INSIDE YOUR LIUVING MCP
A TUTORIAL

Bio®oe

SPRING - 1987

ALS

WHO GETS A PROCESSOR

In essence: the highest priority job that needs it
GISMO "micro-scheduler" allocates processor(s).

Scheduler called
1> by SYSTEM/INIT to start the MCP
2) whenever any program (including MCP) interacts
with operating system via “"communicate". |

Scheduler:
Checks for non—correctable memory errors and halts

Handles interrupts appropriately
(timer interrupts, I/0 interrupts. console
interrupt switch, port interrupts)

Works with 2 bits:z "reschedule" and "timer_occurred".

Timer_occurred (every .1 seconds):
updates MPRI fields in all links
sees if any peripherals have changed state’
(tape or disk mounted- card reader on etc.)
adjusts wait time for jobs hung on time |
"causes" jobs if time decrements to zero’

WHUO GETS A PROCESSOR (continued)

Reschedule bits (one per processor)
Avoids needlessly rescheduling a processor back to

the same _job
Set when a higher priority _job needs the processor

Hi-—-priority interrupt (reader-sorter?’
GISMO immediately runs HMMCP reader-sorter code
which tanks check images and calls user’'s use’

routine

MCP first choice if "ready" to run (had been preempted
by higher—-priority Jjob while running? and either
a) MCP—-dispatched I/0 complete
b) MCP wants control exclusively "blocking"
processors
c) N-SECOND time (a periodic housekeeping
time)

Otherwise, highest priority job needing processor
gets ity SMCP wins all ties. Selected job marked-
“"not queued®" and reinstated.

SLAVE scheduler similar
- timer not checked or handled
- must be aware of blocking requests from master
- won‘t select jobs in the S_COMM_GUEUE
. takes highest-priority job in "READY QUEUE.
"IOC_QUEUE," or M_COMM_QUEUE". If none- merely
idles.

BRINGING UP THE SYSTEM

CLEAR/START:
Dumps memory if requested
Reads in SYSTEM/INIT and transfers control.

SYSTEM/INIT
Finishes system dump — dumps certain structures
and MCP‘s layout tables
Locates system disk, ODT channel- master processor
Ascertains if there’s a slave processor: allocates
data space for it
Allocates memory for:
HINTS:
code directory for MCP:
interpreter directorys
csvy (and reads the structure in)s
GISMO;
lamps on B1800;
MMCP ‘s data areas
“"chip'" tables
SMCP RSN.
Reads in GISMO; discards certain segments
Checks firmware compatabilities
Reads in 3 segments of SMCP
page zero-r seg 0 (tiny- merely gets us going)l
page one, seg 2 (our C/S code)
page oner seg 0 (all non-overlayable MCP code)
Sets up memory links
Loads SDLZ interpreter
Fires slave and gives to GISMOD
Clears cache
Gives master to GISMO

BRINGING UP THE SYSTEM (continued)

MCP procedure “"GET_READY"
Checks compatabilities
Checks DD wvalidity
Sets up system date/time from pre-C/S value.
Allocates space for and creates
MCP disk descriptor
SYSTEM/0DT ‘s ODT descriptor
Allocates space for and creates all the
structures used on a running system
I0AT» channel tables- Job queuesr etc.
Ascertains what is on every port & channel via
' test ops
Elogs the C/S hardware & software configuratidns
Cleans up system disk
Initiates: PANDA for "protected" files on
system disk
SYSTEM/0DT
handler
MCS
Checks dumpfile for proper size
Checks "truth table®
Spouts "CLEAR/START" message

MCP then enters its main driving procedure:

GET_SET___GO

MCP OUTER LOOP

MCP always sitting in a wait statement just like

any user program.

Waits for one of five events to occur.

The five events are:

1)
2)
3
4)

S)

TIME

INTERRUPT for MCP

READ_OK
.'S_C___D (1}

MCP
"change

Jargon:z: it

on the queue from SYSTEM/0DT
event: some _job has need for
service

bit": we hope to send a job to BOJ

is "HUNG" on the five events.

When any program in a wait status has one of
its wait events come true., GISMO "causes'" the

program.

