

Distribution C .., OueSE

Burroughs

Progress~1o_n ______ _.::::___:=_ __ ~
Guide

Priced Item
Printed in U.S.A
February 1987 •

1180593

Unisys cannot accept any financial
responsibilities that may be the result

or other
of your use

including
damages.
by this

of this information or software material,
direct, indirect, special or consequential
There are no warranties extended or granted
document or software material.

You should be very careful to ensure that the use of
this software material and/or information complies
with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Comments or suggestions regarding this document
should be submitted on a Field Communication Form
(FCF) with the Class specified as "2" (Systems
Software), the Type specified as "l" (F.T.R.), and
the Product specified as the seven-digit form number
of the manual (for example, "1180593"). The FCF
should be sent to the following address:

Unisys Corporation
Product A:;surance and Supporl
19 Morgan Avenue
Irvine, CA 92718

1

2

3

4

5

6

CONTENTS

INTRODUCTION • • • • • • • •
ORGANIZATION OF THE MANUAL .
PROGRESSION ASSISTANCE

THE PROGRESSION PROCESS ••••••••
KEYS FOR SUCCESSFUL PROGRESSION.
PROGRESSION TASKS.
PROGRESSION AIDS

FILE HANDLING. • •
FILE NAMING CONVENTIONS.
FILE NAMING ATTRIBUTES .
FILE SECURITY .•••••
USERCODES .••..•••

Privileged Userdodes •
Non-privileged Usercodes •

FILE ASSIGNMENT •.
Accessing A File Under Another Usercode.

SERIAL NUMBERS •
FILE REMOVAL • .

WORK FLOW (JOBS) •
SMALL SYSTEMS WFL .•

Converting to A SERIES WFL
JOB SPAWNING • • . • . .
SMALL SYSTEMS CONTROL CARDS.

AFTER. . • • .
AFTER.NUMBER .
THEN •
CONDITIONAL. •
UNCONDITIONAL.

FILE AND PROGRAM ATTRIBUTES ••
FILE ATTRIBUTES ..•.•
STANDARD FILE ATTRIBUTES
PROGRAM ATTRIBUTES •

TRANSFERRING FILES • • • • • • • • • •
SOME NOTES BEFORE YOU START ••
CHOOSING THE FILE TRANSFER METHOD.
THE BlOOOCOPY METHOD •

Using BlOOOCOPY .•
Missing Areas. . . •

THE B6000COPY METHOD
Using B6000COPY ..•
Missing Areas ..•

DMSII FILE TRANSFER.
PROGRAMMATIC TRANSFER METHOD

B And Tag Style ISAM Files .

1
1
3

5
5
5
7

9
9

10
11
14
14
16
19
21
21
23

25
25
25
26
26
26
27
28
28
29

31
31
42
45

51
51
51
52
53
54
54
55
56
56
56
56

7

8

9

COBOL74 ISAM Files •
Relative Files • • •
Missing Area Files •

COBOL(68) . .

COBOL74. •
GENERAL COBOL74 CONVERSION INFORMATION •

Hexadecimal Literals .•
,Non-numeric Arithmetic •
HIGH-VALUE, LOW-VALUE.
Default Sign Position.
TASKVALUE. • • • • • •

COBOL .DIVISIONS. • . . .
Identification Division ••
Environment Division •••••
Data Division. • • • • • •
Procedure Division • • • • • • • •

COMPILER-DIRECTING DOLLAR SPECIFICATIONS •
ADDITIONAL FEATURES.

RPG • ••••

THE RPG TRANSLATOR • •
DOLLAR SPECIFICATIONS. • • • • . • • • •

Compiler Control Images (CCI). • •••
File Attribute Dollar Specification ••

FILE NAMING. • • • • . . •
ISAM • . • • • . •
GENERAL LANGUAGE ELEMENTS.
H-Specification. •

Column 16 .•
Column 53 •..
X Edit Code .•

D-Specification.

. . ' .

A-Specification After D-Specification .•
F-Specification. • •.•

Column 40-46 .
Column 53 •••

E-Specification.
Tables . • •
Columns 9-10 . .
Compile-Time Vectors

T-Specification.
c-specification.

MOVEA.
DSPLY.
SEND •
SETLL.
RECV •
ZIP.
OPEN
CLOS •

0-Specification.

57
57
57

59

61
61
61
65
66
66
67
68
68
68
69
70
79
80

83
83
83
83
84
85
85
85
86
86
86
86
87
87
87
87
88
88
88
88
88
89
89
90
90
90
90
90
90
91
91
91

10

11

Column 15 ..•..••
Columns 23-31 ...••
Column 38 (Edit Code).
Column 39 •....

RUN-TIME ERRORS
ADDITIONAL FEATURES ..•

.

. .

. .

. .

. .

. .

. .

. .

. . 91

. . 91

. . 91

. . 91

. . 92
92

ADDITIONAL A SERIES DOLLAR SPECIFICATIONS. 93

DMSII OPERATIONS •
COMPILING A DATA BASE.

INITIALIZE •
Reset ZIP•

COMPILING A DMSII APPLICATION PROGRAM. •

95
95
95
95
96
97
98
98
99
99

OPENING DATA BASE STACKS •
MEMORY • •

ASN Memory . . . • .
Shared/GLOBAL Memory •

UPDATE and REORG .
BACKING UP A DMSII DATA BASE
RECOVERY • • . . .

Abort Recovery . • . • • •
CLEAR/START Recovery • •
Full Data Base Recovery.
Single Structure Recovery.
Row Recovery • . . .
Rollback Recovery ..
Online Dump Recovery •

DECERTIFICATION. • •..
DBANALYZER

DMSII DASDL.
GENERAL INFORMATION ..

TITLE Statements • •
INITIALVALUE . . • •
Hexadecimal Literals
CONTROL File
AREASIZE . • . • • .

DOLLAR CARDS • • • • .
NO <dollar card option> ••
<Option Name> And SET •••••••
Permanent Option Indicator •

COMPILER OPTIONS. • • • • • .
OPTIONS. • . . . • . • • . . .

AUDIT SET and AUDIT RESET.
END-TRANSACTION •••
Physical Options . . •
Additional Options ••

VARIABLE FORMAT RECORDS ••
ORDERED EMBEDDED DATA SETS •

Small Systems BLOCKSIZE ••.
FIND Statement . • • • • • • • . •

LONG LISTS • . . • • • • • •
UNORDERED EMBEDDED DATA SETS

100
• 100

.. 100
•• 100

• • • • • 101
• • • 101

• 101
• 101

. • . • • • 102
• • • • • 102

102

• • • • • 103
•• 103
• • 103

• • • . • • 103
. • • • • • • • • 104

.• 104
• • • • • 104

. • • • • • • • 104
• • • 105

• 105
• • 105

• 105
. . • • • 107

• • • • • • • • . 108
• • • • • • • • • • • 108

• 108
• • • 109

• 111
113

• • • 113
• • • • . 114

• • • • • • 114
• 114

12

13

BLOCKSIZE. • . • •
MANUAL SUBSETS . • •

Blocking Levels ••
FAST Subsets • •

SETS AND AUTOMATIC SUBSETS •
Group Keys ••
Indexed Random • •
REMAPS • . • . • .

LOGICAL DATA BASES •
Security • • • •

ADDITIONAL FEATURES.

SJICS to COJIS
COMS • • •
SIMPLE REMOTE FILES.

Declare a Program to COMS.
Declare a Window to COMS .

HOW TO RUN PROGRAMS •••
BRINGING DOWN PROGRAMS •
BlOOO CDs •.•••.•.•
REMOTE FILES WITH SIMPLE HEADERS .
USER MCSs - REMOTE FILES WITH HEADERS.
JOBS FILE. . • • • • •
COMMAND FUNCTIONALITY ..

GEMCOS/COJIS. • • • • • •
GENERAL INFORMATION ABOUT COMS
TCL FORMATTING . • • .

Maintenance of TCL
Run GEMCOS Utility
COMS Configuration Items
FORMSREQUEST • . •
Format Update. • . • • • •
Programming Changes. . . • • • . . ••••.
Screen Design Facility (SDF) coexistence .
Monitor Output . . • . • .••.

TCL. . • . . . • . . • . • • • • • •
Compiler Statements ..
Global section • • •
Definition section •
Definition Section (Program) •
Definition Section (Station)
Device Section • • •
Mess Code Section ••••...•••••••

COMMON-AREA HEADER . • • • • .
COBOL Interface Differences .••
Message Header • • . . • . •
CD Interface • • • . . . • . .
Common-area Header Compared To CD Interface. •

NETWORK CONTROL COMMANDS • • . . • . • • .
Security Control Commands.
Program Control Commands •
MCS Control Commands • • •

114
115

. • 115
• 115
. 115

115
116

•• 116
117
117
117

.. 119
119
120

• 120
121
122

• • 122
122
123
123
123
124

. . 129
129

• • 130
• 130

131
132
133
133

• • 133
134
134

• • 134
• • 134

135
• • 137

. • • 137
142
145
146
146
146
146
147
148
148
149
150

• • • 150

14

15

Message Control Commands
REPORT Commands ..
CHANGE Commands
AUDIT And RECOVERY Commands.

ADDITIONAL COMS COMMANDS NOT IN GEMCOS
PASSWORD Command
ON Command ...
CLOSE Command. .
SUSPEND Command.
RESUME Command .

CONTROLLING STATIONS
COMS Command . . .
DATABASE Command
JOBS Command . . .
MONITOR Command.
WINDOW Commands.

RECOVERY DIFFERENCES
Recovery Specification
DATABASE
QUEUERESTORATION . . .
Synchronized Recovery.

RECOVERY-RELATED CONVENTIONS
The Recovery Sequence (GEMCOS And COMS) ..

ARCHIVAL RECOVERY.

SORT •••
SORT ONLY AS A COMPILER. .
STATEMENTS NOT NECESSARY IN THE A SERIES SORT.

150
151
152
153
153
153
154
154
154
154
154
155
155
155
155
156
156
157

. 157
157
157
158

. 159
164

. .. 167
. 167
. 167

STATEMENTS NOT SUPPORTED IN THE A SERIES SORT. . . 167
A SERIES REPLACEMENTS FOR SMALL SYSTEMS SORT STATEMENTS .. 168
EMBEDDED COMMENTS
FILE STATEMENT
VARIABLE LENGTH RECORDS ..
FILE NAMES
DATA TYPE DIFFERENCES ..
MEMORY STATEMENT .
INCLUDE AND DELETE STATEMENTS.
TAGSORT STATEMENT.

REPORTER II I • . • . . . •
VOCABULARY LANGUAGE (VOCAL) USER'S MANUAL.

External File Name
DATA SET Statement
EXCLUDE Statement.
SET Statement.
DMSII Language Statements ..
USING Clause • .
Storage Media And File Attributes.
Files Required For Execution .
Unrecognized COBOL Constructs.
Defaults And Limits
COBOL74 Code

REPORTER III REPORT LANGUAGE USER'S MANUAL .

168
168
168
168
169
169
170
170

. 171
171

. 171
172
172
172

. 172

. 173
173
174
174

. 174
174
174

16

17

18

A

External File Name . . . • . • . . .
Maximum Characters For a PIC Clause. •
EXTRACT FILE AREASIZE Statement ..
EXTRACT FILE Statement • . . . • . •
Sample Statement Parameters Limit .•
Process Options SET Statement .•

ON-LINE REPORTER III USER'S MANUAL
EXECUTION OF REPORTER III ••

Cards Or Pseudo Reader
ODT ..

ODESY

ISAM FILES .
DATA TRANSFER.

B-Indexed Files.
TAG Files. . .
ISAM Files . . .

A SERIES KEYEDIO FILES •
FILEORGANIZATION . . .
Recovery Of A KEYEDIO File
Performance Considerations •
How To Calculate BLOCKSIZE .

PROGRAM CONVERSION
COBOL74 Programs .
COBOL(68) Programs
RPG Programs

ADDITIONAL FEATURES .•

QUEUE/PORT FILES
GENERAL INFORMATION ..
QUEUE FILE FAMILIES.
SUBFILE MATCHING . . •
COBOL74 INTERFACE ...

Environment Division
FILE STATUS Values
Data Division

.

. .
.

. . .

. .
. . .
.

. .

174
175
175
175
175
175

. 176
176
176

. 177

. 179

. 181

. 181
181

. 181

. 181

. 182
182
184
185
189
192
192

. 192
192
192

. 195
195

• 204
. 204

210
210
211
213

Procedure Division . 214
QUEUE FILE ATTRIBUTES COMPARED TO PORT FILE ATTRIBUTES • 227
PORT FILE ATTRIBUTES WITH NO QUEUE FILE EQUIVALENTS. . 228

SllALL SYSTEMS AND A SERIES REFERENCE MANUALS . .
SMALL SYSTEMS MANUALS.
A SERIES MANUALS •

• 237
. 237

237

GLOSSARY. 241

INDEX ••• • • 257

1

i INTRODUCTION

Progression is the process of upgrading a data processing facility from
a B 1000 Series to the A series or B 5000/B 6000/B 7000 Series of
Systems. This manual provides instruction and tips for this process.

This manual is written to take you through the progression process. It
discusses the differences encounte_red when progressing from the Small
Systems to the A Series and B 5000/B 6000/B 7000 Series, describes
common progression problems and provides solutions to these problems,
and gives general information for handling the overall progression
process.

Throughout this manual, the B 1000
Systems." "A Series" applies to
6000/B 7000 Series.

Series is
both the

referred to as "Small
A Series and the B 5000/B

ORGANIZATION OF THE MANUAL

The manual is divided into the following sections:

Section 1

Section 2

Section 3

Section 4

Introduction

The Progression Process

This section discusses the keys for
successful progression, progression tasks,
and progression aids.

File Handling

This section
between Small

discusses
Systems

the differences
and A series file

naming conventions, file naming attributes,
file security, usercodes, file assignments,
and serial numbers.

Work Flow (Jobs)

This section discusses how to progress to
A Series WFL from Small Systems WFL, job
control attributes, and job spawning.

2

Section 5

Section 6

section 7

Section 8

Section 9

Section 10

Section 11

Section 12

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

File And Program Attributes

This section lists the Small Systems file
and program attributes and their A Series
equivalents.

Transfe'h;,ing Files

This section discusses the various file
transfer methods and their use.

COBOL(68)

This section discusses the reasons why you
should convert to COBOL74 as part of the
progression to the A Series.

COBOL74

This section discusses the differences
between Small Systems COBOL74 and A Series
COBOL74 and gives instruction about
progressing to A series COBOL74.

RPG

This section discusses the differences
between Small Systems RPG and A Series RPG
and how to progress to A Series RPG.

DMSII Operations

This section discusses the operational
differences between DMSII on Small Systems
and DMSII on the A series.

DMSII DASDL

This section discusses the differences
between Small Systems DASDL and A Series
DASDL and how to progress to A Series
DASDL. It also discusses differences which
affect application programs.

SMCS to COMS

This section describes the process of
progressing from the Small Systems SMCS to
the A Series COMS.

Section 13

Section 14

Section 15

Section 16

Section 17

Section 18

PROGRESSION ASSISTANCE

3

Introduction

GEMCOS/COMS

This section gives a general overview of
the differences between Small Systems
GEMCOS and A Series COMS. It lists the
GEMCOS statements and their A Series direct
or functional equivalents and shows how to
progress from GEMCOS to COMS.

SORT

This section discusses the differences
between Small Systems and A Series SORT and
how to progress to A Series SORT.

REPORTER III

This section lists the differences between
Small Systems and A Series REPORTER III.

ODESY

This section discusses the progression from
Small Systems On-Line Data Entry System
(ODESY) to the A Series ODESY.

ISAM Files

This section discusses progressing from the
three types of Small Systems ISAM files to
A Series ISAM files.

QUEUE/PORT Files

This section discusses the differences
between Small Systems Queue files and
A Series Port files and how to progress to
A Series Port files.

If you have a progression problem or solution that is not covered in
this document, send a detailed description to:

BURROUGHS CORPORATION
Progression Aids Support
19 Morgan Avenue
Irvine, CA 92718

4

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Of course, if you have a problem that requires immediate attention,
contact your local Burroughs Technical Representative.

5

Z THE PROGRESSION PROCESS

Upgrading from Small Systems to the A Series requires changes to the
software. Burroughs supports progression by providing progression aids,
this documentation, and tips to aid you during th~ progression process.

KEYS FOR SUCCESSFUL PROGRESSION

The following are the three steps to a successful progression.

1. Plan. Planning should start when you sign the order for the
A Series. You should have a plan for the entire progression
process before you begin the progression. To help you plan your
progression, a list of the progression tasks and types of
information you need for the progression is given later in this
section.

2. Train. Take advantage of Burroughs Customer Education classes
before you start the progression. A thorough understanding of
the A Series will help the progression process considerably.
Burroughs Customer Education classes include a Progression
series oriented specifically for the Small Systems user moving
to the A series. contact your local Burroughs Technical
Representative for more information about the customer
education classes.

3. Do a straight progression. Do not attempt to enhance or fix the
software during the progression. Make only those changes
necessary to get the software running on the A Series. After
the progression is complete and you feel comfortable with the
A Series, take advantage of the features on the A Series and
enhance the software.

PROGRESSION TASKS

The following is a list of suggested progression tasks. You may need to
modify the activities on this list to meet your needs.

1. Freeze the program library. Compile the source code and make a
copy of the source and object files. To the maximum extent
possible, do not make changes to the source or copy libraries
after this point.

2. Prepare the progression package. To convert the code, you need
to gather the complete source code, copy libraries, translation
aids, and conversion instructions (new naming conventions, data
base implementation information, data communication
information, etc.).

6

3.

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Deliver the progression package.
to the individual or team
progression.

Give the progression
who is responsible

package
for the

4. Translate the source code to a clean compile. Generally this
is done using one of the Burroughs-supplied translators, but it
may be done manually if no tool exists. Even with the use of a
translator, it may be necessary to make some manual changes to
achieve a clean compile.

5. Transfer the test data files. Retain a copy of the small
systems test data on the Small Systems for testing purposes
until you have completed the progression. The test data files
should be varied enough to ensure a thorough test of the entire
program and small enough to keep the run times short.

6. Perfork the unit tests and make the necessary corrections. Run
unit tests to verify individual programs after they have been
converted. To complete a unit test successfully and
efficiently, obtain access to the source code, documentation,
all input and output files, and all work files. The work files
are an important part of the debugging process because they
enable you to check your intermediate results.

When the unit test reveals that the results on the A Series are
identical to the results on the Small Systems, you have
successfully converted the program.

7. Perform a system test. Do a systems test after completing all
the unit tests of the programs which make up the systems. A
systems test requires documentation, all input files, and all
files associated with the systems.

The systems test is successful when the results produced by the
A Series are identical to the results obtained from the Small
Systems.

8. Update the documentation. Update all documentation to retlect
the changes made to the applications software.

9. Implement changes to non-frozen programs. Once you are
comfortable with the progression process, make the necessary
changes to any non-frozen programs.

Unit and systems test these programs just as you did the frozen
programs.

10. Deliver the translated program to operations.

11. Run parallel tests. Run identical processing on both the Small
Systems and A series, then compare the results.

7

The Progression Process

12. Begin live operation. Continue processing on the A Series.
The progression is now complete.

PROGRESSION AIDS

Burroughs provides a series of aids to assist in the ,progression from
the Small Systems to the A Series. These progression aids include
source code translators, data base conversion aids, file transfer
utilities, and sample programs. Available with the A Series 3.6 release
is the BTA360 Migration Aids tape. This tape contains ,the following
modules. Several of the modules have supporting programs and printer
backup files.

Online Controller to A Series (OCA)

COBOL(68) to COBOL74 on A Series
(CTA)

Burroughs RPG Translator (BRT)

Burroughs COBOL74 Translator (B7T)

Data Base Data Translator (DBT)

BlOOOCOPY

Miscellaneous Sample Programs

A menu driven program for running
BRT, B7T, and CTA. The primary
program is OBJECT/ETA/CONTROLLER.

Translates Small Systems COBOL(68)
to A Series COBOL74. The primary
program is CTACOB.

Translates Small Systems RPG to
A Series RPG. The primary program
is BRTRPG.

Translates Small Systems COBOL74
to A Series COBOL74. The primary
program is B7TCOB.

A Small Systems DMS to A series
DMS conversion tool. The primary
program is SYSTEM/DBTGEN.

Reads BlOOO System/Copy tapes on
the A series.

The BTA350 Small Systems Conversion Tape, available with the previous
progression aids release, also contains some useful progression aids.
These include:

B6000COPY

Miscellaneous Sample Programs

Reads A Series Library Maintenance
tapes on the Small System.

8

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

9

~ FILE HANDLING

There are important differences between Small Systems and A series file
handling. The differences are in the file naming conventions, the file
naming attributes, file security, usercodes, and serial numbers.

FILE NAMING CONVENTIONS

On the A Series, file names are composed of multiple components. The
first component is the usercode followed by the file-directory
identifiers (ID) under which the file is stored. The next component is
the file ID that identifies the file. Finally, the family name
specifies the physical device family upon which the file is stored. The
syntax to access a file is:

(<usercode>) <file-directory ID> <file ID> ON <family name>

Each of these components is built out of identifiers. Each identifier
consists of from 1 to 17 alphanumeric characters, hyphens, and
underscores, or it consists of a quoted string up to 17 characters.
Although special characters are allowed in file names, they require
special handling by the system, so we recommend that you avoid using
them.

The usercode is optional. If a usercode is specified, it must have
parentheses around it. An asterisk (*) may be used instead of a usercode
to indicate that the file is located among the general system files. If
a usercode or asterisk is specified, a slash (/) cannot be used to
separate the usercode or asterisk from the rest of the file name.

The file-directory ID is also optional. This identifier is the same as
the multi-file ID on Smal~ Systems. There may be from 0-11
file-directory IDs. This structure reflects the hierarchical nature of
the file system. Each file-directory ID is followed by a slash (/).

The file ID is the only file identifier that is required.

On the A Series, files are stored in "families." A family is one or more
disk packs which are treated by the system as if they were a single
unit. The user controls how many and which disk packs constitute any
family. Each family is assigned a family name for identification. The
family name is similar to the pack ID on Small Systems. The family name
is optional. However, when the family name is used, it must be separated
from the rest of the file name by the keyword ON.

10

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

On the A Series, the first identifier is never used to specify the
family name (pack ID on the Small Systems).

The following are examples of valid A Series file titles. In all of the
examples:

F
z and Y
u
all other

letters
*

A/B/F
D/E/F ON Z
E/F ON Y
A/F ON DISK
*A/B/C/D/E/F
*C/F
*A/F ON Z
(U)B/F ON Z
(U)C/D/F
(U)C/F ON Z

represents the file ID
represent the family names
represents the usercode
represent file-directory IDs

denotes that the file does not have a
usercode and that the file is located
among the general system files.

(U)C/F ON DISK
(U)A/B/C/D/E/G/H/I/J/K/L/F ON Y

FILE NA11ING ATTRIBUTES

Listed below are the Small Systems file naming attributes and their
A series equivalents. For more information about the A Series
attributes, see the "A series I/O Subsystem Reference Manual."

MULTI-PACK = TRUE

NAME

On the A Series, the default allows the
areas of a disk file to be- distributed over
the entire family, which may consist of
multiple packs. The A Series SINGLEUNIT
attribute indicates whether areas for the
disk file are to be allocated from a single
family member (pack). The default value for
SINGLEUNIT is false.

The A Series equivalent is TITLE with an
optional FAMILYNAME. The value of the

PACK-ID

TITLE

SECURITYUSE

SECURITYTYPE

FILE SECURITY

11

File Handling

TITLE attribute on the A Series specifies
the external file name. The default TITLE
for the file is the value of the INTNAME
attribute (INTNAME is the internal file
name).

Setting the TITLE attribute sets the
FILENAME attribute. If "ON <family name>"
is included in the TITLE, the FAMILYNAME
attribute is set to <family name> and the
KIND attribute is set to DISK.

The A Series equivalent is FAMILYNAME. The
FAMILYNAME indicates the name of the family
(one or more packs) on which the physical
file is located. FAMILYNAME must be a
simple identifier of up to 17 characters.
If a FAMILYNAME is not specified for a disk
file, areas for the file are allocated from
a family with a label of DISK. Because the
A Series allocates space for files without
a FAMILYNAME from DISK, we recommend
labeling at least one pack as DISK on the
A Series.

The A Series equivalent is TITLE. The
A Series TITLE attribute specifies the
external file name in the form "<file
identifier> ON <family name>. " The "ON
<family name>" is optional.

The A series equivalent is SECURITYUSE.
See SECURITYUSE in the "File And Program
Attributes" section.

The A Series equivalent is SECURITYTYPE.
See SECURITYTYPE in the "File And Program
Attributes" section.

Access to a file may be restricted by:

1. Associating a usercode with the file.

2. Setting the file SECURITYTYPE to PRIVATE.

12

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

3. Setting the file SECURITYUSE to other than IO.

4. Any combination of the above.

Once a file is secured, it can be accessed, removed, or changed only by
an authorized user.

Usercodes on Small Systems are created through the SYSTEM/MAKEUSER
program. This program creates a file on the system disk labeled
(SYSTEM)/USERCODE. This file contains all valid usercode/password pairs
along with information such as default pack ID, maximum priority, charge
code, and other security information associated with each
usercode/password pair.

Usercodes on the A Series are also created through a program called
SYSTEM/MAKEUSER. The file created to store the usercodes, passwords,
and related information resides on the pack specified for USERDATA
through the ODT Disk Location (DL) command and is labeled
SYSTEM/USERDATAFILE. For more information about SYSTEM/MAKEUSER on the
A Series, see the A Series System Software Site Management Reference
Manual.

If a SYSTEM/USERDATAFILE does not exist, running SYSTEM/MAKEUSER from
the ODT with no input will create one. The next step is to create the
first usercode via the MAKE USER (MU) ODT command. The first usercode
should be privileged in order to allow the running of SYSTEM/MAKEUSER
from a terminal. The appropriate usercodes can then be entered and
maintained. The MU ODT command can be inhibited through SYSTEM/MAKEUSER
once the SYSTEM/USERDATAFILE has been established. We suggest using
SYSTEM/MAKEUSER to establish and maintain the usercodes, not the MU ODT
command.

On the A Series, a default FAMILYNAME of DISK is assigned to any disk
file name for which no FAMILYNAME is specified. This default FAMILYNAME
assignment is done prior to any FAMILYNAME substitution through the
FAMILY specification.

The A Series FAMILY specification indicates a FAMILYNAME substitution
which is used in assigning a FAMILYNAME to files referenced by a task.
The default FAMILY specification for a task is obtained from the
SYSTEM/USERDATAFILE entry for the usercode associated with that task.
This default FAMILY specification can be overwritten through the FAMILY
statement in WFL or CANDE. The A Series also allows specification of an
alternate FAMILYNAME substitution through the use of the OTHERWISE
clause of the FAMILY statement. This alternate FAMILYNAME, if

13

File Handling

specified, is used only when referencing existing files; it is ignored
when a new file is being created.

Example 1

In this example, a job is run under a usercode with a FAMILY entry in
the SYSTEM/USERDATAFILE of "FAMILY DISK= USERA OTHERWISE DISK".

If this specification is not overridden, all references within the job
to the FAMILYNAME "DISK" will reference FAMILYNAME "USERA." All new
files not specifically assigned to another FAMILYNAME will be created on
USERA. USERA will be searched first when an existing file with the
FAMILYNAME "DISK" is referenced. If the desired file cannot be found on
USERA, then the alternate FAMILYNAME (labeled "DISK") will be searched.

Example 2

In this example, the above job is modified to the following WFL FAMILY
statement:

FAMILY DISK = USERB ONLY.

If this statement is used, all references within the job to the
FAMILYNAME "DISK" will reference FAMILYNAME "USERB."

Example 3

In this example, the FAMILY statement is changed to:

FAMILY USERA = USERB OTHERWISE USERC.

If this statement is used, all references within the job to the
FAMILYNAME "USERA" will reference FAMILYNAME "USERB." All new files
assigned to USERA will be created on USERB. USERB will be searched
first when an existing file with the FAMILYNAME "USERA" is referenced.
If the desired file cannot be found on USERB, then the alternate
FAMILYNAME (labeled "USERC") will be searched.

14

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

USER.CODES

On Small Systems, the usercode is not appended if the external file name
has both a multi-file ID and a file ID specified. On the A series, a
usercode is automatically appended to the file name being created as
long as the task is running under a usercode and an asterisk does not
precede the file name. When the usercode is appended, it becomes the
first identifier. For example:

(X)A ON USERA or (X)A/B/C/D ON USERA.

On the A Series, multiple users may log on to CANDE with the same
usercode/password. This is not permitted on Small Systems.

On both the Small Systems and the A Series, there are two types of
usercodes: privileged and non-privileged.

Privileged Userdodes

On the A Series, when running under a privileged usercode, any file can
be accessed or created. A privileged usercode is one defined as such in
the SYSTEM/USERDATAFILE. On the A Series, the privileged status may be
given or withdrawn through the SYSTEM/MAKEUSER program or through the MU
ODT command. Some restrictions exist with the MAKE USER (MU) command.

The following tables show how Small Systems and A Series file names are
handled while running under a privileged usercode. For these tables:

X represents a privileged usercode with a FAMILY
specification of "FAMILY DISK = USERX OTHERWISE DISK"
(default pack of USERX on Small Systems)

Y represents a non-privileged usercode with a FAMILY
specification of "FAMILY DISK = USERY OTHERWISE DISK"
(default pack of USERY on Small Systems)

15

File Handling

Creating a new file

If a program attempts to create a new file while running under usercode
(X), the system modifies the file names as follows:

Declared File Name Actual File Name
Small Systems A Series Small Systems A Series

A A (X)/A ON USERX (X)A ON USERX

*A *A A *A ON USERX

A/B A/B A/B ON USERX (X)A/B ON USERX

*A/B *A/B A/B *A/B ON USERX

(Y)/A (Y)A (Y)/A ON USERY (Y)A ON USERX

*(Y)/A *(Y)A (Y)/A Illegal

USERY/(Y)/A (Y)A ON USERY (Y)/A ON USERY (Y)A ON USERY

Accessing an existing file

If a program attempts to access an existing file
usercode (X), the system modifies the file
following example.

while running under
name as shown in the

16

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Declared File Name Actual File Name
Small Systems A Series Small Systems A Series
-------------------------- ---------------------------

A A (X)/A ON USERX (X)A ON USERX
then then
A *A ON USERX

then
(X)A ON DISK

then
*A ON DISK

A/B A/B A/B ON USERX (X)A/B ON USERX
then then
A/B *A/B ON USERX

then
(X)A/B ON DISK

then
*A/B ON DISK

(Y)/A (Y)A (Y)/A ON USERY (Y)A ON USERX
then then

(Y)/A (Y)A ON DISK

USERX/(Y)/A (Y)A ON USERX (Y)/A ON USERX (Y)A ON USERX

USERY/(Y)/A (Y)A ON USERY (Y)/A ON USERY (Y)A ON USERY

In some cases, the A Series performs a more extensive search then Small
Systems when trying to locate a file. The preceding example displays the
order in which the system looks for a file, however, an open is
attempted only on the first file found.

Non-privileged Usercodes

On the A Series, a program running under a non-privileged usercode can
create a file on any FAMILYNAME that is specified by the program. An
attempt to create a new file whose file name begins with either an
asterisk (*) or with a usercode other than the one under which the
program is running results in a security violation error. An attempt to
access an existing file whose file name begins with either an asterisk
(*) or with another usercode will be successful only if the file is
PUBLIC and the SECURITYUSE of the file matches the open type specified
by the program.

17

File Handling

For the A Series, as on small Systems, while running under a
non-privileged usercode, there are restrictions on the file names that
can be accessed. For the following tables:

X represents a privileged usercode with a FAMILY specification
of "FAMILY DISK = USERX OTHERWISE DISK" (default pack Of
USERX on Small Systems)

Y represents a non-priveleged usercode with a FAMILY
specification of "FAMILY DISK = USERY OTHERWISE DISK"
(default pack of USERY on Small Systems)

Creating a new file

If a program attempts to create a new file
non-privileged usercode (Y), the system
follows.

while running under the
modifies the file name as

Declared File Name Actual File Name
Small systems A Series small systems A series

A A (Y)/A ON USERY (Y)A ON USERY

USERZ/B/ B ON USERZ (Y)/B ON USERZ (Y)B ON USERZ

(Y)/A (Y)A (Y)/A ON USERY (Y)A ON USERY

*(Y)/A *(Y)A (Y)/A Illegal

USERZ/(Y)/A (Y)A ON USERZ (Y)/A ON USERZ (Y)A ON USERZ

Accessing an existing file

If a program attempts to access an existing file while running under the
non-privileged usercode (Y), the system modifies the file name as
follows.

18

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Declared File Name Actual File Name
Small Systems A Series

A A

*A *A

A/B A/B

(X)/A (X)A

USERX(X)/A (X)A ON USERX

USERZ/A/B A/B ON USERZ

USERX/A/B A/B ON USERX

Small Systems

(Y)/A ON USERY
then

(Y)/A

A

A/B ON USERY
then
A/B

(X)/A ON USERX

(X)/A ON USERX

A/B ON USERZ

A/B ON USERX

A Series

(Y)A ON USERY
then

*A ON USERY
then

(Y)A ON DISK
then

*A ON DISK

*A ON USERY
then

*A ON DISK

(Y) A/B ON USERY
then

*A/B ON USERY
then

(Y)A/B ON DISK
then

*A/B ON DISK

(X)A ON USERY
then

(X)A ON USERX

(X)A ON USERX

(Y)A/B ON USERZ
then

*A/B ON USERZ

(Y)A/B ON USERX
then

*A/B ON USERX

19

File Handling

The A Series, in some cases, performs a more extensive search when
trying to locate a file than Small Systems. The preceding examples
display the order in which the system looks for a file. However, an
open is attempted only on the first file found. Once found, access is
granted only if the SECURITYUSE of the file matches the open type. In
addition, the file must either be PUBLIC or must be usercoded with the
same usercode under which the accessing program is running (in this case
(Y)) for access to be granted.

FILE ASSIGNMENT

Small Systems and the A Series take different approaches in their search
for a file. Consider the case of a Small Systems program running under
a usercode (X) with a default pack ID of USERX, versus an A Series
program running under a usercode (X) with a FAMILY specification of
"FAMILY DISK= USERX OTHERWISE DISK". Suppose each of these programs
attempts to access a file with the declared filename A.

On Small Systems, the system will:

1. If the first character of the multifile ID is an asterisk (*),
discard the asterisk and go to step 5.

2. If either the multifile ID or the file ID are not specified,
append the usercode under which the program is running to the
declared file name as the multifile ID.

3. If the pack ID is not specified, append the default pack ID to
the filename. The pack ID that is appended is the default pack
ID for the usercode that appears as the multifile ID of the
file. If the multif ile ID of the file is not a usercode, the
default pack ID of the usercode under which the accessing
program is running is used.

4. Search for the file.

5. If the file is not found, search for the file using the file
name as originally specified.

Based on the previous examples, the Small Systems would search for the
file USERX/(X)/A. If USERX/(X)/A is not found, the system would look for
file A on the system disk.

20

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

On the A Series, the system will:

1. If the file name declared in the accessing program does not
begin with a usercode or an asterisk, append the usercode under
which the program is running to the file name.

2. Append the default FAMILYNAME of "DISK" if the file name is not
specified with the "ON <family name>" clause.

3. Apply the FAMILYNAME substitution specified by the FAMILY
specification in effect, if applicable.

4. Search for the file.

5. If the file is not found, substitute an asterisk for the
usercode appended in step 1, and search for the file (if no
usercode was appended in step 1, skip this step and step 7).

6. If the file is not found, go back to the file name as it
existed just prior to step 3, apply the alternate FAMILYNAME
substitution specified by the FAMILY statement in effect, and
search for the file. If no FAMILYNAME substitution was done in
step 3 or if no alternate FAMILYNAME substitution is specified
in the FAMILY statement (that is, no OTHERWISE clause), then
skip this step and step 7.

7. If the file is not found (and neither step 5 nor 6 were
skipped), substitute an asterisk for the usercode appended in
step 1 and search for the file.

Based on these rules, the A Series would search for:

(X)A ON USERX,
then *A ON USERX,
then (X)A ON DISK,
then *A ON DISK.

As on Small Systems, an open is attempted only on the first file found.

As shown in the examples in this section, the A Series potentially does
a more extensive search, depending on the file name and the FAMILY
specification in effect.

21

File Handling

Accessing A File Under Another Usercode

Differences in Small Systems and A Series file assignments are evident
when a program attempts to access a file under a different usercode than
that under which the program is running.

suppose a program running under usercode (X) attempts to access a file
under usercode (B). (X) has a default pack ID of USERX on Small Systems
or a FAMILY specification Of "FAMILY DISK = USERX OTHERWISE DISK" on the
A Series. (B) has a default pack ID of USERB on Small Systems or a
FAMILY specification Of "FAMILY DISK = USERB OTHERWISE DISK" on the
A Series.

On Small Systems, if the program tries to open the file (B)/C, the
system searches for file USERB/(B)/C. If the file is not found, the
system searches for file (B)/C on the system disk.

On the A Series, if the program tries to open the file (B)C, the system
searches for file (B)C ON USERX. If not found, it then searches for file
(B)C ON DISK.

Thus, when determining the FAMILYNAME or pack ID for a file where none
was originally specified, Small Systems use the pack ID associated with
the usercode in the file name, while the A series assigns a default
FAMILYNAME of "DISK" and then applies any FAMILYNAME substitution called
for by the effective FAMILY specification. This effective FAMILY
specification is not the one associated with the usercode contained in
the file name. Rather, the effective FAMILY specification defaults to
the FAMILY specification associated with the usercode under which the
program is running and may be explicitly changed within the job.

For a more detailed discussion of the A Series file naming
refer to "File-Naming Conventions" in the "A Series
Reference Manual."

SER.JAL NUMBERS

conventions,
I/O Subsystem

The SERIALNO attribute exists on both the Small
A Series. This subsection describes the SERIALNO
importance of serial numbers to the A Series.

Systems and the
attribute and the

22

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

on the A Series, when the SERIALNO attribute is assigned a value, the
SERIALNO is used in file assignment. When searching for a permanent
disk file or selecting a family on which to create a disk file, the
first element in a SERIALNO list, if assigned a value, is used to
identify the base unit of the family.

Creating A New Non-Disk File

When creating a new non-disk
basis of the availability
creating a new tape file and
a matching serial number
following:

not locked
not saved

file, the peripheral is assigned on the
of a scratch or unassigned peripheral. When
the SERIALNO attribute is set, a tape with
that has a write ring and is one of the

uptape (not at the beginning of the tape)
not ready
not in use

is selected. The tape does not have to be scratched. If the tape has not
been scratched, it will be rewound so that the new labels can be written
at the beginning of the peripheral (i.e., purging the tape). Setting
SERIALNO to null characters (all bits zero) indicates that the attribute
is not to be considered during file assignment.

Finding A Permanent File

When a logical file is assigned to a permanent file, a number of
attributes (KIND, TITLE, FILESECTION, SERIALNO, CYCLE, VERSION) are used
to uniquely describe the physical file.

The KIND attribute narrows the search to certain peripherals. The TITLE
attribute gives the external file name of the permanent file, and where
appropriate, the FAMILYNAME (which corresponds to the pack ID on Small
Systems).

Once the permanent file with the proper TITLE and correct KIND is found,
a more detailed selection process follows.

23

File Handling

For a tape file, the FILESECTION attribute must agree with the file
section number of the permanent file.

For a disk or a tape file when genealogy checking is requested, the
CYCLE and VERSION attributes are matched with those in a permanent file.
If genealogy checking is not requested, the file with the best genealogy
(the highest CYCLE value and the highest VERSION of that CYCLE) is
selected. If the SERIALNO attribute is set for a tape file then the
serial number of the physical tape must match the value of the SERIALNO
attribute.

If a permanent tape file is found that meets all the requirements for
assignment except for the serial number, an UNMATCHED SERIALNO
notification is given to the operator. The operator can then respond by
making the file available, or by entering one of the following system
input messages:

1. IL (Ignore Label)

2. OF (Optional File)

3. FA (File Attribute)

4. DS (Discontinue)

For a further discussion about the A series SERIALNO, refer to the
"A Series I/O Subsystem Reference Manual."

FILE REMOVAL

Removal of in-use files is different on the A Series than on Small
Systems. On Small Systems, any attempt to remove an in-use file is
rejected and a message is displayed stating that the file is in use. On
the A Series, any attempt to remove an in-use file makes the file
unavailable to users who did not have the file open when the remove was
issued. The file is no longer visible through the file directory (i.e.,
it is not visible to a CANDE FILES command) and a new file with the same
name can be created. However, the file remains available to those users
who had the file open when the remove was issued. The file is removed
when the last user closes the file.

24

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

25

~ WORK FLOW (JOBS)

Small Systems job flow can be controlled by small Systems Work Flow
Language (WFL), by job spawning, or by the AFTER, AFTER.NUMBER, THEN,
CONDITIONAL, and UNCONDITIONAL attributes. The A Series job flow is
controlled by WFL.

SMALL SYSTEMS WFL

Small Systems WFL is basically a subset of the A Series WFL with some
exceptions.

Small Systems WFL can process only one program at a time. A Series WFL
can process several programs simultaneously.

Small Systems WFL does not allow the passing of parameters to tasks.
A Series WFL supports the passing of parameters to tasks. This feature
can be used in many instances to replace ACCEPT functions and switch
(SW) task attributes used during program initialization.

Converting to A SERIES WFL

Since Small Systems WFL is a subset of the A Series WFL, most of the
constructs are the same. However, those Small system WFL constructs that
are not allowed on the A Series are clearly flagged when the Small
Systems WFL is compiled on the small Systems. The Small Systems WFL
features that are not available on the A Series are also flagged by the
A Series compiler.

The following constructs are implemented on the Small Systems but not on
the A Series:

1. <START statement> with a <task equation list>.

2. <COPY statement> using the following constructs:

a. <Copy options list>.

b. <Input volume spec> or <output volume spec> without an
explicit KIND attribute.

c. <Creation file attribute list>.

26

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

d. <Output volume attribute list> With SAVEFACTOR or DENSITY.

e. Multiple copy.

3. <MODIFY statement>.

4. <SECURITY statement> with a <directory name>.

JOB SPAWNING

The small Systems job spawning capability is unique to Small Systems and
is ,,;qot avc:~labl~ on the A Series. To progress to the A Series, the
COBOL job spawning logic must be rewritten so that the jobs previously
controlled by the job spawning program are handled by A Series WFL.

SKALL SYSTEMS COHTROL CARDS

The Small Sys~ems Control cards control the job flow by using the AFTER,
AFTER.NUMBER, THEN, CONDITIONAL, and UNCONDITIONAL attributes. They
default to processing all tasks asynchronously, unless one of the
preceding attributes is specified.

The small Systems Control Cards will have to be rewritten in A Series
WFL.

The normal processing in A Series WFL is synchronous with each
successive task being executed unconditionally. To run a task
asynchronously, a WFL PROCESS statement must be placed immediately
before each RUN statement. The A Series WFL uses task identifiers and
task states to control the conditional execution of tasks.

The attributes used for controlling the job flow are described in the
following pages.

AFTER

The AFTER attribute is used to conditionally schedule a program to run
after the termination of another program (identified by program name).

