81800/7/78B1700

nCce MEMORY M ANAGEMENT

CUBE XXXII == Spring 1978

CUBE XXXIIX ----81800/81700

- Mexico City MCP Memory Management Page 1

Spring 1978
MCP MEMORY MANAGEMENT
INJRODUCTION

The B1800 and B1700 computer systems were designed to cover a
rather broad range of the computer market. In order to cover
this range with a single opcrfating systems» it was necessary to
implement virtual storage capabilities and apply the sanme
techniques used for normal state programs to the operating systea
itself.

The main memory requirements for any computer system are highty
dependent on an installation®'s applications and operating
procedure. This fact is even more true of a variable-length
segment, virtual storage system such as the B1800/B1700 which
dynamically allocates memory to user programs as it is requirede.
This type of system is able to keep many more programs in memory
in order to provide higher processor utilization than are
non-virtual systems or virtual machines with fixed page sizes
("partitions™). Since program segments are loaded only 3as
needed, the memory requirements for programs on a machine such as

___the B1800/B1700 (and the B7800/B7700/86800/B6700 systems as well)

must be stated in terms of a "working set™ rather than either
total program size or minimum memory requtred to rune.

The working set for a program is that amount of memory that it
most often needs during its execution to operate efficiently.
This working set musts, of course, include the memory required for
the functions requested of the operating system by the program»
as well as certain operating system functions required for
overall system control. The working set for the system as a

whole is simply the sum of the working_sets for all programs that

are executed concurrently. If a program (or the system) is
allocated less memory than its wWworking sets it will demand
non-present segments at a rate that will cause excessive segment
overlaying and reduced efficiency. HWhen the performance of the
system degrades appreciably due to memory restrictions» the
phenoaenon is known as "thrashing=.

CUBE XXXII 81800/81700
Mexico City MCP Memory Management Page 2
Spring 1978

CONCEPYS AND DEFINIVIONS

MEMORY FRAGMENTATION

Fragmentation is the failure to allocate all of memory for useful
purposes. Two varieties of fragmentation, internal and external»,
"can occur. The type of fragmentation that will occur depends»
respectively», on whether a system uses a paging or a segsentation
mechanism for memory management.

In a paging system all of wmemory is divided into equal=sized
pages or partitions. Therefores 100%Z of memory is assigned to
usable pages and external fragmentation does not occur. However,
since memory requests typically are of varying sizess the last
page assigned to a memory request is usually not full. This is
internal fragmentation.

In a system based on segmentation» segment sizes are variable so
that only enough memory to satisfy a request is allocated to it.
Thereforers no internal fragmentation exists in such a system«
However, some memory is required as "overhead™ for a memory link
to describe each segment. A more serious problem is that an area
of memory too small for use may become available between two
segments of memory which are being used. This is external
fragmentation.

Neither paging nor segmentation is clearly superior to the other.
Each has its advantages and disadvantages. The primary advantage
of paging is that it is straightforward from the point of view of
the operating system. Segmentation» on the other hand, provides
a much more reasonable structuring of memory since only the space
togically required for a given function is allocated to that
request. Therefores» programmers need not be concerned with
trying to structure their memory requirements into requests that
are exact multiples of the system®s "page size". And the fewer
unnecessary details that programmers have to think abouts, the
more quickly and accurately they can complete their actual taskse.
Segmentation doess howevers cause "geography”™ problems for the
operating system because external fragmentation "checkerboards"™
memory.

Burroughs has traditionally opted to use segmentation in its
approach to memory managements and the B1800/81700 systems are no
exception to this rule. Thereforer» memory management on
B1800/81700 systems is concerned with the atgorithms and problems
of segmentation. :

. CUBE XXXII ' 81800/81700
Mexico City MCP 'Memory Management | Page 3
Spring 1978 -

WORKING SET

The term "working set™ refers to the set of all program segments
which are accessed during a specific time interval (of arbitrary
Ltength). The working set for a specific program is the set of
data (the Run Structure)s» files» and code segments which it uses
during such a time intervals plus the memory requirements of the
operating system necessary *n perform program-requested functions
(READ» WRITE», OPEN» CLOSE» and so forth). The working set for
the entire system is simply the sum of the working sets of all
currently active programs. The working set for a programs, and
especially for the system as a wholes, can and often does change
drastically over successive time intervals as jobs go from one
phase of execution to another. '

