DISTRIBUTION LIST :

81800/81700 SAOFTWARE PRODUCT SPECIFICATIONS

D EP D D R D D D D R WD D WD D @D WD D NS D D WD ED G D D D G WD WD A GD WD S D D WD R WD W R WD

(:;QEIBQII

Fo Hhite - Prod. Mgnmt.

He HWoodrow = Int®{ Prod Hgnmt
Ce Kunkelmann = BHG

Je McClintock = CSG

U.S. AND EUROPE

D Cikaski =~ (Plymouth)

Jo He Pedersen (Plymouth)

He E. Feeser (Austin)

Je Berta (Dowuwningtown)

G Smolnik (Paocli?

Me Eo Ryan (Tredyffrin)

Te Yama = F2S5SG (MclLean)

Jo Poterack =~ F&SS5G (MclLean)
A. Kosla - FR3S8G (Mclean)

A LaCivita = F85SG (MclLean)
La Guetl - F&SSG (McLean)

. Re Sutton = F2SSG (MchLean)
~L e« DeBartelo = RWADC (Irvine)
__R. Cole (Pasadena)

He M. Townsend (Pasadena)

N Cass - Pat. Atty. (Pasadena)
S« Samman (Mission Viejo)

Jo Lowe (Mission Viejo)

SANTA BARBARA PLANT

R. Shobe
Ke Mevers
R« Bauerle

Distribution 1i st

D. Dahm - Corpe. Enge.
Dir.» Pgmge = SSG

M. Dowers = Corp. TIiO
D. Hitli = TC» BM» & SS

Je Co Allan (Glenrothes)
He McKee (Cumbernauid)
Be Higgins (Livingston)
Mgrs NPSGrp (Ruislip)

E. Norton (Middlesex)

J. Gerain (Pantin)

Je Cazanove (Villers)

Je C. Wery (Liege)

R. Bouvier (Liege)

G. LeBlanc (Liege)

Ce J. Tooth = SSG (London)
Jeo Dreystadt (Wayne)

K. Iwasawa (Tokyo, Japan)

A. van der Linden - 12
Jo Alajoki = 2

current as of 3/710/82

C

. Burroughs Corporation @

P.S. 2212 5405

COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

B1000 SDL (BNF VERSION)

. PRODUCT SPECIFICATION.

REV
LTR

REVISION

{SSUE DATE APPROVED BY REVISIONS

3/9/82 /2¢;;' Changes for the Mark 11.0 Release.

8-35 Added "SORT DELETE" designator.
9-16 Updated '"<ON CLAUSE>..."
Deleted '"<STATUS> ::= <ADDRESS GENERATOR>".
Updated "An ON SEQUENCE...' paragraph.
12-1 Rewrote first two paragraphs of APPENDIX II.
Deleted "IUNDERSCORE IN_FILE NAMES" from
"<CONTROL OPTION WORD>".
12-5 Deleted "UNDERSCBRES_IN FILE NAMES'"-and definitiom.
12-6 Deleted "Note: All control..." paragraph.
14-2 Changed "." to " " on ERROR_LINE, XREF_LINE,
XMAP_ LINE and IMAGE FILE.
Added ''SDL GENERATED FILE NAMES" section.
18-6 Deleted "THE MONITOR FILE" definitionm.

**THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURROUGHS
CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIOE OF BURROUGHS CORPORATION WITHOUT
THE PRIOR WRITTEN RELEASE FROM THE PATENT OIVISION OF BURROUGHS CORPORATION''

C |

~

Burroughs Corporation @ B1800/B1700 SDL (BNF Version)

COMPUTER SYSTEMS GROUP
SANTA SARBARA PLANT

2212 5405

REV | REVISION

APPROVED BY
LTR [ISSUE DATE

PRODUCT SPECIFICATION

REVISIONS

E |11/17/78C W

l

RECEIVED
it 2~ 19p0

ENERAL MANAGER
SA%TI\ BARBARA HLANT]

-
o

5-18

5-19

5

21

5-22

5-25
5-31
5-32

6-2

Changes to the Mark VIII.O Release

Changed title to B1800/B1700 SDL £BNF Version)

Changed BNF statement {IDENTIFIER) ::= ZIDENTIFIER) to
{IDENTIFIERY ::= {.ETTERD

Replaced '/" with "¢"

Updated STRUCTURE OF AN SDL PROGRAM Section:

Added JLRECORD STATEMENT) to {DECLARATION STATEMENT)

. Replaced 3 NVS BIT(1l) with 3 NSR BIT(l) in PL/I-STYLE

STRUCTURE
Updated NON-STRUCTURE DECLARATIONS BNF;
Replaced ¢DECLARED PARTY with ...l {DECLARED PART, \{...
in {DECLARED ELEMENT® declaration.
Updated REFERENCE DECLARATION:
Replaced ¢DECLARED REF)® REFERENCE with ...l {DECLARED
REFD REFERENCE {...
Updated REFERENCE RECORD DECLARATION:
Replaced ¢DECLARED RECORD REFY REFERENCE with
e e+) {DECLARED RECORD REF) REFERENCE §...
in {DECLARE ELEMENT) DECLARATION.
Updated FILE DECLARATIONS:
Added | ¢PROTECTION PART)Y and #§ LPROTECTION_IQ)PART to
{FILE ATTRIBUTE)
Updated Syntax
Deleted JREADER_PUNCH £DEVICE OPTION)from {DEVICE
SPECIFIERD
Added DATA RECORDER_80 to 4DEVICE SPECIFIERD
Updated Format
Deleted READER.PUNCH
Added DATA_RECORDER_80
Updated Default section of UNBLOCKED RECORD LENGTHS
to
Added Default status of ZPROTECTION PARTQ attribute and
£{PROTECTION_IO_PART ,
Updated PROCEDURE HEAD:
Added REFERENCE TO £TYPE PART?
Updated ASSIGNMENT STATEMENTS AND EXPRESSIONS:
Deleted EXPRESSION from ASSIGNMENT STATEMEN
Added EXPRESSION LIST to ASSIGNMENT STATEMENT
Description of NULL rewritten
ACCEPT STATEMENT section updated:
Deleted £ END-OF-TEXT SPECIFIER)
Deleted paragraph pertaining to END-OF-TEXT

10-28 Updated SEARCH DIRECTORY STATEMENT:

**THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURROUGHS
CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT

THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION'’

.

Burroughs Corporation @ B1800/B1700 SDL (BNF Version) _712 5405

COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

PRODUCT SPECIFICATION

REV
LTR

REVISION

APPROVED BY
ISSUE DATE

REVISIONS

10-28

10-31

10-39

10-45

U 5-6

5-20
5-33
8-16

8-18
8-22
8-28
8-39
9-2

9-7

1y
11/17/74-~ L Changes for the Mark VIIL.0 Release f{cont)

Updated £ SEARCH STATEMENT? :
Added ON FILE PART
Deleted all other references to SEARCH PART
NDeleted QFILE MISSING PART)
Deleted £FILE LOCKED PARTY»
Added ¢ON FILE PART)
Updated table:
Added PROTECTION
Added PROTECTION_IO
Updated COMPILE_CARD_INFO table
Added USERCODE
Added FILLER
Added SESSTON
Changed CHARGE NUMBER CHARACTLR from 6 to 7

Updated MESSAGE_COUNT
Deleted | {FILE IDENTIFIER) L{EXPRESSIONYJ
Added £SWITCH FILE IDENTIFIER »

6/25/8&:1}JOJLQ-—/Changes for the Mark 10.0 Release

Added "<LEVEL NUMBER> <STRUCTURE ELEMENT>" to
<STRUCTURE ELEMENTS>.

Added '<HOST_NAME PART>" to <FILE ATTRIBUTE> list.
Added ''<HOST NAME PART>" ATTRIBUTE.

Added "<BINARY_SEARCH DESIGNATOR>",
"<DATA_LENGTH DESIGNATOR>'", '<DATA TYPE DESIGNATOR>"
"<LAST LIO STATUS DESIGNATOR>', & "<TIMER DESIGNATOR>"
to "VALUE GENERATING FUNCTIONS" list.

Added '"BINARY SEARCH'" description.

Added "DATA LENGTH" & 'DATA TYPE" descriptions.

Added "LAST LIO STATUS'" description.
Added "TIMER" description.

Added " <ON BEHALF OF MODE>'" to '"<OPEN ATTRIBUTE>."
Added "<ON BEHALF OF MODE>'" to OPEN STATEMENT.

Added "<READ PART> <RESULT MASK>; <ON SEQUENCE>"
to "<READ STATEMENT=."

Added "<RESULT MASK> ::= WITH RESULT_MASK <ADDRESS
GENERATOR>" tc the READ STATEMENT.

Added "if the <RESULT MASK>...'" paragraph.

“*THE INFORMATION CONTAINED IN THIS DOCUMENT 1S CONFIDENTIAL AND PROPRIETARY ‘TO BURROUGHS
CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT
THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION"’

Burroughs Corporation‘a B1800/B1/00 SDL (BNF Verzion)

COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

PRODUCT SPECIFICATION

REV | REVISION APPROVED BY REVISIONS
LTR |ISSUE DATE

Changes for the Mur~ 10.0 Release (;01’?*;;)

9-8 Added "<WRITE PART> <RESULT MASK>; <ON SEQUENCE>"
to the WRLTE STATEMENT.

9-9 Added " <RESULT MASK> ::: WITH RESULT MASK
<AADDRESS GENERATOR>" t0o the WRITE STATEMENT.

9-10 Added "If the <RESULT MASK>...'" paragraph.

10-15 Added '"<DYNAMIC HOST_NAME PART>" and

"<DYNAMIC OPEN_ON_BEHALF OF PART>" <o
<DYNAMIC FILE ATTRIBUTE> iist,

10-2% Added "<DYNAMIC HOST NAME PART>" aai
"<DYNAMIC OPEN ON BEHALF OF>" des-=ip*ion-.

Added "<REFE? _ADDRESS DESIGNATOR>",
"<REFER_LENGTH DESIGNATOR>'" and
"<REFER_TYPE DESIGNATOR>" =5 FUNCTION DESIGNATORS .

10-47 Added "REFEK ADDRESS" descriptiorn.

.
(e
]
(8
N

10-48 Added "REFER LENGTH" inc¢ '"REFER TYPE" descriptions.
. p

““THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO BURROUGHS
CORPORATION AND IS NOT TO BE DISCLOSED TO ANYONE OUTSIDE OF BURROUGHS CORPORATION WITHOUT
THE PRIOR WRITTEN RELEASE FROM THE PATENT DIVISION OF BURROUGHS CORPORATION'’

TC-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT " PeS. 2212 5405 (G)

BACKUS NAUR FURN * »® [] L] . L 2 ® L] » L J - L] L] * L) - L] L] Ll L] * L 1‘1
RELATED PUBLICATIONS 1-2
BASIC COMPONENTS OF THE SDL LANGUAGE e ® o o e o s e » o o 2=1
COMMENTS 2=2
NU”BERS L 4 - L J L ® ® L J L] L] . * ® * L] *® ® L 2 - - L - - < * 2-3

BIT STRINGS 2=3
CHARACTER STRINGS - - L J - - - - L] ® - L] - L] * - o - L 3 2‘#
CHAR_TABLE 2=5
QTHER CGN STANTS - - - - ® * - - - - * < L J ® ® ® ® » ® ® 2-5
STRUCTURE OF AN SDL PROGRAM 3-1
PROGRA" SEGHENTATIUN ® - L] - - » » - * * ® L 2 - : 2 L] - £] * L] 4-1
DECLARATICNS 5=1
DATA TYPES - - - - L] * - L] L L - -» Ed - - L J L] ® E 3 L] * - 5-1
DECLARE STATEMENT 5=2
RECQRD STATEMENT L] L J - L J L » - - < L J - L J -* * * ® * - < 5-3
NON=-STRUCTURE ODECLARATIONS ' 5=8
STRUCTURE DECLARATIONS e« e ¢ « » o = © o © o« = o « « » 5=11
PAGED ARRAY DECLARATIONS 5=15
DYNA"IC DECLARATIDNS * - L] - 2 ® ® E] * - - ® - L] E J L] 5-16
Restrictions: 5-17

REFERENCE DECLARATIONS &« o o @ © © # « o « » » « » o = 5=18
RECORD REFERENCE DECLARATIONS 5=19

FILE DECLARATIONS -* L] L J - L] - - * < - L] ® * - L J L J - - 5—20
SWITCH FILE DECLARATIONS 5=34
DEFINE STATEMENT @ o o o © = © « o« © » = =« » » » o a = 35=35
FORWARD DECLARATION 5=40

USE STATEHENT L] - L J * L] - L J - - - - *® * L] - £ d - < - L] 5-1'3
PROCEDURES ‘ 6-=1

PROCEDURE HEAD e e ®» ® ®» ® ®» ® e s ® ® ® ® & ® e ® e » 6
INTRINSIC HEAD -]
PROCEDURE B80DY e ®» 3 s ®» © o ®» ® ®» s ®» o e ® ®» s e o e b
PROCEDURE ENDING 6
ASSIGNMENT STATEMENTS AND EXPRESSIONS o ¢ o © o o o o« o = o 7
UNARY QOPERATORS 7
ARITHMETIC OPERATORS e« o ® o @ o ® o o o s o s o o e = 1
RELATIONAL QPERATORS ' 7
LOGICAL QOPERATORS e ®» o ® ® o s ® s 8 o s e o ® s s o o 1
REPLACE OPERATORS 7
CONCATENATION s o o o & o ® 8 o @ ®» ® & ® w w e e » o I=
PRIMARY ELEMENTS OF THE EXPRESSION 8
CONDITIONAL EXPRESSION o o ¢ o o = © » s » o o » o » o« 8
CASE EXPRESSION 8
BUMP © o © ¢ o o ® & s & & 3 s ® & » » 8 o o ®»w s = s = 8
DECREMENT 3
ASSIGNOR e o o ® ® ®© ® o © ® o ® ® ® ® °© e ®» ® e °© 3
ADDRESS VARIABLES _ 8
INDEXING ® ®© @ ® o ° ® @ e ®© ®© ° © ® ° o ® o o 8
ADDRESS GENERATING FUNCTIQNS 8

AR
P
e

BURROUGHS CORPORATION
COMPUTER SYSTENS GROUP
SANTA BARBARA PLANT

SUBBIT AND SUBSTR o o o « =
FETCH_COMMUNICATE_MSG_PTR
DESCRIPTORS o o o = = = -«
MAKE_DESCRIPTOR
NEXT_ITEM» PREVIOUS_ITEM . .
NULL

AODRESS GENERATORS < o o o o o

VALUE VARIABLES :
TYPED PRBCEDURES L] L - - - - ® * - - E]

ACDRESS AND VALUE PARAMETERS

VALUE GENERATING FUNCTIONS . o .
BASE_REGISTER
BINARY CONVERSION « = « o
BINARY SEARCH
COMMUNICATE_WITH_GISMO . .
CONSOLE_SWITCHES
CONTROL_STACK _BITS « o « o «
CONTROL_STACK_TOP
CUNVERT - - L] o - *® - - - -
DATA_ADDRESS
DATA_LENGIH . - - -* * - © - L]
DATA_TYPE
DATE L] E J] E . - - L ® ® ®
DECIMAL CONVERSION
DISPATCH
DISPLAY_BASE o « o o o o =
DYNAMIC_MEMOIRY_BASE
EVALUATION_STACK_TOP o « « .
EXECUTE
EXTENDED ARITHMETIC FUNCTIONS
HASH_CODE
INTERROGATE_INTERRUPT_STATUS
LAST_LIO_STATUS |
LENGTH ® L] L] - L] E] * L L r]
LIMIT_REGISTER
LOCATION L] L 2 L L J * L] - * *® ®
NAME_QOF_DAY
NAME_STACK_TOP ¢ o o o o «
NEXT_TOKEN
PARITY_ADDRESS « « o o o o «
PROCESSOR_TIME
PROGRAM SWITCHES o « o o
SEARCH_LINKED_LIST
SEARCH_SOL_STACKS o o « o «
SEARCH_SERIAL_LIST
S_MEM_SIZE», M_MEM_SIZE . .
SORT DELETE
SORT_SEARCH .
SORT_STEP_DOWN
SORT_UNBLOCK o o o o o o «
SPO_INPUT_PRESENT
SUBBIT AND SUBSTR o « o o =
SWAP

TC=-2
COMPANY CONFIDENTIAL

B1000 SDL (BNF Version)

P.S. 2212 5405 (G)

8=10
8-10
3-11
8=-12
8=-12
8=13
8=14
8=15
8=15
8-16
8=-17
8=18
8-18
8=19
8-19
8=19
8=19
8=-20
8=22
8=22
8=22
8=22
8=-23
8=23
8=24
8=25
8=25
8=25
8=25
8§=27
g§=27
8=28
8=28
. 8-28
8=28
8=-29
8-29
8=30
8=30
8=31
8-31
8=31
3=32
3-33
8=34
8=35
8=35
83=35
B=36
8-36
8=-37
8=37
8-38

L » . ® - L] L]

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

TIHE * - E] R) ®
TIMER
VALUE_DESCRIPTOR
WAIT
170 CONTROL STATEMENTS . . .
OPEN STATEMENT
CLOSE STATEMENT o o o «
READ STATEMENT
WRITE STATEMENT .
SEEK STATEMENT
ACCEPT STATEMENT o o o
DISPLAY STATEMENT
SPACE STATEMENT .« o &
SKIP STATEMENT
ON SEGUENCE o = o = « o «
EXECUTABLE STATEMENTS
DO GROUPS e o o o o o o
UNDG
IF STATEMENT o o o o o «
CASE STATEMENT
REFER STATEMENT o o o «
REDUCE STATEMENT
END OF STRING o « «
MODIFY STATEMENTS (CLEAR»
NULL STATEMENT ¢ o « o «

- L d

BUNP»

TC-3

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)

PeSe

DECREMENT)

‘FILE ATTRIBUTE STATEMENT (CHANGE STATEMENT)

STOP STATEMENT .+ « « + &
ZIP STATEMENT
SEARCH_DIRECTORY STATEMENT

* L] -

*®

R J L - - ® - -

READ_FILE_HEADER»

WRITE _FILE_HEADER

MAKE_READ_ONLY»

MAKE_READ_WRITE

CORQUTINE STATEMENT

EXECUTE~PROCEDURE STATEMEN

EXECUTE=FUNCTION STATEMENT
ACCESS_FILE_INFORMATI
CHANGE_STACK_SIZES
CHARACTER_FILL «
COMMUNICATE
COMPILE_CARD_INFO .
DC_INITIATE_IO
DEBLANK £] L] - - *
DISABLE_INTERRUPTS
DUHP * - E] [] E L J L L]
DUMP_FOR_ANALYSIS
ENABLE_INTERRUPTS - .
ERROR_COMMUNICATE
EXECUTE * * L] * - -
FETCH
FREEZE_PROGRAM .« .
GROW
HALT o o .« . .
HARDWARE_MONITOR
INITIALIZE_VECTOR .
MESSAGE_COUNT

T .

aN .

L J - -

» * o » - L

® < - - ® - L J

* L J - * L] - L 3

2212 5405 (G)

8=39
8-39
8=40
8=40
9=-1

9=2

9=4

9-6

e o 9-8
9=-11
9=-12
9-13
9=14
9=15
9=16
10-1
102
10=4
10=5
10-7
10-8
10-9
« 10-11
10=-12
10-13
10=14
- 10=26
10-27
10-238
10=30
10-32
10-33
« 10=35
10-36

- 10-37
10-37

- 10-38
10-38

« 10-38
10=39
10-40
10=40
10=40
10=41
10=41
10=41
« 10=42
10-42

« 10=43
10-=43
10=44
10=44
10=44
10=45

. -

- * L d

L ®

BURROUGHS CORPQORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

MONI
avER

TOR
LAY

A J L J L] - - - L4 L J £ L

READ_CASSETTE o o o o o
READ_FP3, WRITE_FPB
READ_OVERLAY, WRITE_OVERLAY
REFER ADDRESS

REFER LENGTH <« o o
REFER TYPE

REINSTATE

REST

ORE

L] L 4 - L ° * L] *® ®

REVERSE_STORE s e e o s e

SAVE

SAVE_STATE « o s o o o = @

SORT

SGRT‘HERGE - *® - ® L 2 L] - L J

SORT_SHAP

THAW_PROGRAM < o o o o ¢ o
THREAD_VECTOR

TRAC

TRANSLATE

E

L J - L L L] L] *® ® -

I: RESERVED AND SPECIAL WORDS
II: SDL CONTROL CARD OPTIONS
PRIGRAMMING OPTIMIZATION
RUNNING THE COMPILER

V: CONDITIONAL COMPILATION
VI: SOL PROGRAMMING TECHNIQUES
SDL PARTIAL RECOMPILATION FACILITY e o o o o 17-1

II1I:
Ivs

VII:
VIII:

SOL

MONITORING FACILITY

TC=4

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.S. 2212 5405 (G)

e o ®»® o e * o o 10=45
10=45

e o o o » o o o o 10=46
10-45

10=47

e s o o o » o = o 10=48
10=48

10=49

e ® o = o » ®» » » 10-49
10=-50

e o s o o » » o o 10=50
10=-50

®© © © © © © e ® 10-51
10=52

e © « o o ®» e « o 10=52
10-52

e » © « o »« o « e 10=53
10=54%

« o o o o » o e =« 11=1
12-1

s ® ®» e ® e ® © ® 13-1
14-1

e s ®» o » o ®» s o 15=1

16~-1

18-1

1-1

BURROQUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.3S. 2212 5405 (G)

BACKXUS NAUR FQRM

A language used to talk about a language is a metalanguage. The
natural languages ares in facts, metalanguages? for examples the
metalanguage English is used to talk about the structure of an
English language sentence. Backus Naur Form (B8NF)» a
metalanguage popularized by its use to describe the syntax of
Algol 60 1is wused to describe the syntax of SOL. To avoid the
confusion between the symbols of the metalanguage and those of
the {anguage being described» BNF uses only 4 metalinguistic
symbolse Literal occurrences of symbols other than the the
metasymbolss with no bracketing characterss represent themselves
as terminal symbols of the language.

A grammar for SDL is written as a set of BNF statementss each of
which has a left part, followed by the metasymbol "2::=" followed
by a Llist of right partse. The lLleft part is a phrase names and
the rignt partss separated by the metasymbol "1™ are strings
containing terminal symbols and/or phrase namess

METASYMBOL ENGLTISH EQUIVALENT USE

LE R X L TR ¥ Y ¥ LR R X E XL R LR R X o - -

is defined as separates a phrase name from
its definition.

i or separates alternate definition
of a phrasee

<IDENTIFIER> "IDENTIFIER™ The bracketing characters indi-
cate that the intervening char-
acters are to be treated as a
unitr ieeer» as a phrase name.

Each 3NF statement 1is a rewriting rule» such that we may
substitute any right part for any occurrence of its associated
left part; and we have a choice of right parts which we may
substitute. The following =axample specifies the usa of these
rules to determine those strings which are grammatically correct
identifiers in SOL. '

<SLETTER> ::=

:Jm;)‘
Do
il
oIio
e
o
S
e
T
<=
E v X (.
ol
St

N 8 N X

1-2

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)
<DIGIT> ::= o1t 112131 41516171819

<BREAK> 3:=

<IDENTIFIER> ::= <LETTER>
] <IDENTIFIER> <LETTER>
I <IDENTIFIER> <DIGIT>
| <IDENTIFIER> <3REAK>

XYZ12_B4 is a proper SDL <IDENTIFIER> sinée it can be generated
as 3 terminating set of symbols by using the 8NF rules.

Proof that XYZ12_84 is an <IDENTIFIER> by starting with the fact
that an <ICENTIFIER> can be a <LETTER>.

FORM EXAMPLE
<IDENTIFIER> 3= <LETTER> X
<IDENTIFIER> 3:= <IDENTIFIER><LETTER> XY
<IDENTIFIER> :2:= <IDENTIFIER><LETTER> XYZ
<IDENTIFIER> :3= <IDENTIFIER><DIGIT> XYZ1
<IDENTIFIER> 3:= <IDENTIFIER><DIGIT> XYZ12
<IDENTIFIER> 3= <IDENTIFIER><BREAK> XY212_
<IDENTIFIER> :3:3= <IDENTIFIER><LETTER> XYZ12_8
<IDENTIFIER> ::= <IDENTIFIER><DIGIT> XYZ12_B4

Notice that the 8NF rules do nots» in any ways, Limit the number of
letters» digitss, and dots which comprise the <IDENTIFIER>. In
such casess further semantic rules will be specified’? 2eJer an
SDL <IDENTIFIER> is limited to a maximum of 63 characterse

EELAIED BUBLICATIONS

NAME NUMBER
SDL/UPL COMPILER P.Se. 2212 53892
B1700 SDL S-LANGUAGE P.S. 2201 2389
B1700 SYSTEHS REFERENCE MANUAL #1057155

: : 2=1
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (6)

BASIC COMPONENTS OF THE SDL LANGUAGE

In order to understand SDL grammars the user should be famitiar
with the 'most basic elements of the Software Developmental

Language belowe.

<DIGIT> s:= gt 1123141516171 819

<LETTER> ::= Al BiICtl!DILELFLITGILHII VI
I Kt Lt MINTOTLPTQIERIESTT
Ul viWwIp X1 Y1'!Zi1i atbictd
et flgitht il jtltkittltilimlhn
i ol ot gtr i st tiltultviwlx
Iyt 2z

<SPECIAL CHARACTER> ::= 2!l .t <1 5t 0 721 /=1
I 81 ¢ 1 > 1 >= = | + } = | .
P C 1Y 1= 1 <=1 L 1 1 1 <BLANK

<BREAK> ::= _

<BLANK> ::=

NOTE: <BLANK> is the occurrence aof one non=-visible

character ™ =,

<LETTER> | <IDENTIFIER> <LETTER>
! <ICENTIFIER> <DIGIT»>
I <IDENTIFIER> <BREAK>

<IDENTIFIER> =32

RESTRICTIONS:
1. An identifier may not contain blanks.
2. An identifier may contain a maximum of 63 characterse.
3. Reserved words may not be used as identifiers.

be "Special™ wWwords may be used for segment and DO0=-group
identifiers without losing their special significance
in SDL.

_\’//

C

2=2

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
CIMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA SBARBARA PLANT Pe.S. 2212 5405 (GQ)

Se In atl other cases» "special™ wWwords may be used as

identifiers» however, they lose their special
significance throughout the entire program when
declared at Lexic Level 0. When declared at any
greater lexic lavels they only lose their special
meaning wWithin the procedure in which they are
declarede.

(Also see "Structure of an SDL Program®™ and "Appendix
i)

6e All reserved and special words must be in all upper
casee.
7. Identifiers must contain exactly the same letters-»
Wwhere upper and lower case are concerneds to be
identical. If an upper=-case identifier» for examples»
is entered in lower cases it is a new identifier.
COMMENTS
<COMMENT STRING> ::= /* <COMMENT TEXT> =/
RESTRICTIONS:
ie The pair /* preceding the <COMMENT TEXT> must appear
as adjacent symbols. Similarily» the pair «/
following the <COMMENT TEXT> must also appear as
adjacent symbolse.
<COMMENT TEXT> s:= <EMPTY>

<EMPTY> ::=

Note:

<COMMENT TE
CHARACTER>

XT

| <CJIMMENT TEXT CHARACTER>
| <COMMENT TEXT CHARACTER>
<COMMENT TEXT>

<EMPTY> is the null set or the occcurrence of nothing.

= <DIGIT>
I <LETTER>
| <SPECIAL CHARACTER>
| bl - T D 2 T 4

<CARD TERMINATOR> ::= z

2=3

BURRQOUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)
RESTRICTION: A Z is treated as any other string character if

it is contained within a <CHARACTER STRING> or in
<COMMENT TEXT>. Howevers» in all other casesr» a %
will cause the scanning of the current source
image to terminate and to continue in the next
source imagee.

NUMBERS

<NUMBER> ::= <DIGIT> | <NUMBER> <DIGIT>

NOTE: Range of signed numbers =(2 exp 23) to (2 exp 23)-1.
Range of unsigned numbers 0 to (2 exp 24)-1.

81T STRINGS

<BINARY DIGIT> ::= 0 I 1 1t <COMMENT STRING>
<BINARY DIGITS> s3:= <BINARY DIGIT>

I <BINARY DIGITS> <BINARY DIGIT>
<QUARTAL DIGIT) = <BINARY DIGIT> | 2 1 3
<QUARTAL DIGITS> ::= <GUARTAL DIGIT>

1 <QUARTAL DIGITS> <QUARTAL DIGIT>
<QCTAL CIGIT> z3:= <QUARTAL DIGIT> | 4 1 S 1 68 | 7
<OCTAL DIGITS> z::= <OCTAL DIGIT>

I <O0CTAL DIGITS> <OCTAL DIGIT>

<HEX DIGIT> z2:= <OCTAL DIGIT>
t 8t 91 A1 BI1LCIDILETILIF

<HEX DIGITS> ::= <HEX DIGIT>
I <HEX DIGITS> <HEX DIGIT>

<BIT GROUP>::= (4) <HEX DIGITS>
I (3) <O0CTAL DIGITS>
I (2) <QUARTAL DIGITS>
I (1) <BINARY DIGITS>

<BITS>::= <BIT GROUP> | <HEX DIGITS>
I <BITS> <3IT GROUP>
I <EMPTY>

<3BIT STRING> ::= a<BITS>3

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP

2=4
COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (GQ)

RESTRICTIONS:

1.

<STRING>

CHARACIER

se

If no bit mode 1is specified (i.2.» The indicator
digit in parentheses is omitted)», ™Hex™ is assumed.
This can only De assumed if the bit string dces not
start with 3 mode indicator; when the mode s
switched to ™Hex"™» an explicit "(4)" is regquired.

As noted aboves a <COMMENT STRING> may appear
anywhere within a <8IT STRING>» but not within the
parentheses bounding the indicator digit. The
presence of a3 <COMMENT STRING> wills in no ways» alter
the value of the <8IT7T STRING> containing ite. Blanks
may not appear in a <BIT STRING>.

Example:

d(3)6330316260/« THIS #/313230/* IS */63302560/% THE =/

4321626360/ LAST %/512523465124/+ RECORD /3

"

<CHARACTER STRING>
I <8BIT STRING>

(1]

IRINGS

<CHARACTER STRING> ::= "<STRING CHARACTER LIST>"

<STRING CHARACTER LIST> ::= <EMPTY>

<STRING CHARACTER>

I <STRING CHARACTER LIST>
<STRING CHARACTER>

L 13
(1]
[}

"t 31 #1

RESTRICTIONS: If a quote sign is desired in a character

strings then two adjacent gquote signs must
appear in the texte.

<DIGIT> | <LETTER> | <SPECIAL CHARACTER>

2=5

BURRDUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF VYersion)
SANTA BARBARA PLANT P.S5. 2212 5405 (B)

EXAMPLE: DECLARE STRING CHARACTER (6)»
: QUOTE CHARACTER (1)5

STRING
QuUarTE =

After executions, STRING will contains A3"CDE»
"and GUOTE will contain: ".

Note: A <CHARACTER STRING> may contain a3 maximum of
256 characterse.

CHAR_TABLE

The translation bit table for the set—=membership reduction 1is
rather cumbersome to construct by hands so the compiler provides

a convenient notation for table constructse. These constants are
Wwritten: 4 ,

<TABLE CONSTANT> ::= CHAR_TABLE (<TABLE STRING>)
<TABLE STRING> :3:3= <STRING> | <TABLE STRING> CAT <STRING>

AN

{ }
corresponding to avery character in <TABLE STRING>. (When a <BIT N/
STRING> occurs in the <TABLE STRING>» it is used to denote
non=graphic characters in their hexidecimal (EBCDIC) form.)

The constant denoted is a 256=bit string with 23{1)1a3

QIHER CONSIANIS

<CONSTANT> z2:= <NUMBER> | <STRING> | TODAYS_DATE
| SEQUENCE_NUMBER
I HEX_SEQUENCE_NUMBER
I <TABLE CONSTANT>

TODAYS_DATE represents the date and time of
compilation of the programe. It is the same as the
date and time appearing at the top of the progranm
listings It is a character string with the following
format --

“MM/DD/YY HH3IMM"™
SEGUENCE_NUMBER represents a <CHARACTER STRING> of 8

characters which is the sequence number of the @::
current source image being compilede.

Mo

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT PeS. 2212 5405 (Q)

2=6
COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)

HEX_SEQUENCE_NUMBER represents a bit string of 8
(hex) digits which is the sequence number of the
current source image line being compilede. If this
sequence field is blanks then HEX_SEQUENCE_NUMBER =
3000000003

If the current source image line sequence number s
12753000» then on this lLine:

SEQUENCE_NUMBER = "12753000"
HEX_SEQUENCE_NUMBER = 3127530003

3=-1
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT - P.S. 2212 5405 (G)

SIRUCTURE OF AN SDL PROGRAM

<PRCGRAM> ::= <DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<EXECUTABLE STATEMENT LIST>
FINI

<DECLARATION STATEMENT
LIST> 3:= <EMPTY>
' 1 <DECLARATION STATEMENT>
<DECLARATION STATEMENT LIST>

<DECLARATION STATEMENT>

i

<DECLARE STATEMENT>;

| <DEFINE STATEMENT>;

I <FILE DECLARATION STATEMENT>;

I <SWITCH FILE DECLARATION
STATEMENT>;

| <FORWARD DECLARATION>;

I <USE STATEMENT>;

I <SEGMENT STATEMENT>;

!

!

<DECLARATION STATEMENT>;
<RECIORD STATEMENT>;

<PROCEDURE STATEMENT
LIST> ::= <EMPTY>
: I <PROCEDURE STATEMENT>;
<PROCEDURE STAYEMENT LIST>

<PROCEDURE STATEMENT> ::

]

<PROCEDURE DEF INITION>
| <SEGMENT STATEMENT>
<PROCEDURE STATEMENT>

<EXECUTABLE STATEMENT
LIST> ::= <EMPTY>
| <EXECUTABLE STATEMENT>
<EXECUTABLE STATEMENT LIST»>

<EXECUTABLE STATEMENT> 2:= = See SECTION 10.

A program written in SDL must follow the sequential structure
described in the syntax above. That is» the executable section
of the oprogram may not appear until all procedures have been
defined» and procedures may not be defined before the formats of
data items {(variables» arrayss etc.) have been declared. “FINI™
is not requireds but if present must physically occur as the
final statement in the programe.

B w me me mmreml e mm T m L LC wn e i wm e e s o et am m maemen e e e s e 3 e e n

3=2

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B10CO SDL (BNF Version)
SANTA BARBSARA PLANT PeS. 2212 5405 (G)

The procedure statement (including declaration» procedure» and
executable statements) is the basic structure in SDL. An SDL
program 1is a collection of procedures» each of which can be
described for conceptual purposes as a microcosm of the programe.
Any given grocedure may contain a collection of other procedures
within itself. This pracess is known as "Nesting”.

The "Lexicographic Level” of any statement 1in the program is
equal to the number of procedures in which it is nested. The
program itself will always be Lexic Level 0, and no praocedure may
have a Llexic Llevel greater than 15. The diagram in Figure 1
illustrates procedure nesting and lexic levels.

It is important to understand the relationships between these
nested procedurese. As Figure 1. indicates» the name of any
given procedure is contained in the procedure in which 1t s
nested at the next lower lexic lavel. For examples procedure D
is a Lexic Level 2 procedures however, its names "D, 1i1s part of
Lexic Level 1.

The "scope™ of any given procedure is recursively defined as:

1 The procedure itself,
2) Any procedure(s) nested within the procedure>»
33 Any oprocedure (and its nested orocedures) whose name

appears at the same lexic lLevel and within the same
procedure as its own names» and

4) The procedure in which its own name is definede.

In Figure 1» one can see that the scope of Procedure B includes:

1 Itselfsr 1e0er» Procedure B
2) The nested procedures within B (C and D).
3) The other procedures defined at LLO: E (and its

nested procedures F and G) and procedure H (and its
nested procedures Js» K» L» M» N» and Pe.

4) The procedure which defines 3» in this casesr the
program A.

Note: All the Lexic Level 0 procedures have scope to each

othere. This occurs because of rule 4 aboves» wherein
the program itself is thought to be a "procedure”.

P arh o m wr o mm e e e e awn e e e e s e e At s MR o A o v e mm - e . o . - ip o o b o e

SRR s | AR S U

; 3-3
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (G)

In the same manner», the scope of procedure J includes Jr K» L» ¥M»
N» P» and H.

3y understanding the relationships between the various
proceduress» it i1s possible tc determine which procedures may be
invoked by any given procedure. SDL has been defined so that any
procedure X may call or invoke any procedure Y» if the scope of Y
encompasses Xe ~

In Figure 1» Procedure J may call procedures JsKelLsMsHsEs and B
because each of these contains J in its scope.

Note: J cannot call the program A since the name of the
programs if there is onesr exists outside the program
and is» therefores not compiled? howevers, J may
access the dsta contained in A (i.e.» Al, A2» A3, and
Abd)e.

Figure 2 belowx shows the relationship between scope and calling
ability for program A.

|

3=4

| BURROUGHS CORPORATION COMPANY CONFIDENTIAL
| COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
| SANTA BARBARA PLANT P.S. 2212 5405 (G)
i

| - PROGRAM A

| ‘Z DECLARE Al, A2, A3, A4

PROCEDURE B85
DECLARE 31, 82, 83;
PROUCEDURE C5
DECLARE Cl» C2, C33
EXECUTABLE STATEMENTSS
END Cs
PROCEDURE D5
EXECUTABLE STATEMENTS;
| ENC D5
| EXECUTABLE STATEMENTS;
| END 87
PRUCEDURE E;
- DECLARE E1, E2;
PROCEDURE F3;
DECLARE F1l, F2, F3;
EXECUTABLE STATEMENTSS
END F3;
PROCEDURE G3
DECLARE G1l» G2
EXECUTABLE STATEMENTSS

END G
EXECUTABLE STATEMENTS,
END E5
. PROCEDURE H>
(T ! DECLARE H1l» HZ2s H3», Has
. PROCEDURE J»
PROCEDURE K>
END K>
PROCEDURE LU>
END L7
END’;
PROCEDURE M;
PROCEDURE N>
END N
PROCEDURE P35
i END P>
| END M;
i END A’
| EXECUTABLE STATEMENTS:
FINI

‘ Fig l. Procedure Nesting

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

Procedure

Scope

Note:

3=5

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PsS. 2212 5405 (G)

CALLING PROCEDURES

w

L I I B N e

* » » % O

* % ¥ ¥» M
»
»
»
%
»

LR IR B
r n » »
¥ % » »

LR R BN B
x » % % »
L N N

»
»
L g

VZEMXGCIOMMOOmI®»
»
»
»
"

To find the scope of a procedurer find the procedure
in the column of procedure namese. The horizontal
rows to the right indicate the procedures in its
scope. The procedures which may be called by a given
procedure are marked in the vertical columns below
that calling procedure.

Fig 2. Scope and Calling Ability

e
3

4=1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

PROGRAM SEGMENTATION

<SEGMENT STATEMENT> 33= <SEGHENT STATEMENT WORO> (<SEGMENT PART>);
<SEGMENT STATEMENT WORD> ::= SEGMENT | SEGMENT_PAGE

<SEGMENT PART> 3:= <SEGMENT IDENTIFIER> <PAGE PART> <IMPORTANT PART>
<SEGMENT ICENTIFIER> <IMPORTANT PART> <PAGE PART>

<SEGMENT IDENTIFIER> :3= <IDENTIFIER>

<PAGE PART> ::= <EMPTY> | OF <PAGE IDENTIFIER>
<PAGE IDENTIFIER> 2:= <IDENTIFIER>

<IMPCRTANT PART> 23= <EMPTY> 1| » IMPORTANT

As the BNF indicatess the <SEGMENT STATEMENT> may accur anywhere
within an SDOL oprograme. Its purpose is to reduce the memory
requirement of the program by atlowing segments to overlay -each
othere.

There 1s a maximum of 16 pages with 64 segments per page. The
sagment names represent a page<-number segment=numsber paire.

It is only necessary to specify SEGMENT_PAGE once for each pagee.
Every subsequent segment wWill be <compiled to that page until
another SEGMENT_PAGE is encounterede.

If there are no SEGMENT_PAGE specifications» all segments will be
compiled to Page Zeros, and there may be no more than 64 segments
totat. If a program is to be segmentedr, the first statement must
be a <SEGMENT STATEMENT>. Otherwise a warning message will
appear in the source listing.

There are two types of segmentation: "permanent"” and
"temporary©e. Every statement following a permanent <SEGMENT
STATEMENT> will be compiled to that segment until another
<SEGMENT STATEMENT> is reade. don=consecutive statements may be
compiled to the same segment by wusing the same <SEGMENT
IDENTIFIER>. Noter howevers, that <D0 GROUP>s (See "D0J GROUPS™)
and procedures must end in the same segment in which they Dbegin.
If this 1is not the <cases the compiler issues a warning and
inserts code to bring the program back to the proper segment so
that the do=group or procedure may be exited correctly.

The following example <illustrates the use of the "permanent™
<SEGMENT STATEMENT>.

‘ 4=2
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP ' B100O SDL (BNF Version)

SANTA BARBARA PLANT - P.S. 2212 5405 (G)

SEGHMENT (XX);5

CECLARE Al, A2, A3, A4;

PROCEDURE 85
DECLARE 381, 82, B35
SEGMENT (YY)
PROCEDURE C»

END C5
PROCEDURE D>

END D>
SEGMENT (XX)?

END B>
FINI
N
Only procedures € and D have been compiled to the segment *"YY". (%7/

Segment "XX" is segment zero and includes everything else.

A <SEGMENT STATEMENT> is treated as "temporary™ only when it
precedes a "Subordinate Executable Statement™ within any of the
following statements:

<ACCESS FILE HEADER STATEMENT> <SEARCH DIRECTORY STATEMENT>

<CASE STATEMENT> <SEND STATEMENT>
<IF STATEMENT> <SPACE STATEMENT>
<READ STATEMENT> CSWRITE STATEMENT>
<RECEIVE STATEMENT> <OPEN STATEMENT>

In these specific cases» the segment change applies only to the
subordinate statement following it. For exampler» the syntax for
the <IF STATEMENT> could be written as follows:

<IF STATEMENT> ::= IF <EXPRESSION>
THEN <SUBCORDINATE EXECUTABLE STATEMENT>
I IF <EXPRESSION>
THEN <SUBORDINATE EXECUTABLE STATEMENT>
ELSE <SUBORDINATE EXECUTABLE STATEMENT> q:;

4=3

BURRJUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (G)

The segmentation of a hypothatical <IF STATEMENT> is presented
below to illustrate the use of a "temporary™ <SEGMENT STATEMENT>.

SEGHMENT (A)’
PROCEDURE X’

IF Y>Z THEN Y:=Z5 ELSE
SEGMENT (B);
DO SOME_FUNCTIONS

-

» % 2 ¥ n

END SOME_FUNCTIONS

END X’
* Compiled to Segment (3)

Because the <D0 GROUP>» "SOME_FUNCTION™» is a subordinate
<EXECUTABLE STATEMENT> 1in the <IF STATEMENT>, Segment (3)
automatically ends when the <03 GROUP> is terminated. All
statements following are compiled to Segment (A).

Notice the distinction between Segment (A)» a ™permanent”
<SEGMENT STATEMENT>» and Segment (B)» a ™temporary™ one.

If the construct »IMPORTANT appears in the <IMPQRTANT PART> of a
segment statement, then the SDL/UPL compiler will set the decay
factor for that segment to seven. I[f the <control option wWord
SIZE is useds a list of segment names» numbers and sizes will be
printed at the end of the source Listings The segments that have
been marked »IMPORTANT will be notede.

