| Burroughs

Reference
W ELTE]




Burroughs

Reference
Manual




Burroughs cannot accept any financial or other responsibilities that may
be the result of your use of this information or software material,
including direct, indirect, special or consequential damages. There are
no warranties extended or granted by this document or software material.

You should Dbe very careful to ensure that the use of this software
material and/or information complies with +the laws, rules, and
regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a
Field Communication Form (FCF) with the Class specified as "2" (System
Software), the Type specified as "1" (F.T.R.), and the Product specified
as the seven-digit form number of the manual (for example, 1163920) The
FCF should be sent to the following address:

Burroughs Corporation
Product Assurance and Support
3519 W. Warner Avenue
Santa Ana, CA 92704



TABLE OF CONTENTS

INTRODUCTION eeeeesocaocassososcososcscscscoconsocnssosnoasonnocsans xi
SUMMARY OF SECTIONS:eccsceoeccscesscccocscsnssosnsscscsssonosss xi
HELPFUL DOCUMENTS e ceeooeveocscensacsccsassoossasssasscssosascssns xii

GEMCOS MANUALS.ccoeecsosaccscscsoossssscsscsssssssnsonsns xii
RELATED MANUALSceeesecossveecascececccsccosoncscsosccsocanes xii

SECTION 1. SYSTEM OVERVIEW.eeaeceecscssoaosscsscsscsoscassccnsas
VERSIONS OF GEMCOSeceocesscacoscsasssseassscasssssoesassossassscs
TRANSACTION CONTROL LANGUAGE:eeeeeesscecssscssssccosassscssse
NETWORK CONTROL AND ADMINISTRATION:eeeesoccsosscsscseasscsssns

NETWORK CONTROL COMMANDS:soesecescsascesccsassssscsscssnsas
Functions of Network Control CommandSe.cesecscsccscesss
Control StatioNnScececesessessesscssccsscscsscsnossoccsass

ERROR HANDLING o eooeosoacsesacassnsssocsassssscsasesssasnes

INTERFACE TO APPLICATION PROGRAMS.eseeecesoceccsccsascsscscss
MESSAGE FORMATTING AND ROUTINGeeeecesessosesossoscscssccosases
MESSAGE FORMATTING . eeeeoeocesessosssscccscssasscssscsacnas
MESSAGE ROUTINGeeeceeosssscasessessccscsoscosssnsssoscssnsss
ACCESS CONTROL (SECURITY)eeeeenccescecacesaascascsacscanasas

AUDITO...l.‘.loQo...o.oo.-0.0'..o-.acloooo-.oo-.c.ooo..ooo.o

RECOVERY.o.oo.oooooooooo.ooool‘o-'ooooc-oooo.u-o..cnooooooo'

TESTING, PATCHING, TIMING, AND DEBUGGING.eeeeeeeoeeeeeeaoees
TCL COMPILER AND UTILITY PROGRANS .« eeeoeesonoeecannoennnnnns

R NG G GG G TG O T G TG Y
i
~NJJIJJo oo ppUuNDND -

SECTION 2. TRANSACTION CONTROL LANGUAGE.:eeeeeeocooccccasanons
COMPILER AND STATEMENTS . eeeeeoceoacecccsccsassosossscsacassnses

TRANSACTION CONTROL LANGUAGE COMPILER (MCSTCL)

AND RELATED FILES:ceoceccccesccsccsccsscscsasescessascacense
TABLE INFORMATION CONTROL FILE (MCSTIC)eeceescoccccccacss
FUNCTIONS AND FORMATS FILE (MCSFORMATS) eeecescocosccsscnse

SUMMARY OF STEPS TO EXECUTE THE TCL COMPILEReeeeeecececceocs

CREATING THE TCL SOURCE IMAGE (MCSIN)

(CARD DECK OR CANDE FILE)eeeeeeeeceoceeseooacnaneanacnannnns
SYNTAX AND COMPONENTS OF THE SOURCE IMAGE.eeeeececesoscss
RULES FOR THE SOURCE IMAGE.eeeeceeseeoacosnoonsnnsansenne
USING THE LIBRARY STATEMENT:eeeeececocccccsccscsasscosans

EXECUTING THE TCL COMPILER (MCSTCL)eeseeeoceccoscssccosccnans
LOADING GEMCOS SYSTEM FILES.eeeececeeosccscccccscscsssose

Modifying MCSGOeeeseseseseocoososacesesscscscssscsanss
Using Standard Error MeSsSageSeeeeececccceccscasscsccse
EXECUTION USING A CARD DECKeteeeeeonooeeoocoonsannonosnnns
EXECUTION USING A CANDE SOURCE FILEe:eeecoocsaocsooccasne
CHECKING FOR SYNTAX ERRORS.eeeeeeccecsccacaccacnconccnsns
SAMPLE TCL SOURCE IMAGE (DECK OR FILE).eeeecoccsconcannne

CONTROL STATEMENT ¢ e oo e oeseesescecscoscoscsnossensessssoosens

MCSTIC FILE NAME STATEMENT . .eeeoeececencoacaascssoasassasnsne

FORMAT FILE NAME STATEMENT . eeeeeeceeosccaccosoososancosccsss

GLOBAL SECTION.seseesecosescscscssoassccsscssasasnsasasannos
AUDIT FILE FAMILY ID STATEMENT eeeceeeecoocscsasscsosonnns
AUDIT FILE PACK ID STATEMENT.ecoeeeoseoscosssccscsscnssas

[AVINV)
1

[ACINACIE\OR \CRE \CRN\C N \CRN \CRN \ORE A2 \C 2 AO I \V ] [ACI \CIN \ON\V]
| |
WO~I1I100UVU & W [ASI SRR

NN NN
I
ot
o))

iii



AUDIT PAGE SIZE STATEMENT ¢eseeesesescossoscscsscsassosoasss
AUDIT RECORD SIZE STATEMENT :eeescsescscssscsscssscssscsse
CHANGE REQUESTS STATEMENT eeecsesecoscescsassossssssssascsscs
CHECKPOINT INTERVAL STATEMENT :eeeceeccscscscscsscscsscssnns
COMPILE OPTIONS STATEMENT e eseseesecscccscssscssrssosscscses
CONVERSATION LIMIT STATEMENT ¢eceocccacscocscsccssccscssscs
DATA DUMP STATEMENT eeeeeocsosscososssssassssossscsssssnss
FORMAT AND FUNCTION STATEMENT LISTeesecesoaccocsoscscsssccs
Function DeclaratiONesccscccsccscsssessccscscscsncnsssnss
Format DeclaratiONecececsescscccscssssscssscsscsscsssesae
Formatting ErrorSeccececesccccscessscescscscssscsssocsse
Using Location SpecifierSeeecccccsccccscescccscsossscssscs
MAXIMUM TEXT SIZE STATEMENT:.ceecescsencsssssssccscssscssns
MESSAGE BROADCAST STATEMENT e eeeeescscsosccscsncsssscansssscs
MESSAGE RECALL STATEMENT eeeeeesescccsccsscscscscssscssssas
MONITOR TRACE STATEMENT . eeececsccoscsscascscssscosssssscses
MONITOR TRACE ON STATEMENT eeeeeeeoscecossscsscossssssnssne
MY NAME STATEMENT ¢ eeeoescossoscscscscsscscssesassssscsosas
NAME-STACK ENTRIES STATEMENT.¢eeoecoscscscsss seeseenscscs
NCC OK RESPONSE STATEMENT e eeeeecoccsccscacscscccsscsscasces
OBJECT CODE FILE NAME STATEMENT:eeocsocccoss cecccscssscas
PROGRAM BOJ EOJ STATEMENT ceseesesscsossascscsscsssssscssccs
QUEUE BUFFERS STATEMENT .eececoecocsssesossscssscssoscsscanss
QUEUE DEPTH STATEMENT ¢ ecesescscsccescscsosssssscsssssosnsce
QUEUE NAME STATEMENT . eecoosccccscssscsscsssscssssossnsscssssse
RECALL PROGRAM STATEMENT e cecosecosesoscsescssscssocscssoscsse
Using MCSRECALL to Recall Audited MessageSeecessscccss
SIGNAL CHARACTER STATEMENT . cececcesccccscscrsoscscsssscacssocs
SIMULATION STATEMENT eeeeeoscccsscoscscsescasssssscsasscnse
SOURCE CODE FILE NAME STATEMENT eececeescsccscsccscsccsnss
STATUS REPORTS STATEMENT ¢ eeeescscacscecccsascsocssacsscnsscs
SUBORDINATE MCS STATEMENT eeeeeecesscsccesccscsscsscscacncns
SYSTEM HALT STATEMENT e eeeesooosssossascsssnscsssssscsascse
VALUE-STACK BITS STATEMENT cecesccescoccccaccsssscssscssas
DEFINITION SECTION.eseecsesososososossscsosoesoscsssssescsssacans
ACCESS CONTROL STATEMENT eeceecsocososcccssosccsosssssssasncs
PROGRAM SECTION:eseoesoosososescscsscsessssscsosssssscssnesns
AP300STATUS Statementeececesesesccccccsccsscsscscscsnas
ATTACH MESSAGE Statementeceeeeccosscccsccosssscsescscas
AUDIT ASSIGNMENT StatemenNtececscscscccccscoscscscscsnss
AUDIT OUTPUT Statementecececescecccceccecssccsosscssoscns
AUDIT TRANSACTIONS Statementesececsesccscecscscccssssas
COMMON SIZE Statementeccecsecccssccccscccsccssscsscsnccns
CONVERSATION SIZE Statementecesescccscscssossscscsscscs
DATA BASE NAME Statementeececscececccecccscscscsccssons
DETACH MESSAGE Statementececececcscscscscccesoscsssnae
EXECUTE Statementecececsccccceccoscscssscscoscccsoccsnss
HOST Statementececsccscosccscsescosccsccsssossscsccssosce
INTERFACE Statementecececcecccessescccssssccssccssscsossns
MAXIMUM ASSIGNERS Statementececesceccecccscscsccsssesses 2 — 115
MAXIMUM COPIES Statementececcesceccscccccscsccesssscscss 2 — 116
OPEN MESSAGE Statementceeccessesscssccsccssscscssccssasnsce 2 — 117

[ECIE O SRR ORI O R AN AR O RN \O I AT \OTN \C RN\ \C I \C TN AC T \O RN OB \O RN A O I \C N AU O RN ACRE \C RN AC T \C TN AC B O RN AC I \C I AC I AO T \C R AC R AO I "G AC T \ORE AR \O I O T A B ORI\ I AU\ )
|
(&)
Ul

iv



PLM PROGRAM Statementeeeeesceeccscscscsccssscscssccscos
PORT SIZE Statementeeesecsecscscecscscscesccscscssscscscncs
PROGRAM TITLE Statement.ceecescecssesscesessccsccsococes
RECOVERY Statementeeceescscesccescecsceasssesscssasscncs
RESIDENCE Statementeeeecscesecscssssscscsassccssccnsose
RESTART PROGRAM Statementecececccccsceccscscssssssossesses
SUPPRESS GOOD DAY MESSAGE Statementeeeecescesscccccsas
TRANCODE Statemenftesceececccsesssosscesccscasssssesccosnse
TRANSACTION CODE POSITION Statementeceececccescsceccssee
STATION SECTION:esesoscessessscssssossossossesssssssescnsnas
CONTINUOQOUS LOG ON Statement.eescsescescscsccsscsssoscscns
CONTROL STATION Statementeeceeccecsscscescccssssscssscse
CONVERSATIONAL Statementeecesescsescscsccsssoscssscnose
HOST ACCESS KEY Statementececeeccecscecescescscosossosscsasscs
MONITOR STATION Statementeeeseccescscsesccscsssosseascscs
PORT STATION Statementeecececeecccscscscecessssssssssssasnses
SCREEN SIZE Statementeeceececcceccsccecscsccccsssssosscnse
SIGN ON Statementeeceescscescesccescsccscscosssssssssssecnss
STATION HOST NAME Statementeeeecseecsesecesscoscoscscss
STATION YOUR NAME Statementeeeeccecseccceccccscccsccnccse
SUPPRESS MESSAGES Statementeeececsecscsscscssescscscsnse
TRANCODE Statementeeceesceecesecsscoscscoscescccsscsssosscsse
TRANSACTION CODE POSITION Statementeseseccescecececscss
TRANSACTION MODE Statementeeecesecccccecescscsscccsosssncs
TYPE Statementececeeccecescscsoscsccsccsascccsscssscecssscsescs
VALID ACCESS KEYS Statementeceececceccecesscasscss e
VIRTUAL STATION Statementeececesceccccsccsccscsscccssass
DEVICE SECTION.:sesescsccacssoscsosccsossosscsssscsssssssssssasess
INPUT FORMATS Statementeecscecceecsccsccscssscssscscsacss
OUTPUT FORMATS Statementececesccscccsccsscscscscsccscnss
STATION LIST Statementeceeccececccsscossescscssasccssssses
MESS CODE SECTIONeeeecsococsscososossscosssscsscosscanssssnsss
MESS ProcedureSeeeccccssecssssessessssscososossssssssssos
AUDI T e eeeeccecesascocsaosossesosssssssssssassssscscsncsnsse
CLOSE ACTIONeeeoseoescasocsssssossassssssasascscacssscs
CLOSE FILES:eveeesoccscossoscscsasessosssassocsosssssose
ERROR HANDLER:eesoesesesessososssssossosssscsnsessssnsnss
HANDLE RECALL:ceevoocesccscssocsssscsososascascssssssansse
INITIATE RESTOREcceoccessososoosscsssccsassssssossasscssns
MAINTENANCE e eecescsessoscssasccsevsoscossosscocasscscsascas
MESSAGE FROM PROGRAM:cceeeccsoesesscsossscscosssocsossnse
MESSAGE FROM STATIONG.eeecesosccoscecscsossascscsssssccns
OPEN ACTION:ceecoessoessosoaccsasscsasasssssssssassnse
RESTORE PROGRAM:ceccecocccccscocscssscscosssscscssssasss
SET SIZESceeecsceescssssasosssossssssssosscsssscssscnasnas
SET VALUES.eececosoccosoancassosososcssscssassscscscsse
BEGINNING SYSTEM OPERATION:ceosscecesocacossossescsssscossscssn
EXECUTING AN MCSevevoecccosocccsossosasossosscscsassssnsoscsos
EXECUTING A NETWORK CONTROLLER:seoeseoecocsossosscsoccccsscs
CONSOLE OR CARD READER INPUT TO THE MCSeseesceccccscsosasas

[NV ORI \CIN \CRE \CRN \ORN \ORN \C RN AU TN O T AR \O RN OB \O RN \O RN \O RN AN \C T \C TN O TN A\O RN \O RN \ORE \O I \O T O RN \CRE A \C T \C T O R \C R A I \C N \C I AC T O\ A AU AU OB O I \O I AU T O T AR \ O A\ 2 \N}

118
119
120
121
122
123
124
125
126
127
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
148
149
150
151
156
157
157
157
158
158
159
159
160
160
161
162
162
163
163
163
164
165



SECTION 3. USING NETWORK CONTROL COMMANDS..ceeoecoeccsccccasscss

USING THE HELP COMMAND.eeeoeoecoescoescasoosscssscsoconsos
SECURITY CONTROL COMMANDS . eeeeoceccacocescscacscascscasacnes
DISABLE USER (DUS)eeeseososccossocscesossoscnsssscsssscnas
ENABLE USER (EUS)eeeeeeceecocecsacosasscoscocsasossosssss
SIGN OFF (BYE)eeeeoeeoeeceosseosessssssoscscssscscsssncnsns
SIGN ON (SGN)eeeeeeeeoeoeeccoscanscanocoacsoscscsacansoons
UPDATE ACCESS KEYS (UPD ACCESSKEY)eeecececacoscsancccancs
STATION ATTACHMENT COMMANDS . eeoeeceoccsaocacscscssacassnnses
ATTACH LSN (ATT)eeeeseecssesescscescocssossascssscssnsanes
DETACH FROM REMOTE FILE (DFR)ececcccecccccscscnoccsconcns
PROGRAM CONTROL COMMANDS . e ecocescocsccacsasasssacssnccsnses
EXECUTE PROGRAM (EX)eeeeececcocsecosacooscoosoassocnnososcs
FREE STATION FOR EXECUTION (FRE)eeeccccccscscscocascooanes
HALT APPLICATION PROGRAM (HAP)eeeeoeeoscoscessosceascocsas
PROGRAM PASS (PASS) cececcessscscooscsconsoscssosscscsnses
MCS CONTROL COMMANDS e e eesevcecosecconcsacosscsasscasnssonesss
AUDIT OK (AOK)eeooooooceccossescssscsscoscssoncssconsosss
HALT SYSTEM (HLT)eeeceoocesoascosaososscosscssoscacanases
MESSAGE CONTROL COMMANDS e eeeecocassosocsssscscssoscsassnons
BROADCAST (BRC)eecossosacseosccossosccssssossonsoasasonsse
POP QUEUE (PQ)eecececeeccacosccaesocosscscsasssonsososeses
REPORT COMMANDS e ¢ e e esocssescecccesaosecacasssssssassasasassse
REPORT DATA DUMP (RDM)eeeceoecocccacosossoscsacscssscnans
REPORT FILE STATUS (RFS)eeececcccccoscoscscosccscosaonncs
REPORT PROGRAM COUNTERS (RPC)ececcecesccccsccccscacsansos
REPORT PROGRAM STATUS (RPS)cecescococcscscsscscocccncnses
REPORT STATION COUNTERS (RSC)ececsoocscccscscocsacsccanse
REPORT STATION STATUS (RSS)eeeeecoccococosoacacscocoanses
CHANGE COMMANDS . ¢ ececeossesccsosessossocssossosssasncsacnsas
CHANGE MONITOR FLAG (CMF)eeeoeosoceceoseasosesccassennnscs
CHANGE STATION ADDRESS (CSA)eccecccscccssseoccocsaccnsose
CHANGE STATION DIAGNOSTIC (CSD)eecesecccocococcscosccnocss
CHANGE STATION FREQUENCY (CSF)eeeeeecccecccacasacncoansen
CHANGE STATION MAXIMUM RETRY (CSM)ececeececescoccncocnnes
CHANGE STATION QUEUE (CSQ)ececcscococscssocscscnscscscasns
CHANGE STATION READY (CSR)eeeeeoccoscccccososcccccanannsse
CHANGE STATION TRANSMISSION NUMBER (CST)eeeececececccesee
FORMAT UPDATE (UPD)ececoseocoosscoccocacncaasacssscsoacses
AUDIT & RECOVERY COMMANDS .« evecoeooooasoaonsecasascscssonses
CLEAR DISABLED PROGRAM (CLE)eeeeeeeccccacscascascscoancens
RECOVER DATA BASE (REC)eeeececccoceccacccscasscssososonns
REFRESH COMMAND (REF)eeceecececcacccososcososcnscoscnsens
RESET BUSY STATUS (RBS)eeeececescccocscccscaccassoscnases
PIME e ¢ s oesoencacsccccacscoccccsecscscsoscoacscscncnsnens
PORT STATION COMMANDS . eeeeescoccoccasscaccascsssscasassoanscs
DISABLE PORT STATION (DPS)escecccccscccsceosccocscsscacss
ENABLE PORT STATION (EPS)eccecccccccccccccsacscccocosoneos
UPDATE STATION HOST NAME/STATION YOUR NAME:.eeeoesoecseees

vi

(S RC R\ AVIRGURA VI RGHACRGHRGAR A R UMA GRS RV R VRS RSB RGN CURSUR VARG UR GGV NG LR SR GNR VAR SR ARG SN

\SARV RUNR G R GRS URNVRG RGNS G R S

WWOWOT-JOU A~ PUWN =



SECTION 4. MESSAGE FORMATTING AND ROUTING.eeeeescoccssscccscess
FORMATTING AND APPLICATION PROGRAMS.:cececeeccssscccsccoscacas
SCREEN WRAPAROUND . eesceeesooosoossncscscosnscsssossscocsscnss
GEMCOS EDITING PHRASES:eeeesscescessosscccscossacscsssoses
OUTPUT FORMATTING EXAMPLE.sceescecsccocccssscocncssssscns
INPUT FORMATTING EXAMPLE.¢eeeoccccccsscecsscessosccssosssssns
MESSAGE ROUTING e eeeeesosscesassssssscosssssassssssscssssases
USING REMOTE FILES:eeeesceosoosssossoscssoscsosssssocssnssss
USING COMMON-AREA HEADERS:eseeesscsssessoocssccssccssosss
USING TRANSACTION-BASED ROUTINGeeeocooocosccoscscsscccocssse
SELECTING A METHOD OF MESSAGE ROUTINGeeeeeocococacosccoss
NON-STANDARD ROUTINGeseeessccscscosscosccasasccnncsnscocsecs
Station To StatioNecceeesceccccscccsccsscasscscsccscns
Routing From ProgramSe.cecccccceccscscscccssosssccscsssccs

SECTION 5. USING PORT FILESececesccescecscscoscossssscssccscsss
USING STATIONS AS PORTSeeceescsccesccssssosccsscssoscscscsacsans
USING PORT PROGRAMS:¢eeeeooccesscsosscsssosscssssssssoccnscsss
SUMMARY OF PORT FILE STATEMENTS IN THE TCLesececocccccoccccns

SECTION 6. SELECTING OPTIONS FOR ACCESS CONTROL (SECURITY)....
ACCESS SECURIMTY eeeeecocccosasosccosecnssssnsacsssenascsnsees
PROCESS SECURITY eececscocscassccsoscoscossnacsascsascsssssss
DEFINING ACCESS CONTROL IN THE TCLeeeeeecoccocoocscsssoossons

SECTION 7. USING AUDIT AND RECOVERY OPTIONS.eeeeeococses ceeseen
AUDITINGeeoevooooosososososcsosososssoossososonsacssosnssscsosnsoscsoocsscs
CONTROLLED SHUTDOWNG:eeeeosoeooscsscasoscsssccosossssasosnanosss
SELECTING RECOVERY OPTIONSceeceescocscsscscsosssscsssssnnccsas
NO RECOVERY ¢eeceoceocccssooscssosossoasosnssossssscsssnonsnoocscs
RECOVERY UNDER SMCSeccoeooceesocsosccscsoscsscsosssssssssssosonae
RECOVERY OPTIONS AVAILABLE:eeeocescccocecsssccsscscscsasoncscs

QUEUE RESTORATION RECOVERYeeeecooccccscccsccccscccosocnne
NONSYNCHRONIZED AND SYNCHRONIZED DATA BASE RECOVERY.eess.
Opening a Remote Fil€eeeeeeeoecoccssscscscssocvsessocsoce
Transaction Processingeccececcccscscscssccscsssscccnscscs
End-0f-Jobeceececscnsscescocessccccssscccssosssscsssvcssne
Program AbOTrteieceecscccecsecencesesscsescssscssssscssssns
Recovery Processingeeccsccccscsceccccsosssscsscssssssscs
Recovery After System Failure.ceeecececacss cecassessss

Data Base Recovery (Nonsynchronized)seecesesesecosssoses
Synchronized ReCOVEIYeeesooesosscocsccsssossssccscncsas
HOUSEKEEPING CONSIDERATIONSecoecooccscecccosccscscsscscsssocsss
RESTART PROGRAM:¢cceecesococesoscscosossssccssossscsncssonscscs
RECOVERY CYCLE:eoeoescooescccossosccsnsossscsescsscosssasssscsaos
ARCHIVAL RECOVERY ¢seeeseecccocossocsosossoscssosssososssccsssans
RECOVERY CONTROL MESSAGESeecescceccscococscsssccsscsscsccscss

SECTION 8. TESTING, PATCHING, TIMING, AND DEBUGGINGeeeeesososos
TESTING..OO..‘...0.0QIOIO.‘....‘..l....Q..l..'.........l..l.

EXAMPLE SIMULATION CARD DECK.'......Q..'....'............

PATCHING-..-.ooooo-.onn-oococ.ooooo-ooo-o-o.‘Dooooo..ccoo-oo

vii

OO O O NG N N

N30 -3-3-3-3-3-3-1-3-3

EN NN NN

Ul Ul Ul Ul

o OOV OV

1-313-3-3-31-3-31-3-3

W o o

N — =

OJourHRIMPON —~ =

N — = — s s s s s
NMNODODIONDON—=—=—=0

IS



TIMING...OCla.oo'ooooonooocooooooooo.ocooooo..-ootocc;o.oooc

DEBUGGING oo ceoseeescoscevescscnscscecssscsssocssssssosssososscsnssss
USING THE GEMCOS MONITOR TRACEeeececceccocosccscossosccns
Changing the Monitor Flageeeeeeecceesccccessoscsscocsae
Calling the Monitor Procedure€.cececececccececcscccscsnss
Sample Monitor Traceeccescsescscscccssoccscossccsssosss

USING THE GEMCOS DATA DUMP..ceeeeeccccsccssoncccscsssonssse

SECTION 9. USING THE STATION OPTIONSceeeseocscsscccsccssscccscns

APBOOO....O...'OQ....'..l......'.....'..0’.......0.0-....’0'

MTGOO.ooooooo.aooo;o-otcooo.o-oou.-.o’.oooooooo.ooooo.oooouo

PROCESSING INPUT FROM THE MTS.eeceeeesceocccscscssnconnas
PROCESSING OUTPUT TO THE MTSeeeeeecsoscoccssssosscsccccsns
MTS MESSAGE TYPESeeeeeeeesosocssscocsosccsoscssssssscasass
ROUTEHEADERS (COMPUTER-TO-COMPUTER COMMUNICATION):eoeeeoosses
ROUTINGeeeeoeceassoscessacososccsssosososccassncccsssasnssos
PROTOCOLevecscessosesccsocscscsocsscsssscsscscscasconsscssse
ACCESS CONTROL«ceeoocescaccsosssscscssoscssssosssossacssnocns
FORMATTINGeoeoeooesssosscosscsssocsscsosssssssscscssossss
SUSPENSION e eeeeessooccssssesnsscsscssosssscscscsaassannsoos
RECOVERY eeeeececocescsosoccscscssscssnossoscsssassnnssscese
ERROR HANDLING:eoeeooeosssacsscssasscccsasonssassoscnnccs
NDL CONSIDERATIONSeeeocecocescscecscssssccsssosscsconssssas
TRANSFERRING DISK FILESeeeeeecsesesscccssosccscasssscsasnnsos
COPY COMMAND . eeescoeccsscsccsosssacsascssscssosccsssasscnnsse
ABORT COMMAND:¢eeovoeccacsscsccasasnnans ceeene cececcsenane
WHAT COMMAND .o eeeeeecoeccsassosvccasosscssscsnssssscssccnne
FILE TRANSFER EXAMPLE:¢ceeeoecrccssosscccscccssssccssoconns
BNA STATION TRANSFER¢eseesceccsccsoscsssocsscccscosssccssoscsns

SECTION 10. USING THE CONVERSATIONAL FEATURE¢:eeeccccsesccccss
TCL SPECIFICATIONSececesoecscccsosscosscsscocssasscncsscossoonse
CONVERSATION LIMIT STATEMENT ee:ecescecccccososssssacccnsns
CONVERSATION SIZE STATEMENT ¢eeeesccccsccsccssossscocsscsas
CONVERSATIONAL STATEMENT ¢eeeecocessoscsocssssascsccccsencsns
PROCEDURES FOR CONVERSATIONAL PROGRAMS.c¢eeeeecacoscccccccsns
RECOVERY OF CONVERSATIONAL PROGRAMS..c.ceeeeececcccccccnoonnos

SUMMARYQOQ.'.0.0.0....0.0.00...0.0....0...0...0.0...'..'.0..

APPENDIX A. SUMMARY OF NETWORK CONTROL COMMANDS.eceeeeeeeoeses
APPENDIX B. SUMMARY OF FILES ® ® 80 0000 2000 8200600000 0L S eSO PO OO
APPENDIX C. LIMITS OF TCL SI ZE ® 8 0 0 0000 00 S0 0P O L LN PP OO BR OO0 GG PSS
APPENDIX D. MCS ERROR HANDLING AND ERROR MESSAGES.ecececossssces
ERROR HANDLING BY THE MCSeeeeecoecscecssccccccacnconsassonas
FORMAT OF ERRORS...................".....Q....'.....‘...‘..
ERROR MESSAGES.Q..'.........‘....Q..................l....l.'