THRASHING

"Thrashing™ is the condition which exists when the working set
for a program or set of programs does not fit in real memory.
Specificallys, in order to bring in the next code segment.for a
programs the operating system has to_overlay a currently active
code segment. Then that segment has to be brought back in, and
—another-—-active-segment must be. ocveri-vads, and _So forth,

One of the most serious problems confronting virtual storage
systems is thrashing. As the amount of memory available for a
constant programming task is reduced» the amount of degredation
due to thrashing normally appears very gradual at first. As the
available memory is further limited (by introducing additional
programs into the system», opening files» requesting additional or
larger code segments» and so forth)s a point will be reached
where the degredation due to overlays increases raptdly. This 1is
the point where the procedures inthe working set—no-longer fit
in memory and are competing for space. This points referred to
as the "Thrashing Point®™» is shown graphically in Figure 1.

Systea performance suffers drastically when thrashing occurs.
Throughput degredation of 100X and over is not unusual in such
instances. In facts, in the worst case absolutely nothing gets
done except overlayse.

_ CUBE XXXIT B1800/81700..

. Mexico City MCP Memory Management Page &
Spring 1978

Thrashing Point

~—CUBE-XXXH .B1800/B1700 -
‘'Mexico City . MCP Memory Manageament Page S
Spring 1978 :

81800781700 MEMORY MANAGEMENTY ALGORITHMS

GENERAL

No single memory management system is ideal for all situationse.
Consequently, the B1800/81700 MCP impleneqts memory management on
three separate levels of sophistications using two different
algorithes, in order to minimize the impact of more complex
memory management schemes on those installations that do not need
or want it. Installations that are satisfied with lower levels
of the memory management system need not be concerned with the
details of higher levels. This approach also allows users to
ease into the more complex aspects of the memory management
system smoothly, without being forced into an "all=-or-nothing"
decision.

- LEVEL ONE (FIRST<=IN» FIRST=0UT)

The algorithm of Level One is basically a "round robin™ (or
first=in» first-out) memory management scheme. When T"available"™
semory space large enough to fulfill a request cannot be found by
the MCP, one or more segments of in-use memory must be

deallocated (overlayed). Overlayable memory is allocated
starting from a "left-off pointer™ which is then updated to point
to the next lower segment in memory. Thuss the left-off pointer
sweeps from high to low memory 3ddresses until it reaches the
first memory link, at which time it starts over again from the
last memory link. '

*Save™ memory spaces which cannot be reassigned until explicitly
returned by the program to which it is assigned (for example»
FIBS and File Buffers)» is allocated toward the high end of
memory so that it will tend to be pushed togethers» thereby

reducing the external fragmentation that such "save space”
inherently creates.

Advantages

1. External fragmentation of memory is minimized since small
available chunks of memory tend to be swept up and used as
the left-off pointer sweeps through memory.

2 Although a simplistic decision about what segment to
deallocate is mader this decision can be made quicklye.
This is a very important featurer because if enough memory
is available to contain the working sets of the currently
active programss» then the first priority of the memory
management system is to get that working set in as quickly
as possible.

CUBE XXXII B1800/81700.. ‘
Mexico City -~ -~ - MCP Memory Management Page 6
Spring 1978 o

Disadvantaaes

2.

3.

. @
The most serious flaw of this level is that there is no
straightforward method by which a system user or operator
can determine when memory has been overcommitted
("thrashing™)e.

The relative activity of a segment and whether or not it is
currently in use is not considered (or even known) when
deciding to overlay that segment. Thereforer code segments
which are no longer in use may be retained while "active™
segments are overlayed.

The priority of a program using a segment is not considered
when deciding to overlay that segment. Thereforesr code
segments of high=priority jobs are not protected from being
overlayed by segments of lower=priority jobs. :
High=priority data comm jobs are a prime example of

programs which often suffer because their segments are not

protected from "background™ jobs.

