
ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

CHPO&04

ADVANCED SYSTEMS LABORATORY

CHAPTER Db

PROGRAM MANAGEMENT

Doc. No. ASLDD282

Rev. 04

Copy No. ~'j7

1

REV 29 APR 75

TABLE OF CONTENTS

1.0 INTRODUCTION • • • • • • •
1.1 REQUIREMENTS AND OBJECTIVES
1.2 OEFINITION OF TERMS

2.0 PROGRAM EXECUTION
2;1 EXECUTION CONSTRUCTS

2.1.1 JOB
2.1.2 TASK •••••
2.1.3 SUBTASK •••••

2.2 TASK ESTABLISHMENT
2.2.1 LOADING
2.2.2 TABLES

2.2.2.1 Program Control Block
2.2.2.2 Task Control Block
2.2.2.3 Established Program Control Block
2.2.2.4 Job Gate Table
2.2.2.5 Job Stack Table •

2.2.3 TASK ESTABLISHMENT EXAMPLE
2.2.4 SUBTASK ESTABLISHMENT ••

2.2.4.1 Subtask Control Block
2.3 PROGR4M EXECUTION REQUESTS

2.3.1 PHtlEXECUTE
2.3.2 PMtlEXIT
2.3.3 PHIITERHINATE
2.3.4 PHIISPAWN
2.3.5 PHIILOAO
2.3.0 PHI/ENTRY
2.3.7 PHIIREINITIALIZE
2.3.8 PH.ESTABLISH •
2.3.9 PM#OISESTABLISH

3.0 LOGICAL NAME SPACE HANAGEHENT
3.0.1 DESIGN OBJECTIVES

3.1 SYSTEH DESCRIPTION
3.1.1 LNS DESCRIPTORS
3.1.2 LNS DATA TYPES
3.1.3 LNS STRUCTURES

3.1.3.1 General Examples
3.1.3.2 SCL.TOKEN Example ••••••

3.1.4 TYPE CONTROLLED "OWN CODE" PROCEDURES
3.1.5 EXTRINSIC ATTRIBUTES

3.2 LNS REQUESTS
3.2.1 LNSBATTACH
3.2.2 LNSIIDETACH
3.2.3 L~S#OECLARE
3.2.4 LNSIIR£MOVE ••• '
3.2.5 LNSIIENTRY
3.2.6 LNS'NEXT
3.2.7 LNSIISLICE

. .

A-1
75/05121

1-1
1-4
1-4

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-6
2-6
2-7
2-7

2-13
2-13
2-14
2-14
2-15
2-15
2-16
2-16
2-16
2-17
2-17
2";18

3-1
3-2
3-2
3-4
3-6
3-7
3-7

3-11
3-13
3-14
,3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
11
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
41
48
49
50
51
52
53
54

3.2.8 LNSIIGRDW
3.2.9 LNSilLOCK
3.2.10 LNStlUNLOCK
3.2.11 LNS.INSERT
3.2.12 LNSIIDELETE
3.2.13 LNSIIGET
3.2.14 LNStlPUT
3.2.15 LNStlSETXA

3.3 PRIVILEGED REQUESTS
3.3.1 L~SIIRECORD
3.3.2 LNSII FIELD
3.3.3 LNSUSEGLOCK
3.3.4 LNSBSEGUNLDCK

3.4 ERROR CONDITIONS
3.4.1 DEFINITION OF CODES
3.4.2 ERROR CODES BY REQUEST

4.0 PROGRAM COMMUNICATIONS
4.1 EVENTS ••••• ••

4.1.1 EVENT REQUESTS
4.1.1.1 PMtlATTACH_PRDCEDURE
4.1.1.2 PM.CAUSE_EVENT
4.1.1.3 PMBCAUSE_CLEAR_EVE~T
4.1.1.4 PH.CLEAR_EVENT
4.1.1.5 PHIIDETACH_PROCEDURE
4.1.1.6 PM.DISABLE_EVENT
4.1.1.7 PM'ENABLE~EVENT
4.1.1.8 PM.STATUS_EVENT
4.1.1.9 PH.HAIT_EVENT
4.1.1.10 PH#HAIT_CLEAR_EVENT

4.2 SIGNALS ••••••
4.2.1 SIGNAL SELECTION
4.2.2 SIGNAL REQUESTS

4.2.2.1 PMtlSEND_SIGNAL
4.2.2.2 PMIISELECT_SIGNAL
4.2.2.3 PM.DESELECT_SIGNAL
4.2.2.4 PM'STATUS_SIGNAL
4.2.2.5 PH.DISABLE_SIGNALS
4.2.2.6 PH.ENABLE_SIGNALS
4.2.2.7 PM.IDENTITY

4.3 QUEUES •••••••
4.3.1 QUEUE REQUESTS

4.3.1.1 PMtlENQJEUE
4.3.1.2 PH'DEQUEUE
4.3.1.3 PMBSTATUS_QUEUE

4.4 SEMAPHORES •••••
4.4.1 SEMAPHORE REQUESTS

4.4.1.1 PM.SIGNAL_SEHAPHORE
4.4.1.2 PHIIHAIT_SEHAPHORE

4.4.2 INTRA-JOB LOCKS
4.4.3 INTER-JDS SYNCHRONIZATION

4.4.3.1 Signature Lock Requests
4.4.3.1.1 PMtlSIGN_LOCK
4.4.3.1.2 PMUUNSIGN_LOCK

A-2
15/05121

3-22
3-23
3-24
3-25
3-26
3-21
3-28
3-29
3-30
3-31
3-33
3-34
3-35
3-35
3-36
3-31

4-1
4-1
4-3
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-7
4-8
4-8
4-9
4-9
4-9

4-10
4-10
4-10
4-11
4-11
4-12
4-14
4-14
4-14
4-15
4-16
4-11
4-17
4-18
4-18
4-18
4-18
4-19
4-19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
31
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

'4.5 ON CONDITIONS

5.0 PROGRAM MAINTENANCE

6.0 PROGRAM MANAGEMENT NOTES
6.1 COaOL LOCK NOTES
6.2 SEMAPHORE NOTES

A-3
75/05/21

4-19

5-1

6-1
6-1
6-4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1-1
ADVANC~D SYSTEM LABORATORY CHP0604

75/05121
IPLOS GDS - PROGRAM MANAGEMENT

1.0 INTRODUCTION

1.0 INTRODUCTIQN

IPLDS Program Management provi~es the mechanisms through
which the user may organize and present his programs to the
system. The three basic constructs of Program Management arel

+------------+-----------+------------------+-------------------+
I STATIC I DYNAMIC I CHARACTERISTICS I AN~LOGIES I
I CONSTRUCT I CONSTRUCT I I I
+------------+-----------+------------------+-------------------+
I Job I Job I.Single address I Job In most I
I I I space I Systems I
I I I.Batch submission I I

I or sing I e us e r I
I terminal session I

+------------+-----------+------------------+-------------------+
I Program I Task I. Separate naming I COBOL Run Unit I
I I I context (entrv I C YBER Program I
I I I pts - externals) I CENTURY Program I
I I.Separate common I PLJS Task I
I I block a II ocations I MASTER Task I
I I.Separate load I OS/VS Job Step I
+------------+-----------+------------------+-------------------+
I Procedure I Subtask I.Separate stack I PL/I Task I
I I I frame I CENTURY B2 Task I
I 'I I I BURROUGHS Asvnc I
I I I I Procedure I
+------------+-----------+------------------+-------------------+

TABLE 1.0-1

PROGRAM MANAGEMENT BASIC EXECUTION CONSTRUCTS

The progression from Job to task to sub task Is characterized
by a.) decreas lng amounts of static data, b.) decreasl ng
overhead Involved in Initiation, and c.) increasing amounts of
automatically shared data.

Each of these constructs Is dealt with in greater detail In
the ensuing parts of tnis section.

NCR/CDC PRIVATE REV 29 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1-2
ADVANCED SYSTEM LABORATORY CHP060 4

75/05/21
IPLOS GDS - PROGRAM MANAGEMENT

1.0 INTROllUCTION

Program Management also provides the mechanisms for
communications between joos an,d between programs In execution.

For communication between nonsimultaneously active jobs, a
mailbox file is provided. The mailbox provides a permanent
repository (I.e., unrelated to the life of a particular Jobl, for
messages. This enables j ODS to enter the system in arbitrary
order, at arbitrary times, and to seQuence and synchronize their
subseQuent activations.

For executing jobs, tasks, or subtasks, the following
communication mechanisms are availablel

LNS
Signals
Queues
Events
Semaphores
Signature locks
On condi tlons

These mechanisms allow jobs, tasks, an:! subtasks to
synchronize and coordinate themsel ves with other asynchronous
activities. These mechanisms and the reQuests which are used to
manipulate them are treated In greater detail in ensuing parts of
this section.

NCR/CDC PRIVATE REV 29 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1-3
ADVANCED SYSr~M LABDRATORY CHP0604

75/05121
IPLOS GUS - PRDGRAM MANAGEMENT

1.0 INTRODUCTION

+---------t--------t-----------t------------t-------------------t
I TYPE I SCOPE I DATA I LIFETIME I USAGE I
+---------+--------+-----------+------------+-------------------+
I Mail box I Inter I Arbitrary I Immorta I I Job sequencing,
I I Job I I I Communicat ion
I I I I I between users
t---------t--------t-----------t------------t-------------------t
I local I Intra I Predefinedl Job I Sy:nbolic access I
I I Job I by type I I from termina I, I
I I I I I Pass i ng par ameter s'
I lNS I I I I fr'HI user to the ,
I I I I I s ys t em'
I I I 'I ,
I global'Inter I I System I ,
I I Job I 'I I
t---------t--------t-----------t------------t-------------------t
I Event I Intra I Boolean I (Job) LNS, 'Synchronization, I
I I Job' I Stack, I Interrupt control ,
I I I I Stat Ic , I
+---------+--------~-----------+------------+--------- ----------+
I Signa I I Inter I 128 bytes I DEQUEUE or I I/O requests, ,

I Job I I Overwrite I System Job ,
I I I I CommunIcations I

+---------+--------+-----------+------------+-------------------+
I Queue I Intra I Arbitrary I (Job) LNS, , Queuing sIgnals,
I I Job I I Stack, I passing data
I I I 1St a tic I
+---------+--------+-----------+------------+-------------------+
I Sema- I Intra I Integer I (Job) lNS, , Synchronizat lon, I
I phore I Job I , Stack, I Locking (using ,
I I I I Static I shared resources) ,
+---------+--------+-----------+------------+-------------------+
I S 19n I Inter I Compare I Segment I Synchron izat ion
I Locks I Job I Swap word I I (Compare Swap) ,
+---------+--------+-----------+------------+-------------------+
, On Con- I Intra I Condition I Stack I Handling executionl
I dit Ion I Program' Register , I condi tion. See ,
I I I I I Doc ASL00211. I
+---------~--------+-----------+------------+-------------------+

TABLE 1.0-2
PROGRAM MANAGEMENT BASIC COMMUNICATIDN CO~STRUCTS

NCR/CDC PRI VA TE REV 29 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36·
31
38
39
40
41
42
43
44
45
46
47
48

1-4
AOVANCEO SYSTEM LABORATORY CHPO 60 4

75/05/21
IPLDS GOS - PROGRAM MANAGEMENT --

1.0 INTRODUCTION
1.1 REQUIREMENTS ANO OBJECTIVES --
1.1 REQUIREMENTS AND OBJECTIVES.

The following is a summary of the major requirements and
objectives that motivate the jesign of IPlOS Pr03ram Management l

0 ANSI sta ndard C OBDl (exc I udl ng PLC proposal ATG-71001.111
Asynchronous Process ing Fad Ii tV)

0 ANSI standard FORTRAN
0 Multiprocessing-multiple degrees of sharin,) and overhead

to initiate
0 Protect ion - multiple subsystem services in the same

address space
0 Sharing - effective use of a I ar-ge virtual memory

1.2 DEFINITION OF TER~

The fol lowing are aefinitions of terms relevant to -Program
Management.

Address Space

Binary Object File

Binding Section·

Binding Segment

Condit Ion

Contro I Point

The set of segments addressable in a
job. Each address Is uniquely identified
by a segment number and a byte number.

A file containing one or more contiguous
object modules. All object modules In
the segment have the same segment
attributes.

The ooject environment component used to
control transfer between rings of
protection. There is one bInding section
per loaded module.

A segment containing the binding sections
of one or more modules loaded into the
address space of a job. There are
several bindIng segments per job.

A synchronous occurrence of interest to
the task or subtask in which It
occurred. The arithmetic faults, such as
overflow, are examples of conditIons.

The basic execution entity recognized and

NCR/CDC PRIVATE REV 29 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4/t
45
46
47
48

ADVANCED SY~TEH LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

CHP 0&04
1-5

75/05/21

1.0
1.2

INTRODUCTION
DEFINITION OF TERMS

Control Point id

Entry Point

Event

Event Control Block

External

Gate

Gate Registration

Global Key

Job

dispatched by the System Monitor. Among
its contents is the hardNare defined
Exchange Package.

A system uniQue identification of a
control point used as the destination
address of signals.

A named externally accessible address in
a mo~ule. The entry points may be in
either the code section or the Norking
storage section of the module.

An asynchronous occurrence of
significance to a task or subtask. Task
completion, time, and 1/0 complet ion are
typical examples of events.

A data structure reQuired
the f ION of control via
May be in LNS. internal
stack.

to manipulate
el!ent reQuests.
static, or a

A sy~bol referenced by a module that is
def ined as' an entry ooint in another
modu Ie.

A hardware protected entry point for
crossing between programs. Protection
changes can only occur at gates.
Validation of the right to change can be
done at the gate.

The act of making a gate ~nown Nithin a
Job, such that subseQuent loading Nill
link to the protected entry poi nt Nhen
re f ere nced.

One of the two keys associated with every
knoNn segment. Verified on every access
and 0' call/return seQuences. Intended
as a mechanism for isolating programs
execut ing in the same ring 'Of
protection. Not supported in v 1.0.

Job is defined in Section 1.0 of Chapter
4 of the OSGDS.

NCR/CDC PRIVATE REV 29 APR 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

AD IIANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

1.0
1.2

INTRODUCTION
DEFINITION OF TERMS

Job Gate Table

Job Stack Table

Library

Load Module

Loader Map

Loader Symbol Table

Local Key

Mail box

Object Module

Procedure

A table used by
register 9ated
basis.

1-&
CHP0604

75/05/21

Progra~ Management to
entry points on a Job

A table used by Program Management for
ring by ring al location of stacks Nhen a
control point is created.

A segment containing procedures and the
dictionaries reQuired to locate them.
The procedure dictionary is organized by
entry ',point name. All load modules in
the library have the same segment
attributes.

An object module reformatted by OBLIGE
for residency on a library. Can be a
single procedure. Structured as directly
referenceable storage; code section
shareable among users.

The output of the Loader describing the
allocations performed for all the
sections of all the modules in the loaded
program.

An internal taole built and used by the
Loader for matching externals and entry
points. There is a separate Loader
Symbol Table per loaded program.

One of the tNO keys associated Nith eve'ry
knoNn segment. Verified on every
access. AINays associated Nith the
segment and not verified or passed on by
call/return seQuences.

A file used for communication betNeen two
users, for example, for· Job seQuencing.
May contain messages.

A single piece of machine executable code
output from a compiler. Structured as a
series of records on a file that are
interpreted every time t1e Object module
is processed.