APPENDIX E. HARDWARE REQUIREMENTS.:¢ceeeesecsccccccscsccosccssns

viii

COCWOWOWOWOCWOVOWWOWWOWOWOWOW

WO W W WO

10
10
10
10
10
10
10
10

Duogogy Q

=

|
Lo OUIUTERUVUWN N = = =

I
(@]

- 1

|
—_— e e
LN SR AR\

!
LTV =

I I 1 i
NN = = —_ —_ —_

i
-—



APPENDIX F. COBOLT4 PROGRAMS AND B 1000 GEMCOS«:seceeeocenaones F -1

APPENDTY G. SYNTAX DIAGRAM CONVENTIONSe:ceeceoecoosasooncsasnse G -1

INDEX @0 e o3 BT I EOE OGS THLEO0 ST S EOE ST IEIONSAPeTONUIEO NG00 1

ix






INTRODUCTION

This document is a reference manual for users of the Burroughs B 1000
GEneraligzed MEssage COntrol System (GEMCOS).

SUMMARY OF SECTIONS

Section 1, the Overview, discusses general features of GEMCOS and gives
further information on these features.

Section 2 gives a detailed description of the Transaction Control
Language (TCL) using railroad diagrams. (For instruction on how to use
the railroad diagrams, see Appendix G.) Section 2 also discusses
compiling the TCL and executing the MCS.

Section 3 presents the Network Control Commands.

Section 4 discusses how to format and route messages, while Section 5
describes the interface Dbetween application programs and GEMCOS port
files.

Security (access control) is discussed in Section 6. Section 7 gives
information on selecting recovery options.

Section 8 presents information on testing, patching, using the timimg
mechanism, and debugging GEMCOS.

Section 9 discusses how to use station options, including routeheaders.
It also discusses Burroughs Network Architecture (BNA) station transfer.
Section 10 gives information on how to use the conversational feature.

The Appendices summarize Network Control commands, files, hardware
requirements, error messages, and other reference data.

The style identification numbers for the GEMCOS product are: MCB700
(Basic Version), MCA700 (Advanced Version), MCT700 (Total Version).

xi



HELPFUL DOCUMENTS

The féllowing manuals contain additional information about GEMCOS:

GEMCOS MANUALS

1.

Formatting Guide, B 1000 Generalized Message Control System
(GEMCOS), form 1106531. :

2. Capabilities Manual, B 1000 Generallzed Message Control System
(GEMCO0S), form 1164001.

3. User's Guide, B 1000 Generalized Message Control System
(GEMCOS) Format Generator, form 1164019.

RELATED MANUALS

1. B 1000 Systems Network Definition Language (NDL) Reference
Manual, form 1152014.

2. B 1000 Systems SDL/UPL Reference Manual, form 1137833.

3 B 1000 Systems COBOL Reference Manual, form 1057197.

4. B 1000 Systems Report Programming Language Reference Manual,
form 1057189.

5. Burroughs Network Architecture, Architectural Description
Reference Manual, form 1132171.

6. Burroughs Network Architecture, Network Control Reference
Manual, form 113180.

Te B 1000 Burroughs Network Architecture Installation and
Operations Manual, form 1151874.

8. Subordinate Message Control System (SMCS) Manual, form

1152279.

xii



SECTION 1

SYSTEM OVERVIEW

The B 1000 Series Generalized Message Control System (GEMCOS) is a
system of programs and files which creates and supports a Message
Control System (MCS). An MCS manages the flow of messages between the
Network Controller (NC) and application programs that process messages
to and from remote terminals.

B 1000 GEMCOS is a software package which allows users to tailor their
MCS to meet the specific requirements of their installation. The GEMCOS
MCS is both flexible and efficient. It includes these major features:

. The Transaction Control Language (TCL), which allows users to
write their own specifications for the MCS.

. Network Control and Administration. GEMCOS provides orderly
communication between the hardware devices in the network and
adapts the message flow to changing conditions. It also
allows remote stations to execute programs, transfers files
between computers (through the routeheader capability),
supervises other MCSs, logs messages, gathers statistics, and
handles errors.

. Interface with Application Programs. GEMCOS executes and
terminates application programs, allows multiple programs to
run 1in parallel, prevents two programs from updating a record
simultaneously, and attaches remote stations. It simplifies
the work of the application programmer by supplying hardware
codes and handling error conditions.

. Access Control (Security). GEMCOS prevents unauthorigzed
access to programs and data bases.

. Audit and Recovery. GEMCOS recovers messages, transactions
from application programs, and data bases. GEMCOS provides
orderly shutdown for +the entire network and for network
recovery.

. Testing and Debugging. GEMCOS provides off-line testing with
its MCSSIM program, patching with its MCSFIX program, and
debugging with the GEMCOS data dump and Monitor Trace.

GEMCOS comes in several versions, which are discussed in the following
subsections.



VERSIONS OF GEMCOS

GEMCOS is available in three versions in order to accommodate several
levels of operating complexity. These versions are the Basic version,
the Advanced version, and the Total version. The major capabilities of
each of these versions follow:

1. Basic version GEMCOS:

a. Transaction Control Language (TcL).
b. Network control.

Ce Message routing.

d. Nonparticipating MCS.

e. Access control.

f. Message auditing.

g. Message recovery.

2. Advanced version GEMCOS:

a. All Basic version capabilities.
b. Message formatting.

3. Total version GEMCOS:

a. All Advanced version capabilities.
b. Data base and synchronized recovery.

This manual discusses the features of all versions of GEMCOS.

TRANSACTION CONTROL LANGUAGE

The Transaction Control Language (TCL) is used to select MCS options.
It sets up message formatting and routing, and security. The TCL is

also used to choose audit and recovery options for user programs and
data bases.

The TCL is free form in structure. Key words describe the network
environment and user requirements. When the TCL is compiled, customized
tables are generated. The MCS then interprets these tables. Because
the TCL for B 1000 GEMCOS is similar to the TCL for Large Systems
GEMCOS, migration to Burroughs Large Systems is simplified. Compiling
the TCL is discussed further in Section 2.



In addition, Mergeable External Source Statements (MESS) allow the user
to write special requirements which differ from standard GEMCOS logic.
These procedures are also discussed in Section 2.

NETWORK CONTROL AND ADMINISTRATION

GEMCOS and the Network Controller work together to control the network.
GEMCOS configures the network, including types of terminals used. The
user can alter the hardware and software configuration as needed.
Figure 1-1 shows the system structure of B 1000 GEMCOS, with the
relationship between the Network Controller, the GEMCOS compiler
(MCSTIC), the Control station, the audit file, and application programs.

APPLICATION NETWORK
PROGRAMS .

NETWORK
CONTROLLER -

Figure 1-1. System Structure



GEMCOS permits communication between computers through the routeheader
capability. It also permits communication with different devices such
as matrix printers and modular terminals. These capabilities are
discussed in Section 9.

In addition, GEMCOS can act as a supervisory MCS. For example, the
station operator can use the Command and Edit Language (CANDE), the
On-Line Data Entry System (ODESY), or the Subordinate Message Control
System (SMCS), and switch between them as needed. Without GEMCOS, the
subordinate MCS would have to be shut down and restarted to switch
stations. But with GEMCOS, station operators can use Network Control
Commands to switch from one subordinate MCS to another without
interrupting other operators. This topic is discussed further at the
end of Section 4.

Network restoration is also provided by GEMCOS. Network restoration
updates the Network Controller on network status. To perform this task,
GEMCOS wuses the Table Information Control File, part of the TCL
compiler. The MCSTIC file is discussed further in Section 2.

Among its other functions, GEMCOS gathers statistics about stations,
prograns, and the MCS. The wuser can obtain information about
peak-loads, network use, and response time. It further detects and
diagnoses errors and recovery from errors. It also retransmits output
as needed, and provides controlled system shutdown when +this is
required.

NETWORK CONTROL COMMANDS

The following discusses the functions of Network Control Commands and
gives information on Control stations.

Functions of Network Control Commands

Network Control Commands (NCCs) perform several functions. They handle
security, attachment of stations, MCS control, program execution and
termination, message routing and retrieval, changing station status, and
reporting program status.

The wuser decides which Network Control Comands are needed and uses TCL
parameters to specify these commands. Therefore, the MCS does not need
to contain the logic to execute all of the Network Control Commands.



Control Stations

Operators enter Network Control Commands (NCCs) from Control stations.
Control stations are declared in the TCL. A few of the NCCs (such as
the sign-on and sign-off commands), can be entered from any station, but
most of the Network Control Commands can only be entered from a Control
station.

An operator can communicate with the MCS from a Control station. The
MCS +tells these stations about exceptional conditions in the network.
In turn, the operator can ask the MCS about its status and dynamically
alter its features.

The supervisory console can also be used as a Control station. All of
the Network Control Commands can be entered from the supervisory
console.

ERROR HANDLING

The GEMCOS error handling subsystem provides the logic needed to handle
error conditions not directly related to applications tasks. GEMCOS
automatically takes action to keep the system running and communicates
the error condition to an operator. For additional information on error
conditions, see Appendix D.

INTERFACE TO APPLICATION PROGRAMS

GEMCOS provides many helpful features for applications programmers. It
allows an application program to have parallel processing of a wide
variety of transactions. GEMCOS controls the flow of multiple messages
and program execution. This improves response time for the application
user. Application programs can be written in high-level languages such
as COBOL and COBOL74.

The GEMCOS formatting capability means that application programmers do
not need to know hardware device codes. This makes the application
programs independent of the hardware devices. Message formatting and
routing are discussed in Section 4.

The programmer also does not need to write the logic to handle error
conditions. This logic is contained in the GEMCOS subsystem. Error
conditions are discussed further in Appendix D.



GEMCOS further provides several recovery options, so that the user can
choose those options which suit the needs of particular application
programs. Recovery is discussed in Section 7.

MESSAGE FORMATTING AND ROUTING

Another important feature of GEMCOS is its ability to perform message
formatting and routing.

MESSAGE FORMATTING

The application programmer does not need to know hardware-control and
device codes or the buffer capacity for terminals. These are described
in the TCL specifications for the MCS. GEMCOS formatting features
helpful to the programmer include:

. Forms retrieval.

. Enhancment of the readability of message-text for the user of
applications programs.

. Modification of message format without compiling or
interrupting application programs.

. Screen wraparound. If a message is too long for a station's
buffer, the MCS Dbreaks the message into +two or more
transmissions.

Information on message formatting is presented in Section 4.

MESSAGE ROUTING

GEMCOS routes messages to and from stations and programs. It also
handles communication between programs, and between computers, using the
routeheader function. Message routing is discussed in Section 4. The
routeheader function is discussed in Section 9.



ACCESS CONTROL (SECURITY)

GEMCOS provides both access security and process security. Access
security prevents unauthorized persons from using the system. Process
security limits the functions authorized persons are allowed to perform.
A specific MCS may be generated as a GEMCOS subsystem. This MCS can
have the logic for access security alone, or for both access and process
security. Section 6 has further information on access control
(security).

AUDIT

GEMCOS keeps an audit trail of all messages sent to an application
program or to a data base. The audit trail is written to a disk file

called an audit file. See Section 7 for more information on audit
files.

RECOVERY

GEMCOS also provides several types of recovery. The types of recovery
range from checkpoint recovery to complex data base rollback and
synchronized recovery. The user can analyze application programs and
select the recovery options which meet the needs of those programs. In
addition, GEMCOS also has a procedure for controlled shutdown.
Additional information on recovery is available in Section 7.

TESTING, PATCHING, TIMING, AND DEBUGGING

Testing, patching, and +timing are accomplished through auxiliary
programs. Debugging is done +through a data dump and a logic flow
monitor. These are controlled by parameters set in the TCL. BEach of
these features is discussed in detail in Section 8.

TCL COMPILER AND UTILITY PROGRAMS

Specific information on the TCL compiler is given at the beginning of
Section 2.



The GEMCOS system also contains four utility programs:

1. MCSRECALL is used for recalling audited messages and 1is
discussed in Section 2.

2. MCSFILXFER is used for transferring disk files Dbetween
computers. See Section 9 for more information.

3 MCSSIN is used for testing and is discussed in Section 8.
4. MCSFIX is used for patching. It is also discussed in Section

8.

More information on the TCL compiler and on TCL statements is found in
Section 2. At the end of Section 2, information is given on how to
execute the MCS.

Each of the features of GEMCOS is discussed further in succeeding
sections.



SECTION 2

TRANSACTION CONTROL LANGUAGE
COMPILER AND STATEMENTS

The B 1000 Transaction Control Language (TCL) is a high-level,
descriptive language which enables the user to select required functions
and to describe on-line system relationships.

This section discusses the TCL compiler and the files related to it,
gives the steps in executing the TCL compiler, presents TCL statements,
and explains how to execute the MCS.

TRANSACTION CONTROL LANGUAGE COMPILER (MCSTCL)
AND RELATED FILES

The TCL compiler is on the GEMCOS release tape in a file called MCSTCL.
When the compiler is executed, it produces a Message Control System
(MCS) composed of GEMCOS intrinsics and a data file consisting of
on-line relationships. (See Section 1 for additonal information on the
functions of an MCS.)

If the users need to change the MCS or the relationships with which it
operates, they can easily do this by recompiling.

To enable the user to check the system, MCSTCL produces an optional
hard-copy listing of the user's data communication system (MCSLST). It
also provides extensive data syntax checking to ensure that the MCS is
properly defined. MCSLST is discussed in more detail 1later in this
section.

The limits on the size of the TCL compiler are given in Appendix C.

The following files, the Table Information Control file and the
Functions and Formats file, are used with the TCL compiler (MCSTCL) .



TABLE INFORMATION CONTROL FILE (MCSTIC)

The MCS uses the Table Informaton Control file (MCSTIC) to store some of
its important variables and parameters. By storing these parameters in
a disk file, they are preserved from one execution of the MCS to
another. They are also protected in case the MCS is terminated
unconventionally. When systems relationships change, the TCL compiler
rewrites the MCSTIC file.

In addition, the MCSTIC file is used in network restoration. The
purpose of network restoration is to update the Network Controller with
MCS data on network status. Network status consists of information on
the current physical status of a station, such as whether a station is
enabled or disabled. Network restoration occurs automatically through
the information stored in the MCSTIC file.

The MCSTIC file is also used with the Network Controller. Each time the
MCS 1is executed, it uses status data from the MCSTIC file to generate
commands for the Network Controller. The Network Controller uses these
files to update its tables in main memory. See the MCSTIC FILE NAME
statement in this section for additional information.

FUNCTIONS AND FORMATS FILE (MCSFORMATS)

In the advanced and total versions of GEMCOS, all functions and formats
created by the TCL compiler are stored in a separate disk file called
MCSFORMATS. See the FORMAT FILE NAME statement in this section for
additional information.

SUMMARY OF STEPS TO
EXECUTE THE TCL COMPILER

The first step in executing the TCL compiler is to analyze which
programs, stations, or features are needed in an MCS. To do this, read
through the TCL statements in this section and study any other sections
which might be helpful.

The next step is to create the TCL source image, using either cards or
the Commmand and Edit Language (CANDE) to create a disk file. The TCL
source image is called MCSIN, and consists of the Control Statement, the
Global Section, and the Definition Section of the TCL.



To write the source image refer to the Control statement, the syntax of
the source image (deck description), the Global Section, and the
Definition Section of the TCL. These are all explained in this section.

The third step is to load several files and programs from the B 1000
GEMCOS release tape. These files and programs are discussed 1in detail
later in this section. Also see Figures 2-1 through 2-3 following the
CONTROL statement. GEMCOS system files are summarized in Appendix B.

After creating the source image and loading GEMCOS system files, the
user is ready to execute the TCL compiler (MCSTCL) and then to use the
hard-copy listing to check any syntax errors.

After +the TCL compiler has been executed, the user can execute the MCS
produced when the TCL is compiled. Instructions on executing the MCS
are given at the end of this section, following the TCL statements.

CREATING THE TCL SOURCE IMAGE (MCSIN)
(CARD DECK OR CANDE FILE)

To create either a card deck or a CANDE source file, the user first
needs to understand the following:

1. The syntax of the source image (deck description).
2. The Control Statement.

5. The Global and Definition Sections of the TCL.

4. The rules for writing the source image.

5. Optionally, how to use the Library statement.

Once the TCL source image (card deck or CANDE file) has been written,
the TCL compiler can be executed.

SYNTAX AND COMPONENTS OF THE SOURCE IMAGE

Users need to be familiar with the syntax of the source image, which is
given at the beginning of the the Control Statement. They should also
understand the other parts of the source image, the Control Statement,
and the Global and Definition Sections of the TCL.

Once users understand these components, they can use the following rules
to write the source image.



RULES FOR THE SOURCE IMAGE

The cards which compose the TCL source image (deck) are similar to those
of a User Programming Language (UPL) source deck:

1. Columns 73 through 80 are reserved for sequence numbers.

2. Comments may occur on any card following a "%".

3. Statements may begin in any column.

4. Any source image that contains the string "&PAGE" or "& PAGE"
starting in column 1 causes the listing to be advanced to
channel 1 before the printing continues.

5. A source image that contains "$NO LIST" in column 1 causes
only errors to be listed. When a source image that contains
"$LIST" in column 1 is read, both source records and errors
are listed. "$LIST" is the default at the start of MCSTCL.

6. The TCL compiler does not permit a continuation from card to

the next. If a string is begun on a card, it must end on that
card.

USING THE LIBRARY STATEMENT

Users can merge disk files (libraries) into the main TCL specification
with the LIBRARY OPTION STATEMENT. The syntax for this statement is:

$LIBRARY <file-ID>.
or:

$ LIBRARY <file-ID>.

Any source image that starts with $LIBRARY, or $LIBRARY followed by a
valid disk file name, causes MCSTCL to merge that file into the main TCL
specification deck. A LIBRARY statement can occur anywhere within the
TCL specifications, but not within a library. The dollar sign ($) must
be in column 1. <file 1ID> is a valid B 1000 file identifier. The
statement must terminate with a period.

Whenever the TCL compiler encounters a valid LIBRARY statement, and the
specified <file~ID> is on disk, the contents of this file is compiled at
the point of occurrence as if the contents actually were contained



within the main TCL deck. If the <file 1ID> is not on disk, fthe
statement is simply ignored.

The 1listing produced by the TCL compiler reflects any files merged into
the main deck. The merged 1lines are marked with an "L" in column 1 of
the 1listing. Any number of LIBRARY statements can occur within a TCL
specifications deck. The following are two examples of these
statements.

$LIBRARY GEMCOS/FORMATS.

$ LIBRARY GEMCOS/"NEW.FORMS".

EXECUTING THE TCL COMPILER (MCSTCL)

After +the TCL source image has been written, the TCL compiler can be
executed. The first step in doing +this is to load GEMCOS system
programs and files.

LOADING GEMCOS SYSTEM FILES

Load the following files and programs from the GEMCOS release tape:

1 The TCL compiler, MCSTCL.

2. The file GEMCOS/MCSGTS, which is the master source file.
GEMCOS/MCSGTS is input to GEMOCS/MCSGO.

3.  The program GEMCOS/MCSGO, which uses GEMCOS/MCSGTS +to build
user source code from the master source code.

4. The User Programming Language 2 (UPL2) compiler, which is only
used for GEMCOS compiles.

5. Optionally, the file MCSERROR, which contains standard GEMCOS
error messages that are modifiable, may also be loaded.



Modifying MCSGO

The user can place GEMCOS/MCSGTS on a different pack, and/or modify its
name. To change the external file name of MCSGTS, enter the following
statement:

PID uéﬁiﬁ
MODIFY GEMCOS/MCSGO FILE MCSGTS NAME <file name>;

The following gives information on using standard GEMCOS error messages.

Using Standard Error Messages

Users have the option of using standard GEMCOS error messages or
messages of their choice. To use standard output messages, no change
from the present procedures is required. The standard messages are
contained in the TCL compiler.

Modifiable error messages are contained in a CANDE-compatible file which
is dinput to MCSTCL. This file is called GEMCOS/MCSERROR, and can be
modified with CANDE. It is a sequential file with the following
structure: ‘

1. The first record in the file is the control record. The
current GEMCOS release level must appear in the first 5 bytes.
The remaining records contain the messages.

2. There can be 35 bytes maximum for each output message (in
columns 1 to 35).

Users need to be careful not to add or delete any records from the error
file. Records can only be changed. If GEMCOS/MCSERROR is not present
when MCSTCL is executed, the standard output messages are used.



EXECUTION USING A CARD DECK

Once the system programs and files are loaded, read in the TCL source
image (either a card deck or CANDE source file.) The card deck is
constructed as follows:

?EX MCSTCL
?DATA MCSIN

<{Deck description>

?END

EXECUTION USING A CANDE SOURCE FILE

Alternatively, users can create and maintain a TCL source file with
CANDE 1instead of a card file. The TCL source file is named MCSIN
<user's CANDE file name>. The CANDE default file type should be used.
To execute +the TCL compiler with a CANDE source file, enter the
following:

C\':': ¥ a
EX MCSTCL FILE MCSIN NAME <user's CANDE file name>

DSK DEF;

CHECKING FOR SYNTAX ERRORS

As soon as compilation begins, the compiler (MCSTCL) reads MCSIN (the
TCL source image) and then writes MCSLST to a line printer. MCSLST
lists the TCL source deck (or source file) and gives any syntax errors.
Another 1listing, called MCSERRLST, prints out any errors or warnings
separately.

Users can decide whether to print the entire listing, or just the syntax
errors. They do this by specifying "SLIST" or "$NO LIST" in column 1 of
a source record. If "$LIST" is specified, MCSLST is printed and both
the source record and errors are listed. If "$NO LIST" is specified,
only MCSERRLST prints, which gives any errors or warnings. The default
setting is $LIST.



The wuser can use MCSLST and MCSERRLST to check and correct any syntax
errors in the TCL source image.

SAMPLE TCL SOURCE IMAGE
(DECK OR FILE)

The following is a sample TCL source image used to create an MCS when
the TCL is compiled.

?EX MCSTCL
?DATA MCSIN
CONTROL = GENERATE, LIST, COMPILE.

GLOBAL:
MONITORTRACE = TRUE.
NCCOKRESPONSE = "$0K$".
STATUSREPORTS = TRUE.
BEGIN

PROGRAM PAYROLL USER:

TITLE = PAYROLL.

TRANCODE = UPDATE(1,1).

TRANCODE = INQ(1,2).

PROGRAM INVENTORY USER:

TITLE = INVNT.

TRANCODE = RCV (2,1), SHIP (2,2).
PROGRAM GAME UTILITY:

TITLE = MAZE/GAME.

INTERFACE = NONPARTICIPATION.
STATION TD80OA:
CONTROLSTATION
MONITORSTATION
STATION TDS8OOB:
STATION TD80OC:
STATION TD7O00A:
STATIC DECLARATIONS:

[}

TRUE.
TRUE.

"

RECORD 01 MESS STRUCTURE CHARACTER(5),

02 MESS_ITEM 1 CHARACTER(3),

02 MESS_ITEM 2 CHARACTER(2);
DECLARE ME MESS_STRUCTURE;
ENDSOURCECODE.

PROCEDURE SETVALUES:
PROCEDURE MESS SET VALUES;%

ME.MESS ITEM 1 := "AAA";%
ME.MESS_ITEM 2 := "BB";%
END MESS SET VALUES;%
ENDSOURCECODE.
END.
?END.



For information on how to execute the MCS created when the TCL is
compiled, see the end of Section 2, following +the individual TCL
statements. Presentation of the individual TCL statements begins with a
discussion of the Control statement.

CONTROL STATEMENT

The following diagram shows the syntax of the TCL source image (deck
description). The CONTROL statement forms the first part of this source
image.

Syntax:

{source image>

} (mmmmm e y TTTTTmEmmmsmT :
| |
-===CONTROL==~ = ——memeee /1 —-COMPILE—-—-——T ------ . mm———————— >(1)
|
| |
1==/1 —-GENERATE——--)E
|
| |
5--/ 1 /——REGENERATE—->E
| |
5-—/ 1 /--REPORT------ >i
| |
-~/ 1 /--UPDATEFMT---> |
(1)-=-- <GLOBAL section> =--- <DEFINITION section) =—-===-=--=—ee———e-- >

Semantics:

The CONTROL statement defines the task(s) to be performed during a
run of MCSTCL. The control 1list defines the individual task or
combination of tasks.

REPORT causes a hard-copy record of the user's data communication
system description to be written to a line printer. The listing is
labeled MCSRPT. If REPORT is the only option in the control list,
the Global section and the Definition section are not required.
The MCSTIC file, however, must be available to MCSTCL.

GENERATE causes MCSTCL to create a disk file labeled MCSTMP and ZIP
MCSGO. MCSGO uses MCSTMP and MCSGTS to create MCSSRC, the user's
MCS source-code file. In addition, when GENERATE appears in the



CONTROL statement, a disk file labeled MCSTIC is written. MCSTIC
contains customized tables consisting of the user's data
communication system network relationships. The MCSTIC file must
be present when executing a B 1700 GEMCOS-generated MCS. When
GENERATE is in the control 1list, both the Global section and
Definition section must be present.

REGENERATE causes MCSTCL to create a new MCSTIC file from an old
one. This option should be wused if a station, transaction,
program, or access key 1is to be added or changed. REGENERATE
neither writes MCSCRD nor ZIP-executes MCSGO, thus saving machine
time. When REGENERATE is in the control 1list, both the Global
section and the Definition section must be present. If MCSTCL
determines (while modifying an existing MCSTIC file) that the MCS
code file is no longer compatible, it produces a syntax error and
the regeneration does not occur. This happens when, for example,
AUDIT was not specified in the original GENERATE run, but appears
in the REGENERATE run.

NOTE

During a REGENERATE run, the station network control
information, which is used to bring stations back to
their last running state, is not copied from the old
MCSTIC file to the new one. Therefore, after a
regeneration, stations 1in the network have those
attributes specified in the NDL which do not reflect
the accumulated changes caused by GEMCOS Network
Control Commands. Moreover, the audit file number
is reset to zero; all existing audit files are no
longer valid.

COMPILE causes MCSTCL to instruct MCSGO to ZIP-execute the UPL
compiler to create MCSSRC/object from MCSSRC. If COMPILE appears
in the control list, GENERATE must also appear.

UPDATEFMT facilitates recompilation of +the TCL Format section
without requiring generation or regeneration. The Format section
can be recompiled while the MCS is operating and without affecting
the MCSTIC file. Only previously compiled functions and formats
can be modified. The recompiled functions and formats are copied
into the format file, MCSFORMATS. Programs and stations have
access to the new copy of the format through the *¥UPD network
control command, entered from the control station or the SPO.



Examples:

CONTROL = REPORT.
CONTROL = REGENERATE, REPORT.
CONTROL = GENERATE, ZESP, COMPILE.
CONTROL = UPDATEFMT.%E ¢

Figures 2-1 through 2-% illustrate which files are created and accessed
by the TCL compiler (MCSTCL) when the previously listed sample CONTROL
statements are present.

MCSIN — MCSTCL MCSRPT

MCSERRLST
(ERROR-ONLY
LISTING)

MCS
FORMATS
(OPTIONAL)

Figure 2-1. Files Created by TCL:
Compiler When CONTROL = REPORT

2 - 1



MCS
SRC/

OBJECT

' -

MCSIN

MCSTCL .—D MCSGO

]

> MCSRPT
MCS MCSERRLST
ERROR \/—

MCS
FORMATS
(OPTIONAL)

Figure 2-2. Files Created by TCL
Compiler When CONTROL =
GENERATE, REPORT, or COMPILE



[ MCSIN P MCSTCL
MCSTIC
I
|
I
I
|
I
C Y
MCSLST
—_— _I MCSRPT
MCSERRLST

MCSERROR

Figure 2-3. Files Created by TCL
Compiler When CONTROL =
REGENERATE or REPORT

2 - 13



MCSTIC FILE NAME STATEMENT

Syntax:

<MCSTIC FILE NAME statement>

=—-MCSTICFILENAME=== = =m== {file ID) =mm= , mmm--ccecmccccc———————— >

Semantics:

The MCSTIC FILE NAME statement allows for the specification of the
MCSTIC file name. The MCSTIC FILE NAME statement, if present, must
appear after the CONTROL statement and before the Global section.
<File ID> is a B 1000 file identifier. By default, MCSTICFILENAME

is MCSTIC.