27

Work. Flow (Jobs)

on the A Series, as shown in the following example, the RUN PROGl
statement finishes execution of PROGl before executing the next
statement. The state bf PROGl is then checked before proceeding.
PROCESS RUN PROG4 is an asynchronous task.. The state of PROG2 is
checked before running PROG3.

Example

Small Systems

EX PROGl;
EX PROG2 AFTER PROGl;

EX PROG3 AFTER PROG2;
EX PROG4 AFTER PROGl;

AFTER.NU11BER

A Series

RUN PROGl [TASK!];
IF TASK! IS NOT COMPLETEDOK

THEN ABORT;
PROCESS RUN PROG4;
RUN PROG2 [TASK2];
IF TASK2 IS COMPLETEDOK

THEN RUN PROG3;

The AFTER.NUMBER attribute is used to conditionally schedule a program
to run after the termination of another program (identified by job
number) that is already in the mix or scheduled for execution. The
A Series WFL controls the flow with the RUN and PROCESS statements. The
WFL should be set up before the first task. is entered into the mix or
scheduled. The following example then becomes identical to the previous
example.

Example

Small Systems

EX PROGl;
EX PROG2 AFTER.NUMBER <progl-mix-number>;

EX PROG3 AFTER.NUMBER <prog2-mix-number>;
EX PROG4 AFTER.NUMBER <progl-mix-number>;

A Series

RUN PROGl [TASK!];
IF TASK! IS NOT COMPLETEDOK

THEN ABORT;
PROCESS RUN PROG4;
RUN PROG2 [TASK2];
IF TASK2 IS COMPLETEDOK

THEN RUN PROG3;

28

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

On Small Systems, the THEN attribute is used to conditionally schedule a
program to run after the termination of another program. The THEN
attribute works like the AFTER attribute where the program name is from
the previous program.

Example

Small Systems

EX PROGl;
THEN EX PROG2;

THEN EX PROG3;

A Series

RUN PROGl [TASKl];
IF TASKl IS NOT COMPLETEDOK

THEN ABORT;
RUN PROG2 [TASK2];
IF TASK2 IS COMPLETEDOK

THEN RUN PROG3;

The AFTER, AFTER.NUMBER, and THEN attributes can be modified by using
the CONDITIONAL and UNCONDITIONAL attributes.

CONDITIONAL

The CONDITIONAL attribute is used inhibit a program from being executed
unless its predecessor successfully reaches normal EOJ. Programs
terminated with either the ODT DS (Discontinue) command or a program
fault, or compiles in which syntax errors are detected are considered to
have reached abnormal termination. The CONDITIONAL attribute is set by
default on Small Systems.

The A Series WFL uses the COMPILEDOK and COMPLETEDOK task states to
conditionally execute tasks.

Example

Small Systems

COMPILE X WITH COBOL74 LIBRARY;
FILE CARD NAME XSOURCE DISK DEF;
EX PROGl

A Series

COMPILE X WITH COBOL74[T]
LIBRARY;

COMPILER FILE CARD

Work. Flow (Jobs)

AFTER COBOL74 CONDITIONAL;

UNCONDITIONAL

29

(TITLE=XSOURCE,
DISK, DEPENDENTSPECS);

IF T IS COMPILEDOK THEN
RUN PROGl;

The UNCONDITIONAL attribute is used to force the execution of a program
regardless of its predecessor's outcome. This is the default on the
A Series.

Example

Small Systems

COMPILE X WITH COBOL74 LIBRARY;
FILE CARD NAME XSOURCE DISK DEF;
EX PROGl

AFTER COBOL74 UNCONDITIONAL;

A Series

COMPILE X WITH COBOL74
LIBRARY;

COMPILER FILE CARD
(TITLE=XSOURCE,

DISK, DEPENDENTSPECS);
RUN PROGl;

30

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

31

~ FILE ABD PROGRAM ATTRIBUTES

To progress from Small Systems to the A Series, all references to
Systems file and program attributes must be replaced by their A
file and task attribute equivalents. Small Systems Control
statements should be incorporated into WFL jobs on the A series.
Systems Control Card file attributes are accessed through the WFL
statement.

Small
Series

Card
small

FILE

FILE ATTRIBUTES

The A Series has more file attributes than mentioned in this section.
However, they are not necessary for the progression. After the migration
is complete, familiarize yourself with these additional attributes then
incorporate them into the A Series programs.

small Systems

ALLOCATE.AT.OPEN

AREAS

ASCII

AUTO PRINT

A series

There is no A Series equivalent.

The A Series equivalent is also AREAS. On
the A Series, the default value for the
maximum number of areas that can be
allocated for a disk file is 20; the legal
values are 1 to 1000.

The A Series equivalent is EXTMODE/INTMODE.
EXTMODE is the character recording mode of
the physical file as stored on disk.
INTMODE is the character recording mode of
the logical file as used by the program.
The default on the A series is EBCDIC. To
set the recording mode on the A Series to
ASCII, set EXTMODE and INTMODE to ASCII in
the program.

The A Series equivalent is
PRINTDISPOSITION. The default value for
PRINTDISPOSITION is EOJ, which queues files
for printing at end-of-job. Setting
PRINTDISPOSITION to CLOSE is equivalent to
AUTOPRINT; the files are queued for when
the file is closed. Setting
PRINTDISPOSITION to DONTPRINT is equivalent
to NO AUTOPRINT on Small Systems.

32

BACKUP

BACKUP.DISK

BACKUP.TAPE

BCL

BINARY

BLOCKS.AREAS

BUFFERS

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The A Series equivalent is BACKUPKIND. When
used with the KIND attribute, it allows the
specification of printer and backup
devices.

The A Series equivalent is BACKUPKIND =
DISK or BACKUPKIND = DISKPACK. If
BACKUPKIND is specified with the option
DONTCARE, the A Serie~ default values are
used.

It is not necessary to set the BACKUPKIND
attribute if the MCP option LPBDONLY is set
using the A Series ODT command OPTIONS
(OP+LPBDONLY). When LPBDONLY is set, the
printer output files are assigned to the
printer backup disk. These files can then
be printed using the Print System (Prints).

The A Series equivalent is BACKUPKIND. To
direct a backup file to tape on the
A Series, BACKUPKIND must be set to either
TAPE, TAPE7, TAPE9, or TAPEPE.

The A Series equivalent is EXTMODE/INTMODE.

This option is only permitted on the
B 6800/B 7700/B 7800 systems. Refer to
ASCII for a more complete explanation of
EXTMODE/INTMODE.

The A Series equivalent is EXTMODE and
pertains only to card files. Refer to ASCII
for additional information about EXTMODE.

The A Series equivalent is AREASIZE.
AREASIZE is the number of logical records
in an area of a disk file. To determine
the value of AREASIZE, multiply
records-per-block by blocks-per-area. If
AREASIZE is unspecified or equal to zero
and AREALENGTH is unspecified, a value
equal to or close to 1000 is used.

The A Series equivalent is BUFFERS. On
Small Systems, this specifies the number of
buffers assigned to a file. On the
A Series, the default value is two buffers
and the maximum is 63.

File

CARD.PUNCH

CARD.READER

CASSETTE

COPY

DATA.RECORDER.SO

DEFAULT

DELAYED.RANDOM

DISK

DISK.CARTRIDGE

DISK.FILE

DISK.PACK

DRIVE

DUMMY.FILE

EBCDIC

33

and Program Attributes

The A Series equivalent is KIND = PUNCH.

The A Series equivalent is KIND = READER.

The A Series does not support this
attribute.

The A Series does not support this
attribute.

This attribute is not supported on the
A Series.

The A Series equivalent is DEPENDENTSPECS =
TRUE. This attribute overrides the
declared block and record sizes and uses
the block and record sizes specified in the
disk file header or tape label.

This attribute is not applicable on the
A Series.

The A Series equivalent is KIND = DISK.

This attribute is not supported on the
A Series.

The A Series equivalent is KIND = DISK.

The A series equivalent is KIND = DISK.

The A Series attribute FAMILYINDEX is
similar to this Small Systems function but
is not directly equivalent. FAMILYINDEX
does not specify the drive, it specifies a
particular member of a disk family that is
to be used for the disk file. The default
value o specifies that the areas of the
disk file are to be allocated in the
system's normal rotational order.

This attribute is not available on the
A Series.

The A Series sets recording mode using the
EXTMODE and INTMODE attributes. EBCDIC is
the default recording mode for the
A Series.. For more information about
EXTMODE and EBCDIC, see ASCII.

34

EMULATOR.TAPE

END.OF.PAGE

EU

EVEN

EXTEND

FILE.TYPE

FOOTING

FORMS

HARDWARE

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

This attribute is not available on the
A Series.

The A Series equivalent is PAGESIZE. To
request end-of-page reporting on the
A Series, set PAGESIZE to the number of
lines between the channel 1 and channel 12
punch on the printer.

The A Series equivalent is DRIVE.
DRIVE.

The A Series equivalent is
NONSTANDARD or PARITY = EVEN.

PARITY

see

=

This attribute is not implemented on the
A Series. However, the function can be
imitated by by using the EXTEND option of
the OPEN statement of COBOL74.

The A Series equivalent is FILEKIND. The
A Series has approximately 200 different
file types. The list of FILEKINDs is in
the "A Series I/O Subsystem Reference
Manual."

This attribute is not supported on the
A Series.

The A Series equivalent is FORMID. FORMID
can be set to a string containing up to 100
characters. It is reset by specifying a
NULL string. If FORMID is set, the message
assigned to the attribute is displayed on
the operator's console at file ppen time
(on-line printing) or at print time (backup
files). If there is no printer with the
requested FORMID, the program will be
suspended until the operator responds with
a Form Message (FM) or an Output Unit (OU)
system input message. For more information
about FM and OU system input messages,
refer to the "A Series ODT Reference
Manual."

This function can be controlled by MCP
options. On the A Series, the preferred
method of setting the hardware device is to
reset the CPBDONLY (for card punches) or
the LPBDONLY (for line printers) option

HEADER

IMPLIED.OPEN

INCREMENT.EU

INPUT

INPUT.SELECTIVITY

INTERPRETER

INVALID.CHARACTER

LABEL.TYPE

LINE FORMAT

LOCK

35

File and Program Attributes

using the A Series ODT OPTION (OP-CPBDONLY
or OP-LPBDONLY) command. At the same time,
the BACKUPKIND attribute must be equal to
DONTCARE, which uses the system default.
For more information about the OPTION
command, refer to the "ODT Messages"
section in the "A Series Operator Display
Terminal (ODT) Reference Manual."

There is no A Series equivalent.

There is no A Series equivalent.

The A Series SINGLEUNIT attribute is
similar. SINGLEUNIT does not specify to
which disk drive the areas should be
written, instead it indicates whether areas
for the disk file are to be allocated from
a single family member (pack). The
default, FALSE, distributes areas over the
entire family (multiple packs). If
SINGLEUNIT = TRUE, all areas for the file
are allocated on a single diskpack.

The A Series equivalent is MYUSE = IN.
MYUSE = IN specifies that the file is
opened INPUT.

This attribute is not implemented on the
A Series.

This attribute is not applicable on the
A series.

This attribute has no A Series equivalent.

The A Series equivalent is LABEL. The Small
Systems label type ANSI must be changed to
STANDARD for the A Series, and UNLABELLED
changed to OMITTED or OMITTEDEOF.

This attribute is not implemented on the
A Series.

The A Series PROTECTION attribute is
similar. With PROTECTION set to PROTECTED,
an entry is immediately made in the disk
directory when the file is opened. As the
disk areas are allocated, they are encoded
with a pattern which makes it possible to

36

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

LOWER.MARGIN

MAXIMUM.BLOCK.SIZE

MAXRECSIZE

MAXSUBFILES

MINRECSIZE

MULTI.PACK

MYNAME/MY.NAME

NAME

NEW

NO, NOT

discover the last valid block written on
that area in the event of a Halt/Load.

This attribute is not implemented on the
A Series.

The A Series equivalent is BLOCKSIZE. If
the UNITS attribute equals CHARACTERS,
BLOCKSIZE is given in INTMODE units,
otherwise, it is specified in words.

The A Series equivalent is MAXRECSIZE.
MAXRECSIZE may be assigned a value from O
to 65,535, inclusive.

The A Series equivalent is MAXSUBFILES.

The A Series equivalent is MINRECSIZE.
MINRECSIZE may be assigned a value from b
to 65,535, inclusive.

The A Series equivalent is SINGLEUNIT. See
the "File Naming Conventions" section,
earlier in this manual.

The A Series equivalent is MYNAME.

The A series equivalent is TITLE. See the
"File Handling" section, earlier in this
manual.

The A Series equivalent is NEWFILE. If
NEWFILE is TRUE, a new file is created. If
NEWFILE is FALSE, an existing file is
sought. If NEWFILE is not specified, the
MYUSE attribute is used to determine if a
new file is created or if an existing file
is sought. For a detailed explanation,
refer to the "New File vs. Permanent File"
discussion and the NEWFILE and MYUSE
attributes in the "A Series I/O Subsystem
Reference Manual."

On Small Systems, NO/NOT negates the file
attribute following it. For example, NO
BACKUP. On the A Series, to set, reset,
reverse, or change the status of a file
attribute, place the appropriate value with
the corresponding attribute. On the

NUMBER.STATIONS

ODD

OPEN.LOCK

OPEN.LOCKOUT

OPTIONAL

OUTPUT

PACK. ID

PAGE.SIZE

PAPER.TAPE.PUNCH

PAPER.TAPE.READER

PORT.FILE

PORT.KEY (BNA)

37

File and Program Attributes

A Series, these values may be Boolean,
numeric, etc.

Examples are PARITY = NONSTANDARD, KIND =
DISK, NEWFILE = FALSE, and FILEUSE = IN.

There is no A Series equivalent for this
attribute since the A Series has no limit
on the number of stations that can be
attached to a remote file.

The A Series equivalent
STANDARD or PARITY = ODD.

is PARITY

This attribute is not supported on the
A Series.

The A Series equivalent is EXCLUSIVE =
TRUE. EXCLUSIVE allows a program to open a
permanent disk file and lock out all other
programs and unopened files while the
permanent file is open.

The A Series equivalent is OPTIONAL.

The A Series
MYUSE OUT
opened OUTPUT.

equivalent is
specifies that

MYUSE=OUT.
the file is

The A Series equivalent is FAMILYNAME. See
the "File Handling" section, earlier in
this manual.

The A Series equivalent is PAGESIZE. It
indicates the number of lines on a logical
page.

The A Series
PAPERPUNCH.

The A Series
PAPERREADER.

equivalent

equivalent

is KIND

is KIND

The A Series equivalent is KIND=PORT.

=

=

There is no A Series equivalent. However,
when the A Series attribute MAXSUBFILES is
greater than one, this implies the same
thing as the PORT.KEY on Small Systems.

38

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

PRINTER

PRINTER.5

PROTECTION

PROTOCOL

PSEUDO

QUEUE

Q.FAMILY.SIZE

Q.MAX.MESSAGES

RANDOM

READER.PUNCH.PRINTER

READER.SORTER

READER.SORTER.STATIONS

READER.SORTER.2

READER.96

RECORDS.BLOCK

RECORD.SIZE

The A Series equivalent is KIND = PRINTER.

This attribute is not supported on the
A Series.

The A Series equivalent is PROTECTION. The
Small Systems ABNORMALSAVE option must be
changed to PROTECTED on the A Series.

There is no A Series equivalent.

There is no A Series equivalent.

Queue files are not implemented on the
A Series. See the "Queue/Port Files"
section, later in this manual.

There is no A Series equivalent for this
attribute.

There is no A Series equivalent for this
attribute.

This attribute is not applicable on the
A Series. However, the A Series does allow
SEQUENTIAL and RANDOM access depending on
the access method used in the program.

This attribute is not supported on the
A series.

This attribute is not supported on the
A Series.

This attribute is not supported on the
A Series.

This attribute is not supported on the
A Series.

This attribute is not supported on the
A Series.

The A Series equivalent is BLOCKSIZE.
BLOCKSIZE is the value of RECORD.SIZE *
RECORDS.BLOCK. If BLOCKSIZE is less than
MAXRECSIZE, BLOCKSIZE is set to MAXRECSIZE
when the file is opened.

The A Series equivalent is MAXRECSIZE.
MAXRECSIZE specifies maximum size of the

REEL

REMOTE

REPETITIONS

REVERSE

REWIND

SAVE

SECURITYTYPE

SECURITYUSE

SENDALL

39

File and Program Attributes

record. If the UNIT~ attribute equals
CHARACTERS, MAXRECSIZE is expressed in
INTMODE units, otherwise, it is specified
in words.

There is no A Series equivalent for this
attribute.

The A Series equivalent is KIND = REMOTE.

The A Series equivalent is PRINTCOPIES.

The A Series equivalent is DIRECTION
REVERSE. The attribute DIRECTION on
A Series indicates the direction in which
records are accessed from a tape or paper
tape file.

This attribute is not implemented on the
A Series. However, some languages, such as
COBOL74, provide the functional equivalent
of this attribute in the OPEN statement.

The A Series equivalent is SAVEFACTOR. On
the A Series, the SAVEFACTOR is the
expiration date of the file denoted by the
number of days past creation date. This
attribute is useful mainly for tape files.

SAVEFACTOR must be set for tape files
otherwise they will be purged. For more
information about A Series SAVEFACTOR,
refer to the "A Series I/O Subsystem
Reference Manual."

The A Series equivalent is SECURITYTYPE.
SECURITYTYPE specifies which users, apart
from the owner (creator) of a permanent
disk file (as identified by the usercode),
may access the disk or pack file. The
A Series SECURITYTYPE has the additional
mnemonic GUARDED.

The A Series equivalent is SECURITYUSE.
SECURITYUSE is the I/O access rights
permitted for a physical disk or pack file.
SECURITYUSE on the A Series has the
additional mnemonic SECURED.

The A Series has no equivalent for this
attribute.

40

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

SEQUENTIAL

SERIAL

SERIAL.NUMBER

SIMPLE.HEADERS

STATION/STATIONS

TAPE

TAPE.NRZ

TAPE.PE

TAPE.7

TAPE.9

The attribute is not applicable on the
A Series. However, the A Series does allow
SEQUENTIAL and RANDOM access, depending on
the access method used in the program.

This attribute is not applicable on the
A Series. On the A Series, if the access
method of a file in the program is declared
as SEQUENTIAL, the file will be processed
sequentially.

Refer to the "File Handling"
earlier in this manual.

section,

There is no A Series equivalent for this
attribute.

The A Series STATIONLIST attribute provides
a similar function. The STATIONLIST
attribute allows you to dynamically alter
the stations associated with an open data
comm file. On the A Series, stations may
only be added programmatically.

Though STATION/STATIONS and STATIONLIST are
not directly equivalent, they can serve the
same function. For example, on the Small
Systems you would enter:

EX X; STA = Al, Bl, Cl

at the ODT. On the A Series, you would
include:

CHANGE ATTRIBUTE STATIONLIST OF <filename>
TO <station-name>.

in your COBOL74 program.

The A Series equivalent is KIND = TAPE.

The A Series equivalent is KIND=TAPE with
DENSITY=BPI800. You must set both the KIND
and the DENSITY attribute to achieve the
desired result.

The A Series equivalent is KIND = TAPEPE.

The A Series equivalent is KIND= TAPE7.

The A Series equivalent is KIND = TAPE9.

TRANSLATE

TRANSLATE.NAME

UNIT.NAME

UNLABELLED

UPPER.MARGIN

USER.BACKUP.NAME

VARIABLE

WITH.INTERPRET

WITH.PRINT

WITH.PUNCH

41

File and Program Attributes

The A Series equivalent is TRANSLATE. The
values, mnemonics, and meanings of the
attributes differ from the Small Systems.
For a detailed explanation of the A Series
TRANSLATE attribute and a description of
A Series software translation, refer to the
"A series I/O Subsystem Reference Manual."

This attribute is not available on the
A Series.

The A Series equivalent is UNITNO.
Peripheral units are specified by number on
the A Series. For example, to send a file
to tape drive MT14, UNITNO must be set to
14.

The A Series equivalent is LABEL = OMITTED.
To indicate the file does not have a label
record, set LABEL equal to OMITTED or
OMITTEDEOF.

This attribute is not implemented on the
A Series.

The A Series equivalent is USERBACKUPNAME.
The default value of USERBACKUPNAME is
FALSE, in which case the output printer
backup file name will be BD/<job
number>/<task number>/OOO<internal file
name>.

A backup file will default to the backup
pack specified through the ODT commands
Disk Location (DL) and Substitute Backup
(SB).

The A Series equivalent is BLOCKSTRUCTURE =
VARIABLE. By specifying BLOCKSTRUCTURE
equal to VARIABLE, the file is processed
using variable length records.

This attribute is not available on the
A Series.

This attribute is not available on the
A Series.

This attribute is not available on the
A Series.

42

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

WITH.STACKERS

WORK.FILE

STAHDARD FILE ATTRIBUTES

This attribute is not available on the
A Series.

This attribute is not available on the
A Series.

The following is a list of Small Systems standard file attributes
(implemented in COBOL74, WFL, and SDL2) and their A Series equivalents.
These attributes can define, monitor, or change the properties or
attributes of a file. For more information about these A Series
attributes, refer to the "A series I/O Subsystem Reference Manual."

Small Systems

AREALENGTH

AREAS

ATTERR

AUDITED

BACKUPKIND

BACKUPPERMITTED

BLOCK

BLOCKSIZE

BLOCKSTRUCTURE

BUFFERS

CENSUS

A Series

The A Series equivalent is AREALENGTH.

The A Series equivalent is AREAS.

The A Series equivalent is ATTERR.

This attribute is not available on the
A Series.

The A Series equivalent is BACKUPKIND with
the additional mnemonic values TAPE7,
TAPE9, and TAPEPE.

The A Series equivalent is
PRINTDISPOSITION. Setting PRINTDISPOSITION
to DIRECT is equivalent to NO
BACKUPPERMITTED. Any other value is
equivalent to BACKUPPERMITTED.

The A Series equivalent is BLOCK.

The A series equivalent is BLOCKSIZE.

The A Series equivalent is BLOCKSTRUCTURE
With the additional mnemonic values of
EXTERNAL and LINKED.

The A Series equivalent is BUFFERS. The
default setting on the A Series is 2.

See the "Queue/Port Files" section.

CHANGEDSUBFILE

CREATIONDATE

CURRENTBLOCK

COMPRESSION

DENSITY

DEPENDENTSPECS

DIRECTION

EXTMODE

FILEKIND

FILESECTION

FILESTATE

FRAMESIZE

HOS TN AME

INT NAME

KIND

LABEL

43

File and Program Attributes

see the "Queue/Port Files" section.

The A Series equivalent is CREATIONDATE.
The CREATIONDATE is specified with a
5-digit integer in the Julian format YYDDD.

The A Series equivalent is CURRENTBLOCK.

The A Series equivalent is COMPRESSION. For
information, refer to the "Queue/Port
Files" section.

The A Series equivalent is DENSITY.

The A Series equivalent is DEPENDENTSPECS.
By setting DEPENDENTSPECS to TRUE, the
structure of the physical file is assumed
by the logical file.

The A Series equivalent is DIRECTION.

The A Series equivalent is EXTMODE with the
additional values SINGLE, HEX, and BCL.

The A Series equivalent is FILEKIND. There
are over 200 possible values for FILEKIND
on the A Series. For information about
FILEKIND, see the "A Series I/O Subsystem
Reference Manual."

The A Series equivalent is FILESECTION.

See the "Queue/Port Files" section.

The A Series equivalent is FRAMESIZE. on
the A Series, FRAMESIZE can be 4
hexadecimal characters, 8 EBCDIC or ASCII
characters, or one 48-bit word. A word is
the equivalent of six bytes and is the main
memory unit on the A Series.

The A Series equivalent is HOSTNAME.

The A Series equivalent is INTNAME.

The A Series equivalent is KIND with the
additional values DONTCARE, REMOTE, and DC.

The A Series equivalent is LABEL with the
additional mnemonic values STANDARD and
OMITTEDEOF.

44

LASTRECORD

MAXCENSUS

MAXRECSIZE

MAXSUBFILES

MINRECSIZE

MYHOSTNAME

MYNAME

MYUSE

NEWFILE

NEXTRECORD

OPEN

OPTIONAL

OTHER USE

PARITY

RECORD

SAVEFACTOR

SECURITYTYPE

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The A Series equivalent is LASTRECORD.

The A Series equivalent is MAXCENSUS. For
information about MAXCENSUS, see the
"Queue/Port Files" section.

The A Series equivalent is MAXRECSIZE.

The A Series equivalent is MAXSUBFILES. For
information about MAXSUBFILES, see the
"Queue/Port Files" section.

The A Series equivalent is MINRECSIZE.

See the "Queue/Port Files" section.

See the "Queue/Port Files" section.

The A Series equivalent is MYUSE with the
additional value CLOSED.

The A series equivalent is NEWFILE.

This attribute is not implemented on the
A Series.

The A Series equivalent is OPEN.

The A Series equivalent is OPTIONAL.

The A Series equivalent is EXCLUSIVE. The
A Series attribute produces results similar
to the Small Systems attribute OTHERUSE =
SECURED by setting EXCLUSIVE equal to TRUE.

The A Series equivalent is PARITY.

The A Series equivalent is RECORD. The
A series RECORD attribute is zero-relative,
rather than one-relative.

The A Series equivalent is SAVEFACTOR.

SAVEFACTOR must be set for tape files
otherwise they will be purged. For more
information about the A Series SAVEFACTOR,
refer to the A Series I/O Subsystem
Reference Manual.

The A Series equivalent is SECURITYTYPE.
SECURITYTYPE is the same on the A Series as

SERIALNO

TITLE

TRANSLATE

TRANSLATING

UPDATEFILE

USEDATE

VOLUME INDEX

YO URN AME

YOURUSERCODE

PROGRAM ATTRIBUTES

45

File and Program Attributes

on small Systems with the additional
mnemonic values GUARDED and CONTROLLED.

The A Series equivalent in SERIALNO.

See the "File Handling" section, earlier in
this manual.

The A Series equivalent is TRANSLATE, with
the additional mnemonics DEFAULTTRANS,
FULLTRANS, SOFTONLY, FORCESOFT, NOSOFT, and
NOTRANS.

The A Series equivalent is TRANSLATING. The
A Series TRANSLATING attribute is
read-only.

The A Series equivalent is UPDATEFILE.

The A Series equivalent is USEDATE.

This attribute is not implemented on the
A Series.

See the "Queue/Port Files" section.

See the "Queue/Port Files" section.

Program attributes are system control parameters used by the MCP. They
are used to control the behavior and environment of a task or job before
execution, during execution, and after execution. The following is a
list of the Small Systems Program attributes and their equivalent
A Series task attributes.

Small Systems

AFTER

AFTER.NUMBER

A Series

This attribute is replaced by the
appropriate WFL statements on the A Series.
See the "Work Flow (Jobs)" section, earlier
in this manual.

This attribute is replaced by the
appropriate WFL statements on the A Series.
See the "Work Flow (Jobs)" section, earlier
in this manual.

46

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

CHARGE

CONDITIONAL

DYNAMIC.SPACES

FREEZE

HOLD

INTERPRETER

INTRINSIC.DIRECTORY

INTRINSIC.NAME

LEVEL

MAXWAIT

MEMORY

MEMORY.PRIORITY

The A series equivalent is CHARGECODE. The
A Series CHARGECODE value must be
alphanumeric.

This attribute is replaced by the
appropriate WFL statements on the A Series.
See the "Work Flow (Jobs)" section, earlier
in this manual.

There is no A Series equivalent of this
attribute since the A Series automatically
assigns additional dynamic memory.

There is no A Series equivalent for this
attribute.

There is no A Series equivalent for this
attribute. This function is done on the
A Series through the Work Flow Language. A
QUEUE statement may be placed in the WFL
job deck where the QUEUE has a MIXLIMIT of
o. This would cause the program to wait in
the queue until it is forced out using the
ODT Force Schedule (FS) command.

This attribute is not applicable on the
A Series.

This attribute is not applicable on the
A Series.

This attribute is not applicable on the
A Series.

There is no A Series equivalent for this
attribute.

The A Series equivalent is MAXWAIT. MAXWAIT
cannot be abbreviated on the A series.

There is no A Series equivalent for this
attribute. The A series automatically
allocates memory to the program as
required.

The A Series equivalent is PRIORITY.
A Series has only one type of PRIORITY and
it applies to both the memory and the
processor.

NOD IF

OBJ

OVERRIDE

PRIORITY

PROCESSOR.PRIORITY

PROTECTED

RR

47

File and Program Attributes

There is no A Series equivalent for this
attribute.

Any file or task attribute assignment
specified on an A Series compile is applied
to the object code of the compile. By
preceding the file. or task attribute
assignment with the word COMPILER, the file
or task attribute is applied to the
compiler itself. For example,

Small Systems (Control card with OBJ)

COMPILE OBJPROG COBOL74 LIBRARY;
FILE CARD A/B DISK DEF;
OBJ FILE SPECFILE BUFFERS = 2 DISK

A Series example (WFL)

COMPILE OBJPROG COBOL74 LIBRARY;
COMPILER FILE CARD (KIND = DISK,

TITLE = A/B,
DEPENDENTSPECS =TRUE);

FILE SPECFILE (BUFFERS =2, KIND= DISK);

This attribute is not applicable on the
A Series.

The A Series equivalent is PRIORITY. The
values for the A Series PRIORITY range from
O to 99, with a default of 50.

The A Series equivalent is PRIORITY. There
is only one type of PRIORITY on the
A Series and it applies to both processor
and memory.

The A Series equivalent is the Lock Program
(LP) ODT command. The LP command prevents
the use of the DISCONTINUE (DS) and QUIT
(QT) command from interfering with the
program execution.

There is no A Series equivalent for this
attribute.

48

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

SCHEDULE.PRIORITY

SECONDS.BEFORE.DECAY

SLAVE.OK

SWITCH

SYMBOLIC.QUEUE.NAME

THEN

TIME

UNCONDITIONAL

UNFREEZE

UN OVERRIDE

The A Series equivalent is PRIORITY. There
is only one type of priority on the
A Series and it applies to both processing
and memory.

The A Series provides similar functions
through the SET FACTOR (SF) ODT command.
See the "A Series ODT Reference Manual" for
information about the SF command.

A similar A Series attribute is SUBSYSTEM.
SUBSYSTEM specifies the subsystem on which
the task is to run or is running. This
attribute may be set only when the task is
inactive and is not automatically inherited
by descendent tasks. SUBSYSTEM is
applicable only on tightly-coupled and ASN
systems (generally this is true of systems
with more than 6M bytes of memory.) For
more information about the A Series
attribute SUBSYSTEM, refer to Appendix A of
the "A Series WFL Reference Manual."

The A Series SWITCH attribute is similar.
On the A Series, the switches are numbered
from one to eight, and can be set to a
Boolean value of TRUE or FALSE.

The A Series equivalent is STATIONLIST.

This attribute is replaced by the
appropriate WFL statement on the A Series.
See the "Work Flow (Jobs)" section, earlier
in this manual.

The A Series equivalent for this attribute
is MAXPROCTIME. MAXPROCTIME is specified in
seconds, not minutes.

This attribute is replaced by the
appropriate WFL statements on the A Series.
See the "Work Flow (Jobs)" section, earlier
in this manual.

This attribute is not applicable on the
A Series.

This attribute is not applicable on .the
A Series.

VIRTUAL.DISK

49

File and Program Attributes

This attribute is not applicable on the
A Series. The size of the overlay area is
controlled by either the default value of
the Overlay Row size or by the value
specified for the Overlay Row Size at
coldstart time. The Overlay Row Size can
not be set for each program.

50

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

51

Q. TRANSFERRING FILES

Because of the difference between Small systems and the A Series, it is
generally not possible to simply dump files from the small Systems and
then load them on the A Series. This section describes the four methods
of transferring files.

SOME NOTES BEFORE YOU START

You do not need to change the data format between the two systems. Any
data and sign format that is accepted by Small Systems is also accepted
by the A Series.

File formats for some of the files are different between the two systems
and may have to be changed.

RPG ADDROUT files cannot be transferred; they must be recreated by the
A Series SORT program.

Previous to the 11.0 release on Small Systems, all program sources were
FILEKIND=DATA. on small Systems starting with the 11.0 release, program
source FILEKINDs have been implemented. The implemented FILEKINDs are:

COBOL(68) SYMBOL
NDL SYMBOL
BASIC SYMBOL
FORTRAN77 SYMBOL
DASDL SYMBOL
SORT SYMBOL
JOB SYMBOL

RPG SYMBOL
FORTRAN SYMBOL
COBOL74 SYMBOL
IBASIC SYMBOL
PASCAL SYMBOL
SEQ DATA

Each program source file that has one of the above FILEKINDs will be
loaded with the appropriate A Series CANDE-compatible FILEKIND and
BLOCKING factor.

CHOOSING THE FILE TRANSFER METHOD

There are four ways of transferring files between Small Systems and the
A Series:

1. BlOOOCOPY

52

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

2. B6000COPY

3. Data Base Data Transfer Utility

4. Progammatically

The list below matches the recommended method of transferring files with
the file types.

File Types

Sequential files
Source .files
ISAM files
DMSII files
Relative files
Files with missing areas

Method of File Transfer

BlOOOCOPY or B6000COPY
BlOOOCOPY or B6000COPY
Programmatically
Data Base Data Transfer Utility
Programmatically
Programmatically

INTERCHANGE disk packs is not a recommended method for transferring
files.

THE BlOOOCOPY METHOD

BlOOOCOPY is an A Series utility program that reads small Systems
SYSTEM/COPY tapes. It is the recommended method of transferring
sequential data files and program sources.

Because of their format differences, BlOOOCOPY
transfer DMSII files, COBOL74 ISAM files, or
transfer these types of files, refer to the
transferring files using "DMSII File Transfer"
Transfer Methods" found later in this section.

cannot be used to
relative files. To

descriptions for
and "Programmatic

BlOOOCOPY can be found on the A Series 3.6 release BTA360 Migration Aids
tape.

53

Transferring Files

Using BlOOOCOPY

BlOOOCOPY requires a string parameter at execution. This parameter is
used to identify which of three functions BlOOOCOPY is to perform.

1. A parameter of TEACH or HELP displays instructions about the
use of BlOOOCOPY. Use this for additional information about
BlOOOCOPY.

2. A parameter of DIR <tapename>, TPDIR <tapename>, or TD
<tapename> prints a directory of the Small Systems SYSTEM/COPY
tape.

3. A parameter of a COPY statement or an ADD statement prints a
directory of the Small Systems SYSTEM/COPY tape and will COPY
or ADD the appropriate files from the tape to disk. The COPY
and ADD statements are a simple form of the standard COPY and
ADD statements.

No special characters are allowed in a name. BlOOOCOPY automatically
removes all special characters from the file name on the tape.

To transfer sequential data files, follow these steps:

1. Use the Small Systems SYSTEM/COPY utility to load files from
disk to tape.

The syntax for this step is:

COPY DATA/= FROM MYPACK (KIND=DISK) TO MYTAPE(KIND=TAPE);

2. Mount the tape on the A Series and use BlOOOCOPY to load those
files from the tape.

The syntax for this step is:

RUN BlOOOCOPY ("COPY DATA/= FROM MYTAPE TO NEWDISK");

BlOOOCOPY loads all file types. Files with a recognized FILEKIND (see
the above list) are loaded as their A Series equivalents. Files with
other FILEKINDs are loaded as FILEKIND=DATA.

54

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

To transfer program sources, follow the steps below:

1. Use the Small Systems SYSTEM/COPY utility to copy the source
from disk to tape.

The syntax for this step is:

COPY COBOLSRC/= FROM MYPACK (KIND=DISK) TO MYTAPE
(KIND=TAPE} ;

2. Then load the tape on the A series and enter:

Kissing Areas

RUN BlOOOCOPY ("COPY COBOLSRC/= FROM MYTAPE TO
SOURCEPACK");

Files with missing areas do not transfer correctly using BlOOOCOPY. For
example, if a file has 1000 records per area and a program writes record
numbers 2000, 4000, and 6000, the file only has areas 2, 4, and 6
defined. The end-of-file pointer is 6000 even though only three records
were written. The Small Systems COPY tape has areas 2, 4, and 6 on it.
BlOOOCOPY creates a file with 1000 records per area, but it loads those
areas into 1, 2, and 3 of the A Series file and marks the end-of-file
pointer as 3000. This situation results in a warning message. The
message includes the file name and both the original and the new
end-of-file pointers. Because of these problems, we recommend
transferring files with missing areas using the Programmatic Method
described later in this section.

THE B6000COPY METHOD

During the progression process, you may want to transfer files from the
A Series to the Small Systems to compare results from parallel runs or
to handle situations where only part of the progression is complete.
B6000COPY is a Small Systems utility program that reads A Series library
maintenance tapes. We recommend you use this method for sequential data
files and program sources.

B6000COPY is found on the BTA350 Small Systems tape.

Because of format differences, B6000COPY cannot be used to transfer
DMSII, ISAM, or relative files. Refer to "DMSII File Transfer" and
"Programmatic Transfer Methods" described later in this section for
information about these types of file transfers.

55

Transferring Files

Using B6000COPY

B6000COPY requires a single ACCEPT message at execution. This message
is used to identify which of three functions B6000COPY is to perform:

1. A message of TEACH or HELP displays instructions about the use
of B6000COPY. Use this to obtain more information about
B6000COPY.

2. A message of DIR <tapename>, TPDIR, <tapename>,
<tapename> prints the tape directory.

or TD

3. A message of a COPY statement copies the appropriate files from
the A Series tape to disk. The COPY statement is a simple form
of the standard COPY statement.

The B6000COPY will only copy files that start on the first reel.

To transfer sequential data files and program sources, follow the steps
below:

1. Use the Small Systems SYSTEM/COPY utility to load files from
disk to tape.

The syntax for this step is:

COPY MYFILES/SOURCE/= AS MYFILES/= FROM MYPACK(KIND=PACK)
TO MYTAPE (KIND= TAPE);

2. Then mount the tape on the Small Systems and enter:

EX B6000COPY; AX<mix number>COPY MYFILES/=
FROM MYTAPE TO MYPACK

B6000COPY loads all file types. Files with recognized FILEKINDs (see
the list in the "Choosing the File Transfer Method" subsection) are
loaded as their A Series equivalents. Files with other FILEKINDs are
loaded as FILEKIND=DATA.

56

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Missing Areas

Files with missing areas do not transfer correctly using B6000COPY.
Information about transferring files with missing areas is given in the
"BlOOOCOPY" section and in the "Programmatic Transfer Methods" section.

DMSII FILE TRANSFER

We recommend you use the Data Base Data Transfer Utility (DBT) to help
with the Data Management Systems II (DMSII) data transfer. This utility
uses the Data and Structure Definition Language (DASDL) and the
description file to generate COBOL74 programs that unload the data from
the Small Systems DMSII data base and then load the data onto the
A Series DMSII data base. All Small Systems data set types (including
variable formats and embedded data sets), item types, and embedded
manual subsets are transferred.

The Data Base Data Transfer Utility (SYSTEM/DBTGEN) is available on the
A Series 3.6 Migration Aids tape. Refer to the Data Base Data Transfer
Utility User's Guide for more information.

PROGRAMMATIC TRANSFER METHOD

For those files that cannot be transferred using one of the previously
described utilities, write a program on the Small Systems that reads one
or more disk files and writes them to tape. Then write a similiar
A series program that reads the tape and creates one or more disk files
on the A Series. We recommend using this method for B and Tag style
ISAM files, COBOL74 ISAM files, relative files, and files with missing
areas.

Use SYSTEM/COPY and BlOOOCOPY to transfer the B file or the data portion
of the TAG file to the A Series. Next, write an A Series program to
read the data file and create an ISAM file. The A Series 3.6 BTA360
Migration Aids tape contains a COBOL74 sample program called LOADISAMS
that reads a data file and creates an ISAM file. Refer to the "ISAM
Files" section, later in this manual, for more information about
A Series ISAM files.

57

Transferring Files

COBOL74 ISAK Files

To transfer COBOL74 ISAM files, write a Small Systems program that reads
the ISAM file and creates a sequential data file. The BTA350 Small
Systems tape has a COBOL74 sample program, DUMPISAMS, that reads an ISAM
file and creates a sequential file. You can create the sequential file
on tape or disk. If you create the file on disk, use SYSTEM/COPY and
BlOOOCOPY to transfer the file to the A Series. Then write an A series
program to read the tape or disk sequential file and create an ISAM
file. The LOADISAMS sample program on the A Series 3.6 Release BTA360
Migration Aids tape shows how to do this.

Relative Files

To transfer relative files, write a Small Systems program that reads the
relative file and creates an intermediate sequential file on tape or
disk. You can use the sample COBOL74 program, DUMPRELS, on the BTA350
Small Systems tape as an example.

If you create a disk file, transfer it to the A Series with SYSTEM/COPY
and BlOOOCOPY. Then write an A Series program to read the tape or disk
intermediate sequential data file and create a relative file. The
A Series 3.6 Release BTA360 Migration Aids tape contains LOADRELS, a
sample COBOL74 program, which you can use as an example.

Kissing Area Files

To transfer files with missing areas, write a Small Systems program that
reads the file and writes an intermediate sequential file to disk or
tape. Then write an A Series program to read the intermediate sequential
file and recreate the file with missing areas. SYSTEM/COPY and BlOOOCOPY
can be used to transfer the intermediate disk file from the Small
Systems to the A Series. The BTA350 Small Systems tape has a sample
COBOL74 program, DUMPRANS, which you can use as an example. This sample
program creates the intermediate file. The A Series 3.6 BTA360
Migration Aids tape contains a sample load program called LOADRANS.

58

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

59

]_ COBOL(68)

For the following reasons we
Systems COBOL(68) programs
process:

recommend converting all of the Small
to COBOL74 as part of the progression

1.

2.

3.

COBOL74 is continually being enhanced.
being added to COBOL(68).

No new features are

The COBOL74 ISAM is fully compatible with RPG.
ISAM cannot be accessed by RPG programs.

The COBOL(68)

The COBOL74 ISAM
Systems. The
be shared.

allows file sharing just like the small
A Series COBOL(68) ISAM does not allow files to

4. There is no filter program and no documentation available to
assist the progression of Small Systems COBOL(68) to A Series
COBOL(68).

5. Any feature available with Small Systems COBOL(68) is either a
feature of A Series COBOL74 or is missing from both COBOL(68)
and COBOL74 on the A Series.

6. Most of the desirable Burroughs extensions in COBOL(68) have
been added to COBOL74.

We also recommend that you use the Burroughs to Burroughs Translator
(CTA) filter to assist with the COBOL(68) to COBOL74 conversion. The
filter accepts Small Systems COBOL(68) source code and produces A Series
COBOL74 source code. It translates most constructs and clearly flags
those it doesn't. The CTA filter is located on the A Series 3.6 Release
BTA360 Migration Aids tape.

60

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

61

~ COBOL74

The Small Systems COBOL74 is basically a subset of the A Series COBOL74.
Therefore, most of the COBOL74 programs should easily translate to the
A Series. To assist with the conversion of the COBOL74 programs, the
Burroughs B 1000 series COBOL74 to Burroughs A Series and B 5000/B
6000/B 7000 Series translator (B7T) is located on the A Series 3.6
Release BTA360 Migration Aids tape.

This section contains information about the general COBOL74 conversion,
using the translator, and how to manually change those small Systems
constructs that cannot be changed by the translator.

