|

Burroughs @

B 1700/B 1800

Generalized Message

IIIIIIIIII

Control System

(GEMCOS)

USER'S MANUAL

eeeeeeeeeeee

Burroughs @

~
B 1700/B 1800
Generalized Message
Control System
(GEMCOS)
USER'S MANUAL
_

Copyright © 1980 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

“The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this publi-
cation with the names of any individuals, living or otherwise, 1s purely
coincidental and not intentional.”

Burroughs believes that the application package described in this
manual is accurate and reliable, and much care has been taken in its
preparation. However, no responsibility, financial or otherwise, can be
accepted for any gonsequences arising out of the use of this material,
including loss of profit, indirect, special, or consequential damages.
There are no warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the application
package will be in full compliance with laws, rules and regulations of
the jurisdictions with respect to which it is used.,

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Any comments or suggestions regarding this publication should be forwarded to Technical Publications,
Program Products Division, Burroughs Corporation, Burroughs Place, Detroit, Michigan 48232.

Table of Contents
Section Title
IN‘RDDUC‘IDN - - - L J - L] L] - * *

1 SYSTEM OVERVIEW o o o &«
General « « =« ¢« « «

MCS Program « « « «

Transaction Control

MCSTIC o o o o »

MCSFORMATS o« =« « @

Auxiliary Progranss

MCSSIM

MCSFIX o o« =

MCSRECALL . . «

-]

1
e 8 o 5 8 020 00
* s 0

e 3 & 8 8 8 ™6 o
@
¢ & 9 8 0 o KK 0 0 8

® 6 0 8 8 8 e 0 s

2 CAPABILITIES - * - - - ® L J - L] L]
Application=-Program Inter face
Transaction~Based Routing .
Access Control =« « « « o«

Access Security . .

Process Security .

Network Administration

Error Handling <« « « &

Network Restoration -

Message Recovery . -

Audit L J - - - - -

Recovery .« « e -

Controlled Shutdown . .«

Mergeable External Sourc
Debugging Aids < « «
o

Data Dump « <« « o«
Monitor Trace . «
Screen WMraparound . »
Supervisory MCS « «
Remote Program Executi
Formatting e o o o o

n

o & & o & 3 s e 8 4 0 s 0 0 B 8 s

¢ & 8 & 8 & 8 NG 8 B 8 " 8 s 0 0
~

3 TRANSACVION CONTROL LANGUAGE . .

General Discussionr of Transact
Language (TCL) < ¢ o o o o =
Syntax Conventions <« « « «
Metalinguistic Symbols .
Metalinguistic fFormulae .
Character Set <« e o o o o o o
Basic Symbols o« « o o ¢ o o
Basic Components e« « o« = o
Identifiers « o o o o o o
Generalized Identifiers .
StringS...-.ooso
Logical Val ues » o & o o

®
(x]

e 9 & 8 & 06 O ¢ o

O & & 0 o 86 ¢ D e s ¢ 6 06 0 0 0 0 ¢ ¥ 0

S 8 8 8 0 6 0 0 b o b)

8 & & 0 0 D s 20

¢ & 8 6 5 0 4 (D 6 & B 4 8 0 B 8 0 0 b 0

e & 6 8 & 0 8 5 ¢ 0 s 0

usy

¢ & o 2 8 0 M= b

O & 3 & o & & e 3 0 06 0 & s 0 & s 0 b0

s & & 5 8 8 6 B B 2 8 OO

(=)

S & 0 8 0 8 8 8 8 8 b I

-

e & & & 8 o s 0 & & 0 s ¢ 8 & 8 o o

(g

& o & 5 & 6 5 06 0 2 ¢ o

e 6 & 8 0 o 0 8 b &

S 8 &6 ¢ 0 3 0 & ¢ & 6 & o o B O 8 0 8 b 0

-]

S &6 & 8 & o 3 " 3 0o O ™

e ® ¢ 3 & & ¢ & 9 % & ¥ 0 o O s 0 B 8 ® D

¢ & 8 9 ¢ 46 & & ¢ &6 3 3 8 6 4 b 2 6 s b

e o 8 8 O 3 6 & s 0

o & & & o 06 o & B}

¢ & 6 o 0 o o & & 8

6 & & 3 o 8 0 0 6 ¢ 0 0 8 6 5 0 6 2 06 0 0

Page

. b S s gt et jen et et

NN NWNWWNWNE -

NNNNNNNI\.INNNNNN
C WOV YT NNNNO NS & N

(]
O NNV E NN b p

(-~

NN NN WA NN NN NN

-be
-ds
-bs

TYable of Contents (cont)

Section Title Page
3 (cont) Deck Descrip_tion ® ®» ® ®» ® ® & o ® © o o e e o 3I-11
CONTROL Statement o « ¢ =« © © o = » » o » o » o 3-13
MCSTIC FILE NAME Statement e o ® @ ® o o o o o 3-18
FORMAT FILE NAME Statement ® ®» o ® @ ®» » e ®» = 3-19
CHANGE REQUESTS Statement o« o o o o o « o o 3=-22
DATA DUMP Statefent « o« = o« « = » o » o o o 3-23
MESSAGE BROADCASY Statement « o« « o = o » o 3-24
MESSAGE RECALL Statement e ® ® @ o » o ® e 3=-25
PROGRAM B0OJ EOJ Statement « o« o o o = o o o 3-26
MONITOR TRACE Statement « « « o o ¢ o o o & 3=-27
STATUS REPORTS Statement o« = o o o o o =« o 3-28
SYSTEM HALY Statement « o« o = © o« o o o o o 3=-29
COMPILE OPTIONS Statement . e ®» ® » e ® » 3=-30
OBJECT-CODE FILE NAME Statement e e » o o e 3-31
SOURCE=-CODE FILE NAME Statement « o« « o« » 3-32
NAME=STACK ENTRIES Statement =« o = » o = « 3-33
VALUE=-STACK BITS Statement o« « « « =« =« « o 3-34
CONVERSATIODNLINMIT Statement « « » o o o o 3-35

NCC OK RESPONSE Statement « « « « o = o = o 3-36
SIGNAL CHARACTER Statement e ® ®© ©o ® ® ® ® 3-37
AUDIT RECORD SIZE Statement « « « o = o = 3-338
AUDIT PAGE SIZE Statement « « « « o o o o o 3~-39
AUDIY FILE PACK ID Statement o« « « » o o o 3=-40
CHECKPOINT INTERVAL Statement « « o = o o o 3=41
MAXIMUM TEXT SIZE Statement « o o o o o o o I=42
QUEUE DEPTH Statement « o« « o o« o« o o o = o 3-43
QUEUE BUFFERS Statement « « o« s o o o o o o 3I-54
QUEUE NAME Statement e ®» ® ® © o @ ® & ° e 3=45
SIMULATION Statement ® ® ®© ®» ® o ® ®» e @ o 3-46
MONITOR TRACE ON Statement o« « o o o o < o 3=~47
FORMAT AND FUNCTION Statement List o « « 3-48
Function Declaration =« « « =« o =2 o = =« 3-50

Format Declaration « « « o = o o = o o 3-53
Formatting Errors . = « =« » o o » o = 3-60

Basic GEMCOS Formatting Pragmaticzs . . 3-66

RECALL PROGRAM Statement e ® ® & o o o o o 3=-72
CONTROL STATIODNS Statement < o o = o o = = 3-73
DEFINITION Sectinﬂ ® ® ® ®© & ® ® © o ®» °® ®» e » I-74
ACCESS CONTROL Statement ® ®» ®© » ® °o ° o e 3-75
PROGRAM SECLtiON o o o« = o 2 » o = » o o« & o = o 3=-r7
Assignment Programs e « o o o © © « = o o @ 3=-78
Utility Programs ® ® o & 2 ®» ®» ° ®» ®» e = e 3-79
USer Programs o« = « o o« o« ©« « =« © o 5 o = @ 3-80
INTERFACE Statement o « o « =« o o = o o o o 3-82
NONPARTICIPATION <« ¢ o ¢ o o = = o o o 3-82
PARTICIPATION « o ¢ o o o o o s » = = » 3-84

MCS o« o ¢ « o o« o ©« ©« @« s = = » » o = = 3=-85
TRANCODE Statement ® ®© » & 2 ® e o ® o = » 3-88
PROGRAM TITLE Statement « « o o = o o o o o 3-89
RESIDENCE Statement « o« « o © = o o o o = o 3-90

Table of Contents (cont)

Section Title Page

3 (cont) COMMON SIZE Statement . ® ® ® ® ® e 8 o ° o 3-91
EXECUTE Statesent « « ¢« © @« o o« © o« o » o o 3-92
RECOVERY Statement o« « o o o o © » o o o 3-94
DATA BASE NAME Statement e ® o ® e » ® o o 3-95
AUDIT TRANSACTIONS Statement e © o & o = o 3-96
AUDIT ASSIGNNENT Statement ® ®© o o ®» o o o 3-97
AUDIT OUTPUT Statement ® ® o ®» o ® ® ® e e 3-98
RESTART PROGRAM Statement < « o o o o « o o 3-99
MAXIMUM COPIES Statement ® ® o o o o o o » 3-100
OPEN MESSAGE Statement ® © ®© © ®© ® ® e ® e 3-101
ATTACH MESSAGE Statement ® ® o © o o e o o 3-102
DETACH MESSAGE Statement <« ¢ o o o o o = 3-103
CONVERSATIONSIZE Statement o« o « o o = = « 3-104
MAXASSIGNERS Statement » ® ® ® °o o & ® ® o 3-105
TRANSACTION CODE POSITION Statement » « « » 3-106
AP30OSTATUS Statement « « o« o« o = ¢ © o s o o o 3-107
STATION SecCtionN « « o e« » o =« = ©« ©« = o« » o » &= 3-108
SIGN-ON Statesent « o o = « « o o o « o = @ 3-110
SCREEN SIZE Statesment « « o« » o o o o o o o 3-111
TRANSACTION CODE POSITION Statement o o o « = o 3-112
VALID ACCESS KEYS Statement « « « o o o o o 3-113
TRANSACTION MODE Statement » o ® ®» o ® e e 3-114
CONTINUOUS LOG=0ON Statement » o« o o » « = = 3-115
CONVERSATIONAL Statement <« o o o o o o o o 3-116
TRANCODE Statement ® ® » ® ®» e ® & s ® = 3-117
TYPE Statement ® © ® e ® o ® @ © ° ® o ® e 3-118
DEVICE Section ® o ® @ ® o & ® © o ® e ® e e 3-119
STATION LIST Statement » ® ® ® e 8 ®» e @ = 3-121
INPUT FORMATS Statement « « o o o o s » o o 3-122
DUTPUTY FORMATS Statement * ®» ® o ® o o e e 3-123
MESS CODE SeCtiON ¢ o o« © o« 2 =« © o » o« » o o &= 3-124
Static Declarations « o« « « o o = o » o o o 3-125
Dynamic Declarations o« « o =« o e« o s = = o 3-126
Procedure Define LiSt « o« ¢ « o o« o s o o o 3-127
MESS Procedures o « « « © = o o ©« =« « o » o = » 3-129
SET SIZES © @ ¢« = 2 o o s o« = « o« o o o = » 3-129
SET VALUES e ® ® ® ® & ®» & & ®© 8 ® ° o ° ® ° 3-130
MESSAGE FROM STATION & o« o o o o o 5 = = » 3-131
MESSAGE FROM PROGRAM &« o o o o o o o = = « 3-131
MAINTENANCE « o o = # ¢ 2 » « » © a o o o o 3-132
AUDIT o o o @ o © o » o « » o« 2 »« o » = » o 3-133
ERROR HANDLER o ¢ o o @ o © o o o o o = » = 3-133
CLOSE FILES o o o o @« = « ©« » = » o » = » o 3-133
HANDLE RECALL 2 « o © © o« = o « = o » o o o 3-134
INITIATE RESTORE e ®» ® o ® ®© o ® ° ® o o o 3-134
RESTORE PROGRAM o o o o 2 o o ¢ » o s = o @ 3-134
OPEN ACTION 2 o o » © ©« © o s o« o« o o o = = 3-135
CLOSE ACTION e ®» ® ® ® ®» & ® o » & o ° e 3-135
Common—area Header e o ®» o & ®» ® ® © o » e » 3-136
MONITNOR o « o @« o © =« o« =« =« o« ©« s » o © o = o o 3=144
Network Control Commands ® ® ® ® e » o e ®» ®» 3=-145

Section

3 (cont)

Table of

Security Control Commands
SIGN ON (SGN)

SIGN OF
ENABLE
DISABLE
Program Con
EXECUTE
HALT AP
MCS Control
HALT SY
Message Con
BROADCA
POP QUE
Report Comm
REPORT
REPORT
REPORT
REPORT
REPORY
REPORTY
Change Conmn
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
(CsST) .

Contents (cont)

Title

F (BYE) o « «
USER (EUS) « «
USER (DUS) .
trol Commands
PROGRAN (EX)
PLICATION PROGR
Commands e o
STEN (HLT) « «
trol Commands
ST (BRC) o « «
UE (PQ) o« « «
ands s ® ® » o
DATA DUMP (RDM)
FILE STATUS (RFS) .
PROGRAM STATUS (RPS)

s & & o s ¥ O

s 9 & & 8 & D> & & 0 0 2 &

M (H

-
-
-
L]
-
»
-

e 8 & 8 8 & 8 0 5 TS L S s s o8

PROGRAM COUNTERS (RPC)
STATION CODUNTERS (RSC)

STATION STATUS (RSS)
ands .

MONITOR
STATION
STATION
STATIODN
STATION
STATION
STATION
STATION

- - L J - - - -

FLAG (CMF) .

QUEUE (CSQ)
READY (CSR)

L J » - - - L L - - -

FORMATUPDATE (UPD) Command

Audit & Rec

overy Commands « « e«

RECOVER DATA BASE (REC) . .

RESET BUSY STATUS (RBS)

MESSAGE ROUTING -
General - « « «

ACCESS CONTROL
Generatl

MESSAGE FORMATTING
General « « « «
GEMCOS Editing
Dutput Formatti
Input Formattin

Phrases -
ng Example
g Example

s & s 0
s 8 & &
s & o & @
s s ¥ 8 6
* 8 s & &

ADDRESS (CS5A)
DIAGNDSTIC (CSD)
FREQUENCY (CSF)
MAXIMUM RETRY (CS5M)

s & & s & 0 8

-
-
-
-
-
-
-
-
L]
-
-
-
-
-
-

Command

s & ¢ 8 @

TRANSHMISSION NUMBER

¢ & & & 8 & & 3 8 B 0 8 6 8 8 B B X KK 0 oMo

¢ 8 8 & 8 ¥ % 8 6 0 & & 3 B 0 3 B B 0 B 2K b o

& 8 & s 0

® o 4 & & & & 5 & 6 5 b 3 O 0 s 8 3 v b s 8 0 2 b s b

[I} ¢ o s 8 s 0 0

e & o & &

Page

3=147
3-147
3-148
3-149
3~-150
3-151
3-151
3-152
3-153
3-154
3-155
3-155
3-15b
3=-157
3=-157
3-158
3-159
3-1560
3-161
3-162
3-163
3-163
3-164
3-165
3-166
3-167
3-168
3-169

3-170
3=-171
3-172
3-174
3-175

[]
P e

0"0‘0"9\5‘
PR E™

Table of Contents (cont)

Section Title
7 SYSTEM OPERATION <« o o o o = = o o
Compiling with MCSTCL . « . . o
Executing an MCS ®© ® ®© ®» e ® o
Console or Card Reader Input < .
Recovery Procedure o« o« o« o o < o
8 AUXILIARY PROGRAMS ¢ « o o o o = o »
"CSSIH - L J > L J L] L J - L] - L - L] -
Example Simulation Card Deck .«
HCSFIX - L] - - L d - - -* - L J - - -
HCSRECALL L J - L J - - - L] - - L J
9 RECOVERY L] L] ® - £ d L] - L] L L] L J L] L J -»
GeNeral o« o« ¢ ¢ ¢ @« « o« o © = o =
NO RECOVErY o o o o o o o o o o =
Types of RecCOVery « « « o o o o o
Queue Restoration Recovery .
Nonsynchronized and Synchroniz
Base RecoOvVEerY <« « o o o o o o
Remote File 0pens « « o = « »
Transaction Processing <« «
End-uf-JOb L J L] -* - * - L J L J o
Program ADOrt « « o« « o = o
Recovery Processing « « « «
Recovery After System Failure
Data Base Recovery (Nonsynchro
Synchronized Recovery « « «
Recovery=Related Conventions
Restart Program « « « « o o
Recovery Cycle <« o o« o o « =
Archival Recovery « « « « « o
Conclusion o« o« o o = = o « = o o

10 STATION TYPES v o« o = o »
General ¢ o« o« o« ¢ ©« o o o » o = o
MTH00 o o o o o «
Processing Input From The MTS
Processing Output To The MTS

Modular Terminal System Messag

11 CONVERSATIONAL FEATURE o o o = © = «
General o« e o« ¢ @« o« © ¢ ©« o o » o

TCL Specifications o« « o o o o o
CONVERSATIONLIMIT Statement .