Examples:
MCSTICFILENAME = MYMCSTIC.
MCSTICFILENAME = TEST/MYMCSTIC.
MCSTICFILENAME = PACKB/TEST/MYMCSTIC.



FORMAT FILE NAME STATEMENT

Syntax:

<FORMAT FILE NAME statement>

-—-FORMATFILENAME--= = -=== <file ID) =-== . ——m——cmmmmmmmmmmomomeoo >

Semantics:

The FORMAT FILE NAME statement 1is used to change the name of the
MCSFORMATS file. This statement only functions in the Advanced and
Total Versions of GEMCOS. It must immediately follow the MCSTIC
FILE NAME statement and precede the Global section. <File ID> is a
B 1000 file identifier. By default, FORMATFILENAME is

GEMCOS/MCSFORMATS.

Examples:
FORMATFILENAME = ALLFORMATS.
FORMATFILENAME = TEST/FORMATS.
FORMATFILENAME = GEMPAC/LIVE/FORMATS.



GLOBAL SECTION

See the following syntax diagram for an explanation of the Global
Section. Please refer to this diagram when reading the succeeding
statements, which are part of the Global section.

|

leeLoaAL ——1\—CHANGEREQUESTS >= —> TRUE > . Y
L /1 \— DATADUMP ———— FALSE]

[/ 1 \— MESSAGEBROADCAST —>
L1\ MESSAGERECALL ———>
-/ 1 \— MONITORTRACE ———>
L/ T\ MONITORTRACEON———>
L/ 1\ PROGRAMBOJEQJ ————>
/1 \— SIMULATION ——————>
L T\ STATUSREPORTS ————|
L/ 1\ SUBORDINATEMCS ———>
L1\ SYSTEMHALT >
L/ 1\ COMPILEOPTIONS ———> = => <string> ———|
[/ 1 \— OBJECTCODEFILENAME j—) = > <file-1D> ——>
/1 \— SOURCECODEFILENAME

L/ 7\ AUDITFILEPACKID ————=> = -><identifier>——>
L1\ MYNAME ————————>
/1 \— RECALLPROGRAM ———>!
/1 \— AUDITPAGESIZE ————5> = => <integer> ——>
/1 \—— AUDITRECORDSIZE ——>
-1 \— CHECKPOINTINTERVAL—>
L/ 1 \— CONVERSATIONLIMIT —>{
/1 \—— MAXRUNNING ——————>{
/1 \— MAXTEXTSIZE ———>
L/ 1\ NAMESTACKENTRIES —>
L\ QUEUEBUFFERS ————>
L/ \— QUEUEDEPTH ————>
L/ 1 \— VALUESTACKBITS ——>
1\ NCCOKRESPONSE = —> <character> —>
L/ 1\ SIGNALCHARACTER
1T\ QUEUENAME ——————> = => < remorte file-1D> =>
L/ 1\ <FORMAT AND FUNCTION statement> >




Semantics:

The Global section is composed of two types of GLOBAL statements:
CODE GENERATION statements and MISCELLANEOUS PARAMETER statements.
Any given GLOBAL statement may occur only once in the Global
section, except in the FORMAT and FUNCTION statements.

There are two types of CODE GENERATION statements. The first type
of CODE GENERATION statement causes optional MCS intrinsics to be
generated into the MCS source file. This type can take on a TRUE
or FALSE value.

These optional MCS intrinsics include code to support the
following:

1e Change commands.

2. The data dump command.
B Message broadcast.

4, Message recall.

5. Program control commands.
6. Monitor trace.

Te Status commands.

8. System shutdown.

9. Audit.

10. Output audit.

11. Queue restoration.

The second type of CODE GENERATION statement controls the names of
GEMCOS files, UPL2 compiler options, and object code memory size
requirements.

It is important to note that ©both types of CODE GENERATION
statements directly affect the MCS source and/or object code files.
Therefore, if a CODE GENERATION statement is modified, GENERATE and
COMPILE should appear in the CONTROL statement since new source and
object code files are required. Otherwise, MCSTCL detects an
object code file, MCSTIC file incompatibility error.

MISCELLANEOUS PARAMETER statements specify various attributes of a
running GEMCOS MCS, such as the signal character or Network Control
Command response. Except for the AUDIT PAGE SIZE statement and the
AUDIT RECORD SIZE statement, MISCELLANEOUS PARAMETER statements may
be safely changed in REGENERATE MCSTCL runs.



Example:

GLOBAL:
PROGRAMBOJEOJ = TRUE.
MONITORTRACE = FALSE.
COMPILEOPTIONS = "LIST SUMMARY".
QUEUEBUFFERS = 3.
DATADUMP = TRUE.

AUDIT FILE FAMILY ID STATEMENT

Syntax:
<AUDIT FILE FAMILY ID statement>
--==AUDITFILEFAMILYID-=~ = —-- <{identifier> =-=== . =c-ememeeccemmeeees >

Semantics:

The AUDIT FILE FAMILY 1ID statement allows MCS audit files to
contain a user-specified family portion of the file name
(multi-file-ID). This option is particularly useful whenever more
than one GEMCOS MCS performing audit and recovery are run on the
same site. The length of the identifier must be 10 characters or
less. By default, the multi-file-ID portion of the audit file is
MCSAUDIT.

Examples:

AUDITFILEFAMILYID = A.
AUDITFILEFAMILYID = DEMOAUDIT.



AUDIT FILE PACK ID STATEMENT

Syntax:
<AUDIT FILE PACK ID statement>
----- AUDITFILEPACKID--- = ——- <identifier) —-= . ——mmmmmmmmmmmmmmeee) |

Semantics:

The AUDIT FILE PACK ID statement allows MCS audit files to reside
on other than the system pack. It is recommended that audit files
reside on a user pack to increase throughput and decrease the time
spent in audit and recovery. The identifier must be 10 characters

or less in length. By default, audit files reside on the system
pack.

Examples:

AUDITFILEPACKID = MCSPACK.
AUDITFILEPACKID = AUDITPACK.



AUDIT PAGE SIZE STATEMENT

Syntax:
<AUDIT PAGE SIZE STATEMENT>
--=--AUDITPAGESIZE-~==~ = --- <identifier> --== . —-eemmemmemm e >

Semantics:

The AUDIT PAGE SIZE statement controls the size of the audit files
by specifying the number of records in each page (that is, the
area). There are always 40 pages. By default, AUDITPAGESIZE
equals 1000.

Examples:
AUDITPAGESIZE = 500.
AUDITPAGESIZE = 2000.



AUDIT RECORD SIZE STATEMENT

Syntax:
<AUDIT RECORD SIZE statement>
————— AUDITRECORDSIZE-—- = --- <identifier> ——- . —mmmomommmmmmmmmeeeo) |

Semantics:

The AUDIT RECORD SIZE statement controls the size of the audit
record by specifying the number of bytes in each record.
Increments of 180 are the only allowable values. When a value
other +than an increment of 180 is specified, a warning is issued
and the next highest dincrement of 180 is selected. By default,
AUDITRECORDSIZE equals 180.

Examples:
AUDITRECORDSIZE = 180.
AUDITRECORDSIZE = 540.



CHANGE REQUESTS STATEMENT

Syntax:

{CHANGE REQUESTS statement>

---CHANGEREQUESTS=-~--~- = - TRUE==~==~ . e >

~--FALSE->

Semantics:

The CHANGE REQUESTS statement determines whether the GEMCOS MCS is
to contain the logic to support the following seven Network Control
Command change requests:

1.  CHANGE STATION ADDRESS (CSA).

2. CHANGE STATION DIAGNOSTIC (CSD).

3.  CHANGE STATION FREQUENCY (CSF).

4.  CHANGE STATION MAXIMUM RETRY (CSM).

5.  CHANGE STATION QUEUE (CSQ).

6. CHANGE STATION READY (CSR).

7. CHANGE STATION TRANSMISSION NUMBER (CST).

When MONITORTRACE equals TRUE, the CHANGE MONITOR FLAG (CMF)
command becomes the eighth change request, and CHANGEREQUEST code
will be generated automatically (for internal use). However, users
will not be able to access the seven Network Control Command change
requests unless they set CHANGEREQUESTS to TRUE in the TCL.

Example:

CHANGEREQUESTS = TRUE.



CHECKPOINT INTERVAL STATEMENT

Syntax:
<CHECK POINT INTERVAL statement>
-—-—=CHECKPOINTINTERVAL-=~=-= = ——- <{integer> === . =seemocmecm e >

Semantics:

The CHECKPOINT INTERVAL statement determines the length of time
between checkpoints taken by the MCS during auditing. Specifying
too small a number causes the MCS to do an excessive number of

I/0s, thereby reducing throughput. By default, CHECKPOINTINTERVAL
equals 60 (seconds).

Examples:

CHECKPOINTINTERVAL = 30.
CHECKPOINTINTERVAL = 90.

]



COMPILE OPTIONS STATEMENT

Syntax:

<COMPILE OPTIONS statement>

Semantics:

The COMPILE OPTIONS statement allows for the specification of UPL
compiler control statements when COMPILE appears in the CONTROL
statement (refer to DOCUMENT/SDL2 on the 6.00 or later GEMCOS
release tape for a complete description of available options).
{String> must begin and end with a quote and must not exceed 65
characters. By default COMPILEOPTIONS is set to NO LIST SUMMARY.

Examples:
COMPILEOPTIONS = "LIST CODE".
COMPILEOPTIONS = "LIST XREF".



CONVERSATION LIMIT STATEMENT

Syntax:

<CONVERSATION LIMIT statement>

---CONVERSATIONLIMIT---= = —-- <integerd --- . ——————mm—mmmmmmmommmom >

Semantics:

The CONVERSATION LIMIT statement allows the user to specify the
maximum number of stations that may converse concurrently. The
integer specified must not exceed the number of stations declared
in the TCL. The maximum limit allowed by GEMCOS is 64. When there
are no CONVERSATION SIZE statements declared for programs in the
TCL, the default value is zero, that is, no conversation capability
exists 1in the MCS. When conversational programs are present, the
default value is the number of stations declared in the TCL.

This statement establishes +the number of reserved conversation
areas. The number of areas is reserved by powers of 2. When the
limit is declared, the nearest 2 to the nth power that is greater
than or equal to the 1limit is the number of areas reserved. Even
if the reserved area is larger than the limit, the maximum number
of concurrent conversations may not exceed the specified limit. If
the 1limit needs +to be increased and the new limit exceeds the
number of reserved areas, a GENERATE and re-COMPILE would Dbe
required.

Examples:

CONVERSATIONLIMIT =
CONVERSATIONLIMIT

won
Ul 0o



DATA DUMP STATEMENT

Syntax:
<DATA DUMP statement>

~=-DATADUMP--=- = -==-TRUE------

|
| |
| ==FALSE--> |

Semantics:

The DATA DUMP statement indicates whether the code to create a dump

of internal MCS variables

the REPORT DATA DUMP (RDM)

DATADUMP equals FALSE.

Example:

DATADUMP = FALSE.

is present. When DATADUMP equals TRUE,

command 1is recognized. By default,



FORMAT AND FUNCTION STATEMENT LIST

Syntax:

The following diagram shows the syntax of the FUNCTION and FORMAT
statement.

<FUNCTION and FORMAT statement>

— {function declarationd> ---->,

j=———- {format declaration> ---=>

Semantics:

In addition to the functional capabilities of the Basic version of
B 1000 GEMCOS, the Advanced version includes a Message Formatting
module. The Message Formatting module can be used to support forms
requests, modify the text of messages, and/or ensure application
program device independence. Users of the Basic version will find
that an attempt to invoke the formatting capabilities of GEMCOS
results in a syntax error.

The Forms Request function provides station operators with the
ability to enter a message-ID (refer to Device section below) and
to receive 1in return a formatted screen with blank data fields.
Application programs may also invoke the Forms Request function,
causing formatted screens with blank data fields to be displayed at
stations in the network.

The text of messages entered at stations can be modified,
re-arranged and/or supplemented prior to being routed to the
appropriate application program. This process is referred to as
input formatting. The text of messages written Dby application
programs can be modified, re-arranged and/or placed into data
fields of formatted screens before being sent to stations; this is
referred to as output formatting.



When a network is comprised of +two or more typées of terminal
devices, the stations may be grouped into several device
classifications in the Device section. A set of formats is defined
for each device classification. When invoked, the formatting
module recognizes the device classification of the station
involved, and applies a format from the set associated with that
classification. As a result, messages sent or received by
application programs can have a standard record layout regardless
of the device type of the destination/source station. Moreover,
the application program does not need to be affected Dby the
different control characteristics of different devices.

There are two areas of the TCL which relate to formatting: the
Device section and the FORMAT AND FUNCTION statement 1list. The
Device section is wused to identify which messages are to be
formatted and with which formats. The FORMAT AND FUNCTION
statement 1list is used to define formats and functions. A format
specifies how a screen is to be built and/or how the message text
is to be modified. A function defines a translate table which can
be referred to by a format.

The FORMAT AND FUNCTION statement 1list is composed of a function
declaration 1list, which can be empty, followed by a format
declaration list.



Function Declaration

Syntax:

The following diagram shows the syntax of the Function Declaration.

{Function Declaration>

| o e (3)
|
--FUNCTION--- <function identifier) —------c---ooo-oomomooooooooooe >(1)
|
| --[ EXTERNAL-- : —---INTEGER----- >(2)
| |
| |
E--ALPHA—--—>}
|
| |
| ~~UNEDITED-> |
(3)¢---]
| | !
j{mmmmmm e D i i
| i |
(1)-———7-—— ( --- <external string> : <internal string> --- ) --- . ==>|
|
(4)--->]
(2)=-- , =-==INTERNAL-=- : ~—=-- INTEGER-~====- S —— >(4)
| |
| |
E——ALPHA ----- >§
| |
| ~=UNEDITED--> |
Semantics:

The function declaration defines functions which can be used in a
translate item phrase of a format declaration. A  function
identifier 1is required as the first argument of the translate item
phrase. The translate item phrase allows a format to translate a
string of length n into a string of length m where O0<n<7 and O<m<7.
{String> is therefore limited to a maximum of six characters. Up
to 10235 functions may be declared.



A translate pair associates an external string with an internal
string. On input, an external string 1is translated into the
associated internal string. On output, an internal string is
translated into the associated external string. When an
application program deals with the text of a message, it must use
an internal string in a translate field. When an operator deals
with the text of a message at a station, an external string is
used.

Refer to "Format Declaration" for examples of functions used in
formats.

The justification and fill part is described in the following
example:

Example:

FUNCTION GENDER ("MALE":"1", "FEMALE":"2").
FUNCTION DIGITIN ("1":"ONE", "2":"TWO", "3":"THREE"),
DIGITOUT [EXTERNAL:ALPHA, INTERNAL:INTEGER ]

("ONE" : n1 " , nTWOu : n2u , "THREE" : 103n) .

As the translate module searches for a match between the source
text to be translated and an internal string/external string, both
the source text and the internal string/external string are placed
into character strings of 1length six for comparison. The
Justification and fill part enables the user +to control the
placement of the source text and the internal string/external
string into these character strings. If the justification and fill
part 1is empty, it is assumed that both the external string and
internal string are unedited. By using the Justification and fill
part, the user may make either of these strings UNEDITED, INTEGER,
or ALPHA.

An unedited string of less than six characters in length is
right-justified within a 6-character string with leading nulls
(4"00"). A null compared with any character is always considered a
true comparison by the translate function.

An integer string of less than six characters is right-justified
with leading zeroes. An alpha string of less than six characters
is left-justified with trailing blanks.

If, within a given function, the length of each internal string is
the same and the length of each external string is the same, it
makes little difference whether the strings are unedited, integer,
or alpha. However, if strings vary in length, using integer or
alpha strings can help to avoid confusion. For example, suppose a
function is declared as follows:

FUNCTION TEST ("11":"SOME", "1":"ME").

P



Upon input, if the +translate function were to search for an
external string of 1, it would get a match with 11 because of a
NNNNN1. The source text after justification will compare as equal
to NNNN11, the external string after justification (where N is a
null). A similar phenomenon would occur on output if the translate
function was searching for an internal string of ME: NNNNME would
match NNSOME. This problem could be avoided by declaring the
function as follows:

FUNCTION TEST [EXTERNAL:INTEGER,INTERNAL:ALPHA]
(111 1 " : "SOME" , u1 ”" . "ME" ) .

With this declaration, if the source text to be translated on input
were "1", it would Dbe converted to 000001. It would not match
000011, but would successfully match 1 Jjustified as an integer.
Likewise, source text on output of ME would be converted to MEBBB
(where B is a blank); it would not match SOMEBB, but would match ME
justified as an alpha string.

Format Declaration

Syntax:

The following diagram shows the syntax of the Format Declaration. The
syntax of the Local Declaration Part, the Editing Specification, Editing
String, and other components are shown after the format declaration.

{format declaration>

(1)-- ( --- <local declaration partd> --- <editing specd --- ) === . —=>|
Semantics:

The format declaration is used +to define how a screen is to be
built and/or how message text is to be modified. When formats are
declared in the format declaration, the Device section is used to

2 - 31



indicate which formats are to be applied to which messages. Up to
1023 formats may be declared.

The format part list allows several formats, separated by commas,
to Dbe described in a single format declaration. Even though the
syntax allows several formats +to be described in one format
declaration, it is good practice to define one format per format
declaration. When a syntax error is encountered in a format part,
the TCL scanner skips past any remaining format parts to the next
format declaration. Syntax errors in the skipped format parts are
not flagged until the format part in error is corrected. If one
format is defined per format declaration, more syntax errors can be
caught in each run of the TCL compiler.

Bach format part associates a format identifier with a particular
set of message formatting instructions. The format identifier is
referenced in a FORMATSIN statement and/or a FORMATSOUT statement
of the Device section.

The special action part, if present, indicates whether the format
is a resident format. A resident format is kept in an array in
memory instead of on disk. This facility is provided for small,
frequently used formats. It is intended to save the input/output
overhead that would otherwise be required to retrieve a format from
disk Dbefore wusing it. This option should be used with care since
its overuse could require significant amounts of memory.

The format description consists of an optional 1local declaration
part and the editing specifications enclosed within parentheses.
(Readers unfamiliar with GEMCOS formatting should refer to Section
4 of this manual or to the GEMCOS Formatting Guide.) The following
diagram shows the syntax of the local declaration part.



<local declaration part>

mmmemmmmmoooosmmooooooe- e >(1)
§ s (3)
E—--VARIABLE--l—T——/—T_/———V1--—T-——T—-—-—--—-———~-——-------T-——->(2)
i--/ 1 /---v2-->§ i--- @ --- <integer> -->i
/T V3o
g--/ 1 /———V4-->§
5--/ 1 /——~V5—->§
i--/ 1 /—--V6-->E
(1) e >
(3)<mmmmmmme | i
(2)---FOR--- <integer> S ; --->!

The editing specifications describe the order and length of the
fields of a message as well as the manipulation of the message
buffer pointers. The editing specifications are a list of editing
phrases. An editing phrase can be an editing string, a location
specifier, or an item phrase. The syntax of the editing
specifications follows.

{editing specifications>

} (ommm e y TTTTETETEETEEEET T :
| |
| |
m==--m==---- <editing STTingd —----m-mmmmmmmmomoooemoooeoeooooooooo >
i
| |
i——- <editing stringd —--—----—-—-- >5
| |
i——— {item phase> ===-emececu—u-— >E
| |
=== @ —m—mmmee o <integer> -->|
| l
E—_——
| |
{ l
1-- - -=>i



An editing
simple

message.
a hexadecimal
string

string
string

causes

source message

is either a simple string or a skip field.
is used to place
A simple string can be an EBCDIC string such as "XYZ" or
string such as 4"0D" (carriage return).
is used extensively when building forms for screen devices.
It can be used to create
areas as well as the necessary control characters.

The
a literal field into a formatted

The simple

the descriptive text

of the protected
A simple string

the pointer into the formatted message buffer to be updated
to the right by the length

buffer

of the string. The pointer
is unaffected by a simple

into the
string editing

phrase. The following diagram shows the syntax of the editing
string.
<editing string>
————————— X =--- <integer> --——-—---——--—-~--——--—-—-—-—--——T——-——---——>I
— X = m———- <EBCDIC unit stringd> ---- ) —====n >
|-- <hex unit stringd> ---->|
———————————————— {stringd -—=--memmmmmm )
| |
i-= 8 -=>|
—————— 4 -~-—---- <hexadecimal string> --==---—eee--=>)

The following diagrams
hexidecimal string.

show the syntax of a hex unit string and a



<hex unit string>

S —

—_— 4" ————— O e O —————

N N N N\ N e N N /N
I 1 I 1 1 ] i ] i
-— N ¢ o o O <q m [&] &) jea} =]
[} 1 i 1 1 1 1 I i
I L} 1 1 ] t i 1 I
N N N s A N\ N A N
1 1 1 i i 1 1 ! I
~— ANl e o O <q m O A = =]
1 ] [} ! 1 1 1 1 ]
1 ! 1 1 1 ] 1 1 1

<hexadecimal string>

y

e

"

mmmmeen Q) mmmmeen Qe

o N N ) N N A N N

I i 1 ] 1 i ] ] ]

— ANl o o o« OV < m (&) (=] €3] By

] | i ] 1 ] i i ]

1 1 1 ] ] ] i ] ]
||I.|\/ N\ /N N\ N\ N\ N\ /\ /\
! I 1 I ] 1 ] ] !

J— [qV] e o e O© <4 m O A £3] =21

1 | 1 1 } ] 1 ] ]

1 I i 1 ] ] ] 1 ]

35



Upon input, the skip field causes text in the terminal message
buffer to be skipped (by updating the terminal message buffer
pointer). The number of characters skipped can be defined by an
integer or a delimiter. For example, X3 causes three characters to
be skipped while X(",") causes text up to and including the next
comma encountered to be skipped.

Upon output, X8 causes eight spaces to be placed into the terminal
message buffer while wupdating the pointer. X(<delimiter>) is
undefined for output messages. The program message buffer pointer
is unaffected by a skip field.

The location specifier is used to manipulate the program
message-buffer pointer without affecting the terminal
message-buffer pointer. By manipulating the program message-buffer
pointer, fields can be skipped, re-ordered and/or re-used.

There are two variations of the location specifier distinguished by
the existence of an optional sign. When a sign is present, the
program message-buffer pointer is adjusted by <integer> positions
to the left (sign is a "-") or to the right (sign is a "+"). When
there is no sign, the program message-buffer pointer is set to
position <integer>. Care must be taken to keep the pointer within
the Dbounds of the program message buffer. Upon input, the user
should also be careful not to overlay good data in the program
message buffer.

For more information, refer to "Using Location Specifiers" later in
this section.

An item phrase defines a field of a formatted message. A field can
be comparatively simple such as six alphanumeric characters, or
rather complex, such as a repetition of several variable-length
subfields. In order +to encompass the wide variety of possible
fields, several forms of the item phrase are available. All
involve at least one item type, field width pair. The following
diagram shows the syntax of the an item phrase.



{item phrase>

-------- {integer> =mmmmmmmm e e > (1)
L |
T Rt >
Lo |
R S — <variable --- OR --- <integer> ->|
Lo ! identifier>
| |-- <variable — =D
| identifier>
|
i
l-= T —= ( == <function =-= , —=—= A ————- {(field width> -- , --=>(2)

identifier> | :
i-— I =>|
| |
| |
j-= B ->|
| |
| |
== J >

Q1) [E——  N— <field Width) —mmm el >1

L |
o= 1 => |
] | | |
b ! !
i 1= B =>, i
] | | |
b ! 1
== d =2 I
| |
| |
1

]

-- ( -- <editing spec.> == ) ==>|

(2)-- <internal sized> —- ) —————mmmm—meun >

The item type determines how a field or subfield is to be edited.
Four item +types are available: A, B, I, and J. A denotes an
alphanumeric field, and B specifies a tabbed alphanumeric field.
Alphanumeric fields may contain any characters, and leading blanks
are considered significant. Truncation or blank filling occurs on
the right. I denotes an integer field, while J specifies a tabbed
integer field. Integer fields may only contain digits and/or
blanks except for imbedded blanks. They are truncated or
right-justified with zero filling on the left.

The field width determines the 1length of a field or subfield.
Fields can be fixed or variable in length. The following diagram
shows the syntax of the field width.



{field width>

|
!-- ( ——m-- <EBCDIC unit string> ----- , == <integer> -- ) -=>|

-~ <hex unit string> ---->

The simplest form of the item phrase is an alphanumeric or integer
field with an <integer> <field width> such as A6 or I9. An A6 item
phrase results in the move of six characters from +the buffer
containing the raw message to the formatted message buffer. An
item phrase of I9 would move nine characters subject to the editing
rules already mentioned. The unprotected areas of formatted
screens are usually composed of fixed alphanumeric or integer
fields.

A more powerful form of the item phrase employs a <variable field
specifier> <field width> such as A("¥",6) or I("+",8). The
internal size determines the size of the field in the program
message buffer.

NOTE

While field lengths of the terminal message buffer
may vary, field 1lengths of the program message
buffer are always fixed. The delimiter is used to
signify the end of the field in the terminal message
buffer. The field begins where the previous field
ends.

Upon input, a variable-length field is isolated based on the end of
the 1last field and the delimiter. It is moved into the program
message buffer and justified according to the item type. The
delimiter is not considered one of the characters of the field and,
therefore, is not placed into the program message buffer.

Upon output, a string of characters of length <internal size> is
obtained from the program message buffer. It is compressed by
truncating trailing blanks or leading zeroes, depending on the item
type. The compressed string is placed into the terminal message
buffer, and the delimiter is inserted after the compressed string.
The following diagram shows the syntax of length <internal size>.

{internal size>

== {integer> ===mmmm e e e e >



During both input and output, the terminal message Dbuffer is
updated to the position following the delimiter, while the program
message buffer is moved to the right by <internal size> positions.

Tabbed fields, where the item +type 1is B or J, are similar to
variable-length fields on input and the same as fixed fields on
output. On input, a tabbed field can end early if the tab
character (4"05") is encountered. However, unlike a variable
field, where the delimiter must be present, the tab character is
not required to end the field. If enough characters are found, the
field ends automatically.

For example, a B10 item phrase on input causes characters to be
moved from the terminal message buffer to the program message
buffer wuntil either 10 characters have been moved, or a tab
character 1is encountered. The program message-buffer pointer is
moved 10 characters to the right. The terminal message-buffer
pointer 1is left pointing +to the eleventh character, or to the
character following the tab, whichever happens first. If the
transfer is terminated by a tab character, trailing Dblanks are
placed 1in the program message buffer to fill out all 10 character
positions. The tab character is not placed into the program
message buffer.

On output, B5 would achieve exactly the same results as A5, and J7
the same as I7. The tab character is not placed into the terminal
message buffer, as is done with the delimiter of a variable-length,
nontabbed field.

The default tab character (4"05") can be changed by using a
variable field specifier along with the B or J item type. J
("*",5) is the same as J5 except that "¥*" is the tab character
instead of 4"05". B(4"05",10) is identical to B10.

Bach item phrase discussed thus far may be repeated by placing a
repeat part in front of the item type. A repeat part may be fixed
or variable.

A fixed repeat part is designated by an integer. It is a shorthand
method of representing an editing phrase list where each editing
phrase is identical. For example, 2A6 is the same as A6,A6.

