Burroughs

B 1000 Systems

FORTRAN 77

L

REFERENCE MANUAL

(RELATIVE TO MARK 10.0 RELEASE)

Copyright © 1983, Burrou ghs Corporation, Detroit, Michigan 48232

PRICED ITEM

/

rinted in

U.S. America

March 1983

1108867

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Corporate Documentation, Burroughs Corporation, 1300 John Reed Court,
City of Industry, California 91745, U.S.A.

Page

Title

ii

iii

iv

v thru xv
Xvi

1-1 thru 1-4
2-1 thru 2-2
3-1 thru 3-5

thru 4-6
thru 5-7

thru 6-20
thru 7-5

1

»—Ll—l-..p—-\c\’—o—-oon—i»—-no\

thru 8-3

hru 9-13

\O\OOOOO\IQO\LIIUIAUJ

t
4

1108867

B 1000 Systems FORTRAN 77 Reference Manual

LIST OF EFFECTIVE PAGES

Issue

Original
Original
Original
Blank
Original
Blank
Original
Original
Original
Blank
Original
Original
Blank
Original
Original
Blank
Original
“Blank
Original
Blank

Page

10-1 thru 10-4
11-1 thru 11-26
12-1 thru 12-28
13-1 thru 13-32
14-1 thru 14-14
A-1 thru A-11
A-12

o= B do o= o~

thru D-7

JUQQwE

thru E-3

"I'J"ﬂt.ﬁt'ﬂ

G 1 thru G-59
G-60
Index 1 thru 20

Issue

Original
Original
Original
Original
Original
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original

iii

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS

Section Title Page

INTRODUCTION . . . e e e e e e e e e e e e e e e e XV
Basic FORTRAN 77 Concepts . e e e e e e e e e e e e e e

1 SYNTAX CONVENTIONS
Railroad Diagrams

OIS

Required Items . 2
Optional Items 2
Loops -3
Bridges 4

2> CHARACTER SET . . .
B 1000 FORTRAN 77 Character Set

[\ I S I 6 T N6 I N6 I G
—

Digits -1

Letters . . -1

Special Characters . -2
Collating Sequence . . 2

3 PROGRAM STRUCTURE 3-1
Statements . . 3-1
Executable Statements 3-1
Nonexecutable Statements . 3-1
Statement Ordering 32
Statement Labels 32
Program Units . 34

Main Program . . 34
PROGRAM Statement 3-4

Main Program Restrictions 3-4
Subprograms . 3-4

Source Input Format 3-5
Comments . 3-5

4 CONSTANTS 4-1
Numeric Constants 4-1
Integer Constants 4-1

Real Constants . 42
Double-Precision Constants 4-3
Complex Constants 4-4
Hexadecimal Constants . - 1

Logical Constants « +« « « v v « v v v v« v v o .. 46
Character Constants . . -)

5 VARIABLES AND ARRAYS - 1 |
Variable Names v v v v e e e e e e e s 51
Arrays . . . e O
Array Declarator . T

Types of Arrays « . v . i v v e e e e e e e e e .. 54

Array Elements « . . « < v v v v v 54
Character Substrings . . L

6 SPECIFICATION STATEMENTS OO ¢
Explicit Type Statements . . . S |
Numeric and Logical Type Statements R
Character Type Statement « v « « « « + « + . 63

1108867

Section

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS (Cont)

Title

6 (Cont) COMMON Statement

vi

Common Names .

Use of Array Declarators .

Storage Assignments .

DATA Statement .

Variable Lists . .

DATA Implied-DO Loop

Initial Value Lists .

Repeat Counts
Data Assignment
Character Strings .

Hexadecimal Initialization .

Conversion During Assignment .
DIMENSION Statement .
EQUIVALENCE Statement .

Single Storage Locations — Numerlc

Multiple Storage Locations — Numeric

Array Handling — Numeric .

Character Association

Interaction with Common Storage
EXTERNAL Statement

Subprograms as Actual Parameters

User-defined Intrinsic Functions
IMPLICIT Statement .
INTRINSIC Statement . .
PARAMETER Statement .

SAVE Statement
EXPRESSIONS
General .

Operators . .
Arithmetic Expressmns .

Expression Types
Character Expressions
Logical Expressions

Logical Operators .

Relational Expressions .
ASSIGNMENT STATEMENTS .
Arithmetic Assignment Statement .
Logical Assignment Statement
Character Assignment Statement
ASSIGN Statement . . .
CONTROL STATEMENTS .
CONTINUE Statement .

DO Statement .
Range of a DO Loop
DO Statement Execution

DO Loop Activation .
Parameter Evaluation

6-10
6-11
6-11
6-12
6-12
6-13
6-14
6-14
6-16
6-16

.6-16

6-17
6-18
6-19
6-20
7-1
7-1

7-2
7-2
7-3
7-4
7-4
7-5
8-1
8-1
8-2
8-3
8-3
9-1

9-2
9-2
9-3
9-3
9-3

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

9 (Cont) DO-variable Initialization
Iteration Count Initialization .
Loop Execution Control .
Execution of Statements in the Range .
Terminal Statement Execution
Iteration Processing
END Statement
GO TO Statement . .
Unconditional GO TO
Computed GO TO . . .
Assigned GO TO Statement .
IF Statement .o
Arithmetic IF Statement
Logical IF Statement
Block IF Statement
Nesting Level
Block IF Statement Executlon
ELSE IF Statement .
ELSE IF Statement Executlon
ELSE Statement .
ELSE Statement Executlon
END IF Statement
PAUSE Statement
STOP Statement . .
10 FILE DECLARATIONS
ACCESS = <« access-type >
BLANK = <blnk> . .
BLOCKSIZE = <block-312e >
FILE = < file-name >
FORM = <form> . . .
KIND = < hardware-type >
MYUSE =. <use-type > .
RECL = < record-ength >
STATUS = < file-status>
11 INPUT/OUTPUT
Access Methods
Sequential .
Direct
Control List .
Unit
Format ..
Record Number
Action Specifiers .
END= <label>
ERR= <label> . . .
IOSTAT = <variable>
I/0 List . . .
170 Implied- DO Loop

1108867

Page

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS (Cont)

Section

11 (Cont) - Input List .

Output List

READ Statement .
Sequential READ . .
Direct-Access READ .

WRITE Statement
Sequential WRITE .
Direct-Access WRITE

PRINT Statement .

PUNCH Statement

OPEN Statement . .
UNIT = <unit-#> .
ACCESS = <access-type> .
BLANK = <blnk>

BLOCKSIZE = <block-size>

ERR = <error-specifier >
FILE = <file-name>
FORM = <format>

IOSTAT = <iostat- varl.abie> .

KIND = <hardware-type> .
MYUSE = <use-type> .
RECL = <record-length>
STATUS = <file-status> .
OPEN of a Connected Unit .
CLOSE Statement .
INQUIRE Statement . .
INQUIRE by File Statement
FILE = <file>
ACCESS = <access-type>
BLANK <blnk> .
DIRECT
EXIST = <existence>
FORM = <format>

< direct-access >

Title

FORMATTED = < format-allowed>

NAME = <file-name>
NAMED = <named>

NEXTREC = <next-recor;l>.
NUMBER = <unit-number>

OPENED = <open-done>
RECL = <record-length>

SEQUENTIAL = <sequential-access> . .
UNFORMATTED = <unformat-allowed> .

INQUIRE by Unit Statement
UNIT = <unit-#> .
ACCESS = <access-type>
BLANK = <bink> .

BLOCKSIZE = <block-size> .

DIRECT = < direct-access>
viii

Page

11-5
11-6
11-7
11-7
11-7
118
118
119
119
11-10
11-10
11-11
11-11
11-11
11-11
11-11
11-11
11-12
11-12
11-12
11-12
11-13

. 11-13

11-13
11-14
11-15
11-15

. 11-16
. 11-16
. 11-16
. 11-16
. 11-16
. 11-16
. 11-16
. 11-17
. 11-17
. 11-17
. 11-17
. 11-17
. 11-17
. 11-17
. 11-17
. 11-19

11-19

. 11-19
. 11-19
. 1120
. 1120

Section

11 (Cont)

12

1108867

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS (Cont)

Title

EXIST = <existence>
FORM = <format> . .
FORMATTED = < format- allowed>
KIND = <hardware-type>
MYUSE = <use-type>
NAME = <file-name>
NAMED = <named> .
NEXTREC = < next- record>
NUMBER = <unit-number >
OPENED = <open-done>
RECL = <record length > . .
SEQUENTIAL = <sequential- access> ..
UNFORMATTED = <unformat-allowed> .
Control List for File Positioning Statements
BACKSPACE Statement
ENDFILE Statement
REWIND Statement .
FIND Statement
Internal Files . .
Unformatted 1/0 .
List-Directed 1/0 .
Namelist I/0 . . .
FORMAT SPECIFICATIONS .
Format Specification Methods
FORMAT Statement . .
Character Format Spec1f1cat10n
Form of a Format Specification
Interaction Between Input/Output List and Format
Edit Descriptors . ..
Repeatable Edit Descrlptors
Format Specification I
Input Using Iw . .
Output Using Iw and Iw m
Format Specification F . . e e e e e
Input Using Fw.d

Output UsingFwd . . « - « - « « ¢« « « « « . .
Format Specification E . . e e e e e
Input Using Ew.d e e e e e e e e e e e e e e

Output Using Ewd - . - . . e e e e .
Format Specification D . e e e
Format Specification G . e e e e e e,
Input Using Gw.d and Gw. dEe e e e e e e e e e
Output Using Gw.d and Gw.dEe - -
Complex Editing . e e e e e e e e
Format Specification L . e
Input Using Lw « s e s s e sa e e e e e
Output UsingLw « . « .« .

o o e e

. .

Page

11-20
11-20
11-20
11-20
11-20
11-21
11-21
11-21
11-21
1121
11-21
11-21
11-22
11-22
11-23
11-23
1124
11-24
11-25
11-26
11-26
11-26
12-1
12-1
12-1
12-1
12-2
12-2
12-3
124
12-7
12-7
12-7
12-8
128
12-8
129
12-9
L1229

. 12-10

. 12-10

12-10
12-11

. 12-12
. 12-12

- o .

. 12-12
. 12-13

ix

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title
12 (Cont) Format Specification A .
Input Using Aw
Output Using Aw

Format Specification Z .
Input Using Zw .
Output Using Zw ..
Nonrepeatable Edit Descriptors
String Editing .o
Positional Editing
X Editing .
T Editing .
Slash Editing .
Colon Editing
Sign Control .
Scale Factor
Blank Control .
Positioning By Format Control
Format Modifiers .
K Modifier
$ Modifier .
Carriage Control
List-Directed Formatting
List-directed Input
List-directed Output
Namelist Formatting . . .
NAMELIST Statement . .
Form of Namelist Input/Output
Namelist Input e
Namelist Qutput
13 SUBPROGRAMS .
Functions .
Statement Functlons . .
Referencing a Statement Functlon .
Function Subprograms .
Referencing a Function Subprogram .
Execution of an External Function Reference
Actual Arguments for a Function Subprogram
Intrinsic Functions
Specific Name and Generlc Name
Subroutine Subprograms
Subroutine .
CALL Statement .. .
SUBROUTINE Statement . .
Actual Arguments for a Subroutme .
Intrinsic Subroutines .
Block Data Subprogram
Entry Statement

Page

. 12-13
. 12-14
. 12-14
. 12-15
. 12-15
. 12-15

12-16
12-16
12-17
12-17
12-17

. 12-18
. 12-18
. 12-18
. 12-19
. 12-19
. 1220
. 1220
. 12221
. 1221
. 1221
. 12221
. 1222
. 12-23
. 1224
. 1225
. 1225
. 1227
. 12-28

13-1
13-1
13-1
13-2
13-3
134
134
134
135
13-6

- 13-14
- 13-14
- 13-15
. 13-15
. 13-15
. 13-16
. 13-17
. 13-19

Section

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS (Cont)

Title

13 (Cont) Arguments and Common Blocks .

14

1108867

Dummy Arguments

Actual Arguments .

Association of Dummy and Actual Arguments .
Length of Character Dummy and Actual Arguments
Variables as Dummy Arguments ..
Arrays as Dummy Arguments

Numeric Arrays

Character Arrays - .
Procedures as Dummy Arguments ..
Dummy Arguments in ENTRY Subprograms

RETURN Statement .

Standard Return

Alternate Return . .
COMPILER CONTROL IMAGES
Types of Options . .
Limiting Options

DYNAMIC

ERRORLIMIT

STACKSIZE .
Source Input Options

DELETE .

INCLUDE

MERGE

OMIT . . .

SEQCHECK .

SEQUENCE

SEQUENCE Range Optlons .

VOID .
Source Output Optlons

DOUBLE . .

INCLNEW

LIST . . .

LISTDELETED

LISTINCL . .

LISTOMITTED

LISTP . . .

LISTDOLLAR

MAP .

NEW

PAGE . . .

SUMMARY .

XREF

XSEQ .o
Intermediate Code Module Optlons .

ICM . .

USEICM

Page

. 1321
. 13221

13-21

© 1321
C 1322
© 1323

13-24

. 1324
.- 1327

13-29
13-30
13-30
13-31
13-31
14-1
14-1
142
14-2
142
14-3
14-3
14-3
14-3

xi

Section

14 (Cont)

Xii

Caow

B 1000 Systems FORTRAN 77 Reference Manual

t

TABLE OF CONTENTS (Cont)

Title

REMOVEICM
Miscellaneous Options
AUTOBIND
CLEAR .
END
ERRORLIST . .
INTERPRETER
INTRINSICS
NOBOUNDS

B 1000 FORTRAN 77 LANGUAGE SYSTEM.

System Requirements
Required Hardware
Required System Software
User/Compiler Interface
Intermediate Code Files
Compiler Files
Input Files .
Output Files .
Compiler File Names and Defaults e
Large FORTRAN 77 Program Code Files
MCP Control Records . e e e
Compilation Source File
?7 COMPILE Record .
Program Name . . .
Label Equations (FILE statement)
? DATA CARD Record .
Source Input File CARD
? END Record

OPTIMIZING PROGRAM COMPILATION

DESCRIPTION OF UNFORMATTED 1/0 RECORDS .

STORAGE ALLOCATION

Simple Variables . . .
INTEGER Variables .
REAL Variables . . .
DOUBLE PRECISION Varlables .
LOGICAL Variables . .o
COMPLEX Variables

Arrays

Data Allocatlon Informatlon

Code Segmentation Information

FORTRAN77/ANALYZER

Program Execution

Program Termination

Error Messages .

