Burroughs

LANGUAGE
MANUAL

Priced Item 1168622
Printed in U.S.A
August 1984



Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Corporate Documentation-West, Burroughs Corporation, 1300 John Reed
Court, City of Industry, California 91745, U.S.A.



B 1000 Systems COBOL74 Language Manual

1168622

LIST OF EFFECTIVE PAGES

Page

Title

ii

iii

iv

v thru xviii

Xix

XX

xxi thru xxiii -
XXiv

1-1 thru 1-2
2-1 thru 2-23
2-24

3-1 thru 3-5
3-6 e
4-1 thru 4-3°
4-4

5-1 thru 5-27
5-28

6-1 thru 6-77
6-78

7-1 thru 7-153
7-154

8-1 thru 8-16
9-1 thru 9-24
10-1 thru 10-14
11-1 thru 11-8
A-1 thru A-9
A-10

B-1 thru B-38
C-1 thru C-13
C-14

D-1 thru D-21
D-22

E-1 thru E-71
E-72
F-1 thru F-16
G-1 thru G-19
G-20

1 thru 13

14

Issue

Original
Original
Original
Blank
Original
Original
Blank
Original
Blank
Original
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Blank
Original
Original
Original
Original
Original
Blank
Original
Original
Blank
Original
Blank

Original

Blank
Original
Original
Blank
Original
Blank

ifi






B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS

Section . Title Page

FOREWORD . . . D 4 0.
Burroughs Extensions to ANSI 74 Cobol e e e e e e e e e e e e e e Xix
Acknowledgement . . . . . . . . . . L. L Lo oo e e e e Xix
INTRODUCTION . . . . . . . . . . .« « « « v v v v v v o o xxi
COBOL74 Advantages . . . . . . . . . . + « « v v « v v v v v v xXxi
COBOL74 Concepts . . . . v v v v v v e e e e e e e e e e e xxi
Organization........................... XXii
Related Documents . . D @ < 111
1 PROGRAM ORGANIZATION ‘
COBOL74 Source Program Divisions
Required Headers . . . . .
2 LANGUAGE CONCEPTS
General .
Language Descrlptlon Notatlon
Key Words
Optional Words
Generic Terms
Braces
Brackets
Level-Numbers
Ellipsis
Format Punctuatlon
Special Characters in Formats
Character Set . .
Characters Used for Words
Punctuation Characters .
Editing Characters
Characters Used in Anthmetlc Expressmns
Characters Used in Relation Conditions
Language Structure
Separators .
Character-Strings
Definition of Words
Types of Words
Nouns
File-Name
Record-Name .
Data-Name
Condition-Name
Mnemonic-Name
Index-Name .
Paragraph-Name
Section-Name .
Other Categories
Verbs .

D IR BB B B B e e i
DN DO DD r o b bt ot ot N b

) DR
[\S3 O3 O}

Wt

SESAN l})l})MNMt})l\)NMNMN

PP PR RPRE R
(e e N Ne We W, I, NI, [V, BN NN

l\)l\)ll\)l\)t\)t\)
N NN

1168622



. B 1000 Systems COBOL74 Language Manual

Section

2 (Cont)

vi

TABLE OF CONTENTS (Cont)

Title

Reserved Words
Key Words
Connectives .
Optional Words .
Figurative Constant
Special Registers
Special-Character Words
Literals .o
Numeric theral .
Nonnumeric Literal
Hexadecimal Literals .
Logical Record and File Concepts
Physical Aspects of a File. .
Conceptual Characteristics ‘of a File .
Record Concepts
Concept of Levels
Level-Numbers .
Concept of Classes of Data .
Algebraic Signs .
Standard Alignment Rules
Uniqueness of Reference
Identifier
Condition-Name
Qualification .
Subscripting
Indexing .
Explicit and Imphclt Speaflcatlons

Explicit and Implicit PROCEDURE DIVISION References .

Explicit and Implicit Transfers of Control
Explicit and Implicit Attributes

CODING FORM .o

General .

Field Deflmtlons
Sequence Area (Record Posmons l 6)
Indicator Area (Record Position 7)
Area A (Positions 8 through 11) .
Area B (Positions 12 through 72)

Right Margin (Position 72) .
Identification (Positions 73 through 80)

Blank Lines e e .

Punctuation . .

Sample Coding . .

IDENTIFICATION DIVISION

General .

Identification D1v1s1on Structure
PROGRAM-ID Paragraph
DATE-COMPILED Paragraph .

Coding the Identification Division



B 1000 Systems COBOL74 Language Manual

Section

5

1168622

TABLE OF CONTENTS (Cont)

Title

ENVIRONMENT DIVISION
General .
Environment Drvrslon Orgamzatlon
Environment Division Structure
Configuration Section . . .
SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph
Input-Output Section
File Concepts
Sequential I-O
Relative 1-O
Indexed I-O
Queue Files
Remote Files
Port Files
Sort-Merge .
Relationship wrth Sequentral IO
Organization e e
" Access Mode
Sequential Files
Relative File .
Indexed Files .
Current Record Pointer
I-O Status .

Status Key 1
Status Key 2 .

Valid Combmatlons. of Status Keys 1 and 2

Invalid Key

At End

Linage-Counter
File-Control Paragraph .

File Control Entry
I-O-Control Paragraph . .
Coding the Environment Division
DATA DIVISION
General .
Data Division Orgamzatlon
Data Division Structure
File Section

Record Descrrptlon

File Description Structure .

Sort-Merge File Description Structure

Coding the File Section
BLOCK CONTAINS
CODE-SET

Page

1 ) ) 1 U

ARV OVOVHREANPRW WWNRDNNRNN= =000 VOOV OWUNWN ===

L N N i auaaagaaaaana

1 1 ] ] 1 [ 1 1 1
DO D) et o ot ok ok i ot ok

Loy o YILIIU'IUIU]MUIU’IU‘IU’IU\U\
.

6-1

6-10

vii



B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont)

Section Title Page
6 (Cont) DATA RECORDS . . . . . . . . . . . . . . . .. ...61I1
LABEL RECORDS . . . . . . . . . . . . .« « « o . 612
LINAGE . . Y K |
RECORD CONTAINS T S £
VALUE OF . . . Y 0
DATA DESCRIPTION STRUCTURE Y )
BLANK WHEN ZERO . . . . . . . . . . . . .« .« .. .. 625
DATA-NAME or FILLER . . . . . . . . . . . .« . « < <. . . 626
JUSTIFIED . . . . . . . . . . v v v v v v v v v v v . 627
LEVEL-NUMBER . . . . . . . . . . . . . . . . . . ... . 628
OCCURS . . . . . . . o o e e e e e d e d e e e e s s e e 63
PICTURE . . . . . . . . . . . « « v « v v v v v v v v v v« . . 635
REDEFINES . . . . . . . . . . . . . . . .« v v v v v v o .. 645
RENAMES . . . . . . . . . . . . .o s e e e e e . 6a
SIGN . . Y s 1Y)
SYNCHRONIZED Y et |
USAGE . . . . . . . . . o o o e e e e e e e e s s e e e . 652
VALUE . . O S
Condition-Name Rules R . e e e e . . . . 6-55
Data Description Entries Other Than Condltlon Names B S )
Working-Storage Section . . . Y s S Y
WORKING-STORAGE Structure Y Y
Noncontiguous WORKING-STORAGE . . . . . . . . . . . . . . . . 657
WORKING-STORAGE Records . . . . . . . . . . . . . . . . . . 658
Initial Values . . . . . . . . . . . . . . . . . . . . . . .. . 658
Condition-Names . . . Y %
Coding the Working-Storage Sectlon O e 1 .
Linkage Section . Y o 1
LINKAGE SECTION Structure e 0]
Noncontiguous LINKAGE Storage . . . . . . . . . . . . . . . . . 661

- Linkage Records . . . . . . . . . . . . « . . . . . . ... 06061
Initial Values . . Y e |
Coding the Linkage Sectlon Y o 3

'y
N
(9]

Communication Section e e e e e e e e e
Communication Description Structure P o ¢

7 PROCEDURE DIVISION 7-1
General . . 7-1
Rules of Procedure Formatlon . 7-1
Execution of the Procedure Division 7-1
Procedure Division Structure . 7-1

PROCEDURE DIVISION Header 72
PROCEDURE DIVISION Body 7-2
Statements and Sentences . . 7-3
Conditional Statements . 7-3
Conditional Sentences 7-4
Compiler-Directing Statements 7-4
Compiler-Directing Sentences 7-4

viii



B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont)

Section Title

7 (Cont) Imperative Statements
Imperative Sentences . .
Control Relationship Between Procedures
Paragraphs
Sections .
Segmentation
Program Segments
Fixed Portion .
Independent Segments
Segmentation Classification
Segmentation Control .
Structure of Program Segments
Segment-Numbers
SEGMENT- LIMIT
Restrictions on Program Flow
The ALTER Statement .
The Procedure Division Header
Declaratives . . .
USE Declarative . .
USE FOR DEBUGGING Declaratlve
Arithmetic Expressions . e
Arithmetic Operators
Intermediate Data Item
Conditional Expressions
Simple Conditions .
Relation Condition
Class Condition .

Condition-Name Condrtlon (Condmonal Varlable)

Switch-Status Condition
Sign Condition
Complex Conditions .
Negated Simple Condltlons
Combined and Negated Combined Condltrons
Abbreviated Combined Relation Conditions .
Condition Evaluation Rules
Common Phrases . .
ROUNDED Phrase .
SIZE ERROR Phrase . .
CORRESPONDING Phrase
General Rules for Statement Formats
Arithmetic Statements
Overlapping Operands .
Multiple Results in Arithmetic Statements
Incompatible Data
Numeric Functions
OFFSET Function .
Categories of Verbs

1168622

ix



B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont)

Section Title Page

7 (Cont)  Specific Verb Formats . . . . . . . . . . « v v e v e 7-33
ACCEPT . . . e e e e e e e e e e e e e 7-34
ACCEPT MESSAGE COUNT e e e e e e e e e e e e e e 7-36
ADD . . . . . . . e e e e e e e e e e e e e 7-37
ALTER . . . . . . . . o oo e e e e e e e e e e 7-40
CALL . . . . . oo e e e e e e e e e 7-41
CANCEL . . . . . . . o oo e e s s e e e e e e 7-45
CLOSE . . . . . . . o oo e e e e e 7-46
COMPUTE . . . . . . . . o o o 0 e e e e e e e e e 7-52
COPY . . . . o o oL e e e e e e e e e 7-53
DELETE . . . . . . . . « « o o o e e e e e e e e e 7-57
DISABLE . . . . . . . . . . . oo e e e e 7-58
DISPLAY . . . . . . . . . oo e e s e e e e 7-60
DIVIDE . . . . . . . . . . . . 0 e e e e e e 7-61
ENABLE . . . . . . . .« . . . .o e e e e e e e, 7-63
EXIT . . . e e e e e e e e e e e e e e e e 7-65
EXIT PROGRAM e e e e e e e e e e s e 7-66
GO TO . . . . . . o o s e e ey e e e e s e e e e 7-67
IF . . . . . s e e e e e e e 7-68
INSPECT . . . . . . . o o v v v e e e e e e e e 7-69
MERGE . . . . . . . . . . oo e e e e 7-77
MOVE . . . . e e e e e e e e e e e e 7-81
Valid Move Combmatlons e e e e e e e e s e e 7-84
MULTIPLY . . . . . . . . . o o o v e e e e e e e s 7-86
OPEN . . . . . . . o e e e e s e e e 7-87
PERFORM . . . . . . . . . o oo e e e 793
READ . . . . . . . . . . . . . . . . . . . ... . 7100
RECEIVE . . . . . . .« o s e e e e e e 7-106
RELEASE . . . . . . . . . . . « . . . . . < . .. .. 74108
RETURN . . . . . . . . . . o o o o o e s e e e e s 74109
REWRITE . . . . . . . . . . . .« v v v v v w7110
SEARCH . . . . . . . . . . . e e e 1112
SEEK . . . . . . . . . . . ... s e e e e e e e .. 7116
SEND . . . . . . o oo e e e s e e e e s 17
SET . . . . . . s e e sy s s e e e e s e e 1120
SORT . . . . . . o o e e e e e e e e e e 7-123
START . . . . . . . . o o o o o e e e e e e S s 7128
STOP . . . . . . . . . . e e e e e oo 7130
STRING . . . . . . .« . . . . . . . e el s e s 7131
SUBTRACT . . . . . . . . . « . . « . o . « « & v « v . 174135
UNSTRING . . . . . . . . . . . . . . .« . . . . v . « o < . 17138
USE . . . . . . . . . . . s s e e e e e 74143
WAIT . . . . . . . . . . . s s s oo e ue e .. 74145
WRITE . . . S A -y

Mass and Non Mass Storage Flles e e e e e e e e e 7-148
Non-Mass Storage Files . . . . . . . . . . . . . . . . . . . . 17149
Mass Storage Files . . . . . . . . . . . . . . . . . . . . . 17151



"B 1000 Systems COBOL74 Language Manual

Section

8

10

1168622

TABLE OF CONTENTS (Cont)

Title Page
FILE ATTRIBUTES 8-1
General . . 8-1
File Attribute Identlfler 8-1
CHANGE . 8-5
VALUE OF . . 8-6
File Attribute-Name Descrlptlons . 8-8
DATA BASE MANAGEMENT 9-1
General . e e 9-1
Data-Base Sectlon 9-1
Data Base Structure 9-1
Operations on Data Items 9-2
Operations on Structures 9-2
Qualification . . 9-2
Selection Expressions 9-3 .
Set Selection Expression 9-4
Key Condition 9-5
Simple Key Condltlon 9-5
Complex Key Condition . 9-5
Generalized Selection Expression 9-5
Exception Type . . . 9-7
BEGIN- TRANSACTION 9-11
CLOSE . 9-12
CREATE 9-13
DELETE . . . 9-14
END- TRANSACTION 9-15
FIND 9-16
FREE 9-17
INSERT 9-18
LOCK 9-19
-OPEN . . 9-20
RECREATE 9-21
REMOYVE . 9-22
STORE . 9-23
DEBUG 10-1
General . . 10-1
Language Concepts 10-1
DEBUG-ITEM . . . 10-1
A Compile-Time Sw1tc‘1 10-1
An Object-Time Switch 10-1
Debugging Lines 10-2
Environment Division . . 10-3
WITH DEBUGGING MODE 10-3
Procedure Division . . 10-4
USE FOR DEBUGGING e e e e e e e e e e e e e 104
Debugging and Diagnostic Facilities. . . . . . . . . . . . . . . . 10 12
Compiler Limits e e e e 10-13

xi



B 1000 Systems COBOL74 Language Manual

Section

Appendix

Xii

11

A

B

TABLE OF CONTENTS (Cont)

Title

COBOL74 COMPILER CONTROL
General . . .
Input .
Library Flles .
Output
New Source Language Flles
Output Listings .
Generated Code
Compilation Source File
? COMPILE Record
- Label Equation Records
Source Program . .
Increasing Program Code Flle SIZCS .
Compiler Control Images .

Boolean Expressions and User Defmed Optlons

CCI Options .
Normal Boolean Optlons .
Miscellaneous Compiler Control Optlons
RESERVED WORDS . . .
COBOL74 SYNTAX SUMMARY
Identification Division .o
General Format
Environment Division
General Format .
SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES . . . .
INPUT-OUTPUT SECTION
[-O-CONTROL
Data Division
General Format .
File Section
FD file-name .
SD file-name . .o
Data Description Entry ..
WORKING-STORAGE SELTION
LINKAGE SECTION. . . .
COMMUNICATION SECTION
Procedure Division
General Format .
DECLARATIVES
Verbs . .
ACCEPT
ADD
ALTER .
CALL .
CANCEL

B-14

Page

11-1
11-1
11-1
11-1
11-1
11-1
11-1
11-1
112
11-2
11-3
11-3
113
11-3
114

. Bl

B-12
B-13
B-14
B-14

B-15
B-15
B-16
B-17
B-17
B-18



B 1000 Systems COBOL74 Language Manual

Appendix
B (Cont)

1168622

TABLE OF CONTENTS (Cont)

CLOSE .,
COMPUTE
COPY .. .
DELETE .
DISABLE .
DISPLAY .
DIVIDE .
ENABLE .
EXIT

EXIT PROGRAM .