.CUBE XXXII 81800/81700

Mexico City MCP Memory Manageament Page 7
Spring 1978 -

LEVEL TWO C(FIRST=IN, FIRST=0UT WITH THRASHING DETECTION)

The second level of the memory management system implements
detection for the "thrashing™ condition. The same mechanisa for
determination of what segment to overlay (the "victim selector®™)
is used for Level Two as for Level One. Thrashing detection is
invoked following the next CLEAR/START operation by setting the
*THR™ MCP options when SYSTEM/INIT incorporates the thrashing
detection code into GISMO. o

When GISMO» which is monitoring overlay activity, determines that
thrashing is occurring and that it is not a temporary phenomenon»

it notifies the MCP. The MCP then performs the following two
functions: :

1. Stops more programs from being automatically started. This
can be overridden by the system operator by using the "PS”
input message to "prod"™ the schedule. Otherwise the
schedule will not be automatically restarted until some
program goes to EOJ.

2« Sends the following message to the SPQ:

s+ SYSTEM IS THRASHING, SCHEDULE STOPPED #+=

This message may be repeated either every time a program
enters or leaves the MIXs or at every N.SECOND intervals, as
tong as thrashing continuess depending upon the setting of
the "THRASH™ option of the "MM™ input message.

When the system is shifting from one working set to another (as
programs go to BOJ or EOJ» OPEN or CLOSE files» or move from one
phase of execution to another), memory is often overcommitted for
a short period of time. This condition is acceptable provided it
does not persist for too long. One installation may, however, be
willing to tolerate an overcommittment of memory for longer time
intervals than another. For this reason, a means is provided
(through the "THRASHING.SENSITIVITY™ option of the "MM™ input
message) to adjust the sensitivity of the memory managesent
system®s thrashing detection mechanism.

In addition, the maximum overlay rate that can be tolerated is
highly dependent upon the speed of the disk from which the
overlays are being done» since more overlays can be per formed
efficiently during a fixed time interval from "fast™ disk than
from a "slow”™ diske. For this reason, a means is provided
C(through the "OVERLAY.RATE™ option of the "MM™ input message) to
adjust this maximum allowable value.

CUBE_XXXIT 81800/81700--
- Mexico City MCP Memory Managesment Page 8
Spring 1978

The recommended value for the OVERLAY.RATE has been determined
for the various disk types using their average access times
(allowing for fixed MCP overhead required to obtain memory space
and initiate the disk read)» as shown in the following table:

Disk Iype Ayerage Access QVERLAY.RATE
89480 cartridge 80 ms. 7 6
89481 cartridge 100- s - - 5
89482 cartridge 55 mse . 7
89484 pack 33.5 &se 10
B9499 paCk . 42.5 mse 8
89371 head=per=track 20 mse. 12
89371 head=per=track 40 mse. _ 8
B9470 head=per=track S mse 15

The default value for OVERLAY.RATE assigned by the MCP following
a COLDSTART operation is ten (10).

Adyantages

The advantage of this lLlevel is that system users and operators
will know when their memory is overcommitted and will, therefore»
be able to do a much better job of maintaining a mix of programs

—which—utilizes most of @emory but does not cause thrashing to
occure.

Disadvantages

The only disadvantage of this level is that approximately 140
more bytes of non=overlayable memory are required beyond that of
the Level One mechanisme

CUBE XXXII '81800/81700

Mexico City MCP. Memory Management Page 9
Spring 1978) -

LEVEL THREE (MEMORY PRIORITY WITH THRASHING DETECTION)

This level of the memory management system includes the thrashing
detection of Level Two» but a different "victia selector” based
on job priority and segment usage. The Priority Memory
Management algorithm is invoked following the next CLEAR/START
~operation by setting the "MPRI™ MCP options, when SYSTEM/INIT
incorporates the new "victim selector” into GISMQO.

In this level», requests for segments of memory are assigned
priorities which are separate and distinct from processor usage
priorities (refer to the MEMORY.PRIORITY control instruction
attribute and the MP input message). No request for memory may
cause a segment having a higher memory priority to be overlayed.

In a mix with varying memory priorities» segments of
high=priority jobs which are actively in use are protected fron
segments of lower=-priority jobs. At fixed time intervals (known
as the SAMPLING.INTERVAL)» GISMO “"sweeps™ through all memory
Links on the system and examines a "usage™ bit in each. This bit
is set by a program's interpreter when the code segment is
accessed (i.e.» code in the segnent is executed). If a segment
has not been accessed since the previous "sweep™ though memorys

_its priority is_lowered by GISMO to the next lower memory
priority active on the system. The segment is then protected at
that priority for another SAMPLING.INTERVAL. If a segment is
accessed at any time before being overlayedr, it is restored to
its original memory priority. In this way, segeents of
high=priority jobs are protected from those of {ow-priority jobs»
and unused segments of any job tend to degrade to Lower
priorities and get overlayed. - .

