UNISYS 55000 /B 3000/

B 4000/V Series
BPL Compiler

Programming
Reference Manual

Copyright © 1987 Unisys Corporation
All Rights Reserved

Unisys is a trademark of Unisys Corporation.

Relative to Release August 1987
Level 7.2 Distribution Code SD

Printed in U S America
Priced ltem 5024789

The names, places, and/or events used in this publication are
not intended to correspond to any individual, group, or associ-
ation existing, living, or otherwise. Any similarity or likeness
of the names, places, and/or events with the names of any indi-
vidual living or otherwise, or that of any group or association
is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED
BY THE DOCUMENT. Any product and related material dis-
closed herein are only furnished pursuant and subject to the
terms and conditions of a duly executed Program Product Li-
cense or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products
described in this document are set forth in such License or
Agreement. Unisys cannot accept any financial or other re-
sponsibility that may be the result of your use of the informa-
tion in this document or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this informa-
tion and/or software material complies with the laws, rules, and
regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without no-
tice. Revisions may be issued to advise of such changes and/or
additions.

Comments or suggestions regarding this document should be submitted on a Field Com-
munication Form (FCF) with the CLASS specified as 2 (S.W.:System Software), and the
Type specified as 1 (F.T.R.), and the product specified as the 7-digit form number of the
manual (for example, 5024789).

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title

5024789

ABOUT THIS DOCUMENT
PURPOSE . .
SCOPE . ..
AUDIENCE
PREREQUISITES
HOW TO USE THIS DOCUMENT
ORGANIZATION ..
RESULTS ..
RELATED DOCUMENTS i,

OVERVIEW

LANGUAGE CHARACTERISTICS
GENERAL . ..
NOAtIONS oo
Optional Words
Key Words
Lower Case Words
Braces ...
Brackets
Consecutive Periods
Period
BASIC SYMBOLS
RESERVED WORDS,
LANGUAGE STATEMENTS, S
IDENTIFIERS P
Scope of Identifiers
Duplicate Identifiers
Special Identifiers
ARRAYS
SUBSCRIPTING i
LITERALS . ..
Numeric Literal
Non-Numeric Literal
Undigit Numeric Literals
CONTROLLER FIELDS
FORMAT OF BPL PROGRAMS
Block Format
Program Entry Point
Program Size Considerations

STATEMENTS . .
GENERAL .
DECLARATION STATEMENTS
EXECUTABLE STATEMENTS
PROCEDURE CALL Statement
DO UNTIL Statement
WHILE DO Statement
IF Statement
CASE Statement

cLULUAELAELLALLLLA - L L

]] 1 []]]

NI\JNNNNNNNI?JNNNI\)NNNNN

P
>

S S T NS I

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title Page

ASSIGNMENT Statements 3-4
COMPILER DIRECTING STATEMENTS 3-4
4 DECLARATION STATEMENTS 4-1
GENERAL . . 4-1
ADDRESS . 4-2
BIT 4-4
CDATE . . 4-5
COMMON 4-6
CONTROL . . 4-7
DATA DECLARATION i 4-9
DEFINE . . 4-16
DYNAMIC . . 4-19
FILE . 4-21
LABEL .. 4-31
PICTURE 4-32
PROCEDURE 4-33
SUBROUTINE 4-37
UNSEGMENTED 4-38
5 EXECUTABLE STATEMENTS/CONTROL AND ASSIGNMENT 5-1
GENERAL . 5-1
ACCEPT .. 5-2
ACCUMULATOR CONSTRUCTS 5-3
ARM 5-5
ASSIGNMENT .. 5-7
BREAKOUT .. 5-21
CASE o 5-22
CLOSE 5-25
COMMENT . . 5-29
COMPARE 5-30
COPY 5-31
DISARM . 5-32
DISPLAY . 5-33
DO 5-34
DOZE . . . 5-38
DUMP 5-39
EDIT .. 5-40
ENTER .. 5-41
EXIT e 5-42
EXITBLOCK 5-43
EXITCASE . .. 5-44
EXITCOND ... 5-45
EXITLOOP 5-46
EXITROUTINE 5-47
FILL 5-48
GO 5-49
IF 5-50
LOCK . 5-54
OPEN .. 5-55

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

TABLE OF CONTENTS

Section Title

OVERLAY .
Procedure Call
READ ..
SCAN
SEARCH
SEARCH LINK/DELINK
SEEK .
SORT o

SORT RETURN . .. e B
SPACE ...
SPOMESSAGE
STOP

Subroutine Call
TOPLOOP .
TRACE . .
TRANSLATE . ..
UNLOCK . .

6 COMPILER DIRECTING STATEMENTS PP
GENERAL
Conditional Compiling
@LIBR ..
@PAGE . ..
@ICM Declaration it
IFF Conditional Compiling

7 DATA COMMUNICATIONS
GENERAL PSP
ACCEPT . .
CANCEL . ..
CONDCANCEL
DISPLAY . .
ENABLE
FILL .
INTERROGATE i
READ ..
READY ..
TRANSTBL ...
WAL
WRITE ..
WRITEREAD
WRITEREADTRANS
WRITETRANSREAD

5024789

O‘\O\O\?\O\O‘\O’\
~N AN BN

NN
OOV NAA N WOIAAWUND W — —

\]\)\ll\l\l\l\l\]
[N e e

Vil

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

viii

TABLE OF CONTENTS

Section Title

10

11

PORT FILES
GENERAL .