GO TO.

IF. . ..
INSPECT .
MERGE
MOVE . .
MULTIPLY .
OPEN | .
PERFORM
READ | .
RECEIVE .
RELEASE.
RETURN .
REWRITE.
SEARCH .
SEEK

SEND

SET

SORT .
START.
STOP .
STRING . .
SUBTRACT .
UNSTRING .
USE AFTER
WAIT UNTIL
WRITE

Data Base Management

Data Division
Geéneral Format
Procedure Division

Title

Format for Selection Expression .
Format for Set Selection Expression

Data Base Management Verbs |,
BEGIN-TRANSACTION

CLOSE .
CREATE .

END-TRANSACTION

. B-24

Page

B-18
B-18
B-19
B-19
B-19
B-19
B-20
B-20

. B21

B-21
B-21
B-21
B-22
B-23
B-23
B-24

B-25
B-26
B-27
B-27
B-27
B-27

. B-28
. B-28
. B-29
. B-29
. B-30
. B-31
. B-31
. B-31
. B-32
. B33
. B-34
. B-34
. B35
. B-36
. B-36
. B-36
. B-36
. B-36
. B-36
. B-37

B-37
B-37

. B-37
. B-37

xiii



B 1000 Systems COBOL74 Language Manual

Appendix
B (Cont)

Xiv

g0

TABLE OF CONTENTS (Cont)

Title

FIND .
FREE . .
INSERT .
LOCK .
OPEN . .
RECREATE . . .
REMOVE CURRENT FROM .
STORE . .
COBOL74 GRAPHICS
GLOSSARY .
Introduction .
Definitions . .
COBOL74 S- LANGUAGE
General . .o
S-Language Programs
Container Size
S-Instruction Format
S-Operators . .
COP and OPND
Short COP . . .
Long COP with No Segment Number
Long COP with Segment Number
COBOL74 In-Line Descriptors .
Implementation Strategy .
MULTIPLE-ENTRY-FLAG
SHARED-DATA-FLAG
LITERAL-FLAG
Data Length
Segment Number
Displacement . . .
DEPENDING- FLAG
Depending Attributes
SUBSCRIPT-FLAG
Subscripting
Indexing .
In-line COP Entry Format
Instruction Set <.
Arithmetic .
Data Movement
Branching
Conditional Branchmg
Miscellaneous
Character String Handlmg
Interprogram Communication
Optimized Operatlon Codes
CPA
CPN

E-9

E-10
E-10
E-10
E-10
E-11
E-11
E-11



B 1000 Systems COBOL74 Language Manual

"TABLE OF CONTENTS (Cont)

-Appendix Title Page

E (Cont) CPZ . . . . . . . s e s sy ey sy s B
INC . . . . . . . . . . .. ... ...y .. L E
1 e oS O |

CMVA . L Lo L L s s s s .. B2
MVzZ . . . . T o 1)
Arithmetic Operands and Instructlons T = )
ADD THREE ADDRESS . . . . . . . . . . . . . . . . . . . . . El4
SUBTRACT THREE ADDRESS . . . . . . . . . . . . . . . . . . E15
ADD TWO ADDRESS . . . . . . . . . . . . . . . . .. .. . E16
SUBTRACT TWO ADDRESS . . . . . . . . . . . . . . . . . . . E17

- MULTIPLY . . . . . O %
DIVIDE . . . . 1 £
DIVIDE SPECIAL et =51 0]
INCREMENT BYONE . . . . . . . . . . . . . . . ... ... E2
DECREMENT BY ONE . . . . e e e e e e e . T L E22
Data Movement Operands and Instructlons e e e e e . ... . . . . E23
MOVE ALPHANUMERIC . . . . . . . . . . . . . . . . . . . . E24
MOVE SPACES . . . . . . . . . . . . . . . . . .+ .. .. .E25
MOVE NUMERIC . . . . . . . . . . . . . . . . .. . ... . E26
MOVE ZEROS . . . . . . . . . . . . . . . . . . . . .. .. E27
CONCATENATE . . . . e e e e e . . . ... . . . . E28
Edit Instructions and Edit MlCl‘O Operators S s I
EDIT . . . O e {4
EDIT WITH EXPLI(,IT MASK O e |
EDIT MICRO-OPERATORS . . . . . . . . . . . . . . . . . . . E32
MOVE DIGIT . . . . . . . . . . . . . . < < . « . v . . .. E33
MOVE CHARACTER . . . . . . . . . . . . . . . . .. . ... . E33
MOVE SUPPRESS . . . . . . . . . . . . . . . . . . .. . . . E33
FILL SUPPRESS . . . . O AR 2
SKIP REVERSE DESTINATION e e e e e e e o .o . . o . . . . E34

- INSERT UNCONDITIONALLY . . . . . . . . . . . . . . . . . . E34
INSERT ON MINUS . . . . . . . . . . .5 .. .. ... .. E34
INSERT SUPPRESS . . . . . . . . .. . . . ... . ... .. E34
INSERT FLOAT . . . . . . . . . . . « v « v o v v v v ... . E35
END FLOATMODE . . . . . . . . . . . . . . . ... . .. . E35
END NON-ZERO . . . . . . . . . . . . . . . . . . . ... . E35
END OF MASK . . T SN
START ZERO SUPPRESS .o T AR

- COMPLEMENT CHECK PRO’ TECT o R )
Branchmg Operands and Instructions . . . . . . . . . . . . . . . . . . . E-36
BRANCH UNCONDITIONALLY . . . . . . . . . . . . . . . . . E37
BRANCH ON OVERFLOW . . . . . . . . . . . . . . . . . . . E38
SET OVERFLOW TOGGLE . . . . . . . . . . . . . . . . . .. E39
PERFORM ENTER . . . . . . . . . . . . . .. . .. . ... .E40
PERFORM EXIT . . . . . . . . . . . . . . . . . . . .. ... Ea4
ENTER . . . . . . . . . . . . . . . . v oo . Ea
EXIT . . OS2 X
GO TO DFPENDING OO L 72!

1168622 v



B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont)

Appendix Title Page
E (Cont) ALTERED GO TO PARAGRAPH . . . . . . . . . . . . . . . . . E45
ALTER . . . e e« e . . o o . . . . . E46
Conditional Branch Operands and Instructlons B o Y
COMPARE ALPHANUMERIC . . . . . . . . . . . . . . . . . . E-48
COMPARE NUMERIC . . . . . . . . . . . . o« . v v . .. B9
COMPARE FOR ZEROS P o]0
COMPARE FOR SPACES . . . . . . . . « . .« . . . o o o ... E-s1
COMPARE FOR CLASS . . . . . . . . . « « o . o v o v ... E52
COMPARE REPEAT . . . . . . . . . . v v v v . o . . . . ES533
COMPARE COLLATE . . . . . . . . . . . . . . . . . . . . . Es
Miscellaneous Instruction . . . . . . . . . . . . . . . . . . . . . . E=S55
COMMUNICATE . . . . T AN
LOAD COMMUNICATE REPLY e e e e e e o ... . . . . . . E-se
CONVERT . . . . . . . . . . . . . . . . . .. ... ... Es
MAKE PRESENT e e e e e e e oo ....... E-s8
FILE STATUS . . . . . . . . . . . . . . . . ... ... ... E5
Character String S-Ops. . . . . . . . . . . . . . . . . . .. . .. Ee0
DESCRIPTOR SETUP . . . . . . . . . . . . . . . . . . . . . . E60
INSPECT SETUP P oY
INSPECT . . . . . . . . . . . ... . ... ... ...... Ee3
STRING . . D o7 5
DELIMITER SETUP . . . . . . . . . . . . . . " E6
UNSTRING . . . . =Y
Inter-Program Communication . . . . . . . . . . e e o . . . . . . . E69
IPC DICTIONARY . . e e e e o o o . . . . E69
F COMMUNICATION CONCEPTS AND EXAMPLES e e e e e e, F-1
COBOL74 Queue Files . . . . . S 183
COBOL74 Remote Files . . . O R
Multiple Stations of a Remote F11e . e e e e e e e e F-5
COBOL74 CD (Communication Descrlptlon) Fils . . . ... ...... Fl4
Port Files . . . T 1
Inter-Program Commumcatlon (IPC) e e e e e . . o . .. . . . . .. Fle
Role of the Message Control System (MCS) . . . . . . . . . . . . . . F-16
Supervisory Message Control System (SMCS) . . . . . . . . . . . . . F-l6
Generalized Message Control System (GEMCOS) . e o« v . . . . . . . F16
COBOL74MCS . . . . . e e . o . . . . . .. F1le
G COBOL74 ISAM FILE CONCEPTS e e e e e e e e G-1
Introduction . . . . . . . . . . . . .. e GH
Organization . . . G-1
Global File Concepts T € 9
Data File Concepts . . . . . . . . . « v v v v o e s G2
Physical Attributes . . O € (91
Block Control Information (BCI) A, € 2
Efficient Blocking of the Data File . . . . . . . . . . . . . . . . G-
Index File Concepts . . . R €
Naming Convention for the ISAM Flle Structures P € (¢
File Creation Without a User Code . . . . . . . . . . . . . . . . G
File Creation Under a User Code . . G-7

XVvi



B 1000 Systems COBOL74 Language Manual

TABLE OF CONTENTS (Cont)

Appendix Title

G (Cont)

INDEX

Figure

1

— NN NAAPNAANANR N DWW
1 R WN = N R W RN e e e N e

—
—

T T T
[V, QR VO NS RN NG R

i

aYoYa
LI N —

1168622

Changing the Name of an ISAM File .
ISAM Access Methods . . . e
Multiple Users of an ISAM F11e .
The AUDITED File Attribute .
System Utility Programs for ISAM File Mamtenance .
CREATE/ISAM e . ..
SYSTEM/ISVERIFY .
SYSTEM/IS-MAINT
RPG Compatibility
Programming Examples .
Creating an ISAM File .
Updating an ISAM File . .
Reburldlng an ISAM File from an ISAM DATA Flle .

LIST OF ILLUSTRATIONS

Title

COBOL Coding Form . .

Example of Continuation of Words and therals
Coding the IDENTIFICATION DIVISION .
Coding the ENVIRONMENT DIVISION

Coding the FILE SECTION

Linage Page Relationship .

Level Numbers . .

PICTURE Character Precedence Chart c
Coding the WORKING-STORAGE SECTION
Coding the LINKAGE SECTION

Valid MOVE Statement Combinations . .
PERFORM VARYING with One Condition
PERFORM VARYING with Two Conditions
SEARCH with Two WHEN Phrases

Compilation Control File .

COBOL74 Program Layout .

Memory Layout

Unidirectional Queue Flle Message Transfer
Bidirectional Queue File Message Transfer
COBOL74 Remote Files . . .

COBOL74 Communication Descrlptron (CD) FllCS
Port/Subport Communication Path across BNA Network
Relationship of the ISAM File Structures

The ISAM Index and Data Files .

Relationship of Two Users to the ISAM Structures

QRQQQQQQQ

Page

QOO

1 [} L}

Page

B ww
(SSRGS

xvii



B 1000 Systems COBOL74 Language Manual

Table

1 1 [ 1 1
W N = =

1\ B W=

TOQOY

l\J'—‘LI»N

&

Qo0
W N -

Xviil

LIST OF TABLES

Title

Classes of Data .

Status Key Combinations .

Editing for Each Item Category

Editing of Sign Control Symbols . . .

Editing Application of the PICTURE Clause

Communication Status Key Condition . .
Combination of Symbols in Arithmetic Expresswns
Combinations of Conditions, Logical Operators, and Parentheses

Relationship of Categories of Files and Formats of the CLOSE Statement
. A Valid MOVE Statement

Permissible Statements .

Specifying End Indicators

SET Statement Combinations

Exception Category Names and Values

B 1000 Codes in EBCDIC Sequence

B 1000 Codes in ASCII-7 Sequence .
Description of Control and Special Characters
Special Registers

Container Sizes . . .
BCI Statistics For Several Blockmg Factors
ISAM Disk Utilization . e e
ISAM File Recovery

Page

2-15
5-17
6-39
6-40
6-44
6-74
7-16
7-24
7-47
7-83
7-88
7-120
7-122
9-8

C-7
C-11
E-2
E-3
G-4
G-5
G-10



B 1000 Systems COBOL74 Language Manual

FOREWORD

BURROUGHS EXTENSIONS TO ANSI 74 COBOL

Programming applications are written in the COBOL74 language as spe01f1ed in this B 1000 Systems
COBOL74 Reference Manual. The source language herein described is the USA Standard COBOL,
X3.23-1974, which implements the lowest defined level of the Report Writer Module, and also the high-
est defined level of these Modules: Nucleus, Table Handling, Sequentlal 1- O Relative 1-O, Indexed I-O,
Sort-Merge, Segmentation, Library icati

ACKNOWLEDGEMENT

COBOL74 is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and functioning of the programming system and language.:
Moreover, no responsibility is assumed by any contributor, or by the committee, in connection there-
with.

The authors and copyright holders of the copyrighted material used herein,

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the UNIVAC R I and
I1, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commer-
cial Translator Form Number F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis- Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL74 specifications.

Such authorization extends to the reproduction and use of COBOL74 specifications in programming
manuals or similar publications.

1168622 ’ Xix






B 1000 Systems COBOL74 Language Manual

INTRODUCTION

This manual provides a complete description of COBOL74 (COmmon Business Oriented Language) as
implemented for use on the Burroughs B 1000 System. This concept of COBOL74 is designed along
the guidelines of the American National Standards Institute (ANSI) 1974. This edition contains changes
throughout. '

COBOL74 ADVANTAGES

The long list of COBOL.74 advantages is derived chiefly from its intrinsic quality of permitting the
programmer to state the problem solution in English prose, and thus provide automatic program and
system documentation. When users adopt in-house standardization of elements within files plus well-
chosen data-names before attempting to program a system, maximum documentational advantages of
the language described herein are obtained.
To a computer user, Burroughs COBOL74 offers the following major advantages:

1. Expeditious means of program implementation.

2. Accelerated programmer training and simplified retraining requirements.

3. Reduced conversion costs when changing from a computer of one manufacturer to that of an-
other.

4. Significant ease of program modification.
5. Standardized documentation.

6. Documentation which facilitates nontechnical management participation in data processing ac-
tivities.

7. Efficient object program code.

8. Segmentation capability which sets the maximum allowable program size well in excess of any
practical requirement.

9. Because of the inéorporation of debugging language statements, a high degree of sophistication
in program design is achieved.

10. A comprehensive source program diagnostic capability.

COBOL74 CONCEPTS

A program written in COBOL74, called a source program, is accepted as input by the COBOL74 com-
piler. The compiler verifies that each source statement is syntactically correct, and then converts them
into COBOL74 S-code.

The executable program can then be executed on the B 1000 System using the COBOL74 interpreter.

The interpreter causes the system hardware to perform the operations specified by the S-code and thus
the source program.

1168622 xxi



B 1000 Systems COBOL74 Language Manual
Introduction

The B 1000 COBOL74 compiler operates under the control of the Master Control Program (MCP).
Similarly, the S-code generated by the compiler is executed under control of the MCP.