“"Cause"

=> put

program into its next

queue unless the "intervention bit" is

set

in its RSN, in which case it is given

to the MCP (put in the S_COMM_QUEUE) -,
normally for rollin.

Prioritization of events: if two or more occur before

GISMO can check events, the leftmost event is caused.

THE TIME EVENT

MCP always waiting on TIME

Time interval recalculated every time MCP wakes up
on some other event

Arbitrary interval: S x jobs_running?

S5 <= interval <= 40

We term the interval, as well as the tasks performed
when the interval lapses, "N_SECOND'.

MCP can hasten the onset of N_SECOND when it is
desirable not to wait for up to a minute.
Example: setting up a pséudo reader wvia RN 1
We term this "“"forcing N_SECOND"

When time event comes true, MCP invokes procedure

EXTERMINATE_AND_N_SECOND, whichs:

1) Exterminates _jobs that are to be automatically
DSed.
a) Jobs that aborted with TERM or TRMD
b) Certain critical system programs that
failed (SYSTEM/0DT for example)

2) Calls procedure N_SECOND.

N—-SECOND FUNCTION

Rolls out _jobs to free up memory

~ ALL "ST"—ed _jobs

- lowest priority "waiting job" after 1 ﬁ—second
grace period

DR/TR prompt

Ad justs various day, date, and time counters
= "GOOD MORNING" message at midnight

Checks _jobs for exceeding time limits
Initiates any pending delayed random I/0’s
Checks Jjobs waiting STARTTIME

Initiates pseudo readers

Transfers ELOG if it’s rather full

Updates LOG_MIX_INFO

Gueue file garbage collection

Fires up SYSTEM/BACKUP if autobackup
parameters warrant

Fires up SYSTEM/0DT if it went down

Updates error rate tables (ER stuff)

N-SECOND FUNCTION (continued)

- ELOGs errors from disk cache on B1990

- Handles RESTARTS if all necessary packs online

- Writes Cold Start Variables (every U n—seconds)

- Terminates handler if 3 n—seconds pass with no
remote file open.

- Recalculates n—second for the next time.
NOTE:=: Certain of these functions that would entail

disk allocation are supressed during a system

disk squash.

THE INTERRUPT EVENT

Set by GISMO when entry exists in interrupt queue

. What‘s the interrupt gqueue?

62 Element array
ultra—high memory — even MCP can’t play with it

Accessed via special S-0PS: "FETCH"™ in SDLZ2

- "WAKE UP" signal to MCP
- MCP wants to know when an I/70 completed
- GISMO wants MCP to know about something that
had not been explicitly requested by the MCP.
Examples: User I/0 had exception, requiring
' the MCP to do retries, elogging. etc.

thrashing warnings
memory parity errors for chip table

What happens if MCP _just waits for an I/0 instead

of requesting an interrupt?

Just mount a brand new tape and seel

ODT QUEUE EVENT

SYSTEM/0DT handles all 0ODT communication-s
manages 0O0DT gueue, SYSTEM/70DTLOG, etc.

Broken out from MCP in 10.0 to relieve
MCP of a tedious, I/0-bound function

Communicates with MCP via two ordinary

gqueue files, one in each direction

This event is merely the READ-OK Boolean
for the gueue from SYSTEM/70DT ———> MCP.

When TRUE, MCP does a read of the message
and passes the text to the command processor.
Commands will be scanned, parsed, and

acted upon.

COMMUNICATE EVENT

Set by GISHMO whenewver some job(s)
have done a “"COMMUNICATE"™ to be handled

by the SHMCP. (QUEUE_ID = S_COMM_G

The first U8 bits of one‘s ESN (ENVIRONMENT)
tell the MCP what class of communicate is
requested and point to the actual string

of relevant fields.

