Code locationS (fAtKed Modsets) FN-_____________ UNl'II ___________ _

(0 e c k sin .. .GRJJU.e" for ma t) F Na _______ ,____ UN. ___ . __ . _______ _

(Z) Oescr i p t Jon F i Ie: FN* _____________ UN= _____ . ______ _

Code Destinationtif n2.t NOSVEPl): Pl- ________________________ _

New Feature (____] Resubmi ttal{ ___] Corrective Code [____ 1

P S R sAn Sl4 er ed ______________________ . ___ . ____ ._. _____ ._._. ____ . _____ _

tllt11:1ftil~_I.D_l.tiIli.RAIlLJti
(3) Installation procedure changes required? [____]
(3) 0 e pen den t up 0 not her f eat u·r e, fix, 0 r too J ?e ____]
(3) Documentation changes required? [____]
(3) OSlPI or Internal Interface changes required? [____]

Module(s) to be recompiled

Has this code been tested? yes (3) no

t:ill.t.J:s'_t. ~51.a.L.diQg_.k ~ul.e_s.ull1D11.t~11
(1) Use right margin of form if more space needed. More forms

are on FN = XHIT10 UN = DEVI.
(2) Attach copy of descriptionftJe to form (both 14 7/8 by 11).

Format is: 'MOeSET_IDENTIFIER (or NEW_DECK_NAME) (upper case)
Oescriptive text which describes code content
**OECK_MODlfIEO (or NEW_DECK_NAMEl (upper case)

(3) If any of the above are checked, then expJain below.

Code Rev i ewer __ . ___ . _________ .___ Approva' .. ____ ._. ___ . _________ _

• • • t

• • • • • •

• •

• •
• •
• •
,
•
• •
• I

• ,

• •
• · .
• • • • • • • • • • • •
1 · . • •

81

09/17/80

Request Number

Requestor. ___________ . __ . ____ DATE ___ l ___ L __ PSR Number ______ _

SIN 101 NOS
System

Ins taJ J ati on
Procedures

+.----+

+----+

+----+

+---+

+_._-+
SES
Tools

1 •
+----+

+---+
Critical Fix:

+----+

Integration
Catalog

+----+
•• • •
+--+

Product Set
+----+ ,
•

A170 NOS
System

Major PSR

+----+

.+----+
t
t

+----+

+---+

+----+

Stand-alone
NOS/VE

52 Prototype
Closed Shop

Dual State
System

+----+
Other • • • •

+---+

+---+
.• 'I • •
+----+

+----+ .,
• •
+--+

+._.--.+
• t .. .
+---+

M·o d set Ide n t j f i er (5) . ___________________ . __________ . ____________ ._

Deck(s) Modified
(include all

Approyed By ________________ .. ___ . ____ ._

BZ

09/17/80

a'sIB.!ltlliHi.S.

The purpos~ of this form is to initiate a mini-build of the
requested changes into the current build .evel. The scope of
the changes requested and the impacts of making these changes
must be adequatel, described. This is the onl, Nay to make
changes to a system after the feature code cutoff for that
build has occurred.

B.l:.9.u.e..~.t.~.t.: Name of the person submitting the change.
~~1~: Date of the request.
,eSB._t!umllJu:.t Number of PSR bel ng fixed.

c.b~.c.Lib.!lS..Llfbi~.b_..i.2.2!.'t
..s.l.ti_1Ql_ll~!.e.mt Change affects the closed shop NOS system.
l.alltSIL..Il1.in __ t.ai.alj},.9 t A cor r ec t ion i s nee e s s a r, tot h e IN T 1,
INT2, DEVI, or Al70INT catalog's) •
..s..t~ll~.il.2.D~_H.tl.s.L~f: Change affects onl, the Virtual State
execution of NOS/VE.
1.Q~1.ill.ili.SlJl ___ ftJl~~.d.Yu.~: A cor r e c t ion tot h e ex i s tin 9
Installation Procedures is necessary (ie. such as moving a
module to a different library)
.e . .J:.jUf.llkl_~.t: Change affects an assembl er or compi I er.
's'Z_.e.U1.2..t!Lll_C.l.&l.i.t.d_..s.b.2.2 : C han 9 e i s n e c e s s a r, tot he s y s t em (s)
provided in the 52 lab.
'sf . .s.._I.2,Sll~: s omechange is necessary to the SES tools used to
generate systems (ie. Linker, loader, Simulator, etc.).
Allg_.t.i.DL_.S.x~u.m : Ac han 9 e is required to the Al 7 0 Version of
the NOS operating system.
Jl.u~1_S.1~1J:_1.l.s..t.cm: Change af'fects the Dua' State software.

~.t:illk . .al-.Ei~: Fix e s a pr 0 b f em N hi c h can not be a v oj de d e j the r
operationally, or programmed around.
11.a..i.QL_f.s&= A serious problem for which a PSR exists and is a
considerable nuisance to system users.
tLtb.s:.t: Fixes to nuisance, or time wasting problems.

11,g.ds.'u'_1.~1l1i!.i.e.I.s: Name of the modset(s) which need to be
added to the affected software •

.IlJ:iiJs.L __ liilufl.s:.d: Name(s) of modute(s) which require
recompitation or assembly as a result of this change •

..Q~s.J;t.1.2.t12Q_.Q.t_.et.51111JlJJ: A description 0 ft h e severity of the
problem being fixed, and the scope of the changes caused by
integrating this change.

A..e.2.t.u.al' Authorization signature for the change, currently
requires T.e. McGee approval for NOS/VE, and J.M. Graffius
approval for AI70 NOS.

Advanced Systems Integration Build Activity Matrix

: NOS/VE :NOS Al70 : S/Bld Cy; : Start: Feature: PSR
: Build tBuild : Freeze : Build: Code : Code
: : : Interfaces: : Cutoff : Cutoff

• t_
if ,

• :I

11 •
;I

•

4

I

5

• • • •
t •

:I

•

6/3

: (DIS) :
: 4/25 :

: 6/10

: (DIS) :
: 6/16 :

+-------+------+------------+--------+
: : (0/5) :
: : 6 ; 7114

6/24

• t

: 4/1..5

: 711t

,
•
: 6116

• t

: 7114

Cl

09/17180

: Comp'~te : Xmit to : Return: C.mplete:
: Build : SVlOPS, : from : 8CR :

if •
if

"
• •
if

" • •
if
t ,
•

(015)
5/1

119

(O/S)
b120

(DIS)
7/18

: TTOFAC : SllOPS : :

• • • t

• •
if • • t

" if

518

7/14

6123

7/Z1

• • • •
• •
-,
" • t

• •
<I •

6/2

1110

817

if • • •
• if

• • • •
• • • •

6/4

711ft

7/14

8112

• •
" •

:
:I
if

• •
• if

• • +---------+---------+-----------+--------+------+--------+------------+-----+------+--------+
: J 1/16:1/23 8/6 : 8/18 : 8121 : 81l6: : 8/26 :

if •
-I • 6a

• • • ,
: (015) :
: 8/18 :

• •
: 8/18

if • • if

(O/S)
8/-l2

:
1
t

• • • •
• • • • 8121

" • • •
: K 8/28 : 9/4 : 9/18 : 9/29 : 10/2 : 10/7 : : 1011 1
+--------+---------+-----------+--------+---------+---------+-------------+------+----+-----+
: l : 10/9 : 10/16: 10/30 : 11/3 : 11/5 : 11/11: : 11/11 :

: M: : 11/12 : 11/19: 12/2 : 12/12: 12/16 : 12119: : 12/19 :
+-------+---------+-------------+--------+----------+------.---+----------+------+-----+------+

files maintained by Integration

Source Files

: USER " :t • "

D1

09/17/80

• •
: NUMBERS : fILENAME(S) : FUNCTION : VERSION/FREQUENCY OF UPDATE • •
it " • • • INTI • NOSVEPl • •
" DEVl • 'I t

• it • • • • • • • • • •
• INTI • OSlPI 1
t , • • DEVI • • • , • • • • • • •
, INTi • VEl70Pl • I

• OEVI •
I • t
t t ,
• • • • • •
• Al70INT • Al700Pl • 1 t • • lIBRARY .. OPl • • 'II • • • • • ,

t .. • t 'II

• INT2/.INTl , PROCl.IB • , • t

• DEVl • • • t ,
• ,
• • • •
t ,
• •

INTi • NOSlIST t

• DEVl • ,
• • ,
'. • t • .. • • • • • • •

• INTl MTRlCB,EIElCB, ,
• OEVI • E IlCB, STSLC 8 • ..
t • LIBlCB ..
t . , f

• • • :I • • • • • •

• •
MAOIFY pr ogr am Ii br ar:y • •
of Vi r tua t State code • • • I

• 1

HAOlfY progr am Ii br ar y • •
of NOS/VE Program • ,
Interface deCKS. • • :

MADIFY pr ogr am f i br ar y • •
of NOS code which • •
supports NOSlVE. t • • •
MODIFY program II br ary ,

•
which matches NOS • •
system leyel for S2. • •
(Instal'ed on FMO , ,
unit 431. • •
Command l angu age • ..
P·r ocedur e library .. •
(Documented in • I

Integration Proced- " •
ures Notebook). • ,

Contains compi lationl • •
assembl y listings of • •
a II Virtual State • ..
code. Accessed via • ,
lISTNYE procedure. • •

Matches the leyel of system
binaries contained in same
catalog. Updated onper'odic
scheduled basis.

Matches the level of system
binaries contained in same
catalog. Updated once for
each build cycle.

Matches the level of system
binaries contained in same
catalog. Updated on
periodic scheduled bas is.

Updated on a scheduled bas f s.
(CPUMTR which supports NOS/VE
is on VE 170Pl and u.1
on this Pl) •

Matches the I eve. of S.ys tefft
b i nar I es contained in the same
catalog, and accesses the
appropriate build tool
versions. Scheduled updates.

Matches the level of system
binaries contained In the
same catalog.

• • • • • • • • • •
• ,
• '. • • • I

• • • 1

" ,.
• •
• ,.
1 • • • .. • • ,

• • • • ,.
• • ,
" t

• ,
• • • • • ,

linker directives files : Matches the level of :
for monitor, : system binaries contained :
error interface, : In the saMe catalog. :
task services, and : EI is built using the :
user modules SlOEI procedure, Mhile :

:: respectively.: NOSBIlO Is used for EIE. :
+----------+. __ ._------_._-_.:-+._---------------------+---------_.---------------+
I INTI NEWOKPl Meaningless Madify I Never, disappears .. hen SCU '. , • • • OEVi I program I i br ar y " conversion is comp' ete. • , , t •
I • • which users may I .. • • • I

"
f • • substitute for • t • • • • • • as an alternate • , ..

Fites maintained by Integration

Source Files

• t

• ,
• •

• • ,.
"

base when using
: Integration compilation

procedures.

• • • • • •

02

09/17/80

• • • •
" •

: INTl/INTI : MAP_orfset_K Contains link map of : Each Vel Ink of a Dual :
: OEVl: : Duat State system : State system. :
:: : created, where MAPOK: :
:: : is a standalone NOS/VE : :
:: : system and MAP256K ::
: : is a 256K NOS Dual : :
:: : State system.: :
+~-''-'-~ ----.... ~ ... +------.... --..-,.-.-.--.-.-----.--..-..... +.--~.-. ... - -------------.--~~--.-..-,-.-...... ..-..---.... +..-........-.~------~--. - - - • - . .---~.-----.-,~--.-.-.-.-.~.-.+
1 INTl • • OEVI • ,
•
" t

• •
: INTl
: DEVI
I •

" • •
" • • • •

DEVI

" VQlTST3 • • • • •
" ,
• I

: l 0 R._ 0 f f s e t_ K
• I

• " • ,
• •

KEYOESC

Contains simulator
• commands for a ,
• batch mode test •
t of the NOS/VE • • system. •

Contains ve generator
: directives for Dua.
: State offset loads.

• Contal ns Keypoint ,
• descriptions for t

• the Keypoint report ,
" program XXM7KEY.
"

• As required by system • .. content changes. • • •
" • • •
: As r~qulred by system
: content or structure
: changes.

• Non-standard, updated • • upon development's request. • • • • •

• • • • • • • • • •

" • • t

• •
• t

• t

• I

" •

03
Files maintained by Integration

09111180
Object Text Files

" t • • t t • • • INTl t XlMMTR t Object te xt file I Each reeo.pilation of 8 • t • J • • • DEVl • t of modules wbich • monitor mode module. • • • • t • • execute in monitor • '. • • • t t mode. -'I
t • •

• INTI XlJIIF,XlJ12F Object te xt f i I es Eaeh recompilation of • J • • DEVI XlJ13F, XlJIFF of task s er v 1 ces • a task services • 1 • t

• t t modules which run in • module within these Ii brar ies. • • • I t • • • • job mode with t • • • • • • • , • ring attributes • • • • t t J

• \I IIF,lZF,13F and t • t • • • • • IFF respectively. • • t t • •
+---...... ------+---.----~--.----+-------.------ -------.... -+~,~--..... ..-..-..----.--.-......-..-.--.. ~.-~.-..-. ... ~--~.-. --+
1 INT! XOlG,XSCl, Object text f i I es • Each fee omp i -I at ion of " • t " • DEVl • XltMCII • of the Object library • these utilities. • " t " • • • • • Generator, System -J • • 1 • • • Command language, • •
" t • and Object Text • if
~ 1 • • • • • • converter. • t • • • • •
+...-..-.---..... .--.-......... -.+~-----~---...... --........... ---.-. ..-.-.+, ~.------...... .--~-- ~--...-..-...-...., . ..-..-.. +~ ~.-...... • ------.....-.......... ..-...-.-~..-..- +
: INTI : XUCNTl,XUT€ST, : Object text files : Each recompitatlon of :
: DEVl : XUSORT,XUUXERl, of user test : these tests :
: : XUUfl,XUVlEX, programs added: :
: : XUVlEX2 to the system. :
+'~'_4*il __ ___ ._.-.+ __ .-. _______-____ .-.+._~ _____ ~ ___ ~_ ___ ~ __ _.+......... • ..•--..-. __ __ ,.. _ ___ ____ ~_+

Header files whieh : Each Ve'ink of the • INTl MTRXHDR, • • •
name the monitor, : system. • DEVI • S TS XHDR, • •
task services, and : • • EIEXHDR, • • 1 •
error interface : • • • t • I

segment files, : t • • • • •
produced by : " • • ;I • iI

: :: VEL INK. :
+--............._-.-__ ._..a. + ___ .-. ____-__ _-.+.-___ .---.-.--. ___ -.-. __ ~~ ____ ._._.. ___ + ____ .-.__ _ ~ ~.-. _. ___ ~

INTI .. DEVl • • •
1 • • •
-J

" • •
• t
t INTI • • DEVl •
t •
1 ,

: INTl
: DEVl
1 •

• ,
t
t

• •

• • • •

t
t

• •

MTRXOST,
STSXOST,
flEXOST

STSXIOI thru
STSXl18

MTRXIOI thru
MTRXI05

• Outboard symbol • • tab t e files for • • monitor, task • • S er vi ces, and • • error interface •
produced by
VElINK.

t The task services • • segment f i Ie s •
produced by
VElINK.

The monitor
: segment fites

produced by

I Each Vel ink of the • • system. • • ,
• • • • • • • J

• • • Each Velink of the • • system. ,
• •
a •

: Each VeJink of the
: system.

-. • • • ..
1
11 • • • • • .. •

_~ __ PI __ • ~ _~+

• • • • • • • t
t • :
• •
• • • • • • • •
" "

• I

II
t

• •

Files maintained by Integration

Object .Text Fi I es

..
t

t
t ..
t

• •
• ..
t •

INTI
DEVI

INTI
OEVI

• EIEXIOI •
EIEXI02

• I

• XCPUMTR t

• •

thru

: VEl:INK.

.. The error inter-• • face segment • • files produced •
by VElINK.

, All0 NOS CPU •
11 Monitor module •

..
• • • • •
11 ..
t ..

04

09/17/80

Each
Dual

each

Vetink of a
State system.

recompi'ation
modset corrections

due to
or

• • • bin ar i es. • changes to the base A170 • • • • • " • • NOS I eve I system. • • • •

Each VElINK/VEGfN : INT 21 INTI :
: DEVI :

The Virtual Envir­
: onment file pro- : of the sys tell.

I

•

..
• • •
I
1

• • ,
•

INT2/INTl
DEVI

• •

• I

t • • " • •

CKPT

: duced by V£GEN.

.. The check poi n t fj Ie •
t from the last • • simulation run as a • • result of running t

• the VQlTST3 test • , commands. •

• •

" • ,
• • t

• • • • • ..

Each
ation

batch mode simul-
of NOS IVE.

: INf2/INTI : CKPTO thru : The simulated disk : Each batch mode simul-
: DEVI : CKPT2 files produced : atJon of NOS/VE.
:: during the batch :
: mode simulation :
: run.:

• •
, , , ..
• •
" •
• •
t • • • • •
•
" •
" '. f

,.
41

iI •
• • ,.
• • •

" • :
• •
'. f

" • +-----_._--+---------------+-----_.----_. __ ._---_ .. _--+---------------- -------_ .. _-_.------+
: Al70INT NOSTEXT : A170 NOS system : Each A170 NOS update.

. ~

•
: : text for current

: NOS version • • •

• • • •
t •

, t • •
t • t •

~ DEVI: XXM7KEY : Program to report : Non-standard ISWL :
:: 1 NOS/VE Keypoints : utility. :
:: : encountered during : :
:: : a simulation run. : :
+--------+--_._------------+-----_._--_._._-----_._.+.--------_._---_._-------+
: DEVi
• • • •
: DEVi
• •
" •

: OEVI
• ..
• ,

XXM7DSI

XXDSGEN

XIDST,XIDSK,
: XIOSP,XIHLP,
: XIRES

: Standalone version
: of NOS/VE deadstart
: file generator.

Dual State
: de ads t ar t fit e
: generator.

: c V8ER 180 PPU
: progr ams •

: Dual State

: Non-standard,
: unsupported.
• •

.,
• • ..

Upon demand.

: Upon demand.
• • • ..

: Each time a new

• • • • • •
• • •
"

• • • • • ,

• ..

Fites maintained by Integration

Object Text files

: DEVl
• =I

=I •

• I

• •
" 'I

: deadstart file
: created by the NOSSYS
: procedure.

05

09/17/80

deadstart file is
: generated (upon
: demand).

• • • • • •

El
S2 Machine Usage Document

09111180

This paper represents the beginning of a 'helpful hints on how to
do your job's document. Some of the areas discussed are sti ••
incomplete. I will be periodically adding information to the
document. If you have any qustions or suggestions, please see Tom
McGee. Appendix A lists background documents and hOM to obtain
them.

Date

2/8/80
2/12/80
2113/80
9/11/80

Changes

Section 3.0 revised
Appendix A Section 3.3 corrected
Section 1.0 revised
Section 3.5.2.8 revised, Section 3.5.2.8.4 added

• ·t

• •

El-l
S2 Machine Usage Document

09/17/80

£1.0 DOCUMENTATION FOR RUNNING ON S2

--

Topic

1.

2.

3.

4.
5.

6.

1.

8.
9.

Standalone NOS/VE HW/SW
Configuration
Integration Proc~dures Notebook
B u i I d Pr oce dur e
Deadstart Panel Settings (Real
Panel, CMSE emulated Panel)
Standalone Deadstart Procedure
Standalone CC545 Operator
Cansote Interface
Debug Mode Interface

Standalone Dump to NOS/VE Printer

How to Analyze a Standalone NOS/VE
What To Do tft
o NOS/VE abort
o NOS/VE hung
o Can't deadstart
o HW errors
o Unrecovered disk errors

etc.

Document

On bulletin board
in S2 area
NOS/VE User's Guide -
Appendix A
On deadstart panel

JFS Paper - Section 2.0
NOS/VE User's Guide -
Appendix A
NOS/VE User's Guide
Appendix A
NOS/VE User's Guide
Appendix A

Dump

JFSPaper
JFS Paper
JFS Paper

Section 2.0
Section 2.0
Section 2.0

10. Detailed Documentation for EC Register (Machine Dependent)
11. Patching Memory

1.

2.

3.

4.

