ADVANCED SYSTEM LABORATORY CHPO604

IPLOS GDS - PROGRAM MANAGEMENT

NIC R

ADVANCED SYSTEMS LABORATORY

CHAPTER Ob

PROGRAM MANAGEMENT

-~

Doc. No. ASLOO282
Rev. OY

Copy No. 2)1

NGRIIGT CRAILATE S

TABLE OF CONTENTS

INTRODUCTION .

e o o 3 o

DEFINITION OF TERMS ..

PROGRAM EXECUTION
EXECUTION CONSTRUCTS.
«1.1 JOB . e
162 TASK ¢ o o o &
1.3 SUBTASK o« . e

e e 8

K ESTABLISHMENT
LOADING « v e
ABLES ¢ o o o o &
«1 Program Control
+2 Task Control Block

e o o s »
o o 0 o o o
“ o 0 o o s o
e o s ¢ o o o o

«4 Job Gate Table
«5 Job Stack Table

-'NNNNN—l

nn
o o

4.1 Subtask Control
GRAM EXECUTION
PHM#EXECUTE o o
PM#EXIT o e
PM#TERMINATE
PM#SPANN « &
PM#LOAD PN
PM#ENTRY o &

PM#RE INITIALIZE
PM#ESTABLISH . .
9 PM#DISESTABLISH

n
.

Mo D O

. e

. e

° o

.

¢ o o o s o o o

»
.
.
.
o
.
.
.
-

REQUIREMENTS AND OBJECTIVES

e o o ¢ o o o 0

Block

Block
REQUESTS

.
.
.
.
.
.
.
.
.

340 LOGICAL NAME SPACE MANAGEMENT

3.0.1 DESIGN OBJECTIVES -
3.1 SYSTEM DESCRIPTION . .
3.1.1 LNS DESCRIPTORS .
3+1.2 LNS DATA TYPES .
34143 LNS STRUCTURES .+

3¢143.1 General Examples

3¢1.3.2 SCL#TOKEN Exampl

3.1.4 TYPE CONTROLLED "“OWN

3¢1.5 EXTRINSIC ATTRIBUTES
342 LNS REQUESTS & o & o &
34241 LNS#ATTACH « o & &
34242 LNS#DETACH o o & &
34243 LNS#DECLARE = & o o
3e2el LNS#REMOVE & o o &
3e245 LNS#ENTRY . e
34246 LNSH#NEXT o o & o &
34247 LNS#SLICE « s v e

. 4 o o

e
c

et e e e a0 e O

.

.
.
.
.
.

.
.

o]

© 0 ® 6 0 0 4 e e Me s e s o o

+3 Established Program Cont

.

S

1

2

2

2

2

2

2

3 TASK ESTABLISHMENT EXAMPLE
4 SUBTASK ESTABLISHMENT
2.

(o]

1

2

3

4

5

6

7

s e o o 0 o o e o o ® s 0 0 0 s .

® e % o 0o o o 0 0

e o o ® o o o

@ ® o % e s s e e e s s 0 e Ja e e e e 0 e 0 s

o

v
® & * o ° e s 00 De e o 0 0 o
o

—e 8 o o 8 * e o

® ® e ® e b 0 e s 0 0 e e

L I T T S R TP SRPO
m

® % o ® 6o s 00 0 8t o 0 s Me e e e e * e e e .

¢ 0 % o s s e e e O e s e e

c
® % ® 4 0 s 0 00 T ® s ® e 0 00

oo

L T T S R S I T SO S P

X e o ® o ¢ * 5 0 o o

0

® % o 0 4 e 0 8 8 0 0 4 0 0 s

m
LI N N 7 I I T TP

L R T I B S Y e e 6 o 0 08 0 4 &

e o o s o e 0 0 o

® % o o o s 0 0 0 e 0 0 o 0 0 s e

L I I R R R O R

o o

® ¢ 5 o 0 00 s * 8 0 e e o0 00000008 40

© % & o o 0 0 0 e 8 08 40 e 0 0

® & 0 % o 0 6% o % B s 0 e b g0 0 068 0 0 00 s

® ® o e o o o 0 0 0 ® o 0 0 00 e 0

@ % % 2 0 0 0% e " s s 08 e 0 e 0 et e e e e

® ® 0 4 0 e 0 s 0 0 ® e e 0 e e e

.

LI I I T I P S T TP

® © 8 0 8 0 0606 ° 0 0 0 0 0 00 00

A-1

75/05/21

® 8 © % 0 0 0 % 0 % e e e s 0 e 0 e et e e e a0

@ ® o o 0 0 0 0 ® 0% 00 6 e e o

e
|
P

NN RNRNR N RN
)
NOOVISEWNNN R -

U
~

2-13
2-13
2-14
2-14
2-15
2-15
2-16
2=-16
2-16
2-17
2-17
2-18

3-1
3-2
3-2
3-4
3-6
3-7
3-7
3-11
3-13
3-14

3=-14 .

3-15
3-16
3-17
3-18
3-19
3-20
3-21

WONOWVE N -

2.8 LNS#GROW .+ «
2.9 LNS#LOCK «
2.10 LNS#UNLOCK
2411 LNS#INSERT
2412 LNS#DELETE
2413 LNS#GET o+ o

2¢14 LNS#PUT o o« &
2.15 LNS#SETXA .« »
S

3.
3.
3.
3.
3.
3.
3.
3.
3 PRIVILEGED REQUEST
3¢3+.1 LNS#RECORD
3.3.2 LNS#FIELD .
34343 LNS#SEGLOCK
3.3.4 LNS#SEGUNLOCK
3e4 ERROR CONDITIONS &

3.4.1 DEFINITION OF CODES
3.4.2 ERROR CODES BY REQUEST

3.

e o o o
® o 6 0 0 0 ® 0 0 o s 0 e

I I S R R

PROGRAM COMMUNICATIONS .
EVENTS o o ¢ o o 2 o o o
EVENT REQUESTS . « &

4.0
4ol
4ale1

© o ® o 6 o 86 5 & 0 0 5 o s e

@ o ® 6 o 0606 8 ® 0 0 o 0 0 0

e o ® o 6 08 0 % 0 0 o 0 0 e

L'

L
4

4,
4,

Lo

4

3
4
4
4

4
4
[
4o
4
4
4
4

1.1.1 PM#ATTACH_PROCEDURE
PM#CAUSE_EVENT « o o
PM#CAUSE_CLEAR_EVENT
PM#CLEAR_EVENT . .
1 PM#DETACH_PROCEDURE
1 PM#DISABLE_EVENT . .
1 PM#ENABLE_EVENT Y
1.8 PM#STATUS_EVENT . o
1.9 PMRWAIT_EVENT o o o
1. 10 PN#NAIT CLEAR_EVENT
GNALS e o s e s o s @
SIGNAL SELECTION . . .
SIGNAL REQUESTS « o e
2.1 PM#SEND_SIGNAL .
242 PM#SELECT_SIGNAL .
2.3 PM#DESELECT_SIGNAL
2.4 PM#STATUS_SIGNAL .
2.5 PM#DISABLE_SIGNALS
PM#ENABLE_SIGNALS
e242,7 PM#IDENTITY ..
QUEUES .
QUEUE REQUESTS . .
«3.1.1 PM#ENQJZUE .+ o &
e3¢1.2 PMADEQUEUE o+ & &
3.
SEMAPHORES o o o o o &«

e ® o ® o ® 8 4 % 0 0 0 0o s 0 v e

.
1.3 PM#STATUS_QUEUE .
SEMAPHORE REQUESTS .

E

elolel PMESIGNAL_SEMAPHORI

o142 PMI#WAIT_SEMAPHORE - .

1
4
4
2 INTRA-J0OB LOCKS « o e
4
4

® 6 ® 6 8 © ® o ¢ 8 0 ® 8 0 e & e ® ° 8 0 e e e ® s a0 4 e e s .

«3.1 Signature Lock Requests
«3.1.1 PM#SIGN_LOCK
«3+1.2 PM#UNSIGN_LOCK

1
3 INTER-JOB SYNCHRONIZATION
4

.
.
. e s o o
.

® o ® 0 0 o ® ¢ % 0 & e 8 8 e 0 0 ® o s e s 0 6 o 0 0 0 0 0 e s

© 0 6 ® o 0 8 8 ¢ 0 ® o ® o 0 e 0 s 6 s 0 s s s e 0 s 0 s e e s e e

® o 6 o s 8 5 8 * s ¢ o0 e e s

® ¢ e o 0 0 0 0 % o 0 00 s e

e o o 06 0 0 8 8 % o 0 00 0 0

®© o 6 % 8 o 8 o 0 © % o 0 0 0 0 0 8 % o 0 o0 8 s e e o 0 s e e s s s

® ® 6 6 s 6 0 0 © o 0 00 0 s

® o © ® o 8 8 ¢ 8 6 ® 0 % 4 0 o 0 B O % o 0 e s e e e o O s 0 s e e s s

@ ® o e o 6 06 8 5 6 0 s 0 0 o

® e ® ® o 0 6 % 4 © % 0 ¢ o 0 0 0 4 6 © 0 8 2 8t s ® o s s e e s s g 8

® ® 6 & 0 & & % 8 & s & s ¢ 0 o

® o o 6 0 6 & 0 o 6 © o 0 4 6 o 6 8 % 6 0 0 0 P e 60 % S 2 s s s e e

8 0 6 0 6 6 0 ® 0 o 0 00 0 0 0

® ¢ ® 6 0 4 6 6 6 ° ® o 0 0 ® 0 6 0% 00 8 006 0 % 0 8 5 s s 00 0 0 4

@ 6 06 6 o 6 0 % s 0 0 00 s 0

@ 6 ® & o 2 8 6 8 & 0 0 6 o s 0 0 8 ° 5 s 00 s 0 0% 0 0 0 e e o g

@ ® 6 o o % s ® e 0 s o0 e e e

® o © 5 0 6 e 8 ¢ ® & 0 0 g 8 0 0 & ® 0 0 8 o 6 8 0 0 O 8 s e e e e ® g

A-2

75705721

® 8 06 0o 06 06 0% 0 00 00 0 0 o

® o ® ¢ 0 3 0 5 0 ® 0 ° 0 00 6 0 0 L 0% 6 o0 e 0 e ° 8 0 s s e e e

e 06 6 6 0 % 6 % 0 0 0 00 0 e

® 6 ® o o o @ 0 6 ° ¢ ° 2 0. 0 6 0 0 0 % 8 2 0 0 e s ® s 0 e 0 e e ® e 0

3=-22
3-23
3=-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-33
3-34
3-35
3-35
3-36
3-37

4-1
b=
4-3
4-3
4-3
4=y
4=t

-"‘"#‘P&f###b
]
VOwPIENOVVWN S

IR
4-10
4-10
4=-10
4=-11
4-11
4-12
4-14
4-14
4-14
4-15
4=-16
L-17
4-17
4-18
4-18
4-18

(]
w

4-18

4-19
4-19

WENO NS WNP

ON CONDITIONS o s & e
PROGRAM MAINTENANCE
PROGRAM MANAGEMENT NOTES

CO30L LOCK NOTES + « o
SEMAPHORE NOTES e .

.

A-3

75705721
. 4-19
. 5-1
. 6-1
. 6-1
. 6-4

WoRNOUVLE N

e
N o

e e
woeNOwnsw

NWNONNNWNWANWWNNONNNDDND NN NN
WoOoNOVMSTFWwNPOoOOWINOVESEWNH-O

EEEErSsEE S
weENOMFwh RO

u
o

GRGRU RG]
F N

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

1.0

1-1
CHPO0604
75705721
INTRODUCTION
1.0 __INTRODUCTION
IPLOS Program Management provides the mechanlisms through

which the user may organize
The three basic constructs of Program Management aret

system.

e ————
t STATIC
I CONSTRUCT

Program

4 oo omee me 4 ca e ae me oo on o oo w om wn me e o=

DYNAMIC
CONSTRUCT

Subtask

and present

1.Single address

! space

{.Batch submission
| or single user

| terminal session
o mcrc e cc—- —-—-
{.Separate naming
I context (entry

! pts - externals)
i{.Separate common
{ block allocations
{.Separate load
foemccnccccccencce ce—--
l+Separate stack
frame

TABLE 1.0-1

his

programs to the

................ ——

ANALOGIES {
!
...... - - -
Job in most
systems

1

1

!

!

1

+
COBOL Run Unit 1
CYBER Program 1
CENTURY Program]
PLJS Task !
MASTER Task !
0S/VS Job Step !
+

1

1

!

!

+

PL/I Task

CENTURY B2 Task

BURROUGHS Async
Procedure

PROGRAM MANAGEMENT BASIC EXECUTION CONSTRUCTS

The progression from Job to task to subtask iIs characterized

by a.)
overhead

decreasing
Involved in initiation, and c.)

amou

nts of static

automatically shared data.

data,

i

be) decreasing
ncreasing amounts of

Each of these constructs is dealt with in greater detai! In
the ensuing parts of tnis section.

NCR/CDC PRIVATE REV 29 APR 75

WEINOOWNF W

1-2

ADVANCED SYSTEM LABORATORY CHPOG0 4
75/05/721
IPLOS GOS - PROGRAM MANAGEMENT
1.0 INTRODUCTION
Program Management also provides the mechanisms for

communications between Jobos and between programs in execution.

For communication between nonsimultaneousliy active Jobs, a

malibox file 1Is provided. The mailbox provides a permanent
repository (i.e.y unrelated to the life of a particular job), for
messages. This enables Joos to enter the system In arbitrary
order, at arbitrary times, and to sequence and synchronize their
subsequent activations.
For executing jobs, tasksy or subtasks, the following
communication mechanisms are avallables
LNS
Signals
Queues
Events
Semaphores
Signature locks
On conditions
These mechanisms allow Jobsy tasks, and subtasks to
synchronize and coordinate themselves with other asynchronous

These mechanisms and the requests which are used to
in ensuing parts of

activities.
manipulate them are treated In greater detail
this sectione.

NCR/CDC PRIVATE REV 29 APR 75

WENOWNF WNE

1-3 1-4
: CHPD60 &4

NCR/CDC PRIVATE REV 29 APR 75

ADVANCED SYSTcM LABORATORY CHPO604 ADVANCED SYSTEM LABORATORY
75705721 75/05/21
IPLOS GOS = PROGRAM MANAGEMENT - IPLOS GDS - PROGRAM MANAGEMENT ——— - ~—
1.0 INTRODUCTION 1.0 INTRODUCTION
1.1 REQUIREMENTS AND OBJECTIVES - e —
L L to—m———— e D el e —————t 1 1.4 __REQUIREMENTS AND OBJECTIVES
t TYPE { SCOPE | DATA i LIFETIME ! USAGE ! 2
R et et A e Sttt 2 3
! Mailbox { Inter |} Arbitrary ! Immortal 1 Job sequencing, ! 4 The following is a summary of the major requirements and
! { Job ' ! | Communication ! 5 objJectives that motivate the design of IPLOS Program Management?
1 i ! i ! between users ! 6
pomceccccepmcmcm e fo—mm————e g S 7 o ANSI standard COBOL (excluding PLC proposal ATG-71001.113
1 local § Intra ! Predefined! Job | Symbollc access ! 8 Asynchronous Processing Facillty)
i 1 Job ! by type i t from terminal, 1 9 o ANSI standard FORTRAN
[} H H 1 ! Passing parameters! 10 o Multiprocessing-multiple degrees of sharing and overhead
! LNS ! ! i { from user to the ! 11 to initliate
! ! ! ! ! system ! 12 o Protection - multiple . subsystem services In the same
! ! i 1 H 1 13 address space
| globat! Inter | I System ! ! 14 o Sharing - effective use of a large virtual memory
! { Job ! ! ! ! 15
fommmmeeee L el e R ——————— -+ 16
{ Event I" Intra | Boolean { (Job) LNS, ! Synchronizatlion, ! 17 1.2 DEFINITION QF TERMS
! i Job 1 ! Stack, { Interrupt control ¢ 18
i i ! 1 Static ! . | 19
D D e E et T T + 20 The following are definitlons of terms relevant to ‘Program
{ Signal t Inter ! 128 bytes ! DEQUEUE or ! I/0 requests, 1 21 Management. .
1 i Job ! ! Overwrite | System Job 1 22
! ! H ! { Communicatlions ! 23
R s D D D tom——— - + 24 Address Space The 'set of segments addressable In a
! Queue ! Intra | Arbitrary 1! (Job) LNS, ! Queauing signals, | 25 jobe. Each address is uniquely identified
! !t Job H I Stack, { passing data 1 26 by a segment number and a byte number.
! ! ! ! Static i 1 27
R e R o cc———— o ————— B T B . + 28. Binary Object File A file containing one or more contiguous
! Sema- { Intra ! Integer ! (Job) LNS, ! Synchronlization, | 29 object modules. All object modules In
t phore | Job t ! Stack, ! Locking (using ! 30 the segment have the same segment
! ! ! ! Static | shared resources) 1 31 attributes.
tommmm————— L et L e meee e c e e e c e ———- + 32
I Sign { Inter ! Compare { Segment { Synchronizatlion ! 33 Binding Section: The oo ject environment component used to
! Locks i Job { Swap word ! 1 (Compare Swap) 1 34 control transfer between rings of
fmmmm———— fmm————— U R S MY 35 protection. There Is one binding section
{ On Con- | Intra 1| Condition ! Stack ! Handling executlonl 36 - per loaded module.
{ dition | Program! Register 1 ! condition. See 1 37
! ! ! ! ! Doc ASLOO211. ! 38 Binding Segment A segment contalning the binding sections
i fomm————— $mmmm—e————— T T S 39 of one or more modules loaded into the
N 40 address space of a Job. There are
41 several binding segments per job.
TABLE 1.0-2 42
PROGRAM MANAGEMENT BASIC COMMUNICATION CONSTRUCTS 43 Conditlon A synchronous occurrence of interest to
44 the task or subtask In which It
45 occurreds The arithmetlic faults, such as
46 overflow, are examples of conditions.
47
48 Control Point The basic execution entity recognized and

NCR/CDC PRIVATE REV 29 APR 75

WoeNOWNE WwNE

1-5
ADVANCED SYSTEM LABORATORY CHP 0604
75705721
IPLOS GDS - PROGRAM MANAGEMENT
1.0 INTROOUCTION
1.2 DEFINITION OF TERMS
dispatched by the System Monltor. Among
its contents is the hardware defined

Control Point id

Entry Polnt

Event

Event Control Block

External
Gate
Gate Registration

Global Key

Job

Exchange Package.

identiflcation of a
as the destination

A system unique
control polnt used
address of slignals.

