/ Burroughs @

B 1800/B 1700

Generalized Message
Control System

(GEMCOS)

FORMATTING GUIDE

IIIIIIIIII

aaaaaaaaaaa

Burroughs @

B 1800/B 1700

Generalized Message
Control System

(GEMCOS)

FORMATTING GUIDE

Copyright © 1978 Burroughs Corporation, Detroit, Michigan 48232
PRICED ITEM

Burroughs believes that the application package described in this
manual is accurate and reliable, and much care has been taken in its
preparation. However, no responsibility, financial or otherwise, can be
accepted for any consequences arising out of the use of this material,
including loss of profit, indirect, special, or consequential damages.
There are no warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the application
package will be in full compliance with laws, rules and regulations of
the jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Any comments or suggestions regarding this publication should be forwarded to Documentation Department,
Business Management and Scientific Systems, Burroughs Corporation, Burroughs Place, Detroit, Michigan 48232.

Table of Contents

Section Title Page
INTRGDUCT[ON - - - - - - - L] - L J L J - - - - - - - - v

1 OVERVIEW OF FORMATTING 2 o o o o o o o o s =« = » o 1-1

2 BASIC GEMCOS FORMATTING « @ = o o o o » o o » o o o 2-1

Genef‘al ® ®© © ®© e e © e o ® e ® °® e ® ® ® ®» e » 2-1

Defining Field Types o o o o e o o s o o « o = 2-1

Adding Data - - - - - - L] - L] - L] - * L] L] - - L] 2-2

Manipulating Fie‘.ds - L] - L] - L] L J - L] - - - - -* 2“3

Ignoring Data and Inserting Blanks <« « < 2=4

Rearranging Data e o« » o o o s o o o o o 2*5

Summary - - L] - - - - - - - - - - » - - - - - - 2-7

3 ADVANCED GEMCOS FORMATTING =« o o o o o o o » o o » 3-1

GenNeral « o o o o @« + o 2 ¢ » s @ o @ o » o » =» 3-1

Minimizing System Overhead e« « « « « = = « =« o 3-1

Handling Variable=Length Fields « o o o « « = =« 3-1

B and J Fields L] - [] - - - - * - - - - - L 3‘.1

Delimited A and I Fields =« o o o o » o o o 3=-2

Translating Data e o o o« » o o o o = o o s o o 3=-3

Repeating Multi-element Variables « « « o« o « =« 3=4

INDEX - L] - - - L - - - L J - - - [] L] - L] [] L] - L] L] - - - - Oﬁe

List of Illustrations

Figure Title Page

2=1 Use of Editing Strings <« o « o o o = o s o = » o = 2=3

2-2 Operation Oof POINtErS « « o o o o = o o o s o o o o 2=4

2=3 Use of X Item and Location Specifiers in Formats . 2=6

2=4 Pointer Manipulation =« o o o =« o o » o o o o ® o 2-7

2=5 Qutput FOrmatting « « = » = « o © e o » o o o = « 2=8

2=6 Input FOrmatting « « o o o o ® o o o 2 o o » = = 2=-9

3-1 Variable Repeats e o o o o = o o o o o o » o o = 3-6

iti

INTROCDUCTION

Gver the yearss, computers have developed a reputation for beirg
inflexipble, unyielding machines that do not process data unless it
has bteen entered in a very precise manner and only after very rigid
rules have peen meticulously followed. Data control clerks and key-
punch operators had to be concerned with the length of each data
itemsr taking care to insert leading zeroes and trailing spaces so
that the next data item could be recognized by the systeme. These
peopter of course, were supjected to ltengthy training and could be
considered specialists in their respective fields.

The advent of data communications, however, put more nonspecialists in
close proximity to the computer. It was not feasible to subject bank
tellers ard department store clerks to the same type of training that
was provided to data control clerks. It became obvious that a man-
machine inter face was required in order to make data entry more
palatable tc the average person.

Systems analysts dand programmers rose to the task, and "human
engineering”™ quickly became the buzzword of the day. Terminal oper-
ators wWere -treated to formatted displays, free=form input, and an
array of features designed to make their jobs toth efficient and
pleasant. The proolem was solved, but not for Longs new terminal
devices were designeds networks changed and expandedr, and the data
being presented to the computer became more and more volatile. As a
result, analysts and programmers were deluged with requests to con-
stantly modify the man-machine interface. The original problem had
to be repeatedly solved.