GENERAL COBOL74 CONVERSION INFORMATION

The COBOL syntax for file attributes is the same on the two systems, but
the file attributes are often different. Some of these differences are
discussed here; for more information, see the "File and Program
Attributes" section.

Hexadecimal Literals

There are no differences in the handling of hexadecimal literals for
A3s, A9s, and AlOs running LEVEL! code (the default for programs
compiled on these machines). If you have an A3, an A9, or an AlO and are
running LEVEL! code, skip to the next topic in this section.

For B5000, B6000 and B7000 machines and any A3, A9, or AlO running
LEVELO code, there are significant differences between the handling of
hexadecimal literals on the A Series and the Small Systems. To help
convert these hexadecimal constructs, the following information explains
how the A Series treats certain data types and why some code produces
incorrect results.

To describe a computational (4-bit) number, the code produced by the
compiler does not include any indication of the presence or absence of a
sign. The code (or descriptor) for PIC 9999 COMP is:

4-bit, starting at location Ll, 4 long

62

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The descriptor for PIC S999 COMP is:

4-bit, starting at location L2, 3 long

If you assume that the first item has a value of 1234 and the second has
a value of -123, everything works correctly. When the system evaluates
the first descriptor, it looks at the first four bits. Since the number
there is between o and 9, the hardware assumes that it is unsigned and
picks up the next four digits, creating the number 1234. For the second
descriptor, the hardware looks at the first four bits starting at L2 and
notices that the digit there (the minus sign is D) has a value between
A and F. It therefore assumes that the number is signed and picks up
the next three digits, creating the number -123.

Probl~ms occur when bad data is present in these two memory ·locations.
For an example, assume the data in the first number is -123 and the
second has the value 1234. When the hardware looks at the first
descriptor, it sees a value of D (the minus sign) in the first digit and
assumes that the number is signed and 4 digits long (excluding the
sign). The hardware ta~es the numbers 123 and whatever digit follows the
3 in memory. If the 3 is at the "end" of memory for this structure, the
program is DSed with a SEG ARRAY ERROR (or similar message). If there

. happens to be data after the 3, this data is picked up and used.

In the preceding example, if the two numbers were described one after
the other within an 01 level, the first number would end up with a value
of -1231, with the second 1 coming from the first digit of the second
number.

For the second descriptor, the hardware looks at the first digit and
decides that the number is unsigned and creates a number with a value of
123.

Remember, this problem only occurs with COMPUTATIONAL numbers. The
examples below show the most common uses of hexadecimal literals.
Included with the examples are methods for converting the code.

Example 1

01 SCREEN-FORMAT.
02 FILLER
02 FILLER

PIC 99
PIC 9999

COMP VALUE FF.
COMP VALUE OCOC.

63

COBOL74

This code does not have to be changed because these items are never
referenced. However, we recommend changing the picture clauses to PIC X
and PIC XX, respectively.

Example 2

01 SOME-DATACOMM-CONSTANTS.
02 HOME-CLEAR PIC 99
02 FORMS-ON PIC 9999

01 SCREEN.
02 ONE-CHARACTER PIC 99

COMP VALUE OC.
COMP VALUE 27E6.

COMP OCCURS 1920 TIMES.

MOVE HOME-CLEAR TO ONE-CHARACTER (1).

Because these data items are referenced, they
fields used with them must also be changed.
below:

01 SOME-DATACOMM-CONSTANTS.
02 HOME-CLEAR PIC X
02 FORMS-ON PIC XX

01 SCREEN.
02 ONE-CHARACTER PIC X

must be changed. The
The changed code is shown

VALUE OC.
VALUE 27E6.

OCCURS 1920 TIMES.

MOVE HOME-CLEAR TO ONE-CHARACTER (1).

Example 3

01 SCREEN-INPUT.
02 FIRST-TWO PIC 9999 COMP.

IF FIRST-TWO IS EQUAL TO 277F

This code is changed to:

01 SCREEN-INPUT.
02 FIRST-TWO PIC XX.

IF FIRST-TWO IS EQUAL TO 277F

64

Example 4

01 x.
02
02

77. v

B 1000 SERIES TO A SERIES

A PIC
FILLER PIC

PIC

IF A IS EQUAL TO V OR
A IS EQUAL TO B

9
9(9)
9

The code is changed to:

01 x.
02 Xl.

03 A PIC 9
03 FILLER PIC 9(9)

02 X2 REDEFINES Xl.
03 A-H PIC x.
03 FILLER PIC 9(8)

01 SOME-HEX-VALUES.
02 HEX-AF PIC x
02 HEX-CO PIC x
02 HEX-DF PIC x
02 HEX-FO PIC x

IF (A-H GREATER THAN HEX-DF
THAN HEX-FO)

OR

PROGRESSION GUIDE

COMP.
COMP.
COMP VALUE E.

COMP.
COMP.

COMP.

VALUE AF.
VALUE CO.
VALUE DF.
VALUE FO.

AND A-H LESS

(A-H GREATER THAN HEX-AF AND A-H LESS
THAN HEX-CO)

Example 5

01 TR-CODE
88 A
88 B

IF A OR B

This code is changed to:

01 TR-CODE
88 A
88 B

IF A OR B

PIC 99 COMP.

PIC X.

VALUE 7B.
VALUE A5.

VALUE 7B.
VALUE A5.

Example 6

01 DATA-BUFFER.
02 ONE-DIGIT

77 HEX-F

COBOL74

PIC 9
PIC 9

COMP OCCURS 200 TIMES.
COMP VALUE F.

IF ONE-DIGIT (I) EQUALS HEX-FOR
ONE-DIGIT (I) EQUALS A

65

If every digit within DATA-BUFFER is in the range o through 9 and all
comparisons are made to digits in the range o through 9, then the code
works correctly. If any of the digits in the buffer is in the range A
through F, then the generated code does not produce the desired results.
Because the A Series COBOL74 compiler does not support the Small Systems
extension to ANSI COBOL74, you cannot convert this program using the
A Series COBOL74. Instead, convert this function on the A Series using
ALGOL.

Non-numeric Arithmetic

There is also a difference in the treatment of arithmetic dealing with
non-numeric digits within numbers. Note that both Small Systems and the
A Series documentation state that the results of such arithmetic are
undefined. However, the A Series results are different from the Small
systems results. We suggest that you avoid using non-numeric arithmetic
constructs because the results are unpredictable.

Review the IS NUMERIC clause in the A Series COBOL ANSI-74 Reference
Manual for help in dealing with non-numeric digits. If you have any
questions about your data, this clause allows you to check the data
accurately before using it. The same rules apply to both the Small
Systems and the A Series.

Example

77 A
77 B
77 c
77 D

PIC S99
PIC 99
PIC S99.
PIC 99.

IF A IS NUMERIC

COMP.
COMP.

True only if the sign digit is
a c, D, or F and all other digits
are 0-9.

66

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

IF B IS NUMERIC

IF C IS NUMERIC

IF D IS NUMERIC

HIGH-VALUE. LOW-VALUE

True only if all the digits
are 0-9.

True only if the sign zone is a
c, D, F, all other zones are F,
and all digits are 0-9.

True only if all zones are F and
all digits are 0-9.

Small Systems always treat HIGH-VALUE as hexadecimal Fs and LOW-VALUE as
hexadecimal Os (zeroes). The A Series treats the values differently
depending upon the type of the associated data item. Display numeric
data items have high and low values of F9 and FO, respectively. All
other data types on the A Series have values of hexidecimal FF and 00.

Default Sign Position

Small Systems have implemented left-signed as the default for both
display and computational data. The A series has implemented a default
sign position of left-signed for computation data and right-signed for
display data.

There are two ways to handle this difference: change the data or change
the program. Changing the location of the sign usually causes a number
of problems. Therefore, we recommend that the data be left as it is and
the programs be changed. After the progression is complete and all the
programs are working, consider changing some of the data. However, make
sure the performance improvement is going to be worth the effort; unless
the program does a great deal of arithmetic, it probably is not worth
the effort. If the program does a lot of arithmetic, we recommend you
use BINARY data.

To change the programs, add the following code:

SPECIAL NAMES.
DEFAULT DISPLAY SIGN IS LEADING.

67

COBOL74

This change is automatically done by B7T if the clause is not already
present in the code.

TASKVALUE

The A Series offers a task attribute called TASKVALUE that can be set by
either the program, the operator, or WFL. It can be read by WFL or the
program.

To access TASKVALUE in a COBOL74 program, use the following code:

MOVE ATTRIBUTE TASKVALUE OF MYSELF TO
<numeric data name>

or

CHANGE ATTRIBUTE TASKVALUE OF MYSELF TO
<numeric data name>

The largest possible value for TASKVALUE is 549,755,813,887. The normal
COBOL rules of truncation apply when TASKVALUE is larger than the
receiving data name. For example, moving a TASKVALUE of 1234 to a PIC
99 item results in a value of 34.

TASKVALUE can be set with a task equate clause in the RUN statement.
For example, to set the TASKVALUE to 1234, enter:

RUN <program name>; TASKVALUE = 1234

To change the TASKVALUE of a running program, enter:

<mix number> HI <number>

For example, to set the TASKVALUE to 5678 for mix number 1234, enter:

1234 HI 5678

68

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The HI causes the task attribute EXCEPTIONEVENT (see "Switches" later in
this section).

A WFL program can query the TASKVALUE of a program. This allows the
queried program to communicate something back to the WFL program.

Example

IF T(TASKVALUE) = 1 THEN
ABORT "The edit is out of balance";

COBOL DIVISIOBS

some of the COBOL divisions require changes when you progress from Small
Systems to the A Series. The following sections discuss each COBOL
division and the required changes, if any, for that division.

Identification Division

No changes are required.

Environment Division

Changes are required in the OBJECT-COMPUTER and FILE-CONTROL paragraphs.

OBJECT-COMPUTER

The record size, block size, area length, and areas clauses of an SD are
ignored by the A Series. Therefore, to specify the size of a SORT
workfile, it must be entered with a DISK SIZE clause in the
OBJECT-COMPUTER paragraph. The syntax for this is:

DISK SIZE IS <integer> WORDS

To calculate the integer needed for this clause:

1. Take the sort record size, in bytes, divide it by 6 (6 bytes
per word) and round it up to the nearest word.

69

COBOL74

2. Multiply that number by the number of records in the file.

3. Multiply the result of step 2 by 2.25.

For example, assume you have a file of 50,000 93-byte
record size in words is 93/6, which equals 15.5. The 15.5
to 16, then multiplied by 50,000 (the number of records in
a total of 800,000. 800,000 is then multiplied by 2.25 for
1,800,000.

records. The
is rounded up
the file) for
the result of

The default disk size is 900,000 words.
approximately 13,000 180-byte records.

This is sufficient to sort

For more information about the amount of disk work space
to the subsection titled "Disk Size" in the SORT
"A Series systems Software Utilities Reference Manual."

FILE-CONTR.OL

needed, refer
section of the

The A Series uses port files in place of the Small Systems queue files.
Refer to the "Queue/Port Files" section later in this manual for details
about this change.

Data Division

The FD and SD paragraphs require changes when you progress from Small
Systems to the A Series.

FD

For a file opened INPUT or I/O on Small Systems, if there is no BLOCK
CONTAINS clause, the DEFAULT bit is set in the FPB. This sets the block
size and record size according to the physical file characteristics when
the file is opened. If there is a BLOCK CONTAINS clause, this bit is
not set on the Small Systems.

On the A Series, this bit is never automatically set by the compiler.
To set it, the following must be added to your code:

VALUE OF DEPENDENTSPECS IS TRUE

70

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

This clause is automatically added by B7T350 when the BLOCK CONTAINS
clause is missing, or you can add this clause manually.

SD

The BLOCK CONTAINS and VALUE OF clauses
"OBJECT-COMPUTER" earlier in this section.

Procedure Division

are ignored. See

Changes will probably be required to some portion of your Procedure
Division. General changes include switches and segmentation. Changes in
verbs include ACCEPT, CALL, CLOSE, DISPLAY, IF, INDEX, MOVE, OPEN,
PERFORM, SORT, and WAIT.

Switches

The A Series has implemented switches as task attributes. This has one
advantage and one disadvantage.

Because switches are task attributes and because COBOL74 on the A Series
can set task attributes, an A Series COBOL74 program can change the
value of a switch from within the program. (This capability existed on
Small Systems COBOL(68), but not on Small Systems COBOL74.) The syntax
to change a switch is:

CHANGE ATTRIBUTE swn OF MYSELF TO TRUE (or FALSE).

The disadvantage of having switches as task attributes is performance.
Accessing a switch on the A Series COBOL74 is 10 times slower than on
Small Systems. Usually the slower processing time is not noticeable.
However, if the program has a loop which tests one or more switches
during every pass of the loop, the reduction in performance can be
significant.

One possible solution is to declare pseudo switches in working storage
and set them at the beginning of the program. Then change all
references from real switches to pseudo switches. However, this does
not allow the operator to change the value of the switches once the
program is running.

71

COBOL74

Another solution is to change the program to use an interrupt procedure
to perform the action triggered by a switch. For example, one of the
most common switches found in a program loop is a status inquiry switch.
The program checks the switch on every pass through the loop. If the
switch is equal to 1, the program displays its current status and resets
the switch to O. The following code accomplishes this on the A Series:

DECLARATIVES.
STATUS-INTERRUPT SECTION.

USE AS INTERRUPT PROCEDURE.
STATUS-INTERRUPT-PARA.

DISPLAY "HELLO. MY STATUS IS
END DECLARATIVES.

II

Then place the following code at the beginning of the Procedure
Division:

ATTACH STATUS-INTERRUPT TO
ATTRIBUTE EXCEPTIONEVENT OF MYSELF.

ALLOW STATUS-INTERRUPT.

When the operator enters: <mix number> HI.

The program responds with: HELLO. MY STATUS IS .•.•..•..•..

Additional information about this use of switches is available in the
DDT-INPUT-OUTPUT discussion of the WAIT statement found later in this
section and in the TASKVALUE discussion earlier in this section.

Segmentation

Physical segmentation is automatically provided by
compiler. Sections can be split into multiple segments.
segments are not gathered into the same segment.

the A Series
Non-contiguous

All ALTER code associated with segmentation works the same on both Small
Systems and the A Series. Unless you are using ALTER, we recommend that
you eventually remove all section numbers.

72

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Physical segmentation is documented in the "Segmentation" section of the
"COBOL74 Reference Manual."

ACCEPT <DATA-NAME> FROK TIKER

The TIMER clause on Small Systems returns a 10-digit number representing
the number of tenths of a second since midnight. On the A Series, TIMER
returns an 11-digit number representing the number of 2.4 micro-seconds
since midnight. B7T generates source code to convert the time from the
A Series format to perform like the small Systems format.

ACCEPT

The A series accepts only one ACCEPT message. If several ACCEPT
messages are entered without the program doing an ACCEPT, all but the
last one entered are discarded.

CALL SYSTEK ZIPSB

The Small Systems control syntax that is zipped is different from the
A Series statements that are passed to WFL. The Small Systems use the
syntax CALL SYSTEM ZIPSB, while the A Series uses the syntax CALL SYSTEM
WFL. When progressing to the A Series, you must either convert all the
CALL SYSTEM ZIPSB statements to CALL SYSTEM WFL or remove those
statements. You can change the syntax manually or the translator will
automatically change the Small Systems CALL SYSTEM ZIPSB to CALL SYSTEM
WFL. However, the translator will not change any Small Systems control
statements that are zipped via the ZIPSB statement.

IPC CALL

The A Series handles IPC CALL statements in a slightly different manner
than Small Systems. The following subsections discuss the differences
of Redefines, Type Checking, and Length Checking.

Redefines

The A Series does not allow an 01 level item which redefines another 01
level item to be passed as a parameter in an IPC CALL statement. For
example, the following Small Systems code produces a syntax error on the
A Series:

01 A
01 B REDEFINES A

PIC 99.
PIC XX.

CALL "PROG-X" USING B.

73

COBOL74

The syntax can be corrected by passing "A" or by reversing the order of
the declaration and having "A" redefine "B".

Type Checking

Small Systems does not check the item type of each parameter. The
A Series requires that the item type must match. Just a reminder, group
items, PIC X, and PIC 9 items are always display and therefore match
each other. The A Series Type check occurs at the time of the IPC CALL.

The following examples illustrate how the A Series handles type
checking.

Example 1

CALLER CALLED
------ ------

01 A COMP. 01 B PIC 9999 COMP.
02 Al PIC 99.
02 A2 PIC 99.

This program runs on Small Systems but produces a run-time error on the
A Series. "A", even though declared as COMP for its subordinates, is a
display item and does not match "B".

Example 2

CALLER CALLED

77 A PIC S99. 01 B PIC XX.

74

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Since both items types are display, this is not an error.

Length Checking

Length checking works differently on the A Series than on Small Systems.
However, this difference only affects programs being written for the
A Series. Any program that runs on the Small Systems will run on the
A Series.

The Small Systems checks the length at the time of the IPC CALL. The
A Series checks the length at the time the parameter is used in the
called program. On the A Series, the length of the item is always the
length described in the Linkage Section of the called programs. The end
of the data is always on a word (six bytes) boundary. If a parameter is
passed that is longer than the receiving area, the characters that
exceed the length of the receiving area are truncated and cannot be
referenced. If a parameter is passed that is shorter than the receiving
area, the unused area cannot be referenced. Any reference to this unused
area causes the program to be DSed.

The following examples show the actions taken by the A Series under
various conditions.

Example 1

CALLER CALLED
------ ------

01 A. 01 B.
02 Al PIC x. 02 Bl PIC x.
02 A2 PIC X(6). 02 B2 PIC X(6).
02 A3 PIC x. 02 B3 PIC x.

02 B4 PIC X(4).
02 B5 PIC x.

In this example, assume "A" is passed to "B". A reference to "Bl",
"B2", and "B3" refers to "Al", "A2", and "A3", respectively. A
reference to "B4" refers to the four invisible bytes that make A a full
word (integral number of six bytes). These invisible bytes are always
initialized to hex 00. A reference to "B5" causes the program to be DSed
with a SEG ARRAY ERROR or an INVALID INDEX. Even though "A" takes up 12
bytes (two words) its length is only eight bytes. "MOVE "123456789012"
TO A" produces a truncation warning and only the leftmost eight bytes
are moved.

75

COBOL74

Example 2

CALLER CALLED

01 A PIC X(lO). 01 B PIC X(5).

This does not cause an error. The length of "B" is 5, therefore, it is
not possible for "B" to reference the last five bytes of "A".

Example 3

CALLER CALLED

01 A PIC 9 COMP VALUE 1 01 B PIC 9999 COMP.

The value of "B" is 1000. Remember, "A" is followed by 11 invisible
digits that are initialized to hex o.

Example 4

CALLER

01 A
01 c

PIC 9
PIC 9

COMP
COMP

VALUE 1.
VALUE 1.

CALLED

01 B
01 D

PIC 9(12)
PIC 9(13)

COMP.
COMP.

"B" has a value of 100,000,000,000. Any reference to "D" causes a SEG
ARRAY ERROR or an INVALID INDEX. Remember that you can fit. 12 digits
into one word. "B" exactly fits into the word occupied by "A". "D"
takes two words and therefore any reference to it goes past the end of
"C" and an error occurs.

DISPLAY

On the A Series, the DISPLAY statement stops displaying a string as soon
as it encounters a hex 00 (NULL). on the Small Systems, the NULL is not
displayed, but it does not stop the display. The following example
shows one occurrence of this and a possible solution.

76

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

01 A.
02 B PIC X(5) VALUE "12345".
02 FILLER PIC X.
02 C PIC X(5) VALUE "ABCDE".

DISPLAY A.

On Small Systems, the DISPLAY command would show "12345ABCDE". on the
A Series, the DISPLAY command would show "12345". To solve this
problem, add VALUE SPACES to the FILLER item. Then the A Series will
display "123456ABCDE".

IF STATEMENT

On Small Systems, the following IF statement would take the true branch
if the data base item had never been initialized:

IF DATA-BASE-ITEM = ALL F

To ensure that the true path is taken on the A Series, change the code
to:

IF DATA-BASE-ITEM IS NULL

This syntax is valid only with data base items.

INDEXING

The A Series does not do complete bounds checking on indexing. If an
index is out of range, the program is DSed only if the result of the
index is completely outside of the 01 level structure.

For example:

01 EXAMPLE-TABLE.
02 A PIC x.
02 B PIC x OCCURS 5 INDEXED BY BX.
02 c PIC x.

SET BX TO o.

MOVE

DISPLAY B(BX).

SET BX TO 6.
DISPLAY B(BX).

SET BX TO 7.
DISPLAY B(BX).

SET BX TO 12.

COBOL74

Displays A

Displays C.

Since every 01 is an integral
integral number of words (six
bytes to a word), this
this displays "invisible"
data between c and the end
of the 01. This data is
initialized

DSed
index.

because

to hex oo.

of invalid

77

A move in which the areas defined by the sending and rece1v1ng fields
overlap is different on both systems. overlapping moves are not
recommended on either system.

A move in which either the sending or receiving field is computational
and the other field is a group is different on both systems. If the
rece1v1ng field is computational, the Small Systems removes zone bits.
If the sending field is computational, the Small Systems adds zone bits.
In both situations, the A series moves the contents unchanged and is
treated as a group move.

OPEN

The LOCK ACCESS option of the OPEN statement is not implemented on
A Series.

PERFORM

There is a minor difference in the action taken by a PERFORM statement
with multiple varying clauses (format 4 PERFORM). For information,
refer to the "Procedure Division" section and the "PERFORM" subsection
of the "A Series COBOL74 Reference Manual". The flowchart in Figure 8-2
of the reference manual provides the best explanation of how the format
4 PERFORM statement works on the A Series.

78

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

PERFORM OR SEAR.CH EARLY EXIT CODE

The A Series does not generate early exit code for SEARCH statements.
The following code, while valid in Small Systems, causes the program to
be DSed with an invalid subscript if it is used on the A Series:

01 EBCDIC-STUFF.
02 S-TABLE PIC XX

SET I-1 TO 1.
SEARCH S-TABLE VARYING I-1

OCCURS 12 TIMES
INDEXED BY I-1.

WHEN I-1 = 13 OR S-TABLE(I-1) = SPACES
NEXT SENTENCE.

When "I-1" is 13, the Small Systems would stop the evaluation at the
try to evaluate
DSed. The same
in programs where

"I-1=13". The A Series would continue and
"S-TABLE(l3)", which would cause the program to be
situation occurs with only those PERFORM statements
$OPTIMIZE is set.

Changing the code to achieve early exit from the PERFORM and SEARCH
statements is program dependent.

SORT

On the A Series, you may put a disk size clause in the SORT statement
instead of putting it in the object-computer paragraph; the syntax and
semantics are the same. This clause immediately follows the memory size
clause. If the disk size is stated in the object-computer paragraph and
in the SORT statement, the disk size clause in the SORT statement
overrides the disk size clause in the object-computer paragraph.

WAIT

The following is a list of the differences between Small Systems and the
A Series WAIT:

1. The A Series does not accept the USING clause.

2. The A Series has implemented READ-OK, but it is valid only for
REMOTE files. The A series has not implemented WRITE-OK.

79

COBOL74

3. The A Series has implemented INPUTEVENT, OUTPUTEVENT, and
CHANGEEVENT. INPUTEVENT is valid for REMOTE files and PORT
files. OUTPUTEVENT and CHANGEEVENT are valid only for PORT
files. (The compiler accepts the syntax for other kinds of
files, but the events are never set to TRUE.) Refer to the
"Queue/Port Files" section later in this manual for details
about INPUTEVENT, OUTPUTEVENT, and CHANGEEVENT.

4. READ-OK ON <queue-file> is similar to ATTRIBUTE INPUTEVENT OF
<port-file>. READ-OK <remote-file> is valid on the A Series.

5. WRITE-OK ON <queue-file> is similar to ATTRIBUTE OUTPUTEVENT OF
<port-file>.

6. The primary use of the CHANGEEVENT
program that another program has
"Queue/Port Files" section later
"A Series I/O Subsystem Reference
regarding this attribute.

attribute is to notify one
closed a port file. See the
in this manual, and the

Manual" for more information

7. The A Series has implemented ODT-INPUT-PRESENT. The following
example illustrates the use of CDT-INPUT-PRESENT.

WAIT UNTIL
600,
ODT-INPUT-PRESENT,
READ-OK ON QUEUE-FILE
GIVING G.

WAIT AND RESET
600,
ODT- INPUT-PRES.ENT ,
ATTRIBUTE INPUTEVENT OF PORT-FILE,
ATTRIBUTE CHANGEEVENT OF PORT-FILE,
GIVING G.

If AND RESET is not present,
stays on until an ACCEPT
subsequent WAIT statements
immediately become true.

the ODT-INPUT-PRESENT attribute
statement is executed and all
that wait on CDT-INPUT-PRESENT

COMPILER-DIRECTING DOLLAR SPECIFICATIONS

On Large Systems, dollar specifications are call Compiler Control Images
(CCI). There are two types of CCis: temporary and permanent. A
temporary CCI has only one $ in column seven and can be made permanent
by adding another $ in column eight. Dollar specs are listed by default
on the Small Systems. Permanent CCis are listed by default on Large

80

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Systems. The temporary CCis on Large Systems will not appear on the
listing unless the default is overridden by a $ SET LISTDOLLAR.

On the Small Systems, lines of code from a copy library are listed by
default. on the Large Systems, lines of code from a copy library are
not listed by default. This may be overridden with $ SET LISTINCL.

On the Small Systems, the compiler attempts to continue no matter how
many errors it encounters. The Large Systems has a Compiler Control
Image called ERRORLIMIT that tells the compiler to quit after
encountering .a specified number of errors. If the compile is done
through WFL, the default for ERRORLIMIT is 10. If the compile is done
through WFL, the default for ERRORLIMIT is 150.

The only compiler-directing dollar specification which requires a manual
change is the following:

Small Systems A Series

XSEQ SREF

ADDITIONAL FEATURES

The following is a list of significant features available on the
A Series that are not available on small Systems.

1. The A Series ISAM (KEYEDIO) provides all the features offered
in the Small Systems TAG style and COBOL74-style ISAM files,
plus these additional features:

a. Full recovery up to the last record written.

b. Serial, sequential, random, and keyed access. with update
capabilities.

c. Declaration in each program of only those keys used by
that program.

2. The A Series COBOL74 compiler compiles programs much faster
than the Small Systems compiler.

3. The A Series offers a separate compilation (SEPCOMP) ability
that allows only the parts of a program that have been changed
to be compiled.

81

COBOL74

4. The A Series COBOL74 compiler includes the ANSI REPORT WRITER
feature.

5. The A Series allows CALLED IPC programs to be shared.

6. The A Series allows program modules to be bound to other
programs, including programs written in different languages.

82

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

83

Most of the Small Systems RPG constructs can be translated to the
A Series using the Burroughs RPG Translator. Those constructs that can
not be handled by the translator are discussed in this section along
with methods of converting them. To help you better understand A series
RPG, some of the changes made by the translator are also discussed here.

THE RPG TRANSLATOR

To help transfer Small Systems RPG to A Series RPG we recommend you use
the Burroughs B 1000 Series RPG to Burroughs A Series RPG Translator
(BRT). The translator accepts Small Systems RPG source code and
produces A Series RPG source code. The translator is available in two
versions: one that runs on Small Systems and one that runs on the
A Series. The translator translates most constructs; those constructs
that cannot be converted by the translator are clearly flagged for
manual change.

The Burroughs RPG Translator is located on the A series 3.6 Release
BTA360 Migration Aids tape.

DOLLAR SPECIFICATIONS

There are two types of dollar specifications: compiler-directing and
file attribute. On the A Series, compiler-directing dollar
specifications are called Compiler Control Images (CCI).

Compiler Control Images 1..QQ!l

There are two types of CCis, temporary and permanent. A temporary CCI is
specified with a dollar sign ($) in column six. A permanent CCI has a
dollar sign in columns six and seven. Permanent CCis are listed along
with the program. Temporary CCis are not listed unless $ SET LISTDOLLAR
is specified.

LIST INCL

On Small Systems, lines of code from a LIBR file are listed by default.
On the A Series, lines of code from an INCLUDE file are not listed by
default. To list the included file, specify $ SET LISTINCL.

84

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

ERRORLIMIT

On Small Systems, the compiler attempts to continue processing
regardless of the number of errors it has encountered. The A Series has
a CCI called ERRORLIMIT that can be set to tell the compiler to
terminate processing after the error limit has been reached. If the
compile is done through CANDE, the default ERRORLIMIT is 5. If the
compile is done through WFL, the default error limit is 150.

Small Systems VOID

The only compiler-directing dollar specification that requires manual
change is the Small Systems VOID. The VOID statement must be changed to
the A Series DELETE statement. For example,

Small Systems A Series

00100$ VOID 500 00100$ SET DELETE

00500$ POP DELETE

File Attribute Dollar Specification

Most of the Small Systems file attribute dollar specifications are
handled by the RPG Translator. Those not handled by the translator are
listed below along with information about how to change them.
Additional information is available in the RPG Syntax Guide.

Small Systems

TAG

DNAME

A series

This specification is not applicable on the
A Series. All A Series ISAM files are
similar to Small Systems COBOL74 ISAM
files; refer to the "ISAM Files" section of
this manual for additional information.

The A Series equivalent
attribute. The value

is the
field of

UNITNO
$DNAME

contains an alpha-mnemonic for the physical
hardware device to which it refers. DNAME
must be changed to UNITNO and the

DRIVE

FILE NAMING

85

RPG

alpha-mnemonic must be changed to a numeric
value.

No direct equivalent exists on the
A Series. However, the A Series
FAMILYINDEX file attribute is similar to
the Small Systems DRIVE and can be used to
replace it.

There is no direct equivalent to the Small Systems FAMILY attribute.
The A Series FAMILYNAME file attribute is the same as the Small Systems
PACKID file attribute; it is not related to the Small Systems FAMILY.

The A Series title elements may contain up to 17 characters per element.
There may be a usercode, up to 12 levels of file name, and a family
name.

If there is a usercode in the Small Systems TITLE, use the A Series
syntax (USERCODE)A/B ON C. There is no slash after the USERCODE.

We recommend that you limit all file names to uppercase
numbers and that you start each part of the title with a
parts of the A Series will not support special characters.
use special characters, the hyphen (-) and the underscore
fewest problems. The period(.) is prohibited as a special

letters and
letter. Many
If you must

(_) cause the
character.

All B-Indexed files, Tag files, and ISAM files should be progressed to
the A Series KeyedIO files. Refer to the "ISAM Files" section of this
manual for additional information. The Small Systems B-Indexed and Tag
files ignore the sign on numeric keys (the absolute value is compared).
This is not true for A Series KeyedIO.

GENERAL LANGUAGE ELEMENTS

The Small Systems support up to 31-digit numbers. The A Series supports
up to 23-digit numbers. Check your Small Systems RPG programs for
numbers exceeding 23 digits. Any attempt to move data from an

86

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

alphanumeric field larger than 23 characters to a numeric field is not
allowed.

H-Specification

The only differences between the Small System_s and A Series H SPEC are
in column 16 and column 53.

Column 16

The A Series does not support B-Indexed files.

Column 53

On Small Systems, the default for serial input files is to explicitly
close the file upon encountering the end-of-file (EOF). On the A Series,
normally, all files are closed at end-of-job (EOJ) as specified in the
RPG program. To close serial input files on the A Series at the
end-of-file (EOF), you must put an S in column 53. For transferring
your Small Systems RPG programs to the A Series, the RPG Translator
automatically makes this change for you.

On the Small Systems, when an unpacked, unedited, positive number is
processed, the sign is not stripped unless there is an X edit code. For
instance, a positive 1234 would print as A234 unless there was an X edit
code. On the A Series, the default is to strip the sign. If you want
the same result on the A Series that you had on your Small Systems, you
must put the letter o in column 40.

Regardless of the value in column 40, the X edit code still works the
same way on both systems. Use caution with X edit codes and indexed
files; if your programs expect the sign in the key field for positive
values of unpacked numeric keys, make sure the programs that add or
update the record in the indexed files have an o in column 40. If the
sign was stripped (the o was not specified), programs expecting a value
such as A234 might receive a NOT FOUND error when accessing the file
because the actual value is 1234.

87

RPG

D-Specification

Small Systems allow a file attribute dollar specification (only $PACKID
or $DISKID) before the D-specification when library files reside on a
disk other than the systems disk. The A series does not allow any file
attribute dollar specifications before the D-specification. The RPG
translator deletes the file attribute dollar specification when it
appears before a D-specification.

A-Specification After D-Specification

On Small Systems, an A-specification may not foliow a D-specification.

On the A Series, an A-specification is allowed but it must immediately
fqllow the D-specification.

The format of data base attribute specification lines is the same as
File Attribute Images described in Section 6 of the "A Series RPG
Reference Manual." Use of the data base attributes is subject to the
same rules as use of file attributes.

Currently TITLE is the only attribute which is supported. TITLE may not
be changed when the data base is open.

F-Specif ication

The differences between Small Systems F specs and the A Series F specs
are column 40-46 and column 53.

Column 40-46

Small Systems accepts many device names that the A Series does not. The
devices that are accepted on the A Series are listed in Section 5 of the
"A Series RPG Reference Manual."

88

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Column 53

By default, Small Systems allow all files to be shared. on the A Series,
by default, all output, add, and update files are opened with "lock."
This means that no other program can open these files, not even for
input. In order for the A Series to allow shared files, you must put a
u in column 53.

When transferring your Small Systems RPG programs to the A Series, the
RPG Translator automatically places a u in column 53.

E-Specification

The E spec for A Series differs from Small Systems in Tables, columns
9-10, and compile-time vectors.

Tables

The A Series has several restrictions for table handling. They are:

1. You cannot display (DSPLY) an unsubscripted table.

2. You cannot use an unsubscripted table in either the FACTOR 2 or
RESULT field of a MOVEA operation.

3. You cannot use an unsubscripted table on input specifications.

Columns 9-10

Automatic chaining is not supported on the A Series.

Compile-Time Vectors

on Small Systems, the CARDS and SOURCE files accept RPG source
statements, and the TABCRD file accepts compile-time vectors. On the
A Series, the compile-time vector data is included at the end of the
source statements. The Small Systems allow compile-time vectors to be up
to 96 characters long. The A Series limits compile-time vectors to 80
characters.

89

RPG

Because neither CANDE nor the EDITOR allows editing of mixed source and
data files, editing RPG source files with vector data at the end can be
cumbersome. we recommend that you keep two separate files: one for
source and one for the vectors (type DATA). Then make your last card in
the source file $ INCLUDE "<vector file title>". (The quotes are
required and the vector title's format is (USERCODE)A/B ON C).

The data for all the vectors should be included in the same file, but
each vector must start with a VVECTOR card. Because each vector starts
with a VVECTOR card, it is possible to have other than the last vector
as a short vector. For example,

OOlOOVVECTOR
DATA

<data>
VVECTOR

DATA
<data>

VVECTOR

Sequence numbers on VVECTOR cards
are optional.

For more information, see the "Extension Specification and Vectors"
section in the "A Series RPG Reference Manual."

When transferring Small Systems RPG programs to the A Series, the RPG
Translator automatically converts your compile-time vectors.

T-Specification

The translator makes all corrections to the T spec.

· C-Specification

The Small Systems and A Series c specs differ in the areas of MOVEA,
DSPLY, SEND, SETLL, RECV, ZIP, OPEN, and CLOS.

90

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

JIOVEA

The A Series does not allow an unsubscripted table entry.

DSPLY

The A Series does not allow an unsubscripted table entry.

The BRT translator converts SEND to EXCEPT. FACTOR 2 on the A Series
can be a file name for an EXCPT.

SETLL

On Small Systems, a SETLL causes the next record to have a key greater
than the key specified on the SETLL statement. On the A Series, the next
record will have a key greater than or equal to the specified key.

If you have been subtracting one (1) from the key before the SETLL, you
will need to remove the subtraction in the A Series program. If you
want the next greater key, add one (1) before the SETLL.

The translator converts RECV to READ.

Zipped Small Systems text differs from zipped A Series text. On the
A Series, you may only ZIP a valid WFL job or command. For example, you
may ZIP "START DAILY/INVENTORY/JOB" or "RUN PROGRAM/A; FILE
FILEIN(TITLE =A/BON C);".

The Small Systems allow FACTOR 2 to contain an unsubscripted array. It
then zips each element of the array as a separate statement. The
A Series does not support unsubscripted array syntax.

91

RPG

OPEN is not supported on the A Series.

CLOS is not supported on the A Series.

0-Specification

The differences between the Small Systems and A Series O specs are in
column 15, columns 23-31, column 38 (edit code), and column 39.

Column li

On the Small Systems, this field specification causes the record to be
read and the file to be updated before the data is made available to the
program via input specs. The A Series does not allow total time output
for primary and secondary update files.

Columns 23-31

on small Systems, this field specification causes the first record to be
updated before the data is made available to the program via input
specs. The A Series does not allow lP output for update and combined
files.

Column 38 (Edit Code)

See H-Specification, earlier in this section.

Column 39

We recommend that you do not use this field specification. However, the
A Series will accept this field specification but will issue the warning
"Blank. after not allowed with constants (COLUMN 39)."

92

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

RUN-TIME ERRORS

There are differences between Small Systems and A Series handling of
run-time errors. The following is a list of the A Series run-time
errors. For more information, see Appendix c of the A series RPG
Reference Manual.

DCERR <further error information>
DELERR
DIVZ <location of zero division>
DOPKY <file identifier>:<record contents>
IDENT <file identifier>:<record contents>
IOERR <file identifier>:
KEYMOD <current key value>:<update key value>
KEYNF <file identifier>:<key value>
KEYSEQ <file identifier>:<key value>
MSEQ <file identifier>:<match field values>
RECKY <file identifier>:<search key>:<record key>
REOF <file identifer>
SEQ <file identifier>:<record contents>
SQRT
VLOAD = <vector file identifier>
VSEQ <vector identifier>:<record contents>
VSUBS <location of invalid subscript>

ADDITIONAL FEATURES

The following is a list of the significant features available on the
A Series RPG that are not available on the Small Systems RPG.

1. The A Series ISAM (KEYEDIO) offers all the features offered in
the Small Systems B style, TAG style, and COBOL74 style ISAM
files, plus these additional features:

a. Full recovery up to the last record written.

b. Serial, sequential, random, and keyed access with update
capabilities.

c. Full support of all data types as keys.

d. Alternate keys.

e.

RPG

CHAIN, followed by READ, allows random
followed by sequential-by-key accessing.

93

positioning

f. The DELETE operation.

g. The ability to change to an alternate key.

2. The ability to use the ASCII collating sequence for comparison
operations.

3. The ability to access and create variable length records.

4. Additional data types of unsigned packed decimal (useful for
accessing data created by COBOL programs), and separate leading
and trailing signed display data (-123 and 123-).

5. The addition of an optional file name in FACTOR 2 of the EXCPT
operation code to allow additional control over output
operations.

ADDITIONAL A SERIES DOLLAR SPECIFICATIONS

The following is a list of the A Series dollar specifications that are
not available on small Systems.

Dollar Specification

LINEINFO

PAGESIZE

Purpose

$ SET LINEINFO causes the compiler to
compile code into the program so that if it
is DSed, the MCP prints the sequence number
of the line of source code that was being
executed at the time of the DS. It also
prints any sequence numbers on the stack
from subroutine calls; it will tell you
what line of code was being executed and,
if that line was in a subroutine, what line
of code called that subroutine.

LINEINFO is set by default for programs
compiled by CANDE and reset by default for
programs compiled by WFL.

$ PAGESIZE=<number> causes the compiler to
skip to the top of the page after printing
<number> of lines.

The default number of lines is 58.

94

TITLE

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

$ TITLE=<"string"> causes the compiler to
print <string> as the heading at the top of
each page of the compiled listing.

95

10 DMSII OPERATIONS

This section describes the operational differences between the Small
Systems DMSII and the A Series DMSII. It is assumed that the A Series
user is running CANDE and any syntax examples are geared for CANDE. For
example, the use of the Dollar Card ($) in the "COMPILE AS $MYDB"
statement tells CANDE to not put "OBJECT/" in front of "MYDB". It is
also assumed that the user is going to create a data base named MYDB and
that there is an existing DASDL input file named MYDB/DASDL/INPUT.

COMPILING A DATA BASE

Similar to Small Systems, DASDL input can be created using CANDE or ADDS
on the A Series. To compile the data base on the A Series, the
following syntax can be used:

GET MYDB/DASDL/INPUT
COMPILE AS $MYDB

During the compile, a description file is created. This file contains
information similar to the dictionary file created on the Small Systems.
If the DASDL input does not explicitly reset DMCONTROL, the DASDL
compiler will automatically run SYSTEM/DMCONTROL to create the control
file that is needed at run time on the A Series.

INITIALIZE

On the A Series, if the DASDL input specified "INITIALIZE;", DASDL will
automatically run SYSTEM/DMUTILITY so that your DMSII data base files
will be initialized. If the DASDL input did not contain the INITIALIZE
clause, the following syntax can be used (in CANDE):

RUN $SYSTEM/DMUTILITY("DB MYDB INITIALIZE =")

On the A Series, if the DASDL input did not explicitly reset ZIP, the
DASDL compiler will initiate the compilation of any required software.
This will always include a DMSUPPORT library. This code file contains
the tailored code that is analogous to the code that the Small Systems
DASDL put into the dictionary file. This code efficiently handles data
base specific code such as VERIFY, SELECT, and WHERE clauses, and REMAPS
as specified in the DASDL input. If MYDB is an audited data base, some

96

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

tailored programs for handling the various types of recovery are
automatically compiled.

If the ZIP option was reset, this compilation will have to be started
manually. The following syntax may be used for an unaudited data base:

START DATABASE/WFL/COMPILEACR("DB = MYDB COMPILE= DMSUPPORT");

If your data base is audited use the following syntax:

START DATABASE/WFL/COMPILEACR("DB = MYDB AUDIT= SET");

This causes the DMSUPPORT library and all necessary recovery programs to
be compiled. For more information refer to the documentation in the
DATABASE/WFL/COMPILEACR file.

Once the DMSUPPORT library (and any necessary recovery programs) is
compiled, the data base is ready for use. Actually, an application
program could be compiled as soon as the description file was created by
the DASDL compiler.

COMPILING A DMSII APPLICATION PROGRAM

When compiling a DMSII-capable program on the A Series, the appropriate
compiler must be chosen. A Series is a little different here. For
example, the Small Systems COBOL compiler is capable of compiling DMSII
syntax. The A Series COBOL compiler is not. Instead, the BDMSCOBOL
compiler must be used. The following table shows the correct compiler
to use:

Application Code

COBOL
COBOL
RPG
PL/I
ALGOL

(68)
(74)

DMSII Operations

Compiler

BDMSCOBOL
BDMSCOBOL74
BDMSRPG
BDMS/PL/I
BDMSALGOL

97

One way to compile a DMSII-capable COBOL74 application program on A
Series would be to get the file in CANDE and initiate a compile (no file
equation is necessary in CANDE) as follows:

GET MY/APPLICATION
COMPILE WITH BDMSCOBOL74

However, for the compilation to be successful, the description file must
be available. The compiler will use a co-routine named
DATABASE/INTERFACE. This routine reads the description file and tells
the compiler about the record layouts of any data sets that are invoked.
Unlike the small Systems, there is no option to create "copy library"
record layout files that can be modified (e.g., MYDB/#DSA).