WRITE ..
PORT FILE ATTRIBUTES
FUNCTION OUTPUT PARAMETERS

READER SORTER - PRE-4A CONTROL CONSTRUCTS
GENERAL ...
READER SORTER FILE HANDLING
SPECIFIC STATEMENT FORMATS
ACTION 0 (Pocket Select),
ACTION 4 (Pocket Light)
ACTION 6 (Batch Count)
ACTION 8 (Delay)
OPEN .

READER SORTER - DLP/4A CONTROL CONSTRUCTS
GENERAL
READER SORTER FILE HANDLING
SPECIFIC STATEMENT FORMATS
ACTION 10 (Pocket Select)
ACTION 11 (Pocket Light Generate)
ACTION 12 (Status Inquiry)
ACTION 13 (Charateristics Inquiry)
ACTION 14 (Microfilm Advance)
ACTION 15 (Start Flow)

CLOSE . . L

BUFFER . .

OPERATING INSTRUCTIONS
GENERAL . .
Compiler Operational References
File Equate Information
Input ...
CANDE Editor Format Files

BPL RESERVED AND KEY WORDS

O
V]
Q
®

N W= OO0\ WU HWEN — —

P P %P
ft e

OO OCODOOOO \P\O\O\O\D\O\O\D\O\O

Pt bt ot ekt pmd pmt ek
1
~N NN B DN = e e

o
T

10-8

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Section

B

5024789

TABLE OF CONTENTS

Title Page

HOW TO WRITE A BPL PROGRAM B-1
GENERAL . . B-1
WRITING RULES B-1
FORM OF A BPL PROGRAM B-1
PROCEDURE CALLING B-5
Relationships B-5
TABLE CREATION B-7
WARNING AND ERROR MESSAGES C-1
GENERAL .. C-1
WARNINGS C-3
ERRORS . C-6
INDEPENDENTLY COMPILED MODULES (ICM) D-1
TYPE L ICMSs . . D-2

Parameters D-2

COMMON BIOCKS . . . D-6

LINKAGE Construct D-8

FORTRAN ICM Considerationsu .. D-12
TYPE II AND TYPE III ICMs D-13
BPL Language Constructs for Type II and Type III ICMs D-14
MODULE NAME DECLARATION D-15
PROGRAM ENTRY POINT DECLARATION D-16
ENTRY DECLARATION i, D-17
EXTERNAL DECLARATION P D-18
Programming Considerations for Type II and Type III ICM D-20
Example D-21
THE BPLBND PROGRAM BINDER D-27
Functional Description D-27
BPLBND Input Statements D-27
BPLBND INPUT SELECTION STATEMENTS: D-30
REQUIRED Statement D-30
OPTIONAL Statement D-31
BPLBND OPTION STATEMENTS D-32
FATAL Statement D-32
NOEXTEND Statement D-33
BPLBND PRINT STATEMENT D-34
PRINTALL Statement D-35
PRINTANALYSIS Statement D-36
PRINTCODE Statement D-37
PRINTSEGANALYSIS Statement D-38
PROGRAMLIMIT Statement D-39
PROGRAMSIZE Statement D-40
STACKSIZE Statement D-41
BPLBND SEGMENTATION STATEMENTS D-42
SEGMENT Statement PR D-42
OVERLAY Statement D-44
BPLBND TERMINATOR STATEMENT D-46
END STATEMENT . . . D-46
Input-Output Facilities of BPLBND D-47

1X

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Section

TABLE OF CONTENTS

Title Page
Debugging and Diagnostic Facilities of BPLBND D-48
CODE AND DATA INFORMATION, ADDRESSES AND
REFERENCES D-48
PARAMETER CHECKING D-48
ERROR HANDLING e D-48
Operational Considerations for BPLBND D-55
BPLBND Examples e D-56
Example 2: . . D-59
COMMON BPL PROGRAMMING ERRORS E-1
EBCDIC, USASCII, AND BCL REFERENCE TABLE F-1
GENERAL . F-1
BPL68 . .. G-1
|

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Figure

Jk-h-lk-b-!k-h-b-h-b

SRR
RIS

PN UNBE W =PRI N B W —

-l'k-h-{k-b-b-b

(R, R}
1
GO DN —

ROt
])
Ne) o] 3 (@) W BN

5-10

5-14

5024789

LIST OF ILLUSTRATIONS
Title

Format of ADDRESS
Format of BIT
Format of CDATE
Format of COMMON
Format of CONTROL
Format of Data Declaration, Option 1
Data Declaration, Option 2

~Data Declaration, Option 3

Data Declaration, Option 4
Format of DEFINE
Format of DYNAMIC
Declaration of DYNAMIC,
Determining the Size of Memory
Format of LABEL Declaration
Format of PICTURE Declaration
Format of PROCEDURE Declaration
Format of SUBROUTINE Declaration
Format of UNSEGMENTED
Format of ACCEPT Statement
Format of ARM Statement
Format of the Assignment Statement, Option 1

