Burroughs

1000 Systems
SDL/UPL

REFERENCE MANUAL

(RELATIVE TO MARK 10.0 RELEASE)

Copyright © 1982 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
TIO West Documentation, Burroughs Corporation, 1300 John Reed Court,
City of Industry, California 91745, U.S.A.

B 1000 Systems SDL/UPL Reference Manual

LIST OF EFFECTIVE PAGES

Page Issue
Title Original
ii Original
iii Original
iv Blank
v thru xii Original
xiii thru xiv Original
1-1 thru 1-5 Original
1-6 Blank
2-1 thru 2-11 Original
2-12 Blank
3-1 thru 3-7 Original
3-8 Blank
4-1 thru 4-45 Original
4-46 Blank
5-1 thru 5-3 Original
5-4 Blank
6-1 thru 6-14 Original
7-1 thru 7-12 Original
8-1 thru 8-13 Original
8-14 Blank
9-1 thru 9-236 Original
10-1 thru 10-17 Original
10-18 Blank
11-1 thru 11-3 Original
114 Blank
A-1 thru A-2 Original
B-1 thru B-18 Original
C-1 thru C-58 Original
D-1 thru D-27 Original
D-28 Blank
1 thru 16 Original

1137833

Section

1137833

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS

Title

PREFACE . .
INTRODUCTION
Related Documents
Notation Conventions . .
Left and Right Broken Brackets (< >)
AT SIGN (@)
Syntax Conventions
Required Items .
Optional Items
Loops
Bridges . . .
FUNDAMENTALS OF THE LANGUAUE
SDL/UPL Properties o ..
SDL/UPL Program Format . . .
SDL/UPL Source File Record Format
Character Set
Identifiers .
Array Identifiers
Data Types
FIXED
BIT . . .
CHARACTER
RECORD
Conversion Between Data Types
Values and Addresses of Variables
Literals . .
Numeric theral
Bit-String Literal
Character-String Literal
Miscellaneous Constants
HEX__SEQUENCE__NUMBER
SEQUENCE__NUMBER
TODAYS_DATE .
Comments
Enclosed Comment
End-of-Record Comment . .
STRUCTURE OF AN SDL/UPL PROGRAM
Lexicographic Level . .
Scope of Procedures and Identlflers
DECLARATIONS
Data Declarations Statement
identifier-part
structured-part
paged-array-part
dynamic-part .
reference-part
remaps-part
type-part

2-10

- 2-10

2-10
2-10
2-10
2-11
2-11
3-1
3.2
34
4-1
4-1
42
4-3
4-5
4-6

4-8
4-10

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

4 Array Declaration Information . .
(continued) Examples of DECLARE Statements .

RECORD Declarations . e e
structured-part
unstructured-part
identifier-part

remaps-part

type-part . .

Qualified Record Names
Record-Reference Identifiers .
FILE Declarations . .
ALL__AREAS_ AT__ OPEN
AREAS
BUFFERS .

DEVICE . .

END__OF__ PAGE_AC'IION
EU_INCREMENTED
EU_SPECIAL . . .
EXCEPTION__MASK
FILE__TYPE
HOST__NAME
INVALID__ CHARACTERS .
LABEL
LABEL__TYPE

LOCK

MODE . . .

MULTI__ PACK . .
NUMBER__OF__ STATIONS
OPEN__OPTION .
OPTIONAL

PACK__ID . .
PROTECTION . .
PROTECTION__IO
RECORDS

REEL . . .

REMOTE___ KEY

SAVE
SECURITYTYPE .
SECURITYUSE

SERIAL .

TRANSLATE
USE__ INPUT_BLOCKING .
USER_NAMED__BACKUP
VARIABLE
WORK__FILE . . .
SWITCH__FILE Declaratlon

vi

Page

- 4-10

. 411
. 4-14

- 415
- 4-16

- 4-16
- 4-17
- 4-18
- 4-19
- 4-20
- 4-20
- 421
- 4-22
- 4-22
- 4-23
- 429
- 429
- 4-29
- 4-30
- 4-30
- 4-31
- 4-31
- 4-32
- 4-33

Section

5
6

1137833

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

DEFINES . .
EXPRESSIONS
Unary Operators
Minus
Plus
Arithmetic Operators
Addition
Subtraction
Multiplication
Division
MOD . .
Relational Operators
Logical Operators .
Cat Operator ..
Conditional Expression .
Replacement Operators .
Delete Left (:=)
Delete Right (::=)

Title

Replacement Operatlons in Procedures .

Order of Precedence

Address Generators . . .
Indexing (SDL Programs Only)
PROCEDURES

PROCEDURE Deciaratlon Statement and Parameters

type-part .

formal-element-]part
Procedure Body ..
Procedure End Statement .
Procedure Invocations
STATEMENTS
Declaration Statements .
Control Statements .

Procedure Call Statement .

DO Statements . . .

DO FOREVER Statement

IF, THEN, and ELSE Statement .

CASE Statement .

CASE (format-1)

CASE (format-2)
Assignment Statement
Null Statement .
VERBS . .
Format of the Verb Descrlptron
ACCEPT

ACCESS__FILE__INFORMATION .

BASE__REGISTER
BINARY . .
BINARY__ SEARCH

. 6-10
611
L 611

612

vii

Section

9
(continued)

viii

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Title

BUMP . .

CHANGE . . .

CHAR__TABLE . .
CHARACTER__FILL

CLEAR

CLOSE
COMMUNICATE__ WITH GISMO
COMMUNICATEo
COMPILE_CARD__INFO
CONSOLE_SWITCHES . .
CONTROL__STACK__BITS
CONTROL__STACK__TOP .
CONVERT
DATA__ADDRESS

DATA __LENGTH

DATA__TYPE .

DATE

DC. INITIATE O

DEBLANK

DECIMAL .

DECREMENT
DELIMITED__TOKEN
DESCRIPTOR . . .

DISABLE__ INTERRUPTS
DISPATCH

DISPLAY . . .

DISPLAY BASE .
DUMP__FOR_ANALYSIS . .
DYNAMIC_MEMORY__BASE
ENABLE__INTERRUPTS
ENTER__COROUTINE .
ERROR_COMMUNICATE .
EVALUATION__STACK__TOP
EXECUTE . . .

EXIT__ COROUTINE

FETCH . . e
FETCH__ COMMUNICATE MSG__PTR
FIND_DUPLICATE__CHARACTERS

FINI
FREEZE__ PROGRAM
GROW .

HALT
HASH__CODE

INITIALIZE__VECTOR
LAST_1.IO__STATUS
LENGTH . . .
LIMIT__ REGISTER
LOCATION .

Page

9-11
9-13
9-21

9-23
9-25
9-27
9-30
9-31
9-32
9-35
9-36
9-37
9-38
9-43
9-44
9-45
9-46
9-51
9-52
9-53
9-55
9-57
9-59
9-60
9-61

9-63

9-65

9-66
9-67
9-68
9-69
9-71

9-73
9-74
9-75
9-76
9-77
9-78
9-80
9-81

9-82
9-84
9-85
9-86
9-87
9-89
9-91
992

Section

9

1137833

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Title

MAKE__DESCRIPTOR
(continued) MAKE__READ__ONLY .
MAKE__READ__WRITE .
MESSAGE__COUNT

MONITOR

M_ MEM_ SIZE .
NAME_ OF__ DAY . .
NAME__STACK__TOP

NEXT__ITEM .
NEXT__TOKEN
OPEN . .
OVERLAY

PARITY_ADDRESS
PREVIOUS__ITEM .
PROCESSOR_TIME .
PROGRAM__SWITCHES

READ

Variabie—Leﬁgfh i{eé:or.ds.
READ__CASSETTE . . .
READ__FILE__HEADER

READ__FPB

READ__OVERLAY .

REDUCE .
REFER .

REFER__ADDRESS .
REFER__LENGTH

REFER__TYPE
RESTORE
RETURN .

RETURN__AND__ENABLE__INTERRUPTS
REVERSE_ STORE . L

SAVE

SAVE_ STATE

SEARCH__DIRECTORY . .
SEARCH__LINKED__LIST .
SEARCH__SDL__STACKS
SEARCH__SERIAL__LIST

SEEK

SKIP
SORT

SORT__MERGE

SEGMENT._PAGE .

SORT_SEARCH . .
SORT__STEP._DOWN

SORT_SWAP .

SORT__UNBLOCK

SPACE .

SPO__INPUT.__PRESENT

Page

9-96

9-97
. 999
. 9-100
. 9-102
- 9-104
- 9-105
19106
' 9-107
' 9-108
" 9-110
" 9-115
" 9116
' 9-117
" 9-118
1 9-119
1 9-122
© 9123
© 9129
. 9-131
. 9-133
. 9-135
. 9-136
. 9-140
. 9-141
. 9-142
. 9-143
. 9-144
. 9-145
. 9-146
. 9-147
. 9-149
. 9-150
. 9-151
. 9-155
. 9-159
. 9-160
. 9-163
. 9165
. 9-169
. 9171
. 9175
. 9-180
. 9-181
. 9-182
. 9-184
. 9-185
. 9-189

ix

Section

9
(continued)

10

11

w >

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Title

STOP .

SUBBIT

SUBSTR

SWAP

S MEM SIZE .o
THAW_PROGRAM
THREAD__VECTOR
TIME .
TIMER .

TRACE . .
TRANSLATE

UNDO

USE . . .
VALUE__ DESCRIPTOR .
WAIT .
WRITE . .

Variable- Length Records
WRITE__FILE__HEADER
WRITE_FPB . . .
WRITE__OVERLAY
X_ADD
X_DIV
X_MOD
X_MUL
X_SUB
VA)

COMPILER OPTIONS AND PASSES
Compile Deck
SDL/UPL Compiler Flles
Compiler-Directing Options

Conditional Compilation

Functions of Each Compiler Pass .
HOW TO WRITE AN SDL/UPL PROGRAM
General
Writing Rules . . .

Form of an SDL/UPL Program .
Coding Examples . . .

RESERVED AND SPECIAL WORDS
THE SDL S-MACHINE
Components of the SDL S- Machme

Base-Limit Area e

Run Structure Nucleus . .

Code Segment and Segment D1ctxonar1es .

File Information Block and FIB Dictionary .

Registers .
the Base-Limit Area .

Value Stack

Name Stack

Page

9-190
9-191
9-195
9-198
9-200
9-201
9-202
9-203
9-207
9-208
9-209
9-211
9-212
9-214
9-216
9-220
9-223
9-227
9-229
9-230
9-231
9-232
9-233
9-234
9-235
9-236

10-1

10-1

10-1

10-3
10-14
10-17

11-1

11-1

[a—

—
H

—

— —
B
) U L}
— N e

[} 1
[y

L]
o —t

])
ok fd

W@ wwewow
W N —_

[

Appendix

B

B 1000 Systems SDL/UPL Reference Manual

TABLE OF CONTENTS (Cont)

Title

Display Stack

(continued) Control Stack

1137833

Evaluation Stack

Program Pointer Stack .
Data Descriptor .
Paged Array Descriptors
Access of Data Addresses
Code Addresses

Format of the Control Stack and Scratch Pad'

Inline Descriptor Formats .
Simple Data Descriptor Format
Array Descriptor Format

Use of the Evaluation Stack
Address Operand
Value Operands

Self-Relative . .
Non-Self-Relative

Instruction Set .
Relational Operators .
Arithmetic Operators .
Extended Arithmetic Operators .
Logical Operators
String Operators
Store Operators .
Construct Descriptor Operators
Load Operators
Stack Operators
Procedure Operators .

Search and Scan Operators
Miscellaneous Operators . .

SDL/UPL SYNTAX REFERENCE GUIDE

Listing of SDL Railroad Syntax Dlagrams
Fundamental Items . ..
File Declarations
Procedure Statement .
Expressions
Verbs . .

Compiler Optlons ..

UPL Railroad Syntax Gulde
Fundamentals .o
Declarations .
Procedure Statement .

Verbs . .
Compiler Optlons .

GLOSSARY OF COMMONLY USED TERMS AND ACRONYMS

INDEX .

Page
B-3

B-3

B-4

B-4

B-6

B-7

B-8

B-9
B-10
B-10
B-11
B-12
B-12
B-12
B-12
B-12
B-12
B-12
B-13
B-13
B-13
B-13
B-14
B-14
B-15
B-15
B-16
B-17
B-17

C-1

C-1

C-4
C-10
C-12
C-12
C-30
C-32
C-32
C-34
C-42
C-44
C-56

D-1

Xi

BB W WL
1 1 1 1
A N N S RURI R S S VO

— = O OOV LOCOVLCAARN

[0) 1 1 1 1 4 1] 1 ' '
[S PN
[\ N

eeflevBvelieclvelevivelvsRveveRuoleoRve

[

—e e = \O GO I ON B W

W= O

W N
)

[o)}
W RGN et o

N) U } 1

O \O \O \O O

B 1000 Systems SDL/UPL Reference Manual

LIST OF ILLUSTRATIONS

Title

Basic Structure of the SDL/UPL Source Program
Relationship of Procedures and Lexic Level Number
Example Showing Procedures Nested within Procedures .
Procedure Nesting

Memory Mapping of Array A and Identlﬁer B and C
Data Space Created for Identifier D .o
Status of the Evaluation Stack

Status of the Evaluation Stack

Contents of Buffer After a Read Operatlon .o .
Before and After Results of the REDUCE Operauon
Before and After Results of the REDUCE Operation
Before and After Results of the REDUCE Operation

Contents of A and B Before/After SORT__SWAP Operation

Movement of Descriptor on Evaluation and Value Stacks
Contents of Program’s Buffer After a Write Operation .
Straight Forward SDL/UPL Program

SDL/UPL Program Using Recursive- Procedure Techmque
Base-Limit Arca of an SDL/UPL Program . .
Format of Control Stack Entry . .

Format of the Program Pointer Stack

Format for a 48-bit Long Simple Descnptor

Format of an Array Descriptor .

Format of the Type Field

Format of a Paged Array Descriptor

Format of a Data Address .

Format of Code Addresses

Format of the Control Stack

Format of Control Stack Information in ‘Bc.ratch Pad
Format of a Simple Data Descriptor

Format of an Array Descriptor

LIST OF TABLES

Title

Use of Punctuation Symbols in an SDL/UPL Program .
Relationship of Scope and Ianvoking Procedures

Boolean Logic Table .

Valid File Attribute Values

Valid DEVICE Type Values .o

Data Type Conversion Combinations -. .

Format and Length of each DATE Verb Opuon

Format of Information Returned from SEARCH ljllil:CTORY

Page

3-1
3-2
3-3
3-5
4-11
4-19
69
6-10

. 9-126
. 9-138
. 9-138
. 9-139
. 9-182
. 9214
. 9224

11-2
11-3

B-10
B-11

Page

2-3
3-7
6-6
9-17
9-18

9-48

9151

B 1000 Systems SDL/UPL Reference Manual

PREFACE

This manual describes the SDL/UPL programming language. The manual is divided into 11 sections
and 4 appendixes. Each is briefly described as follows:

Section Contents

1 INTRODUCTION
Provides a brief introduction to the SDL/UPL language
and compiler. Lists the related documents and describes
the notation and syntax conventions used in this manual.

2 FUNDAMENTALS OF THE LANGUAGE
Defines the valid characters, identifiers, literals,
constants, and data types allowed in an SDL/UPL source
program. The use of comments in an SDL/UPL source
program is also described.

3 STRUCTURE OF AN SDL/UPL PROGRAM
Describes the structure of an SDL/UPL source program.

4 DECLARATIONS
Describes the use of declarations in an SDL/UPL source
program. This includes simple, structured, dynamic,
paged array, file, switch__file, and reference
declarations.

5 DEFINES
Describes the use of defines in an SDL/UPL source program.

6 EXPRESSIONS
Describes the use of expressions in an SDL/UPL
source program. This includes unary, arithmetic,
relational, logical, conditional expression, and
replacement operators and their order of precedence.

7 PROCEDURES
Describes the use of procedures in an SDL/UPL source
program. This includes the use of parameters and the
type option in procedures, procedure invocations, and
forward procedure declarations.

8 STATEMENTS
Describes the valid statements allowed in an SDL/UPL
program.

9 VERBS
Describes the use of the verbs in an SDL/UPL source
program.
10 COMPILER OPTIONS AND PASSES
Describes the options, conditional compilation
modes, and the passes of the SDL/UPL compiler

11 HOW TO WRITE AN SDL/UPL PROGRAM
Describes the writing rules and form of an SDL/UPL
program. Also, example programs are provided.

1137833 xiii

B 1000 Systems SDL/UPL Reference Manual
Preface

Section Contents

A SPECIAL AND RESERVED WORDS
Lists the SDL and UPL reserved and special words.

B THE SDL ENVIRONMENT
Describes the SDL program environment.

C SDL/UPL SYNTAX REFERENCE GUIDE
Contains all the railroad syntax diagrams for all
the SDL/UPL declarations and verbs.

D GLOSSARY OF COMMONLY USED TERMS AND ACRONYMS
Describes the terras and acronyms used throughout
this manual.

Xiv

B 1000 Systems SDL/UPL Reference Manual

SECTION 1
INTRODUCTION

The Burroughs B 1000 computer system is a small, general-purpose computer system. The B 1000 dif-
fers from other computer systems in that it is dynamically microprogrammable and is designed to sup-
port many independent special-purpose machine architectures, rather than one general-purpose architec-
ture.

Each particular machine architecture is realized on a microprogrammable B 1000 processor by means
of multiprogrammed interpreters. The general philosophy of the B 1000 computer system is that each
language that runs on the machine has its own interpreter. For example, the B 1000 computer system
can be a ‘“COBOL machine,” a ‘“FORTRAN machine,”” a ‘““BASIC machine,” an ‘“RPG machine,”
and so forth.

To permit this flexibility, a language (along with its interpreter) was designed to be used for implemen-
tation of the Master Control Program (MCP), the various compilers, the Network Definition Language
(NDL), the Data Management System (DMSII), and all the utility programs. This language is called
the Software Development Language (SDL).

SDL is tailored to the B 1000 computer system and provides access to all machine features. Use of
some of the SDL verbs requires that the programmer have intricate ‘‘state of the art’’ knowledge of
the B 1000 system. These verbs are used exclusively for system software development. Therefore, the
User Programming Language (UPL) was created to provide the flexibility of SDL without any of the
potentially dangerous verbs. Throughout the remainder of this manual the term ‘“‘SDL/UPL”’ is used

to imply both the SDL and UPL compilers and languages. The terms ‘“‘SDL’’ and ‘‘UPL’’ are used
to refer to the respective compiler or language.

UPL is a high-level, problem-oriented language that allows sophisticated computer programs to be writ-
ten with relative ease. The flexibility of UPL makes it a powerful programming tool for the system

user as well as the system designer. The language can increase programmer productivity and can make
the solution of complex problems easier. The resultant software reflects this increased productivity.

RELATED DOCUMENTS

The following documents are referenced in this document:
B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982.
B 1800/B 1700 Systems System Software Operation Guide, Volume 2, form number 1108966.
B 1000 Systems SORT Reference Manual, form number 1090594,

NOTATION CONVENTIONS

Left and Right Broken Brackets (< >)

Left and right broken bracket characters are used to enclose letters and digits which are supplied by
the user. The letters and digits can represent a variable, a number, a file name, or a command.

Example:

<job #>AX<command>

1137833 1-1

B 1000 Systems SDL/UPL Reference Manual
Introduction

AT SIGN (@)
The at sign (@) character is used to enclose hexadecimal information.

Example:

afF 32 is the hexaceciral regresentation of the EBCDIC
character 3.

The @ character is also used to enclose binary or hexadecimal information when the initial @ character
is followed by a (1) or (4), respectively.

Examples:

a(1)1111C0113 is the binary representation of the EBCDIC
character J3.

A(4)F33 is the hexadecimal representation of the ESBCDIC
character 3J.

SYNTAX CONVENTIONS

Railroad diagrams show how syntactically valid statements can be constructed.

Traversing a railroad diagram from left to right, or in the direction of the arrow heads, and adhering
to the limits illustrated by bridges will produce a syntactically valid statement. Continuation from one
line of a diagram to another is represented by a right arrow (—) appearing at the end of the current
line and beginning of the next line. The complete syntax diagram is terminated by a vertical bar (]).

Items contained in broken brackets (< >) are syntactic variables which are further defined, or require
the user to supply the requested information.

Upper-case items must appear literally. Minimum abbreviations of upper-case items are underlined.

c 3N,

——A RAILROAD DIAGRAM CONSISTS OF < bridges > >
—<loops >
—— <optional items >
L <required items >

>—— AND IS TERMINATED BY A VERTICAL BAR. 11

1-2

B 1000 Systems SDL/UPL Reference Manual
Introduction

The following syntactically valid statements may be constructed from the above diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY A VERTI-
CAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS TERMINATED BY A
VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS TERMINATED BY
A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional items>, <required items>, <bridges>,
<loops> AND IS TERMINATED BY A VERTICAL BAR.

Required Items

No alternate path through the railroad diagram exists for required items or required punctuation.

Example:

]
1

—— REQUIRED ITEM

Optional Items

Items shown as a vertical list indicate that the user must make a choice of the items specified. An
empty path through the list allows the optional item to be absent.

Example:

_— }
REQUIRED ITEM -

+— <optional item-1 >

L— <optional item-2 >

The following valid statements may be constructed from the preceding diagram:
REQUIRED ITEM
REQUIRED ITEM <optional item-1>

REQUIRED ITEM < optional item-2>

1137833 1-3

B 1000 Systems SDL/UPL Reference Manual
Introduction

Loops

A loop is a recurrent path through a railroad diagram and has the following general format:

«———<bridge > < return character > ——

< object of the loop >

Example:

<1\ ,

< optional item-1 >

L. <optional item-2 > —

The following statements can be constructed from the railroad diagram in the example.
< optional item-1>
< optional item-2>
<optional item-1>,<optional item-1>
< optional item-1>, <optional item-2>
< optional item-2>,<optional item-1>

< optional item-2>,<optional item-2>

A <loop> must be traversed in the direction of the arrow heads, and the limits specified by bridges
cannot be exceeded.

14

B 1000 Systems SDL/UPL Reference Manual
Introduction

Bridges

A bridge indicates the minimum or maximum number of times a path may be traversed in a railroad

diagram.

There are two forms of <bridges>.

_m__ n is an integer which specifies the maximum number of times the path may be tra-
versed.
_m__. n is an integer which specifies the minimum number of times the path must be tra-
versed.
Example:

e—t 2 \ >

< optional item-1>

——-fl-h-— < optional item-2 >

The loop may be traversed a maximum of two times; however, the path for <optional item-2> must

be traversed at least one time.

The following statements can be constructed from the railroad diagram in the example.

< optional item-2>
< optional item-1>, <optional item-2>
< optional item-2>,<optional item-2>,<optional item-1>

< optional item-2>,<optional item-2>,<optional item-2>

1137833

B 1000 Systems SDL/UPL Reference Manual

SECTION 2
FUNDAMENTALS OF THE LANGUAGE

The SDL/UPL language is a problem-solving oriented language which requires a series of functions
and constructs that differ significantly from most other problem-oriented languages. The following is
a list of the most common differences.

e Powerful bit and character-string functions.

* Binary-only arithmetic functions.

e No JUMP or GO TO instruction.

e Re-entrant programs (B 1000 computer system characteristic)

® Recursive procedures (subroutines).

Scope of identifiers contained within procedures.
¢ Dynamic storage allocation for identifiers at execution time.

All programs that are written in the SDL/UPL source language must be processed by the SDL/UPL
compiler. The SDL/UPL compiler transforms the source statements into a virtual machine form called
the S-Machine language. Refer to Appendix B for a description of the S-Machine. The S-Machine lan-
guage is then executed interpretively by a set of micro-instruction routines (firmware).

SDL/UPL PROPERTIES

An SDL/UPL program has a distinct pattern or format that specifies the relative locations of the two
statement types, declaration and executable. Declaration statements provide the information that is
needed to allocate storage or link together various elements of a program. Executable statements
specify the functions or transformations that occur upon the contents in storage.

Statements are composed of symbols that, in turn, are composed of letters, digits, and special charac-
ters. Symbol strings are called operands, operators, or control functions. The SDL/UPL syntax is con-
cerned with the correct creation of symbol strings and the relative placement of the strings to form
declarative and executable statements.

SDL/UPL PROGRAM FORMAT

SDL/UPL programs are segmented into logical subdivisions called procedures. Each procedure begins
with a head statement and terminates with an end statement. Procedures have a definite relationship
to other procedures within a program, either side-by-side (parallel) or subordinate (nested). This order-
ing inherently defines the scope of each procedure and the range over which a procedure can call (or
be called by) another procedure.

All procedures have a rigid internal structure. The procedure structure is as follows: the data declara-
tions appear first, all nested procedures appear second, and all executable statements appear last.
Nested procedure structures must be identical.

1137833 2-1

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

SDL/UPL SOURCE FILE RECORD FORMAT

The format of a source file record to the SDL/UPL compiler consists of the following information.

1. Columns 1 through 72 contain the SDL/UPL statements, declarations, or comments.
2. Columns 73 through 80 contain the sequence number of the source file record.

CHARACTER SET

The following characters are allowed in an SDL/UPL source program.

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Digits 0123456789
Special + - < >:30)I[1
Characters @ # ““ % ? $ & . - __ | (space)

The collating sequence for letters, digits, and special characters is based on standard EBCDIC represen-

tation.

Table 2-1 shows the function of each symbol that is used in an SDL/UPL program.

Table 2-1. Use of Punctuation Symbols in an SDL/UPL Program

Symbol Definition
_ Underscore
Period
, Comma
; Semicolon
(Left parenthesis

) Right parenthesis
¢ Quotation mark
Number sign

Space or blank
@ At sign
! Exclamation mark

1= Colon, equal sign

Use
Concatenation within identifier names

Concatenation within identifier names
for record structures and field
selection

Separator for items
Delimiter for statements

Enclose parameter lists and array
subscripts (leading)

Enclose parameter lists and array
subscripts (trailing)

Left and right character string
delimiter

Left and right define text string
delimiter

Identifier delimiter
Bit string delimiter

Assignment or replacement (delete
left)

Assignment or replacement (delete
left)

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Table 2-1. Use of Punctuation Symbols in an SDL/UPL Program (Cont)

Symbol

%
/*
*/
$

&

IDENTIFIERS

Definition

Use

Colon, colon, equal sign Replacement (delete right) operator

Percent sign
Virgule, asterisk
Asterisk, virgule
Dollar sign

Ampersand

Left Bracket
Right Bracket

Plus sign

Minus sign

Virgule

Asterisk

Equal sign

Virgule, equal sign
Greater than sign
Greater than, equal sign

Less than sign
Less than, equal sign

symbol

Remainder of record is a comment
Beginning of comment

End of comment

In position one of a source record,
indicates a compiler control option

In position one of a source record,
indicates a conditional source record
inclusion control statement

Enclose the record key and cospatial
fields of records (leading)

Enclose the record key and cospatial
fields of records (trailing)

Addition operator

Subtraction operator

Division operator
Multiplication operator

Equal relation operator

Not equal relation operator
Greater than relation operator

Greater than or equal relation
operator

Less than relation operator
Less than or equal relation operator

An identifier is a defined name which is a symbolic representation for a location in memory. Identifiers
are often called data names and field names in other computer languages.

An identifier must begin with a letter.

An identifier cannot contain blanks.

An identifier can contain a maximum of 64 characters.

Reserved words cannot be used as identifiers. Reserved words in SDL/UPL are listed in Appendix A.

1137833

2-3

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Special words are used for segment and DO-group identifiers and do not lose their special significance
in SDL/UPL. Special words lose their special significance when defined as identifiers. When defined
at lexicographic (lexic) level 0, they lose their significance throughout the entire program. Defined at
any higher level, they lose their significance within the procedure in which they are defined. Special
words in SDL/UPL are listed in Appendix A.

Identifiers must contain exactly the same letters in the same case (upper or lower) to be identical. The
identifier THIS__ONE differs from the identifier this__one.

The railroad syntax diagrams of both SDL and UPL are presented.

SDL and UPL Syntax:

/53\

—_—<letter> <letter>
<digit> ————

1

Syntax Semantics:

letter
This field can be any valid letter defined in the SDL/UPL character set.

digit
This field can be any valid digit defined in the SDL/UPL character set.

The underscore (__) character can be used to concatenate groups of letters and digits.
ARRAY IDENTIFIERS

An array identifier is a defined name which is a symbolic representation for a number of contiguous
locations in memory that correspond to each element within the array.

SDL and UPL Syntax:

<identifier>> (<subscript">)

Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the array.

subscript
This field can be any valid SDL/UPL expression that returns a binary value and specifies the
element within the array. The elements in an array begin with 0 and end with n—1, where n is
the total number of elements declared for the array.

24

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Examples:

A{10Q) 4 References element 10 of array identifier A.

ARKRAY (0) % References element 0 of array identifier ARRAY.

DATA TYPES
All data used in an SDL/UPL program must be declared and allocated storage space. There are four

different data types allowed in an SDL/UPL program: FIXED, BIT, CHARACTER, or RECORD.
These data types, or a combination of them, are used to define all data used in an SDL/UPL program.

FIXED

The FIXED data field is a signed, 24-bit field. The leftmost bit is the sign bit. If the sign bit is 1,
the field is negative. If the sign bit is 0, the field is positive. Negative numbers are represented in two’s
complement notation.

Examples:

+1 = d{1)0C00GC00CCC0O00CCOCNCO000LQ

4(4)0000013

=1 = a(1)21111111111113121111121213 = QC4IFFFFFFQ

+10 = a(1)0000000000000000000010103 = AC4)0000043

=10

H

d(1)1111111111112111111101103 = J(4IFFFFF6Q

The numbers 1 and 4 enclosed in parentheses denote binary and hexadecimal representations, respec-
tively.

The FIXED data field is the basic computational form in the SDL/UPL program. The values for a
FIXED data field can range from — (2 EXP 23) to 2 EXP 23)—1 [— 8,388,608 to 8,388,607]. Arithme-
tic overflow is ignored.

BIT

A BIT data field can be any variable-length string of bits. The maximum length for a string of bits
in an SDL/UPL program is 65,535 bits.

When used in arithmetic computations, bit data is treated as a 24-bit, unsigned number. Values can
range between 0 and (2 EXP 24)—1 (16,777,215). If a BIT data field is the target field of an arithmetic
computation and the field is greater than 24 bits in length, only the rightmost 24 bits are used. The
resulting leftmost bit is not interpreted as a sign bit. Prior to any arithmetic operation on BIT data
fields, the data is right-aligned and zero-filled on the left.

Examples:

d(1)1110004
af1d1a
al1)0000000000000000000011115 = J(4)I00000FT = 15

1137833 2.5

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

CHARACTER

A CHARACTER data field can contain any variable-length string of characters. Each variable-length
string is represented by an 8-bit EBCDIC code. The maximum number of characters allowed in a
CHARACTER data field is 8191 characters.

If a CHARACTER data field is used in an arithmetic operation, the following must be noted.

® The binary value of the CHARACTER data field is used. Blank characters are represented as
@(1)01000000@ or @(4)40@ which is not the same as the binary representation of the number
Zero.

¢ Only the rightmost 24 bits of a CHARACTER data field are used in an arithmetic operation.

The results of CHARACTER-to-CHARACTER operations are aligned on the left and the blank fill
or truncate operations are aligned on the right. CHARACTER-to-BIT or CHARACTER-to-FIXED
arithmetic operations align the data on the right and the zero-fill or truncate operations align the data
on the left.

Most input/output operations treat their operands as CHARACTER data and thus follow the rules
of CHARACTER-to-CHARACTER operations.

RECORD

A record is an addressing template. Declaration of the record causes no data space to be allocated.
The declaration only establishes an addressing scheme in the scope of the declaration.

Specifying a record declaration is done by using the RECORD keyword in the declarations. Refer to
RECORDS DECLARATIONS in Section 5 for a complete description of declaring a record.

CONVERSION BETWEEN DATA TYPES

The conversion verbs CONVERT, BINARY, and DECIMAL transform data from one data type to
another. When the value of a number is to be written in a readable form, the DECIMAL verb should
be used.

VALUES AND ADDRESSES OF VARIABLES

An identifier is a symbolic reference to the value at a memory address associated with a type and length
attribute. A reference to an identifier is always a reference to the value at the address associated with
the identifier when the identifier appears to the right of an assignment or replacement operator within
an expression.

When an identifier appears to the left of an assignment or replacement operator, the reference is to
the address of the identifier. To force references to the value rather than the address of an identifier,
enclose the identifier within parentheses.

The identifier is considered a target identifier because its memory address receives the value generated
when the expression on the right of that operator is evaluated.

Literals, operator expressions, and keyword expressions cannot be used as target identifiers because
they generate values rather than addresses.

The verbs which can be used as target identifiers are SUBBIT and SUBSTR.

2-6

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

LITERALS

A literal is an item of data which contains a value identical to the characters being described. There
are three classes of literals in an SDL/UPL source program: numeric, bit strings, and character strings.

Numeric Literal

A numeric literal represents an integer value and cannot be the designation identifier of an assignment
operation.

Numeric literals cannot exceed a value of 16,777,215.
Imbedded blank characters are not allowed.

SDL and UPL Syntax:

g\
<digit> l

Syntax Semantics:
+
The plus sign (+) character makes the numeric literal a positive number.

The minus sign (—) character makes the numeric literal a negative number.

digit
This field can be any valid digit that is in the SDL/UPL character set.

Examples:

12345

807
=27
+32

Bit-String Literal

A bit-string literal can be a combination of hexadecimal, octal, quartal, and binary digits. The bit-
string literal is delimited by the at sign (@) character. A number from 1 to 4 enclosed within parenthe-
ses designates the base integer system.

Imbedded blank characters are not allowed.

1137833 2-7

SDL and UPL Syntax:

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

— @ (4)

< hex-digits>> @ {

(3)

< octal-digits>

(2)

< quartal-digits>

m

Syntax Semantics:

@

<binary-digits>>

The at sign (@) character is used to delimit the bit string.

@, 3),), (1)

The numbers enclosed within parentheses specify that the following digits are hexadecimal (hex),
octal, quartal, and binary digits, respectively.

hex-digits

This field can be any of the hexadecimal digits 0, 1, 2, 3, 4, 5,6, 7, 8,9, A, B, C, D, E, or

F.

octal-digits

This field can be any of the octal digits 0, 1, 2, 3, 4, 5, 6, or 7.

quartal-digits

This field can be any of the quartal digits 0, 1, 2, or 3.

binary-digits

This field can be either of the binary digits 0 or 1.

Examples:
a(4)BEEF Q
AdCAFE Q3
al3)7i6543
al2) 32103

(13101010104

2-8

X Hexadecimal bit string and value equals 48879.
Z Hexadecimal bit strinag and value equals 51966.
% Octal bit string and the value eqguals 4012.

Z Quartal bit strina and the value equals 228.

Z Binary bit string and the value equals 170.

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Character-String Literal

A character-string literal can be any combination of EBCDIC characters enclosed within quotation
mark (‘) characters. Character-string literals must be completely described to the SDL/UPL compiler
in one source record.

Character-string literals can be concatenated with others by using the CAT operator to build larger
character-string literals. The maximum length of a character-string literal is 256 characters.

Example of an invalid split of a character-string literal:

fecord n " A B C
Record ntl: Xy

n represents the retative tecord nuaber of a source file recorde.

Example of a valid split of a character-string literal:

Record n . " A8 C "
Fecord n#t: CAT = XY 2 "

n represents the relative record number of a source file recorde

The string concatenator operator CAT must be used to enter long character literals. If the CAT
operator is used, the compiler treats the literal as a single string.

Two adjacent quotation mark (‘‘) characters must be used to include a quotation mark (‘) character
within the character string.

SDL and UPL Syntax:

250\

< EBCDIC-character> "

D e e ——

1

Syntax Semantics:

(13

The quotation mark (‘‘) character is used to delimit the character string.

EBCDIC-character
This field can be any valid character defined in the SDL/UPL character set.

Examples:

L] "N ” vields L4
"ABC""DEF" yields ABC"DEF

1137833 29

B 1000 Systerns SDL/UPL Reference Manual
Fundamentals of the Language

MISCELLANEOUS CONSTANTS

The following keywords represent values that are compiled into the SDL/UPL program as constants.

HEX_SEGQUENCE_NUMBER
SEWUENCE_NUMBER
TODAYS_DATE

HEX_SEQUENCE_NUMBER

The constant HEX__SEQUENCE__NUMBER represents a bit string of eight (hex) digits. This bit
string is the sequence field, columns 73-80 of the source image, in the source file in which
the HEX_SEQUENCE__NUMBER keyword appears. If this sequence field is blank,
HEX_SEQUENCE__NUMBER is @00000000@.

Example:

If the current source image line sequence number is 12753000, then on this line:
HEX_SEWUENCE_NUMEBER = 2127530003

SEQUENCE_NUMBER

The constant SEQUENCE__NUMBER represents a character string of eight characters. This character
string is the sequence field, columns 73-80 of the source image, in the source file in which the
SEQUENCE_NUMBER keyword appears. If this sequence field is blank, SEQUENCE__NUMBER is
00000000.

Example:

If the current source image line sequence number is 12753000, then on this line:
SEQUENCE_NUM3ER = 12753000

TODAYS__DATE

The constant TODAYS__DATE represents the date and time of compilation of the SDL/UPL pro-
gram. It is the same as the date and time which appears at the top of the SDL/UPL program listing.
The TODAYS__DATE constant is a character string with the format MM/DD/YY hh:mm, where MM
represents the month, DD represents the day, YY represents the year, hh represents the hour, and mm
represents the minutes of the compile.

COMMENTS

Comments are allowed in SDL/UPL programs and have no effect on program execution. There are
two forms of comments. These are:

1. The enclosed comment, which must be enclosed within the virgule (/) and asterisk (*) character

pair.
2. The end-of-record comment, which is preceded by the percent sign (%) character.

2-10

B 1000 Systems SDL/UPL Reference Manual
Fundamentals of the Language

Enclosed Comment

The enclosed comment begins with a virgule-asterisk (/*) character pair and ends with an asterisk-vir-
gule (*/) character pair. When the virgule-asterisk (/*) pair is encountered, the SDL/UPL compiler
continues scanning the current source-image record until the asterisk-virgule (*/) pair is found. If the
current source-image record does not have the ending asterisk-virgule (*/) character pair, the SDL/UPL
compiler scans the next and subsequent source file records until the ending asterisk-virgule (*/) is
found.

SDL and UPL Syntax:

/* <comment-text> */

Syntax Semantics:

comment-text
This field can contain any comment that the programmer desires to include for documentation pur-

poses.
Example:

CCDE /* This is an example of an enclosed comment texte This
text begirs with the virgule~asterisk pair and ends wWith
the asterisk=virqule pair. */ STATEMENT;

End-of-Record Comment

The end-of-record comment begins with the percent sign (%) character and continues to the end of
the source file record. The SDL/UPL compiler discontinues scanning of a source image record when
a percent sign (%) character is encountered. If a percent sign (%) character is contained within com-
ment text delimited by the virgule-asterisk (/*) and the asterisk-virgule (*/) character pairs, the percent
sign (%) character is treated as a part of the comment text. The SDL/UPL compiler then continues
scanning for the ending asterisk-virgule (*/) character pair.

The percent sign (%) character is not treated as an end-of-record indicator if it is imbedded in a quoted
character string. For example, ‘% THIS IS A PERCENT SIGN”’.

SDL and UPL Syntax:

— % <comment-text>

Syntax Semantics:

%
The percent sign (%) character indicates that the remainder of the source image is <comment-
text>.

comment-text
This field can contain any comment that the programmer desires to include for documentation pur-
poses.

Example:
CODE STATEMENT: %z This is the end=of-record comment texte

1137833 2-11

B 1000 Systems SDL/UPL Reference Manual

SECTION 3
STRUCTURE OF AN SDL/UPL PROGRAM

The structure of an SDL/UPL source program includes four kinds of statements in this order: declara-
tions, procedures, executable statements, and a FINI statement (or end-of-file record).

Figure 3-1 illustrates the basic structure of the SDL/UPL source program.

DECLARATIONS

PROCEDURES

EXECUTABLE STATEMENTS

FINI STATEMENT

G18297

Figure 3-1. Basic Structure of the SDL/UPL Source Program

\

An SDL/UPL program can have procedures within a procedure. A procedure within a procedure is
called a ‘“‘nested”” procedure and has the same basic structure as the structure of an SDL/UPL pro-
gram. Nested procedures consist of declarations, procedures (optional) and executable statements. A
nested procedure begins with PROCEDURE < procedure name> and ends with END < procedure
name>. Refer to Section 7 for a complete description of procedures in an SDL/UPL source program.

1137833 3-1

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

LEXICOGRAPHIC LEVEL

A lexicographic (lexic) level is a compile-time relationship of each procedure to the outer level of the
program. The outer level is referred to as lexic level 0 (zero). All other procedures are nested within
lexic level 0. They are assigned a lexic level number which represents their depth of nesting from lexic
level 0. Figure 3-2 shows the relationship of procedures and their associated lexic level number.

—— PROGRAM (jevel 0)
—— ONEA (level 1)
r—=—TWOA (level 2)

r— ONEB (level 1)
—==TWOB (level 2)
——- THREEB (level 3)

G18298

Figure 3-2. Relationship of Procedures and Lexic Level Number

Procedures ONEA and ONEB are at lexic level 1, procedures TWOA and TWOB are at lexic level
2, and procedure THREEB is at lexic level 3.

The maximum lexic level is 15. Nested procedures cannot exceed 15 levels in depth. There is no limit
to the number of procedures that can occur on any level or in any procedure.

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

Declaring a procedure (procedure identifier) must not be confused with the procedure itself. The proce-
dure identifier exists at some lexic level and specifies that a procedure is beginning with the next source
statement. The next source statement exists within the procedure and is one lexic level number higher
than the procedure identifier. This separation of the procedure identifier from its procedure has
significance in the scope of a procedure. Figure 3-3 is a coding example showing procedures nested
within other procedures in an SDL/UPL source program.

DECLARE Al, AZ2» AZ» A4;

PROCECURE 8>
DECLARE B, 82, 337
PRCCLLUKE C;
DECLARE Cls C2» C35
Executable Staterents
END G5
PROQCECURE D5
Executahle Statements
ENDE D7
Executable Statements
END B/

PROCECUKE €5
DECLARE €1, E25
PROCECURE F;
DECLARE FL» F2» F3;
PRCCELCURE G
DECLARE Gl» G2
Executable Statements
END G
PRCCLOURE H»
Executable Statements
ENE H»
Executable Statemerts
ENC F s
PROCECURE J;
DECLARE Jl» J23»
FROCECURE K3
DECLARE K1, K23
Executable Statements
ENLE K3
Executable Statemenrts
END J;
Executable Statements
ENU &7

Executable Statements

FINT»

Figure 3-3. Example Showing Procedures Nested within Procedures

1137833 3-3

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

SCOPE OF PROCEDURES AND IDENTIFIERS

The scope of a procedure, determined at compile time by the SDL/UPL compiler, is the range within
a program over which an identifier or procedure identifier can be referenced. The scope of an identifier
is a direct result of the lexic level of procedures and of the storage allocation techniques used by the
SDL/UPL compiler. The scope of an identifier is that portion of the SDL/UPL program which can
reference the identifier. The scope of a global identifier is all the nested procedures and statements,
exclusive of any nested procedures and statements that declare the same identifier. Nested procedures
and statements are procedures and statements embedded within the procedure such that the different
hierarchical (lexic) levels can be performed or accessed recursively.

The scope of an identifier within a procedure is that procedure exclusive of any nested procedures
within the procedure that declares the same identifier.

The format of procedures ensures that only those statements contained within the procedure or in glo-
bal procedures (procedures with lower lexic level numbers) are within the scope of the procedure.
Executable statements in a procedure can reference identifiers and procedure identifiers that are de-
clared in that procedure.

34

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

Figure 3-4 illustrates the scope of a sample program.

Program A
— (LLO)
DECLARE A1, A2, A3, A4;

PROCEDURE B;

PROCEDURE E;

Executable Statements

G18299

(LL1)
DECLARE B1, B2, B3;

PROCEDURE C; — (LL2)
DECLARE C1, C2;

Executable Statements

PROCEDURE D; —(LL2)
DECLARE D1, D2;

Executable Statements

Executable Statements

— (LL1)

DECLARE E1, E2, E3, E4;

— {(LL2)
DECLARE F1, F2, F3;

PROCEDURE F;

PROCEDURE G;

PROCEDURE H;

Executable Statements

(LL2)
DECLARE J1;J2;

PROCEDURE J;

PROCEDURE K;

Executable Statements

Executable Statements

Figure 3-4. Procedure Nesting

— (LL3)

DECLARE G1, G2;

Executable
Statements

— (LL3)
Executable
Statements

—— (LL3)
DECLARE K1, K2;
Executable
Statements

In Figure 3-4, the procedure identifier is assigned the lexic level number of the encompassing procedure.
The procedure itself is assigned the next higher lexic level number. LL1, LL2, and LL3 represent lexic
level numbers 1, 2, and 3, respectively. Procedure D is at lexic level 2 while the procedure identifier

D is at lexic level 1.
1137833

35

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

The executable statements in lexic level 0 can reference procedure identifiers B and E, but not proce-
dure identifiers C, D, F, G, H, J, and K. They cannot because procedures B and E have not been
invoked and procedure identifiers C, D, F, G, H, J and K are not defined.