It soon became clear that 1f a man-machine interface were to be a
viable entity, it must be free from any dependence upon terminal
devices. Additionaltlys it must be designed in such a way as to be
transparent to developers of application~oriented programse. If
possibler it must also be capable of adapting to changing require-
ments without the necessity for reprogramming. It should allow a
user to take advantage of new terminals and features with Little or
no impact upon his operation. It was with these requirements in
mind that the format function of GEMCOS was developed.

The purpose of this document is to highlight formatting capabilities
as implemented in the Generalized Message Control System, Advanced
Version (Style ID B1300 MCA and B1700 MCA). For detailed and complete
syntax and semantics of formatting, refer to the 8 1800/8 1700 Gener~=
alized Message Control System (GEMCOS) User's Reference Manual, form
1093499.

SECTIGN 1

OGVERVIEW OF FURMATTING

formatting defines how fields within a message are to be manip-
utlated (by GEMCOS) prior to their delivery to a program (input
messages) or a terminal (output messages). A field of data is that
portion of a message (a character or contiquous group of characters)
comprising a logical entity, e<g.» social security number, ctock
numbers, or gross pay. Fields in a record can be rearranged,
deletedr expandeds compressed (via the addition or deletion of
leading zeroes or trailing spaces), or transltated (e.g.» D0Z could
become 12 or vice versal. Fixed information can be inserted between
fields. Numeric fields can be checked to be sure they contain only
numbers. Certain esoteric hardware features, such as highlighting,
blinking, blanking», and reverse videor can be utilized, as well as
the more common oness» such as tab stops and forms feed.

fFormatting with GEMCOS can be rather simple or quite complexr, depending
upon the problem to be solved. In 1its most complex forms howevers
GEMCCS formatting remains transparent to the application programmer and
adaptive to the requirements of the terminal operator. A programmer
can define data fields to be processed with no knowledge of the device
or devices which will be sending and receiving that data. Once the
devices have been identifiedr the format of the data as it appears on
those devices can be decided upon according to the preferences of the
pecple who use those devices. In most casess the programmer need do
nothing to the application software.

A GEMCGCS message format provides the man-machine interface, manipufla-
ting the data such that it is compatible with the requirements of the
terminal and the program. A message format can be prepared for input
and output messaqess in some casesr» a format may be used on input and
output.

The person preparing the message formats must have the desired

record layouts available for each type of message. The first tLayout
should describe the message as it appears to the application program.
Supsequent layouts should describe the message as it appears at

the terminal devices. The format writer must also be familiar with
terminal device characteristicss such as buffer sizes, screen size»
and control codes necessary to perform special functions. (Refer to
the B 1800/8 1700 Series GEMCOS Usert*s Reference Manual for a
discussion of device classes.)

The format applied to a message depends on two things. First c¢n the
transaction involveds since different transactions are compriscd of
different fields in different orders and secondly it depends or the
station involved since the same message sent to different stat:ons may
require different contrel codes» buffer sizer screen size etc. There-
fore GEMCOS provides a means of defining formats as well as aliowing
the user to specify which formats are to be applied to which station/
transaction combinations.

GEMCCS formatting accommodates a wide range of applications. In many
casesr» howevers the formatter need be familiar with only the simple

procedures described

in section 2.

are discussed 1n section 3.

More advanced formatting techniques

SECTION 2

BASIC GEMCOS FORMATTING

GENEKAL
A GEMCOS message format 1s described as follows:

FORMAT <format name> (<format description>).

The <format name> 1s a unique name for the <format description>. The
{first character must be a letter, but the remainder may be numbers or
letters in any combination. Spaces may not be used within the name.

The following four specificationss part of the <format description>,
are those most frequently utilized in GEMCOS formatting:

a. Defining field types.

b. Adding data to a message.

Ce Ignoring data or inserting blanks in a message.
d. Rearranging data within 3 message.

Atl i1tems specified within the parentheses delimiting the <format
description> are separated by commas.

DEFINING _FIELD TYPES.