(MOVE) ..
Format of the Assignment Statement, Option 2

(EXCHANGE)
Format of the Assignment Statement, Option 3

(MOVE DATA, CONTROL OP B4700 only)
Format of the Assignment Statement, Option 4

(COMPUTE) ...
Format of the Assignment Statement, Option 5

(LOGICAL OPERATORS or BOOLEAN OPERATORS)
Format of the Assignment Statement, Option 6

(SPECIAL BRANCH COMMUNICATES)
Format of the Assignment Statement, Option 7

(SEGDICT) . ..o
Format of the Assignment Statement, Option 8

(SEGMENT) ...
Format of the Assignment Statement, Option 9a

(INTERROGATE FILE on disk)
Format of the Assignment Option 9b

(INTERROGATE FILE on Diskpack)
Format of the Assignment Statement, Option 10a

(PROGRAM PARAMETER BRANCH COMMUNICATES, ANY MCP)
Format of the Assignment Statement, Option 10b

(PROGRAM PARAMETER BRANCH COMMUNICATES, PRE-MCP/VS
2.0)

O
<Y
(=]
®

ppppas
NI No WU RN SN]

PEPPP

bbb~ L L
LU AN =SS Ot —

A#-B-P-h-h-h

o

W
[[
-

i
©

X1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

LIST OF ILLUSTRATIONS

Figure Title Page

5-15 Format of the Assignment Statement, Option 10c

(PROGRAM PARAMETER BRANCHCOMMUNICATES, MCP/VS 2.0

AND LATER) 5-15
5-16 The CASE Statement, Format 1 5-22
5-17 The CASE Statement, Format 2 5-22
5-18 Format of the CLOSE Statement 5-25
5-19 Format of the COMMENT Statement 5-29
5-20 Format of the COMPARE, Option 1 5-30
5-21 Format of the COMPARE, Option 2 5-30
5-22 Format of the COPY Statement 5-31
5-23 Format of the DISARM Statement 5-32
5-24 Format of DISPLAY, Option 1 5-33
5-25 Format of DISPLAY, Option 2 5-33
5-26 Format | for DO 5-34
5-27 Format 2 for DO 5-34
5-28 Format of the DOZE Statement 5-38
5-29 Format of the DUMP Statement 5-39
5-30 Format of the EDIT Statement 5-40
5-31 Format of the ENTER Statement 5-41
5-32 Format of the EXIT Statement 5-42
5-33 Format of the EXITBLOCK Statement 5-43
5-34 Format of the EXITCASE Statement 5-44
5-35 Format of the EXITCOND Statement 5-45
5-36 Format of the EXITLOOP Statement 5-46
5-37 Format of the EXITROUTINE Statement 5-47
5-38 Format of the FILL Statement 5-48
5-39 Format of the GO Statement 5-49
5-40 Format 1 for the IF Statement 5-50
5-41 Test of Condition-1 with IF, Option 1 5-50
5-42 Test for Condition-1 with IF, Option 2 5-51
5-43 Test for Condition-1 with IF, Option 3 5-52
5-44 Format 2 for the IF Statement 5-53
5-45 Format of LOCK Statement 5-54
5-46 Format of OPEN Statement 5-55
5-47 Format of OVERLAY Statement 5-57
5-48 Format for a Procedure Call 5-58
5-49 Format of READ Statement, 5-59
5-50 Format of SCAN Statement 5-61
5-51 Format of the SEARCH Statement 5-63
5-52 Format of the SEARCH LINK DELINK Statement 5-65
5-53 Format of the SEEK Statement 5-68
5-54 Format of the SORT Statement 5-70
5-55 Format of the SORT RETURN Statement 5-72
5-56 Format of the SPACE Statement 5-73
5-57 Format of the SPOMESSAGE Statement 5-74
5-58 Format of the STOP Statement 5-75
5-59 Format for STOQUE Statements 5-76
5-60 Format of the STORE Statement 5-79
5-61 Format of a Subroutine Call 5-80

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Figure

5-62
5-63
5-64
5-65
5-66
5-67

A
Jud o
— S O 6o

1
[a—y

\)\l\]\l\l\l\ll\l\lO\O‘\O\O\ (@)}

[
1
\DOO\]O\LJ]-PL'»JI\J—-UIAUJN

\l\]\l‘\l\]\]
P et e et
DN WwWh—O

PP PP P PP PP P00
HNILOUMBEWND—OVOI WL LD W —

e e
PPrPP
Lo =

5024789

LIST OF ILLUSTRATIONS
Title

Format of the TOPLOOP Statement
Format of the TRACE Statement
Format of the TRANSLATE Statement e
Translate Tables in Memory
B Address (Identifier-1) Modification
B Address (Identifier-2) Modification
Format of the UNLOCK Statement
Format of the WAIT Statement