A named externally accesslible address iIn
a module. The entry points may be in
either the code section or the working
storage section of the modules

An asynchronous
signlificance to a task or subtask. Task
completiony time, and I/0 completion are
typical examples of events.

occurrence of

A data structure required to manipulate

the flow of control via event requests.
May be in LNS, Iinternal staticy, or a
stack.

A symbol referenced by a module that is
defined as an entry point In another
module.,

A hardware protected entry point for
crossing between programs., Protection
changes can only occur at gates.

Validation of the right to change can be
done at the gate.

The act of making a gate known within a
joby such that subsequent loading will
link to the protected entry point when
referenced.

One of the two keys assoclated with every
known segment. Verlified on every access
and on call/return sequences. Intended
as a mechanism for isolating programs
executing in the same ring of
protection. Not supported In v 1.0,

Job is defined in Section 1.0 of Chapter
4 of the 0SGDS.

NCR/CDC PRIVATE REV 29 APR 75

ol e el ot e ol el
WEINTVFUWNPOOVENOVS NN

[N
» o

NN NN
Vs wn

nn
-~ o

W NN
roOoOWw®

W
NoOVNEWN

[X%
v ®

£ & &
N O

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

- 2 o e it e it O o 0 Ot P I 0 R 0 P B 0 0 0 0 0 0 D 0 D 0 0 0 0 0 0 0 0 0

1.0 INTROOUCTION

1.2 DEFINITION OF TERMS

1-6
CHPOGO 4
75705721

~ oo

ot o e o0 e e 0 e e 0 0 0 0 0 0 0 B o 0 O P B0 0 0 0 0 0 0 0 PP 0 P 0 0 D 0 R e 0 08 8 8 9 RO D D P 9 9

Job Gate Table

Job Stack Table

Library

Load Module

Loader Map

Loader Symbol

Local Key

Mallbox

Object Module

Procedure

Table

A table used by Program Management to
reglster gated entry polints on a job
basise.

A table used by Program Management for
ring by ring allocation of stacks when a
control point Is created.

A segment contalning procedures and the
dictlonaries required to locate them.
The procedure dictlonary ls organized by
entry - point name. All load modules In
the |library have the same segment
attributes.,

module reformatted by OBLIGE

library. Can be a
Structured as directly
code sectlon

An object
for residency on a
slingle procedure.
referenceable storages
shareable among users.

The output of the Loader describing the
allocations per formed for all the
sections of all the modules In the loaded
programe.

An internal table built and used by the
Loader for matching externals and entry
pointse. There 1Is a separate Loader
Symbol Table per loaded program.

One of the two keys assocliated with every
Known segment. Verlified on every
access. Always assoclated with the
segment and not verified or passed on by
call/return sequences.

A file used for communication between two
users,y, for exampley for. job sequencings
May contaln messages.

A single plece of machine executable code
output from a compiler. Structured as 'a
series of records on a flle that are
Interpreted every time the object module
Is processed.

Code

that may be executed serially via

NCR/CDC PRIVATE REV 29 APR 75

WoENOWNEs WN R

ADVANCED SYSTEM LABORATORY
IPLOS GDS - PROGRAM MANAGEMENT

1.0 INTROOUCTION

1.2 BEFINITION OF TERMS

o~ ot e s 0 e s 0 o e s

1-7
CHPO604
75/05/721
hardware call instruction or executed

Program

Program Control Block
Queue
Queue Control Block

Ring

Semaphore

Signal

Signal Buffer

Signal Selection List

Signature Lock

_asynchronously via spawning a subtask.

A set of object files, set of libraries,
and an entry point name which specifles a
static set of procedures organized to
perform some specific function (e«ges
compile COBOL statements)s An activation
of a program is a task.

LNS structure required to construct a
program by flinking external references
and entry points In a specified order.
It can be In any LNS segment.

A collection of data
processing. Standard
queued.

items awalting
signals are

A data structure required to manipulate a
queue via gueue requests. May be in LNS,
Internal staticy or a stack.

The fifteen hierarchial levels of
protection available within a single
jobe Used to protect local monitors and
services -from thelr users. Capability In
ring n is always greater than or equal to
capability in ring n+i,

A system supported facility to permit
synchronization among asynchronous
activities within a jobe It Is the most
primitive such facility supported by the
system.

A signal is a short message primarily
used for Inter-job communicatlions in the
form of requests and responses.

A system
signal

Interface
point.

structure used to
reception by a control

A system table used to register signal
selections on a control point basise.

The externalization of
locking data

Compare-Swap _for
in shared segments between

NCR/CDC PRIVATE REV 29 APR 75

WoNOWs -

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMEN

1
1.

0 INTRODUCTION
2 ODEFINITION OF TERMS

1-8
CHPOG604
75705721

P

e s o ot ot vt e 0 7 . 0 0 g 0 8 0 O 0 0 Ot 0 0 0 2

Subsystem

Subsystem Services

Subtask

Task

Task Control
Task Monitor

Task Services

Block

jobs.

A job which provides services to the user
In the same way as those provided by the
System Job. It Is protected from the
user, and the Operating System Is
protected from it.

A set of shared procedures (both code and
internal static) which provide Subsystem
services and are directly callable. They
have -. the same clock accounting,
schedul ing and execution characteristics
as the requestor. The only difference is

thelr access rights to data and code.
They are also protected from Task
Servicesy that is, In a different ring.

Asynchronous executlion of a procedure
within a single taske. All static data
associated with the tas< 1Is assoclated
with the subtasks. The subtask’ receives
only a new stack segment as a repository

for private data.
Identifiable execution of a program.

A system LNS data structure required to
identify a tas< and pass it parameters.

A collection of shared, nonresident,
reentrant procedures which monitor and
provide a formal Interface between user

and system monitore.

A set of shared procedures (both code and
internal static) which provide Operating
Systenm services and are directly
callable. They have the same clock
accounting, scheduling and execution
characteristics as the requestor. The
only difference Is thelr access rights to
data and code.

NCR/CDC PRIVATE REV 30 APR 75

VoNonswn+

-
o

T
NounEwn

[y
O ™

NN DN
NOVNES NN

n N
O ®

F T T rFr e T T NN UWANWNNNW
ENOVFWRNFPOOINOVFWN O

2-1 2=-2

ADVANCED SYSTcM LABORATORY CHPO 60 4 ADVANCED SYSTEM LABORATORY CHPOG604

75705721 75/05/21

IPLOS GDS - PROGRAM MANAGEMENT

- ——————— ~———

[PLOS GDS - PROGRAM MANAGEMENT

v ot e g e 2 e e e 0 o 0 P 0 0 0 P D 0 0 0 0 D 8 0 2 0 8 2 20 8 0ot 0 0 9 0 0 000 00t

it s 20 e 20 e o o 0 o 0 20 0 0 0 0 0 . 0 0 9 0 P B P 8 0 0 0 0

2.0 PROGRAM EXECUTION

2.0 PROGRAM EXECUTION

e 2.1.1 JOB .
2.0 __PROGRAM EXECUTION 1 There are also several disadvantages to the single job per
2 address space relationships
3
4 o The volatility of comings and golngs of programs and data
5 within the address space forces the loading of absolutized
6 components to be preplanned (leeeoy the permanent
7 reservatlon of a segment In every address space).
8
2.1 EXECUTION CONSTRUCTS 9 o Components that are Independent of each other and have
10 therefore no need to share or communicate are unprotected
11 from each other and therefore subject to time dependent
IPLOS supports three major execution constructss 12 errorss This may be Improved somewhat by utllizing the
o JOoB . 13 various protection mechanisms avallable within the the
o TASK 14 address space (s€e4gey rings, global or local keys).
o SUBTASK 15
16 In spite of these disadvantages, we feel that the single
17 address space per job Is the best way to proceed.
2.1.1 JOB 18
19
20 2¢1.2 TASK
The job 1is the mechanism through which the batch or 21 ’
interactive user Interfaces to the IPL system. A job consists of 22
a slnale segmented address space and all the work performed by 23 A program is the principal way work Is organized for the
the job takes place within that address space. 24 user by Program Management. It Is the typlcal wunit of loading
25 and executlion. The program ltself Is a static . entity, that ls,
The convention of associating a single address space with a 26 it is the object files and libraries which get established and
job Is not mandatory, however, the 0S project feels that there 27 linked for each separate execution of the programe Each one of
are several factors whlich make it desirablet 28 those executlons is a separate task.
29 '

o It allows natural sharing of informatlion between 30 Each task represents a3 separate loading and execution
components of the Job - all information Is addressed 31 environment. Any common blocks (leesy FORTRAN common, PL/I
through the same mechanlsm (i.e.y the same segment 32 static externaly COBOL global) declared iIin the task are
descriptor table) 33 accessible by any procedure in the taske All entry

34 point - external reference matchings with the exception of gate

o It allows the code which manages the components of a }Job 35 | inkages are evaluated In the task context. No data s
(leeey program establisher, task establisher, loader) to 36 automatically shared between tasks In the same Joby, hownever,
be a part of the same job thereby a.) faclilitating the 37 since they are 1In the same address space, sharing segments Iis
component management and b.) isolating it from other jobs 38 facilitated.
and the system code responsible for job management. 39

40

o It allows large amounts of the system and user provided 41 241.3 SUBTASK
environment that all components of the job depend upon to 42
only be establ ished once for all the components in the job 43
(eegey task monitor, subsystem services, etc.) Ly A procedure is a logically discrete plece of code that |Is

45 the basic component of a programe A procedurs may be compiled

o It allows straightforward invocation and parameter passing 46 with other procedures to form a single objJect module} may be
between the aforementioned shared environment and a user 47 bound by the library generator with other object modulesy or may
taske 48 be linked to other discrete object modules at execution time.

" NCR/COC PRIVATE REV 30 APR 75

NCR/CDC PRIVATE REV 30 APR 75

WOENO V& N -

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

2-3
CHPOB04
75/05/721

~——— e s s e g o e ~an -

2.0 PROGRAM EXECUTION
2.1.3 SUBTASK

e e e s e v e s o o ot 0 0 0 0 ~—o ~———

A subtask Is an asynchronous activation of a procedure. A
procedure whether called as a "subroutine® within a program or
called asynchronously has a single allocation of data assocliated
with Iin at call time. The data is the varliables that are local
to the procedure in the block structured language sense (e«gey
PL/1 automatic)e. The allocation is made at call time In the run
time stack segment provided by Program Management. In the case
of the spawning of a subtasky a new stack segment Is provided for
the subtask for its stack frame and the stack frames of any
procedures serially called by the subtaske This is the only
private data associated with the subtask. All static data and
linkages associated wlth the spawner are assoclated with the
spawned subtask as well. A subtask Is Intended to. be the most
efficlently establ ished asynchronous facility supported by
Program Management. Thls will be effected by only providing it
With the minimum necessary amount of environment.

2+2 TASK ESTABLISHMENT

A task Is defined to Program Management with a Task Controt
Block (TCB). The TCB speclifies the program to be executed and
its execution environment. A task Is established by iIssuing a
PM#EXECUTE request. Task establishment consists of loading a
program, and creating a control point with an exchange package
and stacks for establ ished programs in different rings that will
be called during the course of execution. The simplest task
example would be one with an exchange packagesy a stack for the
user program, and a stack for the task services program.

Subsystem Services programs can be established and included
in the execution environment. A control point and stacks are
created by a PM#EXECUTE request but not by a PM#ESTABLISH
request. Both effect the loading of a specifled program.

2.2.1 LOADING

A program is defined to Program Management with a Program
Control Block (PCB)e. The PCB specifies a llst of object files, a
list of library files, and an entry point for the program. The
Loader wuses this Iinformation to construct an object module
segment, a working storage segment, and a binding segment.

First the Loader bullds the object module segment from the
Iist of object filesy If specified. An object file Is generated

NCR/CDC PRIVATE REV 30 APR 75

VWoNOVEs =

[T
N o

B
Nownsw

-
0 ®

NN NN
ovVswnrFro

NN N
woe~N

R AR R AN N
WENOVEWNFO

£ £ 5
nN e o

£ &
n o

£ &5
® N o

ADVANCED SYSTcM LABORATORY

2-4
CHP 0604
75/05/21

[PLOS GDS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2+.2¢1 LOADING

by a compiler and may contaln one or more object modules that
represent code in a nonexecutable form. The format Is detailed
in Chapter 11 of the 0SGDS. For each object module, the Loader
creates an executable code section In the objJect module segment,
a working storage section and a binding sectlon.

Next the Loader resolves unsatisfied externals using the
library segmentse. The listed library segments are represented
(via SC#INITIATE_SEGMENT) in the address space of a job as 1Is,
with one process segment per llbrary. Flle attachments must be
done prior to this step. A library segment contalns an entry
point dictlonary and one or.more load modules. The difference
between a load module and an object module 1Is that the code
section of a load module is already In executable form. For each
referenced load moduley, the Loader generates a working storage
sectlion and a binding sectlon In the corresponding segments.

From the list of object filesy every object module,
referenced or not, Is loaded resulting in Loader Symbol Table
entriesy, a working storage section, and a binding section. Only
referenced load modules are loaded.

. Library segments may be shared by Jobs. Programs using the
same object flile get separate object module segments built by the
Loader.

The search order used by the Loader when resolving an
external reference Is as follownst
: o Loader Symbol Table
o Dictionary on each library in the order of the llist.
o Job Gate Table

2.2.2 TABLES

2424241 Program_Control Blogk

The program control block (PCB) is an LNS structure used to
define a program to the systems It has the following itemss

o Primary entry point - the name of the entry point at which
to begin execution of the program. An alternate
starting entry point can be specified in a task
control block.

o Binary object file tist - the LNS name of a tist of binary
object filesy each of which contalning one or more

NCR/CDZ PRIVATE REV 30 APR 75

WOV NN

2-5
ADVANCED SYSTEM LABORATORY CHPO604
75705721
IPLOS GDS - PROGRAM MANAGEMENT
2.0 PROGRAM EXECUTION
2424241 Program Control Block
contiguous object modulese.

o Library list - the LNS name of a tist of Iibrarles. Each
library segment contains one or more load modules and
dictionaries organized by entry point name that are
used to locate procedures. All toad modules iIn a
Iibrary have the same segment attributes.

o Size - the initlal working set size for the program. It

: is the number of page frames needed by any execution
of the program when first brought into core by the
Running Job Monitor.
o Ring = the ring of execution for the program. It

speclifiedy it must be within the executlon bracket
for all the files and segments specifilied in the PCB.

Termination entry polint - an optional field speclfying an
entry point name for a termination procedures 1If
present, the termination procedure will be called by
the system during the orderly process of task
termination. Parameters will be passed indicating a
normal or abnormal termination.

2.2.2.2 Lask Control Block

The
define the execution environment for a

task control bilock (TCB) Is an LNS structure used to

program. It has the

following itemst

[+]

[

PCB - the LNS name of the program control block that
defines the program to be executed by this task.
Entry polnt - an alternate entry point name at which to
begin execution of the program.. If specified, would
override the primary entry polnt as named 1In the
program control blocke. The alternate entry point

could change the definitlion of the program.

‘Slze = an alternate working set size for the program being

executed. It specified, would override the initial
working set size in the program control blocke

Parameters - the parameter block pointed to at entry.

Loader map - options Indicating the level of detail to be
generated for a loader map.

Abort - optlions indicating the kind ot dump required on an
abort,.

Exit - the type of exit (normal, abnormal) taken by

task via the PM#EXIT request.

an Integer completion code specified on the PM#EXIT

request by this task.

Message =~ a completion message up to 31 characters
specified on the PM#EXIT request by thls task.

this

Code-

NCR/CDC PRIVATE REV 30 APR 75

OVENOVE N

\DVANCED SYSTEM LABORATORY

2-6
CHPO 60 &4
75/05/721

PLOS GOS - PROGRAM MANAGEMENT

0 PROGRAM EXECUTION
24.242 Task Control

Block

o

to the Established Program Control Block
Placed here by the Establilsher.

EPCB - pointer
for thls taske.

2.2.2.3 Established Program {ontrol Block

The established program control block (EPCB) is a
internat to
environment for a programe.
a PM#EXECUTE

structure
Program Management and is used to define the loaded
The EPCB can be the result of elther

request or a PM#ESTABLISH request and has the

followling itemst

o

o

]

o

ooo

How established ~ lndlcafes established by PM#EXECUTE or
by PM#ESTABLISH.

TCB =~ the LNS locator of the task control block specified
on either request.

PCB - the LNS locator of the program control blocke

JCB - the.LNS locator of the job control block for the job
in which the program ls establisheds This field iIs
used to obtain Job Gate Table and Job Stack Table
entries ‘for any further linking and stack allocation
in this Jobe.

Ring - the ring in which the program ls to be executed.

Loader symool table - pointer to the loader symbol table
for this program. ’

Binary. object file list - the same list specified in the
PCB but in a format more convenient for use by the
loader.