JOB SPAWNING

Section

1108867

B 1000 Systems FORTRAN 77 Reference Manual

TABLE OF CONTENTS (Cont)

Title

FORTRAN 77 S-LANGUAGE
Introduction . .
Base-Limit Memory Layout .
Instruction Set . .
Alphabetical List of Mnemomcs
Numeric List of Operation Codes
Arithmetic Replacement S-Operators .

Logical Replacement and IF Statement S- Operators .

Branch S-Operators
Type and Sign Conversion S-Operators
Subscript Value Computation S-Operators
Do Loop Maintenance .
Character Type S-Operators
Subroutine Linkage S-Operators
Special Function S-Operators
Privileged User S-Operators
Trigonometric and Other Functions
Formats
Registers .
Error Condition Informatlon
Values . . .
Local Data Block . .
Subroutine Linkage Mechamsm
Layout Table
Transfer Vector . . .
Assigned GOTO and Format T able .
Standard Index . e
Addresses
Standard Source
Standard Destination
Standard Character Source
Standard Character Destination
Run-Time Dimension Table
Arithmetic Replacement S-Operators
Logical Replacement and IF Statement S- Operators
Branch S-Operators
Type and Sign Conversion S- Operators

Subscript Value Computation S-Operators
‘'DO-Loop Maintenance .

Character Type S-Operators .

Subroutine Linkage S-Operators

Special Function S-Operators

Privileged User S-Operators . .
Trigonometric and Other Functions .

Page

G-1
G-1
G-2
G-2
G-6
G-6

G8
G-8
G9
G9
G9
G9
G-10
G-10
G-10
G-11
G-11
G-11
G-12
G-12
G-12
G-13
G-14
G-14
G-15
G-16
G-18
G-18
G-19
G-19
G20
G-20
G-24
G-27
G-30
G-32
G-36
G-38

. G42
. G48

. G-48

G-55

Xiii

Figure

Xiv

B 1000 Systems FORTRAN 77 Reference Manual

LIST OF ILLUSTRATIONS

Title

Required Order of Statements and Comments
FORTRAN 77 Compilation System .
Representation of [3:4] .

Storage of a Multi-Dimensional Array
Example of Run-Time Dimension Table

LIST OF TABLES

Title

DATA Statement Type Conversions . . .
Operators Used in FORTRAN 77 Expressrons

Resultant Types of Arithmetic Operations

Resultant Types for Exponentiation .

Logical Expression Constructs .

Type Conversions in Assignment Statements

Default Attributes .

Unit Number/Hardware Default Assocratlons

Input Data Item Types

Input Variable Item Types

Output List Item Types

Intrinsic Functions .

Truth Table for Lexical Comparators .

Values Returned by the TIME Function .

Values Returned by the DATE Function .

Intrinsic Subroutines

Association of Actual and Dummy Arguments .o .
FORTRAN 77 Compiler File Names and Characterrstlcs
ICM Name Conversions . . .
Switch Settings for the FORTRAN77/ANALYZER Program .
Sample Assigned GOTO and FORMAT Table

Operation Codes for ADD, SUBTRACT, MULTIPLY, and DIVIDE |
Operation Codes for ADD, SUBTRACT, MULTIPLY, and DIVIDE

Page

33
A-3
D-1
D-5
G-20

Page

6-10
7-1
7-2
7-3
7-5
8-2

10-3

104

12-5

12-5

12-6

13-7

13-13
13-13
13-14
13-17
13-23
A-5
A-8
E-1
G-14
G-22
G-23

B 1000 Systems FORTRAN 77 Reference Manual

INTRODUCTION

The purpose of this manual is to provide an explanation of the implementation and use of the Bur-
roughs B 1000 FORTRAN 77 programming language. The language is designed along the guidelines
of the American National Standards Institute committee for FORTRAN 77 (ANSI X3.9-1978), along
with extensions provided by Burroughs as programming aids, and to conform with the B 1000 system
architecture.

This manual is designed to provide the FORTRAN 77 programmer with a source of reference informa-
tion and is not a primer in the language. The manual is organized in a manner that provides ease of
use as a reference document, beginning with basic concepts and proceeding to more complex concepts.

BASIC FORTRAN 77 CONCEPTS

Certain basic concepts concerning the FORTRAN 77 language are presented here prior to the descrip-
tion of the B 1000 implementation of this language.

A problem-solving system written in the FORTRAN 77 language is called a source program; a program
which constitutes a self-contained processing structure is called an executable source program. Every
executable FORTRAN 77 program consists of one or more program units which combine to form the
complete processing structure. Among the program units are the required main program and as many
subprogram units as necessary to complete the source program.

Each program unit is constructed of a series of items called statements. These statements specify the
arithmetic operations which are to be executed, control the order in which program statements are to
be performed, accomplish various program input and output functions (such as reading data records
and printing the results of computations), or describe program data items and provide other program
information without directly producing any actions during program execution,

Each program statement is constructed of a string of appropriate characters which are contained on
one or more physical records (for example, punched cards). A set of these physical records can be input
as a file to a special computer program called a compiler. The compiler first verifies that each source
statement is syntactically correct, and then converts each program unit into FORTRAN 77 S-code and
places this Intermediate Code Module (ICM) into an intermediate code file along with other ICMs of
the same source program. When the S-code has been generated for the program units, the main pro-
gram is reexamined to determine which subprograms are needed to execute the FORTRAN 77 program.
The intermediate code file is then searched for the intermediate code modules of these subprograms.
These subprograms, and any intrinsics from the intrinsics library file that are needed, are bound togeth-
er with the S-code for the main program to create an executable program. The executable program
can then be executed on the B 1000 system using the FORTRAN 77 interpreter. The interpreter causes
the system hardware to perform the operations specified by the S-code and thus, the source program.
For more detailed information regarding the function of S-code and its relation to the interpreter and
the hardware, refer to the B 1000 Systems System Software Operation Guide, Volume 1, form number
1108982.

The B 1000 FORTRAN 77 compiler operates under the control of a Master Control Program (MCP).
Similarly, the S-code generated by the compiler is executed under control of the MCP.

A FORTRAN program that was compiled with the FORTRAN 66 compiler must be recompiled with
the FORTRAN 77 compiler to be able to run with the FORTRAN 77 interpreter.

1108867 Xv

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 1
SYNTAX CONVENTIONS

RAILROAD DIAGRAMS

Railroad diagrams show how syntactically valid statements can be constructed.

Traversing a railroad diagram from left to right, or in the direction of the arrowheads, and adhering
to the limits indicated by bridges produces a syntactically valid statement. Continuation from one line
of a diagram to another is represented by a right arrow (—) or by a letter (for example, A, B, C)
appearing at the end of the current line and beginning of the next line. The complete syntax diagram

is terminated by a vertical bar (|).

Items contained in broken brackets (< >) are syntactic variables which are further defined, or require
the user to supply the requested information.

Uppercase items must appear literally. Minimum abbreviations of uppercase items are underlined.

Example:
/3N,
—A RAlLRQAD DIAGRAM CONSISTS OF < bridges >
——<loops >

L. <optional items >

L <required items > .

.

>—— AND IS TERMINATED BY A VERTICAL BAR..

G50051
‘The following syntactically valid statements can be constructed from the above diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY A VERTI-
CAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional-items> AND IS TERMINATED BY A
VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS TERMINATED BY
A VERTICAL BAR.

A RAILROAD DIAGRAM CONSISTS OF <optional-items>, <required-items>, <bridges>,
<loops> AND IS TERMINATED BY A VERTICAL BAR.

1108867 1-1

B 1000 Systems FORTRAN 77 Reference Manual
Syntax Conventions

Required Items

No alternate path through the railroad diagram exists for required items or required punctuation.

Example:

- .

— REQUIRED ITEM
G50052

Optional Items

Items shown as a vertical list indicate that the user must make a choice of the items specified. An
empty path through the list allows the optional item to be absent.

—— REQUIRED ITEM
L <optional item-1 >

L— <optional item-2 >

G50053
The following valid statements can be constructed from the above diagram:
REQUIRED ITEM
REQUIRED ITEM < optional-item-1>

REQUIRED ITEM < optional-item-2>

B 1000 Systems FORTRAN 77 Reference Manual
Syntax Conventions

Loops

A loop is a recurrent path through a railroad diagram and has the following general format:

e <bridge > <return character >
< object of the loop >

G50054
Example:

/N .

< optional item-1 >
L <optional item-2 > ———

G50055

The following statements can be constructed from the previous railroad diagram:
< optional-item-1>
< optional-item-1 >, < optional-item-1 >
< optional-item-2 >, <C optional-item-1 >

A <loop> must be traversed in the direction of the arrowheads, and the limits specified by bridges
cannot be exceeded.

1108867

B 1000 Systems FORTRAN 77 Reference Manual
Syntax Conventions

Bridges

A bridge indicates the minimum or maximum number of times a path can be traversed in a railroad
diagram.

The following are two forms of < bridges>:

__m__ n is an integer which specifies the maximum number of times the path can be
traversed.
AT n is an integer which specifies the minimum number of times the path must be
650056 traversed.
Example:

>

< optional item-1 >

———m—— < optional item-2 > —uo_J

G50057

The loop can be traversed a maximum of two times; however, the path for <optional-item-2> must
be traversed at least one time.

The following statements can be constructed from the railroad diagram in the example:

14

< optional-item-2 >
< optional-item-1>, < optional-item-2 >
< optional-item-2 >, < optional-item-2 >, < optional-item-1 >

< optional-item-2 >, < optional-item-2 >, < optional-item-2 >

—e

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 2
CHARACTER SET

Characters are the elements from which a language is constructed. The B 1000 FORTRAN 77 language
is based upon a prescribed character set which is described in this section. Each type of character within
this FORTRAN 77 character set is described in this section.

B 1000 FORTRAN 77 CHARACTER SET

For source program input, the B 1000 FORTRAN 77 character set consists of the following types of
characters:

1. Digits

1) Decimal digits
2) Hexadecimal digits

2. Letters
3. Special Characters

Digits

Two types of digits are employed in the B 1000 FORTRAN 77 language: decimal digits and
hexadecimal digits. Decimal digits are defined as consisting of the characters 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9. These digits are generally used to define program values in terms of the decimal (radix 10)
number system. When the term “digit” is used in this manual, it refers to a member of the set of
decimal digits.

Hexadecimal digits are defined as consisting of the characters in the decimal digit set plus the characters
A, B, C, D, E, and F. These digits are generally used to define program values in terms of the hexadec-

imal (radix 16) number system; where A is equivalent to 10 in the decimal system, B is equivalent to
11 in the decimal system, and so forth.

These two digit types are used to represent numerical values in the B 1000 FORTRAN 77 language.
Letters
For the B 1000 FORTRAN 77 language, letters consist of the following 26 characters:

ABCDEFGHIJKLMNOPQRSTUVWXY?Z

1108867 - 2-1

B 1000 Systems FORTRAN 77 Reference Manual
Character Set

Special Characters
Special characters for the B 1000 FORTRAN 77 language consist of the following 16 characters:

blank or space

period or decimal point

left parenthesis

plus sign

ampersand

dollar sign

asterisk

right parenthesis

minus sign

slash

, comma

0% percent symbol

: colon '
apostrophe

= equal sign

quotation mark

N *99294—/\-

The blank character has a specific meaning only in string literals and in the FILE declaration statement
(two blanks must follow the FILE statement). Blanks can be used throughout the program to improve
readability.

Collating Sequence

The collating sequence of the character set is such that special characters are less than letters and letters
are less than digits. Within each of these three groups, the collating sequence is the following:

1. Digits. Have the sequence as normally assigned to numbers; 1 is less than 2, 9 is greater than
7, and so forth.

2. Letters. Listed in ascending order under Letters, in this section.

3. Special Characters. Proper sequence, in ascending order, is listed under Special Characters in
this section.

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 3
PROGRAM STRUCTURE

The FORTRAN 77 programming language consists of procedures containing statements conforming to
a general order. The classes of statements and their relative sequence in the FORTRAN 77 program
are described in this section.

STATEMENTS

Every executable FORTRAN program (refer to Basic FORTRAN 77 Concepts in the Introduction) con-
sists of a sequence of statements, with each statement physically contained on one or more lines, or
on card images. These statements are classified as executable and nonexecutable statements.

Executable Statements

An executable statement is an instruction that causes action to be taken at the point in the program
where the statement is executed. The FORTRAN 77 executable statements described in this document
are as follows:

Assignment statement GO TO statement
BACKSPACE statement IF statement
CALL statement PAUSE statement
CLOSE statement PRINT statement
CONTINUE statement PUNCH statement
DO statement READ statement
ELSE statement RETURN statement
ELSE IF statement REWIND statement
END statement STOP statement
ENDFILE statement WRITE statement

END IF statement
Nonexecutable Statements
A nonexecutable statement is an instruction which gives information to the compiler regarding storage

allocation, data initialization, I/0 editing specifications, and program units. The FORTRAN 77 non-
executable statements described in this document are as follows:

BLOCK DATA statement FUNCTION statement

COMMON statement IMPLICIT statement
DATA statement INTRINSIC statement

- DIMENSION statement PARAMETER statement
ENTRY statement PROGRAM statement
EQUIVALENCE statement SAVE statement
Explicit type statement Statement function statement
EXTERNAL statement SUBROUTINE statement

FORMAT statement

1108867 3.1

B 1000 Systems FORTRAN 77 Reference Manual
Program Structure

Statement Ordering

The order of appearance of statements in the main program or subprogram body is determined by the
following rules:

1.

~N N L

8.

Comment statements and Compiler Control Images can appear, according to their respective
rules, at any point within a program. (For the sake of brevity, the rules following do not de-
scribe the relationship of comment statements and Compiler Control Images to the other valid
FORTRAN 77 statements, but as stated previously, comment statements and Compiler Control
Images can appear at any point.)

FILE declaration statements must precede all other statements of the main program.

. PROGRAM is the first statement in the program following any FILE declaration statements.

In a subprogram unit, the SUBROUTINE, FUNCTION, or BLOCK DATA statement must be
first.

All specification statements must precede all DATA statements, statement function declaration
statements, and executable statements. Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification statements except PARAMETER
statements. Any specification statement that specifies the type of a symbolic name of a constant
must precede the PARAMETER statement that defines that particular symbolic name of a con-
stant. The PARAMETER statement must precede all other statements containing the symbolic
names of constants that are defined in that PARAMETER statement.

All statement function declaration statements must precede all executable statements.