EXAMPLES:
SEGMENT (SEGZERO » IMPORTANT) ;
SEGMENT_PAGE (SEGONZ OF PAGEZERO » IMPORTANT);
SEGMENT (SEGTWO » IMPORTANT OF PAGEONE)S

b=4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP | 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)
PRAGMATICS

The decay factor field in the segment dictionary is three bits
longe. It will always have a value of zero or seven. Whatever
value the compiler puts in the code file» the MCP changes it. So
when reading a memory dumpsr a value of zero means that the memory
priority will decay more slowly. But when looking at code files»
a value of seven means that the memory priority will decay more
slowlye.

!;M

5-1

BURROUGHS CCRPQRATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)
QECLARATIONS

QATA TYPES

Three main types of data may be declared in SOL:

1) BIT
2) CHARACTER
3) FIXED

A bit field consists of a number of bits specified by a number in
parentheses following the reserved word "BIT™. The field may be
a maximum of 65,535 bits.

A character field 1is a number of charactersr, 8 bits each»
specified by a number in parentheses following the reserved word
"CHARACTER™. The field may be a maximum of 8.,191 charactarse.

A fixed data field is & 24<bit» signed numeric field where the
high order bit is interpreted as the signe. Negative numbers are
represented in 2-s complement form.

The range of signed numbters (i.e.» fixed data fields) is =(2 exp
23) to (2 exp 23)=1. The range of unsigned numbers (bit data
fields) is 0 to (2 exp 24)-1. Bit fields» as noted aboves» are
not restricted to 24 bitse. Howevers for arithmetic purposess»
only the low=order 24 bits will be considered except in the case
of the extended arithmetic functione.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

DECLARE STAIEMENT
<DECLARE STATEMENT> ::=

<DECLARE ELEMENT> ::=

The <DECLARE STATEMENT>

‘ S5=2

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.S5. 2212 5405 (G)

DECLARE <DECLARE ELEMENT>
<JECLARE STATEMENT>, <DECLARE ELEMENT>

<DECLARED PART>

<TYPE PART>

<STRUCTURE LEVEL NUMBER>
<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART>

PAGED <ELEMENTS=PER=PAGE PART>

- <ARRAY IDENTIFIER> <ARRAY BOUND>

<TYPE PART>

DYNAMIC <COMPLEX DYNAMIC>
<DYNAMIC TYPE PART>

<DECLARED REF> REFERENCE
<DECLARED RECORD REF> REFERENCE

specifies the addresses and

characteristics of contents of memory storage arease.

Any number of <DECLARE ELEMENT>s may be declared in one <DECLARE
STATEMENT>, and must be separated by commas. - Best <code s AN

generated if atl elements

are declared within one <DECLARE N/

STATEMENT>. (See Appendix VI).

The maximum number of data elements {(including fillers», dummysy»
and implicit fillers) contained in one structure varies as to the
compiler being useds (currently: 50 - smatl versions 75 = large

version)d. Any attempt

declare more will cause a table

overflow error to be detected at compile time.

An array may have a maxiamum of 65,535 elementss each being a
maximum of 65,535 bits (8,191 characters).

The five types of <DECLARE ELEMENT>s are each discussed belowe.

e st AR ko N o o 4t

'5-3
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDOL (BNF Version)
SANTA BARBARA PLANT PeSe. 2212 5405 (G)

RECORD STATEMENT

<RECORD STATEMENT> RECCRO <RECORD IDENTIFIER>

<FIELD LIST>

o
]

<RECORL ICENTIFIER> :3:= <IDENTIFIER>

<FIELD LIST> ::= <FIELD ELEMENT> |
<FIELD LIST>» <FIELD ELENENT>

| [<COSPATIAL FIELD LIST>]

| <FIELD LIST>» [<COSPATIAL FIELD LIST>3
<COSPATIAL FIELD LIST> ::= <FIELD ELEMENT>
| <COSPATIAL FIELD LIST>s <FIELD ELEMENT>
<FIELD ELEMENT> 2:= <SIMPLE FIELD ELEMENT> '
| <COMPLEX FIELD ELEMENT>

<SIMPLE ICENTIFIER> <FIELD TYPE>
I FILLER <FIELD TYPE>

<SIMPLE FIELD ELEMENT> ::=

<COMPLEX FIELDO ELEMENT> :: <ARRAY IDENTIFIER> <ARRAY BQOUND>

<FIELD TYPE>

new

di fferent

1. Since
descriptors at run=time»

<SIMPLE IDENTIFIER>
<ARRAY IDENTIFIER>
<ARRAY BOUND> ::=

<FIELD TYPE> ::=

<FIELD SIZE> ::=

QATA SIRUCIURING

the same purpose

fields

stacks.

as

of

courses

in declaration, referances
are designed to provide the following benefits:

records ara not

<IDENTIFIER>
<IDENTIFIER>

(<CONSTANT EXPRESSION>)
FIXED

BIT <FIELO SIZE>
CHARACTER <FIELD SIZE>
<RECORD IDENTIFIER>

C<CONSTANT EXPRESSION>)

mechanism called Record is intended to eventually replace
the PL/I-style structures currently
compatibilitys of
until they have fallen into disusee.

being wused in SDL. For

no current features will be removed

Although records are used
current structures» they are
and run-time effecte. They

represented by

they do not <cause Llarge nanme

This removes the need for USE declarations and

elaborate SUBBITting schemes which have been used in the

5=4

new types» hopefully 1imposing better structure on
programnse.

BURRDUGHS CORPORATION \ COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BAR3BARA PLANT P.S. 2212 5405 (&)
past.
2. Paged arrays may be structured using recordse.
3« Arrays may occur nested in structural levels.
| 4. Accessing of linked data structures is safer, simpler,
; and often faster.
3 5« The substructure is specified in one ptace, but may be
| invoked 1in many places to declare variable or specify
| substructure of other records» thus reducing the
{ probability of error.
j 6e The syntax encourages the treatment of data structures as
!

RECIRDS

A record 1is an addressing template analogous to a structure
‘ declared REMAPS BASE in the current language. Declaration of a
| record causes no data space to be allocated? it only establishes

* an addressing sch2ma in the scope of the dectaration. An example

i This

| of a record declaration is:

RECORD TYPEFIELD
NV BIT(1)»
NSR BIT(1)»
DATATYPE BIT(6)>

RECORD DESCRIPTOR

TYPE TYPEFIELD»
LEN BIT(16)>»
LADDR BIT(24)>»
VAL BIT(24)1;

two=layered definition provides roughly the same effect as

the following PL/I-style structure:

AT

\&, //

\
|
|
| ‘
‘ 5
\
|
|

5=5

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)
DECLARE 1 DESCRIPTOR REMAPS BASE.
2 TYPE,
3 NV BIT(1)»
3 NSR BITC1)»
3 DATATYPE BIT(6),
2 LEN BIT(16)>»
2 ADOR BIT(24),
2 VAL REMAPS ADDR BIT(24);

The concent of making several fields alternative formats for the
same areas or "cospatial™s is expressed by enclosing the Llist of
al ternatives 1in bracketse. This has the advantage of not
requiring a distinguished alternative (the largest) which is
remappeds and it atso groups all the alternatives in one spot
textuallye.

Another distinction of record is in the nested use of definitions
to achieve the effect of PL/I level numbers. The advantage here
is that a single record may be used as part of several other
recaordss, at different levels» or even more than once in another
record declaration. This can be done without repeating the
definition af its substructure, thus simplifying modifications.
The use of a record in more than one contexts of courses requires
that qualified names be introduced. This is discussed later 1in
detail.

Cach field of a record has a type associated with it in the
declaration (the type may be another record identifier)s and may
also be arrayed by noting the array bound after the field
identifier==- similar to an ordinary array declaration. The type
of ‘an array field may be a record which also contains array
fieldss i.e.» arrays may be nested in a way not permitted by the
current SDL structures.

SIRUCTURES

A structure which would be the functional equivalent of the
current SOL structure may be declared wusing the previously
defined record:

DECLARE D DESCRIPTOR;

Declaring this structure allocates storage on the value stack for
the data (48 bits in this case) and allocates one descriptor on
the name stack. A structure array could also be declared (and
pageds in this example):

BECLARE PAGED(16) DA(256) DESCRIPTOR’

5-6

BURROUGHS CCORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT : P.S5. 2212 5405 (G)

This causes one array descriptor to be allocatede The space for
the array 1is not allocated on the value stack in this case
because the array is paged.

The field of a structure is accessed by use of a qualified name.
For exampler the {ength field of descriptor "D" is named "D.LEN"
and the type field is named "D.TYPE"™. The name=value bit of the
type field is named "D.TYPE.NV". HWhen a component of the name is
an arrays a subscript must be mentioned after that component as
in "DA(20).TYPE.NSR". Qualification must be complete and
explicits, unlike that of PL/I or COBOL. The dot notation was
chosen because it 1is almost a standard among languages using
qualified names. The underscore character ("_") is used as a
replacement for the current use of "." as an identifier break
charactere.

INDEXED FIELD REFERENCES

To provide a link between current and new facilities» a field of
a record may be named by itself (no qualification) with an indexe
The effect is the same a5 1indexing a field of a structure
declared REMAPS BASE. This eases reprogramming since in many
applications the structure declaration could be rewritten as a
record without changing the rest of the code.

STRUCTURED RECORD STATEMENT

<STRUCTURED RECORD STATEMENT> ::=
RECORD 01 <RECORD ICENTIFIER> <TYPE>
<STRUCTURE ELEMENTS>

<RECORD IDENTIFIER> 3:= <IDENTIFIER>

<STRUCTURE ELEMENTS> 3:=
» <LEVEL NUMBER> <STRUCTURE ELEMENT>
l <LEVEL NUMBER> <STRUCTURE ELEMENT>
» <STRUCTURE ELEMENTS>

<STRUCTURE ELEMENT> z:=
<FIELD NAME> <TYPE>
1 <FIELD NAME> <ARRAY BOUND> <TYPE>
i FILLER <TYPE>
I <FIELD NAME> REMAPS <REMAPS 0BJECT>

4

i

<TYPE>

BTy e

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe. 2212 5405 (G)

Structured Records have been implemented to allow easier
conversion of the current PL/I-style structures to records.

Structured Records have the same capabilities as RECORDS.

Fields declared as an array may not have nested structuree.

T ————, NP i e v)
T e Ty e A AP Ay 4 oy B T e 2 a5 555 B3 2t B T A e ey s mwe - e

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

NON=SIRUCTURE DECLARAIIONS

<DECLARE ELEMENT> ::= .

<DECLARED PART> ::=

<COMPLEX IDENTIFIER
LIST> s::=

<COMPLEX IDENTIFIER> 2:3=

<SIMPLE ICENTIFIER> s3:=
<ARRAY IDENTIFIER> :3:=
<ARRAY BOUND> S

<REMAP 0BJECT> ::=
<TYPE PART> ::=

<REMAPS TYPE PART ::=

<RECORD ICENTIFIER> s3:=
<FIELD SIZE> ::=

<CONSTANT EXPRESSION> 3:=

<CONSTANT EXPRESSION
OPERATOR> ::=

: 5-8
COMPANY CONFIDENTIAL
B1000 SDL (BNF VYersion)
Pe.S. 2212 5405 (G)

s IKDECLARED PART>1...

<COMPLEX IDENTIFIER> <TYPE PART>
I (<COMPLEX IDENTIFIER LIST>)
<TYPE PART>
i <COMPLEX IDENTIFIER> REMAPS
<REMAP 0OBJECT> <REMAPS TYPE PART>

<COMPLEX IDENTIFIER>
! <COMPLEX IDENTIFIER>»
<COMPLEX IDENTIFIER LIST>

<SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER> <ARRAY BOUND>

<IDENTIFIER>
<SIDENTIFIER>
(<CONSTANT EXPRESSION>)
BASE
I <SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER>
I <ADDRESS GENERATOR>
FIXED
| CHARACTER <FIELD SIZE>
| BIT <FIELD SIZE>
| <RECORD IDENTIFIER>
FIXED
I CHARACTER <FIELD SIZE>
I BIT <FIELD SIZE>
<IDENTIFIER>
(<CONSTANT EXPRESSION>)
<NUMBER> | <CONSTANT EXPRESSION>
<CONSTANT EXPRESSION OPERATOR>
<NUHBER> | (<CONSTANT EXPRESSION>)

¢+ 1 =1 « 1 /7 1 MOD

&

5=9

BURROUGHS CORPQORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (GQ)
Data may be declared as simples having one occurrencer or as
subscripteds having as many occurrences as specified by the

<ARRAY BOUND>.

The <TYPE PART> specifies the type of data in the field and the
field size.

As the syntax indicates» different data fields having the same
type may be declared collectively as a <COMPLEX IDENTIFIER LIST>.

The following examples illustrate the various options available
in this type of <DECLARATION STATEMENT>.

DECLARE A FIXEDs
B8 CHARACTER (10)»
C BIT (40)»
(0, E» F (5)) BIT (10)»
G (20) FIXED»
H (5) CHARACTER (5);

le A is a 24-bit signed numeric field.

2 B8 is a 10-byte character field.

3. C is a 40-bit field

4e D and £ are 10-bit fietds each.

5. F is a S=element array of 10-bit fields.

6e G is a 20-element array of 24=bit signed numeric
fields.

7e H is a 6=byte character array with five elements.

Data fields may be re-formatted by the wuse of the remapping
device:

<COMPLEX IDENTIFIER> REMAPS <REMAP OBJECT> <TYPE PART>

Remapping is subject to the same general rules discussed above.
The following example best illustrates its use.

DECLARE A FIXED, 8 BIT (50)»
AA REMAPS A CHARACTER (3)»
B8(2) REMAPS SuUBBIT(B,2) FIXED’

5=10

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)
Note that BB specifies 48=bits (or 2 elements» 24=bits each)d. A
field may not be remapped ltarger than its original size. If the
<REMAPS OBJECT> is an <ADDRESS GENERATOR> this <check cannot be
made until run timee. The check will be made only when the the

compiler option FORMAL_CHECK is sete.

There is no Limit on the number of times a field may be remapped»
A field which has remapped another may itself be remapped. The
REMAP option specifies that the identifier on the left side of
the reserved word REMAPS will have the same starting address as
the identifier on the right sidee.

For rules <concerning the remapping of dynamic or formal
declarations» see those sectionse.

A data field may be reméepped to base which will give the field a
relative address of zero. For example:

DECLARE X REMAPS BASE BIT(7);

This device is used as a free=standing declaraticn since i
not remap a previously declared data item and is used pr
with data to be indexed (See ADDRESS VARIABLES).

t does
iparily

./

5=-11
COMPANY CONFIDENTIAL
31000 SDL (BNF Version)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT P.S. 2212 5405 (6)
SIBUCTURE DECLARATIONS
<DECLARE ELEMENT> ::= e+« 1<STRUCTURE LEVEL NUMBER>

<STRUCTURE DECLARED PART>
<STRUCTURE TYPE PART> | ...

<STRUCTURE LEVEL

NUMBER> ::= <NUMBER>

<STRUCTURE DECLARED

PART> ::= <DECLARED PART>
I FILLER

I <DUNMY PART> REMAPS <REMAPS 0BJECT>

<DECLARED PART> ::= See NON-STRUCTURE DECLARATIONS

<DUMMY PART> ::3= DUMMY <ARRAY BOUND PART>
<ARRAY BOUNC PART> ::= <EMPTY>

I <ARRAY BOUND>
<ARRAY BOUND> ::= (<CONSTANT EXPRESSION>)
<STRUCTURE TYPE PART> ::= <EMPTY>

I <TYPE PART>
I CHARACTER I BIT

<TYPE PART> 3:3= 5See NON-STRUCTURE DECLARATIONS

SDL allows the structuring of data where a field may be
subdivided into a number of sub-fields» each of which has its own
identifier. The whole structure is organized in a hierarchical
form, where the most general dectaration is at Level 01 (or 1)
and the highest at Level 99. A subdivided field 1is called a
group item» and a field not subdivided is known as an elementary
iteme.

When the REMAPS aoption appears on a declare with Llevel number
greater than one» it is known as an intra=structure remape. In
this caser» the <REMAPS (OBJECT> anaust be the last identifier
declared 1in the same structure with the same level number unless
that identifier was also declared with REMAPS. In that case both
must remap the same identifier.

DECLARE 1 A»
2
2

B BIT(5)»
C BIT(40)»
3 D BIT (1)»
E REMAPS C CHARACTER(1)»
F REMAPS C FIXED»
G FIXED>

NN

5=12
BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P-S. 2212 5405 (&)

is tegals, but £ and F may not remap B or D.

The type and Llength of data need not be specified on the group

level. All elementary items must indicate type and length» and
the compiler will assume type bit and add the lengths of the
components to determine the length of the group item. for
exanmple:

DECLARE 01 A>»
02 C»
03 D BIT(20)»
03 E BIT(30)>»
02 D CHARACTERS(5);

In this exampler both A and C are considered group items» with A
having a total length of 90 bits and C being 50 bits long.

EILLER

FILLERs may be used to designate certain elementary items which
the program does not reference. If the group item has a length
specified and the FILLER is the last item in a structurer it may
be omitted» and the compiler will consider the item to be an
implied FILLER. A FILLER may never be used as a group item.

A group item may have a type specified with length omitted. The
compiler will <calculate the 1Length from the Utength of the
sub-items. For examples

DECLARE 01 A CHARACTER»
02 8 FIXED.
02 C BIT(5);

A will become type CHARACTER{(4) leaving an implied 3-bit filler
after C.

If the 01 level group item 1s an arraye it is mapped as a
contiguocus area in memorye. However» subdivisions of this array
are not contiguous. In the exaaple structure below:

01 A(5) BIT(48), 01 A(5)»

C

R ~ s S = e T 5=13
8URROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROQUP 81000 SDL (BNF VYersion)
SANTA BARBARA PLANT PeS. 2212 5405 (G)
02 8 FIXED» or 02 B FIXED»
02 C FIXED> 02 C FIXED>

#x# 48 Dits
*

&

l AO ! Al l A2 i A3 i AL |
1 80 1 CO I B1L 1 C1 1 321 €C21B3 1 C3 1 B4 1 C&l

%*
E]

xex 24 bits

If a group item is an array» an array specification may not

appear in any subordinate item’; that is» only one~dimensional
arrays are allowede. Down=level carry of array specifications is
implied.

Structured data may be remapped in the same manner as
ron=structured data. In addition» structured data may be
remapped with a dumamy group identifier. The purpose of this

construct is to allow the user to remap data items without having
to declare another grcup item which describes the same memory
area. Thuss in the following example:

01 A BIT(100).,
02 B BIT(20)>»
02 C BIT(80);

®"A" might be REMAPped as

01 AA REMAPS A BIT(100), 01 DUMMY REMAPS A 8IT(100),»
02 88 BIT(30), or 02 88 BIT(30)>»
02 CC BIT(70)5 02 CC BIT(70);

Both A and AA in the above example refer to the same area in
memory. Hence AA is redundant. During runtime» the descriptor
for AA will also be on the stacke.

' 5-14
BURROUGHS CCRPORATION CONPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT Pe5. 2212 5405 (G)

If DUMMY is substituted for the identifier AA» no descriptor will
be generateds however 38 and CC will both point to A in the
correct fashione

The wuser should note the distinction between DUMMY and FILLER.
DUMMY is used 1in conjunction with REMAPS to eliminate the
necessity of declaring a redundant group item. FILLER is used if
one desires to skip over an area of coree.

The following restrictions apply to the use of DUMMY REMAPS:

1. DUMMY may only be used with remap declarations.

2. Ail the restrictions applying to REMAPS apply to
DUMMY REMAPS.

3. DUMMY must not remap another DUMMY.

4, DUMMY group 1items must have at least one non-=filler

component.

AT

W

5=15

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP ' 81000 SDL (BNF Version)
SANTA BARBARA PLANT PsS. 2212 5405 (G)
BAGED ARRAY DECLARATIONS

<DECLARE ELEMENT > s3:3= eesl PAGED <ELEMENTS=PER-PAGE PART>

<ARRAY IDENTIFIER> <ARRAY BOUND>
<TYPE PART>

<ELEMENTS~=-PER=PAGE

PART> 3:= (<CONSTANT EXPRESSION>)
<ARRAY IDENTIFIER> 3:= <IDENTIFIER>

<ARRAY BOUNC> 3= (<CONSTANT EXPRESSION>)

The paged array declaration allows the user to segment arrays.
The <ELEMENTS<-PER-PAGE PART> specifies the number of array
el ements contained in gach segment. For example:

PAGED(654) AC4096) BIT(1);

is an array of 4096» 1-bit elementss segmented 1into 6H4s
bh-element segmentse.

Restrictions:

1. Paged arrays may not be indexede.

2e Paged arrays may not be part of a structuree.

3. Paged arrays may not be remappede.

4e The number of elements per page must be a pouér of 2»

and may not exceed 32,768.

5. The <ARRAY 30UND> may not exceed 65,535 but the
bounds may be subsequently increased to a maximum of
16,777,215 by use of the GROW statement.

" <DYNAMIC ELEMENTS

5=1%6

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

DYNAMIC DECLARATIONS

<DECLARE ELEMENT> ::= eee! DYNAMIC <DYNAMIC COMPLEX
IDENTIFIER> <DYNAMIC
TYPE PART>feae

<DYNAMIC COMPLEX
IDENTIFIER> ::= <IDENTIFIER> 1 <ARRAY IDENTIFIER>
<DYNAMIC SUBSCRIPT BOUNDS>
I PAGED <DYNAMIC ELEMENTS PER PAGE>
<ARRAY IDENTIFIER>
<DYNAMIC SUBSCRIPT BOUNDS>

(<EXPRESSION>)

PER PAGE> 2s=
<DYNAMIC SUBSCRIPT
BOUNDS> ::= (<KEXPRESSION>)
{
<DYNAMIC TYPE PART> ::= BIT <DYNAMIC FIELD SIZE>
! CHARACTER <DYNAMIC FIELD SIZE>
FIXED

I
! <RECORD IDENTIFIER>

<DYNAMIC FIELD SIZE> ::= (<EXPRESSION>)

The dynamic declare statement allows the user to declare simple
data with a non=static field length and/or array bound. For
example:

PROCEDURE ABX;
DECLARE DYNAMIC X BIT(A);

where A will determine the length of X. The value of the
<EXPRESSION> appearing in the <DYNAMIC FIELD SIZE> is used to
determine the number of bits or characters in the decltared data
item. If X were an arrays 1its bounds would be evaluated at run
time as well. ‘

5-17

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31000 SDL (BNF Version)
SANTA BARBARA PLANT P.Se 2212 5405 (Q)

) Restrigctions:
l. The variables used in the <DYNAMIC FIELD SIZE> nmust

have been previously initializede.

2e Dynamics may not appear on Lexic Level 0.

Dynamic variables may be remapped» however a warning message will
appear in the source listing. It is the programmer's
responsibility to ensure that a dynamic is not remapped larger
than allowed. If SFORMAL_CHECK is sets this remapping length
will be run time checked.

5-18

BURROUGHS CORPORATION ' COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (6)

BEEERENCE DECLARATIONS

<DECLARE ELEMENT> ::= e« I <DECLARED REF> REFERENCE! ...

<DECLARED REF> ::= <STMPLE IDENTIFIER>
(<SIMPLE IDENTIFIER LIST>)

<SIMPLE ICENTIFIER LIST> <SIMPLE IDENTIFIER>
<SIMPLE IDENTIFIER>»

<SIMPLE IDENTIFIER LIST>

(1]
(1]

Reference variables are used as pointers to data and their
declaration does not allocate data space. A reference variable
has a close analog in a formal parameter decltared VARYING. Such
a parameter has onty one typer Length», and address associated
with 1t for each invocation of the procedure in which it is
declared» but it may be different for each 1invocation. The
formal parameter is bound (to the actual parameter) by the
procedure call mechanisme. A reference variable is an extension
of this idea because it may be declared anywhere other variables
may be declared and may be rebound at any time using a statement
known as the reference assignment statement or REFER statement.
This statement binds the reference variable to a new referent. A
few other SDL statements may change the referent of a reference
variable also» but not to any arbitrary address generator as does
the REFER statemante.

5=19

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT ' P.S. 2212 5405 (G)

BECORD REEERENCE DECLARATIIQNS

<DECLARE ELEMENT> :: «es I<DECLARED RECORD REF> REFERENCEl...

<DECLARED RECORD REF> ::= <SIMPLE IDENTIFIER>
<RECORD IDENTIFIER>

RECORD REEERENCE VARIABLES

In some <casese storage 1is not to be directly allocated for a
record, but a certain area of an array or large string is knowuwn
to have the format specified by a recorde. This is the case in
which indexing is applied currentlye. Record reference variables
are designed to replace this use of indexinge.

A record reference variable is declareds say for record
DESCRIPTOR» as

CECLARE DR DESCRIPTOR REFERENCE?

Record reference variables are 3ssigned with a REFER statement
like ordinary reference variabless, bDut they may be written in
other statements as though they were structure names» i.e.» they

may have field qualifiers attached Wwith the dot notation. Such
an access subfields the current memory area described by the
reference variable according to the record specificatione. For
examples

REFER DR TO SUBBIT(MYAREA, 100, 48);
X 3= OR.LEN;

assigns X to bits 108 through 124 of the string MYAREA.

All restrictions which apply to normal reference variables are
applicable to record reference variables as well. Record
reference variables may not be used in the REDUCE statement.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

EILE DECLARATIONS

<FILE DECLARATION
STATEMENT> 3=

<FILE DECLARE
ELEMENT LIST> 3=

<FILE DECLARE ELEMENT> ::3

<FILE IDENTIFIER> ::=

\

<FILE ATTRIBUTE PART> ::=
<FILE ATTRIBUTE LIST> ::=

<FILE ATTRIBUTE> ::=

. NS aw M G e e v A A G Buee G Gt G MM G GG Bl WA SN bu R e B tean SRe WHG SN W Wee e G

5=20

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P-S. 2212 5405 (&)

FILE <FILE DECLARE ELEMENT LIST>

<FILE DECLARE ELEMENT>
<FILE DECLARE ELEMENT>,
<FILE DECLARE ELEMENT LIST>

<FILE IDENTIFIER><FILE ATTRIBUTE PART>

<IDENTIFIER>

<ENPTY>
(<FILE ATTRIBUTE LIST>)

<FILE ATTRIBUTE>
<FILE ATTRIBUTE>s <FILE ATTRIBUTE LIST>

<SLABEL PART>
<DEVICE PART>

<MODE PART>

<BUFFERS PART>

<VARIABLE RECORD PART>

<LOCK PART>

<SAVE FACTOR PART> P
<RECORD SPECIFICATION PART>

<REEL NUMBER PART>

<DISK FILE DESCRIPTION PART>
<PACK-ID PART>

<QPEN OPTION PART>
<ALL_AREAS_AT_OPEN PART>
<AREA_BY_CYLINCER PART>
CEU_ASSIGNMENT PART>

<MULTI_PACK PART>
<USE_INPUT_BLOCKING PART>
<END_OF_PAGE PART>

<REMOTE_KEY PART>
<NUMBER_OF_STATIONS PART>

<FILE TYPE PART>

<WORK FILE PART>

<LABEL TYPE PART>

<INVALID CHARACTER REPORTING PART>
<MONITOR SPECIFICATION PART>
<SERIAL NUMBER PART>

<GPTIONAL FILE PART>

<TAPE LABEL PART>

<EXCEPTION MASK PART>

<TRANSLATE PART>

<USER NAMED BACKUP PART>
<PROTECTION PART> -
<PROTECTION_IO PART> (J,-
<HOST_NAME PART>

e e s et oot oot < 4 - AT SO —

5=21

BURROUGHS CORPQORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF VYersion)
SANTA BARBARA PLANT PeSe 2212 5405 (G)
All attributes are aptionals as the above syntax indicatese.

Default status wWwill automatically be set for omitted attributes
as follows:

SYNTAX: <LABEL PART> ::= LABEL =
<FILE IDENTIFICATION PART>

<FILE IDENTIFICATION PART> ::= <MULTI=FILE IDENTIFICATION>
l <HMULTI-FILE
IDENTIFICATION>
<FILE IDENTIFICATION>

<MULTI-FILE IDENTIFICATION> :3:= <CHARACTER STRING>

<FILE IDENTIFICATION> 2:= <CHARACTER STRING>

where: -

<FILE IDENTIFIER> is a file or program identifier
by which the program identifies the filee.

and:
<SMULTI-FILE IDENTIFICATION> and <FILE
IDENTIFICATION> are nanme or contents of
identification field on file tabel or Disk

Directory by which the system identifies the file.

FORMAT: LABEL "NAME_1™ 7/ "NAME_2"

or
LABEL = "™NAME_1"
Example:

FILE INV_DATA_1 (LABEL = “RCD_TAPE™ / "FILE_1");

Note: The system wWill use only the first ten characters
of the "NAME™.

DEFAULT If LABEL(s) is (are) not specifieds the INTERNAL FILE
NAME, ie0e» <FILE IDENTIFIER>» is moved to <MdULTI-FILE
IDENTIFICATION>S and blanks are moved to <FILE
IDENTIFICATION> in the FPB (FILE PARAMETER BLOCK).

SYNTAX: <DEVICE PART> ::= DEVICE = <DEVICE SPECIFIER>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DEVICE SPECIFIER> 3:=

<ACCESS MODE> :3:=
<DEVICE OPTION> :

<BACKUP OPTION> 3:=
<BACKUP SPECIFIER> ::=

<SPECIAL FORMS OPTION>

<REMOTE QPTION> ::=

<QUEUE SIZE> ::=

<QUEUE OPTION> 23=

e NS G SR G GED GmB G BEY G wa e Sk W

. 5=22
COMPANY CONFIDENTIAL
B1000 SDL (BNF VYersion)
PeSe 2212 5405 (&)

TAPE {;;
TAPE_7

TAPE_9

TAPE_PE

TAPE_NRZ

DISK <ACCESS MODE>

DISK_PACK <ACCESS MODE>
DISK_FILE <ACCESS MODE>
DISK_PACK_CENTURY <ACCESS MODE>
DISK_PACK_CAELUS <ACCESS MODE>
CARD

CARD_READER

CARD_PUNCH <DEVICE QPTION>
PRINTER <DEVICE OPTION>

PUNCH <DEVICE OPTION>
PAPER_TAPE_PUNCH

<DEVICE OPTION>

DATA_RECQORDER_30
READER_PUNCH_PRINTER

<DEVICE QOPTION>

PUNCH_PRINTER <DEVICE OPTION>
READER_96

PAPER_TAPE_READER

SORTER_READER

READER_SORTER AT
CASSETTE gw/
REMOTE (<QUEUE SIZE>) <REHMOTE
gPTION>

QUEUE (<QUEUE SIZE>)

<QUEUE OPTION>

<EMPTY> | SERIAL | RANDOM
<EMPTY>

<BACKUP OPTION>

<SPECIAL FORMS OPTION>
<SPECIAL FORMS OPTION>
<BACKUP OPTION>

<BACKUP SPECIFIER>

DR <BACKUP SPECIFIER>
NO BACKUP

BACKUP | BACKUP TAPE
BACKUP DISK

FORMS

<EMPTY> 1 FAMILY 1 WITH HEADERS
FAMILY WITH HEADERS

<NUMBER> {j\

<EMPTY> =

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<FAMILY SIZE> 3:=

FORMAT: CEVICE =

* » B B X N X X ¥ x ® N »

kR
L B

* may or may not be

BACKUP

5=23

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PeSe 2212 5405 (G)

I FAMILY (<FAMILY SIZE>)

<NUMBER>

CARD
CARD_READER

TAPE

TAPE_7

TAPE_9

TAPE_PE

TAPE_NRZ

DISK

DISK_PACK

DISK_FILE
DISK_PACK_CENTURY
DISK_PACK_CAELUS
CARD_PUNCH

PRINTER

PRINTER FORMS

PUNCH

PUNCH FORMS
PAPER_TAPE_PUNCH
PAPER_TAPE_PUNCH FORNS
DATA_RECORDER_80
READER_PUNCH_PRINTER
READER_PUNCH_PRINTER FORMS
PUNCH_PRINTER
PUNCH_PRINTER FORMS
READER_956

PAPER_TAPE _READER
SORTER_READER
READER_SORTER
CASSETTE

REMOTE (<QUEUE SIZE>)
QUEUE (<QUEUE SIZE>)

followed by any single option belows

BACKUP TAPE
BACKUP DISK

OR BACKUP
gR BACKUP
OR BACKUP
NJ BACKUP

TAPE
DISK

Note: See <USER NAMED BACKUP PART> for more on backupa

£* may or may not be followed by any single optioan

below:

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

SERIAL
- RANDOM

5=24

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PeSe 2212 5405 (G)

«x#« may or may not be feollowed by options applicable to
this ™device™. See syntax abovee.

Exampless DEVICE TAPE

DEVICE = PRINTER BACKUP
DEVICE = PRINTER FORMS BACKUP TAPE
DEVICE = REMOTE(5) WITH HEADERS

DEFAULT: In the absence of any specification, disk will be

assumed by the compilere.

SYNTAX: <MODE PART> :3:=

<MQODE SPECIFIER> =:

<FILE PARITY PART> ::

<TRANSLATION PART> ::

MODE = <MODE SPECIFIER>

<FILE PARITY PART>
<TRANSLATION PART>

0DO0O | EVEN

EBCDIC 1 ASCII 1 BCL 1| BINA?i\\

FORMAT: MODE = BCL o
| MODE = ASCII
MODE = EVEN
DEFAULT: Default is odd or EBCDIC» whichever is applicable.
SYNTAX: <BUFFERS PART> ::= BUFFERS =

<NUMBER OF BUFFERS> s::=
FORMAT: BUFFERS = NUMBER

DEFAULT: 1If not specifieds buffers will

SYNTAX: <VARIABLE RECORD PART> ::=
FORMAT: VARIABLE

<NUMBER OF BUFFERS>

<NUMBER>

be set to 1 in the FPB.

VARIABLE

DEFAULT:= Not variablesr 1.2.» fixed=size recordse.

5=25

| BURROUGHS CORPORATION COMPANY CONFIDENTIAL
| COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
| SANTA BARBARA PLANT P.S. 2212 5405 (&)
| (:? SYNTAX: <LOCK PART> :i= LOCK

| : FORMAT: LOCK

DEFAULT:= LOCK is not sete.

SYNTAX: <SAYE FACTOR PART> ::= SAVE = <SAVE FACTOR>
<SAVE FACTOR> ::= <NUMBER>
FORMAT: SAYE = NUMBER (of days to save file)

DEFAULT: If not specifiedr the 3AVE specifier will be set to
30 in the FPB.

SYNTAX: <RECORD SPECIFICATION

PART> ::= RECORDS = <RECUORD SIZE
SPECIFIER>
-y <RECORD SIZE SPECIFIER> ::= <PHYSICAL RECORD SIZE>
‘i I <LOGICAL RECORD SIZE>
o <SLASH>

<LOGICAL RECOROS PER
PHYSICAL RECORD>

<PHYSICAL RECORD SIZE> ::= <NUMBER>

<LOGICAL RECORD SIZE> ::= <NUMBER>

<LOGICAL RECORDS PER

PHYSICAL RECORD> ::= <NUMBER>
FORMAT: RECORDS = NUMBER

:ECURDS = NUMBER / NUMBER

Note: <PHYSICAL RECORD SIZE> indicates the number of
characters per blocks <LOGICAL RECORO SIZE>» the number
of characters per record.

Example:
, RECORDS = 1200
. o or
C RECORDS = 120 7 10

DEFAULT: In the absence of record specificationss unblocked records

BURROUGHS CORPORATION

5=28
COMPANY CONFIDENTIAL

COMPUTER SYSTEMS. GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT ‘ P.Se. 2212 5405 (G)

~————

SYNTAX:

FORMAT:

DEFAULT:

SYNTAX:

Format:

Examplez:

DEFAULT:

of the following lengths will be assumed.

Di sk 180 bytes
Tape 80 bytes
Any paper tape configuration 80 bytes
Any 96 column card configuration 96 bytes
All remaining card configurations 80 bytes
Any printer configuration - 132 bytes
All others 72 bytes
<REEL NUMBER PART> ::= REEL = <REEL NUMBER>
<REEL NUMBER> :2:= <NUMBER>

REEL = 2

The FPB assumes 21 in the absence of any specificatione.

<CISK FILE DESCRIPTION

PART> 3:= AREAS = <NUMBER OF AREAS>
<SLASH> :
<PHYSICAL RECORDS PER AREA>

<NUMBER OF AREAS> ::= <NUMBER>

<PHYSICAL RECORDS

PER AREA> :z3:= <NUMBER>

Areas = # of Areas /7 #of Blocks Pef Area

1}

Areas 20 /7 80

Note: <PHYSICAL RECORDS PER AREA> 1indicates the
number of blocks per area. This attribute is
applicable for disk files only.)

If areas are not specifiedr the FPB will assume 25
Areas with 100 Blocks Per Area. If the record
specifications have been given the compiler will
compute the number of Records Per Areae. Howeversr 1if
record specifications are omitteds the FPB will assunme
100 records per area. In either case thens ~whether
areas are specified or nots, the compiler will have
computed the number of records for insertion 1in the
FPBe.

S

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

5=27

COMPANY CONFIDENTIAL
81000 SDL (BNF Version)
PeSe 2212 5405 (G)

- SYNTAX: <PACK_ID PART> ::= PACK_ID =
‘:i_ <PACK IDENTIFICATION>
1 <PACK
| IDENTIFICATION> 3= SCHARACTER STRING>
i ,
| FORMAT: PACK_ID = "NAME"
Note: The system will wuse only the first ten
characters of the "NAME™. '
DEFAULT: If absent, <PACK IDENTIFICATION> will bDe set to
| blanks in the FPB8e.
|
|
|
! SYNTAX: <OPEN OPTION>::= OPEN_QPTION=
| <JPEN QOPTION ATTRIBUTE LIST>
| <OPEN OPTION
ATTRIBUTE LIST>::= <OPEN ATTRIBUTE>
I <OPEN ATTRIBUTE> <SLASH>
. <QPEN OPTION ATTRIBUTE LIST>
(;/ <QPEN ATTRIBUTE> ::= SEE ™OPEN STATEMENT™
FORMAT: QPEN_GPTION = ATTRIBUTE /7 ATTRIBUTE. . .
Example: OPEN_OPTION = QUTPUT / NEHW
Note:
<OPEN STATEMENT> may be separated by commass and the
<0PEN ATTRIBUTE>s in the <OPEN (QOPTION> above are
separated by slashes.
DEFAULT: If absent» the <QOPEN ATTRIBUTE>s will be set as
follows:
If <DEVICE> is: <OPEN OPTION> is:

CARD INPUT
PRINTER QUTPUT
PUNCH QUTPUT
0ISK INPUT
REMOTE INPUT/OUTPUT
C TAPE INPUT
E QUEUE INPUT/0UTPUT

5=-28

BURROUGHS CORPORATION : COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT ‘ P.S. 2212 5405 (G)
SYNTAX: <ALL_AREAS_AT_OPEN PART> 3= ALL_AREAS_AT_QOPEN

“FUNCTION: If thi§ option is set» disk space for each area will

be allocated when the file 1is opened. If
insufficient space is availaoler a S5P0 message will
indicate that there is no user diske

DEFAULT: Areas are created as needed.

SYNTAX: <AREA_BY_CYLINDER PART> 2= AREA_BY_CYLINDER

FUNCTION: If this option is specifieds each area will be placed
at the beginning of a cylinder. If there 1is no
(more) space at the beginning of any cylinders, a SPO
message will indicate that there is no user disk.

DEFAULT: Areas are placed anywhere on diske.

SYNTAX: <EU ASSIGNMENT PART> ::= EU_SPECIAL = <NUMBER>
I EU_INCREMENTED = <NUMBER>

FUNCTION: The <NUMBER> specifies any integer 0 through 15.
"EU_SPECIAL™ 1is applicable only with head-=per=track
disks and systems disk packss and specifies the drive
on which the file is to go. "EU_INCREMENTED™
specifies the disk drive on which the first area of a
file is to go. Each subsequent area is placed on the
next drive. [f» with either options the necessary
E.U. is not available, E.Us O will be takena

DEFAULT: Space for files and areas is allocated anywhere on
diske.
SYNTAX: <MULTI PACK PART>::= MULTI_PACK

FUNCTION: If this option is specifieds the entire file may be
put onto several disk packse.

DEFAULT: The file will be placed on one disk packe

SYNTAX: <USE_INPUT_BLOCKING '
PART> ::= USE_INPUT_BLOCKING

C
; |

5=29

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (3NF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

FUNCTION: This option applies to input disk, tapes or card
files. If specified for disk» the record and block
size specifications Wwill be taken from the Disk File
Header and the user's specifications will be icnored.
If specified for tape, the tape must be labeled>
otherwiser 3 run=time error occurse If specified for
card files» the following record lengths will be
assumeds

80-col 80 bytes
96-col 96 bytes
BIN = 960 bits

[}

DEFAULT: The record and block size are as stated in the file
declaration. Those options omitted are set to
default statuse.

SYNTAX: <END_QF_PAGE PART> ::= END_OF_PAGE_ACTION

FUNCTION: This attribute will cause the <EOQF PART> of a <WRITE
STATEMENT> to be executed at the end of a page on a
printer file. Refer to "WRITE STATEMENT™ and *“ON
SEQUENCE™ for details.

JEFAULT: No autcmatic paging action

SYNTAX: <REMOTE_KEY PART>::= REMOTE_KEY

FUNCTION: This atrribute 1is used only with files of type
"REMOTE™. When presentr» it indicates that a key may

be present on a read or write to that file. If
missings then no key can be used. The format of the
key 1is given belowe. Each field of the key is in
decimal characters. The key is a total of 10

characters formatted as follows:

Station Number 3 characters
Message Length (byte count) 4 characters
Message Type (must De "000") 3 characters

DEFAULT: No remote key

SYNTAX: <NUMBER_OF_STATIONS PART>s=- NUMBER_QF_STATIONS = <NUMBER>

5=30

BURROUGHS CORPORATION ' COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (&)

FUNCTION: This attribute 1is wused only with files of type Q:E
"REMOTE™". When present, it specifies the m®maximum 4
number of stations that can be attached to this file.

DEFAULT: NUMBER_OF _STATIONS=1
SYNTAX: <FILE TYPE PART>:3:= FILE_TYPE=<FILE TYPE SPECIFIER>
<FILE TYPE SPECIFIER>::= DATA | INTERPRETER | CODE

I INTRINSIC | PSR_DECK

FUNCTION: This attribute allows SDL »prograams to specify the
type of the files they are creatinge In particular»
the compilers will wuse the type "CODE"™ for their
codefilese.

DEFAULT: FILE_TYPE = DATA

SYNTAX: <HORK FILE PART>::= WORK_F ILE

FUNCTION: This attribute causes the job number to be 1included N
as part of the file identifier.

DEFAULT: Not a workfile
SYNTAX: <LABEL TYPE PART>::= LABEL_TYPE=<LABEL TYPE SPECIFIER>
<LABEL TYPE SPECIFIER>::= UNLABELED | BURROUGHS

FUNCTION: This attribute allows the tabel type to be specifiede.

DEFAULT: ANSII STANDARD LABEL

2= INVALID_CHARACTERS=
<INV_CHAR_REPORT TYPE PART>

SYNTAX: <INV_CHAR_REPORTING PART>

<INV_CHAR_
REPORT TYPE PART> 3:= 0111213

FUNCTION: Invalid <characters occurring in a print file will be {;Q
reported on the SPO0 to the computer operators as

5-31

BURROUGHS CORPGORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (3BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (QG)

specified:

VALUE TYPE

0 Repaort all lines containing invalid
characters.
1 Report all lines containing invalid
characters and then stop programe
2 Report once that the file contains
invalid characterse.
3 Do not report that the file
contains invalid characterse.
DEFAULT: 0
SYNTAX: <MONITOR SPEC PART> ::= MONITOR_INPUT_FILE

| MONITOR_QUTPUT_FILE
FUNCTION: See Appendix VIII: SDL MONITORING FACILITY

CEFAULT Not present

SERTIAL
I SERIAL

<NUMBER>
<CHARACTER STRING>

(X
(1]

SYNTAX: <SERIAL NUMBER PART>

FUNCTION: The file will be opened on the output media with the
specified serial number.

