ADVANCED SYSTEM LABORATORY ' CHP1104

IPLOS GOS - MAJOR INTERFACE AREAS

mam N CONTROL DATA

ADVANCED SYSTEMS LABORATORY

CHAPTER 11
MAJOR INTERFACE AREAS

Doc. No. ASLDOR82
Rev. OY4

Copy No. 82

N GGG R —

TABLE OF CONTENTS

1.0 INTRODUCTION & o o o o o o o o o o
2.0 MESSAGE PROTOCOL o o o o o o o s o o
3.0 PROCESS STATE SHITCHING o, v « o o o
4.0 COMMAND LANGUAGE (MACROS) + o o o &
5.0 CONTROL LANGUAGE (MACROS) o o o o «
640 LOGICAL NAME SPACE o o » o o o o o »

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7¢1 INTRODUCTION ¢ o o o ¢ o o« 5.0 o o @
7.2 OBJECT MODULE SUMMARY e« s o 6 o o s
7.3 LOAD MODULE = LIBRARY SEGMENT SUMMARY
7e3+1 LIBRARY SUMMARY e« o.0 o o s o @
7342 LOAD MODULE.SUMMARY . .
7434241 Module header « o o
7¢342+2 Code element =+ o o
Linkage element PR
Working storage element
Entry point definitions
Information element « o o
«1 INFORMATION ELEMENT HEADER
2 COMPONENT IDENTIFICATION
3 RELOCATION INFORMATION .
+4 BINDING SECTION TEMPLATE
ENVIRONMENT AND CONVENTIONS
ECT COMPONENTS e v e o s
Code sectlons o ¢ o .o
«2 Working storage sections
7ebele3 Binding sections o o «
7.5 SECTION - SEGMENT ALLOCATION
76 MOOULE CONVENTIONS o o o o o
7.7 DETAILED MODULE FORMATS Y

.

~

-

~N £
Mo e 6 ¢ o o o o
FEHOOMNNMNNNNN N

.
[e e W W T, IR]
PRy

NNFONNNNNNNSN

FFEFPRPCWUNNANWUNANN
e W=—i* o o

® ¢ ¢ (De o o & o o o o
D
N C

-0‘...0.

e & & & o 0 o 0 o o &

B840 -ACCESS METHODS ¢ o o o » o o o o o .

9.0 INSTRUMENTATION o s o o o o o o o o

© ® s @ 0 0 6 0 0 4 s 006 06 s 0 0 0

@ ® 0 6 e 0 6.8 6 06 0 4 4 o 0 0 s e 8 e e s
e 8 8 0 6o e 8 0 6 8 b o 0 e e s 8 e o 0 s e s e

® o 8 ¢ 0 6 8 8 068 2 g 0 0 0 0 0 0 b e 0 e 0

4 6 o o 6 6 6 0 8 4 & o 0 00 0 s 8 60 s 4 e

® 8 & ¢ o o s 8 8 b 4 s s 0 @ 0 e * 4 o s s 0.

® 8 0 o o 0 0 5 8 & 4 o 8 00 0 0 00 s s e s

® 8 o 6 0o e 8.0 & %6 2 0o e 0 0 % s 0 8 e o

A-1 -

75/05/30

NNNNNVNYNANNNNN
VOVOPEDNND O

[}
o

® 8 6 06 6 0 o 06 0 5 o 8 0 00 0 e s e s s

[

~
1

[

o

7-11
7-11
7-11
7-11
7-12

7-15

7-16
7-17

8-1

9-1

WO NONEFE WN - .

1-1
ADVANCED SYSTEM LABORATORY CHP1104
75705730
IPLOS GDS =~ MAJOR INTERFACE AREAS

s 0 10 0 s o 0 o s 0 e g e o 2t P 0 A 0 0 N0 0 B P 0 O 0 0 P8 P P 0 Ot 0 0 B o0 8 I P 0 ot Pt 0 0 R 0 0 B 0 P 0 9 D B0 P P