Library Ilst - the same list specified in the PCB but in a
format more convenient for use by the loader.

Thread - the EPCBs are threaded together on a job basis.
The starting point is In the JCB.

Keys - the global and local key (not supported In V 1.0).

Event - pointer to the event control block of the task
completion event for the task as specitied on the
PM#EXECUTE request.

Control point - the control point 1d for the task.

Dependencles - task dependency threads for future use.

LNS search list - pointer to the LNS search list for
established program.

this

24202.4 Job Gate Table

T he

Job Gate Table (JGT) is a structure internal to Program

Management and lIs used to register gated entry points on a Jjob

basise.

The JGT Is searched by the Loader when resolving external

NCR/CDC PRIVATE REV 30 APR 75

WENOWVMEWNH

N
FUNFO

P
o ®~NoO W

NN
W=

24

2=7 . 2-8

ADVANCED SYSTEM LABORATORY CHPOGOL . ADVANCED SYSTEM LABORATORY CHPO 60 &
75705721 75/05/21
IPLOS GOS = PROGRAM MANAGEMENT . IPLOS GUS - PROGRAM MANAGEMENT
2.0 PROGRAM EXECUTION 2.0 PROGRAM EXECUTION

2:2+244 Job Gate Table - 24243 TASK ESTABLISHMENT EXAMPLE
references. An entry point is registered in the JGT during the 1 specifying the program to execute and the parameters 1
loading of a module that possesses the gate attrlbute. All the 2 retrievable by that program. 2
entry points of such a module are registered as gates. 3 3
4 o "“USER_PCB": local LNS name of the Program Control Block 4
Gate is the mechanism used to satisfy the requirement of S defining the program via a list of object files and a list 5
protecting one program. from another by allowing entry to the 6 of library segments. 6
protected code at defined points. Not only does the Loader put a 7 7
gated entry point [n the JGT but also marks it In the binding 8 o "™USER_OBJ_LIST"t tocal LNS name of list of object ¢files 8
section so the hardware can enforce the protection. The user 9 generated by prlor compitatione. The object modules on 9
cannot write a binding section. 10 these files will be converted to code sections In the 10
11 object module segment. .11
12 . 12
2424245 Job Stack Table 13 o “USER_LIB_LIST*: 1local LNS name of the list of llbrary 13
' 14 segments to be used to search In the order Ilsted for 14
. . 15 unresolved external references. 15
The Job Stack Table (JST) Is a structure internal to Program 16 16
Management and iIs used to allocate stacks when a control point Is 17 o 'OBJ_FILE_1" and "OBJ_FILE_2*"t local LNS names of the File 17
created. It is a Jjob lozal array of integers indicating the 18 Control Blocks describing the object files to be [loaded. 18
number of stacks to allocate on a ring-by-ring basis. When a job 19 The example has each file containing one module, A and B 19
Is createdy, some minimum set of Job and executlon tables are 20 respectivelys 20
builts The JST is iIncluded In this job template speclifying stack 21 . 21
allocation for Task Servicese. Using the PM#ESTABLISH request 22 o “USER_LIBRARY"3: local LNS name of a Flle Control Block 22
will change the JST for the specified program establishment 23 describing the \library flle of the wuser. Only the 23
ring. 24 referenced modules of this library will be (oaded. The 24
25 user can convert object flles to llbrary segments by using 25
26 the llbrary generatory OBLIGE. 26
24243 TASK ESTABLISHMENT EXAMPLE 27 27
. 28 o *“COBOL_RUN_TIME": global LNS name of a Flle Control Block 28
. 29 describing the tibrary segment of COBOL run time 29
The purpose of the following example Is to show structures 30 routines. This 1llibrary segment 1Is generated by the 30
visible to the user that make up the executlion environment for 31 installation and iIs shared by users. 31
his programe. The example starts at the point execution iIs asked 32 32
. for via SCLy which In turn issues the requests 33 Flgure 2.2-2 shows the user segments created through program 33
34 loading for the PM#EXECUTE request. Note that working storage 34
PM#EXECUTE (task, event, status) 35 sections and binding sections are created for every object module 35
36 but not every load module. Oniy the user stack segment |Is 36
taskt the LNS descriptor of “USER_TCB"™ obtalned by SCL via 37 shown. There would also be a stack segment allocated via the JST 37
the LNS#ENTRY request. 38 for Task Services. 38
39 : 39
event: not used in thls example. 40 Figure 2.2-3 shows additions to user segments resulting from 40
41 the requests 41
statust request status returned to SCL. © 42 42
43 PM#LOAD (name, typey, pointer, status) : 43
Figure 2.2-1 shows the relationship of LNS structures L1 4
declared prior to issuing PM#EXECUTE. For these structuresy the 45 name! name of an entry point In load module D on the user 45
diagram includes only those LNS fields necessary to the example. 46 Iibrary file. 46
47 47
o "USER_TCB™: local LNS name of the Task Control Block 48 types type of pointer to be wused In a reference to the 48