CLASSES: (2 bhits)
00 => INTERPRETER GENERATED BEHIND USER‘S BACK

01 => THE USUAL SERVICES REGUESTED BY
SOURCE LEVEL CONSTRUCTS

10 => UNDEFINED:; DS‘es THE .JOB

11 => USED TO CLOSE FILES THAT ARE STILL OPEN
WHEN A JOB GOES EOJ

INTERPRETER-GENERATED COMMUNICATES

Most common:s PRESENCE FAULTS
User branching to some other code
segment which is not in memory. MCP has
to read the segment from disk, mark code
segment dictionary appropriatelyr- and
reinstate the program

Same for data segments

Likewise for segments of the interpreter itself!

Trace to printer— the old trace interpreters

Certain problems: memory errorss
read out of bounds., etc.

"REAL" COMMUNICATES

Usually generated by the compilers in response to
various source—-level constructs that end up requiring

operating system services.

Most I/70-related COMMS are handled directly by
Gismo or MMCP. A mask set up at CLEAR/START tells
who is to handle eseach of the 80 known communicates.

MCP never sees READ, WRITE, SEEK, POSITION-
MESSAGE—-COUNT, wvarious IS5AM operations., etc.

MCP handles such common things as:
OPEN, CLOSE-. PROGRAM DUMP., TIME/DATE, ZIP, ACCEPT-,
DISPLAY > SORT CALLS, and TERMINATING A PROGRAM.

MCP also provides services to system programs
- Accesses various system & program structures

Disk Directory- FPBs, FIBs, memory itself. etc-.

— Lets system programs change system data normally
inaccessible (outside their own data area)

Example: PACKCOPY must stop and resume all jobs
SYSTEM/0DT must control the ODTL option
DMS/REORG can restart jobs once the data-—
base is fixed up.
etc.

“"REAL"™ COMMUNICATES (continued)

How are communicates done:
1. Compiler generates appropriate bit string
somewhere in program’s memory area

2. Special "COMMUNICATE"™ S-0P in each language
causes that previously-—mentioned 48-bit field
to point to the data string, and control is
passed to GISMO

Example: "CLOSE PAYROLL-FILE LOCK."
Suppose PAYROLL-FILE happens to be the UTH

file the user declared.

ESN: (base relative)
TR B e e e
g o | e
1 0 ug 925
2 & 16 24
hits bits bits bits

User’‘’s data areas ug8 bits

____Wﬂt __________ s :
§

happens to be ?® 3 16
AF311A6a@

225 12 2y 12
bits bits bits bits

“"REAL™" COHMUNICATES (continued)

Why this string? Because the documented form for
this communicate that everyone must obey, reads:

LLOSE

CT.VERS 09 "1z bats)
CT.OBJECT FILE.NUMBER (Lt bits)
CT.ADVERSB BIT (12 laqt's)

0 REEL

1 RELEASE

2 PURGE

3 REMOVE

4 CRUNCH

5 NO REWIND

6 OVERRIDE NAME CONVENTION AND SECURITY

7 Lecx

8 IF NOT CLOSED

9 ROLLOUT

10 AUDIT SWITCH

11 TERMINATE

Let’s make sure this communicate is set up
correctly — Apply the documented format to the

example on the previous page.

ESN

-

pointer to result

comm info

usg ug bits

type \ length address or actual data

8 l1& 24

type: tells amoung other things whether the result
is in the 2nd 24 bits ("self relative"?) or whether
the 2nd 24 bits points to the actual info somewhere
in the user‘s data area

length: length of result in bits

2nd 24 bits:z a self relative number if the info being
returned can be expressed as a simple number.

Example:z: “"ZIP' described above — how many characters?
or a relative address of longer data

Example: TIME/DATE to request name of day.
we surely can‘’t fit "MONDAY" in 24 bits!

COMMUNICATES (continued?

Some communicates need only a verb:
Verb = 32 => program goes EO0OJ with "COBOL ABNORMAL END"
Verb
Verb = 392 => give me my se@sion #

38 => memory dump

Others have lots of necessary fields
Verb = 2 => wurite
Object = file #
Adverb: broken down to numerous sub fields:
1. does user have an EOF branch?
2. does user have an exception branch?
3. does user have an incumplete—IO branch?
4. printer spacing/skipping info
5. MFCU card stacking info, etc, etc.
Additional fields for
record length — how much is to be writtens
address of info to be uwrittens
key for random filess
address of 10-character key for remote/port.
length and address of "result mask" info
(for system programs handling their ouwn
I/0 exceptions)s
Linage fields for printers -
page size, upper margin, lower margins
footing, etc.