The executable statements in procedure B can reference procedure identifiers C and D because proce-
dure identifiers C and D become available when procedure B is invoked.

The executable statements in procedure B can also reference any identifiers or procedures that are de-
clared on lexic level 0. This implies that procedure B can invoke itself. All procedures are recursive.
Any difficulties encountered with duplicate identifiers within a nested procedure are resolved by the
allocation of new space for the most recent occurrence of the duplicate identifier.

The executable statements in procedures G and H can reference identifiers within procedures E and
F. Executable statements in procedure K can reference identifiers within procedures E and J.

Several procedures can have the same lexic level number by occurring at the same depth from lexic
level 0. The relationships that can exist between such procedures depend upon the relationship of the
nested procedures in which they appear.

Procedures that have a common procedure (one lexic level number lower) can invoke each other. Proce-
dures that do not have this attribute cannot invoke each other.

The following are conditions for inclusion of an identifier within the scope of a procedure.
e The procedure identifier itself.

e Procedures declared in the procedure, but not their nested procedures. Thus, in Figure 3-4, pro-
cedure identifier F is within the scope of procedure E while procedure G is not.

® Any procedure (and its nested procedures) whose procedure identifier is declared at the same
lexic level and within the same procedure as its own identifier.

® The procedure in which its own procedure identifier is declared.

The known scope is limited by the requirement that an identifier must be declared before it can be
referenced. Thus, in Figure 3-4, procedure B cannot reference procedure identifier E, although proce-
dure E can reference procedure identifier B. A FORWARD procedure declaration removes this restric-
tion. Refer to the Section 7 for a complete description of FORWARD procedures.

The scope of an identifier includes all procedures which can reference the identifier. An identifier can
be cither a data name or a procedure name. In Figure 3-4, executable statements in procedure C can
reference procedure identifier B. Procedure identifier C is within the scope of procedure B. Executable
statements in procedure C can invoke procedure identifier B. Executable statements in procedure C can
reference identifiers B1, B2, and B3. '

B 1000 Systems SDL/UPL Reference Manual
Structure of an SDL/UPL Program

Table 3-1 is used in conjunction with Figure 3-4 and shows the relationship between the scope of a
procedure and the invoking procedure. '

Table 3-1. Relationship of Scope and Invoking Procedures

Invoking Procedure
A|B C D E F G HJ K
B | * * * * % * * *
C * LN
D * * *
Procedure E * * * * * * * * *
Identifier F ¥ ook ok ok ok
G * * ®
H ¢ * %k
J * * % * *
K *

To find the scope of a procedure in Table 3-1, find the procedure identifier in the first column. The
horizontal rows to the right of each procedure identifier indicate the procedures in its scope. The proce-
dures which can be invoked by a given procedure are indicated by an asterisk in the vertical columns
below the invoking procedure identifier.

1137833 3.7

B 1000 Systems SDL/UPL Reference Manual

SECTION 4
DECLARATIONS

This section describes data, record, file, and switch-file declarations that can be specified in an SDL/
UPL program.

The data declaration specifies simple, overlay (remap), structured, reference, dynamic, and paged-array
data items.

The record declaration specifies a data structure which does not allocate memory space and is used
in conjunction with the data declaration.

The file declaration describes a file to be used by an SDL/UPL program.

The switch-file declaration, which specifies a group of files that can be used as files, is referenced by
a subscript.

DATA DECLARATIONS STATEMENT

The DECLARE statement specifies simple, overlay (remap), structured, reference, dynamic, and paged-
array data items. The fundamental data types that can be declared are BIT, CHARACTER, and
FIXED. Additionally, the programmer can define a combination of these data types in a RECORD
declaration, and subsequently use that RECORD structure as a data type in declaration clauses.

Any error in a declaration statement causes the SDL/UPL compiler to ignore all other declarations
that occur within the same statement and beyond the point of error. Everything between the error and
the end-of-statement token (;) is ignored.

The SDL/UPL compiler generates more efficient code when all declare clauses are in a single DE-
CLARE statement.

All of a procedure’s declaration statements must appear before any executable statements.

Spaces between the data type keywords BIT and CHARACTER and their parenthesized sizes are op-
tional.

Example:

"CHARACTERC10)™ ang "CFARACTER (10)"

Spaces are also optional between an array identifier and its subscript.

Examples:
UVECLARE A FIXED,
e CHARACTER>
(CrE»F{S5)) FIXED»
H(S) CHARACTEFR(H);

1137833 4-1

B 1000 Systems SDL/UPL Reference Manual
Declarations

SDL and UPL Syntax:

— DECLARE >

<identifier-part™>

< structured-part>
< paged-array-part>
p————— <dynamic-part>

<reference-part™>

<remaps-part>

Syntax Semantics:

identifier-part
Refer to identifier-part in this section.

structured-part
Refer to structured-part in this section.

paged-array-part
Refer to paged-array-part in this section.

dynamic-part
Refer to dynamic-part in this section.

reference-part
Refer to reference-part in this section.

remaps-part
Refer to remaps-part in this section.

identifier-part
The syntax and semantics of the identifier-part in the DECLARE statement are described as follows:

SDL and UPL Syntax:

—1— <identifier> >

(<number-of-elements>>)

2

(<identifier>)
L—— (<number-of-elements>) ———————

S < type-part>

42

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of a data item or array.

number-of-elements
This field specifies the size of an array and can be any valid SDL/UPL number, identifier, or
expression that returns a binary value.

An SDL/UPL array is a group of memory locations associated with a single identifier. All
elements of an array are identical in structure. Individual array elements are referenced by using
a subscript with the array identifier.

Any identifier followed by a number in parentheses names an array.

Array subscripts are zero-relative. For example, the first element of array ARRAY is ARRAY(0).
Valid subscripts for a S-element array are 0, 1,.2, 3, and 4. If the subscript is not between 0 and
n-1 inclusive, where n is the declared number of elements in the array, an invalid subscript error
is generated and the program is terminated by the MCP.

The maximum number of elements that can be specified for an array is 65,535. The maximum
length of the array is 65,535 bits (8191 characters).

type-part
Refer to type-part in this section.

structured-part

The structured-part of the DECLARE statement allows the programmer to specify data items in logical
groups. The maximum number of data items allowed in a single structure is 198. The keywords
DUMMY and FILLER are included in this count. Any attempt to declare a larger structure causes
a table overflow error at compile time.

The size of a structure can be specified in the data type of its Ol-level identifier. When no data type
is specified, the compiler assigns a structure size equal to the aggregate length in bits of all subfields
of the structure.

The two following structures cause identical structures to be generated. Both DECLARE statements
generate an implied 3-bit filler.

Example:
DECLAFE 01 A CHARACTEKC(C4)»
02 B8 FIXEL,
02 € EIT (5):
DECLARE 01 A CHARACTERS

e R FIXEC,
02 C 8IT (5);

Data items that are specified with level numbers also called ‘‘structured data’ can be remapped. If
the REMAP keyword appears on a level greater than 1, the remap is restricted. In this case, the right-
hand identifier must be the last data item in the same structure on the same level as the lefthand identi-
fier that is to remap it. If the previous data item was declared with the REMAPS keyword, the right-
hand identifier can refer to the original declaration of the memory space.

1137833 4-3

B 1000 Systems SDL/UPL Reference Manual
Declarations

The syntax, semantics, and some examples of the structured-part in the DECLARE statement are de-
scribed as follows:

SDL and UPL Syntax:

s A
— < level-number>> B
A <
B >— <identifier-part> < type-part>
———— FILLER

—— <remap-identifier™> REMAPS < identifier>
——— DUMMY REMAPS <identifier>

Syntax Semantics:

level-number
This field can be any valid SDL/UPL 2-digit integer and specifies the level of the structure. <lev-

el-number > can range from 01 to 99.

identifier-part

Refer to identifier-part in this section.

type-part

Refer to type-part in this section.

FILLER

The keyword FILLER designates the memory areas which the program does not reference. The
FILLER keyword can be used on any level specified by <level-number> which is greater than
01. If the FILLER keyword is the last item in a structure and its parent field specified a length,
it can be omitted. The SDL/UPL compiler supplies an implied filler. An item’s parent identifier
is the field which the item subdivides. The parent identifier must have a lower level number than
its subdividing item.

remap-identifier

This field can be any valid SDL/UPL identifier and specifies an alternative identifier for the same
memory space declared by <identifier>.

REMAPS

The keyword REMAPS causes memory space specified by <identifier> to be named <remap-
identifier>. When the REMAPS keyword appears on a structure with <level-number> greater
than 01, <identifier> must be the last data item declared in the same structure having a level
number of <identifier> that is equal to the level number of <remap-identifier>. Also, <remap-
identifier > must be the last data item declared in the same structure with equal level numbers
unless the last data item is also declared with the REMAPS keyword.

DUMMY

4-4

The keyword DUMMY can be substituted for <remap-identifier>, but a data descriptor is not
generated. The DUMMY keyword can be used only in conjunction with the REMAPS keyword.
The DUMMY keyword eliminates the need to declare redundant identifiers.

B 1000 Systems SDL/UPL Reference Manual
Declarations

The DUMMY keyword cannot be used to remap another DUMMY keyword.

If the DUMMY keyword is specified, the subordinate structure must have at least one identifier
that is not the FILLER keyword.

Examples:
CECLARE 01 A 31T (160).
62 B BIT (60)»
02 FILLER RIT (20)»
ue ¢ CHARACTER C(10)»
01 AA REMAPS A CHARACTER (20)»
02 RB BRIT (B80)»
02 CC 8iT (80)»
U2 OMAF RENMAFS HE CHARACTER (10)»
01 DUMMY GSEMAFS A BIT (160},
02 BBE (1) FIXED,
U2 FILLER BIT (16)% % This FILLER is optionale

paged-array-part

The paged-array-part in the DECLARE statement allows SDL/UPL programs to use the B 1000 sys-
tem’s dynamic memory facility. This facility allows the amount of memory to vary depending on how
much is actually used and can be set at execution time with the MEMORY program attribute. Refer
to the B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982 for a com-
plete description of the MEMORY program attribute. The amount of dynamic memory allocated can
also be set by specifying the § DYNAMICSIZE compiler option.

The SDL/UPL compiler automatically allocates dynamic memory sufficient for one page of each paged
array declared. From this, the programmer must allocate enough additional dynamic memory based
on the knowledge of how many pages are actually used at any one time. If the amount of dynamic
memory is not enough at execution time, the following program abort message is displayed on the
Operator Display Terminal (ODT):

SDL PAGEC ARKAY FANDLFR COULCN'T 0OBTAIN <number> BITS.
~~INSUFFICIENT OYNAMIC MEMOFRY- fERUN WITH ME=<number >

The syntax, semantics, and an example of the paged-array-part in the DECLARE statement are de-
scribed as follows:

SDL and UPL Syntax:

~ PAGED (<elements-per-page>>) < identifier> >
>—— (<number-of-elements>>) <type-part> |

1137833 4-5

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

PAGED
The keyword PAGED causes the array specified by <identifier> to be segmented. Paged-arrays
cannot be indexed, a part of a structure, or remapped.

elements-per-page
This field specifies the number of elements of the array specified by <identifier> to be contained
in an overlayable data segment. It can be any valid SDL/UPL number or expression that returns
a binary value. <elements-per-page> must be one of the following values: 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192, 16384, or 32768.

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the array to be seg-
mented into pages.

number-of-elements
This field specifies the number of e¢lements in the array and can be any valid SDL/UPL number
or expression that returns a binary value. <number-of-elements> can range from 1 to 65,535,
inclusive. <number-of-elements> can be increased up to 16,777,215 by using the GROW verb.
Refer to Section 9 for complete information on the syntax, semantics, and function of the GROW
verb.

type-part
Refer to type-part in this section.

Example:

CECLARE PAGELD (64) A (4096) E1T (1))

=~

Array tdentifier A is a
segmented array with 64
elements per seqments and a
total of 4C9¢ elementss, each
ore bit longe.

PO N)

dynamic-part

The syntax, semantics, and examples of the dynamic-part in the DECLARE statement are described
as follows:

SDL and UPL Syntax:

—— DYNAMIC <identifier-part™

e

S < remap-part> ————
Syntax Semantics:

DYNAMIC
The keyword DYNAMIC allows the array length of <identifier> or <number-of-elements> to
be determined at the time the procedure is entered.

The keyword DYNAMIC can be specified only in a procedure. Any variables specified must have
been previously declared and initialized.

The keyword DYNAMIC cannot be specified on lexic level 0.

B 1000 Systems SDL/UPL Reference Manual
Declarations

No length checks are made when a dynamic identifier is remapped. Any remapping of a dynamic
identifier generates an advisory message from the SDL/UPL compiler.

identifier-part
Refer to identifier-part in this section.

remap-part
Refer to remap-part in this section.

Example 1:
PROCENUKL ABCS “ The lenpgth of identifier X is
CECLARE DYMAMIC X BIT (A); %2 determined by the value of
. 42 identifier A,
END AS8C»
Example 2:

PRUCECUSRE XYZ3 % The number of elements in
DECLAKE CYNAMIC & (8)Y BIT (10); % arrav A is determined ty the
vatue of identifier B.

e

-

ENC XYZ;
Example 3:

DECLARE X FIXED?
PFOCECURE NESTED;
DECLARE CYNAMIC AeC(X) FIXELS

The value of identifier X
determines the number of
elements in array ABC.

roDE R

END NESTED;
X := 105
NESTECDS
STOP;

FINI;

reference-part

The syntax, semantics, and an example of the reference-part in the DECLARE statement are described
as follows:

SDL and UPL Syntax:

—1— <identifier> |

]
< , l—— <record-identifier>

(<identifier>)
>———REFERENCE J|

1137833 4-7

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the reference identifier.

record-identifier
This field can be any valid SDL/UPL record identifier and specifies a RECORD reference identifi-
er. RECORD reference identifiers are assigned with a REFER verb and can be written in other
statements as though they were structure identifiers. For example, a RECORD reference identifier
can have field qualifiers attached with the period (.) notation. Such an access divides the current
memory areas described by the reference identifier according to the record declaration.

Example:

DECLARE LR DESCRIPICF REFERENCES Z Identifier X is assigned

% tc bits 108 through 124
FEFER LF TU SUBBIT (MYAKEA, 100, 48); % of the bit string MYAREA.
X = CReLEN?

All restrictions which apply to normal reference identifiers are applicable to RECORD reference identi-
fiers. RECORD reference identifiers cannot be specified in the REDUCE verb.

REFERENCE
The keyword REFERENCE causes <identifier> to be a reference identifier. Reference identifiers

are used as pointers to data without allocating memory space. Since reference identifiers are point-
ers, the REMAPS keyword cannot have a data type equal to REFERENCE. A reference identifier
is bound to another identifier by using the REFER verb.

Generally, reference identifiers are used as a scanning tool. The reference identifier is bound to
an identifier that has a data type equal to CHARACTER or an expression that returns a value
with a data type equal to CHARACTER. The REFER verb is used to bind a reference identifier
to an identifier. The REDUCE verb is used on the reference identifier to obtain the desired charac-
ter string. Refer to Section 9 for information concerning the REFER and REDUCE verbs.

Example:

DECLAGE A REFERENCES * The teference identifier A 15
A CHARACTER (20); Z bcund to identifier 3.
QEFER A TUL &5

remaps-part

The syntax, semantics, and some examples of the remaps-part in the DECLARE statement are de-
scribed as follows:

SDL Syntax:
< remap-identifier> REMAPS <identifier> < type-part> ——|
~—— BASE
UPL Syntax:
— <remap-identifier> REMAPS <identifier> < type-part> jJ

4-8

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

remap-identifier
This field can be any valid SDL/UPL identifier. It specifies the alternative name of the same mem-
ory space as <identifier>.

REMAPS
The keyword REMAPS causes the starting address of <remap-identifier> to be the same as
< identifier > .

<remap-identifier> cannot be larger than <identifier>. However, it can be remapped by a
smaller identifier. In that case, the SDL/UPL compiler provides implied filler bits on the un-
mapped rightrnost bits.

Example: ,

An implied 3~bit filler

is provided feor identifier
B and an implied 5-bit
filler is provided for

%2 identifier C.

DECLARE A BIT (10)»
B REMAPS & BIT(7),
C REVMAPS E BIT(5);

e

A 24

There is no actual limit to the number of times a field can be remapped. <remap-identifier> can be
remapped by another <remap-identifier>.

BASE
The keyword BASE is valid only for SDL programs and causes <remap-identifier> to have a

starting address at the base-relative address of the program.

The keyword BASE is used as a free-standing declaration since it does not remap a previously
declared identifier and is used primarily with data that is to be indexed. Refer to Section 6 for
a description of indexing in SDL programs.

Examples:

Identifier B remapos
identifier A and identifier
C has a starting address
ecual to C (the beginning
address of the program)a

E

CECLARE A CHARACTER (10)»

€ KEMAPS A EIT CRC)»
C FENMAPS BASE EIT (100)5

2 3E N2

1137833 4-9

B 1000 Systerns SDL/UPL Reference Manual
Declarations

type-part
The syntax and semantics of the type-part in the DECLARE statement are described as follows:

SDL and UPL Syntax:

—— FIXED
BIT
— (<bit-size>>)
—— CHARACTER
— (<character-size>>)
—— <record-identifier>

Syntax Semantics:

BIT
The keyword BIT makes the identifier have a data type equal to BIT. A bit can have a value
equal to 0 (zero) or 1. It is the smallest unit of data that can be addressed on the B 1000 computer
system.

CHARACTER
The keyword CHARACTER makes the identifier have a data type equal to CHARACTER. A
character is 8-bits long and represents one of the 256 EBCDIC characters.

FIXED
The keyword FIXED makes the identifier have a data type equal to FIXED. A fixed identifier
is 24 bits long with the sign-bit in the leftmost bit position. The sign-bit is used for arithmetic
calculations. A negative number is stored as the two’s complement of its like positive number.
Identifiers with a FIXED data type can range in value from — §&,388,608 to + 8,388,607, inclusive.

bit-size
This field specifies the number of bits in <identifier> and can be any valid SDL/UPL number,
identifier, or expression that returns a binary value.

character-size
This field specifies the number of characters in <identifier> and can be any valid SDL/UPL
number, identifier, or expression that returns a binary value.

record-identifier
This field can be any valid SDL/UPL identifier and specifies the name of a record structure. Refer
to Record Declarations in this section.

Array Declaration Information

Only 1-dimensional, level-structured arrays are allowed. Thus, if a group item is an array, none of
its substructures can be an array. Multidimensional arrays can be created by using record structures.
An array field cannot be declared with a REFERENCE data type. A multidimensional field can be
define by using the RECORD REFERENCE structure.

4-10

B 1000 Systems SDL/UPL Reference Manual
Declarations

If the Ol-level identifier is an array, it is mapped as a contiguous area in memory. Subdivisions of
an array are not contiguous. The following shows the way in which subdivisions of an array are
mapped.

Example:
DECLARE 01 A(3) BIT (48)>»
N2 3 FIXEC,
ve2 ¢ FIXELD:

Figure 4-1 shows how array A and identifiers B and C are mapped in memory.

A(0) A(1) A(2) A(3) Al4)
8(0) c(0) B(1) C(1) B(2) C(2) B(3) C(3) B(4) C(4)

NOTE

A{(0), A(1), A(2), A(3), and A(4) are all 48 bits in
length. B(0), C(0), B(1), C(1), B(2), C(2), B(3),
C(3), B(4), and C(4) are all 24 bits in length,

G18300

Figure 4-1. Memory Mapping of Array A and Identifier B and C

Examples of DECLARE Statements

The following are examples of DECLARE statements.

Example 1:

Identifier TAGA is a signed

24=bit binary value. The sigr
2 is the leftmost bite

CECLARE TAGA FIXEL?

re e

Example 2:

Identifier TAGB is of tyoe
CHARACTER and one unit tonge
CHARACTER is in €~bit EBCDIC
% formate.

DECLARE TAGB CEARACYEFR;

I N

Example 3:

Identifier TAGC is of type BIT
Z and is 17 bits long.

N

CECLARE TAGC EBIT (175

1137833 4-11

B 1000 Systems SDL/UPL Reference Manual

Declarations
Example 4:
CECLARE TAGA FIXEL» Z The identifiers have the same
TAGE CHARACTEF (1)>» % namesr data tvypesr and length as
TAGC EIT (17)5 Z in examrles 1=-31s except they
% are declared in one statement
L with the identifiers separated
%2 by the comma {») charactere.
Example 5:
CECLAKRE 01 CAKRCE CHARACTER (80),» Z An implied filler of eight
C2 INPUT CHARECTER (72)5; % characters is auvtomatically
Z assigned by the SDL/UPL
£ cecmpiler to expanrd the 02
% ltevel tc its required length cf
%Z B0 characterse.
Example 6:
CECLARE %Z A tatie of five items that
01 TAGLE_A CHARACTER (l4)» XZ consumes 14 bytes is declared.
02 1TEM_1 CHAFACTER (6)» % Each ites i1s exclicitly named
92 ITEWN_?2 CHARACTER (4)s ¥ in the structurer» and its tvype
03 SUB_ITEM_2Z FIXEL Z and length are given. Also
02 ITE¥_3 BIT (1), % decliared is a second table of
62 ITFM_4 FIXED %Z 200 tits. Identifier SUB_ITEM_2
C2 TTEK_S BIT (1) X further subdivides ITEM_2 and

0l TABLE_E EIT (200); % uses the first three characters
z (24 tits)e There is an implied
Z FILLER on the 03 level

% follewirg identifier
2 SUB_ITEM_2e

Example 7:

CECLARE ¥ An d0=column card is declared
CARCS CHAFACTER (80)» % and then remapoed as an array
COLYMNS (B0) REMAPS CARES 72 of 8C elementss» each of

CHARACTER €1)»
01 NUM_FTELECS (40) REMEPI CARD
CHARACTEER (1),
02 FIRST_MUM CHARACTER (1)»
C2 SECONC_NUM CHARACTER (1)

N

one character. The card is
remapped aqain as 3 4O0-element
grrays each of two characterse.
FEach 2-character array element
is further subdivided into
separate elements that can be
referencede.

Tdentifiers FIRST_NUM and
SECOGNU_NUM apust be subscriptecd
when they are used. The
subscript values must range
from O to 39+ inclusive.

DL G e R0

S S

4-12

B 1000 Systems SDL/UPL Reference Manual
Declarations

Example 8:

CECLARE CITEM1, TTEMZ, ITEM3) FIXED: A list of identifiers is
declaredsr atl of data tvoe

FIXED.

a2 ¥ e

Example 9:

CECLAKE
01 NEW_LAEEL,
02 MNL_1 CHARACTER (25),
02 NL_z €3) CFARACTER (25),
03 FILLER CHARACTEF (5)»
03 FIKST CHARACTER (10)»
03 SECOND CHARACTER (1C)»
02 NL_3 FIXECS

A aroup item NEW_LABEL is
declared and the SDL/UPL
compiter assigns it a B8IT

data tvygce. The length of
NEW_LABEL is equal to the

sum of the bits of the 02
levels that follow ((25 + 3

* 25) « 8 % 24 = 824 bits).
Identifier NL_2 is an array

of three etements each 25
characters in lengthe FILLER
is used to omit the naming of
an area that 1s never
referenced separately.

fILLERK can be used as often

as required without causing

a duplicate-name syntax

erraore Identifiers FIRST and
SECONC are 3«element subarravys
of array NL_2. They are
referenced with subscripts O»
1» and 2 for the firste second»
and third elements»
respectivelye Each element 1is
10 characters tonge Jgentifier
NL_3 is a FIXED» signed binary
nuroer .

RO N R PR B SR TE SN S SR BN R R BT st NN NN SRR e

Example 10:

CECLARE 01 A»
02 A1 (203 BIT (20)»
C2g A2 (18) BIT (20)»
03 g1 BIT (15)»
03 B3 BIT (9),
02 A3 (2) BIT (5);

Because of the explicitly
declared array=~size specified
for array Als, AZ2» and A3»
identifiers Als» A2s B1» B2 and
A3 must all the subscripted»
when referenceds The length sum
of identifiers 61 and 82 must
be eagual tos» or less thans, the
length specified for identifier
A.

E o

LI N PR R P2

1137833 413

B 1000 Systems SDL/UPL Reference Manual
Declarations

Example 11:

CECLARE C! TACA (5) EIT (4t),
02 TAG8 FIXEC»
02 TAGC FIXEL:

fdentifier TAGA is mapped
intc a ccntiquous memory
area to contain the data for
identifiers TAGE and TAGCe.
TAGE and TAGC are iwmplicit
S5=unit arrays, but are not
rapced ccntiquouslye. They
are mapped in an alternating
marner as follows: TAGB(OQ),
TAGCCO)» TAGB(U1)» TAGCC1)»
sse» TAGBL{4)» and TAGC(4).

EA B S S S S I B B T U X

Example 12:

CECLARE
PAGEC (1C24) BIG_D_L (4CS€) 8IT (1)

Identifier BIG_LC_N is an array
with 4)9€ elementss each one
bit longe The array is
segrented into 1024 parts. Each
part is5 brought into memorv;
that i5» paged whenever it is
addresseds. No special
statements are required to do
the paginge.

B S S L B

L e M

RECORD DECLARATIONS

SDL/UPL programs have two ways of creating data structures. They are the level-structure DECLARE
statement and the RECORD statement. Each statement establishes similar structures. The following are
the benefits of using the RECORD statement.

e RECORD statements reduce run-time space requirements because records do not generate large
name and value stacks.

e RECORD statements provide safer, simpler, and often faster access to linked data structures
than do level-structured DECLARE statements.

¢ RECORD statements provide a method to structure paged arrays.

RECORD statements allow arrays to be nested within structural levels.

RECORD statements reduce the probability of error and increase programming ease by al-
lowing structures to be described once and invoked many times.

NOTE
Data structures cannot be declared with a data type of REFERENCE. The
RECORD REFERENCE construct must be used instead.

4-14

B 1000 Systems SDL/UPL Reference Manual
Declarations

Building a record structure requires two statements. First, a RECORD statement must describe the
memory layout of the structure. The RECORD statement essentially describes a new data type that
can be used exactly as data types BIT, CHARACTER, and FIXED. Describing the RECORD structure

does not allocate memory space for the structure.

Memory space is allocated for the RECORD structure when the record identifier is specified as the
data type of an identifier in the DECLARE statement. Thus, a DECLARE statement is the second
statement needed to invoke a RECORD structure.

The syntax and semantics of the RECORD statement are described as follows:

SDL Syntax:
|
~—— RECORD N E— <structured-part> ' ; —
< unstructured-part> —————
UPL Syntax:
—-RECORD < unstructured-part>; 1'

Syntax Semantics:

structured-part
Refer to structured-part in this section.

unstructured-part
Refer to unstructured-part in this section.

structured-part

The syntax and semantics of the structured-part in the RECORD statement are described as follows:

SDL Syntax:
—<level-number> <record-identifier> < type-part> —>
> <level-number> <identifier-part> < type-part> ————i

—— <remaps-part>

Syntax Semantics:

record-identifier
This field can be any valid SDL/UPL identifier and specifies the name of the record structure.

level-number
This field can be any valid SDL/UPL number and specifies the level of the record structure. <lev-
el-number > can range from 1 to 99. The first level number for a record structure must be 01

or 1.

identifier-part
Refer to identifier-part in this section.

1137833 415

B 1000 Systems SDL/UPL Reference Manual
Declarations

remaps-part
Refer to remaps-part in this section.

type-part
Refer to type-part in this section.

unstructured-part
The syntax and semantics of the unstructured-part in the RECORD statement are described as follows:

SDL and UPL Syntax:

—— < record-identifier>

A\ 4

<identifier-part> <type-part> |

[<identifier-part> <type-part>]

Syntax Semantics:

record-identifier
This field can be any valid SDL/UPL identifier and specifies the name of the record structure.

identifier-part
Refer to identifier-part in this section.

type-part
Refer to type-part in this section.

[]

The left and right broken bracket characters cause the enclosed identifiers to become an alternative
format for the same area as that represented by the identifier specified immediately before the left
and right broken bracket characters.

identifier-part
The syntax and semantics of the identifier-part in the RECORD statement are described as follows:

SDL and UPL Syntax:

—_——— <identifier> JI

————-— (<number-of-elements>>) —

'— FILLER

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the data item or array.

4-16

B 1000 Systems SDL/UPL Reference Manual
Declarations

number-of-elements
This field specifies the number of elements in the array. It can be any valid SDL/UPL number,
identifier, or expression that returns a binary value.

An SDL/UPL array is a vector which is a group of memory locations associated with a single
identifier. All elements of an array are identical in structure. Individual array elements are refer-
enced by using a subscript with the array identifier.

Any identifier followed by a number in parentheses names an array.

Array subscripts are zero-relative. For example, the first element of array ARRAY is ARRAY(0).
Valid subscripts for a 5-element array are 0, 1, 2, 3, and 4. If the subscript is not between 0 and
n-1 inclusive, where n is the declared number of elements in the array, an invalid subscript error
is generated and the program is terminated by the MCP.

The maximum number of elements per array is 65,535. Each element has a maximum length of
65,535 bits (8191 characters).

Identifiers specified as an array in the structured part of a record declaration cannot have nested
record structures.

FILLER and parent field
The keyword FILLER de31gnates the memory areas which the program does not reference. A par-
ent identifier of an item is the field which the item subdivides. The keyword FILLER can be used
on any level, specxfled by <level-number>, which is greater than 01. If the FILLER keyword is
the last data item in a structure and its parent field specifies a length, the FILLER keyword can
be omitted. The SDL/UPL compiler supplies an implied FILLER. A parent identifier of an item
is the field which the item subdivides. The parent identifier must have a lower level number than
its subdividing item.

remaps-part
The syntax and semantics of the remaps-part in the RECORD statement are described as follows:

SDL and UPL Syntax:

4

<remap-identifier> REMAPS <identifier>

Syntax Semantics:

remap-identifier
This field can be any valid SDL/UPL identifier and specifies the alternative name of the same
memory space as <identifier>.

REMAPS
The keyword REMAPS causes the starting address of <remap-identifier> to be the same as
<identifier >.

<remap-identifier > cannot be larger than <identifier>. However, it can be remapped by a
smaller identifier. In that case, the SDL/UPL compiler provides implied-filler bits on the un-
mapped rlghtmost bits. There is no actual limit to the number of times a field can be remapped.
<remap-identifier> can be remapped by another <remap-identifier>.

1137833 4-17

B 1000 Systems SDL/UPL Reference Manual

Declarations
identifier
This field can be any valid SDL/UPL identifier and specifies the name of the field to be re-
mapped.
type-part

The syntax and semantics of the type-part in the RECORD statement are described as follows:

SDL and UPL Syntax:

_— FIXED
—— BIT (<bit-size>>)

—— CHARACTER (<character-size>>)
— <record-identifier>>

Syntax Semantics:

BIT _
The keyword BIT causes <identifier> to have a data type equal to BIT. A bit can have a value
equal to 0 or 1 and is the smallest unit of data that can be addressed on the B 1000 computer
system.

CHARACTER
The keyword CHARACTER causes <identifier> to have a data type equal to CHARACTER.
A character is 8 bits long and represents one of the 256 EBCDIC characters.

FIXED
The keyword FIXED causes <identifier> to have a data type equal to FIXED. An identifier with
a FIXED data type is 24 bits long, with the sign in the leftmost bit position, and is used for arith-
metic calculations. A negative number is stored as the two’s complement of its like positive num-
ber. Fixed identifiers can range from —8,388,608 to + 8,388,607, inclusive.

bit-size

This field specifies the number of bits in <identifier> and can be any valid SDL/UPL number,
identifier, or expression that returns a binary value.

character-size
This field specifies the number of characters in <identifier> and can be any valid SDL/UPL
number, identifier, or expression that returns a binary value.

record-identifier
This field specifies the name of a record structure. This field can be any valid SDL/UPL identifier.

B 1000 Systems SDL/UPL Reference Manual
Declarations

Qualified Record Names

To reference an identifier within a record, the identifier must include the name of all of its parent
identifiers separated by the period (.) character.

Example:

NECCOKRD TYPELFIELD
NV BiT(1)»
NSH E1TC1)»
DATATYPE BIT(16)5

KRECURD DESCRIPTICA

TYPE TYPEFIELC»
LENGTH IT (16>
CACCH BIT(24)»
VAL eIT(24) 15
DECLASE C DESCRIPTION,
A(S) TYPEFIELCD,
D 2= O3
ACl) 2= 05
C.TYFPELNV 2= 3(1)1la;
AC1LYLNY = 2(1)03;
DLENGTH 2= 45
C.TYPELNSRE 2= q(1)C37
AC4).0NSR 3= 3C1)145

In the preceding example, two record structures are specified in the DECLARE statement. They are
identifier D and array A. Since identifier D and array A have no parents, each identifier is completely
qualified. If field NV is to be accessed, the name must contain its parent identifiers. Because field NV
has two parents, either D.TYPE.NV or A(n).NV can be specified, where n is the element number
within array A. Figure 4-2 shows the data space created when identifier D is declared.

TYPE LENGTH ADDR or VAL
NV NSR DATA
(1) (1) TYPE
(16)
18 bits 16 bits 24 bits

G18301

Figure 4-2. Data Space Created for Identifier D

In the record named DESCRIPTION, the previously described record named TYPEFIELD is the data
type for field TYPE. This gives TYPE the subfields NV, NSR, and DATATYPE. Fields ADDR and
VAL are alternative formats and, in the example, they have the same data type. The data types can
vary.

Defined record identifiers can be used as data types in any DECLARE statement, including a RECORD
statement.

1137833 4-19

B 1000 Systems SDL/UPL Reference Manual
Declarations

Record-Reference Identifiers

In some cases, storage is not to be directly allocated for a record, although some program data can
be in the format specified by the record structure. Record-reference identifiers provide a means to im-
pose the record structure on a memory area during program execution.

Record-reference identifiers are bound to an identifier by the REFER verb, as simple reference identifi-
ers are bound. Field name qualification, within a record-reference identifier, is the same as with record
structure names. The record-reference identifier is the first component of a qualified name used to ac-
cess a field within the record.

If the record-reference identifier is bound to an expression, the expression must generate an address.
Record-reference identifiers cannot be specified in the REDUCE verb.

The area length to which the record-reference identifier is bound must equal the length of the record
structure.

Example:

RECORD THIS_AND_THAT

FIRST FIXED»

SECCNE ETT(3),

THEIRC CHAFACTERCL1O0)
LECLARE INFC THIS_ENO_THAT FREFERENCES,

EIG_AFrEA EIT (800)»

X FIXEDS

FEFEFR INFC TC SURETITCEYC_AREA,7S5,107)5
X 3= INFOLFIRST;

Identifier X contains a fixed-number representation of the 24 bits beginning at the 76th (bit 75) bit
of the identifier BIG__AREA. Exactly 107 bits are assigned to the record-reference identifier INFO.
Record identifier THIS__AND__THAT defines exactly 107 bits of information.

FILE DECLARATIONS

The FILE declaration statement describes a file to be used by a program and assigns an internal identi-
fier to that file. More than one file attribute can be specified for each file, although all file attributes
of the FILE declaration statement are optional. The default value is automatically set for any omitted
file attribute.

All FILE declarations must appear within the declaration portion of a program or procedure.

All underscore (__) characters used in internal file identifiers are converted to the period (.) character
in the file parameter block (FPB).

A FILE declaration consists of the reserved word FILE followed by one or more file identifiers which

are separated by the comma (,) character. Each file identifier is optionally followed by file attributes
enclosed within parentheses ‘‘()’’ characters.

4-20

B 1000 Systems SDL/UPL Reference Manual
Declarations

The syntax and semantics of the FILE declaration are described as follows:

SDL and UPL Syntax:

— FILE < file-identifier> :

(< attribute>)

Syntax Semantics:

file-identifier
This field can be any valid B 1000 file name and specifies the internal file name of the file.

attribute
This field can be any valid SDL/UPL file attribute.

The valid file attributes are listed and defined in the following paragraphs.

ALL_AREAS__AT__OPEN OPTIONAL

AREAS PACK__ID

BUFFERS PROTECTION

DEVICE PROTECTION__IO
END__OF__PAGE_ACTION RECORDS
EU__INCREMENTED REEL

EU__SPECIAL REMOTE__KEY
EXCEPTION__MASK SAVE

FILE_TYPE SECURITYTYPE
INVALID__CHARACTERS SECURITYUSE

LABEL SERIAL

LABEL__TYPE TRANSLATE

LOCK USE__INPUT__BLOCKING
MODE USER_NAMED__BACKUP
MULTI_PACK VARIABLE

NUMBER__OF__STATIONS WORK__FILE
OPEN__OPTION

ALL_AREAS__AT__OPEN

The ALL__AREAS__AT__OPEN file attribute causes the area disk space to be allocated when the file
is opened. If sufficient disk space is not available, an ODT message is displayed which indicates that
no more disk space is available. The program is then suspended. By default, the value of each disk
area is allocated when the area is needed.

SDL and UPL Syntax:

P -

—— ALL_AREAS_AT_OPEN

Example:
FILE DISKFILE CALL_AREAS_AT_CGPEN)S

1137833 4-21

B 1000 Systems SDL/UPL Reference Manual
Declarations

AREAS

The AREAS file attribute assigns the number of disk areas and the number of blocks per area for
a disk file.

This option applies only to disk files.

If the AREAS and RECORDS file attributes are not specified, the SDL/UPL compiler assigns a value
equal to 100 for the records per area.

SDL and UPL Syntax:

——AREAS = <number-of-areas.>/ <blocks-per-area>> 1

Syntax Semantics:

number-of-areas
This field can be any number and specifies the allowed number of disk areas for the file. The
default value is 25.

blocks-per-area
This field can be any number and specifies the number of blocks each area can have. The default

value is 100.
/

The virgule (/) character is a delimiter and is not the division operator.
Example:

FILE CISKFILE C(AREAS = 50/200);
BUFFERS

The BUFFERS file attribute specifies the number of input/output (I/O) buffers to be assigned to the
file. The BUFFERS file attribute cannot be specified for a file with a device type equal to QUEUE.

SDL and UPL Syntax:

—— BUFFERS = <number-of-buffers>

dL—

Semantics:

number-of-buffers
This field can be any number and specifies the number of buffers for the file. The default value
is 1.

Example:

FILE CISKFILE (BUFFERS = 2)3:

4-22

B 1000 Systems SDL/UPL Reference Manual
Declarations

DEVICE

The DEVICE file attribute specifies the type of input/output (I/0) device on which the file is to reside.

SDL and UPL Syntax:

— DEVICE = -
CARD —1|
——— CARD_PUNCH
—— FORMS —— BACKUP
— BACKUP DISK ————
— BACKUP TAPE
—— NO BACKUP
—— OR BACKUP
— OR BACKUP DISK
L OR BACKUP TAPE
—— CARD_READER
—— CASSETTE
—— DATA_RECORDER_80
—— DISK
—— SERIAL
—— RANDOM —
—— DISK_FILE
| —— SERIAL
L RANDOM ——
—— DISK_PACK
—— SERIAL
[RANDOM ——
—— PORT
—— PRINTER
L — FORMS —— —— BACKUP
— BACKUP DISK
—— BACKUP TAPE
— NO BACKUP
—— OR BACKUP
— OR BACKUP DISK -
— OR BACKUP TAPE
4/
1137833 423

B 1000 Systems SDL/UPL Reference Manual

Declarations
7
E‘— PUNCH_PRINTER
FORMS BACKUP
— BACKUP DISK
—— BACKUP TAPE
—— NO BACKUP
—— OR BACKUP

—— OR BACKUP DISK
—— OR BACKUP TAPE

—— QUEUE (<max-messages>>)

FAMILY (<size >)

—— READER_PUNCH_PRINTER

—— FORMS BACKUP

—— BACKUP DISK —————
—— BACKUP TAPE

—— NO BACKUP
—- OR BACKUP
——- OR BACKUP DISK
L OR BACKUP TAPE

—— READER_SORTER

— REMOTE (<max-messages>>)

~—— WITH HEADERS

L SORTER_READER
TAPE

L TAPE_NRZ

{—— TAPE_PE
[TAPE_7

—— TAPE_9

424

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

BACKUP
The keyword BACKUP causes the printer or punch file to be written to the designated printer
or punch backup device. The designated printer or punch backup device is set by the MCP options
PBD (Printer/Punch Backup Disk) and PBT (Printer/Punch Backup Tape).

BACKUP DISK
The keywords BACKUP DISK cause the printer or punch file to be written to the backup disk
device. The MCP option PBD must be set.

BACKUP TAPE
The keywords BACKUP TAPE cause the printer or punch file to be written to the backup tape
device. The MCP option PBT must be set.

CARD
The keyword CARD specifies that the device type of the file is a card reader. This keyword is
the same as the CARD__READER keyword.

CARD_PUNCH
The keyword CARD__PUNCH specifies that the device type of the file is a card reader and card
punch.

CARD__READER
The keyword CARD__READER specifies that the device type of the file is a card reader. This
keyword is the same as the CARD keyword.

CASSETTE
The keyword CASSETTE specifies that the device type of the file is a cassette.

DATA_RECORDER__80
The keyword DATA_RECORDER__80 specifies that the device type of the file is an 80-column
card reader.

DISK
The keyword DISK specifies that the device type of the file is disk. This keyword is the same as
the DISK__FILE keyword.

DISK__FILE
The keyword DISK__FILE specifies that the device type of the file is disk. The keyword is the
same as the DISK keyword.

DISK_PACK
The keyword DISK__PACK specifies that the device type of the file is disk pack.

FAMILY
The keyword FAMILY causes a group of subcqueues to be assigned to the queue file.

FORMS

The keyword FORMS specifies that the printer or punch file has a special form. Operator action
must be taken to insure that the special form is on the device before writing to the file.

1137833 4-25

B 1000 Systems SDL/UPL Reference Manual
Declarations

max-messages

This field specifies the total number of messages that can be written to the file by another program
or process before the file becomes full. This field applies to files that have a device type equal
to QUEUE or REMOTE.

NO BACKUP

The keywords NO BACKUP specify that the printer or punch file is not to be written to a printer
or punch backup device.

OR
The keyword OR specifies that additional backup keywords follow. These keywords are BACKUP,
BACKUP DISK, BACKUP TAPE and NO BACKUP.
PORT
The keyword PORT specifies that the device type of the file is a BNA port file.
PRINTER
The keyword PRINTER specifies that the device type of the file is a line printer.
PUNCH__PRINTER
The keyword PUNCH__PRINTER specifies that the device type of the file is a card punch and
card interpreter.
QUEUE

4-26

The keyword QUEUE specifies that the device type of the file is a queue.

A queue file is a temporary file structure maintained as an input and output file. Queue files are
accessed with read and write operations that are conceptually identical to I/O operations which
are performed on all other devices. Queue files can be declared as a family of files.

A queue file is a specialized file structure maintained by the MCP as a means of Inter-Process
Communication (IPC). A queue file contains a list of messages (possibly an empty list) to which
messages can be written and from which messages can be read. Queue files have a head and a
tail record. The head (top) of a queue file is the first message in a queue. This is the message
that is accessed by a read operation and generally is the message that has been in the queue file
the longest time. The tail (end) of a queue file is the last message in the queue file to which the
next written message is linked. A queue file is basically a first-in, first-out (FIFO) structure.

Queue files can be shared by several programs. When a queue file is opened, the queue driver
in the MCP compares the 20-character file identifier with the names of already opened queue files.
If the named queue file is opened by another program or process, the queue file is linked to the
existing queue file and the USER_COUNT field in the disk file header is incremented. If the
queue file is not opened, a new queue file is created as described by the parameters in the file
parameter block (FPB). When a queue file is shared by several programs, the program that
originally opened the queue file controls all file attributes of that queue file.

B 1000 Systems SDL/UPL Reference Manual
Declarations

Messages stored in a queue file can reside on disk or in memory. At the time the queue file is
created, an area of system disk is obtained for the queue. This area is of sufficient size to hold
the entire queue. Queue file messages are stored on disk if one of the following situations occurs.

¢ The message being written to the queue file makes the count of messages in the queue file great-
er than the number of buffers for the queue file. In this case, the tailmost message is written
to disk.

¢ The B 1000 memory management system needs the space used by an infrequently-accessed queue
file. Therefore, it rolls the messages out to disk.
Messages are stored in a variable-length format. Any record whose length is less than the de-
clared record-size uses only the amount of memory required to write the message.

Messages are stored in a queue file as a linked list of message descriptors. Each message descrip-
tor is an 80-bit system descriptor with two additional link fields. The system descriptor describes
the text of the message according to standard MCP conventions.

When a queued message is in S-memory, it is stored in a memory link called a message buffer.
No queue file can have more than the declared number of messages in the buffer, including mes-
sages that are being moved between disk and S-memory. The buffers are allocated from a com-
mon pool of empty buffers.

READER__PUNCH__PRINTER
The keyword READER__PUNCH__PRINTER specifies that the device type of the file is a card
reader, card punch, and card interpreter.

READER__SORTER :
The keyword READER_SORTER specifies that the device type of the file is a reader sorter.