NCR/CDC PRIVATE REV 30 APR 75 NCR/COC PRIVATE REV 30 APR 75

2-9
ADVANCED SYSTEM LABORATORY CHPO604
75705721
IPLOS GDS - PROGRAM MANAGEMENT
0 PROGRAM EXECUTION
2.3 TASK ESTABLISHMENT EXAMPLE

~~~~~~~~~~~ P e

module.
pointers the returned pointer after loadlng.

status? returned request status.

The load module D does not have any externals causing the
loading of any other modules. Had it any, those load modules
contalned the matching entry points would have been loaded by

PM#LOAD as well.

NCR/CDC PRIVATE REV 30 APR 75

Wa~NOWME N -

2-10

ADVANCED SYSTEM LABORATORY CHPOG04
75705721
IPLOS GDS - PROGRAM MANAGEMENT .
2.0 PROGRAM EXECUTION
2423 TASK ESTABLISHMENT EXAMPLE
"os3. enet”
LocAL
Fiel
CoNTROL
SLock
"o8J.Fi1eL.2"

“userR.o8J. Lsr”
LOCAL

"osS.FiLL.1"
"o8J. Fice. 2"

YUSER.TeB" / "USER.PCB”
“UsErR_ pes’

“USER. 68T LT

AN

"USER.LIB. LisT’| K
PAganerer ] \ "usée_ Lisnaey®
h N tuseLisoLisT
LOCAL
“USER_LIBRARY"|
"eoBot . QuN.Tme "
“CO8OL - RUN. Tite"*
GLosAL
2.2-1

Flgure 2.2-1
LNS STRUCTURES

NCR/COC PRIVATE REV 30 APR 75

WONOWNE WN -



2-11

ADVANCED SYSTEM LABORATORY CHPOG604 i
75/05/21
IPLOS GOS - PROGRAM MANAGEMENT
2.0 PROGRAM EXECUTION
24243 TASK ESTABLISHMENT EXAMPLE
USER USER coB8on UsER uséerR user
ORT ModutLt LIBRARY RuN TIMmeE ws BINDING STACK
SEGMENT SEGMENT SEGMENT SEGMENT SELMENT BLGMENT
tobe HDR/DICT | HoR /D1CT WORKING BINDING .
oM A codE CodE sToRAGE oM __A \
[ < I A M E oM A BINDING
cobE cont WORRING om___8
om 8 cobDE& tM__ & STORAGE BINDING
tm D eodE om 8 L [
L W woRKING BINDING
CODE cobe SToRAGE Lr &
LM & (%) 1 tm__C BINOING
OTHER eobdE WORKING M 3
INFO FoR M J STORAGE
w ¢ codE n_ &
th D Lt X
tm & codE STOoRAGS
L L MK
oTnER
INFo FoR
LM F
M &
tm
wm 1
thnJ
tMm K
L o
2a2-2

Figure 2.2-2
USER SEGMENTS

NCR/CDC PRIVATE REV 30 APR 75

WoONOWVEWN

2-12
ADVANCED SYSTEM LABORATORY CHPO 60 4
75/05/21
IPLOS GDS =- PROGRAM MANAGEMENT
2.0 PROGRAM EXECUTION
24243 TASK ESTABLISHMENT EXAMPLE
USER UsSER coBoL UsER us er useer
OBJ Mobutt LTBRARY RuN TIME ws BINDING STACK
SEGMENT SEGMENT SEGMENT SEGMENT SEGMENT BLaMENT
HDR/DICT HDR /DICT \,‘)\: AYY) \
&\3\ CODbE CODPE \s{’? \EX\'%\Q \
[ LM F \S ‘5}?\\.\;
03 cone X\RS}\{\
3 LM & A%eN BN
%{\\\Y% zj:p b “DEM B \%\B\L\
. LM . G, .
e EINSE R AR
LM € w1 S&g;g:b‘
o'rrI!R‘ l.cl:b!.f %ﬁ BINDING \\
0
e e CodE k e Db AN
tM D L L3 t\
tm_ & cobe
L L )
OTHER WORKING
INFo FoR sToRAUL
LM F L D
LM &
[
[ T
th 3
[
LM b

Figure 2.2-3
ADDITIONAL SEGMENT SECTIONS

NCR/CDC PRIVATE

REV 30 APR 75

VOO Vs wn



2-13
ADVANCED SYSTEM LABORATORY CHPO 60 &
75705721
IPLOS GDS - PROGRAM MANAGEMENT
2.0 PROGRAM EXECUTION
24244 SUBTASK ESTABLISHMENT

P ot e e o e e 20 o . 0 A o A B 0 0 8 0 P 0 . 0 0 P P 0

2¢2.4 SUBTASK ESTABLISHMENT

2.2.4e1 Jubtask Control Block

The subtask control block Is an LNS structure, the
declaration of which causes the allocation and initialization of
a control point and the allocation of stacks according to the Job
Stack Table. It has the following itemst

o Control point - the control point iId tyolically passed by
Task Services in the body of a signal being sent to a
System Task In the System Job. That System Task then
has a return signal address to be used when sending a
response.

NCR/CDC PRIVATE REV 30 APR 75

WoNOVsSwn -

2-14

ADVANCED SYSTEM LABORATORY CHPO604
75705721
IPLOS GDS - PROGRAM MANAGEMENT
2.0 PROGRAM EXECUTION
2.3 PROGRAM EXECUTION REQUESTS
2.3 PROGRAM EXECUTION REQUESTS
There are several levels of documentation that will

eventually exist for interfacing to program executlont
o Command Language statements
o Control Language macros
o Requests
o Calls
Documentatlon for calis will detail three parameters In SHWLS
o Request code
o Returned request sfatus
o Request block

This documentatlion will be provided as soon as r;quesf
definitions have been compiled.

: Control Language macros may not necessarily be one-to-one

with the callse. There may be some calls not visible in the

Control Language. Llkewnise, there may be some Control Language

macros not externallzed through the Command Language.
for program execution are as

The Control Language macros

follonws? (To be supplied).

Request documentation is simply a prose descriptlon of a
function performed and the parameters suppllied by the requestore.
Requests are one-to-one with calls. The program execution
requests are follonss

PM#EXECUTE (task, event, status)

PM#EXIT (type, codes message)

PM#TERMINATE (task, status)

PM#SPAWN (entry, parameters, subtask, event, status)
PM#LOAD (namey typey pointer, status) -

PM#ENTRY (name, gate, segment, type, pointer, status)
PM#REINITIALIZE (name, status)

PM#ESTABLISH (task, status)

PM#DISESTABLISH (task, status)

2.3+.1 PM#EXECUTE

This request Is used to load a o}ogram and create a task to
asynchronously execute that program.

NCR/COC PRIVATE REV 30 APR 75

WENOVE LN



ADVANCED SYSTEM LABORATORY

2-15
CHPO604
75705721

IPLOS GDS - PROGRAM MANAGEMENT

240 PROGRAM EXECUTION
2+3+1 PM#EXECUTE

PM#EXECUTE (task, event, status)

task: the LNS descriptor of a previously declared task
control block used by the requestor to ldentlify and
control task execution. The task control block identifies
the program control block of the program to be loaded and
executed.

events optional parameter that Is a pointer to an event
control block to be associated with task completion. If
specified, Program Management will cause the event when
task completion Is detected.

statust returned request status.
2¢3¢2 PMREXIT

This request Is used to indicate task completion.
PM#EXIT (type, code, message)
typet -Indicates the type of exit being taken, normal or
abnormale The exit_tyoe is put In the task control block -
by the PM#EXIT request processore.

codet a programmer defined integer put In the task control
block by the PM#EXIT request processor.

message$ a programmer defined message up to 31 characfers put

in the task control block by the PM#EXIT request
processore

2.3.3 PM#TERMINATE

This reauest is used by a task to terminate another task.

PM#TERMINATE (task, status)

taskt the LNS descriptor of the task control block of the
task to be terminated. The TCB must be one used for a
previous PM#EXECUTE request.

statust returned request status.

NCR/CIC PRIVATE REV 30 APR 75

Ll ol el
WNRPROWENOVEF N

A R ol =l g
rPOW®~NOWS

NN
wnN

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48

ADVANCED SYSTEM LABORATORY

2-16
CHPO604
75/05/21

IPLOS GDS - PROGRAM HANAGEHENT

PROGRAM EXECUTION

2.
2.3.4 PM#SPAKN

.
w o

2¢3e4 PM#SPANWN

This request is used to start an asynchronous execution of a
subtask within a task.

PM#SPAWN (entry, parameterss subtask, status)

entry? pointer to procedure at which to start asynchronous
execution.

parameterst pointer to argument list for the procedure.

subtaskt the LNS descriptor of a previously declared subtask
control blocksy which resulted In allocations of a control
point and stackse.

status? returned request status.
2+3.5 PM#LOAD
This request Is used to load a procedure not yet referenced
In a program.
PM#LOAD (name, type, pointer, status)
name! entry point name.
typet the type of pointer to be returned. Can speclify return
of a 48 bit pointer, a code base pointer, or a code
base-binding section pair.

pointert
wanted.

returned pointer according to specified type

statust returned request status.

2.3.6 PM#ENTRY

This request is used to retrieve a pointer to be used In a
call to a specified entry point. The mddule containing the entry
point must have been previously loadeds The order of search for
the entry point 1Is the same for loading (a Loader Symbol Table

NCR/COC PRIVATE REV 30 APR 75

WaNOnsFwNe

e
nNHE o

NN N R
OIS UWNFoONOWNES W

NN N
Vo~

NGl NN N
VWOoeONOVFWN M+

fEEE
FUunPRO

FEs
~Nown

&
-]



2-17
ADVANCED SYSTEM LABORATORY CHPO60L
75705721

IPLOS GDS - PROGRAM MANAGEMENT

P e 0 e 0 o 0 0 e o g 0 o0 0 0 0

2.0 PROGRAM EXECUTION .
2.3.6 PM#ENTRY

~——— - s e s e s e e 0 0 e 0 0 0 0 0 R P e e e o o 0 e 0 o0 o 0

and then the Job Gate Table).
PM#ENTRY (name, gates segment, type, polnter, status)
name! entry point name.

gatet! optional parameter indicating search should be only on
the Job Gate Table.

segmentt optional parameter Indicating the segment which
dictates the LST to start the search. Segment numbers in
a job are unique per establishment of a program.

Can specify return of
pointery, or a code

typet type of pointer to be returned.
a 48 blit pointery, a code base
base-binding section paire.

pointer?t returned pointer according to type.

status? returned request statuse.
243.7 PM#REINITIALIZE

The purpose of this request is to provide COBOL an Operating
System function necessary to satisfy their Implementatlon of the
ANSI standard CANCEL statement. This assumes the implementation
of their CALL statement would use our PM#LOAD rejuest. HWe do not
currently know exactly what is required of the Operating System
to satisfy any requirement Imposed by a CANCEL implementation.

PM#REINITIALIZE (name, status)
namet entry point name.

status? returned request status.
2.3.8 PM#ESTABLISH

This request iIs used to establish a program in. the address
space of a Jjob. The primary purpose of the request is to
establ ish subsystem services on a job basis.

PM#ESTABLISH (task, status)

NCR/CIC PRIVATE REV 30 APR 75

e
NFOoOOWENOWVFWN -

e e
WeE~NOWVHw

NN N
FUN+O

nN NN
~Nowun

NN
O ®

W
o

W
wnN

FEFFouwuNWw
W FOoOOVWEBNO VS

2-18
\DVANCED SYSTEM LABORATORY CHPO 604
75705721
:PLOS GOS - PROGRAM MANAGEMENT
2.0 PROGRAM EXECUTION
2¢3.8 PMH#ESTABLISH
taskt the LNS descriptor of a preéiouslv declared task
control block wused Dy the requestor to ldentify and
control the loading of a programe The task control block

identifies
loaded.

the program control block of the program to be
statust returned request status.
2.3.9 PM#DISESTABLISH

This request is used to remove an established from

the address space of the jobe.

program

PM#DISESTABLISH (task, status)

taskt the LNS descriptor of the task control block describing
the program that was establ ished.

status? returned request status.

NCR/CDC PRIVATE REV 20 MAY 75

WO NS GNP



3-1

ADVANCED SYSTEM LABORATORY CHPO 60 &
75/05/721
IPLOS GDS - PROGRAM MANAGEMENT

s 2 s o 2 o 2 e e s 2 o P 0 e 0 0 0 e 0 0 0 0 0 P 0 I 0 0 0 0 -~

3.0 LOGICAL NAME SPACE MANAGEMENT

v e s o e —~——— ———— ————

3.0 LOGICAL NAME SPACE MANAGEMENT

This document is the GDS for the Logical Name Space manager
for IPL/OS.

The functions described are the basic capabilitlies of the
subsysteme As the 0S requirements for LNS services become better
definedy, more sophisticated functions will be bullt using these
basic capabilities.

NCR/CJOC PRIVATE REV 20 MAY 75

WoeoNOVLS N

IPLOS GDS - PROGRAM MANAGEMENT

3=-2

ADVANCED SYSTEM LABORATORY CHPOG604

75705721

- e e e e e e e e e e 0 0 e . o 0 e e e o 0 0 R 0 B 0 0 0 0 0 9 0 0 0 0 0

3.0 LOGICAL NAME SPACE MANAGEMENT
3.0.1 DESIGN OBJECTIVES

B

3.0.1 DESIGN OBJECTIVES

The design objJectives of the Logical Name Space manager are
as fol lows.

. To provide a generalized technique for the mapping of
names to data.

« To provide a symbol table handler for System Command
Language.

. To apply structuring methods to dynamlic O0S data
compat ible with SHL data representation for 0S code and SCL for
user manipulation. (i.e. records, arrays, etce)

. To retain certain attributes of data to allow generlic
requests that may operate on several types of data or resources.

. To provide a degree of data protection and prfvacy by a
hierarcical block structure of data segments while allowing the
expliclit sharing of data when required.

3.1 SYSTEM DESCRIPTION

The logical name space (LNS) Is composed of user and system
supplied segments contalning user and system defined entries. A
Iist called the LNS segment list Is maintained for each job known
to the systeme The LNS segment list contains the names of the
segments which are to be searched for LNS entries and the order
in which they are to be searched. HWhen an LNS entry 1Is sought
each segment whose name appears In the LNS segment list Is
searched until the entry has been found or the 1list has been
exhausted. The segment whose name appears In the last slot of
the LNS segment list is called the most local segment -and Is
searched first.

All internal LNS Information uses relocatable addressing
enabling a segment to be established at any virtual address while
preserving previously defined informatione

During job initiation the system allocates an LNS segment
list and initiallzes It as followse.

LNS#GLOBAL system global segment

NCR/CDC PRIVATE REV 20 MAY 75

WO NOWNE WNE



‘ 3-3 3=4
ADVANCED SYSTcM LABORATORY

NCR/CDC PRIVATE REV 20 MAY 75

CHPOG6O4 ADVANCED SYSTEM LABORATORY CHPO 604
75/05/21 75/05/21
IPLOS GDS - PROGRAM MANAGEMENT . [PLOS GUS - PROGRAM MANAGEMENT :
3.0 LOGICAL NAME SPACE MANAGEMENT 3.0 LOGICAL NAME SPACE MANAGEMENT
3.1 SYSTEM DESCRIPTION 3+1.1 LNS DESCRIPTORS
. other segmnents 1 3.1.1 LNS DESCRIPTORS
. . 2 H
LNS#LOCAL most local segment 3
4 Each entry or item in the LNS has an Internal LNS descriptor
Each entry has an internal entry descriptor. These Iinternal 5 associated with It which Is NOT accessable to the user. The
descriptors are managed in several chains per segment with a name 6 definition of this internal descriptor Is as follons.
hashing algorithm randomly assigning an entry to a chain. The 7
entry search strategy Includes a percolating of the internal 8 type_desc = RECORD
descriptor chain which results in the chain being ordered by most 9 . desc_types (entry, item), "type of descriptor®
recent use. Item chains are nandled in the same manner. 10 lock$ BOOLEAN, "internal synchronization lock"
11 chaint REL ~“type_descy ‘“chaln to next descriptor*®
An entry and its internal descriptor form the primary node 12 names STRING (31) OF CHAR, 'name of entry or item"
of a data structure through which the user can descend to any 13 hasht 0..255, "hash value of name"
level. 14 excls STRING (31) OF CHAR, *“exclusive lock key"
15 ‘* non_exclt 0..65565, "non-exclusive lock count”
16 data_typet 0..max_type, *subscript to LNS#TYPE table"
17 data_lent O..max_len, "string or set length”
18 data_dim: 0..max_dim, *dimension of array variable™
19 datat REL “type_data, "location of data"
20 ex_attri SET OF 1..64y “extrinsic attribates" °
21 RECEND,
22
23 A complex type 1Is described by an array of Internal fleid
24 descriptorse This array exlists only once In the global segment
25 regardless of the number of occurences of the compliex type. The
26 definition of the internal fleld descriptor Is as follows.
27
28 type_field_desc = ARRAY [*] OF RECORD
29 names STRING (31) of CHAR, “*name of field"
30 hash? 0..255, ‘'hash value of name"
31 data_typet Oe.emax_type, ‘*subscript to LNS#TYPE table"
32 data_lent O..max_len, *string or set length"
33 data_dims O0..max_dim, *“dimension of array variable"
34 " datat REL “type_data, ‘*location of fleid in record”
35 ex_attri SET OF 1..64y “extrinsic attributes”
36 RECEND,
37
38 Several of the LNS requests require or return a descriptor.
39 Thls descriptor reésides In the wusers memory and 1Is fully
40 accessable. The definition of this descriptor is as follons.
41 .
42
43
44
45
46
47
48

NCR/CDC PRIVATE REV 20 MAY 75

WRNOUVE N+



ADVANCED SYSTEM LABORATORY

3-5
CHPOBO04
75705721

IPLOS GDS - PROGRAM MANAGEMENT

e e e e e e e e 0 e e 0 0 0 0 0 0 2 0 e 0 0 0

3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.1 LNS DESCRIPTORS

o 2 e e e

—~———

type_user_desc = RECORD
data_type?! 0..max_type,
data_lent 0O0..max_len,
data_dim: O..max_dim,

"subscript to LNS#TYPE table"
“string or set length"
“dimension of array variable"
data_sizet Qeemax_size, 'size of data in cells”
excld BOOLEAN, *exclusive lock on"
non_excl$ BOOLEAN, ‘"non-exclusive lock(s) on"
datat “type_data, *location of data"
desct “type_desc, "location of internal descriptor®
ex_attrt SET OF 1..64, "extrinsic attribates”

RECEND,

NCR/CDC PRIVATE REV 20 MAY 75

-
FPOOVENOVEFEWNR

-
N

)
N & W

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

3-6
CHP0604
75705721

3.0 LOGICAL NAME SPACE MANAGEMENT

3.1.2

LNS DATA TYPES

~——— —~—— L ———

3.1.2 LNS DATA TYPES

LNS data types fall Into two classes; simple and complex. A

simple type or a complex type may be an element of a complex
types The currently defined simple types are as follows.
UNKNONWN undefined type (undeclarable)
INTEGER Iinteger varlable
REAL real variable
BOOLEAN boolean varlable
STRING character string variable
SET set varlable
POINTER pointer varliable
CELL cell varliable
ALIAS LNS allas name
CHAIN LNS item chain

when

The following additional subsets of INTEGER will be Included
their IPL/SHL representations are defined.

SUBRANGE
ORDINAL

iee]}

(Xy ¥y Zy Dy LNS)

The following SHWL representation att~ibutes are not

supported at this stage of the LNS designe.

PACKED
CRAMMED

The currently defined complex types are as follows.

SCL#TOKEN SCL token
SCL#OPERATOR SCL operator
SCL#FUNCTION SCL function
SCL#COMMAND SCL command
SCL#MACRO SCL - macro

NCR/CDC PRIVATE REV 20 MAY 75

WO NOWNE WN



3-7
ADVANCED SYSTEM LABORATORY CHPO604
75705721
IPLOS GDS - PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
34143 LNS STRUCTURES - e
3.143 LNS STRUCTURES
By the use of cataloged Internal descriptors of complex

types and

chained items, arbitrarily complex structures may be
assemb led. .

3.1.3.1 General Examoles

Examples of the commands to build the structures shown are
included using Command Language syntax for clarity. The
following symbols are used in the diagrams of these structures.

entry name

field name

item name

LNS internal descriptor
chain tinkage

data

xX0oQer=-o