A variable repeat part can only be used on output. It is useful
for messages which have a variable number of fields of repeated
data, such as tables with columns of values. These messages must
have, as one of the data fields, a counter specifying the number of
times a particular field will occur.

If a message 1is to contain a variable repeat part, the format
applied to the message must have a local declaration part. The
local declaration part specifies where in the message the counters
governing the occurrence of the repeated fields are to be found.

2 - 39



Values for variables declared are the first items extracted from
the program message buffer. During each variable assignment, the
program message-buffer pointer is adjusted by a combination of the
optional location specifier and the length of the counter field.
The 1length of the counter field is determined Dby the integer
following the keyword FOR. The value of the counter contained in
the program message buffer must be expressed as EBCDIC digits with
a value not greater than 255. As many as six variables can be
declared per format.

After a local variable has been set to a value extracted from the
program message buffer, it can be referred to as a variable
identifier in a variable repeat part. A variable repeat part
consists of an optional update variable, a variable identifier, the
keyword OR and an integer. The object of the repeat part is
repeated either the number of times referred to by <variable
identifier> or <integer> +times, whichever is less. If the update
variable is present, its variable identifier is set to <variable
identifier> minus the number of times the repeat object was
repeated. For example, V2 or 8 would cause its object to be
repeated V2 times, but not more than eight times. If V2 had a
value of nine, V3:V2 OR 3A5 would cause A5 to be repeated three
times and V3 would be set to 6. The original value of V3 is lost.
If V2 had been zero, the A5 field would not occur and V3 would be
set to zero. The syntax of a variable identifier follows.

{variable identifier>

An editing phrase 1list enclosed in parentheses is an even more
complicated item phrase. This form can be thought of as a field
composed of several subfields. An editing phrase list enclosed in
parentheses can be the object of a repeat part. Editing phrase
lists can be nested to 32 levels of parentheses.

Another complicated form of +the item phrase, T(<function

identifier>, <item type> <field width>, <internal size>), is a
reference to a translate function. The function identifier refers

2 - 40



to a function which must have been defined in a function
declaration. The <item type> <field width> describes a field in
the terminal message buffer, while internal size describes a field
in the program message buffer.

Formatting Errors

When an error is detected while formatting an input message, the MCS
sets the Format Error field of the common-area header to a nonzero value
as described following. The message 1s then sent to the application
program for which it was bound.

When an error is detected while formatting an output message, the MCS
message is still sent to the destination station but, in addition, an
error message is sent to the control station specifying what type of
error occurred.

Error Type Description

1 Destination pointer out of bounds

2 Source pointer out of bounds

3 Nondigit in integer field

4 Missing skip delimiter

5 Attempt to use variable repeat on
input

6 Missing delimiter or variable field
too long

7 Invalid string in translate field

Only the first error encountered is reported; however, the MCS attempts
to continue formatting a bad message. When a type-3 formatting error
occurs, the nondigit is placed into the erroneous field. For type-6
errors, significant text may Dbe truncated in an attempt to force
excessive data into the program message buffer. Type-T7 errors result in
question marks being placed into the erroneous field. Results are
undefined for the other types of errors.



Figures 2-4 through 2-8 list five graded examples (example sets 1
through 5) of three increasingly difficult formats applied to input
messages and output messages.

Example set 5 (Figure 2-8) uses the following function declarations:

FUNCTION GENDER(" MALE":"1","FEMALE":"2").

FUNCTION NUM1("ONE":"1","TWO":"2","THREE":"3","FOUR":"4",
"FIVE":"S" ’"SIX":"6"’ "SEVEN" : "7" ’"EIGHT":"B",
"NINE":"9","TEN":"10","ELEVEN":"11",
"PWELVE":"12").

FUNCTION NUM2 [EXTERNAL:ALPHA,INTERNAL:INTEGER ]

("ONE" : "1 1] , "TWO" : "2" , "THREE" : ll3" , "FOUR" : "4" R
"FIVE":"5","SIX":"6","SEVEN":"7","EIGHT":"8",
"NINE":"9","TEN":"10","ELEVEN":"11",
"TWELVE":"12").

FUNCTION DAY ("1":"SUN","2":"MON","3":"TUE","4":"WED",
"5":"THU"’"6":"FRI"’"'?":"SAT").



Message as It
Input/ Appears at the

<Editing specifications> Message as It
Applied to Message Appears to the

OQutput Terminal In Transit User: Program
Input/ ABC1234XY A3,I4,A2 ABC1234XY
Output
Input ABC 4XY A3,I4,A2 ABCO004XY
Input ABC 4 XY A3,I4,A2 ABCOOO4XY
Input/ ABCOOO4XY A3,14,A2 ABCOOO4XY
Output
Input AB 5678XY A3,X4,A2 AB XY
Input AB GGGGXY A3,X4,A2 AB XY
Input/ AB XY A3,X4,A2 AB XY
Output
Input ABCDE A2,"*" A3 AB*CDE
Input AB*CDE A2,"*" A% AB**CD
Output AB*CDE A2,"*" A% ABCDE
Input RIGHT A5,8"FACE" RIGHTFACE
Output RIGHTFACE A5,8"FACE" RIGHT

D .
Output NAME: [HARRY]C "NAME: [",A5,"]",4"12" HARRY

2

- D -

Output Name: | Ic "NAME: [",A5,"]",4"12" (forms

2 request)

Figure 2-4. Example Set 1 - Formatting
Specifications Applied to
Input and Output Messages



Message as It

<Editing specifications>

V2 @ FOR 2; @1,

Message as It

Input/ Appears at the Applied to Message Appears to the
Output Terminal In Transit User Program
~Input 1234XY 16 1234XY
(FMTERR set
to 3)
Output 1234XY I6 1234XY
(control station
notified of
error)
Input/ ABCDXYZ @4,A04,@1,A3 XYZABCD
Output
Input/ ALPHA @3,A5 ALPHA
Output
Input/ AB123XY456 A2,@5,1%,@3,A2,@8,I3 ABXY123456
Output
Input/ ABCD 242 ABCD
Output
Input/ AB12CD34 2(A2,12) AB12CD34
Output
Output 01/28/52 12,2("/",12) 012852
Input 01/28/52 12,2(X1,12) 012852
Output *¥ AB CD EF Variable V1 for 2; O3ABCDEF
"%" V1 or 5(X2,A2)
Output XX 1 2 3YY 4 5 Variable V1 @7 for 2, XXYY000512345

A2,@9,V2:V1 or 3(X1,I1),
@3,A2,@12,V2 or 3(X1,I1)

Figure 2-5. Example Set 2 - Formatting
Specifications Applied to
Input and Output Messages

2 - 44



Input/
Qutput

Input/
Output

Input/
Output

Input/
Output

Input

Input

Input

Input

Input

Input

Input

Input

Message as It
Appears at the
Terminal

15P

E*

E¥15P

ABCDEFG+

12345%AB

T
A1B2AXYZ
B

A1B2C3XYZ

T
A1B2C3AXYZ

123456A
B

TT

AA
BB

Figure 2-6.

<Editing specifications>
Applied to Message
In Transit

1("p",5)

A("*",3)

AC"*",3),1("P",5)

AC"+",4)

I("*",4-),A2

B6,B3

B6,B3

B6,B3

2J5

2J5

2J5

Example Set 3 - Formatting
Specifications Applied to

Input and Output Messages

Message as It
Appears to the
User Program

00015

E 00015

ABCD
(FMTERR set
to 6)

1234 AB
(FMTERR set
to 6)

A1B2 XYZ

A1B2C3XYZ

A1B2C3

0001200034

1234500006

0000000000



Message as It <Editing specifications> Message as It

Input/ Appears at the Applied to Message Appears to the
Qutput Terminal In Transit User Program
Input/ A1B2 XYZ B6,B3 A1B2 XYZ
Output
Input/ 0001200034 2J5 0001200034
Output
Input/ ABCDEF123456 B("*",6),J("+",6) ABCDEF123%456
Output
Input A¥1+ B("*",6),J("+",6) A 000001
Input/ A 000001 B("*",6),J("+",6) A 000001
Output
Input/ ABCDEF123456 3(A2,@+2),@3,3(12,@+2) AB12CD34EF56
Output
Input/ IJGHEFCDAB @9,4(A2,@-4),A2 ABCDEFGHIJ
Output
Input XYZ12345,ABC A3,X(","),A3 XYZABC
Input XYZ,ABC A3,X(","),A3 XYZABC
Input XYz ,ABC A3,X(","),A3 XYZABC
Input XYZABC A3Z,X(","),A3 XYZ
(FMTERR set
to 4)

Output ABCDEFGHI ABC","DEF", "GHI QRST123

D
Output CRESULTS=0053 4"0C","RESULTS=",1I4 005%

4

D
Output CRESULTS=0000 4"0C","RESULTS=",14 (forms

4 request)

Figure 2-7. Example Set 4 - Formatting
Specifications Applied to
Input and Output Messages

2 - 46



Input/
Qutput

Input
Input/
Output

Input/
Output

Input
Input

Input

Output

Input

Output

Input/
Output

Input/
Output

Message As It
Appears at the
Terminal

ONE MALE

FOURFEMALE

TWO3

SIX#X
ELEVEN#X

TWENTY#X

(FOUR)

WED

?2?°
(control
station
notified of
error)

3

ONE

Figure 2-8.

<Editing specifications>
Applied to Message
In Transit

T(NUM1,A%,1),T(GENDER,
A6,1)

T(NUM1,A4,1),T(GENDER,
A6,1)
T(NUM2,A%,1),T(DAY,A1,3)

T(NUM2,A("#",6),2),A1
T(NUM2,A("#",6),2),A1

T(NUM2,A("#",6),2),A1

(", T(NUM2,A(")",6),2)

T(DAY,A3,1)

T(DAY,A3,1)

T(DAY,A1,3)

XT(NUM2,A6,1),A1,1X

Example Set 5 - Formatting

Specifications Applied to
Input and Output Messages

Message As It
Appears to the
User Program

11
42
2TUE

06X

11X

22X
(FMTERR set
to 7)

04

Q

(FMTERR set
to 7)

2

WED



Using Location Specifiers

This discussion explains the basic concepts of location specifiers. It
is written for the user who has not yet worked with GEMCOS formatting.

The MCS uses two buffers when formatting a message: one buffer contains
the message as it appears at the terminal; the other contains the
message as it appears to the application program. A message consists of
a sequence of one or more fields just as a disk, tape, or card record is
composed of a sequence of fields. A format describes the relationship
between the fields of a message that are written/read by a program and
the fields of the message that are received/transmitted by a terminal.

Input formatting causes a message in the terminal message buffer to be
moved, field by field, to the program message buffer. Output formatting
moves fields from the program message buffer to the terminal message
buffer. When a field is moved, whether by input or output formatting,
it 1is moved wunder the control of an item phrase, the terminal
message-buffer pointer, and the program message-buffer pointer.

An item phrase consists of a field type, a field length, and an optional
field delimiter. The field type defines which characters are valid in a
field, and controls its justification and fill. The field 1length
determines the number of characters in the field. The field delimiter,
if present, designates the character which ends a field. The terminal
message-buffer pointer (PT) refers to a particular character position in
the terminal message buffer. Likewise, the program message-buffer
pointer (PP) refers to a particular character position in the program
message buffer.

Pointers PT and PP both begin pointing at the first character (position
1) in their respective messages. As the editing phrases of a format are
applied to data fields, the data is moved from one message buffer to the
other, and the pointers are updated. Unless specifically instructed to
do otherwise, the pointers are updated by moving to the right by the
number of characters moved.

Example:

Assume that the message "ABC 123" was received from a
terminal, and it was determined that the format (A3,I4) was to
be applied. The situation would initially appear as depicted
in Figure 2-9, with the message placed in the terminal message
buffer, and the program message buffer cleared and the
pointers initialized. The A3 item phrase controls the move of

2 - 48



the first three alphanumeric characters, as depicted in Figure
2-10. As can be seen, "ABC" is placed into the program
message buffer, and the pointers are moved three positions to

the right.

PT PP

ABC 123

Terminal Message Buffer Program Message Buffer

Figure 2-9. 1Initial Contents of Terminal
and Program Message Buffers

PT iP
ABC 123 ABC
Terminal Message Buffer Program Message Buffer

Figure 2-10. Contents of Terminal/Message
Buffers After Move Caused
by A3 Item Phrase

Then, the I4 item phrase causes " 123" to be moved. During
output, integer fields are right Jjustified with zeroes filled
and/or blanks converted to zeroes. This "0123" is placed into
the program message buffer. Figure 2-11 shows the final
situation. At this point, the program message buffer is sent
to the appropriate application program.

A higher degree of formatting flexibility may be achieved by moving the
pointers without moving text. PT may be advanced without affecting PP
by using a skip field (that is, the X editing phrase); but only PT may
be advanced. PP may be moved in either direction without affecting PT
by using a location specifier.



PT PP

ABC 123 ABC0123

Terminal Message Buffer Program Message Buffer

Figure 2-11. Contents of Terminal/Message
Buffers After Move Caused
by I4 Item Phrase

Figures 2-12 through 2-18 illustrate the effect of applying the formats
(A2,@4,A1,X1,@3,A1) +to the output message "WXYZ" using the skip field
and the location specifier.

PT PP
WXYZ
Terminal Message Buffer Program Message Buffer

Figure 2-12. Contents of Initialized Buffers

PT EP
WX WXYZ
Terminal Message Buffer Program Message Buffer

Figure 2-13. Buffer/Pointer Update
After Applying
Specification A2



PT PP

|

WX WXYZ

Terminal Message Buffer Program Message Buffer

Figure 2-14. Buffer/Pointer Update
After Applying
Specification @4

IT PP
WXZ WXYZ
Terminal Message Buffer Program Message Buffer

Figure 2-15. Buffer/Pointer Update
After Applying
Specification A1

ET iP
WXz WXYZ
Terminal Message Buffer Program Message Buffer

Figure 2-16. Buffer/Pointer Update
After Applying
Specification X1

2 - 51



PT PP

1 l

WXz WXYZ

Terminal Message Buffer Program Message Buffer

Figure 2-17. Buffer/Pointer Update
After Applying
Specification @3

iT PP
WXZ Y WXYZ
Terminal Message Buffer Program Message Buffer

Figure 2-18. Buffer/Pointer Updates After
Applying Specification Al
and Sending the Terminal
Message Buffer Contents




MAXIMUM TEXT SIZE STATEMENT

Syntax:

<MAXIMUM TEXT SIZE statement>

Semantics:

The MAX TEXT SIZE statement defines the sige, in characters, of the
longest message that can pass through the MCS. MAXTEXTSIZE has a
direct effect upon the memory requirements of a GEMCOS MCS. It is
best to keep MAXTEXTSIZE as low as possible. If the MCS has AUDIT
specified as TRUE, the user should never attempt +to change
MAXTEXTSIZE in a REGENERATE MCSTCL run; otherwise, old audit files
may have an incompatible record length. Moreover, an increase in
MAXTEXTSIZE usually causes a GENERATE and COMPILE to be required so
that the MCS can have a larger value stack. If AUDIT is FALSE,
MAXTEXTSIZE can be safely lowered on a REGENERATE MCSTCL run. The
default value for MAXTEXTSIZE is 125.

When formatting takes place, resultant messages may contain control
characters such as tabs or carriage returns. Each control
character takes up one or more positions in the formatted message.
An allowance for these characters must be reflected by MAXTEXTSIZE.

Examples:
MAXTEXTSIZE = 1920.
MAXTEXTSIZE = 300.



MESSAGE BROADCAST STATEMENT

Syntax:
<MESSAGE BROADCAST statement>

~=--MESSAGEBROADCAST-~== = === TRUE-=-~=—=-= S — >

Semantics:

The MESSAGE BROADCAST statement specifies if the code to support
the BROADCAST (BRC) Network Control Command is to be generated. By
default, MESSAGEBROADCAST equals FALSE.

Example:

MESSAGEBROADCAST = TRUE.



MESSAGE RECALL STATEMENT

Syntax:

<MESSAGE RECALL statement>

——--MESSAGERECALL---=- = ====TRUE---=--

Semantics:

The MESSAGE RECALL statement
the POP QUEUE (PQ)

Example:

MESSAGERECALL = TRUE.

55

indicates whether the code to support
Network Control Command will be generated.
MESSAGERECALL equals FALSE by default.



MONITOR TRACE STATEMENT

Syntax:
<MONITOR TRACE statement>

~--MONITORTRACE-=-= = ====n TRUE=~===—~- S >

|
|
--FALSE--> |

Semantics:

The MONITOR TRACE statement specifies whether to generate logic for
the Debug Monitor. When MONITORTRACE is set, CHANGEREQUESTS
becomes TRUE by default to include the CMF Network Control Command.
The CHANGEREQUESTS code is generated for internal use only.
However, wusers will not be able to use +the seven NCC change
requests. If the user should want to use the seven NCC change
requests, then CHANGEREQUESTS must be set to TRUE in the TCL. If
CHANGEREQUESTS equals TRUE and MONITORTRACE equals FALSE, the CMF
Network Control Command would not be recognized. By default,
MONITORTRACE equals FALSE.

Example:

MONITORTRACE = TRUE.



MONITOR TRACE ON STATEMENT

Syntax:

<MONITOR TRACE ON statement>

-=-=MONITORTRACEON-==== = ====u TRUE—--T ----------------------------- >
|
| |
| -=FALSE->|

Semantics:

The MONITOR TRACE ON statement allows the user to set or reset the
debug monitor flags enabling +the initialization procedure to be
traced. By default, MONITORTRACEON equals FALSE.
NOTE
The CMF command can be used to set or reset any

or all of +the monitor flags as soon as
initialization is complete.

Example:

MONITORTRACEON = FALSE.



MY NAME STATEMENT

Syntax:

<MY NAME statement>

—==-MYNAME---- = —=- <identifier === . ==mmmmemmmcmmommmm e >

Semantics:

Set the MYNAME attribute of the port file GEMCOS wuses to 1. Set
the YOURNAME attribute of the port subfile to which GENMCOS
communicates to the same <identifier>.

Example:

MYNAME = LAI.



NAME-STACK ENTRIES STATEMENT

Syntax:

<NAME-STACK ENTRIES statement>

-—--NAMESTACKENTRIES---- = —-- <integer> --- . =—--mmmmommmmcmm oo >

Semantics:

The NAME-STACK ENTRIES statement specifies the maximum number of
name-stack entries that need to be reserved for variables declared
by user-written code. This parameter is used to ensure that stack
sizes are large enough to execute an MCS which contains
user-written code. If the value assigned in this statement is not
large enough, a name or value-stack overflow error may occur when
the MCS is executed.

Name-stack entries are used to store information concerning
variables. One name-stack entry is used for each data name that
appears in a DECLARE statement. If a data name refers to an array,
it  would require two  name-stack entries. By default,
NAMESTACKENTRIES is set to O.

To achieve optimal memory use, GEMCOS estimates the name-stack
space required for its variable declarations and overrides the UPL
compiler defaults. If user code is being included,
NAMESTACKENTRIES should be set appropriately. The value given to
NAMESTACKENTRIES 1is added to the GEMCOS estimate. If user-written
code 1is not included, the NAME STACK ENTRIES statement may be

ignored.

Examples:
NAMESTACKENTRIES = 25.
NAMESTACKENTRIES = 100.



NCC OK RESPONSE STATEMENT

Syntax:

<NCC OK RESPONSE statement>

Semantics:

The NCC OK RESPONSE statement defines the message to be returned to
a station upon successful completion of a Network Control Command.

The string must begin and end with a quote and cannot exceed eight
characters in length. By default, NCCRESPONSE is $ (dollar sign).

Examples:
NCCOKRESPONSE = "NCC OK".
NCCOKRESPONSE = "DONE".
NCCOKRESPONSE = "*QK*".

2 - 60

o



OBJECT CODE FILE NAME STATEMENT

Syntax:

<OBJECT CODE FILE NAME statement>

---0BJECTCODEFILENAME--- = --= <file ID> =-== . —=mm=mmm—m—mm——ommeeee >

Semantics:

The OBJECT CODE FILE NAME statement allows for the specification of
the MCS object code file name when COMPILE appears in the CONTROL
statement. {File-ID> is a B 1000 file identifier. By default,
OBJECTCODEFILENAME is MCSSRC/OBJECT.

Examples:
OBJECTCODEFILENAME = MCS.
OBJECTCODEFILENAME = INVENTORY/MCS.



PROGRAM BOJ EOJ STATEMENT

Syntax:
<PROGRAM BOJ EOJ statement>

-==PROGRAMBOJEQJ=== = —===TRUE=m=m=mo= , = oo >
|

]
| ~-FALSE-->
Semantics:

The PROGRAM BOJ EOJ statement determines if the EXECUTE PROGRAM
(EX), HALT APPLICATION PROGRAM (HAP), and FREE (FRE) Network
Control Commands are to be supported. By default, PROGRAMBOJEOJ
equals FALSE. This statement should be set to TRUE if utility
programs are to be generated into the MCS.

Example:

PROGRAMBOJEOJ = FALSE.



QUEUE BUFFERS STATEMENT

Syntax:

<QUEUE BUFFERS statement>

----QUEUEBUFFERS----= = ——= <integer> =-- . ==—cm—m o >

Semantics:

The QUEUE BUFFERS statement specifies how many memory buffers are
available to the MCS queue before messages begin to overflow to
disk. The value assigned to QUEUEBUFFERS directly affects the
memory requirements of the on-line system. A value too small or
too large can degrade system throughput. It is suggested that the
user experiment with this statement to find +the most efficient
value. QUEUEBUFFERS must not have a value greater than QUEUEDEPTH.
{Integer> may range from 1 to 16. By default, QUEUEBUFFERS has the
value 1.

Examples:

QUEUEBUFFERS =
QUEUEBUFFERS =

o
o \Ji



QUEUE DEPTH STATEMENT

Syntax:

<QUEUE DEPTH statement>

Semantics:

The QUEUE DEPTH statement specifies the number of messages which
may be outstanding in the queue for the MCS. <Integer> may range
from 1 to 1023. By default, QUEUEDEPTH equals 20.

Examples:

QUEUEDEPTH = 5.
QUEUEDEPTH

il
3
ul

L]



QUEUE NAME STATEMENT

Syntax:

<QUEUE NAME stateme£t>

-~=-QUEUENAME==-- = ==-= <remote file=ID> ==-= ., ==ocemmcecec————————— >
Semantics:

The QUEUE NAME statement specifies the external file name of the
MCS queue (that is, the remote file opened by the MCS). <Remote
file-ID> should appear in a FILE statement in the user's NDL source
deck. MCSQUEUE is the default value of QUEUENAME.

Example:

QUEUENAME = MCSRMT.



RECALL PROGRAM STATEMENT

Syntax:

<RECALL PROGRAM statement>

Semantics:

The RECALL PROGRAM statement specifies which program is to be
designated as the recall program. The recall program is used to
recall both audited input and output messages. The identifier must
be 10 characters or less in length. By default, there is no recall
program.

GEMCOS supplies a recall program called MCSRECALL on the release
tape. Further information on MCSRECALL follows.

Examples:

RECALLPROGRAM
RECALLPROGRAM

MCSRECALL.
RECALLPROG.

[}

Using MCSRECALL to Recall Audited Messages

The following gives further information on MCSRECALL. In the Global
section of the TCL, the user is given the option of defining a message
recall program to recall any message inserted into an audit file. There
are two ways to retrieve messages from the audit file: by simply
recalling the last <n> messages, or by recalling messages by time of
day. Only one program needs to be declared to the TCL compiler. The
trancode(s) used must be declared within the Program section of the
recall program. For the syntax of the RECALL PROGRAM statement, see the
preceding railroad diagram.



The following rules must be adhered to when defining the attributes of a
recall program.

1. The program must be declared as a user program.

2. The COMMONSIZE statement must be absent or set to a value of
60 (default value).

3. The program must not use the auditing capability.

Included on the GEMCOS release tape is a fully functional message recall
object program called MCSRECALL. The user need only declare this
program to the TCL.

Prior to initially executing the supplied recall program, the user must
make the following modifications:

1. The external file name associated with the MCSTIC file must be
the same as that associated with the MCSTIC file of the MCS.

2. The external file name of the MCSREM remote file must be a
remote file of the Network Controller. Also, the Number of
Stations (NST) attribute must be set to the number of stations
requested by the remote file.

See Appendix B for a summary of the files contained in MCSRECALL.



The syntax of a recall message (as expected by MCSRECALL) is as follows:

{recall messsage>

------------------------------------------------------------------ >(1)
| |
}-— <trancode declared in TCL> ——>§
(1)==TIME=- / —mmm o s oo oo oo e >(2)
| | [ I
| [ |
5- (<stn nbrd>) -->i i- <{time> -- <dash)> -- <time> ->i
| [ |
{- {stn ident> -->| |- <time of day> ==--mmm——————— >
-LAST-T——-———-—————--——-T-— {integer> mmmmmmmmmmmmmmmooeooooe >(3)
|
| | | |
E- (<stn nbr>) -->i i= / ==-IN----- >
|
| | |
|- <stn ident> -->| | ==0UT====>
]
|
E——INPUT-—>
]
| ==OUTPUT->
|
|
o o Jo— >
(@) e e e e e ee e . mmme—ec - >
| b |
== / -=ON--- <date> -=>| |-= / —===IN--=--- >;
|
] |
o1 J— >
| |
|==I0====== >
| |
i--INPUT--—)i
| |
| ==QUTPUT--> |
(3) --------------------- [ 2ttt e e >=

|
|
== / -=-PRINTER-->|



<DATA-BASE NAME statement>

-——- DATABASENAME ---- = ——-- <identifier> -------- B P —— >\

When the recall source is empty, then the recalled messages are for the
station entering the request; otherwise, they are for the station name
or number requested.

When the message type identifier is INPUT, only the specified input
messages are recalled; when I/0, +then both the input and the
corresponding output messages are recalled. When empty, only output
messages are recalled.

The recall message by time of day option allows the user to specify a
time range in which to indicate the messages to be recalled. If a date
is also specified, the messages for that date would be recalled if the
corresponding audit file or files are on disk.

If LAST is specified, the last <n> messages requested would be recalled.
If +there are fewer than <n> messages to recall, then the number of
messages found would be recalled.

If PRINTER is selected from message destination, then all the recalled
messages would be sent to the system printer instead of the requesting
station.

Examples (IRC is the user's TCL-defined trancode for the recall program:

IRC.TIME/1200. % Recall the output messages stamped
% with time 1200 for this station.

IRC.TIME/1200-1215/10. % Recall both the input and output
% messages between 1200 and 1215 for
% this section.

IRC.TIME/0800-1600/0N % Recall both the input and output
03/31/79 /IO0/PRINTER. % messages between 8 AM and 4 PM on
% March 31, 1979 and send them to
% the system printer.

IRC.TIME/(3)/0900-0930 % Recall the input messages initiated
/INPUT. % at station 3 between 9 AM and 9:30

2 - 69



% AM and send them to the requesting
% station.

IRC.TIME/LSN2/1000- % Recall both the input and output
1045/0N 04/12/79 / % messages from station LSN2 between
I0/PRINTER. % 10 AM and 10:45 AM on April 12,

% 1979 and send them to the system
% printer.

IRC.LAST/10. % Recall the last 10 output messages
% this station.

IRC.LAST/(2)/5/10. % Recall the last 5 input messages
% and associated output messages from
% station 2 and send them to the
% requesting station.

IRC.LAST/50/PRINTER. % Recall the last 50 output messages

% for this station and send them to
% the system printer.

SIGNAL CHARACTER STATEMENT

Syntax:

<SIGNAL CHARACTER statement>

~~-SIGNALCHARACTER-=~- = === <character) === . =meemeeeccmccmeceec————— >

Semantics:

The SIGNAL CHARACTER statement defines the character which, when
encountered in the first position of a message, signals to the
Network Controller and +the MCS that the message 1is a Network
Control Command. The character must be a single character enclosed
in quotes. By default, SIGNALCHARACTER is "*".

Example:

SIGNALCHARACTER = "@".