Dual State NOS and HOS/VE
HW/SW Configuration
Dual State NOS/VE Deadstart
File aulding Procedure
Oeadstart Panel Settings
(Tape and Disk)
NOS l170 Deadstart Procedures

On bulletin board
j n S2 ar ea
Integration Procedures
Notebook

On deadstart pane'
KMJ Paper - Section 3.1

S2 Machine Usage Document

El.O DOCUMENTATION FOR RUNNING ON S2
El.2 DUAL STATE NOS AND HOS/VE

El-2

09/17/80

--
5. NOS Operator Command & NOS Operator's Guide

Display Interface Appendix A
6. NOS DIS Interface NOS Operator's Guide

Appendix A
7. NOS 026 Interface NOS Operator1s Guide

Appendix A
8. CTS Interface (Simulated TELEX ASCII Terminal

from Operator Console)
9. Dual State Initialization (UPVE), WHB Paper -

Operation (RUNVE) and Section 3.3, 3.5
Termination (TRMVE)

10. UPVE Command File Format (Configuration, Memory
Patches, NOS/VE Commands) WHB Paper

11. MCU (OKD) Commands 3nd Displays WHB Paper
12. K Display Operation of NOS/VE WHB Paper - Section 3.4
13. NOS Error Messages NOS Diagnostic Handbook

Appendix A
14. lOADPF/DUMPF to Move PF's Between SHI01

and S2 (Non standard) KMJ Paper-Section 3.1
15. How to Analyze a Dual State Dump
16. What To 00 1ft

o NOS abort
o NOS hung
o NOS unrecovered disk errors
o NOS detected HW errors
o Screens blank
o NOS/VE abort
o Can't deadstart NOS

11. CMS£/CTI Disk Pack Build Procedures
18. Installation Procedures Integration Procedures

for New EI Notebook
lq. Installation Procedures for Integration Procedures

New NOS Dual State Notebook
Stuff (SYSEOIT UPVE and Friends)

20. Debug Mode Interface NOS/VE User's Guide
Appendix A

21. MDOVAl - Add New Users KMJ Paper - Section 3.1

1.
2.
3.

4.

or Change Validation

General Use of CMSE (0000, WK, OP,
EOD (CTll Dead Dump Procedure
DSD! Commands and Procedures for
EDO Dump Interpretation
Reload/Restart Microcode Procedure

etc.)
DAH Paper - Section 3.6
DAH Paper Section 3.6

S2 Machine Usage Document

El.O DOCUMENTATION FOR RUNNING ON 52
El.3 BOTH STANDALONE AND DUAL STATE

5.

6 ..

NDSIVE Error Message list

Keypoint Usage and Trace
Analysis
Simulator keypoints

Notebook

1:1-3

09/17/80

NOS/VE User's Guide
Appendix A
NOS/VE User's Guide
Appendix A
Integration Procedures

7. Dead Dump to Printer Procedure Using 0000
S. Use of Trace Information Currently Kept by NOS/VE CPMTR
9. Error Halt Addresses

El.4 DI!:JfB

1. Things "not to do"
2. Phone #s on machine, eEls office, etc.
3. Door lock combination .253
4. Location of tapes and disks MOC Paper-Section 4.0
5. Who to calf for assistance

£2-1
52 Machine Usage Document

09/17/80

--E2.0 STANDALONE NOS/V£ DEADSTART

--

1.

* 2.

3.
4.

** 5.

6.
7a.
OR
7b.

Mount deadstart tape
make sure microcode (firmwarel is loaded into the PZ,
tape controller and disk controller.
Mount scratch packts) on HCS disk drive(s).
Press deadstart button.
Hake sure P2 DEC register and HZ BR (bounds
register) are set correctly.'
Start CPU running
Verify proccessor is funning

Take dump of memory.

* usual.y not necessary .* not necessary except on 1st deadstart

1. Mount deadstart tape
o mount on UNIT 0 (other units can be used if location 5 of

the deadstart program is set appropriately. See step 5l.

2. Set UP the deadstart panel for eTI deadstart from disk._
o use the 'DISK deadstart' sNitch setting. Switch settings

are pasted to deadstart panel.
o the channel-Eq-Unit setting of the deadstart program must

reflect the location of the CEpack referred to as 'ARH
Regression' disk. The disk should be mounted on Unit 4.

3. Mount the scratch pack(s) on the NOS-VE disk drivels).
o currently the OS is set UP to run with l~doubte density

disk on unit 1. This can be changed during deadstart
o use the pack labeled 'HCS scratch'

4. Make sure microcode is loaded in the PZ.
o (OS) Press deadstart button. You should see a display that

E2-2
52 Machine Usage Document

09/17/80

--E2.0 STANDALONE NOS/VE DEADSTART
E2.2 DETAILED PROCEDURE FOR STAND-ALONE DEADSTART

--
says:

: (CR)- OS load
: 0 Deadstart auto :
: u - Util :
: M - Maint :

If not, check deadstart
panel, disk unit. Try
long D.S. seq. Reconf
PP·s. load disk cntr.
cntrlware.

o Type 'M'. This causes another display to appear
o Type t{eR)'
o At this point it is sometimes wise to preset memory. Type

KC O,lOOOOO,eeeeeeeeeeeeeeee (CR)
and wait until lower left of display is static - takes 10
to 20 -seconds.

o Type IGO INSTRN (CR)'. Wait until lower left of display is
static. Takes 5-10 seconds.

5. Now you are ready to deadstart NOS/VE. Subsequent deadstarts
witl start with this step.
o (OS) Press deadstart button
o Type 'M'
o Type 'osTteR)' deadstart pane' settings appear
o Type '5:12u'{CR'. (IU t is the unit number of the deadstart

tape.)
o Type '(BKSP)' 3 times to clear the screen
o Type tIeR)' Tape should start moving. It not,

o check unit
o go back to step 4
o try another tape
o call for help

6. Message 'PROCEEO' should appear on the screen. At this point
aI' NOSVE PP code has been loaded, processor registers are
loaded and central memory is loaded.
o If tape moves a Jot but 'PROCEED' doesn't appear, call for

hetp.
o Type 'DR,PZ(CR)'. If the value of the SIT is changing, all

is welt. If SIT is not changing, repeat steps 3, 4, 5. If
it still isn't changing, cat. for help.

7. If this is the first deadstart since a non-NOSVE user used the
machine, make sure the P2 EC register and the H2 BR register
are set correctly.
o Type tDR,P2(CR)t. This brings up ~ display of P2 registers
o Type !c..B.dZJ..f.~.!.Q~fLQ.Q.QQ_llQZ_.22Q.Q (CR)·. You s hou I d see

the value being disp1ayed for the EC register change to the
value specified above.

E2-3
52 Machine Usage Document

09/17180

E2.0 STANDALONE NOS/VE DEADSTART
E2.2 DETAILED PROCEDURE FOR STANO-ALONE DEADSTART
_N ___ _

o Type 'DR,M2(CR)'. This brings up a displayof HZ registers
o If any register has anon-zero value in it. set it to all

zero s.

8. At this point hex patches can be entered from the console or
card reader to fix software problems or to change the values
of system constants. If you are lucky you can skip this
step. Patches which may be necessary areS
o CF, 2028-XOOO 0000 0000 0006 where X specifies the unit

number of the disk(s). (X:8 for unit 0, X-4 for unIt 1,
X=2 for unit 2, X-I for unit 3, X-3 for units 2 and 3,
etc.)

o CF,Z020:0000 OOXX OOmm 0000 where mm • amount of memory to
use in hex megabytes. Default is 2. The value of the XX
field must not be changed from what is initla'ly there.

9. Type 'SS(CR)' to start the CP running

10. Type 'DO(eR)' to look at the dayfile for the system job.
Values in the header should be changing.

If the display header is changing, all is welt. Go to step
11. Otherwise either hdw or ~w is broken.
Type 'DR,P2 ICCR) '.
o If PFS, CElO, CEll are non-zero, its probably a hardware

p.roblem
o The value of P will indicate where you got to in software
o Type 'OR,O (eR)'. location 0 of CM contains the XP that

was executing when the processor halted. The XP dumped to
loc 0 does n,g,t contain p, i.e., word 0 is AO.look at the
MCR/UCR.

o Type 'DR,MZ(CR). If UCOl or UC02 are non-zero, its
probably a memory problem.

11. You are in the idle loop. Type some commands. (Same com.ands
you type if on the simulator. Additional commands processed
by the PP are also available.)

E2.3 .IllSLfRB.DRS

The system cannot handle all disk errors. If the CPU halts, you
can determine jf the halt was caused by a disk error by doing the
f 0 I , ow i n g:

o display location 2008

E2-4
S2 Machine Usage Document

09117/80

EZ.O STANDALONE NOS/VE DEADSTART
1:2.3 DISK ERRORS

--
o The left half of this word contains the RMA of the mtr halt

msg that descr ibe.s the reasons tor a l!21.unl.IL.l monitor
halt. If monitor did not voluntarily halt, word 2008 wilt
contain OOOAOOFF07DOOOO. (approx)

o Display the location pointed to by .ocation 2008 (left).
o If the location contains

xx 13713031 ••• (ASCII for ppSOOI - 3, where p is a
descriptor for the string)

then you halted because of a fatal disk error.
o The cylinder, track, sector of the bad spot is in the 2nd

word of the message pointed to by toc 2008. Word 2, 3
contains

xxOO OuOO ceOO ttOO
5S00 0000 0000 0000

where
u = unit number tt - track
cc : cylinder ss - sector

o To 'down' the bad spot, after each deadstart, TYPE
FMDOWNAU u e t 0 s
u • unit +1 from halt m5g
c,t,s = .d:J&1.m.a! representation from halt msg. ofeyl,
track, sector.

E3-1
S2 Machine Usage Document

09/17/80

E3.0 DUAL STATE NOS/VE DEADSTART _N ___ _

E 3 • 0 o.llAL-SI.AI.E_liaSLYE_ll.EAlliIABI

I} The system is configured to run with three FMD units (41, 42,
and 43). No 844 drives are needed.

2) Turn off all 844 disk drives. leave the FHa devices on.

3) Set the DIS pane' to deadstart from the primary system disk
(CH-l, Unit-41 or 43. See console or bulletin board for a
description of which h disk contains the primary system.
Set the DIS panel word 14 to RPXX
wh er e R = 0 I S I eye I (0 or 3)

P = 1 if you wish to see the CMROECK, P : 0 if not.
XX = CMRDECK number

For the first deadstart in a session use "0006"
Set word 16 to 00001

4) Push DIS button

5) Select "0" display and then select RHo display

6) Set ·CS • NO" onfy if you don't want microcode to be loaded.
After the initial deadstart, loading microcode lsnft
necessary.

7) Enter a "backspace"

8} Select "PH display
Here you may set DI-3" for recovery level deadstart
(Use laO for first deadstart)
Set no:y" to see CMROECK. This may be needed if you wish to
see or to change the current system configuration.

9} Enter "(CR)" and the system should deadstart. You should then
enter the date and time when the system displays these
requests.

E3-Z
5Z Machine Usage Document

09/17/80

E3.0 DUAL STATE NOS/VE DEADSTART
E3.Z CURRENT DUAL STATE CONFIGURATION

--

o FMD Unit 43

This unit contains the followingl

A170 NOS, CTI, CMSE, EI binaries (NOS deadstart files)
files associated with user number LIBRARY
files associated with user number SES

o FMO Unit 42

This is a scratch unit.

o FMD Unit 41

This unit contains the following:

- A170 NOS, CTI, CMSE, EI binaries (NOS deadstart file)
- Files associated with user number DEVi

NOS/VE Development Area PL's and "ember Pl's
NOS/VE Deadstart Files to be tested (saved in individual
user's catalogs)

E 3 • 3 o.lJAL,SIAlfLJi1lS_IltfRAIlllt!

1) The convention used for creating user numbers on NOS/VE is as
follows:

o Your user number witl be your initials.
o Your password will be these 3 letters followed by the letter

'x'.
o You must see Inte~ration to be assigned a user index

User numbers are created by executing the program "MOOVAl" as
follows:

o Type "X.MODVAl".
o Type "K.m." where m is the MOOVAl control point
o Type "K.C,uuu." where uuu • your user number. Note that the

"K.n stays on the screen.
o Type "K.PW-uuuX, FUI=n." where n • your user index
o Set all other parameters to their maximum values. 00 a"."

to see next page - there are 3 pages associated with a user

E3-3
S2 Machine Usage Document

09/11180 w ___ _____________ _

E3.0 DUAL STATE NOS/VE DEADSTART
E3.3 DUAL STATE, NOS OPERATION
________ w __ _

number.
o Type "K.END." to end creation of that user number. Another

user number may now be created.
o Type "K.END." again to exit "ODVAl.

2) PF dumping and foading

You may use "SES.DUMPPf" on SN/IOI to dump your permanent fies
to tape, and then load them onto your user number on A170 NOS
using "SES.lOAOPF". Documentation on hOM to use these SES
procedure and what their parameters are is included in the SES
"User's Guide, or they can be obtained by typing:

"SES,HElP.DUMPPF" and "SES,HElP.lOADPf".

f. 3 • 4 .t:H1Sl.vf_JlfAll.SIAB.I

1) The following file must be available in your catalog on the S2:

TPXXXK contains a NOS/VE deadstart image. This must be a copy
of the dual state deadstart images availabJe from the link
procedures.

CMIMAGE, PPIMAGE, RGIMAGE are "fast" files, which are built
from TPXXXK the first time you deadstart NOS/VE. These files
are then used on subsequent deadstart attempts. Before a new
TPXXXK can be used, these "fast" files must be purged off your
user number.

2) Place a SCRATCH disk on 844 drive number 1.

3) Type X.UPMYVE(CAT:uuu) where uuu is your user number.

4) The UPMYV£ Job will display the fottowing:

REQUEST *K* DISPLAY on the B display

Type K,n. where n is the control point number of the UPMYVE
job.

5) Type K.*PPlOAO-TRUE. if you "ant to toad and use disk
drivers. Default is no driver. This is a reminder to perform
step 2. This must be entered jf you wish tobuid the fast
files mentioned in step 1.

52 Machine Usage Document

E3.0 DUAL STATE NOS/VE DEADSTART
E3.4 NDS/VE DEADSTART

E3-it

09/17/80

--
6) Type K.*RUN. Note that the deadstart that creates the fast

file will take 1-3 minutes to complete. After the fast files
are built, it usually takes abGut 30 seconds.

E3.5.1 COMMUNICATION WITH A NOS/VE JOB

Type

K-EX ZOISa"A.

where n is the number of the job.

To bring up the NOS/VE "8" display, enter:

K.*VEDISPlAY·CP.

To return to the NOS/VE dayfile display, enters

K.*VEDISPlAY-OAYFIlE.

Type

K.n:::XXX.

where n is the job number and XXX is the NOS/VE command. NOTEt
XXX cannot contain periods.

E3.5.2 USING THE REMOTE HOST

The 180 side of the remote host is included in Build G of NOS/VE
and subsequent builds. To use it, NOS/VE must be up and running.

To initiate the current NOS/VE build, type X.UPMYVE(CAT-NYE).

S2 Machine Usage Document

£3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2 USING THE REMOTE HOST

E3-5

09117/80

--
The 170 side of the remote host is included in the NOS 170

system at deadstart time.

Type

X.IHRf170.

Type

K,n. where n is the UPMYVE control point number.
K.EX RHINPUT"A.
K.EX RHOUTQ8"A.
RHINPUT is the 180 task which receives Job input files from
the 170.
RHOUTQ8 is the 180 task which sends print files to the 170.

Through the system console, enter:

Type

X.DIS.
USER,A,B.
GET,filename. where filename

identifies the input file to
be routed.

ROUTE,filename,OC-lP,FC-RH.

If you are running from an interactive terminal, enter.

GET,fitename.
ROUTE,filename,DC=lP,FC-RH.

The input file which is sent to the 180 must be in Display Code
(64 character set - upper case only). The job file must be a
single partition 170 record contaning NOS/VE commands. Multi
partition input fites are not yet supported by NOS/VE so 110 data
files used by the program must be ~btained through the NOS/VE
permanent fi Ie GET command. The last command of the job fife must

E3-6
52 Machine Usage Document

09117/80

E3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.3 Route An Input File From e170 To C180

---------------------------------.----------------------------------
be JMEXIT in order to cause the Job to terminate properly. Support
for ASCII job files (6/12 ASCII) wilt be added at a later build.
The asterisk character should be used in place of the quote
character to delimit parameters for the NOS/VE EX command.

At NOS/VE job termination the Job tog (dayfile) witl be
automatically returned to the 170. Data written to the NOSIVE
output file SOUTPUT wi'l be overwritten by the Job log so at.
program print output must be written to alternate files which are
explicitly routed to the 170 with the JMROUTE command. NOS/VE
print files must be written by BAM as 8/8 ASCII RT-W. Print files
will be converted from 8/8 ASCII RT-W to Display Code (64 character
set - upper case onty) when they ar~ sent to the 170. Support for
ASCII print files (8/12 ASCII) will be added at a tater build. At.
NOS/VE output fites will appear in the 110 output queue (NOS H,D
display) with the name IRHFxxx as 8 banner. In order to route 8
NOS/VE print file to the 170, the following command must be
contained in the 180 job file or be entered from the system console
via the K display:

JMROUrE,jobname,filename,PR,REMOTE

jobname - name that the print file will have in the 180 output
queue.

filename - name of the local 180 file created by BAM that Is
to be printed.

PR - specifies that the file is a print file (must always be
PRJ.

REMOTE - name of the 180 family for the print file (must
always be REMOTE). The NOS command language must be in
HCS mode (HeS command) in order to enter the JMROUTE
command.

Example of JMROUTE command:

On the e170 side, the printer must be physically and
fogicallyon. To logically turn the printer on, under DSD
en t er:
ON32.

E3-7
52 Machine Usage Document

09/17/80

E3.0 DUAL STATE NOS/VE DEADSTART
£3.5.2.4 Route A Print File From C180 to el70
N ___ N ___ _____________ _

fORM32,TM. (in honor of our illustrious leader, Tom
McGee)

In order to access C170 permanent files from a C180 Job, the
NOS/VE job must issue a LINK_USER command. The LINK_USER command
specifies the user identification on the 110 under which Cl70
permanent files will be accessed.

The following must be done to enter the LINK_USER commandl

set.
LIU,US=(user,fami Iy), PA=password, A-account, PRaproject.
HCS.

The SCl command puts tbe NOS/VE command processor into SCl
mode. The HCS command puts the NOSIVE command processor into HCS
mod (HCS mode is required for the 'GET and REPLACE commands).

The LIU (or LINK_USER) command specifies the NOS user, famj,y,
password, account and project parameters which are used by IRHFl70
to create 170 jobs which access C170 permanent fites. A NOS/VE Job
can jssue only one LINK_USER command per 170 family. Alt LINK_USER
parameters are specified with keywords and all are requied.

US (or USER) - This parameter specifies the NOS user number
(catalog) and famity in which the 110 permanent fites reside.
'user' wilt be the first parameter on the 170 job's USER card and
'family. will be the second parameter. Currently the ~nly family
on the S2 Dual State system is called NVE.

PA (or PASSWORD) This parameter specifies the passMord that is
used to login to the user number. 'password' wit. be the
third parameter on the 170 Job's USER card.

A or (ACCOUNT) This parameter specifies the account number
(charge number) for the 170 job. It will be the first
parameter on the 170 Job's CHARGE card.

PR or (PROJECT) This parameter specifies the project number
for the 170 Job. It wi" be the second parameter on the
170 job's CHARGE card.

Note: When running on the Simulator, the LINK_USER command is
not required to use the GET and REPLACE commands.

E3-8
52 Machine Usage Document

09/11180 ~_~_~~~ ____ N _______ ~ _____________ ~ ______________________ • __________ _

E3.0 DUAL STATE NOS/VE DEADSTART
£3.5.2.5 LINK_USER Command _______ N __ ~., ___ ____ .,. ______________ . ________ "". _________ ___ ",,_IIW. ____ IIW ___ _

Example of LINK_USER command:

sel.
lIU,Us-tFAB,NVE),PA a fABX,A a 1136,PR-73E08802.
HCS.

The GET command obtains a copy of a permanent fite residing on
the 170. The 170 permanent file can be either a direct or an
indirect access permanent file. The NOS/VE comma~d processor must
be in HCS mode (HCS command issued) in order to use the GET
command. All parameters on the GET command are positional. Only
the 'Ifn' parameter is required. A LINK_USER command must be
issued (for the 170 fami.y on which the permanent file resides)
prior to issuing the GET ccmmand. The format of the GET command
is:

ffn (local fite name) - This is the name of the tocal NOS/VE
file to which the 170 permanent file will be transferred.

prn (permanent file name) - This is the name of the 170
permanent file that is to be accessed. If this parameter is
omitted then '.fn' witl be used for the 170 permanent file
name.

pw (password) - This is the password that witt be used to
access the 110 permanent file if a password is required to
access the file on the 110.

un (user name) - This is the user name (alternate catalog) on
which the 170 permanent fjle resides.

fm (fami.y) - This is the family on which the 170 permanent
file resides. Currently the only 170 family on the 52 Dua.
State system is NVE.

ca (conversion alternatives) - This parameter specifies the
type of conversion that is performed by the IRHF on files
transferred from 170 to 180. If this parameter is omitted
then a default of 860 will be assumed. Values for this
par amet er af' e:

860: Basi c Bi ary • •

E3-9
S2 Machine Usage Document

09117180
._. ___ ",_. ___ #tiI . .,,,, ____ . _______________________ ,,, ______ • __________ . _______ . __ _

E3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.6 Get A 170 Permanent file From 180 . -.---", .. ", ---------. ., .---", -- ",. -----",-",-----------------------------",---

The futl 60 bits of each 170 word are transferred to the
lower 60 bits of each 64 bit 180 word. The upper 4 bits
of each 64 bit 180 word are set to O. The flte is written
to 180 using BAM with Btock Type: System (Unblocked) and
Record Type: Undefined (RTaU) so no control information
is inserted in the file. The 170 logical record structure
is dropped (i.e., EORs are deleted causing the logical
records to be packed together.