It is necessary to define the Lype of each field in the record when
formatting an input or output message. There are two primary kinds

of data fields in a format descrintion (although variations of each
exist). Atlphanumeric {alpha) fields may contain any combination of
characters; numeric (integer) fields may contain only numbers, or
integers. Alpha fields are identified by the letter A, and integer
fields are identified by the letter I. All integer fields are edited,

as subsequently described.

The length of the field immediately follows the letter designation.
Thus a 10=-character alpha field wculd be described as Al0» while a
15-digit integer field would be described as I15. A message consisting
of a SO-character atpha field followed by a 6~digit integer field would
be described:

FOCRMAT F1 (AS0, I6).

Fields may be descrived so as to divide a group of characters 1into
logical groups. For examples, 123456789012035 may be described as
A15 or I15 or may be subdivided as [9, I6 or as A9, I6.

A shorthand notation may be employed when consecutive identical

fields are specified. This notation is called a repeat part. For
example, three consecutive I6 fields may be described as 3I6. HWhen

the LEVEL OF consecutive groups of identical fields are to be repeated,
an acditional parentheses 1s employed. For example, three consecutive
A3, 16 fields may be descriped as 3(A3, I6).

Any integer field definition invokes editing. £diting of the AS50»,

I6 field works as follows: On input (from terminal to system)s the
first 50 characters are moved from the raw message to the formatted
message. The next six characters are then examined. If leading or
trailing blanks are present, the field is right=-justified and leading
zeros are inserted. The field is then added to the formatted message.
If tne field is not entirely numeric, a flag is set to inform the
program that a field failed the edit test. On output, the first 50
characters are moved from the raw message to the formatted message.
The next six characters are checked for numeric content, then moved
intact to the formatted messagee. If the data is incorrects the control
station is notified, but the message is delivered to the station in
either event. If no editing is desired, the field may be defined as
A56 instead of A50., I[6.

ADDING DATA.

Unce fields within a record have been definedr the next step is to
format those fieids so they can be easily read by the terminal oper-
ator. One method i1s the insertion of editing strings. Editing strings
are nothing more than simple strings inserted into the format descrip-
tion wherever they are to appear in the output message. Editing
strings are also used to create blank screen formats for operator
inpute.

Editing strings are declared by using quotation marks. For example»
if a 10=-character fietd were to ve identified as LAST NAME and made
accessible to the operator, the following phrases could be used:

"LAST NAME (", A10, "] ".

Hexadecimal strings can be used to define characters for which no
graphics are available. Hex strings are it1dentified by placing a

4 in front of the string. Ffor exampler, the DC1 character is expressed
as 47117

Refer to figqure 2-1 for a more comprehensive example of editing
strings. When the GEMCOS output message format is applied to the
message from the programs the screen message shown resultse. The
same message format yields the blank screen shown in response to a
forms request from the terminal.

OUTPUT MESSAGE FORMAT

FORMAT FMTOUT (4"0C", % FORMS FEED
“LAST NAME [",A10,”]",4"0D", % CARRIAGE RETURN
“FIRST NAME [”,A8,”]",4""0OD",
“SSAN [",A9,”]",4"0D",
“AMOUNT [”,16,”]",4"12"). % PUT IN FORMS MODE

MESSAGE FROM PROGRAM

SMITH___JOHN__123456789004960
N, s e s . e et fin’
A10 AB A9 16

MESSAGE ON SCREEN

LAST NAME [SMITH]
FIRST NAME [JOHN]
SSAN [123456789]
AMOUNT [004960]

THE RESULT OF A FORMS REQUEST

LAST NAME[]
FIRST NAME []
SSAN [1
AMOUNT []

Figure 2-1. Use of Editing Strings

MANIPULATING_FIELDS.

Message fields may be manipulated so that data i5 ignored» blanks
are insertedrs or data is rearranged. Fformatting with GEMCOS to
manipulate fields in these ways is clearest once the user under-
stands how the GEMCOS formatter works.

The GEMCCS formatter has twc areas for each message. The first area
contains the message as it looks to the terminal; this is the external
message. The second arear or common arear contains the message as the
program sees it; this is the internal message.