1.0 INTRODUCTION

ot s s s e 0 e -~ ———— ——— P

1.0 INTROOUCTION

To beisuoolled

NCR/CDC PRIVATE REV 28 JAN 75

-
CWERNOWM L& GNE

R e
®NOVIF N

I NN
N, oW

NWWHNWWNPRNDNNN
NFfFWNHoOOWo~NOWF®

W
~~ o

W W
(-

EErsEE
nNEan ko

s&EE
@ N O

ADVANCED SYSTEM LARBORATORY CHP1104

IPLOS GDS - MAJOR INTERFACE AREAS

~ - e s e s 0 e

2-1

75705730

2.0 MESSAGE PROTOCOL

o~ o 20 20 0 s o -~ ~—

2.0 MESSAGE PROTOCOL

To be supplied

-t ot 0 0 a0 e 0 0 e o0 0 0

NCR/COC PRIVATE REV 28 JAN 75

WoONOUVLsTWNR

P b
visEwnrEro

L
,OWMNO

NN
wnN

NGLWN NN NN
FPoweNOWVFE

[~ K]
w N

WWNWANNWW
Ve NS

FEeFse
N

LB
own

Lo o
o

3-1

ADVANCED SYSTEM LABORATORY CHP1104
. 75705730
IPLOS GOS - MAJOR INTERFACE ARFAS

3.0 PROCESS STATE SWITCHING

- -~ ~ ~— P

3.0 PROCESS STATE_SWIYCHING

To be supplied

NCR/CDC PRIVATE REV 28 JAN 75

-
SWENOVF W

R
NEWh e

T
~o

-
0

NN
> o

NN NN DN
VENOVFTWN

w
o

NN
WVWOENOWNF NN

sEESFSSS
VEFEWN O

£ o0&
o N

4-1
ADVANCED SYSTEM LABORATORY CHP1104
. 75705730
IPLOS GNS - MAJOR INTERFACE AREAS)

4.0 COMMAND LANGUAGE (MACROS)-

et o 0 s s e 0 20 o o 0 ~ v o ~ B e]

440 COMMAND LANGUAGE_(MACROS)

To be suoplied

NCR/CDC PRIVATE REV 28 JAN 75

OB NONE WN

S-1
ADVANCED SYSTEM LABORATORY CHP1104
75705730
IPLOS GDS - MAJOR INTERFACE AREAS

5.0 CONTROL LANGUAGE (MACROS)

ot e ot e o e e e e e 0 o e e e Y o e o e ot 8 0 o0 0 . P e R 0 P R 0 0 e g R P e 0 0 0 0 R 0 0 0 2 00 0 0 0 0 P
i

5.0 CONTROL_ LANGUAGE (MACROS)

To be supplied

NCR/CDC PRIVATE REV .28 JAN 75

WENON&EWN

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33
3y
35
36
37
38
39
40
41
42
43
4y
45
46

47

48

ADVANCED SYSTEM LABORATORY

IPLOS GDS - MAJOR INTERFACE AREAS

CHP1104

6-1

75/05/30

o e e o e 0 0 e o b B O B P P S e O P . 8 O e ot P A S S P P P P 8 P8 D o0 Pt o

6.0 LOGICAL NAME SPACE

6.0 LOGICAL NAME_ SPACE

To be supplied

NCR/CDC PRIV

o o e 0 e 0 g 0 0 0 0 0 P 0 0 0 e 0 0 0

ATE REV 28 JAN 75

WENOWNE NN

[
o

Tl
S W e

el el
wowun

e
xS

INEN RN
W o

NN NN NN
VPNV

RN R
wn o

W W
~N o\ s

W W
o ™

E R AR o o o
SNV O

ADVANCED SYSTEM LABORATORY

IPLOS GDS - MAJOR INTERFACE AREAS

7-1
CHP1104
75705730

——— e 0 e s 2 o v v o ot ot o 2t 0 0 20

7.0 OBJECT CODE ENVIRONMENT AND FORMATS

-~ o~ ~ oo ~

7.0 03JECT_CODE ENVIRONMENT AND_FORMATS

7.1 INTRODUCTION

Object information for any module in IPLOS may reside in two

different formats: object modules .and (oad modules. Object
modules are the output of compilers and the input to both the
loader and OBLIGE, the library generator., Load modules are only
output by O0BLIGE and may be input to the ltoader and OBLIGE as
welle Two formats are provided for approximately the same
purpose to allow one of the formats (object module) to be
amenable to compiler code generation, and the other to be

amenable to opberating system purposes (i.e. sharing of code).