COMMUNICATES (continued)

For certain communicates, the MCP doesn’t need to
talk back to the program.
examples: dump
read the reader-sorter
sort

But in many casesr the MCP wants to tell what happened
or return requested data.
1. What happened?
writes good write?
EOF ?
I/0 error 7
incomplete?
Accept: how many characters did the operator
AX to the program?
ZIP = Was the zipped text wvalid?
2. RETURN DATA
TIME: What time or date is it?
Complex—-wait: which of n events woke up
the program?
message count: how many messages are in
my gueue?
Another field in the ESN is filled in to indicate
this info:

THE CHANGE BIT EVENT

The change bit is set by the MCP itself when there

is at

least one scheduled task that is a candidate

for BOJ

*0ld" MCP’S (12.0 and beforel): A job is in the

active schedule

13.0=z A job is in at least one _job queue or the

- MCP r

tasking schedule

upon waking up on the change bit event-:

turns it off and tries to fire up all Jjobs:

— Every job in the tasking schedule

- Goes through each job queue, initiating

jnbs as long as system mixlimit {('"ML")
and individual job gqueue mixlimit permit

- The change bit is set when:

1.
2.
3.
4.
S

6-
7.
8-

A job is scheduled, E.G. EX DMPALL:

When operator does a "TR" or "DR"?

Any Jjob goes to EO.J;

When memory is freed by rolling out a jobs

If the first job in any job gueue is RS-—ed

and the gqueue is still non—emptys

"ML" is increased (system ML or a job queue ML):
Some _job has its priority increased above 8;3
Operator does a "Js."

PROGRAM INITIATION

Two steps:

1. Scheduling — building necessary structure from

the code file.
2. BOJ - creating memory-resident _job image

that is runnable

Code files contain three structures of interest
= Program Parameter Block (PPB)
- File Parameter Block (FPB>
- Code segment dictionary

PPB:

- First 2 sectors of every code file. Created by compiler
- Contains in a rigidly defined format:
a-. Everything the operator can change or guery about a

Job.

EXAMPLES: NAME. PRIORITY. MEM requirements. # of
files, switches, max lines, NODIF bit.,
interpreter name.

b. Pointers to "interesting" fields in the
code file.
EXAMPLES: First instruction. DMS path
dictionary, files, layout table.
c. A level number to allow MCP to handle
structurés-of different vintages.

- At schedule time, we build an expanded four—sector PPB

- First 2 sectors: exact copy of code file copy

- 3rd sector: run—time data not in code file

EXAMPLES: Job number, session #, parent job #-

sched. & B0OJ dates, datacomm pointers.,
link to next PPB.

- Uth sector: Stores "DS or DP" message for logging and

or dump analyzer
- Linked into appropriate place in given job gueue or

tasking schedule.

PROGRAM INITIATION {(continued)

FPB

« Two segments of disk; actually 2096 bits

- One per declared file

- Extras automatically created by compiler for ISAM
subfiles.

- Contains all file attributes specifiable by either
actual attribute or by command syntax.

EXAMPLE: Internal & external names, hardware devices
record sizer # of areas, filetype, bufferss
etc.

- When job is scheduled, MCP makes copy of all FPB’s-»
plus one for the trace file. ’

SEGMENT DICTIONARY:

- Most "wvirtual"- segmented,. overlayable - structures
on the B1000 managed by dictionaries.

- Dictionary = A contiguous array of "system
descriptors'.

- Code segment dictionary on disk: an array of relative-

non—absolutized "normal descriptors."

- BOJ brings in and absolutizes ND‘s into SD‘s.

- Next page discusses SD’‘s.

- Data segments must be overlayed to disks

- code segments are non—-changeable and thus
do not get written back to disk.

PROGRAM INITIATION (continued)

BOJ is largely the process of getting space for and
filling in fields in two structures, the "RUN STRUCTURE"
and the "PRIMARY ENVIRONMENT."