Code that may be executed serially via

NCR/CDC PRIVATE REV 29 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3D
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1-7
AOVANCEa SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GOS - PROGRAM MANAGEMENT

--
1.0
1.2

INTRODUCTION
DEFINITION OF TERMS

Program

Program Control Block

Queue

Queue Control Block

RIng

Semaphore

Signal

Signal Buffer

Signal Selection List

SIgnature LOCk

hardware call Instruction or executed
asynchronously via spawning a subtask.

A set of object flies, set of libraries,
and an entry point name whIch specifies a
static set of procedures organized to
perfo.-m some specific function le.g ••
compll e COBOL statements). An activation
of a program is a task.

LNS structure reQuired' to construct a
program by linking external references
and entry points in a specified order.
It can be in any LNS segment.

A collection of data items awaiting
processing. Standard signal s are
Queued.

A data structure reQuired to manipulate a
Queue via Queue reQuests. May be in LNS,
internal static, or a stack.

The fifteen hierarchial levels of
protection available within a single
job. Used to protect local monitors and
services·from their users. Capabillty in
ring n is always greater than or eQual to
capability in ring n+l~

A system supported facility to permit
synchronizat ion among asynchronous
activities within a job. It is the most
primitive such facility supported by the
system.

A signal is a short message primarIly
used for inter-job communications in the
form of reQuests and responses.

A system structure used to interface
signal reception by a control pOint.

A system table used to register signal
selections on a. control point basis.

The ex terna I izat ion of Compar e-S wap for
locking data in shared segments between

NCR/CDC PRIVATE REV 29 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

1-8
ADVANCED SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GOS - PROGRAM MANAGEMENT --

1.0
1.2

INTRODUCTION
OEFINITION OF TERMS

Subsystem

Subsystem Services

Subtask

Task

Task Control Block

Task Monitor

Task 5 erv ices

jobs.

A job which provides services to the user
in the same way as those provided by the
System Job. It is protected from the
user, and the OperatIng System is
protected from it.

A set of shared procedures (both code and
internal statiC) which provIde Subsystem
services and are directly callable. They
have the same clock accounting,
scheduling and executIon characteristics
as the reQuestor. The only difference is
their access rights to data and code.
They are also protected from Task
Services, that is, in a different ring.

Asynchronous execution of a procedure
within a single task. All static data
associated with the tas~ is associated
with the subtasks. The subtask'receives
only a new stack segment as a repository
for private data.

Ident i flab Ie execut i on of a program.

A system LNS data structure reQuired to
identify a tas~ and pass it parameters.

A collectIon of shared, nonresIdent,
reentrant procedures which monitor and
provide a formal interface between user
and system ·monitor.

A set of shared procedures (both code and
internal static) which provide Operating
System services and are directly
cal lab Ie. They have the same clock
accounting, scheduling and execution
characteristics as the reQuestor. The
only difference is their access rights to
data and code.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-1
ADVANCED SYST~M LABORATORY CHPO 60 4

75/05/21
IPLOS GDS - PROG~AM MANAGEMENT

2.0 PROGRAM EXECUTION

IPLOS supports three maJor executIon constructs.
o JOB
o TASK
o SUBTASK

2.1.1 JOB

The job Is the mechanIsm through which the batch or
interactive user interfaces to the IPL system. A Job consIsts of
a ~lOg~ segmented address space and all the work performed by
the Job takes place withIn that address space.

The convention of associating a sIngle address space wIth a
Job Is not mandatory, however, the OS proJect feels that there
are seve~al factors which make It desIrable.

o It allows natural sharIng
components of the Job - all
tnrough the same mechanIsm
descriptor table)

of information between
Information is addressed
(I.e., the same segment

o It allows the code which manages the components of a Job
Ii.e., program establisher, task establIsher, loader) to
be a part of the same Job thereby a.) facilitatIng the
component management and b.1 isolatIng It from other Jobs
and the system code responsible for Job management.

o It allows large amounts of the system and user provided
environment that all components of the Job depend upon to
only be establ ished once for all the components in the lob
(e.g., task monitor, subsystem servIces, etc.)

o It allows st~aightfo~ward Invocation and parameter passing
between the aforementioned shared environment and a user
task.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

IOVANCEO SYSTEM LABORATORY

tPLOS GUS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.1.1 JOB

2-2
CHP0604

75/05121

There are also several disadvantages to the sIngle Job per
address space relationship'

o The volatility of comIngs and goIngs of programs and data
within the address space forces the loadIng of absolutlzed
components to be p~eplanned l1.e., the permanent
reservation of a segment In every address space).

o Components that are Independent of each other and have
therefore no need to share or communIcate are unprotected
from each other and the~efore SUbject to tIme dependent
errors. This may be Improved somewhat by utIlIzing the
varIous protectIon mechanIsms avaIlable wIthIn the the
address space (.e.g., rIngs, global or local keys).

In spIte of these dIsadvantages, we feel that the sIngle
address space per job Is the best way to proceed.

2.1.2 TASK

A program Is the princIpal way work is organized for the
user by Program Management. It is the typical unIt of loadIng
and executIon. The program Itself Is a static entIty, that Is,
it is the object flies and Iloraries which get established and
lInked for each separate executIon of the program. Each one of
those executions Is a separate task.

Each task represents 3 separate loadIng and executIon
envIronment. Any common blocks l1.e., FORTRAN common, PL/I
statIc external, COBOL global) declared In the task are
accessIble by any procedure In the task. All entry
poInt - external reference matchlngs wIth the exceptIon of gate
lInkages are evaluated in the task context. No data Is
automatIcally shared between tasks In the same job, however,
since they are In the same address space, sharing segments Is
facIII tated.

2.1.3 SUB TASK

A procedure Is a logIcal! y dIscrete pIece of code that Is
the basIc component of a program. A procedure may be complied
wIth other orocedures to form a sIngle ObJect module; may be
bound by the library generator wIth other object modules, or may
be linked to other discrete object modules at executIon tIme.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13·
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-3
ADVANCED SYSTEM LA~DRATDRY CHPO &04

75/05/21
IPLOS GDS - PROGRAM MANAGEMENT

--
2.0 PROGRAM EXECUTION
2.1.3 SUBTASK
--

A subtask is an asynchronous activation of a procedure. A
procedure whether called as a "subroutIne" within a program or
called asynchronously has a sIngle allocation of data associated
with in at cal I time. The data is the variables that are local
to the procedure in the block structured language sense (e.g.,
PL/1 automatic). The allocation is made at call time in the run
time stack segment provided by Program Management. In the case
of the spawning of a subtask, a new stack segment Is provided for
the subtask for its stack frame and the stack frames of any
procedures serially called by the subtask. This is the only
private data associated with the subtask. All static data and
linkages associated with the spawner are associated with the
spawned sUDtask as well. A subtask Is intended to· be the most
efficIently established asynchronous facility supported by
Program Management. ThIs will be effected by only providing it
with the minimum necessary amount of environment.

2.2 IASK ESTABLI~~l

A task is defined to Program Management with a Task Control
Block (TCBI. The TCB specifies the program to be executed and
its execution environment. A task is estab Ilshed by issuing a
PMI/EXECUTE request. Task estabUshment consists of loading a
program, and creating a control point w.ith an exchange package
and stacks for establ ished programs in different rings that will
be cal led during the course of execution. The simplest task
example would be one with an exchange package, a stack for the
user program, and a stack for the task services program.

Subsystem Ser.vi ces programs can be established and included
in the execution environment. A control point and stacks are
created by a PM'EXECUTE request but not by a PM.ESTABLISH
request. 'Both effect the loading of a specified program.

2.2.1 LOADING

A program is defined to Program Management with a Program
Control Block (PCB). The PCB specifies a list of object files, a
Ust of library files, and an entry point for the program. The
Loader uses this information to construct an object module
segme"t, a working storage segment, and a binding segment.

First the Loader builds the object module segment from the
list 01 object 11les, if specified. An object flle is .generated

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

~DVANCED SYST~H LABORATORY CHPO&04
2-4

75/05/21
[PLOS GDS - PROGRAM MANAGEMENT

2.0 ?RDGRAH EXECUTION
2.2.1 LOADING

by a compiler and may contain one pr more object modules that
represent code in a nonexecutabl e form. The format Is det.ailed
in Chapter 11 of the OSGDS. For each object module, the Loader
creates an executable code section in the object module se9ment,
a working storage section and a binding sectIon.

Next the Loader resolves unsatisfied externals using the
library segments. The lIsted library segments are represented
(via SC#INITIATE_SEGHENTI in the address space of a lob as is,
with one process segment per library. File attachments must be
done prior to this step. A library segment contains an entry
point dictionary and one or. more load modul es. The di fference
between a load module and an Object module is that the code
section of a load module is already in executable form. For each
referenced load module, the Loader generates a working storage
section and a binding section in the corresponding segments.

From the list of Object flies,
referenced or not, is loaded resulting in
entries, a working storage section, and a
re ferenced load modu l·es are loaded.

every object module,
Loader Symbol Table

binding section. Only

Library segments may be shared by jobs. Programs using the
same object file get separate ~bJect module segments built by the
Loader.

The search order used by the Loader when resolving an
external reference is as fo liowsl

o Loader Symbol Table
o Dictionary on each library in the order of the list.
o Job Gate Table

2.2.2 TABLES

2.2.2.1 Program Control BJock

The program contro I block (PCB) is an LNS structure used to
define a program to the system. It has the following itemsl

o Primary entry point - the name of the entry point at which
to begin execution of the program. An alternate
starting entry point can be specified in a task
control block.

o Binary Object file list - the LNS name of a list of binary
object files, each of which contai"ing one or more

NCR/CO: PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-5
ADVANCED SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GDS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.2.2.1 Program Control Block

contiguous object modules.
o Library list - the LNS name of a list of libraries. Each

library segment contains one or more load modules and
dictionaries organized by entry point name that are
used to locate procedures. All load modules in a
library have the same segment attributes.

o Size - the initial worKing set size for the program. It
is the number of page frames needed by any execution
of the program when first brought into core by the
Running Job Honitor.

o Ring the ring of execution for the program. If
specified, it must be within the execution bracket
for all the flies and segments speclf'ied in the PCB.

o Termination entry point - an optional field specifying an
entry point name for a termination procedure. If
present, the termination procedure will be called by
the system during the orderly process of task
termination. Parameters will be passed indicating a
normal or abnormal termination. '

2.2.2.2 Task Contro1-~

The task control blocK nCB) is an LNS structure used to
define the execution environment for a program. It has the
fo I low ing i temsl

a PCB the LNS name of the program control block that
defines the program to be executed by this task.

o Entry point - an alternate entry point name at which to
begin execution of the program. If specified, would
override the primary entry point as named in the
program control block. The alternate entry point
could change the definition of the program.

o Size - an alternate working set size for the program being
executed. If specified, would override the initial
worKing set size in the program control block.

o Parameters - the parameter block pOinted to at entry.
o Loader map - options indicating the level of detail to be

generated for a loader map.
a Abort - options indicating the kind of dump required on an

abor t.
a Exit - the type of exit (normal, abnormal) taken by this

task via the PH'EXIT request.
o Code- an integer campi eHon code spec if ied on the PH'EXIT

request by this task.
o Message a completion message up to 31 characters

specified on the PM#EXIT request by this task.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-6
illVANCED SYSTEM LABORATORY CHPO 60 4

75/05121
:PLDS GDS - PROGRAM MANAGEMENT --

2.0 PROGRAM EXECUTION
2.2.2.2 Task Control Block --

a EPCB pointer to the Established Program Control Block
for this task. PI aced here by the Establisher.

The establlshed program control block (EPCB) is a structure
internal to Program Management and is used to define the loaded
environment for a program. The EPCB can be the result of either
a PM#EXECUTE request or a PM.ESTABLISH request and has the
following itemsl .

o How established - indicates established by PH'EXECUTE or
by PM'ESTABLISH.

a TCB - the LNS locator of the task control block specified
on either request.

a PCB - the LNS locator of the program control block.
a JCB - the LNS locator of the job control block for th~ lob

in which the program is established. This field is
used to obtain Job Gate Table and Job Stack Table
entries 'for any f~rther linking and stack allocation
in this job.

a Ring - the ring in which the program is to be executed.
a Loader symool table - p'ointer to the loader symbol table

for this program.
a Binary object flle list - the same list specified in the

PCB but in a format more convenient for use by the
loader.

a Library list - the same list specified in the PCB but in a
format more convenient f or use by the loader.

o Thread - the EPCBs are threaded together on a job basis.
The starting point is in the JCB.

o Keys - the global and local key (not supported in V 1.0).
o Event - painter to the event control block of the task

completion event for the task as specified on the
PH'EXECUTE request.

a Control point - the control point id for the task.
a Dependencies - task dependency threads for future use.
a LNS search lIst - pointer to theLNS search list for this

established program.

fhe Job Gate Table (JGTI is a structure internal to Program
Management and is used to register gated entry poInts on a lob
basis. The JGT is searched by the Loader when resolving external

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCED SYSTEM LABORATORY

IPLOS GuS - P~OGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.2.2.4 Job Gate Table

2-7
CHPO 60 4

75/05/21

references. An entry ooint is registered in the JGT during the
loading of a module that oossesses the gate attribute. All the
entry points of such a module are registered as gates.

Gate is the meChanism used to satisfy the requirement of
orotecting one program from another by allo~ing entry to the
protected code at defined points. Not only does the Loader put a
gated entry point in the JGT but also marks it in the binding
section so the hard~are can enforce the protection. The user
cannot ~rite a binding section.

2.2.2.5 Job Stack Table

The Job Stack Table IJSTI is a structure internal to Program
Management and is used to allocate stacks when a control point is
created. It is a JOb local array of integers indicating the
number of stacks to allocate on a ring-by-ring basiS. When a Job
is created, some minimum set of Job and execution tables are
built. The JST is included in this Job template specifying stack
al location for Task Services. Using the PMfESTABLISH.reQuest
will change the JST for the specified program establishment
ring.

2.2.3 TASK ESTABLISHMENT EXAMPLE

The purpose of the foil owing example Is to show structures
visible to the user that make up the execution environment for
his program. The example starts at the point execution Is asked

. for via SCL, which In turn issues the request.

PM'EXECUTE (task, event. statusl

task. the LNS descriptor of "USER_TCB" obtained by SCL via
the LNS'ENTRY request.

event. not used In this example.

status. request status returned to SCL.

Figure 2.2-1 shows the relationship of LNS structures
declared prior to issuing PM'EXECUTE. For these structures, the
diagram includes only those LNS fields necessary to the example.

o "USE'<-TCB", local LNS name of the Task Control Block

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
210
25
21'1
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-8
'OVANCEO SYSTEM LABORATORY CHPO 60 4

75/05/21
IPLOS GUS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.2.3 TASK ESTABLISHMENT EXAMPLE

specifying the program to execute and the parameters
retrievable by that program.

o "US£R_PCB". local LNS name of the Progra:n Control Block
defining the program via a list of Object files and a list
of library segments.

o

o

"USER_OBJ_LIST". local LNS name of
generated by prior compilation.
these files will be converted to
object module segment.

"USER_LIB_LIST'" local LNS name
segments to be used to search in
unresolved external references.

list of obJect files
The oDJect modules on

code sections In the

of the list of library
the order listed for

o "OBJ_FILE_1" and "OBJ_FILE_2'" local LNS names of the File
Control Blocks describing the object flies to be loaded.
The example has each file containing one module, A and B
resoectively. .

o "USER_LIBRARY". local LNS name of a File Control Block
describing the library file of the user. Only the
referenced modules of this library will be loaded. The
user can convert object files to library segments by using
the library generator. OBLIGE.

o "COBOL_RUN_TIME'" global LNS name of a File Control
describing the Ilb~ary segment of COBOL run
routines. This library segment is generated by
Installation and Is shared by users.