REMOTE
The keyword REMOTE specifies that the device type of the file is remote. Files that have a device
type equal to REMOTE can read and write messages to the network controller.

Examples:

FILE ANNOC (LEVICE = REMODTED;
FEALC AMNOL (Message)d:s

FILE ANNOC (DEVICE = REMOTECZ0) WITH HEALCERS)?
FEAL ANNOL (Euffer)d;
Message 2= SUESTR(Euffers49);

FILE ANNGD (TEVICE = REMOTE(20)» REMGTE_KEY,

NUMBER_CF_STAYIONS = 2)3
WRITE ANNOD ©C020C70001 ("message"™);

1137833 4-27

size

B 1000 Systems SDL/UPL Reference Manual
Declarations

This field can be any valid number and specifies the number of subqueues or queue-file families
in the file with a device type equal to QUEUE.

Queue-file families are a group of queues that share I/0 descriptors. A group of queues have a
multi-file-identifier and are accessed as a subfield of the queue-file family. A subscript must be
specified in order to identify the subqueue in a queue-file family for read or write operations.

Queue-file families are declared with the FAMILY keyword.

Each member of the queue-file family is accessed with a numeric key, based on the order in which
the queues are declared. The first subqueue has number 0 and the last has number n-1, where
n is the number of subqueues. Specifying an index of —1 requests an unspecified read from the
queue-file family. An unspecified read operation scans through the queues and returns the top mes-
sage from the first non-empty queue in the family.

SORTER__READER

The keyword SORTER_READER specifies that the device type of the file is a reader sorter.

TAPE

The keyword TAPE specifies that the device type is tape.

TAPE_NRZ

The keyword TAPE__NRZ specifies that the device type is tape with the Non-Return to Zero
(NRZ) recording mode.

TAPE__PE

The keyword TAPE__PE specifies that the device type of the file is tape with the phase encoded
(PE) recording mode.

TAPE__7

The keyword TAPE__7 specifies that the device type of the file is a 7-channel tape.

TAPE__9

The keyword TAPE__9 specifies that the device type of the file is a 9-channel tape.

WITH HEADERS

The keywords WITH HEADERS applies only to remote files and specifies that a 50-byte message
header is supplied/expected in all read and write operations to the remote file.

Examples:

FILE CUT_MASTER (CEVICE = PRINTER

FILE SUMMAFY (LABEL = "FIYRQULL®"/"W2",

4-28

The file OUT_MASTER is
prirnted if the line printer
is availattes CGCtherwiser a
tacktur output file 1s
created on disk or tape.

CR BACKUF LCISK
(R BACKUP TAPE);

NN e e N2

The twec filess W_2_SUMMARY

and W_2_rEPURT» are declarece.
h_2_SUMMARY has the ltabel

N e N

CEVICE = [ISK_FACK)»
REPORT (CEVICE = FEINTER FORMS

GR BACKUF CISK);
CISK_PACK. W_2_FREPCRT has
the device tvrce of PRINTER
and special forms with the
BACKUP DISK cptione

N o 3N N e

PAYFROLL/W2 and device type cf

B 1000 Systems SDL/UPL Reference Manual
Declarations

END_OF_PAGE_ACTION

The END__OF_PAGE__ACTION file attribute causes the write operations to return the end-of-file
exception when the end of page is encountered on the line printer. The program can specify action
to be taken with ON EOF keywords in the WRITE verb. The default is no automatic end-of-page re-

porting,.

SDL and UPL Syntax:

—- END_OF_PAGE_ACTION 1

Example:

FILE DISKFILE (DEVICE = CISK,
EU_INCREVMENTEC = 2);

EU_INCREMENTED

The EU_INCREMENTED file attribute specifies the disk drive on which the first area of a file is
to be written. Each subsequent area is then written on the next drive. If the next drive does not exist,
the next area of the file is written to the first drive and so on. By default, files are written to one

disk drive.
SDL and UPL Syntax:

— EU_INCREMENTED = <drive-number> |

Syntax Semantics:

drive-number
This field can be any valid number within the range 0 to 15 and specifies the disk drive number

of a head-per-track or systems disk pack. If <drive-number> is not an available disk pack, then
0 is used.

Example:

FILE LINE C(CEVICE = PRINTER.
END_OF _FAGE_ACTION);

EU__SPECIAL

The EU__SPECIAL file attribute specifies the disk drive on which the file is to be written. By default,
areas of the file are allocated anywhere on disk.

SDL and UPL Syntax:

— EU_SPECIAL = <drive-number> |

Syntax Semantics:

drive-number
This field can be any number within the range 0 to 15 and specifies the disk drive on which the

file is to be written. Only head-per-track and systems disk packs are valid. If the drive is not avail-
able, <drive-number> is set to O.

1137833 4-29

B 1000 Systems SDL/UPL Reference Manual
Declarations

Example:

FILE DISKFILE (DEVICE = OISK,
EU_SPECIAL = 2);

EXCEPTION_MASK

The EXCEPTION__MASK file attribute specifies the types of exceptions that the program can handle
for the file. By default, no exceptions are to be reported in the exception mask.

SDL and UPL Syntax:

—— EXCEPTION_MASK = <exception-bits>
Syntax Semantics:
exception-bits
This field must be a 24-bit value. Each bit signifies which exception is to be reported in the excep-
tion mask field for read and write operations. The default value is @000000@.
Example:

FILE DISKFILE (DEVICE =CISK»
EXCEPTIOMN_MASK = SFFFO0Q0Q);5

FILE_TYPE

The FILE__TYPE file attribute specifies the file type of the created file. In particular, B 1000 compilers
specify a FILE__TYPE = CODE for their resulting code files. The default is DATA.

SDL and UPL Syntax:

PR

— FILE_TYPE = ——p— DATA
— INTERPRETER

—— CODE
—— INTRINSIC

— PSR_DECK -~

Syntax Semantics:

CODE
The keyword CODE causes the file being created to be a code file.

DATA
The keyword DATA causes the file being created to be a data file.

INTERPRETER
The keyword INTERPRETER causes the file being created to be an interpreter file.

INTRINSIC
The keyword INTRINSIC causes the file being created to be an intrinsic file.

4-30

B 1000 Systems SDL/UPL Reference Manual
Declarations

PSR_DECK
The keyword PSR_DECK causes the file being created to be a pseudo-reader file.

Example:
HOST_NAME = "E(STA®
HOST_NAME
The HOST_NAME file attribute specifies that the file resides on a remote BNA host system.
SDL and UPL Syntax:

— HOST_NAME = ** <host-name>> "' - 1

Syntax Semantics:

host-name
The field can be any character string up to 17 characters long which specifies the name of the

remote host system.

Example:

FILE OUT CCEVICE = CISKs
FILE_TYPE = CCCE);

INVALID_CHARACTERS

The INVALID_CHARACTERS file attribute applies only to printer files and specifies the type of in-
valid-character reporting that is to be done.

When a printer file includes a print character that is not valid on the line printer, an invalid-character
exception is reported to the MCP. The value of the INVALID__CHARACTERS file attribute deter-
mines the action taken when invalid characters are encountered while printing a file. The default value
is 2.

SDL and UPL Syntax:

— INVALID_CHARACTERS = 0 }

1137833 4-31

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

0
The keynumber 0 causes the MCP to report all printed lines containing invalid characters.
1
The keynumber 1 causes the MCP to report the first print line containing any invalid characters
and then to terminate the program.
2
The keynumber 2 causes the MCP to report only the first print line that contains any invalid char-
acters and to continue printing.
3
The keynumber 3 causes the MCP not to report any print lines that contain invalid characters.
Example:
FILE LINE (CEVICE = PRINTER»
INVALID_CHARACTERS = 2);
LABEL

The LABEL file attribute specifies an external file name for the file as it appears, or as it is to be
stored in the disk directory. The file identifier in the FILE declaration statement is the default name.
The LABEL file attribute writes the file identifiers in the file parameter block (FPB).

If only the multi-file-identifier is specified, the file identifier is assigned blank characters.

The pack identifier is not affected by the LABEL file attribute.

The MCP uses only the first ten characters of each identifier.

SDL and UPL Syntax:

— LABEL = * <multi-file-identifier>"’

/' <file-identifier> "'
Syntax Semantics:

multi-file-identifier
This field can be any valid 10-character identifier that follows the B 1000 file-naming convention.

file-identifier
This field can be any valid 10-character identifier that follows the B 1000 file-naming convention.

Example:

FILE DISKFILE (DEVICE = CISK,
LABEL = “MASTER™/T"FILE"™);

4-32

N

B 1000 Systems SDL/UPL Reference Manual
Declarations

LABEL__TYPE

The LA.BEL__TYPE file attribute is valid only for tape and printer files and specifies the label type
of the file. The BURROUGHS standard label and the ANSI standard label are the same. The default
LABEL__TYPE label is the ANSI standard label.

SDL and UPL Syntax:

— LABEL_TYPE = —— UNLABELED
—— BURROUGHS

ANSII

——

Syntax Semantics:

UNLABELED
The keyword UNLABELED causes the file to be unlabeled.

BURROUGHS
The keyword BURROUGHS causes the file to have the Burroughs standard label.

ANSI
The keyword ANSI causes the file to have the ANSI standard label.

Example:

FILE LINE (DEVICE = FRINTEH,
LABEL _TYPE = EURRCUGHS);

LOCK

The LOCK file attribute requests the MCP to enter the external file name into the disk directory. The
LOCK file attribute is overridden if the file is closed with the purge option.

There are two ways to permanently close a file: with the CLOSE verb, or with an implied close when
the program goes to end of job.

If a tape or disk file is explicitly closed and the LLOCK file attribute is specified in the file declaration,
the file identifier remains in the disk directory. The LOCK file attribute is used to close the file when
either a CLOSE REMOVE; or CLOSE CRUNCH; statement is specified. The LOCK file attribute is
not used to close the file when CLOSE PURGE; statement is specified.

An implied close occurs under two conditions: when a program goes to end of job with the file still
open and when a program is discontinued by using the MCP commands DS or DP. A file is not closed
if the system halts.

If an implied close occurs, the file is locked into the disk directory only if the LOCK file attribute
is specified. If not, the file is closed with the release option. Only new files are not entered in the
disk directory if the LOCK file attribute is not specified and the file is implicitly closed.

The default is no LOCK.

1137833 ' 4-33

B 1000 Systems SDL/UPL Reference Manual
Declarations

SDL and UPL Syntax:

— LOCK -

Example:

FILE DISKFILE (DEVICE = CISK»
LOCK);

MODE

The MODKE file attribute specifies the type of parity checking and translation that is to be used for
the file. The default is odd parity checking or EBCDIC translation, whichever is applicable.

SDL and UPL Syntax:

——MODE = ASCII
EBCDIC EVEN
BCL obD
—— BINARY

Syntax Semantics:

ODD
The keyword ODD specifies that odd-parity checking is to be used.

EVEN
The keyword EVEN specifies that even-parity checking is to be used.

EBCDIC
The keyword EBCDIC specifies that EBCDIC translation is to be used.

ASCII
The keyword ASCII specifies that ASCII translation is to be used.

BCL
The keyword BCL specifies that BCL translation is to be used.

BINARY
The keyword BINARY specifies that BINARY translation is to be used.

Exampile:

FILE TAPEFILE C(DEVICE = TAPE,
MOCE = CCC)Y»

4-34

B 1000 Systems SDL/UPL Reference Manual
Declarations

MULTI__PACK

The MULTI__PACK file attribute specifies that a single file can reside on more than one disk pack.

The default is that the entire file must reside on one disk pack.

SDL and UPL Syntax:

—- MULTI_PACK
Example:

FILE DISKFILE (DEVICE = CISK»
MULTI_PACK);

NUMBER__OF_STATIONS

The NUMBER__OF__STATIONS file attribute specifies the maximum number of stations that are at-
tached to this remote file. The maximum number of stations that can be attached is system dependent
and is determined by the network controller. The NUMBER__OF__STATIONS file attribute must not

specify more stations than the network controller has defined. The default is 1.

SDL and UPL Syntax:

-

— NUMBER_OF_STATIONS = <number>

Syntax Semantics:
number

when the remote file open is approved by the network controller.
Example:

FILE REMCTEFILE (DEVICE = RENOTE,
NUMBER _CF_STATICNS = 5);

OPEN__OPTION

The OPEN__OPTION file attribute specifies how the file is to be opened.

SDL and UPL Syntax:

< /

This field specifies the maximum number of stations that are to be attached to the remote file

—— OPEN_OPTION = INPUT
— OUTPUT
NEW
‘—— DEFAULT

1137833

4-35

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

INPUT
The keyword INPUT causes the file to be opened input.
OUTPUT
The keyword OUTPUT causes the file to be opened output.
NEW
The keyword NEW causes the file to be opened as a new file.
DEFAULT
The keyword DEFAULT causes the file to be opened using the following default options for each
device.
Device Option
CARD INPUT
PRINTER OUTPUT
PUNCH OUTPUT
DISK INPUT
REMOTE INPUT/OUTPUT
TAPE INPUT
QUEUE INPUT/OUTPUT
Example:

FILE CDISKFILE (DEVICE = [ISK,
OPEN_CPTIGN = INPUT/OUTPUT/NEW);

OPTIONAL

The OPTIONAL file attribute specifies that the file can be missing without suspending program execu-
tion.

Performing a read operation from a missing file generates the ODT message FILE MISSING. If the
OPTIONAL file attribute is specified, the MCP command OF (optional file) causes the program to
perform the ON EOF branch for any read of the file. Program execution then continues. The default
is no OPTIONAL which requires the file to be present.

SDL and UPL Syntax:

— OPTIONAL
Example:

FILE DISKFILE (DEVICE = LISK,
UFTICNAL)Y;

4-36

e,

B 1000 Systems SDL/UPL Reference Manual
Declarations

PACK__ID

The PACK__ID file attribute specifies the disk-pack identifier for the disk file. The default pack identi-
fier is the system disk.

SDL and UPL Syntax:

— PACK_ID = " <pack-identifier>"' g

Syntax Semantics:

pack-identifier
This field can be any identifier that follows the B 1000 disk file naming convention for disk files.

Example:

FILE DISKFILE (DEVICE = LISK,
PACK_IC = "USER™)J

PROTECTION
The PROTECTION file attribute specifies a security type to the file. The default is O.
SDL and UPL Syntax:

—— PROTECTION = <number> |

Syntax Semantics:

number
This field can be any number between 0 and 4, inclusive, and is used to define the security type.
The security type for each value is listed in the following table.

Security
Value Type

0 Default
1 Public
2 Private
3 Guard

Example:

FILE CISKFILE C(DEVICE = CISK,»
PRCTECTICN = 23

1137833 4-37

B 1000 Systems SDL/UPL Reference Manual
Declarations

PROTECTION__IO
The PROTECTION__IO file attribute specifies whether the file is to be opened input, output, or both.

SDL and UPL Syntax:

—tm

= PROTECTION_IO = <number>>
Syntax Semantics:
number
This field can be any number between 0 and 2, inclusive. The meaning of each value of <num-
ber> follows.
Value Definition
0 Input/Output (Default)
1 Input
2 Output
Exampile:
FILE DISKFILE (DEVICE = CISK,
PRCTECTYION_ID = 2);
RECORDS
The RECORDS file attribute specifies the number of characters per record or per block.
The default values in bytes for each device follow.
Device Bytes
CARD 80
DISK 180
PRINTER 132
oDT 72
All Others 80
SDL and UPL Syntax:
|
|

—— RECORDS = —— <physical-size>>

— < logical-size=>/ < records-per-block>

4-38

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

physical-size
This field can be any number and specifies the number of characters per block.

logical-size
This field can be any number and specifies the number of characters per record.

records-per-block
This field can be any number and specifies the number of records per block.

Example:

FILE CISKFILE (DEVICE = LISK,
RECCKES = 180/10)3

REEL
The REEL file attribute applies only to magnetic tape files and specifies the starting reel number.

For output tape files, the MCP uses the supplied reel number as the starting reel number. This reel
number is written in the tape label. If more than one physical tape is needed to hold the file, the MCP
automatically increments the reel number by one and writes the new reel number in the label of the
next tape.

For input tape files, the MCP starts reading the tape file at the specified reel number. This means
that the MCP looks for the tape whose label contains the same reel number as that specified in the
REEL file attribute, as well as the name of the requested file. As in output, the MCP automatically
increments the reel number by one if the physical tape has been read but the actual end of file has
not been reached.

The default reel number is 1.

SDL and UPL Syntax:

4

— REEL = <reel-number>
Syntax Semantics:

reel-number
This field can be any number and specifies the starting reel number in which to read or write.

Example:

FILE TAPEFILE (DEVICE

AFE»
REEL = ;

(G I}
~
-

1137833 4-39

B 1000 Systems SDL/UPL Reference Manual

Declarations

REMOTE__KEY

The REMOTE_KEY file attribute directs read and write operations to specific stations. The
NUMBER__OF__STATIONS file attribute must be specified in conjunction with the REMOTE__KEY
file attribute. The remote key is a 10-character field containing station number, message length, and
message type. This 10-character field is the <remote-key-identifier > field in the syntax for the READ
and WRITE verbs. The following is the format of the remote key.

Length
Remote Key Fields Data Type in Bytes Value Range
Station number CHARACTER 3 1 — 999
Message length (bytes) CHARACTER 4 0 — 4095
Message type CHARACTER 3 000 (write)
or 001 (read)
The default is no REMOTE__KEY.
SDL and UPL Syntax:
— REMOTE_KEY —
Example:
FILE FEMCTEFILE (CEVICE = RENMOTE,
REMOTE_KEY,
NUMEFR_CF_STATIUNS = 4)5

SAVE

The SAVE file attribute specifies the number of days the declared file is to be saved. Files are never
removed from the system automatically. The default is 30.

SDL and UPL Syntax:

—— SAVE = <number-of-days>
Syntax Semantics:

number-of-days

This field can be any number and specifies the number of days to save the disk file.

Example:

(DEVICE = CISK,
SAVE = 45);

FILE DISKRFILE

4-40

B 1000 Systems SDL/UPL Reference Manual
Declarations

SECURITYTYPE
The SECURITYTYPE file attribute specifies a security type to the file. The default is 0.

SDL and UPL Syntax:

—— SECURITYTYPE = <number> l

Syntax Semantics:

number
This field can be any number between 0 and 4, inclusive, and is used to define the security type.

The security type for each value is listed in the following table.

Security
Value Type
0 Default
1 Public
2 Private
3 Guard

Example:

FILE DISKFILE (DEVICE = CISK,
SECLRITYTYPL = ¢)3;

SECURITYUSE
The SECURITYUSE file attribute specifies whether the file is to be opened input, output, or both.

SDL and UPL Syntax:

. .

——— SECURITYUSE = <number>

Syntax Semantics:

number
This field can be any number between 0 and 2, inclusive. The meaning of each value of <num-

ber > follows.

Value Definition

0 Input/Output (Default)
1 Input

2 Output

Example:

FILE DISKFILE (DEVICE = CISK»
SECURITYUSE = 2)3

1137833 4-41

B 1000 Systems SDL/UPL Reference Manual
Declarations

SERIAL

The SERIAL file attribute specifies the serial number of the output media. This media can be tape
or disk. The default is no serial number.

SDL and UPL Syntax:

— SERIAL =

< number>

—— ** < character-string> "'
Syntax Semantics:

number A
This field can be any valid number and specifies the serial number for the output media.

character-string
This field can be any character string and specifies the serial number for the output media.

Examples:
FILE TAPeFILE (DFEVICE = TAPE,
SERIAL = 123456)5
FILE TAPEQUT (PEVICE TAPE»

StExIAaL "GUTPUT");

TRANSLATE

The TRANSLATE file attribute specifics that a translation is to be performed on the file by the MCP.

The MCP supplies a multi-file-identifier to the specified file identifier. The multi-file-identifier is
TRANSLATE.

The TRANSLATE file attribute sets the translate boolean in the file parameter block (FPB).

SDL and UPL Syntax:

——

—— TRANSLATE = “ <file-identifier>> "
Syntax Semantics:
file-identifier
This field can be any valid file identifier that follows the B 1000 file naming convention and
specifies the name of the file that contains the translate table.

Example:
FILE TFILE (UEVICE = (C{SK. % The resulting translate

TRANSLATE = "TRAMSFILE™); Z file identifier is
¥ THANSLATE/TRANSFILE

4-42

B 1000 Systems SDL/UPL Reference Manual
Declarations

USE__INPUT__BLOCKING
The USE_INPUT__BLOCKING file attribute applies only to input disk, tape, or card files.

For disk files, the record and block size specifications are taken from the disk file header (DFH). Any
specifications for these file attributes are ignored.

For tape files, the record and block size specifications are taken from the tape label. If this option
is used for an unlabeled tape file, a run-time error results.

For card files, the following record lengths are assumed.

Number of
Columns Length
80 80 Bytes
96 96 Bytes
BIN 960 Bits

The default is the record and block sizes that are specified in the file declaration. Those options omit-
ted are set to default values.

SDL and UPL Syntax:

—— USE_ INPUT_BLOCKING |

Example:
FILE DISRFILE (DEVICE = CT15K»
USE_INPLT_BLOCKING);
USER_NAMED__BACKUP
The USER_NAMED__BACKUP file attribute specifies that if the printer file goes to backup, the

name of the printer backup file is the name specified by the LABEL file attribute; otherwise a system
backup number generated by the system. The default uses the system-assigned backup file names.

SDL and UPL Syntax:

— USER_NAMED_BACKUP |

Example:
FILE LINE (CEVICE = PRINTER BACKUP DISK»

USER_NAMED_BACKUP,
LAREL = "LINE"/7"BACKUP");

1137833 4-43

B 1000 Systems SDL/UPL Reference Manual
Declarations

VARIABLE

The VARIABLE file attribute specifies that the file has variable-length records. The default is fixed-
length records.

SDL and UPL Syntax:

—— VARIABLE ﬁl
Example:

FILE DISKFILE (DEVICE = CISK,
VARITABLEDS

WORK__FILE

The WORK__FILE file attribute causes the job number of the program to be included as part of the
file identifier. Workfiles are temporary files associated with a specific job and are removed when the
program goes to end of job. The default is no workfile.

SDL and UPL Syntax:

—— WORK_FILE

l
j

FILE DISKFILE (DEVICE = CISK,
WORK_FILE);

SWITCH__FILE DECLARATION

The switch-file declaration statement groups files together under a single file identifier. All files
grouped into a switch file must be declared in a file declaration statement before they can be referenced
in the switch-file declaration statement.

A subscripted switch-file identifier is valid anywhere a file identifier is valid.

If there are n files in a switch-file group, the subscript must range from 0 to n-1. The subscript selects
a file from the switch-file group, based on physical order. The first file in the list (from the left) is
switch file zero and the last is switch file n-1.

If all the files in a switch-file group are declared with a device type equal to REMOTE, then the
REMOTE__KEY file attribute can be used with the switch-file identifier. If all the files in the switch-
file group are not declared with a device type equal to REMOTE, then the REMOTE__KEY file attri-
bute cannot be used.

SDL and UPL Syntax:

— SWITCH_FILE <switch-file-identifier> (< file-identifier> —————ti—o) ; ———-I

4-44

B 1000 Systems SDL/UPL Reference Manual
Declarations

Syntax Semantics:

switch-file-identifier
This field can be any valid SDL/UPL file identifier and specifies the name of the switch file.

file-identifier
This field can be any valid SDL/UPL file identifier and specifies the name of the file that is to
belong to the group of files in the switch file. Example Program:

Example Frogram:

FILE CAKDS (CEVICE = CARD),

TAFEI (CEVICE = TAFE,
USE_TNPUT_ELCCKING),

CISKI C(CEVICE = CISK»
USE_INPUT_BLOCKING),

o

PUNCH C(CEVICE = FUNCE)»
LINE (DEVICE = PRINTER),
TAPEL (DEVICE = TAFPE,

RECURDS = 20/74)»
DISKC (DEVICE = CISK,
FECCRLS = 30/%);

SWITCH_FILE INPUT (CAROS», TAPEI» DISKI)»
QuTPUT (PUNCE» LINE, TAPEUs CISKO)S

DECLARE INPUT_TYPE FIXED,»
CUTPUT_TYFE FIXELD,
COT_TINPUT CRARACTER (3)»
BUFFER CHARACTER (80);

CISPLAY (*ENTEK INPUT TYPE GR ENTER 8YE TO GO TC END OF JOB™);
ACCEPT OCT_INPUTS
IF OOT_INPUT = “BYE® THEN CO3

EISPLAY ("GUUD GYE™);

STCP;

END;

INPUT_TYPE 3= SINARY (SUBSTR C(COT_INPUT», 9, 1)) MOD 33
CISPLAY ("ENTER OUTPUY TYFE ORk ENTEK BYE TO CO TGO END OF JOB"™);
ACCEPT GOT_INPUTS
If CDT_INPUT = "BYE" THEN LO;

UTSPLAY ("GOOD BYE™);

STCP;

END;
CUTPUT_TYPE 3= BINARY (SUSSTR (OGT_TINPUTs, C» 1)) MOD 3;
OFEN IMNPUT CINPUT_TYPE) TAPLT;
GPEN GUTPUT CLUTPUT_TYPE) WITH CUTPUT, NEW;
0C FOREVER;
READ INPUT CINPUT_TYPE) (RUFFER)DS
CN EOF UNDD;
WRITE GUTPUT COUTPUT_TYPE) CBUFFER);

ENDS
CLOSE GUTPUT C(OUTPUT_TYPE) WITH LOCK;
STOP;
FINI;

1137833 4-45

B 1000 Systems SDL/UPL Reference Manual

SECTION 5
DEFINES

The define statement provides SDL/UPL programs with a macro definition facility by assigning a por-
tion of the SDL/UPL source statements to an identifier.

At compile time, every occurrence of define-identifier is textually replaced by a portion of the source
statement specified in <text>. If the compiler control option DETAIL is set, these macro expansions
are included in the source listing. If the DETAIL option is not set, only <define-identifier > is listed.
If the compiler control options EXPAND__DEFINES and XREF are set, the macro expansions are
cross referenced.

The SDL/UPL compiler does not check the syntax of the <text> contents. When < define-identifier >
is invoked, <text> must conform to the syntactical requirements of the statement containing < define-
identifier > .

< define-identifier > can be nested within another DEFINE statement. Twelve levels of nesting are al-
lowed.

SDL and UPL Syntax:

B) A
—DEFINE-—— < define-identifier> —>
(< parameter>>)
.
[< parameter>]

A <

B >—AS # <text> # ;

Syntax Semantics:

define-identifier
This field can be any valid SDL/UPL identifier and specifies the definition identifier. Reserved
words cannot be specified as <define-identifier >. However, <define-identifier> can be defined
as a reserved word. Special words can be redefined and only lose their special significance within
the scope of the definition. Refer to Appendix A for a complete list of reserved and special words
recognized by the SDL/UPL compiler.

parameter
This field can be any valid SDL/UPL identifier and specifies the parameter that is associated with
< define-identifier > .

If more than one parameter is specified, the left-to-right order in which the parameters appear
in <text> must be the same left-to-right order in which the parameters appear in the parentheses
() or bracket [] characters. The number of parameters in <text> must equal the number of pa-
rameters in the parentheses or bracket characters.

The maximum number of parameters allowed is eight per <define-identifier>.
1137833 5-1

B 1000 Systems SDL/UPL Reference Manual
Defines

AS
The keyword AS specifies that the first number sign (#) text-delimiter character is to follow.

The number sign (#) characters specify the delimiters of <text>.

text
This field is the text portion of the define statement that contains any SDL/UPL symbol including
semicolons, but not the number sign (#) or percent sign (%) characters. The number sign (#)
character is the end-of-text delimiter and the percent sign (%) character indicates that the remain-
der of the source-image record is a comment. Specifying comments within the virgule asterisk and
asterisk virgule (/* <comments> */) characters is allowed and the comment is not copied at invo-
cation time.

A maximum of 1024 characters can appear in <text>, excluding comments and superfluous
blanks. Also, no unpaired parentheses or brackets can appear in <text>.

All identifiers specified in <text> must be declared prior to an invocation of < define-identifier >
and need not be declared prior to the define statement.

Example 1:

The SDL/UPL compiler replaces

every occurrence of identifier
PrOC with PROCEDURE.

Ead

VEF 16E PROC AS #PRCCECOULERCH;

N

Example 2:

o~

When the SDL/UPL compiter
encounters COMPARE (Pl, P2)5
in 28 source statements, the
following text is substituted.

IF PL < P2 THEN 2(1)13d;

ELSE a(1)03;

The parareters Pl and P2 in the
the define statement are
interpreted as procedure
parameters.

DEFINE COMPARKE (X»Y) AS
1F X < Y THEN &(1)1
ELSE ACl)¢

~ .
a?
~
o

¥

P S S S S N

Example 3:

The source statement contained
tetween the number sign (#)
characters 1s copied into the
SOL/UPL program whenever the
identifier REPEAT is specifiede
The IF statement i1nvokes the

% define statement.

DEFINE REPEAT AS #A8C (TACA» X) 43

S

1IF X EGL 9 THEN KREPEATS

oI N e

B 1000 Systems SDL/UPL Reference Manual

Defines
Example 4:
CEFINE THIAL CAs, 3, C) AS %Z This statement generates the
1F (A) Eul ZERC THEN A = Bj 2 IF statewent whenever the
ELSE C #; % identifier TRIAL is specified.
Example 5:
DEFTINE TRUE AS ¢ a(1)1a #» % The identifiers TRUE and FALSE
FAaLSE AS # a(1Y¥Ca #; % beccme bcolean bit strinns
% equal to 1 and 0, respectively.
Example 6:
CEFINE MaX AS #* & 1F S1 8 3= X5 ¥ This statement 1s available
& ELSE A 2= Y3 % to the SCL/UPL compiter but

£ END #35 2 only A 3= X or A 3= Y is

% compileds denpending on the

% conditional! symbol Stl. If

%* the statement R SET S1 has

% been encounteredr A = X3 is
% usede If 51 has not be sets
%4 or the & [FESET S1 has been

% encountereds, then A 3= Y §5

42 usede.
Example 7:
CEFINE A AS ¢ iF X GIR 10 Y The two statemenrts that follow
THEN FRCCX #» % the define statement expand tc

CIM)Y AS # X 8= M3 Z the foliowing:
A4 % X 2= 27
- % IF X GTx 10 THEN PROCX:
- % BUMP I BY (R + S);
CC2);
guUMP I BY (F + S5
Example 8:
DEFINE MAX_SIZE AS 2 TF a conditional compiler
& IF CATACUMM 64 7 contrc!t option R SET CATACOMM
K ELSE 32 % is specifieds the define
R ENC &7+ 2 identifier MAX_SIZE is replaced
% by the number H4. [t & SET
7 NATACOMM is not specified or §
4 RESETY DATACOMM is specifieds
4 MAX_SIZt is replaced by the
L number 37Z.

1137833 5.3

B 1000 Systems SDL/UPL Reference Manual

SECTION 6
EXPRESSIONS

Expressions are the operational portions of statements. If a statement is analogous to a sentence, then
expressions are the words and phrases within a sentence. All operational functions, such as comparison,
arithmetic, and others, take place within expressions. Exceptions being the assignment and the regular
procedure-call functions.

The format of an expression is similar to the format of an algebraic expression. Operators, such as
+, —, *, /, and so forth, are used as “‘infix’’ notation. Also, parentheses can be used to group the
order of evaluation. Each operand can be prefixed with a unary operator.

An expression is defined as recursive and can contain as many operands and operators as are required
to produce the desired result.

Expressions are evaluated by performing the indicated operations in a left-to-right order. The sequence
in which the operations are performed is determined by the rules of operator precedence. The rules
of operator precedence are described in Order of Precedence in this section. When operators have the
same precedence, the sequence of operation is determined by the order of the appearance, from left
to right. Parentheses can be specified to modify the normal hierarchical sequence of evaluation. An
expression within parentheses is evaluated and its value is used in subsequent operations.

The syntax and semantics of an expression are described as follows:

SDL and UPL Syntax:

v

< operand>

<unary-operator>

1

< operator> < operand>

\Y

< unary-operator>
Syntax Semantics:

unary-operator
This field can be any valid SDL/UPL unary operator. The unary operators are + (plus) and —
(minus).

operand
This field can be any valid SDL/UPL literal or identifier.

B 1000 Systems SDL/UPL Reference Manual

operator

Expressions

This field can be any valid SDL/UPL operator. The valid SDL/UPL operators follow.

Operator

UNARY OPERATORS
The following are the unary operators.

Operator
+

Function

replace, delete left part
replace, delete right part
addition

subtraction
multiplication
division

remainder

equal

equal

not equal

not equal

greater than

greater than

greater than or equal
greater than or equal
less than

less than

less than or equal
less than or equal
not

and

or

exclusive-or
concatenation

Function

plus
minus

The unary operator acts upon one operand. It can never appear as an infix operator between two oper-
ands. It can appear to the right of any other operator, including itself.

Minus

The unary minus (—) generates the two’s complement of the operand associated with it
(—X = (NOT X) + 1). The operand can have any data type. If the data type is FIXED, the unary
minus has the effect of reversing the sign, and the result is stored on the evaluation stack with a
FIXED data type. If the operand is either a character or bit string, only the rightmost 24 bits are
evaluated. Character or bit strings less than 24 bits are padded with leading zeroes up to 24 bits. The
two’s complement of the string is generated and returned to the evaluation stack with a FIXED data

type.

6-2

Example:
X 2= =13
X = =4A;
Plus

B 1000 Systems SDL/UPL Reference Manual
Expressions

Tdentifier X 15 assigned the value of =-1.

Z Identifier X i5 assigned the two's complement
Z of icentifier A

The SDL/UPL compiler generates no code for the unary plus (+). The unary plus exists only for pro-
gram documentation purposes.

Example:
X = +17;
X = +A3

4 Identifier X i5 assigned the value of 1l.

2 Identifier X is assigned the value of Aa

ARITHMETIC OPERATORS

The following are the arithmetic operators.

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division yielding integer value of quotient

MOD

Division yielding integer value of remainder

The arithmetic operators perform 24-bit arithmetic on two operands of any of the three data types.
If both operands are declared with FIXED data types, sign analysis is performed. If the operands are
not declared with FIXED data types, only the rightmost 24 bits of each operand are used in the
evaluation. If an operand has a length less than 24 bits and is declared with a BIT or CHARACTER
data type, leading zeroes are padded in the leftmost bits prior to the operation.

The result of an arithmetic operation stores a 24-bit result on the evaluation stack. If both operands
are declared with FIXED data types, the result is a FIXED data type. If either operand is declared
with other than a FIXED data type, the result is a BIT data type.

Addition

The + (addition) operation causes the values of the two operands to be added.

Examples:

X = A + 35

1137833

% Identifier X i3 assigned the sum of
%2 identifiers A and Be.

2 Identifier X 1s assigned the sum of
% 1 pltus the value of identifier Ae.

6-3

B 1000 Systems SDL/UPL Reference Manual
Expressions

Subtraction

The — (subtraction) operation causes the value of the right operand to be subtracted from the value
of the left operand.

Examples:
X 3= A - 85 2 ITdentifier X is assigned the value
* of identifier A tess the value of
2 identifier B.
X 2= A - 1; 2 Idertifier ¥ is assigned the value
* of identifier A less l.
Multiplication
The * (multiplication) operation causes the values of the two operands to be multiplied together.
Exampiles:
X 2= A & @; %2 Identifier ¥ is assigned the value of
72 identifier & multiotied by the value
Y of identifier {a.
X := A = 253 % Iderntifier ¥ 15 assigned the value of
2 1dentifier & multiplied by 25.
Division

The / (division) operation causes the value of the left operand to be divided by the value of the right
operand. Any remainder is truncated.

Examples:
X ¢= 7 1 3; 2 ldertitier X is assigned the value 2.
Y 2= 3 /1 7; % Idertifier Y is assigned the value 9.
Z 2= A [/ B; %z loectifier 7 is assigred the value of
2 identifier A divided ty the value of

~e

identifier 8.
The multiplication and division operators do not associate.
Examples:
(A « B) / C does rot ecual A = (8 7 ()
X 3= (4 *» 5) f 7; * Identifier ¥ is assianed the value 2.

Y 2= 4 « (S / 7)Y % ldentifier Y is assigned the vatue C.

6-4

B 1000 Systems SDL/UPL Reference Manual
Expressions

MOD

The MOD operation is the modular operation. A modular operation is the value that is left (remainder)
after a division operation is performed. The following formula is used in performing a MOD operation
where a and b are any operands.

aMODb =a - (b* (/b))
Examples:

A = 7 MO 35

e

Identifier A is assigred the value aaqual to
? = (3 « (7 7 3)) =7 = (3 « 2) = 1.

»

6 3= =7 MGD 35 Z Identifier 8 is assigned the value equal to
L o=7 = {3 « {=7 7 3)) = =7 = (3 & (=2) = =\,
C t= % MCD =73 # ITdentifier C is assigned the value equal to
5 = ((=7) » (3 /7 (=7))) = 3 = {{(=7) ~ Q) = 3.
L ¢= =3 ¥OL =7 Identifier D is assigred the value equal to

r 2

(=3) = ((=7) * {((=3) / (=7))) = (=3) = ((~=7) x O
= 3.

e

Negative arguments do not follow the traditional definitions of modular arithmetic in mathematics.
RELATIONAL OPERATORS

The following are the relational operators.

Operator Function

= equal

/= not equal

> greater than

< less than

>= greater than or equal
<= less than or equal
EQL equal to

NEQ not equal

GTR greater than

LSS less than

GEQ greater than or equal
LEQ less than or equal

The relational operators cause a comparison operation between two operands of any data type. If the
comparison is TRUE, the 1-bit result, @(1)1@, is returned. If the comparison is FALSE, the 1i-bit
result, @(1)0@, is returned.

If both operands are declared with FIXED data types, the operator does a true-sign comparison. If
both operands are character strings, the shorter operand is padded on the right with blanks and a char-
acter-by-character comparison using the EBCDIC collating sequence is performed. For all other oper-
and combinations, leading zeroes are padded into the leftmost bits of the shorter operand. No sign
analysis is performed and the operands are treated as positive values.

1137833 6-5

B 1000 Systems SDL/UPL Reference Manual
Expressions

Examples:
X 3= 1 = 2; % ldentifier
X 3= 1 /= ¢35 % loentifier
X =1 > 25 X Identifier
X 2= 1 6LQ 25 “ Idertifier
X 3= 1 LSS 25 % Tdentifier
X 3= 1 LEQ 23 ¥ ldertitier

LOGICAL OPERATORS
The following are the logical operators.

Operator

NOT
AND
OR
EXOR

is assigned the value 3(1)03.

is assigned the value a(1)13.

is assigned the value 3(1)03.

is assioned the value 2(1)03.

is assigned the value 2(1)13.

asstgred the value 2(1)13.

Function

not

and

or
exclusive-or

The logical operators perform a bit-by-bit analysis on all three data types. The NOT logical operator
is considered a unary operator and can appear to the right of any other operator (including itself).
The result of each logical operator for every boolean value of X and Y is summarized in Table 6-1.

Table 6-1. Boolean Logic Table

Boolean
Value
NOT NOT

X Y X Y

0 0 1 1

0 1 1 0

1 0 0 1

1 1 0 0

—_Oo oo

Result

XANDY XORY X EXORY

0 0

1 1
1 1
1 0

Example:

[
m
s e)

LA

- >

X
.
'

¢

b 3

FE (Ar 2
«C1
a(1
NCT X3

X AND Y5
X OF Y3

X EXOR Y»

CAT OPERATOR

The CAT operator is a concatenate operator that joins two strings of data and forms a new string.
Any combination of data types or data strings can be concatenated. The resultant string cannot exceed
8191 characters or 65,535 bits.

%

%

z

B 1000 Systems SDL/UPL Reference Manual
Expressions

Cr L»r X YY) EITCR);

JO01011103a;
J10101100R7;

Icentifiaer A 1

(%]

Tcentifier B 1

)

Toenti1fier £ Vs

Jcentifier [is

assigned
assianed
assivgned

assianed

the value 3(1)11010001aq.
the vatue a(1)001011093.
the vatue 317101011102,

the value §(1)10000010a.

Character string concatenation is the most common concatenation operation. If two strings to be con-
catenated are character strings, the result is a character string. Concatenation of any other combina-
tions of data types results in a bit string.

Example:
DECLARE A
b
e
X
Y
2z
XX
A 1= "gn;
g 2= 3C1)1013%
C = 105
X 3= B CAT 8

1137833

CHARACTES»

91T (3)»
FIXED.

gIT (6).
CHARACTER (23,
g7 (11)»

BIT (2753

7 Jldentifier
%Z containing

% Identifier

% tepath of the

A

createca

A A

3

Xe

2

The
is 3ix bits and the
concatenation

A comprises 38 character string
the ltetter B

B comprises a3 bit string that
% contairs the binary valiue of five. The

identifier is three bits.

Icentifier C comprises a fixed string that
contains the positive (%) decimal value of 1C.

A tinary value of 45 or 3AC€1)1011013 1is
tength ot the data string

result of the

is assigned to the identifier

B 1000 Systems SDL/UPL Reference Manual
Expressions

Y 3= A CAT A; Z A character strings comcrised of two bytes»
% that has 2 value of "8H" is createde This
%z value is assigned to the identifier Y.

A hinary value ot 1557 or 3(1311004601010123
is created. The lergth of the data string
is 11 citse The result of the concatenation
15 assigned to the identifier 2

E o S S

A Cinary string eauivalent to the SDL/UPL

cctal potarion AC3)50G9353300123 is created.
The rasult of the concatenation is assigned

tc the identifier XX.

>
>
(1}
i
9]
&
=4
-
o
-
BN oW

X ¢= A CAT F 2= 43 % The CAT operator is lower in orecedence thap
% the 3= assignment operator. JIdentifier B
Z 15 set to a value of four before identifier
%“ B 19 ccncatenated with identifier A. The
% 1es5ult of the concatenation is then
%X 8ssigned te the identifier X

Example Program:

DECLARE
01 TIME_OF_DAY BIT (72)»
03 HOURS BIT €16

03 MINUTES BIT (16)»

03 SECONDS BIT (16)»

03 TENTHS_OF_SECONDS BIT (8),

03 AM_OR_PHM BIT (16)F

TIME_OF_DAY := TIME (CIVILIANs» CHARACTER)?

DISPLAY ("THE CURRENT TIME IS ™ CAT HOURS CAT *z™ CAT MINUTES
CAT =:* CAT SECONDS CAT *".™ CAT TENTHS_OF_SECONDS CAT
® w CAT AM_OR_PM)3

sToP;

FINI;

Z This example program obtains the current time from the MCP»
X displays the hourss» minutesr seconds» tenths of a seconds and

% AM or PM on the 0DT. The CAT operator verb is used to concatenate
X the messages

Output from Example Program:
X TESTO =2403 THE CURRENT TIME IS 12:35:16.0 PM

CONDITIONAL EXPRESSION

The conditional operator expression uses the keywords IF, THEN and ELSE or the CASE verb. Refer
to Section 9 for a complete description of IF, THEN and ELSE keywords and the CASE verb.

6-8

B 1000 Systems SDL/UPL Reference Manual
Expressions

REPLACEMENT OPERATORS
The following are the replacement operators.

Operator Function

$= delete left
1= delete right

The replacement operation is performed within an expression and evaluation continues after the re-
placement is made.

Delete Left (:=)

The delete-left operator assigns the value of the operand on the right to the operand on the left. The
new value of the operand on the left remains on the evaluation stack without any change to its attri-
butes. Any truncation or realignment of data that takes place during the replacement is not reflected
during evaluation of the expression.

Example:

DECLARE (C CHARACTER (29,
gy BIT (4)»
Ad CHARACTER (2135

AN = ERBR = [1= "o";
The following describes the action taken to evaluate the example.

1. The value being assigned is the literal ‘6’ (@F6@).

2. The value@F6@is stored,left-aligned,into identifier CC.It is padded on the right with a blank
@40@ character, because identifier CC has a data type equal to CHARACTER and is longer
than @F6@. The resulting value of identifier CC is @F640@.

3. The value @F6@ is stored, right-aligned with truncation, into identifier BB, because identifier
BB has a data type equal to BIT and is shorter than @F6@. The resulting value of identifier
BB is @6@.

4. The value @F6@ is stored left-aligned into identifier AA and is padded on the right with a
blank @40@ character, because identifier AA has a data type equal to CHARACTER and is
longer than @F6@. The resulting value of identifier AA is @F640@.

Figure 6-1 shows the status of the evaluation stack and each identifier as the evaluation of
AA := BB:= CC:= “6” is performed.

CC cc
“6" _% uen ,__9 "6" ; “6" _9
AA o 44
g ——> nge —é Empty

G18302
Figure 6-1. Status of the Evaluation Stack

1137833 6-9

B 1000 Systems SDL/UPL Reference Manual
Expressions

Delete Right (::=)

The delete-right (:: =) operator evaluates the operand to the right and stores the value into the memory
location referenced by the operand to the left. The value of the operand to the right becomes
unavailable during any further evaluations. The continued evaluation of the operands uses the value
and attributes of the operand to the left of the operator. Any truncation or realignment of data that
takes place during the replacement is reflected during the continued evaluation of the expression.