CONVERSATIONSIZE Statement .

CONVERSATIONAL Statement .« «

Procedures for Conversational Pro

9

9 o & 6 8 8 T s s 0 4 8 0 6 DO OV s 0 o

-
.
-
e

*
L J
-
-
-
r

d

a

¢ o & 4 8 8 N 3 02 0 ¢ ¢

- s o & o O

D

13

e ¢ % 6 & 8 Q6 ¢ & 6 o 8 ¢ DO s s s

ype

S

Ve & 8 8

¢ & 8 & s 0 0 8 & 0 8 0 4 0

s & & 8 0 8 O

(V- RV~ IRV JV-JR
I R]]
NN Fe s e

- e G D NN NGO N

V1N

OOV OO OO OO VOO

10-1
10-1
10-1
10-2
10-2
10=2

11-1
11-1
11-1
11-1
11-2
11-2
11-3

Section

11 (cont)

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

INDEX

Figure

3-12
3-13

OMMOOH >

suﬂ.ary.o.-ooco-ononﬁo

SUMMARY OF TCL SYNTAX o =« o o = =

SUMMARY OF NETWORK CONTROL COMMANDS 2 o o o o o o«
SYSTEH REQUIREHENTS L d - - - - - - - - - -» - - - -
Hcs OUTPUI "ESSAGES - Ld - - - - - - - - - L d L4 L -
SUMMARY OF FILES o o o = © = o« » o = o » = » = =
COBOL 7& Ld - - - - - - L d » - - - L] - - - L d - L d - »
TCL SIZE LIMITATIONS o« o o o o o= o« o o o o s » o

Table of Contents (cont)

Title

Recovery of Conversational Programs .

List of Illustrations

Title

System SEtrUCtUre o+ o o © o © o « » » o » » » » =»
Files Created by TCL Compiler When CONTROL =

LIST .

Files Created by TC
GENERATE,

- - - - - - - - - - - - - L d - - L - - - -

Compiler When CONTROL =
L!ST' or {:DHPILE .- e » ® ® e » e & o

Files Created by TCL Compiler ¥Xhen CONTROL =

REGENERATE or LIST .

Example
Applied
Example
Applied
Example
App lied
Example
Applied
Example
App lied
Initial
Buf fers

Set 1 - Formatting Specifications
to Input and Dutput Messages e« « o = o »
Set 2 - Formatting Specifications
to Input and Qutput MesSSages o « « s « =
Set 3 - Formatting Specifications
to Input and Output MesSSages « o « « « =
Set & = Formatting Specifications
to Input and Dutput MessSages e« « o o «
Set 5 - Formatting Specifications
to Input and Output Messages =« <
Contents of Terminal and Program Mess age

- Ld L - L - - - - - - - - - - - - - - L d -

Contents of Terminal/Message Buffers After Move

Caused by A3 <item phrase> . .

- - - - - - - -

Contents of Terminal/Message Buffers After Move

Caused by I4 <item phrase> .

- - - - - - - - - -

Contents of Initialized Buffers o« « =« o « = » o o
Buffer/Pointer Update After Applying

Speci fication A2 . .

Buf fer/Pointer Update After Applying
Spef:ificatiﬂn a‘ * - - - - - - - - - - - - @ - L] -

one

Page

3-19
3-20
3-21

-0
'
-

[

VO NOIVN &S NN -

]
[
[~

> >>>B>>>>>>
]
b
[

[]
Joue
N

A-13
A-14
A=-15
A-16
A-17
A-18
A=19
A=20

List of Illustrations (cont)

Title

Buf fer/Pointer Update After Applying
SDECification Al ® ®© © ®» ® ® o ® © ®» o ® o
Buf fer/Pointer Update After Applying
SPQCification X1 @ ®© © ® o ®» o ® e & e o o
Buf fer/Pointer Update After Applying

Speci fication A3 o o o o o o © © © » o o o
Buffer/Pointer Updates After Applying

Speci fication Al and Sending the Terminal
Message Buffer Contents . .

NONPARTICIPATION Inter face e ®© ®© e ®» o ®» o
PARTICIPA‘ION INterface o« « « « ©« o« o o o =
MCS INterface « o« o« o o @« © @« o« » o © @ o o
Sample Formatted QOutput Data Display . « «
Example Formatted Output Data Display for

Redefined Forms FUNCLION & o o o o @ o « o
Example Formatted Output for TD830 Terminal
Example Input Form for TD700 Terminal . . .
Example Input Form for 710830 Terminal . . .
Example Filled=In Input FOrm =« « o o o o
Example Simulation Card Deck o o = o o o »

Recommended DMS II Restart Data Set
Definition @ & ®» ®© © ® ®© o ®© ® ®© o ®» o o °
Recommended Remote File Record Definition
User Program Abnormal VTermination Recovery
cyc le - L J - - - - -» - - - o - - - - - L J L J L]
MCS = Archival Recovery Cycle « « ¢ « o o o
Recommended Remote File Record and Working
Storage Definition e ® ® ® ® ®© ®» ® © o o
Syntax of <MCSYTCL deck description> .
Syntax of <GLOBAL section> . « « o
Syntax of <DEFINITION section> . « e
Syntax of <ACCESS CONTROL statement>
Syntax of <PROGRAM section> <« - « «
Syntax of <STATION section> « « o o
Syntax of <DEVICE section> . « e«
Syntax of <MESS CODE section> « « «
Syntax of <FUNCTION and FORMAT state
Syntax of <function declaration> .
Syntax of <format declaration> . .
Syntax of <local declaration part>
Syntax of <editing specification>
Syntax of <editing string> . . «
Syntax of <item Phrase> « - « «
Syntax of <field width> « « « &
Syntax of <variable identifier>
Syntax of <internal size> « « &
Syntax of <hex unit string> . «
Syntax of <hexadecimal string>

ent

o ¢ & 0 0 0 & 0 8 8V T s s 0 b 0 s
8 5 & 3 % 8 8 8 8 8 8 VI 8 8 s s 0 o8
4 6 6 & & 3 8 4 8 4 % 0 8 8 e & 0 6 s 0 0

$ & 8 0 o

Page

3-71
3-82
3-84
3-85
b=5

6=7
6-11
6-12
b-14
=17
8-3

9=4

9=-12
9-14

et O W PNNO WV VIS (N

0
0
A-11
A-11
A-12
A-12
A-13
A-13
A-13
A-14

> DD

List of Tables

Table Title Page
3-1 Common—area Header Fields Containing Valid
Infor'ation by HCSTYPE - - - L J L] L] » - - - » - L » 3-1‘3
9~-1 Recovery Control Hessages ® ®© ® ® ®» ®» o ® & ° e° 9=-15
E-1 Summary of GEMCOS System Files « o« o o o o« o = o o E=-1

INTRODUCTION

Telecommunications devices are being used widely to give more people
direct access to computer services and to make computer systems more
responsive to the needs of the people who use them. Houwevers along
with the benefits of telecommunications come increased programming costs
required to handle the special problems of the on-line environment.
Burroughs B 1800/8B 1700 Generalized Message Control System (GEMCDS) is
designed to help reduce these costs by providing services which can
enhance most on-line application programse.

This manual explains the system with high~-level descriptions of compo-
nents and capabilities and detailed specifications of how to use
GEMCOS.

GEMCOS is available in three versions in order to accommodate any level
of operating complexity. These versions are the Basic Versions the
Advanced Version and the Total Version. The major capabilities of each
of these versions are:

a. Basic Version GEMCODOS:

1) Transaction Control Lanjuage (TCL).
2) Access controle.

3) Message routinge.

4) Message auditing.

5) Network control.

6) Message recoverye.

7) Nonparticipating MCS.

b. Advanced Version GEMCOS:

1) All Basic Version capabilitiese.
2) Message formattinge.

Ce Total Version GEMCOS:

1) ALl Advanced Version capabilitiese.
2) Data base and synchronized recoverye.

The style identification numbers for the GEMCOS product are B1800/B1700
GPB» GPA» AND GPY when purchased with the UPL Compiler, or B1800/B31700
MCB» MCA» AND MCT when purchased without ite.

The material in this manual is supplemented by those portions of the
following documents which pertain to Message Control System or Network
Controller interfaces:

a. Burroughs 8 1700 Systems Network Definition Language
Reference Manuals, form 1073715.

be. Burroughs B 1700 Systems User Programming Language Rzference
Manuals form 1067170.

xi

X1ii

Ce

€e

f.

Ge

he

Burroughs B 1800/B 1700 Systems System Software Operatiesnal
Guider form 1068731.

Burroughs B 1700 Systems COBOL Reference Manuals, form 1057197.

Burroughs B 1700 Systems Report Program Generator Reference
Manuals, fora 1057189.

Burroughs B 1700 Systems Data Communications Information
Manuals, fora 1089992,

Burroughs B 1800/3 1700 Generalized Message Control
System (GEMCOS) Formatting Guides, form 11056531.

Burroughs B 1800/B 1700 Generalized Message Control
System (GEMCOS) Capabilities Manuals, fora 1106572.

GENERAL.

SECTION 1

SYSTEM OVERVIEW

GEMCOS i5 a system of programs and files whose purpose is to create and
support a Message Control System (MCS).

MCS_PROGRAM.

An MCS manages the flow of messages between the Network Controller (NC)
and the application system (see figure 1-1). The MCS program created
by GEMCOS is designed to:

de

be

ke
l.

Oe

Direct messages among telecommunications stations and
application programs according to user—-defined routese.

Keep unauthorized persons from using telecommunications
stations to gain access to the application.

Require authorized personnel to perform certain functions.
Prevent data communications errors from af fecting application
programs or unduly impeding operations in the rest of the
data communications networke.

Gather statistics about data communications errors to aid in
diagnosing hardware problems.

Adapt dynamically to changing conditions in the networke.

Log messages and return them to application programs on
demand .

Inform the netuwork controller of the network status before
a system failuree.

Provide an orderly network shutdouns, accouting for all
messages in process.

Segment messages (if necessary) to fit the buffer of
destination stations.

Provide remote stations the ability to execute programse.
Allow remote stations to switch between MCS programse.
Furnish useful information to application programs.

Format messages and provide a screen request function (advanced
version only).

Altow off-line testing of the MCS.

1-1

pe. Provide debugging aidse.

Qe Provide audit and recovery capability at the program or
data base level.

The MCS is generativer» so not all of these capabilities need to be pre-
sent in any specific version of the MCS. The generative feature also
allows for inclusion of user—=uritten code in the MCS to supplement or
supplant its standard functionse.

APPLICATION
PROGRAMS

NETWORK
MANAGER'S
STATION

| GEMCOS NETWORK
MeS - CONTROLLER
&

Figure 1-1. System Structure

1=2

TRANSACYJION CONTROL_LANGUAGE COMPILER.

The Transaction Control Language (TCL) is the means by which the user
describes the data communications environment and requirements. The
user specifies such information as message routing criterias access
control requirementss and MCS options using ¥TCL.

TCL is a free~form structured language utilizing key words to describe
the environment and requirements of the data communications user. LConm~
piling TCL generates a set of tables describing the user data commauni-=
cations system ands, if requesteds MCS code. The compiler (MCSTCL)
produces an optional hard-copy listing of the user's data comaunication
system. It also provides extensive syntax checking to ensure that the
MCS is properly defined.

The TCL for the B 1800/B 1700 GEMCOS is similar to the TCL of CMS GEMCDS
and B8 7000/B 6000 GEMCOS.

MCSTIC.
The Table Information Control files» MCSTIC» is used by the MCS to store

some of its important variables and parameters. By storing them in a
disk files they are preserved froa one execution of the MCS to the next
and are protected in case the MCS s unconventionally terminated.
Moreovers should system relationships changes the TCL compiler reurites
the MCSTIC file.

MCSEORMATS.

In the advanced and total versions of GEMCOS, alil functions and formats
created by the TCL compiler are stored in a separate disk fila called
MCSFORMATS.

AUXILIARY PROGRAMS.

In addition to the previously mentioned programs» the system contains
three utility programs: MCSSIM» MCSFIX» and MCSRECALL.

MCSSIM.

The program MCSSIM is used to test the MCS5S and user-written code off-
line. Simulated input messages are presented to MCS5SIM using a card
reader. MCSSIM forwards them to the MCS as if they had :ome from the
Network Controller. Qutputs are printed on a system printere.

MCSFIX.
This program patches and/or lists source~-code files which are on disk
in the User Programming Language (UPL) format.

MCSRECALL.

This program allows the user at a station to recall audited input or
output messages. These messages can be sent either to the station or
to the system printere.

1-3

SECTION 2

CAPABILITIES

APPLICATION-PROGRAM_INVERFACE.

The MCS communicates with Application Programs through the remote file
interface, but it provides some optional extensions to the standard
interface. Application Programs may be written in any language that
supports remote or data communications files.

A standard remote file provides a link between an application prograna
and one or more data communications stationss which were declared

as belonging to that file in the FAMILY statement of NDL. Messages are
exchanged in the record area of the file. 1In COBOL» an actual key can
be used to exchange information about the messager namely, message
types message length» and source or destination station. Stations are
identified by a number which is relative to the order in which the
stations were assigned to the file in the FAMILY statement.

GEMCOS offers a Common—area header option which overrides portions of
the standard interface. Commamon area is a header which appears in the
record area of a file in front of the message. Common area contains
the following fields:

a. Logical Station Number (LSN) - identifies the source or desti-
nation station. The LSN is a number which is relative to the
order in which stations are defined in the STATION sz2ction of
NDL. This identifier is not necessarily the same as that used
in the actual COBOL keye.

NOTE
The LSN of a given station changes if
stations are presented in a different
order when the NDL is recompiled.

b. Message type = distinguishes betueen normal messages and mes~-
sages used for special purposess such as recoverys, FILE
OPEN notifications FILE ATTACH notifications and FILE DETACH
noti fication.

Ce. Sequence number = assigned by the MCS, primarily to aid in
recoverye.

d. NDL time = contains the time at which the Network Controller
sends the message to the NMCS.

e. Message text size = indicates the length (in bytes) of an
incoming messager not including the Comeon—-area headere.

”\ (:-. Terminal type = identifies the kind of terminal or d2vice fr;:\\)

which the message originated.

g. Message identifier = allows Application Programs to specify
which formats, if any, is to be applied during output (advanced
version only).

he

Oe

Trancode (transaction code) index 1 = assists the application
program to determine which transaction was received.

Trancode index 2 = further assists the application program to
deternmine which transaction was receivede.

Format error indicator - notifies the application prograas that
at least one field of an input message is in error (advanced
version only).

Input address = address in the audit file of this message.

Retry count - the number of times this message was submitted
to an Application Progran.

Recovery status = indicates if this message is a normal wmes-
sage or a recovered messagee.

Output address = address in the audit file of the correspond=-
ing output messagee.

User area = allows the user to reserve space in the Common=-area
header for user—-defined fieldse.

When the Common=area header is useds, the MCS attaches tha Common=area
header to each message sent to an Application Program and removes it

2=2

STATION Section

from each message received from an application programs 50 that the
Common—area header does not accompany the message on the Network
Controller side of the MCS.

The actual key in COBOL should only be used for specifying th2 text
size of an outgoing message.

When an Application Program receives a message from the MCS» the LSN
field in the Common—-area header is set to the originating station. As
Llong as the LSN remains unmodified at the time the application sends a
response back to the MC5» then the MCS routes it back to the same
station. But» if the application requires that the response be sent to
some other station, then that is accomplished by merely changing the
LSN field to the correct value for the other station.

JRANSACYION-BASED ROUTING.

By using the FAMILY statement of NDLs the network designer can associ~
ate a list of stations with a reaote file name. When an application
program successfully opens a remote files the stations in the family
associated with that file becomer in a senser "attached™ to that pro-
gram. From that time ons the Network Controller routes messages from
that family of stations only to the program that opened the file.