Block
time
the

Figure 2.2-2 shows the user segments created through program
loading for the PMfEXECUTE request. Note that working storage
sections and binding sections are created for every ObJect module
but not every load module. Oniy the user stack segment Is
shown. There would also be a stack segment allocated via the JST
for Task Services.

Figure 2.2-3 shows additions to user segments resulting from
the request!

PM.LOAO (name, type. pointer. statusl

namel name of an entry point In load module 0 on the user
library file.

tyoel type of pointer to be used In a reference to the

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
11t
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
1t2
43
1t4
45
46
47
48

2-9
AOVANC£O SYSTEM LABORATORY CHP0604

75/05121
IPLOS GOS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.2.3 TASK ESTABLISHMENT EXAMPLE

pointerl the returned pointer after loading.

statusl returned reQuest status.

The load module 0 does not have any externals causing the
loading of any other modules. Had it any, those load modules
contained the matching entry pOints would have been loaded by
PM#LOAO as well.

NCR/COC PRI VUE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23·
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-10
AOVANCEO SYSTEM LABORATORY CHP0604

75/05121
IPLOS GOS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.2.3 TASK ESTABLISHMENT EXAMPLE

:2 • .2 -,

Figure 2.2-1
LNS ST RUCT URES

1>ICR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
'3

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
46

ADVANCED SYSTEM LABORATORY

IPLOS GOS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.2.3 TASK ESTABLISHMENT EXAMPLE

USER
oal' Mol)U.l..l

:tE"ME.HT

~obe.
OM /I

c.or>f
OM &

USER
L't&IUlty
~E6,..,e.HT

tlDR/DleT
C.Ob~

eM e

e.oD&.
LM D

C,ODE
LM ~

l>TtfIR
IHFo F •• .,., C·

.'" 0
LM e

toSc\,.
R"''''TIMI
$EtrMfHT

tlD./oICT'
eD~1.

LM • eon.
Lr'I q
eool

LM II

C"D'
L'" 1
coDe

LM 3'
toba

L,., " toDe
LM L
OTH'.

t,NFo , ..
LM • LM " LM " LM ~
LM J'
LM I(

L

""ellf(,Hlt

:r:AIt'A"
Wb/t1L.t'l6
$ToRR4t
OM &
1»I>/C",N4
tTOllllAl6&

M e
c»olfll,,,,,
~TO.A41
Ln •

WD."'HiIr
:S1"O'''''
L .. "

Figure 2.2-2
USER SEGMENTS

CHPO&04

useA
J!tINbIN6I:
$E.t.:c.M&.NT

ell'lluN6
OM R
BE-NDI"'''

.0'" 8
OINDlt\l(c
:... e

~~Ol":
81"""''' "

2-11

75/05/21

c.4.~&.

6TAC.C
~I.CI""."T

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

AOVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.2.3 TASK ESTABLISHMENT EXAMPLE

USER
OSl' Motlt.u .. 1

:!IE£t.MENT

USER
L't&R.AAY
~E6ME.NT

tI[)~/[)leT

c.ob£
eM e

eoD£
LM D

CooDE
LM •
OTrilR

INFO •••
LM C
LM 0
lM £

eoSOL
Ru.N TIMe
'SE6MENT

HOR/OICT'

eo!)£.
LM •

eODI!
LM q

e.or>£
eM II

CODI!

U" 1
coDot!

eM 3'
e.oDE

LM " e,ob£
lM L
OTH[A;

""Fo P ••
LM F
LM " LM ..
LM ~

LM J'
LM ~
L L

u:s~1t
U':s

~E~MtNr

CHPO &0 4

useR
e.1"'4bIN~
$1!.Cc.I"\E.NT

Figure 2.2-3
ADDITIONAL SEGMENT SECTIONS

2-12

75/05/21

L(~£.'I:

$T4C.fC.
'!t!."""'£NT

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

AD~ANCED SYSTEM LABORATORY

IPLOS GOS - PROG,AM MANAGEMENT

2.0 PROGRAM EXECUTION
~.2.4 SUBTASK ESTABLISHMENT

2.2.4 SU6TASK ESTABLISHMENT

2.2.4.1 5 ubtask l:.2n1.!:o IB lock

2-13
CHPO bO 4

75/05/21

The subtask control bl.oCk Is an LNS structure, the
declar·atlon of which causes the allocation and InitIalization of
a control point and the allocation of stacks accordIng to the Job
Stack Table. It has the following itemsl

o Control poInt - the control poInt
Task Serv Ices In the bod Y of a
System Task In the System Job.
has a return sIgnal address to
resoonse.

ld tyolcally
sIgnal beIng

That Syste m
be used when

passed by
sent to a
Task then
sendIng a

NCRICDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-14
ADVANCED SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GOS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.3 PROGRAM EXECUTION REQUESTS

2.3 PROGRAM EXECUTION REQUESTS

There are several levels of documentatIon that wIll
eventually exist for InterfacIng to program executlonl

o Command Language statements
o Control Language macros
o Requests
o Call s

Documentation for calls wIll detail three parameters In SIILI
o Request code
o Returned request status
o Request block

ThIs documentatIon wIll be provIded as soon as request
definitions have been complIed.

Control Language macros may not necessarIly be one-to-one
wIth the calls. There may be so~e calls not vIsIble In the
Contro I Language. LIkewIse, there may be some Contra I Language
macros not externalIzed through the Command Language.'

The Control Language macros for program executIon are as
followsl (To be supplIed).

Request documentatIon 15 sImply a prose descrIptIon of a
function performed and the parameters supplIed by the requestor.
Requests are one-to-one- with caliS. The p,-ogralll executlon
requests are foilowsl

PMfEXECUTE (task, event, status)
PMfEXIT (type, code, mess3ge)
PMfTERMINATE (task, status)
PMfSPAIiN (entry, parameters, subtask, event, status)
PM.LOAD (nallle, type, poInter, status)
PH.ENTRY (name, gate, segment, type, poInter, status)
PH'REINITIALIZE (name, status)
PH.ESTABLISH (task, status)
PM'DISESTABLISH (task~ status)

2.3.1 PM'EXECUTE

ThIs request Is used to load a program and create a task to
asynchronous lye xecut e that program.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2-15
ADVANCED SYSTEH LABORATORY CHP0604

75/05/21

IPLOS GDS - PROGRAM MANAGEMENT --
2.0 PROGRAM EXECUTION
2.3.1 PH#EXECUTE --

PM#EXECUTE (task, event, statusl

taskl the LNS descriptor of a previously declared task
control block u·sed by the requestor to identify and
control task execution. The task control block Identifies
the program control block of the program to be loaded and
executed.

eventl optional parameter that is a painter to an event
control block to be associated with task completion. If
specified, Program Hanagement wil I cause the event when
task completion is detected.

status: returned request status.

2.3.2 PMtEXIT

This request is used to indicate task completion.

PMfEXIT (type, code, messagel

typel . indicates the type of exit being taken, normal or
abnormal. The exit_tyoe is put in the task control block­
by the PM.EXIT request processor.

codel a programmer defined integer put In the task control
block by the PH.EXIT request processor.

message I a programmer defined message UP to 31 characters put
in the task control block by the PHfEXIT request
processor.

2.3.3 PH.TERHINATE

This request is used by 3 task to terminate another task.

PM'TERHINATE (task, statusl

taskl the LNS descriptor of the task control block of the
task to be terminated. The rCB must be one used f or a
previous PH#EXECUTE request.

statusl ret~rned req~est status.

NCR/CJC PRIVATE REV 3D APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

ADVANCED SYSTEH LABORATORY

IPLOS GDS - PROGRAM HANAGEMENT

2.0 PROGRAM EXECUTION
2.3.4 PHI/SPAWN

2.3.4 PHI/SPAHN

2-16
CHPO 604

75/05121

This request is. used to start an asynchronous execution of a
subtask within a task.

PM'SPAWN (entry, parameters, subtask, statusl

entryl pointer to procedure at which to start asynchronous
execut Ion.

parametersl pOinter to arg~ment list for the procedure.

subtaskl the LNS descriptor of a previously declared subtask
control block, which resulted in allocations of a control
point and stacks.

statusl returned request status.

2.3.5 PMfLOAD

This request is used to load a procedure not yet referenced
in a program.

PH.LOAD (name, type, pointer, statusl

namel entry paint name.

typel the type of pointer to be returned. Can specify return
of a 48 bit pointer, a code base painter, or a code
base-binding section pair.

pointerl returned
wanted.

painter according to speCified type

statusl returned request status.

2.3.6 PH.ENTRY

This request is used to ~etrieve a pointer to be used in a
call to a specified entry point. The module containing the entry
point must have been previously loaded. The order of search for
the ~ntry point is the same for loading (a Loader Symbol Table

NCRICDC PRIVATE REV 30 APR 15

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
3&
31
38
39
40
41
42
43
44
45
46
47
48

2-17
ADVANCED SYSTEM LABORATORY CHP0601t

IPLOS GOS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION.
2.3.6 PM#ENTRY

and then the Job Gate Table).

75/05/21

PM#ENTRY (name. gate, segment, type, pointer, status)

namel entry point name.

gatel optional parameter Indicating search should be only on
the Job Gate Table.

segmentl optional parameter Indicating the segment which
dictates the LST to start the search. Segment numbers in
a job are unique per establishment of a program.

typel type of pointer to be returned.
a 1t8 bit pointer, a code base
base-blndi,g section pair.

Can speci f y return of
pointer, or a code

pOinterl returned pointer according to type.

status I returned request status.

2.3.7 PM.REINITIALIZE

The purpose of this request is to provide COBOL an Operating
System function necessary to satisfy their implementation of the
ANSI standard CANCEL statement. This assumes the implementation
of their CALL statement would use our PM'LOAO re~uest. He do not
currently know exactly what is required of the Operating System
to satisfy any requirement imposed by a CANCEL implementation.

PM.REINITIALIZE (name, status)

namel entry point name.

statusl returned request status.

2.3.8 PH#ESTABLISH

This request is usecl to estab Iish a program in the address
space of a job. The primary purpose of the request Is to
establish subsystem services on a job basis.

PM#ESTABLISH (task, status)

~CR/C)C PRIVATE REV 30 APR 75

1
2
3
It
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

IOVANCEO SYSTEM LABORATORY

:PLOS GOS - PROGRAM MANAGEMENT

2.0 PROGRAM EXECUTION
2.3.8 PH#ESTABLISH

2-18
CHP0601t

75/05/21

taskl the LNS descrlpto," of a previously declared task
control block used 1)Y the requestor to Identify and
control the loading of a program. The task control block
identifies the program control block of the program to be
loaded.

statusl returned request status.

2.3.9 PHtDISESTABLISH

This request is used to remove an established program from
the address space of the job.

PHfDISESTABLISH (task, status)

taskl the LNS descriptor of the task control block describing
the program that was established.

statusl ret~rned ·reQuest status.

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-1
ADVANCEQ SYSTEM LABORATORY CHPO 60 4

75/05/21
IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT

3.0 bQ~~~~~E MANAGEMENT

This aocument Is the GDS for the Logical Name Space manager
for IPLIDS.

The functions described are the basic capabilities of the
subsystem. As the OS requirements for LNS services become better
defined, more sophisticated functions will be b~ilt using these
basic capabilities.

"CR/CD::: PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
2 ..
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
.. 0
.. 1
.. 2
.. 3
4 ..
45
.. 6
47
.. 8

ADVANCED SYSTEM LABORATORY

IPLOS GDS - PROGRAM MANAG~MENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.0.1 u ESI GN 0 BJECTIV ES

3.0.1 DESIGN OBJECTIVES

3-2
CHP0604

75/05/21

The deSign objectives of the Logical Name Space manager are
as follo",s.

To provide a generalized technique for the mapping of
names to data.

To provide a symbol table handler for System Command
Language.

To apply structuring methods to dynamic OS data
compatible with SWL data representation for OS code and SCL for
user manipulation. (i.e. records, arrays, etc.)

To retain certain attributes of data to al 10"' generic
requests that may operate on several types of data or resources.

To provide a degree of data protection and privacy by a
hierarcical blocK structure of data segments while al lowing the
explicit sharing of data when required.

3.1 SYSTEM OESCRlfIlQN

The logical name space (LNSI is composed of user and system
supplied segments containing user and system defined entries. A
list called the LNS segment list is maintained for each Job known
to the system. The LNS segment list contains the names of the
segments which are to be searched for LNS entries and the order
in which they are to be searched. When an LNS entry is sought
each segment whose name appears in the LNS segment list is
searched until the entry has been found or the list has been
exhausted. The segment whose name appears in the last slot of
the LNS segment list is called the most local segment -and is
searched first.

All internal LNS information uses relocatable addressing
enabling a segment to be established at any virtual address while
preserving previously defined information.

During Job initiation the system allocates an LNS segment
list and initializes it as follo",s •

LNStlGLDBAL system global segment

NCR/CDC PRI VATE REV 20 MAY 75

1
2
3
4
5
6
7
8
'3

10
11
12
13
1 ..
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
3 ..
35
3&
37
38
39
40
41
42
..3
.. 5
.. &
.. 7
.. 8

ADVANCED SY~T~M LAaORATORY CHPO&04

IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.1 SY5TEM DESCRIPTION

other seg~ents

LNS#LOCAL most local segment

3-3

75/05121

Eac, entry has an internal entry descriptor. These Internal
descriptors are managed in several chains per segment with a name
hashing algorithm randomly assigning an entry to a chain. The
entry search strategy Includes a percolating of the internal
descriptor chain which results in the chain being ordered by most
recent use. Item chains are ,andled In the same manner.

An entry and its internal descriptor form the primary node
of a data structure through which the user can descend to any
I eve I.

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
2 ..
25
2&
27
28
29
30
31
32
33
3 ..
35
3&
37
38
39
40
41
.. 2
.. 3
.. 5
4&
47
48

3-4
~DVANCED SYSTEH LABORATORY CHPO &0 4

75/05121
[PLOS GuS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.1 lNS DESCRIPTORS

3.1.1 lNS DESCRIPTORS

Each entry or item in the lNS has an internal lNS descriptor
associated with it which is NOT accessable to the user. The
definition of this internal descriptor is as follOWS.

type_desc = RECORD
desc_typel (entry, item), "type of descriptor"
lockl BOOLEAN, "internal synchronization lock"
chainl REl -type_desc, "chain to next descriptor"
namel STRING (311 OF CH.AR, "name of entry or Item"
hashl 0 •• 255, "hash value of name"
excll STRING (31) OF CHAR, "exclusive lock key"
non_excll 0 .. &55&5, "non-exclusive lock count"
data_typeIO .. max_type, "subscript to lNS.TYPE table"
data_lenl O .. max_len, "string or set length"
data_dlml O •• max_dlm, "dimension of array variable"
datal REl -type_data, "location of data"
ex_attrl SET OF 1 .. &4, "extrinsic attrib.ates" .
RECEND,

A complex type is described by an array of Internal field
descriptors. This array exists only once In the global segment
regardless of the number of occurences of the complex type. The
definition of the Internal field descriptor is as follows.

type_fleld_desc = ARRAY [.) OF RECORD
namel STRING (31) of CHAR, "name of· field"
hashl 0 •• 255, "hash va lue of name"
data_type I O •• max_type, "subscript to lNS.TYPE table"
data_lenl O •• max_len, "string or set length"
data_dlml O .. max_dlm, "dimension of array variable"
datal REL -type_data, "location of field In record"
ex_attrl SET OF 1 .. &4, "extrinsic attributes"
RECEND,

Several of the lNS requests require or retu~n a descriptor,
This descriptor resides In the users memory and Is fully
accessable. The definition of this descriptor Is as follows.