DEFAULT Not present

SYNTAX: <OPTIONAL_FILE_PART> ::= OPTIONAL

FUNCTION: If this option is used on an input file» then the
file may be missing and the operator may respond with
the OF message to the FILE MISSING message. This
will result in the execution of the ON EOF branch on
the executian of the first read of the file.

DEFAULT: Reset

5=32

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)
SYNTAX: CEXCEPTION MASK PART> t:= EXCEPTION_MASK = <BIT STRING>
FUNCTION: The exception mask specifies the types of exceptions w;

DEFAULT:

SYNTAX:

FUNCTION:

DEFAULT:

SYNTAX:

FUNCTIDON:

DEFAULT:

SYNTAX:

FUNCTION:

SYNTAX:

FUNCTION:

that the program 1is willing to handle for this
particular file. See the B1700 MCP Manual for a
description of the bit assignment within the bit
string. Note that this string should generate a
24=bit value.

30000003

<TRANSLATE PART> ::= TRANSLATE = <CHARACTER STRING>

The MCP will do a3 soft translation on the file using
<CHARACTER STRING> as the file=~id for the translate
table fitle. The amulti=-file=id for the translate
table file will be "TRANSLATE™.

DEFAULT: No translation.

<USER NAMED BACKUP PART>::= USER_NAMED_BACKUP an

1f the file goes to backupr 1its name will be its
given external name rather than a system selected
namee.

System selects backup file namese.

<PROTECTION PART>::= PROTECTION = <PROTECTION TYPE PART>
<PROTECTION TYPE PART>2:= 0 1 1 1 2 1 3

{(See MCP Control Syntax product specification in File
Attribute description.)

<PROTECTION_IO_PART>z:= PROTECTION_IO = <PROTECTION_IO TYPE
PART>
<PROTECTION_IO TYPE PART2:= 0 I 1 1t 2 1 3

{See MCP Control Syntax product specification in File
Attribute description.)

5=33

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)
SYNTAX: <HOST_NAME PART>:= HOST_NAME = <CHARACTER STRING>

FUNCTION: Specifies the name of‘the host system for this file.

DEFAULT: No host specified.

5=34

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 31000 SDL (BNF Version)
SANTA BARBARA PLANT Pe5S. 2212 5405 (G)

SHITCH EILE DECLARATIONS

<SWITCH FILE ,
DECLARATION STATEMENT>::= SWITCH_FILE <SWITCH FILE
DECLARE ELEMENT LIST>

<SWITCH FILE
DECLARE ELEMENT LIST>z2:= <SWITCH FILE DECLARE ELEMENT>
I <SWITCH FILE DECLARE ELEMENT>.,
<SWITCH FILE DECLARE ELEMENT LIST>

<SWITCH FILE :
DECLARE ELEMENT> =23 <SHITCH FILE IDENTIFIER> (<FILE

IDENTIFIER LIST>)

]

<SWITCH FILE IDENTIFIER>:: <IDENTIFIER>

<FILE IDENTIFIER LIST>:3= <FILE IDENTIFIER>

| <FILE IDENTIFIER>s, <FILE IDENTIFIER LIST>

A switch file declaration specifies the elements of a "CASE™,
these elements being filese. A subscripted <SWITCH FILE
IDENTIFIER> may be used anywhere that a <FILE IDENTIFIER> may be
useds If there are N fites in the <FILE IDENTIFIER LIST>» then
the supscript nmust range from 0 to N-=i. The value of the
subscript selects one of the N files in the listr, depending upon
ordinal position (the files in the <FILE IDENTIFIER LIST> are
numbered from left to right, begining with 0). If all files in
the <FILE ICENTIFIER LIST> are of type "REMOTE™» then the switch
file identifier is of type "REMOTE".

|

5-35

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDOL (BNF Version)

SANTA BARBARA PLANT P.Se. 2212 5405 (G)

The following example copies card images from cardss tape» or
disk to cardss printer, tapes» or disk:

FILE
CARDS(DEVICE=CARD)
»TAPEICDEVICE=TAPE,USE_INPUT_BLOCKING)
»DISKICDEVICE=DISK,»USE_INPUT_SLOCKING)
»
FILE
PUNCHCCEVICE=PUNCH)
»LINEC(DEVICE=PRINTER)
»TAPECG(DEVICE=TAPE,RECORDS=80/4)
»0ISKOCDEVICE=DISK,RECORDS=80/9)

»
SWITCH_FILE
INPUTC(CARDS»TAPEI,DISKI)
»QUTPUT(PUNCH,LINE»TAPED,DISKO)

»
DECLARE
INPUT_TYPE BIT(24)
»QUTPUT_TYPE BIT(24)
»BUFFER CHARACTER(80)

I 4
DISPLAY "sssxs INPUT TYPE";
ACCEPT INPUT_TYPE;
INPUT_TYPEIBINARY(SUBSTRCINPUT_TYPE,O0»1)) MOD 33
DISPLAY “essss QUTPUT TYPE™;
ACCEPT QUTPUT_TYPE;
QUTPUT_TYPEIBINARY(SUBSTRCIUTPUT_TYPE»0,1)) MOD 43
OPEN INPUTCINPUT_TYPE) INPUT;
OPEN QUTPUTCOUTPUT_TYPE) OUTPUT, NEW;
DO FOREVER; |

READ INPUTCINPUT_TYPE) (BUFFER);

ON EOF UNDOS

WRITE QUTPUT(QUTPUT_TYPE) (BUFFER);
END;
CLOSE GUTPUTCOUTPUT_TYPE) WITH LOCK;
STOP;
FINI

5=-36
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (&)

DEEINE STATEMENT

<DECLARATION STATEMENT> 233= L..1<DEFINE STATEMENT>jl...

<DEFINE STATEMENT> ::= DEFINE <DEFINE ELEMENT>
I <DEFINE STATEMENT>»
<DEFINE ELEMENT>

<DEFINE IDENTIFIER>
<FORMAL PARAMETER PART>
AS <DEFINE STRING>

<DEF INE ELEMENT> ::=

<IDENTIFIER>

<DEFINE ICENTIFIER> ::

= (<FORMAL PARAMETER LIST>)
I I<FORMAL PARAMETER LIST>1
I <EMPTY>

<FORMAL PARAMETER PART> ::

<FORMAL PARAMETER LIST> ::= <FORMAL PARAMETER>
| <FORMAL PARAMETER>»
<FORMAL PARAMETER LIST>

<FORMAL PARAMETER> 3:= <IDENTIFIER>

<DEFINE STRING> 3:= #<WELL-FORMED CONSTRUCT>%

<WELL=-FORMED CONSTRUCT> :3:= <EMPTY>

| <BASIC COMPONENT>
<WELL=-FORMED CONSTRUCT>

<BASIC CONPONENT> ::3= <RESERVED WORD> ZSEE APPENDIX
<IDENTIFIER>

<SPECIAL CHARACTER>

<COMMENT STRING>

<CONSTANT>

The <DEFINE STATEMENT> assigns the text enclosed between the ™#"
signs following the reserved word AS to the <DEFINE IDENTIFIER>.
Invocation of the <DEFINE IDENTIFIER> causes the text to replace
the identifier», thereby providing a form of shorthand code.

At declaration times the compiler 1is unconcerned wWwith the

.contents of the <DEFINE STRING>. Howevers when the <DEFINE

IDENTIFIER> is invoked» the <WELL=-FORMED CONSTRUCT> must conform
to the syntactical requirements of the statement <containing the
identifier.

AN

5=37

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Versiaon)
SANTA BAR3ARA PLANT PeSe 2212 5405 (G)
There are two types of <DEFINE STATEMENT>s: Simple and

Parametric» where the parameters are enclosed in parentheses or
brackets foillowing the <DEFINE IDENTIFIER>. Below are examples
of both types:

DEFINE A AS #IF X>10 THEN PROCX#»
CH AS #CHARACTER#»
BCY»Z) AS #IF Y<Z THEN Y:=Z #»
CUM) AS % X:3:=M>; A #;

Notice that <DEFINE STATEMENT>s may be factoreds» with commas
separating each elemente.

The <DEFINE IDENTIFIER> has scope in the same manner as any other
identifier (except for SEGMENT and DO=GROUP identifiers)e.

Restrictions on the use of DEFINEs:

1. Reserved waords may not be used as <DEFINE
I0ENTIFIER>s>» howevers an identifier may define a
reserved worde.

2. *Special™ words may be used as <DEFINE IDENTIFIER>s»
howevers their special significance is lost within
the the scope of that <DEFINE STATEMENT>.

3. <DEFINE INVOCATION>s may appear within a <WELL=FORMED
CONSTRUCT>, 1e2e» a <DEFINE IDENTIFIER> may appear
Wwithin another <DEFINE ELEMENT>. <DEFINE
IDENTIFIER>s may be nested no more than 12 levels
deepo

4. The i1identifiers listed below are never looked up in
the list of define namese.

DECLARE» DEFINE, PROCEDURE, and FORMAL IDENTIFIERS»
SEGMENT and 00-GROUP IDENTIFIERS»

FILE» OPEN» and CLOSE ATTRIBUTES,

<FILE ATTRIBUTE STATEMENT> attribute names

"ON"™ condition names (EOF» EXCEPTION, FILE_MISSING»
Q_FULL», Q_EMPTY,NO_INPUT, FILE_LOCKEDs» INCOMPLETE_IO)_

"ACCEPT"/T"DISPLAY" specifiers: END_OF_TEXT
and CRUNCHED.

5=38
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.5. 2212 5405 (G)

If one of these identifiers happens to be the same as a <DEFINE
IDENTIFIER>» no substitution occurs. The <WELL=-FORMED CONSTRUCT>
of the define will not replace the identifier. Noter» however,
that duplicate identifiers may not appear within the same Ltexic
level; an error message resultse.

Se. There may be no more than eight <FORMAL PARAMETER>s
in a <FORMAL PARAMETER LIST>.

6. Refer to Appendix ¥ for rules concerning conditional
inclusion cards within defines.

The following syntax iltlustrates the format wused in the
invocation of a <DEFINE IDENTIFIER>:

<DEFINE INVOCATION> ::= <SIMPLE DEFINE IDENTIFIER>
I <PARAMETRIC DEFINE IDENTIFIER>
(<DEFINE ACTUAL PARAMETER LIST>)
| <PARAMETRIC DEFINE IDENTIFIER>

[<DEFINE ACTUAL PARAMETER LIST>1] !

<SIMPLE DEFINE

IDENTIFIER> = <DEFINE IDENTIFIER>
<PARAMETRIC
DEFINE IDENTIFIER> 3:= <DEFINE IDENTIFIER>

<DEFINE ACTUAL
PARAMETER LIST> s3:= <DEFINE ACTUAL PARAMETER>
: | <DEFINE ACTUAL PARAMETER>»
<DEFINE ACTUAL PARAMETER LIST>

<DEFINE ACTUAL
PARAMETER> ::3= <WELL-FORMED CONSTRUCT>

A <DEFINE INVOCATION> may occur anywhere within an SDL prograa
except in the cases listed above in Restriction 4. As indicated
by the above BNF, the actual parameters of a define are not
confined to constants and variaoles but may have a wide range of
constructs. For example, the <DEFINE STATEMENT> mentioned above:

DEFINE A AS #IF X>10 THEN PROCX#»
CH AS #CHARACTERZ,
B(Y»Z) AS #IF Y<Z THEN Y:=Z #»
COM) AS # X:z:=M; A #;
might be invoked as follows:

C(Z3BUMP IIR»S1);

which expands to:

{mﬁ

N

R

5-=39
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQOUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

X3=7Z7 BUMP I[R,S5157 IF X>10 THEN PROCX;

The following restrictions apply to the wuse of the <DEFINE
INVOCATION>:

1. No unpaired bracketing symbols, 1i.e.so () or [1, may
appear.
2e Within a <DEFINE ACTUAL PARAMETER LIST>» commas not

enclosed within paired bracketing symbols act to
delimit the <DEFINE ACTUAL PARAMETER>s. Therefore a
<WELL=-FORMED CONSTRUCT> not enclosed in bracketing
symbols may not contain commase. For example:

DEFINE XCA»B) AS Z A(B) #;
and invoked as:
Z2:3=X(M»Q»R»S);
would result in the error message:
DEFINE INVOCATION HAS TOO MANY PARAMETERS
Proper 1invocation 1is possible by
removing the parens from the define

and placing them in the invocation:

DEFINE X(A,3) AS # A B #;
Z:=X(M>(Q9»R»S5))>;

3. Comments are allowed but will be deleted from the
actual parameter texte.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

EQRWARD DECLARAYION

<DECLARATION STATEMENT>

-
.

<FORWARD DECLARATION> ::=

<COMPOUND PROCEDURE
HEAD> ::=

<PROCEDURE HEAD> ::=
<BASIC PROCEDURE HEAD> ::=

<PROCEDURE NAME> ::=

<PROCEDURE IDENTIFIER> 2:=

<TYPED PROCEDURE
IDENTIFIER> ::=

<NON-TYPED PROCEDURE
IDENTIFIER> 3=

<FORMAL PARAMETER PART>

<FORMAL PARAMETER LIST>

"

(1]
(1]

<FORMAL PARAMETER> 33=

<PROCEDURE TYPE PART> ::=
<FORMAL TYPE PART> ::=

<TYPE PART> ::=
<TYPE VARYING PART> ::=

<FORMAL PARAMETER DECLA-
RATION STATEMENT LIST> ::=

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.S. 2212 5405 (G)

e | <FORWARD DECLARATION>!.0®

FORWARD <COMPOUND PROCEDURE HEAD>

<PROCEDURE HEAD>

<FORMAL PARAMETER DECLARATION

STATEMENT LIST>

<BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>;

<PROCEDURE NAME>
<FORMAL PARAMETER PART>

PROCEDURE <PROCECURE IDENTIFIER>

<TYPED PROCEDURE IDENTIFIER>

<NON=TYPED PROCEDURE IDENTIFIER>

<IDENTIFIER>

<IDENTIFIER>

<EMPTY>
(<FORMAL PARAMETER LIST>)

<FDRMAL PARAMETER>
<FORMAL PARAMETER>,
<FORMAL PARAMETER LIST>

<IDENTIFIER>

<EMPTY>
<FORMAL TYPE PART>

<TYPE PART>
<TYPE VARYING PART>

FIXED '
CHARACTER <FIELD SIZE>
BIT <FIELD SIZE>

VARYING

BIT VARYING
CHARACTER VARYING

<EMPTY>

5=41

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

| <FORMAL PARAMETER DECLARATION STATEMENT>;
<FORMAL PARAMETER DECLARATION
STATEMENT LIST>

<FORMAL PARAMETER
DECLARATION STATEMENT> ::= FORMAL <FORMAL ELEMENT>
| FORMAL_VALUE <FORMAL ELEMENT>
| <FORMAL PARAMETER DECLARATION STATEMENT>,
<FORMAL ELEMENT>

<FORMAL ELEMENT> ::= (<FORMAL IDENTIFIER LIST>)
<FORMAL TYPE PART>
| <FORMAL IDENTIFIER>
<FORMAL TYPE PART>
<FORMAL INDENTIFIER LIST> ::= <FORMAL IDENTIFIER>
| <FORMAL IDENTIFIER LIST>,
<FORMAL IDENTIFIER>

<FORMAL IDENTIFIER> 33= <COMPLEX IDENTIFIER>
I <VARYING ARRAY SPECIFIER>

= <SIMPLE IDENTIFIER>
I <ARRAY IDENTIFIER>
<ARRAY BOUND>

<COMPLEX IDENTIFIER> =

<VARYING ARRAY SPECIFIER> ::= <ARRAY IDENTIFIER>
<YARYING ARRAY BOUND>

<VARYING ARRAY 30UND> ::3

"

(x)

Before a praocedure may be called, SDL specifies that it must have

been previously declarede. A contradiction arises when one
procedure calls another procedure which in turn references the
firste. In this case» whichever procedure appears first must

necessarily contain at least one reference to the second which
has not yet been declared.

The <FORWARD DECLARATION> allows the programmer to use recursive
references Dy providing a temporary procedure declaratione. The
<FORWARD DECLARATION>s howevers does not eliminate the need for
the normal procedure declaration which must follow in the progranm
and must have the same scopee.

The parameters mentioned in the <FORWARD DECLARATIJON> must be the
same formal parameters (in type and sizer» but not in name) that
the procedure itself will declaree.

5=42

BURROUGHS CORPORATION | ‘ COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.5. 2212 5405 (@)

Procedures may be either typed or non=typed depending on their

uUSee Formal data types may either be static or varyings again

T S e e

depending on the program. These specifications will be discussed
in the section entitled "THE PROCEDURE STATEMENT",

The following wexamples 1i1{lustrate the use of the <FORWARD
DECLARATION>:

FORWARD PROCEDURE X CHARACTER VARYING;
FORWARD PROCEDURE J(K»LsM)>
FORMAL K(=) BIT VARYING»
L(15) CHARACTER (38)»
M FIXED’ -

C

/ﬂf ‘\!

L

C

5=43

BURROUGHS CCRPORATION : COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

USE STATEMENT

<USE STATEMENT> ::= USE (<SIMPLE IDENTIFIER LIST>)
OF <DEFINE IOENTIFIER>

<SIMPLE IDENTIFIER

LIST> ::= <SIMPLE IDENTIFIER>

| <SIMPLE IDENTIFIER LIST>, <SIMPLE IDENTIFIER>
<SIMPLE IDENTIFIER> 3:= <IDENTIFIER>
<DEFINE ICENTIFIER> 23:= <IDENTIFIER>

The purpose of the <USE STATEMENT> is to allow the programmer to
declare specific elements in a defined structure within a

procedure. By specifying only the desired elementss the Name
Stack size is kept to a minimums, and program maintenance is
siaplified. The compiler will generate the structure using

fillers and the specified elementse.

The following restrictions apply to the <USE STATEMENT>:

1. It must appear within a procedure (i.eer» on a lexic
level greater than 0).

2. The referenced <DEFINE IDENTIFIER> must define one
structured declare statement.

3. The structure may not contain arrays.

4, The outermost Llevel of the structure (01) must be a

"DUMMY REMAPS".

EXAMPLE:

DEFINE X AS #
DECLARE 01 DUMMY REMAPS As % MIGHT ALSO REMAP BASE
02 8 BIT(5)»
03 81 BIT(2)»
03 82 BIT(3)»
02 ¢ CHARACTER(C10)»
02 D 8ITC1)>»
02 E FIXED»
02 F BIT(24)25
PROCEQOURE FIRST;
USE (C»D) OF X3

- b e e ens pet amee e e p b e b e e e e s e 4w e e e b wm t aia e e ey mm e a saw e e e

’ =4k
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

~COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe. 2212 5405 (6)

From the above <USE STATEMENT> the <compiler wWilli generate the
following structure:

01 DUMMY REMAPS A,
02 FILLER BIT(5)>»
03 FILLER BIT(2),
03 FILLER BIT(3)»
02 ¢C CHARACTERC(C10)»
02 D BIT(1)»
02 FILLER FIXED>»
02 FILLER BIT(24);

Note that filler was substituted for the group item Be. This
would normally generate & syntax error, and is allowable only in
the <USE STATEMENT>.

Y

6=1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B10G0 SDL (BNF Version)

SANTA BARBARA PLANT P.5S. 2212 5405 (G)
BROCEDURES

<PROCEDURE STATEMENT> ::= <PROCEDURE DEFINITION>

‘ 1 <SEGMENT STATEMENT>
<PROCEDURE STATEMENT>

<PROCEDURE CEFINITION> ::= <COMPOUND PROCEDURE HEAD>
<PROCEDURE BODY>

<SEGMENT STATEMENT>::= SEE "THE SEGMENT STATEMENT™

<PROCEDURE B8QODY> ::= <DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>
<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

Procedures are self=-contained functional units within an SDL
program which may be accessed according ta specific rules
discussed under "BASIC STRUCTURE QOF THE SDL PROGRAM™. Procedures
may be created by preceding self-contained statements with a
<COMPOUND PROCEDURE HEAD>» and terminating it with a <PROCEDURE
ENDING>.

The <PROCEDURE DEFINITION> is composed of three basic partss:
heading» bodys» and ending. Identifiers declared in a procedure
may be accessed only in the procedure in which they are declared»
and in procedures nested within the declaring procedure.

Procedures may be either ©“TYPED®™ or “NON-TYPED". A "TYPED"™
procedure returns some value of the type specified 1in the
procedure declaration to the expression where the procedure was

invokede. See "YALUE YARIABLES™ for detailse. A T"NON-TYPED™
procedure performs a function» does not raturn a value» and is
invoked in an <EXECUTE PROCEDURE STATEMENT>. See "EXECUTE

PROCEDURE STATEMENT"™.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

PROCEDURE HEAD

The syntax for the procedure heading

<COMPOUND PROCEDURE
HEAD>

<PROCEDURE HEAD> ::=
<BASIC PRUCEDURE HEAD>
<PROCEDURE NAME> ::=
<PROCEDURE IDENTIFIER>

<TYPED PROCEDURE
IDENTIFIER>

. e
e @ =

<NON=TYPED PROCEDURE
IDENTIFIER>

- & -
s v -

<INTRINSIC IDENTIFIER>

<TYPED INTRINSIC
IDENTIFIER>

* 0 o
. @ -

<NON=-TYPED INTRINSIC
IDENTIFIER> 3:3=

<FORMAL PARAMETER PART>

<FORMAL PARAMETER LIST

<FORMAL PARAMETER>

<PRCCEDURE TYPE PART> :
<FORMAL TYPE PART>

<TYPE PART>

® B -
-

.

e

o
]

[y
1

.
i

6=2

- COMPANY CONFIDENTIAL

B100O0 SDL
P.S.

is:

<PROCEDURE HEAD>

(BNF Version)
2212 5405 (G)

<FORMAL PARAMETER DECLARATION

STATEMENT LIST>

<BASIC PROCEDURE HEAD>
<PROCEDURE TYPE PART>

<PROCEDURE NANE>
<FORMAL PARAMETER PART>

PROCEDURE <PROCEDURE ID
INTRINSIC <INTRINSIC ID

ENTIFIER>
ENTIFIER>

<TYPED PROCEDURE IDENTIFIER>

<NON-TYPED PROCEDURE IO

<IDENTIFIER>

<ICENTIFIER>

ENTIFIER>

<TYPED INTRINSIC IDENTIFER>

<NON=-TYPED INTRINSIC ID
<IDENTIFIER>

<IDENTIFIER>

<ENPTY>
(<FORMNAL PARAMETER LIST

<FORMAL PARAMETER>
<FORMAL PARAMETER>»
<FORMAL PARAMETER LIST
<IDENTIFIER>

<EMPTY>
<FORMAL TYPE PART>

<TYPE PART>
<TYPE VARYING PART>

FIXED

ENTIFER>

>)

N/

6-3

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeSe 2212 5405 (G)

<FIELD SIZE> ::

| CHARACTER <FIELD SIZE>
I BIT <FIELD SIZE>
! REFERENCE

= (<CONSTANT EXPRESSION>)

<TYPE VARYING PART> 3:= VARYING

I BIT VARYING
| CHARACTER VARYING

<FORMAL PARAMETER DECLA-~
RATION STATEMENT LIST> 3:= <EMPTY>

I <FORMAL PARAMETER DECLARATION STATEHMENT
LIST>;
<FORMAL PARAMETER DECLARATION>

<FORMAL PARAMETER
DECLARATION STATEMENT> ::= FORMAL <FORMAL ELEMENT>

| FORMAL_VALUE <FORMAL ELEMENT>
| <FORMAL PARAMETER DECLARATION STATEMENT>,
<FORMAL ELEMENT>

<FORMAL ELEMENT> ::= (<FORMAL IDENTIFIER LIST>)

<FORMAL TYPE PART>
I <FORMAL TDENTIFIER>
<FORMAL TYPE PART>

<FORMAL IDENTIFIER

LIST> ::= <FORMAL IDENTIFIER>
! <FJRMAL IDENTIFIER LIST>,
<FORMAL IDENTIFIER>
<FORMAL ICENTIFIER> ::= <COMPLEX IDENTIFIER>
] <VARYING ARRAY SPECIFIER>
<COMPLEX IDENTIFIER> :2:= <SIMPLE IDENTIFIER>

<SVARYING ARRAY
SPECIFIER> s3:3=

<VARYING ARRAY

I <ARRAY IDENTIFIER>
<ARRAY 30UND>

<ARRAY IDENTIFIER>
<VARYING ARRAY BOUND>

BOUND> ::= (&)

The procedure headings i.e.» <COMPOUND PROCEDURE HEAD>, contains

the <PROCEDURE

NAME>» formal parameters (if any)s» and the

<PROCEDURE TYPE PART>» i.e.» the field type of the value to be
returned if the procedure is "TYPED™. For example:

6=4

BURROUGHS CORPORATION ' COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P«S. 2212 5405 (G)

PROCEDURE X (MsN) FIXED;
FORMAL (M»>N) VARYING?

which corresponds to the following syntax:

PROCEDURE <TYPED PROCEDURE IDENTIFIER>
(<FORMAL PARAMETER>»<FORMAL PARAMETER>)
<PROCEDURE TYPE PART>;
FORMAL (<FORMAL IDENTIFIER>»<FORMAL IDENTIFIER>)
<FORMAL TYPE PART>; ‘

In this caser the value returned to the point of invocation
should be fixede There is» howevers» no check for this at compile
time. If the control card option FORMAL_CHECK is present, the
returned values will be checked against the procedure type at run
timee.

The "NON~TYPED"™ procedure follows the same format except that the
<PROCEDURE TYPE PART> is omitted since no value is returnede. For
instance:

PROCEDURE A (JsK»L)>
FORMAL J FIXED» (K»L) BIT VARYING;

which syntactically is the same as:

'PROCEDURE <NON=TYPED PROCEDURE IDENTIFIER>
(<FORMAL PARAMETER>,<FORMAL PARAMETER>»
<FORMAL PARAMETER>);

FORMAL <FORMAL IDENTIFIER> <FORMAL TYPE PART>,
(<FORMAL IDENTIFIER>»<FORMAL ICENTIFIER>)
<FORMAL TYPE PART>;

When a formal parameter is declared as FORMAL_VALUE» the actual
parameter will always be passed by valuee. See the section on
ADDRESS and VALUE PARAMETERS.

The field type of formal parameters (ia.e€e» components of the
<FORMAL TYPE PART>) may be static (BIT, CHARACTER, or FIXED) or
variable (BIT VARYING, CHARACTER VARYING» or VARYING).

The <FIELD SIZE> must be a <CONSTANT EXPRESSION> (i.ee.» an
expression whose value can be determined during compilation).

65

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
CONPUTER SYSTEMS GROUP 31000 SDL (BNF Versian)
SANTA BARBARA PLANT PeSe 2212 5405 (G)
Often howevers» it 1is impossible to determine the data type at

compile time especiaily if the actual parameters are passed to
the procedure from different opoints in the program and under
di ffering circumstances. SD0L allows the user to specify variable
data fields 1in the formal declaration. The actual parameters

passed to that procedure will provide the specificse. Thus
formals may be declared as "BIT VARYING™, "CHARACTER VARYING™», or

"VARYING".

In a variable bit or character field» the type of data passed
must be that which is specified (i.es» BIT or CHARACTER). The
length» howevers remains variable. Formals specified as
"VARYING™ may accept any type of data of any length.

The data types of corresponding formal and actual parameters will
not be checked at compile time and only at run time when
FORMAL.CHECK has been specified as a control card optione.

Varying formals may be remapped» but it is the programmer's
responsibility to ensure that the remapped formal parameter and
its correspanding actual parameter match. A warning message will
appear in the source listing where the remapping has occurrede.

SOL alsoc allows formally declared arrays toc have a3 variable
number of elements by substituting "+*" for the number following
the <ARRAY IDENTIFIER>. For instance:

PROCEDURE X (A,B8);
FORMAL A (+) FIXED» 8 (%) VARYING;

INIRINSIC HEAD

The word "INTRINSIC™ may be used interchangeably with the word
"PROCEDURE"™. It is» however, intended only for use by the SOL
group in order to provide SDL intrinsicse.

The dse of "INTRINSIC™ forces the intrinsic to have as entry
point the displacement 0 within a new segment.

k& &

B — s g S S L R AR R S PR L

6=6
BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

PROCEDURE BODY

The body of the procedure follows the heading. Included are
deciaration of 1local data (discussed under "THE DECLARATION
STATEMENT™)» nested procedures (also see "BASIC STRUCTURE OF THE
SDL PROGRAM"™)» executable statementss and an endinge. The syntax
for the <PROCEDURE EXECUTABLE STATEMENT LIST> follows:s

<DECLARATION STATEMENT LIST>
<PROCEDURE STATEMENT LIST>

<PROCEDURE EXECUTABLE STATEMENT LIST>
<PROCEDURE ENDING>

<PROCEDURE BODY> ::=

<PROCEDURE EXECUTABLE
STATEMENT LIST> ::= <PROCEDURE EXECUTABLE STATEMENT>
! <PROCEDURE EXECUTABLE STATEMENT>

<PROCEDURE EXECUTABLE STATEMENT LIST>

<PROCEDURE EXECUTABLE
STATEMENT> ::= <EXECUTABLE STATEMENT>
I <RETURN STATEMENT>
| <SEGMENT STATEMENT>
<PROCEDURE EXECUTABLE STATEMENT>

The <EXECUTABLE STATEMENT>s will be discussed in the section
entitled "EXECUTASLE STATEMENTS™, As 1indicated by the above

syntaxs executable statements within a procedure may be
segmented. Howevers a procedure must end in the same segment in
which 1t beginse. For other segmentation restrictions see "THE

SEGMENT STATEMENT™.

The syntax for the <RETURN STATEMENT> is:

<RETURN STATEMENT> 3:3= <TYPED PROCEDURE RETURN STATMENT>

| <NON=TYPED PROCEDURE RETURN STATEMNENT>

<TYPED PROCEDURE
RETURN STATMENT> :3= RETURN <EXPRESSION>

<NON=TYPED PROCEDURE
RETURN STATEMENT> 32 RETURN

| RETURN_AND_ENABLE_INTERRUPTS

The <RETURN STATEMENT> takes one of two forms depending on the
type of the ©procedure encompassing it. If the procedure is
*"TYPED™» an <EXPRESSION> must be returned to the point of
invocation. In a "NON=-TYPED" procedures only a simple return is
needed. For expression specifications refer to the sections
entitled "EXPRESSIONS™ and "PRIMARIES"™.

C

6=7

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 5DL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (&)

Type checking on a <RETURN STATEMENT> is done only at run tinme
when FORMAL.CHECK appears as a control card optione.

Within any given procedure (at any Llexic Llevel), certain
statements are nested within other statements and are accessed»
much Like a procedure» by an address generated by the Llarger

statement. The most generat nesting level is zeror» and the
nesting level of any statement appears on an SDL Llisting under
the column "NL". The most common instance of statements

occurring at Nesting Level 1 or greater are:

} I The <conditionalily executed statements following
*THEN™ and "ELSZ™ in the <IF STATEMENT>.

2. Statements contained within a <CASE STATEMENT>.

3. <DO-GROUP>s.

If the compiler cannot find a3 <RETURN STATEMENT> on NL 0, it will
generate one directly preceding the <PROCEDURE ENDING>. This is
merely a safety measure to insure that a procedure can always be
properly exitede

A compiler=-generated return works essentially in the same manner
as an explicit returne. In 3 non-typed procedure» control is
returned to the point of the procedure’s invocatione. In a typed
procedures the following values are returnede.

If the procedure is typed: the compiler will return:
BIT BITS CONTAINING O
OF LENGTH SPECIFIED
CHARACTER BLANKS OF LENGTH SPECIFIED
FIXED FIXED ZERQ
BIT VARYING 8=-BITS OF ZERQ
CHARACTER VARYING , ONE BLANK

VARYING FIXED ZERO

RETURN_AND_ENABLE_INTERRUPTS is for MCP use only. It will cause
a normal procedure exit to take places and will enable interrupts
as well.

6-8
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT ' PeS. 2212 5405 (G)

PROCEDURE ENDING

The <PROCEDURE ENDING> is the final statement of a procedures» and
the syntax is:

<PROCEDURE ENDING> ::= END ,
I END <PROCEDURE ICENTIFIER>

The identifier following the reserved word "END™ is optional.
Its sole purpose is to simplify the documentation of the programe.
If an identifier is supplied by the wuser» the compiler will
perform a syntax check to guarantee that the <PROCEDURE ENDING>

is appropriately placed.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT

7=1

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PeSe 2212 5405 (G)

ASSIGNMENT STATEMENTS AND EXPRESSIONS

<ASSIGNMENT STATEMENT>

<ADDRESS VARIABLE>

<REPLACE> 3:=

<EXPRESSION> :3:=

<STRING EXPRESSION>

<0R=ING OPERATOR> ::=

<LOGICAL FACTOR> :3:=

<LOGICAL SECONDARY>

<LOGICAL PRIMARY> :

<RELATION> ::=

<ARITHMETIC
EXPRESSION> 3:3:=

<ADDITIVE OPERATOR>

<TERM>::=

<MULTIPLICATIVE
OPERATOR> ::=

<ADDRESS VARIABLE>
<REPLACE>
<EXPRESSION>

SEE T"ADDRESS VARIABLES"

<STRING EXPRESSION>
<STRING EXPRESSION>
CAT <EXPRESSION>

<LOGICAL FACTOR>
<LOGICAL FACTOR>
<0OR=-ING OPERATOR>
<STRING EXPRESSION>

GR I EXOR

<LOGICAL SECONDARY>
<LOGICAL SECONDARY>
AND <LOGICAL FACTOR>

<LOGICAL PRIMARY>
NOT <LOGICAL PRIMARY>

<ARITHMETIC EXPRESSION>
<SARITHMETIC EXPRESSION>
<RELATION>

<ARITHMETIC EXPRESSION>

<1l <=1 =1/=1>= 1>

LSS | LEQ 1 EQL I NEQ@ |
GE? | GTR

<TERM>

<TERM>

<ADDITIVE QPERATOR>
<ARITHMETIC EXPRESSION>

+] -

<SIGNED PRIMARY>

<SIGNED PRIMARY>
<SMULTIPLICATIVE OPERATOR>
<TERM>

,*= | MOD 1 7/

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<SIGNED PRIMARY>::=

<UNARY OPERATOR> ::=

7=2

COMPANY CONFIDENTIAL
B1000 SDL (3NF Version)
PeSe 2212 5405 (G)

<PRIMARY>
<UNARY OPERATOR>
<PRIMARY>

+ | -

”?;5‘

BURROUGHS CQORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.Se. 2212 5405 (G)
The following is a Llist of the SDL operators from highest
precedance to loweste. This Llist or the tabie in Figure 3 may be
used when evaluating an expression.

+ » = (<UNARY QOPERATOR>)

*, /» MOD

+» = (<ADDITIVE QJPERATOR>)

Kp /= =p <=p >=,p >

NOT

AND

OR» EXOR

CAT

1. The assignment operator has higher precedence than

any operator to 1its left and lower precedence than

any to its righte.

2e The order of evaluation of operators having equal

precedence i1s always from Left to righte.

Sk b £ [- a0 3 it T e e S

S £+ 2 Lol

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT

NEG
)
P
R =
E
v NOT
I
g AND
U
S OR
0 CAT
Pe
(
)
BT
FORMULA:
NOTE:

NEG

<
<

<

PRECEDENCE <PREVIOUS OP> <RELATION> PRECEDENCE <PRESENT

Mo e Il % 2
-t = |

m
(]

Fig 3.

NV AN

PRESENT 0OP.

+ = = NOT
> > <
> > <
> > <
< > <
< < >
< < <
< < <
< < <
< < <
< < <
> >
< < <

UNARY OPERATORS

AND

>

AV AA

OR

>

AV ANA

MULTIPLICATIVE OPERATORS

RELATIONAL OPERATORS

REPLACE OPERATORS
INFERRED BEGINNING TERMINATOR

INFERRED ENDING TERMINATOR

7=4

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
2212 5405 (G)

PaSe.

CAT

AV AA

Operator Precedence Table

AV AA

<

<

v

v il v

o7

C

7=5

BURRQUGHS CCORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BAR3SARA PLANT PeS. 2212 5405 (G)

UNARY QPERATQRS

+

The wunary operator acts upon one operand and may never appear as
an infix operator between tWwo operandse. It may appear to the
right of any other operator, including itself.

The UNARY MINUS (=) generates the two's complement of the operand
associated with it (i.2e» =X = (NOT X)+1). The operand may be
any data type. If it is fixeds, the UNARY MINUS has the effect of
reversing the sign» and the result is labeled on the Evaluation
Stack as fixed.

If the operand 1is either a character or bit string, only the
low=order 24 Dbits will be evaluated. Strings less than 24 bits
will be padded with Lleading zeroces to 24 bits. The two?'s
complement of the string is generated and returned to the stack
as type fixedeo

The SDL compiler generaztes no code for the unary plus (+) which
exists solely for the convenience of the prograanmer.

ARITHMETIC OPERAIQRS

+ Addition

- Subtraction

* Mul tiplication

MOD Division yielding integer value of remainder

/ Division yielding integer value of quotient
The arithmetic operators perform 24=bit arithmetic on two
operands of any of the three data typese. Sign analysis will be

done only if both operands are fixed. With any other combination
of data typess the magnitudes of the operands are evaluated.

7=6

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT Pe5. 2212 5405 (G)

For both bit and character datars if the field is greater than 24
bits» only the low=order 24 bits will be evaluated. If the field
is tess than 24 bitss Lleading zeroes will be supplied from the
lefte.

A 24=bit result will be returned to the Evaluation Stack. If
both operands are fixed» tne result will be fixed. Otherwises»
the result will be type bit. -

SOL division results in an integer value. Any remainder is
truncated thus:

/
/

Won
V)

7 3
3 7

Note this means that =" and "/ do not associatee. In generatl-»
(A = B) / C does not equel A *« (B8 7 C). .
The MOD operation is division resulting in the integer value of
the remainder. It is evaluated by the following formulia:

Y MOD Z = Y=(Z*(Y/2)) using integer division explained above.

For example:

7 MOC 3 =7=(3 « 2) = 1|
=7 MOD 3 = =7={3+(-2)) = =1

3 MOD =7 = 3=({(=7)*(~=0)) = 3
=3 MGD =7 = (=3)=((=7) = 0) = =3

Notes For negative arguments» this definition is not the same as

the traditional definitions from mathematics.

RELATIONAL QPERATORS

= EQL EQUAL TO
/= NEQ NOT EQUAL TGO

> GTR GREATER THAN

< LSS : LESS THAN

>= GEQ GREATER THAN OR EQUAL TO
<= LEQ LESS THAN OR EQUAL TO

AN

N T Te7
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF VYersion)
SANTA BARBARA PLANT PeSe. 2212 5405 (G)

The relational operators do a comparison between two operands of
any data type. A 1-bit resuit is returned == 3aC(1)13 if the
condition is true» 3(1)03 if the condition is false.

If both operands are fixed» the operator does a true signed
comparee. I[If both operands are character strings», the shorter one
is padded on the right with blanks» and a character by character
magnitude compare by collating sequence is done.

For all other operand combinations, leading zeroes are supplied

to the shorter of the twoe. No sign analysis is done» and
operands are treated as positive magnitudese.

LOGICAL QPERAIQRS

NOT
AND
gR
EXOR

The logical operators perform a bit by bit 3snalysis on all three
data typese. N3T is considered to be a unary operator, and may
aoppear to the right of any other operator {(including itself).

The other operators require two operands. The shorter of the two
is padded on the left with zeroes to duplicate the length of the
larger. The following chart illustrates the wuse of each
operator.

IF X = 0 0 1 1
IF Y = 0 1 0 1
NOT X = 1 1 0 C
NOT Y = 1 0 1 0
X AND Y = 0 0 0 1
X QR ¥ = 0 1 1 1
X EXOQR Y = 0 1 1 0

LEFT PART> ::=

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (&)

BEBLACE QPERATORS

<ASSIGNMENT STATEMENT> <ADDRESS VARIBLE>

<REPLACE>
<EXPRESSION>
<REPLACE> ::= L e=
<ASSIGNOR> ::= <ADDRESS VARIABLE>
<NON=-DESTRUCTIYE REPLACE>
<EXPRESSION>
<NON-DESTRUCTIVE
REPLACE> ::= ' <REPLACE» DELETE LEFT PART>

| <REPLACE, DELETE RIGHT PART>

<REPLACE, DELETE

<REPLACE, DELETE
RIGHT PART> ::=

NOTE: <REPLACE,» DELETE RIGHT PART> symbol "::=" is the same

as the BNF definition symbotl.

There are two basic types of replace operators: The destructive
<REPLACE> associated with the <ASSIGNMENTY STATEMENT>s, and the
<NON=-DESTRUCTIVE REPLACE> which occurs only within an expressione.

The destructive <REPLACE> operator causes the expression on its
right to "REPLACE™ the variable on its left. The Evaluation

Stack is flushed since this replace is necessarily the last

operation in the statement.

The <NON=-DESTRUCTIVE REPLACE> takes two formss “DELETE LEFT™ and
"DELETE RIGHT™. The “DELETE LEFT™ causes the expression to the
right of the operator to replace the variable on its lefte. The
variable is then deleted from the top of the Evaluation Stack»
and the expression is left on the top of the stacke.

The ™"DELETE RIGHT™ causes the same replacement. Howevers the
expression to the right of the operator is deleted from the
Evaluation Stacks, and the varisble to the left remains on the top
of the stack.

2\‘\7 //

COMPUTER SYSTEMS GROUP

N7 B — e O NP ANY CONFIDE
| 81000 SDL (BNF Version).
SANTA BARBARA PLANT P.5. 2212 5405 (G)

The foltowing example illustrates the use of the <NON=-DESTRUCTIVE
REPLACE>:

PROCEDURE GOOD BIT VARYING?
DECLARE X B8IT(48)5
RETURN X 33= "RESULT";

END GQQD>

PROCEDURE BAD SIT VARYING:
DECLARE Y BIT(48);
RETURN Y 3= T™RESULT™:

END BAD;

PROCEDURE GOOD will execute properly since X» declared as bit, is
associated with the procedure type==bit varying. Notices
however» that in PROCEDURE BAD» Y is deleted from the stack and
the character string "RESULT™ remains. Unless the control card
option FORMAL.CHECK 1is set at compile time» there will be no
indication that the data types (as in PROCEDURE BAD) do not match
the procedure type. If FORMAL.CHECK is specifiedr, the following
execute time error message Wwill be printed:

"TYPE ERROR IN RETURNED VALUE"™

If both operands associated wWwith any replace operator are
character fields» and the receiving field is longer than the
sending field» trailing blanks will be addede. If the receiving
field is shorter, characters will be truncated from the righte.

With every other comoination of data typess when the receiving
field 1s not equal in length to the sending field» leading binary
Zzeroes Will be appended to the larger receiving fields or
high=order bits are truncated from the larger sending fielde.

Inconsistant results may be obtained in cases such as

A3=SUBSTR (A»2,5)

(i.2.» where the sending field and the receiving field are simple
primaries less than 24 bits apart). This problem can be avoided
by enciosing the SUBSTR in parenthesese.

A:= (SUBSTR(A,2,5));

NTIAL

e . g

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

Also‘see the reverse store operation
"EXECUTE=FUNCTION STATEMENT™.