Table 7-1 summarizes the differences between object modules
and load modules,

NCR/CDC PRIVATE. REV 28 JAN 75

OXNO VW

o
N, o

e el
oo w

N RN
»oWwom

NN N NN
NoOwmHFwWwN

nN N
O ™

O G O NN o N
oS uwneEo

[ZX7R
O >

FEEsS s
FUun o

T
® oW

7-2
ADVANCED SYSTEM LARORATORY CHP1104
75705730
IPLOS GOS - MAJOR INTERFACE AREAS

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.1 INTRODUCTION
fmmmm—mm e L ettt B ke I ittt +
{ TOPIC t OBJECT MODULE { LOAD MODULE 1
L ittt temcmmmaa B temceem e e e ———— —————— +
! structure | binary file of record | a virtual memory segment 1|
t ! descripntor-record pairsj! H
! ! each palr representing 1 1
H ! a logically discrete ! i
H ! entity ! 1
e e LT L L L e e e L P LI LD eI D Sl
{ access { SHWL standard 1/0 { directly addressed 1
B ettt L R e D P LT P +
{ output ! compilers ! library generator H
t from i t (0OBLIGE) !
L it D L R ettt +
{ inout to | loader { toader !
{ { O03LIGE { OBLIGE i
L D et et tattat D b et T
{ code i no ¢ code sectlon Is In | yes ¢ code iIs In exec- 1
{ shared? ! record format which { utable form3 same phys- |
! . { must be copied for each | ical image can be given 1
i { instance of execution ! to each iInstance of exec-{
i i { ution !
L el e T R e P EE PSP L S
! residency t binary files only ! IPL .library segments oniyl
tomemmc e D ettt DL L L LS R B bt ——3

- TABLE 7~-1

Object module-load module summary

NCR/COC PRIVATE

REV 28 JAN 75

WOENOWME UN

7-3 7-4

ADVANCED SYSTEM LABORATORY CHP1104

ADVANCED SYSTEM LABORATORY CHP1104

75705730 75/05/30.

IPLOS GDS - MAJOR INTERFACE AREAS.

o e ~ oo e o 20 v e o g 0 e ———

IPLOS 6DS - MAJDP INTERFACE AREAS

o s e s s e s e et 0 o s e e P e P P 0 0 P B ot 0 0 O 0 S P P P 0 8 0 oo ———

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.1 INTRODUCTION

o st w0 e P o ot e T 0 P 8 o0 0 PP P D P R P R P B P P O P 00

Any program executing under IPLOS may have three major kinds
of components which reside in different segments having different
characteristics and protection-attributess The IPLOS object and
load module structures are designed to support that three part
environment. The three kinds of ‘components are code, working
storage and binding. Table 7-2 summerizes the protection,
contents and characteristics of the three sections.

fmmmmmm e e T P B ittt bt T +
1 PROTECT 1| CONTENTS l CHARACTERISTICS :
tommm———— R e R [LR D ittt
{ CODE { read i« reentrant t .sharabte among all activa- H
! ! execute ! instructions! tions$ if module Is In load !
i ! t.constant { module format, every activa- |
i ! { dats { tion shares the same physicall
! ! H { cooy i
! H i {.only one per moduie !
D pmmmmmm R T et T +
1 WORKING ! section l.all unshared!.nonshared among all activa=- 1
I STORAGE | depend- ! or modifi- ! tions$ a new copy is provided!
1 : ! ent { able data { for each instance of exec- 1
{ i ! { ution !
1 ! ! l.typicatly multiple sections |
! ! ! ! per module !
1 H ! { sorotection attributes are 1
! ! ! ! compiler speciflied 1
B B L et D ittt B +
BINDING read l.pointers or l.nonshared among all activa- 1
binding ! pointer t tions} a new copy Is orovided!

{ pairs { for each instance of exec- 1
t.word aligned! ution

t.unstructureds no ordering

! relationship may exist be-

{ tween pointers or pointer

t pairs

t.binding attribute is admin-
{ Istered by IPLOSS may not be
t compiter specified

t.only one per module

4 mn e me an we o= = e
e ae wo wo oo "= co o =

]
]
]
]
]
]
[}
]
]
)
[}
]
1]
-
[}
]
]
]
t
)
[}
1
]
]
]
]
]
[}
[}
]
[}
1
]
]
[}
]
]
]
[}
]
[}
[}
[}
[}
-+

TABLE 7-2
Program components

A more detailed description of the object and (load modules
and the object environment is provided in the ensuing sections.

NCR/COC PRIVATE REV 28 JAN 75

VRNV E WM

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.2 OBJECT MODULE SUMMARY

~ ~—a ~———

7.2 OBJECT MODULE SUMMARY

The object module Is a flle of binary records with fﬁe

following topology?

<record descriptor 1>
<record 1>’
<record descriptor 2>
<record 2>
e, :
<record descriptor n>
<record n>

Each record descriptor contains two fields which define the
ensuing record: 1.)record type and 2.)fiength (record type
dependent)s The length field is used chiefly to fxx the 1tengths
of adaptable arrays.

For the sake of simplicify, the record descriptor-record
pairs will be referred to as records in the remainder of this
document.