In a "flat mix™ (i.e.» a mix with all memory priorities equal),
those segments which are actively in use tend to stay in memory
while those segments which are no lLonger being used tend to be
overlayed. This cannot be made an absolute policy in a memory
management scheme based on segmentation due to "geography™
problems. For exampler a very small inactive segment which has
been allocated between two active segments may remain in memory
longer than it otherwise would because of its locatione.

A "flat mix” has the additional advantage that it approaches the
simplicity and efficiency of the Level Two algorithm as the -
systea approaches thrashing. .

The MCP sets the SAMPLING. INTERVAL value based upon the systeu
memory sizer» as shown in the following table: :

Memory Size SAMPLING.INTERVAL
0-261 KB .- 8 (0.8 seconds)
262-523 KB ~ 10 (1.0 seconds)

524 KB 12 (1.2 seconds)

CUBE XXXII ' 81800/8B1700
Mexico City MCP,Memory Management Page 10
Spring 1978 ~ .

A means is provided (through the "SAMPLING.INTERVAL™ option of
the "MM™ input message) to change tire rate at which the sweeper
is executed» although changes from the default value should not
be necessary and are not recommendede.

Adyantages

1« Varying memory priorities will proféct active segments of
- . higher=priority jobS, .rombeing overlayed by those of :
lower=priority jobse. : ' ‘

2« As in Level Twosr the system operator will know when memory
is overcoamitted and will be able to do a much better job
of maintaining a mix of programs which utilizes most of
memory but does not cause thrashing to occur.

"3« Running with equal memory priorities tends to make the
system run in a manner approaching that of Level Twos» with
-the added advantage that unused segments will degrade in
priority and hence tend to be overlayeds while Tactive™
segments will tend to stay in memory.

Disadyantages

1o Approximat ely - 150—more-bytes or nmon—over layable memory are
required beyond tha; of the Level -Two mechanisnm.

2. ‘If jobs are run at varying memory priorities» externat
fragmentation of memory can be increased. ‘

“CUBEXXXIT B1800781700°

Mexico City - - - MCP Memory Managesent Page 11
Spring 1978

EXTENDED SEGMENT DECAY .

Level Three of the memory management system also allowus
protection of specified segments from overlay by lower=priority
segments for an extended period of time (greater than the
SAMPLING.INTERVAL) after they were last accessed. This
capability is designed primarily to aid data conmm 1nstallattons
which have no way of insuring that key segments of network
“controllers and other remote applications remain in memory. This
problem can result in poor response time when low=priority
*"background” jobs cause data comm program segments to be
overlayed. It is not advisable to permit such important segments
to be marked as "save™ (non—-overlayable)? howevers Extended
Segment Decay is only a little short of that capabilitye.

There are two aspects to protecting key program segments:

1. Those segments which are to be protected for an extended
“period must be identified and marked. The wmeans for
accomplishing this is a utility program called
“SYSTEM/MARK.SEGS™.

2. Specification must be made of how long such segments are to
be retained. This is _done by setting the program attribute
*SECONDS.BEFORE.DECAY" to some value between 0 and 600,
inclusive (refer to the SECONDS.BEFORE.DECAY attribute).

~The priority of segments which have been marked as important will
not be degraded until and unless those segments are not accessed
for the number of seconds specified by the SECONDS.BEFORE.DECAY
attribute. It should be noted that if SECONDS.BEFORE.DECAY is
set to zero for a particular programs, then all of its code
segments (both those marked as important and unimportant) will be
treated as unimportant. Furthermores, SECONDS.BEFORE.DECAY is
completely subserviant to memory priority. A segment with a
higher memory priority can overlay a segment with a lower
priority no matter what the value of SECONDS.BEFORE.DECAY for the
lower=priority job. SECONDS.BEFORE.DECAY simply determines how

long after a segment was last accessed it will be able to retain
a given priority. v

Note that specifying a SECONDS.BEFORE.DECAY‘value for a progranm
that has no segments marked as "important™ by SYSTEM/MARK.SEGS
has no effect.