" Format of the WRITE Statement

Format of the ZIP Statement
Format of the Conditional Compile, Double

Dollar-Sign Record S
Format of the @LIBR Statement
Format of the @PAGE Statement
Format of the ICM Declaration
Format of the IFF Statement
Format of DATACOMM ACCEPT
Format of DATACOMM CANCEL
Format of DATACOMM CONDCANCEL
Format of DATACOMM DISPLAY
Format of ENABLE
Format of FILL
Format of DATACOMM INTERROGATE
Format of READ
Format of READY
Format of TRANSTBL
Format of WAIT
Format of WRITE
Format of WRITEREAD
Format of WRITEREADTRANS
Format of WRITETRANSREAD,
Format of the CLOSE Statement
Format of the GET Statement
Format of IF Interrogating Identifier-1
Format of the OPEN Statement
Format of the PORT Declaration
Format of the READ Statement
Format of the SET Statement
Format of the WAIT Statement
Format of the WRITE Statement
Format of ACTION O e,
Format of ACTION 4
Format of ACTION 6
Format of ACTION 8
Format of OPEN
Format of READ
Format of ACTION 10
Format of ACTION 11 s,
Format of ACTION 12 ...
Format of ACTION 13

\l\)\l\ll\l\l\]\)

NN A

R IR
NPEA WA UVEWNDW— OO WDNEWNOVOOJOAWUNMPEAWOIOUEAEWNDIO WL N

P
]] 1 __C?OOIOO'OOIOOOOOOO

OOOO\IO\O\O\O\O\O

bt bt et et

xiii

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Xiv

—t
.OO
\O o0

P
1 .Ni—‘

T A N M |IU|UIU'U|UUUUU
OO0 NN B WK —

oMo M ot o e e L
w

PO, OOVOITUNEWND—O

Sivivivivivivivliviviviviviviviviv)

o S
[y [\
(@} (@)

D-26
D-26
D-26
D-26
D-26
D-26

LIST OF ILLUSTRATIONS
Title

Format of ACTION 14
Format of ACTION 15
Format of CLOSE
Format of OPEN
Format of READ
Compile Time Relationships of Procedures
The Scope of a Procedure,
Format of the LINKAGE Declaration
First Source Record of an ICM2/3
Format of the PROG-ENTRY Declaration
Format of ENTRY
Format of the EXTERNAL Declaration
Type II ICM Example, First Module
Type Il ICM Example, Second Module
Type II ICM Example, Third Module
Format of the REQUIRED Statement
Format of the OPTIONAL Statement
Format of the FATAL Statement
Format of the NOEXTEND Statement
General Format of PRINT Options
Format of PRINTALL
Format of PRINTANALYSIS
Format of PRINTCODE,
Format of PRINTSEGANALYSIS
Format of PROGRAMLIMIT
Format of PROGRAMSIZE
Format of STACKSIZE
SEGMENT with Data Blocks
Definition of the OVERLAY Statement
Mapping of Overlayed Regions
Format of the END Statement
BPLBND Example, Control Statement Listing
BPLBND Example, Program Information

Listing (Sheet 1 of 8)
BPLBND Example, Program Information

Listing (Sheet 2 0of 8)
BPLBND Example, Program Information

Listing (Sheet 3 0f 8)
BPLBND Example, Program Information

Listing (Sheet 4 of 8)
BPLBND Example, Program Information

Listing (Sheet 50f 8)
BPLBND Example, Program Information

Listing (Sheet 6 of 8)
BPLBND Example, Program Information

Listing (Sheet 70of 8)
BPLBND Example, Program Information

Listing (Sheet 8 of 8)

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Table

PR
—_—— NN BN W —

AN N

1
— O 00 I WL AW

P b

7P DA o
OO WU B W

LII(JI(;I]‘J\QI’I
bttt ot
AN —=O

\OmOIO\]\I
—_— N = N

._.._.._.
—_—
]]
DO =

oo
N)—.h—l

5024789

LIST OF TABLES
Title

Characters That Define Conditions
Punctuation in BPL
BPL Statements
Special Identifiers
Examples of literals
Controller Field Reserved Words
Declaration Statements
CCONTROL Options
Declaration Types and Sizes
Definitions
Allowable Hardware-Name Entries _.
Allowable Recording Modes
The Functions of TRANSLATE Values
Integer Settings in the I/O DESCRIPTOR
Allowable Routine Types
LABEL-use Routines
Assignment Overrides
Assignment Overrides in Arithmetic Operations
Names of Special Brand Communicate Instructions
Special Names for Use with Any Current MCP
Communicates
Special Names for Option 10c
Relational Operators
Permitted Logical Operators
Calling Procedures
READ Constructs
Shared Disk SEEK Constructs
Keyboard Commands in SPOMESSAGE
Storage Queue Parameter Block
Translate Table Address
Result Descriptor Digits
The Status of Result Descriptor Digits
Port Attributes
Subfile Attributes
Routine Types and Their Functions
Routine Types and Their Functions
Bits in the Value Statement
Internal and External I/O File Names
A Typical BPL Program
BPLBND Input and Files
Declaring the Five Segments

OOOO\I\]LIII&ALI\(JIU\M

L
1 'P—-i—‘
—_] == O ON N

I AU ol sl sl ol ol ol ol o
—_ P00
—F U OR AR OO A — B aNOSNS S

P

1

1
00 J N ~J WL =

XV

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

ABOUT THIS DOCUMENT

PURPOSE

This document is intended to describe the various features of the BPL programming language, and to
provide reference material for programmers who make use of this language.