The followlng' is a 1ist and explanation of each varliant
record of the object modulet

Record -

ID Explanatjop

IDR Identification record; first record of the
speclfies module name and attributes.

soc Section definition records} speclitfies tength and
attributes of every object module section (codey, working
storage, and binding) and al! common blockse

TEX Text records specifies data to be placed Into any
section. . -

RPL Repllication record} speciflies data to be repetitively

~ inserted into any section.

BIT Bit insertlonj Inserts a specifled subset of a byfe into
any sectlon.

EPT Entry point definition} defines an address In any sectlon
as a named externally accessible value.

RIF Relocation informations defines those areas 1In each
section which must be modified by OBLIGE when binding
modules together? not processed by the loader.

AIN Address insertion$ replaces or adds the address of a
section of the module to another focation within a
moduled altows the construction of full PVAs at load

modul e}

NCR/CDC PRIVATE REV 28 JAN 75

COBPNOUNF

-
o

e
NOWVEWN

ADVANCED SYSTEM LABORATORY

7-5
CHP1104
75705730
DS - MAJOR INTERFACE. AREAS ’
7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.2 ORJECT MOODULE SUMMARY

s e e e s 2 e e e s e o o P o e . e . v O 0 e . P S 0 0 S 0 R 0 0 0 P P O P . PP S 0 O 8 0 0

time} required since the ring number, segment number, and
offset of each section are only determined at load time.

ADI Address offset insertion} essentially the same as AIN
above except that a (section,offset) may be replaced or
added.

XRL External reference linkage; specifies a tist of addresses
In the contairing module into which the address of the
named external is to be placed.

TRA Transfer recordj specifies a.)the primary entry point and
be) the end of the object module.

The object module records must be arranged in the following
orders?

1.)IDR record

2.)SDC records for alt object module sections

3)TEX4RPL,BIT,EPT,RIF,AIN,ACI, and XRL records Iin
order

44)TRA record

arbitrary

The records In group three are not required to be In any
order, however they will be orocessed by the loader In the order
that they are receiveds Therefore some concern must be given to
the order in which they are generated.

NCR/CDC PRIVATE REV 28 JAN 75

OWO®NONLE W

S LT L LT TTFTUNNNNDNNNNWNDNONNNNDNDNN NN R R
NN WNNFPOWUENOVISFTWNFPOOUINYNOVISTWNFROUENOTVIsTWNEO

ADVANCED SYSTEM LABORATORY

IPLOS GDS - MAJOR INTERFACE AREAS

7-6
CHP1104 .
75705730

~ R

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.3 LOAD MODULE - LIBRARY SEGMENT SUMMARY

7.3 LOAD MODULE = LIBRARY SEGMENT SUMMARY

7.3+1 LIBRARY SUMMARY

A library is a directly addressible virtual memory structure
which contains a number of modules plus the module and entry
point dictionaries required to retrieve them.

When an object module 1Is placed on a (ibrary it Is
reformatted into a load module. The most significant difference
between an object module and a load module is that the code
section of the load module is In executable forms This means
that the library segment containing the load module need only be
INITIATEd In the address space of the requesting user and the
code section will be ready to execute (the working storage and
binding sectlons must still be allocated and Initiallzed).
Furthermore any other task In the same or any other job
requesting the use of that library will recelve the same copy of
the code sectlon althouah not neccessarily INITIATEd In the same
process segment number.

The components which organize and deflne the load modules on
a llbrary are as follows:?

COMPONENT EXPLANATION

Library header Identifies the library$ contains relative
polnters to the library dictionaries.

Contains the namey attributes and
relative pointer to the load module for

Subprogram dictionary

each subprogram module. Used for calls
to subprogramse.
Procedure dictionary Contains the name, attributes and

relative pointer to the toad module for
each procedure module; used by OBLIGE
during tibrary generation.

Contains the relative pointer to the load
module for each entry point in each
procedure module? wused by the loader to
load modules assocliated with a particular
entry point. :

Entry point 3 module
dictionary

NCR/CDC PRIVATE REV 28 JAN 75

OX®NOUVF WN -

ADVANCEN SYSTEM LABORATORY

7-7
CHP1104
75705730

IPLOS GOS - MAJOR INTFRFACE AREAS

7« 3.2 LNAD MODULE SUMMARY

A detailed format of the load module is not avallable at
this time, however an outline of fhe major elements pf the 1load
module and of the components of each element is orovided below.

The load module consists of six major elementst the module

header, the code element,. the tinkage element, the working

" storage element, the entry point definitions, and the information
element. The components of each element are summarlized beiow.

7+3.2.1 Module header

The load module header identifies and organizes the toad
module. The header is pointed to by one of the module
dictionaries of the library in which It resides. It contains the
following items?