_CUBE XXXII 81800/81700..
Mexico City MCP Mewmory Managesent Page 12
Spring 1978

‘Adyantages

Extended Segment Decay allows data comm users to guarantee that
key segments of network controllers and other programs will not
be overlayed by lower=priority jobs for any fixed period of time
(between 0 and 600 seconds) after they are last accessed.

Disadvantages

Users of Extended Segment Decay can lock up more memory than they
really need and thereby degrade the performance of background
jobs more than necessarye.

CUBE XXXII ‘81800781700
" Mexico City MCP)Memory Managesent : Page 13
Soring 1978 ' -

EUNCTEONAL CHARACTERISTICS

THRASHING DETECTION

When thrashing detection has been requested (by setting either
the "THR™ or "MPRI"™ MCP options and performing a CLEAR/START),
SYSTEM/INIT retains in GISMO the code necessary to nonltor

overlay activitye. ' e

The logic flowchart presented in Figure 2 depicts the general
nature of the thrashing detection code. Certain data naames have
been usedr some of which actually exist in the MCP and GISMO
code. O0Other data names are fictjtious, merely being used in the
flowchart to represent a specific function. Their definitions
are as follows: -
SAMPLING.INTERVAL A value (in tenths of seconds) computed by
' B " the MCP from the system memory size which
specifies how often GISMO checks to determine
_whether thrashing is occurring. This value
also specnfles how often the "sueeper" is
executed C(if the MPRI ootion is set).

OVERLAY.TARGET The value (in number of overlays per '
SAMPLING.INTERVAL) computed by the MCP from
the specified OVERLAY.RATE and the
SAMPLING.INTERVAL.

MAX-SWEEP.INTERVAL A value (in tenths of seconds) computed by

) the MCP from the THRASHING.SENSITIVITY
specified» equal to one~-third of
THRASHING.SENSITIVITY. This value also
specifies_how-often the “"sueeper™ is executed
once GISM0O determines that the OVERLAY.RATE
has been exceeded (if the MPRI option is
set)d. .

OVERLAY.COUNTER A count of tﬁe number of overlays that have
occurred. Reset to zero at the end of ‘each
SAMPLING.INTERVAL.

SAMPLING.CLOCK A field that is incremented at each TIMER
INTERRUPT until it reaches the value of the |
SAMPLING.INTERVAL. |
MEM.EXTEND.CLOCK A field that is incremented by the |

SAMPLING.CLOCK at the end of each
SAMPLING.INTERVAL (if the OVERLAY. COUNIER
exceeds the OVERLAY.TARGET) untitl it reaches
the value of the MAX.SKEEP. INTERVAL.

CUBE XXXII B81800/81700
‘Mexico City . MCP Memory Management Page 14
Spring 1978 '

MEM.EXTEND.COUNT A counter that is bumped each time the
MEM-EXTEND.CLOCK exceeds the value of
MAXSWEEP.INTERVAL. 1If this counter reaches
a value of three (3), thrashing has continued
for the length of time specified by the
THRASHING.SENSITIVITY» and GISMO notifies the
MCP of this condition.

References to the "sweeper™ are applicable only if the MPRI .
option is set (refer to the following section on PRIORITY MEMORY
MANAGEMENT).

CUBE XXXII
‘Mexico City

Spring 1978

.£ , -

-81800/81700
HCPhﬂg-qry Management

Page 15

' ENABLE SWEEPER

IF MPRI OPTION
IS SET, THEN

®©

l

§

RESET MEM.EXTEND.CLOCK |~ |

AND MEM.EXTEND.COUNT

]

RESET OVERLAY.COUNTER
AND SAMPLING.CLOCK

]