7-10

COMPANY CONFIDENTIAL
B1000 SDL (BNF Versiaon)
PaSe 2212 5405 (G)

in the section entitied

7-11

BURROUGHS CORPGORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SOL (8NF Version)
SANTA BARBARA PLANT PeSs 2212 5405 (G)
CONCATENATION

Data items may be Llinked together (concatenated) by using the
"CAT™ operator. Although this operator is intended to
concatenate bit strings or character strings» it may be used with
any combination of data types. The result of any concatenation

may not be greater than 8,191 characters or 655,535 bitse

If all the operands are <character strings» the result is a
character stringe. For any other combination of data typess the
result is a bit string. For example:

LET A = ~B" 1 CHARACTER
8 = 3(1)1013 3 BITS
c =10 FIXED
THEN
8 CAT B8 = 3(1)1011013 BIT STRING» LENGTH 6
A CAT A = =~BB" CHARACTER STRING, LENGTH 2
A CAT 8 = 3(1)110000101013 BIT STRING» LENGTH 11
8 CAT C = 3(3)5000000123 BIT STRINGs LENGTH 27

(EXPRESSED IN OCTAL)

8-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.Se. 2212 5405 (G)

PRIMARY ELEMENTS OF THE EXPRESSLON

<PRIMARY> ::= <CONSTANT>

<VARIABLE>
(<EXPRESSION>)
<CONDITIONAL EXPRESSION>
<CASE EXPRESSION>
<BUMPOR>

<DECREMENTOR>

<ASSIGNOR>

i . . . - o —

<VARIABLE> ::= . <ADDRESS VARIABLE>
B | <VALUE VARIABLE>

A primary is the most basic component of the SDL expression. To
avoid unnecessary repetition» see T"BASIC COMPONENTS COF THE SDL
LANGUAGE"™ for discussion of constantss and see T™ADDRESS
VARIABLES™ and "VYALUE VARIABLES™ for discussion of variables.

CONDITIONAL EXPRESSIQN

<CONCITIONAL EXPRESSION> ::= IF <EXPRESSION>
THEN <EXPRESSION>
ELSE <EXPRESSION>

The expression following the reserved word "IF™ is evaluated. If
the Llow=order bit of the result is 1» the expression following
"THEN™ is evaluated. Otherwiser the expression following ™ELSE"
is evaluated. Unlike the <IF STATEMENT>», the "ELSE™ part of the
expression must be present.

7

A \;/

D=C

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

CASE EXEBRESSION

<CASE EXPRESSION> ::= CASE <EXPRESSION>
OF (<EXPRESSIONLIST>)

<EXPRESSION LIST> ::= <EXPRESSION>
' I <EXPRESSION>,
<EXPRESSION LIST>

In the <CASE EXPRESSION>s the value of the <EXPRESSION> following
the reserved word "CASE™ 1is used as an index into the List of
expressionse. The expression thus selected is evaluated» and the
other expressions in the list ignoreds The range of the index is
from zero to N=1», where N is the number of <EXPRESSION>s in the
liste An example of an <ASSIGNMENT STATEMENT> containing a <CASE
EXPRESSION> followus:

A:=CASE I OF (A#B» A=-B» A*B, A/B» A MOD 8) +
CASE J OF (9#F=5, 9» 34+8», (A+B) MOD B» C)

if I=2 and J=3, the statement will be evaluated as follows:

A:=(A*8) + (A+B) MOD 8>

BUME

<BUMPOR> ::= BUMP <ADDRESS VARIABLE>
<MODIF IER>

<MODIFIER> ::= <EMPTY>

I BY <EXPRESSION>

BUMPOR teaves on the Evasluation Stack» a descriptor of the
variable which has been incremented by the value of the modifying
<EXPRESSIOAN>. If <MODIFIER> is <EMPTY>», then the wvariable is
incremented by 1. The results of the following expressions
(where A is an <ARRAY IDENTIFIER>) are equivalent:

BUMP A(X+#Y) BY N
ACX+Y) 3:= A(X+Y) + N

8=3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.Se 2212 5405 (&)

The advantage of using <BUMPOR> is that the code for putting the
descriptor on the stack is exacuted only once. Thus it is more
efficient.

Like any variabler (<BUMPOR>) will cause a value to be loaded to
the top of the stack. Hence:

PC(BUMP X BY C=D);
passes X by address but»
PC(BUMP X BY C=D));
passes X by valuee.
<BUMPOR> operates on all three data types. Character strings are
treated as if they were bit stringse. For fields greater than 24

bits» only the low=order 24 bits are evaluatedes If the field is
tess than 24 bitss it is padded with leading zeroes to 24 bitse.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

DECREMENT
<DECREMENTOR> ::=

<MODIFIER> ::=

The <DECREMENTOR> works exactly like
decreased

variable is
above.

ASSIGNIR
<ASSIGNOR> ::=

8=4

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.S. 2212 5405 (G)

DECREMENT <ADODRESS VARIABLE>
<MODIFIER>

<SEMPTY>
1 3Y <EXPRESSION>

<BUMPOR> except that the
by the value of the <EXPRESSION>. See

See REPLACE OPERATORS in Chapter 7.

[. e g TS e

8-5

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

ADORESS YARIABLES

<ADDRESS VARIABLE> ::= <SIMPLE VARIABLE>
| <SUBSCRIPTED VARIABLE>
! <INDEXED VARIABLE>
| <ADDRESS=GENERATING FUNCTION DESIGNATOR>

 <SIMPLE VARIABLE> ::= <SIMPLE IDENTIFIER>

<SIMPLE IDENTIFIER> ::= <IDENTIFIER>

<SUBSCRIPTED VARIABLE> ::= <ARRAY IDENTIFIER>(<EXPRESSION>)
<ARRAY IDENTIFIER> ::= <IDENTIFIER>

As noted abover <ADDRESS VARIABLE>sS may take the form of a
<SIMPLE IDENTIFIER>» or an <ARRAY IDENTIFIER> followed by an

(<EXPRESSION>) designating the array element 1in questione. In
addition» simple and array identifiers may be indexed.

\;\‘ %

INDEXING
<INDEXED VARIABLE> ::= <SIMPLE IDENTIFIER> <INDEX PART>
I <ARRAY IDENTIFIER> <INDEX PART>
<INDEX PART> s:= [<EXPRESSION LIST>]
Each of the expressions in the <INDEX PARTS is evaluateds and the
sum of these is formede. This will be called the index.
The indexing operation occurs functionally as follows:
i. The simple or array descriptor is loaded to the top
of the Evaluation Stacke
2e If the descriptor is an array descriptor» then it is
converted to a simple descriptor which describes the
first (zero) element of the arraye. _
3. The address field of the descriptor is modified by {wx

adding to it the index.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

8=6

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (G)

Note that self-relative data items

is not greater than 24» which are not in a structuresr and
do not remap some other data item) may not be indexed.

There are two methods of indexing:

1.

Examples

Field D

The descriptor provides the address» and the
provides the offset from this addresse.

The descriptor provides the offset» and the
provides the addresse.

s N BITS $ 5 BITS ¢ 2 ¢ 3 =

Kme=Ce===>D=><E=>
<--—-----B-------)

may be accessed using either method (1) or method

Assume N contains the offset to B.

Method (1):

DECLARE

01 A BIT(5000),
02 B»
03 C BIT(5)»
03 D BIT(2),
03 E BIT(3)»
N BIT(24),
X 8IT(2);

/* THE NEXT STATEMENT WILL MOVE D (WITH THE OFFSET
GIVEN 3Y N) INTO X =/

X 1

DINI;

(i.e.» data items whose length

which

index

index

2).

8=7

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT ’ P.S. 2212 5405 (G)

Method (2):

DECLARE
A BIT(5000),
01 BB REMAPS BASE»
02 CC BIT(S5)»
02 DD 8IT(2)»
02 EE BIT(3)»
N BIT(24),
X BIT(2);
/+* THE NEXT STATEMENT WILL MOVE DD
(WITH THE OFFSET GIVEN BY N) INTO X =/
X | DDIN» DATA_ADDRESSC(A)];

Note the following:

1. The structure abover, comprised of B8» CC» DD» and EE,
which remaps base is called a "template™.

2. This template may be applied to any data area merely
by providing the address as part of the indexe. This
is not the case when method{(1l) indexing is used.

3. The example above is contrived == in method (2)» if N
contained the address of B rather than the offset to
B from the beginning of A» then the statements which AN
store D into X would be identical: X I DDINI; \

BURROUGHS CCORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

3-8
COMPANY CONFIDENTIAL
81000 SDL (BNF Version)
P.S. 2212 5405 (G)

ADQRESS GENERATING FUNCTIONS

<ADDRESS=GENERATING

FUNCTION DESIGNATOR> ::=

3uB8Ix

<SUB=STRING
DESIGNATOR>

<SUB=STRING
IDENTIFIER>

<STRING ACDRESS>
<ADDRESS GENERATOR>
<OFFSET PART>

<LENGTH PART>

SUBSTR
the <STRING
is
the string
the

yields a

specified
is zero)d.
sub=stringe.

<SU3=STRING ADORESS DESIGNATQOR>
| <FETCH COMMUNICATE MESSAGE
POINTER DESIGNATOR>
<DESCRIPTOR DESIGNATOR>
<DESCRIPTOR=-GENERATOR DESIGNATOR>
<ADDRESS~MODIFIER DESIGNATOR>
NuLL

<SUB=STRING FUNCTION IDENTIFIER>
(<STRING ADDRESS>»<OFFSET PART>)

I <SUB=STRING FUNCTION IDENTIFIER>
(<STRING ADDRESS>,<0FFSET PART>,
<LENGTH PART>)

FUNCTION
1= SUBSTR

SUBBIT |
ti= <ADDRESS GENERATQOR>
:= SEE T"ADDRESS GENERATOR"™

<EXPRESSION>

e
e =

1]

<EXPRESSION>

. e
e

sub=string of a character string identified by
ADDRESS>. The beginning character of the sub=string
by the <OFFSET PART> (where the first character of
The <LENGTH PART> specifies the length of

If omitted» the rest of the string from the

"O0FFSET"™ character is assumed. For example:
If X = "CHARACTER™
C = "COALITION"

then

SUBSTR(X»4)

SUBSTR(C»0,4)

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

yields the character string:

“"CHARCOAL =

Like all <character-to=-character store operations,’ if the
receiving field 1is larger than the sending field» the sending
field is padded with blanks on the right. If the sending field
is longer» characters are truncated from the righte. Note that
this is a functiocn of the store operator and not substre.

SUBBIT yields a sub=string of a bit string identified by the
<STRING ADDRESS>. The beginning bit of the sub=string is
specified by the <OFFSET PART> (Note: The first bit of the
string is Q). The length of the sub=string is specified by the
<LENGTH PART> whichs 1if omitted, Wwill be assumed to be the rest
of the string.

EXAMPLE:
If A = a(13)00101011013
B8 = a(1)00001111013
then

SUBBIT(A,2,3) CAT SUBBIT(B.5)
results in:

a4{(1)101111013
and

SUBBIT(A»3) CAT SUBBIT(B»0»,6)
results in:

2(1)01011010000113

8=9

ol i s i EREREL T 8=10
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SCL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (&)

FETCH _COMMUNICATE MSG_PIR

<FETCH CUOMMUNICATE MESSAGE
POINTER DESIGNATQR> ::= FETCH_COMMUNICATE_MSG_PTR

See the B1l700 MCP Reference Manual for a description of the run
structuree.

If the RS_MCP_BIT 1is sets then RS_COMMUNICATE_MSG_PTR is
accessede. Otherwises RS_REINSTATE_MSG_PTR is accesseda. The
accessed fiald is assumed to be a descriptor and is pltaced on the
top of the Evaluation Stacke.

EXAMPLE:

DESCRIPTORCCOMM_MSG) :=
VALUE.DESCRIPTOR(CFETCH_COMMUNICATE_MSG_PTR);

COMM_MSG now describes the communicate messages assuming that the
message wWas described by a non-self-relative descriptore.

DESCRIPIORS

DESCRIPTOR (<SIMPLE IDENTIFIER>)
| CESCRIPTOR (<ARRAY ICENTIFIER>)

<DESCRIPTOR DESIGNATOR>::

"DESCRIPTOR™ places on the Evaluation Stacks a descriptor which
describes the descriptor of a <SIMPLE IDENTIFIER> or an <ARRAY
IDENTIFIER>. The descriptor function may appear as the object of
a replacement, thereby providing easy access to any part of a
descriptor.

EXAMPLE:

1. . SUBBIT(DESCRIPTOR(X)»4,2) 3= 2;

2. DESCRIPYOR(X) 3= DESCRIPTOR(Y);

8-11

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP - 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

Example (2) forces both X and Y to describe the same
data namee. Notes however», that if X and Y are not
either both simple items or both arrayss the result
will be incorrecte.

MAKE DESCRIPIDR

<DESCRIPTOR=GENERATOR
DESIGNATOR> s3:= MAKE_DESCRIPTOR(<EXPRESSION>)

The value which is generated by the <EXPRESSION> is assumed to be
a descriptore. This descriptor replaces on the Evaluation Stack»
the descriptor representing that <EXPRESSION>. If the name=val ue
bit of the expression®s descriptor on the Evaluation Stack is
set» then the value of the <EXPRESSION> is removed from the Value
Stacke

A <DESCRIPTOR GENERATOR DESIGNATOR> may appear as the object of a
replacements however the programmer is responsible to see that
the descriptor built generates an address. There is no syntax
check for thise.

The following examples illustrate the relationships between the
descriptor functions:

DESCRIPTOR(X)=VALUE_DESCRIPTOR(X)>»
where X is non=self-relative

MAKE_DESCRIPTOR (DESCRIPTOR(X)) = X»
where X is non-self-relative

MAKE_CESCRIPTOR (VALUE_DESCRIPTOR(E)) = E»
where E is an <ADDRESS GENERATOR>

VALUE_DESCRIPTOR (MAKE_DESCRIPTOR(E)) = E»
where the value of E is a vatid <ADDRESS GENERATQOR>

ey

C

8-12
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMNS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

NEXT IJEM» PREVIQUS_ITEN

<ADDRESS~-MODIF IER

DESIGNATQOR> 3= <ADDRESS~-MODIFIER FUNCTION IDENTIFIER>
(<SIMPLE IDENTIFIER>)

<ADDRESS=-MODIFIER

FUNCTION IDENTIFIER> 3:= NEXT_ITEM

| PREVIOUS_ITEM

The NEXT_ITEM function causes the length field of the descriptor
represented by the <SIMPLE IDENTIFIER> to be added to the address
field of that descriptore. This modified descriptor is put back
onto the Name Stackr, and also moved to the top of the Evaluation
Stacke. Moving the modified descriptor to the Evaluation Stack
iss in effects a load address of the new item described by the
<SIMPLE IDENTIFIER>. Hence» “NEXT_ITEM™ may be used as the
object of a3 replacement. For example» the following statements:

DECLARE 01 CHAR_STRING CHARACTER(1000),
02 NEXT_CHAR CHARACTER(1);
NEXT_ITEM (NEXT.CHAR)I™D";

have the effect of storing ™D" 1into the second character of
CHAR_STRING» which is:

SUSBSTR{CHAR_STRING»1,1)’;

The PREVIOUS_ITEM function is identical to NEXT_ITEM except _that
a subtractiaon (of length from address) is performede.

NULL

This function generates an address of type character with zero
lengthe A store into this address is essentially a no-op. NULL
is used primarily in conjunction with the REFER statemente

BURROUGHS CORPORATION
COMPUTER SYSTEHS GROUP
SANTA BARBARA PLANT

ADDRESS GENERATORS

<ADDRESS
GENERATOR LIST> ::=

<ADDRESS GENERATOR> :3:=

<BUMPOR> ::=
<DECREMENTOR> :3=

<CONDITIONAL ADDRESS
GENERATOR> 3:=

<CASE ADDRESS
GENERATOR> 3

*
. -

<ADDRESS=GENERATING
ASSIGNOR> ::=

The <ADODRESS GENERATOR>

address on the top of

8=13

COMPANY CONFIDENTIAL
81000 SDL (BNF Version)
P.S. 2212 5405 (G)

<ADDRESS GENERATOR>
<ADDRESS GENERATOR>»
<ADDRESS GENERATOR LIST>

<ADDRESS VARIABLE>

<BUMPOR>

<DECREMENTOR>

<CONDITIONAL ADDRESS GENERATOR>
<CASE ADDRESS GENERATOR>
<ADDRESS-GENERATING ASSIGNOR>

See "BUMPOR™

See "DECREMENTOR"™

IF <EXPRESSION>
THEN <ADDRESS GENERATOR>
ELSE <ADDRESS GENERATOR>

CASE <EXPRESSION>

OF (<ADDRESS GENERATOR LIST>) A

\\‘%\“/ }//

<ADDRESS VARIABLE>

<REPLACE» DELETE LEFT PART>
<ADDRESS GENERATOR>

<ADDRESS VARIABLE>

<REPLACE, DELETE RIGHT PART>
<EXPRESSION>

includes any primary which leaves an
the
ELEMENTS OF THE EXPRESSION™

Evaluation Stacke. See "PRIMARY
for more explicit detaile.

BURROUGHS CCORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

YALUE VARIABLES

<VALUE VARIABLE> ::= <YVALUE-GENERATING FUNCTION DESIGNATOR>

! <TYPED PROCEDURE DESIGNATOR>
I (<ADDRESS VARIABLE>)
| <FILE DESIGNATOR>

<FILE DESIGNATOR> :3= <FILE IDENTIFIER>

I <SWITCH FILE IDENTIFIER>(<EXPRESSION>)

<TYPED PROCEDURE
DESIGNATQOR> 3:3= <TYPED PROCEDURE IDENTIFIER>
: <ACTUAL PRAMETER PART>

<TYPED PROCEDURE
IDENTIFIER> 2:= <IDENTIFIER>

<ACTUAL PARAMETER PART> 3= <EMPTY>
. I (<ACTUAL PARAMETER LIST>)

<ACTUAL PARAMETER LIST> 3= <ACTUAL PARAMETER>
I <ACTUAL PARAMETER>»
<ACTUAL PARAMETER LIST>

<ACTUAL PARAMETER> ::= <EXPRESSION>

I <ARRAY DESIGNATOR>
<ARRAY DESIGNATOR> ::= <ARRAY IDENTIFIER>
<ARRAY IDENTIFIER> 3:= <IDENTIFIER>

Notice from the above syntax that any <ADDRESS VARIABLE> enclosed
in parens» such as (SUBBIT (AsI»J))» wWwill be treated as a value
variable.

The value generated by a <FILE DESIGNATOR> is the FPB number of
the specified file. A warning message will be issued when a
<FILE DESIGNATOR> is wused as a value, i.ee.s» not in an I/0
statemente.

8=14

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

IYPED BROCEDURES

The TYPED procedure (a procedure which returns a value) 1is
invoked Wwithin an expression according to the above syntaxe. The
procedure identifier» followed by 1its parameters (if any)»
enclosed within parenss is treated as an operand 1in the
expressione. For details on passing parameterss» see ADDRESS AND
VALUE PARAMETERS. The procedure is evaluated and the returned
value replaces the <TYPED PROCEDURE DESIGNATOR>. For example:

DECLARE Z FIXED>

PRCCEDURE XCA»B) FIXED;
FORMAL (A»,B) FIXED:

END X5

Z 3= X(BUMP M»R)+1;

ADDRESS AND VALUE PARAMETERS

Actual parameters may be passed to a. procedure either by address
(which passes the address of the actual parameter) or by value
(which passes a duplicate copy of the actual parameter).

If an <ACTUAL PARAMETER> (See VALUE VARIABLES and
EXECUTE=-PROCEDURE STATEMENT) 1is passed by addresss then any
change to the corresponding <FORMAL PARANETER> in the procedure
will result in a change to the original value of the <ACTUAL
PARAMETER>.

If a parameter is passed by valuer then only the duplicate copy
of the <ACTUAL PARAMETER> can be changede. The original value
remains unaltered» and the duplicate copy 1is erased when the
procedure is exited.

An <ACTUAL PARAMETER> may be any expression or an <ARRAY
IDENTIFIER>. SDL has specified that array identifiers may only
be passed by addresse. An array element, however, may be passed
either by address or by value.

L I 9

i:i

i i o S s e S A R el S e e it o A e b A i - =10
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P«S. 2212 5405 (G)

Expressions may be divided into two groups:

1. Those which may be passed either by address or by
valuer, and

2e Those which may only be passed by value.

An <ADDRESS GENERATOR> is passed by address unless it is enclosed
within parentheses» or unless the formal parameter to which it
correspands has been declared as FORMAL_VALUE. In these two
cases <ADDRESS GENERATOR>s will be loaded by value. ALl other
expressions are loaded by value only.

Examples of parameters passed by address:

P(BUMP X, A)
PCB(BUMP M)» SUBBIT(X»5))
PCNEXT_ITEM(B)» A:IC+D)

Examples of parameters passed by value:

PCCBUNP X)» (A)» 3)
PCCB(BUMP M))» A+B)
PCSWAP{A»0Q0)» (SUBSTR{A»553)))

YALUE GENERATING EUNCTIONS

<VALUE=-GENERATING
FUNCTION OESIGNATOR> ::= <BASE REGISTER DESIGNATOR>
<3INARY CONVERSION DESIGNATOR>
<BINARY_SEARCH DESIGNATOR>
<COMMUNICATE WITH GISMO FUNCTION>
<CONSOLE SWITCHES DESIGNATOR>
<CONTROL STACK BITS DESIGNATOR>
<CONTROL STACK TOP CESIGNATOR>
<CONVERT DESIGNATOR>

<DATA ADDRESS DESIGNATOR>
<DATA_LENGTH DESIGNATOR>
<DATA_TYPE DESIGNATOR>

<DATE FUNCTION DESIGNATOR>
<DECIMAL CONVERSION DESIGNATOR>
<DELIMITED TOKEN DESIGNATOR>
<DISPATCH DESIGNATOR>

’ 8=17
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTENMS GROUP B1000 SDL (BNF VYersion)
SANTA BARBARA PLANT ’ P.S. 2212 5405 (G)

<DISPLAY BASE DESIGNATOR>

<DYNAMIC MEMORY BASE DESIGNATOR> @:}
<EVALUATION STACK TOP DESIGNATOR> J
<EXECUTE OPERATOR FUNCTION>

<EXTENDED ARITHMETIC FUNCTION>

<HASH CODE DESIGNATOR>

<INTERROGATE INTERRUPT STATUS DESIGNATOR>
<LAST LIO STATUS DESIGNATOR>

<LENGTH DESIGNATOR>

<LINIT REGISTER DESIGNATOR>

<LOCATION DESIGNATOR>

<NAME=OF =DAY FUNCTION DESIGNATOR>

<NAME STACK TOP DESIGNATOR>

<NEXT TOKEN DESIGNATOR>

<PARITY_ADDRESS DESIGNATOR>
<PROCESSOR_TIME FUNCTION DESIGNATOR>
<PROGRAM_SWTICHES DESIGNATOR>
<SEARCH_LINKED_LIST DESIGNATOR>
<SEARCH_SDL_STACKS DESIGNATOR>

<SEARCH SERIAL LIST DESIGNATOR>

<MEMORY SIZE DESIGNATOR>

<SORT_SEARCH DESIGNATOR>

<SORT_STEP_DOWN DESIGNATOR>

<SORT_UNBLOCK DESIGNATOR>

<SP0 INPUT PRESENT DESIGNATOR>

<SUB_STRING VALUE DESIGNATOR>

<SWAP DESIGNATOR> N
<TIME FUNCTION DESIGNATOR> _/
<TIMER DESIGNATOR>
<DESCRIPTOR_VALUE_GENERATOR DESIGNATOR>
<WAIT FUNCTION>

SR RS WS A e b GEE L Gee wn G B WRE WS G WG WR BNE e e GW A e MR Gem TN Geee GEee WA wees sl

BASE_REGISIER

<BASE REGISTER

DESIGNATOR> = BASE_REGISTER

A value of type BIT(24) is returnede. The value is the absolute
address of the base of the programe. It should be noted that two
separate executions of BASE_REGISTER may not vyield the same
resultss, since the MCP may have moved the program in memory.

8=-18

BURRQUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

BINARY CONVERSION

<BINARY CONVERSION
DESIGNATQOR> ::3= BINARY (<EXPRESSION>)

The <BINARY CONVERSION DESIGNATOR> returns a fixed value which is
the binary representation of the <EXPRESSION>. The <EXPRESSION>
is assumed to be a character string containing decimal digitse.
Only the low=order 8 characters will be converted. Zone bits are
ignored.

If the conversion results in a binary value greater than 24 bits
(icCes if the decimal number is greater than 16s777,215)» then
the left-most bits will be truncated.

If the decimal number is greater than 8,388s607 (ie2er (2 exp
23)=1), then the returned value Wwill appear to be negative (i.2.»
the high=crder bit is 1).

BINARY SEARCH

<BINARY_SEARCH FUNCTION>::= BINARY_SEARCH
(<START_RECORD>» <COMPARE_FIELD>,
<COMPARE_VALUE>», <NUMBER_OF_RECORDS>)

<START_RECORD>::= <EXPRESSION>
<COMPARE_FIELD>::= <TEMPLATE>
<COMPARE_VALUE>: 3= <EXPRESSION>
<NUMNBER_OF_RECORDS>::= <ADDRESS GENERATOR>

BINARY_SEARCH searches an ordered list of items that start at
(START_RECQRD> for <NUMBER_OF_RECORDS> for a matche

The occurrence number of the entry that matches will be returned»
or if there is no matchs the occurrence number of the first entry
that is greater will be returned.

Note: The <comparison is always left justified and uses the
Llength of <COMPARE VALUE>.

- 8-=19

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.5S. 2212 5405 (G)

COMMUNICATE WITH GISMO

<COMMUNICATE WITH GISMO
FUNCTION> ::= COMMUNICATE_WITH_GISMO (<EXPRESSION>)

The value of the operand is made non-self-relative by pushing its
value to the Value Stackr, 1i1f necessary. The absolute address of
the value is copied into the T=register» and the length is copied
into the L-registere. The proper swapper value is put into the
X=register and control is passed to GISMO. Any value returned by
GISMO will be described by the same descriptor on the Evaluation
Stack as was used to pass a value to GISMO.
COMMUNICATE_WITH_GISMO @®ay be used either as a statement or as a
functione. .

CONSQLE_SWIICHES

<CONSOLE SWITCHES
DESIGNATQOR>::= CONSOLE_SWITCHES

Note: This function has meaning only Bi720-series systemse.
It leaves on the top of the Evaluation Stack 2
24=bit» self-relative value of the 24 console
switches.

CONTROL_STACK_BITS

<CONTROL STACK
BITS DESIGNATOR>::= CONTROL _STACK_BITS

This function leaves on the top of the Evaluation Stack a 24=bit»
self=relative value of type bit which is the number of bits left
in the control stack until overflowe.

CONTROL _STACK_TQP

<CONTROL STACK TgQP
DESIGNATOR> :3= CONTROL_STACK_TOP

8§=-20

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B100Q SDL (BNF Version)

SANTA BARBARA PLANT PeSe. 2212 5405 (G)

A value of type BIT(24) 1is returnede. The value is the base
retative address of the next entry to be placed on the control
stacke

CONVERT

<CONVERSION DESIGNATOR> ::3= CONVERT (<EXPRESSION>»
<CONVERSION PART>)
I CONV (<EXPRESSION>»
<CONVERSION PART>)

<CONVERSION PART> ::= <CONVERSION TYPE>
I <CONVERSION TYPE>,
<BIT GRQUP SIZE>
<CONVERSION TYPE> 3:= BIT | CHARACTER 1 FIXED

<BIT GROUP SIZE> :

.
]
o
N
:
.

The <EXPRESSION>» which may be of any data typer willL be
converted as specified by the <CONVERSION TYPE>. The <converted
<EXPRESSION> wilLL be rsturned as a value.

The <BIT GROUP SIZE> is wused only with bit=to=character aor
character~to=bit conversionse. It specifies the number of bits
(of the bit string) which correspond to a character in the
character string.

Note: Bit-to=character conversion does not vyield decimal
digitse. If a bit string 1is to be converted to
decimal digitss, it should be stored in a fixed
variable» and the fixed variable converted.

BURROUGHS CORPORATION

T g=21

COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT ' PeS. 2212 5405 (&)
The following table shows the possible conversion
combinations: : o
QUTPUT: BIT : CHARACTER FIXED
INPUT: Akttt kRt
* * Convert to CHAR. * Return 24 BITS =
BIT * No change * uynder control of * providing lead= =
* * <BIT GROUP SIZE>>* ing zeroes or *
* * if omitted use 4 * left truncations,s
x * * 3as necessarys *
bkttt bt hhbbt bbbt bbbt
E 2 E R R R R ZE R R R R R F R F A Z R R R R XA AR R 2 ZE R FE AR EEFE SR EE RS NS RNX 2 4
*# Convert to bits = ' * *
CHARAC= « under control of+ No change - ® See Note. *
TER * <BIT GROUP SIZE>> * : x
if omitted use 4#* * *
I E R R B2 S XL R A EEE R ES P A AR LS A RS A NI S R E AR XX R AR SRR R ESESTRE R
I 2 2 2 2 S E I E F R S EE FEE S SRS RE Y F R S FE R ZZIE R RS RS RS S E S FEI RS SRS
* * Decimal conver=- =« *
#+ Change type # sion w/ leading « &
FIXED « to BIT « 2eros & sign not & No change *
* * suppressed. (7 x *
* * digits + SIGN). x
I EE X B XA 222 RS RS S AR R E R R FE XS RERE IS R RS R 222X Z S RSN R R RS RS NF N

Note: The character string may have leading blanks, sign

(or none)» nmore blanks» and decimal digits. A plus
sign is ignored. The decimal digits f{only the
low=order 7) are converted to a binary number that is
right=-justified in a 24=-bit field. If the sign was
-minus, then the 2's complement of the 24=bit field is

returnede.

EXAMPLES:
CONVERT ("=72581",FIXED) returns -72581
CONVERT (3(3)7523,CHARACTER»4) "1EA"
CONVERT (a(1)110113»FIXED) 27
CONVERT C("1327»B1IT»2) a(2)1323
CONVERT (™132%,BIT»4) ac4r1323
CONVERT ("27",BIT) 34123

C

8=22

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 81000 SOL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)
DATA _ADDRESS

<DATA ADDRESS

DESIGNATOR> ::= DATA_AODRESS (<ADDRESS GENERATOR>)

<ADDRESS GENERATOR> 3 See ADDRESS GENERATORS

The <DATA ADDRESS DESIGNATOR> returns a value of type BIT(24)
which 1is the base relative address generated by the <ADDRESS
GENERATOR>.

DATA _LENGTH

<DATA_LENGTH DESIGNATOR>:2= DATA_LENGTH (<EXPRESSION>)

Returns the length in bits of <EXPRESSION>, regardless of the
data typee. .

DATA_TYPE
<DATA_TYPE DESIGNATOR>::= DATA_TYPE (<EXPRESSION>)

Returns the type bits of <EXPRESSION>.

DATE
<DATE FUNCTION
DESIGNATQOR>» ::= : DATE
| DATE (<DATE FORMAT>, <REPRESENTATION>)
<DATE FORMAT> ::= JULIAN | MONTH | DAY | YEAR
<REPRESENTATION> ::= BIT 1 DIGIT | CHARACTER

The <DATE FUNCTION DESIGNATOR> returns a bit or character strlng
which is the date of the execution of the functione.

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeaSe. 2212 5405 (G)

DATE and DATE (MONTH»CHARACTER) are equivalent.

The formats (in bits) of the returned strings are:

BIT DIGIT CHARACTER
JULIAN (YYDDD) 7+9=16 8+12=20 16424=40
MONTH (MMDDYY) 4+#5#7=16 B+8+8=24 16+16+16=48
DAY C(DDMMYY) 544+7=16 8+8+8=24 16+16+16=48
YEAR C(YYMMDD) 7T+4+45=16 8+8+8=24% 16+4156+16=48

Examples DECLARE D CHARACTER(5)5
D 3= DATE C(JULIAN,CHARACTER);

DECIMAL CONVERSION

<DECIMAL CONVERSION ‘
DESIGNATOR> ::= DECIMAL (<EXPRESSION>,
<DECIMAL STRING SIZE>)

<DECIMAL STRING SIZE> ::= <EXPRESSION>

The vatue of the first <EXPRESSION> following the reserved word
DECIMAL 1is converted to a string of decimal characterse If the
value of the <EXPRESSION> generates more than 24 bits» then only
the low=order 24 bits are used.

The number of characters returned is given by the value of the
<DECIMAL STRING SIZE>. A maximum of 8 decimal characters will be
returned» even if the value of the <DECIMAL STRING SIZE> is
greater. If the <DECIMAL STRING SIZE> is less than the number of
decimal characters» then characters are truncated from the left.

DELIMITED TQKEN

<DELIMITED TOKEN
DESIGNATQOR>::= DELIMITED_TOKEN (<FIRST CHARACTER>»

<DELIMITERS>», <RESULT>)

<FIRST CHARACTER>:: <IDENTIFIER>

<DELIMITERS>::= <CHARACTER STRING>
I <BIT STRING>

8=23

=

8=24

BURROUGHS CORPORATION . COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (3NF Version)
SANTA BARBARA PLANT P.5. 2212 5405 (G)
<RESULT>ss= <IDENTIFIER>

The <FIRST CHARACTER> is a simple identifier which describes the
first character to be examined. <DELIMITERS> will generate 16
bits of 1informations» each of the 83-bit bytes being used as a
delimiter. For SDL» <DELIMITERS> will be X7 for COBOL»

a7F033 (Quote followed by ETX).

DELIMITED_TOKEN will leave on the top of the Evaluation Stack the
descriptor of the string of characters from (and including)
<FIRST CHARACTER> up to (but not including) whichever delimiter
was found. The descriptor of <RESULT> will be replaced by this
descriptore. The address field of <FIRST CHARACTER> will be
changed to point to the delimiter which stopped the scan.

DISPATICH
<DISPATCH DESIGNATQOR> ::= DISPATCH(<PORT» CHANNEL>»
<I[/0 DESCRIPTOR ADCRESS>)
<PORT»CHANNEL> ::= <EXPRESSION>

<I/70 DESCRIPTOR
ADDRESS> ::= <EXPRESSION>

The rightmost seven bits of the value of <PORT, CHANNEL> contain
the following information from left to rights:

3 BITS 4 BITS

2 PORT : CHANNEL =

The rightmost 24 bits of the value of the <I/0 DESCRIPTOR
ADDRESS> is the absolute address of the I/0 descriptore.

Using these two valuess an [/0 operation is initiated. A bit
value with the folLLowing meanings is returned:

DISPATCH REGISTER LOCK 3IT SET
SUCCESSFUL DISPATCH
SUCCESSFUL. DISPATCHs BUT MISSING DEVICE

N e O
wonon

. . 8=25
BURROUGHS CCRPORATION CONPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

DISBLAY_BASE

<DISPLAY BASE
DESIGNATOR>::= DISPLAY_BASE

This function leaves on the top of the Evaluation Stack a 24-bit,
self-relative value of type Dbit which 1is the base-relative
address of the base of the Display Stacke.

DYNAMIC _MEMORY BASE

<DYNAMIC MEMORY
BASE DESIGNATOR> ::= DYNAMIC_MEMORY_BASE

The <DYNAMIC MEMORY BASE DESIGNATOR> returns a 24=bit value which
is the base relative address of the program’s dynamic memorye.
Refer to the SDL S-Language documentation for discussion of the
use of dynamic memorye.

EVALUATION STACK_IQP

\\“/:

<EVALUATION STACK
TOP DESIGNATOR>::= EVALUATION_STACK_TQOP

This function leaves on the top of the Evaluation Stack a 24=-bit»
selif=-relative value of type bit which 1is the base~-relative
address of the top of the Evaluation Stack (before execution of
this function).

EXECUIE

<EXECUTE OPERATOR
FUNCTION>::= EXECUTE (<EXPRESSION LIST>)

<EXPRESSION LIST>::= <EXPRESSION>
{ <EXPRESSION LIST>», <EXPRESSION>

interpreter wWriters in the experimental design of new

Note: The EXECUTE function is intended only for wuse by {l\
opcodes.

-4

8=26

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF VvVersion)
SANTA BARBARA PLANT P.S. 2212 5405 (@)

The value of the last expression may be expected to be an opcode
which may then be executed by the interpreter. EXECUTE may be
used as a statement as well as a <VALUE GENERATING FUNCTION

DESIGNATOR>.

This statement or <VALUE GENERATING FUNCTION DESIGNATOR> when
used with released interpreters will result in a ™3RANCH TO
INVALID 0P CODE™ condition.

8=-27

BURROUGHS CORPORATION CONPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)

EXYTENQED ARITHMEYIC FUNCTIONS

<EXTENDED ARITHMETIC

FUNCTION>::= <EXTENDED ARITHMETIC FUNCTION DESIGNATOR>

(<EXPRESSION>» <EXPRESSION>)

SEXTENDED ARITHMETIC
FUNCTION DESIGNATOR>: X_ADD 1| X_SUB | X_MUL ! X_DIV I
| X_MOD

The 1indicated operation is per formed on the two operandss which
are treated as bit stringse. The operation is performed on the
full length of the operandss not just the low=order 24 bitse. The
iength of the result is derived as described below:

Addition (Subtraction): If the two aoperands are of different
lengthse then the shorter 1i1s padded on the left with binary
Zeroese. The length of the sum (difference) will be equal to the
iength of the longer of the two operandse. The result will be in

two's complement notatione

Mul tiplication: The length of the product will be the sum of the
fengths of the tWo operandse. (This sum may not exceed 65s535
bits.)

Division (Modulo): The length of the gquotient (residue) will bhe
length of the dividend (modulus).

For X_SuBs» X_DIV», and X_MOD» the second argument represents the
subtrahends, divisor, and moduluss, respectively.,

HASH_CODE
<HASH CODE DESIGNATOR>::= HASH_CODE (<TOKEN>)
<TOKEN>::= <EXPRESSION>

The HASH.CODE will leave on the Evaluation Stack a descriptor of
type BIT and length 2&4. The value will be computed from the
characters of <TOKEN> and the iength of <TOKEN>. (If <TOKEN> is
Longer than 15 characterss only the first 15 are considered.)

To be effectiver the value generated by HASH.CODE must be used
modulo a prime number (which is then the hash table sized.

NS

M mem e s he L 4 s ml me emee miwi e semae b m c e = G e e o Mes A e & e Ml = . n m M = o Mn o ot m e o e e e s

8=-28

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P»Se. 2212 5405 (G)

INTERROGATE INTERRUPT _STATUS

<INTERROGATE INTERRUPT
STATUS DESIGNATOR> ::= INTERROGATE_INTERRUPT_STATUS

A 24-bit data item of type bit 1is returned. The value represents
the 1interrupt bits of the M=-machine. The applicable M-machine
interrupt bits are resete. Note that the INCN bits will not be
resete

" LAST_LIO STATUS

<LAST LIO STATUS
DESIGNATOR>:3= . LAST_LIO_STATUS

Returns the last logical I/0 status as type bit with a length of
RS_LAST_LIO_STATUS_SIZE.

LENGTH
<LENGTH DESIGNATOR> ::= LENGTH (<EXPRESSION>)

The <LENGTH DJESIGNATOR> returns a 24=pite type bit field
containing the number of wunits in the <EXPRESSION>. If the
<EXPRESSION> is type character» then each character is a unit.
Otherwises each bit is a unite.

LIMIT_BEGISTER

<LIMIT REGISTER
DESIGNATOR> ::= LIMIT_REGISTER

The <LIMIT REGISTER DESIGNATOR> returns a value of type BIT(24)
which is the base relative address of the progran's Run Structure
Nucleuse. For further explanations, please refer to the B1700 MCP
Manual.

8=-29

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (B)
LOCATION

<LOCATION DESIGNATOR> ::= LOCATION (<PROUCECURE ICENTIFIER>)

| LOCATION (<SIMPLE IDENTIFIER>)
! LOCATION (<ARRAY IDENTIFIER>)

<PROCEDURE IDENTIFIER> ::= <IDENTIFIER>
<SIMPLE IDENTIFIER>:3= <IDENTIFIER>
<ARRAY IDENTIFIER>::= <IDENTIFIER>

For proceduress» the <LOCATION DESIGNATOR> returns a 33=-bit value
(typed BIT) containings from left to right:

ADDRESS TYPE, CONTAINING 3(3)63 4 BITS
SEGMENT NUMBER 6 BITS
PAGE NUMBER 6 BITS
DISPLACEMENT 20 BITS

This 33=bit value is the address of the procedure in question.

A forward declaration is required only during recompilation or
Create-Master for any procedure on which a location is performed.
An error is given if this is not done .

For simple and array identifierse the <LOCATION DESIGNATOR>

returns a 16=bit value (typed BIT) containings from Lleft to
right:
ADDRESS TYPE CONTAINING 3(2)0a 2 BITS
LEXIC LEVEL : 4 BITS
DCCURRENCE NUMBER 10 BITS
NAME_OF_DAY
<NAME OF DAY FUNCTION
DESIGNATOR> ::= NAME_OF _DAY

A character strings Wwhich is the name of the day of the weeks is
returned as a 9-character stringe The name is left justified.

Example: DECLARE DAY CHARACTER(9);
DAY INAME_OF _DAY

8=30

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTENMS GROUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT PeSe 2212 5405 (3)
NAME_STIACK_IOP

<NAME.STACK

TOP DESIGNATAR>::= NAME_STACK_TQP

This function leaves on the top of the Evaluation Stack a 24=bit»
sel f-relative value of type bit which 1is the base-relative
address of the top of the Name Stack.

NEXT _TOKEN
<NEXT TOKEN DESIGNATOR>::= NEXT_TOKEN C<FIRST CHARACTER>»
. <SEPARATOR>, <NUMERIC-TQ=ALPHA INDICATOR>»
<RESULT>)
<FIRST CHARACTER>::= <IDENTIFIER>
<SEPARATOR>::= <CHARACTER STRING>
<NUMERIC=TO=ALPHA
INDICATOR>::= SET | RESET

The <FIRST CHARACTER> is5 a simple identifier which describtes the
first character to be examined. This will usually be the first
character of the tokene. The <SEPARATOR> is the token separator:
»_" for SDLs, "=" for COBOL» etc. It must be a single character’
if none is neededsr use "A"™. <NUMERIC-TO=ALPHA INDICATOR>

is set if symbols such as 235AB are allowed. It 1i1s RESET
otherwisee.

NEXT_TOXEN will Lleave on the top of the Evaluation Stack the
descriptor of the next tokene. This token will be an identifier»
a number, or a special character. The descriptor of <RESULT>
will also be replaced by this descriptor. The address field of
<FIRST CHARACTER> will be <changed to point to the character
following this token. NEXT_TOXEN assumes that <FIRST CHARACTER>
describes a non=blank character.

|

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

8=31

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.Se 2212 5405 (G)

BARITY ADDRESS

<PARITY ADDRESS

DESIGNATOR> ::3= PARITY_ADDRESS

For MCP use only.

The <PARITY_ADDRESS DESIGNATOR> returns a 2&4=bit valtue which is
the address of the first parity error encountered 1in S5-Memory.
If no parity error is founds IFFFFFF3 is returnede.

PROCESSOR_TINME

<PROCESSOR_TIME FUNCTION GENERATOR> :3= PROCESSOR_TINE

PROCESSOR_TIME witll vyield the accumulated processor time since
B0J in tenths of a second as a BIT(20) data item.

Exampie:

DECLARE (PROC_TIME,HOURS>MINUTES,SECONDS,TENTHS) BIT(20);
/x EARLY CO0ODE /*

PROC_TIME := PROCESSOR_TIME?
/% CO0ODE T 0 B E TIMETD x/
PROC_TIME := PROCESSOR_TIME = PROC_TIME;
HOURS t= PROC_TIME /7 360007
MINUTES t= PROC_TIME MOD 36000 / 500’
SECONDS t= PROC_TIME MOD 600 / 107
TENTHS t= PROC_TIME NMOD 10;

/= L ATE C0DE x/

ERQGRAM SWITCHES

<PROGRAM_SWITCHES
DESIGNATGR> ::= PROGRAM_SWITCHES

I PROGRAM_SWITCHES (<EXPRESSION>)

/
8=32
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQOUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

This function is used to read the program switches which have
been specified by the Pregram®s Parameter Block (PPB)» a controtl
card or a SP0 1input. If a parameter is specified» the
corresponding switch (0 through 9) 1is returned as a3 &4=bit
quantity. A parameter which is less than zero or greater than
nine will yield a run time error of invalid substring. If no
parameter is specifiedr, adl ten switches are returned as a 40-bit
result. SDL provides no means to modify the program switchese.