« Module header header

- Primary entry point name

- Back opointer to procedure or subprogram module dictlonary
entry for this module

- Module generator code

- Module generator name and version

- Time/date created .

- Pointer (relative to module header header) of section
definition list

- Number of section definitions

- Pointer (relative to module header header) of load module
map .

- Number of load module map entries

- Commentary supp!ied at module generation time

. Section definition list entry - one for each section defined
in the load module .
- Section type
- Section attributes
‘= Section length
- Maximum length for extensibie sections
- Section alignment
- Name for common blocks

. ‘Load module map entry - one for each element of the toad
modul e :
- Element type
- Pointer (relative to the tibrary segment) of the element

'NCR/CDC PRIVATE REV 28 JAN 75

ADVANCED SYSTEM LABORATORY

: £ & NN NN NNNNNNONNNN NN NN R b
3§fig 5§§ aisr*C:&:g:ﬁ1r\n:-onmr‘==u>m dOVISE WM POV NOVFEFWNNRFROOROWTF WA

7-8
CHP1104
75705730

IPLOS GOS - MAJOR INTERFACE ARFEAS

e i s ot ot e e e i P P P Pt P P e e P o e e O P P P I P 0 P B 0 P o 8 P ot 7 0 o 0 0 0 o0

OBJECT CODE ENVIRONMENT AND FORMATS
2.1 Module header

e e 2t i s e o 7 et s e 0 P o 2 P 0 P P P P Pt N P P R P e 2 P Ot P P P e et e o 0 e P o o P e P 8 O O g 0 0 0

- Element length
7.342.2 Code_element

The code element may contain constants, instructions and
relative pointers to other sections. This element must be
nonsel fmodifying to enable the element to be shared by all
activatlons of the load moduie.

7¢3+.243 Linkage element

The linkage element contains the names and linkage chains
for all external refarences made by this load module.

7+3.2.4 HWorking_storage_ element

The working storadge element contains the Interpretive
initialization information for all the working storage sections
and common blocks defined in the module. Each of these sections
Is allocated and initialized for every activation of the module.
Since the code section is not modified &t load timey, all
modifiable data and full address pointers must reslde in working
storage sections,.

The kinds of interpretive initiailzatlon records supported
in the working storage efement are as follows:?

Record Record
10 Name
TEX Text insertion record
RPL Repiication record
BIT Bit insertion record
AIN Address insertion record
AQI Address offset insertion record

Since the System/hardware calling convention only provides a
called moduie with the address of its binding section, the
binding section must contain sel f-referencing links which altow
the code section to find the appropriate working storage sections

NCR/CDC PRIVATE REV 28 JAN 75

WOV FWwn =

B B s
OVE NN RO

e
0 ®~

NN NN N NN
NS WO

n N
0 ®

FEEEE NN W W
NNV NOVIFWNHFO

£ &
v &

& &
® N

7-9 ' 7-10

ADVANCED SYSTEM LABORATORY - CHP1104 » . ADVANCED SYSTEM LABORATORY CHP1104
75/05730 75705730
IPLOS GDS - MAJOR INTERFACE AREAS : : IPLOS GDS - MAJOR INTERFACE AREAS
7.0 OBJECT CODE ENVIRONMENT AND FORMATS 7.0 ‘0BJECT CODE ENVIRONMENY AND FORMATS
7e3e2e4 worklng storage element . 743424643 RELOCATION INFORMATION
at execution time. 1 Each retocation information item consists of the following?
2 .)
. . 3 « Sectlon and of fset containing field to ba relocated
7¢3.2.5 Entry point_definitions g « Sectlon to which field is to be relocated (i.e. code or
binding)
6 « Size and kind of fleld
The entry point definitions are a list of all the named, k4 « Slign and type of offset contained within the field
externally accessible addresses in the toad module. 8 :
9
10 7e3¢2¢6¢4 BINDING SECTION TEMPLATE
7+3.2.6 Informgtion zlement 11
12 The binding section template Is produced by OBLIGE whenever
13 it creates a load module. It ldentifies the contents of each
The information element contains informatlon which does not 14 word in the binding section for the load module.
belong In the other four elements, notably relocation information 15
for library generation, module information, compiler generated 16
symbo! tables, etc. The element. consists of a header and several 17
tables which make up the body of the information element. 18
19
7+3.2.6+1 INFORMATION ELEMENT HEADER 20
21
The information element header organizes the Information 22

element. It contains the list headers for the other components
of the information element.