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
&
7
8
g

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

3-5
ADVANCED SYSTEM lABORATORY CHP0604

75/05121
IPlDS GDS - PRD~RAM MANAGEMENT

3.0 lOGICAL NAME SPACE MANAGEMENT
3.1.1 lNS DESCRIPTORS

type_user_desc = RECORD
data_type: O •• max_type, "subscript to lNS'TYPE table"
data_len: O •• max_len, "strIng or set length"
data_dIm: O •• max_dIm, "dImension of array varIable"
data_size I o •• max_51 ze, "size of data In cells"
excll BOOLEAN, "exclusive lock on"
non_excl: BOOLEAN, "non-exclusive locklsl on"
datal -type_data, "location of data"
descl -type_desc, "location of Internal descriptor"
ex_attrl SET OF 1 •• 64, "extrinslc attrlbJtes"
RECEND,

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
31
38
39
40
41
42
43
44
45
4&
41
48

3-&
ADVANCED SYSTEM lABORATORY CHP0604

75/05121
IPlOS G05 - PROGRAM MANAGEMENT

3.0 lOGICAL NAME SPACE MANAGEMENT
J.l.2 lNS DATA TYPES

3.1.2 lNS DATA TYPES

lNS data types fall Into two classes; simple and complex. A
simple type or a complex type may be an element of a complex
type. The currently defined simple types are as follows.

UNKNOWN
INTEGER
REAL
BOOLEAN
STRING
SET
POINTER
CELL
ALIAS
CHAIN

undefined type lundeclarablel
Integer variable
real varlabl e
boolean varlab Ie
.char acter stri ng val' lab Ie
set variable
pointer varIable
cell variable
lNS a lias name
LNS 1 tem chain

The following additIonal subsets of INTEGER wIll be Included
when theIr IPL/SWl representatIons are defined.

SUBRANGE
ORDINAL

1 .. 1
lx, y, z, p, LNSI

The following SWL represe~tatlon att-Ibutes are not
supported at thIs stage of the LNS design.

PACKED
CRAHHED

Th~ currently defined complex types are as fol lows.

SClfTDKEN
SCl. OPERATOR
SCl'FUNCTIDN
SClICOHHAND
SCl'HACRD

SCl
SCl
SCL
SCl
SCl

token
operator
functlon
command
macro

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
211
29
30
31
32
33
34
35
3&
31
38
39
40
41
42
43
44
45
4&
41
48

ADVANCED SYSTlM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

3.0 LO~ICAL NAME SPACE MANAGEMENT
3.1.3 LNS STRUCTURES

3-7
CHP0604

75/05/21

--
3.1.3 LNS STRUCTURES

By the use of
types and chained
assemb led.

cataloged internal descr iptors of compl eK
jt~ms, arbitrarily complex structures may be

3.1.3.1 General ~~~

EKamples of the commands to build the structures shown are
included using Command Language syntax for clarity. The
follo~ing symbols are used in the diagrams of these structures.

entry name
field name
Item name

e
f
i
d
c
x

LNS internal descriptor
chain linkage
data

The following structure is bull t for
Val' iab I es.

eeeeeeee
dddddddd ...

1
I. >xxxxxxxx

Examplel
Ins.declare name,lnteger

scal ar

The follo~ing structure is built for numeric arrays.

eeeeeeee
dddddddd •••

Exampl el

1
I.>xxxxxxxx

xxxxxxxx
xxx XXXXX
XXXXXXXX

Ins#declare name,real,dim=4

numer ic

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-8
~DVANCcD SYSTEM LABORATORY CHP0604

75/05121
IPLOS GOS - PROGRAM MANAGEMENT

---------------------------------------~--------------------------
3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.3.1 General Examples

The following
variables.

eeeeeeee
dddddddd •••

structure is built for scalar

I.>XXXXXXXXXXXXXXKKKKXKKXXXXXXXXXXX

Examp lei
Insldeclare na~e,string

The following structure is built for string arrays.

eeeeeeee
dddddddd •••

Examplel

I.>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXKXxxxxxxxxxxxxxxxxxxxxxxxxxx

Ins.declare name,string,32,4

string

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
1 ..
15
16
17
18
19
20
21
22
23
2 ..
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
.. 3
44
45
46
47
48

ADVANCED SYSTEM LABORATORY CHPO &0 4

IPLOS GDS - PROG~AM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.3.1 Gen~ral Examples

The fol lowing structure is built for complex types.

eeeeeeee
dddddddd ••••••••••••••••• >ffl fffft

I ••• dcldddddd
1.>xxxxxxxx<.1 ffffffff

Examplel

xxxxxxxx< •••• dddddddd
... cccccccc<.. ffffffff
I I •• dcld ddddd
I
I.>iiliilil •• >111111i1 •• >11111111

cccccccc •• 1 CCCCCcCc •• 1 cccccccc
••• dddddddd ••• dddddddd ••• dddddddd
I

I.>xxxxxxxx I. >XXXXXXXX I.>XXXXXXXX

Ins'record record_name,3
Ins#field record_name,f1eld_a,lnteger
Ins#f1el1 record_name.fleld_b,real
Inslfield record_name,fleld_c,cha1n
Ins#declare structure,type=record_name
Ins,lnsert structure.fleld_c, Item_a
Ins.insert structure.field_c, 1tem_b
Ins'lnsert structure.field_c,ltem_c

3-9

75/05/21

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-10
ADVANCED $YST£M LABORATORY CHPO&04

75/05/21
IPLOS GuS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.3.1 General Examples

As Illustrated below, all combinatIons of Items and fIelds
are permitted.

eeeeeeee
dddddddd ••••••••••••••••• >ffffffff

... dddddddd
1.>xxxxxxxx<.1 ffffffff

xxxxxxxx< •••• dddddddd
••• cccccccc< ••• fffff111
I xxxxxxxx<. l.dddddddd

I ffffffff
I dddddddd

1

1.>11111111 •• >il11111i •• >1il11111
CCCCCccC •• 1 CCCCCCCC •• 1 cccccccc

••• dddddddd ••• dddddddd ••• dddddddd
I 1
1.>xxxxxxxx I.>cccccccc •••

1
1 •••••••••••••• >11111111 11111111<.1

Examplel

1 ••• dddddddd cccccccc
1.>xxxxxxxx<,I fftfffff dddddddd

xxxxxxxx< •••• dddddddd... 1
xxxxxxxx<. 1 1 xx xxxxx x<.1
XXXXXXXX 1 I fff fffff<.1

1 I.dddddddd
1 ffffffff
I ••• dddddddd

Ins'record sUbrecord_b,2
Inslfleld subrecord_b.fleld_a,real
Ins#fleld sUbrecord_b,fleld_b,d1m=2
Ins'record suorecord_a,2
I nsll f lei d subrecord_a, fie Id_a ,Integer
Ins'fleld suorecord_a,fleld_b,type=subrecord_b
Ins'record record_name,4
Ins'fieid record_name,fleld_a,lnteger
Insffield recofd_name.fleld_b,real
Ins,fIeld record_name,fleld_c,chaln
Ins.fleld record_name,fleld_d,strlng.8
Ins'declare name,type=record name
Ins,lnsert name.field_c,ltem:a,type=subrecord_a
Ins'lnsert name.lleld_c,ltem_b
Ins'lnsert name.fIeld_c,ltem_c,type=chaln
Ins.Insert name. f1eld_c.ltem_c, Item_a,reat

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCEu SYSTEM LABORATORY

IPLOS GOS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
J.1.3.2 SCL#TOKEN Example

3-11
CHPO &0 4

75/05/21

--

TYPE

Ins'dese = RECORD
data_type' O •• max_type,
data_len. O •• max_len,
data_dim. O •• max_dim,
data_size' O .. max_size,
exel' BOOLEAN,
non_exel. BOOLEAN,
data' -type_data,
dese. -type_dese,
ex_attr. SET OF 1 •• &4,
RECEND,

seltstring = RECORD,
Ihi. 1 •• 25&,
rhil 0 .. 255,
buff' STRING 12551 OF CHAR,
RECEND.

sel'token = RECORD
typ' INTEGER.
dese' Ins' dese •
iv' INTEGER,
rv' REAL,
sv. se I 'string,
RECEND;

L!iLIl.i. fi n it i on

Ins.reeord Ins.dese.9,ldeelare,insertl,lns'103
Ins'field Ins'dese,~ata_type
Ins.fleld 'ns'dese,data_'en
Ins#fle1d Ins#dese,data_dlm
Ins'fleld Ins.dese,data_slze
I~s'field Ins'dese,exel.boolean
InS'field Ins.dese,non_exel,boolean
Ins#ileld Ins'dese,data,polnter
Ins#fleld Ins'dese,dese,pointer
Ins.fleld Ins.dese,ex_attr,set,&4

Ins#reeord sel#string,3,ldeelare,lnsertl,lns'103

NCRICDC PRIVATE REV 20 MAY 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
46
47
48

3-12
ADVANCED SYSTEM LABORATORY CHPO&04

75/05/21

IPLOS GOS - PROGRAM MANAGEMENT --
3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.3.2 SCLBTOKEN Example --

Ins#fleld sel#string,lhl
Ins#fleld sel'strlng,rnl
Ins.fleld sel'strlng,Dutf,strlng,255

Ins'reeord sel.token,5
Ins'field sel.token.typ
Ins.fleld sel.token,dese,lns'dese
Ins'field sel.token,lv
Ins.fleld sel,token,rv,real
Ins.field sel.token,sv,sel'strlng

NCR/CJC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
31t
35
36
37
38
39
itO
41
42
43
1t4
45
46
47
48

3-13
AOVA~CEO SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GOS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.1.4 TYPE CONTROLLED "OWN CODE" P~OCEOURES

3.1.4 TYPE CONTROLLED "OWN COOE" PROCEDURES

ProvIsion has been made for "own code" procedures external
to t~e LNS system code to be conditionally called by request and
data type. This feature Is intended to allow other components of
the operating system to be advised of certain LNS operations on
data with which they are concerned. These procedures wll I be
passed the LNS request code. the request parameters and the LNS
internal descriptor of the entry or Item to oe acted upon. A
status must be returned by the procedure. If this status is not
nor~al. the LNS request will be aborted and the status returned
to the user. A" paramete rs and s tat us records wi" fo II ow
normal system conventions.

These procedures are defined at the ~Ime the Internal field
descriptor Is catalogued by the LNS.RECORD request. The dynamic
loader is called with the named procedure to supply a value for a
procedure pointer variable (-PROC) In the LNSITYPE -table. This
procedure is cal led by the specified LNS requests whenever a
varlao Ie or a field of a variaole of the specified type Is
referenced. The trap procedure Is invoked prior to any action by
the LNS request with the exception of LNS.OECLARE and
LNSRINSERT. These two requests ca II the procedure atter
completing thel~ respective functions. A trap procedure may

- Issue LNS requests. However. recursion and interlock problems
are possible if the logic of the trap Is defective.

Two examples of possible uses of these procedures are to
initialize variables when declared or Inserted or to monitor
changes via get and put by the user to tables currently In use by
the system. A third example would be the Implicit declaration of
associated variables or insertion of items Into a chain field.

A set of procedures named In the form LNS#<status code> are
supplied in the LNS library. These procedures function as own
code trap routines and return the status record Indicated by
their name. For example LNS#103 returns a status of "Invalid
type" and may be used to prevent dec laration of a complex type
Intended only for use as a field of another complex type and
never as a variable on Its own. This Is Illustrated In the
SCL'TOKEN example.

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-14
~DVANCED SYSTEM LABORATORY CHP0604

75/05121
IPLOS GDS - PROGRAM MANAGEMENT --

3.0 LOGICAL NAME SPA-CE MANAGEMENT
3.1.5 EXTRINSIC ATTRIBUTES --
3.1.5 ~XTRINSIC ATTRIBUTES

In addition to the normal LNS Intrinsic attributes. the LNS
system will retal~ 64 user defined extrinsic attributes for any
element. These attributes have no meaning to t~e LNS system but
may be assigned and queried by the user.

Attributes 33 to 64 are reserved for operating system use
(I.a. SCL decoding attributes) while attributes 1 to 32 may be
manipulated by the end user (i.e. problem program).

Currently reserved attributes arel

33 •• 40 system command language

3.2 LNS REQUESTS

The following requests are available for the manlbulatlon of
LNS.

NCR/CJC PRIVATE REV 20 HAY 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCED SYSTEM LABORATORY

IPLOS G~S - PROGRAM MANAGEMENT

CHPO&04
3-15

75/05/21

--
3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.1 LNS'ATTACH --
3.2.1 LNSIATTACH 1

2
3

The purpose of the LNS'ATTACH request is to add a ne" 4
segme~t to the LNS segment list as the most local segment. 5

&
7

LNS#ATTACH (segment, old, status) 8
9

segmentl The segment parameter specifies a string containing 10
the name of a segment currently kno"n to the lob (I.e. 11

mapped in). 12
13

oldl The old parameter specifies a boolean variable. If the 14
value of the variable is true, the LNS data currently 15
in the segment "ill be accessable. If the variable Is 1&
false, tne segment "111 be Initialized as empty. . 17

18
statusl The status parameter specifies a variabte into "hich 19

the status record is to be placed. The status codes 20
returned are described under "error conditions". 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

NCR/CDC PRIVATE REV 20 MAY 75

3-1&
ADVANCED SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
~.2.2 LNS#DETACH

3.2.2 LNS.DETACH

The purpose of the LNS'DETACH request is to remove a segment
from the LNS segment list.

LNS'DETACH (segment, status)

segmentl The segment parameter specifies a string containing
the name of the segment to be detached. Omission of
this parameter (Indicated by a blank string) "111 cause
the most local segment to be detached.

statusl The status parameter specifies a variable Into "hich
the status record is to be placed. The status codes
returned are described under "error conditions".

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
3/0
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

ADVANCEU SY$TEM LABORATORY
3-17

CHPO &0 4

IPLOS GOS - P~OG~AM MANAGEMENT
75/05121

--------~---
3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.3 LNSIDECLARE
--
3.2.3 LNS#uECLARE

The purpose of the LNS'OECLARE request Is to declare an
entry In the LNS.

LNSIOECLARE (segment, entry, type, length, dim, status)

segment I The segment parameter specifies a string contaInIng
the name of the segment in which the entry is to be
declared. OmIssion of the segment parameter (Indicated
by a blank string) will cause the entry to be declared
in the most local segment.

entryl The entry parameter specifies a string contaIning the
name of the entry being declared.

typel The tYPe parameter specifies a string contaIning the
type of the entry being declared. Omission of the type
parameter (Indicated by a blank string) will cause an
entry of type INTEGER to be declared. The valId LNS
types are those described under "data types" or any
complex type prevIously defined by LNS.RECORD and
LNS.FIELD.

lengthl The length parameter is only meaningful when
declaring string or set variables. For strings the
parameter specifies an integer containIng the number of
bytes to be al located for the string. For set
variaoles the integer contains the number of elements
In the set. OmIssion of the length parameter
(indicated by a 0) wil I cause a default of 32 to be
assumed.

diml The dim parameter specifies an integer containing the
dimension of the entry being declared. OmissIon of the
dim parameter (indicated by a 0) wil I cause a default
of 1 to be assumed.

statusl The status parameter specifies a variable into which
the status record Is to be placed. The status codes
returned are described under "error conditions".

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-18
ADVANCED SYSTEM LABORATORY CHP()&04

75/05121
IPLOS GJS - PROGRAM MANAGEMENT --

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.4 LNSUREMOVE --
3.2.4 LNSIIREMOVE

The purpose of the LNSIREMDVE request is to remove an entry
from the LNS.