A COBOL program that was compiled with the ANSI 68 COBOL compiler must be recompiled with
the COBOL74 compiler in order to run with the COBOL74 interpreter.

ORGANIZATION

This manual consists of 11 sections and 7 appendices:

Section Contents
1 PROGRAM ORGANIZATION

Introduces the four divisions of a COBOL source
program and describes the major functions of each.

2 LANGUAGE CONCEPTS

The rules for creating a COBOL74 source program are
defined in this section.

3 CODING FORM

The standard format of the COBOL74 coding form and
the rules for spacing are described in this section.

4 IDENTIFICATION DIVISION

The structure of the IDENTIFICATION DIVISION and
the rules for coding are given.

5 ENVIRONMENT DIVISION

The structure of the ENVIRONMENT DIVISION and the
rules for coding are given.

6 - DATA DIVISION
The four sections of the DATA DIVISION are described.
7 PROCEDURE DIVISION

The rules for coding and structuring the PROCEDURE
DIVISION are given.

8 FILE ATTRIBUTES

The file attribute names and the rules for changing
attributes are given.

9 DATA BASE MANAGEMENT

This section contains the verbs and constructs of
COBOL74 that are available for interfacing with DMSII.

10 DEBUG

Contains an explanation of the debug facilities
available.

11 COBOL74 COMPILER CONTROL

Compiler options which are available in the COBOL74
compiler are explained.

xxii



B 1000 Systems COBOL74 Language Manual
Introduction

Appendix Contents
A RESERVED WORDS
COBOL74 SYNTAX SUMMARY
COBOL74 GRAPHICS
GLOSSARY
COBOL74 S-LANGUAGE
COMMUNICATION CONCEPTS AND EXAMPLES
COBOL74 ISAM FILE CONCEPTS

QmmUaOaw

RELATED DOCUMENTS
The following documents are referenced in this ‘document:
B 1000 Systems System Software Operation Guide, Volume 1, form number 1151982.
B 1000 Systems System Software Operation Guide, Volume 2, form number 1152097.
B 1000 Systems Data Management System II (DMSII) Reference Manual, form number 1152089.

B 1000 Systems Burroughs Network Architecture (BNA) Installation and Operation Manual, form
number 1151974,

B 1000 Systems Network Definition Language (NDL) Reference Manual, form number 1152014.

B 1000 Systems SMCS Installation, Operation and Functional Description Manual, form number
1152279.

1168622 xxiii



B 1000 Systems COBOL74 Language Manual

SECTION 1
PROGRAM ORGANIZATION

COBOL74 SOURCE PROGRAM DIVISIONS

Every COBOL74 source program must contain these four divisions in the following order:

IDENTIFICATION
ENVIRONMENT
DATA
PROCEDURE

The IDENTIFICATION DIVISION identifies the program. In addition to required information, the
programmer. may include such optional pieces of information as the date compiled and programmer’s
name for documentation purposes. This division is completely machine-independent and does not pro-
duce object code.

The ENVIRONMENT DIVISION specifies the equipment being used. It contains computer descriptions
and some information about the files the program will use.

The DATA DIVISION contains not only file and record descriptions describing the data files that the
object program manipulates or creates, but also the individual logical records which comprise these
files. The characteristics ‘'or properties of the data are described in relation to a standard data format
rather than an equipment-oriented format. Therefore, this division is to a large extent, computer-inde-
pendent. While compatibility among computers cannot be absolutely assured, careful planning in the
data layout will permit the same data descriptions, with minor modification, to apply to more than
one computer.

The PROCEDURE DIVISION specifies user-supplied steps for computer execution. These steps are ex-
pressed in terms of meaningful English words, statements, sentences, and paragraphs. This division of
a COBOL74 program is often referred to as the "program.” In reality, it is only part of the total pro-
- gram, and alone is insufficient to describe the entire program. This is true because repeated references
must be made (either explicitly or implicitly) to information appearing in the other divisions. This divi-
sion, more than any other, allows the user to express thoughts in meaningful English. Concepts of
verbs to denote actions, and sentences to describe procedures aré basic, as is the use of conditional
statements to provide alternative paths of action.

1168622 1-1



B 1000 Systems COBOL74 Language Manual
' Program Organization

REQUIRED HEADERS

The standard for COBOL74 requires that a program consist of certain divisions, sections, and fixed
paragraph names known as headers.

The following elements are the minimum required for a COBOL74 program:

ISTON.

PROGRAM-1D. MINIMUM.

ENVIRONMENT DIVISION.

CONF IGURATION SECTION.
SOURCE-COMPUTER. B-1000.
OBJECT-COMPUTER. B-1000.

DATA DIVISION,

PROCEDURE DIVISION.

PARAGRAPH-NAME .
STOP RUN.

IDENTIFICATION DIV
|
I

1-2



" B 1000 Systems COBOL74 Language Manual

SECTION 2
LANGUAGE CONCEPTS

GENERAL

As stated in section 1, COBOL74 is a language based on English and is composed of words, state-
ments, sentences, and paragraphs. The following paragraphs define the rules to be followed in the
creation of this language. The use of the different constructs formed from the created words is covered
in subsequent sections of this document.

LANGUAGE DESCRIPTION NOTATION

A nearly universal form of notation exists for COBOL reference manuals. This manual uses that nota-
tion as described in the paragraphs that follow.

The apostrophe (') is used to delimit characters with specific meanings. Other than its use in this
manual as a delimiter, it has no specific use in the COBOL language.

Key Words

All underlined upper-case words are key words and are required when utilizing related functions. Omis-
sions of key words will cause error conditions at compilation time. An example of key words follows:

IF data-name IS [NOT] { i}ﬁf ,i{];g'r[c }

The key words are IF, NOT, NUMERIC, and ALPHABETIC.
Optional Words

All upper-case words not underlined are optional words included for readability only and may be in-
cluded or excluded in the source program. In the preceding example, the optional word is IS.

Generic Terms

All lower-case words represent generic terms which are used to represent COBOL words, literals, PIC-
TURE character-strings, comment-entries, or a complete syntactical entry that must be supplied in that
format position by the programmer. Where generic terms are repeated in a general format, a number
or letter appendage to the term serves to identify that term for explanation or discussion. Identifier-
1 and identifier-2 are generic terms in the following example:

MOVE identifier-1 TO identifier-2
Braces

The following symbols are braces: { }. When words or phrases are enclosed in braces, a choice of
one of the entries must be made. In the previous example in the subsection titled Key Words, either
NUMERIC or ALPHABETIC must be included in the statement.

1168622 2-1



B 1000 Systems COBOL74 Language Manual
Language Concepts

Brackets

The following symbols are brackets: [ ]. Words and phrases enclosed in brackets represent optional
portions of a statement. A programmer wishing to include the optional feature may do so by including
the entry shown between brackets. Otherwise, the optional portion may be omitted. ( [NOT] in the
example titled Key Words, is optional.)

Level-Numbers

When specific level-numbers appear in data description entry formats, those specific level-numbers are
required when such entries are used in a COBOL74 program. In this document, the form 01, 02, ...
, 09 is used to indicate level-numbers 1 through 9. '

Ellipsis

The presence of the ellipsis (three consecutive periods (...)) within any format indicates the position
at which repetition may occur at the programmer’s option. The portion of the format that may be
repeated is defined in the following paragraph.

The ellipsis applies to the words between the determined pair of of delimiters. Given the ellipsis in
a clause or statement format, scanning right to left, determine the right bracket or right brace immedi-
ately to the left of the ...; continue scanning right to left and determine the logically matching left
bracket or left brace.

Format Punctuation

The separators comma and semicolon are used to improve the readability of the program. Suggested
uses are shown in General Format subsections throughout this manual, however, use of these separators
is optional. In the source program, the comma, semicolon, and space separators are interchangeable.
If desired, a semicolon or comma may be used between statements in the PROCEDURE DIVISION.

Paragraphs within the IDENTIFICATION and PROCEDURE DIVISIONS and entries within the EN-
VIRONMENT and DATA DIVISIONS must be terminated by the separator period. When a single pe-
riod is shown in a format, it must appear in the same position whenever the source program, calls for
the use of that particular statement.

Special Characters in Formats

The characters '+ ', '-', '>', '<', ="', when appearing in formats, although not underlined, are
required when such formats are used.

CHARACTER SET

The COBOL74 character set for the B 1000 System consists of the following 52 characters:

0 through 9 . period or decimal point

A  through Z ; semicolon o
~blank or space " quotation mark

+  plus sign ( left parenthesis

—  minus sign or hyphen ) right parenthesis

* asterisk >  greater than symbol

/ slash < less than symbol

= equal sign @ "at” sign

$  currency sign , comma

2-2



B 1000 Systems COBOL74 Language Manual
Language Concepts

Characters Used for Words

The character set for words consists of the following 37 characters:

0 through 9
A through Z _ R
— (hyphen)

Punctuation Characters

The following characters may be used for program punctuation:

@ "at” sign space or blank
" quotation mark . period
- ( left parenthesis , comma (see following note)
) right parenthesis ;  semicolon
NOTE

For enchanced readability of the source program, commas may be used be-
tween statements, at the programmer’s discretion. Use of commas implies
that any succeeding statement is to be included as an element of the prior
statement.

Editing Characters

The COBOL74 compiler accepts the following characters in editing:

$ currency sign : +  plus

*  asterisk (check protect) — minus

R comma CR  credit

/  slash DB  debit

B  space or blank insert Z Zero suppress
0  zero insert . period

Characters Used in Arithmetic Expressions

The COBOL.74 compiler accepts the following characters in arithmetic expressions:

+  addition **  exponentiation
—  subtraction ( left parenthesis
* multiplication ) right parenthesis

/ division

1168622

2-3



B 1000 Systems COBOL74 Language Manual
Language Concepts

Characters Used in Relation Conditions

The COBOL74 compiler accepts the following characters in relation conditions:

equal sign

< less than symbol
>  greater than symbol

LANGUAGE STRUCTURE

The individual characters of the language are concatenated to form character-strings and separators.
A separator may be concatenated with another separator or with a character-string. A character-string
may only be concatenated with a separator. The concatenation of character-strings and separators
forms the text of a source program.

Separators

A separator is a string of one or more punctuation characters. The rules for formation of separators

arec.

2-4

. The punctuation character space is a separator. Anywhere a space is used as a separator, more

than one space may be used.

. The punctuation characters comma, semicolon, and period are separators.

. The punctuation character quotation mark is a separator. An opening quotation mark must be

immediately preceded by one of the separators space, comma, semicolon, or left parenthesis;
a closing quotation mark must be immediately followed by one of the separators space, comma,
semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals except when
the literal is continued.

. The punctuation characters right and left parentheses are separators. Parentheses may appear

only in balanced pairs of left and right parentheses delimiting subscripts, indices, arithmetic ex-
pressions, or conditions.

. Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be immediately

preceded by a space; a closing pseudo-text delimiter must be immediately followed by one of
the separators space, comma, semicolon, or period.

Pseudo-text delimiters (—) may appear only in balanced pairs delimiting pseudo-text.

. The punctuation character @ is a separator. An opening @ character must be preceded immedi-

ately by one of the separators space, comma, semicolon, or left parenthesis; a closing @ charac-
ter must be immediately followed by one of the separators space, comma, semicolon, period,
or right parenthesis.

At signs (@) may appear only in balanced pairs delimiting hexadecimal literals.



B 1000 Systems COBOL74 Language Manual
Language Concepts

7. The separator space may optionally immediately follow any separator except the opening quota-
tion mark. In this case, a following space is considered as part of the nonnumeric literal and
not as a separator.

Any punctuation character which appears as part of the specification of a PICTURE character-
string or numeric literal is not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or numeric literal. PICTURE char-
acter-strings are delimited only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters which com-
prise the contents of nonnumeric literals, comment-entries, or comment lines.

Character-Strings

A character-string is a character or sequence of contiguous characters which forms a COBOL74 word,
literal, PICTURE character-string, or comment-entry. A character-string is delimited by separators.

DEFINITION OF WORDS

A COBOL74 word is created from a combination of not more than 30 characters, selected from the
following;:

A through Z

0 through 9

— hyphen
A word is ended by a space, period, comma, or semicolon. A word may not begin or end with a hy-
phen. (A literal constitutes an exception to these rules, as explained in a paragraph entitled Literals

in this section.)

A user-defined word is a COBOL74 word that must be supplied by the user to satisfy the format of
a clause or statement.

Types of Words

COBOL74 contains the following word types: nouns (user-defined words),overbs, and reserved words.

Nouns

Nouns are divided into special categories:

1168622

File-name Family-name
Record-name Cd-name
Data-name Text-name

Condition-name
Mnemonic-name
Index-name

Paragraph-name

Library-name
Program-name
Alphabet-name
Section-name



B 1000 Systems COBOL74 Language Manual
Language Concepts

The length of a noun must not exceed 30 characters. For purposes of readability, a noun may contain
one or more hyphens. However, the hyphen must neither begin nor end the noun (this does not apply
to literals).

All nouns within a given category must be unique, either because no other noun in the same source
program has identical spelling or punctuation, or because uniqueness can be insured by qualification.
With the exception of paragraph-name, section-name, text-name, library-name, and family-name, all
user-defined words must contain at least one alphabetic character.

File-Name

A file-name is a noun containing at least one alphabetic character assigned to designate a set of data
items. The contents of a file are divided into logical records made up of any consecutive set of data
items.

Record-Name

A record-name is a noun containing at least one alphabetic character assigned to identify a logical rec-
ord. A record can be subdivided into several data items, each distinguishable by a data-name.

Data-Name

A data-name is a noun assigned to identify elements within a record or work area and is used in
COBOL74 to refer to an element of data, or to a defined data area containing data elements. Each
data-name must contain at least one alphabetical character.

Condition-Name

A condition-name is the name assigned to a specific value, set of values, or range of values within
the complete set of values.that a data item may assume. The data item is a conditional variable. The
condition-name must contain at least one alphabetic character and must be unique, or be able to be
referenced uniquely through qualification. A conditional variable may be used as a qualifier for any
of its condition-names. If references to a conditional variable require indexing, subscripting, or qualifi-
cation, then references to any of its condition-names also require the same combination of indexing,
subscripting, or qualification. A condition-name is used in conditions as an abbreviation for the rela-
tion condition; its value is TRUE if the associated conditional variable is equal to one of the set values
to which that condition-name is assigned. ‘

Condition-names may be defined in the DATA DIVISION, or in a SPECIAL-NAMES paragraph
within the ENVIRONMENT DIVISION where a condition-name must be assigned to the ON STATUS
or OFF STATUS, or both, of defined switches.

Mnemonic-Name

The use of mnemonic-names provides a means of relating certain hardware equipment names to prob-
lem-oriented names the programmer may wish to use. These associations are established in the SPE-
CIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Index-Name

An index-name is a word with at least one alphabetic character that names an index associated with
a specific table (refer to Indexing in this section). An index is a register, the contents of which represent
the olemsagiagmposition of the first character of an element of a table with respect to the beginning of
the table.

e CoMpw}w(-'\“M 2 0("3"“‘ ot It BT
295 -13% BaR36L



B 1000 Systems COBOL74 Language Manual
Language Concepts

Paragraph-Name

A paragraph-name is a word which names a paragraph in the PROCEDURE DIVISION. Paragraph-
names are equivalent only if composed of the same sequence of the same number of digits and/or char-
acters.

Section-Name

A section-name is a word which names a section in the PROCEDURE DIVISION. Section-names are
equivalent only if composed of the same sequence of the same number of digits and/or characters.

Other Categories
See the glossary in appendix D for definitions of all other types of user-defined words.
Verbs

A verb in COBOL74 is a single word that denotes action, such as ADD, WRITE, or MOVE. All allow-
able verbs in COBOL74, with the exception of the word IF, are English verbs. The usage of the
COBOL74 verbs takes place primarily within the PROCEDURE DIVISION.