Howevers GEMCOS offers an optional alternative to station attachaent:
Transaction-Based Routing (TBR). Messages may contain transaction
codes anywhere in the text. TBR allows a group of transactien codes

to be associated with each application programs, so that a message
containing a specific transaction code is always routed to th2 saxe
programs regardless of the message source. A station can then send a
message to any program (subject to security restrictions) by including
in the message one of the transaction codes associated wi th that
program. If a message does not have a transaction code or the transac=-
tion code is invalids the message is sent to the program which is
attached to the originating station. If no program is attached to that
station» the message is rejectede.

ACCESS CONTROL.

In GEMCOS there are two types of access control: access security and
process security. Access security is designed to prevent unauthorized
persons from using the system. Process security limits the functions
that authorized persons are alloued to performe. A specific MCS may be
generated to contain logic for access security alone or for both access
security and process securitye.

ACCESS SECURITY.

Access security is imaplemented through sign—=on and sign-off m2ssagese.
Some stations may already be physically secure; therefore, signing on
is not necessarily required for all stations. Each installation may
specify which stations do not require signing on.

The sign—-on message requires that each potential station user supply a
user—-identification code (access key). A list of active access keys is
defined in TCL and is stored in the MCSTIC file. Moreovers, for each

station that must be signed ons TCL can be used to specify which access

2-3

STATION Section
cont

keys are to be recognized. The TCL compiler can be used to update this
information. At any specific time a user station may be either enabled
or disabled. If disableds then that user is not allowed to sign on
until enabled againe.

A user is allowed to sign on only if all of the following conditions
holid:

a. The station requires signing on.
b. The station is not already signed on.
ce The user enters a valid access code.

de. The access code entered is to be recognized at the station
being signed one.

A user is allowed to enter a data message only if one of the
following conditions holds:

a. The terminal does not require signing one.
be The user is signed on.

The same access key can be used t2 sign on at several stations
simultaneously.

PROCESS SECURITY.
GEMCOS offers two types of process security:

a. Transaction security = for limiting which transaction codes
can be entered by a signed-on user.

be Program security = for limiting which programs can be used by
a signed-on user. Program security is used when messages do
not have transaction codes.

As access codes are defined in TCL» they are associated #ith a list of
valid transaction codes and/or program identifiers. Once signed ons a
particular access key is restricted to those transactions and/or pro-
grams with which it was associated. Hences each access :ode can be
limited to any stations programs or trancode combination.

NETHORK ADMINISTRATION.
Although the MCS and Network Controller automatically control many

aspects of the networks, some conditions still require human interven~
tion. For this reasons GEMCOS supports the CONTROLSTATION coacepte.
The supervisory console can always be used as a Control station. In
addition» one remote station can be designated as the Control station.

A control station administers the network through Network Control
Commands (NCCs). GEMCOS recognizes Network Control Command syntax for
the following functionss

a. Access controle.

STATION Section
cont

1) Enable and disable userse.
2) Sign on and off.

b MCS control.
ce Message control.
1) Reroute messagese.
2) Retrieve queued messagese.
3) Send messages to other stationse.

d. Program control.

1) Execute and terminate Application Prograsmse.
2) Report program statuse.

e. Station status. Report and change status of stationse.

The MCS need not contain legic to execute all these commands since there
are TCL parameters to specify which commands are needed.

Use of Network Control commands is restricted by the GEMCOS security
subsystem. Some commands can be entered by any one at any station
(i.e.»r the sign-on and sign-off commands)» but many commands can only
be entered at the Console station. All Network Control Commands can
always be entered at the console keyboard without restriction.

ERROR_HANDLING.
The GEMCOS error handling subsystem provides the necessary logic to

handle error conditions which are not directly related to the applica-
tions task at hand (thereby relieving the application programmer of

that burden). Hith GEMCOS», enough automatic action is taken to keep the
data communications system runnings and the error condition is
communicated to the person who has the power to correct the problem.

GEMCOS distinguishes three error categories:

dae Errors made by a station operatore.
b. Persistent data communications errorse.
Ce. System errorse.

When a GEMCOS MC5 detects errors made by a station operators error
messages are sent back to that operator. For other kinds of errors»
messages are sent to the Control station or to the console printer»

if the Control station is not available. Network Control Commands may
then be used to help diagnose the problem or circumvent it.

The Network Controller handles transient data communicati ons 2rrorss
but persistent errors are reported to the MCS. The MCS not only
reports such errors to the Control station but also keeps error statis-
ticse. Statistics are accumulated by station. They can be retrieved by
using Network Control commands.

System errors result either from input/output errors on peripheral
devices used by the MCS or from software problems in the MCS», the
Network Controllers or the applications programs. When a system error
is detecteds the MCS reports the error to the Controd station. Ffor
serious errors» the MCS also produces a dump of its tables for debug-
ging purposes. The MCS is designeds however», to continue running
unless the Control station or system operator discontinues it.

NETWORK _RESTORATION.

The purpose of network restoration is to bring the Network Controller
up-to-date with MCS data on netuwork status. Network status consists of
information such as the current physical address of a stations or whe-
ther a station is "alive” or "dead.™ The MCS stores current network
status information on disk file MCSTIC (at a location that is protected
from abnormal prograam termination). Network restoration is done
automatically.

Each time the MCS is executedsr it uses the status data from the MCSTIC
file to generate commands for the Network Controlter. The Network
Controller uses these commands to update its tables in main m2mory.

MESSAGE RECOVERY.

GEMCOS provides message recovery at either the program or data base
fevel via an audit trail to help application programs re:over frona
failure. Through TCL parameterss» an MCS can be created with just the
audit feature or with both audit and recovery.

AUDIT.

WHhen the audit option is usedr the MCS keeps an audit trail of all mes-
sages sent to an Application Program. OQOutput messages may be audited
for nonsynchronized recoveryr, but must be audited for synchronized
recovery. Messages are identified by a sequence number which the MCS
assignse. The Common—-area header is used to communicate the szquence
number to Application Programs. For synchronized recovery (total
version only)» a data base sequence number is also assigned upon re-
ceipt of the output messagee.

The audit trail is written on a disk file. When the audit file beconmes
filledsr it is closed and a new one is opened. The file is then avail~-
able for copying to another device. Each new audit file has a file
identifier which is different from the last.

RECOVYERY.

GEMCOS provides numerous recovery capabilities within the TCL. The
user has the flexibility to analyze application-oriented needs and
select the recovery options required on a program~by=-program basis.

Recovery capabilities range from a rather simple queue restoration
technique to an automatic data base rollback and synchronization scheme.
Once agains the emphasis is on providing users with the flexibility of
easily adapting to meet a broad range of on~lLine data processing re-
quirements.

CONTROLLED SHUYDOWN.

Nhen a data communications system terminates operations» messages may
be tlost in the process of terminating unless special car2 is taken.
In GEMCOS» system shutdown consists of the following steps:

a2« A message is sent to all stationss, informing them that
shutdoun has begune.

be Further input is disabled.
ce The MCS causes an End-0f-File condition on all remote files.

d. Any messages that may remain in the queues of the Network
Controller are recalled and printed on a line printere.

e. The MCS terminatese.

Any messages that could not be delivered to their destinations are
accounted for on the printer listing.

MERGEABLE EXVERNAL_SOURCE_SVATEMENTS.

Mergeable External Source Statements (MESS) are used for specialized
requirements which demand deviation from the standard GEMCOS logice.
User=written MESS routines can be merged into key 1ocations in the
MCS logic. Each routine must be a procedure in User Programming
Language (UPL). All MESS routines are optional. Most MESS routines
can either replace or supplement standard GEMCOS logice.

The MESS procedures can be inserted in the following code locations
(the intended function of each procedure is explaineds but there is
practically no Llimit to the functions that can be coded):

a. Receiving maessage from station - for foramattings, paging» o
routinge.

b Receiving message from program - for formattings pagings or
routinge.

Ce Processing Network Control commands - for extending or
replacing the capabilities for network control.

de Auditing = for replacing or supplementing the standard audit
featuree.

e. Error handling = for extending the standard error~handling
logic.

fe Opening - for processing required at system startupe.

ge Closing = for processing required at system shutdowns, such as
closing files used by other MESS procedurese.

he Recalling messages = for disoosing of unsent messages when the
system is shut downe

i« Initiating recovery = for processing the request of an
Application Program for recoverye.

jo Recovery = for replacing the standard recovery logice.

k. Remote File Open - for processing that is required when an
Application Program opens a remote file.

l. Remote File Close = for processing that is required when an
Application Program closes a remote file.

The source code for MESS procedures is submitted as part of the user's
TCL source file. The TCL compiler merges these procedures into the
correct places in the MCS logice.

DEBUGGING_AlDS.
GEMCOS offers two kinds of debugging aids: a data dump and a logic

flow monitor. The existence of these features is controlled »y TCL
paramseterse.

DATA DUNMP.

The data dump provides a snapshot of the state of the MCS and its
environment. It displays the contents of the tabless certain signifi-
cant data itemss» and the message work area. It can be used for debug-
ging purposes and for reporting statistical information maintained in
the tables. A data dump can be created on demands via a Network
Control command, or automatically, when the NCS detects a serious error.

MONITOR TRACE.

The monitor is a procedure within the MCS which produces a listing that
can be used to trace logic flow. Calls on the monitor are made at the
entrance to nearly every procedure and at other key points in the MCS.
Since MESS procedures can also call on the monitors the monitor is a
valuable tool for debugging interfaces between MESS code and the
standard MCS.

The monitor listing displays:
a. An identification of the procedure now executinge.

b. An identificatiqn of the procedure which called the current
procedure.

c. Any information that is pertinent to the current procteduree.

de The sequence number in the MCS source code file at the point
where the monitor was called.

Since the monitor is a generative options the MCS used for nor-

mal operation does not have to carry the overhead of moni tor logic.
Users can generate a second MCS which is exactly like the production
MCS except that the MONIVTDR generation parameter is set. This second
MCS would be used only if problemas arise which cannot otherwise be
diagnosed.

WHhen an MCS is generated with the MONITOR parameter sets the aon-
itor listing can be turned on and off either dynamicallys, by a Network
Control command», or between executions of the MCS by the TCL compiler.
Furthermores the monitor can be selected for individual procedures, or
for only those procedures suspected of being related to a problen.

SCREEN _WRAPAROUND.

To provide Application Programs with enhanced terminal independence»
GEMCOS can automatically segment messages to fit the buffer of the
destination station. Instead of transmitting a message that cannot
be accepted by a station because of its lengths the MCS zan break the
the message into two or more transmissions.

The message is segmented on word boundaries whenever possible. The
segment Wwill be as long as is possible without splitting a word or
exceeding the buffer at the station. If the message contains a string
of nonblank elements that is greater than the station buf fer size» it
is necessary to break the string into one or more transmissions. Using
screen wraparound is not recommended with messages that contain for-
mats. A formatted message could be segmented in the midile of a foras
field. A warning message is sent to the Control station when screen
wraparound sends a formatted message to a station.

Code for screen wraparound is generated when the station screznsize is
declared larger than the Global MAXTEXTSIZE.

SUPERVISORY MCSe

GEMCOS provides a supervisory MCS function allowing stations to be
switched between MCS programs. The user may» for examples use CANDE

and ODESY», which are both MCS programs and suitch between thes as the
need arises. Without a supervisory MCS» both CANDE and J3DESY would

have to be shut down and restarted to switch stations» resulting in con-
siderable inconvenience to the rest of the station operators. Howevers
with GEMCDS Network Control commandss, station operators can switch from
one subordinate MCS to another without interrupting the other operatorse.

BREMOVE _PROGRAM_EXECUTION.

Among the on=line applications of a given installations there may be
programs which would be most conveniently used if they could bde executed
remotely. GEMCOS provides this capability. All on-line programs need
not be executed remotely» however. There are situations where it is
desirable to have centralized control over program execution. GEMCDS
also provides the ability to exercise centralized control via the
supervisory console or a remote control statione.

EORMAYTING.

One of the major problems of on-=line programming is the human interface.
Since the system can interact with many individuals through stations»
some of whom may only spend a small percentage of time working with a
terminal, it is important that the input and output be as "humanly
readable™ as possible. Proper formatting of information exchanged
between the terminal and the system provides this readability.

When approaching the problem of formattings the strategy employed must
be chosen carefully. Application Programs can be suritten to 2xpect and
create readable messages. Howevers they then become much mor2 coaplex»
especially i f several teraminal devices are involved. Moreovers, if
existing terminal devices are replaced with otherss the application
programs must be converted. Application Prograams are much easier to
Write and maintain if they read and write records instead of messages
that can be clearly understood by peodle.

The GEMCOS formatting function of the advance version was designed with
these aspects in mind. It can be used to support foras reguestss
enhance the readability of message text and ensure Application Progranm
device independencee.

SECVION 3

TRANSACTION CONTROL LANGUAGE

GENERAL DISCUSSION_OF VYRANSACVION CONTROL LANGUAGE (VCL).

The B 1800/8 1700 Transaction Control Language is classified as a
descriptive language. It is a high-level language providing a siaple
means of selecting required MCS functions and describing on-line systen
relationshipse. The result of a TCL compilation is an MCS5 prograas com-
posed of GEMCOS intrinsics and a data file consisting of on-line
relationships. C(An MCS is a program which works closely with a Network
Controller to provide functions such as remote file controls, 2rror
handling» access control, audits routing, formattingr etc.» for on-line
application programs.) The size limitations of the TCL :ompiler are
given in appendix G.

If the requirements of the NCS or the relationships with which it
operates changes a new system may be easily obtained by recompiling.

The TCL compiler is found on a GEMCOS release tape in a file lLabeled
MCSTCL. When MCSTCL is executeds it awaits a TCL source deck labeled
MCSIN. The cards which compose a TCL source deck are similar to those
of a UPL source deck:

ae Columns 73 through 80 are reserved for sequence numb2rse.
>b. Comments may occur on any card foilowing a "%,
C. Statements may begin in any columne.

The TCL compiler does not permit a continuation from one card to the
next. If a string is begun on a cards it must end on that carde.

SYNTAX CONVENTIONS.

The following is a discussion of the Backus~Naur form us2d to describe
the syntax of the TCL.

METALINGUISYIC SYMBOLS.

A metalanguage is a language used to describe other langsages. A meta-
Linguistic symbol is a symbol used in a metalanguage to defin2 the syn-
tax of a language. The following metalinguistic symbols are used in
this docuament:

a. Left and right broken brackets (< >) are used to contain one
or more digits and/or letters representing a metalinguistic
variable whose definition is given by a metalinguistic formula

b The symbol (:2:=) means "is defined as™. The metalinguistic
variable to the left of this symbol is defined by the meta-
Linguistic formula on its righte.

ce The stash (/) means "or". It separates alternate definitions
of a metalinguistic variable. The conventional symbol of a
vertical bar is not used in this document to represent the word
"or®.

d. Brackets ([1) are used to enclose metalinguistic variables
which are defined by the meaning of the English language expres-
sion contained within the brackets. This formul ation is used
only when it is impossible or impractical to use a metalinguistic
formul ae.

NMETALINGUISTIC FORMULAE.

Metalinguistic symbols are used in forming a metalinguistic formula. A
metalinguistic formula is a rule which produces an allowable sequence
of characters and/or symbols. These formulas are used to define the
syntax of the TCL. The syntaxs combined with the semantics contained
in this manual, defines the TCL.

Any mark or syabol in a metalinguistic formula which is not one of the
metalinguistic symbols is equivalent to itself. The juxtaposition of

the metalinguistic variables and/or symbols in a metalinguistic formula
denotes the juxtaposition of those elements in the construct indicated.

An example of a metalinguistic formula is:

<identifier> 2:3= <letter / <identifier> <letter> /
<identifier> <digit>

This metalinguistic formula is read:

An identifier is defined as a letters» or an identifier followed
by a letter» or an identifier followed by a digite.

The metalinguistic formula above defines a recursive relationship by
which a construct called an identifier may be formed. That is» evalua-
tion of the formula shows that an identifier begins with a letter. The
letter may stand alone» or may be followed by a sequence of letters and
digitse.

NOTE
Beginning with the heading “"Character
Set»"™ all information contained in this
section is presented in the following
order: 1) Sets Descriptions, Sections
Statement» Command or Declarations 2)
Syntaxs 3) Semanticss &) Pragmatics», if
applicables and 5) Example(s)», if any.

CHARACTER _SETY.

The character set for which the language is defined is drawn feroa the
Extended Binary-Coded Decimal Interchange Code (EBCDIC) c haracter sete.

Syntax:

.
.
]

<letter>

<digit>

[1]
o
i

<special character>

<slash>

W

<single space>

(1]
]

<space>

<character>

<string character>

<string bracket character> ::

.
(1]
L]

<empty>

Semanticss?