SEARCH LINKED LIST

<SEARCH_LINKED_LIST
DESIGNATOR> ::= SEARCH_LINKED _LIST
(<START RECORD>»<COMPARE FIELD>»
<COMPARE VALUE>,<RELATION>»

<LINK FIELD>)

<START RECQORD> ::= <EXPRESSION>

<COMPARE FIELD> <TEMPLATE>

<COMPARE VALUE> <EXPRESSION>

<RELATIQON> ::= < 1 <=1 =1/=1»>=1 >}
LSS | LEQ 1 EGQGL 1| NEQ 1
GEQ 1 GTR 1|

<SLINK FIELD> ::3= <TEMPLATE>

<TEMPLATE> s:= <ADDRESS GENERATOR>

1. The <START RECORD> 1is the first structure to be
examined. Typically» it is an <AQDRESS GENERATOR>»
but an <EXPRESSION> is allowed.

2e The <COMPARE FIELD> 1is a template which gives the
relative offset and size in the structures of the 24
(or less) bit field being compared with the <COMPARE

VARIABLE>,
3. The <COMPARE VALUE> is the value against which the
specified field in the structure 1is compared.

<COMPARE VALUE> is considered "on the left™ of the
relation,

La The <RELATION> specifies the desired relation in the
comparison of the two valuese.

5. The <LINK FIELD> 1is a template which gives the
relative offset and size in the structure» of the 24
- (or less) bit field containing the address of the

T 8=33

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF VYersion)

SANTA BARBARA PLANT ‘ PeS. 2212 5405 (G)

next structure to EE‘examined {if comparison with the
current structure fails).

A template is an address generator whose address is relative to
the beginning of a structure rather than base relative. A field
in a structure declared REMAPS BASE has such an address.

The tast structure in the lLlinked list contains all 1 bits in the
field described by the <LINK FIELD>.

The linked list is searched until the desired comparison succeeds
or until the comparison fails with the tast structure.

If the search succeedss the base-relative address of the current
structure 1is returned as a 24-bit value. If the search fails»
aFFFFFF3 is returnede.

SEABCH_SDL_STACKS

<SEARCH_SDL_STACKS

DESIGNATOR>::= SEARCH_SDL_STACKS
{<STACK BASE>» <STACK TOP>,
<CONPARE BASE>» <COMPARE TOP>)

<STACK BASE>::= <EXPRESSION>

<STACK TOP>::= <EXPRESSION>

<COMPARE BASE>::= <EXPRESSION>

<COMPARE TOP> <EXPRESSION>

.
.
L}

The four parameters are expected to generate values which are
base~relative addresses of the base and top of a stack of SDL
descriptors and of an address ranges respectivelye. The stack
will be searched for a non=arrays non-sel{ f-relative SDL
descriptor whose address is within the given range. If the
search is successful 3(1)13 will be returned otherwiser 3(1)03
will be returned.

g;ﬂ

B e R 20 SR

S e s et e e hm e v o ht hie e e ea Ao & 2 e e ek et € ko i Al i 8 m e tam s e o~ o s e e ae

8=34

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeSe 2212 5405 (G)
SEARCH SERIAL_LIST

<SEARCH SERIAL

LIST BESIGNATOR> ::= SEARCH_SERIAL_LIST (<SSL COMPARE VALUE>»
<SSL COMPARE TYPE>» <SSL COMPARE FIELD>»

<SSL FIRST ITEM>» <SSL TABLZ LENGTH>»
<SSL RESULT VARIABLE>)

<SSL COMPARE VALUE> ::= <EXPRESSION>
<SSL COMPARE TYPE> 3= <l <=1 =1/=1>= 1>
I LSS | LEQ | EGL | NEQ | GEQ 1 GTR
<SSL COMPARE FIELD>:z= <TEMPLATE>
<SSL FIRST ITEM>::= <ADDRESS GENERATOR>
<SSL TABLE LENGTH>::= <EXPRESSION>
<SSL RESULT VARIABLE>::= <ADDRESS GENERATOR>
<TEMPLATE> ::= <ADDRESS GENERATOR>

SEARCH_SERIAL_LIST searches a serial list of items beginning with
the structure described by <SSL FIRST ITEM>. <SSL COMPARE VALUE>
is compared (as specified by <SSL COMPARE TYPE>) against the
field of the field described by <SSL COMPARE FIELD> (<SSL COMPARE
FIELD> is a TEMPLATE) until a match has been found» or until <SSL
TABLE LENGTH> number of bits has been searchede.

When the relation is non=-commutatives» the comparisons are made as
though <35L COMPARE VYALUE> was ™on the left™ of the relaticn.

If the search succeeds» the base relative address of the iten
containing the successful <SSL COMPARE FIELD> is stored in <SSL
RESULT VARIABLE> and a 3(1)13 is returnede.

If the search failss then the end address of the table if stored
in <SSL RESULT VARIABLE> and a 3(1)02 is returned.

8=35

BURROUGHS CORPORATION COMPANY CbNFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

S_MEM_SIZE» M_MEM _SIZE

<MEMORY SIZE
DESIGNATOR> ::= S_MEM_SIZE 1 M_MEM_SIZE

The requested memory size is returned as a 24-~bit data item of
type bite

SORI DELEIE

<SORT_DELETE
DESIGNATOR> 23:= SORT_DELETE
(<PARAM1>, <PARANZ2>)

For use by sort onlye.

SORY_SEARCH
—
<SORT_SEARCH - '/
DESIGNATOR> ::= SORT_SEARCH
(<TABLE ADDRESS>»<LIMIT>)
<TABLE ADORESS> s:= <ADDRESS GENERATOR>
SLIMIT> 3= <EXPRESSION>

For use by sort onlye.

The <SORT SEARCH DESIGNATOR> provides the information to evaluate
a record for sorting purposes. The <TABLE ADDRESS> contains the
address» in an array of records» of the first record to be
examined and the condition under which records will be selectede.

The <LIMIT> specifies the last record to be examined.

‘ 8=-36
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 S405 (G)
SORY_SIEP_DQWN

<SORT_STEP_DOWN

DESIGNATOR> 3:= SORT_STEP_DOWN
(<RECORD 1>,<RECORD 2>»
<KEY TABLE ADDRESS>

<RECORD 1> ::= <EXPRESSION>
<RECORD 2> ::= <EXPRESSION>
<KEY TABLE ADDRESS> ::= <EXPRESSION>

For use by sort onlye.

The <SORT_STEP_DOWN DESIGNATOR> provides the information
necessary to compare two recards. <RECORD 1> and <RECORD 2> are-»
respectively, the first and second records which are to be
compared. The <KEY TABLE ADDRESS> specifies the sort key used in
the comparisone.

SORY _UNBLQCK

<SORT_UNBLOCK

DESIGNATOR> z:= SIRT_UNBLOCK C(<MINI FIB ADDRESS>,
<LENGTH>»<SOURCE>»<DESTINATION>)

<MINI FIB ADDRESS> ::3= <ADDRESS GENERATOR>

SLENGTH> 3= <EXPRESSION>

<SOURCE> ::= <EXPRESSION>

<DESTINATION> ::= <EXPRESSION>

For use by SORT only;

The <SORT_UNBLOCK DESIGNATOR> moves a record to or from a buffer,
updating the buffer pointer and block counte. It normally returns
a zero. When the block count goes to zeros it restores the
original buffer pointer and block count» and returns a 1,
signalling the need for an I/0.

8=37

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P«S. 2212 5405 (G)

A bit on the mini=FIB signals SORT_UNBLOCK to create sort tagse.
For this function, it uses the sort key table and selects only
the key information to move from the buffer. A value in the
mini=FIB represents the ilength of the receiving field. '

SEO_INPUT _PRESENT

<SP0 INPUT
PRESENT DESIGNATOR>:3= SPO_INPUT_PRESENT

A special», SPO_INPUT_PRESENT, has been added to allow the
presence of SPO input to be tested before having to per form an
accept to the NCP.

SUBBIT AND SUBSIR

<SUB=STRING VA

DESIGNATOR> ::3 <SUB=STRING FUNCTION IDENTIFIER>
(<STRING VALUE>»<OFFSEY PART>)

I <SUB=STRING FUNCTION IDENTIFIER>
(<STRING VALUL>,<0FFSET PART>»

<LENGTH PART>)

<SUB=STRING FUNCTION

IDENTIFIER> SUBBIT | SUBSTR
<STRING VALUE> 3:3= <EXPRESSION>
<OFFSET PART> 3:3= <EXPRESSION>
<LENGTH PART> :3:= <EXPRESSION>

The <SUB=STRING VALUE DESIGNATOR> and the <SUB=STRING ADDRESS
DESIGNATOR> are identical except that the former returns a value
if its <STRING VALUE> is not an <ADDRESS GENERATOR>. Please see
SUBBIT AND SUBSTR under ADDRESS VARIABLES for the specifics of
the functione.

The folLlowing examples ilLLustrate some of the wuses of the
<SUB=STRING VALUE DESIGNATOR>:

X1SUBSTRCA CAT B»5»,10);
MAKE_DESCRIPTOR(3483a CAT SUBBITCA OR B» 0» 16) CAT X) leaes
IF SUBSTR(3063 CAT ABC» 0) = Y THEN <..’

d i
L W

(st v B i At

[y et e — T SREEAED

8-33

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeSe 2212 5405 (&)
SHAP

<SWAP DESIGNATOR> :3:= SWAP (<ADDRESS GENERATOR>,<EXPRESSION>)

The Llength of the value described by the <ADDRESS GENERATOR> is
used as the length» L» of the data to be SWAPped. Howevers, if
the Length of the value is greater than 24 bits» L will be 24
bits»s and only the low=order 24 bits of the <ADDRESS GENERATOR>
will be modified.

SWAP is indeed a true swap operation: that is» the items are
exchanged in one "virtual™ memory cycle. This is necessary faor
the synchronization of independent procasses (e.ger» MCP and
GISMO).

+

The rightmost L bits of the value described by the <ADDRESS
GENERATOR> are isolatedr and become the destination fielde.

The rightmost L bits of the value generated by the <EXPRESSION>
are isolated. Leading zeroces are supplied if the length of the
value 1is 1less than L bits longe. This field is kxnown as the
source field.

The source field is stored into the destination field» the
original value of which 1is the value returnede. The returned
value is of type bit and of length L.

Examples

AlLQ; :
IF SWAP (As1) THEN DO ... END;
ELSE DO ... END’;

In the above example» the ELSE part of the statement 1is
evaluateds since A was originally set to 0 (i.e.» false)e At the
end of the SWAP» 1 has been stored into A» and 0 returned to the
top of the Evaluation Stacke.

8-39

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeSe 2212 5405 (G)
TIME -

C

<TIME FUNCTION

DESIGNATOR> = TIME

I TIME (<TIME FORMAT>,<REPRESENTATION>)
<TIME FORMAT> z::= COUNTER 1 MILITARY 1| CIVILIAN

<REPRESENTATION> ::= BIT 1 DIGIT | CHARACTER

The <TIME FUNCTION DESIGNATOR> returns a bit or character string
which is the time of the function's execution. The <TIME FORMAT>
may have three basic formats:

COUNTER: Returns the time of day in tenths of secondse.

MILITARY: Returns the time of day in the following form =-
HHMMSST {(Where T=Tenths of seconds).

- CIVILIAN: Returns HHMAMSSTAP(Where AP=AM JR PMJ.

The time of day may be represented in either bits» digits» or k\)

characters in the following formats:
BIT , DIGIT CHARACTER
COUNTER 20 BITS 24 BITS 43 BITS
MILITARY S¢6+b+4=21 8+8+8+4=238 16+416+416¢8=56
CIVILIAN 4L+6+b6+4+16=36 B+B848+4+16=44 16+16+16+8+16=72
NOTE: TIME and TIME (CIVILIANSsCHARACTER) are equivalent.
JIMER
<TIMER DESIGNATOR>::= TIMER

A value of type BIT(24) is returned. The value is the current
setting of the TIME register.

SR g oS B IATIAIE oo g oo N Bt . B R P B 7o T B g Becen B LTSN R N T T ek e A dD

C

8=40

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)

YALUE_CESCRIPIOR

<DESCRIPTOR=YALUE GENERATOR

DESIGNATOR> ::= VALUE _DESCRIPTOR (<ADDRESS GENERATOR>)

<ADDRESS GENERATOR> ::= See ADDRESS GENERATORS

The <ADDRESS GENERATOR> is represented by a descriptor at the toap
of the Evaluation Stacke. This descriptor is moved to the Value
Stack. In its place on the Evaluation Stack is left a descriptor
describing the one just moved to the Value Stacke.

The Name=Value bit 1is set 1in the descriptor Lleft in the
Evaluation Stacke.

HAIY

<WAIT FUNCTION> 3:= WAIT <START POSITION> (<EVENT
LIST>)

<START POSITION>

.
1]

[<EXPRESSION>]1 1 <EMPTY>

<EVENT LIST> ::= SEVENT> | <EVENT LIST>» <EVENT>
<EVENT> ::= <SIMPLE EVENT> 1| <QUALIFIED EVENT>
<QUALIFIED EVENT> ::= <SIﬁPLE EVENT> WHEN <EXPRESSION>
<SIMPLE EVENT> ::= TIME_TENTHS (<EXPRESSION>)

SPO_INPUT_PRESENT
SPO_INPUT_PRESENT

DC_IO_COMPLETE

READ_OK C(<FILE SPECIFIER>)

WRITE_OK (<FILE SPECIFIER>)
Q_WRITE_OCCURRED (<FILE IDENTIFIER>)

— e Gue wos e e

<FILE SPECIFIER> ::3 <FILE IDENTIFIER>

| <FILE IDENTIFIER> [<EXPRESSION>]

The WAIT function returns a fixed value which is the ordinal
position of a true event in the <EVENT LIST>. If no event is
true» the process Wwill be blocked until one of the events accurse.
If more than one is trues, the value that is returned is the
position of the first event found true in a left to right
circular scan starting from <START POSITION>. If <START
POSITION> is emptyr, 2zero is assumed. If <START POSITION> is

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

greater than or egqual to the number of items in the <EVENT LIST>»
the MCP will terminate the job. In the case of a <QUALIFIED
EVENT>, the event will never become true unless the qualifying
<EXPRESSION> evaluates to truer ie.e.r 1its dowest order bit is a
onee.

The various events are true when the condition(s) below are
satisfied: ‘

8-41

EVENT _ CONDITIONC(S)
TIME_TENTHS (<EX- The specified number of tenths of sec-
PRESSION>) onds have elapsed since the WAIT began
executione.
SPO_INPUT_PRESENT A message from the operator has been
queued for the WAITing progranme.
DC_IO_COMPLETE A previously initiated data communications
I0 has been conpleted.
READ_OK (<FILE The buffer for the specified file contains
SPECIFIER>) a record waiting to be read. If
[<EXPRESSION>] is specifieds it is tahﬂwg
to be a subscript of a queue file familve.

If the file is 3 queue file family and no

subscript 1is specified» the even
always true.

t is

WRITE_OK (<FILE A buffer for the specified file is empty>
SPECIF IER>) waiting for a write operation. See above

for queue file families.

Q_WRITE_OCCURRED A urite operation has been done (by

{<FILE ICENTIFIER>) another process) on a2 member of a gueue
file family named in the time since the

WAIT began executione This event wui
correct only when preceded b
MESSAGE COUNT.

Restrictions:

1. If TIMEL.TENTHS is in the lLlist» it must be at the extreme
tefta

2. The maximum number of tenths of seconds is 864»000»
ie2er» 24 hourse.

i be\
4

¢

B T e T e T,

9-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDOL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

1/0 CONTROL STATEMENTS

<I/70 CONTROL STATEMENT> ::= <OPEN STATEMENT>
<CLOSE STATEMENT>
<READ STATEMENT>
<HRITE STATEMENT>
<SEEK STATEMENT>;
<ACCEPT STATEMENT>;
<DISPLAY STATEMENT>;
<SPACE STATEMENT>
<SKIP STATEMENT>;

- M W e s e et

Each file is numbered sequentially» beginning with zero. ~ This
number is the <FILE NUMBER> and will eventually be used as an
index intc the FIB dictionary. The file declaration will be used
to construct an FPB in the code filee.

BURROUGHS CORPORATIODN
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

OPEN STATEMENT

<OPEN STATEMENT>::=

<OPEN PART>:3:3=
<FILE DESIGNATOR>:3:=

<OPEN ATTRIBUTE PART> :

<OPEN ATTRIBUTE LIST> :

<ATTRIBUTE SEPARATOR>::

<QPEN ATTRIBUTE> ::=

<INPUT=QUTPUT MODE> ::=
<LOCK MODE> 3=
<OPEN ACTION MODE> s3:3=

<MFCU MODE>::=

<0ON BEHALF OF MODE>:=
<FILE MISSING PART>::=
<FILE LOCKED PART>::=

FORMAT OPTIONS:

1. OPEN DECLARED_FILE;

. — o s

- NO_REWIND

9=2

COMPANY CONFIDENTIAL ‘
B1000 SDL (BNF Version)
P.S. 2212 5405 (&)

PART>;
PART>>
PART>;
PART>;
LOCKED

<OPEN
<QPEN
<JPEN
<OPEN
<FILE

<FILE
<FILE
<FILE
PART>

MISSING PART>
LOCKED PART>
MISSING PART>

OPEN <FILE DESIGNATOR>
<OPEN ATTRIBUTE PART>

<FILE IDENTIFIER>
<SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<EMPTY>
<OPEN ATTRIBUTE LIST>
WITH <OPEN ATTRIBUTE LIST>

<OPEN ATTRIBUTE>
<OPEN ATTRIBUTE> <ATTRIBUTE SEPARATOR>
<0OPEN ATTRIBUTE LIST>

» 1| <SLASH> 1 <EMPTY>
<INPUT=OUTPUT MODE> P
<LOCK MGDE> »,

<QPEN ACTION NMODE>
<MFCU MODE>

<ON BEHALF OF MODE>
gutPePUT |

INPUT 1 NEW

LOCK 1 LOCK.OUT
I REVERSE

PRINT 1
STACKERS

PUNCH 1
INTERPRET |

ON_BEHALF_OF <EXPRESSION>
ON FILE_MISSING <EXECUTABLE STATEMENT>

ON FILE_LOCKED <EXECUTABLE STATEMENT>

If no attributes are spécified' INPUT is assumed.

9-3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (3NF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

FOLLOWED BY: ' AND/OR:

LOCK

INPUT LOCK_QuT
2. OPEN OECLARED_FILE QuUTPUT NO_REWIND

NEW * REVERSE

INPUT», QUTPUT LOCKs NO_REWIND
3. OPEN DECLARED_FILE WITH OQUTPYT, NEW LOCK» REVERSE

INPUT, QUTPUT, NEW LOCK_QOUT, NO_REWIND
LOCK_QUT», REVERSE

* NEW alone assumes QUTPUT, NEW.
Note: The combination INPUT» NEW results in a syntax errore.

If the <QOPEN ATTRIBUTE>s have been explicitly or implicitly
included in the file declaration, then the file need not be

explicitly opened here.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

LLOSE STATEMENT

<CLOSE STATEMENT>::=
<FILE DESIGNATOR> ::=

<CLOSE ATTRIBUTE PART> ::3=
<CLOSE ATTRIBUTE LIST> ::=

<ATTRIBUTE SEPARATOR> ::=

<CLOSE ATTRIBUTE> s:

<CLOSE MODE> 3:3=

FORMAT OPTICNS:

1. CLOSE DECLARED_FILE>

There 1is no default.
file attributess the
terminates abnormally.

9=4

COMPANY CONFIDENTIAL
B1000 SDL {BNF Version)
P.S. 2212 5405 (G)

CLOSE <FILE DESIGNATOR>
<CLOSE ATTRIBUTE PART>;

<FILE IDENTIFIER>
<SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<EMPTY>

<CLOSE ATTRIBUTE LIST>

WITH <CLOSE ATTRIBUTE LIST>

<CLOSE ATTRIBUTE>

<CLOSE ATTRIBUTE> <ATTRIBUTE SEPARATOR>
<CLOSE ATTRIBUTE LIST>

» | <SLASH> 1 <EMPTY>

<CLOSE MODE>
CRUNCH 1 ROLLOUT I PURGE 1 REMOVE

REEL | RELEASE | PURGE | REMOVE
NO_REWIND 1 LOCK

If LOCK is specified as part of the

file 1is LDOCKed 1if the program
Otherwiser the file is not LOCKed.
FOLLOWED 8Y AND/OR ONE QF: *

0 OR ONE OF:

: REEL
2. CLOSE DECLARED_FILE ROLLOUT RELEASE
CRUNCH PURGE
IF_NOT_CLOSED REMOVE
NO_REWIND
LOCK
* If more than one option is specifieds only the final

one is used by the compiler.

e) \\»

o

T ————— PEBE s ———

9=5

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B10CO SDL {(BNF VYersion)
SANTA BARBARA PLANT PeSs 2212 5405 (G)
(:? Files need not be explicitly closed. However, <closing a file

when finished Wwith it will free memory space for other usese

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT
BEAD SITATEMENT

<READ STATEMENT> 13:=

<READ PART> ::=

<READ SPECIFIER> ::=

<FILE DESIGNATOR> :3=

<DISK READ SPECIFIER>

<RECORD ACDRESS PART>

<RECORD ADDRESS> :1:=

<REMOTE REALC SPECIFIER>

<REMOTE KEY PART> ::=

<REMOTE KEY> 3=

<QUEUE FAMILY
MEMBER PART> ::=

<QUEUE FAMILY MEMBER>

<RESULT MASK>::=

e
*"”

& -
o o=

1]

9=6
COMPANY CONFIDENTIAL
B1000 SOL (BNF Version)
P.Se. 2212 5405 (G)

£
C
<READ PART>;

<READ PART>><(ON SEQUENCE>

<READ PART><RESULT MASK>3? <ON SEQUENCE>

<READ SPECIFIER>

<DISK READ SPECIFIER>
<REMOTE READ SPECIFIER>
<QUEUE READ SPECIFIER>

READ <FILE DESIGNATOR>
(<ADDRESS GENERATOR>)

<FILE IDENTIFIER>
<SWITCH FILE IDENTIFIER> (<EXPRESSION>)

READ

<FILE DESIGNATOR>
<RECORD ADDRESS PART>
(<ADDRESS GENERATOR>)

<EMPTY>

{<RECORD ADDRESS>]

<EXPRESSION> AN
S

READ <FILE DESIGNATOR>
<REMOTE KEY PART>
(<ADDRESS GENERATOR>)

<ENPTY>
[<REMOTE KEY>1

<ADDRESS GENERATOR>
READ <FILE DESIGNATOR>

<SQUEUE FAMILY MENBER PART>
{<ADDRESS GENERATOR>)

<EMPTY> |
[<QUEUE FAMILY MEMBER>]
<EXPRESSION>

WITH RESULT_MASK <ADDRESS GENERATOR>

=7

BURROUGHS CORPORATION _ COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

The <READ STATEMENT> provides the necessary information to read a
files: A file identifiers record address», data informations and
instructions to be executed if an end=of=file or a parity error
is detected.

The <READ STATEMENT> separates files into four categories: di sk
files» remote files» qQqueue files» and all others {(cardr tape»
papertapes etcCas)e I[f the file attributes indicate a random disk
filer the user may specify <RECORD ADDRESS>. In all cases» the
user need only give the <FILE DESIGNATOR> and <ADDRESS
GENERATOR>.

If the file is of type REMOTE» and the REMOTE_KEY ATTRIBUTE is
set then a <REMOTE KEY> may be used. (For the format of thiss
see the discussion under REMOTE_KEY 1in the FILE DECLARATION
SECTION.) If the REMOTE_KEY attribute is not set» then a <REMOTE
KEY> may not be usede. After performing the read», the REMOTE KEY
will have Dpeen stored in the field specified as the <REMOTE KEY>.

If the file is of type QUEUE and is a multi-queue family» then a
<QUEUE FAMILY MEMBER> may be usede. This is an expression whose
value will specify which member of the family to read from. if
this 1is omitted» thern the oldest message in all of the queues
will be read.

If the <RESULT MASK> option is wuseds the accurrence of an
exception in the mask is signalled by the ON EXCEPTION sequence.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

HRITE STATEMENT

SWRITE STATEMENT>

<WRITE PART> ::=

<WRITE SPECIFIER>

<FILE DESIGNATOR>

(1]
o

<CARRIAGE CONTROL PART>

<CARRIAGE CONTROL
SPECIFIER> ::=

<SKIP=TO=CHANNEL> ::=
<CHANNEL NUMBER> ::=

<DISK WRITE SPECIFIER> 33

<RECORD ADDRESS PART> ::=
<RECORD ADDRESS> ::=

<REMOTE WRITE
SPECIFIER>::=

<REMOTE KEY PART>::=

<REMOTE KEY>:3=

<QUEUE WRITE

9=8

COMPANY CONFIDENTIAL

- B100O0 SDL (8BNF Version)
PeSe 2212 5405 (G)

<HRITE PART>;
<WRITE PART>3<0ON SEGQGUENCE>
<WRITE PART> <RESULT MASK>;
<ON SEQUENCE>

<WRITE SPECIFIER>

<DISK WRITE SPECIFIER>
<REMOTE WRITE SPECIFIER>
<QUEUE WRITE SPECIFIER>

WRITE <FILE DESIGNATOR>
<CARRIAGE CONTROL PART>
(<EXPRESSION>)

WRITE <FILE IDENTIFIER>
<CARRIAGE CONTROL PART>

<FILE IDENTIFIER>
<SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<EMPTY>

<CARRIAGE CONTROL SPECIFIER>

NG { SINGLE | DOUBLE 1| PAGE "/
<SKIP=TO=CHANNEL> | NEXT

<CHANNEL NUMBER>

1121 31 eea 1 11 1 12

WRITE

<FILE DESIGNATOR>

<RECORD ADDRESS PART>

(<EXPRESSION>)

<EMPTY>
[<RECORD ADDRESS>]

<EXPRESSION>

WRITE <FILE DESIGNATOR>
<REMOTE KEY PART>
{<EXPRESSION>)

<EMPTY>
[<REMOTE KEY>]

<ADDRESS GENERATOR> '{;i

9-9
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

SPECIFIER>::= WRITE <FILE DESIGNATOR>
<QUEUE FAMILY NEMBER PART> <TQOP>
(<ADDRESS GENERATOR>)

<FILE DESIGNATOR>::= <FILE IDENTIFIER>

I <SWITCH FILE ICENTIFIER> (<EXPRESSION>)

<TQgP> ::= <EMPTY> | TOP

<QUEUE FAMILY
MEMBER PART>::= <EMPTY>
1 (<QUEUE FAMILY MEMBER>]

<QUEUE FAMILY MEMBER>:3:= <EXPRESSION>

<RESULT MASK>::= . WITH RESULT_MASK <ADORESS GENERATOR>

The <WRITE STATEMENT> provides the necessary information to write
a file. The <WRITE STATEMENT> treats disk files separately from
other file types by allowing the user the option of specifying
<RECORD ADDRESS> on his random disk files. The <CARRIAGE CONTROL
PART> is intended for use with a printer file.

If the file is of type REMOTE» and the REMOTE_KEY attribute is
set then a <REMOTE KEY> may be used. (For the format of this»
see the discussion under REMOTE_KEY in the FILE DECLARATION
section.) If the REMOTE_KEY attribute is not setr» then a <REMOTE
KEY> may not be used. The <REMOTE KEY> will specify the terminal
to which the write is to be performed.

If <DISK WRITE SPECIFIER> i1s used when the actual device 1is a
data recorder, the <RECORD ADDRESS> will be used to select a
stackere.

If the file is of type QUEUE and is a multi-queue family» then a
<QUEUE FAMILY MEMBER> may be used. This is an expression whose
value will specify which member of the family to write to. If
TOP is specified» the message will be written to the front of the
queue.

If the <END~QF=PAGE PART> is set in the file attributess then
when end=of-page 1is detected on a printer file» the <EQOF PART>
will be executed. This facilitates» for example» printing totals
and/or headings without keeping a line countere.

: | 9=-10
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP ‘ 81000 SDL (BNF Version)

SANTA BARBARA PLANT - PeS. 2212 5405 (G)

If the <RESULT MASK> option 1is useds the occurrence of an
exception in the mask is signalled by the ON EXCEPTION sequencee.

EXAMBLE:

WRITE PRINTOUT SINGLE (PRINT_LINE);
ON EOF DO;
WRITE PRINTOUT? X SKIP A LINE:
WRITE PRINTQUT PAGE (TOTALS);
WRITE PRINTOUT DOUBLE (HEADER):
END;

s

9=11

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQOUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 54035 (G)

SEEK STATEMENT

SEEK
<FILE DESIGNATOR>
[<RECORD ADDRESS>]

<SEEK STATEMENT> ::

FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<FILE DESIGNATOR>::

<EXPRESSION>

1]

<RECORD ACDRESS> ::

The <SEEK STATEMENT> calls up a record from. a randoma disk file in
preparation for a read on that recorde This statement should
only be used with disk files that are being read using a random
access technique.

A <SEEK STATEMENT> performed immediately prior to a <READ
STATEMENT> is less effective than merely reading the recorde.

— R

9=-12

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.5. 2212 5405 (G)

ACCEPT STATEMENT

<ACCEPT STATEMENT> ::= ACCEPT <ADDRESS GENERATOR>

The <ACCEPT STATEMENT> causes the execution of a program to halt
until the appropriate information is entered via the SP0O by the
operatore. The message keyed in will be read 1into the area
specified by the <ADDRESS GENERATOR> following the reserved word
ACCEPT.

See ADDRESS VARIABLES for the syntax of the <ADDRESS GENERATOR>.

AT
; Y
L /
N

S ansdin il T e R S A i et e b o S

R R S S

9=-13
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SOL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

QISPLAY STATEMENT

<DISPLAY STATEMENT> 3:= DISPLAY <EXPRESSION>
<CRUNCH SPECIFIER>

<CRUNCH SPECIFIER> :2:3= <EMPTY>
I » CRUNCHED

The <DISPLAY STATEMENT> prints an output message on the S5SP0. As
noted» the <CRUNCH SPECIFIER> is optional. If » CRUNCHED is
specifiedr the system will delete trailing blanks and substitute
one blank for each occurrence of multiple embedded blankse.

' The

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

SPACE STATEMENT
<SPACE STATEMENT> ::=

<SPACE PART> ::3=

<FILE DESIGNATQOR> 3=

<SPACING SPECIFIER> :3:

<SPACE STATEMENT>
records in a sequential

The <SPACING SPECIFIER>
alone will
be a negative number
will
record to space to.
current ende.

indicate the number of records to be spaced.
indicating reverse spacing.
always be a positive number and
TO_EQF witll cause the file to space to

9=14

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PeSe 2212 5405 (G)

<SPACE PART>;

I <SPACE PART>; <ON SEQUENCE>

SPACE <FILE DESIGNATOR>
<SPACING SPECIFIER>

<FILE IDENTIFIER>
I <SHITCH FILE IDENTIFIER>(<EXPRESSION>)

<EXPRESSION ! TO <EXPRESSION>

i TO_EOF
allows the user to skip over certain
file.
may take three forms. An <EXPRESSION>

It may
TO <EXPRESSION>
indicates the number of the
its

AN

NS

C

: : 9=15
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT Pe.S. 2212 5405 (G)

SKIP STATEMENT

<SKIP STATEMENT> ::= SKIP <FILE IDENTIFIER> TO <CHANNEL NUMBER>

<FILE DESIGNATOR> ::= <FILE IDENTIFIER>
I <SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<CHANNEL NUMBER> ::= 1121 31 e 1 11 1 12

The <SKIP STATEMENT> causes the Lline printer to skip to a
specified channel number on 1its carriage tapee. The channel
numbers control the vertical spacing of data on a printed page
and are defined by the carriage tape on the device.

9=-1%6

BURRODUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT) P.S. 2212 5405 (G)
ON SEQUENCE

<ON SEQUENCE> :3:3= <ON CLAUSE> <EXECUTABLE STATEMENT>

I <ON SEQUENCE> <ON CLAUSE> <EXECUT~-
TABLE STATEMENT>

<ON CLAUSE> 3:= ON EOF | ON INCOMPLETE_IO
! ON EXCEPTION

An ON SEGQUENCE is used to examine the status of the 1I/0 requested
by the preceding statemente. When any of the <0ON CLAUSE>s are
true» the corresponding <EXECUTABLE STATEMENT> will be executed
before proceedinge Only one condition will be true.

The <EXECUTABLE STATEMENT>s of the <ON SEQUENCE> are considered
subordinate to the <WRITE STATEMENT>. Therefores» segmentation of
these statements is temporary (See THE SEGMENT STATEMENT).

Note: Exceptions may be masked by the EXCEPTION_MASK clause in
the file declaration.

' 10-1
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

EXECUTABLE STATEMENTS

<EXECUTABLE STATEMENT
LIST> ::= <EXECUTABLE STATEMENT>
| <EXECUTABLE STATEMENT>

<EXECUTABLE STATEMENT LIST>
<EXECUTABLE STATEMENT> ::= <D0 GROUP>;
<GROUP TERMINATION STATEMENT>;
<IF STATEMENT>;
<CASE STATEMENT>;
<ASSIGNMENT STATEMENT>;
<REFER STATEMENT>;
<REDUCE STATEMENT>;
<EXECUTE=PROCEDURE STATEMENT>;
<EXECUTE=FUNCTION STATEMENT>;
<I/0 CONTROL STATEMENT>
<MODIFY INSTRUNENTS>;
<NULL STATEMENT>
<FILE ATTRIBUTE STATEMENT>;
<STOP STATEMENT>;
<ZIP STATEMENT>;
<SEARCH STATEMENT>;
<ACCESS FILE HEADER STATEMENT>;
<ARRAY PAGE TYPE STATEMENT>;
<COROUTINE STATEMENT>;
<SEGMENT STATEMENT>
<EXECUTABLE STATEMENT>

<ASSIGNMENT STATEMENT> ::

SEE ASSIGNMENT STATEMENTS
AND EXPRESSIONS

<170 CONTROL STATEMENT> 3:= SEE I/0 CONTROL STATEMENTS

<SEGMENT STATEMENT> 3:= SEE THE SEGMENT STATEMENT

'BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

10-2
COMPANY CONFIDENTIAL
81000 SDL CBNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (6G)

- DO GROUES

O

<GROUP HEAD>
<GROUP BODY>

<D0 GROUP> :

<GROUP NAME>
<FOREVER PART>;

<GROUP HEAD> ::=

<GROUP NAME> :3:= 1]

t DO <GROUP IDENTIFIER>
<FOREVER PART> ::= <ENPTY>

1 FOREVER

L]
[1]
L

<GROUP IDENTIFIER> <IDENTIFIER>

<EXECUTABLE STATEMENT LIST>
<GROUP ENDING>

<GROUP B80DY> :3:=

<GROUP ENLCING> 3:= END
I END <GROUP IDENTIFIER>

The <D0 GROUP> is a coliection of <EXECUTABLE STATEMENT>s which
functions as a routine. It 1i1s executed once unless FOREVER

appears after the <GROUP NAME>. @M\

If FOREVER 1is present» the <D0 GROUP> will be executed

iteratively until a specific condition is met. Oniy a <GROUP
TERMINATION STATEMENT> (UNDDO) or a «<TYPED PROCEDURE RETURN
STATEMENT> {(RETURN) can get the program out of this Lloop. See

the following example:

DO THIS FOREVER:
READ CARD (A); ON EOF UNDO;
IF 55 GTR 8UMP X
THEN WRITE PRINTER (A);

ELSE DO;
X113
WRITE PRINTER PAGE (A)j;
END3 :
END THIS;

If it is necessary to execute the statements in a <D0 GROUP> from
different points in the programs» more efficient code is generated
by w@making the body of the group a procedure rather than by N
repeating the <D0 GROUP>. (;;

10-3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROuP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)
RESTRICTIONS:

1. If a <GROUP IDENTIFIER> is included in the <GROUP
NAME>» it must also appear in the <GROUP ENDING>.

2e If the <GROUP NAME> does not include an identifiers»
the <GROUP ENDING> must not contain onee.

3. FOREVER is not a reserved word and may appear as the
<GROUP IDENTIFIER>. DO FOREVER> 1is considered to be
the <GROUP HEAD> of an un-named» iterative <00
GROUP>. DO FOREVER FOREYER is a legal heading for a
nameds, iterative groupe.

be Nested <D0 GROUP>s may not have duplicate
identifierse. If this occurs» a warning message will
appear on the praogram listing.

Se <00 GROUP>s may be nested 32 levels deep. However, a

<GROUP TERMINATION STATEMENT> can UNDO only a maximum
of 156 levels.

10-=4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)
UNDO

<GROUP TERMINATION
STATEMENT> ::= ‘ UNDO
' | UNCO <GROUP IDENTIFIER>

<GROUP IDENTIFIER> ::3= <IDENTIFIER>

The <GROUP TERMINATION STATEMENT> will cause the execution of a
<D0 GROUP> to ceaser and will transfer control to the next
statement following the <D0 GROUP> which has been UNDONE. The
statement may take one of three forms:

1. UNDO wiil transfer control .out of the <D0 GROUP>
which contains the statement.

2. UNDO <GROUP IDENTIFIER> takes control out of the <D0
GROUP> specified by the identifiere.

3. Another forms UNDO(*)» 1is nouw considered obsolete.
It transferred control out of the outermost <DO
GROUP>.

Note: UNDDO <IDENTIFIER> can undo a maximum of 16 levels.

EXAMPLE:
1. DO ONES
2e DO TWO FOREVER:
3. IF <EXPRESSION> THEN
4. DO THREE?
5. CASE <EXPRESSION>>
6. UNDO7 /+ SAME AS UNDO THREE; =/
7e UNDO Twgs
8. : END CASE’
9. END THREE;
10. END THWO»
11. END ONE>

Execution of line 6 transfers control to line 10.
Execution of line 7 transfers control to the statement
following Lline 11.

AT

S

10=5

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

IE STATEMENT

<IF STATENENT> 3:3= <IF CLAUSE>
<EXECUTABLE STATEMENT>
I <IF CLAUSE>
<EXECUTABLE STATEMENT>
ELSE <EXECUTABLE STATEMENT>

<IF CLAUSE> :3:= IF <EXPRESSION> THEN

The <EXPRESSION> 1is evaluated. If the low=order bit of the
result is 1 (i.e.» true)d» the statement following THEN 1is
executed. If the low=order bit is 0 (i.e.» false)» the statement
following ELSE (if present) 1is executed. If the resuit of
the<EXPRESSION> is falsesr and the ELSE part is omitted» control
is transferred to the next statement after the <IF STATEMENT>.

<IF STATEMENT>s may be nested. The outermost <IF CLAUSE> and the
corresponding ELSE» if any» are on Nesting Level 0. The
<EXECUTABLE STATEMENT>s following THEN and ELSE are on Nesting
Level 1. Nesting may be no deeper than 32 levels.

When wusing nested <IF STATEMENT>ss the user must maintain
correspondence between the delimiters THEN and ELSE oaon each
level. The innermost ELSE will always be associated with the

innermost THEN. From this point continues an outward progression
(i e from highest nesting {evel to Llowest) of THEN=ELSE
association.

Thuss 1f an <IF STATEMENT> on Nesting Level N is to have an ELSE
associated with its then every <IF STATEMENT> on a nesting level
greater than N must also have ELSEs associated with them. If the
user wWishes to execute nothing on a false condition» then ELSE
followed by a <NULL STATEMENT> may be used.

10-6

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSo 2212 5405 (G)
EXAMPLE:S

Let E-1» E-2» E=3» and E-4 be <EXPRESSION>s» and let S$=2, 5-3,»
and S=4 be <EXECUTABLE STATEMENT>s.

IF E-1
THEN IF E-2
THEN IF E-3
THEN IF E-4
THEN S=4;
ELSE>
ELSE S-3;
ELSE S=2;

All statements here are the IF-THEN-ELSE typesr, except the first
IF which has no corresponding ELSE.

L

10=7

BURROUGHS CORPORATION , COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP ‘ B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

CASE STATJEMENT
<CASE STATEMENT> ::= <CASE HEAD>
<CASE 300Y>

<CASE HEAD> =:: CASE <EXPRESSION>

]]

<CASE BODY> ::

<EXECUTABLE STATEMENT LIST>
<CASE ENDING>

<CASE ENBING> ::= ’ END CASE

The <EXPRESSION> serves as an index into the lList of <EXECUTABLE
STATEMENT>s. The statement selected i5 executedr and the others
ignorede. Contral is then transferred to the statement following
the <CASE ENDING> unlesss of courser» the statement causes a
RETURN or an UNDQ to some other locatione.

If there are N number of stateaents in the lists then the range
of the value of the <EXPRESSION> may be from 0 through N=1i.

The statements in the Llist wmay be any legal <EXECUTABLE
STATEMENT> allowed in SOL. If the user wishes to execute nothing
in a given caser the <NULL STATEMENT> is an appropriate
statement.

10-8

BURROUGHS CORPORATION ' COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP ~ B1000 SDL (BNF Version)
SANTA BARBARA PLANT / Pe.S. 2212 5405 (G)

BEEER STATEMENI

<REFER STATEMENT> ::= REFER <REF VAR> T0O <ADDRESS GENERATOR>

<REF VAR>::= <IDENTIFIER>

The statement wWill make <ADDRESS GENERATOR> become the new
referent of <REF VAR>. Since an <ADDRESS GENERATOR> in SDL can
locate any arbitrary area of memory (using MAKE.DESCRIPTOR»
indexing» etc)» the reference variable may do likewise» but in
UPL the restriction to a safe subset of <ADDRESS GENERATOR>?'s
also guarantees the safety of reference variablese.

The only exception to this safety 1is the <classic dangling
reference problem:. Suppose» while executing a lexic level one
procedures that a reference variable declared at lexic level zero
is bound to a locaily declared referente. If that reference

variable is then used after the procedure is exiteds its referent

will not exist and an unpredictable piece of data or garbage will
be accessede.

Technicallys, this error can only be detected at run time» but its
occurrence can be precluded altogether by making a strong
restriction 1in the syntax: the lexic level of the <ADDRESS
GENERATOR> may not be greater than that of <KREF VAR>. This
cannot be checked for some <ADDRESS GENERATOR>s» notably
MAKE.DESCRIPTORs but it can be checked in all cases for UPL.

An <ADDRESS GENERATOR>» NULL» 1is available so that reference
variables may be re~bound to such. Testing for NULL is done by
checking for length of zero.

AN
N

10-9

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B100O SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

REDUCE SIATEMENI

<REDUCE STATEMENT> ::= REDUCE <QOBJECT REFERENCE> <SETTING
RESULT REFERENCE PART> UNTIL
<FIRST OR LAST> <EQL QR NEQ OR IN>
<EXPRESSION>
<ON EQJS_CYCLE PART>

<0BJECT REFERENCE ::= <IDENTIFIER>

<EMPTY> 1| SETTING <RESULT
REFERENCE>

<SETTING RESULT REFERENCE PART> 3:

<IDENTIFER>

<RESULT REFERENCE> 33
<FIRST QR LAST> ::= FIRST | LAST

<EQL OR NEG OR IN> 233= EQL ! NEQ | IN § = 1 /=

<ON EOS_CYCLE PART> 33= <EMPTY> | ON EOS_CYCLE <EXECUTABLE STATEMENT> |

ON EOS <EXECUTABLE STATEMENT>

Reduction 1is a flexible and efficient @eans for scanning
character strings which wuses reference variables rather than
integers as pointers which select substrings. The basic function
of reduction is to truncate a reference variable from the left
until its first character satisfies some condition. MNo change is
actually made to the data’ the reference variable is simply
rebound to a substring of its former referent. For example» the
original referent of R1 is a string "ABCDEF".