7¢3+2.6.2 COMPONENT IDENTIFICATION

A load module may consist of several object and ftoad modules
bound together by OBLIGE. In this case a component
identification entry Is malntained for each of +the original
components of the module. FEach entry consists of the following
items? :

Module name

Module generator code

Module generator name and version
Time/date created .
User supplied commentary

Dl NN N NN
VMENNFOOVRNO N T W

(2]
o

FEEELPE TS NNG
NOVMNFWNRPRODO®®NC

743.2.6.3 RELOCATION INFORMATION

Relocation information is used by OBLIGE when binding object
or load modules together. It identifies every offset relative to
the base of either the code or binding section which must be
altered to reflect the offset In the new bound module.
Relocation information Is not used by the loader when the module
Is loaded.

£
®

NCR/CDC PRIVATE REV 28 JAN 75 NCR/CDC PRIVATE REV 28 JAN 75

WENOWNEFE WN -

EELEFLTELTWUNWNWNNWNNNNNNONNNNNN NN R R R R R
ONOVEWNROOURNOVIFWNHROVWONOVIFWNNHROONOVIEWN RO

ADVANCED SYSTEM LABSORATORY

7-11
CHP1104
75/05/30

IPLOS GCS - MAJOR INTERFACE AREAS

e s o e o Pt 7 et 2 e e et . P ot o Pt B P ot S P Pt P P PN P 0 8 P O G 0 T 0 8 0 8 B S P 0 P 0 P O . 0 0 0. 0 0 0 0

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.4 OBJECT ENVIRONMENT AND CONVENTIONS

D e T et adaded

- —— ————

7.4 OBJECT ENVIRONMENT AND CONVENTIONS

7.4.1 OBJECT COMPONENTS

Any program executing in IPLOS has an object environment
consisting of three types of components: code sectionssy working
storage sectionsy and binding sectlons.s A single module (object
or 1load) consists of a single code section, a single binding
sectiony and multiple working storage sections. The code section
is separated from the working storage sections in order to atlow
the sharing of the code section among multiple activations of the
module. The binding section 1Iis separated from the working
storage sections In order to @a.)allow controlled transfer between
rings of protection and bs)allow the binding sections of several
load modules to be combined during library generation by the
elimination of matching entry point-external palrs and redundant
external references.

7T.4.1.1 Code sections

All code produced by standard IPL compiler oroducts must be
reentrant to allow it to be shared among all activations of the
module. The code section of every module, therefore, shouid only
contain nonselfmodifying instructions, constant data and relative
pointers to other sections. There may be no more than one code
section per module.

Since the object module may contain code that has been
genarated discontiguously (i.e. not in the order In which it s
to be executed), the code sections of object modules are
atlocated in a segment INITIATEd at {oad time for every
activation of the module. However, shoutd that module be
processed by the library generator and reformatted into a toad
module, Its code section will be in executable image and will be
shared among all activations of the module.

7.4.1.2 Morking storage sectlons

Working storage sections contalin all modiflables nonshared
data "used during a modules execution. There may be an arbltrary
number of working storage sections per module each having its own

NCR/COC PRIVATE REV 28 JAN 75

WOENONF WN -

ADVANCED SYSTEM LABORATORY

7-12
CHP1104
75/05/30

IPLOS GDS =~ MAJOR INTERFACE AREAS

7.0 OBJECT CODF ENVIRONMENT AND FORMATS
7elsale2 WOrking storage sectlions

~ o T e ~

attributes specified by the program that generated the module.

The sattributes that may be specified for each working
storage sectlon are as follows:?

SECTION TYPE

. Working storage Fixed length known at allocation time and
unchanging during executions always
allocated and Initlatlzed when module Is
loaded.

« Common block Named data section equivalent to FORTRAN

common SHWL external, PL/1 stat ic

external, and cosoL {ATG) global}

allocated once for every task.

« Extensible working Like working storage except length may

storage Increase during executlony maximum length

is speciflable.

» Extensible common like common block except length may
increase during execution$ maximum length
Is specifiable.

PROTECTION ATTRIBUTES

s+ Read R Indicates section Is readable
« HWrite Indicates section is writable
« Execute Indicates section Is executable

Binding Indicates section is a binding sections
this attribute 1is administered by the
system and may therefore only be
‘specified in the binding section (c.f.
Tehale3)e

ALLOCATION ATTRIBUTES
« Length Section 1iengthy initial atlocation for
extensible sectionse.

Maximum fangth for extensible sections.
Byte alignment of section} section |is
altocated starting at a 0 MOD allgnmenf
byte address.