OPENING DATA BASE STACKS

When a program opens a data base on A Series systems, two stacks are
brought into the mix. one is the Data Base Stack (or DBS). The
accessroutines control this stack, but the name of the stack will be the
name of the data base (e.g., MYDB). The other stack will be the
DMSUPPORT library (generally named DMSUPPORT/MYDB for a data base named
MYDB). This library contains all of the tailored code for a particular
data base. Note that all databases can share the same
SYSTEM/ACCESSROUTINES code file, but each data base Will have its own
data base stack.

Once a data base is up and running, there are several global data base
parameters that can be queried and dynamically changed through a feature
called Visible DBS Commands. Refer to the "A Series Data Management
System II (DMSII) Utilities and Operations Guide" for more information.
There is no equivalent to the Small Systems DB command which allows a
user to get some current run-time statistics about an application.

98

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Use the DBS command (at the ODT) to get the mix number of the data base
stack. Then, enter commands such as the following:

<mix number> SM STATUS

<mix number> SM ALLOWEDCORE
equals 30000

<mix number> SM STATISTICS
equals ON

This command causes the data base stack to
display information about the amount of
memory being used, the number of users of
the data base, and the state of the audit
files.

This change lets you dynamically change
the parameters, such as allowed core, and
the frequency of syncpoints.

This command enables the collection of data
base statistics. Note that these
statistics are not gathered "by program";
they are gathered by data base. The
statistics include buffer usage, counts of
physical reads and writes, wait times for
physical reads and writes, and counts of
logical FINDS, STORES, and DELETES by
structure.

There are other Visible DBS Commands. Refer ·to the "A Series DMSII
Utilities And Operations Guide" for further details.

MEMORY

The A Series DMSII treats memory differently than the Small Systems
DMSII. Small Systems will potentially fill all of the available memory
on a system with data buffers. A Series limits a data base to a
particular amount of memory. The ALLOWEDCORE parameter can be set in
DASDL, and dynamically changed.

ASN Memory

If you have a machine with ASN memory (e.g., B7900, A3, A9, AlO, Al5),
you should consider running most of your data bases in a local
subsystem. There are tradeoffs here that need to be examined on an
individual basis. Shared memory is a tight resource on ASN memory
systems. If you bring up five data bases into shared memory, the system
will most likely run poorly. If you put the five data bases into the
local subsystems, the system would run more efficiently. A subsystem
specification in the DASDL input is used to direct a data base to a
local subsystem.

99

DMSII Operations

Shared/GLOBAL Memory

If you decide to put a data base in shared (or GLOBAL) memory,
investigate the use of the LOCALBUFFERING DASDL option. This option
allows the data base buffers to be allocated in the local subsystem
instead of shared memory.

UPDATE and REORG

The way that a data base update or reorganization is done on A Series is
similar to that on the Small Systems. on the small Systems, an update
has an immediate effect. DASDL updates the dictionary, and the update
is done. On the A Series, DASDL updates the description file. The
update does not take effect until DMCONTROL has been run to move the
description information into the control file where the run-time data
exists.

on the Small Systems, if a reorganization is done, the DASDL compiler
creates a control file that tells the reorganization program what
changes to make to the data base. On the A Series, after you do the
DASDL run to specify the reorganization, you must run the BUILDREORG
program. For most cases, the only input you need to supply the
BUILDREORG program is "UPDATE;". This causes the BUILDREORG program to
look at the description file and generate a reorganizaion program to
make the required changes to the data base.

If you want to keep your current version of the data base up and running
while you get ready for a reorganization, reset ZIP in the DASDL input.
This will suppress the generation of a new DMSUPPORT library (and
recovery programs). However, you can run BUILDREORG and generate the
reorganization program. Because you also now have the new description
file, you can begin the recompilation of any programs that need
recompilation. Existing programs can still run because the control file
has not been updated, and the existing DMSUPPORT library is still
present. When you are ready to do the reorganization, bring down the
data base, run the reorganization program, and compile the new DMSUPPORT
library and recovery programs. The data base is ready to run (with the
recompiled applications).

The Small Systems DASDL compiler accepts simple reorganization
statements such as GENERATE for garbage collection. On A Series
machines, that input should be directed to the BUILDREORG program (you
do not have to run DASDL). For more information on BUILDREORG refer to
the "A Series DMSII Utilities and Operations Guide."

100

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

BACKING UP A DMSII DATA BASE

Backing up a DMSII data base is different on the A Series. There is a
general utility (SYSTEM/DMUTILITY) that is used to make backup tapes of
a data base and to restore them as necessary. You should not use a
library maintenance COPY command (equivalent to Small Systems
SYSTEM/COPY) for data base backup. The SYSTEM/DMUTILITY program
computes additional checksums to guarantee that the data is correctly
written and read from the tape. Also, the online dump feature and
rebuilding parts of a data set require SYSTEM/DMUTILITY dumps of the
data base.

RECOVERY

Data base recovery on the A-Series is very similar to recovery on Small
Systems. The following paragraphs describe recovery on the the
A-series.

Abort Recovery

Abort Recovery occurs when a program closes the data base while in
transaction state. When this occurs, all users of the data base are
stopped while the abort recovery backs out changes to a sync point. The
only significant difference on the A Series i~ that all users of the
data base (including inquiry users) have their current record pointers
"fixed up."

CLEAR/START Recovery

Both systems have CLEAR/START (HALT/LOAD on A Series) recovery. Prior
to Mark 11.0, you had to key in RC <data base name> to cause this type
of recovery to occur on Small Systems. Jobs hung "waiting for recovery"
until the RC was explicitly done. On Mark 11.0, this type of recovery
automatically occurs on the first OPEN of the data base after the
interruption.

To manually do a HALT/LOAD recovery on the
open, the A Series recovery program can be
name>/RECOVERY statement. For details,
Utilities and Operations Guide."

A Series, before the first
initiated by a RUN <data base
see the "A Series DMSII

101

DMSII Operations

Full Data Base Recovery

A full data base recovery from a previous dump of the data base is
functionally the same as on Small Systems. However, on the A Series,
the backup dump Of the data base is created by a SYSTEM/DMUTILITY DUMP
command (not an "ODT" COPY command). The recovery is initiated by
running SYSTEM/DMUTILITY with input such as DB = MYDB ON DBPACK RECOVER
(REBUILD THRU AUDIT <number>) FROM <tape name>. This causes the
previously created dump of the data base (on <tape name>) to be loaded
out to disk. Then, the recovery program will read the necessary audit
files to roll the data base forward through time. The stopping point
can be a date and time or the BOJ/EOJ of a program as well as an audit
file number. Note that the RECOVERY request to DMUTILITY takes care of
the whole task including loading out the backed up copies of the data
base files.

Single Structure Recovery

In order to do recovery of a single structure on Small Systems, you had
to load the backup copy of that structure out to disk, put the old
dictionary file that goes with the old structure out on disk, and then
do an RC MYDB ON DBPACK DBPACK/MYDB/MYDATASET. On the A Series, you run
SYSTEM/DMUTILITY with the following input: RECOVER (ROWS USING BACKUP)
<file name> FROM <tape>. This causes DMUTILITY to load the old version
of the structure out to disk. Then, the recovery program will read the
necessary audit files to roll that structure forward through time. This
will stop when the structure is up to date.

Row Recovery

If one row (or area) of a DMSII structure has been corrupted, it can be
rebuilt from a previous copy of the structure and the audit files. This
can occur while the data base is up and running.

Rollback Recovery

The recovery programs can roll a data base forward or backward in time.
The stopping point can be BOJ or EOJ of a job, a date and time, or an
audit file number.

102

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Online Dump Recovery

A data base may be safely dumped while updates are going on. This is
called an "online dump". The recovery programs can then take this dump
and the audit files created during the dump and produce a clean, ready
to use data base.

For further information concerning DMSII Recovery, refer to the
DMUTILITY section of the DMSII Utilities and Operations Guide.

DBCERTIFICATION

on the Small Systems, you run DBMAP to verify that a data base is not
corrupted and to help you determine if a garbage collection is
necessary. With A Series DMSII, you run DECERTIFICATION to do the
actual verification that the data base is not corrupted. This program
checks, for example, that all records in a data set are contained in all
spanning sets, and that each entry in a set points to the proper data
set record. For more information on DECERTIFICATION refer to the
"A Series DMSII Data Base Certification Software Operation Guide."

DBANALYZER

DBANALYZER will examine each structure and provide information that can
help you tune the data base or help you determine if a garbage
collection is necessary. This information includes, for example, an
analysis of the available space in a standard data set, and the number
of levels of tables in an index sequential set (and how full the tables
are). Refer to the A Series DMSII Utilities and Operations Guide for
details on DBANALYZER.

103

Since Small Systems DASDL is basically a subset of the A series, most of
the capabilities are the same. However, there are certain areas of the
A Series DASDL that are implemented differently and they may affect your
application programs. This section discusses the changes you need to
make to small Systems DASDL source deck to make it acceptable to the
A Series DASDL. There are a few differences which do affect the
application programs. These differences are also discussed in this
section.

GENERAL INFORMATION

The changes described in this subsection are global and will have to be
made wherever the constructs occur.

TITLE Statements

Because you cannot control the data base file names in the A Series, the
A Series DASDL does not have the TITLE attribute. You must remove all
TITLE statements from Small Systems source file before it will be
accepted by the A Series.

INITIAL VALUE

On the A Series, the INITIALVALUE cannot exceed the size of the item.
For numeric items this applies to both the integer and fractional part
of the item. For example,

ITEM-1 NUMBER (3,2) INITIALVALUE=0.100;

causes an error because the fractional part of the INITIALVALUE exceeds
the size of the number. However, the following example is acceptable.

ITEM-2 NUMBER (4,3) INITIALVALUE=0.100;

For alphanumeric items, when the size of the INITIALVALUE is less than
the size of the item, you must check the A Series DASDL rules to be sure
the intended value is being used. We recommend that the INITIAVALUE
match the size of the item.

104

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Hexadecimal Literals

The A Series does not allow hexadecimal literals. Use the A Series
LOW-VALUE and HIGH-VALUE to replace the Small Systems hexadecimal zeroes
and Fs, respectively.

CONTROL File

The Small Systems have a data base DICTIONARY file to contain the
description of the data base. It also contains information that is
updated each time the data base is used. The A Series divides this
information into two files, the DESCRIPTION file (static information)
and the CONTROL file (run-time control information).

The Control File defaults to the systems disk unless a pack-id is set
with the PACK option in the control File declaration .. For example,

CONTROL FILE
(

PACK
) ;

USERPACK

For more information about the Control File, refer to Section 4 of the
"A Series DMSII Data and Structure Definition Language (DASDL) Reference
Manual."

AREASIZE

All occurrences of AREASIZE <integer> in your Small Systems source
file must be changed to the A Series syntax AREASIZE = <integer> BLOCKS.

DOLLAR CARDS

Dollar cards contain information to instruct the compiler to perform
actions.

105

DMSII DASDL

NO <dollar card option>

The Small Systems syntax of NO <dollar card option> must be replaced
with the A Series syntax of RESET <dollar card option>.

<Option Name> And SET

In Small Systems, <option name> and SET <option name> are synonymous.
In the A Series, specifying only <option name> resets all the options
then sets the named option. This includes resetting options that are
set by default. For example, $ MERGE resets the LIST option (which is
set by default) and sets MERGE.

SET <option name> is the same on both Small Systems and the A Series.

Permanent Option Indicator

In Small Systems, permanent options are indicated with a dollar sign ($)
in columns one and two. In the A Series, permanent options are
indicated with a blank in column one and a dollar sign ($) in column
two.

COMPILER OPTIONS

Listed below are Small Systems compiler options compared to the A Series
compiler options. If a Small Systems compiler option does not appear on
this list, it is the same on the A series as it is on Small Systems.

NOTE

The A Series compilers directly read the
description (dictionary) file. This
eliminates the need
therefore, none of
library options can
A Series.

for
the
be

library
Small
used

files;
Systems

on the

106

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Small Systems

COBOL

COBOLLIB

CONVERT

DELETE

DOUBLE

INCLUDE P/A/B

INITIALIZE

LIST$

LIST INCL

REORGANIZE

RPG, RPGII

RPG LIB

SEQUENCE

A Series

WARNING. This is only a warning on the
A Series, not a syntax error.

Not applicable, see NOTE.

Not applicable, see UPDATE.

VO IDT.

RESET SINGLE.

INCLUDE "A/B ON P" (requires quotes on the
A/BON P format).

This is not a dollar option
A Series, it is a statement.

on the

You can initialize files if you include an
INITIALIZE statement in your DASDL input.
If initialized this way, the DASDL compiler
runs SYSTEM/DMUTILITY to initialize your
files.

$. For example, replace the Small Systems
"$LIST$" card with the A Series "SET"
card.

This is the default value for an A Series
listing.

Reorganization is handled differently for
the A Series than for small Systems. Refer
to the REORGANIZATION sections of the
"A Series DMSII Utilities and Operations
Guide" and the "A Series DMSII DASDL
Reference Manual."

RPG. There are different restrictions on
DASDL items for the A Series than for Small
Systems. Refer to Appendix A of the
"A Series DASDL Reference Manual." This is
only a warning on the A Series, not a
syntax error.

Not applicable, see NOTE.

SEQ. (Only the abbreviation SEQ is accepted
on the A Series.)

SOURCE

SOURCEONLY

STANDARD

STRUCTURE

SUPPRESS

TABLESIZE

TAPE

UPDATE

VERSIONCHECK

VOID

WARNSUPR

OPTIONS

107

DMSII DASDL

Not applicable, see NOTE.

Not applicable, see NOTE.

Remove the Small Systems $STANDARD card.

FILE.

There is no A Series equivalent. You
cannot suppress warnings when using the
A Series DASDL compiler.

There is no A Series equivalent. You
cannot set a default maximum tablesize on
the A Series.

Because of the way in which REORGANIZATION
is handled on the A Series, this is not
accepted. See REORGANIZE.

This is not a dollar option on the
A Series, it is a statement. The A Series
UPDATE statement is described in Section 4
of the "A Series DMSII DASDL Reference
Manual."

This Small Systems option is automatically
done on the A Series DMSII software and
cannot be overridden with a dollar option.

Use VOIDT, which is similar to the Small
Systems DELETE option. The VOIDT option can
accomplish the function of the small
Systems VOID but the syntax is different.
Refer to Appendix A of the "A Series DMSII
DASDL Reference Manual" for information.

See also the OMIT dollar card.

This is the same as SUPPRESS.

The A Series DASDL handles some physical options differently than the
Small Systems DASDL. This subsection describes those options.

108

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The Small Systems AUDIT SET must be changed to the A Series syntax
AUDIT.

If the Small Systems DASDL source contains AUDIT RESET, you must remove
the RESTART DATA SET. The A Series MCP does not support the SM AUDIT
SET/RESET command.

The A Series DASDL option RDSSTORE causes the A series to treat the
restart record exactly as it was treated on the Small systems. To
implement this A Series DASDL feature, add OPTIONS (RDSSTORE) to your
Small systems DASDL source and you will not have to change the recovery
code in your programs. Refer to the "A Series DMSII DASDL Reference
Manual" for more information about this option.

E:tm-TRAHSACTION

On Small Systems, application programs can get an ABORT exception at
END-TRANSACTION only if SYNC is specified. On the A Series, the SYNC
need not be specified to get an ABORT exception at END-TRANSACTION.
However, the application program logic may require a change to handle
this situation.

Physical Options

The A Series DASDL compiler handles some physical options differently
than the Small Systems DASDL compiler. If you have specified AREASIZE,
BLOCKSIZE, or TABLESIZE in the Small Systems DASDL source file, check
what effect these options will have on the storage requirements for the
data base. To check the storage requirements, put a $ SET FILE card in
the converted A Series DASDL source, then compile it. The compile
listing will show the storage requirements that DASDL has computed for
each structure.

When you do not declare any physical options for a data set or set, the,
A Series DASDL compiler assigns values for these options based on the
population and structure type of the data base. In most cases, the
assigned values make efficient use of disk space, memory, and I/O.

109

DMSII DASDL

If, after examining the listing produced by the FILE dollar options, the
disk space needed for a structure seems large, try commenting-out the
AREASIZE option. This causes the compiler to compute default values for
the physical options (these values are shown in the resulting listing).

For more information regarding efficient values for physical options,
see Appendix c of the "A Series DMSII DASDL Reference Manual."

Additional Options

These additional DASDL options, available only on the A Series, provide
integrity checks for your data base. We recommend that you add these
features to the A Series DASDL source after you have completed your
progression.

KEY COMPARE

KEYCOMPARE is an option that causes the accessroutines to verify that
the value of the key item in the data set is equal to the value of the
key item in the set or the automatic subset through which the data set
is accessed. If an error is detected, the data base find or lock
operation returns an exception.

ADDRESSCHECK

ADDRESSCHECK specifies that an addresscheck word be
blocks of every data base file. When a block is
address of the first segment of the block written
addresscheck word. When the block is read, the

appended to all data
written, the segment
is stored in the

addresscheck value is
verified. If an error is detected, the user program receives an
exception.

When this option is specified, it applies to all data base files.

The ADDRESSCHECK option causes an extra word to be added to each block
in every structure. You should check the effect the addition of this
word will have on any physical structure options you have specified in
the DASDL code.

110

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The ADDRESSCHECK option is useful in detecting I/O errors, such as
shifted errors.

CHECKSUll

A CHECKSUM is a value computed for each block by applying an equivalence
operator to each word in the block. When the block is written, a
CHECKSUM is calculated and stored in a CHECKSUM word appended to the end
of each block. When the block is read, the CHECKSUM is recalculated and
the result is compared to the stored value. If the CHECKSUM values are
not equal, the user program receives an exception.

The CHECKSUM option causes an extra word to be added to each block in
every structure. You should check the effect the addition of this word
will have on any physical structure options you have specified in the
DASDL code.

PARAMETERS

A change is required in the Small Systems MAXWAIT parameter when
progressing from Small Systems to the A Series.

MAXWAIT is not a data base attribute on the A Series, it is a task
attribute. Therefore, the Small Systems MAXWAIT specification is not
allowed in the A Series DASDL. To use this option, you must set MAXWAIT
in each of your programs. If you do not set the MAXWAIT attribute in the
A Series program, the default limit is O (zero). This means that the
program will wait forever. Refer to Appendix A in the "A Series WFL
Reference Manual" for additional information regarding the MAXWAIT
specification.

RESTART DATA SET

The A Series does not allow the restart data set to be remapped or to
have variable format records.

The A Series RESTART data set always has the first seven bytes reserved
for system use. If you have any programs that perform group moves, or
the equivalent of a group move, to a RESTART data set name where the
structure name is treated as the 01 destination, you will have to change

111

DMSII DASDL

those programs. When changing the programs, do not assume that the
layout of the RESTART data set is exactly the layout specified in your
DASDL source.

If there is a group move into the RESTART data set, we recommend that
the destination of the move also be a group. For example, if you move a
group from working storage into the RESTART data set, move it to a group
in the RESTART data set, not to the RESTART data set name.

AUDIT TRAIL

The Small Systems BLOCKSIZE specification may need to be respecified for
use in the A Series. If the Small Systems BLOCKSIZE specification reads
BLOCKSIZE <integer>, it must be replaced with the A Series syntax
BLOCKSIZE <integer> BYTES.

VARIABLE FORMAT RECORDS

Progressing from Small Systems to the A Series requires changes in the
declarations for variable format records.

Small Systems allow the RECORD TYPE items in variable format records to
be Of type ALPHA or NUMBER, and the values Of the RECORD TYPE may be
anything that can be stored in the field described. Small Systems also
allow the designation Of FIXEDFORMATVALUE in DASDL.

The A Series does not allow a data type for the RECORD TYPE; it requires
that the RECORD TYPE be a number from 1 to 254. This number represents
the number of different variable formats. ALPHA record types are not
allowed on the A Series, they must be converted to numbers. Zero is
always the fixed format value. It is most efficient not to skip
numbers. The syntax for variable format record specification is
<data-name> RECORD TYPE (n), where n is the largest number allowed, not
the size of the number field.

Small Systems allow 255 formats, the A Series allows only 254.

In Small Systems application programs, the
treated as any other data item in the DASDL.

record-type-item
For example:

can be

112

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

DASDL

ADS DATA SET
(

A NUMBER (8);
RT RECORD TYPE NUMBER (2);

COBOL

IF RT = 2
- STATEMENTS.

The preceding syntax is not valid on the A Series, instead, the code
should be as follows:

DASDL

ADS DATA SET
(
A NUMBER (8) ;
RT RECORD TYPE;

COBOL

IF ADS (RT) = 2
- STATEMENTS.

Small Systems implements variable format records as fixed length records
with all records taking the size of the largest record. The A Series
implements them as variable length records. This can decrease disk usage
if many short records are used or increase disk usage if deleted records
cannot be reused.

Small Systems allow the RECORD TYPE to be the only item in the fixed
format part of the data set.

The A series requires that at least one item in the fixed format portion
of the data set must be a REQUIRED item. Any item that is a key of a set
is automatically a REQUIRED item.

The A Series does not allow variable format ordered embedded data sets.
The Small Systems DASDL must be changed to a standard embedded data set
with a set. If a standard data set is embedded, it must have at least
one set. This set may be index sequential or it may be an ordered list

113

DMSII DASDL

(ordered list is the default). This change means that what was one
structure and file on the Small Systems becomes two structures and two
files on the A Series, the data set and the data set's set.

ORDERED EMBEDDED DATA SETS

The differences between the way Small Systems and the way the A Series
implements ordered data sets affect several of the physical attribute
specifications. For further information, see the "A Series DMSII DASDL
Reference Manual" about BLOCKSIZE and SUBBLOCKSIZE.

Small Systems BLOCKSIZE

To make the Small Systems DASDL acceptable to the A Series, the
BLOCKSIZE integer must be replaced with a value which is the result of
multiplying the value specified in the Small Systems DASDL for block
size by the value specified in the Small Systems DASDL for table size.
BLOCKSIZE is specified in RECORDS. For example,

Small Systems:

A Series:

DSA STANDARD DATA SET
(Al ALPHA(10);

) ;

DSB ORDERED DATA SET
(Bl ALPHA(l0)),BLOCKSIZE=5 TABLES,

TABLESIZE=lO ENTRIES;

DSA STANDARD DATA SET
(Al ALPHA(lO);
DSB ORDERED DATA SET

(Bl ALPHA(l0)),BLOCKSIZE=50 RECORDS;
) ;

The change of BLOCKSIZE converts the
physical attributes as the Small Systems
differences in how the Small Systems and
the result of the change may be a less
I/O time.

DASDL while keeping the same
DASDL. However, because of the
the A Series are implemented,
efficient use of disk space and

114

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

FIND Statement

The difference between the Small Systems and the
statements, though it does not require changes to
discussed here since it has to do with ordered data sets.

A Series FIND
your DASDL, is

On Small Systems:access to the ordered data sets is through the FIND
NEXT and FIND PRIOR statement. On the A Series, the syntax to access
ordered data sets is either:

1. FIND <embedded data set> VIA NEXT <access name>

or

2. FIND <embedded data set> VIA PRIOR <access name>.

The access to the ordered data set is through the access name. Change
the A Series host language programs that access the ordered data sets.

If an embedded data set on the A Series has a large number of records
per owner, changing to a embedded standard data set with an embedded .set
could improve performance.

UNORDERED EMBEDDED DATA SETS

The A Series does not support two levels of blocking. The following
changes should be made to the Small Systems DASDL BLOCKSIZE and LONG
LISTS.

BLOCKSIZE

Remove the Small Systems BLOCKSIZE specification and use the value of
the Small Systems TABLESIZE as the value for the A Series BLOCKSIZE.
See the other discussion about BLOCKSIZE earlier in this section.

115

DMSII DASDL

MANUAL SUBSETS

The A Series does not support two levels of blocking or fast subsets.
The following subsections describe how to change the Small Systems
DASDL.

Blocking Levels

Since the A series does not support two levels of blocking, entries are
grouped into tables but tables are not grouped into blocks. This
difference in handling can mean a substantial increase in the disk
usage.

FAST Subsets

The A Series does not support FAST subsets. This means that each master
record that has one or more subset entries uses at least one disk
segment in the subset file. This, too, can mean a substantial increase
in the disk usage. However, if this feature is needed, investigate the
various types of LINKS the A Series supports.

SETS AND AUTOllATIC SUBSETS

The following subsections describe the changes necessary to convert sets
and automatic subsets.

The Small Systems allow group items as keys but always require the RPG
or COBOL program to specify each of the elementary items in all
selection expressions.

The A Series requires that the RPG or COBOL language specify the group
item in the selection expression. There are two ways to change Small
Systems DASDL to A Series DASDL:

1. Change the DASDL to specify all the elementary items as keys.

116

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

2. Change the COBOL or RPG programs that use the group key.

Leaving the key as a group item reduces the usefulness of the general
selection expression. Further, leaving the key as a group item and
changing the programs may introduce semantic differences in group and
elementary compares. For these reasons, we recommend that you change the
DASDL, not the programs.

Indexed Random

We recommend that the MODULUS for index random structures be an odd
number.

REMAPS

The A Series REMAP READONLY and OBJECT DATASET are different than on
Small Systems.

READONLY and READONLY ALL

on Small Systems, READONLY ALL is treated as though READONLY had been
specified for each data item in the data set. On the A Series, while
READONLY is treated just as it is on Small Systems, READONLY ALL is
treated quite differently. If a data set is marked READONLY ALL, you
cannot do a DELETE, REMOVE, INSERT, or STORE. Attempting any of these
actions causes a DATAERROR exception. In addition, if you have READONLY
ALL on the data set, you can not have READONLY specified for single
items within that data set.

Because of these differences, if you have a program that does a STORE,
DELETE, REMOVE, or INSERT on a data set, you must remove the READONLY
ALL and put READONLY on those items to be READONLY. If you are not doing
a STORE, DELETE, REMOVE, or INSERT on the data set, you may leave the
READONLY ALL intact when you progress to the A Series. If you have
READONLY and READONLY ALL in the same data set, you must remove one of
them.

The A Series does not allow READONLY on occurring items,

117

DMSII DASDL

OBJECT DATASET in <REMAP-SUBSET-NAME>

The Small Systems syntax for this is <remap-subset-name> = <subset name>
OF <object dataset> OR <remap name>.

The A Series does not allow the specification of the OBJECT DATASET or
REMAP-NAME. Therefore, the Small Systems syntax must be changed to the
A Series syntax of <remap-subset-name> = <subset name>.

LOGICAL DATA BASES

As described below, the security feature of the A Series is different
than that of Small Systems.

Security

On Small Systems, security is specified with the SECURITYGUARD clause
and file names are in the A/B/C format. The SECURITYGUARD file is
accessed at DASDL compile time, thus requiring a recompilation of DASDL
to change security.

On the A Series, security is specified with the GUARDFILE clause and
files are names in the B/C ON A format. The guardfile is accessed by
the accessroutines when the data base is opened by a program.

ADDITIONAL FEATURES

The following is a list of features available on the A Series that are
not available on Small Systems:

1. The data base can be dumped while it is being updated.

2. Audit files can be duplicated.

3. Part of a file can be recovered while the data base is on-line.

4. Structures can be spread across multiple packs (a family).

Information about these features is available in the "A Series DMSII
DASDL Reference Manual."

118

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

119

This section describes the process of progressing from the Small Systems
Supervisory Message Control System (SMCS) to the A Series Communication
Management System (COMS).

COMS is a message control system (MCS) that controls on-line
environments. COMS provides an integrated MCS that supports the needs
of single and multi-station remote files.

COMS provides a window feature that allows you to operate a number of
program environments independently and simultaneously. Each window has
a name that can be specified in commands to perform various functions
involving the program environment in that window. For information about
COMS windows, refer to the A Series COMS Operator's Guide.

The COMS Utility program is the counterpart to the SMCS Jobs file. The
Utility program is used to define and change specifications in the COMS
configuration on-line without bringing down the MCS. COMS also provides
a Utility Window where the Utility program runs. The Jobs file
specifications must be manually converted to a format acceptable to the
Utility program.

All Small Systems source programs will need to
A Series system after making any necessary
A Series compiler.

be recompiled on an
changes required by the

COMS provides access to CANDE on the A Series through the CANDE window.
The COMS ON and PASS commands work like their SMCS counterparts and
provide access to the CANDE window. Additionally, COMS provides a
multiple session capability (called dialogs) that allows up to eight
simultaneous CANDE sessions. While only one session can be current, all
sessions may be passed to. Outputs for non-current dialogs are
automatically suspended until that dialog becomes the current dialog
through an ON command or the dialog is manually resumed.

COMS also provides access to a window called Menu-Assisted Resource
control (MARC). This window provides a menu-driven interface to
A Series systems, while also allowing direct entry of commands. The
menu-driven facility allows access to the system without having any
knowledge of A Series commands. Command mode is convenient for anyone
familiar with system commands. For more information about MARC refer to
the A Series Menu-Assisted Resource Control (MARC) User's Guide.

120

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

In a similar fashion, remote-file application programs can be accessed
through ON and PASS commands to the remote-file program's window after
the program and window have been set up through the COMS Utility
program. Like the CANDE and MARC windows described previously, your
remote-file window's output will be suspended whenever it is not the
current window, unless manually overridden.

SIMPLE REMOTE FILES

To access simple remote files, first load the source file and then
compile it, using the CANDE COMPILE command. To initiate the program,
enter EXECUTE or RUN <program-name> and transmit. However, there are
two choices to using the CANDE EXECUTE command. One choice is to do a
MARC RUN. Another choice is to declare Remote File Programs and Windows
to COMS through the COMS Utility.

To do a MARC RUN, use the RUN menu selection or the WFL "RUN" command.
Using the MARC Run selection results in a series of up to three screens
being displayed to gather information to initiate a synchronous task.
The first screen in the series (the RUN screen) prompts you for the name
of the code file to be executed and for any parameters or task values.
The second screen (the FILEDEF screen) allows you to establish file
equations and attributes for one or more files. The third screen (the
TASKDEF screen) allows you to assign task attributes for the task to be
initiated. For more information refer to the A Series Menu-Assisted
Resource Control (MARC) User's Guide.

To declare Remote File Programs and Windows, perform the following
installation procedure. Note that this procedure must be done for each
program. You must be a COMS control-capable user or the station being
used must be a COMS control-capable station in order to declare remote
file programs.

Declare g Program to COMS

Use the following steps to declare a program to COMS.

1. Enter the command ?ON UTILITY to get onto the COMS Utility
Window.

2. Enter either "P" in the Choice field or "GO P" in the Action
field of the HOME MENU. This will take you to the Program
Activity screen.

121

SMCS to COMS

3. Enter CReate in the Action field.

4. Enter the program name in the Program Name field.

5. Enter the title as it appears on disk without the usercode in
the Title field.

6. Enter the usercode in the Usercode field.

7. Enter "Yes" in the Remote File Interface field.

8. Enter the number of users in the Remote Users field.

9. Transmit
responds
created.
window to

from the Home position on the terminal. The system
with a message indicating that your program has been
Once your program is created, you must declare a
COMS.

Declare ~ Window to COMS

Use the following steps to.declare a window in COMS.

1. Enter "GO W" in the Action field of any Utility screen and
transmit. The Window Activity screen will be displayed.

2. Enter CReate in the Action field.

3. Enter a window name that corresponds with the program name
previously declared in the Window Name field.

4. Change the Remote Files field to "Y".

5. Enter the name of the previously created program name in the
Remote File Program field and transmit.

This will cause a COMS window to be created, which means a window
containing your program is now available for use.

For more information refer to the "A Series Communication Management
System (COMS) Planning and Installation Manual."

122

-B 1000 SERIES TO A SERIES PROGRESSION GUIDE

HOW TO RUN PROGRAJIS

If you are running your program in CANDE, enter RUN <program name>. If
you are running the remote file program that you just declared in COMS,
enter ?ON <window name>. To run a disabled COMS remote file program,
enter ?ENABLE PROGRAM <program name> and then ?ON <window name>. For
more information refer to the "A Series Communication Management System
(COMS) Operators Guide."

BRINGING DOWN PROGRAJIS

For declared Remote File Programs, you have the option to set a time
limit for the program to run before it automatically ends if no input
has been received. This time is specified in the Time Limit field on
the Program Activity screen in the COMS Utility. To end a program
immediately, enter ?DISABLE PROGRAM <program name> and transmit. For
more information refer to the "A Series Communication Management System
(COMS) Operators Guide."

BlOOO CDs

On A Series, there are two forms of the COBOL74 CD. The first is the
standard EBCDIC CD data area, which is compatible with the BlOOO COBOL74
CD. The second form of the COBOL74 CD on the A Series is the BINARY CD
which is used for the COMS direct window interface.

on the A Series, the COBOL74 compiler builds references to a library
called DCILIBRARY whenever a program uses the ACCEPT, DISABLE, ENABLE,
RECEIVE, or SEND statements. A sample DCILIBRARY is provided for use
with the EBCDIC CDs. We recommend the use of thi-s library, which maps
the CD into a remote file. You can also write your own DCILIBRARY. See
the A Series COBOL74 Reference Manual for further details.

COMS provides a DCILIBRARY interface for COBOL74 programs that use the
BINARY CDs (the COMS direct window interface). See the "A Series COMS
Programmer's Guide" for more information on COMS direct windows.

123

SMCS to COMS

REMOTE FILES WITH SIMPLE HEADERS

The A Series does not handle the function of remote files with simple
headers. To approach this problem, you should convert the COBOL program
into a remote file without ,simple headers and determine what
functionality is lost by this. Then examine the lost functionality to
see if it can be handled by remote file attributes. (For more
information about remote file attributes refer to the A Series I/O
Subsystem Reference Manual.) If this method is insufficient and there is
no file attribute to handle the functionality, the user should go to a
COMS direct window interface. (For more information about COMS direct
windows refer to the A Series COMS Programmer's Guide.)

USER. MCSs = REMOTE FILES WITH HEADERS

User MCSs will have to be evaluated on an individual
what functions their user MCS allows that COMS
Knowledge of both COMS and the user's functional
necessary to help determine how to progress to COMS.

basis
will

to examine
not allow.

requirements is

The following is a list of the features of the Jobs File in SMCS and
their COMS equivalent.

SMCS

PROGRAM ID

AUTO-START

COPIES

EXCEPT

COMS

The window name as declared to the COMS
Utility. Used with ?ON and ?PASS commands.

On the COMS Program Activity screen the
minimum copies attribute is set to one.
This causes one copy of the program to be
executed when COMS is initiated.

On the COMS Program Activity Screen, the
attribute is MAXIMUM COPIES = <integer>.

A Series systems does not provide an
exception indicator for remote files. COMS
supports the "EOF on a station basis"
capability.

124

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

LOG-ON

MESSAGES

NO-EOF

NO-RR

NO-SCROLL

No...:zIP

USERCODE

USERFILE

HR: MIN: SEC

<zip string>

COMMAND FUNCTIONALITY

There is no COMS equivalent. If the
program is a single user program, the Open
Notification Text field on the Window
Activity Screen can be used to simulate
this feature.

There ,is no COMS equivalent.

If Minimum Copies is set to a value greater
than zero (0), COMS will not send an EOF
indication to the program when all users
have signed off.

There is no COMS equivalent.

There is no COMS equivalent.

There is no COMS equivalent. This feature
is used for Station Transfer only.

In the COMS Utility, on the Usercode
Activity screen there is a Valid Window
List field. You should specify the windows
(programs) that are valid for this
usercode.

On the COMS Usercode Activity screen
specify the windows (programs) in the Valid
Window List field that are valid for this
userfile.

This is the Time Limit field on the COMS
Program Activity screen.

There is no COMS equivalent. COMS does
allow a set of file attributes and task
attributes to be specified for a program
execution, except for those attributes
specifically listed on the COMS Utility
Program Activity screen.

The following is a list of SMCS commands and their COMS equivalent. For
more information refer to the "A series COMS Operator's Guide," the
"Small Systems Supervisory Message Control System (SMCS) Reference
Manual" and the "A Series Operator Display Terminal (ODT) Reference
Manual."

SMCS

ATTACH

BACKGROUND

BROADCAST

BYE

CHANGE

CLEAR

CLOSE

CONTINUE

DETACH

DUMP

DYNAMIC

FILE

HARDWARE

HELP

ID

INITIATE

JOBS

LOG ON

125

SMCS to COMS

COMS

The ATTACH command allows a station to be
dynamically attached to COMS.

There is no functional equivalent in COMS.

This is the TO ALL command in COMS.

This is the same in COMS.

There is no functional equivalent in COMS.

There is no functional equivalent in COMS.

There is no functional equivalent in COMS.

There is no functional equivalent in COMS.

The equivalent in COMS is ?CLOSE WINDOW
<window name>. It detaches the station
from the window. The station can no longer
input to that window.

There is no functional equivalent in COMS,
but the A Series has the ability to dump a
program.

There is no functional equivalent in COMS.

First, select FILE from the MARC home menu,
then select DETAIL from the FILE screen.
Finally, specify the file name you want to
see.

There is no functional equivalent in COMS.

This is the same in COMS.

There is no functional equivalent in COMS.

When setting up a remote file program in
the COMS Utility, set the minimum copies
attribute to l.

This is the same in COMS except that the
window in which the program is running is
also displayed.

There is no functional equivalent in COMS.

126

MACRO

MAIL

MAKE

MOVE

NEWS

PASS

PASSWORD

READY

REMOVE

REPORT

SEND

SIGN ON

SIGN OFF

SIGNAL

STATUS

STOP

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

There is no functional equivalent in COMS,
but this can frequently be handled by a WFL
Job. (Refer to the "A Series Work Flow
Language (WFL) Reference Manual.")

There is no functional equivalent in COMS.

The COMS equivalent of the SMCS MAKE
STATION READY command is READY. The COMS
equivalent of the SMCS MAKE STATION NOT
READY command is SAVE.

This is similar to the COMS RECALL
except you can only RECALL ALL.
messages can not be recalled
station to another station.

command
Selective
from one

There is no functional equivalent in
but MARC handles this function.
command can be entered from the
window.

COMS,
A NEWS

MARC

This is the same in COMS except that COMS
suspends output to passed windows by
default.

COMS PASSWORD is used to change a password
associated with a usercode.

This is the same in COMS.

The COMS PURGE command is the equivalent
except all messages must be purged in COMS
as opposed an individual message in SMCS.

This is the same in COMS.

The COMS TO command is the equivalent.

The COMS ON command is the equivalent
except you enter ON <window name> instead
of ON <program name>.

The COMS CLOSE command is the equivalent.

There is no functional equivalent in COMS.

The COMS STATUS command is the equivalent.

The QUIT COMS command is the equivalent.

SYSTEM

TABS

TERMINATE

TRACE

TRANSLATE

USER

ZBACKGROUND

ZIP

?

127

SMCS to COMS

There is no functional equivalent in COMS.

There is no functional equivalent in COMS.

There is no functional equivalent in COMS.

This is the same in COMS.

There is no functional equivalent in COMS.
All characters received by COMS will be
treated as uppercase characters. COMS
makes no distiction between lowercase and
uppercase.

The COMS HELLO command is the equivalent.
The MARC LOGON screen will appear by
default when the system comes up.

There is no functional equivalent in COMS.

This function
equivalent ODT
the MARC window.

This function
equivalent ODT
the MARC window.

is handled with the
command processed through

is handled with the
command processed through

128

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

129

13 GEMCOS/COMS

The Small Systems GEMCOS is a generative system; the A Series COMS is a
code file shipped to you ready to run. A Format Support Library
(FS-LIB) is provided with COMS to handle the Small Systems GEMCOS TCL
Formatting. The rest of the Small Systems GEMCOS TCL statements must be
progressed to COMS Utility program input. The Small Systems GEMCOS
programs must be manually progressed to the A Series COMS format.

GENERAL INFORMATION ABOUT COMS

COMS is a message control systems (MCS) that controls on-line
environments. COMS provides an integrated MCS that supports the needs of
multi-program transaction processing as well as single and multi-station
remote files.

COMS provides a window feature that allows you to operate a number of
program environments independently and simultaneously. Each window has a
name that can be specified in commands to perform various functions
involving the program environment in that window. For information about
COMS windows, see the "Window Feature in COMS" section in the "A series
COMS Operator's Guide."

COMS Utility program is the counterpart to the GEMCOS MCSTIC file. The
Utility program is used to define and change specifications in the COMS
configuration on-line without bringing down the MCS. COMS also provides
a Utility Window where the Utility program runs. The GEMCOS TCL files
must be converted into a format that the Utility program understands.

COMS, unlike GEMCOS, does not explicitly handle formatting. However, a
Format Support Library is provided to handle the Small Systems GEMCOS
TCL formatting. The Small Systems TCL formatting is inserted into a
skeleton A Series TCL file. This skeleton is provided with the Format
Support Library. The A Series GEMCOS Utility is then run with this TCL
as input, creating the input for the Format Support Library. Processing
Item. The TCL formats can then be maintained and updated as needed.

Formatting for COMS can also be done through the Screen Design Facility
(SDF). SDF is a tool to help programmers design and process forms for
applications simply and efficiently. With it, you interactively create
form images, and use a series of screens to define form and field
attributes. The forms created with SDF are maintained in a generated
form library. COMS can be directed to access this library to pre.-process
input messages as well as post-process output messages. For information
about the Screen Design Facility, refer to the "A Series Screen Design

130

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Facility User's Guide." For information about COMS, refer to the
"A Series COMS Planning and Installation Guide."

TCL FORMATTING

One of the major problems users encounter when progressing from GEMCOS
to COMS is formatting. Progression aids are available so you will not
lose any formatting capabilities after progressing to COMS. By using
the Format Support Library, you can run TCL formats directly under COMS.
This allows the GEMCOS functions and formats to be maintained in current
symbolic form. To do this, the functions and formats along with the
trancodes and device mappings must be maintained in the A Series GEMCOS
TCL, which will be processed by the A Series GEMCOS Utility to produce
run-time files. (The GEMCOS Utility must be level 800 or higher and is
included with the Format Support Library.) These run-time files will be
used by the Format Support Library. This library will perform input
formatting, output formatting, and forms requests exactly as A Series
GEMCOS performs them.

Maintenance of TCL

In order to have functions, formats, trancodes, and device mappings
maintained, you must follow the A Series GEMCOS TCL syntactic
conventions. A skeleton TCL file is available for you to insert various
pieces of this TCL into the appropriate spaces. The skeleton TCL file
is called SYMBOL/COMS/FORMAT/SUPPORT/LIBRARY/EXAMPLE/SKELETON and is
available with the Format support Library.

The following table describes the parts of the skeleton TCL file.

FUNCTIONS and FORMATS

SYSTEM <name>

PROGRAM

INPUT QUEUE

MESSAGE KEYS

Enter the functions and formats from your
GEMCOS TCL.

Enter a name which corresponds to the COMS
window name.

The dummy program is already provided in
the skeleton.

This is a dummy syntactical item which does
not occur in Small Systems TCL. It is
provided in the skeleton.

These are the same as trancodes in Small
Systems TCL. The syntax for message keys
on the A Series is "MKE". They must be

STATIONS

DEVICE

STAL I ST

FORMATS IN

FORMATS OUT

131

GEMCOS/COMS

entered under INPUT QUEUE by changing the
reserved word TRANCODE to the reserved word
MKE.

These are dummy station names. Some are
provided in the skeleton. However, there
must be one dummy station for each device
type. Therefore, you must add one station
name for each consecutive device that you
want to add to the skeleton TCL.