« ABCDODETF =«
X & & k k ¥ kK % &
x
*

R1
After the statement

REDUCE R1 UNTIL FIRST = "D%;

is executed the referent of Rl is "DEF".

ABCDETF
x x
EhRrRERS

*

R1

10-10

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP ‘ B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

If the character string deleted is of interest» another reference .
may be referenced to it by the variation: _ {:}

REDUCE R1 SETTING R2 UNTIL FIRST = "D";

Starting wWwith Ri's original referents, "ABCDEF™,» this leaves

* ABC=~DEF «~ ,

AEXEhERE REAEEERR
* *
* *
R2 R1

thus dividing the original \string according to the <condition
FIRST = D",

The entire operation may also be done in reverse (scanning right
to left) in which case the last character of Rl must satisfy the
condition.

REDUCE R1 SETTING R2 UNTIL LAST = =D=;

resuits in the new binding _ N

e
N

~* A BCOD T F =

kkkkhkkhkhkkdhk Rkhkhkx&

" *
* *
R1 R2

Three types of conditions may be specified:

= scans for a character which is the same as the specified
charactere. :

= scans for a character which 1is different from the
speci fied character.

IN scans for a character which» when translated to by the
specified bit tablesr yields a 3(1)13. See CHAR=TABLE for a
convenient means for specifying bit table constantse.

10-11
BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

In the first two casess a single character must be given as a
scan argumente. In the third caser» a bit string of Ulength 256
bits must be given as a tablee.

The <EXPRESSION> must evaluate to either CHARACTER(1) or B8IT(3)
or BIT(256) depending upon the condition type. Improper type on
this <EXPRESSION> 1is the only possible run=-time error from
reductione.

END QOF SIRING

The REDUCE statement terminates when either a character
satisfying the condition is found or the length of the <OBJECT
REFERENCE> has been reduced to zeros i.c.»r it is NULL. Since the
latter termination is often of separate interest its occurrence
may be detected using syntax analogous to that for detection of
special conditions on I/0 statements. The syntax was showuwn
above. The <EXECUTABLE STATEMENT> is executed if and only if the
original reference has been reduced to NULL. (If a <RESULT
REFERENCE> was specifiedr» it will then refer to the original
referent of the <0BJECT REFERENCE>.)

Frequently» the end=of=-string code wWwill reset the <OBJECT
REFERENCE> to some new datar perhaps by reading a new carde In
this case» control returns from the EOS_CYCLE back to the REDUCE.
thus effecting scanning. over record boundaries without additional
coding. If the <0BJECT REFERENCE> remains NULL after execution
of the EOS_CYCLE codes control passes to the following statement
as usuale. These semantics may seem awkward at firsts but they
have the desirable effect of guaranteeing the proper exit
conditions of a REDUCE statement==-either the <condition is
satisfied by the first (or last) <character of the <0BJECT
REFERENCE> or the <0BJECT REFERENCE> is NULL=-regardless of
whether or not an EOS_CYCLE has been specified. This principle
can be violated only by a branch instruction (UNDO» RETURN) in
the EOS code. ‘

If ON_EQS is used in place of EOS_CYCLE» then control always
passes to the next statement.

10=-12

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT Pe5. 2212 5405 (G)
MODIEY STATEMENYS (CLEAR» BUMP, DECREMENT) : (ij
<MODIFY INSTRUCTION> ::= <CLEAR STATEMENT>

I <BUMP STATEMENT>
I <DECREMENT STATEMENT>

<CLEAR STATEMENT> ::= CLEAR <ARRAY IDENTIFIER LIST>

<ARRAY IDENTIFIER LIST> ::= <ARRAY IDENTIFIER>
| <ARRAY IDENTIFIER>» :
<ARRAY IDENTIFIER LIST>

As the syntax indicatess the <CLEAR STATEMENT> may only clear
arrayse. If the array has been declared bit or fixedr zeroces are
moved to each element. If it was declared as character, blanks
are moved to each elemente Paged arrays may not be clearede.

<BUMP STATEMENT> ::= BUMP <ADDRESS VARIABLE><MODIFIER>

<ADDRESS VARIABLE> ::= See ADDRESS VARIABLES

<MODIFIER> ::= <EMPTY> N
{ BY <EXPRESSION> _/

<DECREMENT STATEMENT> ::= DECREMENT <ADDRESS VARIABLE><MODIFIER>

The bump and decrement statements perform the same functions as
their counterparts in the <EXPRESSION> (BUMPOR and DECREMENTOR).
See those sections for specific usage. Since these <constructs
exist as statements in their own rights» and not merely as parts
of the <EXPRESSION>», they are included here.

10-13

BURROUGHS CCRPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

NULL STATEMENT

<NULL STATEMENT> ::=

.o

The semi=colon is considered to be a statement in its own righte.
It may be used in any construct where the syntax requires that an
<EXECUTABLE STATEMENT> be presents but the user wishes to execute
nothinge. It is most commonly used in the <IF STATEMENT> and the
<CASE STATEMENT>», but may also be functional in the read» write»
and space statementse. Refer to the individual descriptions for
more specific details.

EXAMPLE:

CASE <EXPRESSION>;
IF <EXPRESSION> THEN; ZCASE 0
ELSE <STATEMENT>;
; ZCASE 1
00> ZCASE 2
_ <EXECUTABLE STATEMENT LIST>
END>
END CASE;

Notice that the above <CASE STATEMENT> contains three <EXECUTABLE
STATEMENT>s: An <IF STATEMENT>, a <NULL STATEMENT>, and a <DO
GROUP>. If the value of the <EXPRESSION> following CASE 1is 1>
then nothing is executed. In additions, the 7 following THEN 1is
a <NULL STATEMENT>.)

' 10-14
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTENS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P-S. 2212 5405 (G)
EILE AITRIBUTE SITATEMENY (CHANGE STATEMENT) ' C}
<FILE ATTRIBUTE “

STATEMENT> ::= CHANGE <FILE DESIGNATOR>
: TO (<DYNAMIC FILE ATTRIBUTE LIST>)

<FILE DESIGNATOR> ::= <FILE IDENTIFIER>
< | <SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<DYNAMIC FILE
ATTRIBUTE LIST> 3:= <DYNAMIC FILE ATTRIBUTE>
1 <DYNAMIC FILE ATTRIBUTE>»
<DYNAMIC FILE ATTRIBUTE LIST>

<DYNAMIC FILE
ATTRIBUTE> ::= <DYNAMIC MULTI-FILE IDENVIFICATION PART>
<DYNAMIC FILE IDENTIFICATION PART>
<DYNAMIC PACK_ID PART>

<DYNAMIC DEVICE PART>

<DYNAMIC TRANSLATION PART>

<DYNAMIC FILE PARITY PART>

<DYNANIC YARIABLE RECORD PART>

<DYNAMIC LOCK PART>

<DYNAMIC BUFFERS PART>

<DYNAHMIC SAVE FACTOR PART>

<DYNAMIC RECORD SIZE PART> .
<OYNAMIC RECORDS-PER-BLOCK PART>)
<DYNAMIC REEL NUMBER PART> bl

<DYNAMIC NUMBER=OF=-AREAS PART>
<DYNAMIC BLOCKS-PER=AREA PART>
<DYNAMIC ALL=AREAS=AT=0PEN PART>
<DYNAMIC AREA-BY-CYLINDER PART>
<DYNAMIC EU_SPECIAL PART>
<DYNAMIC EU_INCREMENTED PART>
<DYNAMIC USE_INPUT_BLOCKING
DESIGNATOR PART>

10-15

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDOL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

<DYNAMIC MULTI-PACK PART>
<DYNAMIC END=OF=PAGE PART>
<DYNAMIC OPEN-QOPTION PART>
<DYNAMIC REMOTE-KEY PART>
<DYNAMIC NUMBER=-OQF=STATIONS PART>
<DYNAMIC QUEUE-FAMILY=-SIZE PART>
<DYNAMIC FILE TYPE PART>
<DYNAMIC WORK FILE PART>
<OYNAMIC LABEL TYPE PART>
<DYNAMIC INVALID CHARACTER
REPORTING PART>

<OYNANIC OPTIONAL FILE PART>
<DYNAMIC SERIAL NUMBER PART>
<DYNAMIC EXCEPTION MASK PART>
<OYNAMIC QUEUE SIZE PART>
<DYNAMIC HEADER PART>

<DYNAMIC SOFT TRANSLATE PART>
<DYNAMIC HOST_NAME PART>
<DYNAMIC OPEN_ON_BEHALF_QOF PART>

S G Gn wmn S Gws Gee wsed

The <FILE ATTRIBUTE STATEMENT> allows the user to dynamically
change the attributes of his file during the execution of his
programe This statement may occur at any point in the programs
but the <change wWwill not become effective until the file is
opened. That is» 1if the file in gquestion is open when the <FILE
ATTRIBUTE STATEMENT> is executadr, then the change will not occur
until the file is closed and re-opened.

Each <DYNAMIC FILE ATTRIBUTE> should be <consistent with the

format and restrictions of 1its counterpart listed in the FILE
DECLARATIONS. Exceptions to this are specifically stated belows

If a <DYNAMIC FILE ATTRIBUTE> is omitted» the attribute remains
as it was previously set.

It should be noted that the fallowing process is mandatory when
changing the attributes of an open file which is to be re-opened:

1. Close the file with an attribute which causes space for the
FIB to be returned: i.8.» LOCK» RELEASE, etc. (If CLOSE is
used without attributes» the FIB will not be rebuilt from
the FPBs and the attribute will remain unchanged).

2« Change the desired attributes.

3« 0Open the file.

10-16

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

<DYNAMIC MULTI-FILE
IDENTIFICATION PART> s3:= MULTI_FILE_ID 2=

<DYNAMIC MULTI-FILE IDENTIFICATION>
<DYNAMIC MULTI-FILE IDENTIFICATION> 33= <EXPRESSION>

<DYNAMIC FILE IDENTIFICATION PART> ::3= FILE_ID := <DYNAMIC FILE
IDENTIFICATION>

<DYNAMIC FILE IDENTIFICATION> :33= <EXPRESSION>

<DYNAMIC PACK_ID PART> :3:= PACK_ID := '
<DYNAMIC PACK IDENTIFICATION>

<DYNAMIC PACK IDENTIFICATION> :3:3= <EXPRESSION>
The <EXPRESSION>s of these four attributes are each assumed to be
character stringse. If they are bits» howevers, they will be
conver ted to characters in the following manner:

i. The bits are left justified.

2 Trailing blanks are appendede. Howevers, if the bits

are not a multiple of 8» then the string witl appear
to be invalid characters.

EXAMPLE:
CHANGE F TO (FILE_ID := a3FQE3);

WILL RESULT IN THE <FILE IDENTIFICATION>
BEING EQUAL T0:

FO0E4040404040404040643

BURROUGHS CCORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT PeSe

<DYNAMIC DEVICE PART> ::= DEVICE :=
<DYNAMIC DEVICE SPECIFIER> ::= <EXPRESSION>
The low=order 10 bits of the <EXPRESSION> must

follows (where the variant
hardware is the Low=order six):

be

is the high order four bits»

10-17

COMPANY CONFIDENTIAL
81000 SDL (BNF VYersion)
2212

5405 (&)

<DYNAMIC DEVICE SPECIFIER>

coded as
and the

DEVICE HARDWARE VARIANT
CARD 21
TAPE 27
TAPE_9 28
TAPE_7 25
TAPE_PE 26
TAPE_NRZ 24
DISK 17 0 = SERIAL
1 = RANDOM
DISK_PACK 16 (SAME AS 0ISK)
DISK_FILE 12 (SAME AS DISK)
DISK_PACK_CENTURY 15 (SAME AS DISK)
DISK_PACK_CAELUS 14 (SAME AS DISK)
PRINTER 8 0 = BACKUP TAPE OR DISK
1 = BACKUP TAPE
2 = BACKUP DISK
3 = BACKUP TAPE QR DISK
4 = HARDWARE ONLY
S = BACKUP TAPE ONLY
6 = BACKUP DISK ONLY
7 = BACKUP TAPE OR DISK
PRINTER FORMS 8 8 +# PRINTER VARIANT
CARD_READER 21
CARD_PUNCH 2 (SAME AS PRINTER)
CARD_PUNCH FORMS 2 (SAME AS PRINTER FORMS)
PUNCH 2 (SAME AS PRINTER)
PUNCH FORMS 2 (SAME AS PRINTER FORMS)
READER_PUNCH_PRINTER 5 (SAME AS PRINTER)
READER_PUNCH_PRINTER FORMS 5 (SAME AS PRINTER FORMS)
PUNCH_PRINTER 5 (SAME AS PRINTER)
PUNCH_PRINTER FORMS 5 (SAME AS PRINTER FORMS)
PAPER_TAPE_PUNCH 20 (SAME AS PRINTER)
PAPER_TAPE_PUNCH FORMS 20 C(SAME AS PRINTER FORMS)
PAPER_TAPE_READER 6
READER_96 19
SORTER_READER 10
READER_SORTER 10
CASSETTE 30
REMOTE 63
QUEVE 61

0

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DYNAMIC TRANSLATION
PART> s:=

<DYNAMIC TRANSLATION
SPECIFIER> z:=

The Llow=order 3 bits of
translation as follows:

000 = EBCDIC
001 = ASCII
010 = BCL

<DYNAMIC QOPEN-
OPTION PART>::s=

<DYNAMIC OPEN-
OPTION SPECIFIER>::=

The {ow=order 12 bits o
open as follows (bits are n
12):

(=]
~
-

CONOWVNSWLWNK O
LT T T N T A

<DYNAMIC PARITY PART> ::=

10~-18

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PeSe 2212 5405 (G)

TRANSLATION :=
<DYNAMIC TRANSLATION SPECIFIER>

<EXPRESSION>

the <EXPRESSION> determines the

OPEN_OPTION 3=
<DYNAMIC OPEN_OPTION SPECIFIER>

<EXPRESSION>

f the expression determine the type of
umbered from left to right within the

FUNCTION CIF 1)

INPUT

ouTPUT

NEW

PUNCH

PRINT

NO_REWIND» INTERPRET
REVERSE» STACKERS
LOCK

LOCK_OuUT

PARITY 3= <DYNAMIC PARITY SPECIFIER>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DYNAMIC PARITY
SPECIFIER> ::=

<DYNAMIC VARIABLE
RECORD PART> ::=

<DYNAMIC VARIABLE
RECORD SPECIFIER> ::3

<DYNAMIC LOCK PART> ::=

<DYNAMIC LOCK
SPECIFIER> 33=

<DYNAMIC ALL=AREAS-
AT=0PEN PART> ::=

<DYNAMIC ALL-AREAS~-
AT=0PEN SPECIFIER> s:=

<DYNAMIC AREA-BY
CYLINDER PART> :

<DYNAMIC AREA-BY-
CYLINDER SPECIFIER> :2:=

<OYNAMIC USE_INPUT_
BLOCKING PART> ::=

<DYNAMIC USE_INPUT_
BLOCKING SPECIFIER> :=:

<DYNAMIC END=QF~-
PAGE PART> ::=

<DYNAMIC END=QF~-
PAGE SPECIFIER> :3:=

<DYNAMIC MULTI=-
PACK PART>»::=

<DYNAMIC MULTI-
PACK SPECIFIER> ::=

<DYNAMIC REMOTE~-
KEY PART>::=

10-19

COMPANY CONFIDENTIAL
B1000 SOL (BNF Version)
PeS. 2212 5405 (GQ)

<EXPRESSION>

VARIABLE 3=
<DYNAMIC VARIABLE RECORD SPECIFIER>

<EXPRESSION>

LOCK 3= <DYNAMIC LOCK SPECIFIER>
<EXPRESSION>

ALL_AREAS_AT_OPEN :=
<DYNAMIC ALL=AREAS=AT=-OPEN SPECIFIER>

<EXPRESSION

AREA_BY_CYLINDER :=
<DYNAMIC AREA-BY-CYLINDER SPECIFIER>

<EXPRESSION>

USE_INPUT_BLOCKING 3=
<DYNAMIC USE_INPUT_BLOCKING SPECIFIER>

<EXPRESSION>

END_OF_PAGE_ACTION :=
<DYNAMIC END=OF=~PAGE SPECIFIER>

<EXPRESSION>

MULTI_PACK :=
<DYNAMIC MULTI=PACK SPECIFIER>

<EXPRESSION>

REMOTE_KEY :=
<DYNAMIC REMOTE-KEY SPECIFIER>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<DYNAMIC REMOTE-
KEY SPECIFIER>3:=

<DYNAMIC WORK
FILE PART>::=

<DYNAMIC WORK
FILE SPECIFIER>::=

. 10=20

COMPANY CONFIDENTIAL
B1000 SDL (BNF VYersion)
PeS. 2212 5405 (B)

<EXPRESSION>

WORK_FILE 2=
<DYNAMIC WORK FILE SPECIFIER>

<EXPRESSION>

Only the low=order bit of each of the above <expression>s is used .
to determine the value of the attribute. The code definitions

are as follows:

PARITY

VARIABLE

LOCK
ALL_AREAS_AT_OPEN
AREA_BY_CYLINDER

USE_INPUT_BLOCKING

END_OF_PAGE_ACTION

NULTI_PACK

REMOTE KEY

WORK_FILE

<DYNAMIC EU_SPECIAL
PART> ::=

<DYNAMIC EU_SPECIAL
SPECIFIER> ::=

00D

EVEN

FIXED

VARIABLE

NOT LOCKED

LOCKED

ALLOCATE AREAS AS NEEDED

ALLOCATE ALL SPACE AT OPEN TIME

PUT AREA ANYWHERE ON DISK

ONE AREA PER CYLINDER AT BEGINNING -
TAKE ATTRIBUTES FROM FILE DECLARATIQX ,
TAKE ATTRIBUTES FROM DISK FILE HEADEW
See FILE ATTRIBUTES

NO DETECTION OF END-OF=PAGE

BRANCH 7O <EOF PART> OF <WRITE
STATEMENT> AT END OF PAGE ON

PRINTER FILE

PLACE FILE ON MULTIPLE DISK PACKS
PLACE FILE ON SINGLE DISK PACK

REMOTE KEY IS PRESENT ON ALL READS

AND WRITES TO THE FILE

REMOTE KEY IS NOT PRESENT

INSERT JOB NUMBER IN FILE IDENTIFIER
LEAVE FILE IDENTIFIER ALONE

O O OO OO

-
nwon

O
oo

OO
nou

EU_SPECIAL :=
<DYNAMIC EU_SPECIAL SPECIFIER>
EU_SPECIAL :=

<DYNAMIC EU_SPECIAL SPECIFIER>
EU_DRIVE :=

<DYNAMIC EU_SPECIAL SPECIFIER>

C

<EXPRESSION>

10-21

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNf VYersion)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

<DYNAMIC EU_DRIVE
SPECIFIER> 3:= <EXPRESSION>

<DYNAMIC EU_
INCREMENTED PART> ::= CU_INCREMENTED :=
<DYNAMIC EU_INCREMENTED SPECIFIER>
I EU_INCREMENTED :=
<DYNAMIC EU_INCREMENTED SPECIFIER>,
EU_INCREMENT :=
<DYNAMIC EU_INCREMENT SPECIFIER>

<DYNAMIC EU_INCREMENTED
SPECIFIER> 33= <EXPRESSION>

<DYNAMIC EU_
INCREMENT SPECIFIER> <EXPRESSION>

The Low=order bit of the EU_SPECIAL and EU_INCREMENTED specifiers
serves to indicate whether or not the attribute 1is set (0=0ff,
1=0n). If the attribute is off» then inclusion of the EU_DRIVE
and EU_INCREMENT specifiers is unnecessary.

If these attributes are set on» then the drive and 1increnment
parts shoutld be tncluded>» and should conform to the
specifications in the FILE DECLARATIONS. If omitted» the
<DYNAMIC EU_DRIVE SPECIFIER> 1is not changed. If the <DYNAMIC
EU_INCREMENT SPECIFIER> has never been set (i.2e» it i5s°0)» then
it is set to one; otherwise» it too remains unchanged.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT
<DYNAMIC BUFFERS PART> ::=

<DYNAMIC NUMBER
OF BUFFERS> ::=

<DYNAMIC SAVE
FACTOR PART> 3=

<DYNAMIC SAVE FACTOR> ::=

<DYNAMIC RECORD
SIZE PART> ::=

<DYNANIC RECORD SIZE> ::=
<DYNANIC RECORDS-
PER=BLOCK PART> ::=
<DYNAMIC RECORDS~-
PER=BLOCK> ::=

<DYNAMIC REEL
NUMBER PART> 3=

<DYNAMIC REEL NUMBER> ::3=
<DYNANIC NUMBER=QOF~-
AREAS PART> ::=
<DYNAMIC NUMBER-
gF=AREAS> ::=

<DYNAMIC BLOCKS=PER~-
AREA PART> ::=
<DYNAMIC BLOCKS=PER
AREA> ::=

<DYNAMIC QUEUE-=FANILY~-
SIZE PARTI>::=

<DYNAMIC QUEUE~-
FAMILY=SIZE>::=
<CYNAMIC NUMBER=OF=-
STATIONS PART>::=

<DYNAMIC NUMBER=-OF~-
STATIONS SPECIFIER>::=

: o 10=-22
COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.S. 2212 5405 (@)

BUFFERS 2= <DYNAMIC NUMBER OF BUFFERS>

<EXPRESSION>

SAVE 3= <DYNAMIC SAVE FACTOR>

<EXPRESSION>

RECORD_SIZE := <DYNAMIC RECORD SIZE>

<EXPRESSION>

RECORDS_PER_BLOCK :=
<DYNAMIC RECORDS~=PER-=BLOCK>

<EXPRESSION>

REEL := <DYNAMIC REEL NUMBER>

<EXPRESSION> .

NUMBER_OF _AREAS 3=
<DYNAMIC NUMBER=OF=AREAS>

<EXPRESSION>

BLOCKS_PER_AREA :=
<DYNAMIC BLOCKS=PER=AREA>

<EXPRESSION>

QUEUE_FAMILY_SIZE ==
<DYNAMIC QUEUE-FAMILY-SIZE>

<EXPRESSION>

NUMBER_OF_STATIONS ==

<EXPRESSION>

10-23

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

The above <EXPRESSION>s return a bit string which should be
consistent with the formats and restrictions tisted in the FILE
DECLARATIONS_

<DYNAMIC FILE TYPE PART>3:= FILE_TYPE :=
<DYNAMIC FILE TYPE SPECIFIER>

<DYNAMIC FILE TYPE SPECIFIER>::= <EXPRESSION>

The value of the expression determines the file type:

VALUE TYPE

0 DATA

7 INTERPRETER
8 COOE

9 DATA

12 INTRINSIC

<DYNAMIC LASBEL
TYPE PART>:3:= LABEL_TYPE :=
<DYNAMIC LABEL TYPE SPECIFIER>

<DYNAMIC LABEL
TYPE SPECIFIER>::= <EXPRESSION>

The value of the expression determines the {abel type.

VALUE TYPE
0 . ANSII
1 UNL ABELED
2 BURROUGHS STANDARD

<DYNAMIC INVALID

CHARACTER REPORTING> ::= INVALID_CHARACTERS 3=
' B <DYNAMIC INVALID CHARACTER REPORT
TYPE>

<DYNAMIC INVYALID CHARACTER
REPORTING TYPE> 3:3:= <EXPRESSION>

10=24

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

The value of the expression determines the type of reporting:

VAL UE TYPE

0 Report ail lines containing invalid
characters.

1 Report all tlines containing invalid
characters and then stop progranme.

2 Report once that the file contains
invalid characterse.

3 Don?t report that the file contains

invalid characterse.

<DYNAMIC OPTIONAL
FILE PART> ::= OPTIONAL := <EXPRESSION>

The low=order bit of the expression determines whether or not the
file may be opticonal. If the value 1is 1» the file may be
optionals if 0, it must be present.

<DYNAMIC SERIAL

NUMBER PART> SERIAL 2= <EXPRESSION>

The expression should generate a b=character strings each of the
characters of which are a decimal digite. This number wWwill be
used as the tape serial number.

<DYNAMNIC EXCEPTION MASK
PART> ::= EXCEPTION_MASK 3= <EXPRESSION>

The low order 24 bits of the value of the expression will be used
as the EXCEPTION MASK. See <EXCEPTION MASK PART> wunder <FILE
DECLARATION STATEMENT> in Section 6.

AN
A

"10-25

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Versiaon)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

<DYNAMIC QUEUE SIZE
PART> 3= QUEUE_MAX_MESSAGES := <EXPRESSION>

Sets size for queue filese.

<DYNAMIC HEADER PART> := REMOTE_HEADERS 3= <EXPRESSION>

Sets headers boolean for remote filese.

<DYNAMIC SOFT
TRANSLATE PART> 3:= TRANSLATE 3= <EXPRESSION>
I TRANSLATE_FILE 3= <EXPRESSION>

TRANSLATE sets a booleans» turning the translation option on or
off while TRANSLATE_FILE changes the file=-id of the translate
table file.

<DYNAMIC HOST_NAME PART>::= HOST_NAME:= <EXPRESSION>

Sets Host name for BNA.

<DYNAMIC OPEN_ON_BEHALF_OF

PART>:s:= OPEN_ON_BEHALF_0OF:s= <EXPRESSION>

Turns the OPEN_ON_BEHALF_OF Boolean on or off.

10=26

BURROUGHS CORPORATION ‘ COMPANY CONFIDENTIAL
CONPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BSARBARA PLANT P.S. 2212 5405 (G)

STQP STATEMENT

<STOP STATEMENT> ::= sTap
I STOP <EXPRESSION>

The <STOP STATEMENT> is z coamunicate to the MCP that the progranm
has finished. It should not be confused with FINI which is the
final statement in the progranm.

STOP <EXPRESSION> is intended for use by the compilers aonly. The
<EXPRESSION> communicates the number of syntax errors to the MCP.

10-27

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (G)

ZIE STATEMENT
<ZIP STATEMENT> ::= ZIP <EXPRESSION>

The <ZIP STATEMENT> allows the user to pass control instructions
to the MCP. The <EXPRESSION> should generate a character string
whose value is a valid MCP control statement as defined in the
81700 Software Operational Guide.

10-23

BURROUGHS CORPORATION CONPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (6)

IEARCH DIRECTORY STATEMENT

<SEARCH STATEMENT> s3:3= <SEARCH PART>; <ON FILE PART>

<SEARCH PART> 3:= ‘ SEARCH_DIRECTORY (<SEARCH OBJECT>,
<SEARCH RESULT>»<SEARCH RESULT MODE>

<SEARCH QOBJECT> ::= <ADDRESS GENERATOR>

<SEARCH RESULT> s3:= <ADDRESS GENERATOR>

<SEARCH RESULT MODE> ::= BIT 1| CHARACTER

<ON FILE PART> :2:= <EMPTY> | ON FILE_MISSING <EXECUTABLE
STATEMENT>

I GON FILE_LOCKED <EXECUTABLE STATEMENT>

1 ON FILE_MISSING <EXECUTABLE STATEMENT>;

ON FILE_LOCKED <EXECUTABLE STATEMENT>

I ON FILE_LOCKED <EXECUTABLE STATEMENT>;
ON FILE MISSING <EXECUTABLE STATEMENT>

The <SEARCH STATEMENT> allows the wuser to extract certain
information contained in the disk file header specified by the
<SEARCH 0OBJECT>.

The <SEARCH 0BJECT> 1is expected to be 30 characters in length
where the first 10 characters are the pack 1identifications the
second 10 characters are the multi=-file identifications and the
third 10 are the file identification. File names less than 10
characters sust be left-justified in their respective fields with
trailing blanks appended. If only one file name existse that
name should be left-justified in the multi-file identification
fieldr and the file identification should be blanke.

The <SEARCH RESULT> specifies the receiving field and should be
360 bits long if bit mode is specifieds or 59 bytes if character
mode is specified.

The information is returned in the following formats:

10=-29

BURRQUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (3MF VYersion)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

01 FILE_HEADER_FORMAT,

02 OPEN_TYPE 8IT (24)» % CHARACTER (1)
02 NO_USERS BIT (24)» X CHARACTER (2)
02 RECORD_SIZE BIT (24)» X CHARACTER (%)
02 RECORDS_PER_BLOCK BIT (24)» 2 CHARACTER (4)
02 EOF_POINTER 8IT (24)» Z CHARACTER (8)
02 SEGMENTS_PER_AREA BIT (24)» X CHARACTER (8)
02 USER_OPEN_QUTPUT BIT (24)» 2 CHARACTER (1)
02 FILE_TYPE BIT (24)» X CHARACTER (2)
02 PERMANENT_FLAG BIT (24)s X CHARACTER (2)
02 BLOCKS_PER_AREA BIT (24)» % CHARACTER (6)
02 AREAS_REQUESTED BIT (24)» Z CHARACTER (3)
02 AREA_COUNTER BIT (24)» Z CHARACTER (3)
02 SAVE_FACTOR BIT (24)» T CHARACTER (3)
02 CREATION_DATE BIT (24)» X CHARACTER (5)
02 LAST_ACCESS_DATE 8IT (24)» Z CHARACTER (5)

Note: This format may be subject to change.

The <FILE MISSING PART> and <FILE LOCKED PART> allow the user to
specify the <course of action should either of these canditions
arise.

10=-30

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Yersion)

SANTA BARBARA PLANT Pe.S. 2212 5405 (G)

BEAD_FILE HEADER» WRITE FILE_HEADER

<ACCESS FILE HEADER
STATEMENT> :2:= <ACCESS FILE HEADER PART>;
I <ACCESS FILE HEADER PART>;
<FILE MISSING PART>
| <ACCESS FILE HEADER PART>;
<FILE LOCKED PART> ;
| <ACCESS FILE HEADER PART>;
<FILE MISSING PART>
<FILE LOCKED PART>

<ACCESS FILE HEADER
PART> ::= | READ_F ILE_HEADER
(<FILE NAME>, <DESTINATIGN FIELD>)
| WRITE_FILE_HEADER
(<FILE NAME>, <SOURCE FIELD>)

<FILE NAME> 3:= <ADDRESS GENERATOR>

<DESTINATION FIELD> <ADDRESS GENERATOR>

.
.
1]

<SOURCE FIELD> s:= <ADDRESS GENERATOR>
<FILE MISSING PART> ::= ON FILE_MISSING <EXECUTABLE STATEMENT>

<FILE LOCKED PART> ::= ON FILE_LOCKED <EXECUTABLE STATENMENT>

The <ACCESS FILE HEADER STATEMENT> is intended for use in systems
programs only. It enables the programmer to either read or write
a file header.

The <FILE NAME> is expected to be a 30-character field where the
first 10 characters are the PACK_ID» the second 10 characters are
the MULTI-FILE IDENTIFICATION and the third 10» the FILE

IDENTIFICATION. File names less than 10 <characters are
left=justified in their respective fields. If only one file name
exists» it is left=justified in the multi-file identifications

and the file identification should be set to blankse

The <SDURCE FIELD> or <DESTINATION FIELD> specifies»
respectively» the sending or receiving field» and is expected to
be 576 to 4320 bits in length depending upon the number of areas
allocated. Information is passed in the file header format.
Refer to the 81700 MCP Manual for specificse.

A

N/

10~-31

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.3. 2212 5405 (&)

The <FILE MISSING PART> and <FILE LOCKED PART> enable the
programmer to specify the course of action should either of these
conditions arisee.

Note that extreme caution is advised when wWriting a file headere.

10~32

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF VYersion)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

MAKE_READ_ONLY» MAKE READ _WRITE

<ARRAY PAGE TYPE
STATEMENT> ::= <ARRAY PAGE TYPE DESIGNATOR>
(<PAGED ARRAY NAME>,<PAGE NUMBER>)

<ARRAY PAGE TYPE

DESIGNATOR> s:= MAKE_READ_ONLY
| MAKE_READ_WRITE

<PAGED ARRAY NAME> ::= <IDENTIFIER>

<PAGE NUNBER> ::= <EXPRESSION>

‘The <ARRAY PAGE TYPE STATEMENT> allows the user to mark certain

paged array pages as READ-ONLY. When this is dones a page will
not be written out to disk every time it is overtaide

MAKE_READ_WRITE allows the user to change information on a paged
arrays and to have that array written on disk when it is
overlaide. It is only necessary to specify MAKE_READ_WRITE after
a MAKE_READ_ONLY specificatione.

It is the programmer®s responsibility ¢to ensure that the
information in a page wmarked READ=ONLY 1is not changed. Iin
addition» the user is responsible for guaranteeing correct page

number specifications. There is no syntax check for either.

EXAMPLE:

DECLARE PAGED (32) P (1024) BIT{30)» T1 FIXED
TL = =15
DO FOREVER>
MAKE_READ_ONLY (P, BUMP T1);
IF T1 = 31 THEN UNDGO;
END’

MAKE_READ_WRITE (P, 0);

‘\ﬁ;&‘/‘

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

10-33
COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)

CORQUTINE STATEMENT

<COROUTINE STATEMENT>::= <CORQUTINE ENTRY STATEMENT>
| <COROUTINE EXIT STATEMENT>
<COROUTINE
ENTRY STATEMENT>::= ENTER_CORQUTINE
(<COROUTINE TABLE SPECIFIER>)
<CORQUTINE

TABLE SPECIFIER> :3:=

<ADDRESS GENERATOR>

<CORCQUTINE

EXIT STATEMENT>::

EXIT_COROUTINE
(<CORQUTINE TABLE SPECIFIER>)

The <CORQUTINE TABLE SPECIFIER> associated with ENTER_COROUTINE
and EXIT_COROUTINE 1is assumed to describe a table with the
following format:

8.

\

DECLARE
01 TABLE
»02 NUMBER_OF_ENTRIES BIT(4)
»02 ENTRY_ADDRESS BIT(32)
»02 PPS_COPY(16) BIT(32)

.
»

ENTER_CORCUTINE: The <COROUTINE TABLE SPECIFIER> is assumed
to have the format described above. The current code
address is pushed on to the Program Pointer Stackes The
number of elements of PPS.COPY that 1is specified by
NUMBER_OF_ENTRIES is pushed onto the Program Pointer Stacke.
The address of the next 1instruction 1is taken from
ENTRY_ADDRESS.

EXIT_CORQUTINE: The <COROUTINE TABLE SPECIFIER> is assunmed
to describe a table of the format given above. The current
nesting level is stored in NUMBER_OF_ENTRIES. The current
code address 1is stored in ENTRY_ADDRESS. The number (as
specified by NUMBER_QF_ENTRIES) of entries on the top of the
Program Pointer Stack 1is copied to PPS_COPY(Q) through
PPS_COPY(NUNBER_QF_ENTRIES~-1). If NUMBER_OF_ENTRIES is 0»
then nothing 1is copied. An UNDO 1is performedsr using
NUMBER_UOF _ENTRIES as the number of entries on top of the
Program Pointer Stacke.

' , 10-34%
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP ~ B1000 SDL (3NF VYersion)
SANTA BARBARA PLANT P.Se 2212 5405 (G)
Note: Upon first execution of ENTER_COROUTINE, the table must

already be set upe The easiest way to accomplish this is to make
“the first executable statement in the coroutine to be entered an
EXIT.COROUTINE statement. The first entrance to the coroutine is
then accomplished by a call statement.

Note: This is not a general corcutine mechanism=—i.e.» It is not
symmetrics The routine executing the ENTER_COROUTINE is a master
to the slave routine which contains the EXIT_COROUTINE®'S.

Note: EXIT_CORODUTINE can only appear within procedures with no
parameters and no local data’ isee» those procedures which do
not change the Control Stacke.

EXAMPLE:
DECLARE I FIXED> will display "000003" (1)
DECLARE TABLE BIT(4+17232); "000005" (2)
PROCEDURE SLAVE’ T000008" (3)
EXIT_COROUTINECTABLE)> ZSETS UP TABLE "000010™ (&)
DO FOREVER> -
BUNP I 8Y 25 "
DISPLAY DECIMAL(I»5); "
EXIT_COROUTINECTABLE)? ZRESETS TABLE -
END’ v
END SLAVE; . "
PROCEDURE MASTER? : "5«n" (2n)
SLAVE? ZCALL FOR SETUP "S5«n+3" (2n+l)
I := 0’ "
DO FOREVER? d
guUMP 1 BY 35 -
DISPLAY DECIMAL(I»5); "

ENTER_COROUTINECTABLE)? ZUSES TABLE
END>
END MASTER;

A

C

- 10-35
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SOL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

EXECUTE-PROCEDURE STATEMENT

<EXECUTE-PROCEDURE
STATEMENT> 3:= <NON=-TYPED PROCEDURE DESIGNATOR>

<NON=-TYPED PROCEDURE
DESIGNATQOR> =:= <NON-TYPED PROCEDURE IDENTIFIER>
<ACTUAL PARAMETER PART>

<NON=TYPED PROCEDURE
IDENTIFIER> 2:= <IDENTIFIER>

<ACTUAL PARAMETER PART> 3:= <EMPTY>
I (<ACTUAL PARAMETER LIST>)

<ACTUAL PARAMETER LIST> :33= <ACTUAL PARAMETER>
I <ACTUAL PARAMETER>:,
<ACTUAL PARAMETER LIST>
<ACTUAL PARAMETER> :: <EXPRESSION>
I <ARRAY DESIGNATOR>

[0}

<ARRAY DESIGNATOR> 33 <ARRAY IDENTIFIER>

A non-typed procedure» 1e8er a procedure which performs a
function and does not return a value», is 1invoked through an
<EXECUTE=-PRCCEDURE STATEMENT>. The name of the procedure is
followed by its parameters enclosed in parense. Refer to the

section ADDRESS AND VALUE PARAMETERS for information concerning
passing parameterse.

For a description of the invocation of typed procedures» see
VALUE VARIABLES.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

EXECUTE-FUNCIION STATEMENT

<EXECUTE=FUNCTION
STATEMENT>

® ® -
e s =

<FUNCTION DESIGNATOR> ::=

W GU WL GEuS Mm® e G SMED BN e e e S S N NS A S S m N GER SR Gen N ML RN GBER G e G NS Ges MR s G Gew e e

10-36

CONPANY CONFIDENTIAL
81000 SDL (BNF Version)
PeS. 2212 5405 (G)

<FUNCTION DESIGNATOR>

<ACCESS FILE INFORMATION DESIGNATOR>
<CHANGE STACK SIZE DESIGNATOR>
<CHARACTER FILL CESIGNATOR>
<COMMUNICATE DESIGNATOR>
<COMPILE-=CARD=INFO CESIGNATOR>
<DC_INITIATE_IO DESIGNATOR>
<DEBLANK DESIGNATOR>
<DISABLE_INTERRUPTS DESIGNATOR>
<DUHP DESIGNATOR>
<DUMP=FOR=ANALYSIS DESIGNATOR>
<ENABLE_INTERRUPTS DESIGNATOR>
<ERROR COMMUNICATE DESIGNATOR>
<EXECUTE DESIGNATOR>

<FETCH DESIGNATOR>

<FIND DUPLICATE CHARACTERS DESIGNATOR>
<FREEZE-PROGRAM DESIGNATOR>
<GROW DESIGNATOR>

<HALT DESIGNATOR>

<HARDHWARE MONITOR DESIGNATOR>
<INITIALIZE_VECTOR DESIGNATOR>
<MESSAGE COUNT DESIGNATOR>
<MONITOR DESIGMATOR>

<OVERLAY DESIGNATOR>

<READ CASSETYE DESIGNATOR>
<ACCESS-FPB DESIGNATOR>
<REFER_ADDRESS DESIGNATOR>
<REFER_LENGTH DESIGNATOR>
<REFER_TYPE DESIGNATOR>
<REINSTATE DESIGNATOR>
<RESTORE DESIGNATOR>

<REVERSE DESIGNATOR>

<SAVE DESIGNATOR>

<SAVE_STATE DESIGNATOR>

<SORT DESIGNATOR>

<SORT_MERGE DESIGNATOR>
<SORT_SHAP DESIGNATOR>
<THAW_PROGRAM CESIGNATOR>
<THREAD_VECTOR DESIGNATOR>
<TRACE DESIGNATOR>

<TRANSLATE DESIGNATOR>

vmi6;37

BURRDUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (Q)

ACCESS_FILE _INFORMATION

<ACCESS FILE INFORMATION

DESIGNATOR> s::= ACCESS_FILE_INFORMATION (<FILE DESIGNATOR>»

<RETURN TYPE>», <OESTINATION>
<FILE DESIGNATOR> 3:= <FILE IDENTIFIER>

I <SWITCH FILE IOENTIFIER> (<EXPRESSION>)

BIT 7 CHARACTER

<RETURN TYPE> 33

<DESTINATIQON> =3 <ADDRESS GENERATOR>

The <ACCESS FILE INFORMATION DESIGNATOR> returns the end=-of-=file
pointer and the device type from the FIB of the specified file to
the specified destinatione.

The information may be returned as either Bbit or character. The
format is as follows:

01 ODESTINATION_FIELD»
02 EOF_POINTER BITC24)» I CHARACTER(3)
02 DEVICE_TYPE BIT(5); %2 CHARACTER(2)

To insure that the FIB existsr, this communicate should only be
used on open filese.

CHANGE _STACK_SIZES

<CHANGE STACK

SIZES DESIGNATOR> ::= CHANGE_STACK_SIZES (<VSSIZE>»
<NSSIZE>» <CSSIZE>», <ESSIZE>»
<PPSSIZE>» <DYNAMIC SIZE>)

<YSSIZE> :3:= <NUMBER>
<SNSSIZE> ::3= <NUMBER>
<CSSIZE> ::= <NUMBER>
<ESSIZE> ::= <NUMBER>
<PPSSIZE> ::= <NUMBER>
<DYNAMIC SIZE> ::3= , <NUMBER>

10-38

BURROUGHS CORPORATION : COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP i B1000 SDL (BNF Version)
SANTA BARBARA PLANT Pe.S. 2212 5405 (&)

This statement is restricted to Lexic Level Zero of programs with
no global data. Also» due to technical incompatibilities» it may
not be wused 1in a program that invokes profiling» timing», or
monitoring facilities. Note that the parameters are in an order
corresponding to the order of the stacks in memorye.

The result of the execution of the statement is to change the
program?'s stack sizes to the values givene.

CHARACTER FILL

<CHARACTER FILL

DESIGNATOR> ::= CHARACTER_FILL (<OF DESTINATION>»
<OF SOURCE>)

<OF DESTINATION> ::= <ADDRESS GENERATOR>

<OF SOQURCE> ::= <EXPRESSION>

The high=order 8 bits of the <CF SOURCE> will be spread
throughout the <CF CDESTINATION>.

COMMUNICATE

<COMMUNICATE DESIGNATOR>:3:= COMMUNICATE (<EXPRESSION>)

The <EXPRESSION> is expected to be a valid communicate message.
This is intended only for experinental testing of communicates.

COMPILE _CARD_INEQ

<COMPILE=CARD=- :
INFO DESIGNATOR>::= COMPILE_CARD_INFO
(<CCI DESTINATION FIELD>)

<CCI DESTINATION FIELD>:: <ADDRESS GENERATOR>

N/

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

10=39

CONPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PeSe 2212 5405 (@Q)

This function is intended for use by the compilers onlye. The
information on the compile card is returned in the following

format:

0BJECT NAME
EXECUTE TYPE (DECIMAL)

01 EXECUTE
02 COMPILE AND GO

CHARACTER (30)
CHARACTER (2)

03 COMPILE FOR SYNTAX
04 COMPILE TO LIBRARY

05 COMPILE AND SAVE

06 GO PART OF COMPILE AND GO
07 GO PART OF COMPILE AND SAVE

COMPILER PACK IDENTIFIER

COMPILER INTERPRETER NAME

COMPILER INTRINSIC NAME

CHARACTER (10)
CHARACTER (30)
CHARACTER (10)

COMPILER PRIORITY (DECIMAL) CHARACTER (2)
COMPILER SESSION NUMBER CHARACTER (8)
COMPILER JOB NUMBER (DECIMAL) CHARACTER (8)
COMPILER 1ST AND 2ND NAMES OF RUNNING PROGRAM CHARACTER (20)

COMPILER CHARGE NUMBER
FILLER

CHARACTER (7)
CHARACTER (1)

COMPILATION DATE AND TIME COMPILED BIT (36)

FILLER
COMPILER USERCODE
COMPILER PASSWORD

COMPILZR PARENT JOB NUMBER

BIT(4)

CHARACTER (10)
CHARACTER (10)
CHARACTER (04)

COMPILER PARENT GUEUE IDENTIFIER CHARACTER (20)

COMPILER LOG SPO

QC_INITIATE_IQ

<DC_INITIATE_IO
DESIGNATOR> 3=

<PORT> 3:=
<CHANNEL> z2:=

<I0 DESC ADDRESS> ::=

See MCP documentation for

CHARACTER (1)

DC_INITITATE_IO (<PORT>» <CHANNEL>»
<I0 DESC ADDRESS>

<EXPRESSION>
<EXPRESSION>

<EXPRESSION>

DC_INITIATE_IOQO {(communicate verb 40).