% O N>
~ NN NN
- - XX
~ NNN
N Sro
NNN
<X 0
NNN
~ NN
-< oo
NN N

[~]
A -t

~
w
~
&
~
vi
o
~
~
~
(-}

a

~
.o
”~
~
-

» / <slash> 7 =1/
$ /7 x / =/ R 7 3
<single space>

~
[o
~

[one horizontal positionl

<single space> / <space>
<single space>

<€string character> /
<string bracket character>

<letter> 7/ <digit> /
<special character>

Lthe null string of symbols]

The character set for the handler define is a 52-character subset
of the EBCDIC character set containing letterss, digi tss special

characterss the string bracket

character» and the space.

3-3

N N

BASIC _SYMBOLS.
Syntaxs:
<basic symbol> 23= <letter> / <digit> / <deli miter>

= <assignment operator> / <separator>

<delimiter>

<assignment operator>

.
1
]
.
~

<separator> e« / 2 / <space> [/ >
Semantics:

Only upper-case letters are permitted. Deliaiters separate various
entities that make up a systea definition.

BASIC_COMPONENYS.

Syntax:

<basic component> 3=

Semantics:

Basic Components

<identifier> /7 <generalized identifier> 7/
<integer> /7 <string> / <logical value>

Basic components are the priae structures of the

languagee.

Basic Components
cont

IDENTIFIERS.
Syntax:

<identifier> ::= <letter> / <identifier> <letter> 7/
<identifier> <digit>

Semantics:

The maximum length of an identifier is 30 characters. Spaces may
not appear as part of an identifier.

Basiz Components
cont

GENERALIZED IDENVIFIERS.

Syntax:

<generalized identifier> ::= Kidentifier> /

<generalized identifier> <slash>
<identifier>

Semantics?

A <generalized identifier> may contain a maxiamum of 3
identifiers separated by slashes. An identifier used as an

<identifier component> must be less than or equal to 10
characterse.

Example:

COMPUTER/TTY35

3-7

Basic Components
cont

INTEGERS.
Syntax:

<integer> 3= <digit> / <integer> <digit>
Semantics:

Only positive integers are allowed. A space may not appaar
within an integer. Integers are limited to eight digits.

3-8

Basic Components
cont

STRINGS.

Syntax:

<general string> <string> / <hexadecimal string>

(1]
[1)

L[}

<string> <EBCDIC string> /

<EBCDIC unit string>

<EBCDIC string> ®<character concatenation>"

<character concatenation> <string character> /
<character concatenation>

<string character>

<EBCDIC unit string> *<string character>" /

“<string bracket character>"

"<hex string>"

<hexadecimal string>

o
o
1

<hex string> <hex pair> /7 <hex string>

<hex pair>

<hex character>
<hex character>

<hex pair>

<hex character> 07172737 4&1/5 /76
9 7/7A/78B/7C/7DVJ/E VZF

1]

<hex unit string> <hexadecimal code> "<hex pair>"

<EBCDIC CODE>

(1]
.
0]

B /7 <empty>

4

<hexadecimal code>

<one~-byte string> <EBCDIC unit string> 7 <hex unit string>

Semantics:
The maximum length of a string is 120 characters. S5trings con-

taining internal quotes must be broken into separate <strings>
containing three quotes in succession.

Basic Components
cont

LOGICAL VALUES.
Syntax:

<logical value> :3= TRUE / FALSE
Semantics:

A logical value consists of the two possible conditions that a
Boolean may assumee.

3-10

/ DECK DESCRIPVION

DECK_DESCRIPTION.

Syntax:

<DECK DESCRIPTION> ::= <CONTROL statement> /
<CONTROL statement>
<MCSTIC FILE NAME statement>
<FORMATYT FILE NAMEL statement>
<GLOBAL section>
<DEFINITION section>

Semantics?

In order to create an MCS with B 180078 1700 GEMCDS» the user must
execute MCSTCL. First the user must load MCSGTS», MUSGO and MCSTCL
from the B 1800/8 1700 GEMCOS release tape. MCSTCL can then be
executed by reading in a card deck constructed as followus:

2EX MCSTCL
?DATA MCSIN

<Deck description>

2END

As soon as the compilation beginss» MCSYCL reads MCSIN, and writes
MCSLST on a Linme printer. MCSLSY consists of a listing of the
<Deck description> along with any syntax errors. If there are no
syntax errorss MCSTCL takes the actions specified in the <CONTROL
statement>.

The user could create and maintain a TCL source file with CANDE
instead of a card deck. The CANDE default file type should be
usede. To run MCSTCL with TCL source file created through CANDE»
enter the following:

EX MCSTCL FILE MCSIN NAME <user®s CANDE file name> DSK DEF3

3-11

DECK DESCRIPTION
cont

Example:

2EX MCSTCL

?DATA MCSIN
CONTROL = GENERATE» LISY» COMPILE.
GLOBAL:

MONITORTRACE = TRUE.

NCCOKRESPONSE = "30Ks$".

CONTROLSTATIONS = TDBOOA.

BEGIN
PROGRAM PAYROLL USER:

TITLE = PAYROLL.

TRANCODE = UPDATE(1,1).

TRANCODE = INQ(1,2).

PROGRAM INVENTORY USER:
TITLE = INVNT.
TRANCODE = RCV (2,1)» SHIP (2,2).
PROGRAM GAME UTILITY:
TITLE = MAZE/GAME.
INTERFACE = NONPARTICIPATION.
STATION TD80OA:
STATION TD8008:
STATION TD80OOC:
STATION TD700A:
STATIC DECLARATIONS:
DECLARE 01 MESS.STRUCTURE CHARACTER(5)»
02 MESS.ITEM.1 CHARACTER(3)»
02 MESS.ITENM.Z2 CHARACTER(2))
ENDSOURCECODE.
PROCEDURE SETVALUES:

PROCEDURE MESS.SET.VALUES>X
MESS.ITEM.1 3= “AAA";X
MESS.ITEM.2 := "BB">X
END MESS.SET.VALUES>Z

ENDSOURCECODE.
END.
?END.

3-12

CONTRDL Statement

CONYROL SYATEMENT .
Syntax:

<CONTROL statement> CONTROL = <control lList>.

<control task> 7/
<control tist> » <control task>

<control list>

LIST /7 GENERATE / REGENERATE /7 COMPILE /
UPDATEFMT

<control task>

Semantics:

The <CONTROL statement> defines the task(s) to be parformed during
a run of MCSTCL. The <control List> defines the individual task
or combination of taskse.

LIST causes a hard=copy record of the user?s data communication
system description to be written to a {ine printer. The listing
is Labeled MCSRPT. If LIST is the only option in the <control
List>, the <GLOBAL section> and the <DEFINIVION section> are not
required; howevers the MCSTIC file must be available to MCSTCL.

GENERATE causes MCSTCL to create a disk file Labeled MCSTMP and
ZIP MCSGO. MCSGD uses MCSTMP and MCSGTS to create MCSSRC»s the
user?'s MCS source-code file. In additions when GENERATE appears
in the <CONTROL statement>s» a disk file labeled MCSTIC is writtene.
MCSTIC contains customized tables consisting of the user?’s data
communication system network relationships. The MCSVIC file must
be present when executing a B 1700 GEMCDS-generated MCS5. MWhen
GENERATE is in the <control list>» both the <GLOBAL section> and
<DEFINITION section> must be presente.

REGENERATE causes MCSTCL to create a new MCSTIC file from an old
one. This option should be used if a stations transactions pro-
grams or access key is to be added or changed. REGENERATE neither
writes MCSCRD nor ZIP-executes MCSGD» thus saving machine tiae.
When REGENERATE is in the <control Llist>s both the <GLOBAL section>
and the <DEFINITION section> must be present. If MCSYCL detersines
(while modifying an existing MCSTIC file) that the MCS code file

is no longer compatible» it produces a syntax error and the regen-
eration does not occur. This happens when» for examples AUDIT uas
not specified in the original GENERATE run, but appzars in the
REGENERATE rune.

3-13

CONTROL Statement

cont

NDTE
During a REGENERATE runs the station
network control informations which is
used to bring stations back to their
last running states is not copied from
the old MCSTIC file to the new one.
Therefore» after a regenerations» sta-
tions in the network have those attri-
butes speci fied in NDL which do not
reflect the accumulated changes caused
by GEMCOS Network Control Commandse.
Moreovers the audit file number is reset
to zero; all existing audit files are no
longer valid.

COMPILE causes MCSTCL to instruct MCSGO to ZIP=-execute the UPL
compiler to create MCSSRC/object from MCSSRC. If CIMPILE appears
in the <control list>» GENERATE must also appear.

UPDATErMT facilitates recompilation of the ¥CL FORMAT section
without requiring generation or regeneration. The format section
can be recompiled while the MCS is operating and without affecting
the MCSTIC file. Only previously compiled functions and foraats
can be modified. The recompiled functions and formats are copied
into the format files MCSFORMATS. Programs and stations have
access to the new copy of the format through the *#UPD network
control command» entered froa the control station or the SPOD.

Examples:
CONTROL = LIST.
CONTROL = REGENERATE» LIST.
CONTROL = GENERATEs LIST», COMPILE.
CONTROL = UPDATEFMT.

Figures 3-1 through 3-4 jllustrate which files are created and
accessed 0oy the TCL compiler (MCSYCL) when the previ ously listed
example control statements are presente.

CONTROL Statement
cont

MCSIN — MCSTCL

MCs
FORMATS
OPTIONAL)

MCSRPT

Figure 3-1. Files Created by TCL
Compiler When CONTROL = LISTY

3-15

CONTROL Statement
cont

}

MCSGO

oD

MCSTMP

Figure 3-2.

MCSTCL

L —

MCSIN

Files Created by TCL
Compiler When CONTROL =
GENERATE» LIST», or COMPILE

CONTROL Statement
cont

MCSTCI,

MCSIN

MCSLST
MCSRPT

Figure 3-3. Files Created by TCL
Compiler When CONTROL =
REGENERATE or LIST

3=-17

MCSTIC FILE NAME Statement

MCSTIC FILE _NAME STAVEMENT.
Syntax:

<MCSTIC FILE NAME statement> 3= MCSTICFILENANE = <file-ID>./
<e mpty>

Semantics:

The <MCSTIC FILE NAME statement> allows for the specification of
the MCSTIC file name. The <MCSTIC FILE NAME statement>s if pre-
sent» must appear after the <CONTROL statement> and before the
<GLOBAL section>»>. <File~ID> is a B 1800/ B 1700 file idantifier.
By default, MCSTICFILENAME is MCSTVIC.

Examples:
MCSTICFILENAME = MYMCSTIC.
MCSTICFILENAME = TEST/MYNCSTIC.
MCSTICFILENAME = PACKB/VEST/MYMCSTIC.

FORMAT FILE NAME Stateament

EORMAY FILE _NAME _SVYAYEMENT.
Syntax:

<FORMAT FILE NAME statement> 23= FORMAYFILENAME = <file-ID>. /
<z mpty>

Semantics:

The <FORMAT FILE NAME statement> is used to change the name of the
MCSFORMATS file. This statement only functions in the advanced
and total versions of GEMCOS. It must immediately follow the
<MCSTIC FILE NAME statement> and precede the <GLOBAL section>.
<File=ID> s a B 1800/B 1700 file identifier. By defaults,
FORMATFILENAME is MCSFORMATS.

£xamples:
FORMATFILENAME = ALLFORMATS.
FORMATFILENAME = TEST/FORMATS.
FORMATFILENAME = GEMPAC/LIVE/FORMATS.

3~-19

GLOBAL Section

GLOBAL SECTION.

Syntax:

<global definition> /7 <empty>

<GLOBAL section>

GLOBAL: <GLOBAL statement Llist> /

o
o
il

<global definition>

<global statement list> 23= <GLOBAL statement> /
<GLOBAL statement list>
<GLOBAL statement>

<GLOBAL statement> 2= <CODE GENERATION statement>
<MISCELLANEOUS PARAMETER stateaent>

<CODE GENERATION statement> 23= <CHANGE REQUESTS statement> /
<DATA DUMP statement> /
<MESSAGE BROADCAST statement> /
<MESSAGE RECALL statement> /
<PROGRAM B0J EO0J statement> /
<MONITOR TRACE statement> /
<STATUS REPORTYS statement> /
<SYSTEM HALT statem2nt> /
<COMPILE OPTIDNS statement> /
<0BJECT CODE FILE NAME stateaent> /
<SODURCE CODE FILE NAME statement> /
<NANE SVTACK ENTRIES statement> /
<VALUE STACK BITS statem2nt> /
<CONVERSATIONLIMIT s tatement>

<MISCELLANEDUS PARAMETER statement>

23= <NCC OK RESPONSE statement> /
<SIGNAL CHARACTER st atem2nt> /
<AUDIT RECORD SIZE s tatement> /
<AUDIT PAGE SIZE statement> /
<AUDIT FILE PACK ID statement> /
<CHECKPOINY INTERVAL statement> /
<MAX TEXT SIZE statement> /
<QUEUE DEPTH statement> /
<QUEUE BUFFERS statement> /
<QUEUE NAME statement> /
<SIMULATION statement> /
<MONITOR TRACE ON statement> /
<FORMAT AND FUNCTION statement List> /
<RECALL PROGRAM statement> /
<CONTROLSTATIONS statement>

Semantics:

The <GLOBAL section> is composed of two types of <G.LOBAL
statements>: <CODE GENERATION statements> and <MISCELLANEDOUS
PARAMETER statements>. Any given <GLOBAL statement> may only
occur once in the <GLOBAL section> with the exception of the
format and function statementse.

GLOBAL Section
cont

There are two types of <CODE GENERAVION statements>. Firsts there
are <CODE GENERAVION statements> which cause optional MCS intrin-
sics to be generated into the MCS source file? they can take on a
true or false value. Optional MCS intrinsics include code to
support change commandss, the data dump commandr mess age broadcasts
message recalls progras control commandss the monitor trace, sta-
tus commandss system shutdowns audits, output audit and queue
restoration. Seconds, there are <CODE GENERATION statements> which
control the names of GEMCDS files» UPL compiler optionss and object
code memory size requirements. It is important to note that both
types of <CODE GENERAYTION statements> directly affezt thz HCS
source and/or object code files. Therefores if a <CODE GENERAVIDN
statement> is modifieds GENERATE and COMPILE should appear in the
<CONTROL statement> since new source and object code files are
required; otherwisesr MCSTCL detects an object code file, MCSTIC
file incompatibility errore.

<MISCELLANEDUS PARAMETER statements> specify various attributes of
a running GEMCOS MCS such as the signal characters Control sta-
tions Network Control Command responser» etc. Except for the

<MAX TEXT SIZE statement>» the <AUDIT PAGE SIZE statement> and the
<CONTROL STATIONS statement>» <MISCELLANEOUS PARAMETER statements>
may be safely changed in a REGENERATE MCSTCL run.

Example:

GLOBAL:
PROGRAMBOJEOJ = TRUE.
MONITORTRACE = FALSE.
COMPILEOPVIONS = *"LIST SINGLE".
QUEUEBUFFERS = 3.
DATADUMP = TRUE.

3-21

cont

GLOBAL Section

CHANGE REQUESTS STATEMENT.

Syntax:

<CHANGE REQUESTS statement> 3:=

Semantics:

CHANGEREQUESTS = <logical value>. 7/
<empty>

The <CHANGE REQUESTS statement> determines whether the GEMCOS MCS
is to contain the logic to support the following seven Network
Control Command change requests:

Qe
be
Ce
de
Ce
fo

ge

CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE
CHANGE

STATION
STATION
STATION
STATION
STATION
STATION
STATION

ADDRESS (CSA).

DIAGNDSTIC (CSD).
FREQUENCY (CSF).

MAXIMUM RETRY (CSM).

QUEUE (CSQ).

READY (CSR).

TRANSMISSION NUMBER (CST).

When MONITORTRACE equals TRUE» the CHANGE MONITOR FLAG (CMF)
becomes the eighth change request and CHANGEREQUEST defaults to

TRUE.

Example:

CHANGEREQUESTS

322

= TRUE.

Otherwises CHANGEREQUESTS defaults to FALSE.

command

GLDOBAL Section
cont

DATA DUMP STATEMENT.

Syntax:

<DATA DUMP statement> :3= DATADUMP = <logical value>. / <empty>

Semantics:

The <DATA DUMP statement> indicates whether the code to create a
dump of internal MCS variables is present. If DATADUMP e2quals TRUE»
the REPORT DATA DUMP (RDM) command is recognized. By default»
DATADUMP equals FALSE.