Insert the TCL
Small Systems

Device
TCL.

section from your
The devices declared

here must correspond exactly to the devices
declared in COMS.

For each device, there must be at least one
dummy station that was declared in the
previous STATIONS section.

This does not change from Small Systems.

This does not change from small Systems.

This is your new A Series TCL. Any modifications or enhancements to
your formatting will be made to this TCL. (See "Format Update" later in
this section.)

Run GEMCOS Utility

The GEMCOS TCL file must be compiled, without any syntax errors, with
GEMCOS/UTILITY release 8.0 or higher. This is necessary to produce the
run-time files used by the TCL Formatter Processing Item. The
GEMCOS/UTILITY and a sample job deck are included with the Format
Support Library.

The Format Support Library needs information from the device and format
sections in the GEMCOS TCL file. In addition, it needs to know the
system names defined in the TCL file so that the correct format can be
applied depending on which window the user is on.

The following files must be file equated. The variable <codefile name>
is the code file name of the library containing the TCL Format
Processing Item. These files must have a security classification of
PUBLIC IO.

132

IQUS
OQUS
CQUS
FMTFILE

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

<codefile name>/INPUT
<codefile name>/OUTPUT
<codef ile name>/CONTROL
<codefile name>/FORMAT

COMS Configuration Items

In addition to the normal configuration information specified in the
COMS Utility program, the following steps must be taken to configure the
COMS Environment for the Format Support Library.

1. Ensure that the window name defined to COMS through the Utility
is the same as the system name specified in the TCL. The COMS
Utility input is:

CREATE WINDOW <window name>;

2. Ensure that the trancodes (Message Keys) from the TCL match the
COMS Utility input:

CREATE TRANCODE <trancode name> OF <window name>
AGENDA = <agenda name>
FUNCTION = <integer>;

It should be noted that all trancodes must start in the first
position.

For more information see the TRANCODE statement in the TCL
subsection later in this section.

3. Ensure that the devices declared in the TCL match the COMS
Utility input:

CREATE DEVICE_TYPE = <device_type name>;
CREATE STATION <station name>

DEVICE_TYPE = <device_type name>;

4. Create a library. The Format Support Library is specified to
COMS through the Utility command:

CREATE LIBRARY <library name>;

5. Create a processing item with an ACTUALNAME of TCL_FORMATTER
and specify the previously created library. The processing
item is specified to COMS through the following Utility
command:

GEMCOS/COMS

CREATE PROCESSING_ITEM <processing item name>
ACTUALNAME = TCL_FORMATTER,
LIBRARY = <library name>;

133

6. Create a processing item list which contains the previously
created TCL_FORMATTER processing item or insert the
TCL_FORMATTER processing item in an existing processing item
list. This processing item list should be applied to each
input or output message needing formatting. The processing
item list is specified to COMS through the following Utility
command:

CREATE PROCESSING_ITEM_LIST
<processing_item_list name> =

<processing_item namel, name2, name3, ... >;

The processing item list is applied to the input messages
through the Utility command:

FORMSREOUEST

CREATE AGENDA <agenda name> of <window name>
PROCESSING_ITEM_LIST = <processing_item_list name>,
DESTINATION = <program name>;

This is the same as in GEMCOS.

Format Update

To update formats, run the GEMCOS Utility against the updated TCL. Then
disable the library by entering "?DISABLE LIBRARY <library name>". For
more information about updating formats see the "A Series COMS
Operations Guide."

Programming Changes

The application programs must be changed to use the COMS direct
interface. (See the COMS Programmer's Guide for more information.) For
output formats, the FORMID should be placed in the first 6 bytes of the
COMS conversation area. If there is no conversation area the processing
item will discontinue (DS) with an invalid index.

134

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Screen Design Facility (SDF) coexistence

The Format Support Library can coexist with SDF. This is allowed by.
having SDF recognize when a message has already been formatted. To do
this, the Format Support Library will set the first 48 bits of the
conversation area to all "l"s when formatting occurs. The SDF
processing item should be placed after the TCL_FORMATTER processing item
in the agenda's processing item list for both input arid output messages.

Monitor Output

The Format Support Library will send format exception notification to
the COMS monitor stations. This notification is directed to the same
window on the monitor station that it occurred on at the user station.
Therefore, if the notification is desired, the monitor. station must have
the same window name (the GEMCOS system name) declared and that window
must be open.

This subsection compares Small Systems GEMCOS statements to the A Series
COMS commands. The GEMCOS TCL statements are listed with their COMS
equivalent, if any, or with a description of how COMS handles what the
GEMCOS statement controlled. In many cases, GEMCOS statements are not
applicable to the COMS systems.

The GEMCOS statements are listed according to the TCL section in which
they occur.

Compiler Statements

GEMCOS Statements Hot Necessary On COMS

CONTROL STATEMENT

FORMAT FILE NAME STATEMENT

This statement has no direct mapping into
COMS. The only applicable CONTROL
STATEMENT option is REPORT, which maps into
the COMS REPORT command in the COMS Utility
program.

COMS does not directly do
However, formatting can be
processing item in COMS.

formatting.
done via a

See "General

MCSTIC FILE NAME STATEMENT

Global section

135

GEMCOS/COMS

Information About COMS" and "TCL
Formatting," earlier in this section.

The GEMCOS MCSTIC file maps into the COMS
configuration file. The following shows
how to file equate the configuration file
when COMS is initiated:

FILE CFILE(TITLE = <filename>,
FAMILYNAME = <packname>);

GEKCOS TCL Statements Not Necessary ON COKS

The following lists those GEMCOS TCL Global Section statements that are
not required to operate COMS. Where appropriate an explanation of how
COMS handles the TCL statement is given with the TCL statement.

AUDIT FILE FAMILY ID STATEMENT

AUDIT RECORD SIZE STATEMENT The size Of an audit (transaction trail)

CHANGE REQUESTS STATEMENT
CHECKPOINT INTERVAL STATEMENT
CONVERSATION LIMIT STATEMENT
DATA DUMP STATEMENT

FORMAT and FUNCTION LIST
STATEMENT

TEXT SIZE STATEMENT
MESSAGE BROADCAST STATEMENT
MESSAGE RECALL STATEMENT
MONITOR TRACE STATEMENT
NAME-STACK ENTRIES STATEMENT
NCC OK RESPONSE STATEMENT

OBJECT CODE FILE NAME
STATEMENT

record is automatically optimally
determined by COMS.

COMS does not handle formatting. However,
formatting can be done through a processing
item in COMS. Refer to "General
Information About COMS" and "TCL
Formatting" earlier in this section.

This statement refers to the name of
the generated GEMCOS MCS code file.

136

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

PROGRAM BOJ EOJ STATEMENT
QUEUE BUFFERS STATEMENT
QUEUE DEPTH STATEMENT
QUEUE NAME STATEMENT
RECALL PROGRAM STATEMENT
SIMULATION STATEMENT

SOURCE CODE FILE NAME

STATUS REPORTS STATEMENT
SUBORDINATE MCS STATEMENT
SYSTEM HALT STATEMENT
VALUE-STACK BITS STATEMENT

This statement refers to the name of the
generated GEMCOS MCS source file ..

GEKCOS TCL Statements With Their COKS Equivalents

The following is a list of GEMCOS TCL statements with
equivalents. Where an example is given, the example
syntactically complete; there are other attributes available

their COMS
may not be

for these
COMS commands but only the relevant information has been given.

AUDIT FILE PACK ID STATEMENT This GEMCOS statement maps into COMS as an
attribute of the data base command of the
Utility program as follows:

AUDIT PAGE SIZE STATEMENT

COMPILE OPTIONS STATEMENT

MONITOR TRACE ON STATEMENT

CREATE DATA_BASE <data base name>
FAMILYNAME = <packname>;

This GEMCOS statement maps into COMS as an
attribute of the DATA BASE command of the
Utility program as follows:

CREATE DATA_BASE <data base name>
AREASIZE = <integer>;

There is only an indirect mapping of this
statement into COMS. Since COMS is not
generative, the need to compile COMS will
arise infrequently. Should COMS ever need
to be compiled, Appendix c of the "ALGOL
Reference Manual" describes the usage of
compiler control records.

This function can be accomplished in COMS
by use of the VALUE task attribute on the
RUN statement when COMS is started. The
numeric value of the VALUE attribute
depends on what other COMS options
controlled by this attribute have been

Definition Section

ACCESS CONTROL STATEMENT

Definition Section (Program)

137

GEMCOS/COMS

selected. To correctly set the value, add 4
to the value normally selected. The default
value is o.

GEMCOS requires that access keys (users) be
defined separately from the usercode
structure supported by the systems
software. COMS works in conjunction with
the systems software USERDATAFILE and uses
those usercodes. The ACCESS CONTROL
statement can be implemented in COMS using
the COMS Utility command:

MODIFY USERCODE <usercode name>
WINDOW_LIST = <wl name>
SECURITY_CATEGORY_LIST = <scl name>;

This assumes <usercode name> is already
known to the Utility. If the usercode is
not known, then CREATE is used instead of
MODIFY. <wl name> is a previously defined
Utility Window List element that contains a
list of all valid windows for this
usercode. This usercode then has access to
all programs belonging to these windows.
<scl name> is a previously defined Security
Category List element that contains a list
of all valid security categories. The
usercode then has access to all trancodes
associated with these security categories.
The GEMCOS keyword ALL maps into COMS as a
replacement of <wl name> and <scl name>.

When a program is defined to GEMCOS, a program classification must be
included (ASSIGNMENT, UTILITY, USER, Pass, or PORT). COMS program
classifications are based on the window to which they are assigned. If a
program uses the remote-file interface, it belongs to a remote-file
window and is considered a remote-file program. If the program is an
MCS, it belongs to an MCS window. If the program is a TBR program (it
uses trancodes) or requires pre- or post-processing of its messages, it
belongs to a direct window. The USER classification maps into a direct
COMS window program. The other two classifications need to be handled on
a program-by-program basis.

138

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

GEMCOS TCL Statements Not Necessary On COMS

This subsection lists those GEMCOS TCL Program Section statements that
are not required to operate COMS. Where appropriate an explanation of
how COMS handles the TCL statement is given with the TCL statement.

AP300STATUS STATEMENT
ATTACH MESSAGE STATEMENT

AUDIT OUTPUT STATEMENT

COMMON SIZE STATEMENT
DETACH MESSAGE STATEMENT
OPEN MESSAGE STATEMENT

PLMPROGRAM STATEMENT

RESIDENCE STATEMENT
RESTART PROGRAM STATEMENT
SUPPRESS GOOD DAY MESSAGE

STATEMENT

TRANSACTION CODE
POSITION STATEMENT

Since COMS audits are taken at
mid-transaction, there is no copy of the
after transaction image (output
transaction) available to audit.

The function of this GEMCOS statement is to
facilitate the ability to connect a given
station to another host system. In GEMCOS,
this is accomplished by executing the
designated program and entering a CONNECT
command to this program. In COMS, the
CONNECT statement is a COMS command and can
be directly entered from a station without
the use of any program.

Whenever COMS does trancode routing from a
program, the starting position of the
trancode is always assumed to be the first
character of the message.

GEMCOS TCL Statements With Their COHS Equivalents

The following
equivalents.
syntactically
COMS commands

is a list of GEMCOS TCL statements with their COMS
Where an example is given, the example may not be

complete; there are other attributes available for these
but only the relevant information has been given.

AUDIT TRANSACTIONS and
AUDIT ASSIGNMENT STATEMENTS

In GEMCOS, a distinction is made between
messages with trancodes and messages

CONVERSATIONSIZE STATEMENT

DATA BASE NAME STATEMENT

EXECUTE STATEMENT

139

GEMCOS/COMS

without trancodes and you can specify which
messages to audit. In COMS, all update
transactions are automatically audited. You
can elect to also have inquiry transactions
audited (the default does not include the
audit of inquiry transactions).

To have inquiry transactions audited
with the update transactions, use
Utility command:

CREATE DATA_BASE <data base name>
AUDIT = Y;

along
the

In GEMCOS, the conversation area is passed
as part of the message itself. In COMS,
the conversation area is passed as part of
the input and output CD. The input and
output CD are formatted by the user
according to the needs of each program.
The CD field names associated with the
conversation area are COMS-IN-CONVERSATION
and COMS-OUT-CONVERSATION.

The name of the data base associated with a
program is specified in COMS through the
Utility program as:

CREATE PROGRAM <program name>
DATA_BASE = <data base name>;

The DATA BASE NAME statement is used only
with SYNCHRONIZED recovery.

The three GEMCOS EXECUTE options (ONDEMAND,
BOJ, and MANUAL) map onto COMS as follows:

If EXECUTE is ONDEMAND,
belong to
MIN_ COPIES

a direct
attribute

the program must
window and the

of the PROGRAM
definition command must be set to zero. The
program will start upon receipt of the
first message directed to the program.

If EXECUTE is BOJ, then the MIN_COPIES
attribute of the PROGRAM command must be
set to a value greater than zero. EXECUTE
BOJ is window independent.

If EXECUTE is MANUAL, then the program must
be either an MCS (MCS window) or

140

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

INTERFACE STATEMENT

remote-file (remote window) program. The
receipt of the first ON <window name> COMS
command will start the program. The
MIN_COPIES attribute must be set to zero.

The three GEMCOS INTERFACE options (MCS,
PARTICIPATION, and NONPARTICIPATION) map
onto COMS as follows:

If INTERFACE is MCS, then the program
belongs to an MCS window and is defined to
the Utility as follows:

CREATE WINDOW <window name> MCS = Y,
TITLE = <program title>;

Once the window <window name> is defined,
the user can switch to the MCS program by
entering the COMS command:

ON <window name>.

IF INTERFACE is PARTICIPATION, then the
program belongs to a direct window and is
defined to the Utility as:

CREATE PROGRAM <program name> REMOTE_FILE
N;
CREATE WINDOW <window name>;
CREATE AGENDA <agenda name> OF <window
name>
DESTINATION = <program name>;

In COMS, direct windows require a program
to be assigned as the destination of an
agenda and the agenda to be assigned to a
direct window. Additionally, trancodes can
be assigned to agendas. This provides the
capability of having multiple programs
assigned to the same direct window since
each agenda in the direct window specifies
a destination program.

If interface is NONPARTICIPATION, the
program belongs to a remote-file window arid
is defined to the Utility as:

GEMCOS/COMS

CREATE PROGRAM <program name>
REMOTE_FILE = Y;
CREATE WINDOW <window name> REMOTE_FILE
Y,
REMOTE_PROGRAM = <program name>;

141

MAXIMUM ASSIGNERS STATEMENT While GEMCOS is structured in terms of the
number of stations that can concurrently
talk to a program, COMS is structured in
terms of the number of users that can
concurrently talk to a window, thus to a
program. In addition, COMS restricts the
usage of windows not of programs. For
remote-file windows, there is always one
program for each window. For direct
windows, which can contain more than one
program, access is limited to the number of
users of the window. This GEMCOS statement
maps onto COMS through the Utility program
with the command:

MAXIMUM COPIES STATEMENT

PROGRAM TITLE STATEMENT

RECOVERY STATEMENT

CREATE WINDOW <window name>
MAX_USERS = <integer>;

The MAXIMUM COPIES statement in COMS is
functionally the same as in GEMCOS. The
GEMCOS statement maps into COMS through the
Utility program with the command:

CREATE PROGRAM <program name>
MAX_COPIES = <integer>;

The GEMCOS PROGRAM TITLE STATEMENT maps
onto COMS through the Utility program
command as:

CREATE PROGRAM <program name>
TITLE <program title>;

The USERCODE and FAMILY attributes can also
be specified with this command to determine
the usercode and family assignment for the
program.

While there are three types of recovery
available with GEMCOS, COMS currently has
only one type of recovery. This is a
synchronized DMSII recovery similar to the
synchronized recovery available in GEMCOS.

142

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

TRANCODE STATEMENT

Definition Section (Station)

The GEMCOS Queuerestoration recovery is not
available on COMS. The GEMCOS SYNCHRONIZED
recovery maps into the COMS SYNCHRONIZED
recovery. The GEMCOS DATABASE recovery also
maps into the COMS SYNCHRONIZED recovery.
The COMS SYNCHRONIZED recovery is a
recovery functionally equivalent to the
GEMCOS SYNCHRONIZED recovery.

Recovery is specified in COMS through the
Utility command:

CREATE PROGRAM <program name>
DATA_BASE = <data base name>;

The GEMCOS TRANCODE statement maps onto
COMS through the Utility program command
as:

CREATE TRANCODE <trancode name> OF
<window name>
AGENDA <agenda name>, FUNCTION
<integer>;

In COMS, a trancode always belongs to a
given window. This window must have been
previously defined to COMS. In addition,
an agenda must also have been defined to
COMS and it must name a previously defined
program as its destination (this is the
program with which the trancode is
associated). The two GEMCOS trancode

indices map into the FUNCTION attribute of
the COMS command. The <integer> is passed
to the destination program as the input CD
field COMS-IN-FUNCTION-INDEX; the default
integer is zero.

Station definition in GEMCOS is accomplished by declaring the station
and its attributes in the TCL. In COMS, it is done by defining stations
and attributes through the CREATE STATION command in the Utility
program.

143

GEMCOS/COMS

GEMCOS TCL Statements Not Necessary On COMS

This section lists those GEMCOS TCL Station section statements that are
not required to operate COMS. Where appropriate an explanation of how
COMS handles the TCL statement is given with the TCL statement.

CONVERSATIONAL STATEMENT
HOST ACCESS KEY STATEMENT
SCREEN SIZE STATEMENT

SIGN ON STATEMENT

STATION HOST NAME STATEMENT
TRANCODE STATEMENT (Station)
TRANSACTION MODE STATEMENT

TYPE STATEMENT

In COMS all stations require a user to
sign-on. However, COMS also provides a
feature called "auto logon" which will
automatically log a user onto a station. To
automatically log a user onto the station,
use the following Utility command:

CREATE STATION <station name>
DEFAULT_USERCODE = <usercode name>;

COMS supports the concept of device types.
This is done through the assignment of a
device type to every station declared to
COMS. Then, for routing through a direct
window, processing items (entry points in a
library) can be invoked based on the device
type. This allows user-written routines to
be called when and where required based on
the station's physical characteristics. To
use this feature, the following Utility
commands are required:

CREATE DEVICE_TYPE = <device_type name>;
CREATE DEVICE_TYPE_LIST <device_type_list

name>=<device_type name>;
CREATE STATION <station name>
DEVICE_TYPE = <device_type name>;
CREATE PROCESSING_ITEM <processing_item

name>
DEVICE_TYPE_LIST =<device_type_list name>;
CREATE PROCESSING_ITEM_LIST

<processing_item_list name>=
<processing_item name>;

CREATE AGENDA <agenda name> OF <window
name>

144

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

PROCESSING_ITEM_LIST =
<processing_item_list name>;

This example is not complete since it only
specifies the required information to
handle device types. This example also
assumes the existence of a window named
<window name>. The ,user-written library,
including the entry point <processing_item
name>, can be called on output to a station
to format the data according to the
physical requirements of the station.

This feature is not
remote-file windows.

available for

VIRTUAL STATION STATEMENT

GEMCOS TCL Statements With Their COMS Equivalents

The following
equivalents.
syntactically
COMS commands

is a list of GEMCOS TCL statements with their COMS
Where an example is given, the example may not be

complete; there are other attributes available for these
but only the relevant information has been given.

CONTINUOUS LOG ON STATEMENT This feature is the same for both GEMCOS
and COMS. continuous logon is specified in
COMS using the utility command:

CONTROL STATION STATEMENT

MONITOR STATION STATEMENT

CREATE STATION <station name>
CONTINUOUS_LOGON = Y;

This feature is the same for both GEMCOS
and COMS. Control Station is specified in
COMS using the Utility command:

CREATE STATION <station name>
CONTROL = Y;

This feature is functionally equivalent in
both COMS and GEMCOS, however, in COMS, it
is declared in a different way. To declare
a list of stations as Monitor Stations in
COMS, a station list named MONITOR must be
created. The COMS MONITOR command is used
to control which COMS activities are
monitored.

TRANSACTION CODE POSITION
STATEMENT

GEMCOS/COMS

This statement is
in GEMCOS and COMS.
is accomplished
command:

145

functionally equivalent
In COMS, this function

through the Utility

CREATE STATION <station name>
TRANCODE_POSITION = <integer>;

VALID ACCESS KEYS STATEMENT In GEMCOS, for each station a list of valid
users is specified. In COMS, a list of
valid stations for each user is specified.
While the implementations are different,
they are functionally equivalent. The list
of valid stations for a usercode are
assigned with the utility command:

Device Section

CREATE USERCODE <usercode name>
STATION_LIST = <station-list name>;

<station-list name> must
declared COMS Utility
list of stations.

be a
element

previously
that is a

In GEMCOS, the device section is only used in conjunction with
formatting. COMS does not do formatting itself, so this section has no
direct equivalent in COMS.

However, TCL Formatting can continue to be used with COMS via the Format
Support Library. If you continue to use TCL Formatting, the input from
the device sections is required. (See "TCL Formatting" earlier in the
section.) COMS does support the concept of devices or device types apart
from formatting. See the TYPE statement.

GEMCOS TCL Statements Not Necessary On COMS

This section lists those GEMCOS TCL Device Section statements that are
not required to operate COMS. However, these statements are used by the
Format Support Library. (See "TCL Formatting" earlier in this section.)

INPUT FORMATS STATEMENT
OUTPUT FORMATS STATEMENT
STATION LIST STATEMENT

146

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Kess Code Section

COMS supports the concept of user-written code in a more flexible manner
than GEMCOS. This is accomplished through user-written libraries that
can be called to pre- or post-process a message that is handled through
a direct COMS window. For more information, refer to Section 7 of the
"A Series COMS Programmer's Guide."

COMMON-AREA HEADER

The concept of a message header is accomplished in COMS through the
COBOL74 CD interface. The fields of both the input and output CD are
described as to how COMS sends and receives information through this
interface.

COBOL Interface Differences

The following section discusses the differences in the COBOL interface
between GEMCOS and COMS. Emphasis is placed on the GEMCOS message
header and the corresponding CD interface in COMS.

Message Header

The message header in GEMCOS is the common-area header and is a minimum
of 60 bytes with a maximum of 200 bytes possible. In COMS, the message
header is in the form of a COBOL74 input CD on a receive message and an
output CD on a send message.

GEMCOS COMMON-AREA HEADER LAYOUT

01 COMMONAREA.
05 MSGDESTINATION PIC 9 (1).
05 LSN PIC 9(3).
05 PGMNBR REDEFINES LSN PIC 9(3).
05 MTSMSGTYPE PIC S9(1).
05 SEQ NO PIC 9 (6).
05 NDLTIME PIC 9(7).
05 TEXTSIZE PIC 9 (4).
05 TERMTYPE PIC 9 (2).
05 MSG ID PIC X(6).
05 INDEXl PIC 9 (2).
05 INDEX2 PIC 9 (2).

147

GEMCOS/COMS

05 ERROR PIC 9(1).
05 FMTERR PIC 9(1).
05 MCSTYPE PIC 9(2).
05 INPUTADDR PIC 9(9).
05 RETRY COUNT PIC 9(1).
05 RECOVERY STATUS PIC 9 (1).
05 OUTPUTADDR PIC 9 (9).
05 CONVERSATIONSTATUS PIC 9(1).
05 CONVERSATIONBOJEOJ PIC 9(1).
05 USERAREA PIC X(n).

The size of the USERAREA (n) is a number between 1 and 140 when a user
area is required.

CD Interface

The following is an example of a COMS CD interface.

INPUT CD
COMMUNICATION SECTION.
CD COMSIN USAGE BINARY FOR INPUT.
01 CD-ARRAY-IN.

03 COMS-IN-PROGRAM
03 COMS-IN-FUNCTION-INDEX
03 COMS-IN-USERCODE
03 COMS-IN-SECURITY-DESG
03 COMS-IN-DATE
03 COMS-IN-TIMESTAMP
03 COMS-IN-STATION
03 COMS-TEXT-LENGTH
03 COMS-IN-END-KEY
03 COMS-IN-STATUS-KEY
03 COMS-IN-RST-LOCATOR
03 COMS-IN-CONVERSATION.

05 COMS-IN-CONV-FLD-1
05 COMS-IN-CONV-FLD-2
05 COMS-IN-CONV-FLD-3

OUTPUT CD

COMMUNCIATION SECTION.
CD COMS-OUT USAGE BINARY; FOR OUTPUT.
01 CD-ARRAY-OUT.

03 COMS-OUT-COUNT
03 COMS-OUT-TEXT-LENGTH
03 COMS-OUT-STATUS-KEY
03 COMS-OUT-CONVERSATION.

PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9 (11) USAGE BINARY.
PIC S9 (11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.

PIC X(10).
PIC 9(4).
PIC X(50).

PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.
PIC S9(11) USAGE BINARY.

148

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

05 COMS-OUT-CONV-FLD-1
05 COMS-OUT-CONV-FLD-2
05 COMS-OUT-CONV-FLD-3

Common-area Header Compared To CD Interface

PIC X(lO).
PIC 9 (4).
PIC X(50).

In COMS, many of the same functions present in the GEMCOS common-area
header are in the COMS CD interface. The following is a list of the
functions in the GEMCOS common-area compared to the COMS interface.

Restart Data Set
Audit Locator

Source of Input

Conversation
Information

Error Indication

Time

Text Length

Function Index

GEMCOS

INPUTADDR

LSN

Start of the text

MCSTYPE
(recovery message)

NDLTIME

TEXTSIZE

INDEXl and INDEX2

COMS

COMS-IN-RST-LOC

COMS-IN-STATION

COMS-IN-CONVERSATION
and
COMS-OUT-CONVERSATION

COMS-IN-FUNCTION-INDEX

COMS-IN-TIMESTAMP

COMS~TEXT-LENGTH and
COMS-OUT-TEXT-LENGTH

COMS-IN-FUNCTION-CODE

The usage of the additional fields in the input and output CDs are
explained in Section 3 of the "A Series COMS Programmer's Guide."

NETWORK CONTROL COMMANDS

In GEMCOS, the Network Control Commands (NCC) consist of a signal
character, a short mnemonic command code, and in some cases, one or more
parameters. The Network control Commands allow the user to communicate
with the system through GEMCOS. In COMS, there are several categories
of commands, called COMS commands, which accomplish many of the features
of the GEMCOS Network Control Commands. In some instances, no COMS
equivalent exists. In other instances, COMS provides certain functions
that GEMCOS does not.

149

GEMCOS/COMS

The following is a list of GEMCOS commands and their COMS equivalents,
if any. The COMS commands are entered interactively.

GEMCOS

HELP

Security Control Commands

DETACH FROM REMOTE FILE
(DFR)

DISABLE USER (DUS)

ENABLE USER (EUS)

SIGN OFF (BYE)

SIGN ON (SGN)

COMS

To get HELP in COMS, you must be on the
MARC menu selection screen. Once on the
selection screen, move the cursor to either
the "CC" or the "COMS" selection, then
press "Spcfy". This will display a one or
two-line explanation. If more information
is needed, press "Spcfy" a second time for
a detailed explanation.

There is no exact COMS equivalent, however
the COMS RELEASE and MCS commands can be
used to simulate this function. Use these
commands to release the station to another
MCS.

There is no COMS equivalent.

There is no COMS equivalent.

The COMS BYE command is used to end a
session.

The COMS HELLO command is used to start a
new session. If a session was already in
progress, HELLO terminates the session and
starts a new session.

In GEMCOS, the usercode is given in the TCL
and is not maintained by the Usercode Data
File. In COMS, the usercode and password
pairs are maintained by the system. In
addition, COMS displays a secured line for
the entry of the password.

150

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Program Control Commands

EXECUTE PROGRAM (EX)

FREE STATION FOR
EXECUTION (FRE)

HALT APPLICATION PROGRAM
(HAP)

PROGRAM PASS COMMAND
(PASS)

MCS Control Commands

AUDIT OK (AOK)

HALT KILL

HALT SYSTEM (HLT)

Message Control Commands

BROADCAST (BRC)

This GEMCOS command is handled in COMS via
the MARC menu selection screen. Once on
the MARC menu selection screen, enter RUN
in the choice field.

There is no COMS equivalent.

The COMS DISABLE PROGRAM is used to
Once a program is

cannot be run until it is
terminate a program.
terminated,
enabled.

it

The GEMCOS and COMS PASS commands are
functionally equivalent. However, COMS
passes messages to windows rather than to
programs.

There is no COMS equivalent.

The COMS QUIT COMS NOW command is
equivalent to the GEMCOS HALT KILL command.

COMS also has a QUIT COMS DUMP command that
terminates the MCS and produces a dump of
what has occurred.

The COMS QUIT COMS command is used to halt
the COMS MCS.

The COMS TO command replaces the GEMCOS
BROADCAST command.

The ODT option of the TO command replaces
the GEMCOS SPO (ODT in the 7.0 release)
option.

Both COMS and GEMCOS allow either a station
name or a station LSN.

To BROADCAST to all stations in GEMCOS, no
options are specified; in COMS, the option
ALL must be specified. COMS also allows

POP QUEUE (PQ)

REPORT Commands

REPORT DATA DUMP (RDM)

REPORT FILE STATUS (RFS)

REPORT PROGRAM STATUS
(RPS) and REPORT
PROGRAM COUNTERS (RPC)

151

GEMCOS/COMS

messages to be sent to either a window or
usercode.

COMS does not support all of the functions
Of the GEMCOS POP QUEUE command. However,
subsets of the POP QUEUE command are
equivalent to the COMS RECALL and PURGE
commands.

COMS supports the capability to recall all
of any station's messages and deliver them
to another station. The example below shows
the syntax of the COMS RECALL command that
is equivalent to the GEMCOS POP QUEUE
command.

GEMCOS

*PQ stationl ALL SEND station2

COMS

RECALL stationl TO station2

The other subset of the GEMCOS POP QUEUE
command is equivalent to the COMS PURGE
command. The PURGE command discards all
messages queued for the specified station.
The example below shows the syntax of the
GEMCOS POP QUEUE that is equivalent to the
COMS PURGE command.

GEMCOS

*PQ stationl ALL

COMS

PURGE STATION stationl

There is no COMS equivalent.

There is no COMS equivalent.

The COMS STATUS PROGRAM command is a
combination of both of these GEMCOS
commands. All of the information returned
by the GEMCOS commands is returned by the

152

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

REPORT STATION STATUS
(RSS) and REPORT
STATION COUNTERS (RSC)

CHANGE Commands

CHANGE MONITOR FLAG (CMF)

CHANGE STATION ADDRESS
(CSD)

CHANGE STATION DIAGNOSTIC
(CDS)

CHANGE STATION MAXIMUM
RETRY (CSM)

CHANGE STATION READY (CSR)

CHANGE STATION
TRANSMISSION NUMBER (CST)

FORMAT UPDATE COMMAND
(UPD)

COMS command, along with the window
associated with the program and the name of
the data base, if any.

The COMS STATUS STATION command is nearly
equivalent to these two GEMCOS commands.
The information returned by the two GEMCOS
commands is returned by the COMS command,
along with the usercode logged on, if any,
and the window name.

COMS also has a REPORT STATION command that
gives a briefer report about the station.

The COMS TRACE command is the equivalent to
this GEMCOS command, with a few variations.
GEMCOS traces all procedures of the MCS,
COMS traces on either a station-by-station
basis or a feature basis.

Options for this command include: tasks,
DCWRITE, and DCRESULT.

There is no COMS equivalent.

There is no COMS equivalent.

There is no COMS equivalent.

This GEMCOS command is handled by the COMS
commands READY and SAVE. The COMS READY
command is used to make a station ready,
the SAVE command is used to make a station
not ready.

There is no COMS equivalent.

There is no COMS equivalent; formatting is
not directly handled by COMS. However,
processing items that do formatting can be
updated by disabling the library after an
updated version is available. For example,
DISABLE LIBRARY <name>. See the "Format
Update" subsection for more information.

AUDIT And RECOVERY Commands

CLEAR DISABLED PROGRAM
(CLE)

REFRESH COMMAND (REF)

RECOVER DATA BASE (REC)

RESET BUSY STATUS (RBS)

153

GEMCOS/COMS

The COMS ENABLE PROGRAM is nearly
equivalent to this GEMCOS command.
However, the GEMCOS command enables the
program and initiates a recovery cycle. The
COMS command only enables the program, no
recovery cycle is initiated.

There is no COMS equivalent. Since COMS
does not have an audited output message,
there is no way to recall the last message
for a station.

COMS automatically recovers affected data
bases so there is no COMS command
equivalent. However, if a manual recovery
in COMS is necessary, follow these steps:

1. Disable the data base.

2. Make sure that the data base files and
audit trails are loaded and valid.

3. Enable the data base.

There is no COMS equivalent. Since COMS
does not currently support the "transaction
mode" capability for a station, there is no
current need for an equivalent to this
command.

ADDITIONAL COMS COMMANDS NOT IN GEMCOS

The following section describes commands that are available in COMS but
not in GEMCOS.

PASSWORD Command

The PASSWORD command is used to change or delete the password associated
with a given usercode or to alter a list of passwords if more than one
password is associated with the usercode.

154

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

ON command

In COMS, the ON command is used to move from one window to another.

CLOSE Command

The CLOSE command is used to close any dialog of a window or all dialogs
of all windows at your station.

SUSPEND Command

The SUSPEND command is used to suspend messages from one or more window
dialogs at your station. When messages from a window dialog other than
the current window dialog are suspended, all messages from that dialog
are tanked (not displayed) until that window dialog is resumed or
becomes the current dialog again. For example, if you suspend dialog 1
of the CANDE window, all messages for dialog 1 of the CANDE window are
suspended unless the CANDE window is your current window dialog. Refer
to the "A Series COMS Operator's Guide" for a discussion about Window
Dialogs.

RESUME Command

The RESUME command is used to resume the display of messages from one or
more window dialogs at your station.

CONTROLLING STATIONS

The following seven commands control stations in the COMS network.

ADDSTA COMMAND

ATTACH COMMAND

DISABLE COMMAND

The ADDSTA command adds stations to a line.

The ATTACH command controls stations that
are not currently attached. Attaching a
station allows COMS to send messages
(output) to that station. When the
attached station is enabled, all input from
that station is received by COMS.

The DISABLE
the COMS

command disables
network. When

stations in
a station

ENABLE COMMAND

MOVE STATION COMMAND

SUBTRACT COMMAND

SWAP LINE COMMAND

COllS Command

155

GEMCOS/COMS

is disabled, it will not be polled for
input, but it can still receive output.

The ENABLE command enables stations in the
COMS network. When a station is enabled,
it will be polled for input if it is in the
ready status.

The MOVE STATION command moves stations to
another line.

The SUBTRACT command removes stations from
the lines they are on.

The SWAP LINE command swaps a line for
another line.

The COMS command is used to control the kind of information to be
written to COMS transaction trails, close the current COMS transaction
trail and open a new one, and inquire about the current COMS transaction
trail status.

DATABASE Command

The DATABASE command is used to control the kind of information to be
written to transaction trails for a given data base, close the current
transaction trail for a given data base and open a new one, and inquire
about the current transaction trail status for a given data base.

JOBS Command

The JOBS command is used to display a list of programs that are running,
together with the associated COMS window.

llO:NITOR Command

The MONITOR command is used to set the monitoring of COMS activities at
all monitor stations. This command sets and rese.ts various monitor
attributes. A monitor message is sent to all monitor stations whenever
any of the set attributes is encountered by COMS.

156

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

WINDOW Commands

COMS supports a number of commands that deal with windows. These
commands are: WINDOWS, ENABLE WINDOW, DISABLE WINDOW, REPORT WINDOW,
STATUS WINDOW, and JOBS IN WINDOW.

DISABLE WINDOW

ENABLE WINDOW

JOBS IN WINDOW

REPORT WINDOW

STATUS WINDOW

WINDOWS

RECOVERY DIFFERENCES

This command:

1. Terminates all programs in the window.

2. Disables the window after the programs
terminate.

3. Closes the window.

4. Places all stations that were on the
window on dialog 1 of the MARC window.

This command allows users to access dialogs
of the specified window by using the ON
command.

This command
programs that
window.

displays a list of the
are running in a specified

This command displays COMS network-related
information about all stations that have
open dialogs in the specified window.

This command displays the condition of the
window specified (enabled or disabled), the
user count for the window, and the number
of messages from the window that are being
held.

The WINDOWS command is used to display the
current COMS window environment for a
particular station.

This section describes the recovery differences between GEMCOS and COMS.
Refer to the. "Synchronized Recovery" section of the "A Series COMS
Programmer's Guide" for a detailed explanation of synchronized recovery
in COMS. We strongly suggest that the person responsible for converting

157

GEMCOS/COMS

application programs from GEMCOS to COMS read the "Synchronized
Recovery" section of the "A series COMS Programmer's Guide" and Section
7 of the "B 1000 GEMCOS User's Manual."

Recovery Specification

In GEMCOS, recovery is specified in the Program section. In COMS,
recovery is specified on the PROGRAM menu by choosing the Data Base Name
attribute. The acceptable values for this attribute are: <data base
name> and NONE.

In both GEMCOS and COMS, NONE specifies that no recovery is to be
performed on the given program. Specif iying a data base name on the
PROGRAM screen in COMS is a request for synchronized recovery for that
program. Synchronized recovery in GEMCOS and COMS is functionally
similar but the methods of implementation are vastly different. COMS
does not support the QUEUERESTORATION option available in GEMCOS.

DATABASE

GEMCOS DATABASE recovery is a subset of GEMCOS Synchronized recovery.
Data base recovery in GEMCOS maps into COMS Synchronized recovery in the
same manner as GEMOCS Synchronized recovery.

QUEUERESTORATIOH

Since QUEUERESTORATION is not available on COMS, you Will have to
maintain your own form of recovery for those programs that do not belong
to a data base.

Synchronized Recovery

Synchronized recovery is a COMS function that resubmits transactions to
the data base after a transaction-state abort, system
rollback. First, DMSII recovery restores the data base to the
in time when no programs were in transaction state.
resubmits all completed transactions that occurred beyond
recovery point.

crash, or
last point
Next, COMS
the DMSII

158

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

RECOVERY-RELATED CONVENTIONS

The following are conventions required in COMS to successfully perform a
synchronized recovery on a data base.

1. All instructions must be grouped into transactions.

2. The program must enter transaction state, perform update
activity in transaction state, then exit transaction state.

3. Each transaction must be two-phase. Two-phase transactions are
those transactions that lock records but do not free any in the
first phase and free records but do not lock any in the second
phase.

4. All programs must be restartable, in other words, able to
resume processing where COMS tells them after an interruption
such as abnormal termination.

5. A restart data set must be created for every data base that is
to be recoverable.

6. Routines must be written to handle:

a. Setting up the input and output CD.

b. Receiving messages.

c. Normal data base close.

d. Handling aborts and exceptions.

e. Sending messages.

f. setting up the restart data set.

g. Passing the message header at begin-transaction.

h. storing a restart locator in mid-transaction phase.

i. Recovery considerations at end-transaction.

j. Recovery consideration when sending a message.

k. Using exception-condition statements.

159

GEMCOS/COMS

The Recovery Sequence (GEMCOS And COMS)

Listed below are the logical steps for transactions and recovery in
GEMCOS and COMS.

GEMCOS

SET UP THE RESTART DATA SET
PROCESSING:

BEGIN TRANSACTION

END TRANSACTION
CLOSE DATA BASE

COMS

SET UP THE RESTART DATA SET
PROCESSING:

BEGIN TRANSACTION
MID-TRANSACT ION
END TRANSACTION

CLOSE DATA BASE

Though these logical steps are the same, the constructs that perform
this logic are very different. The following sections describe how each
of these logical steps differ in GEMCOS and COMS and give examples of
the constructs to perform the recovery.

Creating the Restart Data Set

In GEMCOS, the layout for the Restart Data Set is:

RESTARTAREA RESTART DATA SET (
GEMOCS-LITERAL
GEMCOS-PGM-NBR
GEMCOS-MULTI-NBR
GEMCOS-DATE-TIME
GEMCOS-DATA

POPULATION = 100;

ALPHA(6);
NUMBER(3);
NUMBER(3);
NUMBER(l2);
NUMBER(9)

RESTARTSET ORDERED SET OF RESTARTAREA
KEY IS (

GEMCOS-LITERAL,
GEMCOS-DATE-TIME,
GEMCOS-PGM-NBR,
GEMCOS-MULTI-NBR

) ;

160

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

In COMS, the layout for the Restart Data Set is:

RESTART-DS DATA SET
(
RDS-IS ALPHA(6)

RDS-PROG
RDS-LOCATOR

) ;

INITIALVALUE "ONLINE" COMS-ID;
REAL COMS-PROGRAM;
REAL COMS-LOCATOR;

Initialize the Restart Data Set

Initialization in GEMCOS and COMS opens the data base for recovery and
opens the restart data set.

GEMCOS

<open the remote file>
<open the data base>
<read a record from the remote file>
MODIFY <restart data set> AT

GEMCOS-LITERAL "GEMCOS" AND
GEMCOS-DATE-TIME = <GEMCOS-HEADER-date-time> AND
GEMCOS-PGM-NBR = <GEMCOS-HEADER-pgm-nbr> AND
GEMCOS-MULTI-NBR = <GEMCOS-HEADER-multi-nbr>

ON EXCEPTION
CREATE <restart data set name>

MOVE "GEMCOS" TO GEMCOS-LITERAL
MOVE <GEMCOS-HEADER-date-time> TO GEMCOS-DATE-TIME
MOVE <GEMCOS-HEADER-pgm-nbr> TO GEMCOS-PGM-NBR
MOVE <GEMCOS-HEADER-multi-nbr> TO GEMCOS-MULTI-NBR
MOVE 0 TO GEMCOS-DATA.

(The field names that start with GEMCOS-HEADER are received as
text on the first message read.)

COMS

MOVE ATTRIBUTE NAME OF ATTRIBUTE EXCEPTIONTASK
OF MYSELF TO <work area name>.

CHANGE ATTRIBUTE TITLE OF "DCLILIBRARY" TO <work area name>.
ENABLE INPUT <input CD name> KEY "ONLINE".
OPEN UPDATE <data base name>

GEMCOS/COMS

ON EXCEPTION
DISPLAY <DMSII exception error>
CALL SYSTEM DMTERMINATE.

CREATE <restart data set name>.
MOVE "ONLINE" TO RDS-ID.
MOVE <COMS-in-program field name> to RDS-FROG.
MOVE <COMS-in-restart-locator field name> to RDS-LOCATOR.

161

(COMS-in-program field name is word o (zero) of the input CD and
the COMS-in-restart-locator field name is word 10 of the input CD.)

Processing

Processing in both GEMCOS and COMS follows these steps:

1. Receive a message.

2. Make all preparations for the update.

3. Enter transaction state (begin transation).

4. Perform the update activity.

5. Send the result to the originator of the transaction.

6. End transaction state.

7. Return to step 1 to receive another message.

In COMS, the processing section can contain as many transations as
necessary. Each transaction has a definite starting and ending point
and performs only one operation per group of protected (locked) records.

Begin Transaction

Before the first transaction, in both COMS and GEMCOS, you must lock the
data records. Once the records are locked, the transaction can be
processed. Below is an example of GEMCOS and COMS begin transaction
syntax.

GEMCOS

BEGIN-TRANSACTION NO-AUDIT <restart data set name>
ON EXCEPTION <exception handling code>.