Example:

CECLARE CC CHARACTER (2),
BE BIT (4)»
AA CRARACTER (2);

AA = 8F 23= (CC = "gm™;
The following describes the action taken to evaluate the example.

1. The value being assigned is the literal ‘6’ (@F6@).

2. The value@F6@is stored,left-aligned,into identifier CC and is padded on the right with a blank
@40@ character, because identifier CC has a data type equal to CHARACTER and is longer
than @F6@. The resulting value of identifier CC is @F640@.

3. The value of identifier CC (@F640@) is stored, right-aligned with truncation, into identifier
BB since identifier BB has a data type equal to BIT and is shorter than @F640@. The resulting
value of identifier BB is @0@.

4. The value of identifier BB (@0@) is stored, right-aligned into identifier AA and is padded on
the left with binary zeros @000@, because identifier BB is a bit string. The resulting value of
identifier AA is @0000@.

Figure 6-2 shows the status of the evaluation stack and each identifier as the evaluation of
AA := BB:: = CC:= ““6” is performed.

cC BB
"' _) “g' -———9 CC —'—9 CC)

AA
BB —_— BB —> “Empty"”

G18303

Figure 6-2. Status of the Evaluation Stack

6-10

B 1000 Systems SDL/UPL Reference Manual
Expressions

Replacement Operations in Procedures
The following is an example of a delete left and a delete right replacement in a procedure.
Examples:

PFOCECURE GCOOC BIT VARYINGS
UECLARE X 31T (48);
RETURN X 32= "RESULT";
ENC GCOUDs

PRCCEDURE 8AD EBIT VARYINGS
CECLA&E Y BIT (48);
FETURN Y 3= "RESULT®?

ENC ©AL

Procedure GOOD returns a bit string, because identifier X remains on the evaluation stack after being
evaluated and the data type of identifier X matches the procedure data type of BIT VARYING.

Procedure BAD returns a character string as the result, because identifier Y is deleted from the
evaluation stack after being evaluated. The character string ‘“‘RESULT,” which remains on the
evaluation stack, does not match the procedure’s data type of BIT VARYING. If the
FORMAL__CHECK compiler option is specified, procedure BAD produces a run-time error.

ORDER OF PRECEDENCE

The following is the relative binding power (precedence) of the SDL/UPL operators. The operators
are listed from highest to lowest order.

+, — (unary operators)
* /, MOD

+, — (additive operators)
=, /=, >, <, >=, <=
NOT

AND

OR, EXOR

CAT

CASE

IF-THEN-ELSE
Replacement

Refer to Section 9 for a complete description of CASE and IF, THEN, and ELSE.

The replacement operators have higher precedence than any operator to their left and lower precedence
than any operator to their right.

The order of evaluation of operators having equal precedence is always from left to right within the
expression.

Parentheses and brackets force the enclosed expression to be evaluated completely before any
operations outside the parentheses or brackets are evaluated. When parentheses or brackets are nested,
the inner-most pair is evaluated first. Within the parentheses or brackets, normal rules of precedence
are in effect. ’

1137833 6-11

B 1000 Systems SDL/UPL Reference Manual
Expressions

ADDRESS GENERATORS

An address generator includes any expression that leaves an address on the top of the evaluation stack.

The following is the syntax of address generators.

BUMP <identifier> BY <expression>

DECREMENT <identifier> BY < expression>

IF <expression> THEN <identifier> ELSE <identifier >
CASE <expression> OF (<identifier-1>, ... ,<identifier-n>)
<identifier-1> := <identifier-2>

<identifier-1> ::= < expression>

INDEXING (SDL PROGRAMS ONLY)

There are two methods of indexing in an SDL program. They are:

1. The descriptor provides the address and the index provides the offset from this address.
2. The descriptor provides the offset and the index provides the address.

The indexing operation causes the following three events to occur.

1. The simple or array descriptor is loaded to the top of the evaluation stack.

2. If the descriptor is an array descriptor, it is converted to a simple descriptor which describes
the first (zero) element of the array.

3. The address field of the descriptor is modified by adding the index to it.

Self-relative data items cannot be indexed. For example, data items whose length is not greater than
24 bits, are not in a structure, and do not remap some other data item.

SDL Syntax:

<— .

<simple-identifier>> [< expression>]

< array-identifier> ——————

Syntax Semantics:

simple-identifier
This field can be any valid SDL identifier with a length greater than 24 bits, and specifies the
name of the template used for indexing.

array-identifier
This field can be any valid SDL array identifier and specifies the name of the template used for
indexing.

expression

This field can be any valid SDL expression and specifies the offset to be used for indexing. If
more than one <expression> is specified, the sum of the expressions is used.

6-12

B 1000 Systems SDL/UPL Reference Manual
Expressions

Example:

Assume the following is a memory layout of an SDL program and identifier N has the value of n
(the offset from the beginning of identifier A to identifier B). Identifier D can be accessed using either
of the two methods.

n BITS 5BITS 2BITS 3 BITS XX
l o
le A N |
™~ |
Method 1:
GCCLARE 71 4 EIT (5000).
N3 Ry
05 " ETT (5)
ns o EIT (2)»
78 E 0 BIT (3)»
N EIT (24)
X EIT (233
X 3= 0 (NY5 % This statemert moves identifier D (with the offset
% gqiven bv identifier W) intoc identifier X
Method 2:
CECLARE A EIT (5000)»

01 B KEVAPS HASE»
03 ¢ 8IT (5),
03 @ BIT (2),
2 E RIT (2)»

N 21T (24),

X BIT (2);

This statement moves identifier

D Cwith the offset qiven by the

Y sum of identifier N and
DATA_ADCRESS (A)) into identifier
X.

X 3= L CNs CATA_ACCRESS (A));

e e

E

1137833 6-13

6-14

B 1000 Systems SDL/UPL Reference Manual
Expressions

NOTE

The following must be noted concerning method 2.

The structure of identifiers B, C, D, and E, which remaps base is called a
“‘template’’.

This template can be applied to any data area by providing the address part
of the index. This is not the case when method 1 of indexing is used.

If identifier N contained the address of identifier B rather than the offset to
identifier B from the beginning of identifier A, then the statements which as-
sign identifier D into identifier X are identical (X := D [NI];).

B 1000 Systems SDL/UPIL Reference Manual

SECTION 7
PROCEDURES

Procedures are the basic program structure in an SDL/UPL program. Each is a self-contained func-
tional unit within the program.

This section is divided into four parts. These parts are Procedure Declaration Statement, Procedure
Body, Procedure End Statement, and Procedure Invocations.

PROCEDURE DECLARATION STATEMENT AND PARAMETERS

The PROCEDURE declaration statement specifies the beginning of a new procedure and is optionally
followed by parameters enclosed with the parenthesis “()" characters.

Specifying a parameter in the procedure declaration statement allows the procedure to reference values
of identifiers that are outside the global range of the procedure. A parameter is a local identifier of
the procedure.

Every parameter specified in the procedure declaration must have an associated FORMAL or
FORMAL__VALUE declaration.

FORMAL declarations must be separate statements from FORMAL__VALUE declarations.

The data types of formal and formal-value parameters should match the data types of the correspond-
ing actual parameters. The SDL/UPL compiler does not automatically check to ensure that these
match. If the compiler control option FORMAL__CHECK is set, data types are checked at run-time.
Varying formal parameters can be remapped. If a varying formal parameter is remapped, the parameter
and its corresponding actual identifier must meet the remap restrictions. A warning message is gener-
ated by the SDL/UPL compiler when a formal parameter is remapped.

Formal parameter arrays can be given a variable number of elements by specifying the asterisk (*) char-
acter within the parentheses characters in the formal declaration.

Example:

PRCCECURE X C(A);
FORMAL A{x) FIXED;

A level-structured identifier can be passed by naming only the 01 level of the structure. The subfields
of the structure do not remain defined when the structure is passed to a procedure. Any attempt to
remap the parameter generates a syntax error.

1137833 7-1

The syntax and semantics of the PROCEDURE declaration are described as follows:

B 1000 Systems SDL/UPL Reference Manual

Procedures

SDL Syntax:

PROCEDURE < procedure-identifier>> >
— FORWARD —
INTRINSIC <intrinsic-identifier>
> >
(< parameter>>)
<type-part> =———
~ ; |
’)
FORMAL < formal-element-part> ———————
—— FORMAL_VALUE

UPL Syntax:

PROCEDURE < procedure-identifier=> >
l—- FORWARD ——
~
-~ -~
(< parameter>)
< type-part>
. . |
\ﬁ 12 j
—— FORMAL < formal-element-part> —

L FORMAL_VALUE

B 1000 Systems SDL/UPL Reference Manual
Procedures

Syntax Semantics:

FORWARD
The keyword FORWORD causes the procedure to be a forward procedure.

Before a procedure can be invoked, it must be declared. A problem can arise when one procedure
invokes another procedure which in turn invokes the first. In this case, whichever procedure ap-
pears first must contain at least one reference to the second procedure which has not yet been
declared. The FORWARD keyword allows the use of forward and recursive references by provid-
ing a temporary procedure declaration.

The FORWARD PROCEDURE statement does not eliminate the need for the normal procedure
declaration which must follow in the program.

The FORWARD PROCEDURE statement must be in the same scope as its associated procedure
and it must be specified immediately prior to or after the declarations.

The return data type must also be declared in the FORWARD PROCEDURE statement.

When the FORWARD PROCEDURE statement refers to a procedure with parameters, it must
include those parameters in the FORWARD PROCEDURE declaration. Also, any FORMAL dec-
laration statement of the parameters must accompany the FORWARD PROCEDURE statement.
Also, the formal declarations must appear within the actual procedure.

INTRINSIC
The keyword INTRINSIC is used only by SDL programs and causes the file specified by <intrin-
sic-identifier > to be included. The intrinsic must begin at displacement 0 in a new segment.

intrinsic-identifier
This field can be any valid SDL intrinsic file name and specifies the intrinsic file to use.

PROCEDURE
The keyword PROCEDURE is required for a procedure declaration.

procedure-identifier
This field can be any valid SDL/UPL identifier and specifies the name of the procedure.

parameter
This field can be any valid SDL/UPL identifier and specifies the identifier that is used and not
declared in the procedure. If <type-part> follows <parameter>, the value of <parameter> is
returned to the statement that invoked the procedure. If there is no <type-part> specified, the
value of <parameter> is passed from the statement that invokes the procedure. If this field is
specified, a FORMAL or FORMAL__VALUE statement must immediately follow the procedure
statement.

type-part
Refer to type-part later in this section.

Procedures which return explicitly a value when completed are called ¢‘typed’’ procedures. The
data type of the returned value must be specified in the procedure declaration.

If the data type of the returned value does not match the specified data type, an advisory message
is generated by the SDL/UPL compiler during compilation.

1137833 7-3

B 1000 Sysiems SDL/UPL Reference Manual
Procedures

FORMAL

When a parameter is specified in the procedure declaration and when it is desirable to have the
corresponding identifier’s value changed, the keyword FORMAL is required, provided that any
change to the value of <parameter> is made in the procedure.

When a parameter is declared with the FORMAL keyword, the parameter refers to the address
of the actual identifier. This requires that the parameter correspond to an identifier. All changes
made to <parameter> are made to the actual identifier.

If the parameter in the FORMAL part of the procedure declaration is an array, then only an array
can be passed to the procedure. If an array is to be passed to a procedure as a parameter, the
corresponding FORMAL declaration of the procedure must specify an array.

FORMAL__VALUE

When a parameter is specified in the procedure declaration and when it is not desirable to have
the value of the corresponding identifier changed, the keyword FORMAL__VALUE is required,
provided that any change to the value of <parameter> is made in the procedure.

When < parameter> is declared with the FORMAL__VALUE keyword, <parameter> receives
the value of the actual identifier. This identifier must yield a value. It can be a literal, a number,
or an identifier enclosed in the quotation mark(*‘)characters. The quoted identifier ‘‘<identifi-
er>"’ notation forces references to the value rather than the address of the identifier. Changes
to the formal-value parameter are known only within the scope of the procedure in which the for-
mal-value parameter is declared.

When the name (address) of an identifier is passed to a formal-value parameter, the value of the
actual identifier is assigned to the formal-value parameter. Changes made to the formal-value pa-
rameter are not reflected in the corresponding actual identifier.

formal-element-part

7-4

Refer to formal-element-part in this section.

B 1000 Systems SDL/UPL Reference Manual
Procedures

type-part
The syntax and semantics of the type-part of the PROCEDURE declaration are described as follows:
SDL and UPL Syntax:

BIT (<bit-size>)
—— VARYING 7
—— CHARACTER (<character-size>)
— VARYING
FIXED
— REFERENCE
— VARYING

Syntax Semantics:

BIT
The keyword BIT in the procedure declaration specifies that the value of the parameter to be re-
turned from the procedure has a data type equal to BIT.
The keyword BIT in the formal declaration specifies that the data type of <parameter> passed
to or returned from the procedure has a data type equal to BIT.
CHARACTER
The keyword CHARACTER in the procedure declaration specifies that the value of the parameter
to be returned from the procedure has a data type equal to CHARACTER.
The keyword CHARACTER in the formal declaration specifies that the data type of
< parameter > passed to or returned from the procedure has a data type equal to CHARACTER.
FIXED
The keyword FIXED in the procedure declaration specifies that the value of the parameter to be
returned from the procedure has a data type equal to FIXED,
The keyword FIXED in the formal declaration specifies that the data type of < parameter > passed
to or returned from the procedure has a data type equal to FIXED.
REFERENCE

The keyword REFERENCE in the procedure declaration specifies that the value of the parameter
to be returned from the procedure has a reference identifier.

The keyword REFERENCE in the formal declaration specifies that the data type of < paramecter >
passed to or returned from the procedure has a data type of a reference identifier.

—r—

1137833 7-5

B 1000 Systems SDL/UPL Reference Manual
Procedures

VARYING
The keyword VARYING in the procedure declaration specifies that the value of the parameter to
be returned from the procedure can vary in data type and length.

The keyword VARYING in the formal declaration specifies that the data type of <parameter>
passed to the procedure can vary in data type and length.

If the keyword VARYING follows the keywords BIT or CHARACTER, the length of the bit or
character parameter can vary.

bit-size
This field can be any valid SDL/UPL number or expression that generates a value at compilation
time and specifies the length in bits of the parameter.

character-size
This field can be any valid SDL/UPL number or expression that generates a value at compilation
time and specifies the length in characters of the parameter.

formal-element-part

The syntax and semantics of the formal-element-part of the PROCEDURE declaration are described
as follows:

SDL and UPL Syntax:
“~ .

<identifier> < type-part> ——-——-l
(*)

(< identifier>)

e (4) —

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier and specifies the name of the field whose address
or value is passed to the procedure.

(*)
The asterisk character between the parenthesis characters specifies that the number of elements in
the array specified by <identifier:> can vary when the array is passed to the procedure.

If the parameter in the FORMAL part of the procedure declaration is an array, only an array
can be passed to the procedure. If an array is to be passed to a procedure as a parameter, the
corresponding FORMAL declaration of the procedure must specify an array.

type-part
Refer to type-part in this section.

The data type of the identifier which is passed to the procedure is specified by type-part.

B 1000 Systems SDL/UPL Reference Manual
Procedures

Example 1:

PROCECURE XYZ3

END XYZ)
Example 2:

FORWARL PFOCECURE X3

.

ENL X7
Example 3:
PRGCELURE AEC (X» Y» 7)5
FORMAL X fFIXEC»
Y CHARACTER VARYING,

7 (%) BIT VARYINCS

END ABCS

Example 4:

FEOCEDURE SGQUARE (N)J
FOGRMAL N FIXED;

-

FETURNS

-

ENC SCUAFRES

1137833

r

BN S S S I A

e

D P2 T P RN N 2 ONT e N 8 »e

FY I S I N N

Preocedure identifier XYZ
is dectared.

Procedure identifier X is
being declared as & forward
procedures It can be invoked
after this procedure
declaration and tefore the
procedure is encountered by
the SOL/UPL comoiler.

Procedure identifier ABC has
three parameters that must be
declared forwallye Parameter
X 1s an jidentifier with a data
tyre ecual to FIXEDe. Parameter
Y is an identifier with a data
type equal to CHARACTER and
the length is catcutated on
each invocation cf obrecedure
ARC. Parameter 7 is an array
identifier with a varving
number of elerents (which are
calcutated on each invocation
of orccedure ABC) and a data
type equal to BITa.

Procedure 1dentifier SQUARE js
irvoked from a point in the
progqram. A vatue for identifier
N is rassed to the procedure

by the invoking statemente.

B 1000 Systems SDL/UPL Reference Manual

Procedures
Example 5:
PRCCETURE CUBE C(CA» B8» C»)> Z Tuo grocedures» one nested
FORMAL (A» Bs C) FIXEL; Z withip the other» are declared.
PROCEQURE SQUAKE IN)5 Z The procedure SQUARE can be
FGRMAL N FIXED; Z invoked crty froe within the

E

procedure CUBE.

L]

IF A THEN FETURN;

tNC SCUARE;

IF 2 THEN RETURM;
ELSE 005
SGUARE (C)5
RETURN;

ENC»

END CUEES

Example 6:

PRCCECURE ABSYAL (X)) FIXLC, 4 The furnction procedure ABSVAL

FORMAL X FIXEDS X teturrs tte absolute valtue of
FETURN CIF X LSS O THEN = X Z the parameter passed. The IF

tLSE ¢+ X)) % exgressiaon Wwithin the RETURN

ENG ABSVAL; Z statement returns the positive

% value of the parameter.
Example 7:

PRUCECURE MSG CHARACTER (2005 4 The function praocedure MSG
DECLARE CATA CEARACTER (27); % accepts a messaoge from the ODT
FETURN CACCEFT CATA); % and returps it to the invokina

ENLC MSCs % 1F statementa

IF SUBSTH (MSC» O» 33 = mYES™
THEN ceceess
ELS{;-;

B 1000 Systems SDL/UPL Reference Manual
Procedures

PROCEDURE BODY

The procedure body follows the procedure and the formal declaration statement. Declarations of local
data, nested procedures, and statements are included in the procedure body.

The RETURN verb takes one of two forms depending on the type of the procedure encompassing it.
When a data type is specified for the parameters in the procedure declaration, the procedure is a
“typed”’ procedure. If the procedure is a ‘“typed’’ procedure; an expression must be returned to the
point of invocation. If the procedure is not ‘‘typed’’, the RETURN does not allow an expression. Pro-
cedure type-checking on the RETURN verb is performed at run time when the FORMAL__CHECK
compiler control option is set.

Within any given procedure, certain statements can be nested within other statements and can be ac-
cessed like a procedure by an address generated by the larger statement. The most general nesting level
is zero. The nesting level of any statement appears on the SDL/UPL compiler listing under the column
NL. The following are the most common instances of statements occurring at nesting level 01 or great-
er.

1. The conditional statements following the THEN and ELSE keywords in the IF verb.
2. Statements contained within a CASE group.
3. Statements contained within a DO group.

The SDL/UPL compiler always generates a RETURN statement (even if not specified) directly preced-
ing the END < procedure-identifier >; statement. This ensures that the exit from a procedure is always
correct.

If the procedure is a “‘typed’’ procedure, the following value is returned based on the data type of
the returned data item.

Data Type to Value

be Returned Returned
BIT Zeros for the length specified
CHARACTER Blank characters for the length specified
FIXED Fixed Zero
BIT VARYING Eight bits of zeros
CHARACTER VARYING One blank character
VARYING Fixed zero

SDL Syntax:
< declaration-statement> < procedure-statements
— RETURN

—— < expression>

— RETURN_AND_ENABLE_INTERRUPTS

1137833 79

B 1000 Systems SDL/UPL Reference Manual

Procedures
UPL Syntax:
< declaration-statement™> < procedure-statements
RETURN

——— < expression>>

Syntax Semantics:

declaration-statement
Refer to Data Declarations in Section 5 for a complete description of < declaration-statement > .

procedure-statements
These statements can be any valid SDL/UPL statements.

RETURN
The keyword RETURN causes the procedure to be exited and to resume program execution at the

point where the procedure was invoked.

expression
This field can be any valid SDL/UPL expression and specifies the value that is returned to the

point where the procedure was invoked.
RETURN__AND__ENABLE__INTERRUPTS

The keyword RETURN__AND__ENABLE__INTERRUPTS is used only by the MCP. This key-
word causes a normal procedure exit to occur and enables the interrupt bits.

PROCEDURE END STATEMENT
The procedure end statement follows the procedure body and is the last statement in a procedure.

SDL and UPL Syntax:

——END H

< procedure-identifier>
Examples:
ENC FRCCECURE_A?

ENC MALN_PKCCECURE;

PROCEDURE INVOCATIONS

A procedure is invoked when a procedure identifier is specified in lexic level 0 of the program or in
the body of another procedure.

A ‘““typed”’ procedure invocation produces a value because ‘‘typed’’ procedures return a value. Invok-
ing a “‘typed’’ procedure requires that the expected parameters be specified in the procedure invocation.
These parameters must be known to the procedure.

Recursive procedure invocations are allowed; that is, a procedure can invoke itself.

7-10

B 1000 Systems SDL/UPL Reference Manual
Procedures

SDL and UPL Syntax:

— <procedure-identifier=>

ki

(< parameter>)
Syntax Semantics:

procedure-identifier

This field can be any valid SDL/UPL procedure identifier that has been declared in a procedure
declaration statement. It specifies the name of the procedure to invoke.

parameter
This field can be any valid SDL/UPL identifier that is declared as a parameter in the procedure
declaration statement. It specifies the identifier to be passed to or returned from the procedure.

If the parameter in the FORMAL part of the procedure declaration is an array, only an array
can be passed to the procedure. If an array is to be passed as a parameter to a procedure, the
corresponding FORMAL declaration of the procedure must specify an array.

Example 1:
Procedure Leclaratian PRUCEDURE A;
Procedure EBedy :
Procedure End ENO.Ai
Frocedure Invocaticn A;

Example 2:
Procedure Ceclaration PFROCECURE 8 C(JoK»L);
Formal lCeclavation FORMAL (J»r¥) FIXEDS

FURMAL_VALUE L VARYINGS

Procedure End ENC 85)
Procedure lrvocaticn B (X» Y» (Z));

1137833 7-11

—t

B 1000 Systems SDL/UPL Reference Manual

Example 3:

Procedure OJeclaration
Formal Dectaration

Procedure bBody

Procedure LEtrd

Procedure Invocaticn

7-12

Procedures

PRGCECUKE C (MsN) VARYING:

FORNMAL M FIXEDS

FCRNMAL _VALUE N CHARACTER VARVINGS
LECLARE P FIXEDS

FETURN (P}
ENC C3

ANSWER = CL&»S);

B 1000 Systems SDL/UPL Reference Manual

SECTION 8
STATEMENTS

Statements are the SDL/UPL equivalent of grammatical sentences. They contain a complete sequence
of operations (one complete idea). They are logically separate from other similar sequences. While an
expression evaluation results in a numerical value, statement evaluation specifies functions or assign-
ments for the values. For example, the expression A + B results in a numerical value and statement
X := A + B; (X is replaced by A + B). It assigns the value of the expression to identifier X.

Statements are always terminated by a semicolon (;) character.

Statements fall into three general classifications. These are declaration, control, and assignment state-
ments.

DECLARATION STATEMENTS

Declaration statements connect memory space to identifiers and their attributes. Refer to Section 5 for
a complete description of declaration statements.

CONTROL STATEMENTS

Control statements determine the sequence in which statements are executed. They pass control to pro-
cedures, bind groups of statements together, or conditionally specify which one of several statements
is to be executed next.

Procedure Call Statement

The major control statement in SDL/UPL is the procedure-calling or invoking statement. It consists
of a procedure identifier followed by any parameters enclosed in parentheses and terminated by a semi-
colon (;) character. For example, the procedure ABS, which requires one parameter, is invoked by
ABS (VALUE);.

There are three considerations governing the use of procedure-calling statements:

1. A called procedure must be within the scope of the calling statement. In lexic level terminology,
a called procedure must be at one of the three following lexic levels.

a. The procedure can be one lexic level higher and nested within the calling procedure.

b. The procedure cannot be more than one lexic level lower with a currently invoked procedure
that is on an equal or higher lexic level.

c. The procedure can be a currently invoked procedure on an equal or higher lexic level.

2. A called procedure always returns control back to the calling procedure. There is no GO TO
statement in SDL/UPL. The program logic must be structured to use this return-control action.
The immediately succeeding statement in the calling procedure is performed when control is re-
turned.

3. The called procedure must be of the proper class. There are two classes of procedures in SDL/
UPL. These are function procedures and non-function procedures. Function procedures pass
back a value to the function-procedure call and non-function procedures do not.

1137833 8-1

B 1000 Systems SDL/UPL Reference Manual
Statements

DO Statements

The DO statement provides the capability to group a set of related statements together for programmat-
ic control purposes. A DO statement consists of the DO statement, optionally followed by < group-
name> and/or the FOREVER keyword, and terminated with the semicolon (;) character. The END
statement consists of the END statement, optionally followed by < group-name>, and terminated with
the semicolon (;) character. The UNDO statement consists of the UNDO statement, optionally followed
by <group-name>, and terminated with the semicolon (;) character.

A DO-group consists of a DO statement, one or more executable statements, and an END statement.
A DO-group is regarded as a single statement.

A set of DO-groups can be nested. Overlapping DO-groups are not allowed. Every END statement is
paired with the preceding unmatched DO statement, starting at the innermost set. An END statement
is required for each DO statement. DO-groups can be imbedded in CASE statements, IF statements,
or other DO-groups. A maximum of 32 CASE statements, IF statements, or DO-groups can be im-
bedded in one DO-group. However, the UNDO statement only exits up to a maximum of 16 nested
DO-groups. A maximum of 11 levels of labeled DO statements are allowed in an SDL/UPL program.

DO-groups, IF statements, and CASE statements define a source-code nesting level that is placed under
the column marked NL on the compiler-generated source listing. Each nest must be wholly contained
within its outer nest. That is, source-code nesting levels cannot overlap.

The keyword FOREVER causes an unlimited number of DO-group iterations. When an UNDO, RE-
TURN, or STOP statement is performed the DO-group is terminated. If an UNDO statement is per-
formed, the innermost or DO-group labeled in the UNDO statement is terminated. If a RETURN state-
ment is performed, an implicit UNDO statement is performed for all nested DO-groups within the pro-
cedure and control is passed to the statement that immediately follows the statement that called the
procedure. If a STOP statement is performed, the program goes to end of job.

If the keyword FOREVER is not specified, the DO-group is performed only one time.

There is a limit on the size of a DO FOREVER-group. This limit is 4096 bits of object code generated
by the SDL/UPL compiler.

SDL and UPL Syntax:

—DO

——— < group-name>> L- FOREVER —— <statement>; —

Vv

END

——— < group-name>>

8-2

B 1000 Systems SDL/UPL Reference Manual

Syntax Semantics:

group-name

Statements

This name labels a DO-group and when specified, must immediately follow the DO statement and
END statement. For example, DO <group-name>; and END <group-name>;. <group-name>
must be the same in the DO-statement (DO < group-name>;) and in the matching END-statement

(END < group-name > ;).

FOREVER

The keyword FOREVER causes the DO-group to be performed until an UNDO or RETURN state-

ment is performed for this DO-group.

statement

This field can be any valid SDL/UPL statement. There is no actual limit to the number of state-
ments that can be specified in a DO-group. All SDL/UPL statements must end with the semicolon

(;) character.
Example 1:

oec»
BUMF SUNM;
DECREMENTY DIFF;

L)
-
-
14

ENDC
Example 2:

IF X EGL O
THEN LG5

ENDS
ELSE CC OTHERS
DECRENVENT X3

BUMP SUM>5
END UTHEFR;

Example 3:

DC THIS_UNE FOREVER:
IF SUyv LEG ZERC
THEN £
BUMF SUM;
DECHREMENT X3
END
ELSE UNDC3
END THIS_ONE;

1137833

e

D AT N NF NS e

AN R N w2

e

The format of a DU0=aroup requires
the D0 and a corresponding END
statemerte.

Une of the CU=groups within the
IF statement 1s executeds and then
control is rassed beyond the [F
statement. The second bDO-group is
nared UTHEf» and its ENC statement
must alsc contain the same name.

The DO=qgroup name THIS_ONE

iterates until! SUM is greater than
Os When SUM is greater than 0.
the UNCO statement in the ELSE

statement terminates the NU=groupe

B 1000 Systems SDL/UPL Reference Manual

Example 4:

PFOCECURE ABC:
U0 ANY FCGREVER;
IF X GES O
THEN CG;
DECREMENT
BUNME SUV3S
END;
If SUM GEG C
THENM UNDOG?
ELSE FETURNS
END ANY:

ENL AFCS
Example 5:

LC SETAS
X 3= X + 17
A_PARM 3= 7ERD;
RGUTINE (X» A_PARM);
ENC SETA;

84

Statements

This procedure contains several
DO=qrounse The RETURN statement

in the last IF statement terminates
the DO~qroup labteled ANY by passing
control out of procedure ABC.

DL 2 x X AP

2 This is a DO statement that binds
2 three statements to the DO group
Z SETA.

B 1000 Systems SDL/UPL Reference Manual

Statements
Example Program:
DECLARE
TIME_ONE FIXED»
TIME_TKO FIXED>
CORRECT_ANSNWER FIXED»
ANSHWER CHARACTER (8)7
DO MAIN_LCOP FOREVER’

TIME_ONE 2= CONVERT (TIME CCOUNTER», BIT)» FIXED)>
TIME_TWO = CONVERT (TIME (COUNTER, BIT)» FIXED)>
DISPLAY ("HOW MUCH IS5 "™ CAT
CONVERT CCTIME_ONE MOD 57829)» CHARACTER) CAT " PLUS ™
CAT CONVERT C(CTIME_TNO MOD 100000)» CHARACTER))S
ACCEPT ANSKWERS
IF ANSKER = "BYE"™
THEN DO»
DISPLAY ("GODD BYE™)>
STOPs
END>
CORRECT_ANSWER == (TIME_ONE MOD 57829) + (TIME_TW0O MOD 100000);
IF CORPRECT_ANSWER = CONVERT C(ANSKER» FIXED)
THEN DO CORRECT?
DISPLAY ("THAT IS CORRECT» WOULD YOU LIKE TO TRY AGAIN2");
DISPLAY ("ENTER YES FOR AGAIN OR ENTER BYE T0 GO 7O EOJ™);
DO FOREVERS
ACCEPT ANSHER3
IF ANSKER = "BYE"
THEN DO?
DISPLAY ("GOOD BYE™)?
STOP»>
END#
IF ANSWNER = "YES™ THEN UNDOJ?
ELSE DISPLAY ("INCORRECT RESPONSE TRY YES OR BYE™)>
END?
END CORRECTS>
ELSE DO INCORRECT?
DISPLAY ("YOUR ANSWER IS INCORRECT");
DISPLAY ("THE ANSWER IS ™ CAT
CONYERT (CORRECT_ANSWER» CHARACTER))?
DISPLAY {"WOULD YOU LIKE TO TRY AGAIN2");
DISPLAY ("ENTER YES FOR ACAIN OR ENTER BYE TO GO TO EO0J*);
D0 FOREVER?
ACCEPT ANSWER>
IF ANSWER = "BYE"
THEN DO3
DISPLAY (=G0OD BYE™);?
STOP>
END3
IF ANSWER = "YES*™ THEN UNDO»
ELSE DISPLAY ("INCORRECT RESPONSE TRY YES OR BYE™);
END3

1137833 8-5

B 1000 Systems SDL/UPL Reference Manual
Statements

END INCORRECT?
END MAIN_LOOP>
FINIS

This example program iflustrates the use of the DO statement. The
program asks the operator to enter the sum of two numbers
displayed on the ODT. If the sum is correctr» the program asks

if the operator wishes to continue and try another set of

two numbers. If the sum is incorrects the program displays

the correct number and asks if the operator wishes to continue

or try another set of ¢wo numberse. If the response to continue

is YES to both the correct and incorrect numbers» the program
displays another set of numbers. If the response is B3YE» the
program goes to end of job.

L RN N R W

DO FOREVER Statement

The DO FOREVER statement indefinitely performs the statements within the DO-group until an
UNDO statement is performed. Or until control is returned from the procedure in which the DO FOR-
EVER statement is imbedded.

Example:

DO PRTN FOREVER?
X 3= X ¢ 13

ROUTINE (Xe A_PARM);> X Procedure Call.

IF X EQL S THEN UNDO’ 2 Test Limite

IF X EQL 10 THEN RETURN? X2 Return from the current procedure.
END PRTN>

IF, THEN, and ELSE Statement

The IF, THEN, and ELSE keywords are used to conditionally perform one or two statements in an
SDL/UPL program.

If the rightmost bit of <condition> equals 1, the THEN clause is performed. If the rightmost bit
of <condition> equals 0 (zero) and if the ELSE clause is present, the ELSE clause is then performed.
Null THEN (THEN;) and ELSE (ELSE;) clauses are allowed. Once the THEN or ELSE (if specified)
clause is performed, control is transferred to the next statement. The next statement is the one that
immediately follows the THEN clause if no ELSE clause is specified. Or it is the one that immediately
follows the ELSE clause, if specified.

If a group of statements are to be performed which are a result of evaluating < condition>, they must
be specified in a DO-group that immediately follows the THEN or ELSE keywords. Refer to the DO
statement for a complete description on the use of DO-groups.

Nested IF statements are allowed. The maximum number of nested IF statements is 32. The outermost

IF-THEN and ELSE are on nesting levzl 0. <statement-1> and <statement-2> of the IF-THEN and
ELSE are on nesting level 1.

8-6

B 1000 Systems SDL/UPL Reference Manual
Statements

The SDL/UPL compiler matches the IF-THEN and ELSE clauses beginning with the innermost nested
level. For example, if nesting level 2 has an associated ELSE clause, nesting level 4 must also have
an associated ELSE clause.

SDL and UPL Syntax:

— IF <condition> THEN ;

<statement-1>

v

4

—— ELSE H

<statement-2>

Syntax Semantics:

condition
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value. Only
the rightmost bit of <condition> is checked. If the rightmost bit is equal to 1, <condition>
is TRUE. If the rightmost bit is equal to 0, <condition> is FALSE.

statement-1
This statement can be any valid SDL/UPL statement.

statement-2
This statement can be any valid SDL/UPL statement.

ELSE
The keyword ELSE causes the statement which immediately follows to be performed if the right-
most bit of <condition> equals 0. Null ELSE clauses (ELSE;) are allowed.

THEN
The keyword THEN causes the statement which immediately follows to be performed if the right-
most bit of <condition> equals 1. Null THEN clauses (THEN;) are allowed.

Example 1:

IF X = 32 THEN Y 2= 45

b

Identifier Y is assigned a value of 4
X if the vatue of identifier X equals 32.

Example 2:

IF X > 1 THEN Y
ELSE Y

Identifier Y is assigred 3 value of 4
if the value of identifier X is greater
than 1 and Y is assigned a vatue of 5
if X is not greater than 1.

[0 o
we we

* s
Wi

Ea S I L

1137833 8-7

B 1000 Systems SDL/UPL Reference Manual
Statements

Example 3:
IF X = 1 THEN CO5 % Tdentifiers Y and Z are assigned the
Y 3= 17 % values of L and 2» respectivelys if
]l = 27 % the value of identifier X equals 1l
END> 2 Ctherwises identifiers Y and Z are
ELSE CO5 % assigned the values 3 and 4»
Y 3= 33 % respectivelyv.
1 = 45
END>
Example 4:
IF X = 2 %z Ydentifier A is5 assigned & value of 1 if
THEN IF Y = 3 %4 identifier X equals 2» Y ecquals 3» and
THEEN IF Z = &4 %2 I equals 4. Identifier A is assigned
THEN A = 13 2 the value cf 2 if identifier X eaquals 2Z»
ELSE A == 23 4 Y eauals 3» ard Z does not equal 4.
ELSES Z ldentifiers A and B are assigned the
ELSE IF Y = 20 %4 values 3 and 4, respectively, if
THENS % identifier X do2s not equal 2 and
£LSE CC; %4 identifier Y does not eaqual 20.
A t= 35
R 3= 4,
ENDS
Example 5:

IF A + 8 GVR X
THEN LO5
A= A - 17
It A EGL 0 THEN UNDOS

FIN_XYZ;
ENG?
ELSE L0
X 3= §# + B
A 2= (5
E 2= 05
ENC;

8-8

B 1000 Systems SDL/UPL Reference Manual
Statements

Example Program:
DECLARE YES_OR_ND CHARACTER (3);

DISPLAY (*THIS PROGRAM ILLUSTRATES THE IFs, THEN» AND ELSE VERBS.")?
DISPLAY (™IF YOU WISH 7O CONTINUE» THEN ENTER YES» ELSE ENTER NO")3

DO FOREVER?
ACCEPY YES_OR_NO3

IF YES_OR_NO = "NOT
THEN DG»
DISPLAY ("GOOD BYE™);
STOP>
END?
ELSE IF YES_OR_NQ = "YES"
THEN DISPLAY ("YDU ENTERED YES. IF YOU WISH TO CONTINUE»"
CAT " THEN ENTER YES», ELSE ENTER NO.")5
ELSE DISPLAY ("YES OR NO WAS NOT ENTERED» TRY YES OR NOe")>
END S

FINI?

CASE Statement

The CASE statement is an expanded form of the IF statement. The evaluation of a conditional expres-
sion determines which statement to perform among all the statements associated with the CASE state-
ment. After the statement is performed, control passes to the first statement following CASE statement
(if format 2 is specified) or the END CASE statement (if format 1 is specified). If the conditional ex-
pression is out of range during program execution, a run time error is generated.

CASE (format-1)

The CASE statement (format-1) selectively performs only one statement within the CASE group of pro-
gram statements.

At execution time, <index> is evaluated as a binary number. This value is used as a selector to choose
from among the program statements in the CASE-group. For example, a value of 2 selects the third
program statement. The program statements in the group are numbered from O to n-1 for n program
statements. A negative value or a value greater than the number of program statements in the CASE-
group causes an execution-time error.

All valid SDL/UPL program statements, including nested CASE, DO-group, and IF ... THEN ...
ELSE statements, are allowed and are counted as a single statement within the CASE-group of state-
ments.

After the selected program statement is performed, the program performs the program statement imme-
diately following the END CASE; statement.

Null statements can be used to satisfy a program statement position where no operation is to be per-
formed. A null statement is represented by the semicolon (;) character.

If a CASE statement is imbedded in a DO-group and a RETURN verb is specified, the program passes
control back to the statement that invoked the procedure.

1137833 89

B 1000 Systems SDL/UPL Reference Manual
Statements

Each statement within the CASE-group must be an executable statement. If several statements are
needed to describe the action to be taken in a given situation, the statements must be blocked in a
DO-group. Null statements are allowed.

SDL and UPL Syntax:

—— CASE <index>;
S < statement-0>>;

v V V

e < statement-1>>;

> < statement-n>>;

>————END CASE;

Syntax Semantics:

index
This field can be any valid SDL/UPL identifier or expression that returns a binary value between
0 and n, inclusive and specifies the statement to be selected.

statement-0 through statement-n
These fields can be any valid SDL,/UPL statement and specify the statement to be performed.

Example 1:
CASE X; % The vatue of X determires which . procedure is
PHROC_A> Z perforred. X can vary in value frem O through
PROC_B5 2 2. If the value of X is greater than the number
PROC_Cs % of statements in the CASE statementr, a run=time
%

END CASE? Brrce OCCUTS.
Example 2:

CASE (A = B) MLD 2;

P

The value of the expression is

LCs 2 used to determine which statement
IF X > 15 THEN UMLCCS X tc performe A DO statemert or
X 2= X & 535 % CASE statement is considered one
ENE Z staterent.

CASE X;
PROC_07
PROC_15
PFGC_20;
END CASE:

END CASES

8-10

I 7

B 1000 Systems SDL/UPL Reference Manual

Statements
Example Program:
DECLARE NUMBER FIXEDs
NUMBER 2= 07
DD FOREVERS?
CASE NUMBER?
DISPLAY T"MARY": Z NUMBER = C
DISPLAY "HAD";3 %Z NUMBER = 1
DISPLAY ™A™ Z NUMBER = 2
DISPLAY "LITTLE"> X NUMBER = 2
DISPLAY "L AMB"; Z NUMBER = 4
END CASE;
IF {BUMP NUMEBER) > & THEN UNDO?
END?
5T0P5
FINI>

This example program uses the CASE statement to
display "MARY HAD A LITTILE LAMB"™ on the 0DT

and goes to end of job. Each word is displayed
on a separate line.

TP e

Output from Example Program:

CASEQ =2037 BOJe PP=4s MP=4 TIME = 11357:32.4
Z CASEQD =2037 MARY

Z CASEC =2037 HAD

X CASED =2037 A

X2 CASEDQ =2037 LITTLE

% CASEDC =2037 LAMB

CASEO =2037 EQJ«. TIME = 11357:38.2

CASE (format-2)

The CASE statement (format-2) uses the value of <index> to determine which expression to evaluate
in the list of expressions contained in the parenthesis ‘‘()’’ characters. The range of <index> is from
0 to n-1, where n is the number of expressions in the list.

SDL and UPL Syntax:

'

—— CASE <index> OF (< expression>) 1'

1137833 8-11

B 1000 Systems SDL/UPL Reference Manual
Statements

Syntax Semantics:

index
This field can be any valid SDL/UFL identifier or expression that returns a binary value between
0 and n—1, where n is the total number of expressions within the parenthesis ‘‘()’ characters
and specifies the expression to be selected.

expression
This field can be any valid SDL/UPL number, identifier, or expression that returns a value and
specifies the value. If selected by <index>, it is returned as a result of evaluating the CASE ex-

pression.
Example:
CECLARE (A» E» C» Fpo I, J» Q) FIXEC? %X Identifier A is
I 2= 23 %X assigred the vatue
J 1= 33 2 (A+B) & (A+§) MOD FE.
CASE 4 OF (QxF=¢F» 9» T448B, (A+6) MCD B» C);

Example Program:

DECLARE NUMBER FIXED?

NUMBER 2= 0>

DU FOREVER;? ‘
DISPLAY (CASE NUMBER OF ("MARY"» "HAD", "A™, “LITTLE"» "LANMB"));
IF C(BUMP NUMBER) > & THEN UNDD?

END3;

STOP>
FINI?

This example program uses the CASE statement (format=2) to
display "MARY HAD A LITYLE LAMB™ on the ODTYT and goes

to end of jobe Each word is displayed on a separate

line.

PPN N

Output from Example Program:

CASEDQ =2037 BOJ. PP=4s» MP=4 TIME = 11257:32.4
% CASED =2037 MARY

% CASEO =2037 HAD

X CASED =2037 A

%X CASEQ =2037 LITTLE

% CASEO =2037 LAMB

CASEQ =2037 EQJ. TIME = 11357:38.2

8-12

B 1000 Systems SDL/UPL Reference Manual
Statements

ASSIGNMENT STATEMENT

The assignment statement is the only data-movement statement in SDL/UPL. Truncation and padding
are performed across the assignment operator (: =). They are dependent upon the data type and length
attributes of the data item as specified in the declaration statements. For data items with a CHARAC-
TER data type, truncation of characters and padding of blank characters is on the right. For data items
with a BIT or FIXED data type, truncation of data and padding of zeros is on the left.

Examples:
X 2= 03 42 ldentifier X is assigned the value Q.
X 2= A; % Identifier X is assigned the value of

identifier A,

NULL STATEMENT

The null statement performs a no-operation function during program execution. Two adjacent semico-
lon (;) characters are used to delimit a null statement.

b4

The null statement is considered a complete statement that can be specified whenever the syntax re-
quires a complete statement. Its most common usage is in the CASE and IF verbs to fulfill the syntax
requirements and not to perform operations. The null statement can be specified in the READ,
WRITE, and SPACE verbs.

The null statement can be specified to control events within a compound IF verb. However, this control
is more readily accomplished if DO-groups are used within the compound IF verb.

SDL and UPL Syntax:

Example:

CASE DECCCES

N

The icentifier DECODE is used to select one

PROC_A: 2 O Z of six statements within the CASE statement
PROC_B5 7 1 % tody. If the value of identifier DECODE is
; io2 %# @ 2 or a 3» no operation is performed.
H Z 3
PROC_C? % 4
PKGC_C> % 5

ENC CASE;

1137833 8-13

.

B 1000 Systems SDL/UPL Reference Manual

SECTION 9
VERBS

FORMAT OF THE VERB DESCRIPTION

All verbs that can be used in an SDL/UPL program are described in this section. Each verb is de-
scribed separately. The SDL and UPL verb description is presented first, followed by the railroad syn-
tax diagrams, the syntax semantics, examples, and an example program.

The valid constructs for the SDL compiler are presented in the SDL railroad syntax diagrams. The
valid constructs for the UPL compiler are presented in the UPL railroad syntax diagrams, only if the
UPL syntax is different from the SDL syntax. The description, syntax semantics, and examples show
the action taken by the SDL and UPL compilers. Care must be taken to distinguish the differences
between the two compilers when referencing the syntax semantics and examples.