Example:
DATADUMP = FALSE.

3-23

GLOBAL Section
cont

MESSAGE BROADCASY STATEMENT.
Syntax:
<MESSAGE BROADCAST statement> 3:3=

MESSAGEBROADCAST = <logical value>. 7/
<empty>

Semantics:

The <MESSAGE BROADCAST statement> specifies if the code to support
the BROADCAST (BRC) Network Control Command is to be gen2rated. By
defaults MESSAGEBROADCAST equals FALSE.

Example:
MESSAGEBROADCAST = TRUE.

GLDBAL Section
cont

MESSAGE RECALL STATEMENT.
Syntax:
<MESSAGE RECALL statement> 2:=
MESSAGERECALL = <logical value>. 7/
<empty>

Semantics:

The <MESSAGE RECALL statement> indicates whether the code to sup-
port the POP QUEUE (PQ) Network Control Command will be generated.
MESSAGERECALL equals FALSE by default.

Example:
MESSAGERECALL = TRUE.

3-25

GLOBAL Section
cont

PROGRAM BOJ EOJ STATEMENT.
Syntax:
<PROGRAN B0OJ EO0J statement> 33=

PROGRAMBOJEDJS = <logical value>. 7/
<empty>

Semantics:

The <PROGRAN B0OJ EO0J statement> determines if the EXECUTE PROGRAM
CEX)» HALT APPLICATION PROGRAM (HAP)» and CLEAR BUSY FLAG (CBF)
Network Control Commands are to be supported. By default»
PROGRAMBOJEDJ equals FLASE. This statement should be set to VRUE
if Utility Programs are to be generated into the MCS.

Example:
PROGRAMBOJEDOJ = FALSE.

3-26

—

GLOBAL Section
cont

MONITOR TRACE STATEMENT.
Syntax:

<MONITOR TRACE statement> 2:=
MONITORTRACE = <logical value>. 7/

<empty>

Semantics:

The <MONITOR TRACE statement> specifies whether to generate logic

for the Debug Monitor. When MONITORTRACE is set» CHANGEREQUESTS
becomes TRUE by default to include the CMF Network Control Command.
Howevers, if CHANGEREQUESTS equals TRUE and MONITORTRACE equals FALSE»
the CMF Network Control Command is not recognized. By default,
MONITORTRACE equalds FALSE.

Example:
MONITORTRACE = VRUE.

3-27

GLOBAL Section
cont

STATUS REPORTS STATEMENT.
Syntax:

<STATUS REPORTS statement> 3:3=
STATUSREPORTS = <logical value>. /
<empty>

Semantics?

The <STATUS REPORTS statement> determines uwhether to include the
logic to support the following five Network Control Command status
report requests:

a. REPORT FILE STATUS (RFS).
be. REPORT PROGRAM COUNTERS (RPC).
Ce. REPORT PROGRAM STATUS (RPS).

de REPORT STATION COUNTERS (RSC).
e. REPORT STATION STATUS (RSS).

STATUSREPORYTS equals FALSE by default.

Example:
STATUSREPORTS = FALSE.

3-28

GLDBAL Section
cont

SYSTEM HALY STATEMENT.
Syntax:

<SYSTEM HALT statement> 3= SYSTEMHALTY = <«<logical value>. 7/
<empty>

Semantics:

The <SYSTEM HALTY statement> specifies if the code for handling the
HALT (HLT) Network Control Command is to be generated. [f SYSTEMHALY
is set TRUE» CHANGEREQUESYS is set TRUE. SYSTEMHALY equals FALSE

by default.

Example:
SYSTEMHALT = TRUE.

3-29

GLOBAL Section
cont

COMPILE OPTIONS STATEMENT.
Syntax:

<COMPILE OPTIONS statement> ::=
COMPILEOPTIONS = <string>. /7 <empty>

Semantics:

The <COMPILE OPTIONS statement> allouws for the speci fication of

UPL compiler control statements when COMPILE appears in the

<CONTROL statement> (refer to the Burroughs B 1700 Systems User
Programming Language {(UPL) Reference Manuals, form 1067170, for a
complete description of available options). <String> amust begin

and end with a quote and must not exceed 65 characters. By default,
COMPILEOPTIONS is set to ND LIST NO_DUPLICATES SUPPRESS USEDOTS.

Examples:
COMPILEOPTIONS = "LIST SINGLE™.
COMPILEOPTIONS = "LIST XMAP XREF"™.

3=-30

—

GLOBAL Section
cont

OBJECT-CODE FILE NAME STATEMENT.
Syntax:

<0BJECT CODE FILE NAME statesent> =:=
OBJECVCODEFILENAME = <file~-ID>. /

<eapty>

Semantics:

The <0OBJECT=-CODE FILE NAME statement> allows for the specification
of the MCS object code file name when COMPILE appears in the
<CONTROL statement>. <File=ID> is a B 1800/B 1700 file identifier.
By defaults OBJECTCODEFILENAME is MCSSRC/O0BJECT.

Examples:
OBJECTCODEFILENAME = MCS.
OBJECTCODEFILENANE = INVENTORY/MCS.

3-31

GLOBAL Section
cont

SOURCE=-CODE FILE NAME STATEMENT.
Syntax:

<SOURCE CODE FILE NAME statement> 3:=
SOURCECODEFILENAME = <file~ID>. /
<empty>

Semantics:

The <SOURCE=CODE FILE NAME statement> allows for the specification
of the MCS source code file name when GENERATE appears in the
<CONTROL statement>. <File-ID> is a B 1800/B 1700 file identifier.
By defaults SOURCECODEFILENAME is MCSSRCe.

Examples:
SOURCECODEFILENAME = MCS/SOURCE.
SOURCECODEFILENAME = SOURCE/FILE.

3-32

GLOBAL Section
cont

NAME=STACK ENTRIES STAVEMENT.
Syntax:

<NAME STACK ENTRIES statement> 2:=
NAMESTACKENTRIES = <integer>. /
<pmpty>

Semantics:

The <NAME STACK ENTRIES statement> specifies the maximum nuaber of
name=-stack entries that need to be reserved for vari ables declared
by user—-uritten code. This parameter is used to ensure that stack
sizes are large enough to execute an MCS which contains user=-uwrit-
ten code. If the value assigned in this statement is not large
enoughr» a name or value=-stack overflow error may oc:zur when the
MCS is executed. Name-stack entries are used to store inforzation
concerning variables. One name-stack entry is used for 2ach data
name that appears in a <DECLARE statement>. If a data name refers
to an arrays it requires two name-stack entries. 8y default»
NAMESTACKENTRIES is set to 0.

To achieve optimal memory user GEMCDS estimates the name=-stack space
required for its variable declarations and overrides the UPL coapiler
defaults. If user code is being includeds NAMESTACKENTRIES should
be set appropriately. The value given to NAMESTACKENTRIES s added
to the GEMCOS estimate. If user-written code is not includeds, the
<NAME STACK ENTRIES statement> may be ignorede.

Examples:
NAMESTACKENTRIES = 25.
NAMESTACKENTRIES = 100.

3-33

GLOBAL Section

cont

VALUE-STACK BITS SVATEMENT.

Syntax:

<VALUE STACK BITS statement> 3:=
VALUESTACKBITS = <integer>. /
<eapty>

Semantics:

The <VALUE STACK BITS stateaent> specifies the maxiaum number of
value=stack bits that are needed as a result of user -code data-name
declarations. This parameter is used to ensure that stack sizes
are large enough to execute an MCS which contains user-wuritten code.
If the value assigned in this statesment is not larg2z enough» a nanme
or value=stack overflow error may occur when the MCS is executed.
The value of a variable which requires 24 or less bits requires no
room on the value stack. Howevers, if a variable requires more than
24 bitss or if the variable refers to an arrays space must be
reserved on the value stack for that variable. By default»
VALUESTACKBITS equals zeroe.

In a fashion simitar to the <NAME STACK ENTRIES statement>», the
<VALUE STACK BITS statement> enables GEMCOS to achieve optimized
memory use. GEMCOS estimates the value-stack space required for
its variables and overrides the UPL compiler defaults. If user
code is included» VALUESTACKBIYS should be set appropriately. The
number assigned to VALUESTACKBITS is added to the GENCOS esti-
mates. If user—-written code is not incltudeds the <VALUE SYACK
BITS statement> may be ignorede.

Examples:
VALUESTACKBITS = 1000.
VALUESTACKBITS = 256.

GLOBAL Section
cont

CONVERSATIONLIMIT STATEMENT.
Syntax:

<CONVERSATIDNLIMIT statement> ::= CONVERSATIONLINMNIT = <integer> /
<empty>

Semantics:

The <CONVERSATIONLIMIT statement> allows the user to specify the
maximum number of stations that aay converse concurrently. The
integer specified must not exceed the number of stations declared
in TCL. The maximum Llimit allouwed by GEMCDS is b64. If there are
no CONVERSATIONSIZE statements declared for programs in the TCL»
the default value is zero. That iss no conversation capability
exists in the MCS. 1If conversational programss are presentr» the
default value is the number of stations declared in the TCL. If
zero is declared» no conversation capability exists in the MCS.

This statement establishes the number of reserved conversation
arease. The number of areas are reserved by powers of 2. When the
Limit is declareds the nearest 2 to the nth power that is greater
than or equal to the Limit is the number of areas reserved. Even
if the reserved area is Larger than the limits the maximums number
of concurrent conversations may not exceed the speci fied Llinit.

If the limit needs to be increased and the new limit exceeds the
number of reserved areas» a GENERATE. and re=COMPILE is ra2quired.

Examples:
CONVERSATIONLIMIT = 8.
CONVERSATIONLINMIYT = 5.

3-35

GLOBAL Section
cont

NCC OK RESPONSE STATEMENT.
Syntaxs:

<NCC OK RESPONSE statement> :33= NCCOXKRESPONSE = <string>. 7/
<empty>

Semantics:

The <NCC OK RESPONSE statement> defines the message to be returned
to a station upon successful completion of a Network Control Com-
mand. The <string> must begin and end with a quote and cannot
exceed eight characters in dlength. By defaults NCCRESPONSE is §
(dollar sign).

Examples:
NCCOKRESPONSE = "NCC OK".
NCCOKRESPONSE = "DONE".
NCCOKRESPONSE = "a(0K«™,

GLOBAL Section
cont

SIGNAL CHARACTER STAVEMENT.
Syntaxs:

<SIGNAL CHARACTER statement> 2:=
SIGNALCHARACTER = <character>. /
<eapty>

Semantics:
The <SIGNAL CHARACTER stateaent> defines the character whichs when
encountered in the first position of a3 messages signals the Net-
work Controller and the MCS that the message is a Network Control

Command. The character must be a single character enclosed in
quotes. By defaults SIGNALCHARACTER is "=",

Lxample:

SIGNALCHARACTER = "3=.

3-37

GLOBAL Section
cont

AUDIT RECORD SIZE STVATEMENT.

Syntax:

<AUDIT RECORD SIZE statement> :33= AUDITRECORDSIZE = <integer>. /
<empty>

Semantics:

The <AUDIT RECORD SIZE statement> controls the size of the audit
record by specifying the nuaber of bytes in each rezorde Imcreasents
of 180 are the only allowable values. If a value other than an
increment of 180 is specifiedr a warning is issued and the next
highest increment of 180 is selected. By default, AUDITRECORDSIZE

equals 180.

Examples:
AUDITRECORDSIZE = 180.
AUDITRECORDSIZE = 540.

GLOBAL Section
cont

AUDITY PAGE SIZE STATEMENT.
Syntax:

<AUDIT PAGE SIZE statement> 3:= AUDIVTPAGESIZE = <integer>. /
<empty>

Semantics:

The <AUDIT PAGE SIZE statement> controls the size of the audit
files by specifying the number of records in each page (i.e.» area)de.
There are always 40 pages. By defaults AUDITPAGESIZE equals 10000.

Examples:
AUDITPAGESIZE = 500.
AUDITPAGESIZE = 2000.

3-39

GLOBAL Section
cont

AUDIT FILE PACK ID STATEMENT.

Syntax:

<AUDIT FILE PACK ID statement> 3:= AUDITFILEPACKID = <identifier>.
/ <empty>

Semantics:

The <AUDIT FILE PACK ID statement> allows MCS audit files te re-
side on other than the system packe It is recommended that audit
files reside on a user pack to increase throughput and decrease
the time spent in audit and recovery. Identifier amust bz 10
characters or less in lengthes By default, audit files reside on

the system packe.

Examples:
AUDITFILEPACKID = MCSPACK.
AUDITFILEPACKID = AUDITPACK.

GLOBAL Section
cont

CHECKPOINT INTERVAL STATEMENT.

Syntax:

<CHECKPOINT INTERVAL statement> :2= CHECKPOINTINTERVAL = <integer>.
/ <empty>

Semantics:

The <CHECKPOINT INTERVAL statement> determines the length of time
between checkpoints taken by the MCS during auditing. Specifying
too small a number causes the MCS to do an excessive number of
1/0s» thereby reducing throughput. By defaults, CHECKPOINTINTERVAL
equals 60 (seconds).

Examples:
CHECKPOINTINTERVAL = 30.
CHECKPOINTINTERVAL = 90.

3-41

GLOBAL Section

cont

MAXIMUM TEXT SIZE STATEMENT.

Syntaxs:

<MAX TEXT SIZE statement> 33= MAXTEXTSIZE = <integer>. /
<eapty>

Semantics:

The <MAX TEXT SIZE statement> defines the sizes in :-haracterss, of
the longest message that can pass through the MCS. MAXTEXTSIZE
has a direct affect upon the memory requirements of a GEMCOS MCS.
It is best to keep MAXVTEXTSIZE as low as possible. If the MCS has
AUDIT specified as TRUE» the user should never attempt to change
MAXTEXTSIZE in a REGENERATE MCSTCL run’ otheruwiser, old audit files
will have an incompatible record length. Moreovers an increase in
MAXTEXTSIZE usually causes a GENERATE and COMPILE to be required
so that the MCS can have a larger value stack. If AUDIT is FALSE»
MAXTEXTSIZE can be safely lowered on a REGENERATE MCSTCL run. The
default value for MAXTEXTSIZE is 125.

When formatting takes placesr resultant messages may contain con-
trol characters such as tabss carriage returns», etc. Each control
character takes up one or more positions in the formatted aessage.
An allowance for these characters must be reflected by
MAXTEXTSIZE.

Examples:
MAXTEXTSIZE = 1920.
MAXTEXTSIZE = 300.

—

GLOBAL Section
cont

QUEUE DEPTH STATEMENT.
Syntax:
<QUEUE DEPTH statement> 2:= QUEUEDEPTH = <integer>. /
Semantics:
The <QUEUE DEPTH statement> specifies the number of messages which

may be outstanding in the queue for the MCS. <Integer> may range
from 1 to 1023. By defaul ts QUEUEDEPTH equals 20.

Examples:
QUEUEDEPTH = S.
QUEUEDEPTH = 75.

3=43

GLOBAL Section

cont

QUEUE BUFFERS STATEMENT.

Syntax:

<QUEUE BUFFERS statement> ::= QUEUEBUFFERS = <integar>. /
<empty>

Semantics:

The <QUEUE BUFFERS statement> specifies how many memory buffers

are available to the MCS queue before messages begin to overflow

to disk. The value assigned to QUEUEBUFFERS directly affects the
memory requirements of the on-line system« A value too small or
too large can degrade systeam throughput. It is suggested that the
user experiment with this statement to find the most efficient
value. QUEUEBUFFERS must not have a value greater than QUEUEDEPTH.
<Integer> may range from 1 to 16. By default, QUEUEBUFFERS has

the value 1.

Examples:
QUEUEBUFFERS = S.
QUEUEBUFFERS = 8.

GLDBAL Section
cont

QUEUE NAME STATEMENT.
Syntax:

<QUEUE NAME statement> ::= QUEUENAME = <remote file-1D>. /
<empty>

Semantics:

The <QUEUE NAME statement> specifies the external file name of the
MCS queue (i.e.» the remote file opened by the MCS). <Rezmote
file=ID> should appear in a FILE statement in the user®s Network
Definition Language source deck. MCSQUEUE is the de fault value of
QUEUENANE.

Example:
QUEUENAME = MCSRMT.

3-45

GLOBAL Section
cont

SIMULATION STATEMENT.
Syntax:

<SIMULATION statement> 3:= SIMULATION = <logical value>. /
<empty>

Semantics:

The <SIMULATION statement>» when set» causes the MCS to open a
queue file instead of the usual remote file. The program MCSSIN
can be used instead of the Network Controller to simulate input
via the card reader. Qutput is simulated to a line printer using
the MCS Monitor Trace code. The source code for MCSSIM is MCSIAMS.
SIMULATION equals FALSE by defaulte.