856: ciao Binary

The lower 56 bits (7 8 bit bytes) of each 170 word are
packed into contiguous 8 bit bytes on the 180 (i.e., 1 8
bit bytes from the first 170 word and 1 8 bit byte from
the second 170 word go into the first 180 word etc.). The
170 logical record structure (EORs) are dropped. The way
that the 180 file which Mas transferred from 170 is
accessed should correspond to the method used to create it
on the 180 originally (assuming that the fite originated
on the 180).

Abt 6/12 ASCII

A170 6/12 ASCII character files (used by XEDIT and most
SES utilities) are converted to 180 8/8 ASCII with Block
Type • System (Unblocked) and Record Type • Variable
(RT=W). The 170 logical record structure EORs are
dropped.

A8: 8/12 ASCII

170 8/12 ASCII character files are co~verted to 180 818
ASCII with Block Type * System (Unblocked) and Record Type
• Variable (RT-W). The 170 logical record structure
(EORs) are dropped.

064: Display Code 64 Character Set

170 Display Code character files are converted to upper
case 180 8/8 ASCII with Block Type: System (Unblocked)
and Record Type • Variable (RT-W). The 170 togical record
structure EORs are dropped.

Example of GET command:

SCl.
lIU,US-(FAB,NVE),PA a fA8X,A-7136,PR-73E08802.
HCS.

E3-10
S2 Machine Usage Document

09/17/80

E3.0 DUAL STATE NOS/VE DEADSTART
£3.5.2.6 Get A 170 Permanent File From 180 ._.,---------------------_ .• _-_._-----------_._-------------------------

Note: When the GET command is used on the Simulator, the
fi'e specified by the tprnt parameter must be a 170
file which is local to the simulator job.

The REPLACE command transfers a copy of a 180 local file to a
permanent file on the 170. If a permanent file of the same name
does not exist for the specified user (catalog), a direct acccess
permanent file is created. If a direct access permanent file of
the same name already exists in the catalog and the file can be
attached with write mode then the existing direct access file is
overwritten with the file from the 180. If an indirect access
permanent fi Ie of the same name already exists in the catalog then
the indirect access fite is replaced by the file from the 180. An
existing indirect access file wi.lut be changed to a direct
access file jf the user's indirect access file size limit Is
exceeded. The NOS/VE command processor must be in HCS mode (HCS
command issued) in order to use the REPLACE command. All
parameters on the REPLACE command are positional. Only the 'Ifnt
parameter is required. A LINK_USER command must be issued (for the
170 family on which the permanent file resides) prior to issuing
the REPLACE command. The format of the REPLACE command 1st

Ifn (loca' file name) - This is the name of the toeal NOS/VE
fife which wi'l be transferred to 8 permanent file on the
170.

pfn (permanent file name) - This is the name of the 110
permanent fite that is to be created or replaced. If this
parameter is omitted then '.fn' wit. be used for the 170
permanent file name.

pw (password) - This is the password that wilt be associated
with a newty created direct access file or which is used
to gain access to an already existing direct or Indirect
access permanent file.

un (user name) - This is the user name (catalog) on Mhich an
existing 170 direct or indirect access fi Ie resides. This
parameter is illegal if the ffle does not exist.

fm (family) - This is the family on which the 170 permanent

• • • • • •

E3-11
52 Machine Usage Document

09/17/80

--_._----",. __ ._---",-",-_._--_._.,---------------------------------.----------
E3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.7 REPLACE A 110- Permanent File From 180

. _________________ #llf_#llf#llf_#llf ______________________________ - _____________ _

fi1e is to reside. Currentl, the only 110 famify on the
52 Dual State system is NYE.

ca (cGnverion alternatives) - This parameter specifies the
type of conversion that is performed by the IRHf on files
transferred from 180 to 170. If this parameter is omitted
then a default of 860 wilt be assumed. Values for this
parameter are:

860: Basic Binary

The lower 60 bits of each 64 bit 180 word are transferred
to the fult 60 bits of each 110 word. The upper 4 bits of
each 64 bit 180 word are discarded. The 180 file which is
to be transferred should be written by BAM with Block Type
a System (Unblocked) and Record Type = Undefind tRT-U).
The file is transferred to the 170 as a single logical
record (i.e. fi'es with multiple EORs cannot be created
on the 170 from the 180).

856: C180 8inary

Groups of 7 contiguous 8 bit bytes from the 180 wil' be
transferred to the lower 56 bits of each 170 word (i.e.
the first 7 8 bit bytes from the first 180 word go to the
lower 56 bits of the first 170 word, the 8th 8 bit byte of
the first 180 word and the first 6 8 bit bytes from the
second 180 word go to the lower 56 bits of the second 110
word etc.). The May that the 180 fite to be transferred
is created does not matter because the entire structure of
the 180 file is preserved on the 170. The file is
transferred to the 110 as a single logical record.

A6: 6112 ASCII

A 180 8/8 ASCII character file with Block Type • System
(Unblocked) and Record Type: Variable (RT=W) is converted
to a 110 6/12 ASCII file (used by XEDIT and most SES
utilities). The fi'e is transferred to the 170 as a
single logical record.

AS: 8112 ASCII

A 180 8/8 ASCII character file with Block Type a System
(Unblocked) and Record Type a Variable (RT-W) is converted
to 8 110 8/12 ASCII file. The 170 file can be routed
directly to the printer with the 110 ROUTE command with
the EC-A9 parameter. The file is transferred to the 170

" •

E3-12
52 Machine Usage Document

09/17/80
__ M ____ _________ #III ____ N ________________ .., ______________ . ______________ ..

E3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.7 REPLACE A 170 Permanent File From 180
--

as a single 'o~icat record.

064: Display Code 64 Character Set

A 180 8/8 ASCII character file Mith Btock Type • System
(Unblocked) and Record Type • Variable (RT-W) is converted
to a 170 Display Code file with IOHer case characters
mapped to upper case. ASCII special characters that do
not have a Display Code equivalent are converted to
Dtsplay Code blanks. The fi'e is transferred to the 170
as a single logical record.

Example of REPLACE command:

set.
lIU,US=(FAB,NVE),PAsFA8X,A a7136,PR a73E08802.
HCS.
REPlACE,MYFIlE,FllE85b",NVE,85b.

Note: When the REPLACE command is used on the Simulator, the
file specified by the tpfn' parameter witl become a 170
file which Is local to the simulator job.

General Notes

o HCS command causes NOS/VE to switch to HCS command language
interpret er

o SCl command causes NOS/VE to switch to Sel command language
interpreter

o Comment capability within command line is not currently
avai lable

o HCS comment tine format (starts with single quote) not Sel
C ompa ti b I e

o The 860 conversion parameter on the GET command is utilized to
indicate that the Al70 file is to be transferred to NOS/VE
without conversion

o The NOS/VE job command stream must use display code
o The 856 conversion parameter on the REPLACE command is utilized

to indicate that the 64 bit oriented NOS/VE file Is to be
transferred to the AI70 without truncation of data. 56 C180
data bits are stored in each 60 bit A170 word.

o The B56 conversion parameter on the GET command Is utilized to
indicate that an A110 fite with 56 e180 data bits per 60 bit
A170 word are to be transferred to NOS/VE as a 64 bit oriented
N OS I V E f i Ie.

• • • • • t

• • • •

• •
• •

• •

• • • • • • • •
t • • • • •
t •
t • • •
t
• •
" t

• t.

• • • • • • • • • •

E3-13
52 Machine Usage Document

09/17180

E3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.8 Example Jobs Representing Phase A/8 library Creation/Modi --------------,._-_. __ ._-------_._------_._--_._.,.-------------.-----------

o REPLACE cannot be used to replace an existing l170 fite
o GET and REPLACE do not allow specification of alternate user

names. Use of mu.tiple lIU commands with different families for
each user catalog is a way to circumvent this restriction.

o An asterisk should be temporarily used in place of the quote
mar k.

o An ~ character should be temporarily used in place of the
underline.

E3.5.2.8.1 CREATE OBJECT LIBRARY ON NOS/VE AND SAVE IT ON A170 NOS

Notes

o ClG0170 is A170 permanent file name for file containing object
text (in eI data mapping) for modules to be included in the
library.

o CITEXT180 is NOS/VE local file name for rile containing object
text (in CI data mapping) for modules to be included in the
library.

o IITEXT180 is NOS/VE local file name for fife containing object
text (in II data mapping) for modules to be included in the
t ibrary.

o lIBRARY180 is NOS/VE local file name for the library being
created.

o IlIB170 is A170 permanent file name for file containing the
library.

NOS/VE Job Commands

sel
lIU, USER-(Jln,NVE), ••

PASSWOROajlnx, ••
ACCOUNT-notused, ••
'PROJECT:n otus ed

HCS
GET,citext180,clg0170",NVE,B60
EX,CITOII,'citext180,iitext180'
EX,COl
ADO,OBJECT_fIlE=iitextI80
GENERATE,lI8RARY·library180
END
REPlACE,library180,i lib170",NVE,B56
JMEXIT

E3.5.2.8.2 MODIfY A PREVIOUSLY SAVED OBJECT LIBRARY

Notes

• 'I.
I • • • • ,
• • • • • • .,
•
• •

:

• ,
" • • • • • • •
I
• • • • • • • • • • • • • •
• •
• • • • • • • • • • • • • • • • .,
" • • • • • • • • • •
,
•
• •

E3-14
S2 Machine Usage Document

09/17/80

e3~O DUAL STATE NOS/VE DEADSTART
E3.5.2.8.2 MODIFY A PREVIOUSLY SAVfO OBJECT LIBRARY

--
o IlIB170 is A170 permanent file name for fjle containg the old

library
o llBRARY180 is NOS/VE tocal fite name for file containing the old

library
o CM00170 is A170 permanent file name for file containing CI

object text for the neM mOdule
o NEWCIMODUlE is NOS/VE tocal file name for file containing CI

object text for the new module
o NEWIIMOOUlE is NOS/VE local file name for file containing II

object text for the new module
o NEWlIBRARY is NOS/VE toea. file name for the library being

created
NlIB110 is A170 loca' file name for new library

NOS/VE Job Commands

set
lIU,USR=(jln,NVE), ••

PASSWORD=jlnx, ••
ACCOUNT=notused, ••
PROJECTanotused, ••

HCS
GET,library180,ilib170",NVE,B56
GET,newcimodule,cmod170",NVE.B60
EX,CITOII,'newcimodule,newiimodule'
EX,C Ol
ADD,library-library180
REPlACE,OBJECT_fIlEanewiimodute
GENERATE,LIBRARY-newlibrary
END
REPlACE,newlibrary,nlib170",NVE,B56
JMEXIT

E3.5.Z.8.3 USAGE OF NOS/VE LOADER

lIM I TAT I ON S

The NOS/VE loader is activated by the HCS version of the EXECUTE
command. This causes some limitations to loader usage since the
HCS version of EXECUTe does not support all of the parameters
(loader options in particular) that the NOS/VE version supports.
These limitations are detailed below:

Exactly one file must be specified in the object list. This
file must be an object text file (as opposed to 8 library
file).

Modules are loaded from libraries only to satisfy externals.

• • • • • I

• • • •
" • :
• • • I.

• •
:
• • • "
• •
• • • • • • • • • • • • • • • • • • • t

" • • •
t • • • •
" • •
• •
• •
:
• • • it

• • • •
• • • • • •
• •

E3-15
S2 Machine Usage Document

09/17/80

--£3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.8.3 USAGE Of NOS/VE LOADER

libraries to be used for this purpose may be specified by either
the (Sel) command SET_OBJECT_LIST or directives embedded In
object text being loaded. The Jibrar~ of task_services entry
points is ..Ijtin~ used to satisfy externals.

At least one module to be loaded must contain a CYBIl PROGRAM or
the equivalent (i.e., a transfer symbot must be specified).

load map options B, E and S are selected by default. These
selections may be changed via the (SCl) command
SET_PROGRAM_OPTIONS.

The default error action is ERROR. This selection may be
changed via the (Sel) command SET_PROGRAM_OPTIONS.

The load map is always generated on the NDS/VE file named
'Ioadmapl.

The program options STACK_SIZE AND PRESET are not supported.

PROC ESS

Create an object text fite by compiling a program in real state.
Then perform the following steps in virtual state:

Use the (SCl) command SET_OBJECT_LIST to specify necessary
libraries which are .Q,Sl! quoted in text embedded directives.

Acquire any necessary libraries by either:

o Creating the library file via the object library generator
or
o Staging the library file from real state to vitual state

using the (HCS) command GET (with 856 conversion mode
specified).

Stage the object text file from real state to virtual state
using the (HCS) command GET (with 860 conversion mode
specified).

Convert the object text file from the CI data mapping to II data
mapping by executing tbe HCS program CITOII.

load and execute the program via the tHCS) command EXECUTE.

Stage the loadmap from virtual state to real state (for
printing) by using either:

• •
:
• •
• •
I •
• • • • • •
• • • •
• • • ,

• •
• I

• •
I •
• • • ,

• •
• • • • • • • • • •
• t

• • • •
• • • •
,
•
• I

• •

E3-16
S2 Machine Usage Document

09/17/80

E3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.8.3 USAGE OF NOS/VE LOADER

--
o The (HCS) command REPLACE (with A6 conversion mode

specified) jf running on the simulator.
or
o The tHCS} command JMROUTE if funning on the hardware.

EXAMPLES

The follo~ing is an example command sequence for executing a
program not requiring any libraries for loadings

Assumptions: all modules to be loaded are contained on the (rea'
state) permanent file ·citxtrst.

SCl
lINK_USER,USER=(jln,NVE),PASSWORO-jlnx, ••

ACCDUNT=notused,PROJECT-notused
HCS
GET,citxtvs,citxtrs",NVE,B60
EXECUTE,CITOII,'citxtvs,iitext t

EXECUTE,iitext,'program parameters'
JMROUTE,notused,lOADMAP,PR,REMOTE

The fotlowing is an example command sequence for executing a
program requiring libraries for loadingl

Assumptions: the (reat state) permanent file 'citxtrs' contains
object text generated by the CYBIl CI compiler. The compiler
modules reference procedures contained on the user library 'myllb'
and the CYBIL run-time library. These libraries have been
generated in virtual state and saved in real state.

sel
lINK_USER,USER=(OEVl,OEVlfl,PASSWORO-DEVlX ••

ACCOUNT=notused,PROJECT-notused
lINK_USER,USER-(jln,HVE),PASSWORO-jlnx, ••

ACCOUNT-notused,PRDJECT-notused
SET_OBJECT_lIST,AOO=mytib
SET_PROGRAM_OPfIONS,MAP_OPTIONS-(S,E,X,S)
HCS
GET,CYBIlIB,CYBIILB",OEVIF,B56
GET,mllb,mylib",NVE,B56
GEt,citxtvs,citxtrs",NVE,B60
EX€CUTE,CITOII,'citxtvs,jitext­
EXECUTE,iitext,'program parameters'
JMROUTE,notused,lOAOMAP,PR,REMOTE

• • • • • I

• •
• •
• • • •
• • • •
• • • • • •
~ • • • :
• • • •
• • • •
• • • •
I , , ,
• •
• • • • • • • t

• • • • • • • • • •
:
• t

• • • I

• •

E3-17
52 Machine Usage Document

09/17./80

----_ . .,-,.,-------_._-_._-------------------------------.--.-.--------------
E3.0 DUAL STATE NOS/VE DEADSTART
E3.5.2.8.4 CYBll RUNTIME
--

E3.5.2.8.4 eYBll RUNTIME

The CYBll runtime procedure C8n be obtained via the following:

E3.5.2.8.5 PERMANENT fILE PROGRAM INTERFACE BUILD J DEFICIENCIES

1) Since no va'idation facility exists at build J, there is no
official way for a 180 user's master catalog to be created.
Without a master catalog, it is impossible to use NOS/VE
permanent fite requests aimed at "180 side" permanent fites. It
is, however, possible for a 180 Job to access 170 permanent
files. If anyone requires access to flI80 side" permanent files,
a job can be provided that wil' create the required master
catalog.

Z) Permanent fites on the "180 side" are only permanent until a
NDS/VE deadstart.

3) Usage- selections and share-requiements may be specified on
the ATTACH request but they will not be honored. Files wilt
never appear busy and hence the hold parameter has no affect on
the ATTACH or GET requests.

4) GET, SAVE and REPLACE are not completely implemented at build
J. In their partial implementation, GET acts like an ATTACH
(i.e., no file copy occurs); SAVE acts like a DEFINE but
requlres that the loealf.le already exist; REPLACE acts like a
DEFINE but requies that the locat fite already exist and wilt
replace the specified cycle if it already exists. This means
that a file that is already a permanent file (via DEFINE, SAVE
or REPLACE) may not be saved or replaced.

5) Until build K it wilt not be possible to purge or replace 8
"180 side" permanent fie if it Is attached by any Job, Including
the one doing the purge or replace.

6) Permanent files are never purged because a retention period has
ex.pired.

7) Only cycle permission is required to replace a "180 side"
permanent file.

• I

t •
• •
• •
• • • • • • • • • • :
• • • •
• I

• t

• • • • • • • •
:

• • • • :
t , ,
• • •
• • • I

• •
• •
~ •
I
I

• •

52 Machine Usage Document

E3.0 DUAL STATE NOS/VE DEADSTART
E3.6 NOS/VE TERMINATION

E3-18

09/17/80

____ N __ _

E 3.6 ti.Os.aLIfRHltlAII!Ui

Type

E3.7 nSllL.l.tlfD.&.t1AIlDti

To create an Express Deadstart Dump (EOD) tape:

1) Mount scratch tape (ring in) on a 9-track drive.

Z) Push DIS button.

3) Select U (utilities) display.

4) Select E (EOD) display.

5) Set channel (S2-12).

6) Set ECUU (SZ-Oluu)

E- equipment

C = 1 for 67X drives
Ztor 66X drives

uu • unit number of the tape drive to be used.

1) Answer "non zero inhibits rewind" with a CR.

8) Answer "dump number" wi th a CR.

q) Answer "eH/tHB)" with the size of memory you want to dump
(in megabytes).
Note: This dispfay may not appear, depending on the version
of EOD being used.

10) Answer "dump controlware" with a CR.

To create a listing of the £00 tapes

2) GET,DSDI/UN*BRH. (On SIN 101.)

E3-19
52 Machine Usage Document

09/17/80

--E3.0 DUAL STATE NOS/VE DEADSTART
El.1 OSDI INFORMATION

or

GET,DSDI/UN=lIBRARY. (On S2.)

3) Create DSDI directives files

A OSDI directive file should include the following:

IOUMR.
PROMR.
MEMMR.
PRORF.
W,first_b,te_address,'ast_byte_adress,asid. (where the
first_byte_sddress and last_byte_address are hex byte
addresses and asid is the asid of the segment to be dumped)

4) Execute DSOII

RFl,60000.
DSOI,M,D,I="input directives file".

5) To run (after the first time):

DSDI,I:n.

(Does not read tape again.)

6) To run interactively:

Same as above, except to do W command must first dot

OUTPUT,lISTFIl.

7) e170 OSOI information can be found in Chapter 10 of the NOS
SYSTEM MAINTENANCE Manual.

AI10 OSOI info can be found in document ARH3060 -- GID for
A170 NOS/52.

E3.8 t:!!HlAE_l~f1JBl\All11H

Bringing HAM UP.

1) To run NAMIAF, the 2550 in the northeast corner of the fishbowl
is used. elA's 10, 11, 12 and 13 in the middle cabinet must be

52 Machine Usage Document

E3.0 DUAL STATE NOS/VE DEADSTART
£3.8 NAMIAF INFORMATION

E3-20

09/17/80

__ ",.,N· __ _ . __ ",., ________ . ., ___ ., _____ ., _____________ • __ . _____ . _______________ _

turned off, and the elA's in the right hand cabinet must be
on. The teletype beside the 2550 must be ON and turned to
LINE.

2) At the system console enter:
FNC5,7700.
2.NAM.

3) If IAF is not up at control point 1, enter:
IAf.

4) To send messages to atl terminals enter:
2.CFO.MSG,All,message.

Bringing NAM down.

1) At the system console, enter:
2.CFO .• DI,NE.

2) Turn the teletype by the 2550 off.

3) To bring IAF down enter:
1. STOP.

Before leaving the machine, it is necessary to bring NOS down.
If NOS has crashed, a level 3 deadstart must be attempted (see
Section 3.1.8) even if the only reason is to bring NOS down. To
bring NOS down, do the following:

1) Enter:

CHE
The screen witl display:
CHECKPOINT SYSTEM.
Enter: carriage return

2) Make sure no mass storage device has a checkpoint rquested. To
do this, enter: E,M. If the display shows there are no "ens In
the status field, then all devices are checkpointed and YOU may
continue.