. FORMAT statements can appear anywhere within a program unit.
. ENTRY statements can appear anywhere within a program unit except between a block IF state-

ment and the corresponding END IF statement, or between a DO statement and the terminal
statement of the DO loop.
The last line of a program unit must be an END statement.

Figure 3-1 shows the required order of statements and comment lines.

Vertical lines delineate varieties of statements that can be interspersed. For example, FORMAT state-
ments can be interspersed with statement function statements and executable statements. Horizontal
lines delineate varieties of statements that must not be interspersed. For example, statement function
statements must not be interspersed with executable statements. An END statement is also an
executable statement and must appear only as the last statement of a program unit.

The recommended order of appearance of FORTRAN 77 statements in a program unit is as follows:

DN =

Lo hA W

FILE declaration statement.

PROGRAM statement (This statement appears only in the main program; otherwise, the
FUNCTION or SUBROUTINE statement appears here.)

IMPLICIT statements and PARAMETER statements.

DIMENSION, COMMON, INTRINSIC, EXTERNAL, or explicit type statements in any order.
EQUIVALENCE statements.

DATA statements.

Statement function declaration statements.

Remainder of program unit.

END statement,

Statement Labels

Statement labels provide a means of referring to individual statements. Any statement can be labeled,
but only executable statements and FORMAT statements can be referred to by the use of statement

3-2

B 1000 Systems FORTRAN 77 Reference Manual
Program Structure

COMMENT
LINES

FILE DECLARATION STATEMENTS

PROGRAM, FUNCTION, SUBROUTINE, OR

BLOCK DATA STATEMENT

FORMAT-
AND
ENTRY
STATEMENTS

PARAMETER
STATEMENTS

IMPLICIT
STATEMENTS

OTHER
SPECIFICATION
STATEMENTS

DATA
STATEMENTS

STATEMENT
FUNCTION
STATEMENTS

EXECUTABLE
STATEMENTS

END STATEMENT

G50290

Figure 3-1. Required Order of Statements and Comments

labels. The form of a statement label is a sequence of one to five digits, at least one of which must
be nonzero. The statement label can be placed anywhere in columns one through five of the initial
line of the statement. The same statement label must not be given to more than one statement in a
program unit. Blanks and leading zeros are not significant in distinguishing between statement labels.

Examples:

100 A=A+1

200 FORMAT (514,F7.2)

300 STOP

1108867

B 1000 Systems FORTRAN 77 Reference Manual
Program Structure

PROGRAM UNITS

Every executable FORTRAN 77 program consists of a main program unit which can be preceded and/
or followed by as many subprograms as necessary.

Main Program

A main program unit is a program unit that does not have a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as the first statement. It can have a PROGRAM statement as the first statement.

There must be exactly one main program unit in an executable program. Execution of an executable
program begins with the execution of the first executable statement of the main program.

PROGRAM Statement
The PROGRAM statement has the following form:

PROGRAM <program-name >

G50291

< program-name > is the symbolic name of the main program unit in which the PROGRAM statement
occurs. The program name can contain up to six- characters.

A PROGRAM statement is not required to appear in an executable program. If it does appear, it must
precede any statement in the main program unit except any FILE statements.

The symbolic name < program-name> is global to the executable program and must not be the same
as the name of an external procedure, block data subprogram, or common block in the same executable
program. <program-name> must not be the same as any local name in the main program.

Examples of PROGRAM statements follow:

PROGRAM INVENT
PROGRAM HYPER

Main Program Regstrictions

The PROGRAM statement can appear only as the first statement of a main program. A main program
can contain any other statement except a BLOCK DATA, FUNCTION, SUBROUTINE, ENTRY, or
RETURN statement. A main program cannot be referenced from a subprogram or from itself.

Subprograms

Subprograms (other than block data subprograms) are independent program units. A subprogram is
referenced by a CALL statement or indirectly as a function in an expression. A subprogram can con-
tain any FORTRAN 77 statement except a PROGRAM statement and a BLOCK DATA statement (un-
less the subprogram is a block data subprogram). For additional information on subprograms refer

to section 13.

A block data subprogram is a special type of subprogram. Block data subprograms are described in
section 13.

An END statement is required to complete every program unit. Refer to section 9 for a full description
of the END statement.

34

B 1000 Systems FORTRAN 77 Reference Manual
Program Structure

SOURCE INPUT FORMAT

The compiler must receive FORTRAN 77 statements from cards, tape, or disk. Source input records
are, in general, free-form format, with the following exceptions:

1. Columns 1 through 5 of a card can contain a statement label (refer to Statement Labels in this
section). This field is recognized as a label on the first card only of an executable or FORMAT
statement. Statement labels must not occur on continuation lines. A label without an associated
statement causes a syntax error. Blanks and preceding zeros are ignored.

2. Column 6 of the first card of a statement must be blank or contain a zero. A statement can
be continued on up to 19 records by placing any nonblank and nonzero character in column
6 of the continuation cards.

3. Columns 7 through 72 of a card contain the FORTRAN 77 statement.

4. Columns 73 through 80 can contain sequence numbers. This field is checked for ascending se-
quence numbering when $ MERGE or $ SEQCHECK is set; otherwise, the field is ignored.

A card containing a $ in column 1 is a Compiler Control Image as described in section 14.

Blank characters are significant only in column 6 of a statement, columns 5 and 6 of a FILE declara-
tion, and in string literals. With these exceptions, blanks can be used freely without affecting the mean-
ing of the FORTRAN 77 program.

Comments

If a line contains the letter C or an asterisk (*) character in column 1, or is entirely blank, the line
is considered a comment line and is not interpreted. Any characters can follow the letter C or the aster-
isk on the same line without affecting program execution.

Comment lines can appear anywhere in the program unit and can precede the initial line of the first
statement of any program unit. Comment lines can appear between an initial line and the first
continuation line or between two continuation lines.

1108867 3-5

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 4
CONSTANTS

This section explains the constants available in FORTRAN 77. Constants are formed from the FOR-
TRAN 77 character set according to prescribed rules.

Constants function as FORTRAN 77 value data items used in problem solving and related operations
such as input/output (I/0). Rules governing usage are described in this section.

Constants are classified into three types: 1) numeric constants, 2) logical constants, and 3) character
constants.

NUMERIC CONSTANTS

A constant numeric data item can be expressed by a variety of constant representations which are
grouped into the following categories:

Integer constants.

Real constants.
Double-precision constants.
Complex constants.
Hexadecimal constants.

B W ==

These five constant data constructs are described in the following paragraphs and the internal storage
requirements are described in appendix D.

Integer Constants

An integer constant consists of a string of decimal digit characters which can be preceded by a sign
character (+ or —). If the constant is nonzero and unsigned, it is interpreted as representing a positive
value. A zero has the same value whether signed or unsigned. From one to ten decimal digit characters
are permitted and accuracy is ensured providing the value does not exceed —2,147,483,648 (for negative
values) or 2,147,483,647 (for positive values). If this limit is exceeded, a syntax error results.

Several examples of valid integer constants follow:

0

+0

—43

17711
999999999
03770
2089934591
— 5708

Several examples of invalid integer constants follow:

1.0 Decimal point not permitted,

: interpreted as a real constant.
3,000 No commas or other punctuation permitted.
2222222222 Exceeds the largest integer value allowed.
-0 Minus zero is invalid.

1108867 4-1

B 1000 Systems FORTRAN 77 Reference Manual
Constants

Real Constants

A real constant is stored in the B 1000 processor as an approximation of the actual constant. It can
assume a positive, negative, or zero value.

The three forms of a real constant follow:

1. Basic real constant.
2. Basic real constant followed by a real exponent.
3. Integer constant followed by a real exponent.

The form of a basic real constant is an optional sign, an integer part, a decimal point, and a fractional
part, in that order. Both the integer part and the fractional part are strings of decimal digits; either
of these parts can be omitted, but not both. A basic real constant can be written with more digits
than the B 1000 processor will use to approximate the value of the constant. The number of significant
digits that the processor uses is approximately seven. A basic real constant is interpreted as a decimal
number.

Examples of valid basic real constants follow:

3.141592

0.

0.0

.075
00000000000007.
—253.

-.075

The second and third types of real constants are combinations of a basic real constant or an integer
constant and a real exponent.

The form of a real exponent is the letter E followed by an optionally signed integer constant. A real
exponent denotes a power of ten.

The value of a real constant that contains a real exponent is the product of the constant that precedes
the E and the power of ten indicated by the integer following the E. The integer constant part of the
third type of real constant can be written with more digits than the processor uses to approximate the
value of the constant.

Examples of valid basic real constants followed by a real exponent:

205.E—-3
.01E3

6.02E23
345.280E - 28
4291.0234E + 8
2.9979E08
32.5E007

4-2

B 1000 Systems FORTRAN 77 Reference Manual
Constants

Examples of valid integer constants followed by a real exponent:

2E3

602E — 19
—8E —43
1IE-9
1245748E + 27

Examples of invalid real constants follow:

- 1597 No decimal point or E portion,
. interpreted as an integer constant.
8.2E+77 Exceeds maximum size limit.
4.2E-179 Smaller than minimum size limit.
E22 No integer or real part,
interpreted as a variable name,
2.7E1.2 Exponent part must be an integer.
1E2E3 Only one E portion allowed per constant.
2,765,987. No commas or other punctuation, except

decimal point, permitted.

The range for the magnitude of a real constant is approximately .539760SE—78 .LT. X .LT.
.7237005E + 76, where X is the real constant. If this limit is exceeded, a syntax error results. For more
information on the internal format of a real constant refer to appendix D.

Double-Precision Constants

A double-precision constant must be written using scientific notation and is stored in the B 1000 proces-
sor as an approximation of the actual constant. It can assume a positive, negative, or zero value. A
double-precision constant uses two consecutive words of storage.

The two forms of a double-precision constant follow:

1. Basic real constant followed by a double-precision exponent.
2. Integer constant followed by a double-precision exponent.

The form of a double-precision exponent is the letter D followed by an optionally signed integer con-
stant. A double-precision exponent denotes a power of ten. The form and interpretation of a double-
precision exponent are identical to those of a real exponent, except that the letter D is used instead
of the letter E.

The value of a double-precision constant is the product of the constant that precedes the D and the
power of ten indicated by the integer following the D. The integer constant part of the second form
can be written with more digits than the processor uses to approximate the value of the constant. The
number of significant digits that the processor uses is approximately 14.

Examples of valid basic real constants followed by a double-precision constant:

3.141592653589793D0
3.141592653589793D -0
+1.D+3
1234567890.123456D + 29
6.63D—03

9.80665D +0

} equivalent

1108867 4-3

B 1000 Systems FORTRAN 77 Reference Manual
Constants

Examples of valid integer constants followed by a double-precision constant;

{’_1)13D +03 equivalent
—363354D—-10
1D50

Examples of invalid double-precision constants follow:

3.14159 No D portion, interpreted as a real
constant.

2.7 D 99 Exceeds maximum size limit.

2.7 D-99 Smaller than minimum size limit.

1,234,567,890,123. Commas not permitted, no D portion.

1.3E45 No D in exponent part.

123456789.12345678901 No D portion, interpreted as a real
constant.

The range of values for double-precision constants is approximately .5397605346E —78 .LT. X .LT.
.7237005577E + 76. If this limit is exceeded, a syntax error results. For more information on the inter-
nal format of a real constant, refer to appendix D.

Complex Constants

The form of a complex constant is a left parenthesis followed by an ordered pair of real or integer
constants, separated by a comma, and followed by a right parenthesis. The first constant of the pair
is the real part of the complex constant and the second is the imaginary part.

Examples of valid complex constants follow:

(6,0.7)
(12.93,14)
(65,27)
(.004,3.141)
(.1234567890,1)

Examples of invalid complex constants follow:

12 No parentheses, and no imaginary part.
(5.9 No real part.

Hexadecimal Constants

An alternate representation of program values consists of the hexadecimal constant which corresponds
to digits of base 16. Hexadecimal constants can only be used as data initialization values in a DATA
statement. For more information on the machine representation of the various data types refer to ap-
pendix D.

A hexadecimal constant consists of the letter Z followed by one or more hexadecimal digits. The
hexadecimal constant assigns a value to the entire storage location used by the variable. Variables that
use one storage unit (INTEGER, REAL, and LOGICAL) can contain eight hexadecimal digits.
Variables that use two storage units (DOUBLE PRECISION and COMPLEX) can contain 16
hexadecimal digits. Any excess digits are truncated from the right (low-order digits). When a
hexadecimal value does not fill the variable to which it is assigned, the variable is padded on the left

4-4

B 1000 Systems FORTRAN 77 Reference Manual

Constants

with hexadecimal zeros. CHARACTER variables must have two hexadecimal digits assigned for each
character in the string or substring. Specifying too few or too many hexadecimal digits in a CHARAC-

TER variable results in a syntax error.

The hexadecimal notation employed by the B 1000 system conforms to the standard form whereby each
hexadecimal digit corresponds to a unique pattern of four bits within a data word. A list of these 4-bit
patterns follows with the corresponding hexadecimal (hex) digits denoted:

Hex Bit Hex Bit
Digit Pattern Digit Pattern
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Examples of valid hexadecimal constants follow:

7250180000

Z70123456789ABCDEF

Z0ACDEFAl1

ZFABZFAC4D5671234B90F

200000001

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 4.

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 8.

Valid for any variable of a numeric type
and for LOGICAL. Invalid for CHARACTER
because of odd number of digits.

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 10.

Valid for any variable of a numeric
type, type LOGICAL, and CHARACTER * 4.

Examples of invalid hexadecimal constants follow:

1108867

FFF60

Z—-1

ZOABCDEFGF

Z7333.330033

The Z is missing.

A minus sign is not permitted
in a hexadecimal constant.

The character G is not a
hexadecimal digit character.

A decimal point is not allowed
in a hexadecimal constant.

4-5

B 1000 Systems FORTRAN 77 Reference Manual
Constants

LOGICAL CONSTANTS

FORTRAN 77 allows the use of logical operations through the medium of the logical expression. Two
logical constants are provided to represent the logical values TRUE and FALSE.

These two logical constants are represented in the source code of a FORTRAN 77 program in the fol-
lowing manner: '

.TRUE.
.FALSE.

The use of these logical constants is restricted to certain types of expressions. Refer to Logical Expres-
sions in section 7 for details. The internal machine representation of these two constants is such that
the data words corresponding to the constant .TRUE. and the integer constant —1 (all bits set) are
identical; the data word corresponding to the constant .FALSE. and the integer constant 0 are identi-
cal. Refer to appendix D for more information on the internal representation of LOGICAL constants.