Example:
SIMULATION = FALSE.

3-46

GLOBAL Section
cont

MONITOR TRACE ON STATEMENT.
Syntax:

<MONITOR TRACE ON statement> 3=
MONITORTRACEON = <logical value>. /
<empty>

Semantics:
The <MONITOR TRACE ON statement> allows the user to set or reset

the debug monitor flags enabling the initialization procedure to
be traced. By defaults MONITORTRACEON equals FALSE.

NDOTE
The CMF command can be used to set or
reset any or all of the monitor flags as
soon as initialization is complete.

Example:
MONITORTRACEON = FALSE.

3=&7

GLOBAL Section

cont

FORMAT AND FUNCTION STATEMENT LIST.

Syntax:

<FORMAT AND FUNCTION statement List>
23= <function declaration list>
<format declaration list> 7/
<empty>

<function declaration list> 2:= <function declaration> /
<function declaration List>
<function declaration> / <eapty>

<format declaration list> 2:= <format declaration>» /
<format declaration list>
<format declaration»

Semantics:

In addition to the functional capabilities of the basic version of
B 1800/B 1700 GEMCOS» the advanced version includes a Message fFor-
matting module. The Message Formatting module can be us2d to
support forms requestss modify the test of messages» and/or ensure
Application Program device independence. Users of the Basic Ver~-
sion will find that an atteapt to invoke the formatting
capabilities of GEMCOS results in a syntax errore.

The Forms Request function provides station operators with the
ability to enter a <message~ID> (refer to <DEVICE section>) and to
receive in return a formatted screen with blank data fields.
Application Programs may also invoke the Forms Reguast function
causing formatted screens with blank data fields to be displayed
at stations in the networke.

The text of messages entered at stations can be modi fieds re-arranged
and/or supplemented prior to being routed to the appropriate
Application Program. This process is referred to as input format-
tings The text of messages written by Application Programs can de
modified» re=-arranged and/or placed into data fields of formatted
screens before being sent to stations and are referred to as out-

put formatting.

GLOBAL Section
cont

When a network is comprised of tuo or more types of terminal
devicess the stations may be grouped into several device classifi~-
cations in the <DEVICE section>. A set of formats is defined for
each device classification. When invokeds the formatting module
recognizes the device classification of the station involved and
applies a format from the set associated with that :lassification.
As a result, messages sent or received by Application Prograss can
have a standard record layout regardless of the device type of the
destination/source station. MNoreovers the Application Program need
not be affected by the different control characteristics of different
devices.

There are two areas of the Transaction Control Language which
relate to formatting: the <DEVICE section> and the <FORMAT AND
FUNCYION statement Llist>. The <DEVICE section> is used to identi-
fy which messages are to be formatted and with which formats. The
<F ORMAT AND FUNCTION stateament list> is used to defi ne formats and
functions. A format specifies how a screen is to b2 built and/or
how the message text is to be modified.s A function defines a
translate table which can be referred to by a formate.

The <FORMAT AND FUNCTION statement list> is composed of a

<function declaration list>» which can be <eapty>, folloued by a
<format declaration list>.

3-49

GLOBAL Section

cont

FUNCYION DECLARATION.

Syntaxs

FUNCTION <function part List>.

<function declaration>

<function part List> <function part> /

<function part list> » <function part>

<function identifier>
<justification and fill part>
(<translation list>)

<function part>

<identifier>

.
(1]
i

<function identifier>

<translation list> <translate pair> /

<translation list> » <translate pair>

<external string> 2 <internal string>

<translate pair>

<string>

<external string>

i

<internal string> t= <string>
<justification and fill part>
2= {EXTERNAL: <function type> » INTERNAL:

<function type>] / <empty>

<function type> $3= INTEGER 7 ALPHA /7 UNEDITED

Semantics:?

The <function declaration> defines functions which an b2 used in
a translate <item phrase> of a <format declaration»>. A <function
identifier> is required as the first argument of the translate
<item phrase>. The translate <item phrase> allows a format to
translate a string of length n into a string of length m where
0<n<7 and O<m<7. <String> is therefore limited to a maximum of
six characterse. Up to 1023 functions may be declarad.

A <translate pair> associates an <external string> with an
<internal string>. On inputs, an <external string> is translated
into the associated <internal string>. On outputs an <internal
string> is translated into the associated <external string>. When
an Application Program deals with the text of a messages it must
use an <internal string> in a translate fielde When an operator
deals with the text of a message at a stations an <external
string> is usede.

GLOBAL Section
cont

Refer to FORMAT DECLARATION for examples of FUNCTIONS used in
FORMAT.

The <justification and fill part> is described in the following
example:

Example:

FUNCTIDN GENDER ("MALE":"1"» "FEMALE™:™2").

FUNCTION DIGITIN ("1":"0ONE™, "2":"TWO™» "3 :"THREE")»

DIGITOUY C(EXTERNAL:ZALPHA» INTERNAL:INTERNALSINVEGER]
("ONE®":"1"» "TUO":2"2", "THREE™:"3").

As the translate module searches for a match between the source
text to be translated and an <internal string>/<external string>,
both the source text and the <internal string>/<external string>
are placed into character strings of length six for comparison.
The <justification and fill part> enables the user to control the
piacement of the source text and the <internal string>/<external
string>» into these character strings. If the <justi fication and
fill part> is <empty>» it is assumed that both the <external
string> and <internal string> are unedited. By using the
<justification and fill part>» the user may make either of these
strings UNEDITED» INYEGER», or ALPHA.

An UNEDITED string of less than six characters in length is right
justified within a b-character string with leading nulls (4700").
A null compared with any character is always considered a true
comparison by the translate function.

3-51

GLOBAL Section

cont

3=52

An integer string of less than six characters is right justified
Wwith leading zeroes. An alpha string of less than six characters
is left justified with trailing blankse.

If within a given function the length of each <internal string> is
the same and the length of each <external string> is the same, it
makes little difference whether the strings are UNEDIVTED» INVEGER»
or ALPHA. However, if strings vary in lengths, using INTEGER or
ALPHA strings can help to avoid confusion. For examples suppose a
function is declared as follows:

FUNCTION TEST (™11":3"SOME"» ™17 3"ME™).

Upon inputs, if the translate function were to search for an
<external string> of 1, it would get a match with 11 because of a
NNNNN1l. The source text after justification will compare as equal
to NNNN11l, the <external string> after justification (where N is a
null). A similar phenomenon would occur on output i f the trans-
late function was searching for an <internal string> of ME:

NNNNME would match NNSOME. This problem could be avoided by
declaring the function as follows:

FUNCTION TEST [EXTERNALZINTEGER>INTERNAL:ALPHA]
("11":3"SOME"» "1%3"ME").

With this declarations, if the source text to be transiated on
input were "1™, it would be converted to 000001. It would not
match 000011, but would successfully match 1 justified as an
integer. Likewises source text on output of ME would be converted
to MEBBB (where B is a blank)s it would not match SIMEBB», but
would match ME justified as an alpha stringe.

FORMAT DECLARATION.
Syntax:s
<format decl aration>

<format part list>

<format part>

<format identifier>
<special action part>
<special action>

<format description>

<local declaration part>

<yvariable declaration list>

<variable declaration>

<variable identifier>
<optional location specifier>
<editing specifications>

<editing phrase list>
<editing phrase>
<location specifier>

<sign>

<editing string>

[1]
[1]

[1]

(1]

(1]

[1]

[1]

]

[1]

L 1]

(1]

*"”

(1]

(1]

[1]

”

i

1}

H

1]

it

]

]

GLDOBAL Section
cont

FORMATY part list>.

<format
<format

part> /7

part List> » <format part>

<format identifier>
<special action part>
<format description>

<identifier>
f<special action>] / <zmpty>
RESIDENT

(<local declaration part>
<editing specifications>)

VARIABLE
<yariable declaration lList>»5 /
<empty>

declaration> /
declaration>,
deciaration list>

<var iable
<variable
<variable

<yariable identifier>
<optional location specifier>
FDR <integer>

V1 /7 V2 7 V3 /7 V&4 / N5 7 Vb

3 <integer> / <empty>
<editing phrase list>
<edi ting

<editing
<edi ting

phrase> /
phrase list> »
phrase>
<editing string> /
<item phrase> /
<location specifier>

3 <sign> <integer>

+ / = / <empty>

<simple string> /7 <skip field>

GLOBAL Section
cont

<skip field> $= X <integer> /7 X(<delimiter>)

"
.
1}

<item phrase> <repeat part> <item type>

<field width> 7

<repeat part>

(<editing phrase List>) 7/
T(<function identi fier> » <item type

<field width> » <i nternal size>)

<repeat part> := <integer> /
<update variable>
<variable identifier> or <integer> /

<empty>

”
"
]

<update variable> <variable identifier> 2 /7 <empty>

A/717 873

"
"
]

<jtem type>

<identifier>

<function designator>

1]

<field width>

(1]
(1]

<fnteger> /
(<variable field specifier>)

<deltimiter> » <internal size>

<variable field specifier>

i

<internal size> <integer>

<del imiter> <EBCDIC unit string> /

<HEX unit string>

1]

<EBCDIC code> <EBCDIC string> /
<hexadecimal code>
<hex adecimal string>

<simple string>

.
.
1}

<hexadecimal string> "<hex string>”™

<hex pair> / <hex string> <hex pair>

<hex string>

<hex character> <hex character>

[1]
(1]

<hex pair>

<hex character> /

"
0"
[}
[+ -]

37& 75761717
Bs7C/7D7EVZF

<hex unit string> <hexadecimal code> "<hex pair>"

<EBCDIC code>

8 / <empty>

(1)
(1]

<hexadecimal code> 4

3=54%

Pu—

GLOBAL Section
cont

Semantics?

The <format declaration> is used to define how a screen is to be
built and/or how message text is to be modified. When formats are
declared in the <format declaration>s the <DEVICE section> is used
to indicate which formats are to be applied to which messages. Up
to 1023 formats may be declared.

The <format part list> allous several formatss separated by coammas»
to be described in a single <format declaration>. Gtven though the
syntax allows several formats to be described in one <format
declaration>, it is good practice to define one format per <format
declaration>. When a syntax error 35 encountered in a <format
part>s the TCL scanner skips past any remaining <format parts> to
the next <format declaration>. Syntax errors in the skipped
<format parts> are not flagged until the <format part> in error is
corrected. If one format is defined per <format dec laration>,

more syntax errors can be caught in each run of the TCL compiler.

Each <format part> associates a <format identifier> with a parti-
cular set of message formatting instructions. The <format identi~-
fier> is referenced in a <FDRMATSIN statement> and/or a
<FORMATSOUT statement> of the <DEVICE section>.

The <special action part>, if present, indicates whe ther the
format is a resident format. A resident format is kept in an
array in memory instead of on diske This facility is provided for
small, frequently used formats. It is intended to save the input/
output overhead that would otherwise be required to retrieve a
format from disk before using it. This option should be used with
care since its overuse could require significant amounts of
memory.

The <format description> consists of an optional <local
declaration part> and the <editing specifications> enclosed within
parentheses. Refer to <repeat part> under Editing Specifications
for a discussion of the <local declaration part>. (Readers
unfamiliar with GEMCOS formatting should refer to BASIC GEMCDS
FORMATTING PRAGMATICS before continuing.)

GLOBAL Section

cont

The <editing specifications> describe the order and length of the
fields of a message as well as the manipulation of the message
buffer pointers. The <editing specifications> is a list of
<editing phrases>. An <editing phrase> can be an <editing string>»
a <location specifier> or an <item phrase>.

An <editing string> is either a <simple string> or a <skip field>.
The <simple string> is used to place a Lliteral field into a
formatted message. A <simple string> can be an <EBCDIC string>
such as "XYZ™ or a <hexadecinal string> such as 4*00" (carriage
return). The <simple string> is used extensively when building
forms for screen devices. It can be used to create the descrip-
tive text of the protected areas as well as the necessary control
characters. A <simple string> causes the pointer into the for-
matted message buffer to be updated to the right by the length

of the string. The pointer into the source message buffer is
unaffected by a <simple string> <editing phrase>.

Upon input the <skip field> causes text in the terwmi nal message
buffer to be skipped (by updating the terminal message buffer
pointer). The number of characters skipped can be defined by an
<integer> or a <delimiter>. For examples X3 causes three charac-
ters to be skipped while X{("»™) causes text up to and including
the next comma encountered t> be skippede.

Upon outputs XB causes eight spaces to be placed into the terminal
message buffer while updating the pointer. X(<delimiter>) is
undefined for output messages. The program message buffar pointer
is unaffected by a <skip field>.

The <location specifier> is used to manipulate the program message-
buffer pointer without affecting the terminal message-buffer
pointer. By manipulating the program message~buffer pointer»
fields can be skippeds re=-ordered and/or re-used. There are two
variations of the <location specifier> differentiated by the
existence of an optional <sign>. When a <sign> is presents» the
program message~buffer pointer is adjusted by <integer> positions
to the left (<sign> is a "=") or to the right (<sign> is a "+%).
If there is no <sign>, the program message~buf fer pointer is set
to position <integer>. Care must be taken to keep the pointer
within the bounds of the program message buffer. Upon inputs the
user should also be careful not to overlay good data in the
program message buffere.

An <item phrase> defines a field of a formatted message. A field
can be comparatively simple such as six alphanumeric characters»
or rather compltex» such as a repetition of several variable-length
subfields. 1In order to encompass the wide variety of possible
fields» several forms of the <item phrase> are avail able. ALl
involve at least one <item type>» <field width> pair.

P

GLOBAL Section
cont

The <item type> determines how a field or subfield is to be
editedes Four <item types> are available: A» B8 I and J. A
denotes an alphanumeric field» and B specifies a tabbed alphanu-
meric field. Alphanumeric fields may contain any characters, and
teading blanks are considered significant. Truncation or blank
filling occurs on the righte I denotes an integer field while J
specifies a tabbed integer field. Integer fields may only contain
digits and/or blanks except for imbedded blanks. They are trun-
cated or right justified with zero filling on the left.

The <field width> determines the length of a field or subfield.
Fields can be fixed or variable in lengthe.

The simplest form of the <item phrase> is an alphanameric or
integer field with an <integer> <field width> such as A6 or I9.
An A6 <item phrase> would result in the move of six characters
from the buffer containing the raw message to the formatted mes-
sage buffer. An <item phrase> of 19 would move ning characters
subject to the editing rules already mentioned. Th2 unprotected
areas of formatted screens are usually composed of fixed alpha-
numeric or integer fields.

A more pouwerful form of the <item phrase> employs a <variable
field specifier> <field width> such as A("¢%",5) or I("+",8). The
<internal size> determines the size of the field in the progranm
message buffer.

NOTE
While field lengths of the terminal
message buffer may vary, field lengths
of the program message buffer are always
fixed. The <delimiter> is used to
signify the end of the field in the
terminal message buffer. The field
begins where the previous field endse.

Upon inputs a variable-length field is isolated based on the end
of the lLast field and the <delimiter>. It is moved into the pro-
gram message buffer justified according to the <item typz2>. The
<delimiter> is not considered one of the characters of the field
and» therefores is not placed into the program message buffer.

Upon outputs a string of characters of length <internal size> is
obtained from the program message buffer. It is coapressed by
truncating trailing blanks or leading zeroes dependi ng on the
<item type>e. The compressed string is placed into the terminal
message buffer» and the <delimiter> is inserted after th2
compressed stringe.

3-57

GLOBAL Section

cont

3-58

During both input and outputs the terminal message buffer is
updated to the position following the <delimiter>s while the pro-
gram message buffer is moved to the right by <internal size>
positions.

Tabbed fields» where the <item type> is "B" or "J%", are similar to
variable~-length fields on input and the same as fixed fields on
output. Input» a tabbed field can end early if the tab character
(4"05") is encountered. However, unlike a variable field» where
the <delimiter> must be present» the tab character is not required
to end the field. If enough characters are founds» the field ends
automatically. For exampler a B10 <item phrase> on input causes
characters to be moved from the terminal message buf fer to the
program message buffer until either ten characters have been

moved or a tab character is encountered. The program message-
buffer pointer is moved ten characters to the right. Th2 terminal
message~buffer pointer 3s left pointing to the eleventh character
or to the character following the tabs whichever happens first.

If the transfer is teraminated by a tab characters» trailing blanks
are placed in the program message buffer to fill out all ten
character positions. The tab character is not placed into the
program message buffer.