LNStREMOVE (segment, entry, status)

segmentl The segment parameter specifies a string contaInIng
the name of the segment which is to be searched for the
entry. Omission of the segment parameter (indicated by
a blank strIng) will cause each segment whose name
appears in the LNS segment list to be searched.

entryl The entry parameter specIfies a string containing the
name ~f the entry whIch is to be deleted.

statusl The status parameter specifies a variable into Mhich
the status record is to be placed. The status codes
returned'are descrIbed under "error conditions".

NCR/cac PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
31
38
39
40
41
42
43
44
45
46
47
48

ADVANCED SYSTEM LABORATORY
3-19

CHP0604

IPLOS GOS - PROGRAM MANAGEMENT
75/ OS/21

--
3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.5 LNS#ENTRY
--

3.2.5 LNS#ENTRY 1

2
3

The purpose of the LNS'ENTRY request is to get the 4
descriptor of an LNS entry given the name of the entry. 5

6
7

LNSIIENTRY (segment, entry, subscr, desc, sta tus) 8

9
segmentl The segment parameter specifies a string containing 10

the name of the segment which is to be searched for the 11
entry. Omission of the segment parameter (indicated by 12
a blank strIng) will cause each segment whose name 13
appears in the LNS segment list to be searched. 14

15
entryl The entry parameter specifIes a string containing the 16

name of the entry whose descriptor is being sought. 17
18

subscrl The subscr parameter specifies an integer containing 19
the subscript to be used .. hen the entry is an array. 20
Omission of the subscr parameter (indicated by a D) 21
.. ill cause a descriptor of the entire array to be 22
returned. 23

24
descl The desc parameter specif les a record Into .. hIch a 25

descriptor is to be returned. 26

27
statusl The status parameter specifIes a variable into which 28

the status record is to be placed. The status codes 29
returned are described under "error condi t ions". 30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

NCR/CDC PRIVATE REV 20 MAY 75

3-20
ADVANCED SYSTEM LABORATORY CHPO 60 4

75/05/21
IPLOS GOS - PROGRAM MANAGEMENT --

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.6 LNSIINEXT

3.2.6 LNS.NEXT

The purpose of the LNS.NEXT request is to get the descriptor
of a field or item given the descriptor of the enclosing entry,
item or field.

LNS#NEXT (input_desc, name, subscr, output_desc, status)

input_descl The input_desc parameter specifies the name of a
record containing a. descriptor of the enclosing entry,
field or item.

namel The name parameter specifies a strIng containIng the
name of the field. or Item .. hose descriptor is being
sought.

subscrl The subscr parameter specifies an integer containIng
the subscript to be used when the field or item is an
array. Omi·ssion of the subscr parameter (indicated by
a 0) will cause a descriptor of the entire array to be
returned.

output_descl The output_desc parameter specifies a record
into .. hich the descriptor of the field is to be
placed.

statusl The status parameter specifies a variable into which
the status record is to be placed, The status codes
returned are described under "error conditions",

NCR/C)C PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3D
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

AOVA~CEO SYSTEM LA~ORATORY

IPLOS GOS - PROGRAM MANAGEMENT

CHP0604
3-21

75/05121

--
3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.7 LNS.SLICE
--

3.2.7 LNS.SLICE

The purpose of the LNS.SLICE request is to get the
descriptor of a~ element of an array given the descriptor of the
array.

LNS.SLICE linput_desc, subscr, output_desc, statusl

input_descl The input_desc parameter· speci f ies . a record
containing the descriptor of the array to be sliced.

subscrl The subscr parameter specif ies an integer containing
the subscript of the desired element.

output_desci The output_desc parameter
into which the descriptor of
placed.

speci f ies a record
the element is to be

statusl The status parameter specifies a variable into which
the status record is to be placed. The status codes
returned are described under "error conditions".

NCR/COC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-22
AOVANCEO SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GDS - PROG~AM MANAGEMENT --

3.0 LOGICAL NAME SPACE MANAGEHENT
3.2.8 LNStGROW
--------------------------------~---------------------------------

3.2.8 LNS'GROW

The purpose of the LNSIGROW request is to g"ow the dimension
of an LNS entry or item.

LNS.GROW (desc. incr, statusl

descl The desc parameter specIfies a record containing a
descriptor of the entry or item whose dimension Is to
be grown.

incrl The incr parameter specifies an integer containing the
increment by which the dimension of the entry is to be
grown. OmiSSion of the incr parameter (indicated by a
01 will cause a default of 1 to be ass~med.

statusl The status parameter specifies a variable l~to which
the status record is to be placed. The status codes
returned are descriped under "error conditions".

NCR/COC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCED SYSTEM LABORATORY

IPLOS GOS- PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.9 LNS/ILOCK

3.2.9 LNS'LOCK

3-23
CHP0601t

75/05121

The purpose of the LNS'LOCK request is to lock an LNS entry
or item. The locking operation has no effect on other requests
except other LNS'LOCKs, LNS'UNLOCK, LNS'REMOVE and LNS'DElETE.

LNS.LOCK (desc, excl, key, status)

descl The desc parameter specifies a record containing a
descriptor of -the-entry or item to be locked.

excl-I The exc I parameter specl Ues a boo lean varlab I e. if
the value of the varIable is true, access to-the entry
will be exclusive. If the value ls false, acces. will
be non-exclusive.

keyl The key Darameter specifies a string of 31 characters
in which a unique mime wIll be returned when the access
requested was exc-Iusive. If non-exclusive access was
requested, the contents are unchanged.

status' The status parameter specIfies a varIable Into which
the status record Is to be placed. The status codes
returned are described under "error conditions".

NCR/CUC PRIVATE REV 20 MAY 75

1
2
3
It
5
6
7
8
9

10
11
12
13
lit
15
16
17
18
19
20
21
22
23
21t
25
26
27
28
29
30
31
32
33
31t
35
36
37
38
39
itO
1t1
1t2
1t3
Itlt
1t5
1t6
1t7
1t8

ADVANCED SYSTEM LABORATORY CHPO 60 It
75/05/21

IPLOS GOS - PROGRAM MANAGEMENT --
3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.10 LNSIUNLOCK

3.2.10 LNS'UNLOCK

The purpose of the LNS'UNLOCK request is to • .lnlock an lNS
entry or it em.

LNS'UNLOCK (desc, key, status)-

descl The desc parameter specifies a record containIng a
descrip-tor of the entry or item to be unlocked.

key' The key -parameter specifies a string containing the
string returned by the LNS'LOCK request IIhen the entry
was locked for exclusive access. If the entry Is beIng
unlocked from non-exclusIve access the key parameter Is
ignored.

status. The status parameter specIfIes a variable Into IIhich
the status record Is to be placed. The status codes
returned are descrl~ed under "error conditIoni".

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
It
5
6
7
8
9

10
11
12
13
lit
15
16
17
18
19
20
21
22
23
21t
25
26
27
28
29
30
31
32
33
31t
35-
36
37
38
39
Itll
Itl
1t2
1t3
Itlt
ItS
1t6
1t7
1t8

ADVANCED SYSTEM LABORATORY

IPLOS ~u~ - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.11 LNS#INSERT

3.2.11 LNSOINSERT

3-25
CHP0604

75/ OS/21

The ourpose of the LNS.INSERT request is to insert a new
item into a chain.

LNS.INSERT (desc, Item, type, length, dim, status)

descl The desc oarameter specifies a record containing a
descriptor of the entry, fIeld or item within which the
item is to be allocated.

iteml The item parameter specifies a string containing the
name of the item to be al located.

typel The type oarameter specifies a string containing the
type of the item being inserted. Omission of the type
parameter (indicated by a blank string) will cause an
item of type INTEGER to be inserted. The valid LNS
types are those described under "data types" or any
complex type previously defined by LNS.RECORO and
LNSIFIELO.

lengthl The length .parameter is only meaningful when
inserting string or set items. For strings the
parameter specifies an integer containing the number of
bytes to be allocated for the string. For set items
the integer contains the number of elements in the
set. Omission of the length parameter (indicated by a
0) ~il I cause a default of 32 to be assumed.

diml The dim parameter specifies an integer containing the
dimension of the item being inserted. Omission of the
dim parameter (indicated by a D) wIll cause a default
of 1 to be assumed.

statusl The status parameter specifies a variable into whIch
the status record is to be placed. The status codes
returned are described under "error condltlons".

NOTEI The trap to an "o~n code"
request is determined by
inserted.

procedure by the LNS'INSERT
the data type of the item bei ng

NCR/CUC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-26

IOVANCEO ~YSTEM LABORATORY CHP0604
75/05121

[PLOS GOS - PROGRAM MANAGEMENT --
3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.12 LNS.OELETE --.

3.2.12 LNS#OELETE

The purpose of the LNS.DELETE request is to delete an item
from a chain.

LNS.DELETE (desc, item, status)

descl The desc parameter specifies a record containing a
descriptor of the entry, field or item which is to be
searched for the item.

iteml The item parameter specifies a string containing the
name of the Item to be deleted.

statusl The status parameter specifies a variable into which
the status record Is to be placed. The status codes
returned are described under "error conditions";

NOTEI The trap to an "o~n code"
request is determined by
deleted.

procedure by the LNS.DELETE
the data type of the item being

NCR/CDC PRIVATE REII 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCED SYSTEM LABORAT3RY

IPLOS GOS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.13 LNS#GET

3.2.13 LNSIIGET

3-27
CHPO&04

75/05/21

The purpose of the LNS#GET request Is to get a value from
the LNS.

LNSIIGET (desc, buffer, .status)

descl The desc parameter specifies a record containing a
descript6r of the entry, field or Item whose value Is
being sought.

bufferl The buffe,. parameter specifies a buffer Into which
thd value is to be placed.

status I The status parameter specifies a variable Into which
the status record is to be placed. The status codes
returned are described under lIerror condItions".

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

3-28
ADVANCED SYSTEM LABORATORY CHPO&04

75/05121
IPLOS GDS - PROGRAM MANAGEMENT --

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.14 LNSII PUT --
3.2.14 LNSDPUT

The Durpose of the LNS#PUT request Is to put a· value Into
the LNS.

LNSDPUT (desc, buffer, status)

descl The jesc parameter specifies a record containing a
descriptor of the entry, flel d or Item whose va lue is
to be updated.

bufferl The Duffer parameter specifies the buffer containing
the new va I ue.

statusl The status parameter specifies a variable Into which
the status record is to be placed. The status codes
returned are described under "error conditions".

NCR/CJC PRIVATE REV 20 MAY 75

1
2
3 ..
5
&
7
8
9

10
11
12
13
1 ..
15
1&
17
18
19
20
21
22
23
2 ..
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
.. 1
.. 2
.. 3
....
.. 5
.. &
47
.. 8

3-29
AOVA~CED SYSTEM LABORATORY CHP0604

IPLOS GOS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.2.15 LNS#~ETXA

3.2.15 LNSUSETXA

75/05/21

The purpose of the LNS#ETXA request Is to set the extrInsIc
attributes of an entry or Item. PermIssIon to alter attrIbutes
33 •• 64 is verifIed by the OSDCHECK procedure.

LNSDSETXA (desc, attr, status)

desc I The desc parameter specif Ies a
descriptor of the entry or
attrIbutes are to be set.

reco-d containIng a
Item whose extrInsIc

attrl The attr parameter specIfIes a set of 1 •• 64 contaInIng
the attributes to be changed. This set wlJ I be "xored"
to the current set of attrIbutes resu Iting In the
symetrIc dIfference of the two sets. In other words,
the presence of any attrIbute In thIs parameter causes
the attrIbute to be "toggl ed" In the LNS Internal
descrIptor.

statusl The status parameter specIfIes a varIable Into whIch
the status record Is to be placed. The status codes
returned are described under "error condl tlons".

NCR/CuC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-30

IOVANCEO SYSTEM LABORATORY CHP0604
75/05/21

[PLOS GDS - PKOGRAM MANAGeMENT --
3.0 LOGICAL NAME SPACE MANAGEMENT
3.3 PRIVILEGED REQUESTS --
3.3 eEIVILEGED R~IS

The followIng requests are subject to restrIctIons such as
OperatIng SYstem only or SEIOP use. When any of these requests
are Issued permIssion is verifIed by the OSICHECK procedure.

NC R/CDC PRI VA TE REV 20 MA Y 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
41
48

3-31
ADVANCED SYSTEM LABORATORY CHP0604

75/05121
IPLOS GDS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.3.1 LNS#RECORD

3.3.1 LNS #RECORD

The purpose of the LNS9RECORO request is to def ine a new
complex type to the system. The type defi~ition is always
global.

LNS'RECORO (record, fields, traps, procedure, status)

recordl The record parameter specifies a string containing
the name of the complex type to be defined.

fieldsl The fields parameter specifies an integer containing
the maximum number of fie Ids to exist in the compl ex
type.

trapsi The traps parameter specifies an ordered set of
requests for which an "own code" procedure is to be
invoked for this type. If this parameter is omitted
(indicated by an empty set) no traps wlll occur. The
positio,",al significance of each request in the set is
as f 01 lows.

LNS.DECLARE •••••••••••••• 1
lNS#REMOVE 2
LNS.ENTRY 3
LNS.NEXT ••••••••••••••••• 4
LNStSLICE •••••••••••••••• S
LNS#GROH 6
LNS#LOCK ••••••••••••••••• 7
LNS.UNlOCK ••••••••••••••• 8
LNS.INSERT ••••••••••••••• 9
LNS#OELETE ••••••••••••••• 10
LNSIGET •••••••••••••••••• ll
LNS'PUT •• ' •••••••••••••••• 12
LNS'SETXA 13

procedure I The
containing
invoked as

procedure
the name
indi cated

procedure named must
known to the Job. An
result in a status
rather than from LNS.
(indicated by a blank

parameter speclf ies a string
of the "own code" procedure to be

by the traps parameter. The
reside in a library currently

error in this parameter will
being returned from the loader
If this parameter is omitted

string) no traps "ill occur.

statusl The stat~s parameter specifies a variable into which

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-32
ADVANCED SYST~M LABORATORY CHP0604

75/05121
IPLOS GDS - PROGRAM MANAGEMENT --

3.0 LOGICAL NAME SPACE MANAGEMENT
3.3.1 LNS#RECORO" --

the status record is to be placed. The status codes
returned are descrioed under "error conditions".

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
j
8
9

10
"11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3-33
ADVANCED SYS1EM LABORATORY CHPO 60 4

IPLOS GOS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.3.2 LNS#FIELD

3.3.2 LNS#F IELD

75/05/21

rhe purpose of the LNS#FIELD request is to define a field of
a previously defined complex type.

LNStlFIELD (record, field, type, len, dim, attr, status)

recordl The record parameter specifies a string containing
the name of the complex type of which this field is to
be a member.

fieldl The field parameter specifies a stri~g containing the
name of the field to be defined. This name "ill become
the name of the first currently undefined field of the
complex type.

typel The type parameter specifies a string containing the
type of the field to be defined. Omission of the type
parameter (Indicated by a blank string) will cause a
field of type INTEGER to be defined. The valid LNS
types are those described under "data tvpes" or any
complex type previously defined by LNS#RECORD and
LNS 'FIELD.

lengthl The length parameter is only meaningful when
defining string 0- set fields. For strings the
parameter specifies an integer containIng the number of
bytes to be allocated for the string. For set fields
the integer contains the number of elements in the
set. Omission of the length parameter (indicated by a
0) wi(I :ause a default of 32 to be assumed.

diml The dim parameter specifies an integer containing the
dimension of the field being defined. Omission of the
dim parameter (indicated by a 0) will cause a default
of 1 to be assumed.

attrl The attr parameter specifies a
the extrinsic attributes to
field. Note that t"e LNS#SETXA
on field descriptors.

set of 1 •• 64 containing
be associated with the
request may not be used

statusl rhe status parameter specifies a variable Into which
the status record is to be placed. The status codes
returned ara descrl~ed under "error co,dltlons".