The following structure is built for scalar numer ic

variables.

eeeeceee
ddddddddess
H
2o >XXXXXXXX
Examples

Ins#declare name,integer
The following structure is built for numeric arrays.

eeeeeeee
dddddddde e o
t
e >XXXXXXXX
XXX XXXXX
XXX XXXXX
XXX XXXXX

Examples
Ins#declare name,real ydim=4

NCR/COC PRIVATE REV 20 MAY 75

WENOWE WN

3-8

ADVANCED SYSTEM LABORATORY CHPOG604
75705721
IPLOS GDS - PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
3¢1+3.1 General Examples
The following built for scalar string

structure is
variables. .

eeeeeeee
dddddddd...
3
3o 2AXXXRXXXKX XXX XAXKXXX X XXXXX XXX XXX XXX

Examplel
Ins#declare name,ystring

The following structure is bullt for string arrays.

eeeeeeee
ddddddddess
H
o XXXXXXXXRXXXXXXXXX XX XXXXX XXX XX XXXX
XXX XXXXXXK XXX XX KX XK XXKK X KKK XX XXX X
XXX XXXXXHXXK XXX XX XXX XXX X XXX XXX
XXX XXXXXXXXXXXXX X XXXXX X XXX XXX XXX

Examplet
Ins#declare name,string,32,4

NCR/CDC PRIVATE REV 20 MAY 75

PR R R
WONOVISFWNROOUENOWNSE KN

NN NN
ONOWME WN O

oW N
oW

W
wnN

NWOl W
OoeNOWMS

FEEEEEEr s
ONOVEWN RO



3-9
ADVANCED SYSTEM LABORATORY CHPO 60 &
75/05/21
IPLOS GDOS - PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
3+s1+3.1 General Examples

o e e 0 o0 0 0 e e e e

The following structure is built for complex types.

eeeeceee
ddddddddececccsecsccsccae dfftfffftf
H e« sdddddddd
3o >XXXXXXXX<eS3 fEIFFPfS
XXXXXXXX<eoo edddddddd
eesCCCCCCCC<es FfEEEFFLS
H $ . «dddddddd
H
8o>iiliilli ee>lillllil ee>i1ilill1l
CCCCCCCCae? CCCCCCCCeesd cCCCCCCCC
«eedddddddd e..dddddddd «..dddddddd
t ] t :
3o >XXXXXXXX 3o DXXXXXXXX  $e¢>XXXXXXXX
Examples

Ins#record record_name,3

Ins#field record_name,flield_a,integer
Ins#field record_nameyfield_byreal
Ins#field record_name,yfield_cychain
Ins#declare structure,type=record_name
Ins#insert structure.field_cyitem_a
Ins#insert structure.field_cyitem_b
Ins#lnsert structure.field_cyitem_c

NCR/CDC PRIVATE REV 20 MAY 75

WoONOWNEWwN-

3-10
ADVANCED SYSTEM LABORATORY CHPOG604
75705721

IPLOS GUS - PROGRAM MANAGEMENT

~ o e e e e e e -~

3.0 LOGICAL NAME SPACE MANAGEMENT
3¢1e3.1 General Examples

- —— R ~

As lllustrated below, all combinations of items and flelds

are permitted.

eeeeeeee :
ddddddddecececcccscssccce>fffffete
H «s s dddddddd
o >XXXXXXXX<o? fTEEEEES
XXXXXXXX<ese edddddddd
eeeCCCCCCCC<ess fIEFETFS
2 xXXXXXXXX<. $.dddddddd
H ] freeeeee
t $ee..dddddddd
H
$e>l1101111 ee>illilili ee>iilllilld
CCCCCCCCss? CCCCCCCCesd cCCCCCCCC
eeedddddddd +..dddddddd ... dddddddd
3 $ H
H 3o >XXXXXXXX 34>CCCCCCCCosose
3 H
Tecscccscncacee>fffffffe 1illllli<es
H . « e sdddddddd cccecececcce
Pe>XXXXXXXX<eS FfEFFEflSf ddddddddes o
XXXXXXXX<oos eodddddddde s e )
XXXXXXXX€o 3 $ XXXXXXXX<e3
XXXXXXXX 8 3 ffffffffc,
3 1 .dddddddd
H freeeeee
$e. s dddddddd
Examples

Ins#record subrecord_b,2

Ins#field subrecord_by,tield_a,yreal

Ins#field subrecord_b,fleld_b,dim=2

Ins#record subprecord_a,2

Ins#field subrecord_a,field_ayintager
Ins#field suorecord_a,fleld_b,type=subrecord_b
Ins#record record_name,4

Ins#field record_name,field_ayinteger
Ins#field record_name,field_b,yreal

Ins#field record_name,field_c,chain

Ins#field record_name, field_dystring,8
Ins#declare name,type=record_name

Ins#insert name.field_cyitem_a,type=subrecord_a
Ins#insert name.fleld_cyitem_b

Ins#insert name.flield_cyitem_c,type=chain
Ins#insert name.field_ce.item_cylitem_ayreal

NCR/CDC PRIVATE REV 20 MAY 75

W NONE N

e
)

e
nwEo

N
SN

NN
LN -



3-11

ADVANCEU SYSTEM LABORATORY CHPO 60 &
75705721
“IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3010342 SCL#TOKEN Example

3+1.3.2 SCL#TOKEN Example

SWL Definition
TYPE

Ins#desc = RECORD
data_typet! O.emax_type,
data_lent O0..max_len,
data_dims 0O..max_dim,
data_sizet Oe..max_size,
excls BOOLEAN,
non_excid BOOLEAN,
datat “type_data,
desct “type_desc,
ex_attrs SET OF 1..64,
RECEND,

scl#string = RECORD,
thit 1..256,
rhit 0..255,
buffs STRING (255) OF CHAR,
RECEND,

sc | #t oken = RECORD
typt INTEGER,
desc? Ins#desc,
ivs INTEGER,
rv? REAL,
sv3 scli#string,
RECENDS

LNS Definition

Ins#record Ins#descy9y (declareyinsert),ins#103
Ins#fleld Ins#desc,data_type
Instfield Ins#descy,data_len
Ins#field Ins#descy,data_dim
-Ins#field Ins#desc,data_size
Ins#field Ins#descyexclyboolean
Ins#fleld Ins#descynon_exclyboolean
Ins#field Ins#descydataypointer
Ins#field Ins#descydescypointer
Insitfleld Ins#descyex_attryset 64

Insi#record scl#string,3,(declareyinsert),Iins#103

NCR/CDC PRIVATE REV 20 MAY 75

WENOVI & W

o
e o

P e
VENOWE W

NN NN
(2N Y

NN
n &

NN
O ® N

O O3 Ol Ol NN
NoOounsFuwnNrE o

W W
o ®

EErseE
VEwnN R

& £
~N o

&
-]

3-12
M LABORATORY CHPO604
ADVANCED SYSTEM L 5705 /21

IPLOS GDS - PROGRAM MANAGEMENT

P
-~

3.0 LOGICAL NAME SPACE MANAGEMENT
3¢143.2 SCL#TOKEN Example

B e e e 0 0 0 e e 0 0 0 v 0 e B o 0 0 P 0

Ins#tfield scl#string,lihi
Inst#field scl#string,rni
Ins#field scl#stringsbuffystring,255

Ins#record scl#token,5
Ins#ifield scl#token,typ
Ins#field scl#tokenydesc,ins#desc
Ins#field scl#tokensiv
Iins#fleld sci#tokenyrvyreal
Ins#field scl #tokenysvyscl#string

NCR/CIC PRIVATE REV 20 MAY 75

WO~NONE WNP



ADVANCED SYSTEM LABORATORY

IPLOS GOS - PROGRAM MANAGEMENT

3-13
CHPO604
75/05/21

3.0 LOGICAL NAME SPACE MANAGEMENT
3e1.4 TYPE CONTROLLED *OWN CODE'™ PROCEDURES

~——— - - ~e

3.1.4 TYPE CONTROLLED *OWN CODE* PROCEDURES

Provision has been made for '"own code" procedures external
to the LNS system code to be conditionally called by request and
data type. This feature is intended to allow other components of
the operating system to be advised of certain LNS operations on
data with which they are concerned. These procedures will be
passed the LNS request code, the request parameters and the LNS
internal descriptor of the entry or item to ne acted upon. A
status must be returned by the procedure. If this status is not
normaly the LNS request will be aborted and the status returned
to the user. All parameters and status records will follow
normal system conventions. ’

These procedures are defined at the time the internal fleld
descriptor Is catalogued by the LNS#RECORD request. The dynamic
loader is called with the named procedure to supply a value for a
procedure pointer variable (TPROC) in the LNS#TYPE tablee. This
procedure s called by the specified LNS requests whenever a
variaole or a field of a variable of the specified type Iis
referenceds The trap procedure Is invoked prlor to any action by
the LNS request with the exception of LNS#DECLARE and
LNS#INSERT. These two requests call the procedure after
completing thei~ respective functions. A trap procedure may

" issue LNS requestse. Howevery recursion and interlock problems
are possible if the logic of the trap is defective.

Two examples of possible uses of these procedures are fto
initialize varlables when declared or inserted or to monitor
changes via get and put by the user to tables currentiy Iin use by
the systems A third example would be the implicit declaration of
associated variables or insertion of items Into a chain flield.

A set ot procedures named in the form LNSt#<status code> are
supplied In the LNS library. These procedures function as own
code trap routines and return the status record Indicated by
their name. For example ULNS#103 returns a status of "invalid
type"” and may be used to prevent declaration of a complex type
intended only for wuse as a field of another compiex type and
never as a variable on Ifts owne. This is 1itlustrated iIn the
SCL#TOKEN example.

NCR/COC PRIVATE REV 20 MAY 75

WENOV & WN

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

3-14
CHPO604
75705721

3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.5 EXTRINSIC ATTRIBUTES

3+1.5 EXTRINSIC ATTRIBUTES

In addition to the normal LNS intrinsic attributes, the LNS
system wlll retaln 64 user defined extrinsic attributes for any
element. These attributes have no meaning to tne LNS system but
may be assigned and queried by the user. .

Attripbutes 33 to 64 are reserved for operating system use
(ie2e SCL decoding attributes) while attributes 1 to 32 may be
manipulated by the end user (i.es problem program).

Currently reserved attributes aret

33..40 system command |anguage

3.2 LNS REQUESTS

The following requests are avallable for the manipulation of
LNS.

NCR/CIC PRIVATE REV 20 MAY 75

WENOVES W



3-15
ADVANCED SYSTEM LABORATORY CHPO604
75705721

IPLOS GUS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3e2¢1 LNS#ATTACH

~ B

3.2.1 LNS#ATTACH

The purpose of the LNS#ATTACH request 1Is to add a new
segment to the LNS segment list as the most local segment.

LNS#ATTACH (segment, oldy, status)

segmentt The segment parameter specifies a string containing
the name of a segment currently known to the Job (l.es
mapped In).

old: The old parameter specifies a boolean varjables. If the
value of the variable is true, the LNS data currently
in the segment will be accessable. If the variable Iis
false, tne segment will be initialized as empty.

statust The status parameter specifies a variabie Into which

the status record is to be placed. The status codes
returned are described under “"error conditlions®.

NCR/CDC PRIVATE REV 20 MAY 75

VWoeENOVF W

ADVANCED SYSTEM LABORATORY

3-16
CHPOB0 4
75705721

IPLOS GDS - PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
34242 LNS#DETACH

s o s o e 0 o e e a0 e 0 0 P e e 0

3.2¢2 LNS#DETACH

The purpose of the LNS#DETACH request Is to remove a segment

from the LNS segment list.

LNS#DETACH (segment, status)

segment? The segment parameter specifies a string containing
the segment to be detached.
this parameter (indicated by a blank string)

the name of

-———— ~

the most local segment to be detached.

statuss The status parameter specifies a variable Into which
the status record is to be placed. The

status

returned are described under *error condlitions".

NCR/CDC PRIVATE REV 20 MAY 75

Omission of
will cause

codes

VONONE N

[l ol vl =4
WhN o

et el
W ~NoOWm &

n NN
N o

23



3-17 3-18

ADVANCED SYSTEM LABORATORY CHPOGEO 4

ADVANCED SYSTEM LABORATORY CHPO 60 &

75/05/21 f5/05/21

IPLOS GDS - PROGRAM MANAGEMENT
3.0 LOGIdAL NAME SPACE MANAGEMENT
3.2.3 LNS#DECLARE

IPLOS GOS - PROGRAM MANAGEMENT

- s s 20 e e 2 e e e e 2 e 0 ot B e 0 e 0 0 R 8 0 0 0 0 0 o e 0

3.0 LOGICAL NAME SPACE MANAGEMENT
3e2¢4 LNS#REMOVE

-~ - et e o e e e ~~

- v e 0 s o —~

34243 LNS#DECLARE 1 3.2+4 LNS#REMOVE
2
3 ) :
The purpose of the LNS#DECLARE request Is to declare an 4 The purpose of the LNS#REMOVE request is to remove an entry
entry In the LNS. 5 from the LNS.
6
7
LNS#DECLARE (segment, entry, type, length, dim, status) 8 LNS#REMOVE (segment, entry, status)
9
segment: The segment parameter specifies a string containin 10 segments The segment parameter specifies a string contalning
? the name gof tze segmentpin which the engry Is to bz 11 the name of the segment which Is to be searched for the
declared. Omission of the segment parameter (indicated 12 entry. Omission of the segment parameter (indicated by
by a blank string) will cause the entry to be declared 13 a blank string) will cause each segment whose name
in the most local segment. 14 appears in the LNS segment list to be searched.
15
entryt The entry parameter specifies a string containing the 16 entryt The entry parameter specifies a string containing the
name of the entry being declared. 17 name of the entry which Is to be deleted.
18
typet The type parameter specifies a string containing the 19 statust The status parameter specifles a variable Into which
type of the entry beling declared. Omlsglon of 1he9type 20 the status record Is to be plfced. The stafgs codes
parameter (indicated by a blank string) will cause an 21 returned are described under "error conditions®.
entry of type INTEGER to be declared. The wvalid LNS 22
types are those described under “data types" or any 23
complex type previously defined by LNS#RECORD and 24
LNS#FIELD. 25
26
lengtht The length parameter 1is only -meaningful when 27
declaring string or set variables. For strings the 28
parameter specifies an integer contalning the number of 29
bytes to be allocated for the string. For set 30
variaoles the integer contains the number of elements 31

In the set. Omission of the length parameter
(indicated by a 0) will cause a default of 32 to be
assumed.

dim¢ The dim parameter specifies an integer containing the
dimension of the entry being declared. Omission of the
dim parameter (indicated by a 0) will cause a default

of 1 to be assumed.
statust The status parameter specifies a variable into which

the status record is to be placed. The status codes
returned are described under “error conditions®.

NCR/CDC PRIVATE REV 20 MAY 75

EEFPFFEEFFEFEFE N NN NN NN
ENONFUNFROOENOWNEWN

NCR/COC PRIVATE REV 20 MAY 75

WOENOVIS N



3-19
ADVANCED SYSTEM LABORATORY CHPOD604
o 75705721
IPLOS GDS - PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
34245 LNS#ENTRY

e e v 0 0 e g s o e o0 0

34245 LNS#ENTRY

The purpose of the LNS#ENTRY request is to get the
descriptor of an LNS entry given the name of the entry.

LNS#ENTRY (segment, entry, subscr, desc, status)

segments The segment parameter specifles a string containing
the name of the segment which is to be searched for the
entry. Omission of the segment parameter (indicated by
a blank string) will cause. each segment whose name
appears in the LNS segment list to be searched.

entryt The entry parameter specifles a string containing the
name of the entry whose descriptor is being sought,

subscri The subscr parameter specifies an integer containing
the subscript to be used when the entry is an arraye.
Omission of the subscr parameter (indicated by a 0)
Wwill cause a descriptor of the entire array to be
returned,

desc? The desc parameter specifies a record into which a
descriptor is to be returned.

status: The status parameter specifies a variable into which

the status record is to be placed. The status codes
returned are described under "error conditions™.

NCR/CDC PRIVATE REV 20 MAY 75

ORNONE W

3-20
YSTEM LABORATORY CHPO 80 &4
ADVANCED S 25705724

IPLOS GDS - PROGRAM MANAGEMENT

o e e s ot e e e ot 0 R 0 8 0 0 0 0 0 0 P 0 o 0

.

3.0 LOGICAL NAME SPACE MANAGEMENT
34246 LNS#NEXT

~—— P

3246 LNS#NEXT

The purpose of the LNS#NEXT request is to get the descriptor
of a flield or item given the descriptor of the enclosing entry,
Item or fleld.,

LNS#NEXT (input_desc, name, subscr, output_desc, status)

input_desct The input_desc parameter specifies the name of a
record containing a. descriptor of the enclosing entry,
field or item.

name$ The name parameter specifies a string containing the
name of +the fleld. or Item whose descriptor iIs being
sought.

subscr? The subscr parameter specifies an integer containing
the subscript to be used when the field or item is an

array. Omission of the subscr parameter (indicated by
a 0) will cause a descriptor of the entire array to be
returned. :

output_desct The output_desc parameter specifles a record
Iinto which the descriptor of the fleld is to be
placed.

statust The status parameter specifles a variable Into which
the status record Is to be placeds The status codes
returned are described under *“error conditlions".

NCR/CIC PRIVATE REV 20 MAY 75

WONONSE NP

Tl
ONOVsUNHEO

N
o0

W W NWNAWNNWWANWNNNNDNNNN DD N
omﬁom&umpoomqa\m:ur\\p

SreEeEEsss
ONOVMFWN O



3-21
ADVANCED SYSTEM LABORATORY CHPO604
75/05/21

IPLOS GDS - PROGRAM MANAGEMENT

e v s vt e s 0 0 0 e 0 0 0 0 e

- -

3.0 LOGICAL NAME SPACE MANAGEMENT
34247 LNS#SLICE

~—————— ——— —~——

3247 LNS#SLICE

The purpose of the
descriptor
array.

LNS#SLICE request is to get the
of an element of an array given the descriptor of the

LNS#SLICE (input_desc, subscr, output_desc, status)

input_desct The Input_desc parameter specifies. a record
containing the descriptor of the array to be sliced.

subscrt The subscr parameter specifies an integer contalning
the subscript of the desired element.

output_desct The output_desc parameter
into which the
placed.

specifiles a record
descriptor of the element Is to be

statust The status parameter specifies a variable into which
the status record 1Is to be placed.. The status codes
returned are described under "error conditions".

NCR/COC PRIVATE REV 20 MAY 75

WONONE WM

3-22
ADVANCED SYSTEM LABORATORY CHPO6D 4
75705721

IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
342¢8 LNS#GROW

3.2.8 LNS#GROW

The purpose of the LNS#GROW request is to grow the dimension
of an LNS entry or item.

LNS#GROW (descy Incr, status)

desct The desc parameter specifies a record containing a
descriptor of the entry or item whose dimension 1Is to
be growne. .

incrt The incr parameter specifles an integer containing the
increment by which the dimension of the entry Is to be
grown. Omission of the incr parameter (indicated by a
0) will cause a default of 1 to be assumed.

status? The status parameter specifies a varliable into which

the status record 1Is to be placede The status codes
returned are descrioed under "“error conditions®.

NCR/CDC PRIVATE REV 20 MAY 75

NI N L e e o
WAL OWENONFWUNHDOOONO NS WM

24



3-23
ADVANCED SYSTEM LABORATORY CHP0604
75705721
IPLOS GDS .- PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
34249 LNS#LOCK
3¢249 LNS#LOCK
The purpose of the LNS#LOCK request is to lock an LNS entry

or item. The locking operation has no -effect on other requests
except other LNS#LOCKS, LNS#UNLOCK, LNS#REMOVE and LNS#DELETE.

LNS#LOCK (descy excl, key, status)

desct The desc parameter specifles a record containing a
descriptor of the entry or item to be locked.

exclt The excl parameter specifles a boolean varlable. If
the value of the varlable is true, accass to the entry