3) enter:
STEP.

E3-21
52 Machine Usage Document

OQ/17180 ___ MM ___ N ___ _____________ _

E3.0 DUAL STATE NOS/VE DEADSTART
E3.9 A170 NOS SHUTDOWN

--
4) Push deadstart button.

The foltowing precautions must be taken when running dual state
with the Interim Memory link storage move fix (NOS/VE Build J6 and
associated NOS/Al70 System).

1)

3)

4)

Drop IRHF170, PASSON and al' permanent fi'e partner jobs before
doing *BYEVE.

00 not rollout IRHF170, PASSON or permanent 'ile partner Jobs
at any time.

Before doing a CHECKPOINT SYSTEM, drop IRHF170, PASSON and at.
permanent fife partner jobs.

If the system crashes a NOS/AI70 fevel 3 deadstart is the
preferred action. If for some reason you must do an MCU
recovery (REe command) do the fo'iowingl

Clear word 17(8) via:
99.
17,0.

Enter REC on the HCU console.
Finish up in A170 only mode (i.e., do not do an UPMYVE),
then do a level 3 deadstart. If yOU bring UP NOS/VE again
without doing a level 3 deadstart, the results are
unpredictable.

E3.II.l OPERATOR INITIATION

To bring up the NOS/VE interactive facility do the fotlowing:

1) Bring up NOS/VE (build J7 or later).

2) Bring up NOS/A170 networkst

FNC5,7700. (may sometimes be skipped)

• •

• •

• •
• ,

• • • I

,
• • •
• • • •
• • • • • •
t • • • • • • • • •
" 'I

• • • •

• •

• •

• •
• •
• •
t •

E3-22
52 Machine Usage Document

09/17/80
____ ",N ___ · __ · ___ N __________________ .,_. _______________________________ _

E3.0 OUAtSTATE NOS/VE DEADSTART
f3.1l.1 OPERATOR INITIATION

-----------------.,--
2.NA,.,.

3) Bring up A170 part of interactive:

X.PASSON (CAT:nnn)

Where nnn is (usually) the same catalog that Mas specified
on the X.UPMYVE in step 1.

4) When NOS/VE is up, bring UP the C180 part of interactive:

K.EX IFEXEC"A.

5) Bring UP the remote host (IRHfl10,RHINPUT,RHOUT481 if desired.

E3.lI.l OPERATOR TERMINATION

To terminate NOS/VE interactive any of the follow'ng may be
done:

2.CfO.OI,AP-TAF. (2 is the HAM control point number)

This is the preferred method. To bring NOS/VE Interactive back
up, you must first do a 2.CFO.EN,AP-TAF.

2.CFO.OI,NE. (2 is the NAM control point number)

This terminates the entire network including IAF,RBF, etc.

N.DROP. (and) K.TMTERM If EXEC. (H is the PASSON control point
number)

E3.lt.3 OTHER OPERATOR CAPABILITIES

To send a "shutdown warning" to all terminals togged on to TAf
do:

2.CFO.ID,AP=TAF. (2 is the NAM control point number)

To send a message to all terminals do:

2.CFO.MSG,All,mesage. (2 Is the NAM control point number)

• •

" •
• •
• • • •
• •
• •
• •

• •

• • •
"

• •
• • • •
• •
,
•
• ,
• ,

• •

• •
• •
• •

E3-Z3
S2 Machine Usage Document

09/17/80

--f3.0 DUAL STATE NOS/VE DEADSTART
E3.ll.3 OTHER OPERATOR CAPABILITIES

--
PASSON has the ability to record various types of diagnostic
information. This capability is controlled via the sense
switches at the PASSON control point. To turn a sense switch on
(off) at control point N do:

N.DNSWX. (N.OFFSWX.)

Where X is the desired sense switch (1 to 6). The PASSON
default is all sense switches off. It will take a short period
of time before PASSON detects a change in a sense sNitch and
reacts to it. The sense switches currently used by PASSON are:

,~ltl1~.b._1_

1

2

3

Ne twor k Tr ace

PASSON logic Trace To Dayfile

Memory link Trace To Dayfile

E3.11.4 INTERACTIVE TERMINAL OPERAT[ON

To access NOS/VE via the interactive facility, your user number
must be validated to logon to the application named TAF. If you
get the message 'ILLEGAL APPLICATION' when trying to logon, you are
probably not validated to access TAF. To correct this do the
following from the console1

X.MODYAl.

K,N. (N is the MOOVAL control point number)
K.U,ccc. (ccc is YOUf user number)
K.AP=All.
K.EHO.
K.ENO.

If you get the message 'CONNECTION PROHIBITED' it means that
onty one terminal per user number can be togged on to TAF at one
time. This indicates tbat someone has changed the network
configuration - try a different user number until the network
configuration is changed.

• • • • • • • •
• •
• • • • • • • •
• •
• •
• •
• · .
• •

• •

• • • • • •
41

• ,
•
• •

'. • • I

• • • t

• •
• • • • • • • • • •

E3-Zit
52 Machine Usage Document

09/17/80

E3.0 DUAL STATE NOS/VE DEADSTART
E3.11.4.2 Login To NOS/VE
NN __ - ________ _

E 3 .11.4. 2 .LJlJJl.D_.I.a_titts'Llf

To initially login to N05/VE via TAF, you must cause the first
logon attempt to fail. This can be done by responding to the
"FAMILY:" logon prompt with something like: "A,A,Aft. This must be
done because the system will try to connect the terminal to IAF on
the first logon attempt no matter what is typed. To access TAF do
the following on the second "FAMILY:" prompt:

You can access TiF from {AF by doing "HELlO,TAf" or by answering
TAF to the system prompt "APPLICATION:".

When the terminal has been successfully logged in to NOS/VE, the
following message will be displayed at the terminal:

Welcome to NOS/VE Interactive On The 52.

E 3 • 11. 4. 3 .I~t.J!!l!l.al._U~.5U:

1)

2)

3)

The slash (I) is a prompt to enter a NOS/VE command. Any
norma' NOS/VE command can now be entered. The full ASCII
character set (lower or upper case and al' special characters
can be used). Commands do not need to be ended with a period.

A JMEXIT command witl cause the NOS/VE Interactive Job to
terminate and it's dayfile (Job log) Mi'f be returried to the
A170 for printing. A new NOS/VE Interactive Job can then be
started by responding to the 'APPLICATION:' prompt with TAF.

A Terminal Break (Control T) can be used to discard output from
a NOS/VE command. A Termina' Break will not terminate a NOS/VE
user task (i.e., a task initiated with the EX command) or cause
it's output to be discarded. An aSYnchronous (A parameter on
EX command) NOS/VE user task can be terminated with a TMTERM
XXX command (XXX is the user task name as specified on the EX
command). A synchronous NOS/VE task or any NOS/VE task waiting
for input from the terminal cannot be terminated either by a
Termina. Break or a TMTERM command.

1 » In t era c t i v e NOS / V E Job s ar e a b 'e too b t a i n t er min 8 lin put
through theClPSGET_STNO_INP program interface which can be

• •

• • :
t • • • • • • •
• •
• • • •
11 • • •
• •
• •

• • • • • • • •
• • :
• • • •
• • • • • • • • • t

• • • • • • • •
• •

• •
'. •

E3-25
52 Machine Usage Document

09/11180

--E3.0 DUAL STATE NOS/VE DEADSTART
E3.11.4.4 NOS/VE Program Access To The Terminal

--

2)

used by both task services and user ring programs. Interactive
programs which use this interface should be abte to handle both
upper and tower case input in order to make them more
convenient to use in both 64 and 96 character set modes.

Interactive NOS/VE jobs can send output to a terminal through
the ClPSPUT_STND_OUT program interface which can be used by
both task services and user ring programs. This interrace will
cause the terminal to operate in 'no format effector' mode
(i.e. pre and post print format effectors should not be used -
each ClPSPUT_STNO_DUT ca" wil' start a new tine).

• • • • • • • •
• • • • • t

• • • • • •

52 Machine Usage Document
09/17/80

£4.0 52 DEVELOPMENT lAS SUPPORT 8Y INTEGRATION

What we have established in the lab so far is the following:

A 600 tape capacity tape rack for general use (.oeated in near
proximity to the 67X tape drives). If your project would like
to reserve a section of this tape rack, contact Tim or myself.

A tape and disk cabinet for storage of system support materials
which this project will manage and keep UP to date. (If you
have been using this cabinet for unauthorized storage -
beware. We have the key to the lock!) More will be published
about the contents of this cabinet tater, and a cabinet index
will be posted in the lab to help locate where things are
supposed to be placed within the cabinet. This cabinet is
currently located against th ~ast wal. of the tab, is 6 ft. 8
in. tall, gray in color and with sliding door.

A two-level documentation rack for system documentation
listings. This contains the current bui.d compilation listing
interface deck compilation listing (from module named QLHDS),
listing of the NOS/VE PPU routines, system link map, and
various assorted PVE listings. This rack is next to the tape
and disk cabinet at this time.

A desk documentation rack for reference manuals and Tom McGee's
collection of "hOM to" goodies. The objective is to have this
reference information at arm's I~ngth of the console, but it is
currently on top of the two-level unit by the East wall.

At or near the console Is a small notebook contatning the NOS
System Ptogrammer's Instant, NOS Application Programmer's
Instant, and the 180 Instruction codes.

Feel free to examine and use all of the above materials while in
th e I a b. 1lQ_n.Ql_.r.~m.'l,:t.e_Q.J:_.a.bll~Jl_.l.Q~_,Q!_t.bJ:~.L.JUutl.ll~._ PI ease
notify Tim McGibbon or Mike Carter of any problems or deficiencies
of these materia's. leave a note if we are not available.

• •

• t

• •

• •

,
•

E4-2
S2 Machine Usage Document

09/17.180

E4.0 52 DEVELOPMENT lAB SUPPORT BY INTEGRATION

1.0 Hardware Overview

1.1 An introduction to CV8ER 180

1.2 C180 Instant

1.3 ModeJ Independent General Design Specification - ARH1700

2.0 NOS Reference Manuals

2.1 XEDIY V3.0 - 60455730

2.2 IAF Vl.O User's Guide bOlt55260

2.3 NOS Reference Manual - Vol 1, 60435400 - Vol 2, 60445300

2.4 NOS Instant

2.5 NOS Operators Guide - 60435600

2.6 NOS Diagnostic Handbook

2.7 NOS A170 ERS

2.8 NOS A170 GID - ARH3060

3.0 NOS/VE Reference Documents

3.1 Program Interface ERS obtained from Karen Rubey

3.2 Command Interface ERS - obtained from Karen Rubey

3.3 NOS/VE User's Guide- obtained by the folloNing)
ATTACH,HUG/UNzOAH
SES.FORMAT I=HUG,lalIST,LOCAL,TXTFORM
SES.PRINT LIST

3.4 NOS/VE Procedures and Conventions - obtained by
SES,MAD.lISTPC

E4-3
S2 Machine Usage Document

Oq/11180

E4.0 S2 DEVELOPMENT LAB SUPPORT BY INTEGRATION
.. ___ . ." _., ____ . ___ #III ____ ._ #111_ #III .* _________ . _____ .,,* ____ * *. __ , ___ *.,,_ * ___________ . __

3.5 JfS Deadstart/180 Operating Procedures

3.6 Listing of all NOS/VE Modules - obtained by
SES,OEVl.lISTNVE. See Integration Procedures Notebook for
detail.s.

3.7 listing of all NOS/VE type declarations - obtained by
doing, SES,OEVl.lISTNVE MsQLNOS.

3.8 NOS/VE Code TransmittaJ/Pl Maintenance Procedures

See Integration Procedures Notebook.

3.9 NOS/VE Internal Interface Maintenance Procedures

Memo available from S.C. Wood.

3.10 Integration Procedures Notebook

Obtained by:

Acquire, IPNOOC2/UNzMOC. SES.PRINT,IPNOOC2.

4.0 Tools Reference Documents

4.1 PASCAl-X Interactive Debugger - ARH3142

4.2 SES User's Guide - ARH1833

4.3 PASCAt-X Specification - ARH2298

4.4 C180 Assembler ERS - ARH1693

4.5 Simulator ERS - ARH17Z9

4.6 VEGEN ERS - ARH2591

4.7 VElINK fRS - ARH2816

4.8 Simulated 110 ERS - ARH3125

4.9 Object Code utilities ERS - ARH292Z

4.10 eYBll Implementation Dependent Handbook - ARH3078

E4-4
52 Machine Usage Document

09/17/80

E4.0 52 DEVELOPMENT tAB SUPPORT BY INTEGRATION

--
5.0 Dual State Cookbook

To acquire additiona' copies of this document enter:

ACQUIRE DOCUMEN/UN=SKT512
SES.FORMAT I=OOCUMEN TXTFORM.

Fl-l
NOS/VE USERS GUIDE

09/11180
#III#III. __ · __ · __ ",#III#III.., ____ #111 ____ N __ N _________ . __ ~-----------___ - _____________ _

Fl.O INTRODUCTION

Fl.O ItJIB.IlLlUt11JJ.ti

The purpose of this document is to give an overview of the
NOS/VE system (formerly called HCS) from the following
perspectives:

Adding user tasks (tests)
Modifying NOS/Ve components
Adding new NOS/VE com~onents
System usage - hardware and si.ulator
Hints • •

F2-1
NOS/VE USERS GUIDE

09117/60

f2.0 ADDING USER TASKS TO NOS/VE

--

f2.0.1 INTRODUCTION

A user task can be defined
together that will execute
currently ring 11. This task
within task services (rings 1
allow the calf. Data defined
referenced from rings 4-15.

as a group of modules 'inked
in the .user ring' of NOS/VE,

may make catls to any gated entries
through 3) if the call bracket wi.t
within task services may not be

F2.0.2 USING THE VE LINKER

The general format of the LINK command is:

SES.VElINK lfl=CYBIlIB lPF-LIBlCB Oft=lGO NS-lIBX

The lPF parameter specifies the file containing Virtual
Environment linker variables that control the linkage. If the
lPF parameter is not specified, these variables default to values
provided by the VElINK procedure. The vatues for both the lFl
and Ofl parameters may be anything the user requires - it is
these parameter that define the makeup of a given user task. The
VE linker ERS should be consulted for a detailed description of
the available parameters.

Every LINK command creates one unique user
for the NS parameter must be unique among
given virtual environment build. The value
characters and cannot be eitber MTRX or STSX,
used for monitor and task services.

tas~. The value
at. user tasks in a
given must be 4

as these values are

The following example should help to clarify hOM to make the
modifications. Suppose we want to create two user tasks. The
first requires object files A and B from the current users
catalog and file CC from catalog I~T2. The second task requires
object files 0 and E from the current catalog and library fite
Lt. The necessary commands are:

ACQUIRE,CC/UN-INT2

• •
• • • • • • • • • • • •

• •

• • • ,
• •
• I

• •

NOS/VE USERS GUIDE
F2-Z

09/17/80 ____ 8 __ N _______________________________________ ~ ___________________ _

Fl.O ADDING USER TASKS TO NOS/VE
F2.0.2 USING THE VE LINKER

--
SES.VElINK lFL-CYSIlIB lPf=lIBlCB OFl-(A,B,CC) NS-lI8X
SES.VElINK lFl=(ll,CYBILIB. lPF-tIBlCB OfL-ID,E) ••
NS=lIBZ

There are five things to note about this example:

1) The use of muttipte va.ues with the lFl and OFt parameters (up
to 10).

2) The fact that local fites are referenced first by the linker
before they are searched for in the user's catalog.

3) The use of a continuation (••) card.
4) The unique NS values lIBX and lIBZ.
5) The assumption that CYBllIB exists in the current catalog, or
is already local to the job. If neither of these cases is true,
then CYBIlIS must be ACQUIRE'd from the catalog which contains
the desired version. The same assumption holds for LISlCS.

The changes to be to the VELDCM file are described below.
Immediately after the directives1

lOADJOB STSX

directives of the format:

tOAOLIB NS PNAME

should be placed. There shoufd be one directive per user task
(i.e., one per user task LINK command in the VELDCM file). The
NS parameter value must be the same as the value speclfied for
the NS parameter on the LINK command. The value for PNAHE may be
anyone to eight character name and is the name of this .program'
when it resides on the NOS/VE 'library'.

It is important to note that all code and data must fit into
reat memory at the time of loading and deadstart. The simulator
Imposes a 500K (16M with next re1ease) byte restriction on
maximum size and the hardware is restricted to 2M bytes. If the
memory required exceeds the default maximum of 7AOOO (16) bytes,
then the VElDCM fi'e must be changed to reflect this. The size
of the page table must be increased so that it has 2 to 4 ti.es
as many entries as the number of reat memory pages. The page
table size is changed in the VELDt" file in three different
places, however, it is not Just a simple substitution.
Assistance should be obtained when any VELDCM file modifications
are required. The following diagram shows the virtual
environment after loading:

memory

• •
• • • •

• • • • • • • • • •
• •

• • • •

• •
t • • •
• • • • • • • • • •

NOS/VE USERS GUIDE

F2.0 ADOING USER TASKS TO NOS/VE
F2.0.2 USING THE VE LINKER

F2-3

09117/80

~ __________ NN _____________________________________ ~ ___ _____________ _

address----) 0+-----------+
: Page Tabte :
+--.-----...:.--+
: Monitor • •
: Task :
: Services : +-_._._------+
: library
: 0 i r ec tory :
+------_._---+
: User :
: TaskCs) :
: (l i br ar y) :
+--.-----.----+

Using the example from above, the two directives to
to the VElOCM file are:

lOADlIB lISX PROGA
lOAOLIB tI8l PROGS

be added

The names PROSA and PROGS can be whatever is desired, but must
be unique within a single NOS/VE build.

To execute PROGA, the foltowing NOS/VE command is used:

EXEC PROGA 'string'

One final note about the VELDCM file. One of the last
commands is a 'OM All' command which produces a hex dump of the
virtual environment file. This command may be removed I' the
dump is not wanted.

When using the VE linker specifically to produce NOS/VE
systems it is recommended that the procedure NOSlINK, as
described in the Advanced Systems Integration Procedures
Notebook, be used to produce these systems. Use of any other
procedures may lead to erroneous versions of interrelated
software components.

• • • •

• • • •
t •
• • • • • •
• • • •

F3-1
NOS/VE USERS GUIDE

09117180

--F3.0 EXECUTION

--
F 3.0 f!.EtuIIIm

F 3 • 1 IHIRO.IHJtIIDH

NOS/VE will run on either the C180 hardware or the simulator.
Any differences between the two are resolved by NOS/Ve itself or
by the procedures used to run it.

NOS/VE provides three different types of commands. The first
type allows access to most of the software facilities within the
system, such as:

Execution Management
logical Name Management
Task Management
File Management
Segment Management
Memory Management
Heap Management
Signa' Management

The second type provides a debugging capability to be used
within an executing task. The features available are:

Breakpoint
Trace Back
Register Manipulation
Memory Manipulation

Both of the first two types are available on both the hardware
and the simulator. The third type of command is available only
on the hardware. These commands are processed by the PPU console
driver, and offer the following features:

Memory Manipulation
Register Maniputation
Print Memory
OS Displays (Dayfile)

NOS/VE currently supports a single
within that Job. A task may be

job and
executed

multiple tasks
synchronously or

F3-2
NOS/VE USERS GUIDE

09117/80

--F3.0 EXECUTION
F3.1 INTRODUCTION

--
asynchronous'y with other tasks.

NOS/VE commands allow the user access to a large number or
functions provided by the system. In general, any parameter to
one of these commands may be either an explicit value or a
logical name space (lNS) variable. One exception to this is the
use of task status blocks or signa' control blocks, which must
always be lNS variables. A logical name space is associated with
a Job, a fact which must be considered when running multiple
tasks.

The following types of lNS variables and parameters are
available:

INTEGER
CHARACTER
NAME
BOOLEAN
VSTRING
POINTER
SIGNAL CONTROL BLOCK (temporary for HCS onty)
TASK STATUS BLOCKS

Within the descriptions which foltow, optional parameters are
enclosed in square brackets ([l).

F3.2.l DECLARE

This command is used to create variables within the logical
name space of the current job.

Syntax: DECLARE NAME TYPE

NAME lNS variable name, 1 to 31 characters.

TYPE - Variable type, must be one of the fof'owing~

INTEGER
BOOl EAN
POINTER
SCB
VSTR ING

A 64 bit integer.
The value TRUE or FALSE.
A pointer to cell.
A signa' control block.
A STRING (*) variable.

• • • •

F3-3
NOS/VE USERS GUIDE

09117/80

--F3.0 EXECUTION
F3.2.1 DECLARE

--
CHARACTER
TSB

F3.2.2 REMOVE

A .s i ngl e char acter.
A task status block.