IF OVERLAY OCCURS.,
THEN 8UMP
OYERLAY.COUNTER

IF TIMER INTERRUPT
OCCURS, THEN BUMP
SAMPLING.CLOCK

I8 '
SAMPLING.CLOCK =
AMPLING.INTERVAL

IF SNEEPER IS
ENABLED, THEN
RUN SWEEPER ONCE

I8
OVERLAY.COUNTER >
QVERLAY . TARGET

¥

OISABLE SWEEPER

|

" BUMP MEM.EXTEND.CLOCK

- B8Y SAMPLING.CLOCK

MEH.EXTEND.CLOCK <
AX.SWEEP .INTERVAL

m'""-viRESE}THM“”‘

8UMP
MEM.EXTEND.COUNT

MEM.EXTEND.COUNT

SEND "THRASHING"™ .
INTERRUPT TO SMCP

T

vES

IF MPR1 OPTION
. IS SET» THEN
RUN SWEEPER ONCE

—CUBE—-XXXET
" Mexico City
Spring 1978

81800781700~
MCP Memory Management Page 16

PRIORITY MEMORY MANAGEMENT

The Priority Memory

L4

Management mechanisms in addition to

providing the thrashing detection capability described earlier,
allows "active™ code segments to be protected from overlay by

lower=priority codee.
memory by high=prior

In order to prevent the total takeover of
ity coder howevers, GISMO periodically

*sweeps™ through msemory and lowers the priority of those code

. segments which have
sweep wWas performed.

not been accessed-since the last time the
In this manner», segments which are not

actively used by high—-priority programs will be "decayed”™ until
they reach a point where they can be overlayed by lower=priority

segmentse.

The logic flowchart

presented in Figure 3 graphically depicts the

process by which the SWEEPER in GISMO examines each memory link

and decays the prior

ities of unused segments. Certain data names

have been used» some of which actually exist in the GISMO codee.

-Other data names are

~fictitiouss merely being used in the

flowchart to represent a specific function. Their definitions

are as follows:

DECAY.INTERVAL

A value coamputed from the SAMPLING.INTERVAL
and the SECONDS.BEFORE.DECAY specification

which specifies the number of memory sweeps

during which an unused segment will not be
decayed in priority. For exampler if the
SAMPLING.INTERVAL is 8 (0.8 seconds) and the
SECONDS.BEFORE.DECAY attribute for a program
is set to 20, the DECAY.INTERVAL for all
"important™ code segments is set to 25. In
other wordss, the code segment is protected
from decay for 25 "sweeps™ through memory

(25 * .8 = 20). Code segments which have not

‘been marked as "important™ will always be

MEMORY.PRIORITY

CST and PST

marked with a DECAY.INTERVAL of zero (0).

The value specified by the MEMORY.PRIORITY
control instruction attribute or the MP input
message.

Two bits in the memory link adjacent to a
segment of memory that indicate its "in use™
status. The CST C(CURRENT.SCAN.TOUCH) bit is
set by an interpreter whenever program
control is passed to the adjacent code
segmwent.. The CST bit is reset only by the
SHEEPER in GISMO. The PST
(PREVIOUS.SCAN.TOUCH) bit contains the
setting of the CST bit from the previous
execution of the SWEEPER.

CUBE XXXII ‘ 81800/8B1700

Mexico City MCP Memory Management Page 17.
Spring 1978

INITIALIZE ADDRESS
TO FIRST MEMORY LTINK

=

SET ADDRESS TO
NEXT MEMORY LINK

- 1S
THIS THE LAST
MEMORY LINK

STORE CST BIT INTO ' SUBTRACT 4 FROM
PST BIT, THEN - . DECAY.INTERVAL
RESET CST BIT :

IS

8O IS
PST BIT TRUE DECAY.INTERVAL = 0
> LOWER MEMORY.PRIORITY
SET MEMORY.PRIORITY TO NEXT VALUE
TO ORIGINAL VALUE ACTIVE ON SYSTEM

F

l SET DECAY.INTERVAL

TO ORIGINAL VALUE

~CUBE—XXXET ~ -B1800/B1700-

Mexico City MCP Memory Management Page 18
Spring 1978 :

MM INPUT MESSAGE (Mesory Management)

The MM input message allows the system operator to control
certain attributes of the MCP Memory Manageaent System.

The format of the MM message is:

. | | \
OVERLAY.RATE
0.R
THRASHING.SENSITIVITY
< > [integer]
T.s
MM < — }
- SAMPLING.INTERVAL
S.l
. o - /
L ON 1L
] THRASH —
OfFF
L - 4 /

The MM input message is not allowed if Level One (First=in,
First-out) of the MCP Memory Management system is in use (i.ee.»
neither the THR nor the MPRI option is set).

The OVERLAY.RATE (abbreviated 0.R) option is specified in
overlays per secondrs and may be set to any value between 1 and
20» inclusive. The default value following a COLDSTART operation
is 10.