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
36
39
40
41
42
43
44
45
46
41
48

3-34

ADVANCeD SYSTEM LABOkATORY CHP0604
75/05/21

IPLOS GUS - PROGRAM MANAGEMENT --
3.0 LOGICAL NAME SPACE MANAGEMENT
3.3.3 LNSnSEGLOCK --
3.3.3 LNS#SEGLOCK

The purpose of the LNS.SEGLOCK request is to perform a
non-exclusive lock on a segment in order to prevent an LNSIDETACH
request from being performed.

LNStSEGLOCK (segment, status)

segmentl The segment parameter specIfies a string contaInIng
the name of the LNS segment to be locked.

statusl The status parameter specifIes a variable into which
the status record is to be placed. The status codes
returned are descrloed under ·'error condltions ll

•

NCR/CDC PRIVATE REV 20 HAY 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
31
38
39
40
41
42
43
44
45
46
41
48

ADVANCED SYST~M LABDRATORY

IPLOS GUS - PROGRAM MANAGEMENT

3.0 LOGICAL NAME SPACE MANAGEMENT
3.3.4 LNS#S~GUNLOCK

3.3.4 LNS#SEGUNLOCK

3-35
CHPo&o 4

75/05/21

The purpose of the LNS'SEGUNLOCK request is to unlock an LNS
segment, allowing an LNS'DETACH to be performed.

LNS.SEGUNLOCK (segment, status)

segment. The segment parameter specifies a string containing
the name of the LNS segment to be unlocKed.

status' The status parameter specifies a variable into which
the status record is to be placed. The status codes
returned are descri~ed under "error condItions".

Error conditions are represented by status information
returned by each LNS request. The status information may be
passed to the syste·~ message generator for further expansion and
logging.

y

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
&
7
8
g

10
11
12
13
14
15
1&
17
18
19
20
21
22

i 23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

3-3&
ADVANCED SYSTEM LABORATORY CHPO &04

75/05/21
IPLDS GDS - PROG~AM MANAGEMENT --

3.0 LOGICAL NAME SPACE MANAGEMENT
3.4.1 DEFINITION OF CODES --.-----------
3.4.1 DEFINITION OF CODES

0 LN 000 normal completion

Parameter errors

8 LN 101 invalid segment name
8 LN 102 inva lid element name
8 LN 103 invalid type
8 LN 104 invalid length
8 LN 105 invalid dimension
8 LN 10& invalid increment
8 LN 108 invalid key
8 LN 109 invalid subscript
8 LN lOA invalid descriptor

Access errors

8 LN 201 denied access
8 LN 202 segment exists
11 LN 203 segment does not exist
8 LN 204 entry exists
8 LN 205 entry does not exist
8 LN 20& field exists
8 LN 207 field does not exist
8 LN 208 item exists
8 LN 209 item does not exist

Functional errors

8 LN 301
8 LN 302
8 L"l 303
8 LN 304
8 LN 305
8 LN 30&
8 LN 307

Internal errors

C LN 901
C LN 902
C LN 903
C LN 904
C LN 905
E LN EEE
F LN FFF

entry already locKed
entry not locKed
segment locKed by system
element not a chain
element not a structure
element too large
segment not locked

no memory for LNS internal descriotor
no memory for data
maximum number of fields exceeded
maximum number of segments exceeded
maximum number of types exceeded
fe~ture not yet supported
disaster

NCR/CDC PRIVATE REV 20 MAY 75

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&·
47
48

3-37 3-38
ADVANCED SYSTEM LABORATORY CHPO &04 AD VANC£D SYSTEM LABORATORY CHPO&04

75/05/21 75/05/21
IPLOS GDS - PROGRA M MANAGcMEN T IPLOS GDS - PROGRAM MANAGEMENT -- --3.0 LOGICAL NAME SPACE MANAGEMENT 3.0 LOGICAL NAME SPACE MANAGEMENT

3.4.2 ERROR CODES BY REQUE.ST 3.4.2 ERROR CODES BY REQUEST -- ------------------------------.-----------------------.-----------
3.4.2 ERROR CODES BY REQUEST 1 1

2 I I 0 G P I S R F S I S 2
3 N E I E U I E E I E E 3•....... 4 S L I T T T C .1 E G G 4

A I D D R E 1 N S 1 G L U 5 E E 1 X 0 L L 1 U 5
1 T E E 1 E N E 1 L 1 R 1 0 N & R T 1 1 A I R I D I 0 I N &
I T T C 1 M I T X 1 I 0 1 C I L 1 T E 1 I D I C I L 7
1 A I A I L 0 I R I T C W K I 0 8 K 0 8

C C I A V I Y E I C 9 C 9
H H R E K 10 K 10

E 11 •••••••••• 1 ••• 1 ••• 1 ••• 1 ••• 1 ••• 1 ••• 1 ••• 1 ••• 1 ••• 11
••••••••••• I ••• I ••• I ••• l ••• I ••• I ••• t ••• ' ••• I ••• I ••• 1 12 I I 12
I 13 0 LN 000 X X X X X X X X I X 13
I 0 LN 000 I X X X X X X X X X I X 14 8 LN 101 X I X 14
I 6 LN 101 X 15 8 LN 102 X X X X I 15
I 6 LN 102 1 X X X X 1& 6 LN 103 X X 1&
I 6 LN 103 I X X 17 8 LN 104 X X 17

8 LN 104 I X 18 8 LN 105 X X X 18
8 LN 105 I X 19 8 LN 10& 19

I 8 LN 10& X 20 8 LN 108 20
I 6 LN 108 X 21 6 LN 109 21

8 LN 109 X X X 22 8 LN lOA X X X X X 22
8 LN lOA X X X X I X 23 8 LN 201 23
8 LN 201 X 24 8 LN 202 24

I 8 LN 202 X I 25 8 LN 203 X X 25
I 6 LN 203 X X X 2& 6 LN 204 X 2& 8 LN 204 X 27 8 LN 205 27

8 LN 205 X X 28 8 LN 20& X 28
8 LN 20& 29 6 LN 207 29 8 LN 207 X 30 8 LN 208 X 30
8 LN 208 31 8 LN 20·9 X I 31
6 LN 209 X 32 8 LN 301 I 32 8 LN 301 X 33 , 8 LN 302 33 8 LN 302 X 34 8 LN 303 34 8 LN 303 X I 35 8 LN 304 X X 35
6 LN 304 3& 6 LN 305 3& 8 LN 305 37 8 LN 30& X X X X 37 8 LN 30& I X : X 38 8 LN 307 X 38 8 LN 307 39 C LN 901 X I X 39 C LN 901 I X I 40 C LN 902 X : X 40 C LN 902 I X X : 41 C LN 903 X 41
C LN 903 : 42 C LN 904 42 C LN 904 X 43 C LN 905 X I 43
C LN 905 44 E LN EEE 44
E LN EEE 45 F LN FFF X I X X X X X I X X X 45
F LN FFF X I X I X I X X I X X I X I X X 4& ••• I ••• ••• I ••• • •• 1 ••• 1 4& ••• 1 ••• 1 ••• 1 ••• 1 ••• 1 ••• ••• 1 ••• 1 ••• 1 ••• 41 47

48 48

NCR/cnc PRIVATE REV 20 HAY 75 NCR/CDC PRIVATE REV 30 APR 75

4-1
AOVANCEU SYSTeM LABORATORY CHP0604

75/05/21
IPLOS GDS - PROGRAM MANAGEMENT

4.0 PROGRAM ~OMMUNICATIONS

4. 1 _ElillllS.

Events are system supported facilities which permit
synchronization and Interrupt control for asynchronous activities
within a Job. An event Is represented by an event control block
In storage and several system requests to manipulate the control
olocK. An event control block may be either an LNS variable or· a
structure in the job data base (Internal static, stack, etc.!.

The event control block contains the following lnformatlona
a Condition state (caused, cleared!
a ActIon state (enabled, dIsabled!
a ActIon (attached procedure, waited!

The condItion state indIcates the current condItIon of the
event, caused or cleared. The action state, enabled or dIsabled,
directs the system to either immediately effect the specified
actio~ or delay the action. The action can be the InvokIng of an
attached procedure, or It can be continuing the eKecution of an
asynchronous actIvIty in the Job that has bee,,·waltlng for the
causation of this event. The actIon may also be a combinatIon of
both for one or several control paints In a Job.

Regardless of the action state being either 'enabled' or
'dlsabled', the system performs the specified action only when
the conditIon state· of the event changes from 'cleared' to
·caused·. There are two reqUests that do this change,
PM#CAUSE_EVENT and PM'CAUSE_CLEAR_EVENT. The PM. CAUSE_EVENT
request sets the condltlon state to caused and leaves it that
way. The PM.CAUSE_CLEAR_EVENT request is used for pulsing, If
the condition state of an event ls 'caused' when either of these
requests is Issued, the system wlll not perform the speclfled
action. The PM#CLEAR_EVENT request sets the condition state of
an event to ·cleared-.

An interrupt procedure can be attached to aA event by using
the P~#ATTACH_PKOCEDURE request. When an event to which an
interrupt orocedure has been attached does occur, the result will
be the serial invocation of the attached procedure usIng the same

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

4-2

AOi/ANCED SYSTEM LABORATORY CHP0604
75/05/21

IPLOS GOS - PROGRAM MANAGEMENT --
4.0 PROGRAM COMMUNICATIONS
4.1 E. VENTS --
control
request.

point as the requestor of the PM'ATTACH_PROCEDURE

If the action state of the event to which the procedure Is
attached is 'dlsabled', the invocatlo" of the orocedure wll I be
delayed until the event is enabled. Event .occurrence processIng
for a particular event remaIns disabled until enabled by the
PM#ENABL£_EVENT request,

The PMUDISABLE EVENT request prevents the invocation of any
and a II procedures attached to a part icul ar event, A procedure
can be attached to more than one event. Hare than one procedure
can be attached to one event.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
&
7
8
g

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

4-3
AUVANCEO SYSTEM LABORATORY CHPO 60 4

75/05121
IPLOS GuS - PROGRAM MANAGEMENT

4.0 PROGRAM COMMUNICATIONS
4.1.1 EVENT REQUESTS

4.1.1 EVENT REQUESTS

The event requests orovided by Program Management are as
fo I I o"s I

PH#ATlACH_PROCEOURE (procedure, event, status)
PM#CAUSE_EVENT (event, status)
PM#CAUSE_CLEAR_EVENT (event, status)
PM#CLEAR_EVENT (event, status)
PM#DETACH_PROCEDURE (procedure, event, status)
PM#DISABLE_EVEIH (eventl, ••• , el/entH, status)
PM#ENABLE_EVENT (eventl, ••• , eventM, status)
PMOSTATUS_EVENT (event, condition_state, action_state,

waited, attached_interrupt_procedure, status)
PM#WAIT_EVENT (eventl • ... , eventM, posil1on, status)
?M#HAH _CLEAR_EVENT (eventt, eventM, posit ion, status)

This request establishes an association of an interrupt
procedure with an event.

PM#ATTACH_PROCEOURE (pro:edure, event, stat,.Js)

procedurel pointer to the procedure to be invoked when the
event OCCU"'S.

eventl pointer to event control block.

statusl returned request status.

This request sets the specified event to caused. If the
event is in the cleared state when this request is made, the
system oerforms the action, if any, as specified in the event
contrololock. If the event Is l'l the caused state already when
this request is made, the system does not perform any specified
action and informs the requestor via the returned request
status. Performing the action includes the execution of all
attacned procedures,

PM#CAUSE_EVENT (event, status)

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

4-4
ADVANCED SYSTEM LABORATORY CHP0604

75/05/21
IPLOS GOS - PROGRAM MANAGEMENT

4.0 PROGRAM COMHUNICATIONS

~:~:::~-~~!~~~~~~~~~~~--
event: pointer to event control block.

statusl returned request status.

This requests performs the action, if any, as specified in
tne event control block and returns to the requestor with the
event in the cleared state. If the event is in tne caused state
already when this request is made, the system does not perform
any specified action and informs the requestor via the returned
requests status. Performing the action inclujes the execution of
al I attached procedures.

PM#CAUSE_CLEAR_EVENT levent, status)

eventl pointer to event control block.

status' returned 'reauest status.

This request sets the condition state of an event to
cleared.

PM#CLEA~EVENT (event, status)

eventl pointer to an eve~t control block.

statusl returned request status.

4.1.1.5 PM#DEIAC~~

This request removes the association of an interrupt
procedure ~Ith an event. The requestor must be the same as the
PH#ATfACH requestor.

P~#DETACH_PROCEDURE (procedure, event, siatus)

procedure I pointer to procedure to no longer be associated
with the specified event control block.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
31
38
39
40
41
42
43
.. 4
45
46
47
48

4-5
ADVANCED SYSTEM LABORATORY CHPO &0 4

75/05121
IPLOS GOS - P~OGRAH MANAG~MENT

4.0 PROGRAM COMMUNICATIONS

~!::::~-~~!~~!~~~=~~~~~~~~~---------------------------------------
eventl pointer to event control block.

statusl returned request status.

This reQuest disables e~ent occurrence processing for an
event or events. I t sets the act ion state of a spec if ied event
to disabled.

PM.DISABLE_EVENT (event1 ••••• eventH. status)

eventl pointer to an event control block.'

statusl returned request status.

4.1.1.7 PHtENABL~Nl

This request enables event occurrence processing for an
event or events. It sets the action of a specified event to
enabled.

PH.ENABLE_EVENT (event1 eventM. status)

eventl pointer to an event control block.

statusl returned request status.

4.1.1.8 PM#STATU~Nl

This request returns the status of an event.

PMI/STATUS_EVENT (event, condition_st'ate, action_state.
waited. attached_interrupt_procedure. status)

eventl painter to event control block.

condition_statel returned
cleared.

action_state I returned
disab led.

state

state

ind icafing

indicating

caused

enabled

NCR/CDC PRIVATE REV 30 APR 75

or

or

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCED SY~TEH LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

4.0 PROGRAM COMMUNICATIONS

CHPO &0 4
4-&

75/05121

~!:!:!~-~~!~!~!~~=~~~~!---
waitedl returned indication if there are any control points

in the Job waiting fo~ this event to be caused.

attached_interrupt_procedurel returned indication if there
are any interrupt procedures that are attached to this
event.

statusl returned request status.

4.1.1.9 PMI/HAIT EVENT

This request suspends the execution of a control point until
One or al I of a specified number of events has occurred.

PMUHAIT_EVENT levent1, •••• eventM, position, status)

eventl pointer to an event control block.

position I if specified, one event occurrence will satisify
the wait and its position (l-H) will be returned. If not
specified, all the events must occur to satisfy the
wait.

statusl returned request status.

The system will default a time limit so a "control point will
not remain suspended waiting for something that will not occur.
Elaosed default time limit wil I be reflected in the returned
re ques t st atus.

H hll e a contra I pol nt is suspended wa it i ng on an even t,
other events can occur. These are saved until the walt is
satisfIed. Then they are processed in the order of their
occurrence including the event or events that satisfied the
wait. Processing event occurrences includes invoking any
attached interrupt procedures.'

The PHI/HAlT_EVENT request processor does not alter the
condition of an event before returning to the reQ~estor.

More than one control point in a Job may wait on an event,
in which case al I gre suspended untIl the condition state of the
specified event is caused.