162

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

COMS

BEGIN-TRANSACTION <input CD name> USING <message area name>
NO-AUDIT <restart data set name>
ON EXCEPTION

<exception handling code>.

Begin Transaction Abort Handling

In GEMCOS, if a program aborts, all the programs using the failed data
base are sent a Type 20 message from GEMCOS. Each program then sends
GEMCOS a Type 21 message and ignores all input messages until a Type 22
message is received. Also, if a program detects an abort on
BEGIN-TRANSACTION, it sends a Type 21 message to GEMCOS. This sequence
of messages is required by GEMCOS to be able to initiate recovery.

In COMS, when an abort occurs, the system automatically notifies COMS of
the abort. You must include code in the begin transaction area of the
program to stop current processing. This means the program should go
back to receive another message rather than continue processing the
current message. An indication of the abort could also be sent as part
of the output message. For example,

ON EXCEPTION
GO TO RECEIVE-NEXT-MESSAGE.

Mid-Transaction

COMS has a mid-transaction point in the recovery process that is not
available in GEMCOS. Mid-transaction is the period between when the last
record is locked and the first record is freed. Only the protected
records (locked) can be accessed during this phase. It is also during
this phase that COMS performs the transaction audit.

GEMCOS users do not have to explicitly perform mid-transaction
processing since GEMCOS does not allow locked records to be freed during
transaction state. For complete information about the mid-transaction
phase, see the A Series COMS Programmer's Guide.

163

GEMCOS/COMS

End Transaction

The end transaction frees the records that were locked for processing.
Below is an example of the GEMCOS and COMS end transaction syntax.

GEMCOS

END-TRANSACTION AUDIT <restart data set name>
ON EXCEPTION

<exception handling code>.

COMS

END-TRANSACTION <output CD name> USING <output message area name>
AUDIT <restart data set name>
ON EXCEPTION

<exception handling code>.

End-Transaction Abort Handling

If an end transaction abort occurs in COMS, follow the same steps that
are used to handle begin transaction aborts. After Synchronized recovery
is complete, COMS automatically resubmits the current transaction to the
program. In GEMCOS, the program must initiate the Type 21/22 message
sequence.

Close The Data Base

In GEMCOS, a Type 24 message is sent to the program instructing it to
close the data base. When this message is received, the program closes
the data base. If the data base close is successful, the program sends a
Type 25 message to GEMCOS. GEMCOS then instructs the program to
terminate. If the data base was not closed successfully, the program
must initiate the Type 21/22 message abort detect "handshake" to
recover. In other words, the program will send a message to GEMCOS
saying that the data base was not closed successfully.

In COMS the receipt of a message with the input CD field
COMS-IN-STATUS-KEY equal to 99 instructs the program to perform the
end-of-job routine which closes the data base. We also recommend that
the program explicitly store the restart record in the restart data set

164

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

before closing the data base. This ensures that COMS and DMSII can
synchronize their recovery operations if the data base has to be rolled
back. The following is an example of COMS code that closes the data base
and stores the restart data set.

BEGIN-TRANSACTION NO-AUDIT <restart data set name>.
RECREATE <restart data set name>.
STORE <restart data set name>.
END-TRANSACTION NO-AUDIT <restart data set name>.
CLOSE <data base name>.
STOP RUN.

Recovered Message Resubmittal

In GEMCOS, when a message is received, the common area header field
RECOVERYSTATUS indicates whether the message is a normal or recovery
message. A value of O (zero) indicates a normal message, any other value
indicates a recovery message. In addition, RETRYCOUNT indicates how many
times the message was resubmitted.

In COMS, whan a message is received, the input CD field
COMS-IN-STATUS-KEY indicates the status of a message. A value of O
(zero) indicates a normal message. The value 92 indicates a message
resubmitted during synchronized recovery. The value 93 indicates that
the transaction is being resubmitted because it caused the program to
fault the last time it was submitted.

ARCHIVAL RECOVERY

In GEMCOS, archival recovery is a stand-alone event that must be run and
then terminated and a new copy of the MCS started before normal
processing can proceed.

In COMS, to perform the equivalent of a GEMCOS archival recovery, the
following steps must be performed:

1. Disable the data base through COMS (DISABLE command).

2. Load the most recent backup of the data base, or if possible,
roll back the current data base to an earlier (valid) data
base.

3. Apply the audit trails for the data base up to the last quiet
point before the problem occurred.

165

GEMCOS/COMS

4. Make sure the current COMS transaction trail, and possibly
previous transaction trails, are present on disk.

5. Enable the data base through COMS, (ENABLE command). This
causes COMS to automatically roll the data base forward from
where the DMSII recovery left off to the end of the transaction
trail(s).

When the transaction trail or trails have been applied, the result
should be recovery of the data base with no loss of systems-acknowledged
transactions.

166

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

167

The SORT compiler is designed to meet all the A Series sorting
requirements, as well as provide a tool to ease the progression from
Small Systems. As a progression tool, the A series SORT compiler
accepts most Small Systems SORT syntax. It does not implement Small
Systems SORT UTILITY. This section documents the differences between
the A Series SORT compiler and the Small Systems SORT program.

SORT ONLY AS A COMPILER

The A Series SORT is implemented only as a compiler. You may do a
"compile to library" and then execute the compiled program, or you may
do a "compile and go." Unlike the restrictions associated with the Small
Systems SORT, there are no restrictions associated with compiled sort
programs.

STATEMENTS NOT NECESSARY IN THE A SERIES SORT

The following are Small Systems statements accepted by the A Series SORT
compiler, but ignored. A warning is issued by the compiler when one of
these statements is encountered. You may remove these statements or
leave them without affecting the A Series SORT.

BIAS
TIME
TIMING

STATEMENTS NOT SUPPORTED IN THE A SERIES SORT

The following are Small System statements that cause a syntax error when
encountered by the A Series SORT compiler. These statement must be
removed.

COLLATE
DUPCHECK
INPLACE
OVERRIDE
SEQUENCE
TAGCOBOL
TAGRPG
ZIP

168

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

A SERIES REPLACEMENTS FOR SMALL SYSTEMS SORT STATEMENTS

The Small Systems TEACH command must be replaced by the A Series
$ REFORMAT compiler control option.

The small Systems NOPRINT statement must be changed to the A Series
$ RESET LIST compiler control option.

EMBEDDED COMMENTS

The way Small Systems handle embedded comments is not supported by the
A Series SORT compiler. on the A Series, comments must follow a "%" or
" . " on an input record.

FILE STATEMENT

The Small System SORT program allows up to 16 Small Systems file input
parts to be sorted. The A Series SORT compiler allows up to eight input
files to be merged and from 1 to 99 input files to be sorted.

VARIABLE LENGTH RECORDS

The A Series SORT compiler recognizes the Small Systems syntax for
variable length records, but issues a syntax error because the variable
length record capability is not implemented.

On Small Systems, "*(USERCODE)/A" overrides the default pack
specification and looks for the file on the systems's disk. There is no
equivalent syntax on the A Series. The SORT compiler treats
"*(USERCODE)/A" as though the "*" was not there.

Small Systems SORT program u~es the default pack of the usercode named
in the file title. The A series SORT compiler uses the default pack
(family substitution) of the usercode running the program.

SORT

For example,

Usercode A has a default pack X (on small Systems)
or
FAMILY DISK= x ONLY (on A Series).

Usercode B has a default pack Y (on small Systems)
or
FAMILY DISK= y ONLY (on A Series).

A program running under usercode "A" opens file "(B)Q".

The Small Systems SORT would open the file on pack "Y".
SORT opens the file on pack "X".

DATA TYPE DIFFERENCES

169

The A Series

The types SA and RSA are not handled the same on the two systems. On
the Small Systems SORT, all the bits are used in the comparison. On the
A Series, only the digits are used. The A Series sees ClC2C3 as equal to
FlF2F3, while the Small Systems do not.

There is no exact equivalent of SA or RSA on the A Series.

MEMORY STATEMENT

By default, the Small Systems SORT uses 20,000 bytes of memory (8000
bytes prior to the 10.0 release). By default, the A Series SORT uses
enough memory to hold 1200 records. This is usually substantially more
memory than was used on the Small Systems, but it is the amount
recommended for a fast sort. See the SORT section in the "A Series
System Software Utilities Reference Manual."

The MEMORY statement on Small Systems specifies memory in bytes. The
MEMORY statement on the A Series specifies memory in words. One word
equals six bytes. If a large amount of memory was specified on Small
Systems, six times that much memory might be too much on the A Series.
Refer to the SORT section in the "A series System Software Utilities
Reference Manual" to determine the appropriate amount of memory you
really need. Since the default memory will probably be much greater, you
should consider removing the MEMORY statement.

170

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

INCLUDE AND DELETE STATEMENTS

The IN option of the Small Systems INCLUDE and DELETE statements is not
supported.

The small Systems SORT specifies that.expressions are evaluated strictly
from left to right and that the first false expression causes the
evaluation to end. The A Series SORT compiler (like the small Systems
SORT/UTILITY) specifies that there is a precedence order of NOT, AND,
and OR. Some of the Small Systems SORT programs will need to be
modified to add explicit parentheses to obtain the desired evaluation of
the condition. For example, on Small Systems, the statement:

INCLUDE 1 EQL "A" AND 2 EQL "B" OR 3 EQL "C".

does not include the record AXC. On A Series, the record is included.

With Small Systems SORT, if DELETE is followed by INCLUDE, and both of
these statements select the same record, the record is retained. The
A Series SORT compiler uses the rule, like the Small Systems
SORT/UTILITY, that each successive INCLUDE or DELETE acts to further
subset the stream of input records. For example, on Small Systems, the
statements:

DELETE 1 EQL "A"
INCLUDE 1 EQL "A"

includes the record AXC. However, it is not included on the A Series.

TAGSORT STATEMENT

Small Systems SORT creates 4-byte (8-digit) index records when TAGSORT
is specified. The A Series SORT compiler creates this type of record if
a type of PACKED and a length of eight are specified. By default,
however, a 1-word record is created.

The ADDROUT files supported by the RPG compiler on the A Series consist
of 1-word records. This means no change to either the RPG program or the
SORT is required for conversion of ADDROUT files from the Small Systems
to the A Series. However, the ADDROUT file used on the A Series must be
created by the A Series SORT.

171

15 REPORTER III

All REPORTER products run on both Small Systems and the A Series.
However, there are some minor differences in the way the products run.
Complete explanations of these differences are covered in these REPORTER
manuals:

1. On-Line REPORTER User's Guide, form 1185220.

2. Vocabulary Language (VOCAL) User's Guide, form 1180428.

3. AUDIT-REPORTER Language User's Guide, form 1180486.

4. REPORTER II and REPORTER II (Advanced) User's Guide, form
1185121.

5. On-Line REPORTER III User's Manual, form 1177151.

6. REPORTER III Vocabulary Language (VOCAL) User's Manual, form
1177177.

7. REPORTER III Report Language User's Guide, form 1177185.

The same manuals are used for both Small Systems and the A Series.

Listed below are the differences for REPORTER III and in what REPORTER
manual it is discussed.

If you are using REPORTER II, REPORTER II (Advanced), or AUDIT-REPORTER,
we recommend that you upgrade to REPORTER III before progressing. For
upgrading to REPORTER III, see the REPORTER III distribution letter.

VOCABULARY LANGUAGE (VOCAL) USER'S llANUAL

External File Name

On Small Systems, the external file name contains a maximum of three
identifiers. Each identifier may contain up to 10 characters, generally
without special characters.

172

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

On the A Series, the external file name is a series of identifiers,
these may include a usercode, file directory identifiers, a file
identifier, and a family name. Each identifier may contain up to 17
characters (including slashes).

DATA SET Statement

On Small Systems, the DATA SET statement is used to add a data set to
the vocabulary, to give an alternate name to a disjoint data set, or to
assign a TOTAL POPULATION to a data set. The data set name must be a
valid Small Systems data set.

On the A Series, the DATA SET statement is used to give an alternate
name to a disjoint data set or to assign a TOTAL POPULATION to a data
set. The data set name must be a valid A Series data set in the
DB-INVOKE listing.

EXCLUDE Statement

On Small Systems, the EXCLUDE statement is used to exclude elements in a
disjoint data sets from the vocabulary.

on the A Series, this statement is used to delete data sets and
associated elements from the vocabulary. The A Series also has two
additional options, LINK ITEM and CONTROL ITEM.

SET Statement

On the A Series, the SET statement has the additional option
DECIMAL-POINT IS COMMA. This option is used to force the building of the
vocabulary files with the COBOL SPECIAL-NAMES.

DMSII Language Statements

On Small Systems, the data base statement informs RP3VOC that the
specifications refer to a Small Systems data base. RP3VOC processes
Small Systems statements by accessing the data-set COBOL library files
created by DASDL. The format for the library file name is <data base

173

REPORTER III

name>/<disjoint-data-set-name>. The data sets must be individually
specified to the RP3VOC. They can be specified in any order.

On the A Series, the data base statement identifies an A Series data
base. RP3VOC processes the statement for the data base by referencing a
directory file. A utility program, RP3VDM, creates this directory.
RP3VDM must be run once for each physical or logical data base that
RP3VOC uses. RP3VOC automatically executes RP3VDM to create the required
directory. You also have the option of running RP3VDM manually.

USIHG Clause

The USING clause is not available on the A Series since FORTE and FORTE2
files are not used.

Storage Kedia And File Attributes

The following tables show the storage media and file attributes for
Small Systems and the A series.

Media

cards

Disk

Library

Tape

Interchange
disk pack

Disk pack

File Attributes

Small Systems

SO-column card

Card image disk file

COBOL library file

Tape file

Interchange card-image
file on disk pack

A series

SO-column card

Characters per record
and blocking is
assigned DEFAULT

Characters per record
and blocking is
assigned DEFAULT

SO-character/record
tape, blocked 9

Characters per record
and blocking is
assigned DEFAULT

174

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Files Required For Execution

The files required for execution have changed on the A Series. The
names of the files are given in the REPORTER III documentation.

Unrecognized COBOL Constructs

The RP3VOC portion of the REPORTER III Systems analyzes user-supplied
ANSI-74 COBOL source programs. However, there are difference in Small
Systems and the A Series constructs that are accepted by the RP3VOC.
These difference are explained in Appendix B (A Series) and Appendix D
(Small Systems) of the "REPORTER III Vocabulary Language User's Manual."

Defaults And Limits

The defaults and limitations of the A Series are different than those
for Small Systems. The REPORTER III report language limits and defaults
are listed in Appendix B of the "Reporter III Report Language User's
Manual."

COBOL74 Code

Additional COBOL74 code added to the vocabulary, either with SOURCE FILE
FOLLOWS or as part of an input procedure, has to conform to the COBOL74
syntax of the A series.

REPORTER III REPORT LANGUAGE USER'S MANUAL

External File Bame

The difference between Small Systems and the A Series external file
names is described previously. It also affects the SAVE statement, the
SAVE LISTING statement, and the VOCABULARY statement. Its effects on
these statements is given in the REPORTER III documentation.

175

REPORTER III

Maximum Characters For ~ PIC Clause

The maximum length of a COBOL PIC specification on Small Systems is 18,
for the A Series, it is 22.

EXTRACT FILE AREASIZE Statement

On Small Systems, the maximum number of records per area is 16, 777,216.
On the A Series, the maximum number of records per area is 1,048,575.

EXTRACT FILE Statement

The default number of areas is 20.

On Small Systems, the maximum number of areas is 105. On the A Series,
the maximum number of areas is 1000.

Sample Statement Parameters Limit

Parameters

Sample size

Sample size percent

Strata population

Seed

Sum of all strata
population

Process Options SET Statement

Statements Default

INTEGER-SIZE 12

Limits

1 to 99,999,999

1 to 100

Sample size to 99,999,999

0 to 99,999,999

A Series:
Small Systems:

1,080,000,000
108,000,000

Limits

Small Systems: 1 to 18, minus
FRACTION-SIZE

A Series: O to 22, minus
FRACTION-SIZE

176

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

FRACTION-SIZE 5 Small Systems: O to 18, minus
INTEGER-SIZE

A Series:

STRING-SIZE 30 PAGE-WIDTH

NULL-NUMERIC 0

NULL-STRING SPACES

NULL-BOOLEAN FALSE

MODE Default is ON-LINE
if Report Language
Analysis Program
(RP3REP) is run via
On-Line REPORTER III;
otherwise, default is
BATCH.

OB-LIHE REPORTER III USER'S llABUAL

O to 22, minus
INTEGER-SIZE

The differences between Small Systems and the A Series operation is
discussed in Appendix C of the "On-Line Reporter User's Manual."

EXECUTION OF REPORTER III

There are also differences in the way REPORTER III is executed. Whether
you are executing Vocabulary or the Report Language of REPORTER III, it
will need to be modified to conform to the method in which A series jobs
are executed.

Cards Or Pseudo Reader

On Small Systems, REPORTER III is executed using the syntax:

?EX RP3REP
?DATA RP3CRD

<language statements in columns 8 - 72)
?END

REPORTER III

On the A series, use the following syntax to execute REPORTER III:

?RUN RP3REP
?DATA RP3CRD

<language statements in columns 8 - 72)
?END

To execute REPORTER III on the Small Systems, the syntax is:

EX RP3REP;FILE RP3CRD NAME
<file name> DISK DEF

on the A Series, REPORTER III is executed using this syntax:

RUN RP3REP;FILE RP3CRD(TITLE=
<filename>, KIND=DISK)

177

178

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The Small Systems On-Line Data Entry
relatively easy path for progression
available and provides functional
Systems ODESY version 2.2.

179

SYstem (ODESY) user will find a
to the A Series. A Series ODESY is
and visual equivalence to small

A program for progressing Small Systems ODESY 2.2 format dump files for
loading by Format Maintenance on the A Series is provided. Users of
Small Systems ODESY 2.1 should first upgrade to Small Systems ODESY 2.2,
then to the A Series version.

In addition to progressing format dump files, you will be required to
make changes to your programs, provided you are currently using this
facility. If you have SDL/UPL user programs you must rewrite the
programs in COBOL74 or RPG, since the SDL/UPL language does not exist on
A Series. If you have COBOL74 or RPG user programs you should progress
the programs as you would any application (with the aid of Burroughs
translators), then make two minor changes to the message header of the
program. These changes are described in the A Series ODESY Manual.

180

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

181

Small Systems have three different types of ISAM files: B-Indexed files
TAG files, and ISAM files. A Series has two types of ISAM files, ISAM
and KEYEDIO. Since the A Series ISAM file access method is somewhat
primitive and available only for COBOL(68) and PL/l, we recommend
KEYEDIO files since they are available for COBOL74 and RPG. This
section describes how to transfer Small Systems ISAM files to A Series
KEYED IO files.

DATA TRANSFER

All Small Systems ISAM files are easily converted
However, because of format difference, these
transferred from Small Systems to A Series using
B6000COPY.

B-Indexed Files

to A Series files.
data files cannot be

only BlOOOCOPY or

B-Indexed files are available only in RPG. Use SYSTEM/COPY and
BlOOOCOPY to transfer the B-Indexed file, then write an A Series program
to read the data file and create a KEYEDIO file. There is an A Series
COBOL74 sample program called LOADISAMS available on the A Series 3.6
Release BTA360 Migration Aids tape to help you write the program.

TAG files are available in RPG and COBOL(68). Use SYSTEM/COPY and
BlOOOCOPY to transfer the data portion of the TAG file, then write an
A Series program to read the data file and create a KEYEDIO file. There
is an A Series COBOL74 sample program called LOADISAMS available on the
A Series 3.6 Release BTA360 Migration Aids tape to help you write the
program.

ISAM files are available in RPG and COBOL74. To transfer the Small
Systems files, write a Small Systems program that reads the ISAM file
and creates a sequential data file. If the data file is on disk, use
SYSTEM/COPY and BlOOOCOPY to transfer the file to the A Series.

182

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Then write a A Series program to read the tape or disk sequential file
and create a KEYEDIO file. There are COBOL74 sample programs on the
Small Systems BTA350 Conversion Tape and A Series 3.6 Release BTA360
Migration Aids tape. The sample programs are called DUMPISAMS and
LOADISAMS, respectively. These sample programs will assist you when
writing your unload and load programs.

A SERIES KEYEDIO FILES

KEYEDIO is available in COBOL74 and RPG. It is a multi-user (multiple
inquiry and multiple update), multi-keyed method of file access. The
data and keys on A Series are stored in one physical file.

FILEORGANIZATION

The File Attribute called FILEORGANIZATION has two values that pertain
to KEYEDIO:

1. INDEXED.

2. INDEXEDNOTRESTRICTED.

If a value for FILEORGANIZATION is not specified, the default values are
assigned. The default values are:

1. INDEXED for COBOL74.

2. INDEXEDNOTRESTRICTED for RPG.

When you want a value other than the default value, INDEXEDNOTRESTRICTED
for COBOL74 and INDEXED for RPG, the line indicated by the arrow in the
following example should be inserted in the source code.

COBOL74

FD ISAM-FILE
RECORD CONTAINS
BLOCK CONTAINS

180 CHARACTERS
10 RECORDS

----> VALUE OF FILEORGANIZATION IS INDEXEDNOTRESTRICTED
AREASIZE IS 5000
AREA IS 25.

ISAM Files

RPG

04110F*************
04120F* EXAMPLE: ONE ATTRIBUTE FOR THE FILE
01430FFILE1 IP 80 80 DISK

---> 01440A FILEORGANIZATION "INDEXED"
01450F*************

183

To change the FILEORGANIZATION of an existing file, the file must be
recreated.

INDEXED

If the file was created with the organization of INDEXED, any program
that accesses this file must describe the file as INDEXED, and if keys
are declared, they must match/the keys exactly as they were defined in
the existing file. This organization conforms to the ANSI-74 standards.

An indexed file may not be sorted and may not be listed with the utility
SYSTEM/DUMPALL.

IHDEXEDHOTRESTRICTED

We recommend that
INDEXEDNOTRESTRICTED.

your file have a FILEORGANIZATION of
If a file is created with a FILEORGANIZATION Of

INDEXEDNOTRESTRICTED, accessing this file may be defined with any Of the
following organizations:

1. SEQUENTIAL.

2. INDEXED.

3. INDEXEDNOTRESTRICTED.

Such a program may declare none of the keys, all of the keys, or any
number of the keys. Remember that any key declared in the program
accessing the KEYEDIO file must match the key in the declaration of the
file when the file was created.

184

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

If the file is accessed sequentially, the program will get one copy of
each record. It is not guaranteed that the program will get the records
in any given order. Also, the speed in which you receive these records
will not be as fast as if the program were getting records from a purely
sequential file. This file may also be accessed via the relative record
number (actual key construct). If either of these access methods are
being used, the program may update and/or add records to the ISAM file
without corrupting any of the keys. They will always be properly
maintained.

Because this file may be accessed sequentially, programs such as SORT
and DUMPALL may open a file created with the FILEORGANIZATION Of
INDEXEDNOTRESTRICTED.

Recovery Of A KEYEDIO File

When creating a KEYEDIO file (any KEYEDIO file opened output), if the
system should fail or the program DS, that file and any records written
to the file will be lost. To prevent the file from being lost, a
permanent disk file can be created by opening the file OUTPUT, closing
the file SAVE, and then reopening the file I-0 before writing to it.
Thus, if a program is DSed or the system should fail, the file and the
records written to the file will be on disk. However, performance will
be significantly slower.

Once the file has been created, any additions, changes, or deletions are
always recovered up to the last record. This happens because once a
WRITE is completed, the record is on disk. The record is not stored in
the buffer for any length of time, and no other statement will be
executed until the WRITE statement is completed.

If recovery is needed, the system will automatically initiate it. If
the program was DSed and recovery is needed, it will begin as the
program goes to EOJ. If the program is executing and the system fails,
recovery will take place the next time the file is opened.

Example

WRITE ISAM-RECORD.
MOVE 1 TO ISAM-COUNTER.

185

ISAM Files

When the MOVE statement is executed, the ISAM record is on disk.

If the system failed in the middle of the WRITE statement, the next time
the file is opened, KEYEDIO automatically restores the integrity of the
file. This means there will never be a case when a key points to a
non-existent record or a record without a key.

Header Information

The Header or Control Information is located in the first record(s) of
the file.

Data and Indices

The Data Blocks and Indexed Blocks are mixed throughout the remainder of
the file.

Each index is organized as a B-TREE in a manner similar to Small Systems
DMSII and Small Systems ISAM. For more information, refer to the
"KEYEDIO" section in the "A Series System Software Support Reference
Manual."

Performance Considerations

Changing the block size of the KEYEDIO file can cause considerable
changes in performance. Remember that the block size can be changed
only before the file is created.

Each index table is the same size as the user specified block size.
Therefore, if you increase the block size you increase the table size.
Increasing the table size means fewer tables and fewer disk I-Os. This
results in improved performance. When calculating the block size,
remember that these larger block sizes only give you an advantage when
you are:

1. Accessing a file randomly.

2. Deleting records from or randomly adding records to a file.

3. Updating a file and a given key is changed.

186

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The block size has little effect on a file that
sequentially.

is accessed

Block sizes that are too large can degrade performance by using too much
memory. By default, KEYEDIO locks at least 10 blocks in SAVE memory for
each KEYEDIO file open. The number of buffers used by the KEYEDIO
library in processing an indexed file may be controlled by the user. A
program may indicate the number of buffers KEYEDIO is to use by setting
the value of the BUFFERS attribute of the indexed file.

Normally the best performance occurs when there are two levels of
tables; a root table which points to a fine table which points directly
to data.

Example

If each root table holds 10 records, then the root table can point to 10
fine tables, and each fine table can point to 10 data records. The
result is a file which holds 100 records.

I

ISAM Files

FINE TABLES DATA RECORDS

/->I 1 1------------------->llOI
I

ROOT TABLE //---------->I 2 1-------------->llOI
I I

----------- I I
I I

-----1----- I /---->I 3 1------------------->llOI
I I

2 I
I

3 /-------------->I 4 1-------------->llOI
I

4

5 -------->I 5 1------------------->llOI

1---- 6
I
1---- 7 ----

1

1---- 8
I
1---- 9
I
1--- 10
I
I

\

\

\

\

\

\-------------->I 6 1-------------->llOI

\
\

\ \---->I 7 1------------------->llOI
\

\ \
\ \

\ \ \
\ \ \--------- > I 8 1------------->llOI

\ \
\ \

\ \
\ 9 1------------------->llOI

\
\

\ ----
1 10 1-------------->llOI

187

If more than 100 records are entered into this file, or if the records
are entered in an unorderly manner which causes some of the tables to be
filled, then a third level of tables will be automatically allocated.

188

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

In this case, the root table points to a coarse table, the coarse table
points to the fine table, and the fine table points to the data records.

Example

COARSE
TABLES

FINE
TABLES

DATA
RECORDS

/->I l 1------->ll-lOl------>llOOI
I

I
ROOT TABLE //----->I 2 1-------->ll-lOl------->llOOI

I I
------------ I I

I I
-----1----- I !---->I 3 1------->11-lOl------>llOOI

I I
2 I

I
3 /--------->I 4 1-------->ll-lOl------->llOOI

I
4

5 -------->I 5 1------->ll-lOl------>llOOI

---- 6

\
7 \--------->I 6 1-------->ll-lOl------->llOOI

\
8 \

\ \
9 \ \----->I 7 1------>ll-lOl------->llOOI

\ \
--- 10 ----1 \ \

I\ \
-----------1 \ \

\
\

\

\

\

\----->I 8 1-------->ll-lOl------->llOOI

\
\

\ \I 9 1----->ll-lOl----->llOOI
\

\

10 l------>ll-101------>llOOI

189

ISAM Files

As illustrated, each coarse table points to 10 fine tables and each fine
table points to 10 data records. The file can now hold 1000 records.
The extra table will cause additional disk IOs, thus poorer performance.

How To Calculate BLOCKSIZE

The following formula will help you calculate optimum BLOCKSIZE:

1. Calculate the number of records the file will contain over its
lifetime.

2. Compute the square root of the number of records. Then,
multiply this value by an adjustment factor to allow for
partially filled tables. The result of this computation is the
desired number of keys per block.

The value of the adjustment factor is determined by the way the
file is to be created and updated. If the file is created
sequentially with entries for all keys in ascending order and
few records will be added later, you can use a small adjustment
factor of 1.1. If the file is created sequentially and more
records will be added later, use an adjustment factor of 1.3
(or greater, if many records will be added). If file is
created with entries for some of the keys occurring in random
order, use an adjustment factor of 2.0.

3. Compute the size of the largest key entry by performing the
following steps:

4.

a. Find the size of the largest key in the record.

b. If the key size is not already a multiple of six
characters, round this size up to the next multiple of six
characters.

c. Add six characters to allow space for the key entry's
pointer to the data record.

Compute the desired block size by
number of keys per block (from
largest key entry (from step 3).

multiplying the desired
step 2) by the size of the

5. Round this desired block size up to the next multiple of the
record size if it is not already a multiple of the record size.
This last step ensures that the block size chosen is suitable
for storing the data records as well as the keys.

190

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The block size calculated as a result of this procedure provides two
level access. However, its impact on the system must be determined
prior to deciding that this is the correct block size to use. The
effect of the block size on memory usage must be considered. The
buffers used by KEYEDIO occupy SAVE memory. The amount of SAVE memory
that will be used for a given indexed file can be approximated by
multiplying the actual. block size by the number of buffers to be used
for the file. By default, KEYEDIO keeps eight blocks in memory for each
physical file opened and two additional blocks for each user. However,
this value may be changed using the BUFFERS file attribute.

If the SAVE memory requirements for a particular block
great, a new block size that provides three or four level
be calculated. This can be done by using the algorithm
However, at step 2, compute the cube root or fourth root
instead of the square root.

We suggest a block size no larger than 5400 bytes.

Example 1

size are too
access should
given above.
of the number

Assume you have a file with 10,000 records where the largest key is 10
bytes, and a record size of 120.

1. 10,000 records.

2. The square root of 10,000 is 100.

100 * 1. 3 = 130

3. a. 10 bytes.

b. 12 bytes.

c. 12 + 6 = 18 bytes.

4. 130 * 18 = 2340

5. BLOCKSIZE = 2400

191

ISAM Files

Example 2

Assume you have a file with 100,000 records, a record size of 120, and
two keys: a 30-byte key and a 6-byte key. For the best performance,
when memory is not a concern, calculate block size using the 30-byte
key. Also, assume the file was created with the entries for some of the
keys occurring in random order.

1. 100,000 records.

2. The cube root of 100,000 is 47.

47 * 2.0 = 94

3. a. 30 bytes.

b. 30 is already a multiple of 6.

c. 30 + 6 = 36 bytes.

4. 94 * 36 = 3384.

5. BLOCKSIZE is 3480.

If the 30-byte key is rarely accessed other than sequentially, and the
6-byte key is consistently accessed randomly, calculate block size using
the 6-byte key. This is because the block size calculated using the
30-byte key uses more memory than the block size calculated using the
6-byte key. If the program accessing the file is doing a sequential
access, there is no a performance advantage in comparison to the amount
of memory being used. Thus, the larger block sizes are only give an
advantage in performance when using random access, deleting or randomly
adding records to your file, or updating a file and a given key is
changed.

For more information, refer to the "KEYEDIO - Block Size Calculations
for Indexed Files" in the "A Series System Software Support Reference
Manual."

192

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

PROGR.Al! CONVERSION

COBOL74 Programs

There are no changes required when converting COBOL74 programs, however,
we recommend adding the following line to the value clause in your FD.

VALUE OF FILEORGANIZATION IS INDEXEDNOTRESTRICTED

COBOL(68) Programs

Use the CTA filter to convert your COBOL(68) programs.

RPG Programs

The following describes some of the necessary changes to convert RPG
files.

1. For ISAM files there are no changes.

2. For TAG files, the KEYEDIO file should be created with a key
for each tag used on the file. That way, all the tags are
available all the time and they will not have to be created.

3. For B-Indexed files, since a B-Indexed file is always ordered
based on the key, some programs may access the file
sequentially knowing that the records are in order. These
programs will require a change to describe and access the file
as INDEXED.

ADDITIONAL FEATURES

KEYEDIO has many features available that Small Systems B-Indexed style
and TAG files do not. These features are:

1. KEYEDIO is multi-user (multiple inquiry and multiple update).

2. KEYEDIO is multi-keyed.

193

ISAM Files

3. KEYEDIO supports the DELETE verb.

4. KEYEDIO has automatic full recovery to the last record.

5. KEYEDIO files may be accessed either:

a. SERIALLY.

b. SEQUENTIALLY by_ KEY.

c. RANDOM by KEY.

d. RANDOM by RELATIVE RECORD NUMBER.

194

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

195

18 QUEUE/PORT FILES

The A Series equivalent to queue files is port files. This section
compares queue files and port files, explains the subfile matching
process for port files, details the COBOL74 interface to port files, and
discusses port file attributes.

GENERAL IHFORJIATIOH

Queue files are used on Small Systems to communicate between two or more
programs.

A port file provides communication paths between two programs. All
records written from one program go into one path, while all reads get
records from the other path. On a Burroughs Network Architecture (BNA)
network, port files are used to communicate between programs on
different hosts.

The following queue file example illustrates how a queue file is used to
communicate between two programs. Program 1 writes records into the
queue file, which are then read by Program 2.

Queue File Example

Queue File
+-------------+ +-----------+ +-------------+

I Writes I
Program 1 1--------->I

I I

I Reads I
1-------->I Program 2
I I

+-------------+ +-----------+ +-------------+

Equivalent Port File Example

Port File
+------------+

+-------------+ I
I

Program 1 I Writes I
1--------> I
I I

+-------------+ I

I +-------------+
I
I Reads I Program 2
1--------> I
I I
I +-------------+

+------------+

196

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The port file provides 2-way communication between the programs,
however, the converted programs may not need both paths.

A program on the Small systems can read and write records to a queue
file as soon as the program opens the queue file. A program opening a
port file on the A Series cannot read or write to the file until a
second program opens another port file that is matched to the first port
file.

When a program closes a queue file, other programs linked to that file
can continue to use it. The program can reopen the queue file without
the other programs making any changes. When a program closes a port
file, the other program linked to that port file can read the remaining
messages in the port file or close it. In order for the two programs to
re-use the port file, the remaining program must close the port file and
both programs must reopen it.

On small Systems, queue files can be used for job spawning. Messages
about the program are returned via the queue specified in the ZIP
statement. Port files do not have this feature. Task capabilities are
available in COBOL74 that can be used to simulate small Systems job
spawning. Also, WFL jobs can be started by programs.

The following diagrams and text illustrate some of the possible
configurations of programs using queue files and the A Series equivalent
using port files.

The simplest configuration is when a queue file is used for tanking
messages as shown below.

Queue/Port Files

Message Tanking Queue File Example

+---------------+
Reads

v +--------+
+-------------+

Program 1

Q 1--------1 F
u 1--------1 i
e I I 1
u 1--------1 e

+-------------+ e 1--------1
+--------+

A
Writes I

+---------------+

Equivalent Port File Example

Port File
+------------+

+-------------+ Writes I
1-------- > I

Program 1 I I
I Reads I
I < -------- I

+-------------+ I

I Reads +-------------+
1--------> I
I I Program 2
I Writes I
l<--------1
I +------~------+

+------------+

197

The only function of Program 2 is to read messages from the port file
and immediately write them back.

So far, this section has explained port files that are used for
communication between only two programs. A port file actually consists
of one or more subfiles (also referred to as subparts). Each subfile
provides communication between two programs (via the two 1-way paths).
The previous examples of a port file actually consisted of a port file
with one subfile.

198

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The following diagrams omit the "Reads" and
clarity. Any line with an arrow pointing into a
a write path and any line with an arrow pointing
subfile box is a read path. Also, the examples
in only one direction for clarity, but a subfile
both directions.

"Writes" headings for
queue or subfile box is
away from a queue or
will show communication
allows communication in

A more complex, but more common, configuration is where many programs
write to a queue file and one program reads from that queue file.

Many to one Queue File Example

+-------------+
I

Program 1 1-----+
I I

+-------------+ I
I Queue File

+-------------+ I +-----------+ +-------------+
I +--->I I I

Program 2 1--------->I 1-------->I Program 4
I +--->I I I

+-------------+ I +-----------+ +-------------+
I

+-------------+ I
I I

Program 3 1-----+
I

+-------------+

199

Queue/Port Files

Equivalent Port File Example

Port File
+---------------+

+-------------+ I Subfile 1 I
I I +-----------+ I

Program 1 1--------- > I I I I 1----+
I I +-----------+ I I

+-------------+ I I I
I I I

+-------------+ I Subfile 2 I I +-------------+
I I +-----------+ I +--->I

Program 2 1--------->I 1-------->I Program 4
I I +-----------+ I +--->I

+-------------+ I I I +-------------+
I I I

+-------------+ I subfile 3 I I
I I +-----------+ I I

Program 3 1---------> I I I I 1----+
I I +-----------+ I

+-------------+ I I
+---------------+

Programs 1, 2, and 3 each declare one port file with one subfile.
Program 4 declares one port file with three subfiles. Program 4 can
open all subfiles at once or one at a time. Program 4 can also perform
a general read that will duplicate a read on a Small systems queue file.
For more information, refer to OPEN and READ in "COBOL74 Interface,"
later in this section.

A program can be linked to an existing queue file. The programs already
linked to the queue file can communicate with the new program without
performing any extra processing. However, to add a program to a port
file, both programs must open a subfile before any communication can
occur. If the number of programs communicating through the port file
changes while the program is running, the program's logic must be
modified to open or close subfiles as other programs open or close their
subfiles.

200

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

In the previous queue file example, the number of writing programs can
change without the reading program performing extra processing. If the
number of writing programs changes in the port file example, the reading
program must open or close its subfiles accordingly.

Another configuration occurs when one program writes to a queue file and
several programs read from that queue file.

one to Many Queue File Example

+-------------+
I

+--->I Program 2
I I
I +-------------+

Queue File I
+-------------+ +-----------+ I +-------------+

I I 1----+ I
Program 1 1--------->I 1-------->I Program 3

I I 1----+ I
+-------------+ +-----------+ I +-------------+

I
I +-------------+
I I
+--->I Program 4

I
+-------------+

201

Queue/Port Files

Equivalent Port File Example

Port File
+---------------+

Subfile 1 +-------------+
I +-----------+ I I

+---->I I I I 1--------> I Program 2
I I +-----------+ I I
I I I +-------------+
I I I

+-------------+ I I subfile 2 I +-------------+
1----+ I +-----------+ I I

Program 1 1--------->I 1-------->I Program 3
1----+ I +-----------+ I I

+-------------+ I I I +-------------+
I I I
I I subfile 3 I +-------------+
I I +-----------+ I I
+---- > I I I I 1--------> I Program 4

I +-----------+ I I
I I +-------------+
+---------------+

Program 1 declares one port file with three subfiles. Programs 2, 3,
and 4 each declare one port file with one subfile. The major difference
between queue files and port files in this example is that program 1
will now have to choose which subfile to write records into. This can
be done by choosing them in order (first 1, then 2, then 3, and back to
1). Another way is to have programs 2, 3, and 4 write a message back to
program 1 when they are ready for another message.

202

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The following example illustrates a queue file with several programs
writing records into it and several programs reading records from it.

Many to Many Queue File Example

+-------------+ +-------------+
I

Program 1 1------+ +--->I Program 4
I I I I

+-------------+ I I +-------------+
I Queue File I

+-------------+ I +-----------+ I +-------------+
I +-->I 1----+ I

Program 2 1--------->I 1-------->I Program 5
I +-->I 1----+ I

+-------------+ I +-----------+ I +-------------+
I I

+-------------+ I I +-------------+
I I I

Program 3 1------+ +--->I Program 6
I I

--------------+ +-------------+

Queue/Port Files

Equivalent Port File Example

Port File 1
+---------------+
I Subfile 1 I
I +-----------+ I

+---- > I I I I 1-----+

203

+-------------+ I I +-----------+ I * +-------------+
1----+ I Subfile 2 I +----->I
I I +-----------+ I I

Program 1 1--------->I 1-------+ +->I Program 4
I I +-----------+ I * I
1----+ I Subfile 3 I +------->I

+-------------+ I I +-----------+ I : * +-------------+
+---->I I I I 1-----+ *

I +-----------+ I * *
+---------------+ * *

* *
Port File 2 * *

+---------------+ * *
I Subfile 1 I * *
I +-----------+ I * *

+---- > I I I I 1---------+
+-------------+ I I +-----------+ I * * +-------------1

1----+ I Subfile 2 I : * +--- > I I
I I +-----------+ I : * I I

Program 2 1--------->I 1----------->I Program 5 I
I I +-----------+ I * I I
1----+ I subfile 3 I : * +--->I I

+-------------+ I I +-----------+ I : * : +-------------+
+---- > I I I I I ---------+

I +-----------+ I * . .
+---------------+ *

*
Port File 3 *

+---------------+ *
I Subfile 1 I *
I +-----------+ I * . .

+---- > I I I I 1---+ *
+-------------+ I I +-----------+ I * +-------------+

1----+ I Subfile 2 I +----->I
I I +-----------+ I I

Program 3 1--------->I 1-------+ +->I Program 6
I I +-----------+ I I
1----+ I Subfile 3 I +----->I

+-------------+ I I +-----------+ I +-------------+
+----> I I I I 1-----+

I +-----------+ I
+---------------+

204

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Each of the six programs declare a port file with three subfiles. The
writing programs have to decide which subfile to write, as explained in
the previous example titled, "One to Many."

In general, the writing programs declare a port file with the number of
subfiles equal to the number of reading programs. The reading programs
declare a port file with the number of subfiles equal to the number of
writing programs.

QUEUE FILE FAMILIES

Small Systems also allow a queue file to be made
subqueues. This is called a queue file family.
a queue.

up of one or more
Each subqueue acts like

A queue file family can complicate the progression to port files. If
each subqueue is used only to communicate between two programs
(one-to-one) then it can be changed directly into one port file with the
same number of subfiles as subqueues. If any subqueue in the queue file
family is used in a many-to-one, one-to-many, or many-to-many situation,
each subqueue has to be changed into a separate port file with the
appropriate number of subfiles. As an alternative method, one port file
can be used, however, the program has to know which subfiles are grouped
together to correspond to the old subqueues.

SUBFILE MATCHING

small Systems queue files can have one or two 10-character file names.
If the queue file is a part of a queue file family, you can specify only
one 10-character file name. The system will generate the second
10-character name. When a queue file is opened, the system checks to
see if a queue file with that name already exists. If the queue file
does exist, the program is linked to that queue. If the queue file does
not exist, a new queue file is created.

A Series Port Files use several different file attributes to determine
when to match (link) two subfiles. Some apply to the port file as a
whole, others apply to each subfile separately. When a program offers a
subfile for matching (via an OPEN statement), if another subfile is
already offered with matching attributes, the system makes the

205

Queue/Port Files

connection and sets certain file attributes to tell the programs that
the subfile is now open. If a matching subfile is not found, the action
taken depends upon the open option used in the OPEN statement. See the
"COBOL74 Interface" later in this section, for more information.

Throughout the following discussion, the offered subfile is the subfile
for which the system is trying to find a match. The complementary
subfile is the subfile that is being checked to see if it matches the
offered subfile. (The complementary subfile would have been previously
offered by another program.)

When an attribute applies to a file as a whole, the attribute can only
be set or interrogated on the file level. If the attribute applies to
each subfile, it can be set or accessed for each file via a subfile
index. For more information, see "Queue File Attributes Compared To
Port File Attributes," later in this se9tion.