CHARACTER CONSTANTS

The form of a character constant is an apostrophe followed by a nonempty string of characters, fol-
lowed by an apostrophe. The string can consist of any character capable of being represented in the
B 1000 processor. The delimiting apostrophes are not part of the datum represented by the constant.
An apostrophe within the datum string is represented by two consecutive apostrophes with no interven-
ing blanks. In a character constant, blanks embedded between the delimiting apostrophes are
significant.

One additional form of a character constant is allowed. A character constant can be of the form as
described in the preceding paragraph except that quotation marks replace the apostrophes in the de-
scription. When an apostrophe is used as the string delimiter, a quotation mark within the datum string
is represented by a quotation mark. When a quotation mark is used as the string delimiter, an apo-
strophe within the datum string is represented by an apostrophe.

The length of a character constant is the number of characters between the delimiting apostrophes or
quotation marks, except that each pair of consecutive apostrophes or quotation marks counts as a sin-
gle character. The delimiting apostrophes or quotation marks are not counted. The length of a charac-
ter constant must be greater than zero and no greater than 255.

Examples of valid character constants (b represents a blank character) follow:

"DON’T” ’DON’T’ (equivalent)
’ABCI123bbbDEF’

mnnnn

7% §3’
IIbII

Examples of invalid character constants follow:

"ABC"DEFG” Two adjacent quotation marks are needed if
quotation marks are used as delimiters.

'POIUL’YT’ This is interpreted as two strings since

the inner apostrophes are not immediately
adjacent,

4-6

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 5
VARIABLES AND ARRAYS

FORTRAN 77 variable names and array names are symbolic names which are constructed from the
FORTRAN 77 character set according to appropriate rules. Variables and arrays represent values which
can be altered during program execution.

These constructs are used to identify one or more storage locations for purposes of data storage and
retrieval. The constants of these storage locations are accessed by referencing the associated variable
or array element name.

This section contains a description of variable name construction which extends to array names and
function names. A description of the construction and use of arrays and substrings is also presented.
The internal handling of variables and arrays is described in appendix D.

VARIABLE NAMES

A FORTRAN 77 variable name is an identifier which consists of a string of one to six alphanumeric
characters (letters or digits), with the leading character being a letter. Special characters cannot be used
in variable names.

If the variable name is more than six characters long, a syntax error results. Embedded blanks are
acceptable but are removed by the system. Variables are classified into six fundamental types.

Type Memory Required
INTEGER 4 bytes
REAL 4 bytes
DOUBLE PRECISION 8 bytes
COMPLEX 8 bytes
LOGICAL 4 bytes
CHARACTER 1 byte per character

There is no variable of type hexadecimal. Hexadecimal constants can only be used as data initialization
values in DATA statements and explicit type statements.

The value represented by a variable of each of these types can be expressed by a constant of the same
type. Thus, the value represented by an integer variable can be expressed by an integer constant, the
value represented by a real variable can be expressed by a real constant, and so forth. Therefore, the
values represented by each variable type must conform to the magnitude and significant digit restric-
tions governing the corresponding type of constant. :

Unless declared otherwise in an explicit type statement or an IMPLICIT statement, the identifier is
assigned a type according to the initial character. If this initial character is the letter I, J, K, L, M,
or N, then the variable, by default, is of INTEGER type. If this initial character is any other letter,
the variable, by default, is of REAL type. No such defaults exist for DOUBLE PRECISION, COM-
PLEX, LOGICAL, or CHARACTER variables. Variables of these types must be declared as such by
explicit type statements.

1108867 5-1

B 1000 Systems FORTRAN 77 Reference Manual
Variables and Arrays

Examples of valid variable names (type is assigned according to the first letter, as described in the pre-
ceding paragraph) follow:

Variable
Name Description

LNO599 This variable is of type INTEGER.

IF This variable is of type INTEGER.
There are no reserved words in B 1000
FORTRAN 77.

OF TEN This variable is of type REAL. It is
interpreted as OFTEN (blank ignored).

LOOP3 This variable is of type INTEGER.

Examples of invalid variable names follow:

Imvalid
Variable
Name Description
3LOOP Variable names cannot begin with a digit.
BE-GIN Characters other than letters, digits, or

blanks are not allowed in a variable name.

REALNUMBER There are too many characters, only six
are permitted.

END$SQ The dollar sign ($) character is not a legal
character.

ARRAYS

An array is an ordered data set corresponding to an n-dimensional organization such that each member
can be referenced by an array element, with each of the n subscripts in the element denoting a location
in the appropriate dimension. In FORTRAN 77, an array can have a maximum of seven dimensions.

B 1000 Systems FORTRAN 77 Reference Manual
Variables and Arrays

Array Declarator

An array declarator appears in a DIMENSION, explicit type, or COMMON statement and specifies
the symbolic name of an array within a program unit and specific attributes for that array. Only one
array declarator can be specified for a given array in a program unit. The array declarator specifies
the number of dimensions for the array and the bounds on each of those dimensions. An array declara-
tor has the following form:

k)

<array-name > (m < dimension-declarator >)

G50294

< array-name> has the same restrictions as a variable name and uniquely identifies the array. <dimen-
sion-declarator > specifies bounds for each dimension. The number of dimension declarators in the ar-
ray gives the number of dimensions in the array. <dimension-declarator> contains an <upper-
bound > declarator and, optionally, a <lower-bound> declarator. A dimension declarator has the fol-
lowing form:

<upper-bound >

L <lowerbound > : -
G50295

Both the <lower-bound> declarator and the <upper-bound> declarator can be integer expressions
and are called dimension-bound expressions. If <lower-bound> is omitted, the lower bound for that

dimension is 1. The values of these expressions can be positive, negative, or zero, with one restriction:
the value of the upper bound must not be less than the value of the lower bound. The upper-dimension
~ bound of the last dimension can be an asterisk in assumed-size array declarators.

Examples of statements that use array declarators follow:

DIMENSION LO(-3:-1,-7:0), ALPHA(14,15:20)
LOGICAL EL(0:99,3,27:28)

COMMON NI(1,2,3,4,5), BETA(Q2)

REAL N(-2:2)

The number of elements in an array can be determined by using the following formula:
E = (ul-11)+1) * (2-12)+ D* ... *((un—1In)+1)
E is the number of elements in the array, the u’s are the upper-bound declarators for each dimension,

the I’s are the lower-bound declarators for each dimension, and n is the number of dimensions of the
array. '

1108867 5-3

B 1000 Systems FORTRAN 77 Reference Manual
Variables and Arrays

Types of Arrays

The upper-bound declaration of the final dimension declarator can be an asterisk (*), in which case
the array is an assumed-size array. If the array declaration contains integer variables in the dimension-
bound expressions, the array is an adjustable array. If the array contains only integer constant expres-
sions in the dimension-bound expressions, the array is a constant array. Only a dummy array can be
an adjustable array or an assumed-size array. Dummy arrays are explained under Arguments in section
13.

Examples:

DIMENSION AL(-1:1,2:]) AL is an adjustable array.

REAL BE(14,*), CE(1,2:J,*) BE is an assumed-size array.
CE is an adjustable array and an
assumed-size array.

COMMON DE(18) DE is a constant array. A constant
array is the only type of array that
can be in COMMON storage.

Array Elements

Each member of an array is called an array element. The following is the proper form of an array
element:

<array-name > (<subscript-list >)

G50296

< subscript-list > consists of as many arithmetic expressions (subscripts), separated by commas, as there
are array dimensions.

Each member of an array is referenced by means of an array element with appropriate subscripts. Each
arithmetic expression in the subscript list of this construct must be of type INTEGER only. The expres-
sion can contain any of the arithmetic operators, integer functions, or subscripted integer variables.
A subscript within an array reference must be greater than or equal to the lower bound declared for
that dimension in the array declarator for that array. The subscript must also be less than or equal
to the upper bound declared for that dimension in the array declarator for that array. The number
of subscripts in an array reference must be equal to the number of dimensions in the array declarator
for the referenced array.

Whenever an array name appears in a program, this array name must be immediately followed by a
subscript list, except when the array name appears in the following:

The dummy argument list of a subprogram reference.

The actual argument list of a subprogram reference.

The variable list of an input/output statement, unless the array is an assumed-size array.
As a unit identifier or format identifier in an input/output statement, unless the array is an
assumed-size array.

. A COMMON, DATA, EQUIVALENCE, or explicit type statement.

kel oS

(%

54

B 1000 Systems FORTRAN 77 Reference Manual

Variables and Arrays

An array can never contain fewer subscripts than are declared for that array in an array declaration.
However, a dummy array can have fewer declared dimensions than the actual array with which it is

associated.

Examples of valid array elements follow:

B(I)
LNO 599(-6)

I5dT(3))

ARRAY2(1,0,1,0)

AM*N)

This array element is interpreted as
LNO599(-6).

The subscript is an array element.
This array element is valid only if the given

subscripts are within the ranges of the
dimensions declared for ARRAY2.

Examples of invalid array elements follow:

A subscript must be a valid arithmetic
expression; an array name does not
constitute such an expression.

This array element is invalid only if
ARRAY3 does not contain 0 in the dimension
range (example: ARRAY3(-4:-2)).

An array name cannot violate the rules
governing variable names.

The subscript must be INTEGER type only.

A detailed description of the internal representation of FORTRAN 77 arrays is contained in appendix

(D)
~ ARRAY3(0)
3ARRAYS(6)
ARRAY(3.6)
D.
1108867

B 1000 Systems FORTRAN 77 Reference Manual
Variables and Arrays

CHARACTER SUBSTRINGS

A character variable can either be referenced as a complete entity or any part of the variable can be
referenced using a substring name. A character substring name has the following format:

< variable-name > ~

L <array-element > ——

(-)
l— <expression1 > ———-l l—<expression2 > —.[|

G50297

The variable referenced can be either a simple character <variable-name> as in the first option, or
a character <array-element> (a character array name followed by a subscript expression).
<expressionl > is the character position within the variable where the substring begins and
<expression2> is the character position within the character variable where the substring ends.
<expressionl > and <expression2> are integer expressions which have the following restriction:

1 .LE. expressionl .LE. expression2 .LE. len

The expression len is the length of the character variable from which the substring is being taken. If
< expression2 > is omitted, the substring is assumed to be all of the characters from character position
expressionl to the end of the character variable. The form A(:) is equivalent to A, which is assumed

to be the entire character variable, and the form B(sl,s2,...) (:) is assumed to be the entire character
array element.

| Examples of valid character substrings follow:

B(2:4) Character positions 2, 3, and 4 in character
variable B.

B(2:) All the characters in B from character
position 2 to the end of B.

B(CI+5) From the beginning of B to character
position I+5 in B. Same as B(1:I+5).

B() All the characters in B. Same as B.

B(3:3) Character position 3 in B.

C(2,3)(5:9) Character positions 5 through 9 in element

(2,3) of character array C.

5-6

B 1000 Systems FORTRAN 77 Reference Manual

Variables and Arrays

Examples of invalid character substrings follow:

1108867

DO

D(-13)
D(5:4)
D(6.3 +X:)
D(2:8)

E(3:5)(1,I)

No colon.

Negative not permitted.

Expression2 is less than expressionl.
Real expression not allowed.

Invalid only if D contains less than eight
characters.

Subscript expression must precede substring

expression. '

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 6
SPECIFICATION STATEMENTS

Specification statements are employed to supply compile-time information about program variables per-
taining to variable types and storage allocation. All specification statements must precede the first
executable statement in a program unit. The specification statements are comprised of the following:

Explicit type statements
COMMON statement
DATA statement
DIMENSION statement
EQUIVALENCE statement
EXTERNAL statement
IMPLICIT statement
INTRINSIC statement
PARAMETER statement
PROGRAM statement
SAVE statement

These statements are described in the following paragraphs in the order just listed.

EXPLICIT TYPE STATEMENTS

The explicit type statements allow the type of a program variable to be explicitly specified for a pro-
gram unit and can also specify dimension information. The type assigned is only recognized in the pro-
gram unit in which it occurs (main program, subroutine, function, or block data subprogram). A value

. can be assigned to the variable within the explicit type statement. Explicit type specifications override
any default specifications due to the initial character in the symbolic name of the variable. Refer to
Variable Names in section 5 for additional information.

Program variables cah be assigned the following types:

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL
CHARACTER

1108867 ~ . - 6-1

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Numeric and Logical Type Statements

An explicit type statement specifying a type of DOUBLE PRECISION, INTEGER, REAL, or COM-
PLEX is a numeric type statement. There is only one logical type statement: LOGICAL. These types
of variables have an implied length. Numeric and logical type statements have the following form:

INTEGER

REAL
L—‘ DOUBLE PRECISION

—— COMPLEX
L 1L OGICAL

’

>—1+——<constant-name >

L <function-name >

L <array-declarator >

L <array-name > / <value-list> / —
L<variable-name >

G50298

<constant-name> is the symbolic name of a constant that is to be given a value in a subsequent PA-
RAMETER statement. <value-list> is a list of initial values for the entity. Initial values for numeric
entities must be numeric constants or the symbolic names of numeric constants. A complex constant
must only initialize a variable or array of type COMPLEX. <constant-name> or < function-name>
must not have an associated <value-list>. If the entity is a simple variable, <value-list>, if specified,
must contain only one value. If the entity being typed is an array, <value-list> contains the number
of elements in the array. A dummy variable or dummy array declaration must not contain a < value-
list>.

An array declarator can appear only once in a program unit for a specific array. Therefore, if the
dimensions for a given array are given in a DIMENSION statement, the array name, without an array
declarator, must be used in the explicit type statement.

Examples of explicit type statements follow:

REAL 1ZE/134.99/, LEMON(12:15,-13:1)
LOGICAL CONC/.FALSE./, LUSION(12)
INTEGER NO, DECI, MAL, POINT(-3:0)/1,2,3,4/
DOUBLE PRECISION MORE(3), EXACT

An explicit type statement, if used, must appear before any other statements referencing the variable.

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Character Type Statement

The character type statement is used to specify that a specific variable can contain string values only.
A variable that is not of type CHARACTER must not be assigned string values at any time. A charac-
ter variable can have a specified length, or the variable can assume the default length of one byte.
This length attribute, when specified, is given in the explicit type statement for the character variable.