The Run Structure contains information relevant to the
state of the _job taken as a whole.

- Overlay descriptor

- FIB dictionary

- IPC parameters

- Most interestingly, the "RUN STRUCTURE NUCLEUS"
(RSN) .

RSN‘’s are linked together by descending processor
priority.

RSN‘’s frozen in memory:; never rolled out or moved.

Nearly 200 fields related to the job itself, for example:
NAME, JOB #, SWITCHES, PRIORITY, CHARGE #, etc.

Many flagsr, pointersr, and indicators to help the MCP
understand the state of this job.
EXAMPLE: Inwvisibility flag- stopped flag, protected
flagr cancelled flagr, etc.

Pointers to: next RSN, AX queue, DMS globals, overlay
descriptor, etc.

Event bits so GISMO can cause the job when certain

things happen.

Note that the Run Structure has no user data.

If

If

SYSTEM DESCRIPTORS

Eighty Bit Structures

The most important fields:

(a digression)

« Media bit: Indicates if the info is on disk

-« In—process bit: Indicates
we’‘re doing an I/0 on the
direction)

- Length field

- MPRI decay info.

- address.

a segment is on di%k:

MEDIA = FALSE

address = absolute disk address
a segment is in memory:

MEDIA = TRUE

address = memory address of the

The information is preceeded by
of course.

Within that link:

that at this instant
segment (either

info.

a memory link-s

ML_DISK is the disk address from the SD.

ML_POINTER points to the SDh.

PROGRAM INITIATION (continued)
The other primary structure is the "environment®'.

Environment is basically the data space for a program.

Broken away from RSN in 11.0

All programs initially have one environment, termed
the "primary®” environment.

Secondary environment exists for DMS and IBASIC.

IBASIC environment hides the existence of
IBASIC/RUNNER.

DMS environment allows complex DMS operations to be
interruptable at any point, because the state of
the job is stored in the "ESN" (Environment
Structure Nucleus). V

Also permits DMS to execute on the slave; it is
not an MCP.

Environment concept: a separate code file (e.g.
DMS access routines), with a possibly-different
interpreter and local data space, 1s associated

with a user job to handle certain communicates.

Environment switching is quite efficient.

Secondary environment operates at same priority as
the user.)

RSN has dictionary of all environments that have
been allocated, as well as pointer to the current
environment.

Max of four environments.

Environment consists of:
- local data area, defined differently for each
language.
"scratchpad" - used to save interpreter state
‘ upoh giving up control.
- ESN.

ESN

Various pointers, counters, and flags of interest

to a program’s interpreter.

Examples:

communicate message pointer and reinstate

message pointer (previously discussed).

next instruction pointer.

code segment dictionary pointer.

data segment dictionary pointer.

associated RSN address.

amount of overlay disk and its address.

MEDIA Boolean — environment can be rolled
out.

rollout disk address.

ESN (continued)

Building an environment involves several steps:

- Reading initial scratchpad wvalues from the PPB
and storing them in the ESN

- Setting up the code segment dictionary if it
does not yet exist (from another running copy

of the same program)

- Handling initial data
1> read in from code file if there’s a data
dictionary.
2) build links for COBOL overlayable data in
dynamic nenory. Note:z SDL/SDL2 does this

itself wvia intrinsics.

- Get rollout disk on system disk. If cannot be

obtained-, program is frozen.

- Set up interpreter dictionary if the interpreter
is not currently in use by some active _job.

FILE OPEN

Builds several structures in memory
- FIB (File Information Block)
- I/0 descriptors
- I/0 buffer

Specific peripheral assignment.

FIB contains all information needed for the operating
system to do I/70‘s to/from the file.
Much information extracted from the FPB. Altered as
necessary by the MCP.
Example: MCP would change blocking factor if
a) blocksize not integral multiple of record size
(truncated)
b) to ensure backup print files blocked as necessary.
Additional fields needed to manage I/0
Example: current key} current access method for
disk linage for printer files, lsn(s) for
remote file, ISAM flags and table pointers.
Somewhat unusual in that the structure varies widely
depending on the hardware device. Explanation:
there’s a lot more to be known for a disk file

than a card reader.