Reserved Words

A reserved word is a COBOL74 word that is one of a specified list of words which may be used in
COBOL74 source programs, but must not appear in the programs as user-defined words. Refer to ap-
pendix A, Reserved Words.

These rules apply to the entire COBOL74 source program; no exceptions exist for specific divisions,
sections, or statements.

There are six types of reserved words:

Key words
Connectives
Optional words

Figurative constants
Special registers
Special-character words

Key Words

A key word is a word whose presence is required in a source program. Within each format, such words
are upper-case and underlined.

Key words are of three types:
1. Verbs such as ADD and READ.
2. Required words which appear in statement and entry formats.

3. Words which have a specific functional meaning such as NEGATIVE and SECTION.

1168622 : : 2-7



B 1000 Systems COBOL74 Language Manual
Language Concepts

Connectives

Connectives are used to indicate the presence of a qualifier or to form compound conditional state-
ments. The connectives OF and IN are used for qualification. The connectives AND, AND NOT, OR,
or NOT are used as logical connectives. in conditional statements. The comma is used as a series con-
nective to separate two or more operands.

Optional Words

Optional words are included in the COBOL74 language to improve the readability of the statement
formats. These optional words may be included or omitted. For example, IF A IS GREATER THAN
B... is equivalent to IF A GREATER B... ; the inclusion or omission of the words IS and THEN
does not influence the logic of the statement.

Figurative Constant

A figurative constant is a reserved word used to reference specific constant values and must never be
enclosed in quotation marks except when the word, rather than the value, is desired. The figurative
constant names and meanings are:

ZERO Represents the value 0, or one or more of the

ZEROS character '0’, depending on the context.

ZEROES

SPACE Represents one or more spaces (blanks).

SPACES

HIGH-VALUE Represents one or more occurrences of the character that

HIGH-VALUES has the highest ordinal position in the program collating
sequence, except in the alphabet-name clause of the
SPECIAL-NAMES paragraph, where it represents the highest
ordinal position in the native collating sequence.

LOW-VALUE Represents one or more occurrences of the character that

LOW-VALUES has the lowest ordinal position in the program collating
sequence, except in the alphabet-name clause of the
SPECIAL-NAMES paragraph, where it represents the lowest
ordinal position in the native collating sequence.

QUOTE Represents one or more occurrences of the character '"’.

QUOTES The word QUOTE or QUOTES cannot be used in place of a
quotation mark in a source program to bound a nonnumeric
literal. Thus, QUOTE ABD QUOTE is incorrect as a way of
stating the nonnumeric literal "ABD”. If, however, the full
"ABD” is desired in a DISPLAY statement, it can be
achieved by writing QUOTE "ABD” QUOTE, in which case
the object progrgm will display "ABD".

ALL <literal > When followed by a hexadecimal literal, a nonnumeric literal,
or a figurative constant, the word ALL represents a series of
that literal. For example, if the COBOL74 statement is MOVE

ALL literal TO ERROR-CODE, then the resultant ERROR-
CODE would take on the following values:

2-8



B 1000 Systems COBOL74 Language Manual
Language Concepts

ALL literal Size of ERROR-CODE ERROR-CODE
ALL "ABC” 7 characters ABCABCA
ALL "2" or ALL 2 5 characters 22222
ALL QUOTE 3 characters o
ALL SPACES 8 characters (eight spaces)

NOTE

The use of ALL with figurative constants, as illustrated in the last two in-
stances, is redundant. MOVE ALL SPACES and MOVE SPACES yields the
same result.

When a figurative constant represents a string of one or more characters, the length of the string is
determined by the compiler from context, according to the following rules:

1. When a figurative constant is associated with another data item, the string of characters
specified by the figurative constant is repeated character by character on the right until the sizc
of the resultant string is equal to the size in characters of the associated data item. This is done -
prior to and independent of the application of any JUSTIFIED clause that may be associated
with the data item.

2. When a figurative constant is not associated with another data item, as when the figurative con-
stant appears in a DISPLAY, STRING, STOP, or UNSTRING statement, the length of the
string is one character.

A figurative constant may be used wherever a literal appears in a format, except that whenever the
literal is restricted to numeric characters only, the only figurative constant permitted is ZERO (ZEROS,
ZEROES).

When the figurative constants HIGH-VALUE(S) or LOW-VALUE(S) are used in the source program,
the actual character associated with each figurative constant depends upon the program collating se-
quence specified. Refer to OBJECT-COMPUTER and SPECIAL-NAMES in Section 5 for additional
information. .

Special Registers

Certain reserved words are used to name and reference special registers. Special registers are certain
compiler generated storage arecas whose primary use is to store information produced in conjunction
with the use of specific COBOL74 features. These special registers include the following: LINAGE-
COUNTER, LINE-COUNTER, PAGE-COUNTER, and DEBUG-ITEM.

Special-Character Words

The arithmetic operators and relation characters are reserved words. Refer to the glossary in appendix
D for additional information.

Literals

A literal is an item of data whose value is implied by an ordered set of characters of which the literal
is composed, or by specification of a reserved word which references a figurative constant. There are
three classes of a literal: numeric, nonnumeric, and hexadecimal.

1168622 2-9



- B 1000 Systems COBOL74 Language Manual
Language Concepts

Numeric Literal

A numeric literal is a character-string whose characters are selected from the digits 0 through 9, the
plus sign (+), the minus sign (-), and/or the decimal point. Numeric literals may be from lgto 138
digits in length. The rules for the formation of numeric literals are as follows:

1. A numeric literal must contain at least one digit.

2. A numeric literal must not contain more than one sign character. If a sign is used, it must
appear as the leftmost character of the literal. If the literal is unsigned, the literal is positive.

3. A numeric literal must not contain more than one decimal point. The decimal point is treated
as an assumed decimal point, and may appear anywhere within the literal except as the right-
most character. If the literal contains no decimal point, the literal is an integer. An integer is
a numeric literal which contains no decimal point.

If a literal conforms to the rules of the formation of numeric literals, but is enclosed in quota-
tion marks, it is a nonnumeric literal and is treated as such by the compiler.

4. The value of a numeric literal is the algebraic quantity represented by the characters in the nu-
meric literal. Every numeric literal belongs to category numeric. Refer to the PICTURE clause
in section 6 for additional information. The size of a numeric literal in standard data format
characters is equal to the number of digits specified by the user. The following are examples
of numeric literals:

51679
.005
+2.629
-.8479

6287.92

Nonnumeric Literal

A nonnumeric literal may be composed of any allowable character. The beginning and ending of a
nonnumeric literal are both denoted by a quotation mark. Any character enclosed within quotation
marks is part of the nonnumeric literal. Subsequently, all spaces enclosed within the quotation marks
are considered part of the literal. Two consecutive quotation marks within a nonnumeric literal cause
a single quotation mark to be inserted into the literal string. Four consecutive quotation marks result
in a single ” literal.

All other punctuation characters are part of the value of the nonnumeric literal rather than separators;
all nonnumeric literals belong to category alphanumeric. Refer to the PICTURE clause in section 6.

A nonnumeric literal cannot exceed 160 characters. Examples of nonnumeric literals are:

Literal on Source Program Level Literal Stored by Compiler

"THE TOTAL PRICE” THE TOTAL PRICE
7-2080.479" -2080.479

" LIMITATIONS""” "LIMITATIONS”
IIAIIIIBI/ A/IB

2-10



B 1000 Systems COBOL74 Language Manual
Language Concepts

NOTE
Literals that are used for arithmetic computation must be expressed as nu-
meric literals and must not be enclosed in quotation marks as nonnumeric
literals. For example, "4.4” and 4.4 are not equivalent. The compiler stores
the nonnumeric literal as 4.4, whereas the numeric literal would be stored as
0044 if the PICTURE were 999V9 DISPLAY, with the assumed decimal
point located between the two fours. : '

Hexadecimal Literals

A hexadecimal literal is a character-string consisting of characters selected from the hexadecimal digits
‘0’ through ‘9’ and 'A’ through 'F’. The beginning and ending of a hexadecimal literal are each
denoted by an @ sign. For example, a binary 12 would be expressed @C@.

The category of a hexadecimal literal (4-bit numeric or 8-bit alphanumeric) is determined by the catego-
ry of the data item with which it is associated in a COBOL74 statement. A hexadecimal literal is han-

dled as a 4-bit numeric when the category of the associated data item is numeric whether USAGE is
COMPUTATIONAL or DISPLAY.

A hexadecimal literal is handled as if it were numeric if:
1. In the VALUE clause, the category of the associated data item is numeric.
2. In the MOVE statement, the category of the receiving data item is numeric or numeric edited.

3. In the conditional expression of an IF, PERFORM, or SEARCH statement, the category of
the other relational operand is numeric.

A hexadecimal literal is handled as 8-bit alphanumeric when the category of the associated data item
is nonnumeric. Each character is represented by two hexadecimal digits. This requires an even number
of digits in the hexadecimal literal. A hexadecimal literal is handled as if it were alphanumeric if:

1. In the VALUE clause, the category of the associated data item is not numeric.

2. In the MOVE statement, the category of the receiving data item is alphanumeric, alphabetic,
or alphanumeric edited.

3. In the conditional expression of an IF, PERFORM, or SEARCH statement, the category of
the other relational operand is not numeric.

4. It appears in an INSPECT, STRING, UNSTRING, DISPLAY, STOP, DISABLE, or ENABLE
statement.

5. It appears in the ALL figurative constant.

A hexadecimal literal may also appear in a COPY statement, in which case the hexadecimal literal does
not have a type associated with it.

The following restrictions apply to hexadecimal literals:

1. A hexadecimal literal is not allowed as an arithmetic operand in an ADD, SUBTRACT, MUL-
TIPLY, or DIVIDE statement, nor in an arithmetic expression in a COMPUTE statement or
conditional expression.

1168622 : 2-11



B 1000 Systems COBOL74 Language Manual
Language Concepts

2.
3.
4.

A hexadecimal literal is not allowed as a subscript or index.
A hexadecimal literal is not allowed as a program name in a CALL or CANCEL statement.

An identifier assigned a hexadecimal literal will not, in most cases, compare as either numeric
or alphabetic in a class condition test.

. When a hexadecimal literal is handled as if its category were computational, then the length

of the literal must be from 1 to 18 digits. When a hexadecimal literal is handled as if it were
nonnumeric, the length of the literal must be from 2 to 320 digits.



B 1000 Systems COBOL74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

LOGICAL RECORD AND FILE CONCEPTS

The purpose of defining file information is to distinguish between the physical aspects of the file and
the conceptual characteristics of the data contained within the file.

Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the input or output media and include
such features as:

1. The grouping of logical records within the physical limitations of the file medium.

2. The means by whfch the file can be identified.
Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of each logical entity within the file
itself. In a COBOL74 program, the input or output statements refer to one logical record.

It is important to distinguish between a physical record and a logical record. A COBOL74 logical rec-
ord is a group of related information, uniquely identifiable, and treated as a unit.

A physical record is a physical unit of information whose size and recording mode are adapted to a
particular computer for the storage of data on an input or output device. The size of a physical record
is hardware dependent and has no direct relationship to the size of the file of information contained
on a device.

A logical record may be contained within a single physical unit; several logical records may be con-
tained within a single physical unit; or, in the case of mass storage files, a logical record may require
more than one physical unit. There are several source language methods available for describing the
relationship of logical records and physical units. When a permissible relationship has been established,
control of the accessibility of logical records as rélated to the physical unit must be provided by the
interaction of the object program on the hardware and/or software system. In this manual, references
to records indicate records, unless the phrase 'physical record’ is specifically used.

The concept of a logical record is not restricted to file data but is carried over into the definition of
working storage. Working storage may be grouped into logical records and defined by a series of rec-
ord description entries.

Record Concepts

"The record description consists of a set of data description entries which describe the characteristics
of a particular record. Each data description entry consists of a level-number followed by a data-name,
if required, followed by a series of independent clauses, as required.

1168622 | 2-13



B 1000 Systems COBOL74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

CONCEPT OF LEVELS

A level concept is inherent in the structure of a logical record. This concept arises from the need to
specify subdivisions of a record for the purpose of data reference. Once a subdivision has been
specified, it may be further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, those not further subdivided, are called elementary items; con-
sequently, a record is said to consist of a sequence of elementary items, or the record itself may be
an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into groups. Each
group consists of a named sequence of one or more elementary items. Groups, in turn, may be com-
bined into groups of two or more groups. An elementary item may belong to more than one group.

LEVEL-NUMBERS

A system of level-numbers shows the organization of elementary items and group items. Since records
are the most inclusive data items, level-numbers for records start at 01. Less inclusive data items are
assigned higher (not necessarily successive) level-numbers not greater in value than 49. There are special
level-numbers 66, 77, and 88, which are exceptions to this rule. Separate entries are written in the
source program for each level-number used.

A group includes all group and elementary items following it until a level-number less than or equal
to the level-number of that group is encountered. All items which are immediately subordinate to a

given group item must be described using identical level-numbers greater than the level-number used
to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:
1. Entries that specify elementary items or groups introduced by a RENAMES clause.
2. Entries that specify noncontiguous working storage and linkage data items.
3. Entries that specify condition-names. |

Entries describing items by means of RENAMES clauses for the purpose of regrouping data items have
been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions of other items, and are not
subdivided, have been assigned the special level-number 77.

Entries that specify condition-names, to be associated with particular values of a conditional variable,
have been assigned the special level-number 88.

2-14



B 1000 Systems COBOL74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

CONCEPT OF -CLASSES OF DATA

The five categories of data items (refer to the PICTURE clause in section 6) are grouped into three
classes: alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the classes and categories
are synonymous. The alphanumeric class includes the categories of alphanumeric edited, numeric ed-
ited, and alphanumeric (without editing). Every elementary item, except for an index data item, belongs
to one of the classes and also to one of the categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of elementary items subordinate to that group item. Table
2-1 shows the relationship of the class and categories of data items.

Table 2-1. Classes of Data

Level of Item Class Category
Alphabetic Alphabetic
Numeric Numeric
Elementary Numeric Edited
Alphanumeric Alphanumeric Edited
Alphanumeric
Alphabetic
Numeric.

Nonelementary Alphanumeric Numeric Edited
(Group) Alphanumeric Edited

Alphanumeric

ALGEBRAIC SIGNS

Algebraic signs fall into two categories: operational signs, which are associated with signed numeric
data items and signed numeric literals to indicate algebraic properties; and editing signs, which appear
on edited reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the operational sign. The
clause is optional; if it is not used, operational signs are represented as defined under symbol 'S’ of
the PICTURE clause. Refer to the PICTURE clause, General Rule 8, the 'S’ symbol in section 6.

Editing signs are inserted into a data item through the use of the sign control symbols of the PICTURE
clause.

1168622 2-15



B 1000 Systems COBOL74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

STANDARD ALIGNMENT RULES

The standard rules for positioning data within an elementary item depend on the category of the receiv-
ing item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character positions with
zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated as if
it had an assumed decimal point immediately following the rightmost character and is
aligned as in step la above.

2. If the receiving data item is a numeric edited data item, the data moved to the edited data item
is aligned by decimal point with zero fill or truncation at either end as required within the re-
ceiving character positions of the data item, except where editing requirements cause replace-
ment of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data item), alphanumeric
edited or alphabetic, the sending data is moved to the receiving character positions and aligned
at the leftmost character position in the data item with space fill or truncation to the right,
as required.

If the JUSTIFIED clause is speéified for the receiving item, these standard rules are modified as de-
scribed in the JUSTIFIED clause description in section 6.

UNIQUENESS OF REFERENCE

Uniqueness of reference for identifiers and condition-names, if not unique in the program, can be ac-
complished through the use of qualification, subscripting, or indexing.