1137833 9-1

B 1000 Systems SDL/UPL Reference Manual
Verbs

ACCEPT

The ACCEPT verb causes the program to be suspended and to wait for input from the Operator Dis-
play Terminal (ODT). The input is provided to the program by way of the MCP AX input command
which is entered by the system operatcr at the ODT.

The ODT input message is stored left-justified into <destination>. If the ODT input message is larger
than <destination>, the message is truncated on the right. If the message is smaller, the message is
padded on the right with blanks.

The actual input/output (I/0) operation processes the message as character data, regardless of the de-
clared type of <destination>.

When the ACCEPT verb is performed, the MCP suspends the SDL/UPL program and sends the fol-
lowing message to the ODT. The (<usercode>) portion is optional.

(<usercode>) <program name> = <job number> ACCEPT

The following format is required to enter a message on the B 1000 computer system ODT.
<job number>AX <text> <ETX character>

The maximum length for the ODT input message is 69 characters.

SDL and UPL Syntax:

—— ACCEPT <destination>>;

Syntax Semantics:

destination
This field can be any valid SDL/UPL identifier or an expression that generates an address.

9-2

B 1000 Systems SDL/UPIL Reference Manual
Verbs

ACCEPT
Example Program:
DECLARE MESSAGE CHARACTER (69)7
DO FOREVER?
ACCEPT MESSAGES
IF MESSAGE = "BYE™ THEN UNDO5
DISPLAY MESSAGE’?
END3
SToPz
FINI?
Z This example program accepts a wmessage from
Z the 0DT. MWhen a message is inpute the program

Z displays the message back onto the 0DT. If
72 BYE is entereds the program goes to end of jobe

1137833 93

B 1000 Systems SDL/UPL Reference Manual
Verbs

ACCESS__FILE__INFORMATION

The ACCESS__FILE__INFORMATION verb causes the end-of-file pointer and the device type in the
File Information Block (FIB) to be stored in <destination>. This information reflects the current stat-
us of the file in the program. The end-of-file pointer is the relative record number of the last record
in the file. The device type is an MCP-maintained value that represents the hardware type of the file.
For example, a device type of 16 represents a device type equal to DISK__PACK. Refer to the
CHANGE verb in this section for a complete description of all the valid device types and associated
device type codes.

The end-of-file pointer and the device type can be stored in BIT or CHARACTER data type format.

The following is the format for <destination> of data type BIT.

01 DESTINKATIGN_VARTABLE BIT (30)»
03 EQF_POINTER BITC24)»
03 DEVICE_TYPE EIT (6)3

The following is the format for <destination> of data type CHARACTER.

01 DESTINATICN_VARIABLE CHARACTER (10).,
03 EOF_PCINTER CHARACTER(B)»
03 CEVILE_TYPE CHARRACTER(Z2);

< file-identifier > must name a declared file. The return-type indicator (BIT or CHARACTER) must
match the declared type of the variable. The information is returned to the address specified by < desti-
nation>. The format of the returned information varies with the return-type indicator. The file being
accessed must be open to ensure that the File Information Block (FIB) exists.

SDL and UPL Syntax:

A\

—— ACCESS_FILE_INFORMATION (<file-identifier™>, BIT
— CHARACTER ———

S

>————, <destination>) ;

Syntax Semantics:

BIT
The keyword BIT specifies that the data type of <destination> is equal to BIT.

CHARACTER
The keyword CHARACTER specifies that the data type of <destination> is equal to CHARAC-
TER.

destination
This field can be any valid SDL identifier.

B 1000 Systems SDL/UPL Reference Manual
Verbs

ACCESS_FILE_INFORMATION

The following summarizes the format of <destination> in the ACCESS__FILE__INFORMATION
verb.

Item BIT CHARACTER
EOF__Pointer 24 -8
Device type 6 2

file-identifier
This field is the name of the file to be interrogated. This file must be open prior to performing
the ACCESS__FILE__INFORMATION verb.

Example Program:

FILE
DISKFILE (DEVICE = DISK SERIAL»
RECORDS = 1/180,
OPEN_OPTION = OUTPUT/NEW)?

DECLARE
01 DESTINATION_VARIABLE CHARACTER (10)»
03 EOF _POINTER CHARACTER (8)»
03 DEVICE_TYPE CHARACTER (2)»
DATA CHARACTER (1)

DATA == *"1%;

WRITE DISKFILE (DATA);?

ACCESS_FILE_INFORMATION C(DISKFILE» CHARACTER» DESTINATION_VARIABLE)S

DISPLAY "EOF POINTER = " CAT EOF_POINTER CAT ™ AND DEVICE TYPE IS *
CAT DEVICE_TYPES

CLOSE DISKFILE?

FINI?

This example program writes one record to a disk file
and obtains the end-of-file pointer and device type

by using the ACCESS_FILE_INFORMATION verbe The progranm
subsequently displays the end=o f-file pointer and

device type on the system 0ODT» closes the disk files and
goes to end of jobe

E R]

Output from Example Program:

X2 TEST =6331 EOF POINVER = 00000001 AND DEVICE TYPE IS 15

1137833 9-5

BASE__REGISTER

The BASE__REGISTER verb returns a 24-bit value that is the current and absolute main-memory ad-
dress of the beginning data space for the program.

In a multiprogramming environment, performing two separate BASE__REGISTER verbs can yield dif-
ferent results. Different results occur because the MCP can move the program to a new location in
memory as memory space is required.

SDL Syntax:
—— BASE_REGISTER j]
Example:
DECLARE BASE BIT (24); 2 ldentifier BASE contains the current
BASE = EASE_REGISTERS 2 memorv address of the prcgrae.

Example Program:

DECLARE NEW_BASE_ADDRESS BIT (24&),
SAVE_BASE_ADDRESS BIT (24);

SAVE_BASE_ADDRESS := BASE_REGISTER?

DISPLAY ("THE CURRENT BASE ADDRESS IS EQUAL T0 * CAT
CONYERT (SAVE_BASE_ADDRESS» CHARACTER))?

DISPLAY ("ENTEK ANY INPUTY TO GO TO EQJ*™);

DO FOREVER?

NEW_BASE_ADDRESS 3= BASE_REGISTERS

IF (SAVE_BASE_ADDRESS /= NEW_BASE_ADDRESS)Y

THEN DISPLAY ("THE BASE ADDRESS HAS CHANGED» THE NEW ADDRESS IS =
CAT CONVERT (BASE_REGISTER» CHARACTER))?

IF WAYIT CTIME_TENTHS (S5)» SPO_INPUT_PRESENT)

THEN STOP»

END>

FINI>

Z This example program uses the BASE_REGISTER verb to display

T the current memory address of the beginning of the programe

Z and then goes into a Lloop to check for a change in the base

Z addresse If the address changess» the new address is displayed
X on the 0DT. If any message is accepted to the programs, the

Z program goes to end of job.

B 1000 Systems SDL/UPL Reference Manual
Verbs

BINARY
BINARY

The BINARY verb returns a FIXED data-type value which is the binary representation of the character
string. Only the rightmost eight characters of the string are converted.

If the result of a BINARY verb returns a binary value greater than 24 bits (a decimal number greater
than 16,777,215), the leftmost bits are truncated.

If the decimal number is greater than 8,388,607 ([2 exp 23] — 1), the returned value is a negative value
because the leftmost bit is 1.

SDL and UPL Syntax:

— BINARY (<character-string™>)]
Syntax Semantics:
character-string

This field can be any valid group of characters that contain decimal digits and specifies the value
to be converted.

Examples:
CECLARE CHAR CHARACTER (7)),
RESULT FIXEC>S
CHAE

= "1234567 ;3

RESULT 2= BINARY (CHAR): 7 RESULT equals +1234567

1137833 9-7

Bl

B 1000 Systems SDL/UPL Reference Manual
Verbs

NARY

Example Program:

9-8

DECLARE
RESULT FIXED»
ADDEND_ONE CHARACTER (3)»
ADDEND_TNO CHARACTER (3);

DO FOREVERZ

DISPLAY "ENTER ANY THREE DIGIT NUMBERs, LEADING ZEROS ARE REQUIRED,*;
DISPLAY "OR ""BYE"™ TO GO TO END=GF=J0B.*;

ACCEPT ADDEND_ONE;

IF ADDEND_ONE = “BYE” THEN UNDO’

DISPLAY "ENTER ANY THREE DIGITS FOR THE SECOND NUMBERs, LEADING™3
DISPLAY “ZEROS ARE REQUIRED."?

ACCEPT ADDEND_TWO;

IF ADDEND_TAO = "BYE™ THEN UNDOJ

RESULT 3= BINARY CADDEND_ONE) ¢ BINARY CADDEND_TWD);

DISPLAY "THE TOTAL EQUALS " CAT CONVERT C(RESULT» CHARACTERs 4);

END?

sToP;

FINI?

X This example program accepts two numbers in character format

Z from the 0DT» uses the BINARY verb to add two numbers togethers

Z and displays the result on the 0DT. If BYL is entereds the
Z program goes to end of jobe.

B 1000 Systems SDL/UPL Reference Manual
Verbs

BINARY _SEARCH
BINARY__SEARCH

The BINARY_SEARCH verb searches an ordered list of items that start at <start-record> for
< number-of-records>. The occurrence number of the entry that matches is returned. If there is no
match, an occurrence number equal to the entry immediately after the last entry in the list is returned.

SDL Syntax:

—— BINARY_SEARCH (<start-record™>, <compare-field>, <compare-value>>,
>———— < number-of-records>)

1V

Syntax Semantics:

start-record
This field can be any valid SDL identifier or expression that returns a value and specifies the
first structure with which to begin the search.

compare-field
This field is a template which gives the relative offset and size in the structure of the 24-bit field
that is being compared with <compare-value>. A template is an identifier whose address is
relative to the beginning of a structure rather than base relative. A field in a structure declared
REMAPS BASE has such an address.

compare-value
This field is the value that is compared with < compare-field>. < Compare-value> is considered
““on the left’’ in the compare relation.

number-of-records

This field can be any valid SDL number, identifier, or expression that returns a binary value and
specifies the total number of records to search for.

1137833 9-9

B 1000 Systems SDL/UPL Reference Manual

Verbs
Bl NARY__SEARCH
Example Program:
RECORD TABLE
DATA FIXED»
KEY FIXED>
DECLARE ODVT_INPUT CHARACTER (&),
COUNT FIXED»
RESULT FIXED,»
COMPARE_VALUE FIXED,
T €1024) TABLE?

COUNT 2= 07

DO BUILD_LINKS FOREVER?
IF COUNT = 1024 THEN UNDO BUILD_LINKS?
TCCOUNTI.KEY 3= COUNT;?
TCCOUNT).DATA 2= (TIME C(COUNTER» BIT) MOD 1024)7
BUMP COUNT>

END BUILD_LINKSS

DO FOREVER?>
DISPLAY ("ENIER ANY NUMBER FROM O TO 1023 OR ENTER BYE FOR EOQJ™)>
ACCEPT ODT_INPUTS
IF ODTY_INPUT = “BYE"
THEN 003
DISPLAY ("GOGD BYE™)>
STaP»
END 2
COMPARE_VALUE == CONVERT CODT_INPUT», FIXED)?
1F COMPARE_VALUE > 1023
THEN DISPLAY (ODIT_INPUT CAT " IS TOO LARGE™)?
ELSE IF COMPARE_VALUE < 0
THEN DISPLAY (ODT_INPUT CAT ™ IS TOO SMALL™)S

ELSE DOs
RESULT == BINARY_SEARCH (T(0)» KEYLO1,
CUMPARE_VALUE. 1024);
IF RESULT = COMPARE_VALUE
THEN DISPLAY ("THE VALUE OF DATA FOUND IS = CAT
CONVERY (DATA IRESULTI» CHARACTER));
ELSE DISPLAY ("SEARCH FAILED"™)?
ENDs
ENDs
FINI?

This example program shows one way to use the BINARY_SEARCH verb.

The program first builds a tables« The operator is then reqguested

to enter any number between 0 and 1023. Using the accepted value

the program searches through the table for an equal condition and

if found displays the base relative address of the beginning of the
table entry that it found. If the search failss the program displays
SEARCH FAILED. If BYE is enteredsr the program goes to end of jobs

PN e

9-10

B 1000 Systems SDL/UPL Reference Manual
Verbs

BUMP
BUMP

The BUMP verb increments <identifier> by <increment-amount>. If the BY keyword is not
specified, <identifier> is incremented by 1. If the BUMP verb is used in an expression, a descriptor
of the identifier is placed on the evaluation stack.

If either <identifier> or <increment-amount> has a length greater than 24 bits, only the rightmost
24 bits are evaluated. If either <identifier> or <increment-amount> has a length less than 24 bits,
<identifier > or <increment-amount> is padded with leading zeros. Character strings are treated as
bit strings.

SDL and UPL Syntax:

— BUMP <identifier> |

BY <increment-amount>

Syntax Semantics:

identifier
This identifier can be any valid SDL/UPL identifier and specifies the field to be incremented.

increment-amount
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
number and specifies the amount to increment < identifier>.

BY
The keyword BY specifies that <increment-amount> follows.
Examples:
EUMP X5 Z Add 1 to Xe.
BUMP X B8Y 43 2 Add 4 to Xe.
EUMP X BY Z7 # Add the value c¢f ¢ to X.
A 3= BUMP X BY Z; %4 Add the value cf 7 to X» assign
¥ the sum to ¥» ard assigr the value
¥ of X to A.
IF CoUMP X Y Z) EGL Z2ERQ 2 Add the value cf Z to X and store
THEN sae 2 in X» and then perform the comparisone
ELSE eee 3

BUMP A FY § 3= C3 Assign the vatue of C to B and

then add the value cf C to A.

Notice that the value of C is added to
A tecause of the replacement delete

left part operatore.

AR A e N

X 3= PUMP A BY 83 = (5

.
>

fepltace B by the vatue cf C» delete
Bs add the valie of C tc A» and assign
the value to A and to Xe

3 e

1137833 9-11

B 1000 Systems SDL/UPL Reference Manual
Verbs

BUMP

Identifier X is incremented by 1
and X i1s passed to nrocedure PROC_B.

>

PROC_B CEUMP X5

~N

Jdentifier X is incremented by 1

and the value of X is passed to
procedure PRUC_B. The extra set of
parentheses causes the value to be
passed tc PF(OC_B instead of the name
X

PROC_B (CRUMP X))3;

A N X AP W

»

Example Program:
DECLARE NUMBER FIXEDs
NUMBER == 05

DO FOREVER?
IF (BUMP NUMBER) > 10 THEN UNDO’
DISPLAY CONVERT (NUMBERes CHARACTER)?
END?

STOoP,
FINI?

Z This example program uses the BUMP verb to increment

X a number by one. The resulting value of the number is

Z displayed on the 0DT. The program increments and displays
Z the number ten times anrd goes to end of joba

Output from the Example Program:

BUMPO =6501 +0000001
BUMPO =6501 +0000002
BUMPO =6501 +0000003
BUMPO =6501 +0000004
BUMPO =6501 +000000S
BUMPO =6501 #0000006
BUMPO =6501 #0000007
BUMPD =6501 +0000008
BUMPO =6501 +0000009
BUMPO =6501 ¢0000010

PTE NP NN

9-12

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

CHANGE

The CHANGE verb causes the SDL/UPL program to dynamically modify the attributes of a file dur-
ing the execution of a program. The CHANGE verb must be specified after the file is declared. The
change does not become effective until the file is opened. If the file to be changed is opened when
the CHANGE verb is performed, the change is not effective until the file is closed and reopened.

Only those file attributes listed in the CHANGE verb are modified. Those omitted remain as previously
set.

To effectively modify the attributes of a file, use the following procedure.

1. Close the file with a file attribute which causes the memory space for the File Information
Block (FIB) to be released. If the memory space for the FIB is not released, the MCP does
not rebuild the FIB, and any attempt to change the file attribute is disallowed. The following
examples show four ways to close a file so that the memory space for the FIB is released.

CLOSE FILE_A WITH LOCK;
CLOSE FILE_B WITH RELEASE;
CLOSE FILE_C WITH CRUNCH;
CLOSE FILE_D WITH PURGE;

Modify the desired file attributes using the CHANGE verb.
Open the file explicitly by using the OPEN verb or implicitly by using the READ or WRITE
verbs.

w N

Refer to Table 9-1 for a complete description of the file attributes that can be specified with the
CHANGE verb.

SDL and UPL Syntax:

.

—— CHANGE < file-identifier=> TO (<Zattribute> : = <value> —); =

Syntax Semantics:

file-identifier
This file identifier can be any valid SDL/UPL file identifier and specifies the file to be modified.

attribute
This field can be any valid file attribute and specifies the file attribute to be modified. Refer to

FILE in Section 4 of this manual for a complete list of the valid file attributes.

value
This field can be any valid SDL/UPL number, identifier, or expression that returns a value and
specifies the file attribute value.

Table 9-1 shows all the valid values for each file attribute.

1137833 9-13

B 1000 Systems SDL/UPL Reference Manual

CHANGE

Verbs

Table 9-1. Valid File Attribute Values

File
Attribute
ALL__AREAS__AT__OPEN
AREA__BY__CYLINDER
BLOCKS__PER__AREA
BUFFERS

DEVICE

END_OF_PAGE_ACTION

EU__DRIVE

EU__INCREMENT

EU__INCREMENTED

EU__SPECIAL

FILE__ID

FILE__TYPE

9-14

Value

B2 =0 =0

< number-of-buffers >

< hardware variant >
CAT <hardware type>

0

1
< drive-number >

< drive-number >

0

1

0
1

‘¢ < file-identifier >’

Oor9
7

Description

Resets the attribute.
Sets the attribute.

Resets the attribute.
Sets the attribute.

Specifies the blocks per
area for the file.

Specifies the number of
buffers.

Refer to Table 8-2 for
a complete list of the
hardware variants and
hardware types.

Resets end-of-page
reporting.
Sets end-of-page reporting.

Specifies the disk drive
number. EU__SPECIAL and
EU_INCREMENTED must
be set.

Specifies the disk drive
number. EU__SPECIAL and
EU_INCREMENTED must
be set.

Resets
EU__INCREMENTED.
Sets EU__INCREMENTED.

Resets EU__SPECIAL.
Sets EU__SPECIAL.

Specifies the file identifier
for the file.

Specifies DATA file type.
Specifies INTERPRETER
file type.

Specifies CODE file type.
Specifies INTRINSIC file
type.

B 1000 Systems SDL/UPL Reference Manual

Verbs

CHANGE

Table 9-1. Valid File Attribute Values (Cont)

File
Attribute

INVALID__CHARACTERS

LABEL__TYPE

LOCK

MULTI_FILE__ID

MULTI_PACK

NUMBER__OF__AREAS

NUMBER__OF__STATIONS

OPEN__ON__BEHALF__OF

1137833

Value

‘“ <multi-file-id >’

Description

Reports all lines containing
invalid characters.

Reports all lines containing
invalid characters and stops
the program.

Reports once, that the file
contains invalid characters.
Does not report that the
file contains invalid
characters.

Use ANSI standard label.
File is unlabeled.

Use Burroughs standard
(ANSI) label.

Resets LOCK.
Sets LOCK.

Specifies the multifile
identifier for the file.

Places file on single disk
pack.

Places file on multiple disk
packs.

Specifies the number of disk
areas.

Specifies the maximum
number

of stations for the remote
file. The value of n can
range from 0 to 999.

Resets the
OPEN__ON__BEHALF__OF
boolean.

Sets the
OPEN__ON__BEHALF__OF
boolean.

9-15

B 1000 Systems SDL/UPL Reference Manual

CHANGE

Verbs

Table 9-1. Valid File Attribute Values(Cont)

File
Attribute

OPEN__OPTION

OPTIONAL
PACK__ID

PARITY

QUEUE_FAMILY__SIZE

QUEUE_MAX__MESSAGES

REMOTE__HEADERS

RECORDS_PER_BLOCK

RECORD__SIZE

REEL
REMOTE_KEY

SAVE

9-16

Value

12-bit field

0
1

‘“ < pack-identifier >’

0
1

Description

Bit 0 — INPUT

Bit 1 — OUTPUT

Bit 2 — NEW

Bit 3 -~ PUNCH

Bit 4 — PRINT

Bit 5 — NO_REWIND,
INTERPRET

Bit 6 — REVERSE,
STACKERS

Bit 7 — LOCK
Bit 8 — LOCK__OUT

File must be present.
File is optional.

Specifies the disk pack
identifier.

Specifies odd parity
checking.
Specifies even parity
checking.

Specifies the number of
subqueues in the queue file.

Specifies the maximum
number of messages that the
file can contain.

Resets the headers boolean
for remote files.

Sets the headers boolean
for remote files.

Specifies the number of
records per block for the
file.

Specifies the number of
bytes per record.

Specifies the reel number.

Remote key is present on
all read and write operations
on the file.

Remote key is not present.
Specifies the number of
days

to save the file.

B 1000 Systems SDL/UPL Reference Manual

Verbs

CHANGE

Table 9-1. Valid File Attribute Values (Cont)

File
Attribute

SERIAL

TRANSLATE

TRANSLATE__FILE

TRANSLATION

USE__INPUT_BLOCKING

VARIABLE

WORK__FILE

1137833

Value

6-character string

0
1

‘¢ < file-identifier >’

@(1)000@

@(1)001 @
@(1)010@

0
1

Description

Specifies the tape serial
number.

Resets translate.
Sets translate.

Specifies the name of the
translate table file
identifier.

Specifies EBCDIC
translation.

Specifies ASCII translation.
Specifies BCL translation.

Takes attributes from file
declaration.
Takes attributes from disk
file header.

File contains only
fixed-length records.
File contains
variable-length records.

Does not insert job number
in file identifier.

Inserts job number in file
identifier.

9-17

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Table 9-2 shows the hardware code and variant for each hardware device type. If the device-type name
has an asterisk (*) character on the left, the name is not a valid spelling for use with the CHANGE
verb. The value is a 10-bit value where the leftmost four bits are the variant and the rightmost six
bits are the hardware code.

Table 9-2. Valid DEVICE Type Values

Hardware Code Variant
Device Type Name (bits 4-9) (bits 0-3)
* DATA RECORDER (80 column) 01
CARD_ PUNCH 02 (Same as PRINTER)
CARD__PUNCH FORMS 02 (Same as PRINTER FORMS)
PUNCH 02 (Same as PRINTER)
PUNCH FORMS 02 (Same as PRINTER FORMS)
* FDC 1 04
READER_PUNCH PRINTER 05 (Same as PRINTER)
READER_PUNCH__PRINTER FORMS 05 (Same as PRINTER FORMS)
PUNCH__PRINTER 05 (Same as PRINTER)
PUNCH__PRINTER FORMS 05 (Same as PRINTER FORMS)
PAPER__TAPE__READER 06
PAPER TAPE READER 1 07
PRINTER 08 0 — BACKUP TAPE or DISK
1 — BACKUP TAPE
2 - BACKUP DISK
3 — BACKUP TAPE or DISK
4 — HARDWARE ONLY
5 — BACKUP TAPE ONLY
6 — BACKUP DISK ONLY
7 — BACKUP TAPE or DISK
only
PRINTER FORMS 08 8 + (PRINTER Variant)
READER SORTER 2 09
SORTER__READER 10
READER__SORTER 10
DISK__FILE (any head per 11
track disk)
DISK__FILE (1A, 1C, 12 (Same as DISK)
system-memory head per '
track disk)
DISK (disk cartridge
control 2 or 3) 13 (Same as DISK)
DISK (disk cartridge 14 (Same as DISK)
control 1)
DISK__PACK (any 225, 205, 15 (Same as DISK
or 206 disk pack)
DISK__ PACK 16 (Same as DISK)
DISK (any disk) 17 0 -- Serial
1 - Random
* 5-N DISK 18 (Same as DISK
CARD__READER (96 column) 19

9-18

B 1000 Systems SDL/UPL Reference Manual

Verbs
CHANGE
Table 9-2. Valid DEVICE Type Values (Cont)
Hardware Code Variant
Device Type Name (bits 4-9) (bits 0-3)
PAPER_TAPE__PUNCH 20 (Same as PRINTER)
PAPER_TAPE__PUNCH FORMS 20 (Same as PRINTER FORMYS)
CARD__READER (80 column) 21
CARD_READER 21
* SPO (supervisory printout) 22
* ODT (operator display 23
terminal)
TAPE_NRZ (any 9-track 24
nonreturn-to-zero, tape
unit)
TAPE__7 (any 7-track 25
upright, tape unit)
TAPE__PE (any 9-track 26
phase-encoded, tape unit)
TAPE (any tape unit) 27
TAPE__9 (any 9-track 28
tape unit)
CASSETTE 30
PRINTER (printer control 5) 31 (Same as PRINTER)
PRINTER (printer control 5) 31 (Same as PRINTER FORMS)
DISK_PACK (206 and 207 32 (Same as DISK)
disk pack) '
PRINTER (printer control 7) 33 (Same as PRINTER)
PRINTER (printer control 7 33 (Same as PRINTER FORMYS)
PORT 60
QUEUE 61
* QUEUE FILE OLD 62
REMOTE 63
Examples:
CHANGE MY_FILE TU C(FILE_IC 3= "YOQUR_FILE™);
CHANGE LINE TO C(LAGFL_TYPE t= 2, ENC_OF_PAGE_ACTION 2= 1);
CHANGE CISK_FTILF TC (USE_IMNPUT_BLOCKING 2= 1, FILE_TYPE 3= 0);

1137833 . 9-19

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHANGE

Example Program:

FILE WORKFILE (DEVICE

ZIP ™SO OPEN"?

OPEN WORKFILE WITH NEW>

CLOSE WORKFILE WITH RELEASES

CHANGE NORKFILE TO CFILE_XD 3= "NEW"»
MULTI_FILE_ID 2= "MASTEK")?

OPEN NORKFILE WITH NEW?

CLOSE WORKFILE WITH RELEASES

ZIP "RO OPEN":

DISKs LABEL = T“MASTER®/%0LD");

SToe;

FINI?

Z The example program shous one way to change the name of a filee
%Z The program sets the MCP OPEN opticns opens the filer closes the
Z filer changes the external file~id of the filer reopens the

X file»r closes the filer resets the MCP OPEN option» and goes to

Z end of jobe The OPEN option is set in order to see the name of
X the file as it is opened by the MCP.

9-20

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHAR_TABLE

CHAR_TABLE

The CHAR_TABLE verb builds a 256-bit table string that describes a set-membership table, in which
every member of the set is specified in the table string. Non-graphic characters are denoted in their
hexadecimal (EBCDIC) form by concatenating bit strings into the table string. The table string gener-
ated by the CHAR__TABLE verb is a constant string that is built at compile time. Identifiers and ex-
pressions cannot be specified as elements of this table string.

The value of each character in the table string is used as its index into the table string. When a charac-
ter is a member of the set described by the table string, its corresponding bit in the table string is
set to @(1)1@. Position in the table string is based on the standard EBCDIC collating sequence.
The CHAR__TABLE verb is frequently used in conjunction with the REDUCE verb.

SDL and UPL Syntax:

S CAT

—— CHAR_TABLE (< EBCDICcharacters> ")
@< 2-hexadecimal-numbers™> @

Syntax Semantics:

EBCDIC-character
This field can contain one or more EBCDIC characters and specifies the character(s) to be in-

cluded as member(s) of the table.

2-hexadecimal-number
The two digits that comprise a hexadecimal number are O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, and F. This number specifies the hexadecimal number to be included as a member of the

table.

Example:

CECLARE X EIT (2563
¥ 3= CHAR_TABLE (m™ABC" CAYT GFF3 CAT "123");

& ncsitions A» B» C» QAFFG, 1o

Z X is a 25e=bit string
] anc atl cther bit gcsitiors

2 2» arc X &re set tg
%

whe
» 1)1
are set to <(1)07.

r
a

{

1137833 9-21

i

B 1000 Systams SDL/UPL Reference Manual

Verbs
CHAR_TABLE
Example Program:
DECLARE

VONWEL_TABLE BIT (256)»
STRING REFERENCE »
ODT_INPUT CHARACTER (69)»
EQS_FLAG BIT (1);

VOWEL_TABLE 2= CHAR_TABLE ("AEIQUaeiocu™);
DO FOREVER;
DISPLAY C"ENTER CHARACTERS OR ENTER BLANK TO GO TO END-OF=-J0B™);
ACCEPT ODT_INPUTS
REFER STRING TO ODT_INPUT?
REDUCE STRING UNTIL FIRST /= = =;
ON EOS STOP?
REDUCE STRING UNTIL FIRST IN VOWEL_TABLE;?
ON EQS DO3
DISPLAY ("NO VOWELS IN YOUR INPUT™);
EOS_FLAG 2= aC1)13s
END3
IF NOT EOS_FLAG
THEN DISPLAY ("THE FIRST VOWEL IS ™ CAT SUBSTRCSTRING»0,1));
EOS_FLAG 2= 3(1)03;
END;

FINI?
Z This example program accepts input from the 0DT and displays
%X the first» English-language vowel encountered in the characters

X that are accepteds Entering a blank input message sends the
Z program to end of joba

9-22

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHARACTER_FILL
CHARACTER_FILL

The CHARACTER__FILL verb causes the leftmost eight bits of the source field to be written through-
out the destination field.

SDL and UPL Syntax:

— CHARACTER_FILL (<destination>, <source>);

. .

Syntax Semantics:

destination
This field can be any valid SDL/UPL identifier and specifies the name of the destination field.
Array elements, records, structures, and simple identifiers are valid destination fields for <desti-
nation>.

source
This field can be any valid SDL/UPL literal, identifier, or expression that returns a value and
specifies the value to be filled into <destination>. Only the leftmost eight bits (one character)
of <source> are used.

Examples:
CECLASNE
ARRAY(10) CHARACTER (5)»
FIELD CHARACTER (1)
RECCHC
FILL_FECCHT
CHAR_FIELL CHARACTER (1)
FIXEC_FTELC FIXFD,
FIT_FTIELLC_24 EIT (24)»
EIT_FIELC_1C EIT (10);
CHARACTEFR_FJILL (ARRAY(E), " "); Y Fills etement S5 of array

identifier ARFAY with blank
%Z characterse.

e

CHAFACTEF _FILL (FIELD» a004q)5 ¥ Fills FJIELD with hexacecimal
X value ecLal tc aCCa.
CHARACTER_FILL (FILL_RECCKE» "A®™)5 % Fills FILL_FECORD with
%Z the character 1A,

1137833 9-23

B 1000 Systems SDL/UPL Reference Manual
Verbs

CHARACTER_FILL

Example Program:

DECLARE
ACCEPT_FIELD CHARACTER (72)»
DISPLAY_FIELD CHARACTER (72)5

DO FOREVER?
DISPLAY {("ENTER FILL CHARACTER OR BYE TO GO TO END OF JOB")>
ACCEPT ACCEPT_FIELD?
IF ACCEPT_FIELD = "BYE"™ THEN UNDO’?
CHARACTER_FILL CODISPLAY_FIELD, ACCEPT_FIELD)S
DISPLAY (DISPLAY_FIELD)?

ENDS

STOP;

FINI>

X This example program accepts characters from the 0DT. If BYE
Z is entereds the program goes to end of jobs The program uses
%X the CHARACTER_FILL verb to fill the DISPLAY_FIELD field.

Z The DISPLAY_FIELD field is then displayed on the 0DTa.

9-24

B 1000 Systems SDL/UPL Reference Manual

CLEAR

Verbs

CLEAR

The CLEAR verb moves zeros (0) to the array if the array is declared with a data type equal to BIT
or FIXED. It also moves blanks to the array identifier if the array is declared with a CHARACTER

data type.

The CLEAR verb is not valid for paged arrays.

SDL and UPL Syntax:

[~

—- CLEAR <array-identifier>

Syntax Semantics:

array-identifier

.

.

This identifier can be any valid SDL/UPL array identifier and specifies the array to be cleared.

Example 1:

CECLAKE TAELE (10) CHFARACTERS

CLEAR TABLE

Example 2:

CECLAKE TAELE (10)
WOhK_ArRAY (20)
CLEAF TAPLE, WLCHEK_ARFRLYS

1

1137833

CHARACTERS
FIXELDS

LS A S

X Moves blank characters to the

% array labeled TAELE.

Moves blank characters to the
array tabeled TABLE and moves

2ercs to the array labeled
WCRK_ARRAY.

9-25

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLEAR

Example Program:

DECLARE CHAR_ARRAY (2) CHARACTER (1),
FIXED_ARRAY (2) FIXED>

CHAR_ARRAY (0) == “A";

CHAR_ARRAY (1) z= "B«;

DISPLAY (*THE CONTENTS OF CHAR_ARRAY BEFORE CLEAR ARE * CAT a7Fa
CAT CHAR_ARRAY (0) CAT 37Fa CAT * AND ™ CAT a7Fa CAT
CHAR_ARRAY C1) CAT arfFad);

FIXED_ARRAY (0) := 111111}

FIXED_ARRAY (1) == 2222225

DISPLAY ("THE CONTENTS OF FIXED_ARRAY BEFORE CLEAR ARE " CAT a7Fa
CAT CONVERT C(FIXED_ARRAY C0)» CHARACTER) CAT a7Fa CAT
" AND " CAT 37F3 CAT CONVERT (FIXED_ARRAY (1)» CHARACTER)
CAT a7Fa);

CLEAR CHAR_ARRAY, FIXED_ARRAY:

DISPLAY C("THE CONTENTS OF CHAR_ARRAY AFTER CLEAR ARE ™ CAT a7Fa
CAT CHAR_ARRAY (0) CAT 37F3 CAT " AND ™ CAT 37Fa CAT
CHAR_ARRAY (1) CAT 37Fa)s

DISPLAY (®THE CONTENTS OF FIXED_ARRAY AFTER CLEAR ARE " CAT 37F3
CAT CONVERT (FIXED_ARRAY (0)» CHARACTER) CAT 37F3 CAT
" AND ™ CAT a7F3 CAT CONVERT (FIXED_ARRAY «(1)» CHARACTER)
CAT Q7Fa)?

DISPLAY (*GUOD BYE")>

STOP>

FINI?

Z This example program uses the CLEAR verb to clear two arrays
2 and displays the value of each array before and after the
X CLEAR verb is performed.

Output from Example Program:

CLEARO =6912 BO0J. PP=4» MP=4 TIME = 15:28:37.0
X CLEARO =6912 THE CONTENTS OF CHAR_ARRAY BEFDRE CLEAR ARE “A™
AND "B"™

X CLEARO =6912 THE CONTENTS OF FIXED_ARRAY BEFORE CLEAR ARE -+
0111111™ AND ™¢0222222"

Z CLEARO =6912 THE CONTENTS OF CHAR_ARRAY AFTER CLEAR ARE = =
AND = ™

X CLEARD =6912 THE CONTENTS OF FIXED_ARRAY AFTER CLEAR ARE ™+¢0
000000™ AND "+0000000"

X CLEARO =6912 GOO0OD BYE

CLEARO =6912 EO0Je TIME = 15228:57.2

9-26

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLOSE
CLOSE

The CLOSE verb explicitly terminates program control over a file.

If there are no close attributes specified with the CLOSE verb, the program gives up control of the
file to the MCP and the memory space is not released. If a read or write operation is attempted on
the file, the file is reopened with the existing FIB. Even if an explicit open is done, the FIB is not
rebuilt.

An implicit close is performed by the MCP when the program goes to end of job and when the file
was not explicitly closed by the program. An implicit close with release is performed unless the attri-
butes in the FILE declaration override the RELEASE close attribute.

SDL and UPL Syntax:

———CLOSE —1— < file-identifier>
e < switch-file-identifier> (<index>) WITH

- CODE_FILE '
{— CRUNCH /
— IF_NOT_CLOSED
—— LOCK
—— NO_REWIND
— PURGE
— REEL
—— RELEASE
REMOVE

L— RroLLOUT

Syntax Semantics:

file-identifier
This file identifier can be any valid SDL/UPL file identifier and specifies the file to be closed.

switch-file-identifier
This file identifier can be any valid SDL/UPL switch file identifier and specifies the file to be
closed.

WITH
The keyword WITH is optional and specifies that .close keyword options are to follow.

CODE__FILE

The keyword CODE__FILE causes the SDL/UPL program to notify the MCP to close a file as
a code file. A code file is a file that can be executed on the B 1000 computer system.

1137833 9-27

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLOSE

CRUNCH
The keyword CRUNCH causes the disk file header to be modified such that the AREAS file attri-
bute is assigned a value of 1 and the BLOCKS PER AREA file attribute is assigned the actual
size used. Also, the CRUNCH keyword causes the SDL/UPL program to notify the MCP to re-
lease all memory space used for the file and to enter the file name into the disk directory. The
CRUNCH keyword applies only to disk files that are opened with the OUTPUT and NEW file
attributes and to those that have only one area allocated.

IF__NOT__CLOSED
The keyword IF__NOT_CLOSED prevents the attempted close of an unopened file. The MCP
terminates a program that attempts to close a file that is not open.

LOCK
The keyword LOCK causes the SDL/UPL program to notify the MCP to enter the file name
into the disk directory and to release all memory space used for the file.

NO_REWIND
The keyword NO_REWIND causes the SDL/UPL program to notify the MCP to close a tape
file without rewinding the tape.

PURGE
The keyword PURGE applies only to disk and tape files.

For disk files, PURGE causes the SDL/UPL program to notify the MCP to remove the file name
from the disk directory, to release all memory space used for the file, and to return the disk
space used by the file to the DISK.AVAILABLE table.

For tape files, PURGE causes the SDL/UPL program to notify the MCP to rewind and scratch
the tape.

REEL
The keyword REEL causes the SDL/UPL program to notify the MCP to close the current reel
of a multireel tape file and leave the actual file open.

RELEASE
The keyword RELEASE applies only to disk and tape files.

For disk files, the RELEASE keyword causes the SDL/UPL program to notify the MCP to re-
lease all the memory space used for the file and remove the file name from the disk directory.
If the file is a new disk file, the RELEASE keyword does not lock the disk file in the disk direc-
tory. The LOCK keyword must be specified in order to lock a new disk file in the disk directory
when the file is closed.

For tape files, the RELEASE keyword causes the SDL/UPL program to notify the MCP to re-
wind the tape and leave the tape in a ready state.

REMOVE
The keyword REMOVE causes the SDL/UPL program to notify the MCP to check the disk di-
rectory for a duplicate file name. If a duplicate file name is found, the MCP removes the old
entry and updates the disk available table on the old file’s disk pack.

9-28

ROLLOUT

B 1000 Systems SDL/UPL Reference Manual
Verbs

CLOSE

The keyword ROLLOUT causes the SDL/UPL program to notify the MCP that the file is to
be rolled out to disk.

The keysymbol comma (,) is optional and is used to separate the options of the CLOSE verb.

The keysymbol virgule (/) is optional and is used to separate the options of the CLOSE verb.

Examples:

CLOSE MASTERFILF;
CLCSE LINE RELEASE, IF_NOT_CLOSECS
CLCSE WCHFKFILE PURCE;

CLUSE TAPEFILE NO_REWINCS

CLOSE CISKFILE CRUNCE LOCK;

Example Program:

FILE LINE
DISK
CARD
TAPE

OPEN LINE
OPEN DISK
OPEN CARD
OPEN TAPE

ZIP S0 CLOSs"?

(DEVICE = PRINTERs, RECORDS = 132/1)»
(DEVICE = DISK, RECORDS = 180/20)»
(DEVICE = CARD_READER» RECORDS = 80/1)»
(DEVICE = TAPE_PE» RECORDS = 180/1)5
WITH CGUTPUT NEWs

WITH OUTPUT NEW LOCKS>

WITH INPUT?

WITH OQUTPUY NEW?

CLOSE LINE WITH RELEASE IF_NOT_CLOSEC?

CLOSE DISK WITH

CRUNCH REMOVE>

CLOSE CARD WITH RELEASE IF_NOT_CLOSED?

CLOSE TAPE WITH

ZIP "RO CLOS3"3?

STOP3?

FINIS

REEL?

e

N e

Declares the
files LINE» DISK»
CARD» and TAPE.

Opens the files
LINE» DISKs CARD»
anﬂ TAPE.

Sets the MCP CLOS
option.

Closes the files
LINEs DISK< CARD»
and TAPE.

Resets the MCP
CLOS option.

Z This example program shows various ways to close files of

2 different device types. The MCP CLOS option is set to show

X how the MCP actuatly closes the file as a result of performing
%2 the CLOSE verb.

1137833

9-29

B 1000 Systems SDL/UPL Reference Manual
Verbs

COMMUNICATE_WITH__GISMO

The COMMUNICATE_WITH__GISMO verb is used exclusively by the MCP, or by an SDL program
that is to run without the MCP to communicate with GISMO. If an SDL program uses this verb while
the MCP is running, the system halts with the L-register equal to @0D0040@ (A program other than
the MCP attempted a COMMUNICATE_WITH_GISMO or GISMO_COMMUNICATE
(T=LIMIT_REGISTER).

The value of <communicate> is made non-self-relative by pushing the value to the value stack, if
necessary. The absolute address of <communicate> is stored into the T-register and its length is stored
into the L-register. The appropriate swapper value is stored in the X-register and control is passed to
GISMO. Any value returned by GISMO is described by the same descriptor on the evaluation stack
that was used to pass a value to GISMO.

SDL Syntax:

—— COMMUNICATE_WITH_GISMO (<cornmunicate>) ;

Syntax Semantics:
communicate

This field can be any valid SDL literal, identifier or expression and specifies the information to
be passed to GISMO.

Example:

CECLARE GISWMC_INFC EIT (243
GISNMC_INFQ 2= O;

COMMUNICATE_WITH_CISMC (ab4a CAT 31111113);

STCP;
FINI/

% This example perforas the COMMULNICATE_WITH_CISMC
Z vert to psss J44111111: to GISHC.

9-30

—

B 1000 Systems SDL/UPL Reference Manual
Verbs

COMMUNICATE

COMMUNICATE

The COMMUNICATE verb passes control to the MCP. The information stored in < MCP-communi-
cate> is given to the MCP to act upon.

SDL Syntax:

—— COMMUNICATE (<MCP-communicate>>) ; ‘l
Syntax Semantics:
MCP-communicate

This field can be any valid SDL literal, identifier, or expression that returns a value and it must
specify a valid MCP communicate.

1137833 9-31

B 1000 Systems SDL/UPL Reference Manual
Verbs

COMPILE__CARD__INFO

The COMPILE__CARD__INFO verb stores the information used to initiate the compilation of this
program into < destination>.

The following is the format of the information that is stored in < destination>.

Item Data Type Length
OBJECT NAME CHARACTER 30
EXECUTE TYPE CHARACTER 2
COMPILER PACK IDENTIFIER CHARACTER 10
COMPILER INTERPRETER NAME CHARACTER 30
COMPILER INTRINSIC NAME CHARACTER 10
COMPILER PRIORITY CHARACTER 2
COMPILER SESSION NUMBER CHARACTER 6
COMPILER JOB NUMBER CHARACTER 6
COMPILER 1ST AND 2ND NAMES CHARACTER 20
COMPILER CHARGI: NUMBER CHARACTER 7
FILLER CHARACTER 1
COMPILATION DATE AND TIME BIT 36
FILLER BIT 4
COMPILER USERCODE CHARACTER 10
COMPILER PASSWCRD CHARACTER 10
COMPILER PARENT JOB NUMBER CHARACTER 4
COMPILER PARENT QUEUE ID CHARACTER 20
COMPILER__LS__BOOLEAN CHARACTER 1
SECONDS__BEFORE__DECAY CHARACTER 4
PRIVILEGED CHARACTER 1
COMPILER_RESTRICTIONS CHARACTER 2
SDL and UPL Syntax:
—— COMPILE_CARD_INFO (<destination>") ; {

Syntax Semantics:

destination
This field can be any valid SDL/UPL identifier and specifies the data name in which to store

the compile card information.

Example:

CECLARE CUMPILE&_INFCRMATICN CHARACTER (1€1); % Stores the conmpile

CCMPILE_CARLD_INFQ (CCMPILER_INFCRMATICN) S ¥ card irfcrmation
Z into identifier
2 COMPILER_INFOFMATION.