will be exclusives If the value iIs false, access will
be non-exclusive. .

key? The key parameter specifies a string of 31 characters
in which a unique name will be returned when the access
requested was exclusive. If non-exclusive access was
requested, the contents are unchanged.

statust The status parameter specifies a variable into which

the status record Is to be placed. The status codes
returned are described under *error conditions®.

NCR/CUC PRIVATE REV 20 MAY 75

OENOVIE&S WP

el =
WN o

Lol ol ol
We~NOWS

NN NN
WN o

NN
w

AN AWUWUWWNWNNNNNONN
NOVEUNSOOENO

[Z K%
(V- X

B B o ol K
ONOVEFWN O

' - 3=24
ADVANCED SYSTEM LABORATORY CHPO 60 & :
75/05/21

IPLOS GDS - PROGRAM MANAGEMENT

-~

3.0 LOGICAL NAME SPACE HANAGEﬁENT
342410 LNS#UNLOCK

o e s v s e e o a0 0

3.2.10 LNS#UNLOCK

The purpose of the LNS#UNLOCK request is to unlock an LNS

entry or item.

LNS#UNLOCK (descy keyy status)

~ desct! The desc parameter specifies a record containing a
descriptor of the entry or item to be unlocked.

. keyt The key parameter specifies a string containing the
string returned by the LNS#LOCK request when the entry
was locked for exclusive access. If the entry ls being
unlocked from non-exclusive access the key parameter Is
lgnored.

statust The status parameter specifles a variable Into which

the status record Is to be placed. The status codes
returned are descrised under "error conditions™,

NCR/COC PRIVATE REV 20 MAY 75

WwoNOWNswuwN-



3-25
ADVANCED SYSTEM LABORATORY CHPOG04
: 75705721

IPLOS GOS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
342411 LNS#INSERT

e e 0 e e 20 o s o e 0 0 e 0

3.2¢11 LNS#INSERT

The ourpose of the
item into a chain.

LNS#INSERT request Is to Insert a new

LNS# INSERT (desc, item, types fength, dim, status)
desc? The desc parameter specifles a
descriptor of the entry,
item is to be allocated.

record containing a
field or item within which the

item? The item parameter specifies a string containing the
name of the item to be allocated.

typet! The type parameter specifles a string containing the
type of the item being inserted. Omission of the type
parameter (indicated by a biank string) will cause an
item of type INTEGER to be inserted. The wvalld LNS

types are those described under “data types” or any
complex type previously defined by LNS#RECORD and
LNS#FIELD.

lengths The length .parameter is only meaningful when
inserting string or set items. For strings the
parameter specifies an Integer containing the number of
bytes to be allocated for the string. For set ltems
the Integer contains the number of elements in the
set. Omission of the length parameter (indicated by a
0) will cause a default of 32 to be assumed.

dim¢ The dim parameter specifies an Integer containing the
dimension of the item being inserted. Omission of the
dim parameter (indicated by a 0) will cause a default
of 1 to be assumed.

status? The status parameter specifies a variable into which
the status record 1is to be placed. The status codes
_ returned are described under “error conditions".

NOTE: The trap to an
reqguest is
inserted.

“own code"
determined by

procedure by the LNS#INSERT
the data type of the item being

NCR/CUC PRIVATE REV 20 MAY 75

-
HOWEINOVES WN -

el sl Sl
Nouwnpsun

e
w0 ®

FFESEFrasrfuduNUUAnRORONNNDNNNR
ENOVFWNHOOWRNOVFWRNFOOINOVSWNFS

3-26
CHPO6O0L
\DVANCED SYSTEM LABORATORY 75705721

[PLOS GDS -~ PROGRAM MANAGEMENT

s o e e o e e 2 P M 0 0 0 8 A 0 0 0 0 O 0 o 0 0

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.12 LNS#DELETE

~ ————

3.2.12 LNS#DELETE

The purpose of the LNS#DZLETE request is to delete an litem

from a chain.

LNS#DELETE (desc, item, status)

i ing a
desct The desc parameter specifies a record contain
descriptor of the entry, fleld or item which is to be
searched for the item.

itemt The ltem parameter specifies a string containing the
name of the item to be deleted.

statust The status parameter specifies a varlable into which
the status record Is to be placeds The status codes

returned are described under "error conditlons™:

code" brocedure by the LNS#DELETE

tr to an "own
NOTER The ® by the data type of the item being

request Is determined
deleted.

NCR/CDC PRIVATE REV 20 MAY 75

WENOWNE NN

e
©

NN AANWTON NN NN NN NN R b s e s



3-27
ADVANCED SYSTEM LABORATIRY CHPO0604
) 75/05/21
IPLOS GDS - PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
342.13 LNSH#GET
3.2.13 LNSH#GET
The purpose of the LNS#GET request Is to get a value from

the LNS.

LNS#GET (descy buffer, .status)

desc?! The desc parameter specifies a record containing a
descriptor of the entry, field or item whose value |Is
being sought.

buffert The buffer parameter specifles a buffer Into which
the value is to be placed.

statust The status parameter specifies a variable Into which

the status record is to be placeds The status codes
returned are described under "error conditions".

NCR/CDC PRIVATE REV 20 MAY 75

WENOUVIF N

Lol el el
WN e

(=S
=

B
~Nown

3-28
ADVANCED SYSTEM LABORATORY CHPO6O4

75705721
IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.14 LNS#PUT

e e s 2 o e e e 0 e e o e e 0 0 0

3.2.14 LNS#PUT

The purpose of the LNS#PUT request Is to put a- value into

the LNS.
LNS#PUT (desc, buffer, status)

specifies a record containing a
field or item whose value is

desc?! The desc parameter
descriptor of the entry,
to be updated.

buffers The buffer parameter specifies the buffer containing
the new value.

statust The status parameter specifies a variable Into which

the status record is to be placeds The status codes
returned are described under "error conditions®.

NCR/CIC PRIVATE REV 20 MAY 75

WoOoNOWNS WN -



3-29
ADVANCED SYSTEM LABORATORY CHPD60Y
75705721
IPLOS GDS - PROGRAM MANAGEMENT
3.0 LOGICAL NAME SPACE MANAGEMENT
342415 LNS#SETXA

~—— ~— . —~—— ~e

3.2.15 LNS#SETXA

The purpose of the LNS#5ZTXA request Is to set the extrinsic
atftributes of an entry or items Permission to alter attributes
33+464 is verified by the OS#CHECK procedure.

LNS#SETXA (descy attr, status)
desc? The desc parameter specifies a

descriptor of the entry
attributes are to be set.

reco~d containing a
or item whose extrinsic

attrs The attr parameter specifies a set of 1..64 containing
the attributes to be changedes This set will be "xored"
to the current set of attributes resulting In the
symetric difference of the two sets. In other words,
the presence of any attributa In this parameter causes
the attribute to be '"toggled" 1in the LNS internal
descriptor.

statust The status parameter speclifies a variable into which

the status record 1is to be placeds The status codes
returned are described under "error conditions".

NCR/C3IC PRIVATE REV 20 MAY 75

WENONF WN-

3-30
CHPO604
\DVANCED SYSTEM LABORATORY 75705721

[PLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.3 PRIVILEGED REQUESTS

P

3.3 PRIVILEGED REQUESTS

The following requests are subject to restrictions such as
Operating System only or SE#0P use. When any of these requests
are issued permission is verified by the O0S#CHECK procedure.

NCR/CDC PRIVATE REV 20 MAY 75

VENOMEWNR



3-31
ADVANCED SYSTEM LABORATORY CHPOG604
75/05/21

IPLOS GDS - PROGRAM MANAGEMENT

s e a0 e 0 0 0 0 0 e s e o 0 o 0 e

3.0 LOGICAL NAME SPACE MANAGEMENT
3+341 LNS#RECORD

3341 LNS#RECORD

The purpose of the LNS#RECORD request is to
complex type +to the system. The type
global.

define a new
definition Is always

‘LNS#RECORD (record, fields, traps, procedure, status)

record! The record parameter specifies a string
the name of the complex type to be defined.

contalining

fieldst The fields parameter specifies an integer containing
the maximum number of fields to exist In the complex
type.

trapst The traps parameter specifies an
requests for which an *own code" procedure Is to be
invoked for thls type. If this parameter is omitted
(indlicated by an empty set) no traps will occur. The
positlonal signiflicance of each request in the set Iis
as follows,

ordered set of

LNS#DECLAREevessccccscsesl
LNS#REMOVE..
LNS#ENTRY..
LNS#NEXTeoeeesosnsssecessh
LNS#SLICEesnssecscccccacee’
LNS#GROWeeeseensssescessesb
LNS#LOCKe s
LNS#UNLOCKsesoe
LNSH#INSERTeeceessvssncneeed

LNSH#DELEPEceseovaccsoneselld
LNS#GETeeecaosecassnsanaell
LNS#PUTedeeeenscconceneeell
LNS#SETXAcscssesacsccensell

proceduret The procedure parameter specifles a string
containing the name of the “own code"” procedure to be
invoked as indicated by the traps parameter. The
procedure named must reside In a library currently

- Known to the Jjob. An error iIn this parameter will
result in a status being returned from the loader
rather than from LNS. If +this parameter s omlitted

(indicated by a blank string) no traps will occur.
statusd The status parameter speciflies a variable into which

NCR/CDC PRIVATE REV 20 MAY 75

WRNOVI L& WN-

o
NP o

e
NoOunEw

3-32

ADVANCED SYSTZM LABORATORY CHPO604
75/05/721
IPLOS GDS - PROGRAM MANAGEMENT e .
3.0 LOGICAL NAME SPACE MANAGEMENT
343¢1 LNS#RECORD’ e e e e
the status record Is to be placed. The status codes

returned are described under “error conditlons®.

NCR/CDC PRIVATE REV 20 MAY 75

OB NONFE WN



IPLOS GDS - PROGRAM MANAGEMENT

3-33

ADVANCED SYSTEM LABORATORY CHPO 60 &

75/05/721

e o e e 2 e e 0 s 0 e 0 0 B e 8 0 0 0 o o0 e 0 o o e 0

LOGICAL NAME SPACE MANAGEMENT
«2 LNS#FIELD

3¢ 3.2 LNS#FIELD

The purpose of the LNS#FIELD request is to define a field of

3 previously defined complex type.

LNS#FIELD (record, field, type, len, dim, attr, status)

records The record parameter specifles a string. contalning
the name of the complex type of which thils field Is to
be a member.

field: The fleld parameter specifies a string containing the
name of the field to be defined. This name will become
the name of the first currently undefined field of the
complex typee.

typet The type parameter specifies a string containing the
type of the field to be defined. Omission of the type
parameter (indicated by a blank string) will cause a
field of type INTEGER to be defined. The wvalid LNS
types are those described under “data types®" or any
complex type previously defined by LNS#RECORD and

LNS#FIELD.
lengtht The 1length parameter 1s only meaningful when
defining string o~ set fields. For strings the

parameter specifies an Integer containing the number of
bytes to be allocated for the strings. For set flelds
the integer contains the number of elements in the
set. Omission of the length parameter (indicated by a
0) will cause a default of 32 to be assumed.

dimt¢ The dim parameter specifies an integer containing the
dimension of the field being defineds Omission of the
dim parameter (indicated by a 0) will cause a default
of 1 to be assumed.

attrd The attr parameter specifies a set of 1..64 containing
the extrinsic attributes to be associated with the
fielde Note tnat tne LNS#SETXA request may not be used
on fleld descriptorse.

statust The status parameter specifies a variable into which

the status record is to be placed. The status codes
returned are descriocoed under "error conditions".

NCR/CDC PRIVATE REV 20 MAY 75

WeoNOVEFEWwN-

3-34

ANCED SYSTEM LABORATORY CHP0604
AouANEE 75/05/21
IPLOS GUS = PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
343¢3 LNS#SEGLOCK

———— o o

36343 LNS#SEGLOCK

The purpose of the LNS#SEGLOCK request 1s to perform a
non-exclusive lock on a segment In order. to prevent an LNS#DETACH
request from pbeing performed.

LNS#SEGLOCK (segment, status)

segmentt The segment parameter specifies a string contalning
the name of the LNS segment to be locked.

statust The status parameter specifies a variable Into which

the status record is to be placeds The status codes
returned are descrioed under "error conditlons™.

NCR/CDC PRIVATE REV 20 MAY 75

OENONFE WN-

T
N o

[l = el
~NoOwnsE o

N - -
[-XT-R-]

NN
WN -



3-35
ADVANCED SYSTEM LABORATORY CHPOBO 4

75705721
IPLOS GUS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3e3e4 LNS#SEGUNLOCK

s e s o s 2 0 0 e 0 0 e s e e o o e e e 0 e e -~ - —~—

3.3.4 LNS#SEGUNLOCK

The purpose of the LNS#SEGUNLOCK request is to uniock an LNS
segmenty allowing an LNS#DETACH to be performed.

LNS#SEGUNLOCK (segment, status)

segment?! The segment parameter specifies a string containing
the name of the LNS segment to be unlocked.

statust The status parameter specifies a variable Into which
the status record 1is to be placeds The status codes
returned are descrioed under “error conditions",

3.4 ERROR_CONDITIONS

Error conditions are represented by status informatlon
returned by each LNS request. The status information may be
passed to the system message generator for further expansion and
logging.

NCR/COC PRIVATE REV 20 MAY 75

WoOoNGOWNEsWN-

3-36
ADVANCED SYSTEM LABORATORY CHPO 604
75/05/21

IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3s4e1 DEFINITION OF CODES

3.441 DEFINITION OF CODES

0 LN 000 normal completion
Parameter errors

LN 101
LN 102

invalid segment name
invalid element name
LN 103 invalid type

LN 104 invalid length

105 invalid dimension

LN 106 invalld iIncrement

LN 108 invalid key

DPEP®®E® PP ®
[
z

LN 109 invallid subscript
LN 10A invalid descriptor
Access errors

8 LN 201 denied access
8 LN 202 segment exlsts
8 LN 203 segment does not exist
8 LN 204 entry exists
8 LN 205 entry does not exist
8 LN 206 field exlsts
8 LN 207 fleld does not exist
8 LN 208 item exists
8 LN 209 item does not exist

Functional errors

LN 301
LN 302
LN 303
LN 304
LN 305
LN 306
LN 307

entry already |ocked
entry not locked

segment locked by system
element not a chain
element not a structure
element too large
segment not |ocked

DE DO ®®®

Internal errors

LN 901
LN 902
LN 903
LN 904

no memory for LNS internal descrintor
no memory for data

maximum number of fields exceeded
maximum number of segments exceeded

MTMOOOOO

LN 905 maximum number of types exceeded
LN EEE feature not yet supported
LN FFF disaster

NCR/CDC PRIVATE REV 20 MAY 75

OENOVE WN M



3-38
75/05/21

CHP0604

3.0 LOGICAL NAME SPACE MANAGEMENT

3.4.2 ERROR CODES BY REQUEST

i e s e et v e e 0 0 o0 e

IPLOS GDS - PROGRAM MANAGEMENT

ADVANCED SYSTEM LABORATORY

3-37
75705721

CHPO G604

SYSTEM LABORATORY

3.0 LOGICAL NAME SPACE MANAGEMENT’

3¢4+.2 ERROR CODES BY REQUEST

IPLOS GDS - PROGRAM MANAGEMENT

ADVANCED

WM INON OO

® 90 00 00 oo 0 00 00 ve o0 % 00 o0 se 00 00 oo oo

.
sHWuDZJoo X x X
.

v o0 o0 e ae 0 v o oo oe % 50 20 se e b0 0 ue b
tnwodooy 3¢ X
“::'."'.'..:' 90 00 00 w0 0 % w0 e
wHwaa 3 X XX

.

@ o *% o0 e %0 e o0 0o oo s @0 3o 0o 00 ° oo oo

X

xwooxo x X
.

@ 00 00 oo o0 o0 we 0 oo oo o0 o0 e oo oo oo

TOWRxa

o te 4e v oo o0 o0 o0 0a 0
e~

o e e e e e e
towr
“'."'0...‘..0'0.0.
mDELE'IE

@ 00 00 4o ©0 00 0o s se o0

X
X
X
X
X

.
eHZUVWX -
.

IFETRRTTRRTE FRRE FEFS PRSE PR FEPE PY PR PRTR Y RE PR |
X

@ 99 55 00 90 00 00 0o sa 00 05 2 co se OO o0 be oe o0

S uMm T INO

cCoooo oo

Ol A -

zZZzZZZ2ZZ

P N R R [

D oD DD

o so 00 oo oo oo ve se
HAUMINONDODOOANMINON 00O
Eal R R R R R R R Y

@ %0 4o s se oo 0o oo

eDZ U000V

3

s 300X
noo‘oc'oo.-ooo
"GROH
ulooo-.o.ool

naHOW

.
.
.
.:z::xtt
.
°Z WX

.

.

o oo 5 e o 4o 0e
W Z o>
v b0 o0 s0 o0 o0 o

xwro>w

e o0 00 s o0 ga ve

DWouaxXWw x> x X

X3 X3 X8 XX 38X 88X 2tX 2 X
X

e 0 o0 oo os ge
OWkrFaoOoI

@ e ® oo oo oo g0 o0

[(EEXEERERERE EEERE FYRE FITIPE PIPPE PINNE PRI PETE PRTE PRI PR
3

0 00 a0 % 0 oo ee
.
eI I OT x x
.
@ a0 5 05 o0 0o 0a oo 9 o a0 % 20 oo oo
OHuMm TN
Cooooo
O
ZzZzZZz=z=
B IR I R R
O ®ao@® DO
e oo e 5o oo e oo

3.442 ERROR CODES BY REQUEST

X
NCR/CDC PRIVATE REV 30 APR 75

Xt X3 X8

H
X 2
3
H
X 3
X
‘s
H
H
H
b

X

1 X
2 X
H
FLNFFF $ X ¢ X2 X8 X8 X3 X8t X2 X1 X8

Tesesnsncesedosaloneldocolocelocnelonedonatlonealocst

8 LN 109 @
8 LN 10A t X t
8 LN 202 1
8 LN 203 3
8 LN 204
1 8 LN 205 3
8 LN 208 @
$ 8 LN 209 3
8 LN 303 2
T 8 LN 304 t
8 LN 306 3
8 LN 307 3

$ 8 LN 108
3 8 LN 206
$ 8 LN 207 ¢
t 8 LN 301 3
3 8 LN 302
t 8 LN 305 3
$ C LN 901
C LN 902
¢ C LN 903
t C LN 904 2
8 C LN 905 3
3 E LN EEE 3

H
H
3
H
H
H
H
H
b
H

27
28
36
37
38
39
40
41
42
43
44
46
47
48

X 3

X 2 X ¢ X3 Xt X8
X3
Xt X3

NCR/CDC PRIVATE REV 20 MAY 75

3 Xt X8

X

t X 2t Xt X
X

e ®0 00 s oo oo

H
X3 X ¢ X2 X s X1t X

H
)
H
b
t
)
H
H
3
3

X

8 X 3

F LN FFF ¢ X 3

Seesssccscelocedeselocetocelecetonatosetocatenetonat

8 LN 106
3 8 LN 108
8 LN 109 1
$ 8 LN 10A ¢
$ 8 LN 201 3
$ 8 LN 202
8 LN 203
8 LN 204 3
8 LN 205 :
8 LN 206 3
8 LN 207
.8 LN 208 3
8 LN 209 3
8 LN 301
8 LN 302
8 LN 303 :
8 LN 304 3
8 LN 305 3
8 LN 306
8 LN 307 1
C LN 901
C LN 902 :
$ C LN 903 3
T C LN 904
C LN 905 3
$ E LN EEE

H
3
H
H
H
H
H
)
H
H
H
H
b
)
b
H
3



ADVANCEU SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

4=1
CHP OG04 .
75/05/21

4.0 PROGRAM COMMUNICATIONS

e 20 e e e 0 o e 0 0 o e B 0 2 0 ot o P B 8 P 0 P R P O P I B e 2 00 0 P O 0 e 0 O 0

440 _PROGRAM COMMUNICATIONS

bel __EVENTS

Events are system supported faclilities whlch permit
synchronizatlon and interrupt control for asynchronous activities
within a Job. An event Is represented by an event control block
In storage and several system requests to manipulate the control
block. An event control block may be either an LNS varlable or a
structure in tha job data base (internal static, stack, etcs).

The event control block contains the following informations
o Condition state (caused, cleared)
o Actlion state (enabled, disabled)
o Action (attached procedure, walted)

The condition state indicates the current condition of the
event, caused or cleared. The actlon state, enabled or disabled,
directs the system to either immediately effect the specified
action or delay the action. The action can be the invoking of an
attached procedure, or It can be continuing the execution of an