Identifier

An identifier is a term used to reflect that a data-name, if not unique in a program, must be followed
by a syntactically correct combination of qualifiers, subscripts, or indices necessary to ensure unique-
ness. ‘

General Formats:

Format 1:

{data-name-l } [ { OF} data-name-2 ]

condition-name N

2-16



B 1000 Systems COBOL74 Language Manual
Language Concepts

DATA DESCRIPTION CONCEPTS

Format 2:

data-name-1 { OF ]
IN § data-name-2

[ < {index-name-l "{+} literal-2 ] }
literal-1 L - B

index-name-2 + literal4 ] }

}
)

Restrictions on qualification, subscripting, and indexing are:

literal-3 |

f f
| -
{ index-name-3 {

literal-5

1. A data-name must not be subscripted or indexed when that data-name is being used as an in-
dex, subscript, or qualifier.

2. Indexing is not permitted where subscripting is not permitted.

3. An index may be modified only by the SET, SEARCH, and PERFORM statements. Data items
described by the USAGE IS INDEX clause permit storage of the values associated with index-
names as data. Refer to the USAGE clause in section 6. Such data items are called index data
items. '

4. Literal-1, literal-3, literal-5, ... in the previous format example, must be positive numeric inte-
gers. Literal-2, literal-4, literal-6, ... must be unsigned numeric integers.

Condition-Name

Each condition-name must be unique, or made unique through qualification and/or indexing, or subs-
cripting.

If qualification is used to make a condition-name unique, the associated conditional variable may be
used as the first qualifier. If qualification is used, the hierarchy of names associated with the condition-
al variable, or the conditional variable itself, must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting, then references to any of its
condition-names also require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting, and indexing of condi-
tion-names is exactly that of 'identifier’ except that data-name-1 is replaced by ’condition-name-1’.

In the general formats, ’condition-name’ refers to a condition-name qualified, indexed or subscripted,
as necessary. '

1168622 2-17




B 1000 Systems COBOL74 Language Manual
Language Concepts

Qualification

Every user-specified name that defines an element in a COBOL74 source program must be unique, e€i-
ther because no other name has the identical spelling and hyphenation, or because the name exists
within a hierarchy of names such that references to the name can be made unique by mentioning one
or more of the higher levels of the hierarchy. The higher levels are called qualifiers and the process
that specifies uniqueness is called qualification. Enough qualification must be mentioned to make the
name unique; however, it may not be necessary to mention all levels of the hierarchy. Within the
DATA DIVISION, all data-names used for qualification must be associated with a level indicator or
a level-number. Therefore, two identical data-names must not appear as entries subordinate to a group
item unless they are capable of being made unique through qualification. In the PROCEDURE DIVI-
SION, two identical paragraph-names must not appear in the same section.

In the hierarchy of qualification, names associated with a level indicator are the most significant, fol-
lowed by those names associated with level-number 01, and finally the names associated with level-
number 02, ... , 49. A section-name is the highest and only qualifier available for a paragraph-name.
The most significant name in the hierarchy must be unique and cannot be qualified. Subscripted or
indexed data-names and conditional variables, as well as procedure-names and data-names, may be
made unique by qualification. The name of a conditional variable can be used as a qualifier for any
of its condition-names. Regardless of the available qualification, no name can be both a data-name
and procedure-name.

Qualification is performed by following a data-name, a condition-name, a paragraph-name, or a text-
name by one or more phrases composed of a qualifier preceded by IN or OF. IN and OF are logically
equivalent.

General Format:

Format 1:
{ data-name-1 } [ { OF } data-name-2
condition-name IN
Format 2:
[ { OF } section-name
paragraph-name IN
Format 3:

IZ|S

} ' library-name
text-name




B 1000 Systems COBOL74 Language Manual
Language Concepts

QUALIFICATION

General Rules:

1.

Each qualifier must be of a successively higher level and within the same hierarchy as the name
it qualifies.

The same name must not appear at two levels in a hierarchy.

If a data-name or a condition-name is assigned to more than one data item in a source pro-
gram, the data-name or condition-name must be qualified each time it is referenced in the PRO-
CEDURE, ENVIRONMENT, and DATA DIVISIONS (except in the REDEFINES clause where
qualification is unnecessary and must not be used.)

. A paragraph-name must not be duplicated within a section. When a paragraph-name is quali-

fied by a section-name, the word SECTION must not appear. A paragraph-name need not be
qualified when referred to from within the same section. :

A data-name cannot be subscripted when used as a qualifier.

A name can be qualified even though it does not need qualification; if there is more than one
combination of qualifiers that ensures uniqueness, then any such set can be used. The complete
set of qualifiers for a data-name must not be the same as any partial set of qualifiers for an-
other data-name. Qualified data-names may have any number of qualifiers up to and including
49.

. If more than one COBOL74 library is available to the compiler during compilation, text-name

must be qualified each time it is referenced.

Examples:

In the following file descriptions all items are unique except the data-name TECH. In order to refer
to either TECH item, quadlification must be used. Otherwise, if reference is made to TECH only, the
compiler would not know which of the two is desired. Therefore, in order to move the contents of"
one TECH into the other TECH, the PROCEDURE DIVISION must be coded with one of the fol-
lowing sentences:

MOVE TECH IN CITY-NO TO TECH OF STATE-NO.
MOVE TECH OF CITY-NO TO TECH IN STATE-NO.
MOVE TECH IN AREA-NO TO TECH OF RADIUS-NO.
MOVE TECH OF AREA-NO TO TECH IN RADIUS-NO.

01

AREA-NO . . . 01 RADIUS-NO .

03 CITY-NO . . . 03 STATE-NO .
05 TECH . . . 05 TECH . . .
05 BRANCH . . . 05 DIST-BR .
03 DISTRICT . . . 03 REGION .

1168622 2-19



B 1000 Systems COBOL74 Language Manual
Language Concepts

Subscripting

Subscripts can be used only when reference is made to an individual element within a list or table of
like elements that have not been assigned individual data-names (refer to the OCCURS clause in section
6).

The subscript can be represented either by a numeric literal that is an integer or by a data-name. The
data-name must be a numeric elementary item that represents an integer. When the subscript is repre-
sented by a data-name, the data-name may be qualified but not subscripted.

The -subscript may be signed and, if signed, must be positive. The lowest possible subscript value is
1. This value points to the first element of the table. The next sequential elements of the table are
pointed to by subscripts whose values are 2, 3, and so forth. The highest permissible subscript value,
in any particular case, is the maximum number of occurrences of the item as specified in the OCCURS
clause.

At the time of execution of a statement which refers to a subscripted table element, each subscript
specified is validated. That is, its value must not be less than one or more than the maximum number
of occurrences as specified by the corresponding OCCURS clause (as modified by the DEPENDING
ON clause, if any). If the subscript value is not within this range, an abnormal termination of the
program occurs.

The subscript or set of subscripts that identifies the table element is delimited by the balanced pair
of separators, left parenthesis and right parenthesis, following the table element data-name. The table
element data-name appended with a subscript is called a subscripted data-name or an identifier.

When more than one subscript is required, they are written in the order of successwely less inclusive
dimensions of the data organization.

General Format:

data-name
( subscript-1 [, subscript-2 [, subscript-3] ... ] )
condition-name

Example:
In the following file description, to reference the first department, DEPT (1) is written. If data-name

X contains the number of the department desired, DEPT (X) is written. If the data item GROUP con-
tains the specific group desired, then POSITION (X, GROUP) would reference the exact employee.

01 EMPLOYEE-JOBS.

05 DEPT OCCURS 50 TIMES.
10 DEPT-NAME PIC X(10).

10 ALL-JOBS OCCURS 20 TIMES.
15 POSITION PIC X(15).

2-20



B 1000 Systems COBOL74 Language Manual
Language Concepts

INDEXING

Indexing

References can be made to individual elements within a table of like elements by specifying indexing
for that reference. An index is assigned to that level of the table by using the INDEXED BY phrase
in the definition of a table. A name given in the INDEXED BY phrase is known as an index-name
and is used to refer to the assigned index. The value of an index corresponds to the occurrence number
of an element in the associated table. An index-name can be given a value by the execution of a SET
statement, a SEARCH ALL statement, or a Format 4 PERFORM statement.

An index-name has the same internal representation as an index data item. Refer to General Rule 9,
the USAGE clause, in section 6. If a value to be stored in an index-name or in an index data name
exceeds the largest value that can be held in that index-name or index data name, the value is truncated
according to the rules for the occurrence of a size error condition in an arithmetic statement without
a SIZE ERROR phrase.

An index-name assigned to one table may not be used to index another table.

Direct indexing is specified by using an index-name in the form of a subscript. Relative indexing is
specified when the index-name is followed by the operator + or -, followed by an unsigned integer
numeric literal, all of which is delimited by the matching pair of separators, left parenthesis and right
parenthesis, following the table element data-name. The occurrence number resulting from relative in-
dexing is determined by incrementing (where the operator + is used) or decrementing (when the
operator — is used), by the value of the literal, the occurrence number represented by the value of
the index. When more than one index-name is required, they are written in the order of successively
less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table element, the value of each
direct or relative index must not be less than a value which corresponds to the beginning of the first
occurrence of the table element. Also, the index must not be greater than a value which corresponds
to the beginning of the last occurrence of the table element as specified by the corresponding OCCURS
clause. If the index value is not within this range, the execution of the program is terminated. The
index «value need not precisely address the beginning of a table element in order to pass the range
check. This may occur when an index-name is set to the value of an index data item which has been
set to the value of another index-name, as such assignments are made without conversion.

Subscripting is permitted where indexing is permitted.

General Format:

‘ data-name 1 (

index-name-1 [ + ) literal-2] }
l condition-name ’

|
l literal-1 ‘
index-name-2 [ hteral-4
[ % literal-3 } }
‘ index-name-3 literal- 6 jl ] )
[ ’ {hteral-S ok { } } A

1168622 _ 2-21

I's




B 1000 Systems COBOL74 Language Manual
Language Concepts

EXPLICIT AND IMPLICIT SPECIFICATIONS

There are three types of explicit and implicit specifications that occur in COBOL74 source programs:
1. Explicit and implicit PROCEDURE DIVISION references.
2. Explicit and implicit transfers of control.

3. Explicit and implicit attributes.
Explicit and Implicit PROCEDURE DIVISION References

A COBOL74 source program can reference data items either explicitly or implicitly in PROCEDURE
DIVISION statements. An explicit reference occurs when the name of the referenced item is written
in a PROCEDURE DIVISION statement or when the name of the referenced item is copied into the
PROCEDURE DIVISION by the processing of a COPY statement. An implicit reference occurs when
the item is referenced by a PROCEDURE DIVISION statement without the name of the referenced
item being written in the source statement. An implicit reference also occurs, during the execution of
a PERFORM statement, when the index or data item referenced by the index-name or identifier
specified in the VARYING, AFTER, or UNTIL phrase is initialized, modified, or evaluated by the
control mechanism associated with that PERFORM statement. Such an implicit reference occurs if the
data item contributes to the execution of the statement.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement to statement in the se-
quence in which the statements were: written in the source program, unless an explicit transfer of con-
trol overrides this sequence or there is no next executable statement to which control can be passed.
The transfer of control from statement to statement occurs without the writing of an explicit PROCE-
DURE DIVISION statement, and therefore, is an implicit transfer of control.

COBOL74 provides both explicit and implicit means of altering the implicit control .transfer
mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit transfer of con-
trol also occurs when the normal flow is altered without the execution of a procedure branching state-
ment. COBOL74 provides the following types of implicit control flow alterations which override the
statement-to-statement transfers of control:

1. If a paragraph is being executed under control of another COBOL74 statement (for example,
PERFORM, USE, SORT, and MERGE) and the paragraph is the last paragraph in the range
of the controlling statement, then an implied transfer of control occurs from the last statement
in the paragraph to the control mechanism of the last executed controlling statement. Further,
if a paragraph is being executed under the control of a PERFORM statement which causes iter-
ative execution and that paragraph is the first paragraph in the range of that PERFORM state-
ment, an implicit transfer of control occurs between the control mechanism associated with that
PERFORM statement and the first statement in that paragraph for each iterative execution of
the paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control occurs to any
associated input or output procedures.

2-22



B 1000 Systems COBOL74 Language Manual
Language Concepts

EXPLICIT AND IMPLICIT SPECIFICATIONS

3. When any COBOL74 statement is executed which results in the execution of a declarative sec-
tion, an implicit transfer of control to the declarative section occurs. Another implicit transfer
of control occurs after execution of the declarative section, as described in step 1 above.

An explicit transfer of control consists of an alteration of the implicit control transfer mechanism by
the execution of a procedure branching or conditional statement. An explicit transfer of control can
be caused only by the execution of a procedure branching or conditional statement. The execution of
the procedure branching statement ALTER does not constitute an explicit transfer of control, but af-
fects the explicit transfer of control that occurs when the associated GO TO statement is executed. The
procedure branching statement EXIT PROGRAM causes an explicit transfer of control when the state-
ment is executed in a called program.

In this manual, the term ’'next executable statement’ is used to refer to the next COBOL74 statement
to which control is transferred according to the rules above and the rules associated with each language
element in the PROCEDURE DIVISION.

There is no next executable statement following:

1. The last statement in a declarative section when the paragraph in which it appears is not being
executed under the control of some other COBOL74 statement.

2. The last statement in a program when the paragraph in which it appears is not bemg executed
under the control of some other COBOL74 statement.

Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which has been explicitly specified
is called an explicit attribute. If an attribute has not been specified explicitly, then the attribute assumes
the default specification. Such an attribute is known as an implicit attribute.

For example, the usage of a data item need not be specified, in which case, a data item’s usage is
DISPLAY.

1168622 2-23



B 1000 Systems COBOL74 Language Manual

SECTION 3
CODING FORM

GENERAL

The format of the COBOL74 coding form (figure 3-1) has been defined by CODASYL and ANSI,
and by common usage. The B 1000 COBOL74 Compiler accepts this standard format. Should program
interchange be a major consideration, the user is directed to the ANSI standard.

The rules for spacing given in the following description of the reference format take precedence over
all other rules for spacing.

'FIELD DEFINITIONS

The same coding form is used for all four divisions of a COBOL74 program. These divisions must
appear in proper order: IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The fol-
lowing paragraphs describe the various fields of this coding form.

Sequence Area (Record Positions 1-6)

A sequence number, consisting of six digits in the sequence area, may be used to label a source pro-
gram line.

Indicator Area (Record Position 7)

Column 7 has the following functions:

1. A $ symbol in column 7 indicates that the record is used to specify options for compiler
operation. Refer to Section 11 for additional information.

2. If column 7 contains an asterisk (*), the remainder of the record is considered to be a comment
and, is not "compiled” to produce object code.

3. If column 7 contains a slash (/), the listing is advanced to channel 1 before printing, and the
record is considered to be a comment record. :

4. The presence .of a hyphen (-) indicates that the last word or literal on the previous record is
not complete and is continued on this record beginning in Area B (positions 12 through 72).

Words and numeric literals may be split at any point by placing a hyphen in column 7 of the
following record. Any rightmost blank spaces on a record are ignored as are the leftmost blank
spaces on the continuation record.

Nonnumeric literals are split in a slightly different fashion than words and numeric literals. On
the initial record starting from the quotation mark, all information through position 72 is taken
as part of the literal, and on the next record a quotation mark must be used to indicate the
start of the second part of the literal.

If there is no hyphen in column 7 of a coding line, it is assumed that the last character in
the preceding line is followed by a space.