The following attributes are used when the A series match subfiles:

MYNAME

YO URN AME

TITLE

SECURITYTYPE

MYNAME is a string of one to 100
characters. The MYNAME attribute applies
to the file. For two subfiles to match,
MYNAME of the offered subfile must equal
YOURNAME of the complementary subfile. If
MYNAME is null (a value of ".") then it
will only match a null value for YOURNAME.

YOURNAME is a string of one to 100
characters. YOURNAME applies to each
subfile. YOURNAME of the offered subfile
must equal the value of MYNAME for the
complementary subfile for the two subfiles
to match. If YOURNAME is null (". ") then
it will match any value for MYNAME
(including".").

TITLE can be up to 17 characters long and
cannot include a slash (/). The TITLE
applies to the port file. The TITLE of the
port file for the offered subfile must
match the TITLE of the port file for the
complementary subfile. TITLE defaults to
the internal file name of the file.

This attribute applies to the port file.
checking each
subfiles. If

the offered

A Series applies security
time it tries to match two
SECURITYTYPE is PUBLIC for

206

YOURUSERCODE

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

subfile, then security checking is always
successful. If SECURITYTYPE is PRIVATE for
the offered subfile, then the usercode of
the program offering the complementary
subfile must equal the value of
YOURUSERCODE for the offered subfile.

Small Systems do no security checking for
queue files. on A Series, whenever a
program is run under a usercode, the
default value for SECURITYTYPE is PRIVATE.
This causes security checking to be
performed for port files. In order to
minimize changes to source code, the port
file should be declared with a SECURITYTYPE
of PUBLIC. (The "COBOL74 Interface"
subsection shows the syntax needed to
accomplish this.) If all programs using the
port file are run under the same usercode,
SECURITYTYPE can be left PRIVATE.

This attribute applies to each subfile.
YOURUSERCODE specifies the usercode under
which the program opening the complementary
subfile must be running if the value of
SECURITYTYPE is PRIVATE for the offered
subfile. YOURUSERCODE can be one to 17
characters long. The default value is the
usercode of the program offering the
subfile.

The following two attributes are used in the matching process only when
the subfiles will be linked between two hosts on a ENA network. If the
programs will be run on only one host, it is not necessary to use these
attributes.

HOS TN AME

MYHOSTNAME

HOSTNAME is a string of one to 17
characters that must begin with a letter.
This attribute applies to each subfile.
HOSTNAME specifies the name of the host on
which the program with the complementary
subfile is running. The value of HOSTNAME
for the subfile must equal the value of
MYHOSTNAME for the complementary subfile in
order for the two subfiles to match. A
null value for HOSTNAME (".") matches any
value Of MYHOSTNAME.

The MYHOSTNAME attribute is a read-only
attribute and it applies to the port file

207

Queue/Port Files

as a whole. MYHOSTNAME is the name of the
local host on which the program is running.

MYHOSTNAME is set by the system when the
program is first run. The value of
MYHOSTNAME must match the value of HOSTNAME
for the complementary subfile for the two
subfiles to match.

The following examples further illustrate the A Series matching process.

Port File Matching Example 1

Port File 1 Port File 2

+------------------------+ +------------------------+
USERCODE - A I I USERCODE - A
TITLE - PFA I I TITLE - PFA
MYNAME - II II I I MYNAME - II II . .
SECURITYTYPE - PRIVATE I I SECURITYTYPE - PRIVATE I

I I I
SUBFILE lA I I SUBFILE 2A I

+--------------------+ I I +--------------------+ I
: YO URN AME - II II I<- Subfile ->I : YO URN AME - II II I . .
: YOURUSERCODE - A I<- Matches ->I : YOURUSERCODE - A I
+--------------------+ I I +----------~---------+ I

I I I
+------------------------+ +------------------------+

Example 1 is the simplest example of subfiles that match. Both subfiles
were offered by programs running under the same usercode. The user did
not specify values for any of the port file attributes in the program,
therefore, the default values were used. Both YOURNAME and MYNAME
defaulted to a value of 11 ." (null). The TITLE of both port files was
the same. While SECURITYTYPE was PRIVATE, both programs ran under the
same usercode, so YOURUSERCODE matched the other program's usercode.
YOURNAME matched MYNAME for both port files.

208

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Port File Matching Example 2

Port File 1

+------------------------+
USERCODE - A I
TITLE - PFA I

. MYNAME - "ABC" I
SECURITYTYPE - PUBLIC I

I
SUBFILE lA I

+--------------------+ I
: YOURNAME - "." I<- Subfile
: YOURUSERCODE - A I<- Matches
+--------------------+ I

I
+------------------------+

Port File 2

+------------------------+
I USERCODE - H
I TITLE - PFA
I MYNAME - "123"
I SECURITYTYPE - PUBLIC
I
I SUBFILE 2A
I +--------------------+

- > I : YOURNAME - "ABC"
->I : YOURUSERCODE - H

I +--------------------+
I
+------------------------+

In the second example, the subfiles are matched because the TITLE of
each file is the same, SECURITYTYPE is PUBLIC for both files (the
different userc.odes do not matter), and YOURNAME of subfile lA is null.
Therefore, it matches any MYNAME for port file 2, and YOURNAME (ABC) of
subfile 2A matches MYNAME (ABC) of port file 1.

209

Queue/Port Files

Port File Matching Example 3

Port File 1

+------------------------+
USERCODE - A
TITLE - PFA
MYNAME - "ABC"
SECURITYTYPE - PUBLIC

SUBFILE lA
+--------------------+
: YOURNAME - "ABC"
: YOURUSERCODE - A
+--------------------+

SUBFILE lB
+--------------------+
: YOURNAME - "123"
: YOURUSERCODE - A
+--------------------+

+------------------------+

Port File 2

+------------------------+
USERCODE - A
TITLE - PFA
MYNAME - "123"
SECURITYTYPE - PUBLIC

SUBFILE 2A
+--------------------+

<- No -> : YOURNAME - "ABC"
<- Match -> : YOURUSERCODE - H

+--------------------+

SUBFILE 2B
+--------------------+

<- Subfile -> : YOURNAME - "ABC"
<- Matches -> : YOURUSERCODE - H

+--------------------+

+------------------------+

In Example 3, subfile lA was not matched to subfile 2A because YOURNAME
(ABC) of subfile lA did not match MYNAME (123) of port file 2.
(Remember, MYNAME applies to the port file as a whole.) Subfile lB was
matched with subfile 2B because TITLE was equal, SECURITYTYPE was
PUBLIC, and YOURNAME of each subfile equaled MYNAME of the opposite port
file.

In this example, the system could have matched and linked either subfile
lB and subfile 2B, or subfile lB and subfile 2A. The subfile that is
matched depends on which subfile was open, or, if subfiles 2A and 2B
were open at the same time, the first subfile opened.

Leaving MYNAME and YOURNAME with their default values can cause problems
by linking the wrong subfiles together. Using the One to Many example
from the previous subsection, the subfiles from two of the reading
programs could get linked together, leaving two subfiles from the
writing program with no complementary subfiles (subfiles in the same
port file are never linked together). This situation depends on the
order in which the subfiles were opened and whether the writing program
had performed an OPEN OFFER. For more information, see "COBOL74
Interface," later in this section.

210

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

To eliminate this possibility and to avoid elaborate startup procedures
for programs, we recommend that the port file's MYNAME be set to the
name of the program. (If there is more than one port file in a program,
use a unique MYNAME for each port file.) The subfile's YOURNAME should
be set to the name of the program to which it is to be linked. Because
MYNAME and YOURNAME can be up to 100 characters long, the values could
be the object code name of the program or even a descriptive title.
MYNAME can be set in the COBOL74 FD and YOURNAME can be set for each
subfile at the beginning of the program. For more information, see the
"COBOL74 Interface," later in this section.

If two sets of the same programs are running at the same time, the
subfiles may be cross-connected between the two systems of programs. To
avoid this, keep the value of SECURITYTYPE as PRIVATE and run each
system of programs under a different usercode.

The second program in the Message Tanking example previously shown can
be eliminated by using two port files in program 1. By using
appropriate values for MYNAME and YOURNAME, a subfile in the first port
file can be linked to a subfile in the second port file to provide a
simulation of message tanking. Messages can be written into one subfile
and read out of the other subfile.

COBOL74 INTERFACE

This subsection discusses the conversion of Small Systems COBOL(68) and
COBOL74 queue file constructs to the equivalent A Series COBOL74 syntax.
The discussion is divided into the three parts based on where the
constructs occur in the COBOL program: the Environment Division, the
Data Division, and the Procedure Division.

Except where noted, the discussion of the Small Systems syntax applies
to both COBOL(68) and COBOL74. The A Series syntax applies to COBOL74.

Environment Division

The SELECT statement is the only statement that requires change in the
Environment Division.

211

Queue/Port Files

Small Systems Examples

SELECT QFILE ASSIGN TO QUEUE
RESERVE 3 AREAS.

To change the SELECT statement

1. Change QUEUE to PORT.

(COBOL74)

SELECT QFILE ASSIGN TO QUEUE
ACTUAL KEY IS ACT-KEY
FILE STATUS IS QFILE-STATUS.

2. Remove the RESERVE clause, it is not necessary in the A Series
since all messages are in memory.

The ACTUAL KEY and STATUS clauses are the same. On A Series, the ACTUAL
KEY is required if there is more than one subfile.

All other statements remain the same. The resulting A Series program is:

(COBOL74)

SELECT QFILE ASSIGN TO PORT. SELECT QFILE ASSIGN TO PORT
ACTUAL KEY IS ACT-KEY
FILE STATUS IS QFILE-STATUS.

FILE STATUS Values

The A Series values for FILE STATUS are similar to those on the Small
Systems. The values are two characters long, the first character is
status key 1 and the second character is status key 2.

The following is a list comparing the Small Systems values and A Series
values for FILE STATUS.

Small A Series

00 00

10 10

Meaning

sucessful completion of I/O.

On Small Systems, a status key 1 value of
"l" indicates a read was attempted on an

212

20

34

94

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

20

34

81

82

94

empty queue file with no other programs
connected to this queue by way of an OPEN
OUTPUT or OPEN I-0.

On A Series, a status key of "l" indicates
that a READ was attempted when there was no
next logical record and the connection
between the two subfiles was severed.

Functionally,
equivalent.

these two values are

On Small Systems, a status key 1 value of
"2" indicates that a READ or WRITE occured
on a queue file when the content of the
ACTUAL KEY data item was less than zero or
greater than the number of subfiles in the
queue file family (Q.FAMILY.SIZE).

on A Series, a status key 1 value of "2"
indicates that a READ or WRITE statement
had an ACTUAL KEY data item with a value of
less than zero or greater than the number
of subfiles in the port file (MAXSUBFILES).

Functionally,
equivalent.

on both Small

these

Systems

two

and
value indicates a boundary
means that the value of the
item was less than zero
MAXSUBFILES.

values are

A Series, this
violation. This
ACTUAL KEY data
or greater than

This A Series value means that the subfile
was not successfully opened (matched) after
an OPEN OFFER or OPEN AVAILABLE statement.

This A Series value means that when a CLOSE
was attempted on a subfile, an error
occurred.

on both Small
value means
attempted but
available.

Systems and A Series this
that a READ WITH NOWAIT was

no data (messages) was

213

Queue/Port Files

95 95 On both Small Systems and A Series this
value means that a WRITE WITH NOWAIT was
attempted but no buffer was available.

Data Division

The Data Division requires changes to the FILE CONTAINS and MAXSUBFILES.

small Systems Examples

(COBOL(68))
FD QFILE

VALUE OF Q-MAX-MESSAGES IS 20.
01 QFILE-REC PIC X(80).

(COBOL(68))
FD QFILE

FILE CONTAINS 3 QUEUES
VALUE OF Q-MAX-MESSAGES IS 4.

01 QFILE-REC PIC X(80).

(COBOL74)
FD QFILE

VALUE OF MAXSUBFILES IS 3
MAXCENSUS IS 10.

01 QFILE-REC PIC X(80).

To change the Data Division

1. Change Q-MAX-MESSAGES to MAXCENSUS.

2. COBOL(68): Change the FILE CONTAINS <n> QUEUES to MAXSUBFILES
IS <n>.

3. Change MAXSUBFILES to reflect the number of subparts rather
than subqueues.

The resulting A Series program is

FD QFILE
VALUE OF MAXCENSUS IS 20.

01 QFILE-REC PIC X(80).

214

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

FD QFILE
VALUE OF MAXSUBFILES IS 3
MAXCENSUS IS 4.

01 QFILE-REC PIC X(80).

FD QFILE
VALUE OF MAXSUBFILES IS 3
MAXCENSUS IS 10.

01 QFILE-REC PIC X(80).

Other file attributes can be set in the VALUE clause in the COBOL74 FD.
If the attribute is a subfile attribute, declaring the attribute in the
FD gives the same value for each subfile in the port file. For examole:

FD PORTFILE
VALUE OF MAXCENCUS IS 10

MAXSUBFILES IS 5
MYNMAE IS "PROGRAMl"
YOURNAME IS "PROGRAM2"
SECURITYTYPE IS PUBLIC.

The attributes MAXCENSUS and YOURNAME are subfile attributes. Therefore,
values declared here apply to each of the five subfiles in the port
file. The attributes specified in the FD can be changed with the CHANGE
statement as explained in "Procedure Division," the next subsection.

Procedure Division

The Procedure Division requires changes in

1. The Declaratives Section.

2. The OPEN statement.

3. The READ statement.

4. The WRITE statement.

5. The CLOSE statement.

6. The CHANGE statement.

7. The IF statement.

215

Queue/Port Files

8. The MOVE statement.

9. The DISPLAY statement.

The DECLARATIVES Section

Small Systems COBOL(68) allows the DECLARATIVES section to contain a USE
statement that applies to queue files. The Small Systems USE statement
has the options FOR Q-FULL and FOR Q-EMPTY available. A Series COBOL74
has no equivalent USE options. Therefore, the Q-FULL and Q-EMPTY options
must be removed. Though A Series does not have these options, their
functions can be simulated.

To simulate the Small Systems Q-EMPTY option, access the A Series CENSUS
attribute in an IF statement before a READ.

To simulate the Small Systems Q-FULL option, access the A Series
OUTPUTEVENT in an IF statement before a WRITE.

For more information, see the discussion about the IF statement, later
in this subsection.

The OPEN Statement

The A Series OPEN statement is similar to the Small Systems OPEN
statement but there are differences that may need conversion.

On Small Systems, when an OPEN is done for a queue file family, all
subqueue files are opened. On A Series, the value of the ACTUAL KEY
data item determines which subfiles are opened. When the value is zero,
all subfiles whose FILESTATE is CLOSED are opened. When the value is
greater than zero but less than or equal to MAXSUBFILES, only the
subfile with the specified value is opened. When the value is less than
zero or greater than MAXSUBFILES, an error results. Change your Small
Systems programs accordingly.

Small Systems COBOL allow OPEN INPUT, OPEN OUTPUT, and OPEN I-0.
A Series allow OPEN I-0, OPEN OFFER, and OPEN AVAILABLE. In most cases
the OPEN option should be changed to I-0. The A Series COBOL74 OPEN
options are explained below:

216

I-0

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

error in open ---->

The program offers the subfile for matching
and the program is suspended until the
matching subfile is found. Use this option
to progress your program because no I/O can
be done on a subfile until it is matched
with another subfile and then opened. Your
Small Systems program may be written in
such a way that it will read or write from
a queue file without requiring an existing
queue file.

If the subfile being opened will be
connected to a subfile on a remote host,
there is a condition you should be aware
of. During an OPEN I-0 for a subfile, if
the host specified by the HOSTNAME for that
subfile becomes unreachable during the open
operation, the program will resume
execution. The FILESTATE of the subfile
will be AWAITINGHOST and the SUBFILEERROR
for the subfile will be UNREACHABLEHOST.
If it is unacceptable to have the program
resume execution in this case, the program
must be changed to detect this condition.

The following COBOL74 program excerpt shows
how to detect this error. The port file
used has only one subfile (no subfile index
is necessary).

OPEN I-0 PFILE.
IF PFILE-STATUS = "81"

ELSE

IF ATTRIBUTE FILESTATE OF
PFILE = VALUE AWAITINGHOST

AND
ATTRIBUTE SUBFILEERROR OF

PFILE = VALUE UNREACHABLEHOST
DISPLAY "UNREACHABLE HOST ERROR.

"PORT FILE NOT OPENED"
STOP RUN

DISPLAY "ERROR ON PORT FILE OPEN.
DISPLAY "FILESTATE =" ATTRIBUTE

FILESTATE OF PFILE

"

DISPLAY "SUBFILEERROR = " ATTRIBUTE
SUBFILEERROR OF PFILE

STOP RUN.

II

OFFER

AVAILABLE

217

Queue/Port Files

PFILE-STATUS is the data item specified in
the FILE STATUS clause. The IF statement
is explained in more detail below.

The program offers the subfile for matching
and continues execution. The program does
not wait for matching subfiles to be found.
If a read or write is attempted for a
subfile that was open offered and no match
was found, an end-of-file condition will be
returned. The attribute FILESTATE can be
used to determine the result of the OPEN.

The program offers the subfile for matching
and continues execution. If a matching
subfile is not found, the subfile is not
left offered and cannot be matched to any
subsequently.offered subfile. (The subfile
must be opened again.) The SUBFILEERROR
attribute can be checked for a NOFILEFOUND
value if a matching subfile was not found.
Also, the value of FILE STATUS will be "81"
if this occurs.

The value of the FILE STATUS data item will be "81" if an error occurred
on the OPEN. Note that it is not an error when a subfile is open
offered and no matching subfile was found. The FILE STATUS value will
be "00" in this case.

The Small Systems LOCK and LOCK ACCESS options are not allowed for port
files.

Recommended Progression

1. Change OPEN INPUT and OPEN OUTPUT to OPEN I-0. The program is
suspended until the matching subfile is found.

2. Remove the LOCK and LOCK ACCESS options.

3. If an ACTUAL KEY data item was declared for the port file and
the OPEN statement occurs several times in the program, add a
MOVE 0 TO <ACTUAL KEY data item> before each OPEN. This
statement is needed because the value of the ACTUAL KEY data
item can be changed by previous READ and WRITE statements.

218

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The READ Statement

The READ statement is almost the same on A Series as it is on Small
Systems but there are differences in the way it works.

On Small Systems, the value of the ACTUAL KEY data item determines which
subqueue to read in a queue file family. On A Series, when the READ
statement is executed, the contents of the ACTUAL KEY data item
determine the subfile read. (If no ACTUAL KEY was declared or the file
contains one subfile, the program does not have to maintain the value of
the ACTUAL KEY.) If the ACTUAL KEY is zero, then a non-selective READ is
performed. On Small Systems, when a non-selective READ is done on a
queue file family, the system checks each subqueue in order, starting at
one, until it finds a non-empty subqueue. on A Series, the subfiles are
checked in order starting with the subfile indexed by the value of the
LASTSUBFILE attribute plus one, until a non-empty subfile is found. If
the last subfile in the port file is empty, the check will proceed to
the first subfile. The value of the ACTUAL KEY data item is updated to
the number of the subfile read.

If the value of the ACTUAL KEY is greater than zero, the subfile
specified by the value is be read. If the value of the ACTUAL KEY is
out of range, then an error occurs and the FILE STATUS will be "34".

If a queue file is progressed into a port file with multiple subfiles,
insert a MOVE 0 TO <ACTUAL KEY data item> before each READ. This
simulates the read from the queue file on Small Systems. Remember that
the ACTUAL KEY value is updated after each READ and WRITE, if the ACTUAL
KEY is not set to zero before each READ, some subfile may never be read.

The Small Systems NO WAIT option has the same meaning on A
a READ is executed with a NO WAIT option, the program is
waiting for a message from the system. The value of FILE
indicate if the READ WITH NO WAIT was unsuccessful.

series. When
not suspended

STATUS will

If a READ was done and NO WAIT was not specified, the program will be
suspended until a subfile has a message in it. This is the same as
Small Systems.

If a READ (with or without NO WAIT) is done on a subfile and no messages
are in the subfile and the program writing messages to the subfile has
closed it, the system terminates the READ with an end-of-file condition.
(The AT END or INVALID KEY branch is taken.) If there are still messages
in the subfile that was closed by the program writing messages to it,

219

Queue/Port Files

the subfile is kept open until all the messages are read, then an
end-of-file occurs.

If the program previously did a READ and is suspended waiting for a
message and the other program closes the subfile being read, the system
resumes execution of the program and returns an end-of-file condition.
(The AT END or INVALID KEY branch is taken.) If the program did a
general READ, the AT END branch is taken when all the subfiles are
closed by the other programs.

Recommended Progression

The READ statements have to be changed only when the ACTUAL KEY data
item is declared for the port file and there is more than one subfile.
If the READ statements need to be changed, add MOVE 0 TO <ACTUAL KEY
data item> before each READ statement.

The WRITE Statement

The syntax for the WRITE statement is the same on the A Series as it is
on the Small Systems, however, there are operational differences.

on small Systems, the value of the ACTUAL KEY data item specifies the
subqueue in a queue file family to which the data is to be written. On
A Series, the ACTUAL KEY determines which subfile.

On Small Systems, the ACTUAL KEY data item can never be zero; on
A Series, it can. When the ACTUAL KEY is zero, the same record will be
written to all open subfiles. When the ACTUAL KEY is greater than zero,
data is written to the specified subfile. When the ACTUAL KEY data item
is out of range, an error occurs.

Unless the port file in the program contains only one subfile, a MOVE
statement must be inserted before the WRITE statement to set the value
of the ACTUAL KEY data item. If the program does not do a MOVE, the
program will either do a broadcast WRITE or a write to whatever subfile
is specified by the ACTUAL KEY data item. If the last I/O statement was
a READ, the WRITE will be to the same subfile that was just read. This
may be acceptable in your program's logic, but check to be sure.

220

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

If a program does a write, with or without the NO WAIT option, and the
program connected to the subfile closed it, an end-of-file condition is
returned. (The INVALID KEY branch is taken.)

If the program is suspended because no buffers are available for the
WRITE (the NO WAIT option was not specified), the system resumes
execution of.the program and an end-of-file condition is returned. (The
INVALID KEY branch is taken.)

Recommend Progression

To progress the program, unless the port file in the program contains
only one subfile, it must be decided from the program's logic as to
whether:

1. The ACTUAL KEY from the last READ or WRITE can be used again,

or

2. Whether a MOVE <number> TO <ACTUAL KEY data item> must be
inserted before each WRITE statement.

The WAIT Statement

The options of the WAIT statement must be changed to port file syntax.
Each of the Small Systems options are listed below with their A Series
equivalents.

WRITE-OK

READ-OK

The port file equivalent is OUTPUTEVENT. A
WAIT on OUTPUTEVENT suspends the program
until a buffer is available for a write to
a particular subfile. A subfile index is
required in the port file unless there is
only one subfile in the port file.

The port file equivalent is INPUTEVENT.
When a WAIT on INPUTEVENT is executed, the
program waits for a message in a subfile.

A subfile in the WAIT statement causes the
program to wait for a message in that
particular subfile. If no subfile index is
specified, the program resumes when there
is a message in any of the subfiles.

USING

GIVING

221

Queue/Port Files

The USING option is not allowed on the
A Series.

The A Series equivalent is GIVING and it
works on the A Series just as it does on
the Small Systems.

For COBOL(68) programs, when an arithmetic expression is used as the
first item in the event list, it represents, in tenths of seconds, the
amount of time the program will be suspended. For Small Systems and
A Series COBOL74, the arithmetic expression represents the number of
seconds the program will be suspended. The Burroughs to Burroughs
Translator (CTA) for COBOL(68) to COBOL74 properly converts this.

On Small Systems, when a program is waiting on READ-OK and all other
writing programs using the queue file close it, the READ-OK is made
TRUE. The next read on the queue file gets an end-of-file. This is not
the case for A Series programs waiting on INPUTEVENT. When the program
is waiting for the INPUTEVENT for a subfile to happen, it is possible
for the other program using the subfile to close it. The program
waiting on the INPUTEVENT will wait forever.

In order to prevent this from happening, another event file attribute
called CHANGEEVENT should be added to the WAIT statement. A WAIT on the
CHANGEEVENT for the file, or on one of its subfiles, will suspend the
program until the FILESTATE attribute changes for the file or the
subfile respectively. The FILESTATE attribute will change when a
program closes the subfile. The CHANGEEVENT attribute should come after
the INPUTEVENT attribute in the WAIT statement.

Because the READ statement will probably be a general read (any
subfile), the result of the WAIT statement must be checked to see which
event happened. The following example shows this for a converted queue
file QFILE.

222

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Example

Small Systems

WAIT UNTIL READ-OK ON QFILE.
READ QFILE AT END

CLOSE QFILE.

Large Systems COBOL74 (one subfile in the port file)

WAIT ATTRIBUTE INPUTEVENT OF QFILE,
ATTRIBUTE CHANGEEVENT OF QFILE GIVING WAIT-NO.

IF WAIT-NO = 1
PERFORM MESSAGE-HANDLER

ELSE IF WAIT-NO = 2
IF ATTRIBUTE FILESTATE OF QFILE =

VALUE DEACTIVATED
CLOSE QFILE.

Large Systems COBOL74 (more than one subfile)

WAIT ATTRIBUTE INPUTEVENT OF QFILE,
ATTRIBUTE CHANGEEVENT OF QFILE GIVING WAIT-NO.

IF WAIT-NO = 1
PERFORM MESSAGE-HANDLER

ELSE IF WAIT-NO = 2
MOVE ATTRIBUTE CHANGEDSUBFILE OF QFILE TO SUB-NO
IF ATTRIBUTE FILESTATE OF QFILE (SUB-NO) =

VALUE DEACTIVATED
MOVE SUB-NO TO QFILE-ACTUAL-KEY
CLOSE QFILE.

The WAIT statement is executed, and when one of the events happens, the
ordinal number of that event is put into WAIT-NO. If WAIT-NO equals 1
then the event INPUTEVENT happened and the program can read the port
file (the program will not hang on the read). If WAIT-NO= 2 then the
event CHANGEEVENT happened and should be checked to see if a subfile
closed. In the second Large Systems COBOL74 example, the attribute
CHANGEDSUBFILE is the subfile index of an arbitrary subfile whose
CHANGEEVENT has "happened." Because the event could be other than the
closing subfile, an IF is added to check. If the value of FILESTATE is
DEACTIVATED the subfile can be closed.

223

Queue/Port Files

For more information on the file attributes CHANGEEVENT, CHANGEDSUBFILE,
and FILESTATE, see "Port File Attributes" later in this section.
Detailed information on the IF and MOVE statements is presented later in
this subsection.

When a program is waiting on an OUTPUTEVENT for a subfile, a similar
situation can occur. If the other program closes the subfile, then the
program waiting on the OUTPUTEVENT for that subfile will wait
indefinitely.

To prevent this from happening the CHANGEEVENT file attribute should be
added to the WAIT statement. The CHANGEEVENT attribute should follow
the OUTPUTEVENT attribute in the WAIT statement. The example below
shows the use of CHANGEEVENT in a WAIT on OUTPUTEVENT statement.

Example

Small Systems

WAIT UNTIL WRITE-OK ON QFILE.
WRITE QFILE-REC.

Large Systems COBOL74 (one subfile)

WAIT ATTRIBUTE OUTPUTEVENT OF QFILE,
ATTRIBUTE CHANGEEVENT OF QFILE
GIVING WAIT-NO.

IF WAIT-NO = 1
PERFORM MESSAGE-WRITER

ELSE IF WAIT-NO = 2
IF ATTRIBUTE FILESTATE OF QFILE =

VALUE DEACTIVATED
CLOSE QFILE.

Large Systems COBOL74 (more than one subfile):

WAIT ATTRIBUTE OUTPUTEVENT OF QFILE (SUB-NO),
ATTRIBUTE CHANGEEVENT OF QFILE (SUB-NO)
GIVING WAIT-NO.

IF WAIT-NO = 1
PERFORM MESSAGE-WRITER

ELSE IF WAIT-NO = 2
IF ATTRIBUTE FILESTATE OF QFILE (SUB-NO)

= VALUE DEACTIVATED
MOVE SUB-NO TO QFILE-ACTUAL-KEY CLOSE QFILE.

224

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

The data item SUB-NO is used as a subfile index in the preceding
example.

When the program is resumed after the WAIT statement. WAIT-NO will
contain the number of the event that happened. If WAIT-NO = 1 then a
write can be done without the program hanging on a no-buffers-available
condition. If WAIT-NO = 2 then the FILESTATE changed for the subfile.
If the FILESTATE is DEACTIVATED then the subfile can be closed.

The check for the FILESTATE DEACTIVATED is present because there are
other FILESTATEs that could have occurred. If the same subfile is being
used for 2-way communication and there are some messages left to be
read. then the FILESTATE is DEACTIVATIONPENDING. In this case the
program can read the rest of the messages from the subfile before
closing it. If BNA is used. the FILESTATEs SHUTTINGDOWN and BLOCKED can
occur. If the subfile is only being written to and BNA is not used,
then the following statement can be deleted:

IF ATTRIBUTE FILESTATE OF QFILE (SUB-NO) =
VALUE DEACTIVATED

Deleting this statement causes the subfile to be closed without further
checks into why the CHANGEEVENT occurred.

Recommended Progression

1. Change the WAIT WRITE-OK ON <queue file name> to WAIT ATTRIBUTE
OUTPUTEVENT OF <port file name> (subfile index).

2. Change WAIT READ-OK ON <queue file name> to WAIT ATTRIBUTE
INPUTEVENT OF <port file name>.

3. Remove the USING option.

4. Change the arithmetic expression from tenths of seconds to
seconds. If you run the program through the Burroughs to
Burroughs COBOL(68) to COBOL74 translator(CTA), the correct
conversion is done.

5. Add CHANGEEVENT to a WAIT INPUTEVENT or WAIT OUTPUTEVENT
statement. If OUTPUTEVENT is specified in the WAIT statement.
use a subfile index for CHANGEEVENT. Code must be added after
the WAIT statement to check for the event that terminated the
WAIT.

225

Queue/Port Files

The CLOSE Statement

The CLOSE statement on Small Systems is the same on A Series except for
the action of the ACTUAL KEY and the NO WAIT options.

On Small Systems, CLOSE closes all subqueues in a queue file family. On
A Series, CLOSE closes only ~he subfile specified by the ACTUAL KEY data
item. A value of zero closes all open subfiles. A value greater than
zero but less than or equal to MAXSUBFILES closes only the specified
subfile. A value out of range causes an error.

Closing a subfile may take a significant amount of time if the
complementary subfile is on a different host. Because the program waits
until the close is finished, the delay may be unacceptable. The NO WAIT
option allows the program to continue while the system closes the
subfile. Unless the subfile is used again in the program, we recommend
the use of the NO WAIT option when the complementary subfile is on
another host.

Recommended Progression

1. If the port file will not be used again, insert a MOVE O TO
<ACTUAL KEY data name> just before the CLOSE. This will cause
all open subfiles to be closed.

2. Add the NO WAIT option on the CLOSE statement if the other
subfile is on a different host.

The CHANGE Statement

The CHANGE statement is the same on A Series as it is for Small Systems
COBOL74; it allows you to change port file attributes.

If the file attribute being changed is not a subfile attribute (such as
MYNAME), specifying a subfile index causes a syntax error.

For those attributes that are subfile attributes (such as YOURNAME), a
subfile index must be specified. If the index is zero, the change will
apply to all subfiles in the port file. If there is only one subfile in
the port file, the subfile index may be omitted.

226

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

For attributes that are both file and subfile attributes (such as
MAXRECSIZE), if a subfile is not specified, the change applies to the
file. If a subfile index is used, the change applies to the specified
subfile.

Some port file attributes may only be changed at certain times, such as
before the file is opened (like MYNAME). If the attribute is changed at
the wrong time, an attribute error occurs.

Most file attribute errors are non-fatal. A fatal error will Discontinue
(DS) the program. If a non-fatal attribute error occurs, the value of
the attribute that was to be changed is left at its previous value.

The IF Statement

Port file attributes can be accessed through the COBOL74 IF statement.

The use of the subfile index with the IF statement is just like that
used for the CHANGE statement.

Some file attributes have valid values only after the file is opened.

The file attributes are of different types as explained in "Port Files
Attributes," later in this section. Alphanumeric attributes can be
compared with alphanumeric data items or string literals. Numeric
attributes can be compared with numeric data items or numeric literals.

Mnemonic attributes can be compared with numeric literals or mnemonics.
Use of mnemonics is recommended to improve the maintainability of a
program. Boolean attributes can only be compared to the numbers 1
(TRUE), 0 (FALSE), VALUE TRUE, or VALUE FALSE. Event attributes can be
used as simple conditions.

227

Queue/Port Files

The MOVE Statement

The values of port file attributes can be moved to other data items.

File attributes cannot be used as the receiving field in the MOVE
statement.

The use of the subfile index is just like that for the CHANGE statement.

The rule for the MOVE statement, given in the COBOL74 Reference Manual,
applies to file attribute moves. Moving a boolean file attribute results
in a 1 (TRUE) or a O (FALSE) being moved. Event file attributes cannot
be moved.

The DISPLAY Statement

The DISPLAY statement allows the. values of port file attributes to be
displayed. The values for numeric, mnemonic, and Boolean file attributes
can be displayed. A value of TRUE for Boolean items is displayed as
+000001, FALSE is displayed as +000000. The values for alphanumeric file
attributes cannot be displayed directly with a DISPLAY statement. The
value must first be moved to an alphanumeric data item and then
displayed. Event attributes cannot be displayed.

The use of the subfile index is just like that for the CHANGE statement.

QUEUE FILE ATTRIBUTES COMPARED TO PORT FILE ATTRIBUTES

The following is a list of the Small Systems queue file attributes with
their A Series port file equivalents.

Small Systems

BUFFERS (BUF)

A Series

This Small Systems attribute is not
applicable on A Series port files. To
achieve a similar function on the A Series,
use the MAXCENSUS attribute, described
later in this section.

228

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

INPUT.SELECTIVITY (ISL) There is no A Series equivalent. The
A Series MAXSUBFILES attribute, described
later in this section, is similar.

Q.FAMILY.SIZE (QFS)
MAXSUBFILES (COBOL74)

Q.MAX.MESSAGES (QMX)
Q-MAX-MESSAGES (COBOL(68))
MAXCENSUS (COBOL74)

The A Series MAXSUBFILES attribute is the
equivalent of this Small Systems attribute.
MAXSUBFILES is used to specify the number
of subfiles in a port file.

MAXCENSUS is the A Series equivalent of
this Small Systems attribute. MAXCENSUS is
used to specify the number of messages that
can be stored in a subfile before a "NO
BUFFER AVAILABLE" error message is
displayed. The maximum number of messages
that can be stored is 63. For additional
information, see the SUBFILEERROR
attribute, described later in this section.

PORT FILE ATTRIBUTES WITH NO QUEUE FILE EQUIVALENTS

The following is a list of A series port file attributes that have no
Small Systems equivalents.

Each attribute description is followed by "file" or "subfile" to
indicate whether the attribute applies to the entire file or to each
subfile. Where the attribute is used for a subfile, a subfile index is
necessary when checking or setting the attribute for port files with
multiple subfiles. For additional information, see the "COBOL74
Interface", earlier in this section.

The file or subfile indicator is followed by the type of file attribute.
There are five types that are valid for A Series COBOL74:

1. Alphanumeric. These file attributes are similar
elementary alphanumeric DISPLAY item.

to an

2. Numeric. These file attributes are similar to an elementary
numeric DISPLAY item (signed with six digits, PIC S9(6)).

3. Mnemonic. These file attributes can be accessed by a mnemonic
rather than a numeric value because the actual value is
unrelated to its meaning (see FILESTATE and SUBFILEERROR shown
later). Also, using mnemonics improves the readability of a
program.

229

Queue/Port Files

4. Boolean. These file attributes can be accessed the same as
numeric attributes where 1 represents TRUE and O represents
FALSE.

5. Event. These file attributes have two states: "happened" and
"not happened." The two states are similar to the Boolean
values TRUE and FALSE, respectively. The system will set the
event file attribute to "happened" whenever the event described
occurs. Event file attributes can be used as conditional
expressions.

For more information on file attribute types, see Section 4 of the
"A Series COBOL74 Reference Manual."

BLOCKSTRUCTURE (FILE, KNEMONIC)

The values of FIXED and EXTERNAL for the BLOCKSTRUCTURE attribute apply
to port files. BLOCKSTRUCTURE is only meaningful for a READ. If
BLOCKSTRUCTURE has a value of FIXED then the buffer is filled with
blanks. If BLOCKSTRU,CTURE has a value of EXTERNAL, only the data
received is put into the buffer (there is no blank fill to the end of
the buffer). The actual length of the data can be found by using the
CURRENTRECORD attribute. The default value for BLOCKSTRUCTURE is FIXED.

CENSUS (FILE, SUBFILE, NUMERIC)

The CENSUS attribute returns the total number of messages queued for all
subfiles in a port file or the number of messages queued for a specified
subfile. This attribute is read-only (it cannot be set).

CHANGEDSUBFILE (FILE, NUMERIC)

This read-only attribute returns the subfile index of an arbitrary
subfile whose CHANGEEVENT has "happened." If no subfile's CHANGEEVENT
has happened, a O (zero) is returned. This attribute can be useful in a
general handler routine for many subfiles.

230

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

CHANGEEVENT (FILE, SUBFILE, EVENT)

The CHANGEEVENT for a subfile is caused whenever the value of the
FILESTATE attribute (described later) changes for that subfile. The
CHANGEEVENT for the file has the value "happened" (TRUE) as long as the
CHANGEEVENT for any subfile has the value "happened" (the CHANGEEVENT
was caused). When the program checks the subfile's FILESTATE, the
system resets the CHANGEEVENT for that subfile. When all subfile
CHANGEEVENTs are reset, the system resets the file's CHANGEEVENT. This
attribute is read-only.

COMPRESSION (SUBFILE, BOOLEAN)

Data sent between two subfiles can be compressed. This can be done only
when the programs containing the subfiles are on different hosts.
Support for compressing data is negotiated when the subfiles are opened
and matched (each host must be able to handle compressed data or
compression is not possible). If data compression is supported, then
setting COMPRESSION to TRUE when the subfile is open will compress data
written to the complementary subfile. The value for COMPRESSION can be
changed at any time the subfile is open to selectively compress records.
The value of COMPRESSION will be FALSE even after setting it to TRUE, if
compression of data is not supported.

Compressing data involves a trade-off in terms of processor and data
transfer time. Compressing data increases processor time, but decreases
data transfer time. If the connection between the two hosts involves a
slow transfer rate, data compression may be worth investigating.

CURRENTRECORD (SUBFILE, NUMERIC)

This attribute returns the length, in FRAMESIZE units, of the last
record read or written. If the BLOCKSTRUCTURE attribute has a value of
FIXED, then CURRENTRECORD will equal MAXRECSIZE.

FILESTATE (SUBFILE, 11NEMONIC)

This read-only attribute indicates the logical state of the subfile. The
logical state is specified using either the mnemonic or its equivalent
value (0 through 8) as listed below.

231

Queue/Port Files

Checking a subfile's FILESTATE causes the system to reset the subfile
CHANGEEVENT.

Mnenonic

CLOSED (0)

AWAITINGHOST (1)

OFFERED (2)

OPENED (3)

SHUTTINGDOWN (4)

BLOCKED (5)

CLOSEPENDING (6)

DEACTIVATIONPENDING (7)

Description

Indicates that the subfile is closed.

Indicates that the host specified by the
subfile's HOSTNAME attribute cannot be
reached. The subfile remains in this state
until the host is reachable. All I/O
performed on this subfile returns an
end-of-file.

Indicates that an open was attempted on
this subfile, but no matching subfile was
found. All I/O performed on this subfile
returns an end-of-file. If a different
host was specified (via HOSTNAME), then
that host was reached to check for a
matching subfile.

Indicates that the subfile is now open and
ready for input or output.

Indicates that the system operator wants to
end communication between the host on which
the program is running, and the host to
which the subfile is linked. The
connection will not be severed until all
subfiles between the two hosts are closed.
This allows the program to close the
subfile (finish processing messages, etc.).
The port file remains open and all I/O
operations are valid.

Indicates that the remote host to which the
subfile linked is temporarily unreachable.
The subfile remains open and all I/O
operations are valid.

Indicates that this program closed the
subfile, but the complementary subfile has
not been closed by the other program. When
the complementary subfile is closed, the
FILESTATE is changed to CLOSED.

Indicates that
was closed but

the complementary subfile
there are still messages

232

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

DEACTIVATED (8)

queued for input by this
to this subfile return
reads are still valid.

program. Writes
end-of-file, but

Indicates that the complementary subfile
was closed and there are no messages queued
for input. The subfile cannot be read or
written to, it can only be closed.

The FILESTATE values AWAITINGHOST, SHUTTINGDOWN, and BLOCKED will only
occur for those subfiles that are linked to a subfile on a different
host.

FRAMESIZE (FILE, NUMERIC)

The FRAMESIZE attribute specifies the number of bits transferred as a
unit of data during an I/O operation. For port files the system
actually transfers data in 8-bit units, but the user program can access
the data in any of the sizes available in FRAMESIZE. The default value
is 48 bits (six characters).

HOSTNAME (SUBFILE, ALPHANUMERIC)

The HOSTNAME attribute specifies the host on which the program with the
complementary subfile is running. HOSTNAME is a string of one to 17
characters and must begin with a letter. HOSTNAME is used during the
subfile matching process. See "Subfile Matching," earlier in this
section.

INPUTEVENT (FILE, SUBFILE, EVENT)

If accessed for the port file, INPUTEVENT returns "happened" (TRUE) if
the CENSUS file attribute is greater than zero. If a subfile index is
used, INPUTEVENT returns "happened" if the CENSUS subfile attribute is.
greater than zero for the specified subfile. This attribute is similar
to the Small Systems READ-OK. See the "COBOL74 Interface," earlier in
this section. This is a read-only attribute.

233

Queue/Port Files

LASTSUBf!LE (FILE, NUMERIC)

The subfile index of the last subfile that was used for a successful I/O
operation is contained in this attribute. This value is updated only if
the last I/O was successful. LASTSUBFILE is useful after a general read
(no subfile was specified to read from} to tell from which subfile the
message came.

llAXCENSUS (SUBFILE, NUMERIC)

This attribute specifies the maximum number of input messages that can
be stored in a subfile before the writing program gets a "NO BUFFER
AVAILABLE" indication for that subfile. See "SUBFILEERROR," later in
this subsection. The maximum value for MAXCENSUS is 63 messages.

llAXR.ECSIZE (FILE, SUBFILE, NUMERIC)

The MAXRECSIZE attribute can only be set for the port file as a whole.
It is read-only for each subfile and can also be read for the port file.
When the system matches two subfiles and links them together, the new
MAXRECSIZE for each subfile is the smaller of the two original
MAXRECSIZEs. MAXRECSIZE is set by default to the largest record size in
the port file's COBOL FD. The value for MAXRECSIZE is in FRAMESIZE
units.

llAXSUBFILES (FILE, NUMERIC)

This attribute specifies the maximum number of subfiles in the port
file. Each subfile has an index numbered from 1 to MAXSUBFILES,
inclusive. Once this attribute is set, its value cannot be decreased,
only increased.