asynchronous activity In the Job that has been waiting for the
causation of this event. The action may ailso be a combination of
both for one or several control points In a Job.

Regardless of the action state being either ®*enabled® or
*disabled®, the system performs the specified action only when
the condition state of the event changes from *cleared® to
*caused®. There are two reguests that do this change,
PM#CAUSE_EVENT and PM#CAUSE_CLEAR_EVENT. The PM#CAUSE_EVENT
request sets the condition state to caused and leaves it that
Way. The PM#CAUSE_CLEAR_EVENT request Is used for pulsings If
the condition state of an event is ®‘caused® when either of these
requests is issued, the system will not perform the specified
actions The PM#CLEAR_EVENT request sets the conditlon state of
an event to ‘cleared*®.

An interrupt procedure can be attached to an event by using
the PM#ATTACH_PROCEDURE request. When an event to which an
interrupt procedure has been attached does occur, the resutlt will
be the serial invocation of the attached procedure using the same

NCR/COC PRIVATE REV 30 APR 75

O NV E WN -

-
o

e
FwunN

15

ADVANCED SYSTEM LABORATORY

IPLOS GOS - PROGRAM MANAGEMENT

4-2
CHPOBD 4
75/05/21

4,0 PROGRAM COMMUNICATIONS
4ol £ VENTS

~—— T et —~——

control point as the requestor of the PM#ATTACH_PROCEDURE
request. .

If the action state of the event to which the procedure is
attached is ‘*disabled*, the invocation of the orocedure will be
delayed until the event is enabled. Event occurrence processing
for a particular event remalns disabled until enabled by the
PM#ENABLE_EVENT request.

The PM#DISABLE_EVENT request prevents the invocation of any
and . all procedures attached to a particular event. A procedure
can be attached to more than one event. More than one procedure
can be attached to one event.

NCR/COC PRIVATE REV 30 APR 75

WENOVE WN R



. 4-3
ADVANCED SYSTEM LABORATORY CHPO 60D &4
. 75/05/21
IPLOS GUS - PROGRAM MANAGEMENT
4,0 PROGRAM COMMUNICATIONS
Gelol EVENT REQUESTS
4el.l EVENT REQUESTS
The event requests provided by Program Management are as
follows?
PM#ATTACH_PROCEDURE (procedure, event, status)
PM#CAUSE_EVENT (event, status)
PM#CAUSE_CLEAR_EVENT (event,y status)
PM#CLEAR_EVENT (event, status)
PM#DETACH_PROCEDURE (procedure, event, status)
PM#DISABLE_EVENT (eventl, ...y eventM, status)
PM#ENABLE_EVENT (eventl, ««esy eventM, status)

PM#STATUS_EVENT (event, condition_state,
waited, attached_interrupt_procedure, status)

PM#WAIT_EVENT (eventl, ...y eventM, positiony, status)

PM#WATIT _CLEAR_EVENT (event1i, eventM, position, status)

action_state,

4bele.i.1 PM#ATTACH PROCEDURE

This request establishes an association of an interrupt
procedure with an event.
PM#ATTACH_PROCEDURE (procedure, event, status)
procedure’ pointer to the procedure to be Invoked when the
event occurse.
event? pointer to event control blocke.
status? returned request status.
4elele2 PM#CAUSE TVENT
This request sets the specifiad event to caused. If the
event is in the cleared state when this request is made, the
system oerforms the action, 1If any, as specified In the event
control olocke If the event is In the caused state already when
this request |Is madey the system does not perform any specified
action and informs the requestor via the returned request
status. Performing the action includes the execution of all
attached procedures.
PM#CAUSE_EVENT (event, status)

NCR/CDC PRIVATE REV 30 APR 75

WONOWNE N

=
WO

[
&

4=y

ADVANCED SYSTEM LABORATORY CHPOG604
75705721
IPLOS GOS - PROGRAM MANAGEMENT
4.0 PROGRAM COMMUNICATIONS
4ele1l.2 PM#CAUSE_EVENT
event?! pointer to event control block.

status?! returned request status.

4e1.1.3 PM#CAUSE CLEAR EVENT

This requests performs the action, if any, as specifled Iin

tne event control block and returns to the requestor wWwith the
event in the cleared state. If the event is In the caused state
already when this request is made, the system does not perform

any specified action and Informs the requestor via the returned
requests status. Performing the action includes the execution of
all attached procedures.
PM#CAUSE_CLEAR_EVENT (event, status)
event?! pointer to event control blocke.

status? returned reauest status.

4elelelh PM#CLEAR_EVENT

This request sets the condition state of an event to
cleared.
PM#CLEAR_EVENT (event, status)

event$ pointer to an event control blocke.

statust returned request status.
4e1.1.5 PM#DETACH PRQCEDURE
This regquest removes the assoclation of an interrupt

procedure with an evente. The requestor must be the same as the

PM#ATTACH requestor.
PM#DETACH_PROCEDURE (procedure, event, status)

proceduret pointer to procedure to no lonjger be assoclated
with the speclifled event control block.

NCR/CDC PRIVATE REV 30 APR 75

WOENOWNE N+



4-5 L-86
ADVANCED SYSTEM LABORATORY CHPO 60 &

CHPOBD 4 ADVANCED SY>TEM LABORATORY

75/05/21 75/05/21

IPLOS GOS - §ROGRAM MANAGEMENT

IPLOS GDS - PROGRAM MANAGEMENT

~——— T

4.0 PROGRAM COMMUNICATIONS
4e1.1.5 PM#DETACH_PROCEDURE

- ~—— ~

event?! pointer to event control block.

statust returned request status.

belele6 2M#DISABLE EVENT

This request disables event occurrence processing for an
event or events. It sets the action state of a specified event
to disabled.

PM#DISABLE_EVENT (eventl, ...y eventM, status)
event: pointer to an event control block.

status? returned request status.

4e1.1.7 PM#ENABLE EVENT

This request enables event occurrence processing for an
event or events. It sets the action of a specifled event to
enabled.

PM#ENABLE_EVENT (eventl, ...y eventM, status)
eventt pointer to an event control blocks

status?! returned request status.

4e1e1.8 PM#STATUS EVENT

This request returns the status of an event.

PM#STATUS_EVENT (event, condition_state, action_state,
waited, attached_interrupt_procedure, status)

event! pointer to event control block.

condition_statet returned state indicating caused or
cleared.
action_statet returned state indicating enabled or

disabled,

NCR/CDC PRIVATE REV 30 APR 75

OENO NS NN

T
N o

4.0 PROGRAM COMMUNICATIONS
4e1e1.8 PM#STATUS_EVENT

P e —~——— ~———

walted?t returned Indication If there are any control points
in the Job waiting fo~ this event to be caused.

attached_interrupt_proceduret returned indication if there
are any interrupt procedures that are attached to this
event.

status$ returned request status.

4o1.1.9 PM#WALIT EVENT

This request suspends the executlon of a control point until
one or all of a specified number of events has occurred.

PM#WAIT_EVENT (eventl, ..., eventM, position, status)
event?: polnter to an event control bilock.

positlont if specified, one event occurrence will satisify
the walt and its position (1-M) will be returned. If not
specifiedy all the events must occur to satisfy the
wait. '

status$ returned reaquest status.

The system will default a time 1imit so a 'control point will
not remain suspended waliting for something that will not occur.
Elapsed default time Ilmit will be reflected iIn the returned
request status.

While a control point 1Is suspended waiting on an event,
other events can occure. These are saved until the wait |Is
satisflied. Then they are processed in the order of their
occurrence including the event or events that satisfied the
waite. Processing event occurrences includes invoking any
attached interrupt procedures.’

The PM#WAIT_EVENT request processor does not alter the
condition of an event before returning to the requestor.

More than one control point in a Job may walit on an event,
in which case all are suspended until the condition state of the
specified event is caused.

If a task ls suspended waiting on an event and there occurs
another event to which an inner-ring Interrupt procedure has been

NCR/CDC PRIVATE REV 30 APR 75

Weo~NOVEsE W=



4=7 4=-8

ADVANCED SYSTEM LABORATORY CHPO G604 ADVANCED SYSTEM LABORATORY CHPO 60 &

75705721 75/05/21
IPLOS GUS - PROGRAM MANAGEMENT IPLOS GDS - PROGRAM MANAGEMENT

4,0 PROGRAM COMMUNICATIONS
4elele9 PM#WAIT_EVENT

4.0 PROGRAM COMMUNICATIONS
442 SIGNALS

attachedy, the system will allow the control poilnt to execute the 1 4e2 __SIGNALS
interrupt procedure and then be suspended again. g
4 Signals are short messages that are wused for inter-job
4oeleled0 PM#WAIT CLEAR EVENT S communications usually Iin the form of requests and responses.
6 For example, system code In a User Job can send a signal to the
7 System Job to request some specific service. The body of the
This request suspends the execution of a control point until 8 signal would contain the request. It may also contain the
one or all of a specified number of events has occurred. It is 9 identification of an assocliated event control block for an event
the same as the PM#WAIT_EVENT request except that it returns to 10 to be caused when a response is recelved.
the requestor with the condition state of the wait satisfying 11
event or events as cleared. 12 A signal may be assoclated with a queue via the
13 PM#SELECT_SIGNAL request. In this case Program Management would?
PM#WAIT_CLEAR_EVENT (eventl, «esy eventM, position, status) 14
15 1) out the signal on a gqueue using the PM#ENQUEUE request
event$ pointer to event control block. 16 -
17 2) cause the queue-associated event, if any, as noted In the
positiont if specifiedy, one event occurrence will satisfy the 18 queue control blocke.
wait and its position (1-M) will be returned. If not 19
specifled, all the events must occur to satisfy the 20 The signal can be removed from the aqueue by using the PM#DEQUEUE
waite 21 request. :
22
status$ returned request status. 23 When a signal is received by the destination control!l point,
: 24 control first goes to a general signal handler and then is routed
The system will default a time limit so a control point will 25 to signal-own-code based on the type of signale. For example, say
not remain suspended walting for something that ~ill not occur. 26 I/70 is a type of signal. Then every I/0 signal received by a job
Elapsed default time 1imit will be reflected in the returned 27 could be processed by an I/0 signal module to do whatever Iis
request status. gg particular for an I/0 signal.
If a control point Is suspended waiting on an event and 30 The types of signals and the Information contained In a
there occurs another event to which an Inner=ring interrupt 31 signal are detailed in Chapter 9 of 0SGDS.
subprogram has been attached, the system will allow the control 32
point to execute that interrupt subprogram and then be suspended 33
again. 3; 4.2.1 SIGNAL SELECTION
3
While a control point is suspended waiting on an event, 36
other events can occur. These are saved until the walt Is 37 The Signal Selection List (SSL) is a structure internal to
satisfiede Then they are processed In the order of their 38 Program Management and Is used to register signal selections on a
occurrence including the event or events +that satisfied the 39 control point basiss The PM#SELECT_SIGNAL reqgJest associates a
wait. Processing event occurrences Iincludes invoking any 40 signal with a queue by creating an entry in the SSL. The Task
attached interrupt procedures. 41 Monitor Signal Handler uses the SSL to queue signals. The
42 PM#DESELECT_SIGNAL request removes an entry from the SSL.
More than one control point may walt on ay event, In which 43
case all are suspended until the conditlion state specified event 44
is caused. 45
46
47
48

NCR/CDC PRIVATE REV 30 APR 75

NCR/CDC PRIVATE REV 30 APR 75

CENOVE NP



4=9
ADVANCED SYSTEM LABORATORY CHPOB04

75/05/21

[
IPLOS GDS - PROGRAM MANAGEMENT

- s e e e e 2 e 0 0 0 0 e 0 0 0 0

4e2.2 SIGNAL REQUESTS

The signal reauests provided by Program Management are as

follows:
PM#SEND_SIGNAL (signal, status)
PM#SELcCT_SIGNAL (name, queue, status)
PM#DESELECT_SIGNAL (name, status)
PM#STATUS_SIGNAL (signal, queues, status)
PM#DISABLE_SIGNALS (status)
PM#ENABLE_SIGNALS (status)

4e242+1 PM#SEND SIGNAL

This request sends a signal from one job to another job.
PM#SEND_SIGNAL (signatl, status)
signalt pointer to the signal to be sent.

status$ returned request status.

4.2.2.2 PM#SELECT SIGNAL

More than
multiple

a signal with a gqueue.
queuey but not

This request assoclates
one signal may be associated with one
queues for a signal.

PM#SELECT_SIGNAL (name, gqueue, status)

nama: the signal type and 1Id in the header of tne signal

expected to be received.

queue! pointer to the queue control block to be wused by
Program Management to queue the. signal so it will not be
lost.

status?! returned request status.

NCR/CDC PRIVATE REV 30 APR 75

WENONF WN -

R NN N R e
NFWNPOWENOVSTWNRrO

NN DN
e~

NN WW NN W
NOVMEFEWN R

W
O ®

£ &5
N o

sFEEES
NoOWVEw

£
@™

4-10
ADVANCED SYSTcM LABORATORY CHPO 60 &
75/05/21
IPLOS GDS - PIOGRAM MANAGEMENT
4,0 PRUGRAM COMMUNICATIONS
4¢242¢3 PMIDESELECT_SIGNAL
be2.2.3 PM#DESELECT SIGNAL
This request breaks the association of a signal with a
queue. Further receptions of the specified signal will not
result In those signals being items on the previously specified

queue.

PM#DESELECT_SIGNAL (name, status)

names the type and 1id of the signal as specified In a
previous PM#SELECT_SIGNAL request.

status?t returned request status.

4.2.2.4 PM#STATUS SIGNAL

This request provides a way to determine if a particular
signal has arrived. -Thls Is meaningful for the case of more than
one signal associated wlth a queue. It can be determined if
anything is on the queue by using the PM#STATUS_QUEUE request.
It can be determined if a particular signal 1is on a queue by
using the PM#STATUS_SIGNAL rejuest.

PM#STATUS_SIGNAL

(signaly queue, status)

namet type and 1d of a signal
PM#SELECT_SIGNAL request.

as previously specified In a

queuel! returned pointer to queue control block, if
specifled on a previous PM#SELECT_SIGNAL request.

anyy as

status? returned request status.

4.2.2.5 PM#DISABLE SIGNALS

This request 1Is wused to prevent loss of control due to
Interruption for signal processing for the requesting control
point. This request does not prevent hardware interruptions.

PM#DISABLE_SIGNALS (status)

status? returned request status

NCR/COC PRIVATE REV 30 APR 75

WoONOVIFE WP



ADVANCED SYSTEM LABORATORY

IPLOS GUS - PROGRAM MANAGEMENT

4-11
CHPO 60 &
75/05/21

4.0 PROGRAM. COMMUNICATIONS
44202¢6 PMH#ENABLE_SIGNALS

4.2.2.6 PM#ENABLE_SIGNALS

This request is used to enable signal processing after a
previous PM#DISABLE_SIGNALS request. .

PM#ENABLE_SIGNALS (status)

statust returned request status.

44242.7 PM#IDENTITY

This request is used to obtain the execution identity of the
requestor. The execution identity may be the control polnt 1ld,
the task control blocks the program control blocky, or the Job
control blocke.

PM#IDENTITY (to be supplled)

NCR/CDC PRIVATE REV 30 APR 75

WoeNOVIFwuwnH

-
(=]

ADVANCED SYSTEM LABORATORY

4-12
CHPOB04
75705721

4.0 PROGRAM COMMUNICATIONS
4.3 QUEUES
4.3 UEUE

The Qqueuing mechanism provided by Program Management is
designed to allow the sending, storingy, and retrieving of
arbitrary data structures between asynchronous actlvities within
a Jobe The queuing facility will be used, for example, by the
Signal mechanism to pass standard signals to the interested
control points. An event may be associated with a queue so that
an enqueue request on the queue would effect causation of the
event. It is the responsibility of the owner of the QCB to put
In the pointer to an assoclated ECB.

A queue is defined by a queue control block somewhere In the
address space of the Job. It can be an LNS structure or
somewhere in the Job data base (stack, internal static, etc.)
The format of a queue control block is shown below?

TYPE
QUEUE_CONTROL_BLOCK = RECORD
NUMBER_QUEUED$ SEMAPHORES
ASSOCIATED_EVENTS “EVENT_CONTROL_BLOCK,
CHAIN_START$ “QUEUE_ITEM,
CHAIN_END® “QUEUE_ITEM,
STORAGE_METHOD: (To Be Suppllied)
RECEND3
TYPE
QUEUE_ITEM = RECORD
QUEUE_THREAD? ~“QUEUE_ITEM,
DATA_LOCATIONS “SEQUENCE,
RECEND.

The fields in the QUEUE_ZONTROL_BLOCK and
described belont

QUEUE_ITEM are

NUMBER_QUEUEDS This semaphore should have an initial value
of zero. It indicates the number of items currently on
the queue. Adding an item to the queue wWill do a
SIGNAL_SEMAPHORE on this semaphore and getting an litem
from the queue wWill do a PM#WAIT_SEMAPHORE on this
semaphore. .

ASSOCIATED_EVENT: If the pointer is other than NIL it
references an event control block which will be placed In
the caused state whenever there are items on the queue
and the cleared state whenever the queue is empty.

CHAIN_START: Pointer to the first item on the queue.

NCR/CDC PRIVATE REV 30 APR 75

WoONOWNE NP

EFEEFLEEFEFEUNNWNWNANNWWNNNONNNNDN NN
ONONFWNHFOOYEIENOVFUWUNMROOUEINOVFUWUNFROOUNOVFWNHFOD



4-13
ADVANCED SYSTEM LABORATORY CHPO 60 &
75/05/21

IPLOS GUS - PROGRAM MANAGEMENT

4.0 PROGRAM COMMUNICATIONS
4e3 QUEUES

CHAIN_END: Pointer to the last item on the gueue.
STORAGE_METHOD: will indicate in some way where storage Is
to be acquired for new queue items.

QUEUZ_THREAD: Thread of items on the queue.

DATA_LOCATIONS data represented by the

QUEUE_TITEM.

Pointer to the

The actlons performed by the queue reguest processors are
described in the following decision tfablet

R e D et D ettt ————t
{ OPERATION ! ENQUEUE ! DEQUEUE 1
R e e mmee— e IR et DL D O IR DDy Sl i
! NUMBER OF ITEMS ON QUEUE 1 1] it >0 ! 0 i >0 i
jecm——— e e e e sttt IRt S e e et DL EE R Lot |
{ ASSOZIATED EVENT FY INTY ITNTY ENLTY NI
R e P L P D R e Attt et TS
{ Add item to queue X Xt Xt x ! ! 1 !
H ! 1 i { 1 1 ! ! !
| Take item from queue { H { ! { 1 X 1t Xt
! i ! ! § 1 1 1 ! !
{ Suspend requesting process i 1 1 1 P x4+ x4 H 1
! i i i 1 1 ! ! ! !
| PM#CAUSE_EVENT P Xt i ! i 1 1 ! !