1168622 3-1



€

Burroughs COBOL CODING FORM

G12326

Figure 3-1. COBOL Coding Form

PROGRAM REQUESTED BY PAGE OF
PROGRAMMER DATE IDENT. F;n_L L1 Ij"
PAGE LINE A B Z
NO. NO.
1_ 314 6 8 11012 16 20 24 28 32 36 40 44 48 52 60 64 68 (72
1 0': 1R O O N T T N T TV U T T T T A O I 11 b1l
l1 joz2| T T T T I O Y I T O O A Y [ | Llr by
ll‘i.lr B I T N T O | L1y (| 11 P ]t || 11 | I I A A | 114 11 L1 [ [
11 jo4 ]| I T T Y Y N I Y OO | 11 O T O O O O | R T O Ot O N I [ | |0 T O I N I
||05![ O T O T T A O O O O A I I T T T O Y T O I Lig1 I
[ L S Y U A 11 NN
’__L__l 07: N O O T I U I | Lt [ 1! L1y 11 N T T U O O T Y Y | { 11 { tq [
1y o8l I T W N N Y A T T O N T T O Y O A T [ (I A
I!°9; S O T T S N O | 11 (I | 14 [ 1 11 N T IO O I O O L1t 11 11 11 i 111t
) ol | T O O U A T [ L1 L1 ] {1 { I T O O A 111 L1 L1 111 1111
ll”!r I T T O O O O B I B 1NN 1 T (T O Y Y IO A A L1l NS
1 312 ) L1 L 11 [ 111 | {1 [ I I N N N N T O O Y A O O L 11 11 111 L1
14 '34: [ S S T T A Y Y U A O O A T A 0 I Y I 11 I Pl
IR {1 T VO YOO T A Y O T Y Y Y T Y T O N I Y Y I B [ 1 14 B L1 L I O O T |
L s ! N N N N O T T T A T I N N T N S T TN T T T 1 A A O 11 L1 I T T T
{1 {16 | (| 1t 0 T O O I 144 [ D IO O T O O O O | vlll | | 11 11 11 |
1 '7: Loy b e b v e o by by by v e Py b pe b g Lty I
1 | {18 | Frr b ey P vyt J 11 11 L1 111 Ll I O O B | 11 11 L1 {111
Ll_‘9: l 4 111 111t 11 1 11 111 11 ) I I O | N N T O O i1 11 P i I T O O O I |
L) j20 S O T T T T T T A I T O O I T I A I B [ S [ T S
1 | B O N T T T T 1 T T T T I T A O O O A B Y [ Lyt
Ly !r B N N N 1 U T T T T T T T T T O T T A [ RN EEEEE
11 1 0 I T O | | 11 111 111 L4l 1 1 T T A I | L1 11 L1 111 1114
[ Alr B I T T T T T 111 [ | L1 1 1O N T T Y Y | 11 L1 Lt |
1 | N T 0 O O O T T T T T 0 O AN L1yl I
8 12 16 20 24 28 32 36 10 4 48 52 60 64 68 2.

w10, Surpod
[enuepy a8endueT /. TOGOD SWAISAS 0001 €



B 1000 Systems COBOL74 Language Manual
Coding Form

5. The letter D in column 7 specifies a debugging line. Any debugging line that consists solely
of spaces from positions 8 through 72 is considered the same as a blank line.

A debugging line is considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER paragraph. There-
fore, the contents of a debugging line must be such that a syntactically correct program is
formed with or without the debugging lines being considered as comment lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER paragraph.

Successive debugging lines are allowed. Continuation of debugging lines is permitted, except
that each continuation line must contain the letter D in position 7, and character-strings may
not be broken across two lines.

Area A (Positions 8 through 11)

DIVISION, SECTION, and PARAGRAPH headers must begin in Area A. A division header_consists
of the division name (IDENTIFICATION, ENVIRONMENT, DATA, or PROCEDURE), followed by
a space, then the word DIVISION followed by a period.

In the ENVIRONMENT and DATA DIVISIONS, a section header consists of the section-name, fol-
lowed by a space, and then the word SECTION followed by a period.

In the PROCEDURE DIVISION, a section header is composed of a section-name, followed by the
reserved word SECTION, followed by a segment-number (optional), followed by a period.

A paragraph header consists of the paragraph-name followed by a period. The first sentence of the
paragraph may appear on the same line as the paragraph header.

Within the IDENTIFICATION and ENVIRONMENT divisions, the section and paragraph headers are
fixed and only the headers shown in this manual are permitted. Within the PROCEDURE DIVISION,
the section and paragraph headers are defined by the user.

Within the DATA DIVISION, the level indicators (FD, CD, SD) and the level numbers 01 and 77 must
each begin in Area A, followed by the associated name and appropriate descriptive information.

The key words DECLARATIVES and END DECLARATIVES that precede and follow the declaratives
portion of the PROCEDURE DIVISION, must appear on separate lines. Each must begin in Area A
and must be followed by a period and a space.

Area B (Positions 12 through 72)

All entries which are not DIVISION, SECTION, or PARAGRAPH headers; level numbers 01 and 77,
or level indicators (FD, SD, CD), must start in Area B.

When level-numbers are to be indented, each new level-number may begin any number of spaces to
the right of Area A. The extent of indentation to the right is determined only by the width of the
physical medium. '

Right Margin (Position 72)

The text of the program must appear between positions 8 and 72, inclusive. A word or statement may
end in position 72. . '

1168622 33



B 1000 Systems COBOL74 Language Manual
Coding Form

Identification (Positions 73 through 80)

The identification field may contain any information desired by the user. The field is ignored but is
reproduced on the output listing by the compiler. This field is normally used for the program name.

BLANK LINES

A blank line is one that contains no entries in the Indicator Area, Area A, and Area B. A blank line
may appear anywhere in the source program except immediately preceding a continuation line.

PUNCTUATION
The following rules of punctuation apply to COBOL74 source programs for the B 1000 system.
1. A sentence must be terminated by a périod followed by a space. A period must not appear
within a sentence unless it is within a nonnumeric literal or is a decimal point in a numeric

lijeral or PICTURE string.

2. Two or more names in a series must be separated by a space or by a comma. If used, commas
must appear only where allowed.

3. Semicolons (;) are used only for readability and are never required.

4. A space must never be embedded in a name; hyphens are to be used instead. A hyphen must
not start or terminate a name. For example:

PAY-DAY (correct)
- PAYDAY (wrong)
SAMPLE CODING

An extract sample from a source program, showing the continuation of both words and nonnumeric
literals, is illustrated in figure 3-2.



Burroughs COBOL CODING FORM

TC98911

PROGRAM O axiga REQUESTED BY PAGE ol OF {0
PROGRAMMER Né\ A Q- ’?zﬂero;mmLT’ DATE IDENT. ':élouxg l_llaio
PAGE | LINE A B < 7
NO. NO.
1 314 8 1|12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 ]72
L1 OiT! T LUE-CinTRot |- 1 SELECT| RiR NTINGEITLE ASSTeN] Nl [TARE] RESERVE 111|111
L1 jo2] poa o oA AREAS v pea pret e P P P b e e P
03: crr bl 1 SELECT MASKERIIMRMT ASSITEN [T DTS% |10 | ReS]
11 Joa| Pt RV N AREA e e e b b b b b o baaa
4105: bon v prra e beap e bey e e b b b b e e b
[RLLE TN T T T T T A O T I A 1Tty
1107§ Lo a ot e b v e b s e prer b vt b favn b bv g fer by
llosl/llltllllllLl cid vt e e b vt by e b b e g
1109: WLMGQ GE SECTUAN. vl aaa faaa s b b bt v b by
Lol 00 A-IYEMA-ILSICERINGSIe o L b (oS Nl o e bt gty
41'1: cer b by P NER A v L e b el b WViael® oo i F a1
Ly f12y Lo o] el & Lo L PG S v bl L L1yl L1
|13: Lot vl b bt e de ¥ v e b leaa be e e b
1Ll opre 1T O O O OO [0 N N L Y O T T T T T O O B T N A o NN T O T O O T T N T T O O I
i 1L|r L1 105 1 INENENGM-LIT oo [ REG GO L MALWE ] b tA
L1 |16 Lt [MARA S VALY sl =l b bere b e be b v ey by
|114 TR T A Y A A T S O S
L1 j18 prr e vy e b ber e br e b v b et bt e by cedere et vt ety
1119} Lot vt e e v bt e b r v b e b ety b pbv el v bbb
11 120, N O O A N 1 T T T N N S O I O A A I 111 N T O Y A Y T Y
| i I O [} T I I I | [ | 1 T T O Y I B B [ [ 1 0 T O VN T Y O N N O U A I e A |
{1t ; | I I I | | O O T O | 111 || § O 1 O T O O T T I I IO 111 | I T A I I | L1 1 1) L1t 1
L1 | v bl bree bbb v e bbb b e pv bbb b
1 'r I T T S T O T O I | I I | I O SO T T Y O T I I | 11 I O T I 0 O Y
1 I (RSN N0 0 IO W O T P T A A 0 0 I A O O O Y A 0 O A O O AR R
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 I72
G12327

S-€

Figure 3-2. Example of Continuation of Words and Literals

uo, Fupo)D
[enuepy 98enfue . TOG0OD SWAISAS 0001 4



B 1000 Systems COBOL74 Language Manual

SECTION 4
IDENTIFICATION DIVISION

GENERAL

The first division of the COBOL74 source program is the IDENTIFICATION DIVISION whose func-
tion is to identify the source program and the resultant output of compilation. In addition, the date
the program was written, the date the source program was compiled, and other pertinent information
can be included in the IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION STRUCTURE

The structure of this division follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry ] ...]
[INSTALLATION. [comment-entry ] ...]
[DATE-WRITTEN. [comment-entry ] ...]
[DATE-COMPILED. [comment-entry ] ...]
[SECURITY. [comment-entry] ...]

The following rules must be observed in the formation of the IDENTIFICATION DIVISION:

1. The IDENTIFICATION DIVISION must begin.with the reserved words IDENTIFICATION
DIVISION followed by a period and a space.

2. All paragraph-names must begin in positions 8 through 11 (Area A) of the coding form.
3. The comment-entry can consist of any combination of the characters from the B character set.
The continuation of the comment-entry by the use of the hyphen in the indicator area is not

permitted; however, the comment-entry may be contained on one or more lines. A period must
be present to denote the end of the comment entry.

PROGRAM-ID Paragraph
The PROGRAM-ID paragraph gives the name by which a program is identified.
PROGRAM-ID. program-name.
The following rules must be observed to form PROGRAM-ID paragraphs.
1. The program-name must conform to the rules for formation of a user-defined‘ word.

2. The PROGRAM-ID paragraph contains the name of the program and must be present in every
program.

3. The program-name identifies the source program and all listings pertaining to a particular pro-
gram.

1168622 4-1



B 1000 Systems COBOL74 Language Manual
Identification Division

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date in the IDENTIFICATION DIVI-
SION source program listing.

DATE-COMPILED. [comment-entry ] ...

The paragraph-name DATE-COMPILED causes the current date to be inserted during program compil-
ation. If a DATE-COMPILED paragraph is present, it is replaced durmg compilation with a one-line
paragraph of the form:

DATE-COMPILED. current date.

Current date is composed of the elements year, month, day of month, hour, and minute and represents
the date and time at which the compilation of the source program started.

Year is presented as four digits, starting in the position on the printed line corresponding to column
25 of a source line.

Month is presented as the name of the month in English, starting in the position on the printed line
corresponding to column 30 of a source line.

Day of month is presented as two digits, starting in the position on the printed line two places to the
right of the last character of the month entry.

Time is presented as four digits, with a colon between the second and third digits, and represents the
time on a 24-hour clock. Time is presented in the position on the printed line five places to the right
of the second digit of day of month.

Any leading zeros in the numeric fields are presented as the character ‘0’ (zero).
If a compilation commences at 11:03 p.m., February 3, 2001, the current date would be presented as:

| 2001 FEBRUARY 03  23:03
CODING THE IDENTIFICATION DIVISION

Figure 4-1 provides an example of how the IDENTIFICATION DIVISION may be coded in the source
program. Continued lines must begin in Area B and must not include a hyphen in the indicator area.



CT98911

Burroughs COBOL CODING FORM

PROGRAM —Ldiﬁ%kg'\ccc\- (d\’\ '—B AULS \i{ﬁ REQUESTED BY PAGE i OF 8
PROGRAMMER 'B{\) DATE IDENT. :&D-M'\JVISB:\
PAGE LINE A B 7
NO. | NO.
1 314 67718 i1fi2 16 20 \ 24 28 32 36 40 44 48 52 56 60 64 68 172
L 01: IDENTTEICATIGN T RN I N R N R SRRl NETE ST SR NS SRR RN
L1 ]oz2] P&ﬁRIAM‘lm-I?IAISINPj.JU- o bt ee e e b b e e b s
1103; Adtar (@R | ENTMG -] 1 e b c e e et
L1 Jo4] MMMN.lﬁuRMum_WQ/&NTImN} TN NS N R
Il°5: ) I llJlG’éLIET ;IC]-III[II I T T T O I 11 T S T A T A I Y
11 jos ) | TOATIE- AIREOTENS L Sajover R 10 (UK A%e-] 10 1 F e} N O 0 T YT I A O A
1107: BlanT—ﬂCgfm‘T,?:Il\.lD;-H v bt v v e b b v barn beaa b b el
1 3 {os | T O R T N T N ) T T e A O N T A 1 A I T O B A
110975 N O U T T T N T T N T T T T O 1 T T T O Y
RALE I T O N T O O [ | I A O O L1 L1 L1 i L1 114 [ Lt L 11 [ Lt
| ”; T VT T T A [ (I | {10 O U T T 1t 1 [ T T O T O N O T [ I
J N AR S N N N 1 ) I T A T T I T O | I N I T T I Y I Y
|o13J: 100 T T Y T O T T T S O O N T O T | L1 1S 1 N T S Y I SO I O
L 114 1S S T O O T T Y NN W T T Y N T Y O Y e Y | L1t VU S N N Y O I O
1115'r 1NN 1 O N T N Y T A N N N ) I A A Lt N S 1 N Y Y 0
1| {16 | I T T T T T T T T A 2 A A
Il17I 1 N T 1O T T O T T O Y I S O I | S Y S T T VO ) O I L1} I T I O O O I B O I I I |
L1 ]18 ) I T O O Y 11 1 T T O Y I | | T N I | I I I I L1 Lt I T O I O |
ll’9{ A N N Y O T 1 T O T T T T A Y e I L1 1 | | I 1 1 T T O O T O O
11 120 N N T T T T T O N A A [ 1N O T T T O S T A vy v |
L1 | N O T U T T N N T T T N I I v A
L1 : I O 1 T T X T T T T T T T T T T A T U T T O T I A I A
11 ] | T O N N N I O | | | I O S 111 Pt L e A O T I I A A
11 : 1N I Y T O T O T (T T A O O Y I O Y T T A O I T
Lot o] T 1 U T I N T T T G T 1 T T T T T T R T 1 T T I O O
4 8 12 16 20 24 28 32 36 40 44 18 52 56 60 64 68 T2
G12328

Figure 4-1. Coding the IDENTIFICATION DIVISION

UOISIAI(] UONEdJNIUSP]
[enueyy 98engueT +/TOHGOD SWaISAS 0001 g



B 1000. Systems COBOL74 Language Manual

SECTION 5
ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second division of a COBOL74 source program. Its function
is to specify the computer being used for the program compilation, specify the computer to be used
for object program execution, associate files with the computer hardware devices, and provide the com-
piler with pertinent information about disk storage files defined within the program. Furthermore, this
division is also used to specify input-output areas to be utilized for each file declared in a program.