I/0 descriptors — buffer memory area pairs (one per
BUFFERS value? allocated in one continuous chunk
of memory. (Makes rollin and rollout easier)

FILE OPEN

OPEN EXAMPLE: opening a disk file

Why? 1. Explicit OPEN communicate generated by user‘s

OPEN statement

2. Read or Write communicate for closed file
GISMO puts job in S_COMM_QUEUE, sets
RS_M_PROB_PARAMETER to a value meaning "file
not yet open'

MCP reads communicate from environment
Calls GLOBAL_OPENERS
Reads FPB from disk
GENERAL_OPEN_VERIFICATION to check that wvarious
attributes are compatible.

Example:z: blocksize = 0 or > 2XX20 bits

blank name
relative non—-disk file

Certain hardware devices have unigue open code
(for speed)?

DISK is one of them. We call DISK_OPEN
Reads FIB if present

Initial disk open verifications

arealength zero

open input/extend

ISAM record size < U4 bytes
Fixup a few things for implied opens

Exampleé If newr, make sure it is output
If no FIBr call ASSIGN_UNIT

— If this is a backup file, change hardware to DISK
— Build wnamer. e.g. BACKUP/PRT1234y

— Usercode naming transformations

- Security checks, e.g. non—existent usercode for

MFID

FILE OPEN (continue)

— Various checks based on type
multi—-pack duplicates
codefile: areas = 1 and external name from
PPB .0OB.J_NANME
create an initialized disk file header
- If there was a FIB:
— Find the file
— If absent, see if name transformation possible
— If absent, either hang up the _job for operator
action or return "file missing” if reqguested
by programmer
— If present, get the header and check access-—
ibility and security contraints
- If "“"old" file, change access dater user count, and
several FPB fields
- If multi-pack file-, create MPF table entry
- Get memory for FIB and update user’‘’s FIB dictionary
- BUILD_FIB sets up fields in FIB and builds I/0
descriptors
- If input, initiate I/70‘’s to prefill buffer(s’
- If backup, create backup file control info records
- Reinstate job into READY_QUEUE

THE DISK DIRECTORY

Directory for each pack resides on that pack.
Initially 16 sectors, 32 thru 47 (@20@ - QAZFa@).
Each of those sectors can hold 12 names (MFID’s).
MFID’S "HASH" to one of those sectors. |
If the sector fills up with names, it is linked
to an extension sector somewhere on disk.
The directory entry points to eithers:
1. The disk file header for single—named files
2. A subdirectory (of identical format to the
directory? for 2-name files.
Subdirectories are not hashed - they are searched

linearly. Their entries point to the DFH’s.

A word to the wise: Don‘t put "too many'" names under
one MFID due to the linear search. This includes
usercode MFID‘s— WATCH IT!

THE DISK DIRECTORY (continued)

EXAMPLE: Find the file BOZO/WASHINGTON/SHOWITALL
BOZO happens to be port 7, channel 10, unit 1
50 all addresses had better start with @FYyi1@

WHY? Disk address fields consist of a 12-bit
PORT—-CHANNEL-UNIT plus a 24-bit sector address.
The "PCU" consists of:

3 BIT PORT FIELD

4 BIT CHANNEL FIELD
1 BIT FILLER OF ZERO
4 BIT UNIT FIELD

12 BITS
PORT 7= 7 = 111 in bhinary
CHANNEL 10: 10 = 1010 in binary
UNIT 1= 1 = 0001 in binary

CONCATENATING 111 + 1010 + O + 0001
= 111101000001 = @Ful1a@

We hash the MFID of "WASHINGTON". The hashing
algorithm happens to be simply dividing the
10 character = 80 bit field into 20 uU-hbhit
fields, and exclusive—0ORing them
"WASHINGTON" = E&6 C1 E2 CB C? DS C7 E3 D6 DS