! { i i ! ! 1 ! 1 1
| PM#CLEAR_EVENT ! ! ! 1 ! 1 i * !
! { i ! ! ! i ! 1 !
L e T L LT e ———— L ek et e Tl TR R e S s

¥ if initial value ls one.

NCR/CDC PRIVATE REV 30 APR 75

WENOWM s NP

[
nNeeo

NMRNRNNNN RN NN R R
VCoONOVFWNPOOUENDOW W

W
N o

33

4-14
ADVANCED SYSTEM LABORATORY CHPOG604
75705721
IPLOS GDOS - PROGRAM MANAGEMENT
4.0 PROGRAM COMMUNICATIONS
4.3 QUEUES
4edel QUEUE REQUESTS
The queue requests provided by Program Management are as

followss
PM#ENQUEUE (queue, item, status)

PM#DEQUEUE (queue, item, status)
PM#STATUS_QUEUE (queue, status)

4e3+1.1 PMEENQUEUE

The PM#ENQUEUE request adds a queue ltem to a queue and
activates one process if there is one suspended on the queue.
PM#ENQUEUE (queue, ltem, status)

queue! pointer to the queue control block which defines the
particular queue.

itemt pointer to the queue item which is to be added to the
queue.
statust returned request status.

4e3+1.2 PMADEQUEVE

The PM#DEQUEUE request removes an item from a
returns the location of the Item to the requestor.
Is empty at the time of the request, the requestor is

queue and
If the queue
suspended.

PM#DEQUEUE (queue, item, status)

queue! pointer to the queue control block which defines the
particular queue.

items returned pointer to item data.
fonger on the queue.

The queue item Is no
status? returned request status.

NCR/CDC PRIVATE REV 30 APR 75

WENPVE N



4-15
ADVANCED SYSTEM LABORATORY CHPOBD &
75/05/21
IPLOS GUS - PROGRAM MANAGEMENT
4.0 PROGRAM COMMUNICATIONS
4e3e1e3 PM#STATUS _QUEUE

4.3.1.3 PM#STATUS QUEUE

The PM#STATUS_QUEUE reguest provides a way to determine 1If
there ara any items on the specified queue.

PM#STATUS_QUEUE (queue, status)

queue’ pointer to the queue control block that defines the
queue. :

statust Indicates whether or not there are any ltems on the
queue.

NCR/CDC PRIVATE REV 30 APR 75

WoONOCOWNE NP

4-16
ADVANCED SYSTEM LABORATORY CHPOG604
75/05/21
IPLOS GUS - PROGRAM MANAGEMENT
4.0 PROGRAM COMMUNICATIONS
443¢1.3 PM#STATUS_QUEUE
4ot __ SEMAPHORES
Semaphores are system supported faclliities which permit

communication and synchronization among asynchronous activities
within a jobs. A semaphore is represented by a semaphore control
block somewhere in storage and two system requests to manipulate
the control blocks A semaphore is the most primitive facllity
supported by the operating. system for synchronlizatlon and
serialization of asynchronouds activities. Semaphores are
utilized by wvarious system routines to seriallize themselves and
in the Implementation of Locks and Queues. :

A semapnore may be either an LNS variable or a structure in
the Job data base (internal static, stack, etc.)
as shown belons

TYPE -
SEMAPHORE = RECORD

VALUE? INTEGER,

CHAINS “CONTROL_POINTy
RECEND3

VAR
ANY_SEMAPHORE? SEMAPHORE

The states of a semaphore are shown in the following tables

NCR/CDC PRIVATE REV 30 APR 75

The format is

WOENOWVEFE NP

s e R e
NOVMSFUWwNPFO

NN
NN oW

NN
own &

27



ADVANCED SYSTeM LABORATORY

IPLOS GOS - PROGRAM MANAGEMENT

PROGRAM

<0
ol SEMAPHORES

COMMUNICATIONS

formmmcce———— ——mem————— —————

REQUESTED OPERATION

INITIAL CONTENTS OF

D e e

femcrcr e e ———— ———

*VALUE® (V

Resul tant contents of

*value* (Vv

Add reques

to chain and suspend

Remove first process
from thread and activate

Process immediately

continues

WALT

{ !
) <0t =0 !
! !
V-1 1 v-1
) .

t process

x

I e e R i SRR ey

I L iy

e e o e o o e

CHPO604

4-17

75/05/21

.......... R

1
>0 !

!
V-1

1
1
[
[
1
!
1
1
!
i

X 4

<0

V#l

X

SIGNAL

..... R et Etedatat BT L L —————

0

Vel

X

..... T e T

For a descriptlion of the properties of semaphores
f their wusesy see section titled Program Management

examples o
Notes.

Gelial SEMAPHORE REQUESTS

+
[

i !
1t >0 1

..... B L L et T S 3

1 i
Vel
!

1
!
1
1
!
!
!
!
1. X
+

and some

The semaphore requests provided by Program Management are as

follonss

PM#SIGNAL_SEMAPHORE (semaphores status)
PM#WAIT_SEMAPHORE (semaphore, status)

4eholed PMESIGNAL SEMAPHORE

This
If the resu
whicn nas
activated.

request increments the ‘*value*

Itant value Is less than or equal
been waiting for the semaphore

PM#SIGNAL_SEMAPHORE (semaphores, status)

to

zero,
the

of a semaphore by one.

the process
longest  is

semaphoret pointer to a structure of fype semaphore

status?

returned request status.

NCR/CDZ

PRIVATE REV 30 APR 75

OOENOVIEWNE

IPLOS GUS - PROGRAM MANAGEMENT

4-18

ADVANCED SYSTEM LABORATORY CHPOG6D&

75/05/21

0 PROGRAM COMMUNICATIONS
4e1.2 PM#WAIT_SEMAPHORE

~—— ~———— ————

4,
4

4alio1.2 PM#WALT SEMAPHORE

This request decrements the *value® of a semaphore by one.
It the resultant value is less than zero, the requesting process
ls suspended.

PM#WALIT_SEMAPHDRE (semaphore, status)
semaphoret pointer to a structure of type semaphore

status3 returned request status.
44,2 INTRA-JOB LOCKS

Locks as such are not directly supported by the operating
system as primitive requests since their function can be wholly
replaced by semaphores. The simple two state lock 1Is described
in Denning®s article in the section titled Program Management
Notes.

A more flexible lock mechanism is proposed by the CODASYL
Programming Language Committee Proposal ATG-71001.11. See the
section titled Program Management Notes.

Lelo3 INTER-JOB SYNCHRONIZATION

The semaphore and lock mechanisms described above are for
synchronization of asynchronous activities within a Jobe. There
are two mechanisms which permit synchronization and communication
between Jobs. One is the Signal facility described In 4.2. The
other is the Compare and Swap hardware instruction which . may be
used on memory locations which are shared between Jobse. The
Compare and Swap is externalized by two requests referencing a
signature lock. The two coordinating Jobs must be sharing a
segment with an agreed upon word in that segment designated as
the signature lock.

4eke3.1 Signature_Lock Reguests ,
The signature lock requests provided by Program Management

are as follows?

NCR/CDC PRIVATE REV 30 APR 75

WRENONF N



4-19
ADVANCED SYSTEM LABORATORY CHPO6O4
75705721
IPLOS GUS - PROGRAM MANAGEMENT

~——~ e = = s e e e v e o o e e

4.0 PROGRAM COMMUNICATIONS
4.4.3.1 Signature Lock Requests

PM#SIGN_LOCK (lock, status)
PM#UNSIGN_LOCK (lock, status)

4oho3.1.1 PM#SIGN LOCK

This request Is used to sign a signature Ilock with the
Control Point id of the requestor. The request Is rejected if
the requesting control polnt already has anything locked via
PM#SIGN_LOCK. Otherwise the request disables signal processing,
does a  compare swap on the signature lock worde If +the compare
sWwap is successful, returns leaving the Control Point id In the
signature lock word. If not successful, enables signal
processling and cycles.

PM#SIGN_LOCK (lock, status)

lock? pointer +to the signature lock word 1In the shared
segment.

statust! returned request status.
4ab 43,142 PM#UNSIGN L OCK

This request is used to unsign a signature lock by writing
it with zeroess Rejects if the requesting control point does not
have it locked.

PM#UNSIGN_LOCK (1lock, status)

lock? pointer to the signature lock word In the shared
segment.
status? returned request statuse.

4.5 ON_CONDITIONS

To be suppllied.

NCR/COC PRIVATE REV 02 AUG 74

WoeNOUW&E NN



5-1
ADVANCED SYSTEM LABORATORY CHPO 6O &
75/05/21

IPLOS GUS - PROGRAM MANAGEMENT

~m—— ~

5.0 PROGRAM MAINTENANCE

5.0 __PROGRAM MAINTENANCE

lo Be Supplied

NCR/CDC PRIVATE REV 26 MAR 75

WoOoNOWMEswWwN -



6-1
ADVANCED SYSTEM LABORATORY CHPO 60 &
75/05/21
IPLOS GJS - PROGRAM MANAGEMENT
6.0 PROGRAM MANAGEMENT NOTES
6.0 PROGRAM MANAGEMENT NOTES
6.1 COBOL LOCK NOTES
A flexible Ilock mechanism is proposed by the CODASYL
Programming Language Committee Proposal ATG-71001.11. The lock

defined there has four possible states and three operatlons
defined on it as detailed In the following diagrams

B tommmea s e L e e g
! REQUESTED ! UNLOCK ! LOCK FOR ! LOCK FOR !
! OPERATION ! | SHARED USE { EXCLUSIVE USE 1
R bt e e Lt ey R et |
! INITIAL STATE f UL IMITETU LLEMIEETU L IMLTE!
D et e L e e T e e A et ST LTRSSy
i Resul?an? ! ! i ! i i 1 ! 1 1 i !

| state Ut U MITUTLIEMEMIEETETLIMLIE!
H H H H H i 1 H ! 1 ) 1 H L
i Suspend i ! i i ' H ! H i ! ! i i
! requesting I i ! 1 ! ! ! ! ! 1 { 1 t
{ process H ! ! ! 1 H H 1 Xt P X 1 X 1 xt
H H ! ! ! ! H $ H ! t 1 ! 1
{ Activate H § 1 1 H i 1 i ! ! 1 ! L
i suspended i i ! 1 ! i i i H i ! H 1
! process ! H i i ! 1 ! ! 1 1 ! 1 H
1 If any i Xt LI O H i ! i ! ! H !
! i ! i i H l i ! i ! ! i 1
! Request error { X 1 H i I ! ! 1 i ! 1 1 !
i i ! 1 ! ! [ | H ! H { ! !
! Process { i ! 1 i i ! ! H 1 1 ! !
t immediately [ ! i ! { ! i i i ! 1 t !
i continues PX P X 8 X 8 X i x X xo 1 X 1 ! !

tm———e B e e e e et e e N Rt St 3

The states correspond tol

unlocked.
locked for shared use by one process.
locked for shared use by multiple processes.

nonon

u
L
M

NCR/CDC PRIVATE REV 26 MAR 75

WENOUVLs N -

6-2
ADVANCED SYSTEM LABORATORY CHPOG604
75/05/21
IPLOS GOS - PROGRAM MANAGhMENT
6.0 PROGRAM MANAGEMENT NOTES
6.1 COBOL LOCK NOTES

E = locked for exclusive use.

The following sample coding demonstrates how this fairly
complex lock mechanism could bpe implemented by a run time support
system or macros using the semaphore mechanisme However, this
code example does not include the COBOL ATG °AT LOCKED*® immediate
return option.

“Definition of a lock structure"

TYPE
COBOL_LOCK = RECORD
SHARED_COUNT 3 INTEGER
EXCLUSIVE_LOCK 3 SEMAPHORE,
SHARED_KEY ¢ SEMAPHORE,
EXCLUSIVE_KEY 3 SEMAPHORE,
RECEND3

“Semaphore used to seriallze lock/unlock procedures™
LOCK_CONTROL $ SEMAPHORE t= [1, nIL]}

“Unlock procedure used for both shared and”
"exclusive locks™

PROC COBOL_UNLOCK (REF I3 COBOL_LOCK)S
WAIT (LOCK_CONTROL)$
IF I.EXCLUSIVE_LOCK.VALUE LT 1 THEN
"If exclusively locked"
SIGNAL (I.SHARED_KEY) S
SIGNAL (I.EXCLUSIVE_LOCK)S
ELSE
“LOCKED FOR SHARED USE"™
I.SHARED_COUNT 3= I.SHARED_COUNT-13
IF I.SHARED_COUNT EQ O THEN
“activate waiters for exclusive lock”
SIGNAL (I.EXCLUSIVE_KEY)3
IFENDS
IFENDS
SIGNAL (LOCK_CONTROL) §
PROCEND COBOL_UNLOCKS

*Lock procedure for shared lock"

PROC COBOL_SHARED_LOCK (REF I3 COBOL_LOCK)3
LABEL START_LOOPS

NCR/CDC PRIVATE REV 26 MAR 75

WoeNOWVLs N

£ £ & w NWWWNNWWWNNORNNON NN NN N E R s
gﬂﬂ"ﬁgaNPgngmmruNﬁawmﬂd\mvPOJNPO\DQﬂU"\ﬁ&'NNPO



’ 6-3
ADVANCEJ SYSTEM LABORATORY CHPO604
75/05/21

IPLOS GUS - PROGRAM MANAGEMENT

6.0 PROGRAM MANAGEMENT NOTES
6.1 COBOL LOCK NOTES

START_LOOPS LOOP 3}
WAIT (LOCK_CONTROL)S
1F I.eXCLUSIVE_LOCK.VALUE EQ 1 THEN
“If not excluslively locked"
IF I.SHARED_COUNT = 0 THEN
"It uniocked prevent exclusive lock"
WALT (T.EXCLUSIVE_KEY)3S
IFENDS
I.SHARED_COUNT 8= I.SHARED_COUNT + 1}
SIGNAL (LOCK_CONTROL) S
EXIT STARTLOOPS
ELSE
“1f exclusively locked walt until unlocked"
SIGNAL (LOCK_CONTROL)S
WAIT (I.SHARED_KEY)
SIGNAL (I.SHARED_KEY)S
"IFENDS
LOOPENDS
PROCEND COBOL_SHARED_LOCKS

“Lock procedure for exclusive lock"

PROC COBOL_EXCLUSIVE_LOCK (REF I: COBOL_LOCK)S
LABEL START_LOOPS
START_LOOP$LOOPS
WAIT (LOCK_CONTROL)S
IF I.EXCLUSIVE_LOCK.VALUE LT 1 THEN
“If already exclusively locked"
SIGNAL (LOCK_CONTROL) S
WAIT (I.EXCLUSIVE_LOCK)3}
SIGNAL (I.EXCLUSIVE_LOCK)S
ELSE
IF I.SHARED_COUNT >0 THEN
“If locked for shared use"
SIGNAL (LOCK_CONTROL)S
WAIT (I.EXCLUSIVE_KEY)$
SIGNAL (I.EXCLUSIVE_KEY)}
ELSE
“It unlockea"
WAIT (I.EXCLUSIVE_LOCK)S
“Prevent shared lock"
PM#WAIT (I.SHARED_KEY) $
SIGNAL (LOCK_CONTROL)S
EXIT STARTLOOPS

NCR/CDC PRIVATE REV 26 MAR 75

WEONOVE R

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

6-b
CHPOBOY
75/05/721

——————— ~——— ———

6.0 PROGRAM MANAGEMENT NOTES
6.1 COBOL LOCK NOTES

~——— o e e e e 0 o0 2 2 0 a2 0 0 S 0 0 0 S P 0 w0 e 0 0

IFENDS
IFENDS
LOOPENDS
PROCEND COBOL_EXCLUSIVE_LOCK.

6.2 SEMAPHORE NOTES

The following axcerpt by Denning(i1) very alicely describes
the properties of semaphores and provides some examples of their
usess .

“eeeA semaphore 1Is an Integer variable s with an initial
value s0 2 0 assigned on creation} associated with it Is a queue
Qy iIn . which are placed the identifiers of processes waiting for
the semaphore to be “unlocked." Two indivisible operations are
defined on a semaphore st

walt stls<- s = 13 [f s < 0 the caller places himself in the
queue Qy enters the waiting state, and releases the
processor]

signal s$is<- s + 13 if s < 0 remove some process from Q, and add
it to the work queue of the processors]

Semaphore values may not be Inspected except as part of the
wait and signal operation. If s < 0y then =-s is the number of
processes waiting in the queue Qs. Executing wait when s > 0
does not delay the caller, but executing wait when s < 0 does,
until another process executes a corresponding signal. Executing
signal does not delay the caller, The programming for mutual
exclusion using wait and signal Is the same as for lock and
unlocky with x0 = 1 (walt replaces lock, and signal replaces
unlock)ess

“Synchronization

In a computation performed by cooperating processes, certailn
processes may not continue their progress until information has
been supplied by others. In other vords, al though
program-executions proceed asynchronouslyy, there may be a
requirement that certain program-executions be ordered In time.

B e T

1 Third Generation Computer Systems®, Peter J. Denning, Computer
Surveys, Vol. 3, No. 4, December, 1971, pp. 199-201.

NCR/CDC PRIVATE REV 26 MAR 75

WoNOWNES NN



6-5

ADVANCED SYSTEM LABORATORY CHP0604
75705721
IPLOS GUS - PROGRAM MANAGEMENT )
6.0 PROGRAM MANAGEMENT NOTES
6.2 SEMAPHORE NOTES
\
This 1is called synchronization. The precedence constraints

existing among processes in a system express the requirement for
synchronization. Mutual exclusion is a form of synchronization
in the sense that one process may be blocked until a signal Is
racelved from another. The wait and signal operations, which can
pe used to express all forms of synchronizations, are oftfen
called synchronizing primitivese.

"“An interesting and important appllication of synchronization
arises in conjunction with cooperating cyclic processes. An
example made famous by Dijkstra is the “producer/consumer"
problem, an abstraction of the input/output probleme. Two cyclic
processess the producer and the consumer, share a buffer of n > 0
cellsy, the producer places items there for later use by the
consumers The producer might, for exampley, 2e a process that
generates output one line at a time, and the consumer a process
that operates the {ine oprinter. The producer must be blocked
from attemoting to deposit an item into a full buffer, while the
consumer must be blocked from attempting to remove an item from
an empty buffere Ignoring the details of producingy depositing,
removing, and consuming items, and concentrating solely on
synchronizing the two processes with respect to the conditions
“pbuffer full" and “buffer empty", we arrive at the following
abstract description of what is reauired. Let ala2...ak be a
system action sequence for the system consisting of the producer
and consumar processes. Let p(k) denote the numpoer of times the
producer has deposited an item among the actions ala2e...aky and
let c(k) denote the number of times the consumer has removed an
item from among the actlion ala2...ake. It is required that

0 < plk) = clk) < n (1)

for all ke The programming that implements the required
synchronization (Eqe 1) is given below? x and y are semaphores
with initial values x0 = 0 and y0 = n?

protproduce item$ condwait x3
wait y3 remove |tem$
deposit items slgnal vy}
signal x3 consume item}
goto pros goto conj

To prove 'that Eaq. 1 holds for these processes, suppose
otherwise. The elther c(k) > p(k) or p(k) > c(k) +n. However,
c(k) > plk) 1is impossible since It Implies that the number of
completed wait x exceeds the number of completed signal x, thus
contradicting x0 = 0. Simitarly, pi(k) > c(k) + n Is also
impossible since it implies tnhat the number of completed wait vy

NCR/CDC PRIVATE REV 26 MAR 75

WooNOWNE N

ADJANCED SYSTEM LABORATORY

IPLOS GOS - PROGRAM MANAGEMENT

' 6-6
CHPO 60 &4
75705721

6.0 PROGRAM MANAGEMENT NOTES
6.2 SEMAPHORE NOTES

exceeds by more than n the number of completed signal y, thus
contradicting y0 = n.

“Another application of synchronization is the famliliar
“read-acknowledge" form of signaling, as wused in sending a
message and walting for a replay (B5). Define the semaphores r
and a with Initial values r0 = a0l = 0§ the programming is of the
forms

IN_THE SENJIER IN THE RECEIVER
genera;e messages wait rz.

signal r3
walt as

obtain messages
generate replys

obtain replys signal a3}
. .
. .
“eesAs a final example, let us consider how the

synchronizing primitives can be used to describe the operation of
an interrupt system. Typlically, the interrupt hardware contains
a set of pairs of flipflops, each pair consisting of a “mask
fiipflop* and an ‘*“interrupt flipflop."™ the states of the
flipflops in the Ith pair are denoted by mi and Xi,
respectively. The ith Interrupt Is said to be "disabled" (masked
off) if mi = 0, and "enabled” if mi = 1. HWhen the hardware
senses the occurrence of the Ith exceptional condition Cl, it
attempts to set xiI = 15 if ml = 0, the setting of xi Is delayed
until mi = 1. The setting of xi is supposed to awaken the 1ith
“interrupt-handler process" Hiy in order to act on the condition
Ci. By regarding mi and xiI as hardware semaphores with Initial

values mi = 1 and xI = 0, we can describe the foregoing
activitles as an Interprocess singaling problem?
IN _HARQWARE

Ci occurstwait mi$
signal xis
signal mi}

disablet wait mi}
enablet signal mi}

IN_INTERRUPT HANDLER Hj
startivalt xi}
process lnterrupt}
goto starts :

NCR/COC PRIVATE REV 26 MAR 75

WONOWMEs N