SCOPE

This document describes the BPL lar}guage. Specifically, this document describes both the programming
language accepted by the BPL compiler and various options and control statements used with this com-
piler. This document is not intended as a teaching device but as a reference guide only.

AUDIENCE

The primary audience of this document includes experienced programmers who create programs using
BPL or who need to understand programs previously written in BPL. A possible secondary audience can
include programmers attempting to learn BPL, but the document is NOT structured for such an audi-

ence.

PREREQUISITES

This document is designed for the use of experienced programmers. Programmers using this document
should be familiar with the general concepts and language-independent principles of programming.

HOW TO USE THIS DOCUMENT
To use this document for general understanding of BPL:

Read Sections 1 and 2
To find information about a particular BPL construct:

Locate the desired contruct in Section 3, 4, 5 and 6
To find information about the relationship between BPL and data communication:

Read Section 7 and 8
To find information about the special reader sorter constructs of BPL:

Read Section 9 and 10
To find specific information about the programming in BPL:

Read Section 11 and Appendices B and E

Other reference material is included thfoughout the document. Read Organization later in this section
to find the location of other reference material.

5024789 Xvil

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
About This Document

ORGANIZATION

This document is divided into eleven sections. Seven appendices have also been provided. Brief descrip-
tions of the sections and appendices are provided in the following paragraphs.

SECTION 1: BASIC OVERVIEW

This section contains a brief description of the concepts of BPL. In this short overview, the programmer
can become familiar with concepts and terminology that are basic to the language.

SECTION 2: LANGUAGE CHARACTERISTICS This section presents detailed and specific informa-
tion about the language characteristics of BPL. In general, the material present in this section varies from
notations to the formatting of BPL programs.

SECTION 3: STATEMENTS

This section provides a general description of the three main classifications of statements: declaration,
executable and compiler directing.

SECTION 4: DECLARATION STATEMENTS

This section examines declaration statements in detail. The beginning of this section lists these state-
ments in alphabetical order.

SECTION 5: EXECUTABLE STATEMENTS - CONTROL AND ASSIGNMENT

This section examines executable statements in detail. These statements perform the data transforma-
tion and decision-making functions of a BPL program, and are described in alphabetical sequence in this
section.

SECTION 6: COMPILER DIRECTING STATEMENTS

This section shows you how to use constructs for compiler directing statements. Examples and syntax
statements are included for each type of statement such as: forms control, library routine functions, the
building of Independently Compiled Module (ICM) and conditonal compiling.

SECTION 7: DATA COMMUNICATIONS

This section describes the BPL constructs required to activate the data communications equipment as
defined by the FILE statement. Specific formats as well as detailed descriptions are presented for each
construct.

SECTION 8: PORT FILES

This section contains detailed information as well as program examples and syntax statements concern-
ing port files, which are a useful means of interprogram communication.

SECTION 9: READER SORTER - PRE-4A CONTROL CONSTRUCTS

This section describes the BPL constructs required to activate the READER SORTER equipment as de-
fined by the FILE statement SORTER clause. Specific statement formats as well as detailed descriptions
are presented for each construct.

SECTION 10: READER SORTER - DLP/4A CONTROL CONSTRUCTS

This section describes the BPL constructs required to activate the READER SORTER equipment con-
nected to the system through a DLP (V Series and B 900-series systems) or through a 4A 1/0 Control.

SECTION 11: OPERATING INSTRUCTIONS

This section describes the procedures used to compile a BPL program.

XViii

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
About This Document

APPENDIX A: BPL RESERVED AND KEY WORDS

This appendix contains a list of BPL reserved words in two categories: Class I (RESERVED) and Class
IT (KEY).

APPENDIX B: HOW TO WRITE A BPL PROGRAM

This appendix provides the necessary tools in writing a BPL program. It is assumed that the user has a
general understanding of programming techniques.

APPENDIX C: WARNING AND ERROR MESSAGES
This appendix contains a list of warning and error numbers with their respective descriptions.
APPENDIX D: INDEPENDENTLY COMPILED MODULES (ICM)

This appendix describes how the BPL compiler can generate Independently Compiled Modules (ICMs).
Descriptions are given of three types of ICMs: ICM s, ICM2s and ICM3s. Also included is a detailed de-
scription of the BLPBND program binder and its activation with the ICM2s. For examples of ICM 3s,
see the B 2000/B 3000/B 4000/V Series BINDER Programming Reference Manual.

APPENDIX E: COMMON BPL PROGRAMMING ERRORS

This appendix describes some errors commonly made in writing BPL programs.
APPENDIX F: EBCDIC, USASCII, AND BCL REFERENCE TABLE

This appendix contains tables of the EBCDIC, USASCII and BCL character sets.
APPENDIX G: BPL68

This appendix provides a list of DEFINES which are specified in the BPL68 library file.

RESULTS

After using this doucument, the programmer should be more familiar with the notations and constructs
of the BPL language.

The programmer should be able to find the answers to specific questions about the BPL language, and
to interpret syntax in existing BPL programs.