ENVIRONMENT DIVISION ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The CONFIGURATION SECTION con-
tains the overall specifications of the computer. The INPUT-OUTPUT SECTION deals with files to

be used in the object program. .
ENVIRONMENT DIVISION STRUCTURE

The structure of this division follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. source-computer-entry
OBJECT-COMPUTER. object-computer-entry
[SPECIAL-NAMES. special-names-entry]
[INPUT-OUTPUT SECTION.
FILE-CONTROL. { file-control-entry} ...
[I-O-CONTROL. input-output-control-entry} ]

The following rules must be observed in the formulation of the ENVIRONMENT. DIVISION.

1. The ENVIRONMENT DIVISION must begin with the reserved words ENVIRONMENT DIVI-
SION followed by a period and a space.

2. All entries must begin in Area A (columns 8 through 11) of the coding form.

CONFIGURATION SECTION

The CONFIGURATION SECTION contains information concerning the system to be used for pro-
gram compilation (SOURCE-COMPUTER), the system to be used for program execution (OBJECT-
COMPUTER), and the SPECIAL-NAMES paragraph. The SPECIAL-NAMES paragraph relates hard-
ware names used by the B 1000 COBOL74 Compiler to the mnemonic-names in the source program,
and alphabet-names to character sets and/or collating sequences.

1168622 5-1



B 1000 Systems COBOL74 Language Manual
Environment Division

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph identifies the computer upon which the program is to be com-
piled. It also contains an optional clause for use in debugging COBOL74 programs. Refer to section
10 in this manual for further information on the compile-time debugging switch.

General Format:

SOURCE-COMPUTER. computer-name [ with DEBUGGING MODE ] .

Syntax Rule:

1. The computer-name is any COBOL74 word and is handled as a comment entry which describes
the computer upon which the source program is to be compiled. This computer name is for
documentation only.

General Rule:
1. The computer-name is treated as a comment and ignored.

2. If the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTER paragraph
of the CONFIGURATION SECTION of a program, all USE FOR DEBUGGING statements
and all debugging lines are compiled.

3. If the WITH DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph of the CONFIGURATION SECTION of a program, any USE FOR DEBUGGING
statements and all associated debugging sections, and any debugging lines are compiled as com-
ment lines.



B 1000 Systems COBOL74 Language Manual
Environment Division

OBJECT-COMPUTER

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the program is to be executed.

General Format:

' WORDS
OBJECT-COMPUTER. computer-name | , MEMORY SIZE integer CHARACTERS
MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name ]

[, SEGMENT-LIMIT IS segment-number ] .

Syntax Rule:

1.

2.

Computer-name is a system name.

Segment-number must be an integer whose value is within the range of 1 through 49.

General Rules:

1.

The computer-name is any COBOL74 word and is handled as a comment entry which describes
the computer upon which the object program is to be executed. This computer name is for doc-
umentation only.

If the PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence associ-
ated with alphabet-name is used to determine the truth value of any nonnumeric comparisons:

a. Explicitly specified in relation conditions. Refer to Relation Condition in section 7 for addi-
tional information.

b. Explicitly specified in condition-name conditions. Refer to Condition-Name Condition
(Conditional Variable) in section 7 for additional information.

. If the PROGRAM COLLATING SEQUENCE clause is not specified, the EBCDIC collating

sequence is used.

If the PROGRAM COLLATING SEQUENCE clause is specified, the program collating se-
quence is the collating sequence associated with the alphabet-name specified in that clause.

. The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric merge

or sort keys unless the COLLATING SEQUENCE phrase of the respective MERGE or SORT
statement is specified. Refer to the MERGE and SORT statement in section 7.

The PROGRAM COLLATING SEQUENCE clause applies only to the program in which it is
specified.

1168622 5-3



B 1000 Systems COBOL74 Language Manual
Environment Division

OBJECT-COMPUTER

8. The SEGMENT-LIMIT clause specifies the limit of the fixed segment for sections numbered
from 0 to 49. Refer to Segmentation in section 7 for further discussion.

9. The MEMORY SIZE clause is used to increase the amount of dynamic memory.

10. WORDS and MODULES are equivalent to CHARACTERS.

54



B 1000 Systems COBOL74 Language Manual
Environment Division

SPECIAL-NAMES

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph provides a means of relating names to user-specified mnemonic-
names and of relating alphabet-names to character sets and/or collating sequences.

General Format:

SPECIAL-NAMES .

4 .
IS mnemonic-name

[, ON STATUS IS condition-name-1
[,OFF STATUS IS condition-name-2 ] ]

IS mnemonic-name

4 [, OFF STATUS IS condition-name-2 >
[, ON STATUS IS condition-name-1] ]

ON STATUS IS condition-name-1
[, OFF STATUS IS condition-name-2 ]

OFF STATUS 1S condition-name-2
_ [, ON STATUS IS condition-name-1 | J

, alphabet-name IS T

. N
( STANDARD-1
NATIVE
ASCII
EBCDIC

{THROUGH} literal-2 .
literal-1 THRU
ALSO literal-3 [, ALSO literal-4] ...

{ THROUGH }
literal-5 THRU. literal-6
L ALSO literal-7 [, ALSO literal-8 ] ...

— —

[ , CURRENCY SIGN IS literal-9 ]
[ , DECIMALPOINT IS COMMA ].

1168622 5.5



B 1000 Systems COBOL74 Language Manual
Environment Division

SPECIAL-NAMES

Syntax Rules:
1. The literals specified in the literal phrase of the alphabet-name clause:

a. If numeric, must be unsigned integers and must have a value within the range of 1 through
the maximum number of characters in the EBCDIC character set.

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must each be one char-
acter in length.

2. If the literal phrase of the alphabet-name clause is specified, a given character must not be spec-
ified more than once in an alphabet-name clause.

3. The words THRU and THROUGH are equivalent.

General Rules:

1. If switch-name is not specified, the associated mnemonic-name may be used in the ACCEPT,
DISPLAY, SEND, and WRITE statements.

5. The alphabet-name clause provides a means for relating a name-to a specified character code
set and/or collating sequence. When alphabet-name is referenced in the PROGRAM COLLAT-
ING SEQUENCE clause (refer to OBJECT-COMPUTER Paragraph in this section) or the
COLLATING SEQUENCE phrase of a SORT or MERGE statement (refer to MERGE and
SORT in section 7), the alphabet-name clause specifies a collating sequence. ‘When alphabet-
name is referenced in a CODE-SET clause in a file description entry (refer to the File Descrip-
tion Structure in section 6), the alphabet-name clause specifies a character code set.

a. ASCII is a synonym for STANDARD-1. If the STANDARD-1 or ASCII phrase is
specified, the character code set and collating sequence identified is that defined in the
American National Standard Code for Information Interchange, X3.4-1968.

b. If the NATIVE phrase is specified, the native character code set and native collating se-
quence will be identified with the alphabet-name. The native character code set is EBCDIC
and is the character code set associated with DISPLAY usage.



-

B 1000 Systems COBOL74 Language Manual -
Environment Division

SPECIAL-NAMES

¢. The correspondence between characters of the ASCII character code set and characters of
the EBCDIC character code set is determined by standard translation tables for EBCDIC
to ASCII and ASCII to EBCDIC translation. Refer to appendix C.

d. If the literal phrase is specified, the alphabet-name may not be referenced in a CODE-SET
clause. Refer to the CODE-SET clause in section.6. The collating sequence identified is
that defined according to the following rules:

Rule 1: The value of each literal specifies:

1). The ordinal number of a character within the native character set, if the literal is nu-
meric. This value must not exceed the value which represents the number of characters
in the native character set.

2). The actual character within the native character set, if the literal is nonnumeric. If the
value of the nonnumeric literal contains multiple characters, each character in the liter-
al, starting with the leftmost character, is assigned successive ascending positions in the
collating sequence being specified. ‘

Rule 2: The order in which the literals appear in the alphabet-name clause specifies, in
ascending sequence, the ordinal number of the character within the collating sequence be-
ing specified.

Rule 3: Any characters within the native collating sequence, which are not explicitly
specified in the literal phrase, assume a position, in the collating sequence being specified,
greater than any of the explicitly specified characters. The relative order within the set of
these unspecified characters is unchanged from the native collating sequence.

Rule 4: If the THROUGH phrase is specified, the set of contiguous characters in the native
character set beginning with the character specified by the value of literal-1, and ending
with the character specified by the value of literal-2, is assigned a successive ascending po-
sition in the collating sequence being specified. In addition, the set of contiguous charac-
ters specified by a given THROUGH phrase may specify characters of the native character
set in either ascending or descending sequence.

Rule 5: If the ALSO phrase is specified, the characters of the native character set specified
by the value of literal-1, literal-3, literal-4, ..., are assigned to the same position in the
collating sequence being specified.

6. The character that has the highest ordinal position in the program collating sequence specified
is associated with the figurative constant HIGH-VALUE. If more than one character has the
highest position in the program collating sequence, the last character specified is associated with
the figurative constant HIGH-VALUE.

7. The character that has the lowest ordinal position in the program collating sequence specified
is associated with the figurative constant LOW-VALUE. If more than one character has the
lowest position in the program collating sequence, the first character specified is associated with
the figurative constant LOW-VALUE.

1168622 5-7



- B 1000 Systems COBOL74 Language Manual
Environment Division

SPECIAL-NAMES

8. The literal which appears in the CURRENCY SIGN IS literal clause is used in the PICTURE
clause to represent the currency symbol. The literal is limited to a single character and must
not be one of the following characters:

a. Digits 0 through 9.

b. Alphabetic characters:

A D R X
B L S Z
C P V space
c. Special characters:
* s (
+ ) =

If the CURRENCY SIGN IS clause is not present, the default value dollar sign ($) is used
in the PICTURE clause.

9. The clause DECIMAL-POINT IS COMMA means that the functions of the comma and period
are exchanged in the character-string of the PICTURE clause and in numeric literals.

5-8



B 1000 Systéms COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section contains information concerning files to be used by the object program,
the manner of recording used or to be used, and the presence of any multiple-file tape or disk.

FILE CONCEPTS

In the following paragraphs, concepts of File Types, Organization, Access Mode, Current Record
Pointer, I-O Status, INVALID KEY, AT END, and LINAGE-COUNTER are discussed pertaining to
Sequential, Indexed, Relative, and Sort-Merge files.

Sequential 1-0

Sequential I-O provides a capability to access records of a file in established sequence. The sequence
is established as a result of writing the records to the file. It also provides for the sharing of memory
areas among files.

Sequential I-O provides full facilities for the FILE-CONTROL, I-O-CONTROL, and FD entries as
specified in the formats of this manual. Within the PROCEDURE DIVISION, Sequential I-O provides
full capabilities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements . Additional
features available include: OPTIONAL files, the RESERVE clause, SAME RECORD AREA, RE-
VERSED, and EXTEND- options. ,

Relative [-O

Relative [-O provides the capablllty to access records of a mass storage file in either a random or se-
quential manner. Each record in a relative file is uniquely identified by an integer value greater than
zero which specifies the record’s logical ordinal position in the file.

Relative 1-O has full facilities for the FILE-CONTROL, I-O-CONTROL, and FD entries as specified
in the formats of this manual. Within the PROCEDURE DIVISION, the Relative I-O provides full
capabilities for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE state-
ments. Additional features available include: the RESERVE clause, DYNAMIC accessing, SAME REC-
ORD AREA, READ NEXT, and the START statement.

A

For more information on the structure of the Relative file, see appendix G in this manual.

Indexed 1-O

-

Indexed I-O provides a capability to access records of a mass storage file in either a random or sequen-
tial manner. Each record in an indexed file is uniquely identified by the value of one or more keys
within that record.

Indexed I-O provides full facilities for the FILE-CONTROL, I-O-CONTROL, and FD entries as
specified in the formats for this manual. Within the PROCEDURE DIVISION, the Indexed I-O pro-
vides full capabilities for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and
WRITE statements as specified in the formats for this manual. Additional features include: the RE-
SERVE clause, DYNAMIC accessing, ALTERNATE KEYS, SAME RECORD AREA, READ NEXT,
and the START statement.

Appendix G in this manual includes information on the structure and concepts of Indexed Sequential
Access Method files, as well as efficient use and maintenance of the ISAM file.

1168622 | | 59



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

rst in, first out bas1s A WRIT
tes a message from a queue f

can be est

£

"queue file fam'fl’y,__

, COBGLM program
! deswed for a remote fx

a forelgn process by performmg read anci__
hHS‘ Qne or more 'assocxated subports termed ”subflles,”
' on between locaI pro- 55e

5-10



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

(BNA) In
Sort-Merge

The Sort-Merge module provides the capability to order one or more files of records, or to combine
two or more identically ordered files of records, according to a set of user-specified keys contained
within each record. Optionally, a user may apply some special processing to each of the individual rec-
ords by input or output procedures. This special processing may be applied before and/or after the
records are ordered by the SORT or after the records have been combined by the MERGE.

Sort-Merge provides the facility for sorting one or more files, or combining two or more files, one
or more times within a given execution of a COBOL74 program.

Relationship with Sequential 1-O

The files specified in the USING phrase of the SORT and MERGE statements must be described impli-
citly or explicitly in the FILE-CONTROL paragraph as having sequential organization.

The file specified in the GIVING phrase of the SORT and MERGE statements must be described impli-
citly or explicitly in the FILE-CONTROL paragraph as having sequential organization.

No input-output statement may be executed for the file named in the Sort-Merge file description.
Organization

Sequential Files are organized such that each record in the file except the first has a unique predecessor
record, and each record except the last has a unique successor record. These predecessor-successor rela-
tionships are established by the order of WRITE statements when the file is created. Once established,
the predecessor-successor relationships do not change except in the case where records are added to
the end of the file.

Relative File organization is permitted only on mass storage devices. A Relative File consists of records
which are identified by relative record numbers. The file may be thought of as composed of a serial
string of areas, each capable of holding :a logical record. Each of these areas is denominated by a
relative record number. Records are stored and retrieved based on this number. For example, the tenth
record is the one addressed by relative record number 10 and is in the tenth record area, whether or
not records have been written in the first through the ninth record areas.

A file whose organization is Indexed is a mass storage file in which data records may be accessed by
the value of a key. A record description may include one or more key data items, each associated with
an index. Each index provides a logical path to the data records according to the contents of a data
item within each record which is the record key for that index.

{

1168622 ' 5-11



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

The data item named in the RECORD KEY clause of the file control entry for an Indexed File is the
prime record key for that file. For purposes of inserting, updating, and deleting records in a file, each
record is identified solely by the value of its prime record key. This value must, therefore, be unique
and must not be changed when updating the record.

A data item named in the ALTERNATE RECORD KEY clause of the file control entry for an Indexed
File, is an alternate record key for that file. The value of an alternate record key may be nonunique
if the DUPLICATES phrase is specified. These keys provide alternate access paths for retrieval of rec-
ords from the file.

Access Mode

The ACCESS MODE clause specifies the manner in which records are accessed in a file. There are
three access modes: sequential, random, and dynamic. The allowable access modes, based upon the
specified organization of the file, are discussed in the following paragraphs.

Sequential Files

In the sequential access mode, the sequence in which records are accessed is by the ascending order
of ordinal location within the file. This order is established when the records are originally written to
the file.

In the random access mode, the sequence in which records are accessed is specified by the contents
of the ACTUAL KEY daia item at the time the READ or WRITE statement is executed. The value
of the ACTUAL KEY data item supplies the ordinal record number of the record to be accessed.

Relative File

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the relative record numbers of all records which currently exist within the file.

In the random access mode, the sequence in which records are retrieved is controlled by the program-
mer. The desired record is accessed by placing its relative record number in a relative key data item.

In the dynamic access mode, the programmer may change at will from sequential access to random
access using appropriate forms of input-output statements.

Indexed Files

In the sequential access mode, the sequence in which records are accessed is the ascending order of
the record key values. The order of retrieval of records within a set of records having duplicate record
key values is the order in which the records were written into the set.