DISK DIRECTORY (continued)

aFae EXOR abda = aia
@aB8a EXOR aeCa = a4a
a4a EXOR ala = @bha
a5a EXOR eEa = aBa
@aBa EXOR aZf2a = ePa
a?a@a EXOR @aCa = aba
@a5a@a EXOR @8a = aDa
@aDa EXOR @Ca = @la
a@alae EXOR a%aea = @aia
afBa EXOR aDa = abha
abSa EXUR eHa = aa
aa EX0OR aCa = ala
aCa EX0OR @’7a = aBa
@aBa EXOR @Ea = aba
@abha EXOR aj3a = asca
@asba EXOR aela = aba
@aBa EXOR ade = aDa
aDa EXOR aDa = «a()a
@fa EX0OR aSe = aba

From now onr, we shall work entirely in hex. The
disk directory goes from Q20@ to Q2F@. Adding

our hash result of @5@ to the directory lower limit-
we get Q25a.

Let’s laok at sector @25@ on that packs:

AF41000025@ "u? 7% 4? PR NEW_REL 47 ABC7uUISAM M? F?4DL2_0OBJ u? ?K"
"MAKFILEL13 4? ??SF12 4? RSCOBOOT13 4? 7RPRT13 u? 78"
"RLIPANDA 4? ?7MMCP1313 u4? T?TEST y? 1?MCPOBJ u? 26"

QF41000025@ Fu1000345p 000000004 1000023000{ DSCSES6DD? C3DIUOUOHO FU10008182
C3F7FUCPE2 C1iDuuOuOuH0 FU10008622 E2CUD3F26D D6CZD1UOUO FY100058D2
DHC1D2C4CTY DICSFIF3H0 FU10001622 EZC6F1FZ240 HOUOHOUOHO FUI00050ER
C3D6C2D6D6 EIFLIF3UOU0O FU100031C2 D7DFE3FIF3 HOHOHOHOHO FUH1000535C2
D?D3ICYD7C1 DSCUCIUOHO FY10007352 DMDUCID7FL FIF1IF3U0N0 Fu1000A322
E3CSEZE340 4O4QuO40u0 FU1000UF22 DUCID7DECZ DIUOUOUOUO FY100006A2

Forward kBad‘waJ ({' SeLF)(

We don‘t find WASHINGTON: let‘’s go to Lthe forward
link @FY4100034u5@

DISK DIRECTORY (continued)

QFL10003u5@ " ?? P4? PR GISMO1303 u? PHEINITIZ02 u? ??GISMOL31Z Wy @9
_"MMCP1320 47 BBOOT1304 4? CRSDL2_NEW 4? ZBMMCP1302 u? 77"
3, "WASHINGTON4? 7K

F))
@F41000345a oooooooodF uloooozstu 1ooo3u5boo C7CPE2DUDS FIFIFOF340 FU100059A2
CYDSCYEIFL FIFOF24040 FU4100058B2 C7CFE2DUDS FIF3F1F240 FU10002D42
DYUDUC3ID7F1 FIF2FOHO40 FU10001F82 C2DADSE3IF1 FIFOFH4OH0 FU100083D2
E2CUDIF26D DSCSE6HOU0 FUL000E9C2 DUDUCID7F1 FIFOF24040 FU100013B2
MEGCIE2CBCY - DSC7EIDSDS FU1000AA92: 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 (HOOOGO0ON

Note that the backward & self pointers are corrects;
The forward pointer of zero implies this is the end

of the chain.

Happily, we find "WASHINGTON".
Our format for a directory entry:
10 char NAME
346 bit ADDRESS
4 bit KEY: 2 = subdirectory
O = DFH

i~

The key is 2» meaning that the address of @FU1000AA?
points to a subdirdctory, i.e. a list of FILE-ID’s
with the common MFID of "“"WASHINGTON"

DISK DIRECTORY (continued)

The subditectory is chained as was the main directory.

Here is sector @QAAYA@:

GFYLOGOAAYE TyReEay PeuY PP BALANCER W? PRSEQCHECK u4? ?AS.PANDA u? 77"
"5 HEQCHECKY? ?7\5.5UX W??P\P.S0RT 4?7?05, REMYARFIH??7R"
"GOODRESULTY????DESIGN 42?7?76 FRUIT u????5.COMBINE 4??7??"