This command is used to remove a variable definition from the
logical name space of the current job.

Syntax: REMOVE NAME

NAME - lNS variable name, 1 to 31 characters.

F3.2.3 PFSTATS

This command is used to display the following page fault
statistics:

ava i J q

avai I mod q

valid in pt

no memory

lock ed

on disk
p t fu II

cio reject

new page

syntax: PfSTATS

Number of times a page Mas found in the
available queue.

Number of times a page was found in the
available/modified queue.

Number of ti mes the page was found in the page
table.
Number of ti mes a page fault could not be
satisfied because no rea. memory was
available.

Number of times a page fault could not be
satisfied because the page frame was locked (10
was acti ve).

Number of times a page was found on a disk.
Number of times a page fault could not be
satisfied because an empty entry could not be
found in the page table.
Number of times a page fault could not be
satisfied because of an 110 error.

Number of times that a new page was created.

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.4 TSTATUS

F3-4

09117/80

--
F3.2.4 TSTATUS

This command is used to display the status of at. currently
active tasks. The fotlowing information is displayedt

Task Name
Execution Time Used
Number of page faults

syntax: TSTATUS

F3.2.5 TMCYClE

This command causes a task to give up its turn for execution
until all other ready tasks have had at least one chance to
execute.

syntax: TMCYCtE

F3.2.6 TMOElAY

This command causes a task to be kept from executing for a
specified number of milliseconds.

syntax: TMDELAY MS

MS - Number of milliseconds to delay.

f3.2.7 TMABORT

This command causes the current task to be aborted.

syntax: TMABORT 'MESt

MES - A string to be displayed when the task is aborted.

f

F3-5
NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.a TMEXIT

09117/80

--
F3.2.8 TMEXIT

This command causes the current task to terminate nor.alty.

F3.2.9 EXEC/EX

This command causes a new task to be created and executed
subordinate to the current task.

syntax: EXEC PROGRAM [PARAMl {TSB]
-or-

PROGRAM

PARAM

TSS

EX PROGRAM {PARAM] erSB]

The name of the program on the system 'library' to be
executed.

A string that is passed to the program via the
program header.

One of the following:

DEBUG Specifies that the task is to be
executed by the debug processor.
The task is run synchronously.

A Specifies that the task should be
executed asynchronously, but
without any task status block
being used.

Other non-blank - Specifies that 8 task status
block variable of the name given
is to be created in the current
Job's lNS and the new task Is to
be run asynchronous'y with the
current task. The task name in
this case will be the value given
for this parameter. The user can
determine the status of a task by
printing the value of the task
status block.

If the parameter is omitted, the task will be run
synchronously.

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.10 TMTERM .

f3-6

09117/80

--
F3.2.10 TMTERM

This command is used to terminate a specific task and all
cal lees of that task.

syntax: TMTERM TASKNAME

TASKNAME - The name of the task to terminate.

f3.2.11 SMOPEN

This command causes a segment access open to be performed on a
local file, or causes a transient segment to be created.

syntax: SMOPEN PVA [NAME] [SEGNUMl [Rl] [RZl [ATTRl

PVA The name of an lNS pointer variable to receive the
segment pointer.

NAME The name of the local file (1 to 8 characters) to open
as a segment. If this parameter is omitted, a transient
segment is created.

SEGNUM- The segment number to be assigned to the segment. If

Rl

this parameter is omitted, an unused segment nu_ber will
be chosen.

The Rl value for the segment.
omitted, 11 is used.

If this parameter is

Rl The R2 value for the segment. If this parameter is
omitted, 11 is used.

ATTR The attrjbutes of the segment. A legal value is any
valid combination of the following letters:

R Read
W Write
X - Execute
8 Binding
l - Execute local Privilege
G - Execute Global Privilege
I - Wired
K - Stack
C Cache Bypass

NOS/VE USERS GUIDE

fl.D EXECUTION
F3.Z.Il SMOPEN

S Shared
Q - Sequentiat Access

The default is RW.

F3.Z.12 SMClOSE

F~7

09117/80

This command causes a segment of the current t8sk to be
removed from that task's address space.

syntax: SMClOSE PVA

PYA - A pointer to a cell. The segment represented by this
pointer wilt be closed.

F3.2.t3 SMCHANGE

This command allows some of a segments attributes to be
changed after it has been created.

syntax: SMCHANGE PYA [Rl] [RZ] [ATTR]

PVA - Same definition as SMOPEN

Rl - Same definition as SHOPEN

R2 - Same definition as SMOPEN

ATTR - Same definition as SMOPEN.

F3.2.14 MMADVl

This command
specified range
possible.

causes the system to be notified that the
of virtual memory should be paged in as soon as

syntax: MMAOVl [PVA] (LEN]

PVA- A pointer to the first byte of virtual memory to be paged
in. The default is NIL.

LEN - The number of bytes to page In. The default is 1.

NOS/VE USERS GUIOE
F~8

09/17/80

--F3.D EXECUTION
F3.l.15 MMADVO

--
F3.2.15 MMAOVa

This command notifies the system that the specified range of
virtual memory may be paged out (removed from the working set).

syntax: MMADVO [PVA1 [LEN]

PVA Same as in MMADVI, except that memory is paged out.

lEN Same as in HMAOVI, excep.t that memory is paged out.

F3.2.16 MMAOVOI

This command performs the functions of both the MMADVO and
MMAOVI commands. The page out is performed first.

syntax: MMAOVO {PVlO] [LENO] {PVAI] (LENI]

PVAO Same as in MMAOVO.

LENa - Same as in MMAOVO.

PVAI Same as in MMAOVl.

lENI - Same as in MMADVI.

F3.2.I1 MMWMP

This command is similar to the "MAOVO command except that the
pages are written to disk immediatly.

syntax: MMWMP {PYA] [LEN] [WAIT]

PVA - Same as MMAOVD.

LEN Same as MMlOVO.

WAIT - The value TRUE if the user desires to wait until all
paging 1/0 is complete, otherwise FALSE. The default is
TRUE.

• •

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.18 MMFREE

F3-9

09/11180

----------~---
F3.2.18 MMFREE

This command causes the pages representing the specified range
of virtual memory to be released.

syntax: ""FREE PVA [LEN]

PYA same as in MMAOVI.

LEN same as in MMAOYI.

F3.2.19 COMPVA

This command converts a process virtual address (PVA) to a
real memory address (RMA).

syntax: COMPYA PYA [MODEl

PVA - The pointer to be converted to an RMA.

MODE - One of the fotlowing values:

DIRECT - The specified PYA is to be converted.
the default value.

This Is

INDIR The specified PYA is a pointer to the PVA to be
converted.

F3.2.20 HPINIT

This command causes a heap to be created and initialized.

syntax: HPINIT HEAPP LEN

HEAPP - The name of an lNS pointer variable. It will be set to
point to the heap.

LEN - The length of the heap in bytes.

• •
• •

NOS/VE USERS GUIDE

F3.0 EXECUTION
F3.2.21 HPAllOC

F3-10

09117/80

____ w __ _

F3.2.21 HPAllOC

This command allocates space within a previously created
heap.

syntax: HPAllOC PTR LEN [PAGECROS] [ZERO] HEAPP

PTR - The name of an lNS pointer variable. It witl be set to
point to the allocated area.

LEN The number of bytes to allocate.

PAGECROS- This parameter has no affect.
compatibility.

It is included for

ZERO The value TRUE if the a'iocated area is to be preset to
the value zero or fALSE if it is to be 'eft as is.
The default is fALSE.

HEAPP A pointer to the heap in whjch the space is to be
allocated.

F3.2.22 HPFREE

This command frees a block of space previously allocated from
a he ape

syntax: HPFREE PTR HEAPP

PTR - The name of an lNS pointer variabte which points to the
block to be freed.

HEAPP- A pointer to the heap in which the b10ck is allocated.

f3.2.23 SHINIT

This command is used to initialize a signa' control block.

syntax: SHINIT SeB [TYPE] {VSTRl

sea The name of an lNS signal control block variable to be
initialized.

F3-II
NOS/VE USERS GUIO£

09/17/80

--f3.0 EXECUTION
f3.2.23 SHINIT

--
TYPE - The signal type to be associated with the ses.

one of the following:

EVENT
SEME
IORESP
MESS AGE

Must be

VSTR - If TYPE is message, then this parameter specifies a string
variable whose size is the maximum message size allowed
when using tbis SCS, and whose location is where the data
wil1 be placed.

F3.2.l4 SHSEND

This command causes a send signal operation to be performed on
the specified signal control block.

syntax: SHSEND SeB [INT] ['STR'1

sca The lNS signal control block variable to which the signal
is sent.

INT - Integer value to be sent with the signa'

STR A string (in quotes) to be sent as data along with the
signal. If both INT and STR are specified, STR takes
precedence.

F3.2.25 SHWAIT

This command causes the current task to wait until a specified
amount of time has, passed, or until any of up to three signals
are sent.'

syntax: SHWAIT {ITIMEl [SC81] [SeBll [SeB3l

ITIME- The number of milliseconds to wait. If this parameter is
omitted,' infinity is used.

NOS/VE USERS GUIDE

F3.0 EXECUTION
f3.Z.25 SHWAIT

F3-1Z

09117/80

SCBi - Up to three lNS signal control block varlables to wait for
a signal on.

F3.2.26 CHANGE lNS VALUE

This command allows the
changed. Signal control
cannot be changed.

syntax: lNSN = NV

value of an lNS variable to be
block and task status block variables

lNSN - The name of the lNS variable to be changed.

NV - The new value.

f3.2.27 PRINT lNS VALUE

This command causes the value of an lNS variable to be
displayed.

syntax: lNSN

lNSN - The name of the lNS variable to be displayed.

F3.2.28 ECHOINP

This command causes alt command input to NOS/VE to ·be echoed
back to the output device. This command is useful only when used
as the first command to a batch mode simulation.

syntax: ECHDINP

F3.2.29 STOPSIM

This command causes NOS/VE to stop execution via a CPU halt
when running on the simulator.

syntax: STOPSIM

NOS/VE USERS GUIDE
F3-13

09/17180

-----------------------------.--------------------------------.---.-F3.0 EXECUTION
f3.2.30 SSET

--
F3.2.30 SSET

This command al.ows some of the NOS/VE control parameters to
be changed dynamical'y.

syntax: SSET CPM [NV]

CPH - The name of the control parameter being changed. The value
must be one of the following (entries followed by an * are
not intended for general use):

QUANTUM Basic task time slice (microseconds) for a.1
tasks created after the execution of this
command.

MAXIDlE* - Maximum amount of time spent in monitor idte
loop before looking for lost interrupts.

TICKTIME*- Used for paging control.

OfDElAY* - Minimum amount of time between the issuing of
dayfile messages. Used to slow down the
scraWling action of the console dayfile
display.

KEYMAX Maximum value of the id field from a keypoint
that will be placed in the keypoint buffer.
Any keypoint "itb an id field greater than
this value Mill be ignored.

STEPCNT* - Maximum number of monitor requests allowed
before monitor goes into wait loop.

OBRING Lowest ring that can be executed while In
debug mode.

PQTHRESH*- Number of pages kept in the page queues.

KM

MM

UM

Keypoint mask used for every task created
after execution of this command.

Monitor mask used for every task created
after execution of this command.

User mask used for every task created after
execution of this command.

F3-14
NOS/VE USERS GUIDE

09117/80

--F3.0 EXECUTION
F3.2.30 SSET

--
PITVAl* The vafue tbat the PIT is reset to after

every PIT interrupt.

DISOEtAY - How often (milliseconds) the system status
dispfay (3 lines on the console) is updated.

NV - The new value for the specified control par~meter. If NV
is omitted, the current value witl be dispiayed.

It is important to note that these commands are used primarily
for hardware and monitor debugging and may change or disappear at
any time.

F3.2.31 FMCREATE

This command makes a file known to the system.

syntax: FMCREATE FILENAME

FILENAME The name of the file being created (1 to 8
characters).

F3.2.32 FMDElETE

This command deletes a file previous'y made known to the
system with the FMCREATE command.

syntax: FMDElETE fILENAME

FILENAME - Name of the file being deleted.

f3.2.33 FMDOWNAU

This command identifies bad areas on disk and keeps them from
being allocated.

syntax: FMOOWNAU UNIT CytINDER TRACK SWLBUG SECTOR

UNIT

CYLINDER -

Unit number of the disk device.

Cylinder number.

F3-15
NOS/VE USERS GUIDe

09111180

--Fl.O EXECUTION
F3.2.33 FHOOWNAU

--
TRACK

SWlBUG

SECTOR

Track number.

This parameter is present because of a compiler
bug .•

Sector to be marked as bad within the specified
unit/cylinder/track.

Commands to the system are entered yla the console keyboard.
With the exception of messages to the operating system, at'
commands entered must include a two-character comlltand identf'fier
or a two-character operating system display identifier. Some
commands require parameters, others do not. Atl command input
tines are restricted to 60 characters or less; all are terminated
by depr~ssing the carriage return key.

f3.3.1 DtSPLAY CENTRAL MEMORY

The following commands provide display of onty the right-most
60 bits of centra' memory Nords (they use the 60 bit PPU em
readlwrite instructions).

Displays an installation-specified number of central memory
words; two words are displayed per display line along with the
byte address of the left-most word of the line.

(addrs): A 1-8 di gl t hexadeci mat !'U!_JD.fl.llll[l_b!.t~ __ .d.d.t.lU which
defines the first It.At...d to be displayed. The specified
address is forced to zero module eight if it is not so
specified by the command.

Increments the most recently specified memory address and
displays a set of memory words which are contiguous Mith those
most recently ·dlsplayed. This command is used to "roll" forward
t;hrough memory.

F3-16
NOS/VE~ USERS GUIDE

Oq/17/80

--Fl.O EXECUTION
F3.3.1.1.] DP,-

--

Decrements the most recently specified memory address and
displays a set of memory words which are contiguous with those
most recently displayed. This command is used to flro11" backward
through memory.

This command may be used to reinstate the most recent centr.1
memory display after the screen has been used for other
purposes.

The following commands provide display of all 64 bits of
central memor, words. There are a number of characteristics of
these commands of which the user should be awares

• These commands
mechanism.

F3.3.1.2.1 DF,(AODRS)

use the 64-bit central memory access

Displays an installation-specified number of centrat memory
words; two words are displayed per display line along Mlth the
byte address of the left-most word of the .ine.

<add r s >: A 1-8 d j 9 i t hex adec j ma I .t.Ul_,DU~lIll..l-1Lll~_Jlsl.dL,A~~ Mh i ch
defines the first KA£sl to be displayed. The specified
address is forced to zero module eight if it is not so
specified by the command.

Increments the most recently specified memory address and
displays a set of memory words which are contiguous with those
most recentt, displayed. This command is used to "roll" forward
through memory.

Decrements the most recently specified memory address and
displays a set of memory words which are contiguous with those
most recently displayed. This command is used to "rotl" backward
through memory.

NOS/VE USERS GUIDE

F 3.0 ,E XECUT ION
F3.3.1.2.4 OF

F3-17

09111180

___ NN ___________________________________ N __________________________ _

This command may be used to reinstate the most recent central
memory display after the screen has been used for other
purposes.

F3.3.2 CHANGE CENTRAL MEMORY

F3.3.2.1.1 CP,<ADDRS>-<VAlUE>

This command inserts a specified value into the right-most 60
bits ofa 64-bit centra. memory wordi the left-most 4 bits of the
central memory word are unconditionally set to zero.

< add r s > : A 1-8 dig i the)(8 dec i m 8 , L..ul_lIt~JUt:~-1l.!!.c-lj[.d,r.ll~ M hie h
defines the central memory lULt.u which is to be'
modified. The specified address is forced to zero
module eight If it is not so specified by the co •• and.

<value>: A 16 digit hexadecimal value which is to be inserted
into the centra] memory word; all 16 digits must be
specified. Blank characters may separate hex digits if
desired to simplify value specifieation; for' example,
the two value specifications shown below yield the same
results

value! OlZ3456789ABCOEF
value2 0123 '561 a9AB CDEF

f3.3.2.2.1 CF,(ADORS>-<VAlUE>

This command inserts a specified walue into the futl 64 bits
of a 64-bJt central memory word.

< add r s > : A 1-8 dig i the xad ec i rna I ,£'~.ILJD~.mJlU_ll.l.le._.i.jjilLU~ wh i c h
defines the central memory K.2U which is to be
modified. The specified address is forced to zero
module eight if it is not so specified by the command.

<value>: A 16 digit hexa~ecimal value which is to be inserted

F3-18
NOS/VE USERS GUIDE

09117/80

--F3.0EXECUTION
F3.3.2.2.1 CF,(ADDRS>=<VAtUE)

--
into the central memory word; all 16 digits must be
specified. Btank characters may separate hex digits if
desired to simplify value specification; for exampl~,
the two value specifications shown below yield the same
resultl

value! 0123456789ABCOEF
va.ueZ 0113 4567 89AB CDEF

F3.3.3 PRINT CENTRAL MEMORY

This command provides a listing of central memory to a line
printer. Four words are listed per line along with the byte
address of the teft-most word of the line.

<addrs>: A 1-8 di gl t hexadeci mat .t.Ul-!11!U'UlU-ll.!t.l_".d.d.t..l,1~ which
defines the first central memory ~~~.d to be 'isted.
The specified address is forced to zero module eight if
it is not so specified by the command.

<words>: A 1-5 digit decimal yalue which specifies the number of
central memory words to be listed.

A listing operation may be terminated prior to its norma'
completion by depressing the carriage return at the keyboard.

f3.3.4 DISPLAY/CHANGE SYSTEM ELEMENT REGISTERS

F3.3.4.1.1 DR,<ElIO>

This command causes display of an installation defined set of
registers of a system element.

<etid>l A two-character system element identifier which
specifies the element of which registers are to be
displayed. Valid system element identifiers are listed
under the section entitled "System Element
Identifiers". The registers displayed for each system

F3-19
NOS/VE USERS GUIDE

0911'7/80

--F3.0 EXECUTION
F3.3.4.1.1 OR,<ElIO>

---.
element are listed under the section entitled "System
Element Registers".

This command permits modification of system element registers
for which the maintenance channel has write access.

<elid>: A 2 character system element identifier which specifies
the element of which a register is to be modified.
Refer to the section entitted "System ele.ent
Identifiers" for a 'ist Jf valid identifiers.

<regid>: A 1-4 character register identifier which specifies the
regIster which is to be modified. Refer to the section
entitled "System Element Registers" for a list of valid
register identifiers for each system element.

<value>: A 16 digit hexadecimal value which is to be inserted
into the register; ai' 16 digits must be specified.
Siank characters may separate hex digits if desired.

•
•

Following is a list of yalid syste. element identifiers.

HZ
P2

Identifies the centra' memory element
Identifies the central processor unit

The following subsections list, according to system element,
those registers which may be displayed and which may be modified
(assuming that the maintenance channel has write access to the
specific register).

F3.3.4.4.1 CENTRAL MEMORY REGISTERS

NOS/VE USERS GUIDE

F3.0 eXEC UTION
F3.3.4.4.1 CENTRAL MEMORY REGISTERS

REGISTER
MNEMONIC

SS
EC
BR
CElO
UC10
UC20

REGISTER NAME

Status Summary
Environment Control
Sounds Register
Corrected Error log, Distributor 0
Uncorrected Error log l~ Oistributor 0
Uncorrected Error log 2, Distributor 0

f3.3.4.4.2 CENTRAL PROCESSOR REGISTERS

REGISTER
MNEMONIC

5S
EC
P
HCR
UCR
UP
JPS
PFS
CEll
CEl2
CEL3
CEl4
KC
KeN
TE
SIT
CMA
CMS
PTM
MOW
DEC
MSl

REGISTER NAME

Status Summary
Environment Control
Program Address
Monitor Condition Register
User Condition Register
Untranslatabte Pointer
Job Process State
Processor Fault Status
Retry Corrected Error log
Control Memory Corrected Error log
Cache Corrected Error log
Map Corrected Error log
Keypoint Co.de
Keypoint Class Number
Trap Enables
System Interval Timer
Control Memory Address
Control Memory Breakpoint
Processor Test Mode
Model Dependent Word
Dependent Environment Control
Maintenance Scan limit

f3.3.5 DISPLAY PPS PROGRAM ADDRESS REGISTERS

F3-20

09/17/80

ACCESS
ATTRIBUTES

R
R/W
R/W
R/W
R/W
R/W

ACCESS
ATTRIBUTES

R
R/W
R/W
RIW
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R'W
R/W

F3-Z1
NOS/VE USERS GUIDE

09117180

--F3.0 Exec UT ION
f3.3.5.1 PP

--

This command causes display of the program address register of
each PPU in the PPS.

F3.3.6 CLEAR DISPLAY

This
display.

command is used to deactivate a currently active

<screen>: Is l, R, or B to specify left screen, right screen, or
both screens, respectively.