9-32

SDL/UPL Reference Manual
Verbs

B 1000 Systems

COMPILE_CARD_INFO

Example Program:

DECLARE

COMPILE_

DISPLAY
DISPLAY
DISPLAY
DISPLAY

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

DISPLAY
DISPLAY

DISPLAY
DISPLAY
DISPLAY

DISPLAY

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
5T0P5

1137833

01 ccI CHARACTER»
03 OBJECT_NAME CHARACTER €30)»
03 EXECUTE_TYPE CHARACTER (2)»
03 COMPILER_PACK_ID CHARACTER (10).»
03 COMPILER_INTERPRETER_NAME CHARACTER (30),
03 COMPILER_INTRINSIC_NAME CHARACTER (10)»
03 COMPILER_PRIORITY CHARACTER (2)»
03 COMPILER_SESSION_NUMBER CHARACTER (6)»
03 CUMPILER_JOB_NUMBER CHARACTER (6)»
03 COMPILER_1ST_AND_2ND_NAMES CHARACTER (20)»
03 COMPILER_CHARGE_NUMBER CHARACTER (7)»
03 FILLER CHARACTER (1),
03 COMPIULATION_DATE_AND_TIME BIT (36)»

03 FILLER - BIT (4)»

03 COMPILER_USERCODE CHARACTER (10),
03 COMPILER_PASSHORD CHARACTER (10),»
03 COMPILER_PARENT_JOB_NUMBER CHARACTER (4)»

03 COMPILER_PARENT_QUEUE_TID CHARACTER (20)»
03 COMPILER_LS_BOOLEAN CHARACTER (1),

03 SECONDS_BEFORE_DECAY CHARACTER C4)»

03 COMPILER_PRIYILEGED CHARACTER (1)»

03 COMPILER_RESTRICTIONS CHARACTER (2)5

CARD_INFO (CCI);

("OBJECT NAME IS ™ CAT OBJECT_NAME)S
("EXECUTE TYPE IS "™ CATY EXECUTE_TYPE)?
("COMPILER PACK IDENTIFIER IS " CAT COMPILER_PACK_ID);
("COMPILER INTERPRETER NAME IS ™ CAT
COMPILER_INTERPRETER_NAME)D S
("COMPTILER INTRINSIC NAME IS " CAT COMPILER_INTRINSIC_NAME)S
("COMPILER PRIORITY IS ™ CAT COMPILER_PRIORITY)?
("COMPILER SESSION NUNBER IS ™ CAT COMPILER_SESSION_NUMBER)?
("COMPILER JOB NUMBER IS ® CAT COMPILER_JOB_NUMBER);
("COMPILER 1ST AND 2ND NAMES OF RUNNING PROGRAM IS " CAT
COMPILER_1ST_AND_ZND_NAMES);
(*CUMPILER CHARGE NUMBER IS " CAT COMPILER_CHARGE_NUMBER);
("COMPILATION DATE AND TIME IS ™ CAT
CONVERY C(COMPILATIUN_DATE_AND_YIME» CHARACTER))>
("COMPILER USERCODE IS ™ CAT COMPILER_USERCODE)?
("COMPILER PA3SHWORD IS ™ CAT COMPILER_PASSWORD)S
("COMPILER PARENT JUB NUMBER IS ™ CATY
COMPILER_PARENT_JOB_NUMBER);
("COMPILER PARENT QUEUE IDENTIFIER IS " CAT
COMPILER_PARENT_QUEUE_ID)>
("COMPILER LS BUOLEAN IS ™ CAT COMPILER_LS_BOOLEAN);
("SECONDS BEFORE DECAY IS = CAY SECONDS_BEFORE_DECAY)?
("COMPILER PRIVILEGED IS ™ CAT COMPILER_PRIVILEGED)?
(*COMPILER RESTRICTIONS IS ™ CAT COMPILER_RESTRICTIONS)?
(“GO0D BYE™); \

9-33

B 1000 Systems SDL/UPL Reference Manual

COMPILE_CARD_INFO

FINI>

Verbs

% This example program uses the COMPILE_CARD_INFO verb and

% displays the

Output from Example Program:

CO_CA_INFG =7102 BOJ. PP=h,
OBJECT NAME IS

information on the 0ODT.

MP=4 TIME -

TYPE IS 01

PACK IDENTIFIER

16:30246.2

{5 USER

INTERPRETER NAME IS

INTRINSIC NANE IS
PRIORITY IS 04
SESSION NUMBER IS

000000

JOB NUMBER IS 007102
15T AND 2ND NAMES OF RUNNING PROGRAM IS

CHARGE NUMBER IS 0999999
COMPILATION DATE AND TIME IS 58508F4D1

USERCODE 1S
PASSHORD IS
PARENT JCB NUMBER IS 7000

CO_CA_INFO

SDL

SOL.INTRIN

PARENT QUEUE IDENTIFIER IS SMCS

LS BOOLEAN IS 1

SECONDS BEFORE DECAY IS 0029

COMPILER PRIVILEGED IS 1

COMPILER RESTRICTIONS IS 00

%2 CO_CA_INFO =7102

% CO_CA_INFO =7102 EXECUTE
Z CO_CA_INFO =7102 COMPILER
% CO_CA_INFO =7102 COMPILER

ERP1N
% CO_CA_INFU =7102 COMPILER
% CO_CA_INFO =7102 COMPILER
% CO_CA_INFQO =7102 COMPILER
% CO_CA_INFO =7102 COMPILER
% CO_CA_INFO =7102 COMPILER
CO_CA_INFO

% CO_CA_INFO =7102 COMPILELR
Y CO_CA_INFO =7102

%X CO_CA_INFO =7102 COMPILER
%X CO_CA_INFO =7102 COMPILER
Y CO_CA_INFO =7102 COMPILER
% CO_CA_INFO =7102 COMPILER

0005

% CO_CA_INFO =7102 COMPILER
% CO_CA_INFO =7102

% CO_CA_INFO =7102

% CO_CA_INFO =7102

X CO_CA_INFO =7102 GOOD BYE
CO_CA_INFO =7102 EQJ. TINE

9-34

16231:10.5

INT

#£0000

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONSOLE_SWITCHES
CONSOLE__SWITCHES

The CONSOLE__SWITCHES verb places a 24-bit, self-relative value of the 24 console switches on the
top of the evaluation stack. This verb only applies to B 1720 computer systems.

SDL and UPL Syntax:

i S

—— CONSOLE_SWITCHES
Example:

DECLARE SWITCH_VALUES BIT (24)5 X2 Identifier SWITCH_VALUES is

SHITCH_VALUES 3= CONSOLE_SWITCHES? I assigned the current value of
Z the 24 console switches on the
2 B 1720 system.

Example Program:

DISPLAY ("THE CURRENT VALUE OF THE 24 CONSOLE SWITCHES EQUALS ™
CAT CONVERT (CONSOLE_SWITCHES» CHARACTER))

Output from Example Program:

SWITCHESO =5361 BOJ. PP=4s MP=4 TIME = 09:233230.1

Z SWITCHESO =5361 THE CURRENT VALUE OF THE 24 CONSOLE SWITCHES
EQUALS AAAAAA

SWITCHESO =5361 EUJ. TIME = 09:33335.2

1137833 9-35

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONTROL__STACK__BITS

The CONTROL__STACK__BITS verb leaves, on the top of the evaluation stack, a 24-bit, self-relative
value with a BIT data type. The BIT data type is the number of bits left in the control stack until
the control stack overflows.

SDL Syntax:
—— CONTROL_STACK_BITS I|
Example:

DECLARE BITS_LEFT BIT (24)7 X Assigns the identifier BITS_LEFT

BITS_LEFY 2= CONTROL_STACK_BITS? % the number of bits left on the
X control stack before overflow.

Example Program:

DISPLAY ("THE NUMBER OF BITS LEFT ON THE CONTROL STACK EQUALS -
CAT CONVERT C(CONVROL_STACK_BITS», CHARACTER));

Output from Example Program:

CONTROLO =5337 BOJ. PP=4» MP=4 TIME = 082353:32.5

X CONTROLO =5337 THE NUMBER OF BITS LEFT ON THE CONTROL STACK
EQUALS 002A0

CONTROLO =5337 EOJ. TIME = 083532367

9-36

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONTROL_STACK_TOP

CONTROL__STACK_TOP

The CONTROL_STACK_TOP verb returns a 24-bit value which is the base-relative address of the
next entry to be placed on the control stack.

SDL Syntax:

——— CONTROL_STACK_TOP |

Example:

DECLARE VOP_OF_STACK_ADDR BIT (24)5
TOP_OF _STACK_ADDR 3= CONTROL_STACK_TOP?

Identifier TUP_OF_STACK_ADDR
is assigned the value of the
next entry to be placed on
the control stack.

PN TR

Example Program:

DISPLAY ("THE ADDRESS OF THE NEXT ENTRY TO BE PLACED ON THE CONTROL™
CAT ™ EQUALS ™ CAT CONVERT (CONTROL_STACK_T0OP» CHARACTER))S

Output from Example Program:

CONTROLD =5349 BOJ. PP=4» MP=4 TINME = 09:12:225.2
X CONTROLO =5349 THE ADDRESS OF THE NEXT ENTRY TO BE PLACED ON THE

CONTROL EQUALS 002880
CONTROLO =5349 EO0J. TIME = 092:123230.5

1137833 9-37

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONVERT

The CONVERT verb causes < convert-value> to be changed from one data type to another. A data
type keyword must be specified.

The keynumbers 1, 2, 3, and 4 are used only with bit-to-character or character-to-bit conversions. The
keynumber specifies the number of bits in the bit string which correspond to a single character in the
character string. The default keynumber is 4, which produces a hexadecimal conversion.

A bit-to-character conversion does not return decimal digits. To convert a bit string to decimal digits,
store the bit string into a FIXED identifier, and then convert the FIXED identifier to a CHARACTER
identifier. The DECIMAL verb can be used for the decimal conversions.

The conversion of data from type FIXED to type CHARACTER results in a sign and seven printable
(EBCDIC) decimal numbers. The leading printable zeros and the arithmetic sign are not suppressed.

The following procedure must be performed to convert a field from data type CHARACTER to
FIXED.

1. <convert-value> (with a CHARACTER data type) is scanned from left to right until a sign
or non-space character is encountered. If the sign is negative, the FIXED number is expressed
in the complement form of 2.

. If a sign is encountered, it is noted and removed.

. After encountering a sign or nonspace character, only the rightmost seven characters of <con-
vert-value> are converted.

4. The rightmost four bits of each character are converted to a value between 0 and 15, inclusive.
The leftmost four bits of each character are ignored. Each value is then multiplied by its re-
spective ten’s position and sumrmed together. For example, the hexadecimal representation of
the characters ‘“‘AB5” is @(4)C1C2F5@. The rightmost four bits of each character is 125. The
2 is multiplied by 10, the 1 is multiplied by 100, and the sum of 5 + (2 * 10) + (5 * 100)
is 525. The leftmost (sign) bit is ignored for decimal values in excess of + 8,388,607 or
—8,388,608.

W N

9-38

B 1000 Systems SDL/UPL Reference Manual

Verbs
CONVERT
SDL and UPL Syntax:
—— CONVERT (<convert-value>, ———1— FIXED) {
BIT
— CHARACTER L’ '

N W A

yntax Semantics:

convert-value
This field can be any valid SDL/UPL literal, identifier, or expression that returns an addressable
item and specifies the value to be converted.

BIT
The keyword BIT specifies that the resulting value of <convert-value> is to be a BIT data type.

CHARACTER
The keyword CHARACTER specifies that the resulting value of <convert-value> is to be a
CHARACTER data type.

FIXED
The keyword FIXED specifies that the resulting value of <convert-value> is to be a FIXED
data type.

1
The keynumber 1 specifies the number of bits to be one and it is valid for character-to-bit and
bit-to-character conversions.

2
The keynumber 2 specifies the number of bits to be two and it is valid for character-to-bit and
bit-to-character conversions.

3
The keynumber 3 specifies the number of bits to be three and it is valid for character-to-bit and
bit-to-character conversions.

4

The keynumber 4 specifies the number of bits to be four and it is valid for character-to-bit and
bit-to-character conversions.

1137833 9-39

CONVERT

B 1000 Systems SDL/UPL Reference Manual
Verbs

Table 9-3 shows the possible data type conversion combinations.

Table 9-3. Data Type Conversion Combinations

Original Data Type
Data Type Desired Result
BIT BIT No change.
BIT CHARACTER Bits are converted to characters based on
bit group size. If no bit group size is
specified, the bit group size defaults to 4.
BIT FIXED The rightmost 24 bits are returned to the
expression.
CHARACTER BIT Characters are converted to bits based on
bit group size. If no bit group size is
specified, the bit group size defaults to 4.
CHARACTER CHARACTER No change.
CHARACTER FIXED The character expression is converted to a
FIXED data type. The rightmost 4 bits of
the 7 rightmost characters is converted to a
binary number. If the minus sign character
is the eighth character from the right, the
2’s complement of the 24-bit field is
returned.
FIXED BIT The data type is changed to BIT.
FIXED CHARACTER The numeric value of the expression is
converted to decimal numbers in 8-bit
EBCDIC character format. Leading zeros are
not suppressed. The result is a CHARACTER
data field of seven characters and a sign
character.
FIXED FIXED No change.
Example 1:
CONVERT (m=72581", FIXEL) 4 The value =-72581 is returnede.
Example 2:
CONVERT {(3C2)752a» CHAFACTER, 4) % The vatlue "1EA™ is returnede
Example 3:
CONVEFT (a2(1)11011a» FIXELD) 2 The value 27 is returnede.
Example 4:
COMVERT ("132. BIT, 2) 2 The vatue 3(2)1327 is returnede.

9-40

B 1000 Systems SDL/UPL Reference Manual

Verbs
CONVERT
Example 5:
CONYERT ("132%, EIT» 43 %2 The value 3(4)132% is returnede.
Example 6:
CORNERT (m2", EIT) Z The value AC4)22 is returnede.
Example 7:

Assume that the identifier CX contains a character whose binary value is @(1)00001111@ and
identifier B is declared as BIT (4).

8 2= CCAVERT C(CY» (HARPCTER, 4)7 % Identifier B is assigned the
%2 hexadecinal vatue afFa cr
72 a{id1tita.

Example 8:

Assume that the identifier CX contains a character whose binary value is @(1)00001111@ and
identifier B is declared as BIT (4).

§ 2= CUNYERT (CX» (HAR2(TERe 3); Icentifier B is assigned the
actal valee cf a{3)7a cr
a(1)1115. Only the rightmost
three tits ot identifier CX are

assigned to Be.

A N IR e 2

Example 9:
Assume identifier CARD contains the characters +4095 and FX is of data type FIXED.

FX 2= CUCNVEFT (CAKL» FIXED):? 2 Idertifier FX is sssigned the
%z hexadecimnal value aQCO7fFFa.

Example 10:

Assume identifier N is of data type FIXED with a value of +5 (000000000000000000000101) and
identifier B is of data type BIT (8) with a value of @BC@ or @(1)10111100@.

CUTPUT 2= "ENTRY MNCo " 2 This statement assiqrs to the
CAT CCAVERT (N» CHAFACTER) Z identifier OQUTPUT the vatue of
CAT ™ 1§ 4 "ENTRY NC. #G0CGCCOS IS 233C".

CAT CUNVERT (s CHARACTEE» 2)5

1137833 9-41

B 1000 Systems SDL/UPL Reference Manual
Verbs

CONVERT

In example 10, the literal value “ENTRY$NO.$”’, the result of converting identifier N, the literal value
““IS”’, and the result of converting identifier B, are made into a continuous string of data by using
the CAT operator. The result of converting the FIXED value contained in identifier N to a printable
character is + 0000005, with no suppression of the 0’s (zeros) or arithmetic sign. The result of convert-
ing the BIT value contained in identifier B, when using the character-to-quartal syntax as specified,

is as
10
2
te

follows:
i1 11 00 (binarv)
3 3 ¢ {aquartal)
F3 3 FO {(hexacecinrel character)

Example Program:

DECLARE
VALUE CHARACTER (16)»
B BIT (i6)»
F FIXED»
1 FIXED»
FLAG BIT (1)’
FOREVER?

DO

DISPLAY ("ENTER 16 1°S5 OR 0"S OR ENTER BYE TO GO TO EOJ™);
ACCEPT VALUE?
IF VALUE = %BYE™ THEN STOP>
FLAG == a(1)03;
I := 05
DO LOOP FOREVER?
IF ((SUBSTRCVALUE»I»1) = "1") OR (SUBSTR(VALUE.I»1) = "0"))
THEN IF (BUMP 1) > 1S5 THEN UNDC LOOP;?
ELSES
ELSE DOs
FLAG 2= 3(1)137
UNDO LOOP»
END?
END LOOPS>
IF FLAG = 3{1)02
THEN DO5
B 2= CONVERT (VALUE» BIT»,» 1);
2= CONVERT (B» FIXED)?
DISPLAY ("THE VALUE = " CAT C(CONVERT (F» CHARACTER)))s
ENDJ
ELSE DISPLAY ("THE VALUE ENTERED WAS NOT ALL 1°*S AND 0°S%)5

END>

FINI;

2 This example program uses the CONVERT verb to calculate

%X the decimal value of a l6=digit binary numbere. The

X program accepts from the 00T a binasry number with a data
Z type of CHARACTER and converts this field to a field with
X2 data type of BIT. The hit field is converted to a field
Z with a data type of FIXED which is converted to a data

X type of CHARACTER and displayed on the 00T.

9-42

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATA_ADDRESS

DATA__ADDRESS
The DATA__ADDRESS verb returns a 24-bit value that is the base-relative address of <identifier>.

SDL and UPL Syntax:

—— DATA_ADDRESS (<identifier>) Jl

Syntax Semantics:

identifier
This identifier can be any valid SDL/UPL identifier and specifies the field name from which the
address is to be determined.

Examples:
DECLARE
BIT_FIELD BIT (1),
CHARACTER_FIELD CHARACTER»
FIXED_FIELD FIXEDS
ADDRESS BIT 1{24);
ADDRESS 3= DATA_ADDRESS (BIT_FIELD)S ADDRESS is assigned the

N

address of BIT_FIELD.

ADDRESS is assigned the

ADDRESS 3= DATA_ADDRESS (CHAR_FIELD)’
address of CHAR_FIELD.

"~

ADDRESS is assigned the
address of FIXED_FIELD.

ADDRESS 3= DATA_ADDRESS (FIXED_FIELD);

N e

Example Program:

DECLARE FIELD BIT (1)7
DISPLAY ("THE ADDRESS OF FIELD IS =
CAT CONVERT (DATA_ADDRESSCFIELD)»CHARACTER,4))?
S$TapPs
FINIZ

X This example program disptays the base-relative address
%2 of identifier FIELD and goes to end of job.

1137833 9-43

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATA_LENGTH
The DATA_LENGTH verb returns the length of <data-item> in bits, regardless of the data type.

SDL Syntax:

—— DATA_LENGTH (<data-item>)
Syntax Semantics:

data-item
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the field in which to obtain the length.

Example:

LENGThR 2= DATA_LENCTH (8); Z ldentifier LENGTH 1s assiqred
Z tength of identifier A,

Example Program:

DECLAFRE F FIXEL>
C10 CHARACTER (1C)»
£E2C¢ EIT (20);

CISPLAY "THE LENGTFH OF TLENTIFIER F IS ™ CAT
CONVERT C(CATA_LENCGTH (F)» CHARACTER);

CISPLAY "THE LENGTH CF TLENTIFIER C10O IS ™ CATY
CCNVERT (DATA_LENGTH (C10)» CHAFACTERD;

CISFLAY “THE LENGTF CF IFENTIFIER B20 IS ™ CAT
COMVERT (DATA_LENGTIH (820)» CHFARACTER);

STGFP?

FINIS

Z This examcle preogran uses the CATA_LENGTH verb to find the
Z length of fixeds characterr anc bit fieldse

Output from Example Program:

D_LENGTRU =2145 BCJe PF=4» MF=4 TIME = 15:30:326.9

C_LENGTHG =2145 THE LEMGTH OF ICENTIFIER F IS5 0COO18
Z D_LENGTEC =2145 ThE LENGTH OF ICENTIFIER C10 IS C00CSO
Z D_LENGTHC =2145 THE LENGTH OF ICENTIFIER B2C IS COCC1l4
U_LENGTHL =2145 ECJe TINME = 1533024949

9-44

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATA_TYPE
DATA_TYPE

The DATA__TYPE verb returns a bit string representing the data type of <data-item>. A value of
@44@ represents a FIXED data field. A value of @48@ represents a CHARACTER data field. A
value of @40@ represents a BIT data field.

SDL Syntax:

— DATA_TYPE (<data-item>) l

Syntax Semantics:

data-item
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
data field in which to determine the data type.

Example:

TYPE 2= LCATA_TYPE (A)? % Identifier TYPE is assiqgned the
% data tvpe vatue of identifier A.

Example Program:

DECLARE F FIXED»
C10 CHARACTER (10)»
B20 BIT C20)3

OISPLAY “"THE DATA TYPE OF IDENTIFIER F IS ™ CATY
CONVERT (DATA_TYPE (F)» CHARACTER)?

DISPLAY "THE DATA TYPE OF IDENTIFIER C10 IS ™ CAT
CONVERT (DATA_TYPE (C10)» CHARACTER):

DISPLAY "THE DATA TYPE OF IDENTIFIER B20 IS ™ CAT
CONVERT (DATA_TYPE (B20)» CHARACTER)?

SToPs

FINI?

Z This example program displays the data type of fixed» characters
X and bit fields.

Output from Example Program:

D_TYPEO =2150 BOJ. PP=4» MP=4 TINE = 15:352327.6

X D_TYPEQ =2150 THE DATA TYPE OF IDENTIFIER F IS 000044
X D_TYPEO =2150 THE DATA TYPE OF IDENTIFIER C1l0 IS 000048
X D_TYPED =2150 THE DATA TYPE OF IDENTIFIER B20 IS 000040
D_TYPEO =2150 EOJ. TIME = 15335:36.9

1137833 9-45

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATE
The DATE verb returns a bit or character string containing the current (run time) date.

Specifying DATE or DATE (MONTH, CHARACTER) returns the same result.

SDL and UPL Syntax:

. N

—DATE
(DAY . BIT)
—— JULIAN ——— —— CHARACTER ——
—— MONTH ——— — DIGIT —
YEAR

Syntax Semantics:

DAY
The keyword DAY causes the program to return the current day, month, year in the DDMMYY

format, where DD is the day of the month, MM is the month, and YY is the year.

JULIAN
The keyword JULIAN causes the program to return the current year and julian day in the

YYDDD format, where YY is the year and DDD is the julian day of the year.

MONTH
The keyword MONTH causes the program to return the current month, day, and year in the

MMDDYY format, where MM is the month, DD is the day of the month, and YY is the year.

YEAR
The keyword YEAR causes the program to return the current year, month, and day in the

YYMMDD format, where YY is the year, MM is the month, and DD is the day of the month.

9-46

B 1000 Systems SDL/UPL Reference Manual

Verbs
DATE
BIT
The keyword BIT causes the program to return the DAY, JULIAN, MONTH, and YEAR specifi-
cations in the following formats:
DAY EIT (16),»
CC EIT (5),
My BIT (43>
YY EIT (7);
JULTAN EIT C1€)»
YY €17 (7)»
CCO BIT (95);
MONTH EIT (1€)»
Mp RIT (4),
CC EIT (5)»
YY EIT (7))
YEAFR EIT (16}
YY EIT (7)»
My BIT (4),
cC EIT (5);
DIGIT

The keyword DIGIT causes the program to return the DAY, JULIAN, MONTH, and YEAR
specifications in the following formats:

DAY BRIV (24)»
CL EIT (&}»
MM EIT (8]
Yy €17 (8);

SULTARN EIT €20).
Yy 817 (&),
CCO EIT (123

MONTH BIT (24)»
My BIT (E)»
L E17 (8)»
Yy €47 {8);

YEAR EIT (2t),
YY EiT (&),
MM OELIT (€D,
CC EIT (&);

1137833 9-47

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATE

CHARACTER

The keyword CHARACTER causes the program to return the DAY, JULIAN, MONTH, and
YEAR specifications in the following formats:

CAY EIT C4B),
CC €11 (1€,
M¥ OEIT (1)
Yy EIT (16);

JULTAN EIT (4C)»
YY EIT (162,
CED EIT (c4)3

VONTEH E1T (48),
¥ EILIT (1€),
CL EIT (1€)»
YY EI1T CLl€)s5

YLAFR EIT (4LB)»
YY EBIT (1¢€)»
H¥ EIT (1€).
CC EIT (1€)s

Table 9-4 shows the format and length of each option.

9-48

Table 9-4. Format and Length of each DATE Verb Option

Bit Digit Character

Option Format Length Length Length
JULIAN YY/DDD 7/9 2/3 2/3
MONTH MM/DD/YY 4/5/7 2/2/2 2/2/2
DAY DD/MM/YY 5/4/7 2/2/72 2/2/2

YEAR YY/MM/DD 7/4/5 2/2/2 2/2/2

NOTES
YY represents the year, DD or DDD represents the day, and MM represents
the month.

Digits are equal to four bits, which are two decimal digits per byte. Bytes
are 8 bits long.

Characters are equal to eight bits or one byte.

B 1000 Systems SDL/UPL Reference Manual
Verbs

DATE
Example:

DECLARE D BIT (24)»
J CHARACTER (40)»
M BIT (16)»
Y B8IT (24)5

DATECDAY» DIGIT)
DATECJULIAN, CHARACTER)>
DATECMONTH, BIT)?
CATECYEAR» DIGIT)?

< X WO
wonouu

the system"s date is December 3» 1979, then variables Ds J»
and ¥ have the following bit and hexadecimal values:

X -
=

= 3(1200000011000011000100112113
a(4)030A8F3

o
i

4(1)11110111111110011111001121110011111101113
ACA)FTFIFIF3IFTI

i

a(1)110000011100111123
AC4)AL1AFQ

i

4(1)10011111100000113
d(4)9F833

LR R R R R R R N R B N N N

-
b

1137833 9-49

B 1000 Systems SDL/UPL Reference Manual

Verbs
DATE
Example Program:
DECLARE
01 DAY_MONTH_YEAR»
03 D_DD CHARACTER (2)»
03 D_MM CHARACTER €2)»
03 D_YY CHARACTELR (2},
01 JULIAN_DATE»
03 J_YY CHARACTER (2)»
03 a_DD CHARACTER (3).,
01 MONTH_DAY_YEAR»
03 M_MM CHARACTER (2)»
03 M_DD CHARACTER (2)»
03 M_YY CHARACTER (2)»
01 YEAR_MONTH_DAY»
03 Y_YY CHARACTER (2)»
03 Y_MM CHARACTER (2)»
03 Y_DD CHARACTER (2)3

"

oo

ATE (DAY, CHARACTER)?

DAY_MONTH_YEAR D

DATE (MONTHs CHARACTER);
D

D

MONTH_DAY_YEAR
YEAR_MONTH_DAY
JULIAN_DATE

ATE (YEAR» CHARACTER)>
ATE C(JULIAN. CHARACTER)?

DISPLAY (“"THE JULIAN DATE IS ™ CAT J_YY CAT "/= CAT J_DD);

DISPLAY ("THE DAY/MONTH/YEAR IS * CAT D_DD CAT */* CAT D_MM
CAT "/" CAT D_YY);

DISPLAY ("THE MONTH/DAYZYEAR IS ™ CAT M_MM CAT "/ CAT M_DD
CAT */= CAT M_YY): /

DISPLAY (“THE YEAR/MONTH/BAY IS ® CAT Y_YY CAT =/ CAT Y_MM
CAT /" CAT Y_DD);

STOP5
FINI;

% This example program displays the current date in
Z the JULIAN» DAY» MONTH» YEAR formats on the 0ODT.

9-50

B 1000 Systems SDL/UPL Reference Manual
Verbs

DC_INITIATE_ IO
DC__INITIATE__IO

The DC__INITIATE__IO verb causes a data communications read or write operation for the port and
channel address specified by <port> and <channel>, respectively. It also uses the input/output (I/0)
descriptor address specified by < 1/0-descriptor-address>.

SDL Syntax:

4

~—— DC_INITIATE_10 (<port>, <channel>, <I/O-descriptor-address>) ;

Syntax Semantics:

port
This field can be any valid SDL literal, identifier, or expression that returns a binary value and
specifies the port on which the I/0 operation is to occur.

channel
This field can be any valid SDL literal, identifier, or expression that returns a binary value and
specifies the channel on which the 1/0 operation is to occur.

1/0-descriptor-address
This field can be any valid SDL literal, identifier, or expression that returns a 24-bit value and
specifies the base-relative address of the 1/0O descriptor.

Example:

CECLARE PGR1Y BIT (4)» X The ingut/output,
CEANNEL BIT (4)» Y defined by the I/0
CESC_ACLCRESS BIT (24)5 B %2 descripter at the

FLRT = 25 % address of identifier

CEANNEL = 05 Y DESC_AOLCKRESS» s

CESC_ACODFRESS 3= QCQ0FE235 Y initiated.

CC_INITIATE_YC (POFT» ChHAMNEL, L[EST_AUDRESS)S

1137833 9-51

B 1000 Systems SDL/UPL Reference Manual
Verbs

DEBLANK

The DEBLANK verb repeatedly increments the address field of the descriptor for < first-character >
until < first-character > describes a non-blank character.

SDL Syntax:

—— DEBLANK (<first-character>) ; |

Syntax Semantics:

first-character
This field can be any simple SDL identifier and specifies the first character to be examined.

Example:

CECLARE CATA CHARACTER (20)» %2 The reference identifier
FEF_LATA RCFERENCES REF_CATA contains the

CATA = " ABCDEFGHTIGKLMNO™S first non-tlank character

REFER REF_CATA TO SUBSTH (DATA, 929, 1); "A" after the DEBLANK verb

DEBLANK C(HEF_CATA); is rcerformede.

L I A 4

- Example Program:

DECLARE ODT_INPUT CHARACTER (50).
REFER_ODT REFERENCE?

DO FOREVER>
DISPLAY ("ENTER ANY 50 CHARACTERS OR ENTER B TO GO TO EOQJ™)3
ACCEPT ODT_INPUTS?
REFER REFER_ODT TO SUBSTR (ODT_INPUT», 0» 135

DEBLANK (REFER_ODT)?

IF REFER_ODT = "B™ THEM DOs
DISPLAY (*"GOOD BYE"™);
STOP>
ENDZ
DISPLAY ("THE FOLLOWING IS THE FIRST CHARACTER THAT IS NOT BLANK™);
DISPLAY (REFER_0ODT)?
END?
FINI?

Z This example program accepts from the ODT any 50=character
Z string and displays the first non—tlank character in the
X strings If B is enterede the program goes to end of job.

9-52

B 1000 Systems SDL/UPL Reference Manual
Verbs

DECIMAL
DECIMAL

The DECIMAL verb causes the value of <string> to be converted to a string of decimal digits. If
the value generated has a length greater than 24 bits, only the rightmost 24 bits are converted.

The number of characters returned is controlled by the value <string-size>. A maximum of eight
decimal digits can be returned, even if the value of <string-size> is greater than 8. If <string-size>
specifies fewer character positions than the total number of decimal digits in <string>, the resulting
decimal number is truncated on the left.

i

SDL and UPL Syntax:

— DECIMAL (<string>, < string-size>>) |
Syntax Semantics:

string
This field can be any valid SDL/UPL literal, identifier, or expression that generates a CHARAC-
TER data type and specifies the name of the field to be converted.

string-size
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
value and specifies the number of characters in <string> to be converted to decimal digits. The
range of value for <string-size> is from 1 to 8, inclusive.

Example 1:
NUMBEER 3= CECIMAL ("12345%»5); 2 Converts atl five characters of
Z the literal 12345 to the deciwsal
%2 digits 12345 and assigns them to
4 identifier NUMBER.,
Example 2:

MUKREFR = CECIMAL (FIELD_A»8);

e

Corverts eight of the characters

in FIELD_A to decimal digits
and assigns them to identifier

e

2 NUMBEF.
Example 3:
NUMBEF 2= X Evaluates the exgressions
BECIMAL CCEUMP FIELLC_E EY 3)»8)5 % converts eight of the characters

in the exgression te decimal
digitss ard assigns them to
NUMEEF «

N e e

Example 4:

Identifier A is converted from
a 24=bit binary vatue tc a
4~character numeric stringe.
The value 1s assigned to
identifier NUMBER.

NUMBER 3= LCECIMAL (A, 4);

™M

L e

1137833 9-53

B 1000 Systems SDL/UPL Reference Manual

Verbs
DECIMAL
Example 5:
NUMEER 3= CECIMAL (a3FFa» 3)j; %Z ldentifier NUMBER is assiqgned

Z the value 255.

Example Program:

DECLARE FIELD CHARACTER (8)»

DO FOREVER>
DISPLAY ("ENTER ANY & CHARACTERS OR ENTER BYE TO GO 7O EOQJ™)’
ACCEPT FIELD?
IF FIELD = “"BYE"™ THEN STOP;
DISPLAY (DECIMAL (CONVERT (FIELD» BIT» &), 8));

END >
FINI?

X This example program accepts a 6=-character field from
X the 0ODT and displays its hexadecimal value using the
Z DECIMAL verb.

9-54

B 1000 Systems SDL/UPL Reference Manual
Verbs

DECREMENT
DECREMENT

The DECREMENT verb decrements <identifier> by the amount specified by <decrement-amount>.
If the BY keyword is not specified, <identifier> is decremented by 1. If the DECREMENT verb is
used in an expression, a descriptor of <identifier> is placed on the evaluation stack.

If either <identifier> or <decrement-amount> has a length greater than 24 bits, only the rightmost
24 bits are evaluated. If either <identifier> or an expression has a length less than 24 bits, <identifi-
er> or <decrement-amount> is padded with leading zeroes. Character strings are treated as bit
strings.

SDL and UPL Syntax:

— DECREMENT < identifier>> t%
BY < decrement-amount>
Syntax Semantics:
identifier
This field can be any valid SDL/UPL identifier and specifies the name of the field to be decre-
mented.
BY

The keyword BY is required if <decrement-amount> is specified.

decrement-amount
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value
and specifies the amount that is subtracted from <identifier>.

Examples:
CECREVENT X» % Subtract 1 from Xe
DECREMENT X HBY 45 % Subtract 4 from Xe
CECREMENT X €Y Z5 % Subtract the value of 2 from X.
A = CECREMENT X EY Z5 % Subtract the vatue of Z from X»

% assign the value to X» and then
%2 assiqgr the value of X to A,

IF COECREMENY X BY Z2) EGCL ZERO % Subtract the value of Z from X»
THEN oo 5 % assiagn the value to Xs ard then
ELSE vae ¢ Z perform the comparison.

CECREVMENT A 8Y B 2= (3

N

Assign the value of C to 8 and
then subtract the value of C
from A. Nctice that C is
subtracted from A because of
the replacement delete left
part creratcre.

e e

I X

1137833 9-55

B 1000 Systems SDL/UPL Reference Manual
Verbs

DECREMENT

X 2= DECREMENT A BY 28 := (3 kKeplace 8 by the valtue of C»

delete Bs subtract C fronm A,
and assign the value to A and
to Xe

T AL ae N

PROC_B C(CECREMENT X))

Ead

Identifier X is decremented by 1
and then X is passed to procedure
PROC_B.

N e

PRCC_3 C((CECREMENT X12)3

e

Identifier X is decrewented by 1
and then the value of X is passec
to crccedure PRCC_B.s The extra
set of parentheses causes the
value to be passed to PROC_B
instead of the rname X.

R B

Ead

Example Program:
DECL ARE NUMBER FIXED?
NUMBER 3= 113

DO FOREVER?
IF (DECREMENT NUMBER) = 0 THEN STOP?
DISPLAY CONVERT UNUMBER» CHARACTER)?
END?

stoPs?
FINYI?

Z This example program uses the DECREMENT verb to decrement
X a number by ona and display the resulting value of the

Z numpbere. The program decrements and displays the nuamber

X ten times on the 0DT and goes to end of job.

Output from the Example Program:

DECREMENTO =6501 +0000010
DECREMENTO =6501 #0000009
DECREMENTO =6501 +0000008
DECREMENTO =6501 +0000007
DECREMENTO =6501 +0000006
DECREMENTO =6501 #0000005
DECREMENTO =6501 +0000004
DECREMENTO =6501 +#0000003
DECREMENTO =6501 +0000002
DECREMENTO =6501 +#0000001

PR NN MNNMNMNN

9-56

B 1000 Systems SDL/UPL Reference Manual
Verbs

DELIMITED_TOKEN
DELIMITED_TOKEN

The DELIMITED__TOKEN verb scans the identifier that has < first-character-address> as -its first
character until one of the two delimiters specified by <delimiter > is encountered. The remaining por-
tion of the identifier that begins with < first-character-address> is stored in <result-reference-identifi-
er>,

The delimiter characters used by the SDL compiler are the percent sign (%) and semicolon (;) charac-
ters.

SDL Syntax:

~— DELIMITED_TOKEN (<first-character-address>> , <<delimiters>>,
>——— < result-reference-identifier™>)

AV

Syntax Semantics:

first-character-address
This field can be any valid SDL identifier and specifies the address of the first character in the
character string to be scanned.

delimiters
This field can be a character or bit string with a length equal to 16 bits. Each 8-bit byte specifies
one of two delimiter tokens.

result-reference-identifier
This field can be any valid SDL reference identifier and specifies the name of the field in which
to store the string of characters.

Example:

CECLARE FIRST_CHAF FEFERENCES % The identifier
RESULT REFERENCE » 2 RESULT_STRING is
CHAR_STRING CEARACTER (15)» 2 assigned the value
FESULT_STRING CHARACTER (15)3 2 of "123456789".

CHAR_STRING 2= "1224S67P53ABCNE";
FEFER FIRST_CHAF
TG SUBSTRE (CHAR_STRINGs 0, 1);
RESULT_STRING :=
DELIMITEC_TCKEN C(FIRST_CHAR, "3%"» RESULT);

1137833 9-57

B 1000 Systems SDL/UPL Reference Manual

Verbs
DELIMITED _TOKEN
Example Program:
CECLARE ODT_INPUT CHARACTER (50)»
RESULT REFERENCE»

FIRST_CHARACTER REFERENCE?

DO FOREVERS
DISPLAY ("ENTER ANY S50=-CHARACTERS TO BE SCANNED OR ENTER BYE FOR™
CAT " EOQJ");
ACCEPY ODV_INPUTS
IF ODT_INPUT = "BYE™ THEN DO’
DISPLAY ("GOOD BYE™)»
STOP>
END?

REFER FIRST_CHARACTER TO SUBSTR (ODT_INPUT» 0, 1)5
DISPLAY ("THE DELIMITED CHARACTERS FOLLOW™)S

DISPLAY C(DELIMITED_TOKEN (FIRST_CHARACTER» * X"» RESULTI)?

END?
FINI;

This example program uses the DELIMITED_TOKEN verb to scan a
character string that is accepted from the 0DT. The delimiter
characters used are the blank character and the percent sign (%)
character. If BYE is enteredr the program goes to end of job.

RMNNMNN

9-58

B 1000 Systems SDL/UPL Reference Manual
Verbs

DESCRIPTOR
DESCRIPTOR

The DESCRIPTOR verb places a descriptor on the evaluation stack, which is the data descriptqr'of
an identifier. The DESCRIPTOR verb can appear as the object of a replacement, thereby providing
easy access to any part of a descriptor.

A descriptor contains the data type, length, and base-relative address of <simple-identifier> or <ar-
ray-identifier > .

SDL Syntax:

- DESCRIPTOR (——T1—— <simple-identifier>) {

< array-identifier>

Syntax Semantics:

simple-identifier
This field can be any valid SDL identifier and specifies the field name to obtain the data descrip-
tor information.

array-identifier
This field can be any valid SDL array identifier and specifies the array name needed to obtain
the data descriptor information.

Examples:

SUBEBIT C(CESCRIPTOR (X)» 4» 2) 3= 23 2 Assigns the value 2 to
the data type portijon of
DESCRIPTOR (X)e.

N re

Forces both identifiers X

and Y to describe the sawe
data name. Howevers» if X

and Y are not both simple

identifiers cr arrays the

results are incorrect.

CESCHIPTCR (X)) := CESCFIPTCF (YY)

] A2 e N 2

1137833 9-59

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISABLE__INTERRUPTS

The DISABLE__INTERRUPTS verb suppresses all interrupts until an ENABLE__INTERRUPTS verb
is performed.

This verb is for MCP use only and cannot be used by a program when the MCP is running.

SDL Syntax:

— DISABLE_INTERRUPTS ;
Example:

ODISASBLE_INTERRUPTS: %2 CLauses all interrupts to be surpressede.

9-60

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISPATCH
DISPATCH

The DISPATCH verb causes an input/output (I1/0) operation to begin on the port and channel address
specified by <port-and-channel>. It uses the 1/0 descriptor specified by <I/O-descriptor-address>.
The DISPATCH verb is only used by the MCP or by a standalone SDL program that does not run
with the MCP. If the DISPATCH verb is performed when the MCP is running, the MCP discontinues
the program with the following program abort message:

INVALID OPERATOR
The DISPATCH verb returns one of the following three values.

Value Description

0 Dispatch register lock bit is set
1 Successful dispatch
2 Successful dispatch, but device is missing

SDL Syntax:

—— DISPATCH (< port-and-channel>, < I/O-descriptor-address>>) |

Syntax Semantics:

port-and-channel
This field can be any valid SDL literal, identifier, or expression that returns a binary value and
specifies the port and channel address for the 1/0 operation. The rightmost seven bits of <port-
and-channel > are used. The leftmost three bits are the port number and the rightmost four bits
are the channel number.

1/0-descriptor-address
This field can be any valid SDL literal, identifier, or expression that returns a value and specifies
the absolute address of the I/0O descriptor. The rightmost 24 bits of <I1/O-descriptor-address >
are used.

1137833 9-61

B 1000 Systems SDL/UPL Reference Manual

Verbs
DISPATCH
Example:
RECORD IO_DESC
ACTUAL_END BIY (24)»
RESULT_STATUS 8IT (2425
opP BIY (24),
A_ADDRESS BIT (24)»
B_ADDRESS BIT (24).
C_ADDRESS BIT (24)5
DECLARE D I0_DESC»
RESULT BIT (24)»
BUFFER BIT (1440);

D.RESULT_STATUS := 05
D.0P 3= 318000033

D-B_ADDRESS ==
D.C_ADDRESS 3= QJ070E4137

Z Read Operation
D.A_ADDRESS := DATA_ADDRESS (BUFFER);

DATA_ADDRESS (BUFFER) + LENGTH (BUFFER)>

Z Sector Address

RESULT == DISPATCH (a(1)11110013», DATA_ADDRESS (D.RESULT_STATUS))?

X2 If RESULT
Z If RESULT
Z If RESULT

9-62

0» then dispatch register lock bit is sete.
1» then successful dispatche.
2» then successful dispatches but missing devicee.

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISPLAY
DISPLAY

The DISPLAY verb causes the SDL/UPL program to write a message to the Operator Display Termi-
nal (ODT).

The following is the format of the output message that is written to the ODT. The (<usercode>) por-
tion is optional.

% (<usercode>) <program-name> = < program number> < message text>

The displayed message is distinguished from the MCP-generated messages by the leading percent sign
(%) character.

SDL and UPL Syntax:

—— DISPLAY (<display-identifier>)

, CRUNCHED

Syntax Semantics:

display-identifier
This field can be any valid SDL/UPL literal, identifier, or expression that returns an addressable
value and specifies the value to be displayed on the ODT.

CRUNCHED
The keyword CRUNCHED deletes trailing blanks and substitutes one blank for each occurrence
of multiple embedded blanks.

Examples:

»e

DISPLAY "HI THERE®S Cisplays on the 0DT the

% message "HI TEHERE".
CISPLAY ("PLEASE LCAD FCRM = CAT 2 Displays on thte ODT the
FOFM_NUMEER)» CHUNCHEDS %2 message "PLEASE LOAD
Z FORM " followed by the
% value cf FORV_NUMBER.

DISPLAY (MESSAGL)S Cisplays on the OO0T the

value of MESSAGE.

re e

1137833 9-63

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISPLAY

Example Program:

DECLARE YODUR CHARACTER (5)»
COMMA CHARACTER (2)»
ROW CHARACTER (4)»
BOAT CHARACTER (5)>

YOUR 2= " YOUR™;
COMMA 2= ", *;
ROW 3= ™ ROW";
BOAT 3= ™ BOAT™>

DISPLAY CROW CAT COMMA CAT ROW CAT COMMA CAT ROW CAT YOUR CAT BOAT)?
DISPLAY ("GENTLY DONWN THE STREAMT™);

STOP3
FINI3

X2 This example program uses the DISPLAY verb to display on the
X ODT the message "ROMWs ROWe ROW YOUR BOAT GENTLY DOWN THE STREAM".

Output from Example Program:

DISPLAYD =2467 B0OJ. PP=4» MP=4 TIME = 07:355312.3
X DISPLAYO =2467 ROW» ROW» ROW YOUR BOAT

X DISPLAYO =2467 GENTLY DOWN THE STREAM

DISPLAYO =2467 EOJ. TIME = 07:55:17.3

9-64

B 1000 Systems SDL/UPL Reference Manual
Verbs

DISPLAY_BASE

DISPLAY__BASE

The DISPLAY__BASE verb stores, on the top of the evaluation stack, a 24-bit, self-relative value with
a BIT data type that is the base-relative address of the base of the display stack.

SDL Syntax:

.

— DISPLAY_BASE

Example:

DECLARE BASE_ADDRESS BIT (2435 X Identifier BASE_ADDRESS is assigned

BASE_ADDRESS 3= DISPLAY_BASE> % the value of the base=retative
X address of the display stacke.

Example Program:

DISPLAY (" THE ADDRESS OF THE DISPLAY STACK EQUALS ™ CAT
CONVERT (DISPLAY_BASE, CHARACTER))?

5T0P3
FINI?