RELATED DOCUMENTS

B 2000/B 3000/B 4000/V Series MCPIX System Sofiware Operation Guide, Volumes 1 and 2, for
MCPIX running on either B 2000/B 3000/B 4000 and V Series Systems.

V Series MCP/VS System Software Operation Guide, Volumes 1 and 2, for MCP/VS 1.0.

V Series MCP/VS System Software Operation Guide, Volumes 1 through 4, for MCP/VS 2.0 or greater.
B 2000/B 3000/B 4000/V Series MCP Programmers’ Guide

BNA Architectural Description Reference Manual, Volume 1

B 2000/B 3000/B 4000/V Series BINDER Programming Reference Manual

5024789 X1X

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

SECTION 1
OVERVIEW

BPL is an ALGOL-like language which has been designed to make all hardware capabilities available at
the machine language level, and to offer full flexibility in the specification of instructions and data. Con-
structs are provided for all MCP-program interfaces giving the BPL compiler most of the capabilities of
an assembler, plus the advantages of a high-level language.

BPL employs a vocabulary of reserved words and symbols. The use of these reserved words and symbols
to create a program is defined by the language description in this manual.

A BPL program has a distinct format which specifies the relative location of two major program catego-
ries: declarations and executable statements.

Declarations are provided in the language for giving the compiler information about the constituents of
a program, such as array sizes, types of Vglues that variables may assume, or the existence of procedures.
Executable statements specify the functions or transformations to be performed upon the contents of

storage.

The results produced by evaluation of arithmetic expressions can be assigned as the values of variables
by means of assignment statements. These assignments are the principle active elements of the language.
In addition, to provide control of the computational processes and external communication for a pro-
gram, certain additional statements are defined to provide iterative mechanisms, conditional and un-
conditional program control transfers, and input/output operations. In order to provide control points
for transfer operations, statements may be labeled.

Statements are composed of symbols which, in turn, are composed of letters, digits, and special charac-
ters. Symbol strings are then called operands, operators, or control functions. The BPL syntax is con-
cerned with the legal creation of symbol strings and the relative placement of the strings to form executa-

ble or declarative statements.

A series of statements enclosed by the reserved words BEGIN and END is called a compound statement.
If a declaration of identifiers appears immediately after the word BEGIN and prior to the related state-
ments, the statement group is called a block. Both compound statements and blocks provide a method
for grouping related statements, and they therefore can be the constituents of still more compound state-
ments and blocks. A program is a grouping of such statements.

A program written in BPL, called a source program, is accepted as input by the BPL compiler. The com-
piler verifies that all rules outlined in this manual are satisfied, and translates the source program lan-
guage into an object program language capable of communicating with the Master Control Program and
directing the computer to operate on the desired data. Should source corrections become necessary, ap-
propriate changes can be made and the program recompiled.

5024789 ’ 1-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

SECTION 2
LANGUAGE CHARACTERISTICS

GENERAL

Detailed and specific information about the characteristics of BPL is included on the following pages.

Notations

The notation convention that follows enables the reader to interpret the BPL syntax presented in this
manual.

Optional Words

Optional words are included in BPL to improve the readability of the statement formats. All upper case
words not underlined may be included or excluded from the source program. If they are included, they
must be spelled correctly. For example, GO TO A ... is equivalent to GO A Therefore, the inclusion
or omission of the word TO does not influence the logic of the statement.

Key Words

All underlined, upper case words are key words within a statement and are required when the functions
of which they are a part are utilized. Their omission will cause syntax error conditions at compilation

time.

For example:

IF {identifier} THEN statement [ELSE statement]
The key words are IF, THEN, and ELSE.

All underlined special characters shown in the syntax are key symbols and must be indicated in the posi-
tion shown. For example, in a syntactical item such as INTEGER (DYNAMIC) the parentheses are

required.

Lower Case Words

All lower case words represent generic terms which must be supplied in that format position by the pro-
grammer. “Identifier”, “expression”, and ”statement” are generic terms in the preceding example.
Braces

When words or phrases are enclosed in braces { }, a choice of one of the entries must be made. With
reference to the preceding gexample, one of the items (identifier or expression) must be included in the

statement.

5024789 2-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

Brackets

Words and phrases enclosed in the brackets [] represent optional portions of a statement. If the pro-
grammer wishes to include the optional features, he may do so by including the entry as shown between
the brackets; otherwise, it may be omitted. In terms of the preceding example, the ELSE statement may
be included in the statement as an option.

Consecutive Periods

The presence of an ellipsis (...) within any format indicates that the syntax immediately preceding the no-
tation may be successively repeated, depending upon the requirements of problem solving.

Period

The period, or dot, is used to override previously defined attributes of identifiers.