F3.3.7 START SYSTEM

This command is used during system deadstart after the message
"PROCEED" is dispfayed at the console; this command causes final
initialization to occur and the CPU to be started. The command
is valid at no other time.

F3.3.8 HALT CENTRAL PROCESSOR

F3.3.S.1 1:11

Thfs command is used to halt the central processor.

F3.3.9 START CENTRAL PROCESSOR

NOS/VE USERS GUIDE

F3.0EXECUTION
F3.3 .. 9.1 GO

F3-22

09117/80

--

Tbi s command is use,d to start the central processor after it
has been halted with the HT command.

F3.3 .. 10 OPERATING SYSTEM DISPLAYS

Various operating system displays are
console; a specific display may be called by
2-char acter 1 dentt fl er and a carri age return.

00 - Dayfile of the system job.

available
typing Its

F3.3.ll CONSOLE MESSAGES TO THE OPERATING SYSTEM

to the
unique

Single line messages of 60 characters or less may be sent to
the operating system from the console keyb~ard. Any line of
input from the keyboard is sent to the operating system if both
of the following conditions are met:

1. The first two characters of the line do not match a console
command or an operating system display identifier.

2. The number of characters In the input line equals or exceeds
1 character.

f 3 • 4 llflUJ.G_fAtl1.lIl

The debug facility of NOS/VE provides a set of capabilities
intended to assist in testing of programs which execute under
contra. of NOS/VE. Services provided by the facility are task
oriented: selection of the debug facility Is at the option of the
user at the time of task invocation. NOS/VE uses the CYSER 180
debug hardware to provide these capabilities.

NOS/VE USERS GUIDE
f3-23

09/17/80

--F3.0 EXECUTION
F3.4.1 SUMMARY OF DeBUG fACILITY SERVICES

--.---
F3.4.1 SUMMARY OF DEBUG FACILITY SERVICES

Set Breakpoint:

Remove Breakpoint:

Change Breakpoint:

list Breakpoint:

Trace Back:

Display Stack Frame:

Display Register l

Change Register:

Display Memory:

Change Memory:

Run:

Selects a program interrupt which is to
occur upon occurrence of a specified
condition within a specified virtual
address range.

Deselects a previously selected program
interrupt.

Changes the virtual address range of a
previously specified breakpoint.

Provides a list of currently selected
breakpOints and associated conditions.

Provides informatJon relevant to stack
frames associated with an interrupted
procedure and its predecessor
procedures.

Display selected information from a
specified stack frame.

Display the contents of a specified
register of an interrupted procedure.

Sets a specified value into a specified
register of an interrupted procedure.

Displays the contents of a specified area
of virtual memory.

Sets a specified value into a specified
location of virtual memory.

Invokes program execution after 8
selected program interrupt has occurred.

f3.4.2 DEBUG FACILITY COMMANDS

NOS/VE USERS GUIDE
F3-Z4

09/17/80

---", .. ",--- -", -- -", -", _._----------",,,,----_ ... _----.----------.----.---•. -------
F 3. 0 EXEC UTI 0 N
f3.4.2.1 Parameter Definitions

--------_.",---
F 3 • 4 • Z,. 1 f .• I.Jl.m.l.t~L.D.~tlnlLLo..n.s

<name> ::. 1-8 character breakpoint name
(condition> :;: REAO:WRITE:RNI:SRANCH:CALl:OIVfLT:ARlOS:

AROVFL:eXOVFt:EXUNfl:FPlOS:FPINDEF:INVBDP
<base> :;: process virtual address
(offset> ::. integer
(length> :;a integer
<frame> It= 1 •• 100
<count> :t- 1 •• 100
(regid> :t. X:A:P
<regno> :ta O •• 15:0 •• 0F(16)
<hex_ystring) ::= 'hex string'
(time> ::= 1 •• (2**31)-1
<vstring) :;a 'charstring'
<datatype> ::= HEX:ASCII:ASC:OECIMAl:OEC
<selector> It: FUll:AUTO:SAVE

Within the descriptions which follow, optional parameters are
enclosed in brackets. Default values for optional parameters are
also defined.

F3.4.2.2.1 SET BREAKPOINT

Selects a program interrupt which is to occur upon occurrence
of a specified condition within a specified virtual .address
range.

syntax: BP <name> <condition) [(base>] [(offset>] [(length)]

The base parameter is required when specifying a new
breakpoint name; offset and length specifications are optional in
this case. When adding a new condition selection to an existing
breakpoint, base, offset, and length parameters may not be
specified.

Base, offset, and length parameters define the desired virtual
address range: <base> + <offset> yields a first-byte-address;
first-byte-address + <length) -1 yields a last byte address.

Oefault parameter values:

(offset>: 0
(length): 1

F3-25
NOS/VE USERS GUIDe

09117/80 ~_NN_N __ NNN _____________ N_NN ___ N_N __________ N _______ N _ _____________ _

F3.0 EXECUTION
f3.4.2.2.Z REMOVE BREAKPOINT
__________ N __________ N _____ N _____ N _____ ~ ______________ _ ~ ___________ _

F3.4.2.Z.2 REMOVE BREAKPOINT

Deselects a previously selected program interrupt.

syntax: R8 (name> [(condition)]

If only the name parameter is specified, all conditions
associated with the breakpoint are deselected and all evidence of
the breakpoint is removed. If tbe condition parameter is
specified, only that condition is deselected; however, if the
specified condition is the on'Y condition selected, a.1 evidence
of the named breakpoint is removed.

F3.4.2.2.3 LIST BREAKPOINT

Provides a list of currently selected
associated conditions.

syntax: LB [(name>]

br eakpo i nts and

If the name parameter is specified, information Is displayed
for the named breakpoint only. If the name parameter is not
specified, information is displayed for atl currently defined
breakpoints.

F3.4.2.2.4 CHANGE BREAKPOINT

Changes the virtual address range of a previously specified
breakpoint.

syntax: C8 <name> <base> [(offset)] [<length)]

Base, offset, and length parameters define the desired ~irtual
address range: <base> + <offset) yie1dsafirst-byte-address;
first-byte-address + (length) -1 yields a last byte address.

Oefault parameter values:

(offset): 0
<length): 1

F3.4.2.2.5 TRACE BACK

Provides information relevant to stack frames associated with
an interrupted procedure and its predecessor procedures.

Information displayed for each selected stack frame consists
ofl

NOS/VE USERS GUIDE

f3.0 EXECUTION
F3.4.2.2.5 TRACE BACK

F3-2b

09117/80

________________ w __ _

Stack frame number;
Current P-address of the associated procedure;
Virtual address of the start of the stack frame;
Virtual address of the stack frame save area.

syntax: T8 [(frame)] [(count)]

The frame parameter specifies the number of the first stack
frame for which information is to be displayed. (Stack frame
number one is associated with the interrupted procedure, stack
frame two 1s associated with the interrupted procedure's
predecessor, etc.)

The count parameter specifies the total number of stack frames
for which information is to be displayed.

Default parameter values:

(frame): 1
<count>: 1

F3.4.2.2.6 DISPLAY STACK FRAME

DispJay selected information from a specified stack frame.

syntax: OS [<frame)] [(selector)]

The frame parameter specifies the number of the stack frame
for which information is to be displayed. (Stack frame number
one is associated with the interrupted procedure, stack frame two
is associated with the interrupted procedure's predecessor,
etc.)

The selector parameter identifies a region of the specified
stack framet

AUTO:

SAVE t

FUll:

Causes the automatic region of the stack frame to be
displayed.

Causes the save area of the stack frame to be
displayed.

Causes both the automatic and save areas of the stack
frame to be displayed.

Default parameter values:

•

F3-27
NOS/VE USERS GUIDE

09/11180 ___ N ________________ N __ •

f3.0 EXECUT:ION
F3.4.2.2.6 DISPLAY STACK FRAME

--.---------
<frame>: 1
<selector>: FUll

f3.4.2.2.7 DISPLAY REGISTER

Display the contents of a specified register of an interrupted
procedure.

syntax: DR (regid> [(regno>] [(datatype>l

Default parameter values:

(regno>: 0
(datatype): HEX

F3.4.2.2.8 CHANGE REGISTER

Sets a specified value into a specified register of an
interrupted procedure.

syntax: CR (regid) (regno> [(datatype)l (vstring>

Default parameter values:
r--­

(datatype>: HEX

f3.4.2.2.9 DISPLAY MEMORY

Displays the contents of a specified area of virtual memory.

syntaxt OM <base> [(length)]
\.

Default parameter values:

<length"): 8

f3.4.Z.2.10 CHANGE MEMORY

Ib

Sets a specified value into a specified location of Yirtual
memory .•

~
syntax: eM <base> (hex_vstring)

F3.4.2.2.11 RUN

Invokes program execution after a selected program interrupt
has occurred.

NOS/VE USERS GUIDE

F3.0EXECUTION
F3.4.2.2.11 RUN

F3-Z8

09117/80

-------_.---
syntax: RUN (time>

The time parameter specifies the maximum number of
microseconds the program is to execute; a program interrupt wil'
occur upon attaining this execution limit.

Default par~meter va'uesl

<time>: infinite

Error codes are displayed as 6 hex digits in the folloNing
format:

AANNNN

The AA field designates the functional area that issued the
error. The possible values aret

- Signal Handler 01
02
03 -
04
05 -
06
07 -
08 -

Circular Buffer Handler
Heap Manager
Mise Task Services
N/A
Fi' e Manager
Nil
Task Manager
Memory Manager
Job Manager

09 -
OA
OC
00

- loader

OE -
Of
10
11 -
12

Central 110
OJ spa tche r
Command language Processor
Logical Name Manager
Oebug Processor
Confjguration Manager

The NNNN field is a detailed error number within the specift~d
functional area.

F3-ZQ
NOS/VE USERS GUIDE

09117180

f3 .. 0 EXECUTION
F3.5.1 DETAILED ERROR CODES
_______ ~ ___________________ N __ -_N __________________________________ _

f3.5.1 DETAILED ERROR CODES

Alt numeric values are given In hex.

1 :: timeout
2 :: signal buffer full
3 • task swapped
4 :: invali d si gnat i d
5 :: Incompatible signal type
b :: message buffer too small
7 • empty wait fist

1 = buffer not initialized
2 :: bu f f e·r f u I ,
3 = message too long

None

None

F3.5.1.5 filJ:_!1.i.D.i~itt.

1 • KFO not available
Z • File active
3 • File not active
4 : PFD not available
5 • File exists
6 • File not created
7 :: File open
8 • Multiple usage
9 :: File not temporary
OA • File not permanent
08 = File not attached
ac • File attached

NOS/VE USERS GUIDE

F3,.OEXECUTION
F3~5.1.5 fi Ie Manager

F3-30

09117/80

--
00 = File not open
OE = Invalid KfOL index
Of = KFD not active
10 • Invalid PFOL index
11 • PFO not active
12 = Active 1/0
13 = No units configured
14 • No active units

1 = Task not found

1 • Page already in page table
2 = Page table fuJI
3 = No free pages
4 • locked page free request
5 • Page not in page table
6 a Invalid PYA
7 = Page frame not tocked
8 • Page frame not assigned
9 IE. MIA
IF • Invalid ring number
20 = Segment table is full
21 = Segment number is in use
22 • Segment number not in use
23 = Nil segment pointer invalid
24 = Segment number too big
25 = Cannot change segment number
26 = Unsupported keyword

None

1 • program not found

F3-31
NOS/VE USERS GUIDE

09117/80 _________ N __ _____________ _

f).O EXECUTION
F3.5.1.10 Central 110

--
F 3 • 5.1 .10 t.~.n1uLl.lD

1 • IORP not ayaifable
2 == En d 0 f f i I e
3 = Invalid byte count
4 a Invalid buffer length
5 • Invalid buffer address
b = Invalid MS function code
1 = Invalid CIa hardware type
8 a Feature not supported
9-40 • NIA
41 = End of device
42 == End of allocation
43 a File not allocated
44 a File already allocated
45 : Invalid cylinder
46 : Invalid track
47 = Invalid sector
48 = AUn not defined
49 = AUD allocated
-4A 80: NI A
81 a CaD not available

F3.5.l.1i .Qi.s.2,A.tJ£Il~£

1 a Inva1id task id
2 111: PTl full
3 = Invalid running job ordinal

1 : missing parameter
2 = invalid character
3 • undefined parameter type
4 111: integer out of range
5 = unknown command
6 = unknown syntax
7 • not supported
8 • bad parameter type
9 111: token too long
OA a bad combination of parameters
OB = bad value for pointer
OC • unknown parameter name
00 : valid password required
OE = sca not event

NOS/VE USERS GUIDE
F3-32

09/17/80

--F3.0 EXECUTION
F3.5.1.13 logical Name Manager

--~---------------------

1 • Entry not found
2 = Type mismatch on put
3 = Entry already exists
4 = Illegal put request
5 • Suffer wrong size
6 = Buffer too smal'

F 3 • 5 .1. 14 ll~.bJl.SL~t.Jl.k.U . .ijU:

1 = Debug not initialized
2 • Breakpoint name exists
3 = Base parameter not specified
4 = Invalid breakpoint condition
5 : Condition already selected
6 = Maximum number of breakpoints already set
7 • Invalid address range
8 : Invalid breakpoint name
q = Condition not selected
OA = No trap has occurred
08 • Inyalid stack frame specified
DC • Register not in stack frame
00 = Invalid data type definition
OE • Invalid register type
OF • Invalid P-reg value
10 : Invalid A-reg value
11 : Invalid X-reg value
12 « Invalid selector
3-0FE • N/A
OfF = Unused error code

1 = Invalid function code
2 = Not mass storage
3 = Unit not active

f 3 • 5 .1 • 16 t.J?U_t1.tlt:llIU.&

These values are stored in register XE Just before NOS/VE halts
the processor:

1 = Hardware failure

F3-33
NOS/VE USERS GUIDE

09117/80

--f3.0 EXECUTION
F3.5.1.16 CPU MONITOR

--
2 a Task aborted in ring 1 or 2
3 :: Task aborted while abort in progress
4 ::: Task executing had negative PIT
301 a Hardware failure

Fit-I
NOS/VE USERS GUIDE

OCJI17180
l1li_l1li .. _ .. '. ___ .. _l1lil1lil1li __ l1li __ ... _______ _______ ... 11/1 ___ • ____ .. __________ .. _. ___ . __

F4.0 COOING CONVENTIONS AND SOURCE USAGE

The conventi~ns presented in this section r~f1ect the current
state of the NOS/VE system, former., known as the Hardware
Checkout System (HCS). The final NOS/VE system witl differ from
the current system in many ways, such as different functional
areas, new functional areas, different naming conventions, etc.
The conventions to be used in the final NOS/VE system are
documented in the NOS/VE Project - Procedure and Conventions
document. The information presented in this section is intended
to assist users white HCS conventions are stil' in use.

F4.1 HAtlE.S.

All global NOS/VE names have the following formata

AAT$NNN

The AA field designates the functional area to Mhich the name
applies, and can be one of the following:

SH - Signal Handler
HP - Heap Manager
FM - File Manager
PM - Task Manager
MM Memory Manager
JM - Job Manager
II - loader
Cl - Central 1/0
OS Dispatcher
Cl Command language Processor
IN logical Name Space Manager
DB - Debug Processor
eM Configuration Manager
as - General NOS/VE
MH - Machine Code Breakout
OM - Data Management
MT - Monitor Interrupt Processor

The T field represents the type of the name, and can be one of
the following values:

F4-Z
NOS/VE USERS GUIDE

09/17180

----.. -----_ .. _-_ .. _-- .. _-_ .. _---_ _------------------------------------
F4.0 COOING CONVENTIONS AND SOURCE USAGE
F4.1 HAMES ---... .,-_---____ . _______________________ _____ ._ .. ____ ------#111#111------._---

P Procedure
V Variable
E - Error Constant
K - Keypoint Constant

The NNN field is a descriptive string describing the object.

f 4. 2 I.flLlHfJJI

NOS/VE contains a routine that allows text input to be
performed easily, and without regard to whether execution is on
the hardware or the simulator. When running on the simulator the
system executes the 10 machine instruction (opcode ff) which
reads from the file specified on the I parameter when the
simulator was called. When running on the hardware, text is
input from the console. If more than one task attempts to read
input at the same time when running on the simulator, the 'flrst'
task wi.t get the data. If this happens on the hardware, anyone
of the tasks may get the data.

The name of the routine is CLPSGET_STND_INP and has the
following declarationl

*call RClGETS

The variable cstring contains the input text and is defined as
fol'ows:

RECORD
lHI,RHI : 0 •• 255,
S : STRING (255),
RECENO;

The lHI field points to the leftmost character of the string.
Any number of blanks may precede the first character of the
string. A semicolon wil' be added as the last non blank
character of the string and the RHI field Milt point to the
semi colon.

F 4. 3 I:Ell_.cUJlfJJI

NOS/VE contains a routine t~at allows text output to be
performed easily, and without regard to whether execution is on

F4-l
NOS/VE USERS GUIDE

09117/80

F4.0 COOING CONVENTIONS AND SOURCE USAGE
FIt.:3 TE Xl OUTPUT

--
the hardware or the simulator. When running on the simulator,
the system executes the 10 machine instruction (opcode fF) which
writes to the file specified on the 0 parameter when the
simulator was called. When running on the hardware, text is
output to the dayfile, which is scrolled on the console screen.
If more than one task outputs to the console, the outputs wit' be
intermixed. NOS/VE does not identify the output as to which task
issued it.

The name of the routine is ClPSPUT_STND_OUT and has the
following declaration:

*call RClPUTS

Note that the string S is a VIR parameter, and as such, a
literal string cannot be passed.

NOS/VE contains various routines that will aid in the process
of command cracking. The user could read a tine of text input
via ClP$GET_STND_INP and then use these utilities to crack the
command line. The following capabilities areavailabJe:

ClP$CRACK_COMMAND

This routine uses a parameter descriptor table to crack the
syntax of a command. A parameter value tabte is built specifying
the actual values from the command.

This routine returns the next token from a command string.

This routine converts an ASCII string to a binary value.

This routine converts a binary number to its ASCI I
representation.

For more information on these routines, see a current source
listing of them.

F4-4
NOS/VE USERS GUIDE

09117/80

--F4.0 CODING CONVENTIONS AND SOURCE USAGE
F4.4 COMMAND UTILITIES

--
There are two ways to use these routines. One way would be to

write a user task program which called on them directly. The
second way is to modify the NOS/VE command language interface
(routine ClPSJ08_COMMANO_PROCESSOR) to process the desired
commands. This second method might r~moye the need for a user
task program to aid in program checkout.

N05/VE provides a set of routines which externalize certain
hardware in~truct.ons to a CYBll program. These routines are
described fu'ly in a DAP written by Jack Steiner.

When a user task is executed via the EXEC command, the text
string portion of the command is made available to the program.
Also, the program can set the status return variable and have it
displayed by tbe system at task termination.

This communication is performed via the parameters of the
PROGRAM statement~ which has the following formats

PROGRAM NAME (P : ASTRtNG (255);
Sl : 0 •• 4096;
VAR STATUS: OSTSSTATUS);

The P parameter points to the string specified on the EXEC
command, and Sl is the length of the string. For Interna'
program cal Is, P can be declared as a ACEll and then any
structure can be passed.

The general format of a NOS/VE common deck name iSI

XAANNNN

The X field denotes tbe type of deck and Is one of the
followings

T TYPE/CONST deck
R - Procedure XREF deck

The AA field denotes the functional area the deck deals with.
The fieJd may take on the same values as the AA field described

NOS/VE USERS GUIDE

F4.0 COOING CONVENTIONS AND SOURCE USAGE
f4.6 COMMON DECK NAMING CONVENTIONS

F4-5

09117180

--
ins ec t j on 5.1.

Then NNNN field contains the first four cheracters of the name
of the item the deck represents. for XREF's it is the first four
characters from the descriptive part of the name, ignoring the
characters P$, f and __ For a TYPE/CONST deck the value wil' be
TYPE. for a TYPE/CONST deck defining tables the value Nill be
TBtS.

Some examples would be-

Deck name rmcompa from m'compare_swap.

Deck name felputs from name clp$put_stnd_out.

The following NOS/VE common decks are worthy of note:

General OS definitions.
Hardware structure definitions.
Memory management definitions.

TOSTYPE
THDWTYP -
TMMTYPE
TSMTYPE
Tel TYPE

- Segment management definitions.
Command language definitions.

f4.8 llft.lLUS.A.Gf

The following rules apply when using NOS/VE common decksz

1) TYPE/CONST decks include all necessary keywords and end with a
semicoton.

2) Procedure XREf decks end with 8 semicolon. Other common decks
may be required to define the types for the parameters
specified.

3) Variable XREF decks do not contain the VAR keyword and end
with a comma rather than a semicolon. Both the VAR keyword
and ending semicolon must be supplied in the surrounding
text. Other common decks may be required to define the type
s ym bo I •

F5-1
NOS/VE USERS GUIDE
______ N ___ .-----------

F5.0 KEYPOINTS
'" "'''' ______ ., ________ . ________ , ___ -_. ____ N· _______ . _________________ ______ . __ _

F5.0Kfl~lliI.s

Keypoints are used to give an execution time trace of program
flow by showing that a given function is being performed (I.e.,
that a given procedure is being executed). Keypoints are also
used to display request parameters, status and error conditions.