10-40

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PaSe 2212 5405 (G)
DEBLANK

<DEBLANK CESIGNATOR>::= DEBLANK (<FIRST CHARACTER>)

<FIRST CHARACTER>:3= <IDENTIFIER>

The <FIRST CHARACTER> is a simple identifier which describes the
first character to be examined. Deblank repeatedly increments
the address field of the descriptor for <FIRST CHARACTER> until
<FIRST CHARACTER> describes a non=blank character.

DISABLE_INTERRUPIS

<DISABLE_INTERRUPTS
DESIGNATOR> 3:3= DISABLE_INTERRUPTS

For MCP use onlye.

The <DISABLE INTERRUPTS DESIGNATOR> suppresses all interrupts
until an <ENABLE INTERRUPTS DESIGNATOR> is encounterede.

Note that this construct cannot be executed by normal state
programse

ouMp
<DUMP DESIGNATOR> ::= DUMP
The MCP will create a dumpfiler and program execution will

continue after the dumpe

AT

N

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

QUMP_FOR _ANALYSIS

<DUMP=f OR~-

ANALYSIS CESIGNATOR>:3:=

Execution of this function
and execution to continue.

ENAQLE INTERRUPTS

<ENABLE_INTERRUPTS
DESIGNATOR> 3:=

For MCP use only.

COMPANY

PeSe

DUMP_FOR_ANALYSIS

will cause a dunrmpfile

ENABLE_INTERRUPTS

to

10-41

CONF IDENTIAL
81000 SDL (BNF Version)
2212 5405 (G)

be

created

The <ENABLE INTERRUPTS DESIGNATOR> causes the MCP to return to

the normal 1interrupt=proc

INTERRUPTS CESIGNATOR> has changed that modee.

Naote that this construct
programe.

EBBOR_COMMUNICATE

<ERROR COMMUNICATE
DESIGNATQR> ::=

The value of the expression

2 BITS & B8I

s 0 H N

where N is the error numkter

essing mode after

t

he

See above.

<DISABLE

cannot be executed by a normal state

ERROR_COMMUNICATE (<EXPRESSION>)

should be in the following form:

TS 16 BITS 24 BITS

: 0 H

10-42

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P«.S. 2212 5405 (&)
The value of the expression will be put on the Evaluation Stack

as a descriptors» and an MCP communicate will be performed.

If N =29 then the MCP will use the 16-bit field as a bit length
and the 24-bit field as a base relative bit address of the werror
message to be printed on the SPQ. Qtherwise» N 1is the
MCP-defined error message number.

EXECUTE

See <EXECUTE OPERATOR DESIGNATOR> in Section 8.

EEICH

<FETCH DESIGNATOR> :2:= <FETCH SPECIFIER> (<I/0 REFERENCE
ADDRESS>» <PORT» CHANNEL ADDRESS>»
<RESULTY DESCRIPTOR ADDRESS>)

<FETCH SPECIFIER>::= FETCH | FETCH_AND_SAVE

<I/0 REFERENCE

ADDRESS> z::= <EXPRESSION>

<PORT»CHANNEL

ADDRESS> ::= <ADDRESS GENERATOR>

<ADDRESS GENERATOR> ::= See ADDRESS GENERATORS

<RESULT DESCRIPTOR
ADDRESS> ::= <ADDRESS GENERATOR>

The <FETCH DESIGNATOR> fetches the result of an I/0 operation.
If there is a high priority interrupts, then that interrupt will
be reported. Otherwiser if the <I/0 REFERENCE ADDRESS> is

non=zero» then only an interrupt on an I/0 descriptor with the
reference address the same as the <I/0 REFERENCE ADDRESS> will be
reportede. The PORT (3 BITS) and CHANNEL (4 BITS) of the

interrupt are stored from left to right in the low=order 7 bits
of <PORT» CHANNEL ADDRESS>. The I/0 RESULT DESCRIPTOR REFERENCE
ADDRESS is stored in the low=order 24 bits of the <RESULT
DESCRIPTOR ADDRESS». If there were no interruptss then these two
fields will be zero. FETCH_AND_SAVE is obsolete as of the 5_1
releases

AN

10-43

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQOUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PaSe. 2212 5405 (G)

<FIND DUPLICATE CHARACTERS
DESIGNATOR> 3:= FIND_DUPLICATE_CHARACTERS
(<FDC TEXT> » <DUPLICATE COUNT>,»

<DUPLICATE CHARACTER> » <NON-DUPLICATE

TEXT>)
<FDC TEXT> ::= <SIMPLE IDENTIFIER>
<DUPLICATE COUNT> s:= <ADDRESS GENERATOR>
<DUPLICATE CHARACTER> ::= .= <ADDRESS GENERATOR>
<NON=DUPLICATE TEXT> ::= <SIMPLE IDENTIFIER>

The text ¢to be scanned for contiguous duplicate characters is
described initially by <FDC TEXT>. The text will be scanned
until three or more contiguous duplicates are founde. Upon
return, <FDC TEXT>'s descriptor will be reduced to describe the
text beyond the duplicates <NON=-DUPLICATE TEXT>'s descriptor
will be modified to describe the non=-duplicate text that was
scanned; <DUPLICATE COUNT> will cantain the number of duplicate
characters; and <DUPLICATE CHARACTER> will describe the
duplicate character.

EREEZE_BROGRAM

<FREEZE=PROGRAM
DESIGNATOR>: 3= FREEZE_PROGRAN

Execution of this function will prevent the program from being
moved in memory or from being rolled out of menmary.

GROM

<GROW DESIGNATOR>::= GROW (<PAGED ARRAY IDENTIFIER>»
- <EXPRESSION>)

This statement dynamically 1increases the array bound of the
specified paged array by the value of the expressione. The
expression may not be negative (the bound may not be decreased)
and the resulting array bound must not be larger than 16277215.

10-44

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP ‘ = B1000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)
HALI

<HALT DESIGNATOR> 3:= HALT (<EXPRESSION>)

The <HALT DESIGNATOR> causes the value of the <EXPRESSION> to be
moved to the M-Machine T-Register. If the value is longer than
24 bits» only the low=order 24 bits are movede. If the value is
less than 24 bits» the value is right=justified and Lleading
zeroes are added.

After the value is moveds, an M=Machine halt is executed.

EXAMPLES:

DECLARE X BIT(24);
HALT (X31HEX_SEQUENCE_NUMBER);

HALT (SUBBIT (HEX_SEQUENCE_NUMBER» 0» 24));

HARDWARE_MONITOR - L

<HARDWARE MONITOR
DESIGNATOR> :3:= HARDWARE_MONITOR (<EXPRESSION>)

The w@monitor micro-opcode will be executed using the low=order 8
bits of the <EXPRESSION> as its operande.

INITIALIZE VECTQR
<INITIAL IZE_VECTOR
DESIGNATOR> ::= INITIALIZE_VECTOR (<TABLE ADDRESS>)

<TABLE ADDRESS> ::= <ADDRESS GENERATOR>

For use by SORT only.

10=45

BURROUGHS CORPORATION : COMPANY CONFIDENTIAL
'COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

The <TABLE ADDRESS> points to the table containing the vector
addresss the vector level~-l addressr, the key table addresss and
the vector {imit addresse.

MESSAGE_COUNT

<MESSAGE_COUNT
DESIGNATOR> s3:= MESSAGE_COUNT (FILE DESIGNATOR>»

<ADORESS GENERATOR>

<FILE DESIGNATOR> ::= <FILE IDENTIFIER>
I <SWITCH FILE ID> (<EXPRESSION>)

The <FILE SPECIFIER> is assumed to be a queue file and the number
of messages in the gqueue Wwill be returned as a fixed number into
<ADDRESS GENERATOR>. 1If <FILE SPECIFIER> is a queue file familys
an array of values» one for each family member, will be returned
into <ADDRESS GENERATOR>.

MQNITQOR

See Appendix VIII: SDL MONITORING FACILITY

QVERLAY

<OVERLAY DESIGNATOR> :3:= OVERLAY (<EXPRESSION>)

The <EXPRESSION> will be used as an index into the interpreter
dictionary by the interpreter swappere. The interpreter
dictionary entry will specify the action to be taken. See the
B1700 MCP Reference Manuale.

BURROUGHS CCRPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

BEAD_CASSETIE

<READ CASSETTE
DESIGNATOR>::=

<DESTINATION SPECIFIER>::=

<HASH_TOTAL SPECIFIER>

<RESULT SPECIFIER>::=

10=46

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.S. 2212 5405 (G)

{:E

READ_CASSETTE (<DESTINATION SPECIFIER>»
<HASH_TOTAL SPECIFIER>s <RESULT SPECIFIER>)

<ADDRESS GENERATOR>

HASH_TOTAL
NO_HASH_TOTAL

<ADDRESS GENERATOR>

The <READ CASSETTE DESIGNATOR> causes the number of bits
specified by the <DESTINATION SPECIFIER> to be read from the
console cassette to the address specified by that <DESTINATION
SPECIFIER>. This number of bits must be equal to the record size
minus the hash=-total size (if it is present) of 16 bitse. The
<HASH_TOTAL SPECIFIER> indicates whether or not a hash=total is
expected at the end of the recorde.

A value of 0 or 1 will
indicating that the HASH=TOTAL was incorrect or correct,

respectively.

READ_FPB», WRITE_FPB

<ACCESS=FPB
DESIGNATOR> s:=

<ACCESS=FPB IDENTIFIER> :z:=

<FILE SPECIFIER> ::=

<FILE DESIGNATOR> ::=

<FILE NUMBER> =::

<SOURCE OR CESTINATION
FIELD> 3:3=

<ADDRESS GENERATOR> s3:=

be Lleft 1in the <RESULT SPECIFIER> —

<ACCESS=FPB IDENTIFIER>

(<FILE SPECIFIER>,

<SOURCE OR DESTINATION FIELD>)
READ_FPB 1| WRITE_FPB

<FILE DESIGNATOR> *
<FILE NUMBER>

<FILE IDENTIFIER>
<SWITCH FILE IDENTIFIER> (<EXPRESSION>)

<EXPRESSION>

<ADDRESS GENERATOR> ‘:?

See ADDRESS GENERATORS

10=47

BURROUGHS CCORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT Pe.Se 2212 5405 (G)

The File Parameter Block of the file indicated by the <FILE
SPECIFIER> 1is read into» or written from the <SQURCE OR
DESTINATION FIELD>. '

Note that the <SOURCE OR DESTINATION FIELD> should be 1440 bits
in lengthe.

READ _QVERLAY» WRITE_QVERLAY

<ACCESS QOVERLAY

DESIGNATOR> :3= <ACCESS OVERLAY IDENTIFIER>(<EXPRESSION>)

<ACCESS OVERLAY
IDENTIFIER> 3:= READ_OVERLAY /7 WRITE_OVERLAY

The value of the <EXPRESSION> is assumed to be a 76=bit field
with the following format from high=-order to low=order:

BITS CONTENTS

0-3 EU = 0 (Not used)

4=27 Base relative beginning address
28=51 Base relative ending address

52=75 Disk address {Relative to user area)

The area described by the beginning and ending addresses is read
to» or written from the user disk at the (relative) DISK ADDRESS
given. :

REEER ADDRESS
<REFER_ADORESS

DESIGNATgR>:3:= REFER_ADDRESS (<REF VAR>» <EXPRESSION>)

The value of <EXPRESSION> is stored in the address part of <REF
VAR>. ’

BURROUGHS CORPORATION
COMPUTER SYSTENMS GROUP
SANTA BARBARA PLANT

BEEER LENGTH
<REFER_LENGTH_
DESIGNATOR>z:=

The vatue of <EXPRESSION>
VAR>.

10-438

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
" PeSe 2212 5405 (6)

REFER_LENGTH (<REF VAR>», <EXPRESSION>)

is stored in the length part of <REF

REEER TYPE
<REFER_TYPE_
DESIGNATOR>::= REFER_TYPE (<REF VAR>» <EXPRESSION>)
The value of <EXPRESSION> 1is stored in the type part of <REF
VAR>.

REINSTATE

<REINSTATE CESIGNATOR> ::=

<REINSTATED PROGRAN>

* s -
2 e =

A

REINSTATE (<REINSTATED PROGRAM>)

<ADDRESS GENERATOR>

The <REINSTATED PROGRAM> 1is assumed to describe the field
RS_COMMUNICATE_MSG_PTR of RS_NUCLEUS of the program to be
reinstated (See description of the RUN STRUCTURE in Bi700 MCP
Reference Manual).

The reinstating prograam's M=-Machine state 1is stored in the
appropriate parts of its RS_NUCLEUS. The address of the
reinstating program's RS_NUCLEUS 1is stored 1in the reinstated

program®'s RS_COMMUNICATE_LR.

The program whose
<REINSTATED PROGRAM>

RS_COMMUNICATE_MSG_PTR
is then reinstated.

is described by

10=49

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GRQUP 81000 SDL (BNF Version)

SANTA BARBARA PLANT P.S. 2212 5405 (G)
RESTORE

<RESTORE DESIGNATOR> :3:= RESTORE (<ADDRESS GENERATGOR LIST>)

<ADDRESS GENERATOR
LIST> 3:= See ADDRESS GENERATORS

The <RESTORE DESIGNATOR> assigns the current value on the top of
the Evaluation Stack to each <ADDRESS GENERATOR>», from right to
Lteft, in the Llist. This operator is used in conjunction with the
<SAVE DESIGNATOR>. See above.

EXAMPLE:

SAVE (A»B8,C);

RESTORE (A»B8»C)>
NOTE THAT RESTORE (A»8»C) IS THE SAME AS:
RESTORE (C)5

RESTORE (B)>
. RESTORE (A);

BEYERSE_STQRE

<REVERSE STORE
DESIGNATOR> ::= REVERSE_STORE

(<ADDRESS GENERATOR LIST>»<EXPRESSION>)

<ADORESS GENERATOR
LIST> ::= See ADDRESS GENERATORS

The REVERSE_STORE OPERATION has the effect of evaluating multiple
store operations from Lleft to right instead of from right to
left. See THE REPLACE QOPERATORS.

For example:

REVERSE_STORE (L,MsNsPsX*l);

has the same effect as:

10=-50
BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT ; P.S. 2212 5405 (&)

N2 xr
" s e

W
-4
ws e

With the REVERSE_STOREs howevers the descriptor for each <ADDRESS
GENERATOR> in the list is determined only once.

Note:s
REVERSE_STORE (LoMseNsP»rX+1);

is not the same as
L:=Ms=Ns=Ps=X+1>

SAVE

<SAVE DESIGNATOR> 3:= SAVE (<EXPRESSION LIST>)

Each of the <EXPRESSION>s» from left to right» will be evaluated»
and the value of each left on the Evaluation Stack <(and Value B
Stacks if necessary). See <RESTORE DESIGNATQOR>. A ™

SAVE STATE
<SAVE STATE DESIGNATOR> ::= SAVE_STATE

The state of the interpreter Wwill be stored in RS.M.MACHINE (See
B1700 MCP Reference Manual)e. Execution uil{ then continue.

30RI
<SORT DESIGNATOR> ::= SORT (<SORT INFORMATION TABLE SPECIFIER>,
<SORT KEY TABLE SPECIFIER>»
<INPUT FILE DESIGNATOR>,
<OUTPUT FILE DESIGNATOR> <TRANSLATE
FILE DESIGNATOR>)
<SORT INFORMATION TABLE ‘ ‘:; |

SPECIFIER> ::= <ADDRESS GENERATOR>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<SORT KEY TABLE
SPECIFIER>

L
. o =

<INPUT FILE DESIGNATQOR

<TRANSLATE FILE
DESIGNATOR>

<QUTPUT FILE
DESIGNATQOR> 3:3=

<FILE DESIGNATOR>::=

o0
(1]

[}

10-51

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
PeSe 2212 5405 (@)

<ADDRESS GENERATOR>

<FILE CESIGNATQOR>

<EMPTY> | » <FILE DESIGNATOR>

<FILE DESIGNATOR>

<FILE IDENTIFIER>
SSWITCH FILE IDENTIFIER> (<EXPRESSION>)

The <SORT DESIGNATOR> 1is a communicate which requests the
transfer of records from the 1input file to the output file
according to the SORT key table. The SORT information table
includes codes for SORT typer hardware availablesr and other
optionse.
Fof formatting specifications of the SORT information table»
refer to SORT documentatione.

SQRI_MERGE
<SORT_MERGE DESIGNATOR> =3 SORT_MERGE

<INPUT TASBLE SPECIFIER>

See

. e
o e

SORT STATEMENT for other parameters»

(<SORT INFORMATION TABLE SPECIFIER>,
<SORT KEY TABLE SPECIFIER>»

<INPUT TABLE SPECIFIER>»

<QUTPUT FILE DESIGNATOR>

<TRANSLATE FILE CESIGNATOR>)

<ADORESS GENERATOR>

and SORT documentation

for table formats and semantics.

10=52

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GRQOUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeSe 2212 5405 (G)
SORT_SHAP C

SORT_SHAP (<RECORD 1>»<RECORD 2>)

.
L 1]

<SORT_SWAP LCESIGNATOR>

<RECGRD 1> :: <ADDRESS GENERATOR>

<RECORD 2> : <ADDRESS GENERATOR>

While the <SORT SWAP DESIGNATOR> is intended to be wused by the
SORT», its application is such that it may be generally useful.

This designator allows the user to swap or exchange two records
in memory without allocating a third area for storing one of the
recordse.

Specifically» the record pointed to by <RECORD 1> is exchanged
with the record pointed to by <RECORD 2>.

Note: The interpreter being used must contain the SORT_SHWAP
operator.

JHAH_PROGRAY

<THAW-PROGRAM
DESIGNATOR>::= THAW_PROGRAM

Execution of this function will allow the program to be rolled
out of memory. It will not force it to be roilled out.

IHREAD_VECTOR

<THREAD_VECTOR
DESIGNATOR> 3:= THREAD_VECTOR (<TABLE ADDRESS>,<INDEX>)
<TABLE ADDRESS> ::= <ADDRESS GENERATOR>

<INDEX> 2:= <EXPRESSION> {:

10-53

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT P«.S. 2212 5405 (G)

For use by sort onlye.
The <TABLE ADDRESS> paints to the table containing the

information described wunder INITIALIZE_VECTOR. The <INDEX>

provides the offset from the beginning of the vector to the next
record to be used for comparison.

IRACE

<TRACE DESIGNATOR> ::= TRACE | NOTRACE | TRACE (<EXPRESSION>)

The TRACE wWwill <cause the SOL instructions of the normal state
program to be traced on the Line printer. NOTRACE will turn off
the tracee. The trace will only be effective when the pragram is
run with an SDL trace interpreter.

TRACE (<EXPRESSION>) provides greater control of the tracing to
be done. The Llow=order 10 bits are used in the following way
(nusbering of the 10 is from {eft teo rightd:

Bit Use

0 Trace all commands except those which modify data or
: change the program pointer stack. WNormal state only.

1 Trace commands which modify data items (e.ge.» CLR>»
SNDL» etce)s Normal state onlye.

2 Trace commands which change the program pointer stack
(eeger IFTH» CASE,» EXITs etcr). Normal state only.

3 Not used.

L=6 Same as 0-2» but for MCP. Several MCP routines
(GETSPACEs FIORGETSPACE» and others) will not be
tracede.

7=9 Same as 0=2» but will trace those MCP routines not

traced by 4-6.

Note that TRACE(33803) is the same as TRACE» while TRACE(CO) is
the same as NOTRACE.

10-54

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B100O SDL (BNF Version)

SANTA BARBARA PLANT) P.S. 2212 5405 (G)
IBANSLATE

TRANSLATE (<TRANSLATE SQOURCE>»
<TRANSLATE SOURCE ITEM SIZE>,
<TRANSLATE TABLE> » <TRANSLATE TABLE
ITEM SIZE> » <TRANSLATE RESULT>)

<TRANSLATE LCESIGNATOR>

.
.
1}

<TRANSLATE SOURCE> 3= = <ADDRESS GENERATOR>
<TRANSLATE SOURCE ITEM

SIZE> :3:= : <EXPRESSION>
<TRANSLATE TABLE> ::= <EXPRESSION>
<TRANSLATE TABLE ITEM

SIZE> 3:= <EXPRESSION>

<TRANSLATE RESULT> sz:= <ADDRESS GENERATOR>

<TRANSLATE SOURCE> is assumed ¢to <consist of items of size
<TRANSLATE SOURCE ITEM SIZE>. Each of the items in <TRANSLATE
TABLE> and <TRANSLATE RESULT> are assumed to be of size
<TRANSLATE TABLE ITEM SIZE>. Each of the source items is used to
subscript into the table to obtain an item which is placed into
the result field in the position corresponding to the position of
the original item obtained from sourcee. This process continues
until the source is exhausteds the result is fulls, or an error
OCCUrse.

If either source or result is not a multiple of its respective
item sizer» then the translation of the last item is undefined.

Both source and table item sizes must be less than or equal to

24, The table must be large enough to accomodate all items in
source. If either of these is violated» a run=time error will
oCCUur.

11-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL {(BNF Version)

SANTA BARBARA PLANT PeSe 2212 5405 (G)

AN

ABPENDIX I: RESERYED AND 3PECIAL WORDS

The following is a list of reserved words in SOL» complete as of
Mays 1978. These words may only be used as reserved wordse.
ACCEPT AND AS

BASE 8IT BuMP 138Y

CASE CAT CHANGE CHARACTER CLEAR CLOSE

DECLARE DECREMENT DEFINE DISPLAY DO DUMMY DYNAMIC

ELSE END EQL ENTER_COROUTINE EXIT_COROUTINE EXOR

FILE FILLER FINI FIXED FORMAL FORMAL_VALUE FORWARD FROM
GEQ -GTR

IF INTRINSIC

LEQ LOCK LSS

MOD

NEQ NOT

OF ON OR OPEN

PAGED PRCCEDURE

- 11=2
BURROUGHS CCRPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000O SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

READ READ_FILE_HEADER RECORD REDUCE REFER REFERENCE REMAPS

RETURN RETURN_AND_ENABLE_INTERRUPTS

SEARCH_DIRECTORY SEEK SEGMENT SEGMENT_PAGE SKIP SPACE STOP
SUBBIT SUBSTR SWITCH_FILE

THEN TO

UNDO USE

YARYING

WRITE WRITE_FILE_HEADER

1P

B i I e e oo P o

11-3

BURROUGHS CORPORATIQON COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARSARA PLANT PeS. 2212 5405 (@)

The following is a list of special words in SDL» complete as of
December» 1976. £ach special word has a particular meaning»
however it may be used as an identifier. 1In that caser it loses
its special significance in 50L.

ACCESS_FILE_INFORMATION

BASE_REGISTER BINARY

CHANGE_STACK_SIZES CHARACTER_FILL CHAR_TABLE COMMUNICATE

COMPILE_CARD_INFO COMMUNICATE_WITH_GISMO CONTROL_STACK_BITS
CONTROL_STACK_TOP CONSOLE_SWITCHES CONV CONVERT

DATA_ADDRESS DATE DC_INITIATE_IO ODEBLANK DECIMAL

DELIMITED_TOKEN DESCRIPTOR ODISABLE_INTERRUPTS DISPATCH
DISPLAY_BASE OMS_CALL DUMP DUMP_FOR_ANALYSIS DYNAMIC_MEMORY_BASE

ENABLE_INTERRUPTS ERROR_COMMUNICATE EVALUATION_STACK_TOP
EXECUTE

FETCH FETCH_COMMUNICATE_MSG_PTR FETCH_AND_SAVE
FIND_DUPLICATE_CHARACTERS FREEZE_PROGRAM

GROW

HALT HARDWARE_MONITOR HASH_CODE HASH_UNPACK

INITIALIZE_VECTOR INTERRDGAIE_INTERRU?T_STATUS

LENGTH LIMIT_REGISTER LOCATION

MAKE_DESCRIPTOR MAKE_READ_ONLY MAKE_READ_WRITE MESSAGE_COUNT
M_MEM_SIZE MONITOR_SET MONITOR_RESET MONITOR_CHANGE MONITOR_SET

NAME_OF _DAY NAME_STACK_TOP NDL_OP NEXT_ITEM NEXT_TOXEN NOTRACE
NULL

OVERLAY

PARITY_ADDRESS PREVIOUS_ITEM PROGRAM_SWITCHES

READ_CASSETTE READ_FP8 READ_OVERLAY REINSTATE RESTORE

REVERSE_STORE

11-4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF VYersion)
SANTA BARBARA PLANT P.S. 2212 5405 (&)

SAVE SAVE_STATE SEARCH_LINKED_LIST SEARCH_SERIAL_LIST S_MEN_SIZ
SEARCH_SDL_STACKS SORT SORT_DELETE SORT_FILE_FIXUP SORT_MERGE
SORT_RETURN SORT_SEARCH SORT_STEP_DOWN SORT_SWAP SORT_UNBLOCK
SWAP SPO_INPUT_PRESENT

THAW_PROGRAM THREAD_VECTOR TIME TRACE TRANSLATE

VALUE_DESCRIPTOR

WAIT WRITE_FPB WRITE_OVERLAY

X_ADD X_SUB X_MUL X_DIV X_MOD

e S

— . a A e

C

12=-1
BURRQUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRgOUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

APPENDIX I1: SDL CONTROL CARD JRTIONS

There are a number of options available to allow control of

various compiler features during compilation. These options must
obey the syntax given belowe

The ®"$™ or ™2™ must appear in column one of the control card. If
®8" is used» the control card will not be included in the new
source file generated by the compiler; if "&" is useds the
control card Will be included in the new source file.

The BNF for these compiler options is as follows:

<CONTROL CARD> 3:= $ <CONTROL STATEMENT>

<CONTROL STATEMENT> ::= <CONTRCL OPTION LIST>
I <vO0ID QPTION>

<CONTROL QOPTION LIST> ::= <CONTROL OPTION>
I <CONTROL OPTION>
<CONTROL OPTION LIST>

<CONTROL QPTION> ::= <CONTROL QOPTION WORD>
NO <CONTROL OPTION WORD>
<DEBUG OPTION>
<SEQUENCE OPTICN>
<PAGE OQOPTION>

<MERGE QPTION>

<STACK SIZE LIST>
<INTERPRETER QOPTION>
<INTRINSIC OPTION>
<RECOMPILE OPTION>
<LIBRARY PACK OPTION>

<CONTROL OPTION WORD>

LIST | LISTALL 1| SINGLE

SGL 1 DOUBLE ! CODE

CONTROL | NEW 1| SUPPRESS

XMAP | CHECK | PROFILE | PPROFILE

DETAIL | AMPERSAND | NO_DUPLICATES
NO_SOURCE | MONITOR

XREF | XREF_ONLY | EXPAND_DEFINES
SIZE 1| FORMAL_CHECK
TIME_PROCEDURES 1 TIME_BLOCKS

PASS_END | ERROR_FILE

FREEZE | NEST_PROCEDURE TIMES

ADVISORY | LOCKI

USEDOTS 1| CONVERTDOTS

TIME_MCP

. G s GRe WIS MR MM N R e e WeE e

<DEBUG OPTION> ::= DEBUG <NUMBER>

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

<NUMEER> ::=

<SEQUENCE OPTION> ::=

<SEQUENCE PARAMETERS>

(1)
(1]

<BASE> ::=

<INCREMENT>::

<PAGE OPTION> ::=
<MERGE OPTION> ::=
<STACK SIZE LIST> ::=

<STACK SIZE
DESIGNATOR> z:=

<STACK DESIGNATOR> ::=

<STACK SIZE> :3:=
<VOID OPTION> ::=
<TERMINATING SEQUENCE
FIELD> ::=

<INTERPRETER QOPTION> s3:=

<INTERPRETER NAME> ::

<INTRINSIC OPTION> ::

<INTRINSIC FAMILY
NAME> ::=

<FILE FAMILY NAME> ::=

12=2

COMPANY CONFIDENTIAL

B1000 SDL (BNF Version)

PeS. 2212 5405 (G)

<UNSIGNED INTEGER» 8 OR LESS DIGITS>

NO SEAQ
SEQ <SEQUENCE PARAMETERS>

<3ASE>

<INCREMENT>

<BASE> <INCREMENT>
<NUMBER>

+ <NUMBER>

PAGE

MERGE

<STACK SIZE DESIGNATOR>
<STACK SIZE DESIGNATOR>
<STACK SIZE LIST>
<STACK DESIGNATOR> <STACK SIZE>

VSSIZE 1 NSSIZE | ESSIZE
CSSIZE t PPSSIZE | DYNAMICSIZE

<NUMBER>

VOID <TERMINATING SEQUENCE FIELD>
<EMPTY>

<EXACTLY 8 CHARACTERS>
INTERPRETER <INTERPRETER NAME>
<EXTERNAL FILE NAME>

INTRINSIC

<INTRINSIC FAMILY NAME>
<IDENTIFIER> | <CHARACTER STRING>
<FILE FAMILY NAME>

<MULTIFILE ID>
<PACK_ID/MULTIFILE ID>

<CHAR STRING>

<CHAR STRING>

12-3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

<LIBRARY PACK OPTION> ::= LIBRARY_PACK <PACK_ID>

<RECOMPILE QPTION>::= CREATE_MASTER

| RECOMPILE

SEYANTICS IN ALPHABEIICAL QRQER:

’

Note: Default is OFF except where specified as ON.

ADVISORY

AMPERSAND

CHECK

CODE
CONTROL

CONVERTDOTS

CREATE_MASTER

CSSIZE
DEBUG
DETAIL
DOUBLE
DYNAMICSIZE

ERROR_FILE

Prints advisory messages on the listinge.
Default is ON.

Prints those ampersand cards which are examined.
Default is ON.

The merged source will be checked for sequence
errorse. Default is ON. Sequence checking is
done after any resequencing due to a $SEQ is
conplete.

Prints generated code.

Prints control cardse.

Converts dots ,"™." to underscores "_" when used
as separators in identifierse. The conversion
will be reflected in all compiler output
including the listing and NEWSOURCE filese.
RECORD <constructs may not be wused with dot
separators in identifierse.

See Appendix VII_

Control Stacﬁ sizee.

Compiler debug use only.

Prints expansion of define invocations.

Double spaces listing when printing.

Amount of memory used for paged array pages.

A separate error file will be produced

containing only errors and warnings and the
source images to which they applye.

12=4

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

NO_DUPLICATES

COMPUTER SYSTEMS GROUP 81000 SDL (BNF VYersion)
SANTA BARBARA PLANT P.S. 2212 5405 (&)
ESSIZE | Evaluation Stack size.
- EXPAND_DEF INES Causes define expansions to be cross~-referenced
{used in conjunction wWwith XREF or XREF_ONLY).

FREEZE The FREEZE bit will be set in the program's FBP»
preventing the program from being roiled out
during executione.

FORMAL .CHECK Procedure actual parameters and values returned
from typed procedures will be checked
respectively against their corresponding formal
parameters and procedure formal types.

INTERPRETER Changes the interpreter nanme.

INTRINSIC Changes the family names of 1intrinsics to be
used.

LIBRARY_PACK Assumes all Lltibrary files are on the pack
specified.

LIST Lists the source input which was compited. ND
LIST will atsc turn off LISTALL. Default is ON.

LISTALL Lists all SDL source 1input (whether or not
conditionally excluded). LISTALL turns on lList,
but NO LISTALL will not turn off list.

LOCKI Intermediate work files will be locked into the
disk directory as they are created. {See
Appendix IV: RUNNING THE COMPILER).

MERGE The primary source file is on tape or disk which
will have the cardss from the <card reader»
merged with it.

MONITOR See Appendix VIII: SDL MONITOR FACILITY

NEST_PROCE=

DURE_TIMES See Appendix III.

NEH Creates a new source file.

NO NO preceding an option (which allows it) will
turn that option off. ;

Newly declared identifier will not be checked

for uniquenesse. The programmer must gusrantee
that there are no duplicates before wusing this
optione It will reduce compile time for large

programs only.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

NO_SQURCE

NSSIZE
PAGE

PASS_END

PPSSIZE
RECOMPILE

RECOMPILE_TIMES

SEQ

SINGLE (SGL)

SIZE

SUPPRESS

TIME_BLOCKS
TIME_PROCEDURES
TIME_MCP

USECQTS

vaID

12=5

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.5. 2212 5405 (G)

images will not be saveds
conmpiler work file.

thereby
No source

Program source
shortening the

listing will be possible when this option is
specified. This should be wused with Llong
programs only.

Name Stack size.

Page eject if listinge.

The total elapsed time and the number of errors

will be printed at the end of each passe.
Program Pointer Stack size.
See Appendix VII.

The start and stop times of each of the phases
of the ™bind™ pass of a CREATE_MASTER or
RECOMPILE will be printed on the listinge

Resequences new source file using base and
increment specified. Default increment is 1000,
default base is the sequence nuaber of the 3$5EQ
card. If the 3S5SEQ card has no seq nuaber the
default base is 1000.

Single spaces listing when printing. Default is
ONe

Prints segment sizes by naame at end of compile.

messagesSe To
turn off CHECK.

Suppresses warning
sequence error messagess

suppress

See Appendix III.

as separators in
m_omowill

Allows the use of dotss, ™<"»
identifiers. QOtherwise» underscores»
be required (See CONVERTDOTS).

The VOID option will void records in the primary
file which have sequence fields Lless than or

equal to the <TERMINATING SEQUENCE FIELD>. If
the field is omitteds only the record with the
sequence number <corresponding to the VOID card

deletede. The VOID
images in a secondary

will be
delete

sequence number
aption will not
(card) source file.

BURROUGHS CORPORATION
COMPUTER 'SYSTEMS GROUP
SANTA BARBARA PLANT

VSSIZE Value Stack size.

WORKING_SET_BYTES

Specifies the working
program as used by
effect on programs to

Creates an extended

compilation analysise.
passed to SDL/XMAP is
MM is the month», DD i
is the year»
the compile.

XMAP

Produces a
program.
SDL/XREF 1is
month», DD is the day
years and <TIME> i
compile.

XREF

The nanme

Produces a
terminates the compi
file passed to
"XREFMMDDYY/<TIME>",

is the day of the mont
<TIME> is the time of

XREF_ONLY

and <TIME> is the time of

cross~reference

"XREFMMDDYY/<TIME>"™, where MM is

cross~reference

12-6

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)
P.S. 2212 5405 (G)

set size of the object
MCPI., This option has no
be run under MCPII.

map file for post
The name of the file
"XMAPMMDDYY/<TIME>", where
s the day of the month, YY
day of

code

tisting of the
file passed to
the
the
the

of the

of the months, YY is
s the time of day of

listing and then
latione. The name of the

SODL/XREF_ONLY is
where MM is the monthes DD
hs YY is the years and
day of the compile.

13-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQOUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

APPENDIX III: PROGRAMMING QBTIMIZATION

The following control card options can be useful to the
programmer who wishes to determine the most time consuming

part(s) of his progranme. The purpose of these control options is
to point out the parts of the program which are the most time
consuming and/or heavily used.

ERQEILE

PPROFILE Establishes a dynamic arrays each element of
which is a counter for one praocedure. The index
nusber for each procedure appears in the listing
following the <PROCEDURE IDENTIFIER>. The value
of the <counter will reflect the number of
entrances to the procedure in guestione. Those
with the highest counters should be investigated
Wwith the PROFILE optione.

PROFILE Establishes a dynamic arrays each element of
which 1is a counter for one branching operation
(<D0 GROUP>» <IF STATEMENT>, or <CASE
STATEMENT>) . The index into the array will
appear in the listing following the statement in
questione. Those branches with the highest
counter values are the branches most heavily
used.

HARQWARE MONITOR

<HARDWARE MCNITOR
DESIGNATOR> 3:= HARDWARE_MONITOR (<EXPRESSION>)

The 81700 1is equipped wWwith a hardware monitor which may be
manually wired to suit the needs of the programmer. The device
can be wuseful as a timer or a counter to monitor progranm
efficiency.

The low=order 8 bits of the <EXPRESSION> is used as the low=order
8 bits of the M=instruction monitor. For wiring instructions of
the hardware device see Computer Performance Monitor II: Systen
Summary Manual.

s AR SR

13=2

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
" SANTA BARBARA PLANT PeSe 2212 5405 (G)

BROGRAM IIMING

A high=resolution timer and the means to access it are available
on select B1720=series systemse. This timer is accessed directly
by the interpreters, bypassing the MCP and its inherent effects on
timing accuracyes

Timing of procedures and/or blocks is initiated by the wuse of
control options: $STIME_PROCEDURES and STIME_BLOCKS. The
appearance of either of these options turns. it on; the
appearance of the option preceded by NO turns it offe. The
setting of the option at the time of parsing of the procedure
head or of the block head (DO and DO FOREVER», in the case of DO
groups) determines whether or not the attendant body of <code 1is
to be timed. ‘

For each item to be timedsr a3 timer cell number is assigned. Upon
entrance to the body of code» the timer value is subtracted fronm
the proper cell and upon exit» the timer value is added to the
cell. Procedures are not timed around calls of other proceduress
so that procedure times reflect only the elapsed time spent
within that procedure. Block timing works the same ways P -
times of nested blocks are added to those of enclosing blocks»
but times of procedures which are called are not included in the
times of the calling procedure or blocks. The times of called
procedures WILL be added to those of the caller by specifying the
option NEST_PROCEDURE_TIMES.

At the time of executions, an intrinsic will be invoked which will
print the timing cells ordered by valuee. The contents of these
cells are the number of microseconds spent in the timed bodies of
code. If the job terminates abnormallys then DUMP/ANALYZER will
print the contents of the timing cells.

It is intended that the timing functions will be used in the
following manner: Firsts all the procedures in a program will be
timede Upon 1isolation of the "hot™ procedures» block timings
will be requested for those blocks contained in these procedurese.
If both block and procedure timings are requested for large
programs» an inordinate amount of memory will be allocated for
the timing cells» which are 48 bits in length.

This scheme is usable by the MCP. The 3$=option ETIME_MCP nmust be
included at compile time. The timing cells are printed with a
SP0 messagee.

C

14=1

BURRQUGHS CORPORATION COMPANY CONFIDENTIAL

CONPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT PeS. 2212 5405 (G)
(:f APPENDIX I¥: RUNNING THE COMPILER

SYSTEM CONIRQL CARDS EQR 31730
There are two basic deck setup formatse. They are:

" A. The primary saurce file is on cards.

<SYSTEM COMPILE CARD>
* <FILE EQUATE CARD FOR FILE NEWSOURCE>

OATA CARDS
* $ NEW
" <SCL PROGRAM>
FINI
END
* If the primary source file is to be saved on tape or

disks these cards must be includede.
7 Bs The primary source file is on diske.
‘Zy <SYSTEM COMPILE CARD>

<FILE EQUATE CARD FOR FILE SOURCE>
* <FILE EQUATE CARD FOR FILE NEWSOQURCE>

DATA CARDS
$ MERGE
* § NEW
<PATCHES TO SDL PROGRAM>
END
* If the merged file is to be savedr, these cards must

be included.
Note: Refer to the B1700 MCP Software Operational Guide for

the exact format of the compile and file equate
cardse.

20L EILE NAMES

CARDS Card input file (30 or 90 byte records)

SOURCE Primary source fite if $§ MERGE is used (89
: or 90 byte records)

‘E:‘ NEWSOURCE Updated source file if 8 NEW is wused (90
byte records)

14=2

COMPANY CONFIDENTIAL
B1000 SDL (BNF Version)

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP

SANTA BARBARA PLANT B T P.Se 2212 5405 (G)
; LINE . Line printer file
é ERRDR_LIME Separate error file {produced when

$ERROR_FILE is used)

XREF_LINE Lists file for XREF. Allows file equation
in the compiler.

XMAP_L INE Lists file for XMAP. Allows file eguation
in the compiler

DL MORKEILE NAMES

PFILE Intermediate file produced by the pre=-passe.

IFILE Intermediate file produced by the first
passe

IMAGE_FILE Source image file produced by the pre=pass.

SDL GENERATED EILE NAMES

In addition to the <code file which is always produced by the
compiler (unless SYNTAX is specified)» three more files are
optionally producede. These files are created if certain dollar
options are specified.

The name of these "extra™ files is the same as the code file
names except that 2 characters are appended to the front of the
file=id. These characters are "M_" for the monitor file» TP_"
for the profile file» and "T_" for the timing file. For example»
monitoring the code file "A/B"™ creates an additional file called
"A/M_B".

220 INBUI 10 COMPILER

The compiler will notice if the operator gives it SPO input
during any of the first three passes (SDLP» SDL1», SDL2). SPQ
input will be ignored during SDL3» the partial recompilation
binder. The operator may give any of the following commands in
the AX message:

/4‘(/ V\\\
NS

14=3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B10CO0 SOL (BNF Version)
SANTA BARBARA PLANT , PeSe 2212 5405 (G)

STATUS The compiler will display the current pass

executing» sequence number being compiledr and
erraors detected so far.

LIST The compiler Will begin listing in whatever
pass is currently executinge. Lo

NO LIST Stops listing in whatever pass 1is currently
executing. : »

PASS_END Sets option to display a message as each pass
completes.

NO PASS_END resets PASS_END optione.

LOCKI The coapiler Will lock intermediate files as

- they are created and will 1lock any that have
already been created but not released. The

intermediate files may then be used to restart
the coampiler if necessary (see below) or be
analyzed with SDL/IA (not released outside the
companyle.

NO LOCKI Intermediate files not already locked will not
be lockede.

3DL RESTARI

If 1intermediate files .have been saved (see LOCKI above) and a

compile is terminated in SDL1l, 5DL2» or SDL3 due to machine
failures» it may be restarted in SDL1 or SDL2 to avoid repeating
the entire conmpile. Program switch zero is normally set to zero

indicating a full compiles It may be set on the compile card»
however» to one (indicating an SDL1 restart) or two (indicating
an SDL2 restart). SOL3 cannot be restarted; instead the

operator must restart SDLZ2.

The compiler will expect the following files when restarted:

SOL1 PFILE

IMAGE.FILE

MASTER/INF (if CREATE_MNASTER compile)
SoL2 IFILE

IMAGE.FILE

MASTER/INF (if CREATE_MASTER compile)

14=4

"BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

Files will have been saved under these names if (a) the operator
entered a LOCKI message or (b) SLOCKI appeared on a compiler
control carde.

15-1

BURROUGHS CORPORATIQON COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

P
3 e

APPENDIX ¥: CONDITIONAL COMPILATION

The conditional compilation facility allows the user to
selectively compile blocks of code wWwithout the necessity of
physically adding or rewsgving recordse.)