For example:

WORK. +2.2.UN

provides an override of any previously defined length or data type of the variable WORK.
BASIC SYMBOLS
The BPL character set is composed of:

o The upper and lower case letters A through Z.

o The digits O through 9.

e The break character — (underscore).

o The arithmetic operators + (addition), - (subtraction), * (multiplication) and / (division) to pro-
vide mathematical capabilities.

o The logical operators AND, OR, EOR, and NOT (negation).
NOTE
The logical operators may not always generate the same operation. See the
ASSIGNMENT construct and the IF construct.

o The assignment symbol := (or replacement).

o The BPL Compiler accepts the following characters in conditional relations:

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Language Characteristics

Table 2-1. Characters That Define Conditions

Notation

= (or EQL)
"= (or NEQ)
< (or LSS) .
<= (or LEQ)
> (or GTR)
>= (or GEQ)

Meaning

equal

not equal

less than

less than or equal
greater than

greater than or equal

(" represents a
logical “not”
character)

The not sign (*), when used alone, is equivalent to a logical NOT.

The not sign (7) will not print correctly if printing on a BCL printer.

The double special characters must be written as shown above. For example, =< would be an ille-

gal representation of less than or equal (<=).

5024789

[\)

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

o The following table defines the function of each punctuation symbol used in BPL:

Table 2-2. Punctuation in BPL

Symbol Definition Use

. Period or dot Attribute overrides

, Comma Item separator

: Colon Label delimiter

; Semicolon Statement delimiter

(Left parenthesis Enclose parameter lists

) Right parenthesis ' Enclose parameter lists

” Quotation mark Left and right character
delimiter

Pound Sign Right text string
delimiter

Space or blank Data-name delimiter

< Left arrow Assignment or replacement

@ At sign Enclosing undigit literals

[Left bracket Enclosing subscripts or
denote address constants

] Right bracket Enclose subscripts or denote
address constants

% Percent sign Enclose literals

= Colon-equal Assignment or replacement

? Question mark In column 1 indicates an
MCP Control record

$ Dollar sign In Column 1 indicates a
compiler control record

& Ampersand Remainder of card is a
comment

RESERVED WORDS

There is within BPL a set of character strings, called RESERVED WORDS, with preassigned meanings.
Two classes of Reserved Words are defined.

Class I words have preassigned meanings throughout an entire program. Some examples are: EXIT,
PROCEDURE, DO, END. Incorrect usage of a Class I reserved word will always result in a syntax error.

Class II reserved words have preassigned meanings only within certain BPL statements. Examples are
LINK, STACK, PARITY, ENABLE. Incorrect usage of a Class II word within a specific BPL statement
results in a syntax error. The usage of a class II Reserved word in any other portion of the program is con-
sidered as a separate and distinct usage and will not result in a syntax error.

A full list of all classes of reserved words is provided in Appendix A.

2-4

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

LANGUAGE STATEMENTS

There are seven types of statements in BPL. Their names and a brief description of their functions are:
Table 2-3. BPL Statements
Type Function

Declaration Reserves space for, and assigns
attributes to identifiers.

Executable Performs data transformations and
decision-making functions.

Control Iterates, groups, or transfers
_ control to sets of statements.

Procedure Defines a subset of the program to
be used as a subroutine.

Conditional Controls the execution of
individual statements or groups of
statements.

Assignment Performs calculations and/or

assigns a value to an identifier
(data-name).

Compiler Directing Assists the programmer in preparing,
formatting and compiling a program.

IDENTIFIERS

Identifiers are used to name labels, variables, arrays, procedures, files, and so forth. An identifier is creat-
ed from a combination of not more than 30 characters, selected from the following:

A through Z,
a through z,
0 through 9,
The special character “underscore”
NOTE
Labels over 30 characters long will be truncated and warning 0205 will be

generated.

An identifier must start with a letter, which can be followed by any combination of letters, digits, or both.
The latter restriction also applies to labels, since integer labels are specifically disallowed. An identifier
is terminated by a space, comma or semicolon. An identifier may not contain a special character (except
underscore) or a space, and may not be areserved word. An “underscore” may not begin an identifier.

5024789

1
W

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

Scope of Identifiers

Each block automatically introduces a new level of nomenclature; therefore, any named declaration oc-
curring within the block is said to be local to the block in question. Such a declaration means:

o The entity represented by the identifier inside the block has no existence outside the block.

e Any entity represented by the same identifier outside the block is inaccessible inside the block.

An identifier occurring within an inner block and not declared within that block will be nonlocal (or glo-
bal) to it; that is, the identifier will represent the same entity inside the block and in the level or levels
immediately outside it, up to and including the level in which the identifier was declared.

Since a statement within a block may itself be a block, the concepts of local and nonlocal to a block must
be understood. An identifier which is nonlocal to block A may or may not be nonlocal to block B in which
block A is one statement.

A label must be declared in the head of the innermost block in which the associated labelled statement
appears. If any statement in a block is labelled, the declaration of this label must appear within the block.

Duplicate Identifiers

There exists the possibility of having duplicate identifiers in BPL which do not cause a compile time
error. This is true whenever the duplicate identifiers are declared in different blocks. Duplicate identifi-
ers within one block are an error and will result in a syntax error.

Duplicate identifiers do not interfere only because they exist within the scope of their blocks. The case
may occur, however, when the block wich contains the duplicate name is nested within the block that
contains the first occurrence of the name. The compiler resolves this conflict by referencing the most re-
cent occurrence of the name over the scope of the nested block. When this block returns control to the
outer block, the original name is again available.