2=3

Each area has associated with it a pointer, the external pointer and
the internal pointer, respectively. As a field is processedsr both
pointers are advanced as the field is moved from one area to the othere.
Both pointers are initially set to 15 and after processing a field,
both advance to the position immediately following the last character
moved. For example, if the first field is AS, five characters are
moved trom one area to the others and both pointers advance to position
6. Figure 2=2 illustrates how pointers wWorke

MESSAGE AT TERMINAL MESSAGE IN COMMON AREA
EXTERNAL INTERNAL

/FOF\’MATTING\
| 1

PT PC

PT IS APOINTER WHICH CAN PC IS A POINTER WHICH CAN BE
BE ADVANCED BY PROCESSING ADVANCED BY PROCESSING ANY
ANY OF THE FOLLOWING OF THE FOLLOWING ITEMS:
ITEMS:

A A
I !

Fiqure 2-2. (0Operation of Pointers

The subseauent discussions illustrate how to manipulate GEMCOS external
and internal pointers to ignore datas insert blanks, and rearrange
data.

IGNORING DATA AND INSERTING BLANKS.

It may sometimes be desirable to ignore certain data received from

a station or insert blanks into fields going to a station. These blank
are inserted by using an X item phraser which advances the externat
pointer only.

for examplers a message sent to a station contains both name and

social security number for the operator's convenience. After altering
some datas the operator transmits the message back to the program for
update, but the program requires only the social security number. The
name field can be edited out by means of an X item phrase:

FORMAT F2 (X10, 19, [6).

When this format §s applied to an input message which contains
SMITH 123456789123456

the following is presented to the program:
123456789123456

The X 1tem ohrase may be used to insert blanks intc an output messaqge.
Consider the following format:

FORMAT F3 (ABs, Xb4s I3).

When this format is applied to an output message which contains:
WIDGET123

the following is displayed at the terminal:

WIDGET___ 123
REARRANGING DATA.
Data may be rearranged by manipulating the internal pointer. Unlike
the external pointers, Wwhich can only be advanced (regardiess of
message direction), the internal pointer can be moved in either
direction. To adjust the setting of the internal pointer, a
{ocation specifier (3) is used with an unsigned or signed integer.

When an unsigned integer is useds the internal pointer 1is adjusted
to the absolute position indicated by the integer. When a signed inte-
ger is usedr the internal pointer is adjusted in the direction of the
sign relative to its present position by the number of positions
indicated by the integer.
For examples an input message of ABC123DEF4S56GHI7B9 is described as
A3, 210, 13, A4, A3, A13, 13, A7» A3, 3A+5, 13. The following sequence
of events occurs:

e Initially» both pointers are set to la

be. The A3 causes ARBC to be moved to the internal message
areas» and both pointers are set to 4.

Co 210 sets the internal pointer to 10.
de I3 causes 123 to be moved to positions 10 thru 12.
e. a4 sets the internal pointer to 4.

f. A3 moves DfF to positions &4 thru 6.

2=5

g. al3 sets the internal pointer to 13.
he I3 moves 456 to positions 13 thru 15.
i. a7 sets the internal pointer to 7.
jo A3 moves GHI to positions 7 thru 9.
k. a+5 sets the internal pointer to 1lb.
L. I3 noves 789 to positions 16 thru 18.
The message delivered to the program is ABCDEFGHI123456789.
Figure 2-3 shows the usage ¢f location specifiers with unsigned inte-

gers in combination with X items. Figure 2-4 illustrates pointer
manipulation for strings, X itemsr, and location specifiers.

INPUT MESSAGE FORMAT

FORMAT FMTIN (A10,X6,@21,A9,@11,16)

MESSAGE ON SCREEN

LAST NAME [SMITH]
FIRST NAME [JOHN]
SSAN [123456789]
AMOUNT [4960]

MESSAGE AS TRANSMITTED
SMITH__JOHN__123456789_4960_
‘,-’“W

A10 X6 A9 16

MESSAGE AFTER FORMATTING
SMITH__004960___ 123456789

1 1 2
1 1

Figqure 2-3. Use of X Item and Location
Specifiers ir Formats

SUMMARY .