Output from Example Program:

DISPLAYO =5535 B0J. PP=4, MP=4 TIME = 15:17:54.2
Z DISPLAYO =5535 THE ADDRESS OF THE DISPLAY STACK EQUALS 0027D0
DISPLAYD =5535 EO0J. TIME = 15:17258.8

1137833 9-65

B 1000 Systems SDL/UPL Reference Manual
Verbs

DUMP__FOR_ANALYSIS

The DUMP__FOR__ANALYSIS verb causes the MCP to create a file known as the dumpfile. This
dumpfile reflects the status of the program at the point at which the DUMP_FOR__ANALYSIS verb
is performed. After the dumpfile is created, program execution continues with the statement immediate-
ly following the DUMP__FOR__ANALYSIS verb. Refer to the B 1000 Systems System Software Oper-
ation Guide, Volume 1, form number 1108966, for the syntax of the “PM’’ MCP command used to
analyze and print the dump.

After the dumpfile is created, enter one of the following commands to execute the DUMP/ANA-
LYZER program. The DUMP/ANALYZER program generates a printer listing that shows the status
of the program at the time the DUMP__FOR__ANALYSIS verb was performed.

PM < dumpfile-id>; or EXECUTE DUMP/ANALYZER FILE DUMPFILE NAME < dumpfile-
id>;

SDL and UPL Syntax:

—— DUMP_FOR_ANALYSIS;

Examples:
DUMPs
DUNP_FOR_ANALYSIS?
Example Program:
DISPLAY ("THIS PROGRAM CAUSES A DUMPFILE TO BE CREATED OF ITSELFT)’;
DUMP_FOR_ANALYSIS,

STOP>
FINI?

Z This example program displays *"THIS PROGRAM CAUSES A DUMPFILE
Z TO BE CREATED OF ITSEL¥F" and goes to end of jobe.

Output from Example Program:

DUMPO =2640 BOJ. PP=4, MP=4 TIME = 15:28:40.1

2 DUMPO =2640 THIS PROGRAM CAUSES A DUMPFILE TO BE CREATED OF ITSELF
DUMPO =2640 “DUMPFILE/1237"

DUMPO =2640 EOQJ. TIME = 15328:46.5

9-66

B 1000 Systems SDL/UPL Reference Manual
Verbs

DYNAMIC_MEMORY _BASE
DYNAMIC_MEMORY__BASE

The DYNAMIC__MEMORY__BASE verb returns a 24-bit value that is the base-relative address in
which the dynamic memory portion of the program begins.

SDL and UPL Syntax:

—— DYNAMIC_MEMORY_BASE |
Example:

CECLARE MEMCHY EITC24)5
MEMORY 2= DYNAMIC_MEMORY_BASES The identifier MEMORY is
assigned the address of the
starting tocation of the

program's dynamic memofrvya

S L

Example Program:

DISPLAY ("THE DYNAMIC MEMORY FOR THIS PROGRAM BEGINS AT -
CAT CONVERTY (DYNAMIC_MEMORY_BASEs CHARACTER)) S

stTop>

FINIZ

Output from Example Program:

DYNAMICO =2660 BOJ. PP=4s MP=4 TIME = 16:18322.5
% DYNAMICO =2660 THE DYNAMIC MEMORY FOR THIS PROGRAM BEGINS AT 003200
DYNAMICO =2660 EOJ. TIME = 16318324.9

1137833 9-67

B 1000 Systems SDL/UPL Reference Manual
Verbs

ENABLE__INTERRUPTS

The ENABLE__INTERRUPTS verb causes the MCP to return to the normal interrupt-processing mode
after a DISABLE__INTERRUPTS verb has been performed.

This verb is for MCP use only and a program cannot use this verb when the MCP is running.

SDL Syntax:

1

—— ENABLE_INTERRUPTS;
Example:

EMABLE_INTERRUPTS? X Causes the MCP to returr to the normal
%Z interruot-nrocessing modes

9-68

ENTER_COROUTINE

B 1000 Systems SDL/UPL Reference Manual
Verbs

ENTER_COROUTINE

The ENTER__COROUTINE verb is used in conjunction with the EXIT__COROUTINE verb and
causes the current code address to be placed on the program pointer stack. The number of entries
specified in < coroutine-table> are placed onto the program pointer stack. The address of the next
instruction is taken from the entry address specified in <coroutine-table>.

When the ENTER__COROUTINE verb is performed for the first time, <coroutine-table> must al-
ready be set up. This is accomplished by making the first executable statement in < coroutine-table>
an EXIT__COROUTINE statement. The first entrance to the coroutine is then accomplished by a pro-

cedure call.

The ENTER_COROUTINE verb is not symmetric. The routine performing the ENTER__-
COROUTINE verb is a master to the slave routine performing the EXIT_COROUTINE verb.

SDL Syntax:

—— ENTER_COROUTINE (<coroutine-table>>) ;]

Syntax Semantics:

coroutine-table

This field can be any valid SDL table identifier and specifies a table with the following format.

Gl CGRCUTINE_TABLES
03 NUMEEF_OF_ENTFIES ETT (&)
03 ENTRY_ACDFRESS EIT (32).

03 PPS_CGPY

Example:

SIT (32)5

OECLARE 1 FIXED,
TAELE BIT(4417x22)3

PHCCETCURE SLAVES
EXIT_CCROUTINE
CC FCREVERS

EUMF I BY 2

(TABLE) S % Sets uop table

CISPLAY (DECINMAL (1, ©));
EXIT_CCROUTINE CTAELED)S X hesets tabte

ENDS
ENDC SLAVE;

PRCCECURE MASTERS

SLAVE:
i := 0;
CO FUREVEERS

EUMP 1 BY 35

%2 Call for table set uc

CISPLAY (DECIMAL (I, 6))5
ENTER_CCRCUTINE (TAELED)? % Uses table

ENCS
ENC MASTEFR;

1137833

9-69

B 1000 Systems SDL/UPL Reference Manual
Verbs

ENTER_COROUTINE
The following is displayed if the example is performed.

Occurrence Value of 1
Number Displayed

1 000003
2 000005
3 000008
4 000010
2n S%n

2n +1 5*n +3

9-70

B 1000 Systems SDL/UPL Reference Manual
Verbs

ERROR_COMMUNICATE

ERROR_COMMUNICATE

The ERROR_COMMUNICATE verb causes the value of <error-message> to be put on the
evaluation stack as a descriptor. The MCP error communication is then performed, and the program

is discontinued.

If the 6-bit identifier MCP__NUMBER is equal to 29, the MCP uses the 16-bit identifier
MESSAGE__LENGTH as the length of the message and the 24-bit identifier MESSAGE__ADDRESS
as the base-relative address of the program abort message to be displayed on the ODT. If the 6-bit
field MCP_NUMBER is not equal to 29, the predefined MCP program abort message, represented
by the MCP_NUMBER, is displayed on the ODT.

SDL Syntax:

A

—— ERROR_COMMUNICATE (<error-message>) ;

Syntax Semantics:

error-message
This field can be any valid SDL identifier or expression that returns a value and specifies either

a predefined MCP program abort message or a program-defined, program abort message.

The following is the format of <error-message>.

Cl ERFOR_MESSACGE,
02 FILLER BIT (2)»
03 MCP_NUMEER eIT (b))
03 MESSAGE_LENGTF BITYT (16).»
23 MESSAGE_ADOURESS BIT (24);

The following are the predefined MCP program abort messages and their respective numbers.

Error Program Abort
Number Message

1 PROGRAM POINTER/EVALUATION STACK OVERFLOW
2 CONTROL STACK OVERFLOW

3 NAME/VALUE STACK OVERFLOW

4 REMAP AREA HAS INSUFFICIENT LENGTH

5 INVALID PARAMETER (passed to a procedure)

6 INVALID SUBSTRING (or SUBBIT)

7 INVALID SUBSCRIPT

8 INVALID RETURN (OF VALUE FROM PROCEDURE)

9 INVALID CASE

10 DIVIDE BY ZERO (could be in a MOD)

11 INVALID INDEX

12 MEMORY PARITY or READ OUT OF BOUNDS ON B1720
13 INVALID OPERATOR

14 INVALID PARAMETER TO VALUE DESCRIPTOR

15 CONVERT ERROR

16 STACK OVERFLOW

17 UNINITIALIZED DATA ITEM

18 ATTEMPTED TO WRITE OUT OF BOUNDS

19 EXPONENT OVERFLOW

1137833 9-71

B 1000 Systems SDL/UPL Reference Manual

Verbs
ERROR_COMMUNICATE
Error Program Abort
Number Message

20 EXPONENT UNDERFLOW

21 EXPRESSION OUT OF RANGE

22 SUPERFLUOUS EXIT

23 OUT OF MEMORY SPACE

24 INVALID LINK

25 TYPE ERROR

26 INTEGER OVERFLOW

27 MESSAGE TRANSFER DATA AREA IS NOT PRESENT
28 MESSAGE TRANSFER INVALID DATA TEMPLATE

29 (user supplied message)

30 PARAMETER TO DYNAMIC DECLARATION OUT OF RANGE
31 INVALID TRANSLATE

32 INVALID SUBPROGRAM TYPE

33 REFERENCE ASSIGNMENT LENGTH MISMATCH

Example:

ERRCR_CCMMUNICATE (202000000000038)¢ 2 Causes the program abort
% message CONTROL STACK

Y7 OVERFLCW to be displayed
%

an the 00T

Example Program:

DECLARE ODT_INPUT CHARACTER (50);
DISPLAY ("ENTER THE ERROR MESSAGE DESIRED OR ENTER BYE FOR EQJ™)s
ACCEPT ODT_INPUT?
IF ODT_INPUT = "BYE"™ THEN DO»
DISPLAY ("GOOD BYE")s
sTOP?
END;

ERROR_COMMUNICATE (31Da CAT 301903 CAT DATA_ADDRESS C(ODT_INPUT));

sTaP>
FINI

This example program accepts the error message from the 0DT and
performs the ERROR_COMMUNICATE verb. The error message is
included in the terminate message displayed on the ODT by the
MCP. If BYE is entereds the program goes to end of job.

N MMM

9-72

B 1000 Systems SDL/UPL Reference Manual
Verbs

EVALUATION _STACK_TOP

EVALUATION__STACK__TOP

The EVALUATION__STACK__TOP verb stores a 24-bit value on the top of the evaluation stack. This
value is the base-relative address of the top of the evaluation stack before the verb is performed.

SDL Syntax:

—— EVALUATION_STACK_TOP]
Example:

Identifier TOP_OF_STACK is
assigned the base address

of the top of the evaluation
stacke.

DECLARE TOP_OF_STACK BIT (24);
TOP_OF_STACK 3= EVALUATION_STACK_TOP;

Lo K

Example Program:

DISPLAY (" THE ADDRESS OF THE TOP OF THE EVALUATION STACK EQUALS
CAT CONVERT (EVALUATION_STACK_TOP» CHARACTER))?

STOPS

FINI>

Output from Example Program:

EVALUATED =5537 BOJ. PP=4» MP=4 TIME = 15:19:29.1

X EVALUATEQ =5537 THE ADDRESS OF THE TOP OF THE EVALUATION STACK
EQUALS 002820

EVALUATED =5537 E£0J. TIME = 15319232.9

1137833 9-73

B 1000 Systems SDL/UPL Reference Manual
Verbs

EXECUTE

The EXECUTE verb causes the operation specified in the operation-list to be performed by the SDL
interpreter.

The EXECUTE verb is used only for the experimental design of new operation codes and results in
the display of a BRANCH TO INVALID OP CODE program abort message on the ODT. The pro-
gram is then discontinued.

SDL Syntax:

'

——EXECUTE (—— < operation-list>>)

Syntax Semantics:

operation-list
This field can be any valid SDL identifier or expression. It specifies the operation code to be
executed by the interpreter and the operands to be used by the interpreter.

Example:

CECLAFE A FIXELC, % Assigns identifier C
e FIXEC, ¥ the result of the AND
C BIT (24)¢ %2 togicatl operation that
% is srecified by the
C 2= EXECUTE C(Ap E» a(1)11110000013)> Y EXECUTE vertk.
STL?;
FINIS

9-74

e

B 1000 Systems SDL/UPL Reference Manual
Verbs

EXIT_COROUTINE

EXIT__COROUTINE

The EXIT_COROUTINE verb is used in conjunction with the ENTER_COROUTINE verb and
causes the current nesting level to be stored in the number of entries specified in < coroutine-table>.
The current code address is stored in the entry address specified in < coroutine-table>. The number
of the entries that is specified in < coroutine-table>, on the top of the program pointer stack, is then
copied to the program-pointer-stack-copy field (PPS__COPY) specified in < coroutine-table>. If the
number of the entries is 0 (zero), then nothing is copied and an implicit UNDO statement is performed.
The implicit UNDO statement uses the number of entries specified in < coroutine-table> as the num-
ber of entries on top of the program pointer stack.

The EXIT_COROUTINE verb can appear only within procedures that have no parameters and no
local data, that is, those procedures which do not change the control stack.

SDL Syntax;:

—— EXIT_COROUTINE (<coroutine-table>) ;

Syntax Semantics:

coroutine-table
This field can be any valid SDL table identifier and specifies the table with the following format.

01 CORCUTINE_TABLES
C3 MDUMBESR_CF_ENTFIES BIT (4)»

C3 ENTRY_ALCRESS BIT €32)»
C3 PPS_CCPY 817 €32);
Example:

For an example of the EXIT__COROUTINE verb usage, refer to the ENTER__COROUTINE verb.

1137833 9-75

B 1000 Systems SDL/UPL Reference Manual
Verbs

FETCH

The FETCH verb causes the result of an input/output (I/0) operation to be returned to the SDL pro-
gram. If there is a high-priority interrupt, then that interrupt is stored in <result-descriptor-address>.
If there is no high-priority interrupt and <I/O-reference-address> is non-zero, only an interrupt on
an I/0 descriptor with a reference address equal to <I1/O-reference-address> is stored in <result-de-
scriptor-address > . <I/O-reference-address> is stored in the leftmost 24 bits of < result-descriptor-ad-
dress>. If there are no interrupts, then zeros are stored in < IO-reference-address> and < result-de-
scriptor-address > .

The FETCH verb is for MCP use only or for an SDL program that is to run without the MCP.

SDL Syntax:

~—FETCH (<1/O-reference-address>>, <port-and-channel-address>>,
S < result-descriptor-address=>) ;

<. VY

Syntax Semantics:

I/O-reference-address
This field can be any valid SDL identifier or expression that returns a 24-bit value and specifies
the reference address of the I/O operation.

port-and-channel-address
This field can be any valid SDL literal, identifier, or expression that returns a 7-bit value and
specifies the port and channel address. The first three bits specify the port address and the last
four bits specify the channel address.

result-descriptor-address
This field can be any valid SDL identifier and specifies the destination field in which to store
the result descriptor address for a high-priority interrupt. This field is zero if there was no high-
priority interrupt.

Example:
CECLARE IC_REF_ACLR BIT (24)»
PCRT_CHAMNNEL_ACLCR BIT (7)»
FESULT_CESC_ALCLH 9IT (24)5

IC_REF_ACCF 2= 03
PCRT_CHANNEL_ACCF == a(1)010a CAT a(1)00003a;

FETCF CIC_FEF_ACDF» FCRT_CHANMNEL_ADCF, RESULT_DESC_ADDR)5

DISPLAY ("THE FOLLOWING RESLLYT CESCRIPTOR [NFORMATIOM IS FOR PORT "
CAT "2 ANC CHANNEL OW)5

CISPLAY ("THFE RESULLT CESCRIPTOR ADDRESS IS "™ CAT
CCNVERT (RESULI_LESC_ACORe CEARACTER));

CISPLAY ("THE I/C REFEFENCE ADDRESS IS ® CAT
CCNVERT CIC_FEF_ACCRs, CHRARACTER))

STCOP;

FINLS

9-76

B 1000 Systems SDL/UPL Reference Manual
Verbs

FETCH_COMMUNICATE_MSG_PTR

FETCH_COMMUNICATE__MSG__PTR

The FETCH._COMMUNICATE__MSG__PTR verb returns the RS__COMMUNICATE__MSG__PTR
information if the RS_MCP__BIT field is set. Otherwise, the RS_REINSTATE__MSG__PTR infor-

mation is returned.

SDL Syntax:

—— FETCH_COMMUNICATE_MSG_PTR '

Example:

CESCRIFTCR (COMM_MSG) :=
VALUE_CESCRTFTUF C(FETCH_COMMUNICATE_MSCG_PTR);

% ldentifier CCMM_VNSE cescribes the communicate messagesr that is

% assuming that the message »as gescribed by 3 non-setf-relative
%X descrictcre

1137833 9-77

B 1000 Systems SDL/UPL Reference Manual
Verbs

FIND__DUPLICATE_CHARACTERS

The FIND__DUPLICATE_CHARACTERS verb scans <reference-identifier-1> for the first three or
more contiguous characters that are identical. For example, the three characters AAA qualify as dupli-
cate characters, while the two characters AA do not. The value of <reference-identifier-1> is modified
if duplicate characters are encountered. The new value has the same character string except this charac-
ter string begins immediately after the first duplicate character. The value of < count-identifier > is
the number of duplicate characters found. The value of < character-identifier > is the duplicate charac-
ter found. The value of <reference-identifier-2> is the original character string of <reference-identifi-
er-1>, except this character string ends with the character immediately preceding the duplicate charac-
ters.

The FIND_DUPLICATE_CHARACTERS verb is helpful in a data communications environment
where it can be used to compact messages, especially when blank characters are common.

SDL and UPL Syntax:

—— FIND_DUPLICATE_CHARACTERS (<reference-identifier-1>,

>———— < count-identifier>>, <character-identifier>,

LV V

>———— <reference-identifier-2>>) ;

Syntax Semantics:

reference-identifier-1
This field can be any valid SDL/UPL reference identifier and specifies the character string that
is to be scanned. The value of this identifier is modified when the FIND__DUPLICATE__
CHARACTERS verb is performed. The new value of <reference-identifier-1> is a character

string that begins with the first character immediately following the duplicate characters that are
found.

count-identifier
This field can be .any valid SDL/UPL identifier with a FIXED data type. After the
FIND_ DUPLICATE_CHARACTER verb is performed, the value contained in < count-identifi-
er> is the number of duplicate characters found. For example, if the value equaled + 0000007,
the FIND__DUPLICATE__CHARACTERS verb found seven duplicate characters in the charac-
ter string.

character-identifier
This field can be any valid SDL/UPL identifier, one byte in length, a CHARACTER data type.
After the FIND__DUPLICATE__CHARACTERS verb is performed, the value contained in
< character-identifier > is the duplicate character found. For example, if the value equals the
character A, the FIND__ DUPLICATE_ CHARACTER verb has found at least three consecutive
characters equal to the character A.

reference-identifier-2
This field can be any valid SDL/UPL reference identifier. After the FIND__DUPLICATE__
CHARACTERS verb is performed, the value of <reference-identifier-2> is the character string
of <reference-identifier-1. It ends immediately prior to the first duplicate character string.

9-78

B 1000 Systems SDL/UPL Reference Manual
Verbs

FIND_DUPLICATE_CHARACTERS

Example:

Consider the character string: "THIS IS THE PLAAAAACE"™

FIND_CUPLICATE_CHARACTERS verb returrs the fcllowing valuess

reference~identifier=-1 = "CEg"
count=identifier = 400000C5
character-identifier = mA"®

reference~identifier=2 = "THIS IS THE PL"™

Example Program:

DECLARE
ACCEPT_FIELD CHARACTER (€9)»
REFERENCE_1 REFERENCE,
REFERENCE_2 REFERENCE,
COUNY FIXED»

CHARACTER_FIELD CHARACTER (1)3

DO FOREVER>

DISPLAY ("ENTER A CHARACTER STRING OR ENTER BYE TO GO TO EO0J™)3
ACCEPT ACCEPT_FIELD?

IF ACCEPI_FTELD = “BYE™ THEN STOP>

REFER REFERENCE_1 TO ACCEPT_FIELD’

FIND_DUPLICATE_CHARACTERS (REFERENCE_1»COUNT,CHARACTER_FIELD»
REF ERENCE_2)5

DISPLAY ("THE RESULTY OF REFERENCE_1 IS ™ CAT REFERENCE_1)7
DISPLAY ("THE DUPLICATE CHARACTER IS " CAT CHARACTER_FIELD)?
DISPLAY ("THE DUPLICATE CHARACTER APPEARS * CAT

CONVERT {COUNT» CHARACTER) CAT

" NUMBER OF TIMES™)?
DISPLAY ("THE RESULT OF REFERENCE_2 IS ™ CAT REFERENCE_2)3

END>

FINI3 ‘

X This example program accepts a character string from the

Z 0DY and locates any duplicate characterss Using the

% FIND_DUPLICATE_CHARACTERS verb» the values of identifiers
% REFERENCE_1 and REFERENCE_2 are displayed. Alsos the

%2 duplicate character and number of times that the duplicate
% character appears is displayeds Entering BYE terminates

Z the programe

1137833 9-79

B 1000 Systems SDL/UPL Reference Manual
Verbs

FINI
The FINI verb notifies the SDL/UPL compiler that this is the end of the source images to be compiled.

The FINI verb is optional. If the FINI verb is not specified, the SDL/UPL compiler uses the end-
of-file record in the source file as the end of the source images.

SDL and UPL Syntax:

FINI
Example:

CECLARE A CHARACTER (1) %2 The FINI verb indicates the end of

A = "A"™; %2 scurce file tc the SOL/UPL compiler.
DISPLAY (RQ):

STCP;

FINI;

9-80

B 1000 Systems SDL/UPL Reference Manual
Verbs

FREEZE_PROGRAM

FREEZE__PROGRAM

The FREEZE__PROGRAM verb prevents the program from being rolled out (moved to disk) during
program execution. The MCP keeps the run structure of the program and saves space in the same
memory location, regardless of the situation, until end of job or until the program performs the

THAW__PROGRAM verb.
SDL and UPL Syntax:

— FREEZE_PROGRAM; I

Example:

FREEZE_FROGRAM;

1137833 9-81

B 1000 Systems SDL/UPL Reference Manual
Verbs

GROW

The GROW verb causes the array bound of the specified paged array to be dynamically increased by
the value of <increase-amount>. The value of <increase-amount> cannot be negative and the result-
ing array bound cannot be larger than 16,777,215 (@(4)FFFFFF@) bytes.

Paged arrays grow by adding more pages to the array.

SDL and UPL Syntax:

—— GROW (<paged-array-identifier>, <increase-amount>);

Syntax Semantics:

page-array-identifier
This identifier can be any valid SDL/UPL paged array.

increase-amount
This field can be any valid SDL/UPL literal, identifier or expression that returns a 24-bit binary
value and specifies the number of elements to be added to the paged array.

Examples:

GRCW (A» 10)s5 % Causes 10 elements tc be added to
Y the psged array A.

GRCW (B» CEUMP X3)s

Ed

Causes X ¢t 1 elererts to be added to
Y tte pasaed array 8.

9-82

o .

B 1000 Systems SDL/UPL Reference Manual

Verbs
GROW
Example Program:
DECLARE PAGED (2) CHAR_ARRAY (1) CHARACTER (1)»
INPUT_CHAR CHARACTER (13,
COUNT FIXED»
D_FIELD CHARACTER (10)5

D_FIELD z= =3
COUNT 3= 03
DO FOREVER?
DISPLAY ("ENTER ONE CHARACTER OR ENTER BYE TO GO TO E0J");
ACCEPT INPUT_CHARS
IF INPUT_CHAR = "B" OR ((BUMP COUNT) > 9)
THEN D03
DISPLAY ("GOOD BYE®)3
STOPS
END3

GROW C(CHAR_ARRAY., 1)7 X Causes one eiement to be added to the
X paged array CHAR_ARRAY.

CHAR_ARRAY (COUNT) == INPUT_CHAR>
SUBSTR (D_FIELD»COUNT»1) 2= CHAR_ARRAY (COUNT);
DISPLAY ("THE ARRAY EQUALS " CAT D_FIELD)?

END;

FINI?

2 This example program accepts a character from the ODT and

Z causes the paged array to grow by one character to include the
% character. The resulting paged array is displayed on the 0DT.
Z If more than 10 characters are enteredr the program goes to

Z end of joba

1137833 9-83

B 1000 Systems SDL/UPL Reference Manual
Verbs

HALT

The HALT verb causes <halt-value> to be stored in the T-register and the M-machine halt instruction
to be performed. The T-register can be examined on the console panel of the B 1000 computer system.
The M-machine halt instruction stops the B 1000 processor.

SDL Syntax:

— HALT (<halt-value>); —

Syntax Semantics:

halt-value

This field can be any SDL literal, identifier, or expression and specifies the value to be loaded
into the T-register. If <halt-value> is longer than 24 bits, only the leftmost 24 bits are stored.

If <halt-value> is less than 24 bits, <halt-value> is stored in the T-register, right-justified with
leading zeros.

Example:
CECLARE X BIT (24); % Causes the value 400000AS to be stored

X 2= 105 Z intc the T-register and the ¥=-machine
HALT (X)) 2 hatt instruction to te perfcrred.

9-84

B 1000 Systems SDL/UPL Reference Manual
Verbs

HASH_CODE
HASH__CODE

The HASH__CODE verb causes a 24-bit value to be returned. This value is computed from the length
of the characters in <hash-code-value>. If the character string is longer than 15 characters, only the
leftmost 15 characters are used.

To be effective, the value returned by the HASH__CODE verb must be used with a number that is
divisible by a prime number. The prime number determines the logical hash-table size. Furthermore,
< hash-code-value> modulo a prime number is the most effective hash-table index.

SDL and UPL Syntax:

—— HASH_CODE (<hash-code-value>>) 1

Syntax Semantics:

hash-code-value
This field can be any valid SDL/UPL literal, identifier, or expression that returns a character
value and specifies the value to be hashed.

Examples:
X = FASF_CCDE (™JCEN CCE™) #0D 135 2 Fashes the Literal JOHN
% DOE and assigrs the
% resulting vatuer modulo
2 13» to the i1dentifier X
Y 3= FASKE_CCCE (CHERACTERS) ¥0D 295 2 Hashes the identifier
%2 CHARACTERS arc assigns the
%2 resulting vatuer modulo
% 29» to identifier Y.
Example Program:
DECLARE CHARACTERS CHARACTER (15)»

HASH_RESULT BIT (24)5

DD FOREVERS
DISPLAY ("ENTER THE CHARACTERS TO BE HASHED OR ENTER BYE FOR EOQJ™)?
ACCEPT CHARACTERSS
IF CHARACTERS = "BYE™ THEN DO’
DISPLAY (™"GOOD BYE®")?
STOP?
END>

HASH_RESULT 3= HASH_CODE C(CHARAC JERS)3

DISPLAY (" THE HASH RESULT IS " CAT CONVERTCHASH_RESULT,CHARACTER)):
END?

FINTI?

Z This example program accepts from the ODT up to 15 characters and
%A uses the HASH_CODE verb on the accepted characters. The result of
X hashing the characters is displayed on the 0DT.

1137833 9-85

B 1000 Systems SDL/UPL Reference Manual
Verbs

INITIALIZE__VECTOR
The INITIALIZE__VECTOR verb initializes the tables used by the SORT program.

This verb is for SORT program use only.

SDL Syntax:

— INITIALIZE_VECTOR (<table-address>) ;

Syntax Semantics:

table-address
This field can be any SDL literal, identifier, or expression that returns a 24-bit value and specifies

the address of the table containing the vector addresses, the vector level-1 address, the key table
address, and the vector limit address.

9-86

€

B 1000 Systems SDL/UPL Reference Manual
Verbs

LAST_LIO_STATUS

LAST__LIO_STATUS

The LAST__LIO__STATUS verb returns a bit value with a length equal to the RS__LAST__LI-
O_STATUS__SIZE field in the run structure nucleus of the SDL program. This value represents the
current status of logical input/output (I/O) operation for the SDL program.

SDL Syntax:

—— LAST_LIO_STATUS

Example:

DECLARE LAST_IO_STATUS BIT (24);
LAST_IO0_STATUS 3= LAST_LIOD_STATUSS

Example Program:

FILE PORTFILE (DEVICE = PORT»
RECORDS = 80/1»
HOST_NAME = *B10007)>

RECORD 01 STATUS_MASK_EXCEPTION BIT (24),»
02 ANY_EXCEPTION BIT (1)»
02 FILLER BIT (4)»
02 INVALID_SUBPORT_INDEX BIT (1)»
02 FILLER BIT (1),
02 IO0_ERROR EIT C1)»
02 FILLER BIT (1),
02 LOGICAL_EOF BIT (1)»
02 FILLER BIT (1)»
02 SUBPORT_STATE_CHANGE BIT (1)»
02 FILLER BIT (3)7
DECLARE BUFFER CHARACTER (80)»
X STATUS_MASK_EXCEPTION»
MASK BIT (24)7 X THIS IS THE RESULT MASK

OPEN PORTFILE WITH INPUT» OUTPUTS

MASK 2= QJFFFFFF3; Z REPORTS ALL EXCEPTIONS

DO FOREVER?
READ PORTFILE (BUFFER) WITH RESULT_MASK MASK»>

ON EXCEPTION DO

1137833 9-87

—r

B 1000 Systems SDL/UPL Reference Manual
Verbs

LAST_LIO_STATUS

DISPLAY T"EXCEPTION ON READ OF PORTFILE"™;
X 3= LAST_LIO_STATUS? X IDENTIFIER X CONTAINS
Z ALL EXCEPTIONS WHICH
X OCCURRED.
IF SUBBIT (X» 6, 1) = 1
THEN DISPLAY "INVALID SUBPORT INDEX"™;
END?
WRITE PORTFILE (BUFFER)?
ON EXCEPTION DISPLAY ™EXCEPTION ON WRITE OF PORTFILE™;
DISPLAY (BUFFER)?

END~#

FINI>

X This example program uses the LAST_LIO_STATUS verb to

X assign all the exceptions for a resd operation to a BNA

2 port file. The program reads from the port files writes

X the same message back (echo) to the port filer and displays
Z the message read/written on the 0DTV.

9-88

B 1000 Systems SDL/UPL Reference Manual
Verbs

LENGTH
LENGTH

The LENGTH verb returns a 24-bit value, which contains the number of units in <identifier>, where
unit is either of the following:

1. The number of characters if <identifier> has a data type of CHARACTER.
2. The numbers of bits if <identifier> has a data type of FIXED or BIT.

SDL and UPL Syntax:

—— LENGTH (<identifier>>) i

Syntax Semantics:

identifier
This field can be any valid SDL/UPL identifier or expression that returns an addressable value.

Examples:

The identifier X is assigned a 24=bit
%X value eauval tc 2 or aC4)CCCCO2q.

X 3= LENGTH ("23");

»r

X ¢= LENGTR (Y); % The identifier X is assigned a 24=bit
% vatue eau3l tc the length of Y.

1137833 9-89

B 1000 Systems SDL/UPL Reference Manual

Verbs
LENGTH
Example Program:
DECLARE CHARACTERS CHARACTER (1950)»
LENGTH_OF _CHARACTERS BIY (24)»
COUNTER FIXED?

DO FOREVER~?
DISPLAY ("ENTER ANY NUMBER OF CHARACTERS OR ENTER BYE FOR EOJ")?
ACCEPT CHARACTERS?
COUNTER 3= 03
DO CHARACTER_LOOP FOREVER?
IF SUBSTR (CHARACTERS» COUNTERe 1) = " ™ OR COUNTER > 1948
THEN If SUBSTR (CHARACTERS» 0» COUNTER) = *"BYE™
THEN DO?
DISPLAY (™GOOD BYE™");
syop?
END>
ELSE DO3
LENGTH_OF _CHARACTERS =
LENGTH C(SUBSTR CCHARACTERSs 0, COUNTER))S
DISPLAY ("THE LENGTH OF THE CHARACTERS ENTERED IS *
CAT DECIKAL CLENGTH_OF _CHARACTERS» 8))7
UNDO CHARACTER_LOOPS
END?
BUMP COUNTER>
END CHARACTER_LOOP>
END 3

FINI
X This example program accepts a character field from the 0DT

X and uses the LENGTH verb to calculate the number of characters
X enterede If "BYE"™ is entered the program goes to end of job.

9-90

B 1000 Systems SDL/UPL Reference Manual
" Verbs

LIMIT_REGISTER
LIMIT_REGISTER

The LIMIT__REGISTER verb returns a 24-bit value which is the base-relative address of the Run
Structure Nucleus for the program.

SDL and UPL Syntax:

— LIMIT_REGISTER

d—

Example:

DECLARE X BIT (24);
X 3= LIMIT_REGISTER? %X Assigns to identifier X a 24~bit value
X2 which répresents the limit register of
Z the run structure nucleus in the programe.

Example Program:

DISPLAY ("THE ADDRESS OF THE RUN STRUCTURE NUCLEUS IN THIS PROGRAM IS "
CAT DECIMAL CLIMIT_REGISTER., 8))s
STOP?

FINI;

Z This example program displays on the ODT the base=~relative address
X of the program®s run structure nucleus and goes to end of job.

1137833 9-91

B 1000 Systems SDL/UPL Reference Manual
Verbs

LOCATION

The LOCATION verb returns a bit value that is the base-relative acldress of the specified identifier,
array-identifier, or procedure-identifier,

When a procedure-identifier is specified, a 36-bit value is returned. This 36-bit value contains, as the
first four bits, the address type which is equal to @F@ or @(1)1111@. This value designates that this
36-bit value applies to a procedure identifier. Also, included in this 36-bit value is the page, segment,
and displacement of the specified procedure.

The following is the format of the 36-bit value for a procedure identifier.

Cl PRCCELURE_ACDKRESS EIT €36)»

03 ACURESS_TYPE E1T (4)s % Contairs the vatue afaq
03 SECMEMI_NUMEER EIT (ED»
03 PACE_MUMBEFR EIT (6)»
03 CISPLACEFENT EIT (20)3

When an identifier or array-identifier is specified, a 16-bit value is returned. The first two bits of this
field is the address type and equals @(1)00@ or @(2)0@. This 2-bit value designates that the remaining
16-bit value represents an identifier or an array. The remaining information includes the lexic level and
the occurrence number within the lexic level for the identifier or array.

The following is the format of the 16-bit value.

01 ICENTIFICF_CR_ARRAY_RACD®ESS BIT (16)»

C2 ADORESS_TYPE 8IT (2)» X Contains the vatue 3(2)C3q
03 LEXIC_LEVEL BIT C4)»
03 CCCURRENCE_NUPMEER 21T €10);

SDL and UPL Syntax:

1

—— LOCATION (< identifier>)

—— < array-identifier>

— < procedure-identifier>

Syntax Semantics:

identifier
This identifier can be any valid SDL/UPL identifier.

array-identifier
This array identifier can be any valid SDL/UPL array identifier.

procedure-identifier
This procedure identifier can be any valid SDL/UPL procedure identifier. This procedure must
be declared as a FORWARD procedure if a recompilation or create-master compilation is to be
performed.

992

B 1000 Systems SDL/UPL Reference Manual
Verbs

Examples:

CECLAFRE X
Y

EIT (16)»
EIT (36)»

ITENTIFIER CEARPCTES
ARLAY (208) EIT (24)7

X 2= LGCATICN CILENYIFIER);

X 3= LUCATICN CARRAY);

Y ¢= LCCATICN (PRCCECURE_CONE);

Example Program:

SEGMENT (ZERD)?

PP e N NS

S e N E ae

E2d

AR A A B -

PROCEDURE DISPLAY_ARRAY_AND_FIELD3

LOCATION

(10)»

Assigns to identifier X a 16-bit
value with a€1)60a &5 the first
two bitss followed by a 4-bit
lexic=level numbter equal to
a(1)000Ca and a 10-tit occurrence
number equal to d(1)€00000001047.

Assigns to identifier X a 16=bit
value with a(1)00 as the first
two bitss faollowed by a 4=bit
lexic-level number equal to
a(130000a ard a 10-bit occurrence
number ecual toc 3(1)COCCCO00113s

Assigrs to identifier Y a 36-bit
value with 3Fa as the first four
bits» followed by 3 6-bit segment
nurber, a 6=hit page number and a
20=-bit disglacement number of
procedure PROCECURE_ONE.

DECLARE 01 LOC_OF_ARRAY_OR_FIELD BIT (16).

03
03
03
ARRAY
FIELD

ADDRESS_TYPE_AF BIT (2)»

LEXIC_LEVEL BIT (4)»

OCCURRENCE_NUMBER BIT (10)»

(10) CHARACTER (10)»
FIXEDS

LOC_OF _ARRAY_OR_FIELD == LOCAT

ION CARRAY);

DI SPLAY ("THE ADDRESS TYPE OF THE ARRAY IS " CAT
CONVERT CADDRESS_TYPE_AF» CHARACTER))?

DI SPLAY (™THE LEXIC LEVEL OF THE ARRAY IS " CAT
CONVERT {LEXIC_LEVEL» CHARACTER));?

DISPLAY ("THE OCCURRENCE NUMBER OF THE ARRAY IS ™ CAT
CONVERT {OCCURRENCE_NUMBER» CHARACTER))?

LOC_OF_ARRAY_OR_FIELD 2= LOCATION (FIELD)?

1137833

9-93

B 1000 Systems SDL/UPL Reference Manual
Verbs

LOCATION

DISPLAY ("THE ADDRESS TYPE OF FIELD IS ™ CAT
CONVERT C(ADDRESS_TYPE_AFs CHARACTER)) >

DISPLAY (*THE LEXIC LEVEL OF FIELD IS " CAT
CONVERT C(LEXIC_LEVEL» CHARACTER))?

DISPLAY ("THE OCCURRENCE NUMBER CF FIELD IS ™ CAT
CONVERT (OCCURRENCE_NUMBER» CHARACTER))?

END DISPLAY_ARRAY_AND_FIELD:

4

SEGNENT (ONE)S

Z

PROCEDURE DISPLAY_PROCEDURES?

DECLARE 01 LOC_OF_PROCEDURE BIT (36)»

03 ADDRESS_TYPE_P BIT (4)»
03 SEGMENT_NUMBER BIT (6)»
03 PAGE_NUMBER BIT (6)»

03 DISPLACEMENT_NUMBER BIT (20)7
LOC_OF_PROCEDURE == LOCATION C(DISPLAY_PROCEDURE):

DISPLAY ("THE ADDRESS TYPE OF DISPLAY_PROCEDURE IS ™ CAT
CONVERT CADDRESS_TYPE_P» CHARACTER)D)S

DISPLAY ("THE SEGMENT NUMBER OF DISPLAY_PROCEDURE IS ™ CAT
CONVERT (SEGMENT_NUMBER» CHARACTER))?

DISPLAY ("THE PAGE NUMBER OF DISPLAY_PROCEDURE IS ™ CAT
CONVERT (PAGE _NUMBER» CHARACTER));

DISPLAY ("THE DISPLACEMENT OF DISPLAY_PROCEDURE IS ™ CAT
CONVERT (DISPILACEMENT_NUMBER» CHARACTER))S;

END DISPLAY_PROCEDURE?

§ MAIN PROGRAM BEGINS HERE
zEGHENT (TR0)>

DISPLAY _ARRAY_AND_FIELDS
DISPLAY_PROCEDURE?

sToP3

SEGMENT (ZERO);

FINI?

X This example program displays the location of ARRAY» FIELD,
¥ and DISPLAY_PROCEDURE and goes to end of jobe

9-94

B 1000 Systems SDL/UPL Reference Manual
Verbs

LOCATION

Output from Example Program:

LOCATIONO =7523 B0J. PP=4» MP=4 TIME = 15203:10.7

Z LOCATIONG =7523 THE ADDRESS TYPE OF THE ARRAY IS 0

X LOCATIONO =7523 THE LEXIC LEVEL OF THE ARRAY Is 1

Z LOCATIONO =7523 THE OCCURRENCE NUMBER OF THE ARRAY IS 006

LOCATIONO =7523 THE ADDRESS TYPE OF FIELD IS 0O
LOCATIONO =7523 THE LEXIC LEVEL OF FIELD IS 1
LOCATIONO =7523 THE OCCURRENCE NUNMBER OF FIELD IS 007

4
2
4
Z LOCATIONO =7523 THE ADDRESS TYPE OF DISPLAY_PROCEDURE IS F

Z LOCATIONO =7523 THE SEGMENT NUMEER OF DISPLAY_PROCEDURE IS 02
Z LOCATIUND =7523 THE PAGE NUMBER OF DISPLAY_PROCEDURE IS 00

Z LOCATIOND =7523 THE DISPLACEMENT OF DISPLAY_PROCEDURE IS 00000
LOCATIONDO =7523 EOJ- TIME = 15:03:33.1

1137833 9-95

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE_DESCRIPTOR

The MAKE__DESCRIPTOR verb replaces the current entry on the evaluation stack with < descrip-
tor>. If the name-value bit of <descriptor> on the evaluation stack is set, the value of <descriptor>
is removed from the value stack.

The DESCRIPTOR verb can appear as the object of a replacement, as long as the descriptor created
generates an address.

SDIL. Syntax:

—— MAKE_DESCRIPTOR (<descriptor>>)

Syntax Semantics:

descriptor
This field can be any valid SDL expression that returns a descriptor.

Examples:

MAKE_DESCHRIPTCH (CESCRIPTOR (X)) = X»
where X is non=-self=-retative.

MAKE_CESCRIPTOCR (VALUE_CESCRIPTOR (E)) = E»
where £ generates ar addresse

VALUE_CESCHIPTUR (MAKE_CESCFIPTOR (E)) 3= E»
where the vatue of £ is a vatlid address generatore.

9-96

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE_READ_ONLY

MAKE__READ__ONLY

The MAKE__READ__ONLY verb applies only to paged arrays and marks the specified page number
of a paged array as READ__ONLY. All pages within a paged array are marked as READ__WRITE
by default. Once a page is marked as READ__ONLY, that page is not copied to disk each time it
is overlaid by the MCP. The programmer is responsible for insuring that information written to a page,
within a paged array, be performed when the page is not marked READ__ONLY. Refer to the
MAKE_READ__WRITE verb to mark a paged array as READ__WRITE.

The programmer must calculate < page-number >, and also must ensure that < page-number > is a val-
id page number. No syntax checking is performed on the value used to reference a page number within
a paged array.

SDL and UPL Syntax:

—— MAKE_READ_ONLY (<paged-array-identifier>), <page-number>);

Syntax Semantics:

paged-array-identifier
This field can be any valid SDL/UPL paged-array identifier and specifies the paged array to be
marked as READ__ONLY.

page-number
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
value and specifies the page number within a paged array.

Examples:

CECLARE PACEL (32) P (1024) BIT (30).
I FIXEDS

MAKE _FEAC_CMY (Ps 1) % Makes page rumber one of the paged
* arvavy P a &KEAD_CNLY pagee.

MAKE_GREAC_CAY (P» 1) 7 Makes the page rumber specified by the
2 value of 1 a8 READ_CNLY raqe.

MAKE_REALC_GNLY (P» BUMF 1); % Makes the cage number specified by
1 the value cf 1 ¢1 a REALC_ONLY page.

Example Program:

DECLARE PAGED (2) P (32) FIXED»
i FIXED»
ODT_INPUT CHARAC TER (5)>

DO FOREVER3
MAKE_READ_ONLY (P» BUMP 1);
IF I = 15 THEN UNDO»

END?

1137833 9-97

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE_READ_ONLY

DO FOREVERS>
DISPLAY {"ENTER READ» ENTER WRITE» OR ENTER BYE TO GO TO EQJ™)3
ACCEPY ODV_INPUTS
IF ODT_INPUT = “BYE™ THEN STOP>
IF ODT_INPUY = “READ"™
THEN [0
DISPLAY ("ENTER AN ELEMENT NUMBER BETWEEN O AND 31™)5
ACCEPY ODTY_INPUT?
I 3= CONVERT (ODT_INPUT» FIXED)»
iF 1 > 31 .
THEN DISPLAY C("NUMBER ENTERED IS TOO LARGE™)?
ELSE DISPLAY (DECIMAL (P (I)» 8));
END3
ELSE IF ODT_INPUT = "WRITE™
THEN D05
DISPLAY ("ENTER AN ELEMENT NUMBER BETWEEN O AND 317)3
ACCEPT ODTY_INPUT?
I 3= CONVERT (ODT_INPUT» FIXED);
IF I > 31
THEN DISPLAY ("™NUMBER ENTERED IS TO0O LARGE™);
ELSE DO
DISPLAY ("ENTER A NUMBER™);
MAKE_READ_WRITE (P» 1/72);
ACCEPT ODT_INPUT3
P CI) 2= CONVERT C(ODT_INPUT,»FIXED)?
MAKE_READ_ONLY (P» I/2);
END3
ENGS
ELSE DISPLAY ("INCORRECT COMMAND == TRY READ» WRITE» OR BYE®™)>
END;

STOP;
FINI?

‘This example program illustrates the use of the MAKE_READ_ONLY
and MAKE_READ_MNWRITE verbs on paged arrays. The program first
accepts from the OD7T the entries "READ"» "WRITE™» or "BYE". If
"BYE" is entered the program goes to end of jobe If "READ™ is
entereds the program then accepts from the UDT an element number
between 0 and 31 and displays the contents of that element in
the array. If "HRITE™ is enteredes the program accepts from the
ODT the element number between O and 31 and then a S=character
value to be placed into that element within the paged array.