If a task is suspended waiting on an event and there occurs
another event to which an Inner-ring interrupt procedure has been

NCR/COC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
4&
47
48

4-7
ADVANCED SYSTEM LABORATORY CHPo 60 4

75/05/21
IPLOS GUS - P~OG~AM MANAGEMENT --

4.0 PROGRAM COMMUNICA nONS
4.1.1.9 PM. WAIT_EVENT --

attached, the system wIll allow the control poInt to execute the
interrupt procedure and then be suspended again.

This request suspends the execution of a control poInt until
one or al I of a specIfied number of events has occurred. It Is
the same as the PM#WA IT _EVENT request except that I t returns to
the reQ~estor with the conditIon state of the walt satisfying
event or events as c I eared.

PiillWAIT _CLEAR_EVENT (even ti, ... , ellentM, pas it lon, status I

event I pointer to event control block.

positionl if specified, one event occurrence will satisfy the
walt and its position (l-MI wIll be returned. If not
specified, al I the events must occur to satisfy the
wait.

statusl returned request status.

The system wi II defaul tat ime I imi t so a control point wi II
not remain suspended waiting for something that ~il I not occur.
Elapsed default time limit wII I be reflected In the returned
request status.

If a control poInt is suspended waiting on an event and
there occurs another event to which an Inner-rIng Interrupt
subprogram has been attached, the system will allow the control
point to execute that Interrupt sUDprogram and then be suspended
again.

waiting on an event,
saved until the wait Is

In the order of their
events t,at satisfied the

includes invoking any

While a control point is suspended
other events can occur. These are
satisfied. Then they are processed
occurrence Including the event or
wait. Processing event occurrences
attached interrupt procedures.

More than one control point may wait on a' event, in which
case all are suspended until the condition state specified event
is caused.

NCR/COC PRIVATE REV 3D APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3D
31
32
33
34
35
36
31
38
39
40
41
42·
43
44
45
46
41
48

4-8
ADVANCED SYSTEM LABORATORY CHPo 60 4

75/05121
IPLOS GDS - PROGRAM MANAGEMENT

4.0 PROGRAM COMMUNICATIONS
4.2 SIGNALS .

SIgnals are short messages that are used for Inter-Job
communications usually in the form of requests and responses.
For example, system code In a User Job can send a signal to the
System Job to request some specific service. The body of the
signal would contain the request. It may also contain the
identification of an associated event control block for an event
to be caused when a response is received.

A signal may De
PMI/SELECT _SIGNAL request.

associated with a Que~e via the
In this case Program Management waul dl

11 put the sIgnal on a Queue using the PH. ENQUEUE request

2) cause the Queue-associated event, if any, as noted in the
Queue control block.

The signal can be removed from the aueue by using the PM. DEQUEUE
request.

When a signal is received by the destination control point,
contra I first goes to a genera I signal handl er and then is routed
to signal-awn-code based on the type of signal. For example, say
1/0 is a type of signal. Then every 1/0 signal received by a Job
could be processed by an I/O signal module ta do whatever is
particular for an 1/0 signal.

The tvpes of signals and the informatlo~ contained in a
signal are detailed in Chapter 9 of OSGDS.

4.2.1 SIGNAL SELECTION

The Signal Selection List (SSLI Is a structure Internal to
Program Management and Is used to register Signal selections on a
contra I point basfs. The PM'SELECT_SIGNAL re~est ·assoclates a
signal with a Queue by creating an entry in the SSL. The Task
Monitor Signal Handler uses the SSL to Queue signals. The
PMIJDESELECT_SIGNAL request removes an entrY from the SSL.

NCR/CDC PRIVATE ~EV 3D APR 75

1
2
3
4
5
6

·7
8
g

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
41
48

4-9
ADVANCED ~Y~T~M LABORATORY CHPO 604

75/05121
IPLOS GDS - PROG~AM MANAGEMENT --

4.U PROGRAM COMMUNICATIONS
4.2.2 SIGNAL REQUESTS --
4.2.2 ~IGNAL REQUESTS

The signal requests provided by Program Management are as
followsl

PM#SENu_SIGNAL Isignal, status)
PMYSEL"CT_SIGNAL (name, Queue, status)
PMYDESELECT_SIGNAL (name, status)
PMHSTATUS_SIGNAL Isignal, Queue, status)
PH.DISAaLE_SIGNALS (status)
PM#ENABL~_SIGNALS (status)

This request sends a signal from one Job to another Job.

PM#S[ND_SIGNAL (signal, status)

signall pointer to the signal to be sent.

status' retu~ned reauest status.

This request associates a signal with a queue.
one signal may be associated with one queue, bJt not
Queues for a signal.

PM#SELECT_SIGNAL (name, queue, stat us)

More than
multip.le

n"mal tne signa I type and id in the hea::ler of tne signal
expected to be received.

Queue I point er to the QueJe control block to be used by
Program Management to queue the· signa I so it wi I I not be
lost.

status: returned request status.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
41
48

ADVANCED SYST"M LABORATORY

IPLOS GDS - P~OG~AM MANAGEMENT

4.n PRUGRAM COHMUNICATIONS
4.2.2.3 PHIIDESELEC,-SIGNAL

4-10
CHPO 604

75/05/21

--

This request breaks the associatlon of a signal "Uh a
queue. Further receptions of the speCified signal will not
result in those signals beIng items on the previously specIfied
Q..Jeue.

P~.uESEL~CT_SIGNAL (name, status)

name I the type and id of the signal as specified in a
previous PM#SELECT_SIGNAL request.

status: returned request status.

ThIs request provIdes a way to determine If a particular
signal has arrived. ThIs is meaningful for the case of more than
one signal associated wlth a Queue. It can be determined if
anything is on the queue by using the PMISTATUS_QUEUE request.
It can be determined if a particular sIgnal is on a queue by
using the PMOSTATUS_SIGNAL re~uest.

PMnSTATUS_SIGNAL (signal, queue, status)

namel type and id of a signal as previouslY specified In a
PHI/SELECT_SIGNAL request.

queue I returned pointer to Queue contro I block, I f a ny, as
specifIed ·on a prevIous PHIISELECT_SIGNAL request.

statusl ret~rned request status.

4.2.2.5 PHIIDISABLE SI~

This request is used to prevent loss of control due to
Inter~uption for signal processing for the requesting control
point. This request does not prevent hardware interruptions.

PMIIDISABLE_SIGNALS (status)

status I returned request status

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

"-11
ADVANCEU SYSTEM LABORATORY CHPO 60 ..

75/05121
IPLOS GUS - PROG~AM MANAGEMENT --

".0 PROGRAM COMMUNICATIONS
4.2.2.6 PMOENABLc_SIGNALS --

This request is used to enable signal processing after a
previous PH#DISABLE_SIGNALS request.

PH#ENA8LE_SIGNALS (status)

statusl returned reQuest status.

ThIs request is used to obtain the executIo~ Identity of the
requestor. The execution Identl ty may be the contra I point Id,
the task control block, the program control block, or the Job
control block.

PMIIIDENTITY (to be suppl ied)

NCR/CDC PRIVATE REV 3D APR 75

1
2
3 ..
5
6
7
8
9

10
'11
12
13
1 ..
15
16
17
16
19
20
21
22
23
2 ..
25
26
27
28
29
30
31
32
33
3 ..
35
36
37
36
39
.. 0
.. 1
.. 2
.. 3
.. 5
.. 6
.. 7
.. 8

"-12
ADVANCEU SYSTEM LABORATORY CHP060 ..

75/05/21
IPLOS GUS - PROGRAM MANAGEMENT

... 0 PROGRAM COMMUNICATIONS
".3 QUEUES

" • 3 _ID&J.!~

The queuing mechanism provided by Program Management is
designed to al low the sendIng, storing, and retrieving of
arbitrary data structures between asynchronous activities within
a Job. The queuing facility will be used, for example, by the
Signal mechanism to pass standard si9nals to the interested
control points. An event may be associated with a queue so that
an enqueue request on the queue would effect causation of the
event. It Is the responsibility of the owner of the QCB to put
In the pointer to an associat&d ECB.

A Queue is defined by a Queue control b lock somewhere In the
address space of the Job. It can be an LNS structure or
somewhere in the Job data base (stack, internal statiC, etc.)
The format of a Queue control block is shown beiowl

TYPE
QUEUE_CONTROL_BLOCK = RECORD

NUMBER-QUEUEUI SEMAPHORE;
ASSOCIATEO_EVENTI -EVENT_CONTROL_BLOCK,
CHAIN_START I -QUEUE_IT EM,
CHAIN_ENOl -QUEUE_ITEM,
STORAGE_METHOD! ITo Be Suppliedl

R£CEND;
TYPE

QUEUE_ITEM = RECORD
QUEUE_THREADI -QUEUE_ITEM,
DATA_LOCATION I -SEQUENCE,

RECEND.

The fields in the QUEUE_:ONTROL_BLOCK and
described belowl

are

NUMBER_QUEUED I This semaphore should have an initial value
of zero. It indicates the number of items currently on
the Queue. Adding an item to the Queue will do a
SIGNAL_SEMAPHORE on this semaphore and gettin9 an item
from the queue will do a PH.HAIT_SEMAPHORE on this
semaphore •

ASSOCIATED_EVENT! If the pointer is other than NIL It
references an event control block which wll I be placed in
the caused state whenever there are items on the queue
and the cleared state whenever the queue is empty.

CHAIN_STARTI Pointer to the first Item on the queue •

NCR/CDC PRIVATE REV 30 APR 75

1
2
3 ..
5
6
7
8
9

10
11
12
13
1 ..
15
16
17
18
19
20
21
22
23
2 ..
25
26
27
28
29
30
31
32
33
3 ..
35
36
37
38
39
.. 0
.. 1
.. 2
.. 3
.. 5
..6
.. 7
.. 8

4-13
ADVANCEU SYSTEM LABORATORY CHPO 60 4

75/05121
I?LOS GuS - PROG~AM MANAGEMENT --

4.0 PROGf(AM COMMUNICATIONS
4.3 QUEUES --

CrlAIN_ENDI Pointer to the last item on the queue.

SrORAG£_I1ETHODI wi II indicate in some way where storage is
to be acquired for new queue items.

QUEUe_THREAD I Thread of items on the queue.

DAlA_LOCATIONI POinter to the data represented by the
QUtoUE_IT EM.

The actions performed by the queue request orocessors are
described in the following decision tablel

t------------------------------+---------------+---------------+
I OPERA TION I ENQUEUE I OEQUEUE I

1------------------------------1-------+-------1-------+-------1
I NUMBER OF ITEMS ON QUEUE I 0 I >0 I 0 I >0 I
\------------------------------1---+---1---+---1---+---1---+---1
I ASSO:IATED EVENT I YIN I YIN I YIN I YIN I
~------------------------------+---+---+---+---+---+---t---t---+
I Add item to queu e I X I X I X I X I I I I I
I I I I I I I I I I
I Take i tern from que ue I I I I I I I X X

I I I I I I I
Suspend request ing process I I I I X I X I

I I I "I
PM#CAUSE_EVENT I X I I I I

I I I' I
PM9CLEAR_EVENT I I I ..

I , I

t------------------------------+---t---+---t---+---t---+---+---+

.. if initial value is one.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
g

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
It5
46
47
48

ADVANCED SYSTtoM LABORATORY

IPLOS GDS - PROGRAM MANAGEMENT

4.0 PROGRAM COMMUNICATIONS
It.3 QUEUES

4-14
CHP0604

75/05/21

--

QUEUE REQUESTS

The queue reQuests provided by Program Hanagement are as
foilowsl .

PHflENQUEUE (queue, item, status)
PMIIOEQUEUE (queue, item, status)
PMU~TATUS_QJEUE (queue, st.tus)

4.3.1.1 PHI/ENQUEUE

The PMHENQUEUE request adds a queue Item to a queue and
actIvates one process if there is one suspended on the Queue.

PMflENQUEUE (queue, item, status)

queuel pointer to the queue control block which defines the
particular Queue.

iteml oointer to the queue item which is to be added to the
Queue.

statusl returned request status.

The PMUOEQUEUE reauest removes an item from a queue and
returns the location of the item to the requestor. If the queue
is empty at the time of the request, the requestor is suspended.

PMIIDEQUEUE (que~e, item, status)

queuel pointer to the qJeue control block ~hich defines the
particular Queue.

iteml returned pointer to item data. The queue item is no
longer on the queue.

statusl returned request status.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

4-15
ADVANCED SYSTEM LABORATORY CHPO 60 4

75/05121
IPLOS GUS - PROGRAM MANAGEMENT --

4.0 PROGRAM COHMUNI~ATIONS

~:~:~:~-~~!~~~~~~=:~:~~---
4.3.1.3 ~STATUS QUEUf

The PM.STATUS_QUEUE request provIdes a ~ay to determIne If
there ara any Items on the specified queue.

PMHSTATUS_QUEUE (queue, status)

queuel oointer to the Queue control block that defines the
Queue.

statusl IndIcates ~hether or not there are any Items on the
Queue.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCED SYSTEM LABORATORY

IPLOS GUS - PROGRAM MANAGEMENT

4.0 PROGRAM COMMUNICA lIONS
4.3.1.3 PMDSTATUS_QUEUE

4-16
CHP0604

75/05121

--

4.4 SEMAPHORES

SemaPhores are system supported facilities ~hlch permIt
com~unication and synchronIzatIon among asynchronous actIvItIes
~Ithin a job. A semaphore Is represented by a semaphore control
block some~here In storage and t~o system requests to manIpulate
the control block. A semaphore Is the most prImItIve facIlIty
supported by the operatIng. system for synchronIzatIon and
serialIzation of asynchrono.Js activIties. Semaphores are
utIlized by various system routInes to serIalIze themselves and
In the ImplementatIon of Locks and Queues.

A semaphore maY be eIther an LNS varIable or a structure In
the Job data base (Internal statIc, stack. etc.) The format Is
as sho~n be I 0~1

TVPE

VAR

SEMAPHORE = RECORD
VAL-UE I INTEGER.
CHA INI -CONTROL_POINT,

RECEND;

ANY_SEMAPHOREI SEMAPHORE

The states of a semaphore are sho~n In the fol lo~lng tablel

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

4-17
AGVANC~D SYST~M LABORATORY CHPOb04

75/05121
IPLOS GDS - PROGRAM MANAGEMENT --

4.0 PROGRAM COMMUNICATIONS
4.4 SEMAPHORES
---------------------------------------~--------------- -----------

+--------------------------+-----------------+-----------------+
1 t<EQUESTED OPERATION 1 WAIT 1 SIGNAL I
1--------------------------1-----+-----+-----1-----+-----+-----1
I INITI AL CONTENTS OF I 1 I 1 I I
I • V A LU ~. (V» I < 0 I =0 I > 0 I < 0 I =0 I > 0 I
+--------------------------+-----+-----+-----+-----+-----+-----+
I I I I I I
1 Resul tant contents of 1 V-1 V-1 I V-1 I V+1 V+1 I V+1 I

'value' (V) I I I I

Add request process
to chain and suspend

Remove first process
from thread and activate

X X

I I I
I I I

I
I
I
I X
I

Process immediately I
can t i nues X 1 X X X

t-- ________________________ + _____ + _____ + _____ + _____ t __ ---+-----+
cor a description of the properties of semaphores and some

examples of their uses, see section titled Program Management
Notes.

SEMAPrlO~E REQUESTS

The semaphore requests provided by Program Management are as
followsl

PM#SIGNAL SEMAPHORE (semaphore, status)
PM#WAIT_SEMAPHORE (semaphore, status)

This reQuest increments the ·value s of a semaphore by one.
If the resultant value is less than or equal to zero, the process
whicn nas been walting for the semaphore the longest· is
act ivatej.

semaphore 1 poi~ter to a structure of type semaphore

status: returned request status.