SIMULATION STATEMENT

Syntax:

(SIMULATION statement>

-==-SIMULATION----- = e TRUB-======= . e —————— >

--FALSE--~>

Semantics:

The SIMULATION statement, when set, causes the MCS to open a queue
file instead of the usual remote file. The program MCSSIM can be
used instead of the Network Controller to simulate input via the
card reader. Output is simulated +to a line printer using the MCS
Monitor Trace code. The source code for MCSSIM is MCSIMS.
SIMULATION equals FALSE by default.

Example:

SIMULATION = FALSE.



SOURCE CODE FILE NAME STATEMENT

Syntax:

<SOURCE CODE FILE NAME statement>

-~--SOURCECODEFILENAME---- = -=—= <file ID> =--=== QS >

Semantics:

The SOURCE CODE FILE NAME statement allows for the specification of
the MCS source code file name when GENERATE appears in the CONTROL
statement. <File-ID> is a B 1000 file identifier. By default,
SOURCECODEFILENAME is MCSSRC.

Examples:
SOURCECODEFILENAME = MCS/SOURCE.
SOURCECODEFILENAME = SOURCE/FILE.



STATUS REPORTS STATEMENT

Syntax:

{STATUS REPORTS statement>

~=—-STATUSREPORTS===== = ====TRUE=—====== , === mmmmmmmmmmmmemmmme >

I
--FALSE--> |
Semantics:

The STATUS REPORTS statement determines whether +to include the

logic 1o support the following five Network Control Command status
report requests:

1.  REPORT FILE STATUS (RFS).

2. REPORT PROGRAM COUNTERS (RPC).
3.  REPORT PROGRAM STATUS (RPS).
4. REPORT STATION COUNTERS (RSC).
5.  REPORT STATION STATUS (RSS).

STATUSREPORTS equals FALSE by default.

Example:

STATUSREPORTS = FALSE.



SUBORDINATE MCS STATEMENT

Syntax:

<SUBORDINATE MCS statement>

' ==—-SUBORDINATEMCS==== = ==-=- TRUB======= e >

|

]
--FALSE-->|
Semantics:

The SUBORDINATE MCS statement specifies that the GEMCOS MCS is to
be executed from and under the control of a supervisory MCS. The
supervisory MCS can be any valid MCS, but the primary usage of this
option has been designed for execution under SMCS.

The MCS functions depend wupon the value of this statement. The
following 1list details the differences between the non-subordinate
case (false) and the subordinate case (true).
1. Dummy File Opens
a. Nonsubordinate: the MCS will attach to itself as many
stations as it can using the list of stations in the TCL
specifications.
b. Subordinate: the MCS will attach NO stations to itself.
2. Station Condition at EOJ

a. Nonsubordinate: the MCS will mark the stations not ready
before it goes to EOJ after a *HLT command.

b. Subordinate: the MCS will leave the stations ready at EO0J
after a ¥HLT command.

bR DFR Command
a. Nonsubordinate: the DFR NCC will not be allowed.

b. Subordinate: the DFR NCC will be allowed from any station
that GEMCOS controls.



4.

Station Condition Report at BOJ

a. Nonsubordinate: stations not present in the remote file
will be so indicated on the ODT. If the remote file is a
dummy file, the LSNs of the stations attached will be so
indicated on the ODT.

b. Subordinate: no messages will be displayed on the ODT.

The default value for this option is FALSE.

Special Considerations For Running GEMCOS Under SMCS

Te

SUBORDINATEMCS must be set to TRUE.

If GEMCOS is set up in the SMCS JOBS file with the AUTO-START
option, GEMCOS will be executed with no stations attached.
This 1is correct in recovery mode, as GEMCOS then attempts to
attach its previously owned stations (see number 7 following).

If GEMCOS is set up in the SMCS JOBS file without the NO-EOF
option, GEMCOS will go through its recovery sequence (if
recovery is generated into the MCS) when it is reexecuted.

Whenever the SMCS command ON is used to gain access to GEMCOS,
the GEMCOS MCS will consider this station to be "owned" until
the GEMCOS DFR command is used to release it.

The SMCS command OFF should never be used to return a station
to SMCS since GEMCOS will never be informed that the station
is no longer under its control.

Whenever the SMCS command PASS is used to forward a request to
GEMCOS, the GEMCOS MCS will assume ownership of the station.
A GEMCOS command DFR will eventually be required to inform
GEMCOS to release the station.

In order to bring the GEMCOS MCS to EOJ, a *¥HLT command should
be entered from an active control station or, in the case

where no stations are active, a ¥HLT command should be entered
from the ODT.

Because of the different mechanism of station allocation under
SMCS, it may be necessary +to run GEMCOS alone if recovery
needs to be done on any of its data bases.

If a system or GEMCOS failure occurs and recovery 1is needed,
the stations which were attached +to GEMCOS prior +to the
failure should not attach to any programs until the recovery
is finished. GEMCOS will attempt to reattach the stations it

2 - 175



"owned" prior to the failure. As long as such a station has
not attached to another program, SMCS will release the station
to GEMCOS.

If the station has attached to another program, GEMCOS still
attempts recovery, but it may have to use alternate LSNs in
the NDL header when it sends messages to programs. GEMCOS may
also have to write messages to the print file if it encounters
a message for a station it could not attach. (If this
happens, the print file can be closed with the CMF command.)
In either of these cases, a warning message is written to the
monitor stations/ODT.

For additional information on recovery under SMCS, see Section
T

SYSTEM HALT STATEMENT

Syntax:

{SYSTEM HALT statement>

-=—=SYSTEMHALT--== = ——-== TRUE--=-——- ¢ e e >

Semantics:

The SYSTEM HALT statement specifies whether the code for handling
the HALT (HLT) Network Control Command is to be generated. When
SYSTEMHALT is set to TRUE, CHANGEREQUESTS becomes TRUE (for
internal use only). The seven NCC change requests will not be
accessible unless CHANGEREQUESTS is set to TRUE in the TCL.
SYSTEMHALT equals TRUE by default.

Example:

SYSTEMHALT = TRUE.

PN



VALUE-STACK BITS STATEMENT

Syntax:

<VALUE-STACK BITS statement>

Semantics:

The VALUE-STACK BITS statement specifies the maximum number of
value-stack bits that are needed as a result of user-code data-name
declarations. This parameter is used to ensure that stack sizes
are 1large enough to execute an MCS which contains user-written
code. If the value assigned in this statement is not large enough,
a name or value-stack overflow error may occur when the MCS is
executed. The value of a variable which requires 24 or less bits
requires no room on the value stack. However, if a variable
requires more than 24 bits, or if the variable refers to an array,
space would have 1o be reserved on the value stack for that
variable. By default, VALUESTACKBITS equals zero.

In a fashion similar +to the NAME-STACK ENTRIES statement, the
VALUE-STACK BITS statement enables GEMCOS to achieve optimized
memory use. GEMCOS estimates the value-stack space required for
its wvariables and overrides the UPL compiler defaults. If user
code 1s included, VALUESTACKBITS should be set appropriately. The
number assigned to VALUESTACKBITS is added to the GEMCOS estimates.
If user-written code is not included, +the VALUE-STACK BITS
statement may be ignored.

Examples:
VALUESTACKBITS = 1000.
VALUESTACKBITS = 256.



DEFINITION SECTION

Syntax:

<DEFINITION section>

————— BEGIN---- <ACCESS CONTROL statement> --- <PROGRAM sect.> =-----=>(1)
(1)--- <STATION sect.> --- <DEVICE sect.> --- <MESS CODE sect.> =---->(2)
) 5 S >
| |
== . ==2
Semantics:

In the Definition section, the user defines access keys (user IDs),
programs, and stations, as well as their interrelationships. If
the user requires MCS functions not supported by GEMCOS, UPL source
code statements can be merged into a GEMCOS MCS by including a MESS
code section in the Definition section.



ACCESS CONTROL STATEMENT

The following diagram shows the syntax for the ACCESS CONTROL Statement.

L -
ACCESSCONTROL: —Y—# ACCESSKEY ~——® <access code identifier > ~ —# = — ALL———T* .

*
< trancode > 1
identifier T
< program name >

identifier

Semantics:

The ACCESS CONTROL statement allows for the specification of access
codes. An access code is required as part of the sign-on command
syntax (¥SGN access code), and identifies the user signing on to
the MCS. An access code identifier is an alphanumeric identifier
up to six characters in length. Associated with each access code
is an item list consisting of transaction codes (trancodes) and/or
program names which that particular user is authorized to use.

When a message is received from a station, the MCS searches for a
transaction code in the message. If one is present, the MCS would
determine if the access code wused to sign on at that station is
authorized to use that trancode. If the access code is authorized,
the message would be routed the appropriate program; otherwise, an
error would be returned to the station. If a trancode could not be
found in the message, the MCS would verifythat the access code is
authorized to use the program currently attached to the station.
If so, the message would be routed; if not, an error would be
reported.

NOTE

When the value of sign on for a station is FALSE,
access control is not in effect at that station. No
messages entered at such a station are rejected due
to access control restrictions.

Bach trancode encountered in the ACCESS CONTROL statement must
appear in a TRANCODE statement of the Program section. Likewise,
each program name must appear in a program define of the Program
section. If a signed-on user is to have unrestricted wuse of all
the defined transaction codes and programs, the key word ALL may be
used. If ALL is used, it must be the only item in the item list.



Example:

ACCESSCONTROL :
ACCESSKEY ABCD
ACCESSKEY AB1234
ACCESSKEY AB5678

INQ, PAYROLL.
ALL.
INQ, XYZ.



PROGRAM SECTION

The following diagram shows the syntax for the Program Section.

PROGRAM —> < program name.

identifier

ASSIGNMENT —>
PORT ——>
USER  ———>
UTILITY —>

OO

fT¥+>TnLE—+>=-é><mem> . ]

0,
— 0
L&

b—>TRANCODE —> =—L<trancode>
identifier

/1> RESIDENCE —> =

3

|

N

19 <integer><integer> -j\

CORE

Lo osc 1

BOJ

/1T \> EXECUTE —> =

e

L/ 1\> CONVERSATIONSIZE —>]
/1 \—> MAXASSIGNERS
/7> MAXCOPIES ————>)
1" \—> PORTSIZE !

1 \—> AUDITASSIGNMENT —>
/7> AUDITOUTPUT ———>
/1> DETACHMESSAGE —>
/1> OPENMESSAGE———>
/"1 \—> PLMPROGRAM ———>|
[/ 1> RESTARTPROGRAM —>!

®

MANUAL ——{
ON DEMAND —>!

L/ 1 \—>COMMONSIZE ——————> = —> <integer> ———————>

——m—-éATTACHMESSAGE ——> = —> <|ogical valug> ——————>




® ®
——m—élNTERFACE%

MCS

—>NONPARTICIPATION ——>>
—> PARTICIPATION ———>
—> DATABASE
—> NONE
—> QUEUERESTORATION —>
—> SYNCHRONIZED ———>

/7> RECOVERY —>

>

—-m——[:DATABASENAME = \L <identifier> ‘—:L——é
HOST
L S
-——f;\—é AUDITRANSACTIONS —=> = ‘i—z<trancode identifier>jr|—>
ALL

Semantics:

The library of on-line programs is defined in the Program section.
A1l programs that open remote files which are to be approved by the
GEMCOS MCS must appear in the Program section. If a program
attempts to open a remote file consisting of at least one station
in the GEMCOS MCS remote file (identified by the QUEUE NAME
statement of the Global section), and if the program does not

appear in the Program section, the MCS would not allow the file to
open.

The Program section is composed of a program define list. Each

program define specifies a program name, a program classification,
and a program statement list.

The program name is limited to 10 characters and cannot contain
slashes. The name can be used optionally in the EX, HAP, RPS, and
RPC Network Control Commands instead of PROGRAM TITLE. If there is
an ACCESS CONTROL statement, and if the program is not a user
program, the program name can appear in its item 1list to allow
certain access codes to use the program.

The program classification specifies to the MCS how this program
can be executed, as well as how messages are to be routed to it
once it is running. As of the 7.0 GEMCOS release, there are five
program classifications: ASSIGNMENT, UTILITY, USER, PASS, and PORT.
By default, the program classification is ASSIGNMENT.



Assignment Programs

An assignment program may only be executed from the supervisory console,
a card reader, or the Control station. An attempt to execute an
assignment program from any other than the Control station by means of
the EX Network Control Command results in an operator error.

After being executed, an assignment program eventually opens a remote
file in order to gain control of a list of stations in the network. A
GEMCOS MCS would grant control of a particular station to an assignment
program if the MCS controls the station, and if no other assignment or
utility program controls the station. The MCS controls a station when
that station appears in the remote file opened by the GEMCOS MCS. When
an assignment program opens a remote file, the MCS checks each station
defined in the program remote file. If the MCS determines that it
cannot grant control of any of these stations, the FILE OPEN would be
denied. Otherwise, the MCS approves the FILE OPEN request for the
stations in the 1list for which it is able to grant control. Once
control of a station is given to an assignment program, all messages
entered from that station that do not contain a trancode of a user
program are routed to the assignment program (assuming access control is
not violated).

An assignment program retains control of its stations until it resolves
to close its remote file. If a HAP Network Control Command is entered
from the Control station, the supervisory console, or a card reader, the
MCS places an end-of-file character into the queue of the assignment
program, which prompts it to close its remote file and go to end-of-job.
When an assignment program closes its remote file, the stations are no
longer considered busy and can be attached to another assignment or
utility program.

Thus, the GEMCOS MCS handles file opening and message routing for an
assignment program in much the same way that a Network Controller does
when no MCS is present. However, GEMCOS also provides an assignment
program with additional functions such as a common~area header, trancode
indices, access control, audit, recovery, and formatting.

Utility Programs

A utility program may only be executed from a station in the network.
An attempt to use the EX Network Control Command to execute a utility
program from the supervisory console or a card reader is denied. A
station may not "EX" a utility program when that station is already
controlled by an assignment program or another utility program since the
station would be considered busy.



Upon receipt of an EX Network Control Command from the station, the MCS
determines, in the order listed, the status of the following as they
pertain to the utility program:

1. Program is running.

2. Number of stations attached to the program exceeds the limit
assigned.

3 Number of program copies exceeds the limit assigned.

When the program is not running, the MCS initiates the program with the
ZIP EXECUTE command. Afterward, the initiated program opens a dummy
file. Afterward, the MCS attaches the requesting station. (For further
information about dummy files, refer +to the B 1700 Systems Network
Definition Language (NDL) Reference Manual.)

When the program is running, the MCS checks whether the number of
stations attached to this program exceeds the maximum assignment limit;
if it does not, the MCS would dynamically attach the station to the
remote file of the program. However, if the number of stations attached
to the program does exceed the limit, the MCS then would proceed to
check whether the number of program copies exceeds the 1limit
established. If it does not, the MCS would initiate a copy of the
program and attach the station to it. However, if the program copy
limit is exceeded, the MCS would display an error message.

Once the attachment occurs, the utility program controls the station.
A1l messages entered from that station which do not contain a trancode
or a user program are routed to the utility program.

When the user 1is finished with a program, the HAP network control
command is entered. This prompts the MCS to detach the station from the
remote file of the utility program. The station is available and can be
attached to another assignment or utility program. When only one
station was attached to the program copy, the MCS places an end-of-file
character in the utility program queue (for that copy only). The
character prompts the program +to close the remote file and proceed to
end-of-job.

GEMCOS handles a utility program in much the same manner as the B 1700
illustrative MCS handles a program that opens a remote file. However,
GEMCOS also provides a utility program with additional functions such as
a common-area header, trancode indices, access control, audit, recovery,
and formatting.



User Programs

A  user program, 1like an assignment program, may only be executed from
the supervisory console, a card reader, or the Control station. An
attempt +to execute a user program from any station in the network other
than the Control station by means of the EX Network Control Command is
denied. A user program must use a Participation interface (see
INTERFACE Statement below).

After Ybeing executed, a user program should open a remote file for
stations 1t can service. The MCS approves the REMOTE FILE OPEN as long
as the stations in the remote file are controlled by GEMCOS (those
stations not in the remote file of the MCS being deleted from the remote
file of the user program).

NOTE

The MCS does mnot check to see if another on-line
program controls the stations, since a user program
does not control stations.

User programs can also open a remote file with no stations attached
(that is, a file declared in the NDL with FAMILY = DUMMY).

When the GEMCOS MCS receives a dummy file open from a user program, the
file open is approved. Any station that is declared in the TCL can
communicate with this program, subject to security restrictions.

If GEMCOS is running as a subordinate MCS under the control of SMCS or
any other supervisory MCS, any station that is attached to GEMCOS by the
supervisory MCS is also able to send trancoded messages to any user
program that has previously opened a dummy remote file.

Unlike an assignment program or utility program, a user program receives
a message entered from a station in its remote file only if the message
has a trancode. At a given point in time, a station may be attached to
as many user programs as necessary since the MCS is able to switch
messages entered at the station based on a trancode found in the message
(a station may only be attached to one assignment or utility program at
a time and all messages without a trancode go to that program). A
station may be simultaneously attached +o an assignment or utility
program, even though it may still be attached to user programs.



A user program must have at least one TRANCODE statement in its PROGRAM
statement list; otherwise, the program cannot receive any messages.

If several copies of a particular wuser program are executed, the MCS
would distribute the message load evenly among them. This feature can
increase system throughput since inputs/outputs (I/Os) can be
overlapped.

A user program continues to service the stations in its remote file
until it closes its remote file. If a HAP Network Control Command is
entered for this program, the MCS would place an end-of-file character
in the user program queue, prompting it to go to end-of-job.

Pass Programs

A pass program can be executed at BOJ from the ODT, either manually from
the Control stations, or on demand via the PASS command. It can be
stopped with a HAP command from any of the Control stations.

After it is executed, a pass program opens a dummy file. But the pass
program does not have control over any stations. As long as there are

no security restrictions, a station can pass to any pass program at any
time.

GEMCOS does not allow a pass program with audit, recovery, or
conversation functions. The MAXCOPIES attribute of a pass program is
always set to onme.

Port Programs

The wuser can declare programs which use port files rather than remote

files. To do this, set PROGRAM TYPE to PORT. The MAXCOPIES attribute
is always set to 1.

A port program can be executed manually from a Control station or ON
DEMAND. After +the port program has been executed, GEMCOS opens a
subport file called TPPORT. In order to communicate with GEMCOS, the
matching port file in the port program also needs to be opened.

If only one of these port files has been opened, the program with the
open port file waits for the matching port to be opened. The status of
this program is: WAIT FOR PORT OPEN.



The wuser can stop any port program by entering a HAP command at any
Control station. When this is done, GEMCOS sends a message (Message 27)
which tells the program to go to end-of-job and to close its associated
subport. The program must close its subport and stop running if it
receives this message from GEMCOS.

Examples:

PROGRAM A ASSIGNMENT:
TITLE = PACKA/PAYROLL/.
TRANCODE = UPDATE.
COMMONSIZE = 60.

PROGRAM B UTILITY:
TITLE = EDIT/IT.
COMMONSIZE = 75.
RESIDENCE = CORE.

PROGRAM C USER:
TITLE = FIXIT.
TRANCODE = OLD(8,1).
TRANCODE = NEW(9,1).
RESIDENCE = DISK.

PROGRAM D PASS:
TITLE = RD.
INTERFACE = MCS.
EXECUTE = ONDEMAND.

PROGRAM E PORT:

INTERFACE

TITLE = PORTPROG.

TRANCODE = XFER.

COMMONSIZE = 60.

PORTSIZE = 500.

HOST = LABASE. % IF HOST STATEMENT IS NOT

ON WHICH GEMCOS IS EXECUTING

%
% DECLARED, THE LOCAL HOST
%
% IS USED.



AP300STATUS Statement

Syntax:
<AP300STATUS statement>

-==-AP300STATUS~==~ = === <logical valued =--=== . =====—mcommmme—meeee >

Semantics:

The AP300STATUS statement indicates whether the four-byte
AP300STATUS message from the AP300 is forwarded to the attached
application program. The status of the AP300 is reported +to the

Control station or the system SPO when the four-byte status is
received. The default value is FALSE.

Example:

AP300STATUS = TRUE.



ATTACH MESSAGE Statement

Syntax:

<ATTACH MESSAGE statement>

-==-ATTACHMESSAGE---- = ——-— <logical valued —--- . ———mmm————e——mmee >

Semantics:

When ATTACHMESSAGE is set TRUE, the program receives a message in
its remote file giving the LSN of a station which just attached
itself to the program (by means of the ¥*EX Network Control
Command). The first station to attach itself does not generate an
ATTACHMESSAGE. The station can be obtained from the OPENMESSAGE.
The ATTACHMESSAGE consists of a common-area header with the MCSTYPE
field set to 2, the LSN field set to the LSN of the attaching
station, the SEQNO field set to the next audit sequence number, and
the TEXTSIZE field set to 0000. No message text is sent.

When INTERFACE is set to MCS, the common-area header is preceded by
a B 1000 MCS Network Controller interface MCS DATA MESSAGE header
with the Message Type field set to 80. A program with an interface
of Nonparticipation cannot request attach messages. By default,
ATTACHMESSAGE is FALSE.

Example:

ATTACHMESSAGE = TRUE.



AUDIT ASSIGNMENT Statement

Syntax:
CAUDIT ASSIGNMENT statement>
~==-AUDITASSIGNMENT-——- = ---- <logical value) =--= . =———mmmmm—e———uo- >

Semantics:

The AUDIT ASSIGNMENT statement directs the MCS whether +to audit
messages that do not have a trancode. Programs declared as user
programs may not use this statement since all messages for that
class of program necessarily contain a trancode. User programs
that require recovery must use the AUDIT TRANSACTIONS statement.
Programs of any other class that require recovery must use this
statement or the AUDIT TRANSACTIONS statement or both. By default,
the MCS does not audit by assignment.

Examples:
AUDITASSIGNMENT = TRUE.
AUDITASSIGNMENT = FALSE.



AUDIT OUTPUT Statement

Syntax:

<AUDIT OUTPUT statement>

-=---AUDITOUTPUT---- = ---- <logical value> ---- . ——————————mmo >}

Semantics:

The AUDIT OUTPUT statement directs the MCS to audit all output
messages from the program to the station. This statement must be
set to TRUE for programs that use synchronized recovery; otherwise,
a warning is issued and the statement is automatically set to TRUE.
For the MCS +to audit output, a program must audit either by
assignment or by transaction. Except for synchronized recovery,
AUDITOUTPUT defaults to FALSE.

Examples:
AUDITOUTPUT = TRUE.
AUDITOUTPUT = FALSE.



AUDIT TRANSACTIONS Statement

Syntax:

<AUDIT TRANSACTIONS statement>

~=—AUDITTRANSACTIONS==== = —-—e—= {trancode identifier)> —-——=--- . -——>=

Semantics:

The AUDIT TRANSACTIONS statement specifies which previously defined
trancodes are to be audited by the MCS. Only transactions that
cause the data base to be updated should be audited, since all
audited messages are reprocessed during recovery. When ALL is
selected, no individual trancodes may be specified and all
trancodes for this program are audited. When recovery is required
for this program, then either +this statement, or the AUDIT
ASSIGNMENT statement, or both, must be specified. By default, the
MCS does not audit by trancode for any program.

Examples:
AUDITTRANSACTIONS = UPD.
AUDITTRANSACTIONS = PAY, OEO1, OEO2, OEO4.
AUDITTRANSACTIONS = ALL.



COMMON SIZE Statement

Syntax:

<COMMON SIZE statement>

-==-COMMONSIZE-=-= = =——- <integer) —-=- . =————m—mmmemc e meeee >
Semantics:

The COMMON SIZE statement allows the user to specify the length of
the header preceding the text of messages exchanged between the MCS
and application programs wusing the Participation  interface.
<Integer> must be a value from 60 to 200. Bytes 1 through 60 are
reserved for GEMCOS-defined fields. Bytes 61 through 200 can be
reserved for user-defined fields. User-written code must be merged
into the MCS if it is to access, set, or modify bytes 61 through
{integer>. The COMMON SIZE statement is optional. By default,
COMMONSIZE = 60 (no room reserved for user-defined fields).

Programs using either the Nonparticipation or MCS interface cannot
receive a common area, and thus COMMON SIZE cannot be set.

Examples:
COMMONSIZE = 60.
COMMONSIZE = 200.



CONVERSATION SIZE Statement

Syntax:

<CONVERSATION SIZE statement>

Semantics:

The CONVERSATION SIZE statement is used to establish the size of
the conversation area for a program. The size is specified in
bytes. The MCS cannot generate conversational capabilities without
this statement in the TCL. Anytime this statement is increased to
a value greater than any previously declared CONVERSATION SIZE, the
TCL must be regenerated and recompiled. The maximum value for this
statement is 255.

Examples:
CONVERSATIONSIZE = 30.
CONVERSATIONSIZE = 45.



DATA BASE NAME Statement

Syntax:

<{DATA-BASE NAME statement>

Semantics:

The DATA BASE NAME statement associates a program with a data base.
When recovery for a program is synchronized or data base, this
statement must be present and specify the name of the data base
that +the program belongs to; otherwise, it is not required. When
this statement is required but not given, a syntax error occurs.

When the program is a restart program (RESTART PROGRAM = TRUE),
then more than one data base identifier may be specified providing
that the restart program services more than one data base. When
the program is not a restart program, only one data base identifier

may be specified. A data base identifier is an identifier that
contains between 1 and 17 characters.

Examples:
DATABASENAME = MCSTESTDB.
DATABASENAME = LIVEDB, TESTDB.



DETACH MESSAGE Statement

Syntax:

<DETACH MESSAGE statement>

---DETACHMESSAGE--- = ---- <logical valued =-== . =—=mm—ommmommmme e >
Semantics:

When DETACHMESSAGE is set to TRUE, the program receives a message
in its remote file giving +the LSN of the station which has Just
detached itself from the program (by means of the HAP Network
Control Command). The last station to detach itself does not
generate a DETACH MESSAGE since the program is informed of the fact
(it receives an end-of-file condition on its remote file). The
DETACH MESSAGE consists of a common-area header with the MCSTYPE
field set to 4, the LSN field set to the LSN of the detaching
station, the SEQNO field set to the next audit sequence number, and
the TEXTSIZE field set to 0000. No message text is set.

If INTERFACE is set to MCS, the common-area header is preceded by a
B 1000 MCS/Network Controller interface, MCS DATA MESSAGE header
with the Message Type field set to 80. A program with an interface

of Nonparticipation cannot request DETACH MESSAGES. By default,
DETACHMESSAGE is FALSE.

Example:

DETACHMESSAGE = TRUE.



EXECUTE Statement

Syntax:

<EXECUTE statement>

: {mmmmmmm y TTTEETT :
l |
~=-EXECUTE--~ = --=--=---ONDEMAND--~~------ B >
| |
;—-—BOJ ------- >i
| |
| ===MANUAL---=> |

Semantics:

The EXECUTE statement allows the user to reduce intervention by the
console or control station operator during program fire up. Three
options are available: ONDEMAND, BOJ, and MANUAL. ONDEMAND and
MANUAL may not appear together in the same EXECUTE statement. The
default for this statement is MANUAL.

ONDEMAND

This option may only be declared for user and pass programs.
Normally, when an operator enters a message containing a trancode
for a program that is not running, GEMCOS MCS displays an error
message, and the operator must wait until the program is executed
through the console or a Control station.

However, when ONDEMAND is selected, GEMCOS MCS ZIP~executes the
program when it is not running and a trancode message is received
for it. The first message received for the program causes the
execution.

The ONDEMAND execution for pass programs is slightly different from
the previous process. In this case, the first PASS command to the
program causes the execution.

ONDEMAND functions are internal and not visible to the operator.
This feature enables the operator to enter messages without
interruption. The messages are stored in a "tank file." When
GEMCOS MCS receives a FILE OPEN for the program, all "tanked"
messages for that program are sent +to it in the same order as
originally received by the GEMCOS MCS. The tank file is closed
when it contains no more messages.