MESSAGE AT TERMINAL MESSAGE IN COMMON AREA
EXTERNAL INTERNAL

__~FORMATTING ~__
f t
PT PC
PT IS A POINTER WHICH PC IS A POINTER WHICH CAN BE
CAN BE ADVANCED BY ADVANCED BY PROCESSING
PROCESSING ANY OF THE ANY OF THE FOLLOWING
FOLLOWING ITEMS: ITEMS:

A A

[[

X
<STRING> (ON OUTPUT) <STRING> (ON INPUT)

PC CAN BE POSITIONED BY
THE LOCATION SPECIFIER:

@

Figure 2=4. Pcinter Manipulation

Based upon what has been written thus fars, it is possible to pre-
pare GEMCOS message formats which handle an extensive variety of for-
matting situations. In many cases it may not be necessary to utilize
the GEMCOS advanced formatting options in section 3. The following
summarizes what has been discussed:

de

b.

A format is declared as follows:
FORMAT <format name> (<format description>).

Alphanumeric fields are declared as:
A <length of field»>.

Numeric (integer) fields are declared as:
I <length of field>.

Items within the parentheses are separated by commass as:?
(A9, Il6, A7).

Consecutive identical fields cr groups of fields can be
described with a repeat parts as:
3A50 or 3(AS0» Ibsr A3).

f. External datas in the form of strings, can be inserted
anywhere within a messages, as:
ALSe "XYZI™» I5» 470CT"» A20.

g. Irput fields can be ignored by use of the X item phraser as:
AS, X20, AS.

h. The order in which fields appear can be rearranged via
location specifiers, as:
X15» @30» X100, al6» Al&, or X15», 330, A10, a=45, [5.

ie If no editing is requirec, numeric (I) fields can be
expressed as alphanumeric (A) fields.

Figures 2-5 and &¢=6 summarize the results of applying a GEMCCS mes-
sage format to an output message and an input message, respectively:-
for one transaction.

MESSAGE FORMAT

FORMAT FMTOUT (4”0C", % FORMS FEED
“LAST NAME [,A10,”] *,4"0D", % CARRIAGE RETURN
“FIRST NAME [*,A6,”]",4"0D",
“SSAN [,A9,”] " 4"0D",
“AMOUNT [",16,”],4"12"). % PUT IN FORMS MODE

MESSAGE FROM PROGRAM
SMITH__JOHN__123456789004960
e e e e e e

A10 A6 A9 16

MESSAGE ON SCREEN

LAST NAME [SMITH]
FIRST NAME [JOHN]
SSAN [123456789]
AMOUNT [004960]

THE RESULT OF A FORMS REQUEST

LAST NAME []
FIRST NAME []
SSAN []
AMOUNT |]

Figure 2-5. QOutput Formatting

MESSAGE FORMAT

FORMAT FMTIN (A10,X6,©21,A2,@11 .15,

_ MESSAGE Ok SCHE £
LAST NAME [SMITH

| FIRST NAME [JOHN
SSAN |122456789)

| AMOUNT { 4960 |

MESSAGE TRANSMIT =0
SMITH___ JOHN__1234%£784_4040
e e i SR 1 St P - 7
AYD X6 Az "‘

MESSAGE AFTER FORN/ (TING
SMITH___004960, __i. t4¢ 5750
1 1 2
1 1

Figure 2=6. Input Farmatiing

*

)

SECTION 3

ADVANCED GEMCOS FORMATTING

B3 —RLLSVRLEAS 5.4

In some cases it may be convenient to utilize advanced GEMCOS for-
matting features to accomplish the following:

Ae Minimizing system overhead.

be Handling variabtlte=-tength fields.
Coe Transtlating data.

de Repeating multi-element variables.

The format Wwriter can minimize Disk I/70 overhead by declaring certain
formats as RESIDENT. This step permits the message format to reside
in memory rather than on disk. This mechanism is best employed with
smalls frequently used formats. The RESIDENT declaration 1s optionaie
however, since format writers, who are familiar with an applications
are in the best position to decide where to store message formats.

fo deciare a message format as reaesident, the word RESIDENT is decl aend
in brackets following the format name:

FORMAT F4 C(RESIDENTI C(A7» X4, 212, 16).

HANDLING _VARIABLEZLENGTH EIELDS.