The general format of the source statement used to generate a
keypoint from a CYBIl program is:

'INLINE-(IKEYPOINT-,SECTION,DATA*Z56,IO);

The SECTION parameter identifies the functional area that is
issuing the keypoint. It must be in the range 1 to 15. The
following values are currently deflneds

o • Denotes a continuation of data from the previous
keypoint (the occurance of a trap may not altow this
feature to work correctly).

1 • System information (10 numbers 1-63 are reserved for
use by assembler code routines) (OSKS)

Z = Memory Manager (MMKS)
3 • Command language (eLKS)
4 • Debug (OBKS)
5 • CIa (elKS)
6 = file Manager tFMK$)
7 a Task Services (TSKS)
8 • Dispatcher (OSKS)
9 = Unused
10= Job Manager (JMKS)
11- Signal Handler (SHKS)
12- loader (llKS)

13-15= Unused

The DATA parameter can be any 24 bit or less integer value,
and is normalt, used to display data that relates to a particular
keypoint. The value must be shifted left 8 bits (multiplied by
256) so that it witl not overlap with the 10 value.

F5-l
NOS/VE USERS GUIDE

09117/80

F5.0 KE"YPOINTS
F5.1 SOURCE CODE CONVENTIONS

--
The 10 parameter Is used to identify the keypoint Mithin a

section. The value must be in the range 0 to 255. Values less
than 31 are considered critical, unexpected, unusual, etc.

A user may add his own keypoints by using section 15 with
appropriate DATA and 10 values.

A circular buffer of the last 200 keypoints is maintained in
memory. These may be displayed on the console using the
following command:

OM <rea. memory address of the buffer>

The buffer is defined by the symbol OSV$KEYPOINT_8UffER, which
will appear in the lINKMAP where the monitor tables are defined.
The real memory address is computed by adding the address of
OSV$KEYPOINT_BUfFER to the length of the page table 'Monitor
tables follow the page table).

Keypoints produced on the hardware are not nearly as useful as
simulator keypoints because only the last 200 are available and
they are displayed in an unedited format (I.e., a hex memory
dump). However, they can be useful in showing the sequence of
events leading up to a system crash.

The format of the keypoint buffer is an array of words with
each word having the following formatt

left 28 bits

Next 4 bits
Next 24 bits
Next 8 bits

Value of free running microsecond clock when
keypoint occured.
Keypoint class

- Data value.
Keypoint id value

the

When executing on the simulator, all keypoint instructions
cause an entry to be added to the loca' file SESSMKF. When
execution is complete, this file may be processed by a utility
program to produce a listing of the keypoint information in a
readable format.

F~3

NOS/VE USERS GUIDE
09117/80

--.-------------------------F5.0 KEYPOINTS
F5.3.1 KEYPOINT REFORMATTING UTILITY

--
F§.3.1 KEYPOINT REFORMATTING UTILITY

The SESSMKF file produced by the simulator can be reformatted
into a readable listing by executing the fo.lowing procedure l

XEQ,RNOSKEY[,B](PR,£FN])

The 8 parameter, if present, causes the procedure to be run 8S
a batch job.

The FN parameter specifies the name of the file containing
keypoint data. The default is SESSMKF. If this file is not a
local fite, or the procedure is funning in batch mode, the file
will be obtained from the current catalog.

The PR parameter, if present, causes the reformatted listing
to be sent to the printer.

If run interactively, when the procedure terminates the
reformatted listing is on local file KEYFIlE.

The RNOSKEY procedure requires two additional fites 8S input.
The first file defines hOM the keypoint information Is to be
reformatted. The name of this file is KEYDESC and it is obtained
from the current catalog or, if not present there, from the
NOS/VE catalog. The format of this fife is described in section
6.3.2.

The second input file proyides directives to the utility
program which direct its execution. The following directives are
supported:

CV MAXPROCID N

This directive causes all keypoints with td values greater
than N to be ignored.

tV UNDEFINED

This command causes both defined and undefined keypoints to be
printed. An undefined keypoint is one that does not have a
definition in the KEYOESC file.

CV DEFINED

This command causes only defined keypoints to be printed.

F5-4
NOS/VE USERS GUIDE

09111/80

--f5.0 KEYPOIHTS
F5.3.1 KEYPOINT REFORMATTING UTILITY

--
tv IOEMT

This command causes the keypoint processor to indent the
output produced based on the NS field of the KEYDESC file.

RUN

This command causes the processor to make one pass over the
keypoint file. It is used after the CV commands have specified
how to process the keypoint information.

END

This command terminates the keypoint processor. It must be
the last command.

These directives are read from file RNOSKEZ. This file is
obtained from the current catalog or~ if not found there, from
the NOS/VE catalog.

F5.3.2 KEYPOINT DESCRIPTION FILE

The keypoint description file is used by the keypoint
reformatting utility to direct the reformatting of the keypoint
information. Each line in the fi'e describes one keypoint, and
has the following format:

SID SeN PIO IN F LEN FMT CSTR NS OT

The SID field represents the section 10 and is Z characters
long. An example Mould be MM for memory manager.

The SeN field is the section class number, which equals the
SECTION value from the keypoint inst~uction.

The PIO field is the procedure 10, which equals the 10 value
from the keypoint instruction. The SCN and PID values un1quely
define a keypoint atl of the other information is used for
reformatting.

The LN field is used to cause a line on the keypolnt listing
to be preceeded by a * if the IN vatue is zero. This feature is
used to mark a given keypoint as special.

The F field specifies that this is a special keypolnt (I~e.~
has special meaning to the program that formats the keypoint

F5-5
NOS/VE USERS GUIDE

09117/80

F5.0 KEYPOINTS
F5.3.2 KEYPOINT DESCRIPTION FILE
--

ftle). The values must be one of the followingJ

o - Not special
1 Task switch
2 - Segin trap
3 - End trap
4 - Begin monitor
5 End monitor

Any new keypoint descriptions should specify this field as
zero unless the utility program is modified to handle the new
value{s).

The LEN field specifies the lengtb of the data portion of the
keypoint in bytes.

The FMT field specifies in what format the data portion of the
keypoint should be displayed, and can be one of the following:

H - Hex
I - Integer
A- ASCII

The CSTR field is a 1 to 8 character string describing the
data portion of the keypoint.

The NS field specifies the number of spaces to indent the Dr
string on the reformatted fite. This feature can be used to show
procedure nesting via keypoints.

The DT field is a text string that describes the purpose of
the keypoint. It may fill the rest of the current line.

The user may add his own keypoint descriptions to this 'ile
and save it in his catalog. When RNOSKEY Is run, the existing
NOS/VE keypoints and user defined keYPoints will be fisted
together. If the NOS/VE keypoints are not wanted, their
descriptions may be deleted from the file.

F5.3.3 REFORMATTED FILE DESCRIPTION

The reformatted listing file contains tMO sections. The first
is a summary of the number of times each keypoint occurred. The
second section Is a listing of all the keypoints in tbe order
they were issued. Each tine of the second section has the
following format:

F~6
NOS/VE USERS GUIDE

09117/80

F5.0 KEYPOINTS
F5.3.3 REFORMATTED FttE DESCRIPTION

--
RT TSl DATA CSTR S TN SID DT

The RT field designates the value of the free running
microsecond clock (time since deadstart) when the keypoint was
executed. On the simulator the clock is incremented by 1 for
each instruction executed.

The TSl field designates the time (microseconds) since the
last keypoint instruction was executed.

The DATA field specifies the value of the data portion of the
keypoint in the format described in the keypoint description file
for this keypojnt.

The CSTR field is the CSTR field from the keypoint description
file for this keypoint.

The S field specifies the state of the machine when the
keypoint was issued and is one of the fol'owingJ

M - Monitor mode
J - Job mode

An * preceding the S field indicates that trap processing
is active, i.e., the trap handler has been entered but
not exited.

The TN field gives the global task id of the task that was
executing when the keypoint was issued. The system is task 1.

The SID and DT fields are just the SID and Dr fields from the
keypoint description file for this keypoint, Mith the OT field
indented as specified In the keypoint description. • t

F6-1
NOS/VE USERS GUIDE

09/17180

--F6.0 DEADSTART PROCEDURES

--

o Set the PPS deadstart panel as follows:
(Note that this is not the setting for the IOU)

l.~Jll.iJUl S.~l.1in,.g IJl.ilt.lUi..11.2.Q

1 7513 DeN
2 2001 lDe
3 0000
4 7713 FMC
5 0060 (Warmstart

unit OJ
b 7413 ACN
7 7113 lAM

10 6200

r eadl 556 bpi,

a Set SWEEP/LOAD/DUMP switch on the PPS panel to LOAD position.

o Mount deadstart tape on unit o.
o Verify that the 512 printer Is READY.

o Depress DEADSTART button at keyboard/display console (the
message "PROCEED" should appear on the left screen).

o . Type SS (followed by a carriage return) to complete system
initialization.

Tbis deadstart procedure uses the Common Test and
Initialization (CTIl facifity of NOS/170 to deadstart NOS/VE. It
requires two tape units, one for the MOS/l70 deadstart tape and
one for the NOS/VE deadstart tape.

Detailed information on the use of CTI is located in chapter 2

F6-Z
NOS/VE USERS GUIDE

09117/80 _________ N __ N ____________________ N ______________ ---________________ _

F6.0 DEADSTART PROCEDURES
F6.2 DEADSTART WITH MOS/l70

--~-------------------
of the NOS Version 1 Operators Guide (60435600 J).

o Set the deadstart panel as fotlows:

.llu&.alan

1
2
3
4
5
6
7
10
11
12
13
14

1.e.l!1D..sI

0000
0000
0000
75TT
77TT
EDOD
74TT
71TT
1301
RPXX
RPXX
0000

TT is the channel number of the tape unit containing the
NOS/110 deadstart tape.

E is the equipment number of the tape contro'ler.

000 is broken down as fottows:

fFU

FF specifies the type of unit being deadstarted from and is
12 for 671 tapes, 26 for 66X tapes and 3U for 8441885
disks.

U (or UU) is the unit number of the device.

Words 12 and 13 (RPXX) can be ignored as they are only used
during NOS/170 deadstart.

o Mount the NOS/l10 deadstart tape on the unit described by the
deadstart panel settings. Mount the NOS/VE deadstart tape on
another unit. Press the deadstart button. The CTI .A*
display should appear.

o Select the U (utilities) option. The CTI *U* display should
appear.

o Select the A (alternate deadstart) option. eTI witt ask for
the device type, channel, equipment and unit of the devtce to
be deadstarted from. The values supplied by the user should

NOS/VE USERS GUIDE

f6.0 DEADSTART PROCEDURES
F6.2 DEADSTART WITH MOS/170

F~3

09117/80

--

o

be the ones for the NOS/VE deadstart tape unit.

The message "PROCEED"
NOS/VE.

should appear. Type to start

F7-1
NOS/VE USERS GUIDE

09117/80

--F7.0 NOS/VE TeST PROGRAMS

--

NOS/VE has a set of programs which run as user tasks. These
programs provide the foltowing featur~s:

- checking specific hardware features.

checking specific NOS/VE software features.

creating a heavy andlor uniform load on the system.

F7.1.1 SORT

This program creates an array of records with random keys,
then sorts this array and checks the results.

The program allows a controlled amount of toad to be applied
to the system paging mechanism.

syntax: EX SORT 'NR,RSI

NR - The number of records to be created and sorted.

RS A factor affecting the size of each record. By varying
record size, the user can change the ratio of CP time to 10
time for a test. The approximate record size is given by
theformuJa:

32+8*RS

F7.1.2 USERl

This program wi II d j s p I a y the line:

luser task exe~utingt

F7-Z
NOS/VE USERS GUIDE

09117/80

--F7.0 NOS/VE TEST PROGRAMS
F7.1.2 USERl

--
and then terminate. It is used to show that the system can at
least execute a very smalt test case.

syntax: EX AAAA 'STRING'

STRING - If this parameter is present, it wi" be output after
the 'user task executing' message.

F7.1.3 UUTl

This program provides a variety of different test cases, and
also allows them to be run in a repetitive manner.

syntax: EX UUTl ·STR'

STR - A string describing which program to run and how to run
it. The various programs are described below.

This program generates an environment specification error.

syntax 2 EX UUTl 'ENVSPEC'

F1.1.3.2 A&.D~fJ.

This program generates an arithmetic overflOW error.

syntax: EX UUTL 'AROVFl'

F1.1.3.3 11:i~S.eft.

This program generates an instruction specification error.

syntax: EX UUlt -INSSPEC'

This program generates a divide fault error.

syntax: EX UUTt 'OIVflT'

F7-3
NOS/VE USERS GUIDE

09117/80

--F1.0 NOS/VE TEST PROGRAMS
F7.1.3.5 LA

--
F 1 .1 • 3 • 5 .L.A

This progra~ performs an LA 'load address) instruction on a
specified PYA. It can be used to test various forms of memory
pro t ec t ion.

syntax: EX UUTl 'lA,PVA'

PYA - The virtual address to be loaded from.

This program performs an SA (store address) instruction on a
specified PVA. It can be used to test various forms of memory
protect ion.

syntax: EX UUTt 'SA,PVA'

PVA - The virtual address to be stored into.

F7 • 1 .3 • 1 Bfl.U.R!!

This program modifies the previous stack frame area and then
returns to see what effect the modifiction will have.

syntax: EX UUTl 'RETURN,N'

N - Modification option. Must be one of the following:

1 Set value of AZ so it is not 0 mod 8.
2 Set AZ bit 32 to 1.
3 Set A2 segment number invalid.
4 .- Set A3 segment number to segment without
5 Set P register segment number
b Set P register so i t is not
7 Set P register bit 32 to 1.
S Set P register segment

segment.
9 - S~t final AO < > A2.
10 Cause VMID error.
11 Cause Inward return.
12 - Cause return to ell0 mode.

0
invalid.
mod 2.

number to

read access.

non executable

F7-4
~OS/VE USERS GUIDE

09/11180

------------------------.---F7.0 NOS/VE TEST PROGRAMS
F1.1.3.8TESTMEM

F 1 .1 • 3 • 8 I.E~I.tl.E.H

This program creates, writes and
records. The record size is such that
located on a word boundary, some on
boundaries, some wi., cross pages, etc.

syntax: EX UUTl 'TESTMEH,BC'

verifies an array of
some records wit. be

a" seven (other) byte

Be - Number of bytes to be a'iocated to the records. The number
of records created is: Be DIV 17+1.

F 7 .1 • 3. 9 l.E,SI!.Q~.f

This program is similar to TESTMEH, except that BOP
instructions are used to compare and move records.

syntax: EX UUTt 'TESTMOVE,BC·

Be - Number of bytes to be allocated to the records. The number
of records created ist Be DIV 255*2 + 1.

F7 • .l.3.10 RftlJB..s.E.

This program catls a procedure recursively.

syntax l EX UUTL 'RECURSE,N·

N - The number of times to recurslvel, call the procedure.

F7.1.3.ll tIUf

This program cycles for a specified number of mtltiseconds.
It can be used to load the system with 'idle tasks.

syntax: EX UUTl 'CYClE,MS'

MS - The number of milliseconds to cycle for.

f1.1.3.12I.l.t1flJUI

This program delays for a specified amount of time in
i ncr ements.

NOS/VE USERS GUIDE

F7.0 NOS/VE TEST PROGRAMS
F7.1.3.1Z TIMEOUT

syntax: EX UUTl fTIMEOUT,Tl,T2'

F7-5

09117/80

Tl The number of milliseconds in each pmp$dela, request.

T2 - The total number of milliseconds delayed.

This program 'oops (executes) for a specified .mount of tiMe.
It can be used to load the system with active tasks.

syntax: EX UUTl 'LOOP, MS'

MS - The number of milliseconds to execute for.

f1.1.3.14 AIZ,Q

This program creates a segment with read, write, execute and
binding attributes, places Cl70 code into it and executes that
code. The code executed counts down an X register and when it
gets to zero, executes an illegal Cl70 instruction Cop code
017S).

syntax: £X UUTl 'A170,N'

N - This value times 1000000 is placed in the X register being
decremented to zero.

F 7 • 1 • 3 • 1 5B.E.e.EAI

This program synchronously executes a program a given number
of times.

PN - Name of the program to execute.
present in the NOS/VE library.

It can be any program

N - The number of times to execute program PH.

STR The parameter string passed to the program when it begins
execution. Note the use of double quote marks Mithin a
quoted string.

F7-6
NOS/VE USERS GUIDE

09117/80
___ #01 ___ __ #111 ___ _________________ . ___ • ________ • _______ .. _______ • _______ .,_

F7.0 NOS/VE TEST PROGRAMS
F7.1.3.16 CALLER
_____ #111_-____ --_____________ _

I

F1.1.3.16C.A1J.fB.

This program is simi I at" to . REPEAT, but the tasks are run
asynchronously.

The parameter definitions are the same as REPEAT.

This program runs a number of different programs a specified
number of times. This test is used primarily to load the system
with a random mix of programs. Some programs will terminate
abnorma II y.

N The number of times to execute the entire list. The
following programs (with parameters) are executed:

lOOP,5
TIMEOUT,5
CYClE,5
INSSPEC
ADRSPEC
ENVSPEC
PRIVINS
lA,251800000000(16)
SA,l00200000000(16)
AROVFl

x - If this parameter is specified (any yalue except 1) then the
test will be run asynchronously - that is, each test in the
list will be started and after they are al) running, the BULK
test wilt wait for them all to comp1ete. This procedure is
repeated N times.

If this parameter is not specified, or is specified as 1, each
test Mill be a'iowed to complete before the next test in the
list is started.

NOS/VE USERS GUIDE

f7.0 NOS/VE TEST PROGRAMS
Fl.1.3.18 BUlKNTC

F7-7

09117/80

__ ·• ____ N. _________________________ · __________________ . _______ . ________ _

This program is similar to BULK, except that al' of the
programs run are expected to complete normally.

syntax! EX UUTl 'BUlKNTC,N,X'

N - Same as for BULK, except the program list is the following:

lOOP,500
lOOP,S
TIMEOUT,5,500
CYClE,500
R EC UR SE, 5000
lOOP,lO
TESTI1EM,lOOOOO
TESTMOVE,lOOOOO
lOOP,lOOO

x - Same as for BULK.

fl.1.3.19 AOB.sU~

This program causes an address specification error.

syntax: EX UUTl wADRSPEC'

F7.1.3.20f.&lIltiS

This program causes a priYileged instruction error.

syntax: EX UUTl 'PRIVINS'

F 7 • 2 E.~.A11eJ.f.s.

To run the sort program on 1000 records of size 200 dot

EX SORT '1000,200'

To run 53 asynchronous copies of same sort test do:

f7-8
NOS/VE USERS GUIDE

09117/80

--F7.0 HOS/VE TEST PROGRAMS
F7.2 EXAMPLES

--

To run the same sort test 45 times in succession, do

HINT: When running programs which may run for a long period of
time, use the 'A' option on the EX command. This runs the
programs asychronously with the command processor. This
allows you to status the test to see what is bappening
(TSTATUS, PFSTATS) or to terminate the test if it runs too
long (TMIERM).