Upon outputs BS would achieve exactly the same results as A5 and
J7 would behave the same as 17. The tab character is not placed
into the terminal message buffer as is done with the <delimiter>
of a variable-length»- nontabbed field.

The default tab character (4"05") can be changed by using a
<variable field specifier> along with the B or J <item typed>.

J ("+«",5) is5 the same as JS5 except that "+" i§s the tab character
instead of 4"05". B(4"05",10) is identical to B10.

Each <item phrase> discussed thus far may be repeated by placing
a <repeat part> in front of the <item type>. A <repeat part> may
be fixed or variable.

A fixed <repeat part> is designated by an <integer>. It is a
shorthand method of representing an <editing phrase list> where
each <editing phrase> is identical. For examples 2A6 is the same
as AbsAb.

A variable <repeat part> can only be used on output. It is useful
for messages which have a variadble number of fields of repeated
data such as taples with columns of values. These messages must
haver» as one of the data fields» a counter specifying the number
of times a particular field will occur.

GLOBAL Section
cont

If a message is to contain a variable <repeat part>r, the format
applied to the message must have a <local declaration part>. The
<local declaration part> specifies where in the message the
counters governing the occurrence of the repeated fields are to be
found. Values for variables declared are the first items
extracted from the program message buffer. During sach variable
assignment» the program message-buffer pointer is ad justed by a
combination of the <optional location specifier> and the length of
the counter field. The length of the counter field is detersined
by the <integer> following the keyword FOR. The value of the
counter contained in the program message buffer must be expressed
as EBCDIC digits with a value not greater than 255. As many as
six variables can be declared per formate.

After a local variable has been set to a value extracted from the
program message buffer» it can be referred to as a <variable
identifier> in a variable <repeat part>. A variable <repeat part>
consists of an optional <update variable>, a <variaple identifier>s
the keyword OR and an <integer>. The object of the <rep2at part>
is repeated either the number of times referred to by <variable
identifier> or <integer> times» whichever is less. If the <update
variable> is presents, its variadle identifier is set to <variable
identifier> minus the number of times the repeat object wuas
repeated. For examplesr V2 or 8 would cause its object to be
repeated ¥2 timess» but not more than eight times. If V2 had a
value of nine, ¥3:V2 OR 3A5 would cause A5 to be repeated three
times and V3 would be set to 6. The original value of V3 is lost.
If V2 had been zeros the AS field would not occur and V3 would be
set to zeroe.

An <editing phrase list> enclosed in parentheses is an even nmore
complicated <item phrase>. This form can be thought of as a field
composed of several subfields. An <editing phrase List> enclosed
in parentheses can be the object of a <repeat part>. <Editing
phrase lists> can be nested to 32 levels of parentheses.

Another complicated form of the <item phrase>, T(<function
identifier>, <item type> <field width>» <internal size>)» is a
reference to a translate function. The <function identifier>
refers to a function which must have been defined in a <function
declaration>. The <item type> <field width> descrines a field in
the terminal message buffers while <internal size> describes a
field in the program message buffer.

3-59

GLOBAL Section
cont

FORMATTING ERRORS . '

When an error is detected while formatting an input messagesr the MCS
sets the format error field of the Common—area header to a nonzero
value as described below. The message is then sent to the application
program for which it was bounde.

When an error is detected while formatting an output mess ages the MCS
message is still sent to the destination stations buts, in additions» an
error message is sent to the control station specifying what type of
error occurred.

Ercor Type Description
1 Destination pointer out of bounds
2 Source pointer out of bounds
3 Nondigit in integer field
4 Missing skip deliamiter
5 Attempt to use variable repeat on input
6 Missing delimiter or variable field too long
7 Invalid string in translate field

Only the first error encountered is reported; howevers, the MCS attempts
to continue formatting a bad message. When a type-=3 formatting error
occurss» the nondigit is placed into the erroneous field. For type-6
errors, significant text may be truncated in an atteamapt to force exces-
sive data into the program message buffer. Type=7 errors result in
question marks being placed into the erroneous field. Results are
undefined for the other types of errorse.

Tables 3=1 thru 3-5 list five graded examples (example sets 1 thru 5)
of three increasingly difficult formats applied to input messages and
output messagese.

Example set 5 (table 3-5) uses the following function declarations:

FUNCTION GENDERC™ MALE":"1","FEMALE™:"2%").

FUNCTION NUMICT"ONE":"1","TWO 72", "THREE™:"3","F QUR":"4",
"FIVE" " S5% s *SIX"2"b"»"SEVEN"Z"7"H»"EIGHT™2"8",
“NINE":"9","TEN":"10"»"ELEVEN":"11">»
"TWELVE®™:"12").

FUNCTION NUM2 CEXTERNALSALPHA, INTERNALZINTEGER]

("ONE®:z"1"»"THO":2"2"» "THREE™:"3"»"F OUR™:"4"»
"FIVE® "S5 "SIX™2"6"»"SEVEN":"7">"EIGHT™"2" 8",
"NINE":" 9", “TEN":"10"»"ELEVEN":"11">»
"THELVE":"12").

FUNCYION DAY ("1™:"SUN"»"27"2"MON","3""TUE"»"4": "HED">»
"5"I"THU"» 6" "FRI","7T":"SAT").

3-60

Py

GLDBAL Section
cont

Input/
futput

Input/
Cutput

Input
Input

Input/
Qutput

Input
Input

Input”/s
Qutput

Input
Input
Qutput
Input

Cutput

Cutput

Cutput

Message As It
Appears at the
——ml-‘ —

ABC1234XY

ABC 4XY
ABC 4 XY

ABCOOO04XY

AB 5678XY
AB GGGGXY

AB XY

ABCDE
AB«CDE
AB+CDE
RIGHT
RIGHTFACE

D

NAME: [HARRYIC

Name : 1C

<gditing specifications>
Applied to Mess age

——_In Trcapsit

A3»J4,A2

A3,14,A2
A3,14,A2

A3s14,A2

A3, X4,A2
A3,X4,A2

A3, X4,A2

A2,"x", A3
A2, 2", A3
A2,"x", A3
AS,8"FACE"

AS5,8"FACE"™

"NAME: ([",A5,"1",4™12"

"NAME: [",A5,"1",4"12"

Message As It
Appears to the
-User Program_

ABC1234XY

ABCO0O4XY
ABCC004XY

ABCO0004XY

AB XY
AB XY

AB XY

AB*CDE
AB*=+CD
ABCDE
RIGHTFACE

R IGHT

HARRY

(forms request)

Figure 3-4.

Example Set 1 - Formatti

ng

Specifications Applied to
Input and Output Messages

3-b61

GLOBAL Section

cont
Message As It <Editing specifications> Message As It
Input/ Appears at the Applied to Mess age Appears to the
Jutput ~--lerminal _ _ In_Irapsit -User Program._
Input 1234XY I6 1234xY
CFMTERR set to 1)
Qutput 1234XY 16 1234XY
(control station
notified of
error)
input/ ABCDXY2 45A45315 A3 XYZABCD
Qutput
Input/ ALPHA a3,AS ALPHA
Qutput
Input/ AB123XY456 A2,35,135e35A2,38,13 ABXY123456
Cutput
Input/ ABCD 2A2 ABCD
OQutput
Input/ AB12CD34 2CA2,12) AB12CD 34
Qutput
gutput 01728752 1252¢"/%» 12) 012852
Input 01728752 12,2(X1,12) 012852
Qutput « AB CD EF Variable V1 for 2; 0 3ABCDEF
"a®,¥1 or S(X2s A2)
Qutput XX 1 2 3YY 4 5 variable V1 37 for 2, XXYY000S512345

v2 35 FOR 27 4d1»

A2,39,¥2: V1 or 3(X1,11)»
a3,A2,312,V2 or 3(x1nI1)

3-62

Figure 3-5.

Example Set 2 - Formatting

Specifications Applied to
Input and Dutput Messages

GLOBAL Section
cont

Input/
futput

Input/
Qutput

Input/
Qutput

Input’s
Sutput

Input

Input

Input

Input

Input

Input

Input

Input

Message As [t
Appears at the
—--Jlerminat

<fditing specifications>
Applied to Message
In Transit

15P

Ex

Ex15P

ABCDEFG+

1234S«AB

T
A1B2AXYZ
8

A182C3XYZ

T
A182C3AXYZ
8

T T
12A34A
8 8

T
1234564
8

17
AA
88

IC"P"»5)

A("x",3)

A("%",3), I("P",5)

AC"+%»4)

I("*",4)s A2

86,83

B6,83

86,83

245

245

245

Message As It
Appears to the

-User Prograam
00015

E

E 00015

ABCD

(FMTERR set to ¢)
1234A8

C(FMTERR set to 6)
AlB2 XxYZ
Al182C3xYZ

A1B2C3

0001200034

1234500006

0000000000

Figure 3-b6.

Example Set 3 - Formatting
Specifications Applied to
Input and OJutput Messages

3-53

GLOBAL Section

Input/
futput

Input/
Qutput

Input/
Qutput

Input/s
Cutput

Input

Input/
Qutput

Input/
Qutput

Input/
Qutput

Input
Input
Input

Input

Cutput

Cutput

Qutput

Message As It
Appears at the

<gditing specifications>
Applied to Message

—Jerminal In_Irapsit
A182 xYZ 86,83

0001200034 2J5

ABCDEF123456 BC"*",6)s J("+ ™5 6)
Axl+ B("*",6)5 J("+"»6)
A 00001 B("*",6)e J("+ "5 6)
ABCDEF 123456 3(A25,3+2),33,3(12,3¢2)
1JGHEFCDAB A9, 4CA2,3=46)5 A2
XYZ12 345, ABC A3 XC™s» ™) »A3

XYZ, ABC A3, X("»")»A3

XYZ »ABC A3,X(", ™) ,A3
XYZABC AIsXC"» ") 4A 3
ABCDEFGHI "ABC","DEF",»"GHI"
)

CRESULTS=0053
4

D
CRESULTS=0000
4

4"0C","RESULTS=", I4

4"0C",»"RESULTS="»14

Message As It
Appears to the
-User Program

Al82 XYz

0001200034

ABCDEF 123456

A 000001

A 000001

AB12CD 34EF 56

ABCDEFGHIJ

XYZABC
XYZABC
XYZABC

XYz
(FMTERR set to 4)
QRsST123

0053

(forms request)

3-64

Figure 3-7.

Example Set & = Formatting

Specifications Applied to
Input and Output Messages

GLOBAL Section
cont

Input/
Qugput

Input
Input/
Qutput

Input/
Qutput

Input
Input

Input

Qutput

Input

Qutput

Input/
Qutput

Input/
gutput

Mess age As It
Appears at the

<gditing specifications>
Applied to Message
[n_Transjt

Jerminal

ONE . MALE

FOURFEMALE

TWQ3

SIXsX
ELEVENSX

TWENTY2X

(FQUR)

WED

2?2?22
(control
station
notified of
error)

3

ONE X

TC(NUM1,A3,1)» TCGENDER>
A6,1)

TCNUM1rAGL»1)s TCGENDER>»
A6,1)
TONUMZ,A3,51)» TCDAY»AL1,3)

TCNUM2, AC"2"+»6)52)sA1
TCNUM2, AL "2%»56)»2)rA1

TCNUMZ2, AC"2%5»6)»2)rA1

*(",T(NUM2,AC(™) "5 6),2)

T(DAY,A3, 1)

TC(DAY,A3 1)

TC(DAY»A1ls 3)

TINUM2,A6s1)5A1

Message As It
Appears to the
-User Program_

11

42

2TUE

06X

11x

22X
(FMTERR set to 7)

04

?
(FMTERR set to 7)

2

WED

1X

Figure 3-8.

Example Set 5 = Formatting
Specifications Applied to
Input and Output Messages

3-65

GLOBAL Section
cont

BASIC GEMCOS FORMATTING PRAGMATICS. This discussion attzapts to
explain the basic concepts of formatting. It should prove helpful to
the user who has not yet worked with GEMCOS formattinge

The MCS uses two buffers when formatting a message: one buffer con-
tains the message as it appears at the terminal? the other contains

the message as it appears to the Application Program. A message con-
sists of a sequence of one or more fields just as a disks tape or card
record is composed of a sequence of fields. A format describes the
relationship between the fields of a message that are written/read by a
program and the fields of the message that are received/transaitted by
a terminal.

Input formatting causes a message in the terminal message buffer to be
moveds field by fieldr» to the program message buffer. O0uatput forsat-
ting moves fields from the program message buffer to the terminal
message buffer. When a field is movedr, whether by input or output for-
matting, it is moved under the control of an <item phras2>» the
terminal message~buffer pointer and the program message<-buffer pointer.

An <item phrase> consists of a field type» a field length and an
optional field delimiter. The field type defines which characters are
valid in a field and controls its justification and fill. The field
length determines the number of characters in the field. The field
delimiter» if present, designates the character which ends a field.

The Terminal message~-buffer Pointer (PT) refers to a particular charac-
ter position in the terminal message buffer. Likewiser the Progranm
message~buffer Pointer (PP) refers to a particular character position
in the program message buffer.

Pointers PT and PP both begin peointing at the first character

(position 1) in their respective aessages. As the editing phrases of a
format are applied to data fields» the data is moved from one message
buffer to the others and the pointers are updated. Unless spz2cifically
instructed to do otherwises the pointers are updated by moving to the
right by the number of characters movede.

Exanmple:

Assume that the message "ABC 123" was received from 2 terminal and
it was determined that the format (A3,1I4) was to be applied. The
situation would initially appear as depicted in figuare 3-9», with
the message placed in the terminal message buffer» and the

program message buffer cleared and the pointers initialized.

The A3 <item phrase> controls the move of the first threz alpha-
numeric characters as depicted in figure 3-10. As zan be seen»
"ABC"™ is placed into the program message buffer», ani the pointers
are moved three positions to the righte.

e

3-66

GLDBAL Section

cont
PT PP
ABC 123
Terminal Message Buffer Program Message Buffer
Figure 3-9. Initial Contents of Terminal
and Program Message Buf fers
PT PP
ABC 123 ABC
Terminal Message Buffer Program Message Buffer

Figure 3-10. Contents of Terminal/Message
Buffers After Move Caused
by A3 <item phrase>

Thens the 14 <item phrase> causes " 123" to be moved. During
outputs, integer fields are right justified with zeroes filled and/
or blanks converted to zeroes. This "0123" is placed into the
program message buffer. Figure 3-11 shows the final situation. At
this point», the program message buffer is sent to the appropriate

Application Program.

A higher degree of formatting flexibility may be achieved by moving the
pointers without moving text. The Terminal message=-buffa2r Pointer (PT)
may be advanced without affecting the Program message=-buf fer pointer
(PC) by using a <skip field> (i.e.» the X <editing phrase>)? but only
PT may be advanced. PP may be moved in either direction without
affecting PT by using a <location specifier>.

3=b7

GLOBAL Section

cont
PT PP
ABC 123 ABC0123
Terminal Message Buffer Program Message Buffer

Figure 3-11. Contents of Terminal/Message
Buffers After Move Caused
by I&4 <item phrase>

Figures 3-12 thru 3-18 illustrate
(A2534,A15X1,335A1) to the output
and the <location specifier>.

the effect of applying the formats
message "WXYZ™ using the <skip field>

PT PP
WXYZ
Terminal Messags Buffer Program Message Buffer

Figure 3-12. Contents of Initialized
Buffers

3-68

PT

WX

Terminal Message Buffer

Figure 3-13.

cont

GLOBAL Section

PP

|

WXYZ

Program Message Buffer

Buffer/Pointer Update

After Applying
Speci fication A2

PT

WX

Terminal Message Buffer

Figure 3-14.

PP

|

WXYZ

Program Message Buffer

Buffer/Pointer Update

After Applying
Specification J&

3-69

GLOBAL Section

cont
PT PP
WXz WXYZ
Terminal Message Buffer Program Message Buffer
Figure 3-15. Buffer/Pointer Update
After Applying
Specification Al
IT PP
WXZ WXYZ
Terminal Message Buffer Program Message Buffer

Figure 3-16. Buffer/Pointer Update
After Applying
Specification X1

GLOBAL Section
cont

PT PP
WXZ WXYZ

Terminal Message Buffer Program Message Buffer

Figure 3-17. Buffer/Pointer Update
After Applying
Specification 33

jT jP
WXZ Y WXYZ
Terminal Message Buffer Program Message Buffer

Figure 3-18. Buffer/Pointer Updates After
Applying Specification A}
and Sending the Terminal
Message Buffer Contents

3-71

GLOBAL Section

cont

RECALL PROGRAM STATEMENT.