The CHARACTER explicit type statement has the following form:

——— CHARACTER >

L x <Jength > —uw——1

>——+——<constant-name >
- <function-name > * <length >___J,

< array-declarator >
+—<array-name > * <length > / <value-list >/ ——

L <variable-name >

G50299

<length > is the length in characters of the variable or array being declared and has a minimum value
of 1 and a maximum value of 255. <length> has one of the following three forms:

1. An integer constant.

2. An integer constant expression (expression containing only integer constants and the symbolic
names of integer constants, no variables) in parentheses.

3. An asterisk (*) character in parentheses.

The first two forms of <length> specify a constant length for the character entity. The third form
specifies an assumed length for a dummy variable or dummy array. The dummy variable or dummy
array assumes the length of the actual argument with which it is associated.

If the CHARACTER type statement does not have a length attribute, the default length is one charac-
ter. A length following an entity in the list overrides the length given for the CHARACTER type state-
ment. Any entry in the list that is not followed by a length attribute takes on the length given following
the word CHARACTER, if one is given.

<constant-name> is the symbolic name of a constant to be given a value in a subsequent
PARAMETER statement. <variable-name>, <array-name>, and <array-declarator> are described
in section 5. <function-name> is described in section 13. <value-list> is a list of string constants
separated by commas which initialize the entity being typed. There must be only one value in the <val-
ue-list > if the entity is not an array. If the entity is an array, the list contains the number of elements
in the array. A dummy variable or dummy array declaration must not contain a value list.

1108867 6-3

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Example:

CHARACTER * 9 A, B * 4 /’XYZA’/, C /’ABCDEFGHI'/,X * 2
CHARACTER G, 1(4:13) * 7, K2) /’0’,’D*/

In this example, A has a length of nine characters, B has a length of four characters and is assigned
an initial value, C has a length of nine and has an initial value, and X has a length of two. In the
second statement, G has a length of one. I is a character array; each element contains seven characters.
K is a 2-element character array, each element containing one character and an initial value.

An example of a partial function subprogram of type CHARACTER with dummy variable declarations
follows:

CHARACTER * (*) FUNCTION T(E, F, G)
CHARACTER * (4) EQ3)
CHARACTER * () F, G

In this example, T is a variable length CHARACTER FUNCTION containing four dummy parameters
(the length of the value returned is dependent on the length declaration for the function in the calling
program unit; refer to section 13). The element length of dummy array E is 4.

Dummy variables F and G have no explicit length and are dependent on the length of the correspond-
ing actual arguments. Refer to section 13 for more information on dummy parameters.

COMMON STATEMENT

The COMMON statement allows values to be shared among program units without employing entries
~ in SUBROUTINE and FUNCTION statement argument lists, while permitting these data items to be
referenced in each program unit. The proper form of the COMMON statement follows:

’

’

——COMMON <larray-declarator >
/ / —| —— <array-name >
l—— <block-name > L <variable-name >
G50300

6-4

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Common Names

A symbolic name is associated with each block of COMMON storage; this name is called a COMMON
name or block name. Any program unit can access the block of storage associated with this name by
means of a COMMON statement employing this name. COMMON storage associated with a COM-
MON name is referred to as COMMON,

A COMMON name is constructed in the same manner as a variable name, except that no type is associ-
ated with a COMMON name. A COMMON block need not be named; COMMON storage associated
with no name is called blank COMMON and is assigned the internal identifier &BLANK. If the specifi-
cation for blank COMMON is the first specified in a COMMON statement, the two slashes enclosing
the COMMON name can be omitted. Thus, these two statements are equivalent:

COMMON//A,B(10)
COMMON A,B(10)

COMMON block names are unique only within COMMON statements. Outside the COMMON state-
ment, a COMMON block name can be reused as another element within the program unit (for exam-
ple, a simple variable name, an array name, and so forth).

Use of Array Declarators

Array declarators can be used in COMMON statements to declare the dimensions of arrays in the same
manner as type statements or DIMENSION statements. Refer to Array Declarator in section 5 for an
explanation of array declarators.

Storage Assignments

"Each element of a COMMON block is allocated storage in COMMON storage once for an entire
executable program. Each program unit can reference a COMMON block (and hence each location in
the block) by means of an appropriate COMMON statement. The contents of the locations referenced
can be changed in the same manner as the contents of any location local to the program unit.

Variables and arrays are assigned contiguous locations in COMMON storage in the order of appearance
in a COMMON statement. The size of each block of COMMON storage is either as large as the
maximum specification indicated by a COMMON statement referencing the block name in any program
unit, or as large as the maximum length to which the block is extended by an EQUIVALENCE state-
ment. Refer to EQUIVALENCE Statement in this section for additional information.

Assume that the following statements are the initial statements of a program unit:

SUBROUTINE MSG

DOUBLE PRECISION D

LOGICAL FLAG(6)

COMMON WORDI1,WORD2, D,FLAG,TEXT(20)
COUNT =1

1108867 | 65

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Assume that the preceding COMMON statement is the largest description of the size of the unlabeled
COMMON block in a given program. The total size of this COMMON block is 30 words. These words
are recognized in the MSG subprogram as the words assigned to the REAL variables WORDI1 and
WORD?2, the word pair assigned to the DOUBLE PRECISION variable D, the six words assigned to
the LOGICAL array FLAG, and the 20 words assigned to the REAL array TEXT. These data words
are contained at relative locations within the COMMON block in the order listed.

The unlabeled COMMON block just described can be referenced, for example, by a COMMON state-
ment within another program unit as follows:

SUBROUTINE DUMP
COMMON T(10)
WRITE (6,1)T

1 FORMAT(1X.10Z8)
RETURN

END

In this example, T is a REAL array. The elements of this array are assigned the data words contained
in the COMMON block, beginning with the initial word of the block and proceeding for 10 words.
Thus, WORD1 and WORD?2 are equivalent to the array elements T(1) and T(2), respectively; D is
equivalent to elements T(3) through T(4); FLAG(1) through FLAG(6) are equivalent to element T(5)
through T(10). The data words allocated to the TEXT array in the MSG subprogram are not accessed
in the DUMP subprogram.

Entire arrays, but not individual array elements, can be assigned storage locations in COMMON stor-
age.

~If the same COMMON name appears more than once in a program unit, the COMMON elements asso-
ciated with one appearance are considered extensions to the list of the previous appearance.

Data initialization can be performed by means of a BLOCK DATA subprogram. The BLOCK DATA
subprogram is described in section 13. A DOUBLE PRECISION variable in a COMMON block must
not cross a data segment boundary. Each data segment contains up to 256 words.

Variables and array names cannot be duplicated in COMMON statements. One variable cannot be as-
signed to more than one block of COMMON storage within a program unit. No dummy arguments
can appear in a COMMON statement. A COMMON block can contain CHARACTER type data, but
if so, it must contain only CHARACTER type data, and any variable name associated with the block
must be of type CHARACTER.

Examples of COMMON statements follow:
COMMON/BLOCK]1/A,B(10), C//G, HOLD/BLOCK2/Q(3)

COMMON D
COMMON T1/CMN/T2,T3,X(-4:-1,8)

6-6

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

DATA STATEMENT

The DATA statement is provided to allow compile-time initialization of program variables. All
variables are initialized to 0 if not specified in a DATA statement or a <value-list> in an explicit
type statement. The proper form of the DATA statement follows:

— DATA — <array-name > / C

< array-element-name > L <nonzero-unsigned-int-constant > —— % ——|

< DATA-implied-DO-loop > — L <constant-name >
<substring-name >

< variable-name >

A

c ——< constant > / ‘ _{
| ___<constant-name > ,

G50301

< constant-name > is the symbolic name of a constant described in the PARAMETER statement. The
-items concerning constants are described in section 4. Items concerning arrays, variables, and substrings
are described in section 5. <DATA-implied-DO-loop>s are described in the following subsection en-
titled Variable Lists.

If a DATA statement is used in a program unit, it must appear after all specification statements and
before the END statement in the program unit. The DATA statement has effect only at compilation
time. Elements of a COMMON block can appear in DATA statements only in a BLOCK DATA sub-
program or in a main program.

Variable Lists

A variable list in a DATA statement consists of the following: <array-name>, <array-element-
name>, <DATA-implied-DO-loop>, <substring-name>, and <variable-name>. Each element of
the variable list can occur only once. When an array name is written without a subscript, each element
of the array is initialized with an element of the initial value list in the order in which the array
clements are stored. Refer to appendix D for more details.

Each substring expression in the variable list must be an integer constant expression. Each subscript
expression in the variable list must be an integer constant expression except for implied-DO variables
that can appear within the expression.

Example of a variable list:

K, M, A(3)’ B(2a4s11)a ((X(J’I)aI=laJ)’J=1’5)

1108867 ’ 6-7

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

DATA Implied-DO Loop

A DATA implied-DO loop is used to specify the elements of an array which are to be initialized. Giv-
ing an array name without an implied-DO loop specifies that every element of the array is to be initial-
ized. A DATA implied-DO loop has the following form:

— (<DO-list >, <DO-variable > = <initial >, <terminal > ——— , <incremental >)

G50302

The range of the implied-DO loop is the list <DO-list>. In the diagram, <DO-list> is a list of array
elements, and/or DATA implied-DO loops separated by commas. The <DO-variable> to the left of
the equal sign is described under the DO statement in section 7. The <initial>, <terminal>, and
<incremental > parameters are any integer constant expressions or integer expressions with this im-
plied-DO loop within their range. The parameters and <DO-variable> in the implied-DO are handled
in the same manner as a DO loop. Refer to section 7 for additional information.

The iteration count (section 7) must be positive. With each iteration of the implied-DO, each item in
the <DO-list> is assigned a value from the initial value list (refer to following subsection), and any
list items accessing the < DO-variable> (a parameter in another implied-DO within the range of the
outer implied-DO, or an array containing the <DO-variable> as a subscript) are assigned the new
value of the <DO-variable>.

An example of DATA implied-DO loops within DATA statements follows:

DIMENSION A(20), B(6), C(12,—4:10), D(100), E(2,2)
CHARACTER * 5 F(6)

DATA (A(D),I=4,15)/12 * 1.5/

DATA (B(),(C(J,),I = —4,1,2), DU),J = 1,6),E/43 * 1.0/
DATA (F(I)(2:4),1=1,3)/3 * ‘ABC’/

In this example, the first DATA statement initializes elements 4 through 15 of array A to 1.5. The
second DATA statement initializes all six elements of array B to 1.0; elements (1,—4), (1,—2), (1,0),
(29_4)a (2’_2)’ (2,0): (2s2)9 (3;—4)9 (3$_2)’ (3:0)a (3$2)’ (47—4), (49_2): (4:0)3 (452)’ (4’49)’ (53_4))
(5,-2), (5,0), (5,2), (5,4, (6,—4), (6,—2), (6,0), (6,2), (6,4), and (6,6) of array C to 1.0, the first six
elements of array D to 1.0, and all of array E to 1.0. The third DATA statement initializes character
positions 2 through 4 of the first three elements of array F to ’ABC’.

Each element of an array must only be initialized once in a DATA statement in an executable program.
A <DO-variable> in a DATA implied-DO loop does not affect the value of a program variable with
the same name.

Initial Value Lists

The constant values contained within the slashes comprise the initial value list of the DATA statement.
The values in the list consist of numeric constants and strings.

Repeat Counts
The constants can optionally be preceded by a repeat count of the form n*, where n is an unsigned

nonzero integer constant, or constant name defined in a PARAMETER statement. This repeat count
indicates the number of times the immediately following constant is to be used for assignment.

6-8

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Data Assignment

Constant values in the initial value list are assigned to elements of the variable list in the order of
occurrence. For example, the following DATA statement initializes the variables A and B to the values
2 and 3, respectively, and initializes C and D to 4.

DATA A,B/2,3/,C,D/2*4/

All elements of the variable list must be matched to the constants in the initial value list, and all con-
stants must be used; the number of items in the variable list to be initialized must equal the number
of items in the initial value list. A repeat count (n*) counts for n occurrences of the immediately suc-
ceeding entry in the initial value list. An implied-DO has a similar effect on an item in the variable
list. If an entire array is specified in the variable list, but there are not enough constants to completely
initialize it, an error is given.

Character Strings

The initial value list can contain strings of up to 255 characters. Character constants (refer to Character
Constants in section 4) in DATA statements initialize character variables, character substrings, charac-
ter arrays, or character array elements. Numeric-typed variables must not be assigned character values,
and character entities must never be assigned numeric values unless the values are hexadecimal. If the
length of the string is less than the length of the character entity to which the string is being assigned,
the string is assigned left-justified with blanks filled in to character storage locations that are unas-
signed. If the value being assigned is greater than the length of the character entity to which it is being
assigned, excess characters in the value are truncated from the right.

"Examples of valid DATA statements involving CHARACTER entities follow:

CHARACTER *4 X, Y, Z(—17:4) *2
DATA X, B, C, Y, Z/’ABCD’, 2*%4.3, "EGH’, 20*’IT°,2*ZC1C3/

In this example, X is initialized to the value ’ABCD?’, Y to the value ’EGH ’, and the first 20 elements
of array Z to the value ’IT’. The final two elements of Z are initialized to the value AC’.

If a long string is being assigned to an array, excess characters in the string after assignment to the
first element of the array are not assigned to the next element of the array. One string can only be
assigned to one variable unless there is a repeat count preceding the string.

Hexadecimal Initialization

Hexadecimal (hex) constants (refer to Hexadecimal Constants in section 4) can be used to initialize ei-
ther numeric or character variables, arrays, array elements, or substrings. The exact value represented
in the hex string is assigned, without conversion or regard to type, to the entity in the variable list.
When a hex value is assigned to a numeric entity (COMPLEX, DOUBLE PRECISION, INTEGER,
LOGICAL, REAL), if the hex value is too small, it is filled on the left with zeroes until it fills the
entity. If the hex value is too large to completely fit in the variable item (more than eight hex digits,
or more than 16 for DOUBLE PRECISION), truncation is performed from the left (most significant
digits) until the value can fit into the variable.

Hex constants which are assigned to character entities must exactly fit the character entity; for each
character in the character entity (variable, array element, substring) there must be two hex digits in
the hex string being assigned.

1108867 6-9

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Conversion During Assignment

Table 6-1 indicates the type conversion to be performed on a constant appearing in an initial value
list when assigned as the initial value of a variable.

The CMPLX, DBLE, INT, and REAL functions have the same effect as the CMPLX, DBLE, INT,
and REAL intrinsic functions. Refer to section 13 for more information about these intrinsic functions.