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

AGVANCED SYSTEM LABORATORY

IPLOS GuS - PROGRAM MANAGeMENT

4.0 PROGRAM COMMUNICATIONS
4.4.1.2 PM#WAIT_StMAPHORE

4-18
CHP0604

75/05/21

This request decrements the ·value- of a semaphore by one.
If the resu)tant value is less than zero, the requesting process
is suspended.

PH#WAIT_SEMAPHO~E (semaphore, status)

semaphore 1 pOinter to a structure of type semaphore

status: returned request status.

INTRA-JOB LDC KS

LocKS as such are not directly supported by the operating
systeill as primitive requests since their function can be wholly
replaced by semaphores. The simple two state lock is described
in Denning'S article in the section titled Program Management
Notes.

A more flexible lOCk mechanism is proposed by the
Programming Language CommIttee Proposal ATG-71001.11.
section titled Program Management Notes.

INTER-JOB SYNCHRONIZATION

CODAS YL
See the

The semaphore and lock mechanisms described above are for
synchronization of asynchronous activities within a Job. There
are two mechanisms which permit synchronization 3nd communication
~lHl Jobs. One is the Signal facil ity described in 4.2. The
other is the Compare and SHap hardHare instruction Hhich may be
used' on memory locations which are shared between Jobs. The
Compare and Swap is externalized by tHO requests referencing a
signature lock. The two coordinating Jobs must be sharing a
segment with an agreed upon word in that segment designated as
the si9natur~ lock.

The signature lock requests provided by Program Management
are as foilowsl

NCR/CDC PRIVATE REV 30 APR 75

1
2
3
4
5
6
7
8
g

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

"-19
ADVA~CED SYSTEH LA90RATORY CHP060 ..

75/05/21
IPLOS GUS - PROGRAH HANAGEHENT

".0 PROGRAH COHHUNICATIONS
4 3.1 Signature Lock Requests --

PH'SIGN_LOCK (lock, status) 1
PH'UNSIGN_LOCK (lock, status) 2

3
... ".3. 1. 1 .e.J1tiIJi~K ..

5
This request is used to sign a signature lock with the 6

Control Point id of the requestor. The request Is rejected if 7
the requesting control point already has anything locked via 8
PH'SIGN_LOCK. Otherwise the request disables signal processing, 9
does a-compare swap on the signature lock word. If the compare 10
swap is successful, returns leaving the Control Point Id in the 11
signature lock word. If not successful, enables signal· 12
processing and cyc I es. 13

1 ..
PH'SIGN_LOCK (lock, status) 15

16
lockl pointer to the signature lock word In the shared 17

segment. 18
19

statusl returned request status. 20
21

...... 3.1.2 PHIUNSIGN LOCK 22
23

This request is used to unslgn a signature lock by writing 2 ..
it with zeroes. Rejects If the requesting control point does not 25
have it locked. 26

27
PH'UNSIGN_LOCK (lock, status) 28

29
lockl pointer to the signature lock word in the shared 30

segment. 31
32

status I returned request status. 33
3 ..
35

... 5 Q.tL~!1!:!~l:I~ 36
37
38

Tobesupplled. 39

NCIUCOC PRIVATE REV 02 AUG 74

.. 0
.. 1
.. 2
.. 3
.. 5
.. 6
.. 7
.. 8

5-1
AOVANCEU SYSTEM LABORATORY CHPO 60 4

75/05121
IPLOS GuS - PROGRA~ MANAGEMENT

5.0 PROGRAM MAINTENANCE

5. 0 _E!ill1iRruLl1!l.l!iIE.!iA!:i~ 1
2
3
4
5
6
7

10 Be SuDol ied 8

NCR/CDC PRIVATE REV 26 MAR 75

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

6-1
ADVANCED SYSTEM LABORATORY CHPO &0 4

75/05/21
IPLOS bUS - P~OGRAM MANAGEMENT

&.0 PROGRAM MANAGEMENT NOTES

&.1 COBOL LO~~

A flexible lock mechanism is proposed by the CODASYL
Programming Language CommIttee Proposal ATG-71001.11. The lock
defined there· has four possible states and three operatIons
defined on It as detailed in the fol lowing diagram.

+---------------+---------------+---------------+---------------+
I REQU~ STEU I UNLOCK I LOCK FORI LaC K FOR I
I OPERATION I I SHARED USE I EXCLLJSIVE USE I
1---------------1---+---+---+---1---+---+---+---1---+---+---+---1
I INITIAL. STATE I U I LIM I E I U I LIM IE I U I LIM I E I
+---------------+---+---+---+---+---+---+---+---+---+---+---+---+
I Resul tant
I state

Suspend
requesti ng
process

Activate
suspended
process
if any

Request error

Process
Immed iate I y

I continues

U

x

x

U M U L

x x

x x x x

M M E E

x

x x x

L M

x x

I
E I

I
I.
I

X I
.1
I
I
I
I
I
I
I
I
I,

I
+---------------+---+---+---+---.---+---+---+---+---+---+---+---+

The states correspond to.

U unloCked.
L locked for shared use by one orocess.
M locked for shared use by multiple processes.

NCR/CDC PRIVATE REV 26 MAR 75

1
2
3
4
5
6
7
8
g

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3D
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

6-2
ADVANCED 5YSTEH LABORATORY CHP0604

75/05121
IPlOS GUS - PROGRAM MANAGEMENT --

6.0 PROGRAM MANAGEMENT NOTES
6.1 COBOL LOCK NOTES --

E = locked for exclusive use.

The following sample coding demo~strates how this fairly
complex lock mechanIsm could De implemented by a run tIme support
system or macros usIng the semaphore mechanism. However, thIs
code example does not Include the COBOL ATG 'AT LOCKED' ImmedIate
return option.

"Oefinition of a lock structure"

TYPE
COBOL_LOCK RECORD

SHARED_COUNT • INTEGER
EXCLUSIVE_LOCK • SEMAPHORE,
SHARED_KEY I SEMAPHORE,
EXCLUSIVE_KEY I SEMAPHORE,

RECENO;

"Semaphore used to serIalize lock/unlock procedures"

LOCK_CONTROL I SEMAPHORE .= [1, nIL);

"Unlock procedure used for both shared and"
Qexcluslve locks"

PROC COSOl_UNLOCK (REF II COBOL_LOCK);
WAIT (LOCK_CONTROL);
IF I.EXCLUSIVE_LOCK.VALUE LT 1 THEN

"If exclusively locked"
SIGNAL (I.SHAREO_KEY);
SIGNAL (I.EXCLUSIVE_LOCK);

ELSE
"LOCKEO FOR SHARED USE"
I. SHARED_COUNT I = I. SHARED_COU NT-1;
IF I.SHARED_COUNT EQ a THEN

"actIvate walters for exclusive lock"
SIGNAL (I.EXCLUSIVE_K£Y);

IFEND;
IFEND;
SIGNAL (LOCK_CONTROL);
PROCEND COBOL_UNLOCK;

nL ock procedure f or shared lock"

PROC COBOL_SHARED_LOCK (REF II COBOL_LOCK);
LABEL START_LOOP;

NCR/CDC PRIVATE REV 26 MAR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
.20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

ADVANCEJ SYSTEM LABORATORY

IPLOS GuS - PROGRAM MANAGEMENT

6.0 PROGRAM MANAGEMENT NOTES
6.1 COBOL LOCK NOTES

START_LOoPa LOOP;
WA IT (LOCK_C aNT ROll;
IF I.~XCLUSIVE_LOCK.VALUE EQ 1 THEN

"If not exclusively locked·'
IF I.SHAREO_COUNT = 0 THEN

CHP0604

lilt unlocked prevent exclusive lock"
HAIT II.EXCLUSIVE_KEY);

ELSE

IFENO;
I. SHARED_COUNT 1= I.SHARED_COUNT + 1;
SIGNAL (LOCK_CONTROLI;
iOXIT STARTLOOP;

"If exclusively lockej wait unti I unlocked"
SIGNAL (LOCK_CONTROLI;
WAIT II.SHARED_KEY);
SIGNAL (I.SHARED_KEYI;

IFEND;
LOOPEND;
PROCENO CoaOL_SHARF.O_LOCK;

"'Lock procedure for exclusive lock"

PROC COBOL_EXCLUSIVE_LOCK (REF II COBOL_LOCKI;
LABEL START_LOOP;
START_LOOPILOOP;

WA IT (LOCK_C aNT ROL I;
IF I.EXCLUSIVE_LOCK.VALUE LT 1 THEN

"If already exclusively locked"
SIGNAL (LOCK_CONTROL);

I:.LSE

WAIT (I.EXCLUSIVE_LOCK);
SIGNAL (I.EXCLUSIVE_LOCK);

IF I.SHAREU_COUNT >0 THEN

ELSE

"If locked for shared use"
SIGNAL (LOCK_CaNTRaLl;
WAIT (I.EXCLUSIVE_KEY);
SIGNAL II .EXCLUSIVE_KEY!;

"If unlockeo"
WAIT (I. EXClUSIVCLOCK I;
"Prevent shared lock"
PM#WAIT (I.SHAREO_KEYI;
SIGNA L (L OCK_CONTROLl;
EXIT STARTLOOP;

75/05121

NCR/CDC PRIVATE REV 26 MAR 75

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
4&
47
48

ADVANCeD SYSTEM LABORATORY

IPLOS GOS - PROGRAM MANAGeMENT

6.0 PROGRAM ~ANAGEMENT NOTES
6.1 COBOL LOCK NOTES

IFEND;
IFEND;

LOOPENO;
PROCEND COBOL_EXCLUSIVE_LOCK.

6-4
CHP0604

75/05/21

The following excerpt by Dennlng(11 very ,Icely descrIbes
the propertIes of semaphores and provides some examples of their
uses.

..... A semaphore Is an Integer variable s with an Initial
value sO ~ 0 assigned on creation; associated with it is a Queue
Q, in which are placed the identifiers of processes waiting for
the semaphore to be "unlocked." Two indivisible operations are
defined on a semaphore sl

waJt sl[s<- s 1;
queue Q, enters
processor]

if s < 0 the cal IeI' places himself in the
the waIting state, and releases the

signal sl [s<- s + 1; if s ~ o remove some process from Q, and add
it to the work Queue of the processors)

Semaphore values may not be inspected except as part of the
wait and signal operation. If s < 0, then -s is the number of
processes waiting in the Queue Qs. ExecutIng walt when s > 0
does not delay the caller, but executing walt when s S 0 does,
untIl another process executes a corresponding signal. Executing
sIgnal does not delay the caller. The programmIng for mutual
exclusion using wait and sIg~al Is the same as for lock and
unlock, with xO 1 (walt replaces lock, an(l signal replaces
un lock) •••

"SynchronIzatIon

In a computation performed by cooperating processes, certaIn
processes may not contInue their progress until information has
been supplIed by others. In other "or::ls, although
program-execut ions proceed asynchronous I y, there may be a
requirement that certain program-executIons be ordered in time.

1 Third GeneratIon Computer SYstems·, Peter J. Denning, Computer
Surveys, Vol. 3. No.4, December. 1971, PP. 199-201.

NCR/CDC PRIVATE REV 2& MAR 75

1
2
3
4
5
&
7
a
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45
4&
47
48

6-5
AOVAN:EO ~YSTEM LABORATORY CHP0604

75/05/21
IPLOS GuS - PROGRAM MANAGEMENT --

6.0 PROGRAM MANAGEMENT NOTES
0.2 SEMAPHORE NOTES --

\
This is called synchronization. The precedence constraints
existing among processes in a system express the requirement for
synchronization. Mutual exclusion is a form of synchronization
in the sense that one process may be bloc~ed until a signal is
received from another. The wait and signal operations, which can
oe used to express al I forms of synchronizations, are often
called synchronizing primitives.

"An interesting and important application of synchronizat.on
arises in conjunction with cooperating CYclic processes. An
exampl e made famous by 0 i I kstra is the "producer/consume r"
problem, an 3bstraction of the input/output problem. Two cyclic
processes, the producer and the consumer, share a buffer of n > 0
cells, the producer p laces items there for later use by the
consumer. The producer might, for examp Ie, :Ie a process that
generates output one line at a time, and the consumer a process
that operates the line printer. The producer must be blocked
from attempting to ::ieposit an item into a full buffer, While the
consumer must be blocked from attempting to re~ove an item from
an empty buffer. Ignoring the details of producing, depositing,
removing, and consuming items, and concentrating solely on
synchronizing the two processes with respect to the conditions
"buffer full" and "buffer empty", we arrive at the following
abstract description of what is required. Let a1a2 ••• ak be a
system action sequence for the system consisting of the producer
and consumer processes. Let plk) denote the numoer 01 times the
producer has deposited an item among the actions a1a2 ••• ak, and
let clk) denote the number of times the consumer has removed an
item from among the action a1a2 ••• ak. It is required that

U ~ plk) - clk) ~ n 111

lor all k. The programming that implements the required
synchronization IEQ. i) is given below; x and yare semaphores
with initial values xU = 0 and yO nl

prolproduce item;
walt y;
deposit item;
signal x;
goto pro;

coni walt x;
remove item;
signal y;
consume ltem;
goto con;

To prove "that Eq. 1 holds for these processes, suppose
otherwise. The either clk) > plk) or plk) > c Ik) +n. However,
clk) > plk) is impossible since It implies that the number of
comoleted wait x exceeds the number of completed signal x, thus
contradictin~ xU o. Similarly, plk) > c(k) + n is also
impossible since it implies t'lat the number of c:lmpleted wait y

NCR/CDC PRIVATE REV 26 MAR 75

1
2
3
4
5
£>
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
41
48

AOJANCED SYST~H LABORATORY

IPLOS GOS - PROGRAM MANAGEMENT

6.0 PROGRAM MANAGEMENT NOTES
6.2 SEMAPHORE NOTES

6-6
CHPO 60 4

75/05/21

exceedS by more than n the number of completed signal y, thus
contradicting yO = n.

"Another application of synchronization Is the familiar
"read-aCknowledge" form of signal lng, as used in sending a
message and waiting for a replay (B5). Define the semaphores r
and a with initial values rO = aO = 0; the programming is of the
forml

generate message;
Signal r;
wal t a;
obtain reply;

walt r;
obta in message;
generate reply;
signa I a;

..... As a final example, let us consider ho" the
synchronizing primitives can be used to describe the operation of
an interrupt system. Typicalt"v, the interrupt hardware contains
a set of pairs of flipflops, each pair conSisting of a ·'mask
111pllop" and an "interrupt flIpflop." the states of .the
fllpflops in the ith pair are denoted by mi and xi,
respectively. The Uh interrupt is saId to be "disabled" Imasked
of f) i I mi 0, and "enabl ed" if m i = 1. When the hardware
senses the occurrence of the ith exceptio~al condition Ci, it
attempts to set xi = 1; If mi = 0, the settIng of xi is delayed
until mi = 1. The setting of xi is supposed to awaken the ith
"Interrupt-handler process" Hi, in order to act on the condition
Cl. By regarding ml and xl as hardware semaphores with initial
values ml 1 and xi 0, we" can describe the foregOing
activities as an interprocess singaling probleml

~!!ABf
Ci occursswait mi;

signal xii
signal mil

disablel walt mi;
enables sIgnal mi;

l1:LIl:!liJSE!!.fLtlAtHlJ,f!LlU
startlwalt xli

process interrupt;
goto start;

NCR/CDC PRIVATE REV 26 MAR 15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
11
18
19
20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
31
38
39
40
41
42
43
44
45
46
41
48