The THRASHING.SENSITIVITY (abbreviated T.S) option is specified
in seconds» and may be set to any value between 10 and 60,
inclusive. The default value following a COLDSTARY operation is
20.

The SAMPLING.INTERVAL (abbreviated S.I) option is specified in
tenths of seconds», and may be set to any value between 1 3nd 50»
inclusive. The default value is set by the MCP during
CLEAR/STARYT», and is dependent upon the system memory size. This
default value may not be changed by the MM input message unless
the DBUG option is set (changes to the default value are not
recommended). Ca

—CUBE-XXXEL 81890/B1700
Mexico City . .. MCP Memory Management Page 19
Spring 1978 :

The THRASH option specifies the frequency that the MCP will
display the "SYSTEM IS THRASHING™ message when the "thrashing”
condition has been detected by GISMO. “ON" specifies that the
message will be displayed at each N.SECOND interval (a variable
period of time determined by the number of programs in the mix)
as long as thrashing continues. "OFF" (the default setting)
specifies that the message will be displayed by the MCP as long
as thrashing contlnueSv but only when a program enters or leaves
“the mixe.

The values assigned to all options (except for the
SAMPLING.INTERVAL) are retained by the MCP when a CLEAR/START is
performed» and need not be specified again.

Omitting the value of any option (the integer or “ON"/"0FF™)
causes the current value of the option to be displayed by the
"CPQ "

Examples:

MM O.R
OVERLAY. RATE = 10

MM TRASH ON
THRASHING.HESSAGE ON

MM T.S 15
THRASHING.SENSITIVITY = 15

CUBE XXXITI 81800/81700

Mexico City MCP Memory Management Page 20
Spring 1978

BEMORY <PRIORITY

The MEMORY.PRIORITY attribute allows specification of the
priority to be assigned to segments of memory occupied by progranm
code .

The format of the MEMORY.PRIORITY statement is:

MEMORY.PRIORITY :
€23 Coss1 . ‘ C
— MP

1}
4

integer

The MEMORY.PRIORITY control word may be abbreviated as MP.

The MEMORY.PRIORITY attribute is only allowed when the "Priority

Memory Management™ algorithm is being used by the MCP (MPRI
option is set). :

The integer may be assigned a value from zero to fifteen (0-15),»
where zero is the -lowest—priorityand fifteen is the higheste.

Nhen a program code segment is "made present”™ (read into memory)
by the MCP» the memory space it occupies is given an initial
priority equal to the MEMORY.PRIORITY of the programe. Code
segaents of one program may not overlay those of another program
which have a higher memory prioritys thus allowing more important
program code to be protected. However, code segments that are
not referenced by a program for a period of time (equal to 1.5
times the SAMPLING.INTERVAL on the average, unless the
SECONDS.BEFORE.DECAY attribute specifies a different interval for
segments marked as "important™) "decay”™ to lower memory
priorities» thus eventually allowing them to be overlayed. 1If a
segment is accessed by a program at any time before being
overlayeds its priority is restored to the original value.

A MEMORY.PRIORITY value of nine (9) or greater is referred to as
a "crashout™ priority» and has a nuamber of additional effectss

If insufficient overlayable memory space for a request having a
crashout priority is availables, the MCP will attempt to
deallocate "save™ memory space having a lower memory prioritye.
Such a deallocation is performed on the RUN STRUCTURE (BASE-LIMIY
space) of a lower=priority programs, and results in an abbreviated
ROLLOUT of the program selected as the "victim™. This action by
the MCPs termed “crashout™» suspends the "victim™, and writes out
to temporary disk storage only the program®s BASE-LIMIT space
(not any file or code space)s then makes the space occupied by
the RUN STRUCTURE available to satisfy the memory request. The
MCP periodically (at each N.SECOND interval) attempts to '
reinstate any "victima™ programs that were crashed out.

CUBE XXXII B1800/81700
.Mexico City MCP MNemory Manageament Page 21
Spring 1978

Note that entering a program having 8 crashout priority in the
ACTIVE SCHEDULE will not cause any crashout actions to be taken
on running programs in order to begin the high=priority jobe.
Crashout can only be caused by an executing program having a
memory priority of nine or greater» and whose memory priority is
higher than that of the program which is to be crashed out (for
examples, a program with a memory priority of 12 cannot cause
crashout on any other program with a memory priority of 12 or
aboves, but can cause any program with a memory priority of less
than 12 to be crashed out)e.