Syntax:

<RECALL PROGRAM statement> :3= RECALLPROGRAM = <identifiar>./
<empty>

Semantics:

The <RECALL PROGRAM statement> specifies which program is to be
designated as the Recall Prograa. The Recall Program is used to
recall both audited input and output messages. See section 8 for
further explanation of the Recall Program. GEMCOS supplies a
Recall Program called MCSRECALL on the release tape. Identifier
must be 10 characters or Less in length. By defaults there is no
Recall Programe.

Examples:
RECALLPROGRAM = MCSRECALL.
RECALLPROGRAM = RECALLPROG.

GLIBAL Section
cont

CONTROL STATIONS STATEMENT.
Syntax:

<CONTROLSTAVTIONS statement> 2= CONTROLSTATIODNS =
<station identifier>. 7 <empty>

Semantics:

The <CONTROLSTATIONS statement> allows one station to be designated
as a Control station. Privileged Network Control Commands may

only be entered at the systea consolesr the card reader or the Con-
trol station. Errors monitored by the MCS are reported to the
Control station if one is specified (otherwise the systea consale
is used). A <CONTROLSTATIONS statement> cannot occur in a
regenerate MCSTCL run if it did not occur in the GENERATE run. If
the <CONTROLSTATIONS statement> occurs in the GENERATE runs, its
value may be changed in a REGENERATE run. The <station identifier>
must appear as a <station name> in the <STATION section>. By
defaults, no Control station is specified and no supporting lLogic

generated.

Examples:s
CONTROLSTATIONS = TDBOOA.
CONTROLSTATIONS = MANAGER.

3-73

DEFINITION Section

DEFINIYION SECTION.
Syntax:

<DEFINITION section> ::=
BEGIN

<ACCESS CONTROL statement>
<PROGRAM section>

<STATION section>

<DEVICE section>

<MESS CODE section>

END.

Semantics:

In the <DEFINITION section>s the user defines access keys (user
IDs)» programs and stations as well as their interrelationshipse.
If the user requires MCS functions not supported by GEMCOS» UPL
source code statements can be merged into a GEMCOS HMCS by includ-
ing a <MESS CODE section> in the <DEFINITION section>.

DEFINIVION Section
cont

ACCESS CONTROL STATEMENT.

Syntax:

]

ACCESSCONTROL =
<association Llist> / <empty>

[1]
L L]

<ACCESS CONTROL statement>

<association> /
<association list> <association>

<association Llist>

o
.
1]

ACCESSKEY <access code> =
<item list>e.

<association>

.
.
1t

<access code> <identifier>

"
.
1

<item> / <item> » <item List> /
ALL

<item list>

<trancode> / <program name>

<item>
Semantics:

The <ACCESS CONTROL statement> allows for the specification of
access codes. An access code is required as part of the sign-on
command syntax («SGN access code) and identifies the user signing on
to the MCS. An access code identifier is an alphanumeric identi fier
up to six characters in length. Associated with each access code is
an <item list> consisting of transaction codes (trancodes) and/or
<program names> which that particular user is authorized to use.

3=75

DEFINITION Section

cont

When a message is received from a stations, the MCS searches for a
transaction code in the message. If sos» the MCS determines if the
access code used to sign-on at that station is authorized to use that
trancode. If the access code is authorizeds the message is routed to
the appropriate programs otherwiser an error is returned to the station
If a trancode could not be found in the messager the MCS verifies that
the access code is authorized to use the program currently attached to
the station. 1If so» the message is routeds if nots an error is reporte

NOTE
If the value of sign-on for a station is
FALSE» access control is not in affect
at that station. No messages entered at
such a station are rejected due to
access control restrictionse.

Each trancode encountered in the <ACCESS CONTROL statement> must
appear in a <TRANCODE statement> of the <PROGRAM section>. Like=-
wise» each <program name> must appear in a <program define> of the
<PROGRAM section>. If a signed-on user is to have unrestricted

use of all the defined transaction codes and programss the key word
ALL may be used. If ALL is used» it must be the only <item> in

the <item list>.

Example:

ACCESSCONTROL :
ACCESSKEY ABCD
ACCESSKEY AB1234
ACCESSKEY AB5678

INQ» PAYROLL.
ALL.
INQ» XYZ.

oo

PROGRAM Section

PROGRAM_SECVION.
Syntax:

<PROGRAM section> <PROGRAM DEFINE list>

.
.
]

]

PROGRAM DEFINE> 7/
<program define list>
<program define>

<program define list>

<program define> 2= PROGRAM <program name>
<program classification> 2
<program description>

<program name> 2:= <identifier>

<program classification> 2:= ASSIGNMENT /7 UTILITY / USER /
<empty>

<program description> $:= <PROGRAM STATEMENT Llist>

<PROGRAM STATEMENT Llist> ::= <PROGRAM statement> /
<PROGRAM STATEMENT Llist>
<PROGRAM statement>

<PROGRAM statement> $3= <INTERFACE statement> /
<TRANCODE statement> /
<PROGRAM TITLE statement> /
<RESIDENCE statement> /
<COMMON SIZE statement> /
<EXECUTE statement> /
<RECOVERY statement> /
<DATABASE NAME statement> /
<AUDIT TRANSACTIONS statement> /
<AUDIT ASSIGNMENT statement> /
<AUDIY DUTPUT statement> /
<RESTART PROGRAM statement> /
<MAXCOPIES statement> /
<OPEN MESSAGE statement> /
<ATTACH MESSAGE statema2nt> /
<DETACH MESSAGE statem2nt> /
<CONVERSATIONSIZE statement> /
<MAXASSIGNERS statement> /
<AP300STATUS statement> /
<TRANSACTION CODE POSITION statement>

3-r7

PROGRAM Section
cont

Semantics:

The Llibrary of on-line programs is defined in the <PROGRAM section>.
ALl programs that open a remote file which is to be approved by

the GEMCOS MCS must appear in the <PROGRAM section». If a program
attempts to open a remote file consisting of at least one station

in the GEMCOS MCS remote file (identified by the <QUEUE NAME
statement> of the <GLOBAL section>)» and if the program does noat
appear in the <PROGRAM section>» the MCS does not allow the file

to open.

The <PROGRAN section> is composed of a <program define list>.
Each <program define> specifies a <program name>» a <prograna
classification>» and a <program statement list>.

The <program name> is any alphanumeric identifier. If there is an
<ACCESS CONTROL statement>» <program name> may appear in its
<item list> to allow certain <access codes> to use the program.

The <program classi fication> specifies to the MCS how this program
can be executed as well as how messages are to be routed to it
once it is runnings As of the 3.0 GEMCOS releases there are three
<program classifications>: ASSIGNMENT, UTILITY and USER. By
default, <program classification> is ASSIGNMENT.

ASSIGNMENTY PROGRAMS.

An Assignment Program may only be executed from the supervisory console»
a card reader or the Control station. An attempt to exezute an Assign=-
ment Program from any other than the Control station by means of the EX
Network Control Command results in an operator errore.

After being executeds an Assignment Program eventually opens a remote
file in order to gain control of a list of stations in the network. A
GEMCOS MCS grants control of a particular station to an Assignment Pro-
gram if the MCS controls the stations and if no other Assignm2nt or
Utility Program controls the station. The MCS controls a station if
that station appears in the remote file opened by the GEMCOS MCS (refer
to stations controlled by a GEMCOS MCS in section 2). When an Assign=-
ment Program opens a remote filer» the MCS checks each station defined
to be in the program remote file. If the MCS determines that it cannot
grant control of any of these stations» the FILE OPEN is denied.
Otherwises the MCS approves the file open request for ths stations in
the list for which it is able to grant control. Once control of a sta-
tion is given to an Assignment Programs all messages entered fronm

that station that do not contain a trancode of a User Program are
routed to the Assignment Program (assuming access control is not
violated).

PROGRAM Section
cont

An Assignment Program retains control of its stations until it resolves
to close its remote file. If a HAP Network Control Command is entered
from the Control stations the supervisory console or a card rzaders the
MCS places an End-of=File character into the queue of th2 Assignment
Programs which prompts it to close its remote file and go to End-of-Job.
When an Assignment Program closes its remote files the stations are no
longer considered busy and can be attached to another Assignmant or
Utility Program.

Thuss, the GEMCOS MCS handles file opening and message roating for an
Assignment Program in much the same way that a Network Controller dres
when no MCS is present. Howevers GEMCOS also provides an Assignaent
Program with additional functions such as a Common-area headers, trancode
indiciess access controls, auditsr recoverys and formattinge.

UTILITY PROGRAHMS.

A Utility Program may only be executed from a station in the networke.
An attempt to use the EX Network Control Command to execute a Utility
Program from the supervisory console or a card reader is denied. A
station may not "EX™ a Utility Program if that station is alrezady
controlled by an Assignment Program or another Utility Program since
the station would be considered busye.

Upon receipt of an EX network control command from the station, the MCS
determiness in the order listeds the status of the following as they
pertain to the utility program:

a. Program is runninge.

b. Number of stations attached to the program exceeds the
Limit assignede.

ce Number of program copies exceeds the Limit assigned.

If the program is not runnings, the MCS initiates the program with the
ZI1P EXECUTE command. Afterwardsr the initiated program opens a dummy
file. Afterwardr, the MCS attaches the requesting station. (For further
information about dummy filess» refer to Burroughs B 1700 Systams

Network Definition Language Reference Manualr, fors number 1073715.)

If the program is running» the MCS checks whether the nuamaber of sta-
tions attached to this program exceeds the maximum assignment limits if
it does nots the MCS dynamically attaches the station to the remote
file of the program. Howevers, if the number of stations attached to
the program does exceed the Limit» the MCS then proceeds to check
whether the number of program copies exceeds the timit established. If
it does nots» the MCS initiates a copy of the program and attaches the
station to it. Howevers if the program copy lLimit is excteededs the MCS
displays an error messagee.

3-79

PROGRAM Section
cont

Once the attachment occurss the utility program controls the station.
All messages entered from that station which do not contain a trancode
or a user program are routed to the utility pregran.

When the user is finished with a programs the HAP network control
command is entered. This prompts the MCS to detach the station fronm
the remote file of the utility programe. The station is available and
can be attached to another Assignaent or Utility Program. If only one
station was attached to the program copys the MCS places an End-of-File
character in the Utility Program queue (for that copy only). The char-
acter prompts the program to close the remote file and proceed to
End~ocf-Job.

GEMCOS handles a Utility Program in much the same manner as the B 1700
illustrative MCS handles a program tnat opens a remote file. However,
GEMCOS also provides a Utility Program with additional functions such
as a Common=-area headers trancode indiciess» access control, audit,
recovery» and formattinge.

USER PROGRAMS.

A User Programs, like an Assignment Programs may only be 2xecuted froa
the supervisory consoles a card reader or the Control station. An
attempt to execute a User Program from any station in the network
other than the Control station by means of the EX Network Control
Command is denied. A User Program must use an interface of
PARTICIPATION.

After being executedr a User Program should open a remote file for
stations it can service. The MCS approves the REMOTE FI_LE OPEN as

long as the stations in the remote file are controlled by GEMCOS (those
stations not in the remote file of the MCS being deleted from the
remote file of the User Program)e.

NOTE
The MCS5 does not check to see if another
on-line program controls the stationss
since a User Program does not control
stations.

Unlike an Assignment Program or Utility Programs, a User Program receives
a message entered from a station in its remote file only if the message
has a trancode. At a given point in time» a station may be attached to
as many User Programs as necessary since the MCS is able to switch
messages entered at the station based on a trancode found in the message
{a station may only be attached to one Assignment or Utility Progras at
a time and all messages without a trancode go to that program). A
station may be simultaneously attached to an Assignment or Utility
Programs even though it may still be attached to User Programse.

PRDGRAM Section
cont

A User Program must have at least one <TRANCODE statement> in its
<PROGRAM statement list>; otherwises, the program cannot receive any
messagesSe.

If several copies of a particular User Program are executedr» the MCS
distributes the message load evenly among them. This feature can
increase system throughput since inputs/outputs (I/0s) can be
overlapped.

A User Program continues to service the stations in its remote file
until it closes its remote file. If a HAP Network Control Command is
entered for this programs the MCS places an End-of-file character in
the User Program queues prompting it to go to End~of-Job.

Examples:

PROGRAM A ASSIGNMENT:
TITLE = PACKA/PAYROLL/.
TRANCODE = UPDATE.
COMMONSIZE = b690.

PROGRAM B UTILITY:
VITLE = EDIV/IT.
COMMONSIZE = 75.
RESIDENCE = CORE.

PROGRAM C USER:
TITLE = FIXIT.
TRANCODE = 0OLD(8»,1).
TRANCODE NEWH(9»1).
RESIDENCE = DISK.

"o

3-81

PROGRAM Section
cont

INTERFACE STATEMENT.
Syntax:

<INTERFACE statement> :3= INTERFACE = <program inter face>. 7/
<eapty>

<program interface> $3= NONPARTICIPATION 7 PARTICIPATION /7 NMCS

Semantics:

The <INTERFACE statement> determines the path messages follow as
they flow between a particular program and the stations in its
remote file. It also determines the relationship between the
GEMCOS MCS and the programe. Three interfaces are availables
NONPARTVICIPATION» PARTICIPATION and MCS. The NONPARTICIPATION and
PARTICIPATION interfaces may only be used by application prograsss
programs which open a remote file without headers. The MCS inter-
face may only be used by MCS programss, programs whi:h op2n a
remote file with headers. By defaults interface is PARTICIPATIIN.

NONPARTICIPATION. A NONPARTICIPATION interface is an efficient but
static method for a program to comaunicate with the stations in

its remote file. Figure 3-19 depicts the flow of messages in a
NONPARTICIPATION interface.

RSN1
Stations in
Remote file
of programs RSN2 Program
.
: GEMCOS MCS
RSNx

RSN signifies the Relative Station Number.

Figure 3=19. NONPARTICIPATION Interface

PROGRAM Section
cont

With NONPARTICIPATION interface all messages (except those beginning
with a signal character) that are entered froam all stations in the
application program remote file go to the program. The program can
Write messages to any of its stations. A construct known as a reamote
key allows the program to determine the source and length of an input
and to specify the destination and length of an output.

Messages written by the program or entered from a station beginning
with a signal character are sent to the MCS. GENCOS Netsork Control
Commands reach the MCS by means of this signal character when a
NONPARTICIPATION interface is chosen.

Messages» beginning with two signal characterss that are entered froam a
station are processed by the MCS in the following manner:

a. If a trancode is found in the messages the transaction is
routed to the program specified by the trancode provided the
program is running or declared as ONDEMAND. Output messages
from the program are routed back to the station. This allaus
a user at a stations that is attached to a non—-participating
programs to perform trancode routing to other programs in the
networke.

be If the message (starting from the third character position only)
contains a message~ID, it is considered to be a foras reguest,
and the blank form is sent back to the station. This feature
is only available in the advanced and total versions of GEMC]S.

ce If the message contains neither a valid trancode nor message~
ID» it is routed to the program to which the station is
attached. The first two bytes (or two signal characters) are
not returned with the messagee.

The NONPARTICIPATION interface is efficient since a typizal transaction
passes through only one programs the User Program (in addition to the
Network Controller). This interface is static since a station can

only be in one opened (input) remote file at a time and therefore has
access to only one program. In additions the MCS does not have access to
the normal flow of messages and is unable to provide audi t» formatting»
access controls, and its other functionse.

When interface is NONPARTICIPATION», the program classifization cannst
be USER and there cannot be any transaction codes. The [ommon=area
header will not be on messages received by the programs and the progranm
must not provide thea on output. Thuss COMMONSIZE cannot be sete.
ATTACHMESSAGE, DETACHMESSAGE and OPENMESSAGE cannot be TRUE. Users at
stations in the remote file of a Nonparticipation Program can ne2ither
use transaction=based routing nor initiate screen requests while the
Nonparticipation Program is running. Even if station has been
assigned a SCREENSIZE,» screen wraparound cannot take place while the
station is under control of a Nonparticipation Program. Audits, gqueue
restoration and formatting are not possible {even though these options
can be specified in the <GLOBAL section> and can be used by Participa-

3-33

PROGRAM Section
cont

tion Programs attached to other stations in the network while
Nonparticipation Programs are running).

If stations can be dedicated to a particular program while th2 progran
is running and the program does ndt require access control, audit,
queue restorations formatting or screen wraparounds it is advantageous
to use the Nonparticipation interface.

PARTICIPATIO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>