When input fields are variable in Lengths, their message formats may

be declared with delimiters to ensure that the program always receives
fixed=length fields without operator entry of leading zeroes or trasi-
ing blanks. Twc types of variable-length fields may be accommodated by
GEMCGOS format declarations:

a. Variable-length fields which may or may not be terminated
by a delimiter. These fields are identified as B or J
fields.

b. Variable=length fields which are always terminated by a
delimiter. These fields are delimited A and I fields.

B8 AND J FIELDS.
When the presence of delimiters is optional (tavbed fields for example}

alpha and integer items are declared as B and J items», respectivelys
and the field lengths declared are the maximum lengths.

WKhen the standard horizontal tab character (47"05") is used as o
delimiter, B8 and J items are declared as follows:

B10, J9

3=1

When a differant deliimiter is usedsr the delimiter code and maximum

fietid length are declared in parentheses following the 8 or the J.

The field lLengtn declared does not include the delimiter code. For
examples, if the delimiter Character is (4"11%)s, the foltlowing would
be declared for the BI0 field:

BOG"LL"e 1023,

The shorthand repeatl part may be used with B and J items as described
previousiy.

GEMCES implesents these item phrases as followse In a B10 field,
characters are moved until either 10 have been moved or until a
dolimiter character is encountered. When a delimiter character is
recoynizeds trailing spaces are inserted to fill the field to 10
characterse In a J fields leading zeroes are inserted to fill a
finid terminated early by the delimiter character. If the field

is nompicstaly filleds the delimiter code is not present and the
puinter adyvinces automatically to the next input fielde On output
pestagess 3 acd J fields are treated as if they were A and I fields»
raspaectivalye

e

"he foltowing message format descréibes a record consisting of a
imchvaracter fietd followed by a 4~digit field, a variable=length
tabbed field having a maximum of six characterss two variable=length
tabbed numeric fields (each having a maximum of four digits)r, and a
4=~character field at the end of the message which is ignored:

FORMAT FS (A3, Jbhs B6Hs 2J4s Xh).
The message is received from the station in the following format

{note that the tab code is not present with the first numeric field
necause the 4~digit field was completely filled):

¥ ¥
XYZI2564Y¥2a1236567 aSNVF
b b

After the aoplication of the formates the following message is
nresaented * . the programs

XYZV250XYT __ 12340567

DELIMITED <« AND I FIELDS.
When delim/ters: are always presents» A and I are used Wwith the delimiter
codes and iaximum field lengthss; for example:

A {Te e 5)
L "p~»s 8)

These item phrases are implemented by GEMCOS as described for 8
and J fields. The only difference is that for these fields», the
delimiters are mandatory, even when a field is entirely fitled.

The shorthand repeat part may also be used with these delimiter

fietds. For exampler if three contiguous vartable-length fields have a
maximum of 10 characters each and are always delimited by an asterisk
(x):

3CIC4T™x", 10))

The following example illustrates how data in a variable=length
field in the input message may be ignored:

FORMAT F6 (A5, X("H")» I6).

When applied to an input message of ABCDEPQRSTUVWI23456, this mes-
sage format results in ABCDE123456 being delivered to the program.

The transtation of program-compatible fields to terminal operator-
compatible fields and vice versa is readily accommodated in GEMCOS.
Abbreviations such as SUN, MION, JAN at the terminal can appear to the
program as 1» 2» 01, respectively. Translation is accomplished in two
steps. A function dectaration is prepared and referenced in input and
output message formats.

The function declaration identifies the terminal and program equiv-=
alents. These equivalents are declared in the form of strings, which
must be no longer than six characters. An external strings which
declares how the field appears to the terminals, is specified first;
then the internal strings, which declares how the field appears to

the programs is specified:

FUNCTION SEX ("MALET™:"™17, T"FEMALE":™27").

The function declaration is then referenced as folfows in the input
and output formats: The letter T is declared to indicate transiations
followed by the name of the functions the item phrase describing the
external string», and an integer specifying the length of the internal
string:

T(SEXs Abs 1).

The following declarationss for example, would be used to transiate
FEB 1975 to 2 1975:

FUNCTION F (TJAN":IT1", T"FEBT":"2"», "MART:"3").
FORMAT F10 (T(F»A3-1)» X1s™ "»I4).