Example:

EXECUTE A/B MP=8
A/B =3702 BOJ. PP=hk» MP=8 TIME = 12:25:37.2

CUBE XXXII - 81800/81700
Mexico City MCP. Memory Management Page 22
Spring 1978) .

PROCESSORPRIORITY

The PROCESSOR.PRIORITY attribute allows the system operator to
specify the priority to be assigned to processor usage by a
program.

The format of the PROCESSOR.PRIORITY statement is:

PROCESSOR.PRIORITY

£ 2] Cos8J1 C =1 integer
— PP

e

The PROCESSOR.PRIORITY control word may be abbreviated as PP

The PROCESSOR.PRIORITY attribute is only allowed when the
*Priority Memory Managewment™ algor:thm is being used by the MCP
(MPRI option is set)d.

The integer may be assigned a value from zero to fifteen (0-15),
where zero is the lowest priority and fifteen is the highest.

If the PROCESSOR.PRIORITY of a program is set to nine (9) or
greater, the following actions take place: ,

1« The SCHEDULE.PRIORITY is set to the same value as the
PROCESSOR.PRIORIY (up to a waximum of 14)» unless
explicitly set to some other value in the COMPILE or
EXECUTE control instruction (using the SCHEDULE.PRIORITY
control instruction attribute)e. :

2. The program is not considered by the MCP in determining
whether or not the MIX LIMIT has been reached. The MIX
LIMIT controls onlty those programs having a

PROCESSOR.PRIORITY less than nine (9).

3. 1f the Priority Memory Management algorithm is not being
used (i.e.» the MPRI option is reset)» the “"crashout™
capabilities provided by a memory priority of nine (9) or

- greater are associated instead with the processor priority
Cassigned using the PRIORITY control instruction attribute
-or the PR input message)e.

Exasple:

EXECUTE A/B PP=8
A/8 =3702 BOJ. PP=8» HP°6 TIME = 12:25:37.2

CUBE XXXII ‘81800781700
Mexico City MCP 'Memory Management Page 23
Spring 1978 : ' -

SECONDS +.BEFORE.DECAY

The SECONDS.BEFORE.DECAY attribute allows specification of the
length of time to protect unreferenced code segments marked as
"important™ from being degraded in priority by the MCP.

The format of the SECONDS,AFFORE.DECAY attribute is:

e SECONDS.BEFORE .DECAY :
€2 CLosy)} C =3 integer

The SECONDS.BEFORE.DECAY control word may be abbreviated as SB.

The SECONDS.BEFORE.DECAY attribute-is only allowed when the
*Priority Memory Management™ algorithm is being used by the MCP
(MPRI option is set).

The integer may specify any value between 0 and 600s inclusives
—and-designates-the length of time (in seconds) that an

unreferenced code segment which has been marked as "important” is
to be retained at its current memory priority before being
degraded ("decayed™) to a lower priority If the value of
SECONDS.BEFORE.DECAY is zeros all code segments of a programs
whether marked as "important®™ or not», are treated as
*"unimportant™ (that is» Extended Segment Decay is not applied)e.

A special system utility programrs SYSTEM/MARK.SEGS» must be used
to mark specific code segments as "important™ for use with the
SECONDS.BEFORE.DECAY attribute.— Specifying—a-non=zero-
SECONDS.BEFORE.DECAY on a program which has no code segments
marked as "important™ by SYSTEM/MARK.SEGS has no effecte.

Example:
EXECUTE A/B MP=15 SB=250

SET

N HNORKING

SHIFT

!llll'!llTﬂﬂlllllflll

R S

20

0
5

n
-t

1

O>20 e ®2n Qo nwoouwuoecco

30 35 40

15 20 25
e (Seconds)
= 10
= 20

OVERLAY.RATE

10
THRASHING.SENSITIVITY

00 Ve~ 0 <O

as3onown

THRASHING

20

15

10 e ecececoaceoomomaommeaoaie s meme e LR L R T X F X ¥ X X X J - @ e w -

R

e e e X

5 10 15 20 25 30

w
(Y]

Time (Seconds)

OVERLAY.RATE = 10

THRASHING.SENSITIVITY = 20

40