In the random access mode, the sequence in which records are accessed is controlled by the program-
mer. The desired record is accessed by placing the value of the record key in a record key data item.

In the dynamic access mode, the programmer may change at will from sequential access to random
access using appropriate forms of input-output statements.

5-12



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

Current Record Pointer

For all file types, and for each user, the current record pointer is a conceptual entity used in selection
of the next record to be accessed within a given file. The setting of the current record pointer is af-
fected only by the OPEN, START, and READ statements. The WRITE statement for a sequentially
organized file may also affect the setting of the current record pointer.

I-O Status

If the FILE STATUS clause is specified in a file control entry, a value is placed into the specified
two-character data item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DE-
LETE, or START statement and before any applicable USE procedure is executed, to indicate to the
COBOL74 program the status of that input-output operation. The specification of the FILE STATUS
clause (or a USE procedure) for a file indicates that the program is capable of determining and correct-
ing any errors encountered during an I-O operation on that file.

Interrogation and proper interpretation of the FILE STATUS data item after an I-O operation on a
file helps to insure the integrity of that file and can be an aid when debugging the program.

Status Key 1

The leftmost character position of the FILE STATUS data item is known as status key 1 and is set
to a value which indicates one of the following conditions upon completion of the input-output
operation.

Value Condition
0 Successful Completion
1 At End
2 Invalid Key
3 Permanent Error
8 Burroughs-Defined Condition
9 Burroughs-Defined Condition

The above conditions are defined in following text.

Successful Completion

The input-output statement was successfully executed.

At End
The sequential READ statement was unsuccessfully executed as a result of:

1. An attempt to read other than a queue or port file record when no next logical record exists
in the file.

2. The first READ statement being executed for a file described with the OPTIONAL clause,
when that file was not available to the program at the time its associated OPEN statement was
executed.

1168622 5-13



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

invalid Key

The input-output statement was unsuccessfully executed as a result of one of the following:

1. For a Format 2 READ statement, on other than a queue or port file, the contents of the AC-
TUAL KEY data item were less than 1 or greater than the original number of the last record
ever written to the file.

2. For a Format 2 WRITE statement, on other than a queue or port file, the contents of the AC-
TUAL KEY data item were less than 1 or greater than the last record allowed to be written
because of the specification of a maximum file size.

Permanent Error

The input-output statement was unsuccessfully executed as the result of a boundary violation for a se-
quential file or as the result of an input-output error, such as data check parity error, or transmission
error. When there is no FJLE STATUS clause and no USE procedure specified for a file, detection
of a Permanent Error condition will cause the program to terminate abnormally.

Burroughs-Defined Condition

The input-output statement encountered conditions other than those already defined and may have been
unsuccessfully executed, depending on the value of status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as status key 2 and is used
to further describe the results of the input-output operation. This character contains a value as follows:

1. If no further information is available concerning the input-output operation, then status key
2 contains a value of 0.

2. When status key 1 contains a value of 0 indicating a successful completion, status key 2 may
contain a value of 2 indicating a duplicate key. This condition indicates:

a. For a READ statement, the key value for the current key of reference is equal to the value
of that same key in the next record within the current key of reference.

5-14



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

b. For a WRITE or REWRITE statement, the record just written created a duplicate key val-
ue for at least one alternate record key for which duplicates are allowed.

3. When status key 1 contains a value of 2 indicating an INVALID KEY condition, status key
2 is used to designate the case of that condition as follows:

a. A value of 1 in status key 2 indicates a sequence error for a sequentially accessed indexed
file. The ascending sequence requirements of successive record key values have been
violated (refer to WRITE in section 7), or the prime record key value has been changed
by the COBOL.74 program between the successful execution of a READ statement and the
execution of the next REWRITE statement for that file.

b. A value of 2 in status key 2 indicates a duplicate key value. An attempt was made to write
or rewrite a record that would create a duplicate key in an indexed file.

c. A value of 3 in status key 2 indicates no record found. An attempt is made to access a
record, identified by a key, but that record does not exist in the file.

d. A value of 4 in status key 2 indicates a boundary violation. An attempt was made to write
beyond the externally defined boundaries of an indexed file. The compiler specifies the
manner in which these boundaries are defined.

4. When status key 1 contains a value of 3 indicating a permanent error condition, status key 2
may contain a value of 4 indicating a boundary violation. This condition indicates that an at-
tempt was made to write beyond the externally defined boundaries of a sequential file. The
compiler specifies the manner in which these boundaries are defined.

6. When status key 1 contains a value of 9 indicating a Burroughs-defined condition, the value
of status key 2 indicates the condition as follows:

Status Key 2

Value Condition
1 Short Block
2 Data Error
4 Q-Empty or No Data
5 Q-Full or No Buffer
6 Timeout
7 Break on Output
9. Unexpected I-O Error

Short Block

Because of the limitation of the physical recording medium, the system is unable to determine whether
the logical record returned had been written to the file. Determination of the validity of the data record
is the responsibility of the programmer.

1168622 5-15



‘B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

Data Error

When logical records are declared variable in length and the logical record length is supplied by the
programmer (by means of the RECORD CONTAINS clause), a data error occurs on a READ,
WRITE, or REWRITE statement if the loglcal record length supplied is less than the minimum record
size or greater than the maximum record size declared for the file. This condition initiates no input-
output operation nor does it cause data to be transferred to or from the record area.

Timeout

A time limit has elapsed prior to the transfer of data to or from the hardware device.

Break on Output

For an output or input-output file, this condition occurs if the physical hardware device is equipped
with a break such that an operator can halt the transfer of data in process.

Unexpected 1-O Error
An error may have occurred in the input-output operatlon but its nature cannot be determined.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are shown in table
5-1. The letter I (Indexed), P (Port), R (Relative), S (Sequential), or Q (Queue) at an intersection indi-
cates a valid permissible combination.



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

Table 5-1. Status Key Combinations

No Record Found ———
Duplicate Key or (*Data Error)

Sequence Error or (*Short Block)

No Information———l
0

STATUS KEY 2

W -~

Boundary Violation

——Timeout

—y
-

Break on OQutput

£——I-O Error

6 7 9

Successful
Completion

|
R
S

At
End

i

wn 0 —

Invalid
Key

NCA>»—~wn

Permanent
Error

< mx

Burroughs
-Defined

The (*) distinguishes which error occurred when there are
two with the same value, :

1168622

5-17



B 1000 Systems COBOL74 Language Manual
Environment Division

INPUT-OUTPUT SECTION
FILE CONCEPTS

Invalid Key

The INVALID KEY condition can occur as a result of the execution of a START, READ, WRITE,
REWRITE, or DELETE statement. For details of the causes of the condition, refer to the START,
READ, WRITE, REWRITE, and DELETE statements in section 7.

When the INVALID KEY condition is recognized, these actions are taken in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to indicate an
INVALID KEY condition. Refer to I-O Status in this section for additional information.

2. If the INVALID KEY phrase is specified in the statement causing the condition, control is
transferred to the INVALID KEY imperative statement. Any USE procedure specified for this
file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified for this file,
cither explicitly or implicitly, that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output statement which recognized
the condition is unsuccessful and the file is not affected.

At End

The AT END condition can occur as a result of the execution of a READ statement. For details of
the causes of the condition refer to the READ statement in section 7.

Linage-Counter

For Sequential Files only, the reserved word LINAGE-COUNTER is a name for a special register gen-
erated by the presence of a LINAGE clause in a file description entry. The implicit description is that
of an unsigned integer whose size is equal to the size of integer-1 or the data item referenced by data- ~
name-1 in the LINAGE clause. Refer to the LINAGE clause in section 6 for the rules governing the
LINAGE-COUNTER.

5-18



B 1000 Systems COBOL74 Language Manual
Environment Division

FILE-CONTROL

FILE-CONTROL PARAGRAPH

The FILE-CONTROL paragraph names each file and allows specification of other file-related informa-
tion.

General Format:

FILE-CONTROL. {file-control-entry } ...

File Control Entry

The file control entry names a file and may specify other file-related information. If using the sort-
merge features, the file control entry names a sort or merge file and specifies the association of the
file to a storage medium.

1168622 5-19



B 1000 Systems COBOL74 Language Manual
Environment Division

FILE-CONTROL

General Format:

5-20

INPUT-OUTPUT SECTION.
FILE-CONTROL.

- SELECT  [OPTIONAL] file-name

ASSIGN TO

; RESERVE integer-2
AREAS

AREA ]

=

[ ; ORGANIZATION IS SEQUENTIAL ]

{ SEQUENTIAL [

[; ACCESS MODE IS

[ ; ORGANIZATION IS RELATIVE

RANDOM
{ 1, ACCESS MODE IS

L
; ORGANIZATION IS INDEXED

SEQUENTIAL
; ACCESS MODE IS RANDOM
L

DYNAMIC

. DYNAMIC

.~

; RECORD KEY IS data-name-4

[; FILE STATUS IS data-name-1].

SEQUENTIAL [, RELATIVE KEY IS data-name- 3]}
% RELATIVE KEY IS data-name-3 s

L[ ; ALTERNATE RECORD KEY IS data-name-5 [WITH DUPLICATES] ] ...




B 1000 Systems COBOL74 Language Manual
Environment Division

FILE-CONTROL

Syntax Rules:

1. The SELECT clause must be specified first in the file control entry. The clauses which follow
the SELECT clause may appear in any order.

2. Each file described in the DATA DIVISION must be named only once with a file-name in the
FILE-CONTROL paragraph. Each file specified in the file control entry must have a file de-
scription entry in the DATA DIVISION. For an Indexed File, the first eight letters of the file-
name must be unique.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS SEQUENTIAL clause
without the ACTUAL KEY phrase is implied.

4. Data-name-1 must be defined in the DATA DIVISION as a two-character data item of the
category alphanumeric and must not be defined in the FILE SECTION or the COMMUNICA-
TION SECTION.

9. The ORGANIZATION IS SEQUENTIAL clause applies only to the program in which it is
specified.

10. The OPTIONAL phrase may only be specified for sequential input files. Its specification is re-
quired for input files that are not necessarily present each time the object program is executed.

11. The ACTUAL KEY phrase may be specified only for mass storage files, port files, and queue
files.

13. If a relative file is to be referenced by a START statement, the RELATIVE KEY phrase must
be specified for that file.

14. Data-name-3 must not be defined in a record description entry associated with that file-name.
15. The data item referenced by data-name-3 must be defined as an unsigned integer.

16. The data items referenced by data-name-4 and data-name-5 must each be defined as a data item
of the category alphanumeric within a record description entry associated with that file-name.

1168622 5-21



B 1000 Sysfcms COBOL74 Language Manual
Environment Division

FILE-CONTROL

17. Neither data-name-4 nor data-name-5 can describe an item whose size is variable. Refer to the -

OCCURS clause in section 6 for more information.

18. Data-name-S cannot reference an item whose leftmost character position'corresponds to the left-
most character position of an item referenced by data-name-4 or by any other data-name-5 as-
sociated with this file.

General Rules:

1.

The ASSIGN clause specifies the association of the file referenced by file-name to a storage
medium. For Relative and Indexed Files, the storage medium must be DISK.

. The ORGANIZATION clause specifies the logical structure of a file. The file organization is

established at the time a file is created and cannot subsequently be changed.

10.

11.

5-22

. When the access mode of a Relative File is sequential, records in the file are accessed in the
order of ascending relative record numbers of existing records in the file.

. When the access mode of an Indexed File is sequential, records in the file are accessed in the

order of ascending record key values within a given key of reference.

. When the FILE STATUS clause is specified, a value is moved by the operating system into

the data item specified by data-name-1 after the execution of every statement that references
that file either explicitly or implicitly. This value indicates the status of execution of the state-
ment. Refer to I-O Status in this scction for additional information.

. If the access mode of a Relative File is random, the value of the RELATIVE KEY data item

indicates the record to be accessed.

If the access mode of an Indexed File is random, the value of the RECORD KEY data item
indicates the record to be accessed.

When the access mode is dynamic, records in the file may be accessed sequentially and/or ran-
domly. Refer to General Rules 5 and 8, or 6 and 9 under the FILE-CONTROL statement.



B 1000 Systems COBOL74 Language Manual
Environment Division

12.

13.

14.

15.

16.

17.

18.

FILE-CONTROL

All records stored in a Relative File are uniquely identified by relative record numbers. The
relative record number of a given record specifies the record’s logical ordinal position in the
file. The first logical record has a relative record number of 1, and subsequent logical records
have relative record numbers of 2, 3, 4, and so forth.

In a Relative File, the data item specified by data-name-3 is used to communicate a relative
record number between thé¢ program and the MCP.

The RECORD KEY clause specifies the prime record key for the file. The values must be
unique among records of the file. The prime record key provides an access path to records in
an Indexed File.

An ALTERNATE RECORD KEY clause specifies an alternate record key for the file and pro-
vides an alternate access path to records in an Indexed File.

In an Indexed File, the data descriptions of data-name-4 and data-name-5 as well as the relative
locations within a record must be the same as that used when the file was created. The number
of alternate keys for the file must also be the same as that used when the file was created.

The DUPLICATES phrase specifies that the value of the associated alternate record key may
be duplicated within any of the records in the file. If the DUPLICATES phrase is not specified,
the value of the associated alternate record key must not be duplicated among any of the rec-
ords in the file.

DISK specifies that mass storage is the storage medium of the file. A more precise specification
of the medium may be made in the VALUE OF clause in the File Description entry or by means
external to the language.

1168622 . 5-23



B 1000 Systems COBOL74 Language Manual
Environment Division

I-O-CONTROL PARAGRAPH

The I-O-CONTROL paragraph specifies the memory area which is to be shared by different files, and
the location of files on a multiple file reel.

General Format:

[-O-CONTROL.

RECORD
; SAME | SORT AREA FOR file-name-3 {, file-name-4 }
SORT-MERGE

Syntax Rules:
1. The I-O-CONTROL paragraph is optional.
2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of
the file-names must represent a sort or merge file. Files that do not represent sort or merge
files may also be named in the clause.

4, The four formats of the SAME clause (SAME AREA, SAME RECORD AREA, SAME SORT
AREA, SAME SORT-MERGE AREA) are considered separately in the following description.

More than one SAME clause may be included in a program; however, the following restrictions apply:
a. A file-name must not appear in more than one SAME AREA clause.
b. A file-name must not appear in more than one SAME RECORD AREA clause.

¢. If one or more file-names of a SAME AREA clause appear in a SAME RECORD AREA
clause, all of the file-names in that SAME AREA clause must appear in the SAME REC-
ORD AREA clause. However, additional file-names not appearing in that SAME AREA
clause may also appear in that SAME RECORD AREA clause. The rule that only one
of the files mentioned in a SAME AREA clause can be open at any given time takes pre-
cedence over the rule that all files mentioned in a SAME RECORD AREA clause can be
open at any given time,

d. A file-name that represents a sort or merge file must not appear in more than one SAME
SORT AREA or SAME SORT-MERGE AREA clause.

5-24




B 1000 Systems COBOL74 Language Manual
Environment Division

I-O-CONTROL

e. If a file-name that does not represent a sort or merge file appears in a SAME AREA clause
and one or more SAME SORT AREA or SAME SORT-MERGE AREA clauses, all of
the files named in that SAME AREA clause must be named in that SAME SORT AREA
or SAME SORT-MERGE AREA clause(s).

5. The files referenced in the SAME AREA, SAME RECORD AREA, SAME SORT AREA, or
SAME SORT-MERGE AREA clause need not all have the same organization or access type.

General Rules:

1. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least one of
the file-names must represent a sort or merge file. Files that do not represent sort or merge
files may also be named in the clause. This clause specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a memory area
which is made available for use in sorting or me