1
09117/80

Table of Contents

1.0 OVERVIEW OF INTEGRATION PROCESS ••••
1.0.1 RELATED DOCUMENTS •••••••••
1.0.2 STANDARDS •••••••••••••

• • • • • • • •
• • • • • • • •
• • • • • • • •

z.o NOS/VE OPERATING SYSTEM BUILDS (CI) ••••••••••
2.0.1 INTRODUCTION ••••••••••••••••••••
2.0.2 CATALOG MANAGEMENT POLICIES ••••••••••••

2.1 SOURCE MAINTENANCE PROCEDURES •••••• •••••••
2.2 FULL SYSTEM BUILDS •••••••••••••••••••

2.2.1 INTRODUCTION • • • • • • • • • • • • • •••••••
2.2.2 NOS/VE PARTITIONING ••••••••••••••••

2.2.2.1 XlMMTR •••••••••••••••••••••
2.2.2.2 XlJIIF •••••••••••••••••••••
2.2.2.3 xtJ12F •••••••••••••••••••••
2.2.2.4 XlJ13F •••••••••••••••••••••
2.2.2.5 XlJlff •••••••••••••••••••••
2.2.2.6 Data Residency/Lifetime Based on Partition •••

2.2.3 MANIPULATION OF NOS/VE PARTITIONS AND LIBRARIES ••
2.2.4 SYSTEM BUILD PROCEDURE DESCRIPTIONS ••••••••

2.2.4.0.1 BACKGROUND INFORMATION ••••••••••••
2.2.4.0.2 THE BUILD SEQUENCE .••••••••••••••
2.2.4.1 NOSBIlD Procedure Description •••••••••
2.2.4.2 NOSBIlF Procedure Description •••••••••
2.2.4.3 LISTNVE Procedure Description •••••••••

2.2.5 NOSlINK PROCEOURE DESCRIPTION •••••••••••
2.2.5.1 lPf file Description ••••••••••••••
2.2.5.2 VELDCM I lOR file Description •••••••••

2.3 ADDING USER TASKS TO NOS/VE ••••••••••••••
2.3.1 INTRODUCTION ••••••••••••••••••••
2.3.2 QUICK LINK OPTION OF NOSLINK PROCEDURE •••••••

2.4 NOS/VE SIMULATION •••••••••••••••••••
2.4.1 RUNNING A SIMULATOR TEST (NOSSIM PROCEDURE) ••••
2.4.2 NOS KEY PROCEDURE DESCRIPTION ••••••••••••
2.4.3 DUMPING A SIMULATOR CHECKPOINT FILE (NOSDUMP
PROCEDURE) ••••••••••••••••••••••••

2.5 BUILDING A OEADSTART FILE •••••••••••••••
2.5.1 INTRODUCTION • • • • • • • • • • • • • •••••••
2.5.2 CREATING THE FILE (NOSSYS PROCEDURE) ••••••••
2.5.3 COMPILING 180 pp CODE (CPPlSO PROCEDURE) •••••

2.6 DUAL STATE PROCEDURES •••••••••••••••••
2.6.1 BlOEI PROCEDURE DESCRIPTION ••••••••••••
2.6.2 CPUMBlD PROCEDURE DESCRIPTION •••••••••••
2.6.3 CTSBIlO PROCEDURE DESCRIPTION •••••••••••
2.6.4 DSBIlD PROCEDURE DESCRIPTION ••••••••••••
2.6.5 PPBIlO PROCEDURE DESCRIPTION •••••••••••

3.0 OUAL STATE INSTALLATION SEQUENCE ••
3.1 CLEAR POINTERS AND INSTALL CTI •••
3.2 INSTALL CMSE ••••••••••••

• •
• •
• •

•• • • • • • · ' .
•• •• •• • •
•• • •• • • •

1-1
1-1
1-2

2-1
2-1
2-1
2-2
2-2
Z-2
2-3
2-3
2-1t
2-5
2-6
2-7
2-9

2-10
2-10
2-10
2-11
2-13
2-17
2-11
2-18
2-20
2-21
2-21
2-21
2-21
2-22
2-22
2-24

2-24
2-25
2-25
2-25
2-21
2-28
2-28
2-28
2-29
2-29
2-30

3-1
3-1
3-2

2
OQ/17/80

3.3 DELETE OLD EI •••
3.4 INSTALL EI • • • • •
3.5 INSTALL SYSTEM •••
3.6 lOAOPF FILES ••••
3.7 BRING UP DUAL STATE

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •

4.0 NOS/VE HARDWARE REGRESSION TESTING •••
4.1 INTRODUCTION • • • • • • • • • • • • • •
4.2 S2 REGRESSION TESTS ••••••••••

4.l.1 REGTEST ••••• •••••••••
4.2.2 TESTSA" ••••••••••••••
4.2.3 JOBI ••••••••••••••••
4.2.4 JOBl • • • • • • • • • • • • ••••

4.3 S2 REGRESSION TEST SEQUENCE ••••••

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

NOS/VE Transmittal Form • • • • • • • • • • • • • • • • • •

~z
~2
~3
~3
~4

~l
~1
~l
4-1
~2
~2
4-3
~4

Al

Software Change Request Form. • • • • • • • • • • • • • • • 81

Advanced Systems Integration Build Activity Matrix. • • • • Cl

Files Maintained By Integration • • • • • • • • • • • • • • Dl

S2 Machine Usage Document ••••••••• • • • • • • • • El

EI.O DOCUMENTATION FOR RUNNING ON 52 ••••
EI.l STANDALONE NOS/VE •••••••••••
El.2 DUAL STATE NOS AND NOS/VE •••••••
El.3 BOTH STANDALONE AND DUAL STATE ••••
tI.4 OTHER •••••• • • • • • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

E2.0 STANDALONE NOS/VE DEADSTART ••••••••••••
E2.1 GENERAL PROCEDURE FOR DEADSTART (OVERVIEW) ••••
EZ.Z DETAILED PROCEDURE FOR STAND-ALONE DEADSTART •••
E2.3 DISK ERRORS ••••••••••••••••••••

• •
• •
• •
• •

E3.0 DUAL STATE NOS/VE DEADSTART ••••••••••••••
El.l A170 NOS DEADSTART ••••••••••••••••••
£3.2 CURRENT DUAL STATE CONFIGURATION ' •••••••••••
E3.3 DUAL STATE, NOS OPERATION •••••••••••••••
E3.4 NOS/VE DEADSTART •••••••••••••••••••
E3.5 NOS/VE OPERATION •••••••••••••••••••

E3.5.1 COMMUNICATION WITH A NOS/VE JOB ••••••••••
£3.5.1.1 Job Dayfile Disp'ay ••••••••••••••
E3.5.1.2 Sending Commands •••••••••••••••

E3.5.2 USING THE REMOTE HOST •••••••••••••••
E3.5.2.1 Bring Up e170 Remote Host •••••••••••
E3.5.2.2 Bring Up C180 Remote Host •••••••••••
E3.5.2.3 Route An Input File From Cll0 To C180 •••••

El-l
El-1
E~l
EI-2
E~3

£2-1
£2-1
EZ-l
E2-3

E3-1
E~l
£3-2
E~2
E3-3
E~4
E3-4
E3-4
E~4
E3-4
E3-5
E3-5
E3-5

3
09/17/80

E3.5.2.4 Route A Print File From C180 to C170 •••••
E3.S.l.5 LINK_USER Command •••••••••••••••
E3.5.2.6 Get A 170 Permanent Fife From 180 •••••••
£3.5.2.7 REPLACE A 170 Permanent File From 180 •••••
£3.5.2.8 Example Jobs Representing Phase AlB library
Creation/Modi •••••••••••••••••••••
E3.5.2.8.1 CREATE OBJECT LIBRARY ON NOS/VE AND SAVE IT
ON AI10 NOS •••••••••••••• • • • • • • • •
E3.S.l.8.2 MODIFY A,PREVIOUSlY SAVED OBJECT LIBRARY ••
E3.5.l.8.3 USAGE OF NOS/VE lOADER •••••••••••
E3.5.2.8.4 CYBIl RUNTIME ••••••••••••••••
E3.5.2.8.5 PERMANENT fILE PROGRAM INTERFACE BUILD J
DEFICIENCIES ••••••••••••••••••••••

E3.6 NOS/VE TERMINATION ••••••••••••••••••
£3.7 OSDI INFORMATION •••••••••••••••••••
E3.8 NAMIAF INFORMATION ••••••••••••••••••
£3.9 A170 NOS SHUTDOWN •••••••••••••••••••
El.I0 INTERIM MEMORY LINK STORAGE MOVE CONSIDERATIONS •••
E3.11 N05/VE INTERACTIVE fACILITY OPERATION ••••••••

E3.11.1 OPERATOR INITIATION •••••••••••••••
E3.11.2 OPERATOR TERMINATION •••••••••••••••
E3.11.3 OTHER OPERATOR CAPABILITIES
E3.11.4 INTERACTIVE TERMINAL OPERATION ••••••••••

E3.11.4.1 Validation To Access NOS/VE •••••••••
E3.11.4.2 login To NOS/VE
E3.11.4.3 Ter~jnal Usage ••••••••••••••••
E3.11.4.4 NOS/VE Program Access To The Terminal

E4.0 52 DEVELOPMENT LAB SUPPORT BY INTEGRATION •
APPENDIX A NOS/VE BACKGROUND DOCUMENTS •••••

NOS/VE USERS GUIO£ • • •

Fl.O INTRODUCTION
fl.l PURPOSE ••

• • •
• • • •

• • • •

• • • •
• • • •

F2.0 ADDING USER TASKS TO NOS/VE
F2.0.1 INTRODUCTION •••••
f2.0.2 USING THE VE LINKER ••

F3.0 EXECUTION •••••••••
F3.l INTRODUCTION •••••••
F3.2 NOS/VE COMMANDS ••••••

F3.2.1 DECLARE
f3.2.2 REMOVE ••••••••
F3.2.3 PFSTATS ••••••••
F3.l.4 TSTATUS
F3.2.5 TMCVCtE
F3.l.b TMDElAY
f3.2.1 TMABORT
F3.2.8 TMEXIT
F3.2.9 EXEC/EX

• • • • • • • • •••••••

• • • • • • • • • • • • • •
• • • • • • •••••• • •

· • • • • • • • •
• • • • • • • •

.. • • • • • • • •

• • • • • • • • • • • • • • ·
• • • • • • • • • • • • • •• · · · · ·
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • ·

£3-6
E3-7
E3-8

E3-10

£3-12

E3-13
E3-13
E3-14
E3-11

E3-11
£3·-18
E3-18
E3-19
£3-20
E3-21
E3-Z1
E3-l1
E3-22
E3-22
E3-23
E3-23
E3-24
E3-21t
E3-24

E4-1

E4-2

fl

Fl-l
Fl-l

FZ-l
F2-1
f2-1

f3-1
f3-1
F3-2
f3-2
f3-3
F3-3
F3-1t
F3-4
F3-it
F3-1t
F3-5
F3-5

4
09/17/80

f3.2.ID TMTERM ••••••••••••••••••••••
f3.2.ll SMOPEN ~ •••••••••••••••••••••
f3.2.12 SMClOSE •••••••••••••••••••••
Fl.2.13 SMCHANGE •••••••••••••••••••••
F3.2.14 MMADVI ••••••••••••••••••••••
F3.2.I5 MMAOVO ••••••••••••••••••••••
f3.2.16 MMADVOI •••••••••••••••••••••
F3.2.11 MMWMP ••••••••••••••••••••••
F3.l.IS MMfREE ••••••••••••••••••••••
F3.2.19 COMPVA ••••••••••••••••••••••
F3.2.20 HPINIT ••••••••••••••••••••••
f3.2.21 HPAtlOC •••••••••••••••••••••
F3.2.22 HPFREE ••••••••••••••••••••••
F3.2.23 SHINIT ••••••••••••••••••••••
F3.2.24 SHSENO ••••••••••••••••••••••
F3.2.25 SHWAIT ••••••••••••••••••••••
f3.2.26 CHANGE LNS VALUE •••••••••••••••••
F3.2.27 PRINT LNS VALUE •••••••••••••••••
F3.l.Za ECHOINP •••••••••••••••••••••
F3.2.29 STOPSIM •••••••••••••••••••••
F3.2.30 SSET •••••••••••••••••••••••
f3.2.31 FMCREATE •••••••••••••••••••••
F3.2.32 FMDELETE •••••••••••••••••••••
F3.2.33 FMOOWNAU •••••••••••••••••••••

F3.3 CONSOLE COMMANDS •••••••••••••••••••
F3.3.I DISPLAY CENTRAL MEMORY ••••••••••••••

Fl.l.I.l Display - Partial Mode ••••••••••••
Fl.3.1.1.1 OP,<AOORS) •••••••••••••••••
F3.3.I.I.l DP,+ ••••••••••••••••••••
F3.l.I.!.3 DP,- ••••••••••••••••••••
F3.3.1.1.4 DP •••••••••••••••••••••
F3.3.1.2 Display Full Mode ••••••••••••••
F3.3.1.2.1 Df,(ADORS> •••••••••••••••••
F3.3.1.2.2 OF,. • •••••••••••••••••••
F3.3.1.Z.3 Df,- ••••••••••••••••••••
F3.3.1.Z.4 OF •••••••••••••••••••••

F3.3.2 CHANGE CENTRAL MEMORY •••••••••••••••
F3.3.Z.1 Change-Partial Mode ••••••••••••••
F3.3.l.I.1 CP,<AODRS>-<VAlUE> •••••••••••••
F3.3.Z.Z Change-Full Mode •••••••••••••••
F3.3.2.Z.1 CF,<ADORS>-(VAlUE> •••••••••••••

f3.3.3 PRINT CENTRAL ~EMORY •••••••••••••••
F3.3.3.l PM,(addrs>,(words> ••••••••••••••

F3.3.4 DISPLAY/CHANGE SYSTEM ELEMENT REGISTERS ••••••
F3.3.4.l Display Element Registers •••••••••••
F3.3.4.1.1 DR,<ElIO> ••••••••••••••••••
F3.3.4.2 Change Element Registers •••••••••••
F3.3.4.2.1 CR,<ElIO>,<REGIO>-<VAlUE> ••••••••••
F3.3.4.3 System Element Identifiers ••••••••••
F3.3.4.4 System Element Registers •••••••••••
F3.3.4.4.1 CENTRAL MEMORY REGISTERS ••••••••••
F3.3.4.4.2 CENTRAL PROCESSOR REGISTERS •••••••••

F3.3.' DISPLAY PPS PROGRAM ADDRESS REGISTERS •••••••
F3.3.S.1 PP ••••••••••••••••••••••

F3-6
f3-6
f3-7
F3-7
F3-7
F3-8
F3-8
F3-8
F3-9
F3-9
F3-9

F3-tO
F3-10
Fl-IO
F3-Il
F3-1t
F3-12
F3-I2
Fl-12
Fl-12
Fl-l]
f3-11t
F3-11t
F3-14
f3·-I5
F3-l;
F3-I5
F3-15
F3-lS
F3-16
F3-16
F3-l6
F3·-16
F3-1b
F3-16
F3-17
F3-17
F3·-11
F3-11
Fl-17
f3-11
F3-I8
F3-I8
Fl-l8
f3-IS
F)-18
F3-19
F3-19
f3-19
F3-19
f3-19
F3-20
F3-20
F3-21

5
09/17/80

F3.3.6 CLEAR DISPLAY •••••••••••••••••••
F3.3.6.1 CO,<screen> ••••••••••••••••••

f3.3.7 START SYSTEM •••••••••••••••••••
F3.3.1.1 5S ••••••••••••••••••••••

Fl.3.a HALT CENTRAL PROCESSOR ••••••••••••••
f3.3.a.1 HT ••••••••••••••••••••••

F3.3.9 START CENTRAL PROCESSOR ••••••••••••••
f3.3.9.1 GO ••••••••••••••••••••••

F3.3.10 OPERATING SYSTEM DISPLAYS ••••••••••••
F3.3.10.1 Display Identifiers and Descriptions •••••

F3.l.11 CONSOLE MESSAGES TO THE OPERATING SYSTEM •••••
F3.4 DeBUG FACILITY •••••••••••• • •••••••

F3.4.1 SUMMARY OF OEBUG FACILITY SERVICES ••••••••
F3.4.2 DEBUG fACILITY COMMANDS ••••••••••••••

F3.4.2.1 Parameter Definitions •••••••••••••
F3.4.2.2 Command Descriptions •••••••••••••
F3.4.2.2.1 SET BREAKPOINT •••••••••••••••
F3.4.2.Z.2 REMOVE BREAKPOINT ••••••••••••••
F3.4.2.2.3 LIST BREAKPOINT •••••••••••••••
f3.4.2.2.4 CHANGE BREAKPOINT ••••••••••••••
F3.4.2.Z.5 TRACE SACK •••••••••••••••••
F3.4.Z.2.6 DISPLAY STACK FRAME •••••••••••••
F3.4.2.Z.7 DISPLAY REGISTER ••••••••••••••
F3.4.Z.Z.S CHANGE REGISTER •••••••••••••••
F3.4.Z.2.9 DISPLAY MEMORY •••••••••••••••
F3.4.2.2.10 CHANGE MEMORY •••••••••••••••
F3.4.2.Z.11 RUN ••••••••••••••••••••

F3.5 ERROR CODeS ••••••••••••••••••••••
f3.S.1 DETAILED ERROR CODES •••••••••••••••

F3.S.l.1 Signal Handler ••••••••••••••••
F3.5.1.2 Circular Buffer Handler ••••••••••••
f3.5.l.3 Heap Manager •••••••••••••••••
F3.5.1.4 Misc Task Services ••••••••••••••
F3.5.1.5 File Manager •••••••••••••••••
F3.S.1.6 Task Manager •••••••••••••••••
F3.5.1.7 Memory Manager ••••••••••••••••
F3.5.1.8 Job Manager ••••••••••••••••••
F3.5.1.9 loader ••••••••••••••••••••
F3.S.l.IO Central 1/0 •••••••••••••••••
F3.5.1.II Dispatcher ••••••••••••••••••
F3.5.1.1Z Command language Processor ••••••••••
F3.5.1.13 Logical Name Manager •••••••••••••
F3.5.1.14 Debug Processor •••••••••••••••
F3.5.1.15 Configuration Manager ••••••••••••
F3.5.1.16 CPU MONITOR •••••••••••••••••

f4.0 CODING CONVENTIONS AND SOURCE USAGE ••
f4.1 NAMES •••••••••••••••••
f4.2 TEXT INPUT ••••••••••••••
F4.3 TEXT OUTPUT ••••••••••••••
F4.4 COMMAND UTILITIES •••••••••••
f4.5 PROGRAM HEADER DESCRIPTION ••••••
F4.6 COMMON DECK NAMING CONVENTIONS ••••
F4.7 IMPORTANT COMMON DECKS ••••••••

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

f3-l1
f3-l1
F3-Z1
F3-l1
F3-l1
f3-21
F3-21
F3-Zl
F3-22
F3-ZZ
F3-ZZ
F3-ZZ
F3-Z3
F3""-Z3
F3-ZIt
F3-ZIt
F3-ZIt
F3-Z5
F3-Z5
F3-Z5
F3-25
F3-Z6
F3-27
F3-27
Fl-27
f3-27
F3-27
F3-Z8
F3-Z9
F3-Z9
F3-Z9
f3-Z9
F3-Z9
F3-29
f3-30
F3-30
F3-30
f3--30
Fl-ll
F3-31
F3-31
F3-3Z
F3-lZ
F3-3Z
Fl-32

F4-1
F4-1
FIt-Z
F4-2
F4-1
F4-ft
Fit-it
F4-5

6
09/11180

f4.8 DeCK USAGE •

F5.0 KEYPOINTS • • • • • • •••••••••
f5.1 SOURCE CODE CONVENTIONS ••••••••
F5.2 KEYPOINT DATA USING THE HAROWARE •••
F5.3 KEYPOINT DATA USING THE SIMULATOR •••

f5.3.l KEYPOINT REFORMATTING UTILITY •••
F5.3.2 KEYPOINT DESCRIPTION FILE •••••
fS.3.3 REFORMATTED FILE DESCRIPTION •••

f6.0 DEADSTART PROCEDURES •••••••••
F6.l STANO ALONE DEADSTART (WITHOUT MOS/l70)
f6.2 DEADSTART WITH MOS/170 ••••••••

f7.0 NOS/VE TEST PROGRAMS •••••••••
F7.l EXISTING TEST CASES ••••••••••

F1.!.1 SORT •••••••••••••••
F1.1.2 USERl •••••••••••••••
F7.l.3 UUTl •••••••••••••••

F1.1.l.! ENVSPEC ••••••••••••
F1.1.3.2 AROVFL ••••••••••••
F7.l.3.3 INSSPEC ••••••••••••
F7.1.3.4 OIVFlT ••••••••••••
Fl.l.3.S LA ••••••••••••••
F1.1.3.6 SA ••••••••••••••
f1.l.3.7 RETURN ••••••••••••
F1.l.3.S TESTMEM ••••••••••••
F7.1.3.9 TESTMOVE •••••••••••
F7.l.3.10 RECURSE •••••••••••
F7.l.3.11 CYCLE ••••••••••••
F7.l.3.12 TIMEOUT •••••••••••
f7.l.3.13 lOOP •••••••••••••
f1.l.3.14 A110 •••••••••••••
f7.1.3.IS REPEAT ••••••••••••
F1.1.3.16 CALLER ••••••••••••
F7.l.3.l7 SULK •••••••••••••
F7.1.3.l8 8UlKNTC •••••••••••
F1.1.3.19 ADRSPEC • ' ••••••••••
F7.1.3.20 PRIVINS •••••••••••

F1.2 EXAMPLES •••••••••••••••

•• • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

••••••••
• • • • • • • •
• • • • • • • •

• • • • • • • • · . . . ,. . . .
• • • • • • • •
• • • • • • • •
• • • • • • • • · ,. · ,.
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • • · ,. · ' ... ,. .. ,.
• • • • • • • •
•• • • • •• •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

F5-1
F5-!
F5-Z
f5-Z
F5-3
F5-4
F5-5

F6-1
F6-1
F6-1

F7-1
f7-1
F7-1
f1-1
F7-Z
F7-Z
F'7-Z
F7-Z
F7-Z
F7-3
F7-3
f7-3
F7-4
F7-4
F7-4
F7-4
F7-4
F7-5
F7-5
F7-5
F1-6
F7-6
F7-1
F7-7
F1-7
Fl'-7