BOJ

The BOJ (beginning-of-job) option can be declared for assignment,
user, Or pass programs. When the GEMCOS MCS is executed, it
automatically executes all BOJ programs unless the MCS needs to
perform recovery.

Note that it is advisable +to be selective when declaring programs
BOJ so the mix is not filled with unnecessary Jjobs.

MANUAL

MANUAL may be declared for all classifications of programs. When a
program declared MANUAL is not running, it must be executed with
the EX command. Utility programs can only be declared as MANUAL.

Examples:

EXECUTE
EXECUTE

MANUAL, BOJ.
ONDEMAND.

[

HOST Statement

Syntax:

<HOST statement>

---HOST=--- = -=-- <identifier> ----- e >

Semantics:

When initiating a port program, use the HOST Statement +to specify
the host name attribute. This statement is valid only when the

Program Type is PORT. The default wvalue for this statement is
NULL.

Example:

HOST = LABASE



INTERFACE Statement

Syntax:

<INTERFACE statement>

-—-INTERFACE--= = —=—-=m- NONPARTICIPATION----—- . e >

Semantics:

The INTERFACE statement determines the path messages follow as they
flow between a particular program and the stations in its remote
file. It also determines the relationship between the GEMCOS MCS
and the program. Three interfaces are available: Nonparticipation,
Participation, and MCS. The Nonparticipation and Participation
interfaces may only be used by application programs, programs which
open a remote file without headers. The MCS interface may only be
used by MCS programs, programs which open a remote file with
headers. By default, the interface is PARTICIPATION.



Nonparticipation Interface

A Nonparticipation interface is an efficient but static method for a
program to communicate with the stations in its remote file. Figure
2-19 depicts the flow of messages in a Nonparticipation interface.

RSN1
Stations in
Remote file
of programs RSN2 Program
°
: GEMCOS MCS
RSNx

RSN signifies the Relative Station Number,

Figure 2-19. DNonparticipation Interface

With a Nonparticipation interface all messages (except those beginning
with a signal character) that are entered from all stations in the
application program remote file go to the program. The program can
write messages to any of its stations. A construct known as a remote
key allows the program to determine the source and length of an input
and to specify the destination and length of an output.

Messages written by the program or entered from a station beginning with
a signal character are sent to the MCS. GEMCOS Network Control Commands

reach the MCS by means of this signal character when a Nonparticipation
interface is chosen.

Messages Dbeginning with two signal characters that are entered from a
station are processed by the MCS in the following manner:

1. When the trancode is found in the message, the transaction is
routed to the program specified by the trancode, provided the
program is running or declared as ONDEMAND. Output messages
from the program are routed back to the station. This allows
a user at a station that is attached to a non-participating

program, to perform trancode routing to other programs in the
network.

2 - 100



2. When the message (starting from the third character position
only) contains a message-ID, it is considered to be a forms
request, and the blank form is sent back to the station. This
feature 1is only available in the Advanced and Total Versions
of GEMCOS.

3. When the message contains neither a valid trancode nor
message-ID, it is routed to the program +to which the station
is attached. The first two bytes (or two signal characters)
are not returned with the message.

The Nonparticipation interface is efficient since a typical transaction
passes through only one program, the user program (in addition to the
Network Controller). This interface is static since a station can only
be in one opened (input) remote file at a time, and therefore has access
to only one program. In addition, the MCS does not have access to the
normal flow of messages and is unable +to provide audit, formatting,
access control, and its other functions.

When interface is Nonparticipation, the program classification cannot be
USER and there cannot be any transaction codes. The common-area header
will not be on messages received by the program, and the program must
not provide them on output. Thus, COMMONSIZE cannot be set.
ATTACHMESSAGE, DETACHMESSAGE and OPENMESSAGE cannot be TRUE. Users at
stations in the remote file of a Nonparticipation program can neither
use transaction-based routing nor initiate screen requests while the
Nonparticipation program is running. Even if a station has been
assigned a SCREENSIZE, screen wraparound cannot take place while the
station is under control of a Nonparticipation program. Audit, queue
restoration, and formatting are not possible, even though these options
can be specified in the Global section and can be used by Participation
programs attached to other stations in the network while
Nonparticipation programs are running.

If stations can be dedicated to a particular program while the program
is running, and the program does not require access control, audit,
queue restoration, formatting or screen wraparound, it is advantageous
to use the Nonparticipation interface.

Participation Interface

When PARTICIPATION is specified as the program interface, all messages
entered at stations pass through the MCS before being sent to programs,
and all messages written Dby the program pass through the MCS before
being transmitted to stations. The MCS is said to be "participating” in
the message traffic flowing between the program and the stations of the

2 - 101



program remote file. Figure 2-20 depicts the flow of messages in a
Participation interface.

RSN1
Stations in
Remote file
of Programs RSN2 GEMCOS MCS Program
[ ]
[ ]
[ ]
RSNx

RSN signifies the Relative Station Number.,
Figure 2-20. Participation Interface

The Participation interface 1is slightly less efficient in terms of
throughput, since a typical transaction passes through three programs:
the MCS (during input), the user program, and the MCS again (during
output). The slight decrease in efficiency is more than offset by the
full complement of centralized functions provided by the MCS message.
It can provide a full array of centralized functions (including audit,
recovery, formatting, screen wraparound, access control, and various
forms of routing).

Common-Area Header with Participation Interface

Programs which use the Participation interface receive and must provide
the common-area header. This header, in addition to its other
functions, allows the program and MCS to communicate the message text
length and the source/destination station to each other.

The common-area header precedes all messages sent to programs using the
Participation interface, and it is required in front of all messages
written by such programs. The length of the common-area header can vary
from 60 to 200 bytes by program as specified in the COMMONSIZE
statement. The layout of the common-area header is as follows:

2 - 102



01 COMMONAREA.

05 MSGDESTINATION PICTURE 9(1).
05 LSN PIC 9(3).
05 PGMNBR REDEFINES LSN PIC 9(3).
05 MTSMSGTYPE PIC S9(1).
05 SEQNO PIC 9(6).
05 NDLTIME PIC 9(7).
05 TEXTSIZE PIC 9(4).
05 TERMTYPE PIC 9(2).
05 MSGID PIC X(6).
05 INDEX1 PIC 9(2).
05 INDEX2 PIC 9(2).
05 ERROR PIC 9(1).
05 FMTERR PIC 9(1).
05 MCSTYPE PIC 9(2).
05 INPUTADDR PIC 9(9).
05 RETRYCOUNT PIC 9(1).
05 RECOVERYSTATUS PIC 9(1).
05 OUTPUTADDR PIC 9(9).

05 CONVERSATIONSTATUS PIC 9(1).
05 CONVERSATIONBOJEOJ PIC 9(1).
05 USERAREA PIC X( ).

The following explains each field in the common-area header in detail.

Fields in Common-area Header

MSGDESTINATION

This field can be filled in by the application program to indicate
special routing. It is used primarily for program-to-program or
program-to station trancode routing. The GEMCOS system fills the
field with the default value before sending it to the program.
Thus, the application program need not adjust the value wunless
special routing is required. A list of the values for this field
and the default values, set by GEMCOS, follow.

0] Send to indicated station (final destination - no
default).

1 Send to indicated program (final destination - no
default).

2 Route with trancode (final destination - no default).

3 Route with trancode. Return to station (the GEMCOS
system sets the value to zero).

2 - 103



4 Route with trancode, return to program (GEMCOS sets value
to 1).

5 This value is set by GEMCOS to indicate that the message
originates from a routeheader station. It should not be
altered wunless an intermediate transaction is required.
See Section 10 for explanation of routeheader stations.

LSN

For incoming messages or recovered incoming messages, this field
contains the LSN of the originating station. Outgoing messages are
sent to the station whose LSN is stored in this field. For attach
notifications and detach notifications, this field contains the LSN
of the station involved. For open notifications, +this field
contains the number of stations in the approved FILE OPEN.

PGMNBR

This field contains the program number of the originating program
in the event that the message must be routed back to the program.
It redefines the LSN field so that no LSN is present if a program
number is specified. MSGDESTINATION will be 1.

NOTE
It is the responsibility of the program to keep

track of the LSN when doing message routing to
another program.

MTSMSGTYPE

Modular Terminal System Message Type. This field is used to

identify incoming and outgoing messages when the source or
destination is an MTS terminal. Refer to Section 10 for a detailed
explanation of this field.

SEQNO

Sequence Number. The MCS assigns a unique number to each message.
That number is passed to the application program in this field.

2 - 104



NDLTIME

NDL Time. This is the time that the Network Controller sends the
message to the MCS.

TEXTSIZE

Text Size. For incoming messages, this is the length in characters
of the message text. It does not dinclude the length of the
common-area header. For open notification, it is set to the LSN
field multiplied by 3. When the application program writes a
message, it must use the ACTUAL KEY of the remote file to specify
the text size. In this case, the size must include the size of the
common-area header.

TERMTYPE

Terminal Type. The MCS sets this field on incoming messages to a
code which identifies the +type of +the originating device.
Terminal-type codes are assigned in the Terminal section of the
NDL.

MSGID

Message-ID. The MCS sets this field to the access key signed on to
the station from which the message came. If the station does not
require sign on, the field is blank.

Users who use both GEMCOS formatting and security should be sure
that their programs replace this field either with blanks or with a
valid message-ID. If this field does not contain either blanks or
a valid message-ID, GEMCOS calls the format-module and searches the
list of valid message-IDs, which slows response time.

When the user's program sets this field +to a valid message-ID
(refer to the OUTPUT FORMATS statement), the MCS formats the

message before transmitting it to a station. When +the program
leaves the field blank, the MCS does not format the message.

INDEX1

Module-Function Index One. When an incoming message contains a
valid +trancode, and that trancode has module function indices

2 - 105



defined in the TCL, the MCS sets this field +to the first index;
otherwise, this field is set to zero.

INDEX2

Module-Function Index Two. When an incoming message has
module-function indices defined in the TCL, the MCS sets this field
to the second index; otherwise, this field is set to zero.

ERROR

When the MCS detects an error while routing a message from a

program by trancode, a value is returned. Definitions for these
values follow:

0 No error.

1 Missing trancode (trancode routing was specified).

2 Requested program or station not available.

3 Return station ID is invalid.

4 Error in routeheader (processor to processor) message.

FMTERR

Format Error Indicator. When the MCS detects an error while
formatting an incoming message, this field is set. Note that
errors detected while formatting an outgoing message are reported
to the Monitor stations. Refer to the discussion of formatting
errors under <format declaration> for an explanation of the values
which can be found in this field.

MCSTYPE

Message Type. This field identifies the type of message being
exchanged Dbetween +the user application program and the MCS. The
allowed values and their meanings are:

0) On input, this is a message from a station. On output,
this is the 1last (primary) message for the current
transaction.

2 - 106



15

17

18

20

21

22

23

24

25

Not wused on input. On output, this is a secondary
message {(that is, the program has additional responses to
send for this transaction).

On input, this is a station attach notification. Not
used on output.

On input, this is a station detach notification. Not
used on output.

On input, this is a file open notification. Not used on
output.

On input, this message instructs the restart program to
pass recovery information back to the MCS. Not used on
output.

Not used on input. On output, this message is sent by
the restart program +to the MCS. It contains recovery
information requested by the MCS.

Not used on input.On output, this message is sent by the
restart program to inform the MCS that an error was
found.

Not used on input. On output, +this message is sent to

the MCS to indicate that the user application program
needs recovery.

On input, this message instructs the user application
program to prepare for recovery. Not used on output.

Not used on input. On output, this message is sent by
the user application program to inform the MCS that it is
ready for recovery (used in response to a type-21 message
only).

On input, +this message is sent by the MCS to the user
application program immediately after the remote file is
opened. Its purpose 1is to pass information +to the
program that must be saved in the restart data set. Not
used on output.

On input, +this message is sent to the user application
program instructing it to close its data base and prepare
to terminate processing. Not used on output

Not used on input. On output, this message is sent by
the wuser application program to inform the MCS that the
program has successfully closed its data base and is now
ready to terminate processing.

2 - 107



26 Not wused on input. On output, the user application
program sends this message to inform the MCS that the
program would like to go to EOJ.

INPUTADDR

Input Audit Disk Address. This field contains the audit-file disk
address of this transaction. When this field is zero, this
transaction was not audited.

RETRYCOUNT

Transaction Retry Count. This field contains the number of times
this transaction was submitted to the user application program.
The value is incremented by one whenever an input transaction
causes a user application program to abort.

RECOVERYSTATUS

System Recovery Status. This field indicates the system status at
the time this +transaction was sent. The allowed values and
meanings are:

0 The system is not in recovery mode.

1 The system 1is 1in recovery mode caused by a user
application program abort.

2 The system is performing an archival recovery.

3 The system is in recovery mode caused by a Clear/Start or
an abnormal termination of the MCS.

OUTPUTADDR

Output Audit Disk Address. This field contains the audit file disk
address of the output message generated by the user application
program. This field is not used by the program.

2 - 108

PN



CONVERSATIONSTATUS

Conversation Status. This field indicates whether the conversation
path is clear, a conversation is in progress, or an error occurred
by the last message. Descriptions follow for each value that is
possible in this field:

0 Path is clear. There is no conversation in progress at
the station, or the station is nonconversational.

1 Conversation in progress. Whether the station is

comunicating with a program is indicated by the value of
the CONVERSATIONBOJEOJ field.

2 Error. Maximum number of conversations was exceeded.
The last message is neither audited nor delivered, but
returned.

3 Error. Conversation is attempted with a

nonconversational station. Message is returned.

4 Brror. Conversation attempted with a conversing station.
Message is returned.

5 Error. A nonconversational program attempts to initiate
a conversation. Message is returned to the program.

CONVERSATIONBOJEOJ

Conversation BOJ EOJ. This field indicates the beginning and the
end of a conversation. The field is kept up-to-date through the
messages from the user. Descriptions follow for each value that is
possible in the field: ‘

For messages to stations:

0 End of conversation, or no conversations in progress.
The MCS expects message text immediately after the
common-area header.

1 Conversation 1is beginning or continuing. Conversation
text is located Dbetween the common-area header and the
message text. Conversation text is stored in the
conversation area. If GEMCOS is auditing the
participating program, the conversation text is audited
as well. well.

2 - 109



For messages from stations:

0 Unoccupied. By returning this value, the station
indicates that it is open for conversation.

1 Occupied. This value verifies to the program that it is
in conversation with the station. Conversation text
follows the common-area header.

USERAREA

User Area. If COMMONSIZE is 60, the User-area field does not
existe. If COMMONSIZE is greater than 60, the 1length of the
User-area field (n) is COMMONSIZE minus 60. User-written MESS
procedures must be written if this field is to contain significant
information.

As previously mentioned, the common-area header is placed in front of
the text of messages exchanged between the MCS and programs using the
Participation interface. The length of the text is determined by the
TEXTSIZE field. For incoming messages and recovered incoming messages,
the text is the data received from a terminal. For open notifications,
the text is a list of 3-character LSNs. No text is associated with
attach notifications or detach notifications. For outgoing messages,

the application program sets the text +to the data to be sent +to a
terminal.

The attach, detach, and/or open notifications can be requested by a
program using the MCS interface. In this case, GEMCOS writes an
MCS-t0-MCS data message with a message type-80 (refer to Burroughs B
1700 Systems Network Definition Language Reference Manual). The text of
this data message is a common-area header. Therefore, a subordinate MCS
which expects attach, detach and/or open notifications must be able to
handle an MCS-to-MCS data message from GEMCOS in addition to the
MCS/Network Controller message types. See Table 2-1 for details. The
following legend explains the symbols used in Table 2-1.



Legend for Table 2-1

The MCS sets this field, which contains valid information.

The MCS sets this field only if the wuser specified
procedures.

The MCS requires the application program to provide valid
information in this field.

The MCS reads this field only if the wuser specified
procedures.

If the program requires queue restoration recovery, the

MCS requires the application program to provide
information in this field.



Field

MSGDESTINATION
LSN

PGMNBR
MTSMSGTYPE
SEQNO

NDLTIME
TEXTSIZE
TERMTYPE
MCSGID

INDEX1

INDEX2

ERROR

FMTERR

MCSTYPE
INPUTADDR
RETRYCOUNT
RECOVERYSTATUS
OUTPUTADDR
USERDATA

TEXT
CNVERSATIONSTATUS
CONVERSATONBOJEOJ

(@]

SR R R o B B - B e BB B

e a

Table 2-1

Common-area Header Fields

Containing Valid Information
by MCSTYPE

Written by MCS

MCSTYPE
2,4
6 15 21
X X
X X X
X X X
U
X

23 24
X X
X X
X

Written by User

117

Program

HCSTYPE

18 20 22 25 26



MCS Interface

When a program is defined as using an MCS interface, the flow of
messages 1s similar +to a Nonparticipation interface. A1l messages
(except those beginning with the signal character) entered from each
station in the MCS program remote file go to the program. The MCS
program can write +to any station in its remote file. Figure 2-21
depicts the flow of messages in an MCS interface.

RSN1
Stations . in Subordinate
Remote file REN2 MCS
of Programs Program
'
.
° GEMCOS
Supervisory
RSNx Mcs

RSN signifies the Relative Station Number,
Figure 2~21. MCS Interface

Two areas in which the MCS interface differs from the Nonparticipation
interface are as follows:

1. A program using an MCS interface must open its remote file
with headers, thereby identifying itself as an MCS program to
GEMCOS and the Network Controller.

2. The program must provide and expect a Network
Controller-defined 50-byte header  preceeding all data
messages. With this header, the program may access tallies
and toggles, and may perform functions such as output message
switching, communication with the Network Controller, remote
file management, system interrogation, and system control.
(The Network Controller/Message Control System interface is

defined in Burroughs B 1700 Systems Network Definition
Language Reference Manual.)

When a program using the MCS interface opens its remote file, GEMCOS
assumes the status of a supervisory MCS while the program is considered
a subordinate MCS. The supervisory MCS must be entered into the mix
before any of the subordinate MCS programs.

2 - 113



A  program using the MCS interface can be either a utility program, an
assignment program, Or a pass program. In brief, stations can
dynamically attach to and detach from a utility program via the EX and
HAP Network Control Commands, while an assignment program controls a
fixed set of stations and can only be initiated from the Control
stations, or the ODT. A pass program controls no stations. It can be
initiated from the ODT, Control stations, or any station via a PASS
command.

Messages entered at stations in a remote file opened by a subordinate
MCS (which do not begin with the GEMCOS signal character) go directly to
the subordinate MCS and are not seen by GEMCOS. As a result, an MCS
program temporarily suspends GEMCOS MCS functions (except certain
Network Control Commands) at the stations in its remote file. While
stations are in the remote file of an MCS program, they cannot use
GEMCOS trancodes, screen wraparound, audit, recovery, or formatting.
Messages beginning with the GEMCOS signal character go to the GEMCOS
supervisory MCS so that, even while a station is attached to a
subordinate MCS, GEMCOS network control commands can be entered.

NOTE

Network Control Commands affecting the attributes of
stations in the remote file of an MCS program cannot
be acted upon. The subordinate MCS is responsible
for the attributes of the stations it controls.

The B 1000 MCS/Network Controller interface allows subordinate MCS
programs to change data communication attributes of associated stations.
However, when a station attribute is changed by a subordinate MCS, the
change is effective only while the subordinate MCS controls the station.
As soon as either the subordinate MCS closes its remote file or the
station detaches itself, GEMCOS returns the station to its original
status.

Examples:

INTERFACE = NONPARTICIPATION.
INTERFACE = PARTICIPATION.
INTERFACE = MCS.

2 - 114



MAXIMUM ASSIGNERS Statement

Syntax:
{MAXIMUM ASSIGNERS statement>
---MAXASSIGNERS=-- = ---- <integersd =---=- . —=c-memcccccm e >

Semantics:

The MAXIMUM ASSIGNERS statement is used for utility programs only.
This statement is used to specify the maximum number of stations
that can be attached to a program concurrently. The maximum value
cannot be greater than the number of stations allowed by GEMCOS.
By default, all attachments are applied to one program.

Examples:
MAXASSIGNERS = 5.
MAXASSIGNERS = 2.



MAXIMUM COPIES Statement

Syntax:
<MAX COPIES statement>
---MAXCOPIES-== = ===-= <integers> =--= . ====eoommom e ee >

Semantics:

The MAX COPIES statement is used to specify the number of copies of
this program that can be running (that is, have a remote file open)
at any one time. For assignment and pass programs, the only
allowable value is one. For wuser programs, setting MAXCOPIES
greater +than one allows multiple copies of the program to be

executed manually. (See "User Programs," under "PROGRAM SECTION"
earlier in this section.)

The sum of MAXCOPIES for all programs determines how many programs
can be running in the MCS concurrently. An increase in the value
assigned to MAXCOPIES during regeneration may require generating
and compiling so that the MCS has a larger value stack. The value

of MAXCOPIES is safely lowered during regeneration. MAXCOPIES is
set to 1 by default.

Examples:
MAXCOPIES = 3.
MAXCOPIES = 2.

2 - 116



OPEN MESSAGE Statement

Syntax:
<OPEN MESSAGE statement>
-—-0PENMESSAGE--- = ---- <logical valued =--= . =—mm——emmmommommemee >

Semantics:

When OPENMESSAGE is set to TRUE, the program receives, as the first
message in its remote file, information from GEMCOS listing the
LSNs of the stations which comprise the program remote file. The
OPENMESSAGE consists of a common-area header with the MCS-TYPE set
to 6, the LSN field set to the number of stations in the program
remote file, and the TEXTSIZE field set to LSN ¥3. The text is set
to a list of 3-byte LSNs. The OPENMESSAGE is not audited.

When the interface is set to MCS, the common-area header is
preceded by a B 1000 MCS/Network Controller interface MCS DATA
MESSAGE header with the Message Type Field set to 80. A program

with an interface of DNonparticipation cannot request the
OPENMESSAGE. By default, OPENMESSAGE is FALSE.

Example:

OPENMESSAGE = TRUE.

2 - 117



PLM PROGRAM Statement

Syntax:
<PLM PROGRAM statement>

---PLMPROGRAM---- = ——=-- <logical value) ——=== o ——m——--mme—cmm——————— >

Semantics:

The PLM PROGRAM statement is used to determine if the given program
is the BNA Port Level Manager program. This program is used to
accomplish BNA station transfer. It is a special program which can

only be executed at the ODT.
Declare the PLMPROGRAM as follows:

PROGRAM <PID> UTILITY:

TITLE = BNA/PLM.
INTERFACE = MCS.
PLMPROGRAM = TRUE.

The default for PLMPROGRAM is FALSE.

Only one PLMPROGRAM may be declared. Once the program is running,

the user must enable station <transfer. To do this, enter at the
ODT:

NW STATIONTRANSFER +

The PLMPROGRAM may then be executed by a station using the Execute
command.

A station can also be attached +to another system. To transfer a
station to another system, the user executes the PLM program from a
station. Enter the following:

*EX BNA/PLM
.Once the station has been attached to the BNA program, enter:

CONNECT TO <host ID>

(See the BNA User's Reference Manual for a full explanation of the
operating instructions for station transfer.)

2 - 118

PN



Enabling station transfer also allows stations on another system to
connect themselves to the MCS on the local system. Such stations
must be declared in TCL with VIRTUALSTATION = TRUE. (See the
VIRTUALSTATION Statement in this manual for additional information
on stations transferring into GEMCOS.)

Examples:
PLMPROGRAM = TRUE.
PLMPROGRAM = FALSE.

PORT SIZE Statement

Syntax:

{PORT SIZE statement>

~==PORTSIZE-~-= = —=== <integerd =——--= . =mmmmec e >

Semantics:

The PORT SIZE Statement only has meaning for a station with
PORTSIZE = TRUE. This statement specifies the maximum number of
characters that GEMCOS reads or writes to the port associated with
that station. Messages that GEMCOS sends to a port station are
sent in pieces of its port size 1length. Messages that GEMCOS
receives from a port station are truncated at the largest value of
all port sigzes for all port stations. The default value of

PORTSIZE is 2000 characters. The maximum value of PORTSIZE is 3000
characters.

Example:

PORTSIZE = 2100.



PROGRAM TITLE Statement

Syntax:

<PROGRAM TITLE statement>

mm=PITLE=== = —oon <file IDD =m== & =mmmmmmm >

Semantics:

The PROGRAM TITLE statement identifies the object-code file name of
a program. The file-ID is a B 1000 file identifier, and it is used
optionally in the EX, HAP, RPS, and RPC Network Control Commands to
refer +to the program. When the program name is used in one of
these commands, GEMCOS applies the command to the object-code file
name specified in the PROGRAM TITLE statement.

The PROGRAM TITLE statement is optional. When it is omitted, the
program name is used as the default. Note that thas program name is
limited to 10 characters and cannot contain slashes.

Examples:
TITLE = PACK1/X/Y.
TITLE = PGM1.
TITLE = A/B/.

2 - 120



RECOVERY Statement

Syntax:
<{RECOVERY statement>

-—-RECOVERY--= = ————mm- SYNCHRONIZED--—-====—mm=m . e >

Semantics:

The RECOVERY statement declares what type of recovery mechanism (if
any) this program undergoes after a system or program failure.
Synchronized and data base recovery are for programs that are part
of a data base. Queue-restoration recovery is for programs that
are mnot logically associated with any other programs. The default
for this statement is NONE. See Section 7 for a detailed
explanation of the recovery mechanism.

Example:

RECOVERY = SYNCHRONIZED.

2 - 121



RESIDENCE Statement

Syntax:

{RESIDENCE statement>

---RESIDENCE--- = ———e-em DISK-mmmmmmms o oo >
|
I I
| ~—=CORE---> |
Semantics:
The RESIDENCE statement allows the user to specify where the
program 1is to reside when not processing messages. The value of
RESIDENCE may be CORE or DISK. A CORE resident program gives
faster

communication system.
defaults to CORE.

Examples:
RESIDENCE = CORE.
RESIDENCE = DISK.

response but increases the memory requirements
The RESIDENCE

2

of the data

statement is optional and

122



RESTART PROGRAM Statement

Syntax:

<RESTART PROGRAM statement>

---RESTARTPROGRAM--- = ———- <logical valued ---= . =m===m—e—m————————— >

Semantics:

For

The RESTART PROGRAM statement specifies whether or not this program
is to be a restart program. If this statement is set to TRUE, then
the following must also be done:

1. Recovery must be set to either synchronized or data base.

2. A DATA-BASE NAME statement must be supplied. More than
one data-base name is allowed if this restart program
services more than one data base, and each data base uses
the same type of recovery (synchronized or data base).

Bach data base must have exactly one restart program declared, but

a restart program can service multiple data bases. By default,
RESTARTPROGRAM is set to FALSE.

information on using the restart program with COBOL74, please see

Appendix F.

Examples:
RESTARTPROGRAM = TRUE.
RESTARTPROGRAM = FALSE.

2 - 123



SUPPRESS GOOD DAY MESSAGE Statement

Syntax:
<SUPPRESS GOOD DAY MESSAGE statement>
---SUPPRESSGOODDAYMESSAGE--- = --=- <logical value> ==== , =——-emeeae-- >

Semantics:

The SUPPRESS GOOD DAY MESSAGE statement is used +to prevent a
program from receiving the GOOD DAY message at BOJ. A value of
TRUE specifies that the program will not receive the "GOOD DAY"
message. The default value for this statement is FALSE.

2 - 124



TRANCODE Statement

Syntax:

{TRANCODE statement>

~ <integer> <integer>->

Semantics:

The TRANCODE statement is used to define trancodes and to associate
them with programs. A trancode identifier is any string up to ten
characters in length. A program of any classification which uses
an interface of Participation may have associated trancodes.
However, only trancodes associated with wuser programs cause
transaction-based routing to occur. A trancode defined in a
TRANCODE statement may occur in the ACCESS CONTROL statement to
restrict its use to a specific list of access keys.