The preceding are examples of unedited translation specifications. An
unedited string of less than six characters in length is right-
justified within a b=character word with teading nulls (4"00"). As
tong as alil internal strings are the same (ength and all external
strings are the same lengths, an unedited function specification works
well. 1If strings vary in tengths, however, the use of unedited function
specifications can cause confusion. For exampler, suppose a function is
declared as follows:

FUNCTION TEST ("FEMALET™:T"11","MALE™:"1").

On outputs an internal string of 1 matches 11, because GEMCOS looks
only at the right=-hand character. Similarly, on input, an external
string of MALE matches FEMALFE.

To avoid this confusions, edited transtation specifications are intro=-
duced. The example just given would be:

FUNCTION TESY [EXTERNALZALPHA, INTERNAL:INTEGER]
("FEMALE™:I"11"»"MALE™:"1").

An edited integer string of less than six characters is right-justified
with Leading zeroes. An edited alpha string of tess than six charac-
ters is left-justified with trailing blanks. Now when GEMCOS searches
for 1, it actualiy searches for 000001. When GEMCOS searches for

MALE, it searches for MALE__.

REPEATING MULTI-ELEMENT VARIABLES.

Some output messages have a variable number of fields of repeated datas
as in tables with columns of values. These messages can provide coun=
ters which specify the number of elements present in these fields. The
counters can be used in the repeat parts to declare a GEMCOS message

format.

If a counter fietd is useds the key word VARIABLE must be specified as
the first declaration in the formats followed by one of six variables
(V1 thru V6) which accepts the contents of the counter. A location
specifier may be used to indicate where in the raw message the counter
field resides. The length of the counter is then specified as an
integer following the key word FOR:

VARIABLE v1 FOR 15
VARIABLE v3 a+16 FOR 55

The variaple in the internal message must be in EBCDIC numerals and
nust not be greater than 255 in value. The use of the location speci-
fier in the variable declaration alters the position of the pointer
within the internal messages, and the format must position the pointer
to the data if necessarye.

The repeat part in the output message format is then constructed by
using this VARIA3BLE declaration, plus an expression consisting of
the assigned variable designation and a maximum repeat indicator:

FORMAT F11 (VARIABLE V1 FOR 25 V1 OR 6Abe. 12).

The number of times the GEMCOS formatter employs the repeat part
depends on which is less» Lhe variable repeat part or the maximum
repeat part. In the following output messages, for example», four
groups of Ab fields are processed after the 04 is loaded into
varsable V17> the 67 is processed as a 2-digit integer fiedd:

04ABCDEF123456GHI UKL 78901267,

Varitable repeat parts may be nested if the situation regquires. In
this way a variable number of groups having multi-element variables
may te declared in one message format through proper use of paren-
theses (refer to the 8 1800/8B 1700 GEMCOS User's Reference Manual for
syntax details).

An optional update variable may be used while a multi-element variabie
is bDeing processed. In the followinag caser for exampler V2 is the
variable repeat part and V1 is the update variable:

V1:Vv2 OR 6(A16,470D"™)

Assume V2 has peen initialily set to 10. Since the maximum repeat part
is 6» only six fields of the message are processed by the format (leav=
ing four fields unprocessed). At the completion of the phrase, the
update variabler, V1, contains the value 4. V1 could then be used in
subsequent phrases within the format. All varivaples used in a format
must be declarea and gitven an initial value. The update variable may
be the same as the variable repeat part. Figure 3-1 is an example of
variable repeat specifiers used.

MESSAGE FORMAT

FORMAT F12 (VARIABLE V1 FOR 2;
4"0C”,”+ PART NO"" X4,
“QUANTITY", 40D, X3
V1:V1 OR 5(14.X9,12.4°0D"")).

MESSAGE FROM PROGRAM
04123401567812901216345606
S S grnaes? o st

N —— et

e
FIELDS OF 14,12

MESSAGE ON SCREEN

+PARTNO QUANTITY
1234 01
5678 12
9012 16
3456 06

Figure 3-1. Variable Repeats

= 2" BINDER >

-~
= ;
8 ¥,
OO
E—
— -~
2
Z ©
Q)
a ° {
pN—
=S
r
=
'@
o
(¥,
J
1106531 d

Printed in U.S.A.

|<—-1" BINDER —>| (‘J
1%" BINDER

Printed in U.S.A. Januar y 1978 1106531

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	xBack