<CONDITIONAL INCLYUSION> records are always Wwritten to a new file
(if oaone is created)s whether or not they are compilede. If
conditional compilatiaon records are to be printed with the source
listings then LISTALL must appear on the $=carde. If not
specified> only those conditional compilation records which were
campiled are printede

The BNF for the conditional compilation is as follows:

<CONDITIONAL INCLUSION> 33= <SET STATEMENT>
<RESET STATEMENT>
<PAGE STATEMENT>
<LIBRARY STATEMENT>

<IF BLOCK>
<SET STATEMENT> s3:= SET <SET SYMBOL LIST>
<SET SYMBOL LIST> ::= <SET SYMBOL>

I <SET SYMBOL LIST>
- <SET SYMBOL>

<SET SyYMBOL> :: <BO00LEAN SYMBOL>

<BOOLEAN SYMBOL> ::= <LETTER>
| <B00LEAN SYMBOL> <LETTER>
I <BOOLEAN SYMBOL> <DIGIT>

<RESET STATEMENT> :3: RESET <RESET SYMBOL LIST>

<RESET SyYMBOL LIST> ::= <RESET SYMBOL»>
| <RESET SYMBOL LIST>
<RESET SYMBOL>

<RESET SYMBOL> ::= <BOOLEAN SYMBQOL>

<PAGE STATEMENT> ::= PAGE

<LIBRARY STATEMENT> ::= - LIBRARY <FILE NAME>
<FILE NAME>::= <MULTI-FILE IDENTIFIER>

| <MULTI-FILE IDENTIFIER> /
<FILE IDENTIFIER>

I <PACK IDENTIFIER> /
<MULTI-FILE ISENTIFIER> /

~ BURROUGHS CORPORATION

15-2
COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT ; PeS. 2212 5405 (G)

| <PACK IDENTIFIER> 7/
cE : <MULTI=-FILE IDENTIFIER> /
s ‘ <FILE IDENTIFIER>

<PACK ICENTIFIER>::= <IDENTIFIER>

<MULTI-FILE IDENTIFIER>::= <IDENTIFIER>

<FILE IDENTIFIER>::= <ICENTIFIER>

<IF BLOCK> z3:= <IF STATEMENT>
' <INCLUSION BLOCK>
<END STATEMENT>
I <IF STATEMENT>
<TRUE PART>
<INCLUSION BLOCK>
<END STATEMENT>

<IF STATEMENT> z:= IF <BOOLEAN EXPRESSION>
<BOOLEAN EXPRESSION> ::= <BOOLEAN FACTOR>
| <BOOLEAN EXPRESSION> OR
<BOOLEAN FACTOR>

<BOOLEAN FACTOR> s:= <BOOLEAN SECONDARY>
{ <BOOLEAN FACTOR> AND
<BGDLEAN SECONDARY>

<BOOLEAN SECONDARY> :2:= <BOJLEAN PRIMARY>

I NOT <BOOLEAN PRIMARY>

<SET SYMBOL>
I <RESET SYMBOL>

<BOOLEAN PRIMARY> ::

<INCLUSION BLOCK> =2

<SDL SOURCE IMAGE BLOCK>
I <IF BLOCK>

<SDL SOURCE
IMAGE BLOCK> :3= <EMPTY>
I <1 OR MORE SDL SOURCE IMAGES>

<END STATEMENT> :2:= END
<TRUE PART> s3:= <INCLUSION BLOCK> <ELSE STATEMENT>

<ELSE STATEMENT> ::= ELSE

AllL records containing conditional compilation statements must
have an ampersand () in column 1 (except the <SDL SOURCE IMAGE
BLOCK>). In addition, a complete conditional inclusion statement
must be contained on one %=CARD. Columns 2=-72 are free~field»
and columns 73=-80 may contain sequence numbers.

C

e

15=3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

Note that <BOOLEAN EXPRESSION>s may contain the logical operators
(from Lowest precedence to highest):s O0OR» AND» and NOT.

The <PAGE STATEMENT> will cause a page eject if the source file
is being listed. The <LIBRARY STATEMENT> will cause the_ images
from the file specified by <FILE NAME> to be included in the
source programe. N :

AR S SRR
I I

As an examples consider the following SDL source statements
illustrating nested conditional compilation statements and <SOL
SOURCE IMAGE BLOCK>s.

coL 1 FREE=FIELD: COLS 2=72 SEQ: 73-80
& SET A B C 0100
& RESET D E 0200
DECLARE (A»B) FIXED; 0300
&8 IF A AND E 0400
A := 85 0500
& ELSE | - 0600
A 3= X CAT Y+Z; Z WHOLE SOURCE IMAGE IS INCLUDED 0700
8 IF C 0800
8 := As 0900
& END 1000
& END 1100
& IF 8 OR D | 1200
BUMP 83 1300
& ELSE 1400
BUMP A3 | 1500
& END | 1600

The compilation of the follaowing statements would result.

DECLARE (A»B) FIXED: 0300
A := X CAT Y+Z; X WHOLE SQURCE IMAGE IS INCLUBDED 0700
B 3= A; 0900
BUMP B8 1300

Note that every IF must be paired with either an ELSE of an ENQ.
Every ELSE must have an END associated with it.

16-1

'BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP B1000 SDL (BNF Version)
'SANTA BARBARA PLANT " P.S. 2212 5405 (§)

APPENDIX ¥I: SDL PROGRAMMING IECHNIQUES

This section contains coding suggestions and examples which
result in decreased source code and/or object code.

DECLARATIONS:

l. As many non=structured declarations as possible (up to
a maximum of 32) should be declared in one <declare
STATEMENT>. Example:

DECLARE A FIXEDs, (8,C) BIT(24)5

generates more efficient code than:

DECLARE A FIXED;
DECLARE (B»C) BIT(24);

2e A <DEFINE ACTUAL PARAMETER> (See DEFINE INVOCATION) may

be a series of SDL statements. For example:

DEFINE CONPARE(CTS,S) ASZ
IF TOKEN_SYMBOL=TS
THEN 0035
S3
UNDC THIS_ONE>
ENDZ;

{:3

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTEMS GRQOUP 81000 SDL (BNF Versian)
SANTA BARBARA PLANT PeSe 2212 5405 (R)

may be invoked as:

D0 THIS_ONE FOREVER?; : :
COMPARE ("SINGLE™»,» SINGLE_SPACE := TRUE);
COMPARE ("MERGE™, IF LASTUSED + 0

THEN UNDQ THIS_ONES

LASTUSED := 25

OPEN SOURCE INPUT;

READ SOURCE (TAPEWORK))
CUMPARE (oo.’.o.);

END THIS_ONE;

BERQCEDURES:
1. Procedures fraom highest efficiency to lowest are:
PARAMETERS LOCAL DATA
(: NO NO
. NO YES
YES . NO
YES YES
STATEMENIS:
1. When the value returned by a typed procedure is
ignored:

IF P(X=Y) THEN>
is more efficient than:

TEMP 2= P(X=Y);

to be

2e Use ™I at the beginning of a comment rather than
"/%*see%/" as delimiters. The "Z" staps the scanning of
that recorde. If the ™/*...%/™ form is usedr, scanning

must continue to detect the ending terminator.
compile time is increasede.

3. The expression:

cé SUBSTR{™0123456789ABCDEF™>N»1)

Thus

16=2

16-3

‘BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEHS GROUP
‘§ANTA BAREARA PLANT PeS. 2212 5405 (G)

B1000 SDL (BNF Version)

w@yﬂggnerates much less code than

©OTT 2T U CASE N OF (MO0Tsm1®s"27, 0 ea®EWSFT)

54,7 The fact that a boolean expression evaluates to a one

7%t Zigr zero can often be used to advantage. For example»
the statement: L

X = A>05
is more efficient than
X 2= IF A>0 THEN 1 ELSE 0’

and the results are the same.

5. BUMP A 3= B stores B into A and bumps B» and BUMP
A 3= B stores B into A and bumps A.

Be REVERSE_STORE (IF <CONDITION> THEN A ELSE B» C3)

selectively stores C into A or B.
7. Consider the following:

In a compiler, for exampler, assume that all calls on
the error routine follow a THEN/ELSE or are in a <CASE
STATEMENT>. Example:

1. IF <CONDITION> THEN ERRORCEDOS5);
2. CASE N;

.

.

.7

ERROR(E137);

LR 4

END CASE;

It is sometimes desirable to put these <calls into -a
separate segments especially when EQO0S5 and E137
represent character strings (ie.e.» in=line ERROR
MESSAGEs).

For example:

DEF INE ERROR(N) AS #SEGMENT (ERROR_CALLS);
ERROR_ROUTINE (N)#5

8ecause of the temporary nature of segmenting
subordinate executable statementss only the calls witl
be in separate segments.

&

EY
S

(:;

. 16=4

BURROUGHS CORPORATION COMPANY CUNFfDENB{%L
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeSe 2212 5405 (G)

C 8.

When two or more elements of a <CASE STATEMENT> or an
<IF STATEMENT> have identical codes more efficient code
is generated if the code is put into a separate
procedure {(with no parameters or data). In both cases»
execution time will. be identicals, - but object code
savings could be substantiale. :

Use conditional <compilation statements to remove
debugging code» rather than physically removing the
code. See Appendix VII.. s ;

17-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL
COMPUTER-SYSTEMS GROUP 81000 SDL (BNF Version)
SANTA. BARBARA PLANT . PeSe 2212 5405 (G)

.A.f.zf.m:u 11.I'= 'SDL PARTIAL RECOMPILATION FACILITY

“r
b(_

Ihe SDL gmp%{er includes a facility whereby it is possible to
save information from one <compilation wWwhich will enable the
compiler to recompile only one {(or more) Lexic Level Zero
procedures in subsequent runss thus reducing computer time for
the reconpllatuons.

A. SAVING THE MASTER COMPILER INFORMATION

Ihe iaster cnuplle information is saved py the compiler in the
follouing five files: e

Internal Name Default'External Name
NEWSOURCE "NEW"/"SOURCE"
NEW_INFO_FILE "NEW"/"INF™
NEW_SECONDARY_FILE C"NEWT"/TSECT™
NEW_BLOCK_ADDRESS_FILE ., "NEWm/"BAF"
NEW_FPB_FILE "NEW"/"FPB™

Note that the file NEWSOURCE is identical to» and created in the
same Way as» the file created with the SNEW card. All five files
will be created with the compiler 3-option (Note: Brackets here
indicate optional specifications):

SCREATE_MASTER [[<PACK_ID>/]<MULTIFILE_ID>]

If specifiedr <MULTIFILE_ID> will be used instead of the default
multifile id» - ™NEW™, for all the files. If also specified»
<PACK_ID> will direct atl the files to the named user disk pack
or cartridge instead of system diske. <PACK_ID> and <MULTIFILE_
AD> must be quoted character literals.

hotes-

1. The CREATE_MASTER option must be on the first <card 1in
the compile deck (file ™"CARDS™)» and that card may
contain no other dollar options (except RECOMPILE==See
the following section).

'
NS

BURRQUGHS
COMPUTER S

e e oy

CORPORATION

YSTEMS GROUP

SANTA BARBARA PLANT

2.

3.

B. PARTI

By supply
compiles»

recompiled
per fectly
Level Zero

Partial recompllat1oh"ulll be invoked with the
ere lndlcate optronal spec:ftcat1ons)'

Brackets h

The compil

If specifi

. 17=2
CUHPANY CDNFIBENTIAL
81000 S0L CBNF Version)
PeSe 2212 5405 (G)

;;.:'._..

The new source file must be completely sequenced’ so

$SEQ should be wused

This includes all &~ CARDS-

the new source ftle.

SNEW option has no
CREATE_MASTER.

AL RECOMPILATION

ing the
one may

information
have

which have actually been patched.
that no patch cards may change Lexic

ordinary except

effect in

saved
only those Lexic Level Zero prdceﬂures

assure this if necessary.
as they will be lncluded 1n

i

Conj Un‘;ti‘on ui\th

RS

during a CREATE_MASTER

The patch deck’' i3

codes declaratlons or orocedure heads."

$=option (Note:

SRECBHPILE {I<PACK_ ID>/]<MULTIFILE ID]

er Wwill then expect the following six files as input:

Internal Mame

SOURCE |
MASTER_INFO_FILE
MASTER_SECONDARY_FILE
MASTER_BLOCK_ADDRESS_FILE
MASTER_FPB_FILE
MASTER_MPT_FILE

ed in the RECOMPILE option»

instead of the default id "MASTER".
will be expected to be found on user pack or cartridge <PACK_10>.
<PACK_ID> and <MULTIFILE_ID> must be quoted character literalse.

Notes:?

i.

If also specified»

AR

Default External Name “ =<

Comoceaececeanenanenes®: : E3

"MASTER™/"SOURCE™
"MASTER™/“INF"
"MASTER™/"SEC"
"MASTER"/"BAF" .
"MASTER™/"FPB"" & &4
"MASTER®™/®NPT™ =~ 7. " 7.. o

SMULTIFILE_ID> will be used
the files

The RECOMPILE option must be on the first card in the

compile deck (file
noc other dollar optians
previous section).

"CARDS™) and that card may contain
(except

CREATE_MASTER» see

17=3

% “'BURROUGHS CORPORATION CONPANY CONFIDENTIAL
tOMPUTER*SYSTEHS GROUP B1000 SDL (BNF Version)

SANTA BARBARA PLANT ' P.S. 2212 5405 (&)

Z. The patch deck may contain 3$-CARDs and &SET and ZRESET

C.

3.

cards followed by patch cardse If 8=CARDs are used»
however, they will only apply to procedures being
recoapiled and may» therefore, cause unwanted effects.

“Neither $SEQ nor SMERGE may be used with SRECOMPILE.

SIMULTANEQOUS RECOMPILE AND CREATE_MASTER

R

New master information may be saved from a recompilation run with
little overhead. Both RECOMPILE and CREATE_MASTER options

very
! (See above.) must be on the frrSt card of the complle decke. Atlt

i restrictions noted in A and B should be observed.

D.

E.

GENERAL CONSIDERATIONS

l.

3.

4.

S5e

i

ALl input and output files must be on diske (This does
not apply to the SOURCE file for a straight
CREATE_MASTER which 1is read in the normal way as the
result of a $MERGE card. It does apply to SOURCE when
doing RECOMPILE.)

File equation cards for recompzlatlon files will be
ignored unless no <PACK_ID> or <MULTIFILE_ID> has been
specified on the

$=-CARD.

Ddrihg recompilation the only source which <can be
listed is that which is actuaLly aeing recompilede.

$-CARDs for timingr, monitorings and PROFILE may be
added during recompilation. They will only affect
those procedures being recompitedr howevers» even if
they are at the beginning of the patch deck.

A CREATE_MASTER compilation reporting syntax errors
which are strictly local to lexic level zero procedures
will produce wusable master filese. These may then be
used to recompile the offending procedurese. Since the
CREATE_MASTER produced no object filer» however,» some of
the $~=Card information will be missing for the
recompilation==specifically stack size cardse. These
must be included in the recompile decke

$XMAP is incompatible with partial recompilation and
may not be specified if CREATE_MASTER or RECOMPILE have
been invokede.

EXAMPLES

\W“s‘.,. -

C

w17 =4

CUNPANY CBNF}DENTIAL
B1000. SDL. (BNF: Version)
P.Se. 2212 5405 (G)

BURROUGHS CORPORATION
COMPUTER SYSTENS GROUP
SANTA BARBARA PLANT

1. CREATE _MASTER compiigtion

2COMPILE MYPROG WITH SDL TO LIBRARY

?FILE SOURCE NAME MYPROG/OLOSOURCE TAPE; «
2DATA CARDS

SCREATE_MASTER. ”HYPROG" § e Wi 3
SMERGE SEQ LIST
[Patch Cards]

2END e . o eaase
20UMP TQ, mnnzazcnw MYPROG/=5
2. Partial fecoaullatlon (from user pack), .:.,

2L0AD TO MYPACK FROM MYTAPE/RECOMP MYPROG/=;

2COMPILE MYNEWPROG WITH SDL TGO LIBRARY - -
?2DATA CARDS
sRECDNPILE "MYPACK™/"MYPROG™ . ¥
SLIST : :
tPatch Cardsl

O

3. Simultanéodiﬂbperatﬁons
2L0AD FRONM MYTAPE/RECOMP MYPROG/=3

2COMPILE MYNEWPROG WITH SDL T3 LIBRARY
20ATA CARDS L
SRECOMPILE "MYPROG™ CREATE_MASTER "MYPROG™
[Patch Cards]
2END h

g
N

2DUMP TO MYNEWTAPE/RECOMP MYNEWPROG/=5

18-1

" BURROUGHS CORPQRAT ION ~COMPANY CONFIDENTIAL
CBMPUTER"SYSTEMS GROUP B1000 SDL (BNF Version)
%sumi Bméma *‘PLANT PeS. 2212 5405 (G)

]

ABEEML’: !IIL SDL MONITORING FACILITY

Procedure entry and exit can be dynamically monitored via
rfeatures sthat -are available through the SDL compiler. Use of the
monitoring feature proceeds in two steps. Firsts» at compilation

time» the wuser specifies via ccntrol cards that various
procediures ‘are to be,"candadates for monxtorlng in subsequent
executions of the program. %hen at execution time the user

specifies via a RUN-TIME MONITOR STATEMENT that some subset of
‘the'. candidate procedures are to be mon1tored for this run. The
RUN=TIME MONITOR STATEMENT cah be input, through the SPO» or from
some user file» at program BOJ or during the execution of the
progran v1a executIOn of bUIlt‘lD functionss.

w oo
ER 8 St “*‘

. .o
Toao

QUIEUT EQEKALS

Assumé a‘procedurée named PROC is being monitored and that it has
two parameters X and Y. An invocation of PROC would produce the
following monitor information:

o e i
SR, £y & e,

’é-“*'-'k blanks ======[k1PROC cccccccc-->>dddddddd N/
SR ='°°°°'k+1 blanks====<=Y= the value of .Y -at the point of invo- ’
" cationas an SDL tliteral .
“:-*-~--k+1 blaaks--°---x- the value of X at the point of invo-
“+ cation ‘as an SDL literal o :

i

Here k dgscrtbes the nesttng level of the cail» ccccecee is the
sequence - number of the invocation points and dddddddd is the
sequence number of the procedure head of PROC.

When PROC is exiteds the following line is emitted:

bl b ¢ blanks---?-'tk] exit PROC at eeeececee

If PRDC 15 a functlono the follouang llne will also be emitted:
**"“““k*l bl anks=====<PROC= the value of PROC specified as an
SDL lxteral

B Vi iy
4 g Y

The cthUf daté ‘may be d:rectéd.to;any file. This 1is done by
assocrat:ng the file attribute MONITOR_QUTPUT_FILE with some file ~
1n the program. The following restrictions hold. gi,

[ERrE T DI

s :18=2
BURROUGHS CORPORATION CQNPANY CUNFIDENTIAL

COMPUTER SYSTEMS GRQUP 81000 SOL . (BNF Version)
SANTA BARBARA PLANT P.S. 2212 5405 (G)

. Ty v
R 2,..&. ‘;.. ey win

MONITOR _QUTPUT FILE RESTRICTIONS

1. The feature is not Hynayicj (It cannotude{chen§é¢'utnh
a CHANGE statement). == _ , S IR AT
2 The Llength of\'e“ record in the outout flle should he
more than 71 characters. be il ieuens

3. If several files’ ""are given the MONITOR. ouwur FILE
attributesr the last fjl so declared . becomes the
moni tor output flle. ”2 L Mt R

4. If any procedureS‘are declared to be candidates for
moni tor then a monitor output file should be declared.
If it is nots, the compiler will append a file to the
praogram for this purpose.

5e The file must be sequential with fixed lengt;i"‘"'i""e:‘cr;x’“f'éi";'”.'"‘w

e The wuser should never issue an explicit open an the
fileeo ‘ .

A

24

If the value of a parameter or a procedure is being written and
current output record is insufficient in lengths the literal .will
be continued to the next record for as many recor¢s .as. is
necessary. Indent'ation is not peformed on subsequent Lines.
Indentation of the first lLine ceases within 60 spaces of.. the end
of the monitor output record. Values of length Zero are noted
appropriately regardless of typee. If a character value contains
unprintable data- the value will be printed as three asterisks
followed by 3 hex representation of the data. Only the first. 30
characters of any procedure name and the flrst 10 characters of,
any formal name are used. T

R

MONITORING: SPECIFYING PROCEDURES

The user specifies that procedures are candidates for monitoring
with the dollar card options MONITOR and NDNITOR_OEF.:,‘Ihe;
qualifier NO is meaningful 'in front of both words. The
discussion of MONITOR_OFF will be deferred to a later section.
However» for the purposes of qualifications the two options-are
semantically equivalent. Specificallys, if MONITOR is ON when the
procedure name first appears (either in its forward or its head)»
then the procedure becomes a candidate for monitoring. Note that~-
the MONITOR option relates to procedures and not _to ,prccedureJ
invocationse. There is no way to specify the concept .that a.;
procedure is a candidate for monitoring but that some particular
invocation of that procedure is not to be monitorede. Also note
that it is the state of the option when the FORWARD (if present)

ey) ‘ 18-3

BURROUGHS: TORPORATION COMPANY CONFIDENTIAL
COMPUTER SYSTENS GROUP ‘ B1000 SDL (BNF Version)

Siﬂfij%RBAﬂk PLANT P.S. 2212 5405 (G)

is encountered that is iﬁportant.

N S S SR T I B

The: c¢concept of a RUN-TIME -MONITORING statement was previously
introduced. This statement will be read intoc the program at B80J
from any file that the user specifieses This is done by giving
the attribute MONITOR_INPUT_FILE to some file declared 1in the
program. The following restrictions hotd:

Restrictions:

1 laz v192»3s5e and 6 under MONITOR_OUTPUT_FILE RESTRICTIONS.
-2 If no file is = declared with the attributes
MONITDR_INPUT_ FILE and procedures are declared to be
- candidates for a@monitoring then the program issues
itew i, 5 gccepts at the beginning of job :to-obtain the necessary
oo o Alnforuatlon fron the SPB.‘

3. If a flle is declared to be the MONITOR_INPUT_FILE then
the monitoring information must be the f:rst record(s)
of the file. . SN

BUN-IIME MONITOR SIAIEMENI ~ °

The RUN=TIME MONITOR statemént consists of a run~time monitor

expression that is terminated by ‘a semicolone. Formal
specification of the RUN-TIME MONITOR expression syntax is
deferred to a later sectione. The following examples will

(hopefully) 1illustrate the salient features of the statement.
"Heré-pleasé read "all procedures™ as "all orocedures which are
candidates for moenitoring©.

EXAMPLE NEANING
~1le - SALL> : ' Monitor all:procedures.
© 2+ SNONES “Monitor no procedures
3. X15 ' Monitor atl procedures whose name is
X1l.

BURROUGHS CORPORATION
COMPUTER SYSTEMS GRgOUP

SANTA

be

be

7

8e

9.

BARBARA PLANT

I X X

L X &]
* X1 X273 *
&
* X1,X27 *
* &*
* X1 JR X2; =
2 *
= X1 + X25 #
L E & 4 & & 4
E X ¥] [& ¥
NOT X1; * P
 J *
*« =X1; L P
'3 EE 2N AN

N

0000C0C00-019999995 .-

LR R A A

* 00000000'01999999 *
* x
AND NOT SCAN3 *
* *
* 00000000-01999999 =
* *
* & = SCAN]
* e L
e : . FYe
kkk . ttti
* 00000000‘01999999 *
* 7
*# x SCANS x
i & & 4 ki
* &k P
* 01426000-01579000

* or

* 02748300-99999999
* or

* SCAN; :

PR T

L2 2 2=

Monitor all procedurés“aameQUSCAgigin

N

13-4

COMPANY :CONF.IDENTTIAL
B1000, SDL-(BNF ¥Nersion)
"PeSe 2212+-550574£G)

I i 4 e
: LR i

(All four stateuents are equ:valent).

Monitor all procedures named X1 (] ol
or XZ. . ARSI RS PR €

‘(Both statements:are equivalent).
Monitor aill procedures uhose naue is

not X1l.

Monitor all procedures whose forwards
or ;procedure heads -oeccurréd on or be-
tween the two sequernrce numberse

t

Y

Same as (6.) above except that proce=
dures name SCAN are not to be moni-
toredo) ‘ﬁ> o0

the range descr ibed. SEERENE R N B Tl

= Monitor all procedures in the .two
ranges specified plus any procedure
named :SCAN which is out of thesa

rangese.

T

2 18=5
..~ BURRDUGHS” CORPORATION) COMPANY CONFIDENTIAL
i+ COMPUTER::SYSTEMS: GROUP B1000 SDL (BNF Version)

.. SANTAIBARBARA. PLANT PeSe 2212 5405 (G)

HONITORING: PROGRANMATIC CONIROL

The: SMONITOR_OFF option and the three specials MONITOR_SET,
MONITOR_RESET» and MONITOR_CHANGE are added to SDL to allow
program control of monitoringe. If the SMONITUOR_QOFF option was
ever on» the program will not require a RUN=TIME MONITOR
statement at BOJ and will behave as if the RUN=TIME MONITOR
statement "SNONE?™ had been read.

Each.of the three specials is an wunvalued procedure wWwith one
arguments» a RUN-TIﬂE MONITOR statement expressed as an 2xpression

which generates a ° character string," €eGe>r MONITOR_SET
("X1,X25");. MONITOR_RESET causes monitoring to be discontinued
for ‘all procedures satisfying its argumente. If a procedure 1is

not currently being monitored but still satisfies MONITOR_RESET's
arguments it will continue not ‘to be monitored.

MONITOR_SET causes monitoring to be commenced on all procedures
satisfying 1its argument. If a procedure 1is satisfied by
MONITOR_SET's argument and is currently being wmonitored» it
continues to be monitored. If a procedure is currently being
monitored and does not satisfy MONITOR_SET's arguments it
continues to be monitored. ‘

After the execution of a MONITOR_CHANGE only those nrocedures
referenced by its argument will bDe monitored.

There are no problems of symmetry on calls and returns; ieCoar
one can begin wmonitoring a procedure that has already been
entered or discontinue the monitoring of some procedure that has
currently been enteredes The only loss is that the monitor output
information is "thrown out of sync™ in terms of the nesting level
for a whilee.

SYNIAX OF A RUN-IIME MONIIORING SIATEMENI

-<STATEMENT> ::= <CEXPRESSION>;

1 SALLS '* o 2
| SNONE> 3
<EXPRESSION> 2::= <TERM> 4
I<TERM> <0R> <EXPRESSION> 5

<TERM> 33= <FACTOR> 6

R

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

18-6
COMPANY. CONFIDENTIAL

~B81000 SDL”(BNF. VYerision)

~PeSe 22E2:5405:-(G)

|<FACTOR> <AND> <TERM> Ty
<FACTQOR> ::= <PRIME> ,13;,’
I<NOT> <PRIME> . ;?;;T .
<PRIME> 2:i= (<EXPRESSION®) . .re. 10 .
| <RANGE> ' Y
1<LIST> Sesse v) 2-
<RANGE> ::= <8 DIGIT SEQ g>-<a DIGIT ssa #>1 - Ja¢fé;i%i§?;i
<LIST ::= <SOL_IDENTIFIER>. = .) 14
1<SOL_IDENT IF.IER>» <LIST> . o Sas
I <SOL_IDENTIFIER><LIST> 16
<OR> ::= OR :él;;f”i : ’ ?fg
1+ ; ; A' ’ié "
<AND> ::= AND - 2 ;i;l)
U 20
<NQOT> 2:= INOT 21
I= 22
NOIES L ? T
B K PO S

1. The <8 OIGIT SEQ #>s referred to in line 13 must
be such that the first is less than or equal to

the seconde.

2. The <SDL_IDENTIFIER>s
names of procedures in

i

referred to in (14-16) are

pregrame. “«Qnly [the

first 30 characters are usede.

IX=-1

BURROUGHS CORPORATION COMPANY CONFIDENTIAL

- COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)

SANI& BkﬁBARA PLANT PeS. 2212 5405 (G)
INDEX

;vai

ACCEPT STATEMENT . -9=i2 :

ACCESS_FILE INFORﬂATIQN . 10=37

ADDRESS AND .VALUE, PARAHETERS 8-15

ADDRESS GENER&TIN@«FUNCTIBNS 8-8

ADDRESS GENERATORS ;- 8= 33

ADDRESS MODIFIER - 8= ;&

ADDRESS V&RIABLES”¢98'5;v

ADVISORY 12=3 - DAY

ALL_AREAS_AT_OPEN 5‘28 Teen
s 10-19 - Prnin

AMPERSANG . ﬂPTION;.‘IZ 3 g

APPENDIX I: RESERVED. ANB 5PE£IAL WORDS 11-1

APPENDIX II: SDL CONTROL CARD OPTIONS 12=1

APPENDIX III: . PROGRAMMING OPTIMIZATION 13-}

APPENDIX IV: RUNNING THE ‘CONPILER 14-1

APPENDIX V: CONDITIONAL COMPILATION 15~1

APPENDIX VI: SODL PRUGRAHHDN@;TEGHNIQUES 16-1

APPENDIX VII: SDL PARTIAL -RECOMPILATION FACILITY 17=-%

APPENDIX VIII: SDL MONITDRING FACILITY 1i8-1 B

AREA_BY_CYLINDER 5=28 _ 1. "+, P
» 10-19 fe RIS N/

ARITHMETIC OPERATORS I 40 N

ARRAY 5=2

ARRAY STRUCTURE : S5=13 .

ASSIGNMENT STATEMENT 7=8 “

ASSIGNMENT STATEHEVTS AND EXPRESSIUNS 7-1

ASSIGNOR 8 4 1.

S

A

BACKUS NAUR FORM 1=-1
BASE_REGISTER . 8=17 - Eh

BASIC COMPONENTS OF. THE SDL LANGUAGE 2-1
BINARY CONVERSION - 8=18 = . .

BINARY SEARCH 8=-18 - 3

BIT STRINGS 2-3 - :

BUFFERS 5«24, 10=22 SN

BUMP 8=2,» 10 12, ;;'- A

CALLING ABILITY 3-5 SRS
CASE EXPRESSION 8=2 . . .

CASE STATEMENT 10-7 .

CHANGE STATEMENT (FILE ATTRIBUTE STATEMENT) 10-14
CHANGE_STACK_SIZES 10-37

CHAR_TABLE 2=5 '

CHARACTER STRINGS 2-4. ‘
CHARACTER_FILL 10-38 : ‘ (:“
CHECK OPTION 12-3 . ,
CLEAR STATEMENT ~ 10-12

ST T TIHE PR

BURRUUGHS CORPORATION CDHPAN? CBNFIDENTI‘&L
COMPUTER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA BARBARA PLANT PeS. 2212 5405 (G)

CLOSE STATEMENT 9=4
CODE OPTION 12-3..

COMMENTS 2=2

COMMUNICATE 10-38
COMMUNICATE_WITH_GISMO 8=19
COMPILE_CARD_INFO 10-38
CONCATENATION ~+7=11" 3
CONDITIONAL' CGHPILATIDN 15=1
CONDITIONAL txPRESSIGN 8=1
CONSOLE_SWITCHES - “'8-19 4 g
CONTROL OPTION 12~3 :
CONTROL_STACKBITS 8=19
CONTROL_STACK_TOP 8-19

CONVERT §~20 =

CONVERTDOTS OPTION 12-3
COROUTINE srarzusnr . 10=33
CS§LZE‘0PTIDN 12 3

oArA STRUQTURTNG 53

DATA TYPES 5=1.

DATA_ADORESS =~ 8=22 -

DATA_LENGTH 8-22 -

DATA_TYPE & 8=-22 ~ A

- DATE . 18=22 .~ .* . ‘ A
‘Z DC_INITIATEEO © 10=39
2 DEBLANK 10=40 *

DEBUG OPTION 12-3 B R
DECIMAL CONVERSION 8=23 L
DECLARATION STATEMENT 3<1
DECLARATIONS S=1 I
DECLARE STATEMENT 5-2
DECREMENT 8=4, 10-12"
DEF INE INVOCATION 5-38
DEFINE STATEMENT '5-36 SRTCREL
DELIMITED_ TDKEN ‘8= 23 S
DESCRIPTORS ' 8-10 ° TR ke
DETAIL OPTION 12- 3.
DEVICE 5-=22, 10-17)
DISABLE_INTERRUPTS 10-40 =
DISK ALLOCATION -5-28 T
DISK DRIVE ASSIGNMENT =~ S-28
DISK FILE 5-26» 10-22
DISPATCH 8-24": z
DISPLAY STATEMENT 9-13
DISPLAY_BASE ~8=25
DO GROUPS 10-2 .
DOUBLE OPTION: 12=3°
DUMMY 5-13 :
QUMP 10-40- I
DUMP_FOR_ANALYSIS 10=41 - ‘
DYNAMIC DECLARATIONS 5=16 " . .
DYNAMIC FILE CHANGE 10=14 ~ 7
DYNAMIC_MEMORY_BASE 8=25
DYNAMICSIZE QPTION 12-3

3o

£

.

Baaﬂnusﬂs ﬁuapoanrxun
cnnPurER straas GROUP
“SANTA’ BARB&RA PﬁANT

”ENABLE IerRRupr§ 10-41

END OF STRING ‘'to- 11

END_OF _PAGE AC?Y@NV ‘3= 29

» 10=19 *
ENTER_CORQUTINE 10=33
ERROR FILE QFTIOﬁ Lw12‘3
ERROR_ COMMUNICATE 10‘#;
ESSIZE OPTION 12=4 | .
EU_ ASSIGNMENT) 5‘28

IX=3
COMPANY CONFIDENTIAL

81000 SDL (BNF Version)

PeSe 2212 5405 (G)

EVALUATION_STACK_ TQP 8-25 B

EXCEPTION HASK PART 5 =31

e

EXECUTABLE STATEMENT ° 3-1
EXECUTABLE STATEMENTS ~ 10=1°

EXECUTE 8=25, 10=42

EXECUTE-FUNCTION STATEMENT
EXECUTE=PROCEDURE STATEMENT

EXIT_COROUTINE 10-33
EXPAND_DEFINES 12-4
EXPRESSIONS ~ 7= SO

FETCH 10=42

FETCH_AND_SAVE 10=42 fi?
" FETCH_COMMUNICATE_MSG_PTR

10-36
~10=35

“ EXTENDED ARITHMETIC runcr:nns“”a-27

P 4
. RS T
wF e .

8 10

FILE ATTRIBUTE STATEKE?T (CHANGE STATEMENT) 10-14

. FILE DECLARATIONS '5-20;.
“FILLER ~ 5-12

FIND_DUPLICATE_CHARACTERS

FINI 3-1

FORMAL.CHECK 5=41 ;
FORMAL_CHECK 5=10, 5~ 17

» 5=36» 6=4, 6-5‘

FORMAL_VALUE 6=b4s 8=16
FORMALCHECK OPTION 12=4

' FORWARD DECLARATION . 5”#0

FREEZE 12=4 -
FREEZE_PROGRAH’“‘10?43

GROW 10-43

HALT 10-44 A :
HARDWARE MONITOR 13-1°
HARDWARE_MONITOR ~* 10=%4.
HASH_CODE 8-27 |

nsx,ssauenc:_NUHasn_.‘;$5~;

170 CONTROL STATEMENTS 9-1

IDENTIFIER 5-37
IDENTIFIERS 2=1

IF STATEMENT 10-5
INDEXED FIELD REFERENCES
INDEXING 8=5 |
INITIALIZE_VECTOR 10-44

s
I T

;th;

o

5=6

P

’ IX=4
BURROUGHS CORPORATION COMPANY CONFIDENTIAL

COMPUTER SYSTEMS GROUP 81000 SOL- CANF . Version)
SANTA BARBARA PLANT P Se 2212 5405 (G)

INTERPRETER QPTION 12=4
INTERROGATE_INTERRUPRT_STATUS . 8-28
INTRA=STRUCTURE REMAP S-11 . ‘
INTRINSIC HEAD ﬁsqs -
INTRINSIC OPTION . 12-=4

LABEL 5-21, 10-15
LAST_LIO_STATUS .8-28
LENGTH 8=28 L
LEXICOGRAPHIC LEVEL 3-2
LIMIT_REGISTER .. 8-28

LIST OPTION 12 4L
LISTALL GPTION . 12-4 .
LOCATION . 8=29 °..

LOCK '5-25, 1019,

LOCKI 12=4 .~ o
LOGICAL BPERATURS 7 7.
M_MEM_SIZE 8=35

MAKE_DESCRIPTOR ~ 8-11" . ° e

MAKE_READ_ONLY, MAKE_READ HRITE 1 10-32

MERGE OPTION = 12-4"

MESSAGE_COUNT 10-45

MODE 5-24, 10-18 :

MODIFY STATEMENTS (CLEAR, BUMP, CECREMENT) 10-12
MONITOR . 10-45, 12=4 . T

(MONITOR SPEC PART 5-31 ° .
v MONITOR_OUTPUT_FILE RESTRICTIONS . 18-1
» 1876 |

HULTI PACK ' 5=28, 10-19

NAME_OF_DAY 8=29 .
NAME_STACK_ TGP 8=-30
NEST PROCEDURE TIMES 12=4
NESTING 3=2 .
NESTING LEVEL 6=7 i L
NEW OPTION " 12=-4 = S
NEXT_ITEM» PREVIOUS_ ITEM 8=12 ~ .
NEXT_TOKEN 3=30 ‘ o
NO OPTIQN 12=4 o
NO_DUPLICATES OPTION 12=4 v
NO_SOURCE_OPTION 12-5 L
NON-STRUCTURE DECLARATIUNS - 5=8
NSSIZE OPTION S 12- 5 LT
NULL 8=12 =~ P
NULL STATEMENT 10—43
NUMBER_OF_STATIONS 5= 30
NUMBERS 2-3 . .

ON SEQUENCE 9-16
OPEN OPTION 5-27 Lo
(‘j OPEN STATEMENT . 9=-2 . . °,
- OPERATOR PRECEDENCE TABLE 7-4
OPTIONAL FILE PART _ S5=31. ~ | ' .

IX=5

§URBBUG&S COR?URATIDN COMPANY CONFIDENTIAL
CDHPQIER SYSTEMS GROUP B1000 SDL (BNF Version)
SANTA ﬁARBARA PLANT P.S. 2212 5405 (G)

OTHER CONSTANTS. 2-5.
OVERLAY. . .107453

PACK_ID 5=27» 10=16

PAGE OPTION _12=5 s

PAGED ARRAY HECLARATIUNS ~ 5=15

PARITY SPECIFICATION . 10-18
PARITY_ADDRESS 8=31

PASS END»OPTIBNF 12=5 .

POLISH NOTATION .Z=2 - ..

PPROFILE 13-1 e

PPSSIZE OPTION 12=5 .. 3
PREVIODUS_ITEN 8=12 -, a1

PRIMARY ELEMENTS OF THE EXRRESSION 8~-1
PROCEDURE BODY, - .6<6.. I
PROCEDURE . ENDING 6= a R
PROCEDURE HEAD 6=2 .- .
PROCEDURE NESTING . 34
PROCEDURE STATEMEVT 3:1
PROCEDURES 6=1 - . -, oo ..
PROCESSOR_TIME 8=31 IR T
PROFILE 13-1 L
PROFILE, PPROFILE OPTION ;2 s
PROGRAM SEGMENTATION 4= 1 e
PROGRAM SWITCHES 8- 31-5ig;;
PROGRAM TIMING . 13-2. T
PROGRAMMING OPTINIZATIGN 13-t
PROGRAMMING TECHNIQUES 1s~4

g;

READ STATEMENT 9-6 -
READ_CASSETTE 10=46

READ_FILE_HEADER» WRITE_ FLL; HEADER 10-30
READ_FPB» WRITE_FP8B 10-46 .

READ_OVERLAY» WRITE_ BVERLAY ' 10-47
RECOMPILATION FACILITY .. 17-1 -
RECOMPILE_TIMES opr:ou ,12= 5

RECORD 5 4 - - <

RECORD REFERENCE DECLARATIDNS " 5=19

RECORD REFERENCE VARIABLES .; 5-=19

RECORD SIZE 5-25, 10-22 ..

RECORD STATEMENT 5=3
REDUCE STATEMENT 19-9
REEL NUMBER 5-26» 10~ zz
REFER ADDRESS 10~ &7' %
REFER LENGTH. . 10=48. h
REFER STATEMENT 10- a
REFER TYPE 10-48- ‘.)
REFERENCE DECLARATISVS 5=18
REINSTATE 10-48 .
RELATED PUBLICATIONS 1=2
RELATIONAL OPERATORS . 7-6
REMAPPING 5-9, 5-13

RENOTE KEY 5-=29

REPLACE OPERATORS . 7-8

LA

RN

BURROUGHS CORPORATION
COMPUTER SYSTEMS GROUP
SANTA BARBARA PLANT

REPLACE, DESTRUCTIVE
RESERVED WORDS
RESTORE 10-49
Restrictionss: 5“1?
RETURN STATEHENT "’6'6
RETURN_AND_ EVABLE tNTERRUPT
REVERSE STORE i 10*49 .

S_MEM_SIZEs M_ Mgn szE

SAVE 5-=25, 10-22, ro-so
SAVE_STATE 10;50 S
SCOPE 3=-5 "% ~

SCOPE OF PROCEDURES ‘=2
SEARCH_ OTRECTORY = “10=28
SEARCH_DIRECTORY * srgrznenr ,
SEARCH LINKEU‘LIsr Tig=32]
SEARCH_SOL_STACKS , 8= 33 ;‘“
SEARCH SERIAL LIST 8=34 7
SEEK STATEMENT 9*11 o
SEGMENT, SEGMENT_PAGE

SEQ OPTION 12-5 ah
SEQUENCE_NUMBER 2- 5)
SERIAL NUHBtR PART ~ 5=31
SINGLE SPACE OPTION 12-5
SIZE OPTION - 12-5 -
SKIP STATEHENT 9" 15

SORT ~ 10-90"" -

SORT DELETE ~ 8<35°
SORT_MERGE 10-51
SORT_SEARCH 8-35S 3
SORT_STEP_DOWN 8-36 =
SORT_SWAP 10-52 . -
SORT_ uuaanw - 8-36 _
SPACE sra?tnsur 9—14
SPO_INPUT_ PRESENT, ' 8= 37
STOP STATEMENT io-zs o
STRUCTURE DECLARATIONS =~ S=

STRUCTURE OF AN SDL”FRGGRAM
STRUCTURED RECURD STATEMENT
STRUCTURES ~ 5=5
SUBBIT AND SUBSTR
» 8= 37
SUPPRESS GPTTON R
SWAP 8=-38 '
SWITCH FILE DECtARATIONS

NI

THAW_PROGRAM
THREAD_VECTOR
TIME 3-39
TIMER 8-39
TINING OPTION
TODAYS_DATE
TRACE ~ 10-53 o
TRANSLATE 10-54 <

110=-32"
10 52

i

ipest
2=5

11-1, "11-3"

Af}fft’f

- . IX=6
COMPANY cuw?xugurIAL
81600 SDL (BNF Yersion)
P.5. 2212"5405" (G)

3

S zafé

35

114 .
&.371\h
5=6

s
Joazes

 5=34

e b oSt s e e

IX-7

CDHPANY CONFIDENTIAL

o ﬁBlGOG,SDL (BNF Version)
) T P.Se 2212 5405 (G)

':TYPEb Panczuunzs ,a~15 ;

e

_UNARY apsaurnas
UNDO 10-4
 g_usE INPUT BL

. USE sra:c

VALUE GENERA ING ruNcrzaus.‘*B—ih.,
VALUE VARIABLES 8sl4 - o
VALUE_DESCRIPTOR s-ao

| S VARIABLE DATA FIELDS =4
] , . VARIABLE RECORD —2% o
i g 10"19 :

~ VOID OPTION 12-5
| VSSIZE OPTION '12-5

uAIr a ao
~ WORK - FILE S 30 : ,
" WORKING_SET_ avrzs OPIIGN - 12=6
_WRITE STATEMENT 9-8 o
 WRITE_FILE_HEADER 10-30
HRITE_GVERLAY 10=47)

 X_ADD 8=27 RO
DIV 8=27. R P

. -

r
X_MOD 8-27 o L
:X,ﬁUL?/va 27 L

X_SUB - 8-27

XMAP OPTION 12-5
XREF 12-6
XREF_ONLY 12-6

ZIP STATEMENT 10-27 .