Table 6-1. DATA Statement Type Conversions
L J

Variable Type
Constant
Type INTEGER | REAL DOUBLE | LOGICAL | CHARACTER | COMPLEX

INTEGER None REAL DBLE Invalid Invalid CMPLX
REAL INT None DBLE Invalid Invalid CMPLX
DOUBLE INT REAL None Invalid Invalid CMPLX
LOGICAL Invalid Invalid Invalid None Invalid Invalid
CHARACTER Invalid Invalid Invalid Invalid None Invalid
COMPLEX INT REAL DBLE Invalid Invalid None

Hex ‘| None None None None None None

The following notation is used in table 6-1.

Table Meaning
None No conversion.
Invalid Invalid combination resulting in a syntax error.

CMPLX Perform REAL and assign to real portion; assign
0. to imaginary portion.

DBLE Convert to DOUBLE PRECISION.
INT Truncate. '
REAL Convert to REAL.

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

DIMENSION STATEMENT

The DIMENSION statement specifies the size and number of dimensions of a program array. The fol-
lowing is the proper form of the DIMENSION statement:

’

—— DIMENSION <array-declarator >
G50303

< array-declarator > is described in section 5. Each array referenced in a program unit must have the
array bounds specified exactly once in that program unit. This specification can be accomplished by
means of a DIMENSION, explicit-type, or COMMON statement.

For an array which is not a dummy argument, an array declaration specifies exactly the amount of
internal storage to be allocated to the array and the number of subscripts an element of that array
must have. Refer to ARRAYS in section 5 for additional information.

Only an array declaration appearing in a subprogram can have dimensions which are variables. The
array name and the variable names appearing in the array declaration must appear in a dummy argu-
ment list within the subprogram. Refer to section 13 for more information on dummy arguments.

Examples of DIMENSION statements follow:

DIMENSION A(- 12:10),B(3,3)
DIMENSION C(N,4:J)
DIMENSION D(13,*)

Arrays C and D in the example are dummy arrays.

EQUIVALENCE STATEMENT

The EQUIVALENCE statement allows the user to assign a number of program data items to a single
unit of internal storage. Thus, more than one symbolic name can refer to one storage location. The
following is the proper form of the EQUIVALENCE statement:

- EQUIVALENCE (<array-element >)

—— <array-name >

+—— <substring > '

L <variable-name >

G50304

1108867 6-11

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Each data item grouping in the EQUIVALENCE statement is enclosed in parentheses. Each such
grouping is assigned storage locations to share. The subscripts of array elements in the list must be
integer constants, symbolic names of integer constants, or integer constant expressions and must corre-
spond in number to the number of dimensions declared for the array. Two elements of the same array
cannot be equivalenced. Thus, EQUIVALENCE (A(3),B), (A(6),B) is invalid.

No dummy argument or subprogram name can appear in an EQUIVALENCE statement. A list item
of type CHARACTER must only be associated with other items of type CHARACTER.

Single Storage Locations — Numeric

The least complicated use of the EQUIVALENCE statement involves the assignment of data items re-
quiring a single word (REAL, INTEGER, LOGICAL) of storage to mutual storage location.

As an example, assume that the following statements are the first statements of an executable program:

INTEGER A, AR(2)
LOGICAL L,AL
EQUIVALENCE (A, AR(2), B2), (AL,L)

The EQUIVALENCE statement causes the INTEGER variable A, the INTEGER array element AR(2),
and the REAL variable B2 to be assigned to one data word. The first element of AR is not affected
by this specification statement. A change in the value of any one of the three equivalenced items pro-
duces a simultaneous change in the value of the other two items; however, only variables of the same
type contain equivalent changes, and variables of different types become undefined. In this example,
if INTEGER variable A is assigned a value, INTEGER array element AR(2) is assigned the same value,
and REAL variable B2 becomes undefined.

"~ The EQUIVALENCE statement also causes the LOGICAL variables AL and L to be assigned to the
same data word. As the variable L changes value, AL also changes value. For example, the following
assignment statement places the logical value TRUE into variable AL.

L = .TRUE.
Multiple Storage Locations — Numeric

EQUIVALENCE statements can also involve data items requiring more than one word of storage. As
an example, assume that the following statements are the first statements of a program:

DOUBLE PRECISION D
REAL A(2)
EQUIVALENCE (A(1), D, B)

This EQUIVALENCE statement causes the REAL array A, the DOUBLE PRECISION variable D,
and the REAL variable B to be assigned to identical data words. As A and D both require two data
words, the first and second elements of A become equivalent to the first and second words, respective-
ly, of the storage unit assigned to D. The variable B requires only one data word and is assigned to
the same location as A(1) and the first word of D. If D was declared as COMPLEX, the preceding
EQUIVALENCE statement would have the same effect.

6-12

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Array Handling — Numeric

The EQUIVALENCE statement can be used to assign a single group of contiguous storage locations
to a number of arrays. The following discussion illustrates the effect of the appearance within an
EQUIVALENCE list of each of these two types of possible array references:

1. An array name.
2. An array element with the same number of subscripts as contained in the declaration declaring

the array.

Assume that the following statements are the first statements of a program unit.

REAL A(4), B(10, 10), C(100), D(50), E@3, 3), F(50)
DOUBLE PRECISION DP(2)
EQUIVALENCE (A,DP(1)), (B(1,1),C(1)),(D,F(26), E(2,1))

The first list in the above EQUIVALENCE statement ((A,DP(1))) causes the REAL array A and the
DOUBLE PRECISION array DP to share four storage words. The first two elements of A (A(1) and
A(2)) become equivalent to the two words of the first element of DP (DP(1)), and the last two elements
of A (A(3) and A(4)) become equivalent to the two words of the last element of DP (DP(2)). The
appearance of array names only in an EQUIVALENCE list causes equivalencing to begin with the first
element of each array. The second list in the sample EQUIVALENCE statement ((B(1,1),C(1))) causes
the REAL arrays B and C to share 100 storage words. Each element in the 100-element array C (begin-
ning with C(1)) is assigned to the same storage location as a unique element of B. The elements of
the 2-dimensional array are stored internally in a column-wise fashion (refer to appendix D). The inter-
nal storage locations assigned to C occur in the same order as the elements of array B. Hence, each
C(1) is equivalenced to the I-th internal element of B. If the following two WRITE statements occur
. in the same program unit, identical output is produced:

WRITE (6, 10)(C(I),I=1,100)
WRITE (6,10) B

The final list in the sample EQUIVALENCE statement, (D,F(26),E(2,1)), indicates that the elements
of the arrays D, F, and E are to be equivalenced in such a manner that D(1), F(26), and the second
internal element of the 2-dimensional array E are to be assigned identical internal locations. The last
25 elements of F, F(26) through F(50), become equivalent to the first 25 elements of D, D(1) through
D(25). Since E is stored internally in the manner described in the explanation of arrays in this section,
equivalencing is handled in the manner illustrated in the following diagram. Each of the lines denotes
a single storage location, and the array element(s) on a line is assigned to the corresponding location.

1108867 6-13

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

F(1)
through

F(25) E(1,1)
D(D F(26) E(2,1)
D(2) F(27) E(3,1)
D(3) F(28) E(1.2)
D4 F(29) E(2,2)
D(5) F(30) E@3.2)
D(6) FG31) E(1,3)
D(7) F(32) E(2,3)
D(8) F(33) E@3,3)
D(9) F(34)
through through
D(25) F(50)
D(26)
through
D(50)

The following DATA statement initializes the elements E(1,2), E(2,2), F(28), F(29), D(3), and D(4) with
the value 6.

. DATA E(1,2), EQ2,2) / 2*6/
Character Association

Character storage locations can be associated with more than one character variable, character array,
or character substring due to an equivalence relation.

A character array can be viewed as a contiguous sequence of n character storage locations, where n
is the number of elements in the character array multiplied by the length of an element.

An example of an EQUIVALENCE statement with CHARACTER arguments follows:

CHARACTER * 5 A, B(2) * 2
EQUIVALENCE (A(3:4), B(1))

In this example, character locations 3 and 4 in A share the same storage locations as B(1). The fifth
character storage location in A (A(5:5)) is the same as the storage location for B(2)(1:1).

Interaction with Common Storage

The EQUIVALENCE statement can be used to associate additional elements with a COMMON block.
This can extend the block beyond its former terminal point, increasing the size of the block. It is possi-
ble to EQUIVALENCE the beginning of an item representing more than one storage location (such
as an array) to an element of the COMMON block, resulting in the addition of storage locations at
the end of the block. The following example illustrates the manner in which a COMMON block can
be extended by the EQUIVALENCE statement.

6-14

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

Assume that the following statements form two units of an executable program:

FUNCTION SUM(N)
COMMON GR1/IT(3,3)
DO 1 1=1,3
DO 1J=13

1 SUM=SUM +IT(,J)
SUM = SUM*N
RETURN
END

LOGICAL FUNCTION TEST(L)

LOGICAL X(6)

COMMON GR1/K(9)

EQUIVALENCE (K(6),X)

DO 11=1,9

1 S=S+K(®)

TEST= S.EQ.L.AND.X(1).AND.X(6)
C ELSE TEST IS .FALSE.

RETURN

END

The COMMON block referenced by these two sample program units is labeled GR1. The function
SUM accesses the first nine locations of this block through the 2-dimensional INTEGER array IT. The
function TEST accesses the first nine locations of the block using the INTEGER array K. In addition,
the following two locations of the GRI1 block are referenced as the LOGICAL array elements X(5)
and X(6), since the X array is equivalenced to the K array starting at the element K(6).

The elements of the array K occur in the same order as the contiguous storage locations assigned to
the array IT but allow these locations to be referenced using only one subscript. Equivalenced portions
of the X and K arrays allow various elements of K to be handled as both INTEGER and LOGICAL
type items.

COMMON blocks cannot be extended backwards by the EQUIVALENCE statement. The following
combination of statements is invalid:

LOGICAL X(6)
COMMON/GR1/K (9)
EQUIVALENCE (X(3),K)

Two elements of COMMON storage cannot be made equivalent to each other, either directly or indi-
rectly, by an EQUIVALENCE statement.

A local variable equivalenced to a COMMON variable becomes a part of the COMMON block for
that program unit. This variable cannot be initialized in a DATA statement or an explicit type state-
ment in the program unit because it is in COMMON storage. It cannot be initialized in a BLOCK
DATA subprogram because it is not explicitly named in a COMMON statement in that program unit.

1108867 6-15

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

EXTERNAL STATEMENT

The EXTERNAL statement is used to identify a subprogram name as representing an external proce-
dure and to specify to the compiler binding information relating to the subprogram. The proper form
of the EXTERNAL statement follows:

2

EXTERNAL < subprogram-name >

G50306

The EXTERNAL statement has two basic purposes: 1) to identify subprogram names to be passed as
actual parameters in a subprogram invocation, and 2) to override intrinsic function selection in a pro-
gram unit.

Subprograms as Actual Parameters

When a subprogram name is used as an actual parameter, it must appear in an EXTERNAL statement.
The invocation of the subprogram associates the dummy subprogram name in the dummy parameter
list with the actual subprogram name. A call to the dummy subprogram is a call to the subprogram
named in the actual parameter list.

Example:

EXTERNAL A
CALL B(A)

SIjBROUTINE C(D)
100 CALL D

In this example, the CALL in subprogram C of subprogram D is actually a CALL to subprogram A.
When line 100 is executed, control passes to subprogram A. A subprogram in an actual parameter list
can also be the name of a dummy subprogram in the calling program unit. A block data subprogram
must never appear in the actual parameter list of a subprogram reference.

User-defined Intrinsic Functions

Intrinsic function selection can be overridden through use of the EXTERNAL statement. User func-
tions can replace intrinsic functions for a program unit by specifying the user defined function in an
EXTERNAL statement. The user-defined function with the same name as the default intrinsic function
is substituted during the subprogram unit in which the EXTERNAL statement containing the user-de-
fined subprogram name occurred. A user could, for example, write a SIN function that is different
from the SIN intrinsic function normally used. If the user only wanted to use the new SIN function
in certain cases, an EXTERNAL statement could be used in each subprogram where the new SIN func-
tion is desired.

6-16

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

An example of the EXTERNAL statement used to override intrinsic functions follows:

SUBROUTINE A(X,Y)
EXTERNAL SIN, COS
100 X=SIN(Y)+COS(Y)

SUBROUTINE B(X,Y)
X = SIN(Y) + COS(Y)

RléAL FUNCTION SIN(A)

REAL FUNCTION COS(B)

The subprograms specified in the EXTERNAL statement are searched for in the intermediate code
files. Refer to Intermediate Code Modules in section 14. In the previous example, subprogram A uses
the SIN and COS functions contained within the user program while subprogram B binds in the SIN
and COS functions in the intrinsic function file and references them.

IMPLICIT STATEMENT

The IMPLICIT statement allows the default type assigned to a variable, due to the initial character,
to be altered.

The following is the proper form of the IMPLICIT statement:

*

—IMPLICIT- INTEGER k (<letter > l. _J)
—— REAL -<letter >

—— DOUBLE PRECISION
—— COMPLEX
—— LOGICAL
~— CHARACTER

|-—- *x <length > —
G50307

<length> is an integer constant or integer constant expression in parqnthes§s anc} is the length of the
character entity that assumes a default type of CHARACTER when it begins with one of the letters
specified in the IMPLICIT statement. <letter> is a letter of the alphabet.

1108867 ‘ 6-17

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

A program unit can contain one or more IMPLICIT statements. No letter can appear in more than
one IMPLICIT statement in a program unit. If used, IMPLICIT statements must appear before any
other statements except FILE statements (in the main program), Compiler Control Images, comments,
FUNCTION statements, SUBROUTINE statements, and optionally, PARAMETER statements. The
letters used as the first letter of a symbolic constant in a PARAMETER statement preceding the IMP-
LICIT statement(s) must not appear in an IMPLICIT statement in that program unit. The IMPLICIT
statement applies only to symbolic names in the program unit in which the statement appears, including
function and dummy arguments.

Symbolic names, whose initial character lies between or is the same as one of the indicated letters,
are to be of the specified type. Each element of the list can be one or two letters separated by a hy-
phen. If the element is a letter, a name must begin with that letter to be assigned the specified default
type. If the element is a hyphenated letter pair, the letter pair indicates a range of initial characters
with which the default type is associated. The second letter in a hyphenated pair must be greater in
the collating sequence than the first letter.

Examples of valid IMPLICIT statements follow:

IMPLICIT REAL (I-N)

IMPLICIT CHARACTER * 10 (A-2)

IMPLICIT DOUBLE PRECISION (D)

IMPLICIT LOGICAL (A-C,L), REAL(D-F), COMPLEX(X)

An IMPLICIT statement, occurring in a function subprogram, applies to the name of the function,
any entry names, and all other symbolic names in the function subprogram, unless an explicit type
is specified in an EXPLICIT type statement or in the FUNCTION statement.