@FB1000AA%@ FU1001145F 4100034SF4 1000AA7000 C2C1D3CIDS
E205DBC3CH CSCID24040 FU1000AB30 E24BD7C1DS
E24BE2CSD8 C3CBCSC3D2 FY1000FEEQ EZWBEZEWEY
D7UBE2D4D9 E3404O0UO40 FU100108F0 EZ24BDPCSDY
C7D6D6CHDY CSEZEUD3IEZ FU10010F30 CHCSEZ2C9C7

......

No sign of “"SHOWITALLY — link forward to
Al1165A@:

C3C5D94040 Fu10005930
CuCi4ou0o40 FU41000FEBO
LouOUOUOUO F4100103E0
EBC1D2C4C? FU10010A30
D5uOuOHOHO FUu10011080
C2C9D5C3540 Fu10011520

sector

dEHLO0LLGue "Ry Le? PZUPPPR G.GEARSS WPPPOS.RECLIST u???0B61875 Yppo-u
"F12841 WPPP?DLTWELVE 4????JOBRUEUES W???PRESPONSE u47?7?? "
"OLDFRUIT 4???-§TATUS 4?? {MEMO YP?PLPSTATUSO w??L

@F41001165@ F410014ABF 41000AA9FY 1001165000 E24BC7CSCL DPEZ2F44OU0 FU100115F0
E2UBD9CSC3 D3CPEZE3H0 FU100116F0 CZFAFIFBF7 FS4OHOHOUO Fu10012460
C6F1F2FBFY F1uOuou040 Fu10012670 CUDIE3ESCS D3ESCS4O40 F410013B10O
D1DAC2DBEY CSEUCSEZH0 FU410013B30 DPCSE2D7D6 DSE2C54040 FU10013BHO
D6D3ICHCADY? EUCTEIHOUO FU10013B60 E2E3CIE3EH EZUHOHOHOHO FU100140CO
DULHDHDAHO HOMOUOUOUO FUHL001UAZ0 E2EICIEIEY EZDAHOUOHO FUL001UAHO

§till no luck - chain to @l1yAa8a:

DISK DIRECTORY (continued)

@F410014AB@ FUY1001566F 41001165F4 10014ABQ00 DPCLICPCUAD D7DIDEC2UO FUL0014ALO
E2UBE&DSD? E3CA4OUOHO FU10014AP0 CLEZ2EZCSE3I EZ240HOUOUO Fuio0thDpo
D74BCBCSE7 4O4O4OUOUO FU10014DEO 7BE24BCSCI CPD3EUDPCS FU10014EQO
4 6E4CY -E3CIDID3U0- FU10014E204C6FIF2FBFO FAUOLOUOUO FU10015180
C4F1F2FSF9 FRUOLOUOU0 Fu10015190 E24BF1FS40 LOWOWOUOUO F4100151C0
C7CSC1DPEZ2 4040404040 F4100154610 DPCSE2CPCH CSDSE3HO40 FU10017080

@FY10014AB@ "u??P?P?? PP4??PL? RAID_PROB Y??L-S.WORTH WP?L?ASSETS 293"

.....

"P.HEX W??(\BS.FAILUREU??+ SHOWITALL 4?7+7F12806 R
"F12599 4???95.15 y???{GEARS URPPPRESEDENT wdeqon

EUREKA!! We have TYPE = O, meaning DFH at @F410014EZ2@

@FY10014E2@ 0Z1CH9FH10 O1HE200000 1000240000 2D01000140 0000100000 A001001000
0020000000 000000AD1B 06EF720000 0000001AC? DACBFO0000 0000000000
0000000000 00000F4100 5641000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

This is recognizeable as a header. Encoded therein
are things you see on a KA — EOF, record sizer. # of
areasr file typer, blocking, etc.

SU4O bits into it is the address of the first {and
only) area of actual data : @F41005&841@

@F41005441@ " IF CSV.SWE_OPTION COR % FOR ART‘S DEBUGGING USE "
X 83909550 NOT ((ZIP_RSN.RS WFL_TAS"
"K CAND ZIP_RGN.RS_TASK_NUMBER = 0) 83909600C05PB41827"

Yep! That’s my data