The module-function indices may optionally be associated with each
trancode. The module-function indices consist of two integer
values. Each integer may be a value from O to 63. If a trancode
has module-function indices, they are placed into the common-area
header of messages in which that trancode is present. The
receiving program can use the module-function indices in a UPL CASE
statement or a COBOL GO TO DEPENDING ON in order to branch to the
code which will process that trancode. This eliminates the need
for +the application program to determine which trancode has just
been received. If a trancode has no module-function indices or if
there is no trancode in a message, zeroes are placed into the
Module-Function Indices field of the common-area header.

A user program must have at least one TRANCODE statement in its
PROGRAM statement list. Otherwise, the program never receives any
messages. The TRANCODE statement is optional in the PROGRAM
statement list of assignment, utility, and pass programs.

NOTE

If input formatting is to take place, a message must
have a trancode regardless of the classification of
the destination program, so that the MCS is able to
determine which format is to be applied. The

2 - 125



trancode is considered
formatted message.

as one

Examples:
TRANCODE = INQ (8, 10), UPDATE (5, 3).
TRANCODE = FIX (18, 1).

TRANCODE = HELP.

TRANSACTION CODE POSITION Statement

Syntax:

<TRANCODE POSITION statement>

-~--TRANCODEPOSITION=-= = ---- <integer>

Semantics:

The TRANCODE POSITION statement
trancodes are found in messages
specified in <integer> represents

the common-area header.

Examples:

TRANCODEPOSITION
TRANCODEPOSITION

nn
(o))
L]

-

allows the user to specify where
from this program.
the number of characters

126

of the fields

. —— o 1 - v - - -

The position



STATION SECTION

The following diagram shows the syntax for the Station section.

——-LSTATION —>< station name>—>> \L

identifier

L/ 1\ CONTINUOUSLOGON —
1\ CONTROLSTATION —

/1 \— MONITORSTATION —>

L /1 pORTSIZE —
L/ 1\ PORTSTATION ————>]

L1\ — SIGNON ———————>
L/ 1\ SUPPRESSMESSAGES —>
L/ 1\ TRANSACTIONMODE —>

L /T CONVERSATIONAL —

HOGO

L /T — VIRTUALSTATION ——>

L1\ SCREENSIZE

/1 \— TRANCODEPOSITION

L/ 1\ TRANCODE ————-——e@

—1\— vaLIDACCESSKEYS ——(7)

1\ Tvee
/1 \— HOSTACCESSKEY

— 1 \—— STATIONHOSTNAME —>

1 STATIONYOURNAME —>

2

>(®)
o

OO

3

@——-— = —><|ogical value> —ﬂ

= —> <integer> —————————>

= \[ < trancode> —]-%

= —— < access key> ———————>

= AP300
MT600 ——————>
ROUTEHEADER —>

[T

STANDARD —>
= —— <jdentifier> ——————>

127



Semantics:

The Station section must be present to define various attributes of
stations which the MCS is to service. (A GEMCOS MCS opens a remote
file whose name is given in the QUEUE NAME statement.) In the
FAMILY statement of the File section of the user's NDL source, this
remote file was assigned a station identifier list. These are the
stations which the MCS services and which must be defined in the
TCL Station section.

The Station section is composed of a station define list. Each
station define describes one station. The station name must be the
station identifier wused to refer to that station in the NDL. The
STATION statement 1ist is optional. Any of the stations can
contain a CONTROL STATION statement and/or a MONITOR STATION
statement.

Example:

STATION TD8OOA:
SIGNON = TRUE.
SCREENSIZE = 1024.
TRANCODEPOSITION = 5.
VALIDACCESSKEYS = ABCD, XXYY, 84080.
STATION TD8OOB:
SCREENSIZE = 1920.

2 - 128



CONTINUOUS LOG ON Statement

Syntax:
<CONTINUOUS LOG ON statement>

---CONTINUOUSLOGON--- = ---= <logical valued ==== o ==m==—-emmmmemm———— >

Semantics:

The CONTINUOUS LOG ON statement is used to determine whether the
MCS should "remember" who was logged on to the station following a
termination of the network (either normally or abnormally). After
the network is restarted, if CONTINUOUSLOGON is TRUE for a station,
the wuser would remain logged on. Otherwise, any users who were
logged on at the time of failure would be logged off.
CONTINUOUSLOGON = TRUE is ignored when auditing is not present in
the MCS. By default, CONTINUOUSLOGON is set to FALSE.

Examples:

CONTINUOUSLOGON
CONTINUOUSLOGON

TRUE.
FALSE.

2 - 129



CONTROL STATION Statement

Syntax:
<CONTROL STATION statement>
--~CONTROLSTATION=== = —==~ <logical valued> =--- . —=——mecmeommm———ee >

Semantics:

The CONTROL STATION statement allows a station to be designated as
a control station. Privileged Network Control Commands can be
entered from any control station. Any number of stations can be
designated as control stations. In the absence of any control
stations, only the ODT and the card reader can enter privileged
Network Control Commands.

A # 2tion can be changed from a control station to a non-control

station (or vice versa) in a GENERATE or REGENERATE run. By
default, a station is a non-control station.

Example:

CONTROLSTATION = TRUE.

2 - 130



CONVERSATIONAL Statement

Syntax:

{CONVERSATIONAL statement>

---CONVERSATIONAL--- = ---- <logical valued ---= . ———mmemmmmmm e >\

Semantics:

The CONVERSATIONAL statement determines whether a station can

participate in a conversation. By default, the statement is set to
TRUE.

Examples:

CONVERSATION
CONVERSATION

TRUE.
FALSE.

2 - 131



HOST ACCESS KEY Statement

Syntax:

<{HOST ACCESS KEY statement>

---HOSTACCESSKEY--- = --- <identifier> —-- . =——-=-mmmmmmmommmmmmmemeee >

Semantics:

The HOST ACCESS KEY statement specifies the name of an access key
to be associated with this station. It is only valid if the
station's type is ROUTEHEADER. If the corresponding routeheader
station on the remote host requires sign on, the specified access
key 1is sent +to the remote host as a valid access key of that
station. This access key must be included in the VALID ACCESS KEYS
statement list in the TCL for the corresponding routeheader station
on the remote host.

It is important to note +that a host access key received from a
corresponding routeheader station on a remote host must be included
in the list of valid access keys for this station on the local
host.

This access key does not need to be specified in the ACCESS CONTROL
statement. The maximum length of the access key is six characters.

Examples:
HOSTACCESSKEY = HOST18.
HOSTACCESSKEY = A.

2 - 132



MONITOR STATION Statement

Syntax:
<{MONITOR STATION statement>

---MONITORSTATION--- = —--- <logical value} ---= . =——m—mmm—mmmmmmemee >

Semantics:

The MONITOR STATION statement allows a station to be designated as
a monitor station. Errors monitored by the MCS are reported to a
monitor station. Any number of stations can be designated as
monitor statioms. If there are no monitor stations, all system
errors are sent to the system ODT.

A station can be changed from a monitor station +to a non-monitor
station (or vice versa) in a GENERATE or REGENERATE run. By
default, a station is a non-monitor station.

Example:

MONITORSTATION = TRUE.

2 - 133



PORT STATION Statement

Syntax:

<PORT STATION statement>

-=-PORTSTATION--- = --- <logical valued —--= . ====—=mmm—mmmmmmmmmmem >

Semantics:

When PORTSTATION is set to TRUE, GEMCOS receives input and output
through a port file rather than from a data communications station.
Use the MY NAME Statement in the Global Section of the TCL to
specify the file attributes of the port file GEMCOS uses.

Or use these three statements in the Station Section of the TCL to
define the attributes of the port file: the PORT SIZE Statement,
the STATION HOST NAME Statement, and +the STATION YOUR NAME
Statement.

The internal name of the port file GEMCOS wuses is HOSTPORT. The

default name is GEMPORT. The default value of PORTSTATION is
FALSE.

Example:

PORTSTATION = TRUE.

2 - 134



SCREEN SIZE Statement

Syntax:
<{SCREEN SIZE statement>
---SCREENSIZE--- = ———-- <integer> =—-—=- « =—mmmmmm e e >

Semantics:

The SCREEN SIZE statement defines the length of the largest message
which may be received by this station. If the MCS determines that
a message larger than <integer> characters is bound for the
station, the message would be broken into several transmissions

until +the entire message is sent. The maximum value for SCREEN
SIZE is 4096.

CAUTION

When any station define has a SCREEN SIZE
statement in its STATION statement 1list, all
station defines must have one. If the SCREEN
SIZE  statement is not present, no screen
wraparound would occur.

The occurrence of a SCREEN SIZE statement causes the
screen-wraparound code to be generated into the MCS code file. If
no station is defined as having a SCREENSIZE less than or equal to
the MAXTEXTSIZE specification, +the SCREENSIZE statement should be
omitted. The result is a more efficient MCS.

Examples:
SCREENSIZE = 1920.
SCREENSIZE = 256.

2 - 135



SIGN ON Statement

Syntax:
<SIGN ON statement>

~==SIGNON=== = ==== <logical valued ==== . ==—=-mm—ce—e—ce————————e e >

Semantics:

The SIGN ON statement indicates whether a user must sign on at this
station prior +to entering messages. When SIGNON is TRUE, the
operator must sign on with one of the access codes listed in the
VALID ACCESS KEYS statement. If VALIDACCESSKEYS is set to ALL, the
operator must sign on with one of the access codes listed in the
ACCESS CONTROL statement. The SIGN ON statement is optional and,
if omitted, defaults to FALSE.

Examples:
SIGNON = TRUE.
SIGNON = FALSE.

2 - 136



STATION HOST NAME Statement

Syntax:

{STATION HOST NAME statement>

-—=STATIONHOSTNAME--- = -—=- <identifier) =--- . =--meme-memcece—————— >

Semantics:

The STATION HOST NAME statement only has meaning for a station with
PORTSTATION = TRUE. Set the HOSTNAME attribute of the port subfile
GEMCOS uses for this station to <identifier>. The default value of
STATIONHOSTNAME is the station name.

Example:

STATIONHOSTNAME = LONDONBASE.

e

2 - 137



STATION YOUR NAME Statement

Syntax:

<STATION YOUR NAME statement>

-==STATIONYOURNAME-~- = ———= <identifier) -—-= . ——cemmmmmm e >
Semantics:

The STATION YOUR NAME Statement only has meaning for a station with
PORTSTATION = TRUE. ©Set the YOURNAME attribute of the port subfile
GEMCOS wuses to communicate with the station to <identifier>. The
default value of STATIONYOURNAME is NULL.

Example:

STATIONYOURNAME = LONDON1.

2 - 138



SUPPRESS MESSAGES Statement

Syntax:

{SUPPRESS MESSAGES statement>

---SUPPRESSMESSAGES--- = ---- <logical valued ---= . ———=—=-o-mm———aa- >

Semantics:

The SUPPRESS MESSAGES statement 1is used to prevent a station from
receiving certain messages. If this attribute has a value of TRUE,
then the station will not receive the following messages:

1. The GEMCOS MCS GOING DOWN message at EOJ.

2. Any message broadcast to all stations (no station list
specified).

3. The GOOD DAY message from a program.
4. The THIS STATION RE-ATTACHED TO GEMCOS message sent after
reattachment when GEMCOS is running in subordinate mode.
The default value for this statement is FALSE.

Example:

SUPPRESSMESSAGES = TRUE.

2 - 139



TRANCODE Statement

Syntax: <TRANCODE statement>

~=-TRANCODE--- = —=-== <trancode> =—------ B >

Semantics:

The TRANCODE statement is used to define trancodes and to associate
them with stations. A trancode identifier is any string up to 10
characters in length. A trancode defined in a TRANCODE statement

may occur in the ACCESS CONTROL statement to restrict its use to a
specific list of access keys.

By using these trancodes, messages from another station or program
can be routed to this station.

NOTE

The module-function indices are not applied to
trancodes.

Examples:

TRANCODE = STATION, STATION2, HELLO.
TRANCODE = HELP.

2 - 140



TRANSACTION CODE POSITION Statement

Syntax:

{TRANCODE POSITION statement>

---TRANCODEPOSITION--- = -—-- <integer> =--- . ——m————mmmmmmommmmmme >

Semantics:

The TRANCODE POSITION statement allows the user to specify where
trancodes are to be found in messages received from this station.
By default, TRANCODEPOSITION is 1.

Examples:
TRANCODEPOSITION = 5.
TRANCODEPOSITION = 1.

2 - 141



TRANSACTION MODE Statement

Syntax:
<TRANSACTION MODE statement>
-=~TRANSACTIONMODE=-- = —=== <logical value> ==== . ====mm=—-————————— >

Semantics:

The TRANSACTION MODE statement determines whether a station is
allowed to transmit a new input transaction before receiving the
response for the previous input transaction. If TRUE, the MCS
would return the error response "BUSY" for any input from.the
station prior +to the receipt and transmission by the MCS of the
response to the current transaction for the station. Also, this
station can only send messages to programs that are declared to use
synchronized recovery. If auditing is not present in the MCS, the
statement TRANSACTIONMODE = TRUE would be ignored. By default,
TRANSACTIONMODE is set to FALSE.

Examples:
TRANSACTIONMODE = TRUE.
TRANSACTIONMODE = FALSE.

2 - 142



TYPE Statement

Syntax:

{TYPE statement>

Semantics:

The TYPE statement is used to define the physical type of each
station. AP300 and MT600 are standard Burroughs terminal devices.
ROUTEHEADER indicates that this station is actually a "porthole" to
another computer. The GEMCOS MCS on the other computer would
contain a corresponding routeheader station. This is the basic
component used in computer-to-computer message routing. When
ROUTEHEADER is specified, at least one trancode must be defined for
this station, and a HOSTACCESSKEY must be specified when the other
computer requires sign on on the corresponding station. (Refer to
Section 9 for further information about this statement.)

Examples:
TYPE = AP300.
TYPE = ROUTEHEADER.

2 - 143



VALID ACCESS KEYS Statement

Syntax:
<VALID ACCESS KEYS statement>
~==~VALIDACCESSKEYS=-== = ==== <{gccess key> ==w== , ccmemccccmccecccccnc—- >

Semantics:

A list of valid access keys can be prepared to enforce access key
validation at sign-on time. Each access code which appears in a
VALID ACCESS KEYS statement must have occurred in the ACCESS
CONTROL statement. ALL indicates that any access code can be used
to sign on at this station. When the statement is omitted and

SIGNON is TRUE, ALL is assumed. This statement has no meaning when
SIGNON is FALSE.

Examples:
VALIDACCESSKEYS = ALL.
VALIDACCESSKEYS = 84080, 84090, ABCD.

2 - 144



VIRTUAL STATION Statement

Syntax:

<VIRTUAL STATION statement>

-==VIRTUALSTATION==-= = ==== <logical valued ==== , =—mmeeeccccecc—————— >

Semantics:

The VIRTUAL STATION statement is wused +to determine whether a
station is allowed to transfer to the MCS from another Burroughs
system using Burroughs Network Architecture (BNA) Station Transfer.

The stations which are to transfer in to GEMCOS must be declared in
the TCL as virtual stations. A virtual station must have a station
hostname. An attempt to transfer a station which has not been
declared as a virtual station causes Error 156. Set the following
attributes (as well as any other attributes needed) for stations
transferring in to GEMCOS:

STATION <station name>:
VIRTUALSTATION = TRUE.
STATIONHOSTNAME = <host name>.

If the statement is set to TRUE, +the MCS allows the station to
transfer in, provided its hostname matches the hostname defined to
the BNA network on the other side of the system. If the statement

is set to FALSE, the station is not allowed to transfer in using
BNA Station Transfer. The default is FALSE.

Examples:
VIRTUALSTATION = TRUE.
VIRTUALSTATION = FALSE.

2 - 145



DEVICE SECTION

Syntax:

The following diagram shows the syntax for the Device section.

Lé DEVICE —> <device name>—> . —> STALIST = JL} <station name> ——

identifier

b & &

A /1 \—> FORMATSIN: JL—><format>——> =

©

v

identifier

1 FORMATSOUT: —Y—3> < format> —> =

identifier

—
7z

< trancode> . 7
identifier

1

!

@@T@%‘P@@

-
>

< message>
identifier

Semantics:

The Device section is used to group stations by device class and to
indicate which format is to be applied to a message. The Device
section should be present only if the FORMAT AND FUNCTION statement
list is present in the Global section. The Device section may
never occur when the B 1000 GEMCOS release being used is not an

Advanced Version.

2 - 146



Each device define consists of a STATION LIST statement, an INPUT
FORMATS statement, and an OUTPUT FORMATS statement. The device

name may be any identifier and is not referenced elsewhere in the
TCL.

In the following example, an input message from TD8OOA or TDB0OOB
with trancode INQ or UPDATE is formatted using format X. A message
from TD700A, TD700B or TD700C with trancode INQ or UPDATE has
format Y applied.

Similarly, on output, when a program writes a message with the
message-ID field of the common-area header set to "PAY" or "SHIP"
(left justified with trailing blanks), format X12 is used when the
message 1is bound for TD80OA or TD80OB. Format Y12 is applied when
the message 1is bound for a station in the device class TD700
(TD700A, TD700B or TD700C). When the message-ID field of the
common-area header is set to "RCV", X33 or Y33 is applied, again
depending on the destination of the message.

Finally, when an operator transmits "PAY" or "SHIP" (without
leading or trailing blanks) from station TD80OA or station TD80OB,
the operator is making a forms request. Using format X12, a
message is built up with all blank data fields (A, B, I, J and T).
The message is sent to the requesting station. Format Y12 would be
used to create the blank-formatted screen if the forms request for
"PAY" or "SHIP" came from TD700A, TD700B, or TD700C. If a "RCV"
forms request is received, format X33 or Y33 would be applied,
depending upon the device classification of the requesting station.

NOTE

Formats X, X12, X33, Y, Y12 and Y33 must have been
defined in the FORMAT AND FUNCTION statement list.

Example:

DEVICE TD80O:
STALIST = TD80OA, TDS8OOB.
FORMATSIN:
X = INQ, UPDATE.
FORMATSOUT:
X12 = PAY, SHIP.
X33 = RCV.
DEVICE TD700:
STALIST = TD700A, TD700B, TD700C.
FORMATSIN:
Y = INQ, UPDATE.
FORMATSOUT:
Y12 = PAY, SHIP.
Y33 = RCV.

2 - 147



INPUT FORMATS Statement

Syntax:

For the syntax of this statement, see the syntax of the Device Section
given previously.

Semantics:

The FORMATS IN statement indicates which format is to be applied to
a particular message entered at a station of a particular device
class before the message is forwarded to the appropriate program.
Only messages with a recognizable trancode are formatted. Each
format-ID must be defined in the FORMAT AND FUNCTION statement
list, and each trancode must be defined in the Program section. A
trancode may be associated with only one format-ID per FORMATS IN
statement.

The MCS determines whether an input message is to be formatted by
attempting to recognize a trancode 1in the message text. When a
trancode is found, the message is formatted only if the trancode
was associated with a format-ID in the device class determined by
the station where the message originated.

Example:
FORMATSIN:
MT1 = PAY1, PAY2.
FMT2 = INV1.
FMT3 = INV2, INV3.

2 - 148



OUTPUT FORMATS Statement

Syntax:

For the syntax for this statement, see the syntax of the Device section
given previously.

Semantics:

The FORMATS OUT statement indicates which format is to be applied
to a particular message written by a program bound for a station of
a particular device class. Only messages with a recognizable
message-ID in the Message-ID field of the common-area header are
formatted. Bach format-ID must be defined in the FORMAT AND
FUNCTION statement list. A message-ID can only be associated with
one format-ID per FORMATS. OUT statement and cannot exceed six
characters in length. Station operators can enter a message
consisting solely of a message-ID and, in doing so, make a forms
request.

When the MCS receives a program message, the Message-ID field in
the header is checked. If the field is filled, the contents cause
the MCS to format the message according to the format-ID associated
with the message-ID in the device class. The device «class 1is
determined by the station to which the message is sent.

When the MCS receives a message one to six characters in length
without a recognizable trancode from a station, a check is made to
determine whether the message consists of a message-ID. If so, the
operator entered a forms request. The MCS builds a message with
blank data fields using the format-ID with which the message-ID was
associated in the device class, determined by the station from
which the forms request was received.

Example:
FORMATSOUT:
FOR1 = PAY8, PAY9.
FMT1 = INV1.

2 - 149



STATION LIST Statement

Syntax:

For +the syntax of this statement, see the syntax of the Device section
given previously.

Semantics:

The STATION LIST statement specifies the stations which are to be
considered part of each device class. Each station name must be
defined in the Station section, and each station name occurring in

the Station section can appear in exactly one STATION LIST
statement.

Example:

STALIST = TD820A, TD820B, TD820C.

2 - 150



MESS CODE SECTION

Syntax:

See the following diagram for the syntax of the MESS CODE section.

<UPL DEFINE statement>
<UPL FILE statement>

o
_j ')f
L STATIC DECLARATIONS: jE< UPL DECLARATION Statemeg. ENDSOURCECODE,

)5

DYNAMIC DECLARATIONS:L<UPL DYNAMIC DECLARATIONS statemem>-lb ENDSOURCECODE,

S(
[—L PROCEDURE —‘-——fi\-F AUDIT » : -»-<UPL PROCEDURE statement>-#ENDSOURCECODE, ‘J"]

b/ T\ CLOSEACTION =]

b \g» CLOSEFILES =
—| ‘- ERRORHANDLER ———————
b T> MSGF ROMPROG RAM ool
—— T\ MAINTENANCE b
7\ MSGFROMSTATION ———t>]
—— ]\ OPENACTION
7\ HANDLERECALL
L—/ [\ INITIATERESTORE ~———]

(——"# RESTOREPROGRAM >
! \SETSIZES -
| & SETVALUES

Semantics:

]
™

The MESS Code section enables the user to include UPL2-mergeable
external source statements to supplement or replace GEMCOS MCS

functions. Mergeable external source statements are

for

specialized requirements which demand deviation from the standard

GEMCOS logic.

User-written MESS procedures can be merged 1into key locations

in

the MCS source code file. The function intended for each procedure
is explained, but there is practically no limit to the functions

that can be coded. MESS procedures can be inserted in
following code locations:

2 - 151

the



1. Receiving message from station - for formatting, paging, or
routing.

2 Receiving message from program -~ for formatting, paging, or
routing.

e Processing Network Control Commands -~ for extending or
replacing the capabilities for network control.

4. Auditing -~ for replacing or supplementing the standard audit
feature.

5 Error handling - for extending the standard error-handling
logic.

6. Opening - for processing required at system startup.

Te Closing - for processing required at system shutdown, such as
closing files used by other MESS procedures.

8. Recalling messages - for disposing of unsent messages when the
system is shut down.

9. Initiating recovery - for ©processing the request of an
application program for recovery.

10. 'Recovery - for replacing the standard recovery logic.

11. Remote file open - for processing that is required when an
application program opens a remote file.

12. Remote file close - for processing that is required when an
application program closes a remote file.

The source code for MESS procedures 1is submitted as part of the
user's TCL source file. The TCL compiler merges these procedures
into the correct places in the MCS logic.

NOTE
Changes made to the MESS Code section during a

REGENERATE MCSTCL run do not affect the MCS
source code file.

The MESS Code section consists of static declarations, dynamic

declarations, and a procedure define list. The MESS Code section
is optional.

2 - 152



Example:

STATIC DECLARATIONS:
DECLARE
X FIXED;
ENDSOURCE.
DYNAMIC DECLARATIONS:
DECLARE
SPEC_STRING 'CHARACTER(X);
ENDSOURCECODE.
PROCEDURE SETSIZES:
PROCEDURE MESS_SET SIZES;
%
DECLARE
ACCEPT_STRING CHARACTER(5);

DISPLAY ("ENTER STRING SIZE, XXXXX");
ACCEPT (ACCEPT STRING); '
X := BINARY (ACCEPT STRING);
END MESS_SET SIZES;

ENDSOURCECODE.

PROCEDURE SETVALUES:
PROCEDURE MESS_SET VALUES;

SPEC_STRING :=" ";
END MESS_SET VALUES;
ENDSOURCECODE.

Static Declarations

Syntax:

See the syntax of the MESS Code section for the syntax of the static
declarations.

Semantics:

In static declarations the user may make UPL2 global declarations
(except dynamic declarations), global defines, and file
declarations. The TCL source cards containing UPL2 source
statements must be surrounded by a TCL static declarations card and
a TCL end card. The static declarations are optional.

2 - 153



If static declarations are present, the NAME-STACK  ENTRIES
statement and VALUE-STACK BITS statement of the Global section

should be set appropriately. GEMCOS combines these values into the
UPL2 dollar option, STATIC-MEMORY.

Example:

STATIC DECLARATIONS:
DECLARE

SECURITY FILE OPENED BIT(1);
FILE

SECURITY (TITLE = "MCSSEC",
KIND = DISK,
ACCESSMODE = RANDOM,

MAXRECSIZE = 80,
BUFFERS = 1);
DEFINE
F AS #FIXED#,
C AS #CHARACTER#;
ENDSOURCECODE.

Dynamic Declarations

Syntax:

For the syntax of the dynamic declarations, see the syntax of the MESS
Code Section.

Semantics:

In dynamic declarations, the user may make UPL2 dynamic
declarations. The TCL source cards containing UPL2 source
statements must be surrounded by a TCL dynamic declarations card
and a TCL end card. The dynamic declarations are optional.

If dynamic declarations are present, the NAME-STACK ENTRIES

statement and VALUE-STACK BITS statement of the Global section
should be set appropriately.

2 - 154



Example:

DYNAMIC DECLARATIONS:
DECLARE DYNAMIC
WORK_AREA CHARACTER(AL.NPR_MAX:TEXQ_SIZE+250);
ENDSOURCECODE.

Procedure Define List

Syntax:

See the syntax of the MESS Code section for the syntax of the procedure
define list.

Semantics:

The procedure define list contains user-coded UPL2 procedures, one
per procedure define. Bach procedure define begins with a TCL
procedure introduction card, follows with the user's source
statements, and ends with a TCL end card. The MESS procedure-ID of
the procedure introduction card specifies to the TCL where the
user's code is to be merged. The procedure define 1list is
optional.

If the procedure define 1list is present, the NAME-STACK ENTRIES
statement and VALUE-STACK BITS statement of the Global section
should be set appropriately to reflect the space required for
variables declared within any of the user-written procedures.

A discussion of each of the MESS procedures is given below.
Example:

PROCEDURE MSGFROMSTATION:
;ROCEDURE ZIP_IT BIT(1);
IF AD.MSG _TEXT SIZE > 3
THEN
IF SUBSTR(SG.TEXT,0,3) = "ZIP" THEN
RETURN (1);
RETURN (0);
END ZIP IT;
ENDSOURCECODE.

2 - 155



MESS Procedures

This discussion explains when MESS procedures are called, the parameters
required to call them, and the values they must return. All MESS
procedures are optional.

Care must be taken when writing MESS code to avoid duplicating
identifiers already used in the MCS. For this reason, it is useful to
know that all MCS identifiers adhere to the following conventions:

1.  DEFINEs begin with three characters: "MD " or
"MS L .

2. Files begin with three characters: "MCS".

3. Data names begin with three characters: "XX.", where XX is two

alpha characters of the global declarations. Use the
2-character prefix shown at the beginning of the GEMCOS source
file.

4. Procedure names begin with four characters:
"MCS " .

5. DO-group labels begin with three characters:
"ML " o

MESS procedures have access not only to entities declared in static
declarations, dynamic declarations, and locally, but also to many data
areas, files, and procedures used by the standard MCS modules according
to the scope rules of UPLZ2.

When programming MESS code, segmenting procedures must be followed.
Some efficiency in memory allocation may be realized if MESS procedure
segments are approximately 800 to 1200 bytes in size, the average size
of standard MCS modules.

If global or local variables are declared by the user in the MESS Code
section, the NAME-STACK ENTRIES statement and VALUE-STACK BITS statement
of the Global section should be set appropriately.

2 - 156



AUDIT

This procedure can either supplement or replace the standard auditing
logic. It is called after the standard audit procedure (if generated)
is executed. Any files needed by AUDIT must be declared in the Global
section of MESS code.