The MAKE_READ_ONLY verb is used to initially make all the pages
in the paged array READ_ONLY ands» zlso» after an element in the
paged array has been changeds The MAKE_READ_WRITE verb is used
to make an element in the paged array READ_WRITE in order to
change the value of the elemente

LR IR BB B O B B R

9-98

B 1000 Systems SDL/UPL Reference Manual
Verbs

MAKE_READ_WRITE

MAKE_READ__WRITE

The MAKE__READ__WRITE verb changes the status of the page within a paged array specified by
<page-number > to READ__WRITE. If the status of a page is READ__WRITE, the page is copied
to disk each time it is overlaid by the MCP.

The user must calculate <page-number>, and also must ensure that < page-number> is valid. No
syntax checking is performed by the SDL/UPL compiler to verify that <page-number> is valid.

Unless a page has been marked as READ__ONLY by the MAKE__READ__ONLY verb, a status of
READ__WRITE is the default for all pages within a paged array. The MAKE_READ__WRITE verb
is only needed to overridle READ__ONLY status set by the MAKE__READ__ONLY verb.

SDL and UPL Syntax:

—— MAKE_READ_WRITE (<paged-array-identifier>, <page-number>);

Syntax Semantics:

paged-array-identifier
This field can be any valid SDL/UPL paged-array identifier and specifies the paged array to be
marked as READ__WRITE.

page-number
This field can be any valid SDL/UPL integer, identifier, or expression that returns a 24-bit binary
number and specifies the page within a paged array.

Examples:

DECLARE PAGEC (32) P (1024) EIT (30).
I FIXEC?

e

Makes paage numsber 1 of the paged
array P a SEAC_ONLY pages

MAKE_FEAL_WFITE (P» 1)3

e

B

Makes the paage number specified by
the value cf I a READ_CNLY gages

MAKE_FEAL_WFITE (F» 1),

™~

MAKE_REAL_WRITE (F» 8BUMP 1); % Makes the page number specified by
the value cf I ¢ | a READ_ONLY pagee

«2

Example Program:

Refer to the Example Program for the MAKE__READ_ ONLY verb.

e

1137833 9-99

B 1000 Systems SDL/UPL Reference Manual
Verbs

MESSAGE__COUNT

The MESSAGE__COUNT verb scans the specified queue file and determines the number of messages
currently in the queue. This number is stored in <identifier> with a FIXED data type.

When the queue file specified is a queue file family, the MESSAGE__COUNT verb returns an array
of FIXED values, one for each file in the family. The programmer must ensure that <identifier> is
large enough to hold the generated value.

SDL and UPL Syntax:

—— MESSAGE_COUNT (<queue-file-id>, <Cidentifier>);

Syntax Semantics:

queue-file-id
This field can be any valid SDL/UPL file identifier declared with a device type equal to QUEUE
and specifies the queue file name to obtain the message count.

identifier
This field can be any valid SDL/UPL identifier and specifies the destination field for the number
of messages.

Examples:

(S) FIXEC,
FIXELS

CECLARE X

Y

FILE GUEUE_FILE (CEVICE=CUEUE)»
CUEUE_FANMILY_S (CEVICE = QUEUE (5));

Stores the number of messages
oueued for GLEUE_FILE into
identifier Y.

»e

MESSAGE_CCUNT C(GUELE_FILE» Y3

NN

Stores the number of messaqges
cueued for each file within
the QUEUE_FAMILY_S into array
Xe

MESSAGE_CCUNMNT (QUELE_FAMILY_S5» X);

AN e N

=

9-100

B 1000 Systems SDL/UPL Reference Manual
Verbs

MESSAGE_COUNT

Example Program:

DECLARE NUMBER_OF_MESSAGES FIXED»
COUNTER FIXED»

FILE QUEUE (DEYICE = QUEVUE (10)»
OPEN_OPTION = QUTPUT,
RECORDS = 10»
BUFFERS = 2)7

COUNTER := 03
DO FOREVER?
WRITE QUEUE (COUNTER);

MESSAGE_COUNT C(QUEUE, NUMBER_DF_MESSAGES);

DISPLAY ("JHE NUMBER OF MESSAGES QUEUED EQUALS " CAT
CONVERT (NUMBER_OF_MESSAGESs CHARACTER))?
IF C(BUMP COUNTER) > 9) THEN DO’
DISPLAY ("GOOD BYE®)?
STOP;
END;
END3

FINI?

This example program writes a message to the file labeted QUEUE
and uses the MESSAGE_COUNT verb to interrogate the number of
messages in the queue filee« The number of messages is displayed
on the 0DT.

™ re I e

Output from Example Program:

MESSAGED =7076 BOJ. PP=4», MP=4 TINE = 083213:15.2

Z MESSAGED =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +0000001
Z MESSAGEO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS 40000002
% MESSAGEO =7076 THE NUMBER OF MESSAGES QUEUED EGQUALS #0000003
X MESSAGEO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +000000%
Z MESSAGEODO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +0000005
X MESSAGEQ =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +0000006
X MESSAGEDO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +0000007
Z MESSAGEQ =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +#0000008
Z MESSAGEQC =7076 THE NUMBER OF MESSAGES QUEUED EQUALS ¢0000009
Z MESSAGEO =7076 THE NUMBER OF MESSAGES QUEUED EQUALS +#0000010
Z MESSAGEO =7076 GOOD BYE

MESSAGED =7076 EOJe TIME = 08321:36.5

1137833 9-101

B 1000 Systems SDL/UPL Reference Manual
Verbs

MONITOR
The MONITOR verb specifies which procedures are candidates to be monitored.
SDL Syntax:
—— MONITOR SALL 1|
—— AND NOT $NONE
OR <sequence-range>>
+ < procedure-name>

Syntax Semantics:

AND NOT

OR

The keywords AND NOT cause the sequence numbers specified by <sequence-range> or the
procedures specified by < procedure-name> not to be monitored.

The keyword OR causes the sequence numbers specified by < sequence-range> or the procedures
specified by < procedure-name> to be monitored.

The key symbol + causes the sequence numbers specified by < sequence-range> or the proce-
dures specified by <procedure-name> to be monitored.

The key symbol — causes the sequence numbers specified by <sequence-range> or the proce-
dures specified by <procedure-name> not to be monitored.

The keysymbol , causes the sequence numbers specified by <sequence-range> or the procedures
specified by < procedure-name> to be monitored. i

SALL

The keyword $ALL causes all of the procedures to be monitored.

$NONE

The keyword $NONE causes no procedures to be monitored.

sequence-range

This field can be any sequence range of sequence numbers within the SDL/UPL source file. It
specifies the sequence range for monitoring a designated procedure. The following is the format
for <sequence-range>>, where bbbbbbbb specifies the beginning sequence number and eeeeeeee
specifies the ending sequence number.

bbbbbbbb-eeeeeeee

procedure-name

9-102

This field can be any procedure identifier within the SDL/UPL program that is marked to be
monitored and specifies that this procedure is to be monitored.

B 1000 Systems SDL/UPL Reference Manual

Verbs
MONITOR
Example 1:
MCNITCR (mgALL™); Z Causes all gprocedures that are
% candidates for monitering tc be
L monvtored.
Example 2:
FCNITCR (T"$NONETY)S ¥ Causes no prccedures to be
' Z mocnitcred.
Example 3:
MCANITCR ("X1» X2%)3; % Causes procediures X1 and X2 to be
v monitoreds
Example 4:

MCNITCR ("CQ00CROC~019585955"); % Causes all procedures hetween
%Y segrerce nurters 0€000000 and
% 01999999 to bte monitorede.
Example 5:
MCNTITCRE (X1 AND NCT X2")s % Causes procedure X1 to be monitored

=~

but nct procedure XZe.
Example Program:

DECLARE ODT_INPUT CHARACTER (323
$ MONITOR
PROCEDURE COUNT>
DECLARE COUNT FIXED?
DISPLAY CCONVERT ((BUMP COUNT)» CHARACTERD)?
END COUNT»>

DO FOREVER3
DISPLAY C*ENTER YES TGO MONITOR PROCEDURE AGAIN OR ENTER
ACCEPT ODT_INPUTS
IF ODT_INPUT = "BYE"™ THEN DO

DISPLAY ("G0OOD BYE™)3

sToP;

END3
IF ODT_INPUT = “"YES™ THEN MONITOR_SET ("COUNT");
ELSE MONITOR_RESET C("COUNT™);

COUNT?

END>
FINI?

1137833

BYE FOR E£0J7);

9-103

B 1000 Systems SDL/UPL Reference Manual
Verbs

M_MEM__SIZE

The M_MEM__SIZE verb returns a 24-bit value which is the M-memory size in bits, of the B 1720
computer system.

The M_MEM__SIZE verb is only valid for the B 1720 series computer.

SDL and UPL Syntax:
-

—— M_MEM_SIZE

Example:

DECLARE MEMORY BIT (24)5 X Identifier MEMORY is assigned the
MEMORY 2= M_MEM_SIZE? 2 value of the memory size of the B1720
X computer systeme

Example Program:

DISPLAY ("THE M=MEMORY SIZE EQUALS a" CAT
CONVERT CCM_MEM_SIZE /7 8)» CHARACTER) CAT "3 BYTES™)j

SToP»;
FINI>

Output from Example Program:

M_MEM_S51Z0 =6234 B0OJ. PP=4» MNP=4 TIME = 10337:11.4
I M_MEM_SIZ0 =6234 THE M=-MEMORY SIZE EQUALS 40060003 BYTES

N_MEM_SIZ0 =6234 E0Je TIME = 10:37:16.7

9-104

B 1000 Systems SDL/UPL Reference Manual
Verbs

NAME_OF_DAY
NAME__OF__DAY

The NAME__OF__DAY verb returns a left-justified, 9-character string which is the name of the cur-
rent system day of the week. The seven possible values are MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, and SUNDAY.

SDL and UPL Syntax:

—— NAME_OF_DAY |

Example:

DECLARE NAME CHARACTER (9)5
NAME 3= NAME_OF_DAY;>

X If the current system day name is WEDNESDAY» then
NAME has the following bit and hexadecimal values.

AC4)E6CSCAD5CLE2C4CIEBD
~WEDNESDAY*® .

4
4
Z NAME
4

il

Example Program:

DISPLAY ("TODAYS DAY NAME IS ™ CAT NAME_OF_DAY);
stoes
FINI?

Output from Example Program:

NAMEOFDAYC =5598 BOJo PP=4» MP=4 TIME = 082003245.9
Z NAMEOFDAYO =5598 TODAYS DAY NAME IS FRIDAY
NAMEQOFDAYD =5598 EO0OJ. TIME = 08300:50.5

1137833 9-105

B 1000 Systems SDL/UPL Reference Manual
Verbs

NAME_STACK_TOP

The NAME__STACK__TOP verb returnis a 24-bit, self-relative value with a BIT data type. This 24-bit
value is the base-relative address of the top of the name stack.

SDL Syntax:

—— NAME_STACK_TOP

Example:

DECLARE NAME_STACK_ADDR BIT (24)7 X Identifier NAME_STACK_ADDR
NAME_STACK_ADDR 2= NAME_SYACK_TOP> X2 is assigned the address of
%Z the top of the name stacke

Example Program:

DISPLAY ("THE ADDRESS OF YHE TOP CF THE NAME STACK EQUALS ™ CAT
CONVERY (NAME_STACK_TOPs CHARACTER));

STOP»

FINI;

Output from Example Program:

NAMESTACKGO =5601 BOJ. PP=h, MP=&4 TIME = 08:0%:47.8

X NAMESTACKO =5601 THE ADDRESS OF THE TOP OF THE NAME STACK
EQUALS 0027D0 ,
NAMESTACKD =5601 EO0J. TIME = 08205:51.8

9-106

B 1000 Systems SDL/UPL Reference Manual
Verbs

NEXT_ITEM

NEXT__ITEM

The NEXT__ITEM verb causes the length field of the descriptor, represented by <identifier>, to be
added to the address field of that descriptor. This modified descriptor is put back onto the name stack
and is also moved to the top of the evaluation stack. This modified descriptor is the load address of

the new item described by <identifier>.

SDL Syntax:

— NEXT_ITEM (<identifier>) |

Syntax Semantics:

identifier /
This field can be any valid SDL simple identifier and specifies the name of the starting identifier.

Example:

Causes the character [
to be moved into the
second character of
CHAR_STRING.

CECLARE 01 CHAR_STFINC CEARACTER (1000).»
03 NEXT_CHAR CHARACTER (1)
NEXT_TITEY (NEXT_CEAR) 3= "[";

e NN N

1137833 9-107

B 1000 Systems SDL/UPL Reference Manual
Verbs

NEXT_TOKEN

The NEXT__TOKEN verb returns the descriptor of the next token. This token can be an identifier,
a number, or a special character. The descriptor of <result-reference-identifier > is also replaced by
this descriptor. < first-character-address:> is changed to point to the character which immediately fol-
lows this token. The NEXT__TOKEN verb expects that the < first-character-address> references a
nonblank character.

SDL Syntax:

—— NEXT_TOKEN (< first-character-address.>, <separator>>, SET
—— RESET

v

>——— <result-reference-identifier™>)
Syntax Semantics:

first-character-address
This field can be any valid SDL identifier and specifies the address of the first character in the
character string to be scanned.

separator
This field can be a character string or a bit string with a length equal to eight bits and specifies
the token separator. The SDL compiler uses the underscore () character. If no token separator
is required, specify the character A.

SET
The keyword SET allows the symbols 0 through 9 to be valid symbols. For example, the symbols
235AB are allowed.

RESET
The keyword RESET does not allow the symbols 0 through 9 to be valid symbols. For example,
the symbol 456DF is not allowed.

result-reference-identifier
This identifier can be any valid SDL reference identifier. It specifies the name of the field in
which to store the string of characters. It begins with < first-character-address> and ends with,
but does not include, any <separator> encountered during the scan.

Example:

CECLARE FIRST_CHAF FEFERENCE, %2 The identifier NEXT_CHAR
RESULT REFERENCES % is assigned the vatue
CHFAR_STRING CHARACTER (15)» AL AL
NEXT_CHAK CHARACTER (15);

CHAR_STRING 2= "12345_786;A8CDE";
FEFER FIRST_CHAFR

TG SUBSTF C(CHAR_STRING, O» 1);

NEXT_CHAR 3=

DELIVITEC_TCKEN (FIRST_CHAR» "_", SET, RESULT);

9-108

B 1000 Systems SDL/UPL Reference Manual

Verbs
NEXT_TOKEN
Example Program:
DECLARE ODT_INPUT CHARACTER (50)»
RESULT REFERENCE»

FIRST_CHARACTER REFERENCE?

DO FOREVERS
DISPLAY (*ENTER ANY 50-CHARACTERS TO BE SCANNED OR ENTER BYE FOR"
CAT ™ E0J™)3
ACCEPT ODT_INPUTS
IF ODT_INPUT = “BYE"™ THEN DO3
DISPLAY ("GOOD BYE®);
STOP?
END;
REFER FIRST_CHARACTER TO SUBSTR (ODY_INPUT, 0» 1)3
DISPLAY (“THE NEXT TOKEN EQUALS™)j3

DISPLAY (NEXT_TOKEN CFIRST_CHARACTERs, "_"» SET» RESULT))?
DISPLAY (FIRST_CHARACTER)?
DISPLAY (RESULTYS

END3

FINLES

X This example program finds the first token of a 50=character

2 message entered from the 0ODT and displays the token back on
2 the 0DY. If BYE is entered» the program goes to end of job.

1137833 9-109

B 1000 Systems SDL/UPL Reference Manual
Verbs

OPEN

The OPEN verb allows a program to explicitly open a data file.

The OPEN verb requests permission from the MCP to access a file and to make available the requested
memory space. An implicit open is performed by the MCP when a program reads from or writes to
a data file that has not been explicitly opened with the OPEN verb.

Buffer storage is allocated and file attributes are established when a file is opened. Memory storage
utilization can be significantly optimizecd by delaying a file open operation until the file is needed.

The open attributes specified with the OPEN verb override any FILE declaration attributes. Attributes
not specified in the OPEN verb maintain the status set in the FILE declaration, or the default status
if not specified.

The NEW open attribute is only valid with the OUTPUT open attribute. If the OUTPUT open attri-
bute is not specified when the NEW open attribute is specified, OUTPUT is assumed by default.
Specifying the open attributes INPUT and NEW without specifying the OUTPUT open attribute gener-
ates a syntax error.

Specifying INPUT OUTPUT NEW is only valid with files whose access attribute is equal to RAN-
DOM.

The LOCK open attribute protects the file from write operations by another program.

The LOCK__OUT open attribute protects the file from read operations as well as write operations by
another program.

9-110

B 1000 Systems SDL/UPL Reference Manual
Verbs

OPEN
SDL and UPL Syntax:

~—— OPEN < file-identifier >
— < switch-file-id > (<index >) WITH ——

v

—— INPUT)
— INTERPRET /
—— LOCK
— LOCK_OuT
NEW
—— NO_REWIND

— OUTPUT
— PRINT
—— PUNCH
— REVERSE

—— STACKERS

P

N ON FILE_MISSING < statement >

—— ON FILE_LOCKED < statement >

Syntax Semantics:

file-identifier
This field can be any valid SDL/UPL file identifier and specifies the file to be opened.

switch-file-id ‘
This field can be any valid SDL/UPL switch-file identifier and specifies the switch file to be
opened.

index
This field can be any valid SDL/UPL identifier and specifies the number of the switch file to
be opened.

INPUT
The keyword INPUT causes the SDL/UPL program to open an existing file and allows the pro-
gram to read from the file.

INTERPRET
The keyword INTERPRET causes the SDL/UPL program to interpret card-image records as each
is written. INTERPRET only affects files with a device type equal to DATA__RECORDER__80,
PUNCH__PRINTER, READER__PUNCH, or READER__PUNCH__PRINTER.

1137833 9-111

B 1000 Systems SDL/UPL Reference Manual
Verbs

OPEN

LOCK
The keyword LOCK prevents another program from opening the specified file with the OUTPUT
open attribute. Opening the file with the INPUT open attribute by another program is allowed.
Once the file is closed, the file can be opened by another program with the OUTPUT open attri-
bute.

LOCK_OUT
The keyword LOCK__OUT prevents another program from opening the specified file with the
INPUT or OUTPUT open attributes. Once the file is closed, the file can be opened by another
program with the INPUT or OUTPUT open attributes.

NEW
The keyword NEW specifies that the file is to be created.

NO__REWIND
The keyword NO__REWIND applies to files with a device type equal to TAPE, TAPE_9,
TAPE__7, TAPE_PE, and TAPE__NRZ and prevents the MCP from rewinding the tape file
when an end-of-tape mark is encountered.

OUTPUT
The keyword OUTPUT allows the SDL/UPL program to write to an existing file.

PRINT
The keyword PRINT applies to files with a device type equal to DATA_RECORDER__80,
PUNCH__PRINTER, READER__PUNCH, or READER__PUNCH__PRINTER and allows the
SDL/UPL program to interpret and punch card-image records.

REVERSE
The keyword REVERSE applies to files with a device type equal to TAPE, TAPE_9, TAPE__ 7,
TAPE_PE, and TAPE__NRZ and notifies the MCP that the tape file is to be written or read
in reverse. The programmer must ensure that the tape file is positioned so that the backspacing
operation can be performed. Read operations on a tape file, with the REVERSE open attribute
specified, report the end-of-file (EOF) record when the beginning-of-tape (BOT) mark is encoun-
tered.

STACKERS
The keyword STACKERS applies to files with a device type equal to DATA__RECORDER__80,
PUNCH_PRINTER, READER___PUNCH, or READER__PUNCH__PRINTER and allows the
SDL/UPL program to specify that the stackers on the card device are to be used.

ON FILE__MISSING
The keywords ON FILE__MISSING cause the SDL/UPL program to perform the associated
statement if the file specified is not present at the time the OPEN verb is performed.

ON FILE__LOCKED
The key words ON FILE__LOCKED cause the SDL/UPL program to perform the associated
statement if the file specified is currently locked by another program. This can occur in either
of the two following conditions:

1. The INPUT or OUTPUT open attributes were specified and another program has opened the
same file with the LOCK-OUT open attribute.

2. The OUTPUT open attribute was specified and another program has opened the same file with
the LOCK open attribute.

9-112

B 1000 Systems SDL/UPL Reference Manual
' Verbs

OPEN

statement
This statement can be any valid SDL/UPL statement.

Examples:
CPEN CARC_FILE INFLT;

CPEN CISK_FILE INPLT CLTPUT NEW?
Ch FILE_MISSING CISFLAY ("FILE NCT PRESENT™);

CPEN CISK_FILE INPLT LECK;S
CN FILE_LCCKEL CISFLAY ("FILE LOCKED™);

CPEN TAPE_FILE NO_KREWINLD INPLTS

CPEN TAPE_FILE REVERSE CLTPUT;

CPEN CARC_FILE WITE STACKERS INPUTS

CPEN CAFL_FILE WITH CUTFUT PUNCH INTERPHRET;
CPEN CISK_FILE OQUTFUT NEW?

CN FILE_MISSING CISFLAY ("FILE NOT PFESENT™)S
CN FTILE_LCCKEL CTISPLAY ("FILE LOCKED"™);

1137833 9-113

B 1000 Systems SDL/UPL Reference Manual
Verbs

OPEN
Example Program:

FILE DISKFILE (DEVICE = DISK»
RECORDS =180/10);

ZIP "SD OPEN?"J X Sets the MCP OPEN option

OPEN DISKFILE WITH INPUT;
ON FILE_MISSING
003
DISPLAY ("FILE DISKFILE NOT PRESENT =-- PROGRAM IS GOING");
DISPLAY ("T0 OPEN THE FILE WITH OUTPUT NEW®™)3
OPEN DISKFILE WITH OUTPUT NEW LOCKS
CLOSE DISKFILE WITH LOCKS
OPEN DISKFILE WAITH INPUT;
END3
CLOSE DISKFILE WITH REMOVES

OPEN DISKFILE WITH OUTPUT LOCK_QUT?
CLOSE DISKFILE WITH REMOVE?

ZIP RO OPEN?RE DISKFILE;™*> X Resets the MCP OPEN option and

X removes DISKFILE.
STOP»>

FINI>

X This example program shows various uses of the OPEN verb.
Output from Example Program:

OPENO =7275 B0J« PP=4» MNP=4 TIME = 15:237320.3

OPEN=1

X OPENO =727S5S FILE DISKFILE NOT PRESENT == PROGRAM IS GOING

X OPENO =7275 TO OPEN THE FILE WITH OQUTPUT NEW

OPEND =7275 "DISKFILE®™ OPENED SERIAL EXTEND OUTPUYT NEW LOCK DISK
OPENQ =7275 "DISKFILE"™ OPENED SERIAL EXTEND INPUT DISK

OPENQ =7275 "DISKFILE"™ OPENED SERIAL EXTEND OUTPUT LOCKOUT
OPEN=0

"DISKFILE™ REMOVED

OPENO =7275 EO0J. TIME = 15337:241.6

9-114

B 1000 Systems SDL/UPL Reference Manual

Verbs
OVERLAY
OVERLAY
The OVERLAY verb is for MCP use only.
SDL Syntax:
—— OVERLAY (<interpreter-index>) ; 1'

Syntax Semantics:
interpreter-index
This field can be any valid SDL literal, identifier, or expression that returns a value and is used

as an index by the interpreter swapper for the interpreter dictionary. The interpreter dictionary
entry specifies the action that is to be taken.

Example:

CVERLAY C(INCEX)S

1137833 9-115

B 1000 Systems SDL/UPL Reference Manual
Verbs

PARITY__ADDRESS

The PARITY__ADDRESS verb returns a 24-bit value which is the address of the first parity error in
S-memory. If no parity error is encountered, the value @FFFFFF@ is returned. The
PARITY__ADDRESS verb is used only by the MCP or by a standalone SDL program that does not
run with the MCP. If the PARITY_ADDRESS verb is performed when the MCP is running, the MCP
terminates the program.

..

SDL Syntax:

-~— PARITY_ADDRESS

Example:
CECLARE £AC_ADCRESS 8IT (24)5 Z The identifier 8AD_ADDRESS is
EAC_ACCRESS 2= PARITY_ACCRESSS % assigned the address of the

Z parity error.

9-116

B 1000 Systems SDL/UPL Reference Manual
Verbs

PREVIOUS _ITEM

PREVIOUS__ITEM

The PREVIOUS__ITEM verb causes the length field of the descriptor represented by <identifier > to
be subtracted from the address field of that descriptor. This modified descriptor is put back onto the
name stack and is also moved to the top of the evaluation stack. The modified descriptor that has
been moved is the address of the new item described by < identifier >.

SDL Syntax:

—— PREVIOUS_ITEM (<identifier>)

Syntax Semantics:

identifier
This field can be any valid SDL simple identifier.

Example:

Causes the character [
to te moved into the
character immediately
grior to LAST_CHAR in
CHAR_STRING.

CECLARE 01 CHAR_STRING CHARACTER (1000)»
C3 FILLER CHARACTER (999)»
03 LAST_CHAF C(HARACTER (1)

PREVICUS_TTEM (LAST_CHAFR) 3= "D"7;

F LR I L B

1137833 9-117

PROCESSOR__TIME

The PROCESSOR_TIME verb returns a 20-bit value that is the accumulated processor (CPU) time
since beginning of job (BOJ). The time is returned in tenths of a second.

SDL and UPL Syntax:

—— PROCESSOR_TIME

Example:

CECLARE
X &=

B 1000 Systems SDL/UPL Reference Manual

Verbs

X E€IT (24);

PROCESSUR_TIVES 7

P S

Assigns the 20-tit accumulated processor

ime inta the identifier X.

CHARACTER
CHARACTER
CHARACTER
CHARACTER
FIXEDs
FIXED,
FIXED?

2)»
2)»
2.
13>,

IF CC(BUMP COUNTER) > 900000) THEN UNDO’

C(PROC_TINE 7 36000)s CHARACTER)» 6);
({(PROC_TIME MOD 36000 /7 600)» CHARACTER)»6);
C(PROC_TIFE MOD 6GO / 10)» CHARACTER)» b6);
({PROC_TINE MOD 10)» CHARACTER)» 7);

("THE TOTAL CPU TIME EQUALS * CAT HOURS CAT "z~
CAT MINUTES CAT ":® CAT SECONDS CAT "." CAT TENTHS);

This example program multiplies two numbers 900,000 times and then

interrogate the CPU time. The

CPU time is then displayed on the 0DYT and the program goes to

%t
Example Program:
DECLARE HOURS
MINUTES
SECONDS
TENTHS
PROC_TIME
X
COUNTER
COUNTER 3= 05
DO FOREVERS
2= 9999999 & 9999999,
END>
PROC_TIME 2= PROCESSOR_TINME?
HOURS 3= SUBSTR CCONVERT
MINUTES == SUBSTR C(CONVERT
SECUNDS 2= SUBSTR (CONVERT
TENTHS == SUBSTR (CONVERT
DISPLAY
DISPLAY (*GOOD BYE™)»?
STOPS,
FINI>
x
X uses the PROCESSOR_TIME verb to
r4
Z end of jobe.

9-118

B 1000 Systems SDL/UPL Reference Manual
Vérbs

PROGRAM_SWITCHES

PROGRAM__SWITCHES

The PROGRAM__SWITCHES verb returns the current values of the program switches from the pro-
gram parameter block (PPB). If <switch-number> is specified, the 4-bit value of the specified pro-
gram switch is returned. If <switch-number> is not specified, the 40-bit value of all 10 program
switches is returned.

If <switch-number > contains a value which is less than zero or greater than nine, a run-time error
results.

The program switches can be permanently set in the SDL/UPL program by using the MCP MODIFY
command or set at run-time by using the MCP SWITCH program-attribute command. In either case,
the program parameter block (PPB) for the SDL/UPL program contains the resulting value of the pro-
gram switches.

The following shows how to modify the program switches in an SDL/UPL program at execution time.
MODIFY <program name> SWITCH = @ <value-0> <value-1> ... <value-9>@
MO%IFY <program name> SWITCH <switch number> = @ <value>@

The following shows how to permanently modify the program switches in an SDL/UPL program.
EXECUTE <program name> SWITCH = @ <value-0> <value-2> ... <value-9>@

or

EXECUTE <program name> SWITCH <switch number> = @ <value>@

Refer to the B 1000 Systems System Software Operation Guide, Volume 1, form number 1108982, for
a complete description of the program switch attributes.

SDL and UPL Syntax:

-

—— PROGRAM_SWITCHES

(<switch-number>)

Syntax Semantics:
switch-number

This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value.
< switch-number > must have a value between 0 and 9, inclusive.

1137833 9-119

B 1000 Systems SDL/UPL Reference Manual

PROGRAM_SWITCHES

Examples:

X 3= PRCCRAFM_SWITCFES
X 3= PRCCRAVM_SWITCFHES (93¢

X 2= PRCGCRAN_SWITCHES (Y1)

X =

PEOCRAM_SWITCEES (EUMP Y);

Example Program:

DECLARE SWITCHES BIT (40)»
INDEX FIXEDS
INDEX == 03

SWITCHES =

PROGRAM_SWITCHES?

DO FOREVERS>

DISPLAY ("SWITCH ™ CAT SUBSTR (CONVERT C(INDEX» CHARACTER).

CAT ™ EQUALS "™ CAT

» N

N N

Verbs

Assigns to identifier X a 40-bit
value of atl 10 program suitchese

Assigns to identifier X a 4-bit
value cf program switch 5.

Assigns to identifier X & 4=bit
value of the program switch
specified by identifier Y.

Assigrs to identifier X a 4=bit

vatue of the prograe switch
specified bty the valtue of ¥ + 1.

7)

CONVERT (SUBBIT (SNITCHES, CINDEX % 4)» 4)» CHARACTER));
IF C(C(BUMP INDEX) > 9) THEN DO?

DISPLAY (=GO00D BYE™)3

STOP»

END>
END>
FINI;
X This example program displays on the ODT the values of each
Z program sWwitche The PROGRAM_SWITCHES verb is used to interrogate
X the value of all ten switches. The prograsm switches must be set
X prior to or at execution time’s otherwiser all the values are equal
Z to 30de

9-120

B 1000 Systems SDL/UPL Reference Manual
Verbs

PROGRAM_SWITCHES
Output from Example Program:

2EXECUTE PRGSWITCHO SWITCH = 3123456789A35
PRGSHITCHO =7468 BOJ. PP=bL» NP=4 TIME = 11:42:21.6

X PRGSWITCHO =7468 SWITCH 0 EQUALS 1
Z PRGSKITCHO =7%468 SWITCH 1 EQUALS 2
X2 PRGSWITCHO =7468 SWITCH 2 EQUALS 3
Z PRGSWITCHO =7468 SWITCH 3 EQUALS &
X PRGSWITCHO =7468 SWITCH 4 EQUALS 5
X2 PRGSWITCHO =7468 SWITCH 5 EQUALS 6
Z PRGSAITCHO =7468 SHITCH 6 EQUALS 7
% PRGSWITCHO =7468 SHWITCH 7 EQUALS 8
X2 PRGSWITCHO =7468 SWHITCH 8 EQUALS 9
X PRGSWITCHO =7468 SHITCH 9 EQUALS A
X PRGSWITCHO =7468 GUOD BYE
PRGSWITCHO =7468 EDJo TIME = 113422343.2

1137833 9-121

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

The READ verb causes the SDL/UPL program to read a record from the specified file and store the
record in <identifier-1>.

Read operations can be performed on any readable device. Reading a diskette file requires that the
file be copied to a disk file before it is processed.

The file attributes in the FILE declaration statement determine which of the position options (<record-
address-identifier >, <remote-key-identifier>, or < queue-family-identifier>) can be specified. The
<record-address-identifier > requires a file with a disk device type and random access or a card device
type with the STACKERS open attribute specified at file open time. The <remote-key-identifier> re-
quires a file with a device type equal to REMOTE. The < queue-family-identifier > requires two file
attributes to be specified in the file declaration. The two file attributes are a device type equal to
QUEUE and the QUEUE__FAMILY__SIZE that is equal to the number of queue families.

SDL and UPL Syntax:

—— READ ——y— <file-identifier>> >
— < switch-file-identifier> (<number>)
~ S
>
{ < record-address-identifier™>]
— <remote-key-identifier>>
—— < queue-family-identifier>
>———— (<Lidentifier-1>>) >
~ . N
e ; =
————————— WITH RESULT_MASK < address-generator> e
|
-7]

ON EOF <statement-1>>;
ON EXCEPTION <statement-2>>;
ON INCOMPLETE_10 <statement-3>; =

9-122

B 1000 Systems SDL/UPL Reference Manual

Verbs
READ
UPL Syntax:
—— READ <file-identifier> >
—— <switch-file-identifier> (<number>)
> —>
[< record-address-identifier™>]
<remote-key-identifier>
< queue-family-identifier>
S>———— (<identifier-1>>) >
~

P

WITH RESULT_MASK < address-generator>>

\
1

ON EOF <statement-1>;
ON EXCEPTION <statement-2>;
ON INCOMPLETE_IO <statement-3>>;

Syntax Semantics:

address-generator
This field can be any valid SDL/UPL address generator. It specifies the name of the exception

mask field.

file-identifier
This field can be any valid SDL/UPL file identifier with exception of a file that is opened OUT-
PUT only and specifies the name of the file to be read.

switch-file-identifier
This field can be any valid SDL/UPL switch file identifier with exception of a file that is opened
OUTPUT only and specifies the name of the file to be read.

number
This field can be any valid SDL/UPL integer, identifier, or expression that returns a binary value
and specifies the file number of < switch-file-identifier > .

record-address-identifier
This field can be any valid SDL/UPL identifier and it specifies the key location of a record
within a file. <record-address-identifier > is valid for files with a device type equal to DISK
RANDOM and DISK__PACK RANDOM. <record-address-identifier > is also valid for card files
that are opened with the STACKERS open attribute.

< record-address-identifier > must be a binary value or an expression that returns a binary value.
If the value is greater than 24 bits, only the rightmost 24 bits are used. For card files, the binary
value of <record-address-identifier > must be less than or equal to seven, and must correspond
to a stacker available on the device. For example, if only two stackers are available on the card
device, a <record-address-identifier> equal to three is not valid.

1137833 9-123

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

remote-key-identifier

This field can be any valid SDL/UPL identifier and it specifies the relative station number (RSN)
within the remote file on which the READ operation is completed.

< remote-key-identifier > is valid for files with a device type equal to REMOTE. The data type
of <remote-key-identifier > must be equal to CHARACTER and have a length of 10 bytes. A
read operation of a remote file causes the relative station number of a station within the remote
file, message text size and the read operation code ‘000’ to be stored into <remote-key-identifi-
er>. The relative station number defaults to the character ‘‘1’’ if the maximum number of sta-
tions in the remote file is equal to one. The maximum number of stations is specified in the FILE
declarations. For example, DEVICE = REMOTE (5) specifies that the maximum number of sta-
tions for this file is five.

queue-family-identifier

This field can be any valid SDL/UPL identifier and it specifies the family number in the queue
file which the read operation has completed.

< queue-family-identifier > is valid for a file with a device type equal to QUEUE and with the
QUEUE_FAMILY__SIZE greater than one. < queue-family-identifier> specifies which queue
family member from which to read. If <queue-family-identifier > is not specified in the READ
verb, the oldest message in the queue file is read.

The end-of-file (EOF) record is treated as a pseudo-message in the queue file. That is, when the
last message has been read from the queue file, the queue file remains not empty for waiting
purposes. A subsequent read operation causes the end-of-file branch to be taken. The queue file
is then empty but still in end-of-file status. If another read operation is issued to the queue file,
the program takes the end-of-file branch. If the reading program closes and reopens the queue
file or a new writing program opens the queue file, the end-of-file condition is reset.

A read operation directed to a specific member of a queue file family is treated as though it were
issued to a simple queue file. A read operation issued to an unspecified member of a queue file
family (unspecific read using < queue-family-identifier > equal to — 1) returns the end-of-file con-
dition if all the members in the queue file family are empty and no active writing programs have
the queue file open.

identifier-1

This field can be any valid SDL/UPL identifier and it specifies the data address in which to store
the data read.

ON EOF

The keywords ON EOF cause the program to perform < statement-1>, if the end-of-file record
is read from the file. For queue files, if end of file occurs, the queue file is then empty and there
are no programs with the file opened and the OUTPUT open attribute set.

ON EXCEPTION

9-124

The keywords ON EXCEPTION cause the program to either perform < statement-2> or to store
the 24-bit exception mask into <identifier-2>. If a parity error is encountered during the read
operation and all the MCP retries have been exhausted, the 24-bit exception is stored in <identi-
fier-2>.

Exceptions for a file can be masked if the EXCEPTION__MASK file attribute is specified in the
FILE declaration statement. If an identifier, enclosed in parentheses, follows the ON EXCEP-
TION keywords, a 24-bit value which describes the exception that occurred is returned.

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

ON INCOMPLETE__IO
The key words ON INCOMPLETE__IO cause the program to perform < statement-3>, if the
queue file is empty and another program has opened the queue file with the OUTPUT open attri-
bute set. \

statement-1
This field can be any valid SDL/UPL statement. It is performed when the ON EOF keywords
are specified in the READ verb and the end-of-file record is encountered in the file. If an excep-
tion occurs for queue files, an invalid <remote-key-identifier > value has been provided in the
READ verb.

statement-2
This field can be any valid SDL/UPL statement. It is performed when the ON EXCEPTION
keywords are specified in the READ statement and a parity error is encountered while attempting
to read a record from the file.

statement-3
This field can be any valid SDL/UPL statement. It is performed when the ON
INCOMPLETE__IO keywords are specified in the READ statement, when the end-of-file record
was encountered in the queue file, and when there is a program that has the queue file open
with the OUTPUT open attribute.

WITH RESULT_MASK
The keywords WITH RESULT__MASK cause the program to use < address-generator> as the
exception mask identifier. The EXCEPTION__MASK file attribute must be specified in its FILE
declaration statement.

Variable-Length Records

The syntax of the READ verb for variable-length records resembles the syntax for fixed-length records.
The difference between them is the data type and the data length of the identifier.

Variable-length records are allowed only in tape and serial disk files that are declared with the file attri-
bute VARIABLE. The RECORDS file attribute of the file must be large enough to hold the largest
record that is to be read or written.

The actual manipulation of variable-length records is invisible to the programmer of the read operation.
An exception is that the programmer must allow for a 4-byte field, which begins in the first position
of each record to be stored in the identifier receiving the data. This 4-byte character field contains
the length, in bytes, of the record that is read. This record length is equal to the number of bytes
in the data file plus four. The record length is specified as a decimal value.

1137833 9-125

B 1000 Systams SDL/UPL Reference Manual
Verbs

READ
Example Program that Reads Variable-Length Records:

FILE PAYROLL (DEVICE = DISK»
OPEN_OPTION = INPUT/OUTPUT.
RECORD3 = 240/1» VARIABLE)S

DECLARE 01 DISK_BUFFER CHARACTER (80)»
02 REC_SIZE CHARACIER (4)»
02 DATA CHARAC TER (76) 5

DO FOREVER>
READ PAYROLL (DISK_BUFFER)>
ON EQF UNDO>
END >

CLOSE PAYROLL LOCK>
STUPs
FINI;

To process variable-length records, the MCP builds a single buffer whose size is equal to the declared
record size multiplied by the records per block. The MCP reads into its buffer as many complete logical
records as it can. It never splits a logical record across physical record boundaries.

The following shows those logical records read into the buffer by the MCP. Assume the program
specifies a record size equal to 240 bytes and the order and length of each record are:

Record Record Size in Bytes
Number (Including Record Size Field)
1 48
2 63
3 80
4
5 31

Figure 9-1 shows the contents of the 240-byte program buffer after a read operation is performed.

Record 1 Record 2 Record 3 49 empty bytes

48 bytes 63 bytes 80 bytes (hex zeroes)
| |
I 240 bytes 1
G18304

Figure 9-1. Contents of Buffer After a Read Operation.
Only records 1, 2, and 3 are stored into the buffer because the next record (record 4) is too long to

be stored in the remaining portion of the buffer. The unused portion of the buffer is filled with
hexadecimal zeroes.

9-126

B 1000 Systems SDL/UPL Reference Manual

Verbs

Examples:

FEAD

FCAD

READ

READ

1137833

DISKFILE C(FIELC);
CN EQF STCP;

DISK C(INCEXY (FIELCS
On ECF STuUP;
ON EXCEPTICN CISPLAY ("NOT FOUND™);

GUEUEFILE (NUMEER]I (FIELD)?

CN INCOMPLETE_IC CISFLAY ("NO MESSAGES™)?
ON EGF CISPLAY ("NO WRITERS™))

OGN EXCEPTION CTSPLAY ("INVALID KEY®)?

REMGTEFILE (KEY] (FIELD)S
ON EXCEPTICN CISPLAY (MINVALIC KEY");

N N

N A2 N

N XN xS

N A e

READ

Reads from the file
tabeled DISKFILE.

Reads from the file
Labeled DISK at
recorc¢ address =
the value of INDEX.

Reads from the file
fabeled QUEUEFILE
at queve fawily =
the value of NUMBER.

Reads from the file
tateled REMCTEFILE
at remote key = the
value of KEY.

9-127

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ

Example Program:

DECLARE FIELD CHARACTER (90);
FILE DISKFILE (DEVICE = DISK.»
RECORDS = 90/2)7
OPEN DISKFILE WITH INPUT?
DO FOREVER?
CASE WAIT (TIME_TENTHS (10)» SPO_INPUT_PRESENT)?
X TIME = 1 SECOND

DOs
READ DISKFILE C(FIELD)?
ON EOF DU»
DISPLAY ("END UOF FILE ENCOUNTERED =-- GOOD BYE")>
STOP»
END?
ON EXCEPTION DO>
DISPLAY ("PARITY ENCOUNTERED == GOOD BYE™);
STOP>
END>
DISPLAY C(FIELD)Y>
E£ND3
X SPO_INPUT_PRESENT
DO
ACCEPT FIELD’
IF FIELD = "“BYE"™ THEN DO?
DISPLAY (*"G0OO0OD BYE")>
ST0P?
END>
END;
END CASES>
ENDS
FINI;
X This example program reads a disk file Labeled DISKFILE and
%2 displays on the 0D7T each record resd. If the end-of-file
Z record is encountered or an exception occurss the progranm
Z goes to end of jobe If BYE is entered to the programs the
X program goes to end of jobe

9-128

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ_CASSETTE
READ__CASSETTE

The READ__CASSETTE verb causes the number of bits specified by < destination-identifier > to read
from the console cassette drive to the address specified by that <destination-identifier >. This number
of bits must be equal to the record size minus the hash-total size (if it is present) of 16 bits. The key-
words HASH_ TOTAL or NO_HASH__TOTAL indicate whether or not a hash-total is expected at
the end of the record.

SDL Syntax:

—— READ_CASSETTE (<destination-identifier>>, HASH_TOTAL >
L NO_HASH_TOTAL

>———- <result-identifier>); J‘

Semantics:

destination-identifier
This field specifies the number of bits to be read from the console cassette drive and specifies
the destination field for the data.

result-identifier
This field contains a value of 0 or 1 after the READ__CASSETTE operation is complete. A value
of 0 indicates that the hash total was incorrect. A value of 1 indicates that the hash total was

correct.

- HASH__TOTAL
The keyword HASH__TOTAL specifies that a hash total is expected at the end of the record.

NO_HASH_TOTAL
The keyword NO__HASH__TOTAL specifies that there is no hash total expected at the end of
the record.

Examples:

FEAC_CASSETTYE (DESTIMATICN, FASH_TOTAL, RESULT)Z

FEAL_CASSETTE (KECCRC» MNC_FASH_TOTAL, FASP_RESULT);

1137833 9-129

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ_CASSETTE

Example Program:

FILE LINE (DEVICE = PRINTER,
RECORDS = 132/71)7

DECLARE CASSEVTTE_RECORD BIT 180)»
HASH_RESULT BIT (1)3

OPEN LINE OUTPUT NEW’
DO FOREVER3
READ_CASSETTE C(CASSETTE_RECORD» HASH_TOTAL», HASH_RESULT)?
IF HASH_RESULT = 1
THEN WRITE LINE C(CONVERT C(CASSETTE_RECORD» CHARACTER));
ELSE DO’
DISPLAY "INCORRECT HASH RESULT";
CLOSE LINE;
sTop;
END3
END;
FINI;

%2 This example program reads from the console cassette drive

X using the READ_CASSETTE verb and writes the data to a printer

2 file labeled LINE.

9-130

B 1000 Systems SDL/UPL Reference Manual
Verbs

READ_FILE_HEADER
READ__FILE__HEADER

The READ__FILE__HEADER verb reads the disk-file-header information for the file specified by
< file-identifier >. This verb is intended for use only in B 1000 system software.

SDL Syntax:

A%

—— READ_FILE_HEADER (<file-identifier>, <destination>>);

/1\ ON FILE_MISSING <statement-1 |
N\
1 ON FILE_LOCKED <statement-2>>

Syntax Semantics:

file-identifier

This field specifies the name of the file and can be any valid SDL literal, identifier, or expression
that returns a value with a data type equal to CHARACTER. <file-identifier > is expected to
be a 30-character value, where the first 10 characters are the pack identifier, the second 10 charac-
ters are the multifile identifier, and the third 10 characters are the file identifier. Each file identifi-
er is left-justified in its respective field. If only one file name exists (no multifile iden