'IMPLICIT ranges that overlap (for example, REAL (A —K) INTEGER (I —M)) generate an error mes-
sage. The first specification is used to determine the variable type.

INTRINSIC STATEMENT

The INTRINSIC statement permits the specific name of an intrinsic function to be used as an actual
argument. If the specific name of an intrinsic function is used as an actual parameter, it must appear
in an INTRINSIC statement.

The proper form of the INTRINSIC statement follows:

<intrinsic-function-name >

INTRINSIC ——
G50308

<intrinsic-function-name > is the name of an intrinsic function in the F77INTRIN file. The intrinsic
functions MAX0, AMAX1, DMAX1, AMAX0, MAXI1, MIN, MINO, AMIN1, DMIN1, AMINO, and
MIN1 cannot be used as actual arguments (however, this does not preclude usage in an expression that
is an actual argument).

An example of the INTRINSIC statement follows:

INTRINSIC DCOS, NINT

6-18

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

PARAMETER STATEMENT

A PARAMETER statement is used to assign a symbolic name to a constant. The following is the prop-
er form of the PARAMETER statement:

PARAMETER — (— <const-name > = <const-expr >)

G50309

<const-name> is the symbolic name of a constant that becomes defined with the value determined
from <const-exp>, an expression involving only constants and other symbolic names of constants as
operands, in accordance with the rules for assignment statements as shown in table 6-1. If the constant
name is of type INTEGER, REAL, DOUBLE PRECISION, or COMPLEX, the corresponding con-
stant expression must be an arithmetic constant expression. If the constant name is of type CHARAC-
TER or LOGICAL, the corresponding constant expression must be a character constant expression or
a logical constant expression, respectively.

Any symbolic name of a constant that appears in a constant expression must have been defined previ-
ously in the same or a different PARAMETER statement in the same program unit.

If a symbolic name of a constant is not of default implied type, the type must be specified by an explic-
it type statement or IMPLICIT statement prior to the first appearance in a PARAMETER statement.

Once such a symbolic name is defined, the name can appear in that program unit in any subsequent
statement as a constant in an expression or in a DATA statement. A symbolic name of a constant
~must not be part of a format specification. A symbolic name of a constant must not be used to form
part of another constant.

An example of a PARAMETER statement follows:

PARAMETER (I =10)

EXAMPL = 1.0

A symbolic name of a constant must not be given a value more than once in a program unit. A sym-
bolic name in a PARAMETER statement can identify only the corresponding constant in that program
unit.

Examples of the PARAMETER statement follow:
CHARACTER *3 A
LOGICAL L

PARAMETER (A="ABC", X=1.414, I=1)
PARAMETER (L=I1.GT.2, Y=14.051)

Z=X+Y-12.3

1108867 6-19

B 1000 Systems FORTRAN 77 Reference Manual
Specification Statements

SAVE STATEMENT

The SAVE statement is used to retain a variable and its value after the execution of a RETURN or
END statement in a subprogram. The form of the SAVE statement follows:

>

SAVE < variable >
G50310 '

<variable> is a named COMMON block name preceded and followed by a slash, a variable name,
or an array name. Redundant appearances of an item are not permitted. Dummy argument names,
procedure names, and names of entities in a COMMON block must not appear in a SAVE statement.

Within a function or subroutine subprogram, an entity specified by a SAVE statement does not become
undefined as a result of the execution of a RETURN or END statement in the subprogram. However,
such an entity in a COMMON block can become undefined or redefined in another program unit.

A SAVE statement in a main program is optional and has no effect on program execution.

A SAVE statement without a list is treated as though it contained the names of all allowable items
in that program unit.

The appearance of a COMMON block name preceded and followed by a slash (/) character in a SAVE
statement has the effect of specifying all of the entities in that COMMON block.

. If a particular COMMON block name is specified by a SAVE statement in a subprogram of an execut-
able program, it must be specified by a SAVE statement in every subprogram in which that COMMON
block appears.

If a named COMMON block is specified in a SAVE statement within a subprogram, the current values
of the entities in the COMMON block at the time a RETURN or END statement is executed are made
available to the next program unit that specifies that COMMON block name at execution time.

If a named COMMON block is specified in the main program unit, the current values in the COM-
MON block are made available to each subprogram that specifies that named common block. A SAVE
statement in the subprogram that specifies this named COMMON block has no effect on program
execution,

If a local entity, specified by a SAVE statement and not in a COMMON block, exists at the time a
RETURN or END statement is executed in a subprogram, that entity is defined with the same value
at the next reference of that subprogram.

The execution of a RETURN statement or an END statement within a subprogram causes all entities
within the subprogram to become undefined except for the following:

. Entities specified by SAVE statements.

. Entities in blank COMMON.

Initially defined entities that have neither been redefined nor become undefined.

. Entities in a named COMMON block which appears in the subprogram and appears in at least
one other program unit that references that subprogram either directly or indirectly.

BN =

6-20

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 7
EXPRESSIONS

The manner in which expressions are constructed and the general features of the statements that form
the basis of the FORTRAN 77 language are described in this section.

GENERAL

The purpose of expressions is to specify equation-oriented rules whereby a unique data value can be
obtained as a result of operations performed on other data values.

An expression is any valid constant, variable, function reference, or any combination of these items
separated by appropriate operators and parentheses. The expression represents the value obtained when
the indicated operations are performed on the indicated values.

Expressions are divided into three basic types: arithmetic, character, and logical.

OPERATORS

The operators which can be employed by a FORTRAN 77 expression are listed in table 7-1. The
relative precedence assigned to each operator by the compiler is shown. The highest relative precedence
is eight,

The presence of these operators in an expression indicates that an arithmetic, character, or logical oper-
ation or a relational comparison is to be performed. Operations of equal precedence are performed
~ from left to right, except exponentiation which is carried out from right to left. The unary + operator
is ignored. Parentheses can be used to override operator precedence. A character expression (an expres-
sion which returns a character value) must not contain any arithmetic operators. Likewise, an arithme-
tic expression (an expression which returns a numeric value) must not contain any character operators.

Table 7-1. Operators Used in FORTRAN 77 Expressions

Relative Function
Operator Type Precedence Represented
ok Arithmetic 8 Exponentiation
— (Unary) Arithmetic 7 Change of sign
/ Arithmetic 6 Division
* Arithmetic 6 Multiplication
- Arithmetic 5 Subtraction
+ Arithmetic 5. Addition
// Character 5 Concatenation
.NE. Relational - 4 Not equal to
.GE. Relational 4 Greater than or
equal to
.GT. Relational 4 Greater than
.EQ. Relational 4 Equal to
.LE. Relational 4 Less than or
equal to
.LT. Relational . 4 Less than

1108867

7-1

B 1000 Systems FORTRAN 77 Reference Manual
Expressions :

Table 7-1. Operators Used in FORTRAN 77 Expressions

(continued)
: Relative "~ Function
Operator Type Precedence Represented
.NOT. Logical 3 Logical negation

.AND. Logical 2 Logical conjunction
.OR. Logical 1 Logical disjunction
EQV. Logical 0 Logical equivalent

.NEQV. Logical 0 Logical nonequivalent

ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a numeric value.

An arithmetic expression can contain only arithmetic operators and numeric constants, symbolic names
of constants, variables, array elements, function references, and arithmetic expressions in parentheses.
Logical or character operands of any type are not permissible in arithmetic expressions. In general,
mixed arithmetic operand types are permissible.

Immediately adjacent operators are not permissible and parentheses must be used to avoid adjacent
operators (for example, A**(-2)).

Expression Types

The types of operands in an arithmetic expression determine the type of the value obtained from the

. evaluation of the expression. When a COMPLEX value is combined with any other type of value in
an operation, the result is of COMPLEX type. If none of the operands in an arithmetic operation
are COMPLEX and at least one is DOUBLE PRECISION, the result is of DOUBLE PRECISION
type. If none of the operands in an arithmetic operation are COMPLEX or DOUBLE PRECISION
and at least one of them is REAL, the result is of REAL type. Only if all of the operands in an arith-
metic operation are INTEGER, is the result of type INTEGER. Tables 7-2 and 7-3 illustrate the result-
ant types of arithmetic operations depending upon the types of operands and the operator involved.
DOUBLE indicates DOUBLE PRECISION type.

For the operators +, —, *, and /, the result of the operation is of the following type:

Table 7-2. Resultant Types of Arithmetic Operations

Type of Type of Second Operand
First ‘ '
Operand INTEGER REAL DOUBLE COMPLEX
INTEGER INTEGER REAL : DOUBLE COMPLEX
REAL REAL REAL DOUBLE COMPLEX
DOUBLE DOUBLE DOUBLE DOUBLE COMPLEX

COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

B 1000 Systems FORTRAN 77 Reference Manual

Expressions

For exponentiation (**), the result of the operation is of the following type:

Table 7-3. Resultant Types for Exponentiation

Type of
Base

INTEGER
REAL
DOUBLE
COMPLEX

Type of Exponent

INTEGER

INTEGER
REAL
DOUBLE
COMPLEX

REAL

REAL
REAL
DOUBLE
COMPLEX

DOUBLE

DOUBLE
DOUBLE
DOUBLE
Prohibited

COMPLEX

COMPLEX
COMPLEX
Prohibited

COMPLEX

In the case of a divide operation involving two integer operands, the result is an integer value. Thus,

the expression 3/2 represents the value 1 and the expression 3.0/2 represents the value 1.5.

Examples of valid arithmetic expressions follow (all variables are nonlogical, noncharacter):

6
1+6

SIN(3.14159*%(—-A)+2)

BID(
—B*

M(1),N(2))
A

A+(-P)

6**X

CHARACTER EXPRESSIONS

A character expression returns a character value of variable length. If a character expression is used
in an assignment statement, the resultant value must be assigned to a character variable, character sub-
string, character array element, character array element substring, or character function currently being
defined. The operands in the expression can be character constants, symbolic names of character con-
stants, variables, substrings, array elements, array element substrings, function references, or other
character expressions. The operator used for combining operands in a character expression is conca-
tenation (//).A character expression must not involve concatenation of an operand whose length specifi-
cation is an asterisk in parentheses, unless the operand is the symbolic name of a constant. The value
returned by the character expression has the total length of all the operands involved in the expression.

1108867

B 1000 Systems FORTRAN 77 Reference Manual
Expressions

Examples of valid character expressions follow:

'DEFGHIJKLM’ Simplest form. The expression length
equals 10.

D Expression length is the length of
variable D.

X /] ’ABCD’ Expression length equals the length of
X plus 4.

Y/ Z] AQ2:3) /’X’ Expression length equals the length of

Y plus the length of Z plus 2 plus 1.

F // FUN(A,B,C) FUN is a function call (or character
array element). The expression length
equals the length of F plus the length
of the value returned by the function
FUN.

Each variable and function in the above expressions must be of type CHARACTER. For more infor-
mation on character assignment, refer to section 8.

LOGICAL EXPRESSIONS

The value TRUE or FALSE is returned by logical expressions. The operands in a logical expression
consist of the following:

Logical constant.

Symbolic name of a logical constant.
Logical variable name.

Logical array element reference.
Logical function reference.
Relational expression.

Logical expression in parentheses.

N LR LN

If a logical expression is used in an assignment statement, the result must only be assigned to a logical
variable, logical array element, or logical function currently being defined.

Logical Operators

The .NOT. operator expresses logical negation. It changes the value of a logical operand to its comple-
ment. For example, if A is TRUE, the value of .NOT.A is FALSE.

The .AND. operator produces the logical product of two logical expressions. The operation A.AND.B
is TRUE if both A and B are TRUE; the operation is FALSE if either A or B or both are FALSE.

The .OR. operator produces the logical sum of two logical expressions. The operation A.OR.B is
TRUE if either A or B or both are TRUE; the operation is FALSE if both A and B are FALSE.

The .EQV. operator returns the value TRUE when both operands have the same value (are equivalent)
and returns the value FALSE when the operands have different values. For example, if A and B are
both FALSE, or if A and B are both TRUE, the operation A.EQV.B is TRUE; if A and B have differ-
ent values, the operation is FALSE.

74

B 1000 Systems FORTRAN 77 Reference Manual
Expressions

The .NEQV. operator is opposite the .EQV. operator and returns the value TRUE only when the two
operands have different values (are not equivalent).

Table 7-4 summarizes the the preceding explanation of the logical operators.

Table 7-4. Logical Expression Constructs

.NOT.A .NOT.B A.AND.B A.OR.B A.EQV.B A.NEQV.B

A B .

T T F F T T T F
T F F T F T F T
F T T F F T F T
F F T T F F T F

Examples of logical expressions follow (variables A, B, C, and array L are of type LOGICAL):

A

A.OR.L(3)

A.OR.B.AND.C (A.OR.B).AND.C (equivalent expressions)
A.EQV.L(1).NEQV.L(2).OR..NOT.C

Relational Expressions

Relational expressions provide the capability to compare numeric or character values and return the
value TRUE or FALSE depending on the result of the comparison. A relational expression must only
appear in a logical expression. Except when used in a relational expression, numeric or character ex-
pressions cannot appear in a logical expression.

When numeric or character operands are used in a relational expression, numeric operands must be
compared with numeric operands and character operands must be compared with character operands.
Character operands in relational expressions are compared lexically. Each character storage location is
compared with the corresponding character storage location in the other half of the relational expres-
sion according to the relative location in the EBCDIC collating sequence. In this sequence, A is less
than Z, Z is less than 0, and O is less than 9.

Parentheses can be used to override operator precedence.

Examples of logical expressions involving relational expressions follow (B is LOGICAL):

A.GT.(F+G).OR.B
C.LE.I-J
(6*K).LT.4-T)
"HENRY’.EQV.’FRED’

1108867 7-5

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 8
ASSIGNMENT STATEMENTS

Assignment statements allow arithmetic, logical, character, or label values to be assigned to program
variables. The two proper forms of the assignment statement follow:

I

<variable > = <expression >

- ASSIGN <statement-label > TO <integer-variable > {

In the first form, <variable> is a variable name as described in section 5. <variable> can be a simple
variable name, array element name, or character substring (in a character assignment statement only).
< expression> determines the type of assignment to be made. <expression> can be numeric, in which
case the <variable> must be of numeric type (REAL, INTEGER, DOUBLE PRECISION, or COM-
PLEX); <expression>> can be logical, in which case <variable> must be of type LOGICAL; <ex-
pression> can be a character expression, in which case the <variable> must be of type CHARAC-
TER.