« Maximum length
« Alignment '

7.4.1.3 Binding sectjons

The binding section may be thought of as a speciatl class of
working storage sectlion that Is administered by the Operating

NCR/CDC PRIVATE REV 28 JAN 75

WONOVE wN

7-13
ADVANCED SYSTEM LABORATORY CHP1104
75/05/30
IPLOS GODS - MAJOR INTERFACE AREAS

OBJECT CODE ENVIRONMENT AND FORMATS
1.3 Binding sections

e st ot . 0 e 0 ot 20 0 P ot P 0 P . 20 et Pt Ol 8 0 0 8 . P P 0 A 0 P I Pt e 8 0 a0 o 0 0 8 0 2 0 0 o0 0 o0 0 8 o0 0 08 0 o0 o 0

System. There may be only one binding section per module just as
there may be only one code section. Binding sections are
allocated in a segment that has the read and binding protection
attributes and does not have the write attribute In user ringse.
Furthermore only the Operating System may INITIATE a segment with
a binding attribute$ users may not.

In order to 1insure the efflicacy of the binding section,
several conventions concerning it must be adhered to by alt
modules exXecuted in . IPLOS. These conventlons have been
established to achieve the following ends?

1.)Assure the integrlity of érosslng' ring of protection
boundaries} one of the requirements of protecting one plece
of code from another is that the protected code only be

entered from points at which it is orepared to recelve
controls. Branching to arbitrary entry points within a piece
of code could cause undefined, possibly destructive results.

2.)Al1low the binding sections of several modules to be combined
at library generation time in such a fashion thatt
a«.)Further processing of matching entry-external references
at load time is eliminated in some cases.
be.)Redundant external references are removed thereby reducing
the overall size of the combined binding section of the
‘new. module.
3)Provide a consistant mechanlsm for all pure procedure code
(user and system) to discover the data base assoclated with
the aporopriate instance of execution.

The conventlions associated with the binding section are as
followss

1.)0nly the Operating System may
binding protection attribute.
2.)The binding section is readable but not writable In the users
ring of protection.
3.)The oniv. data that may be stored in the binding section are
pointers, and they must be in one of +the three following
forms? -
a«.)Forty eight bit data pointer, right justified in a full
word with the two unused bytes zero flilled; atigned in a
© full word.
be)A sixty four bit internal
aligned in a ful!l word
ce)A 128 bit external procedure code base-binding
pointer pair; aligned in two full words.
Despite the fact that the binding section is readable in the

INITIATE a3 segment with the

procedure code base pointers

section

NCR/CDC PRIVATE REV 28 JAN 75

WoENO U &

EEEE L F LI LT WNNNNNNNWNANWNONNONNDON NN R R e s
PNOVLF AN ROOUENOVNFWNPOOURINOVFANFPOORNOVF WP

7-14
ADVANCED SYSTEM LABORATORY CHP 1104
75705730
IPLOS GODS - MAJOR INTERFACE AREAS
7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.4.1.3 Binding sections
user rings placement of constant data Is
explicitly disalliowéed to prevent generatlion of erroneous
entry points to more privileged rings under false pretenses.

44)The only data that must be stored in
(iees hardware requirement) are
procedure descriptors (i.e. 3b and c above).

5+)The binding section must be wunstructured} that is no
predefermined order can be assumed between binding section

the binding section
Internal and external

entries since a given entry®'s relative location within the
blnding section may change independently of any other entry
during tibrary generat ion. This 1implies that address

arithmetic (indexing) or assumptions about pointer contiguity
are not permitted with regard to the binding section,

6+)The Operating System/hardware calling convention only
provides a procedure wWith the address of Its binding
section. This implies that the base address of at least one
of the module®s working storage sections must be stored In
the binding section.

NCR/COC PRIVATE REV 28 JAN 75

WP®NOWNIFE WM

ADVANCED SYSTEM LARBRORATORY

7-15
CHPL104
75/05/30

IPLOS GDS - MAJOR INTERFACE AREAS

e e e s s o - s o i

7.0 OBJECT CODE ENVIRONMENT- AND FORMATS
7.5 SECTION - SEGMENT ALLOCATION

7.5 SECTION = SEGMENT ALLOCATION

Table 7-3 summarizes the segment allocation that takes place
for each type of module sectlion when a proqram is established as
a taske

fmm T +
tSECTIONl SEGHENT ALLOCATION 1

{ CODE l.one segment per ring for the code sections of all the
t { object modules in the object file list

i l.one segment per system for each tibrary in the library
i ! segment 1ist

IWORKINGt.one segment per ring per access attribute set in which |
{STORAGE! all non-extensible working storage sections and common ¢
! ! blocks are allocated i
i leone segment for each extensible working storage sectioni

i I and common b lock 1

frm e e e e e e e e e e eee e e ccee S Gme e~ - ———————————— +

:BINDINGI.one segment for all binding sections of all the modules!