AUDIT must accept one parameter:

An indicator [BIT (1)] which denotes the type of message being sent
from the MCS:

1. A value of O indicates that the message 1is bound for a
station.

2. A value of 1 indicates that +the message is bound for a
program.

CLOSE ACTION

This procedure is intended to supplement the MCS remote file close or
STATIONDETACH 1logic. It is called after the MCS performs the necessary
steps to verify that a program is no longer on-line. The CLOSEACTION
procedure must be a function procedure which returns a value [BIT (1)].
However, the value of the return is of no consequence and is reserved
for future use. One useful function of the CLOSEACTION procedure might
be to construct and send a notification of the FILE CLOSE to the
stations involved.

When the action taken by the CLOSEACTION procedure depends upon whether
it is called through a remote FILE CLOSE or through a STATIONDETACH, the
source of the call can be determined by checking the data field
MS.MSG.HDR.TYPE. When this field contains 16, the CLOSEACTION procedure
has been called through a FILE CLOSE. When it contains any other value,
it has been called through a STATIONDETACH.

CLOSE FILES

The CLOSEFILES procedure is given control during system shutdown (E0J).
Its primary purpose is to close any files that may have been opened in
other MESS routines. This is called only by the MCS.EOJ procedure. It
is not called unless the generation parameter SYS-HALT is set.

2 - 157



ERROR HANDLER

The primary function of this procedure is to supplement the standard
error handling module of the MCS. As a secondary function, it may also
save the contents of MS.MSG.WORK.AREA in case of a data dump.

For certain system errors, a data dump is created. The standard error
handling 1logic induces the dump by synthesizing an RDM Network Control
Command in MS.MSG.WORK.AREA. The message that was stored in
MS.MSG.WORK.AREA when the error was detected is therefore lost, unless
the ERRORHANDLER procedure saves it.

This routine must accept one parameter: the error message number
[CHARACTER (3)] which corresponds to the error detected.

ERRORHANDLER must be a function procedure that returns a value [BIT (1)]
which tells the MCS what to do with the error condition:

1« A value of O (zero) indicates that the error should be
processed normally.

2. A value of 1 indicates that the MCS is to exit the error
handling module immediately.

The ERRORHANDLER procedure is called by MCS.PRINT.ERROR.

HANDLE RECALL

The HANDLERECALL procedure is given control during system shutdown
(EOJ). At this time, the MCS recalls all messages which have been
routed to a station, but are still awaiting transmission in the queues
of the Network Controller. The HANDLERECALL procedure is invoked each
time a message returns to the MCS.

The HANDLERECALL procedure must be a function procedure which returns a
value [BIT (1)] specifying disposition of the message:

1. A value of O (zero) causes the MCS to print the message on a
line printer before discarding it.

2. A value of 1 causes the MCS to discard the message without
further processing.

2 - 158



If this procedure is not provided, the MCS prints all recalled messages
before discarding them.

This procedure is called only by MCS.EOJ. It is not called unless the
generation parameter SYS-HALT is set.

INITIATE RESTORE

This procedure is given control when an application program indicates to
the MCS that it needs restoration (by sending a message which has the
MCSTYPE field of the common-area header set to 20). It may either
supplement or replace the module that performs restoration
initialization, depending upon the RESTORATION statement. Its purpose
is to perform any initialization +that may be necessary to prepare for
restoration.

MAINTENANCE

This procedure 1is given control when a message containing the signal
character is received from a station or a program (except for valid SGN
messages). The MAINTENANCE procedure is called from the standard
maintenance module (MCS_MAINT CONTROLLER), if generated.

The standard maintenance module is generated if either CHANGEREQUESTS,
DATADUMP, MESSAGEBROADCAST, MESSAGERECALL, PROGRAMBOJEOJ, STATUSREPORTS,
SYSTEMHALT, RESTORATION, or MONITORTRACE is TRUE, or if an ACCESS
CONTROL statement is present. When the standard maintenance module is
not generated, the MAINTENANCE procedure is invoked by MCS MSG_FROM
STATION or MCS _MSG FROM USER PROGRAM.

The MAINTENANCE procedure must be a function procedure which returns a
1-bit value specifying the disposition of the message:

1. A value of O (zero) indicates that MAINTENANCE did not process
the message. If the standard maintenance module is present,
it attempts to scan for a standard command and process it. If
the standard maintenance module is not present, the input is
ignored.

2. A value of 1 causes the MCS to consider the message completely

processed whether the standard maintenance module is present
or not.

2 - 159



MAINTENANCE must accept one input parameter: the number of the calling
procedures (FIXED).

This procedure can be used to implement new Network Control Commands or
change existing commands.

MESSAGE FROM PROGRAM

This procedure is called when the MCS receives a message from an
application program (the MCS does not receive messages from programs
using the Nonparticipation or MCS interface). The message was not
formatted (Advanced Version), nor was it audited. The message may be a
request for message restoration or may contain a signal character.

MSGFROMPROGRAM must be a function procedure which returns a 1-bit value
specifying the disposition of the message:

1. A value of O (zero) informs the MCS to continue processing the
message as 1f there had not been a MSGFROMPROGRAM procedure.

2. A value of 1 means that the message was completely processed.
The MCS exits immediately to the main control procedure and
does not process this message any more.

This procedure can be wused to interpret the USERAREA field
(MS_COMMON_USER) of the common-area header. MSGFROMPROGRAM can perform
specialized output formatting. Nonstandard routing (e.g.,
program-to-program message switching) can be performed using this
procedure.

MESSAGE FROM STATION

This procedure is called when a message is received from a station. If
MSGFROMSTATION is given control, it may assume that there is no
data~-communication error associated with the message, the MCS is not
being shut down, the source station is signed on (if sign-on is required
at that station), and the message does not begin with the signal
character. The common-area header to be associated with this message
has been built in MS COMMON__AREA <length> (but not yet attached to the
message) . When a trancode is present, it has been recognized and noted
in AD.TRN INDEX. The message has not yet been formatted and could be a
forms request (Advanced version only). The message has not yet been
audited.

2 - 160



MSGFROMSTATION must be a function procedure which returns a 1-bit value
specifying disposition of the message:

1. A value of O (zero) directs the MCS to continue processing the
message as if there had been no MSGFROMSTATION procedure.

2. A value of 1 signifies that the MSGFROMSTATION procedure has
taken full responsibility of the message. The MCS
discontinues processing this message.

If a station is associated with or was attached to the remote file of a
program that uses a Nonparticipation or MCS interface, +the.GEMCOS MCS
does not receive any messages from that station. Thus, the MCS cannot
pass control to MSGFROMSTATION for such messages.

This procedure can set fields in the USERAREA (AB.COMMON USER) of the
common-area header. It can perform specialized routing, access control,
or input formatting, and thus be used for data collection.

OPEN ACTION

This procedure is intended to replace or supplement the action taken by
the MCS after a FILE OPEN STATION ATTACH is approved. Normally, the MCS
sends a "good day" message to each station in the newly-opened file and,
if specified in the TCL, a FILE OPEN notification is sent +to the
program.

The OPENACTION procedure must be a function procedure which returns a
value [BIT (1)]:

1« A value of O (zero) causes the MCS to send the "good day"
messages and the open notification.

2. A value of 1 causes the MCS to skip the code which sends the
"good day" messages and the open notification.

When the action taken by the OPENACTION procedure depends upon whether
it is called through a FILE OPEN or through a STATION DETACH, the source
of the call can be determined by checking the data field
MS.MSG.HDR.TYPE. When the field contains 10, the OPENACTION procedure
has been called through a FILE OPEN. When it contains any other value,
it has been called through a STATION ATTACH.

2 - 161



RESTORE PROGRAM

This procedure 1is intended to replace the standard MCS restoration
logic. It is called from the main processing loop in
MCS.MODULE.MANAGER. It is called once in each iteration of the loop as
long as the flag MS.RESTORE.PROGRAM has a value of 1. When it is
necessary to handle other network activity during restoration,
MESS.RESTORE.PROGRAM must relinquish control (that is, RETURN)
occasionally, so that the main processing loop can run through another
cycle.

SET SIZES

This procedure is given control during the first phase of initialization
logic in the MCS. Its purpose 1is to specify sizes for any dynamic
variables declared in the dynamic declarations.

Example:

Assume that static declarations include:
DECLARE  MAX SIZE FIXED;
and that dynamic declarations include:
DECLARE DYNAMIC USER_AREA CHARACTER (MAX SIZE);

Then the SETSIZES routine must be provided. The procedure
define list> might include:

PROCEDURE SETSIZES:
PROCEDURE MY SETSIZES ROUTINE;
MAX SIZE := 100;
END MY SETSIZES ROUTINE;

ENDSOURCECODE.

The SETSIZES MESS procedure is called from MCS INITIATE SIZES.

2 - 162



SET VALUES

This procedure is given control during the second phase of
initialization logic in the MCS. The purpose 1is to specify values for
variables that were declared in the static declarations.

Suppose the static declarations include the following:

DECLARE MAX.VALUES FIXED,
USER.DATA CHARACTER(10);

In +this case, the SETVALUES routine must be provided. The procedure
define list can include the following:

PROCEDURE SETVALUES:
PROCEDURE MY SETVALUES ROUTINE;
MAX VALUES := 200;
USER_DATA := "SOMETHING";
END MY SETVALUES ROUTINE;
ENDSOURCECODE.

The SETVALUES MESS procedure is called from MCS INITIALIZE TABLES.

Once all the parameters for an MCS have been set up in the TCL, the MCS
can be executed.

BEGINNING SYSTEM OPERATION

The following gives information on executing an MCS, and on console or
card reader input.

EXECUTING AN MCS

Before executing the MCS, the MCSTIC file must be on disk (MCSTIC is
created by the TCL compiler). To initiate the MCS, enter:

EX MCSSRC/OBJECT

2 - 163



If an OBJECT-CODE FILE NAME statement is present in the Global section
of the source TCL, enter:

EX <file-ID>

If the user wants to rename MCSQUEUE by using a FILE statement following
the EXECUTE command, the value of SWITCH 7 determines what occurs. If
SW7 = 0, the MCS opens the remote file whose name was given in the QUEUE
NAME statement.

If SW7 =1, the MCS opens the remote file whose internal file name is
MCSQUEUE.

The external file name of MCSQUEUE can be changed in the EXECUTE
statement or with the MODIFY command. This allows the user to override
the queue name specified in the TCL. To do this, enter the following:

EX <GEMCOS-ID> ; SW7 = 1;
FILE MCSQUEUE NAME <remote file-ID>

Under certain circumstances, a Network Controller may have to be
executed.

EXECUTING A NETWORK CONTROLLER

When an MCS is run under system software released prior to 6.1, or when
the C entry of the table name is blank, a Network Controller needs to be
executed. (This only needs to be done if a Network Controller is not
already running.)

When a system software release of 6.1 or later is used, and there is a
nonblank C entry in the name table, the system automatically executes
the Network Controller. (For a description of the system name table
entries, refer to the B 1000 System Software Operational Guide.)

Once the GEMCOS MCS has begun, the user can start application programs
and any subordinate MCS programs.

2 - 164



CONSOLE OR CARD READER INPUT
TO THE MCS

A Network Control Command may be presented to the MCS at any time by
entering an ACCEPT command directly to the MCS. For example, the
following message entered at the supervisory console makes STATIONA not
ready.

<m-n>AX*¥CSR STATIONA N

The <m-n> is the mix number of the MCS, and the asterisk (*) is the
signal character. No spaces between AX and the signal character are
permitted.

To enter Network Control Commands from a card reader, the operator
should ready a card reader with a deck labeled MCSOLICRD and enter:

<{m-n>AXCARDS

The MCSOLICRD deck should contain one Network Control Command per card.
The signal character must be in card column one.

The following section, Section 3, contains additional information on
using Network Control Commands.

2 - 165



SECTION 3

USING NETWORK CONTROL COMMANDS

This section discusses the functions of Network Control Commands, and
provides the syntax for each command. A control station administers the
network through Network Control Commands (NCCs). They are used for the
following functions:

1.

Access Control:

a. Enable and disable users.
b. Sign on and off.

MCS control.

Message Control:

a. Reroute messages.

b. Retrieve queued messages.

C. Send messages to other stations.

Program Control:

a. Execute and terminate application programs.
b. Report program status.

Station status:
a. Report station status.

b. Change station status.
C. Use port stations.

Every DNetwork Control Command generates some kind of response. There
are three kinds of responses:

1.

Confirmation without data. This response is specified by the
user through the NCC OK RESPONSE statement.

Confirmation with data. For Network Control Commands which
request that data be returned, the data itself serves as
confirmation that the command was executed.

Rejection. If a command was not successfully executed, a
message is returned giving the reason.



A Network Control Command (NCC) consists of a signal character, a short
mnemonic command code, and in some cases, one or more parameters.
Commands are free in form, with words separated by one or more spaces.

The wuser may define a signal control character wusing the Signal
Character statement in the TCL. The default for the character is an
asterisk (*). In the following diagrams, the signal character option is
shown by <s>.

Railroad diagrams are used to show the syntax of the Network Control
Commands. Instructions for reading the diagrams are in Appendix G.)

USING THE HELP COMMAND

The HELP command gives information about Network Control Commands. When
the user enters this command, a list of Control Commands and their
meanings are displayed on the user's terminal.

Syntax:

Semantics:

The HELP command produces a list of the Network Control Commands
and a brief explanation of their meanings. Restricted commands are
indicated with an asterisk (¥). Since a carriage return character
(@oD@) terminates each line, nonscreen devices can also receive a
formatted HELP screen. Note that the output can consist of several
messages, depending on the value of MAXTEXTSIZE.



SECURITY CONTROL COMMANDS

These commands can be used only if an ACCESS CONTROL statement appears
in the user source TCL.

DISABLE USER (DUS)

The DUS command is used to prevent an access code from being used for
logging on.

Syntax:
--r-- * —-—Tf2§§f- {access COde) ==mmmmmm e m e e >
E— <s> ->E
Example:
@ DUS ABCD

In this example, the user ABCD is no longer able to sign on until
the access code is enabled again.



ENABLE USER (EUS)

The EUS command is used to mark an access code as enabled. The enabled
user-ID, with the correct password, can then be used to sign on.

Syntax:
== * ——-T—7§g§f—— <access €0ded> —mmmmmmmm e >
E— <{s> —>E
Example:
@ EUS ABCD

In this example, the user ABCD may sign on.

SIGN OFF (BYE)

The BYE command disconnects a signed-on user from a station. The user
should sign off after completing the transaction to ensure that no
unauthorized person is able to gain access to the system. BYE cannot be
entered from a station which does not require signing on. If the user
is attached to a Utility Program (via the EX command) at the time "¥BYE"
is entered, an implicit HAP of that utility program is automatically
done by the MCS.

Syntax:



SIGN ON (SGN)

The SGN command is used to gain access to the system at a station which
requires signing on.

Syntax:
———e X SGN----- {access code> Bttt >
I | I
| I i I
1= <8> =>) | -~ SECURED------- >
Examples:
@ SGN ABCD

In this example, the ABCD would be signed on if it is defined in
the ACCESS CONTROL statement, and is valid for that station.

@ SGN SECURED

In this example, the wuser is not actually signing on, but is
requesting that GEMCOS return a pre-formatted sign-on screen where
the user need only enter a valid access code and transmit. The
entered access code will not be visible on the screen. This option
is only valid for TD830 or MT983 terminals, or any terminal that
supports the TD830 highlight characters.



UPDATE ACCESS KEYS (UPD ACCESSKEY)

The UPD command also allows the user to update or change existing access
codes. The change is permanent, since the MCSTIC file is rewritten with
each change. Only access codes which are not signed on may be changed.
Attempting to change an access code which is signed on causes an error
message to be displayed.

After the entry of a correct UPD command, the GEMCOS MCS displays a
message on the ODT. This message states the 0ld access code, the new
access code, and the station making the change.

Since the change is permanent, the user's TCL no longer contains the
correct access codes. To obtain an up-to-date 1listing of the access
codes, the TCL compiler may be run with CONTROL = REPORT. The UPD
command must be entered at a control station.

Note that the UPDATE command can also be used to update or change the
names of port stations. Please see Port Stations Commands at the end of
this section.

Syntax:
-=-- * --—T————UPD ACCESSKEY---- <access code) =—=—m—=mmmmmoeeaao- >(1)
i- <s> ->E
(1)==--- T0-=~==~ <{new access CO0de) =====mmmmmmmmm e~ >
Semantics:

This command changes an existing access code to a new access code.

Examples:

$ UPD ACCESSKEY SALES TO SELLIT
@ UPD ACCESSKEY ROBERT TO BOB



STATION ATTACHMENT COMMANDS

The following commands attach and detach stations from GEMCOS.

ATTACH LSN (ATT)

When GEMCOS is running subordinate +to another MCS, this command allows
output-only devices (such as AP1300's) to be attached to GEMCOS. This
command 1s used to attach a station +to GEMCOS which has been attached
previously to the primary MCS. Please note that the ATT command does
not appear in the list of commands on the HELP screen.

First, attach the station to GEMCOS by entering the SMCS ATTACH command.
This command is found in the SMCS manual. (See Introduction for the
form number of this manual.) Then enter the GEMCOS ATT command. The ATT
command causes GEMCOS to recognize the station.

If +the station is not defined in the TCL or is attached to another
program, GEMCOS returns the message: INVALID LSN <entry>.

Semantics:

Use the logical station number (LSN). The station name is invalid. To
detach the station, wuse the DFR command. Do not use the SMCS DETACH
command .

Example:

&ATT 9



DETACH FROM REMOTE FILE (DFR)

This command is used to detach a station from the MCS remote file. This
command 1is valid only if the station was subsequently attached +to the
MCS remote file; this means that the station was not given to the MCS
during the initial remote file open, but attached later. In order to
detach from the remote file, the station cannot be attached +to any
program. The logical station number (LSN) option should be used to
detach statio attached with the ATT command.

Syntax:

S S — DFR = e e e e e e e e e e e e e e e >
I I | I
i | | ]
i= <8> =) |oemm CLSNY =---- >

Semantics:

If no logical station number (LSN) is entered, the station from
which the command is entered will be detached from the MCS remote
file.

Example:

@ DFR
* DFR 7



PROGRAM CONTROL COMMANDS

These commands can be used only if PROGRAMBOJEOJ = TRUE.

EXECUTE PROGRAM (EX)

The EX command is used to start assignment, user, utility, or pass
programs. It is also used to attach a station +to a utility program
which is already running. Either the program name or program title may
be wused in the EX command. In both cases, the MCS will zip-execute the
program title. Confirmation of this command merely indicates that the
MCS communicated ZIP-execute to the MCP; it does not guarantee that the
program actually started.

Syntax:

<EXECUTE command>

* e EX-=—-- {Program named> ==———mmm————————————————————— >(1)

I <> =>) - <program title> ->|

| |
i i
f === LOCK —mm = e e e e e e e e e >
| |
| |
| |
i-— {integer> —-—-=—=m e >i
i |
| |
| ---US---- <usercode> --- "/" -—- <password> --->|
| |

== = =>|

Semantics:

The execute options are described in detail in the B 1000 System
Software Operational Guide. If the user-password option was
entered during a normal run, it will not be present in the
ZIP-execute statement used for recovery.



NOTE

GEMCOS does not check for valid usercodes. If
the system is unsuccessful performing
ZIP-execute with the usercode, the user must
initiate the program at the ODT.

X
X PROG/A

X PROG/A 12345

X PROG/A US AB/CD

X PROG/A LOCK US = AB/CD

X PROG/A US AB/CD 12345 LOCK

FREE STATION FOR EXECUTION (FRE)

The

FRE command is used to free a station that has become locked due to

the failure of a utility program.

Syntax:

Semantics:

This command can be entered from any station that has become
"locked." This condition arises whenever a utility program is
executed and fails to open its remote file successfully. When this
happens, a further attempt to execute any utility program causes
error 151. The FRE command clears the station and allows a utility
program to be executed again. This command should be entered only
when it is certain that the executed utility program has failed.



HALT APPLICATION PROGRAM (HAP)

The HAP command is used to cause an end-of-file condition on the remote
file that an assignment, user, or pass program has opened. In the case
of utility programs, the station at which the HAP command was entered is
detached from the program. When the last station detaches itself, an
end-of-file condition is sent to the utility program. Program-name is
optional only for utility programs. If this command is entered during a
conversation at a station, the conversation is automatically terminated,
and the conversation area is cleared.

Syntax:

:— <s> —>{ -~ <{program name> =--=>

-— <program title> -->,

Example:

@ HAP PROG/A
@ HAP
@ HAP A



PROGRAM PASS (PASS)

The
pass

Synta

——

Seman

PASS command is used to send messages to a utility, assignment, or
program from a station not attached to the program.

X3

* e PASS----- {program name> =------- <data stringd --—--=--- >

-- <program title> -->

-- <{program number> =->
tics:

The program name, title, or number is assigned in the Program
section of the TCL.

For a utility program, the purpose of the PASS command is to allow
communication with the wutility program without having to Dbe
attached to the program through the EX command. The program
specifier must refer to a utility program that is currently
running. The data string is passed to the program as is. To use
the PASS command, at least one station in the GEMCOS network must
be attached +to that utility program which is to receive the data
string. A1l output messages generated by the program are routed
back to the station of origin.

For an assignment program, the semantics are the same as those for
a utility program. The purpose of allowing a station to pass to an
assignment program is to make it easier to wuse remote-print
programs. An assignment program can open a named remote file which
contains only remote-printer stations. Input specifications can
then be passed to the program from other stations (e.g., TD 830s).
These other stations do not have to be attached to the program.

For a pass program, no stations need to be attached to the program.
Any wuser can pass data to any pass program from any station in the
GEMCOS network, as long as there are no security restrictions. If
a pass program is not currently running, and it also has the
EXECUTE option set to ONDEMAND in the TCL, then the first PASS
command for that program causes GEMCOS to zip-execute the program
automatically.



Examples:

@ PASS CANDE ?WHERE ALL
@ PASS RD KB

MCS CONTROL COMMANDS

There are two MCS Control commands: AUDIT OK (AOK) and HALT SYSTEM
(HLT).

AUDIT OK (AQK)

The AOK command is used in response to a message on the control station
or on the console printer of the form:

FILE MISSING - MCSAUDIT/AUDITXXX

It informs the MCS that the requested audit file is available on disk.
This command can be entered only at the console printer through an
ACCEPT.

Syntax:



HALT SYSTEM (HLT)

The HLT command brings the data communications system to a stop. This
command can be used only if SYSTEMHALT is TRUE.

Syntax:

Semantics:

When KILL is not specified, +the system comes to an orderly stop,
and untransmitted messages are recalled. When KILL is specified,
the system comes to an abrupt stop, and messages may be lost.

When READY is specified, the system comes to an orderly stop, and
the stations are made ready. This is helpful when running multiple
MCSs.



MESSAGE CONTROL COMMANDS

There are two MCS control commands: BROADCAST (BRC) and POPQUEUE (PQ).

BROADCAST (BRC)

The BRC command is used to send a message to other stations in the
network. It is available only if MESSAGEBROADCAST is TRUE.

Syntax:
| (mmmmmm e |
| |
=== * —-—T—-BRC—-—-—T- <station name> S : ——— <message-text> -->|
I ] I I
- <s> =>| SRR G 15, P R — >
| I
| |
) R — >

Semantics:

The station name or logical station number (LSN) is assigned in the
Station section of the NDL. More than one station name or LSN may
be entered, in which case the message is sent to each station. If
no station specifier is entered, +the message 1is sent +to all
stations in the network. If ODT is entered, the message is sent to
the console printer.

Examples:

@ BRC : GOOD MORNING
@ BRC 3 TD4 : WHAT'S HAPPENING?
@ BRC ODT : PLEASE LOAD PROGRAM BLACK/JACK



POP QUEUE (PQ)

The PQ command is used to recall messages from the output queue of a
station. This command can be used only if MESSAGERECALL is TRUE.

Syntax:
——F - PQ —=--- {station name-1> mmmmmmmommmmosemmmo——eee- >(1)
| | |
| | | | | |
- <s> > == <LSN-1> ——=-m—mmo > | ===ALL--->
(1) mm oo m o e >
| |
i--PRINT ------------------------- >i
| |
| ~—-SEND---- <station-name-2> ---->|
| |
| |
l-= <LSN-2> ——==—een- >
Semantics:

The station name is assigned in the Station section of the NDL.
The logical station number (LSN) represents the position of the
station definition in the Station section of the NDL.

If ALL is not entered, only the oldest message would be recalled.
If ALL is entered, then all messages in the queue would be recalled
in order, with the oldest one first. If neither PRINT nor SEND is
specified, recalled messages would be discarded. PRINT causes
recalled messages to be printed on a system printer. SEND causes
recalled messages to be sent to the indicated station.

Examples:

@PQ5

In this example, one message from the queue for station 5 is
retrieved and discarded.



@ PQ 3 ALL PRINT

In this example, all messages for station 3 are recalled and
printed.

@ PQ TD1 SEND TD2

In this example, one message for TD1 is sent to TD2 instead.



REPORT COMMANDS

With +the exception of REPORT DATA DUMP, which is controlled by the

DATADUMP statement, these commands are controlled by the STATUS REPORTS
statement.

When examining error statistics it should be kept in mind that:

1. Counters start at zero each time the MCS is executed.

2. The MCS increments a counter by the retry 1limit when the
Network Controller reports an error to the MCS, but the
Network Controller reports an error only when the retry limit
is exceeded. Thus, the number of errors reported in the
response to the Network Control Command may be slightly less
than the number that actually occurred.

REPORT DATA DUMP (RDM)

The RDM command allows access to the contents of MCS data fields.

Syntax:

------ RDM PRINT = e e e e e e e |

Semantics:

When PRINT is specified, the report is sent to a system printer and
the contents of MCS +tables are included. When PRINT is not
entered, only information that is not in tables is included. Other
report commands are available for displaying table information at a
remote station.



REPORT FILE STATUS (RFS)

The RFS command returns the following information about a remote file:

1. File name.
2. Queue number of the remote file.
3. Name of the program which opened the remote file.

-- <file name> -->

Semantics:

If a specific file name is not entered, the status of all remote
files is returned.

Example:

@ RFS REMOT1



REPORT PROGRAM COUNTERS (RPC)

The RPC command returns the following information about a program:

1. The number of the program.

2. Number of messages sent to the program.

3. Number of messages received from the program.

4. The job number of the program, if it is running.

|
|
-- <{program name> >
|
|
|

-- <{program title> =--=>

-- <program number> -->;

Semantics:

The program name, program title, or program number is assigned in
the Program section of the TCL. If neither a program name, a
program title, nor a program number is entered, the status of all
programs is reported. If there is more than one copy of a program
(MAXCOPIES > 1), statistics are given for all copies of the
program, including copy number.

Examples:

@ RPC MY/PROG

@ RPC 2

@ RPC PACK1/USER/PROGRAM1
@ RPC



REPORT PROGRAM STATUS (RPS)

The RPS command returns the following information about a program:

1. Name of the program.

2. Title of the program.

3. Whether the program is running.
4. Program classification.

Syntax:

- <s> > -- <{program name> =--=>

-- <program title> --->

-~ <program number> -->

Semantics:

The program name, program title, or program number is defined in
the Program section of the TCL. If neither a program name, a

program title, nor a program number is entered,
programs is reported.

Examples:

@ RPS PROG/A

$ RPS A

$ RPS PACK1/PROG/A
$ RPS

the status of all



REPORT STATION COUNTERS (RSC)

The RSC command returns the following statistics about a station:

1e Number of messages sent.

2. Number of messages received.

e Number of data communications errors.

4. Number of Network Control Commands affecting the station.
5e Number of changes made.

Syntax:
—— S S >
| T |
- <s> =>| i-- {station name> -->§
| ]
== KLSN> ==—mm=emmmem >
Semantics:

The station name or logical station number (LSN) is assigned in the
Station section of the NDL. If neither station name nor LSN is
provided, statistics are reported for all stations.

Example:

@ RSC TD1



REPORT STATION STATUS (RSS)

The RSS command reports the following