In the second form, <statement-label > must be the label of a statement that appears in the same pro-
gram unit as the ASSIGN statement. <statement-label> must be the label of an executable statement
or a FORMAT statement.

ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statement involves an arithmetic expression which returns a numeric value
that is assigned to a numeric variable or array element. When such a statement is executed, the arithme-

- tic expression is evaluated and the value obtained is placed into the storage word or word pair allocated
to the variable or array element.

1108867 8-1

B 1000 Systems FORTRAN 77 Reference Manual
Assignment Statements

The variable and the arithmetic expression need not be of the same type. If the types are different,
the expression is first evaluated and automatic conversion is subsequently performed on the value ob-
tained to agree with the type of variable to be assigned the value. This automatic conversion proceeds
according to the rules indicated in table 8-1.

Table 8-1. Type Conversions in Assignment Statements

Type of Expression

Type of) Double

Variable Integer Real Precision Complex
INTEGER None INT INT INT
REAL REAL None REAL REAL
DOUBLE DBLE DBLE None DBLE
FRECISION
COMPLEX CMPLX CMPLX CMPLX CMPLX

The following notation is used in this table:

Word Meaning

None No conversion.
CMPLX Perform REAL and assign to real portion; assign
0. to imaginary.

DBLE Convert to DOUBLE PRECISION.
INT Round to nearest integer.
REAL Convert to REAL.

The CMPLX, DBLE, INT, and REAL functions have the same effect as the CMPLX, DBLE, INT,
and REAL intrinsic functions. Refer to section 13 for more information about these intrinsic functions.

The means of determining the type of an expression is given in tables 7-2 and 7-3. The internal storage
formats of the various data types are described in appendix D.

Examples of valid arithmetic expressions follow:

O(IROW +2,—4) = IROW —K(~137,0)
N=I+2+B/3.7
L=2.6+(1/2.3)

LOGICAL ASSIGNMENT STATEMENT

A logical assignment statement involves a logical expression (refer to Logical Expressions in section
7) which is assigned to a variable or array element of type LOGICAL. When such a statement is
executed, the logical expression is evaluated, and the logical value is placed into the storage word allo-
cated to the logical variable.

B 1000 Systems FORTRAN 77 Reference Manual
Assignment Statements

Examples of valid logical assignment statements follow:

L=.TRUE.
LOGIC(2,4) = LOGIC(1,1).AND.L(1,2)
L=G.GT.H.EQV..NOT.B.EQ.C
L="FORT’.LE.’RAN’

CHARACTER ASSIGNMENT STATEMENT

A character assignment statement involves a character expression which returns a character value. This
value is assigned to a variable, substring, or array element of type CHARACTER. When the character
value returned is not of the same size as the variable to which it is to be assigned, padding or trunca-
tion occurs. If the value returned by the character expression is larger than the character variable to
the left of the equal sign, characters in the returned value are truncated from the right until the value
is the same size as the variable that is to receive it. If the value is smaller than the variable, the value
is assigned left-justified to the variable and any unassigned character storage locations in the variable
are padded with blanks.

Examples of valid character assignment statements follow:

CHARACTER *3 A,B(-2:14),C*

A="TG’ ‘ A contains TG ’
B(0)="LE’ // A B(0) contains ’LET’
B(-D1:1)="A’ B(—1) contains ’A ’
C=AQ:2) // ‘O’ /] B(0) // B(-1) C contains ’"GOLETA’

ASSIGN STATEMENT

" The ASSIGN statement stores the label of an executable statement in an integer variable. The syntax
of the ASSIGN statement follows.

———— ASSIGN <statement-label > TO <integer-variable > — - - —-I

Execution of an ASSIGN statement causes < statement-label> to be stored in <integer-variable>.
< statement-label > must be the label of an executable statement or a FORMAT statement that appears
in the same program unit as the ASSIGN statement.

Execution of an ASSIGN statement is the only way to store a statement label value in a variable. A
variable must be defined with a statement label value when referenced in an assigned GO TO statement
(refer to section 9) or when referenced as a format identifier (refer to section 12) in an input/output
statement.

An integer variable defined with a statement label value can be redefined with the same or different
statement label value, or with an integer value. When defined with a statement label value, the variable
must not be referenced in any other way.

Example:

ASSIGN 250 TO LABEL
GO TO LABEL (150,250,350)

1108867 8-3

B 1000 Systems FORTRAN 77 Reference Manual

SECTION 9
CONTROL STATEMENTS

The executable control statements are used to alter the normal flow of the program, terminate or sus-
pend execution, or control iterative processes. Control can be transferred to labeled executable state-
ments only. The control statements are described in the following paragraphs in the order listed:

CONTINUE statement
DO statement

END statement

GO TO statement

IF statement

ELSE IF statement
ELSE statement

END IF statement
PAUSE statement
STOP statement

CONTINUE STATEMENT

The executable CONTINUE statement has no effect on program execution. The following is the proper
form of the CONTINUE statement:

CONTINUE |

G50312

The CONTINUE statement is a dummy executable statement allowing the programmer to position a
label at any desired point within a program. This facilitates transfers to that point and allows the range
of a DO loop to be clearly delimited.

An example of two CONTINUE statements within a partial FORTRAN 77 program follows:

DO 10 1=2,10,2
A =I/M
WRITE (6,100)A(I)
IF (A(D)) 30,10,10
10 CONTINUE
M=-M
30 CONTINUE

1108867 9-1

B 1000 Systems FORTRAN 77 Reference Manual
Control Statements

DO STATEMENT

The DO statement is a control statement provided to alter the order of the execution of program state-
ments. The DO statement allows a series of statements to be repeatedly executed while the value of
a specified program variable is varied between specified limits. The number of times a DO loop is
executed is dependent upon an iteration count. The following is the proper form of the DO statement:

—— DO <label > < DO-variable > = <initial > , <terminal > L_
<incremental > —-——-——J

G50313

<label> in the diagram is the statement label of the terminal statement of the DO loop. The
<initial >, <terminal>, and <incremental > parameters are any arithmetic expressions of type INTE-
GER, REAL, or DOUBLE PRECISION. The <DO-variable> is an integer, real, or double-precision
variable which is assigned the value of the <initial> parameter upon execution of the DO statement.
The <incremental> parameter is added to the <DO-variable> after execution of the terminal state-
ment of the DO loop. Assignments are made according to the rules established in section 8, ASSIGN-
MENT STATEMENTS. If the <incremental> parameter is left out the value 1 is assumed. The <ter-
minal> parameter is used in loop execution control to determine the number of times the DO loop
is executed. Loop execution control is described later in this section.

Range of a DO Loop

The range of a DO loop consists of all the executable statements following the DO statement up to
and including the terminal statement specified in that DO statement.

-The range of a DO loop occurring within the range of another DO loop must be entirely contained
within the range of the outer DO loop. This is referred to as nesting of DO loops. More than one
DO loop can have the same terminal statement.

If a DO statement appears within an IF-block, ELSE IF-block, or ELSE-block, the range of that DO
loop must be contained entirely within that IF-block, ELSE IF-block, or ELSE-block. If a block IF
statement appears within the range of a DO loop, the corresponding END IF statement must also ap-
pear within the range of the DO loop.

Example:

IF (1.LEQ.5) THEN
DO 10 J=14.1~1
IF (R.LE.12.9) THEN
X=7.1+X
ELSE
X=3.22
END IF
10 CONTINUE
ELSE
X=1.01
END IF

B 1000 Systems FORTRAN 77 Reference Manual
Control Statements

DO Statement Execution

The execution of a DO statement causes the following to occur:

The DO loop becomes active.

The initial, terminal, and incremental parameters are evaluated.
The <DO-variable> is assigned the initial parameter value.
The iteration count is determined.

FOQE IS IS

DO Loop Activation

A DO loop becomes active when the corresponding DO statement is executed. The DO loop becomes
inactive when the iteration count is determined to be 0, when a branch is made to a statement outside
the range of the DO loop, or when a RETURN or STOP statement is executed within the range of
the DO loop. Branching to a statement outside the range of a DO loop from within the range of the
DO loop is permitted; however, it is prohibited to branch into the range of a DO loop from outside
the range of the DO loop.

Parameter Evaluation

When the DO statement is executed, the values of the <initial>, <terminal>, and <incremental>
parameters (DO-parameters) are determined. If necessary, the values are converted to the type of the
<DO-variable>. Any variables used in the parameter expression can be altered within the range of
the DO loop without affecting loop execution control or iteration processing.

DO-variable Initialization

After determining the values of the DO-parameters, the <DO-variable> is assigned the value of the
* <initial > parameter. The value of the <DO-variable> can be accessed within the range of the DO
loop by the program; however, the <DO-variable> must never be assigned another value within the
range of the DO loop.

lteration Count Initialization

The iteration count determines the number of times the DO loop is executed (barring a branch to a
statement outside the range of the DO loop). The initial value of the iteration count is established by
evaluating the following expression:

MAX (INT ((<terminal> — <initial> + <incremental>) / <incremental>), 0)
The iteration count is zero whenever:

<initial > > <terminal> and <incremental> > 0, or
<initial> < <terminal> and <incremental> < 0.

At completion of execution of the DO statement, loop execution control begins.
Loop Execution Control

Loop execution control determines whether or not all of the statements in the range of the DO loop
are to be executed. The iteration count is tested, and if nonzero, execution continues with the first
executable statement within the range of the DO loop. If the iteration count is zero, the DO loop be-
comes inactive. If, as a result of this inactivation, all DO loops sharing the same terminal statement
become inactive, execution continues with the first executable statement after the terminal statement.

1108867 9-3

B 1000 Systems FORTRAN 77 Reference Manual
Control Statements

If some of the DO loops sharing the terminal statement are active, execution continues as described
in Iteration Processing in this section.

Execution of Statements in the Range

Statements in the range of a DO loop are executed until the terminal statement is reached. A subpro-
gram reference is not a transfer of control outside the range of the DO loop. If the <DO-variable>
is passed as a parameter, it must not be assigned another value within the subprogram.

Terminal Statement Execution

Execution of the terminal statement occurs as a result of the normal execution sequence or as a result
of transfer of control from within the DO loop to the terminal statement of the same DO loop. If
the execution of the terminal statement does not cause transfer of control, execution continues with
iteration processing.

Iteration Processing

Iteration processing causes the following four steps to be performed:

1. The <DO-variable>, iteration count, and <incremental>> parameter of the last active DO
statement executed are chosen for processing.

2. The iteration count is decremented by one.

3. The <DO-variable> is incremented by the value of the <incremental> parameter.

4. Control is passed to the loop execution control of the DO loop that was chosen for iteration
processing.

Consider the following two examples:
" Example:
DO 10 F=3.7, 9.81, 2.0
X=F :
DO 10 I=14, -3, -2
J=J+1
10 K=K-1
CONTINUE
Upon execution of the CONTINUE statement F=11.82, X=9.79, I= -4, J=9, and K= —-54,
Example: v
DO 20 L=10, 1
M=L
20 CONTINUE

Upon execution of the CONTINUE statement L =10, and M=0. The statement in the range of the
DO loop is never executed.

94

B 1000 Systems FORTRAN 77 Reference Manual
Control Statements

END STATEMENT

Each program unit consists of a sequence of statements terminated by an END statement. The END
statement is provided for use as the terminal statement of a program unit. The proper form of the
END statement is as follows:

END ‘Jl
G50314

Every program unit must contain exactly one END statement. If an END statement is encountered dur-
ing execution of a subprogram, a RETURN is implied; if an END statement is encountered in a main
program, a STOP is implied.

GO TO STATEMENT

The GO TO statement can be used to transfer control from one point of an executing program to
another point in the same program unit. The GO TO statement has three forms: 1) the unconditional
GO TO, 2) the computed GO TO, and 3) the assigned GO TO. These three forms of the GO TO
statement are described in the following paragraphs.

Unconditional GO TO

The simplest form of the GO TO statement is the unconditional GO TO which has the following form:

GO TO <label > {
G50315

<label> is the statement label of an executable statement in the same program unit as described in
section 3.

Execution of this control statement causes the executable statement bearing the indicated label in the
program unit to be the next statement executed. For example, the statement GO TO 23 causes program
flow to continue at the statement labeled 23.

The statement following a GO TO statement must have a label unless it is an END statement or END
IF statement. This is a syntactical requirement since a GO TO statement breaks the sequential flow
of execution. It is never possible to return to execute the statement following the GO TO unless that
subsequent statement has a label.

1108867 9-5

B 1000 Systems FORTRAN 77 Reference Manual
Control Statements

Computed GO TO

The second form of the GO TO statement is the computed GO TO statement. The execution of this
statement causes control to be transferred to a statement whose label appears in the list portion of
the statement or to the next executable statement following the GO TO. How control is transferred
depends on the value of the integer arithmetic expression following the label list. The expression is eval-
uated and the result is used to select one of the labels in the list. The computed GO TO has the fol-

lowing form:

>

———————— GO TO (———— <label >) <int-expression >—‘

G50316

If the <int-expression> has the value n when computed, control passes to the n-th label in the label
list. If there are fewer than n labels in the list or if n is less than or equal to zero, control passes

to the next executable statement.

An example of a computed GO TO statement follows:

GO TO (1,25,3,6,1,17),I+1

At execution time, the value of 1+1 is computed. If I+1 has the value n, then control passes to the
n-th statement in the list. For example, if I + 1 = 4 (I = 3), then control passes to the statement
labeled 6, the fourth label in the list. If I + 1 = 1 or 5 (I = 0 or 4) in this particular example,
control passes to the statement labeled 1, since both the first and fifth elements of the label list are
1. If I + 1 is less than 1 or greater than 6 (I < 0 or > 5), control passes to the next executable

" statement after the computed GO TO.
Assigned GO TO Statement

The syntax of an assigned GO TO statement follows:

—— GO TO < integer-variable > L _j j|
{— (L <statement-label > —L—) —J

<integer-variable> is an integer variable name. <statement-label> is the statement label of an execut-
able statement that appears in the same program unit as the assigned GO TO statement. The same
< statement-label > can appear more than once in the same assigned GO TO statement.

At the time of execution of an assigned GO TO statement, <integer-variable> must be defined with
the value of a statement label of an executable statement that appears in the same program unit. <inte-
ger-variable > can be defined with a statement label value only by an ASSIGN statement (refer to sec-
tion 8) in the same program unit as the assigned GO TO statement. The ex