234

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

MYHOSTNAME (FILE, ALPHANUMERIC)

MYHOSTNAME specifies the name of the host on which the program is
running. MYHOSTNAME is used in the subfile matching process. (See the
preceeding subsection, "Subfile Matching.") This attribute is a
read-only attribute.

MYNAME (FILE, ALPHANUMERIC)

MYNAME is a string from one to 100 characters. It
subfile matching process. (See the preceding
Ma~ching.")

is used during the
subsection, "Subfile

OUTPUTEVENT (SUBFILE, EVENT)

The OUTPUTEVENT attribute for
whenever output buffers are
resets OUTPUTEVENT whenever no
OUTPUTEVENT attribute is similar

a subfile returns "happened" (TRUE)
available for that subfile. The system

output buffers are available. The
to the Small Systems WRITE-OK. (See the

"COBOL74 Interface" subsection.) This is a read-only attribute.

SECURITYTYPE (FILE, MNEMONIC)

SECURITYTYPE can be either PUBLIC or PRIVATE and determines the level of
security checking performed during subfile matching. For more
information, see the "Subfile Matching" subsection.

SUBFILEERROR (SUBFILE, MNEMONIC)

This read-only attribute is set after each READ, WRITE, OPEN, or CLOSE
operation that affects that subfile. A list of the valid values is given
below. Either the mnemonic or the numeric value, as listed below, can be
used to specify the value. For additional information, see the "COBOL74
Interface" subsection.

Mnemonic

NOERROR (0)

DISCONNECTED (1)

DATALOST (2)

NOBUFFER (3)

NOFILEFOUND (4)

UNREACHABLEHOST (5)

UNSUPPORTEDFUNCTION (6)

235

Queue/Port Files

Description

No error occurred.

Communication with the complementary
subfile was lost. This happens when the
connection with a remote host is severed
without allowing the subfiles to close.

The subfile may have closed (due to a
failure in the BNA link) before
transmission of data to the other subfile
was complete. This can only happen when
the two subfiles are on different hosts.

A write with the NO WAIT option to this
subfile failed because no buffer space was
available. If NO WAIT was not specified in
the WRITE, then the error will not occur
(the program will hang on the write until a
buffer is available).

An open operation on this subfile failed
because a matching subfile was not found.
This error will only occur when the
AVAILABLE option was specified in the OPEN
statement (see the "COBOL74 Interface"
subsection).

The remote host became unreachable during
the open operation. The subfile is not
open and no I/O can be performed.

An attempted open on this subfile resulted
in a request for an unsupported function.

236

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

TITLE (FILE, ALPHANUMERIC)

The TITLE attribute is a string between one and 17 characters long. The
TITLE for a port file is used in matching subfiles. (See the
subsection, "Subfile Matching.") The default for TITLE is the internal
name of the file. TITLE cannot contain a slash (/).

YOUR.BAME (SUBFILE, ALPHABUMERIC)

YOURNAME is a string from 1 to 100 characters long. YOURNAME is used in
the subfile matching process. (See the preceding subsection, "Subfile
Matching.")

YOUR.USER.CODE (SUBFILE, ALPHABUMERIC)

The YOURUSERCODE attribute specifies the usercode under which the
program opening the complementary file must be running. It is used only
when SECURITYTYPE is PRIVATE. (See the subsection, "Subfile Matching,"
for more information.)

Further information about these file attributes can be found in the
"A Series I/O Subsystem Reference Manual."

237

A S'MALL SYSTEMS ARD A SERIES REFERENCE MANUALS

The following is a list of Small Systems and A series reference manuals.

S'MALL SYSTEMS MANUALS

1108_982

1108966

1057197

1108883

1090586

1163920

1106531

1127222

1108875

1057189

1090594

1108859

1073715

A SERIES MANUALS

5014574

5011760

5014582

1169653

5011778

5014301

System Software Operation Guide, Volume l.

System Software Operation Guide, Volume 2.

COBOL Reference Manual.

COBOL74 Reference Manual.

CANOE User's Manual.

GEMCOS User's/Reference Manual.

GEMCOS Formatting Guide.

DMSII Reference Manual.

DMSII Inquiry Reference Manual.

RPG Reference Manual.

SORT Reference Manual.

Communications Module (SYCOM)
Manual.

Reference

Network Definition Language (NOL) Reference
Manual.

DCALGOL Reference Manual.

ALGOL Reference Manual.

BINDER Reference Manual.

Burroughs Network Architecture (BNA)
Program Agent User's Guide.

Remote Job Entry (RJE) Reference Manual.

Sort Reference Manual.

238

5014541

5014442

5012222

5001480

5012230

5001803

5012263

5014483

5014541

5014962

1154481

5011828

5011828

5014426

5014434

5014418

5014491

5011794

1154465

1185337

1154523

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

COBOL Reference Manual.

COBOL ANSI-74 Reference Manual.

DMSII Inquiry Software Operation Guide.

DMSII DASDL Reference Manual.

DMSII User Language Interface
Operation Guide.

Software

DMSII Utilities and Operations Guide.

Report Program Generator (RPG) Reference
Manual.

I/O Subsystem Reference Manual.

CANOE Reference Manual.

CANOE Operations Manual.

Generalized Message Control System (GEMCOS)
User's Reference Manual.

Network Definition Language (NDL) Reference
Manual.

Network Definition
Reference Manual.

Language II (NDL)

System Software Utilities Reference Manual.

System Software Support Reference Manual.

System Software Site Management Reference
Manual.

Operator Display Terminal (ODT) Reference
Manual.

work Flow Language (WFL) Reference Manual.

Advanced Data Dictionary Systems (ADDS)
User's Guide.

Communications Management System
Migration Guide.

Communications Management System
Operator's Guide.

(COMS)

(COMS)

1185238

1154531

1164027

1169521

1169588

1154440

1169919

1169950

Small Systems and A Series Reference Manuals

Communications Management System
Planning and Installation Manual.

Communications Management System
Programmer's Guide.

Extended Retrieval With Graphic
(ERGO) User's Guide.

Interactive Datacom
User's Guide.

configurator

Menu-Assisted
User's Guide.

Resource Control

239

(COMS)

(COMS)

Output

(me)

(MARC)

Screen Design Facility (SDF) User's Guide.

Printing Subsystem overview

Printing Utilities User's Guide

240

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

241

GLOSSARY

This glossary contains definitions for many of the terms used in this
manual. The terms are defined in alphabetical order.

ASCII

See "American Standard Code for Information Interchange."

audit file

Files that are produced for each Network Support Processor (NSP) and
Data Communications Data Link Processor (DCDLP) by the datacomm
subsystem procedures of the Master control Program (MCP). The
audited items are specified with a Menu Assisted Resource Control
(MARC) menu selection or through an operator command.

audit trail

A file produced by the Accessroutines that contains various control
records and a sequence of before-update and after-update record
images resulting ftom changes to the data base. The audit trail is
used to recover the data base and supply restart information to
programs after a hardware or software failure has occurred.

back.up

BCL

The copying of information to disk or tape to provide a means of
restoring the information on the system as required.

See "Burroughs Common Language."

Burroughs Common Language (BCL)

CD

A code using 6-bit character representation. BCL is not available
on A Series and most B 5000/B 6000/B 7000 Series systems (such as
B 5900 systems).

See "Communication Description."

242

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

checkpoint

A place in a program where the program is to be stopped so that the
current state of the program can be written to disk. After the
program's state has been recorded, execution of the program is
resumed where it left off. If the system halts unexpectedly before
the program finishes, the program can be restarted at the point of
its most recent checkpoint instead of at the beginning of the
program.

checksum

A value used to detect certain classes of input/output errors. A
checksum is computed for each data base file block by applying an
equivalence operator to each word in the block. When the block is
physically written, the checksum value is stored in a checksum word
appended to the end of the block. When the block is read, the
checksum is recomputed and the result is compared to the stored
value. A checksum error occurs if the two values are not equal.

COBOL

common Business-Oriented Language.

COBOL74

ANSI-74 COBOL.

collating sequence

The sequence in which a computer recognizes characters for purposes
of sorting, merging, and comparing.

Communication Description (CD)

A message header that is passed with the message data received and
sent by application programs. There are two versions of the CD in
COBOL74, the standard EBCDIC CD (like B 1000 COBOL74 CDs) and the
Binary CD that is used for the direct programmatic interface to the
Communications Management System (COMS). The Binary CD provides
routing information about the message data and allows use of COMS
security and recovery functions, processing items, and routing by
trancode.

243

Glossary

communication description entry

In COBOL, an entry in the COMMUNICATION SECTION of the DATA DIVISION
that is composed of the level indicator CD, a cd-name, and a set of
clauses as required. It describes the interface between the Message
Control System (MCS) and the COBOL program.

Communications Management System (COKS)

A general Message control System (MCS) that supports a network of
users and provides them with a consistent, on-line interface between
the Data Communications Processor (DCP), Network Support Processor
(NSP), or Data Communication DLP (DCDLP) and application programs
that process transactions associated with remote terminals. COMS
supports the processing of multi-program transactions as well as
single-station and multi-station remote files.

compiler

A computer program that translates computer instructions written in
a source language, such as COBOL, into machine-executable object
code.

compiler control image (CCI)

A record in the source instructions beginning with a dollar sign ($)
that contains one or more options that control various compiler
functions. These specifications can appear anywhere in the source
program, unless otherwise specified. A compiler control image is
also referred to as a "compiler control record."

compiler control options

Individual compiler directions that appear on a compiler control
image.

compiler dollar options

Individual compiler directions that appear on a compiler control
image. Compiler dollar option are also ref erred to as a compiler
control options.

244

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

COMS

See "Communications Management System."

COMS Control

A Communications Management System (COMS) internal library that
initiates a Data Base library (DB library) for each data base that
uses synchronized recovery, and a Transaction Processing library (TP
library) for non-data base, transaction-processing programs that do
not use synchronized recovery.

COMS transaction trail

A file, generated by the Transaction Processing (TP) library, that
reflects such information as beginnings of jobs and ends of jobs.
The file optionally provides a journal of query transactions not
associated with any data base. The file also optionally provides
statistical information on a transaction-by-transaction basis and
can be used for security and accounting.

COMS Utility

The Communications Management System (COMS) program that defines and
maintains the specifications stored in the COMS configuration file.

COMS window environment

The status of the windows currently available to a given station.
The status of a window can be open, closed, suspended, or disabled.

conditional expression

In COBOL, a simple condition or a complex condition specified in an
IF, PERFORM, or SEARCH statement.

A statement specifying that the truth value of a condition is to be
determined and that the subsequent action of the object program
depends on this truth value.

conditional variable

In COBOL, a data item for which at least one value has a
condition-name assigned to it.

245

Glossary

control file

In Data Management System II (DMSII), a file containing data file
coordination information, audit control information, and dynamic
data base parameter values. The control file provides data base
interlock control; that is, it allows functions, such as recovery,
to have exclusive use of the data base. In addition, the control
file provides program-to-file and file-to-file compatibility.

control station

In CANDE, a station that allows CANOE network control commands to be
entered.

In the Communications Management System (COMS), a control-capable
station: a station with no restrictions on the use of COMS commands.
A control station is either defined thr.ough the COMS Utility to be
control-capable or in the Network Definition Language II (NDLII) or
by using the Interactive Datacomm Configurator (IDC) to set its
station attribute SPO to TRUE.

CREATIONDATE

The file attribute that gives the date on which a file was first
locked on a disk or disk pack.

DASDL

see "Data and Structure Definition Language."

Data and Structure Definition Language (DASDL)

In Data Management System II (DMSII), the language used to describe
a data base logically and physically, and to specify criteria to
ensure the integrity of data stored in the data base. DASDL is the
source language that is input to the DASDL compiler, which creates
or updates the data base description file from the input.

data base

An integrated, centralized system of data files and program
utilities designed to support an application. The data sets and
associated index structures are defined by a single Data and
Structure Definition Language (DASDL) source file. A data base is

246

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

considered a global entity that several applications can access and
update concurrently. Ideally, all the permanent data pertinent to a
particular application will reside in a single data base.

data set

In Data Management System II (DMSII), a collection of related data
records stored in a file on a random-access storage device. A data
set is similar to a conventional file. It contains data items and
has logical and physical properties similar to files. However,
unlike conventional files, data sets can contain other data sets,
sets, and subsets.

The data in a data set is formatted in a special manner so that it
can be accessed by DMSII software. Application programs are expected
to access a data set through the DMSII software rather than directly
as files.

data type

An interpretation applied to a string of bits.

Data types can be classified as structured or scalar. Scalar data
types include real, integer, double precision, complex, logical
(also called "Boolean"), character, pointer, and label. Structured
data types are collections of individual data items of the same or
different data types. An array is a data type that is a collection
of data items of the same type. Records, structures, or files are
data types that are collections of data items of one or more data
types.

Most programming languages provide a declaration· statement or a
standard convention to indicate the data type of the variable used.

density

The number of bits per inch on a magnetic tape.

device

Any piece of I/O hardware, such as a Data Link Processor (DLP) or a
peripheral unit.

247

Glossary

disabled

In CANDE, the state of a station in which messages from the line it
represents are being ignored by the system.

disk

In COMS, the condition of being
normal communication with the
(COMS).

rendered incapable of exercising
Communications Management System

A data storage device consisting of one or more circular platters
that contain bits of information stored in concentric circles called
tracks.

disk file

A file stored on a disk or disk pack.

disk pack

A disk that consists of multiple platters stacked vertically on a
central spindle. Data on a disk pack is accessed by movable
read/write heads. Some disk packs are removable. A disk pack is also
referred to as a "pack."

embedded

In Data Management System II (DMSII), a data set, set, or subset
contained within another data set. "Embedded" is the opposite of
"disjoint."

enabled

The condition of being capable of normal communication with the
Communications Management System (COMS).

extract file

A data file produced by extracting information from a data base
using the Data Management System II (DMSII) Inquiry EXTRACT command.
The format of the file is specified in the EXTRACT command.

248

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

FAST

See "File Access Structure Table."

File Access Structure Table (FAST)

A special file that is part of the access structure the system uses
to locate disk files. The FAST contains a pointer to each disk
file's header in the flat directory of each family.

file attribute

A parameter that describes a characteristic of a file and contains
information the system needs to handle the file. Examples of file
attributes are the file title, file kind, record size, number of
areas, and date of creation.

footing

Text that appears at the bottom of each page of a document.

format

A specific arrangement of a set of data.

GEllCOS

See "Generalized Message Control System."

Generalized llessage Control System (GEllCOS)

A Burroughs Message control system (MCS) developed for on-line,
multi-task systems. GEMCOS is transaction-oriented.

header

A sequence of characters preceding the text of a message, containing
routing or other communications-related information.

249

Glossary

hexadecimal literal

A character-string bounded by at signs (@). The string of
characters must consist of one or more characters chosen from the
set of hexadecimal digits consisting of the digits o through 9 and
the characters A through F. The characters A through F are the
hexadecimal digit representations for the decimal values 10 through
15, respectively.

host name

The name associated with a particular host. A host name consists of
1 to 17 alphanumeric characters, inclusive.

index random set

A structure of records allocated to particular tables based on a
hashing function of the key.

Indexed Sequential Access Method (ISAK)

A method that provides efficient, yet
fixed-length records identified by
files.

flexible,
multiple

random access to
keys stored in disk

initial value

The value assigned to an item in a newly created record. An
initialvalue can be explicitly specified for each item when it is
declared in the Data and Structure Definition Language (DASDL). If
no initialvalue is specified, a default initialvalue is assigned by
DASDL.

ISAK

See "Indexed Sequential Access Method."

KIND

The file attribute that indicates the type of hardware device on
which the file is stored.

250

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

manual subset

In Data Management System II (DMSII), a subset that has no condition
specifying which data set records are to be included in the subset.
The user must add and delete manual subset entries, using the INSERT
and REMOVE statements.

In Extended Retrieval with Graphic output (ERGO), a collection of
indices or pointers to records in one data set.
used to access selected members of that data set
relationships between data records. The user
entries in a manual subset because these subsets
WHERE conditions normally used by Data Management
to maintain the sets and subsets.

A manual subset is
and to represent

must maintain the
do not specify

System II (DMSII)

MARC

See "Menu-Assisted Resource Control."

11.AXRECSIZE

MCS

In CANDE, a file attribute that gives the maximum size, in frames,
of records in a logical file. For port files, MAXRECSIZE specifies
the maximum text size for all subfiles in the port file.

See "Message Control System."

memory

A temporary storage area where data and programs are placed while
being processed.

Menu-Assisted Resource Control (MARC)

A menu-driven interface and transaction
operators of Burroughs A Series and
systems.

Message Control System (MCS)

processor for users and
B 5000/B 6000/B 7000 Series

A program that controls the flow of messages between terminals,
application programs, and the Master Control Program (MCP).
Burroughs MCSs include GEMCOS/MCS, SYSTEM/CANOE, SYSTEM/RJE,

251

Glossary

SYSTEM/COMS, SYSTEM/APL, and SYSTEM/DIAGNOSTICMCS.

message header

A sequence of characters preceding the text of a message, containing
routing or descriptive information for the message.

monitor station

In the Communications Management System (COMS), a station that has
been defined to display COMS activities specified as monitor
options.

next record

The record that logically follows the current record of a file.

nonnumeric item

A data item whose contents can be composed of any
characters taken from the computer's character
categories of non-numeric items can be formed from
character sets.

combination of
set. Certain

more restricted

nonnumeric literal

ODT

A character string bounded by quotation marks ("). The
include any character in the computer's character set.
a single quotation mark character within a nonnumeric
contiguous quotation marks must be used.

See "Operator Display Terminal."

string can
To represent

literal, two

open mode

In COBOL, the state of a file after execution of an OPEN statement
for that file and before the execution of a CLOSE statement for that
file. The particular open mode is specified in the OPEN statement
as either INPUT, OUTPUT, I-0, or EXTEND.

252

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Operator Display Terminal (ODT)

The system console device that allows the operator to enter commands
directly to the operating system to perform various functions.

optional word

A reserved word included in a programming language to improve the
readability of a source statement. The user can include or omit an
optional word.

ordered

An adjective meaning maintained in a user-specified sequence.

processing-item library

In the Communications Management System (COMS), a user-written ALGOL
library containing a set of procedures called processing items. A
processing-item library can be called only by the Agenda Processor
library of COMS to preprocess and postprocess messages as they are
received and sent by programs.

queue

A logical collection of messages awaiting transmission or jobs
awaiting processing.

queue name

A symbolic name that indicates to the Message Control System (MCS)
the logical path by which a message or a portion of a completed
message ~s accessible in a queue.

recovery

In Data Management System II (DMSII), a data base routine that is
initiated following a hardware, software, or operations failure
while the data base is in update mode. Recovery backs out any
partially completed transactions by applying audit-trail images to
the data base to restore it to its proper state. In addition,
recovery passes restart information to the programs accessing the
data base.

253

Glossary

In Communications Management System (COMS), reconstruction of a data
base after a system failure.

remap

In the Data Management System II (DMSII), a logical data record that
redefines a physical data set record by omitting, reordering, or
renaming the items.

reorganization

In Data Management System II (DMSII), the process of reordering or
reformatting data sets, sets, or subsets. Reorganization can
restore space in files, reorder data sets for more efficient
retrieval, and reformat data set records when items are added,
deleted, or changed.

report file

In COBOL, an output file with a description entry that contains a
REPORT clause. The contents of a report file consist of records that
are written under control of the Report Writer Control System
(RWCS).

SECURITYTYPE

The file attribute that specifies the type of access allowed to a
file.

sequential statement

In Pascal, a structured statement in which the subcomponent
statements are executed in the order in which they appear, without
conditions or repetitions.

serial number

The six-digit number an installation assigns to a disk or magnetic
tape to uniquely identify it. The serial number is stored on the
label of the disk or tape.

254

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

structure

In the Data Management System II (DMSII), any physical entity in a
data base; particularly, a data set, set, subset, access, or remap.

table

In COBOL, a set of logically consecutive items of data defined in
the DATA DIVISION by means of the OCCURS clause.

tag file

A file created during an Inquiry sort that contains key items and
addresses of selected records and is passed to the system sort
intrinsic.

unordered data set

In the Data Management System II (DMSII), a collection of related
data records stored in a file in which the records are either
fixed-format or variable-format.

variable format

WFL

In the Data Management System II (DMSII), a record that consists of
two parts: a fixed part and a variable-format part. A single record
description exists for the fixed part. The variable-format part can
describe several variable parts. An individual record is
constructed by using the fixed part alone, or by joining the fixed
part with one of the variable parts.

See "Work Flow Language."

Work Flow Language (WFL)

The Burroughs language used to write jobs that control the flow of
programs and tasks on the operating system.

ZIP

255

Glossary

An ALGOL statement that causes the Work Flow Language (WFL) compiler
to be initiated. It is commonly used to initiate compilations
automatically.

256

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Index

A-Specification After D-Specification, 87
A Series introduction, 1
A Series Manuals, 237
ACCEPT, 72
ACCEPT <data-name> FROM TIMER, 72
Accessing A File Under Another Usercode, 21
ADDRESSCHECK, 109
ADDROUT Files, 170
ADDSTA Command, 154
After, 26
AFTER, 45
AFTER.NUMBER, 27, 45
ALLOCATE.AT.OPEN, 31
AP300STATUS Statement, 138
Archival Recovery, 164
AREA LENGTH Clause, 68
AREALENGTH, 42
AREAS, 31, 42
AREAS Clause, 68
AREASIZE, 104
ASCII, 31
ATTACH Command, 154
ATTACH MESSAGE Statement, 138
ATTERR, 42
AUDIT and RECOVERY Commands, 153
AUDIT ASSIGNMENT Statement, 138
AUDIT FILE FAMILY ID Statement, 135
AUDIT FILE PACK ID Statement, 136
AUDIT OK (AOK), 150
AUDIT PAGE SIZE Statement, 136
AUDIT RECORD SIZE Statement, 135
AUDIT SET, 108
Audit Trail, 111
AUDIT TRANSACTION Statement, 138
AUDITED, 42
AUTOPRINT, 31

B And Tag Style ISAM Files, 56
B-Indexed Files, 181
BACKUP, 32
BACKUP.DISK, 32
BACKUP.TAPE, 32
BACKUPKIND, 42
BACKUPPERMITTED, 42
BCL, 32
Begin Transaction, 161
Begin Transaction Abort Handling, 162
BIAS Statement, 167
BINARY, 32
BLOCK, 42

257

258

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Block Size
How to Calculate, 189

Blocking Levels, 115
BLOCKS.AREAS, 32
BLOCKSIZE, 42, 114
BLOCKSIZE (Small Systems), 113
BLOCKSIZE Clause, 68
BLOCKSTRUCTURE, 42
BROADCAST (BRC), 150
BUFFERS, 32, 42
BlOOOCOPY, 51
BlOOOCOPY Method, 52
B6000COPY, 51
B6000COPY Method, 54

c Spec, 89
CALL SYSTEM ZIPSE, 72
CARD.PUNCH, 32
CARD.READER, 33
Cards Or Pseudo Reader, 176
CASSETTE, 33
CD Interface, 147

compared to Common-Area HEader, 148
CENSUS, 42
CHANGE Commands, 152
CHANGE MONITOR FLAG (CMF), 152
CHANGE REQUESTS Statement, 135
CHANGE Statement, 225
CHANGE STATION ADDRESS (CSD), 152
CHANGE STATION DIAGNOSTIC (CDS), 152
CHANGE STATION MAXIMUM RETRY (CSM), 152
CHANGE STATION READY (CSR), 152
CHANGE STATION TRANSMISSION NUMBER (CST), 152
CHANGEDSUBFILE, 42
CHARGE, 45
CHECKPOINT INTERVAL Statement, 135
CHECKSUM, llO
CLEAR DISABLED PROGRAM (CLE), 153
CLOS, 91
CLOSE Command, 154
CLOSE Statement, 225
Close The Data Base, 163
COBOL, 106
COBOL Divisions, 68
COBOL Interface Differences, 146
COBOL(68), 59
COBOLLIB, 106
COBOL74, 61

General Conversion Information, 61
COBOL74 Code, 174

COBOL74 Interface, 210
COBOL74 ISAM Files, 57
COLLATE Statement, 167
COMMON SIZE Statement, 138
common-Area Header, 146, 148

Compared to CD Interface, 148

Index

Common-Area Header Compared To CD Interface, 148
COMPlLE OPTIONS Statement, 136
Compile-Time Vectors, 88
Compiler Control Images (CCI), 83
Compiler Options, 105
Compiling a Data Base, 95
Compiling a DMSII Application Program, 96
COMPRESSION, 43
COMS, 129

Formatting, 129
General Information, 129
Utility Program, 129
Window Feature, 129

COMS Command, 155
CONDITIONAL, 28, 46
CONTINUOUS LOG ON Statement, 144
CONTROL File, 104
CONTROL Statement, 134
CONTROL STATION Statement, 144
Controlling Stations, 154
CONVERSATION LIMIT Statement, 135
CONVERSATIONAL Statement, 143
CONVERSATIONSIZE Statement, 139
CONVERT, 106
converting to A Series WFL, 25
COPY, 33
Creating The Restart Data Set, 159
CREATIONDATE, 43
CURRENTBLOCK, 43

D-specificaiton, 87
D-Specif ication

A-Specification After D-Specification, 87
DASDL

General Information, 103
Data and Indices, 185
Data Base Data Transfer Utility, 51
DATA BASE NAME Statement, 139
Data Base Stacks, 97
Data Division, 69, 213
DATA DUMP Statement, 135
DATA SET Statement, 172
Data Transfer, 181

259

260

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Data Type Differences, 169
RSA, 169
SA, 169

DATA.RECORDER, 33
DATABASE Command, 155
DBANALYZER, 102
DECERTIFICATION, 102
Declaratives Section, 215
DEFAULT, 33
Default Sign Position, 66
Defaults and Limits, 174
Definition Section, 137
Definition Section (Program), 137
Definition Section (Station), 142
DELAYED.RANDOM, 33
DELETE, 106

IN, 170
DENSITY, 43
DEPENDENTSPECS, 43
DETACH FROM REMOTE FILE (DFR), 149
DETACH MESSAGE Statement, 138
Device Section, 145
DIRECTION, 43
DISABLE Command, 154
DISABLE USER (DUS), 149
DISK, 33
DISK.CARTRIDGE, 33
DISK.FILE, 33
DISK.PACK, 33
DISPLAY, 75
DISPLAY Statement, 227
DMSII DASDL, 103
DMSII Data Base Backup, 100
DMSII File Transfer, 56
DMSII Language Statement, 172
DMSII Operations, 95
DNAME, 84
Dollar Cards, 104
Dollar Specifications, 83
DOUBLE, 106
DRIVE, 33, 85
DSPLY, 90
DUMMY.FILE, 33
DUPCHECK Statement, 167
DYNAMIC.SPACES, 46

E Spec, 88
Early Exit Code

PERFORM, 78
SEARCH, 78

EBCDIC, 33
Embedded Comments, 168
EMULATOR.TAPE, 33
ENABLE Command, 155
ENABLE USER (EUS), 149
End Transaction, 162
END.OF.PAGE, 34

Index

END-TRANSACTION, 108
End-Transaction Abort Handling, 163
Environment Division, 68, 210
ERRORLIMIT, 84
EU, 34
EVEN, 34
EXCLUDE Statement, 172
EXECUTE Statement, 139
EXTEND, 34
External File Name, 171, 174
EXTMODE, 43
EXTRACT FILE AREASIZE Statement, 175
Extract File Statement, 175

F-specification, 87
FAST Subsets, 115
FD, 69
File And Program Attributes, 31
File Assignment, 19
File Attribute Dollar Specification, 84
File Attributes, 31
File Handling, 9
file identifier

family name, 9
file ID, 9
file-directory ID, 9
usercode, 9

File Name, 9
File Names, 168
File Naming, 85

Attributes, 10
Conventions, 9

File Security, 11
FILE Statement, 168
FILE STATUS Values, 211
File Transfer Methods, 51
FILE.TYPE, 34
File-Control, 69
FILEKIND, 43
FILEKINDS, 51
FILEORGANIZATION, 182

Indexed, 183
INDEXEDNOTRESTRICTED, 183

261

262

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

FILESECTION, 43
FILESTATE, 43
Find Statement, 114
FOOTING, 34
FORMAT and FUNCTION LIST, 135
FORMAT FILE NAME Statement, 134
FORMAT UPDATE Command (UPD), 152
FORMS, 34
FRAMESIZE, 43
FREE STATION FOR EXECUTION (FRE), 150
FREEZE, 46

GEMCOS (Small Systems), 129
General Language Elements, 85
Global Section, 135
Group Keys, 115

H Specification, 86
HALT APPLICATION PROGRAM (HAP), 150
HALT KILL, 150
HALT SYSTEM (HLT), 150
HARDWARE, 34
HEADER, 35
Header Information, 185
HELP, 149
Hexadecimal Literals, 61, 104
HIGH-VALUE, 66
HOLD, 46
HOST ACCESS KEY Statement, 143
HOSTNAME, 43, 206

Identification Division, 68
IF Statement, 76, 226
IMPLIED.OPEN~ 35
IN Option, 170
INCLUDE

IN, 170
INCLUDE P/A/B, 106
INCREMENT.EU, 35
Indexed Random, 116
Indexing, 76
INITIALIZE, 95, 106
Initialize The Restart Data Set, 160
INITIALVALUE, 103
INPLACE Statement, 167
INPUT, 35
INPUT FORMATS Statement, 145
INPUT.SELECTIVITY, 35

INTERFACE Statement, 140
INTERPRETER, 35, 46
INTNAME, 43
INTRINSIC.DIRECTORY, 46
INTRINSIC.NAME, 46
INVALID.CHARACTER, 35
!PC CALL, 72
ISAM, 85
ISAM Files' 181

Index

Performance Considerations, 185

Job Spawning, 26
JOBS Command, 155

KEYCOMPARE, 109
KEYEDIO Files, 182

Recovery of, 184
KIND, 43

LABEL, 43
LABEL.TYPE, 35
LASTRECORD, 43
LEVEL, 46
LINE FORMAT, 35
LINE INFO, 93
LIST$, 106
LISTINCL, 83, 106
Logical Data Bases, 117
Long Lists, 114
LOW-VALUE, 66
LOWER.MARGIN, 36

Manual Subsets, 115
MAXCENSUS, 44
MAXIMUM ASSIGNERS Statement, 141
Maximum Character For A PIC Clause, 174
MAXIMUM COPIES Statement, 141
MAXIMUM.BLOCK.SIZE, 36
MAXRECSIZE, 36, 44
MAXSUBFILES, 36, 44
MAXWAIT, 46
MCS control commands, 150
MCSTIC FILE NAME Statement, 135
Memory, 98
MEMORY, 46
MEMORY Statement, 169
MEMORY.PRIORITY, 46

263

264

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Mess Code Section, 146
MESSAGE BROADCAST Statement, 135
Message Control Commands, 150
Message Header, 146
MESSAGE RECALL Statement, 135
Mid-Transaction, 162
MINRECSIZE, 36, 44
Missing Area Files, 57
Missing Areas, 54, 56
MONITOR Command, 155
MONITOR STATION Statement, 144
MONITOR TRACE ON Statement, 136
MONITOR TRACE Statement, 135
MOVE, 77
MOVE Statement, 227
MOVE STATION Command, 155
MOVEA, 90
MULTI. PACK, 36
MULTI-PACK, 10
MY.NAME, 36
MYHOSTNAME, 44, 206
MYNAME, 36, 44, 205
MYUSE, 44

NAME, 10, 36
NAME-STACK ENTRIES Statement, 135
NCC OK RESPONSE Statement, 135
Network Control Commands, 148
NEW, 36
NEWFILE, 44
NEXTRECORD, 44
NO, 36
NO <dollar card option>, 105
NODIF, 47
Non-Numeric Arithmetic, 65
NOPRINT Command, 168
NOT, 36
NUMBER.STATIONS, 37

O Spec, 91
OBJ, 47
OBJECT CODE FILE NAME Statement, 135
Object Dataset in <remap-subset-name>, 117
OBJECT-COMPUTER, 68
ODD, 37
ODESY, 179
ODT, 177
ON Command, 154
OPEN, 44, 77, 91

OPEN MESSAGE Statement, 138
OPEN Statement, 215
OPEN.LOCK, 37
OPEN.LOCKOUT, 37
Option Name and SET, 105
OPTIONAL, 37, 44
Options, 107
Ordered Embedded Data Sets, 113
OTHERUSE, 44
OUTPUT, 37
OUTPUT FORMATS Statement, 145
OVERRIDE, 47
OVERRIDE Statement, 167

PACK.ID, 37
PACK-ID, 11
PAGE.SIZE, 37
PAGESIZE, 93
PAPER.TAPE.PUNCH, 37
PAPER.TAPE.READER, 37
Parameters, 110
PARITY, 44
PASSWORD Command, 153
PERFORM, 77
Permanent Option Indicator, 105
Physical Options, 108
PLMPROGRAM Statement, 138
POP QUEUE, 151
PORT.FILE, 37
PORT.KEY (BNA), 37
PRINTER, 37
PRINTER.5, 38
PRIORITY, 47

Index

Procedure Division, 70, 214
Process Options Set Statement, 175
Processing, 161
PROCESSOR.PRIORITY, 47
Program Attributes, 45
PROGRAM BOJ EOJ Statement, 136
Program Control Commands, 150
Program Conversion, 192

COBOL(68) Programs, 192
COBOL74 Programs, 192

PROGRAM PASS COMMAND (PASS), 150
PROGRAM TITLE Statement, 141
Programmatic Transfer Method, 56
Programmatically, 51
Progression

Aids, 7
Assistance, 3

265

266

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

Progression (cont.)
Tasks, 5

Progression introduction, 1
Progression Process, 5
Progression, Keys for successful, 5
PROTECTED, 47
PROTECTION, 38
PROTOCOL, 38
PSEUDO, 38

Q.FAMILY.SIZE, 38
Q.MAX.MESSAGES, 38
QUEUE, 38
QUEUE BUFFERS Statement, 136
QUEUE DEPTH Statement, 136
Queue File Families, 204
QUEUE NAME Statement, 136
QUEUE/PORT Files, 195

General Information, 195

READ Statement, 218
READER.PUNCH.PRINTER, 38
READER.SORTER, 38
READER.SORTER.STATIONS, 38
READER.SORTER.2, 38
READER. 96, 38
READONLY And READONLYALLl, 116
RECALL PROGRAM Statement, 136
RECORD, 44
RECORD SIZE Clause, 68
RECORD.SIZE, 38
RECORDS.BLOCK, 38
RECOVER DATA BASE (REC), 153
Recovered Message Resubmittal, 164
Recovery, 157

oration, 157
Synchronized, 157

Recovery Differences, 156
Recovery Sequence (GEMCOS and COMS), 159
Recovery Specification, 157
RECOVERY Statement, 141
Recovery-Related Conventions, 158
RECV, 90
REEL, 39
REFRESH Command (REF), 153
Relative Files, 57
REMAPS, 116
REMOTE, 39
REORG, 99

REORGANIZE, 106
REPETITIONS, 39
REPORT Commands, 151
REPORT DATA DUMP (RDM), 151

Index

REPORT FILE STATUS (RFS), 151
REPORT PROGRAM COUNTERS (RPC), 151
REPORT PROGRAM STATUS, 151
REPORT STATION COUNTERS (RSC), 152
REPORT STATION STATUS (RSS), 152
REPORTER

Execution Of, 176
Files Required For Execution, 174

REPORTER III, 171
REPORTER III Report Language User's Manual, 174
RESET BUSY STATUS (RBS), 153
RESIDENCE Statement, 138
Restart Data Set, 110
RESTART PROGRAM Statement, 138
RESUME Command, 154
REVERSE, 39
REWIND, 39
RPG, 83, 106
RPG Programs, 192
RPG Translator, 83
RPG II, 106
RPGLIB, 106
RR, 47
Run-Time Errors, 92

Sample Statement Parameters Limit, 175
SAVE, 39
SAVEFACTOR, 39, 44
SCHEDULE.PRIORITY, 48
SCREEN SIZE Statement, 143
SD, 70
SECONDS.BEFORE.DECAY, 48
Security, 117
Security Control Commands, 149
SECURITYTYPE, 11, 39, 44, 205
SECURITYUSE, 11, 39
Segmentation, 71
SEND, 90
SENDALL, 39
SEQUENCE, 106
SEQUENCE Statement, 167
SEQUENTIAL, 39
SERIAL, 40
Serial Numbers, 21
SERIAL.NUMBER, 40
SERIALNO, 45

267

268

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

SET and option name, 105
SET Statement, 172
SETLL, 90
Sets and Automatic Subsets, 115
SIGN OFF (BYE), 149
SIGN ON (SGN), 149
SIGN ON Statement, 143
SIMPLE.HEADERS, 40
SIMULATION Statement, 136
SLAVE.OK, 48
Small Systems control Cards,
Small Systems introduction, 1
Small Systems Manuals, 237
Small Systems VOID, 84
Small Systems WFL, 25

Converting To A Series, 25
SMCS, 119

26

some Notes Before You Start, 51
SORT, 78, 167
Sort Only As A Compiler, 167
SOURCE, 106
SOURCE CODE FILE NAME, 136
SOURCEONLY, 107
STANDARD, 107
Standard File Attributes, 42
STATION, 40
STATION HOST NAME Statement, 143
STATION LIST Statement, 145
STATIONS, 40
STATUS REPORTS Statement, 136
Storage Media and File Attributes, 173
STRUCTURE, 107
Subfile Matching, 204
SUBORDINATE MCS Statement, 136
SUBTRACT Command, 155
SUPPRESS, 107
SUPPRESS GOOD DAY MESSAGE Statement, 138
SUSPEND Command, 154
SWAP LINE Command, 155
SWITCH, 48
Switches, 70
SYMBOLIC.QUEUE.NAME, 48
SYSTEM HALT Statement, 136

T Spec, 89
Tables, 88
TABLESIZE, 107
TAG, 84
TAG Files. 181
TAGCOBOL Statement, 167

TAGRPG Statement, 167
TAGSORT Statement, 170
TAPE, 40, 107
TAPE.NRZ, 40
TAPE.PE, 40
TAPE.7, 40
TAPE.9, 40
TASKVALUE, 67
TCL, 134
TEACH Command, 168
TEXT SIZE Statement, 135
THEN, 28, 48
TIME, 48
TIME Statement, 167
TIMING Statement, 167
TITLE, 11, 45, 94, 205
TITLE Statements, 103

Index

TRANCODE Statement (Station), 143
TRANSACTION CODE POSITION Statement, 138, 145
TRANSACTION MODE Statement, 143
TRANSCODE Statement, 142
Transferring Files, 51
TRANSLATE, 40, 45
TRANSLATE.NAME, 41
TRANSLATING, 45
TYPE Statement, 143

UNCONDITIONAL, 29, 48
UNFREEZE, 48
UNIT.NAME, 41
UNLABELLED, 41
Unordered Embedded Data Sets, 114
UNOVERRIDE, 48
Unrecognized COBOL Constructs, 174
UPDATE, 99, 107
UPDATEFILE, 45
UPPER.MARGIN, 41
USEDATE, 45
USER.BACKUP, 41
User code

Non-Privileged, 16
Privileged, 14

Usercodes, 14
Using BlOOOCOPY, 53
Using B6000COPY, 55
USING Clause, 173

VALID ACCESS KEYS Statement, 145
VALUE-STACK BITS Statement, 136

269

270

B 1000 SERIES TO A SERIES PROGRESSION GUIDE

VARIABLE, 41
Variable Format Records, 111
Variable Length Records, 168
VERSIONCHECK, 107
VIRTUAL STATION Statement, 144
VIRTUAL.DISK, 48
Vocabulary Language (VOCAL) User's Manual, 171
VOID, 107
VOLUMEINDEX, 45

WAIT, 78
WAIT Statement, 220
WARNSUPR, 107
WINDOW Commands, 156
WITH.INTERPRET, 41
WITH.PRINT, 41
WITH.PUNCH, 41
WITH.STACKERS, 41
Work Flow (Jobs), 25
WORK.FILE, 42
WRITE Statement, 219

X Edit Code, 86

YOURNAME, 45, 205
YOURSUERCODE, 45
YOURUSERCODE, 206

ZIP, 90
ZIP Statement, 167

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-001
	01-002
	01-003
	01-004
	02-005
	02-006
	02-007
	02-008
	03-009
	03-010
	03-011
	03-012
	03-013
	03-014
	03-015
	03-016
	03-017
	03-018
	03-019
	03-020
	03-021
	03-022
	03-023
	03-024
	04-025
	04-026
	04-027
	04-028
	04-029
	04-030
	05-031
	05-032
	05-033
	05-034
	05-035
	05-036
	05-037
	05-038
	05-039
	05-040
	05-041
	05-042
	05-043
	05-044
	05-045
	05-046
	05-047
	05-048
	05-049
	05-050
	06-051
	06-052
	06-053
	06-054
	06-055
	06-056
	06-057
	06-058
	07-059
	07-060
	08-061
	08-062
	08-063
	08-064
	08-065
	08-066
	08-067
	08-068
	08-069
	08-070
	08-071
	08-072
	08-073
	08-074
	08-075
	08-076
	08-077
	08-078
	08-079
	08-080
	08-081
	08-082
	09-083
	09-084
	09-085
	09-086
	09-087
	09-088
	09-089
	09-090
	09-091
	09-092
	09-093
	09-094
	10-095
	10-096
	10-097
	10-098
	10-099
	10-100
	10-101
	10-102
	11-103
	11-104
	11-105
	11-106
	11-107
	11-108
	11-109
	11-110
	11-111
	11-112
	11-113
	11-114
	11-115
	11-116
	11-117
	11-118
	12-119
	12-120
	12-121
	12-122
	12-123
	12-124
	12-125
	12-126
	12-127
	12-128
	13-129
	13-130
	13-131
	13-132
	13-133
	13-134
	13-135
	13-136
	13-137
	13-138
	13-139
	13-140
	13-141
	13-142
	13-143
	13-144
	13-145
	13-146
	13-147
	13-148
	13-149
	13-150
	13-151
	13-152
	13-153
	13-154
	13-155
	13-156
	13-157
	13-158
	13-159
	13-160
	13-161
	13-162
	13-163
	13-164
	13-165
	13-166
	14-167
	14-168
	14-169
	14-170
	15-171
	15-172
	15-173
	15-174
	15-175
	15-176
	15-177
	15-178
	16-179
	16-180
	17-181
	17-182
	17-183
	17-184
	17-185
	17-186
	17-187
	17-188
	17-189
	17-190
	17-191
	17-192
	17-193
	17-194
	18-195
	18-196
	18-197
	18-198
	18-199
	18-200
	18-201
	18-202
	18-203
	18-204
	18-205
	18-206
	18-207
	18-208
	18-209
	18-210
	18-211
	18-212
	18-213
	18-214
	18-215
	18-216
	18-217
	18-218
	18-219
	18-220
	18-221
	18-222
	18-223
	18-224
	18-225
	18-226
	18-227
	18-228
	18-229
	18-230
	18-231
	18-232
	18-233
	18-234
	18-235
	18-236
	A-237
	A-238
	A-239
	A-240
	G-241
	G-242
	G-243
	G-244
	G-245
	G-246
	G-247
	G-248
	G-249
	G-250
	G-251
	G-252
	G-253
	G-254
	G-255
	G-256
	I-257
	I-258
	I-259
	I-260
	I-261
	I-262
	I-263
	I-264
	I-265
	I-266
	I-267
	I-268
	I-269
	I-270
	xBack