l t In a task !

prmm——— R e B +
TABLE 7-3

Module-segment allocation

NCR/CDC PRIVATE REV 28 JAN 75

WoNOWVMEsEwn =

ADVANCED SYSTEM LARORATORY

7-16
CHP1104
75705730

IPLOS GDS - MAJOR INTERFACE AREAS

e e s e s e e s e ~ — ~——

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.6 MODULE CONVENTIONS

~~~~~~~~~~~~~~ ~—~ ~ e e e o 0 e 0 o 20 . ot e e 0 0 a0 o 00

7.6 MODULE CONVENTIONS

The conventions to which atl modules {object and load) must
conform In order to be .processed by the loader and |library
generator are summarized below?

« Object modules must be generated in the foilowing ordert IDR}
alt SOCs$ any combination of TEX,RPL,BIT,EPT,RIF,AIN,AOI, and
XRL recordss TRA,

« Object module records are processed as they are read by the
loader and library generator. Overlapping records are not
detected.

« Each module may contain at most one code section and one
binding section but an arbitrary number of working storage
sections and common blocks. :

+ Sectlon definition ordinals in every module must start at
zero and be numbered consecutivelye.

+» The code section of every module must be “pure" to aflow it
to be shared with all activations of the module.

« The binding section of every module must adhere to the
following conventions? .
= Only the 0.5. may INITIATE a segment with the binding

attribute.

- The binding section 1is readable and not writable in the
user®s ring - .

= Only right justifled, word atigned pointers and procedure
descriptors may be stored in the binding section$ constant
data Is explicitly disallowed .

- Only procedure descriptors qpust be stored In the binding
section.

- The binding section must be unstructureds that is no order
may be presumed to exist among binding section entries.

- The 0.S./hardware calling convention only supplies a called
procedure with the base address of its binding section$ the
base addresses of all working storage sections must be
bootstrapped from the binding section.

« Code section protection attributes are read and execute.

« FORTRAN blank common should be an extensible common block
with a name of all tlanks.

« Entry-externals and common blocks having the same names are
specifically allowed. .

« For dynamic | inking - address arithmetic Instruction
sequences using external addresses must load the opointer to
the external address Into an A register before performing any
computation to allow the dynamic  {inking fault +to - be
processed correctliy,

NCR/CDC PRIVATE REV 28 JAN 75

WONOVVIEWN-

s e
FUunPo

[TV
W®NOW

NN N
WMo

EEPLEEFFLETWWNNNNNNNNNNN NN N
NOVSTWNFPOOWRBNOVFWNROO®R®NOWNF

£
™



ADVANCED SYSTEM LABORATORY CHP 1104

7-17

75/05/30

IPLOS GDS - MAJOR INTERFACE AREAS

7.0 OBJECT CODE ENVIRONMENT AND FORMATS
7.7 DETAILED MODULE FORMATS

e e e 0 i e ot ot e ot o o o0 o e P 0 D P 0 S P P R e 20 B0

7.7 DETAILED MODULE FORMATS

A detailed listing of the current version of the type
definitions of the object module is available in catatog GSB In
an ASCII 1ist on file OBJTEXT and in the outout listing of ISKL
on the file OBJSWL.

A detailed listing 0f the toad module 1Is not currentily
available.

NCR/CDC PRIVATE REV 28 JAN 75

WENONE W

e
WP

B
o &

-
-~

-
o

NN N
FUWNHFO

WA NN
WnNFrow®NOW

W W
~No v



ADVANCED SYSTEM LASBORATORY . CHP1104

IPLOS GDS - MAJOR INTERFACE AREAS

v v e e e e o~ ~—— o -

8-1

75705730

8.0 ACCESS METHODS

To be supplied

NCR/CDC PRIVATE REV 28 JAN 75

OWXNORNFE NN

e T
FaNro

NN PONNNN R R
ONOMEFWNFoWNOWM

wn
ow

WA NWNNNANW
NO VW

[N
(Y-

& &
nHEo

bl 2
onesw

£ &
® ~



9-1
ADVANCED SYSTEM LARORATORY CHP1104
75/05/30
IPLOS GDOS - MAJOR INTERFACE AREAS

9.0 INSTRUMENTATION

e e e e e s e 0 e e 0 0 0t 0 P O S 0 P 0 P P P 8 P 0t s o P o 0 2 O P 0 0 0 0 8 0 0P P 2 0 O o 0 o

9.0 INSTRUMENTATION

To be suppllied

NCR/CDC PRIVATE REV 28 JAN 75

W NN WN e