Special Identifiers

Four special identifiers are provided to facilitate memory management and indexing. Their names (re-
served words) and attributes are as follows:

Table 2-4. Special Identifiers

Name Location Size Type
BASE 0 | UN
IX1 8 Signed 7 SN
X2 16 Signed 7 SN
IX3 24 Signed 7 SN

2-6

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

These identifiers may be used on either side of an assignment statement. When using the index registers,
caution should be shown regarding two areas.

o When using the index registers as unsigned numeric fields (UN), you must place a controller size
of .8 to get the entire 8 digit field (normal size is 7), and a controller .UN to override its signed
numeric properties.

e The values contained in the index registers may be changed by certain types of statements.

IX1 Case statements, Search statement,
and Subscripting

IX2 Certain IO statements (FILE has IX2 ON), and
SEARCH DELINK.

IX3 Procedure/Subroutine calls and EXITs.

It is the programmer’s responsibility to store and restore any significant index values.
ARRAYS

An array is a repetitive set of data-elements. The identifier used with the array definition becomes the
name of the entire array and individual elements in the array are addressed by subscripting. Arrays are
single dimensional, that is, they allow only one value in the subscript. The ARRAY declaration may be
used with all data-types except BIT. '

SUBSCRIPTING

Within an array, the particular element is referenced by using subscripts. A subscript follows the identifi-
er representing the array in a BPL statement, and must be contained in brackets. A space may separate
the identifier and the subscript. A subscript may be either a numeric literal or an identifier. An identifier
used as a subscript may not itself be subscripted.

At the point an identifier is used for subscripting purposes, its value must be greater than or equal to zero,
but not greater than the value shown in the referenced ARRAY clause. The generated object code will
not check the validity of values used for subscripting, and undefined results will occur should the pro-
gram reference a subscripted identifier containing a negative value, or a value above the defined sub-
script range as reflected in the ARRAY clause pertaining to that item. The first entry of an ARRAY is
always referenced with a subscript value of zero.

5024789 : 2-7

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

For example:

EXAMPLE1 :
BEGIN
INTEGER A(6);
INTEGER ARRAY B [9] (6)
INTEGER C (1);

C:=5;

A:=B[C];
IX1:=30;

A:=B[IX1]

END;

In the above example A is a six digit field, B is an array containing 10 six digit entrys. C is a one digit
field used as a subscript. The statements A:=B[C] and A!=B[IX1] are equivalent in the above example,
with the exception that A:=B[C] will generate an extra instruction to compute the value of C.

The following rules apply to subscripting:

o The first data name subscript variable will utilize IX 1 regardless of other uses of IX1 in other sub-
script entries in the same statement.

For example:

EXAMPLE 2:
BEGIN

INTEGER ARRAY A [9] (6);

INTEGER B (1);

INTEGER ARRAY C [5] (6);

INTEGER D (5):=5;

B:=4;
A [B]:= C[IX1] +D;

END;

Both A and C above will be subscripted by IX1. The above example is equivalent to:
A[4]:=C[4] + 5;

The first data-name subscript variable will not utilize IX 1 if IX1 has been used prevxously in the
statement as other than a subscript variable.

For example:

EXAMPLE 3:
BEGIN
INTEGER A (10);
INTEGER ARRAY B [5] (10)
INTEGER ARRAY C [5] (4);
INTEGER I (1);
A. IX1:=B[I]+C[IX1];
END;

2-8

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

BPL will use indirect addressing, not IX 1 to compute the address of B. Indirect address usage will
cause an extra instruction to be generated.

The normal multiply will be generated using a temporary storage area. This is followed by an INC
of the address of B into the temporary area which is then used as an indirect address in the addi-
tion of B to C.

o Subscripts may be signed, however, negative subscripting will cause undefined results.
e Checking for subscript values that exceed table size is the responsibility of the user.

e A negative value in an index regester, when that register is used as a subscript variable, will cause
undefined results.

e Use of IX1, IX2, or IX3 as a subscript data name assumes the user has set the corresponding
index register to the desired value. It should be noted that when a subscript variable uses an index
register with controller overrides, it is considered a data name. Particular use of IX 1 with control-
ler overrides may cause undesirable results.

For example:

EXAMPLE4 :

BEGIN

INTEGER A (6);

INTEGER B (4);

INTEGER ARRAY C [5] (6);
IX1:=B;

. A:=C[IX1.+4.4.UN]

END;

The designation C[IX1.+4.4.UN] is, in this case, effectively the same as C [B].

e A subscript variable is required when referencing an array name, wherever it is used. For exam-
ple, if the ZADDRESS OF” an array name is needed, it is written:

A := [arrayname [0]] ;
when used within an address constant only a literal subscript is valid.

e Ifboth data names in a subscripted statement have controller overrides the statement should ap-
pear as follows:

A.4.+3.UN [B.3.UN] :=...

5024789

1
O

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

LITERALS

A literal is an item of data which contains a value identical to the characters being described. There are
three classes of a literal: numeric, non-numeric, and undigit.

Numeric Literal

A numeric literal is defined as an item composed of characters chosen from the digits O through 9, the
plus sign (+) or minus sign (—), and the decimal point.

e There must be at least one digit in a numeric literal.

¢ The sign of a numeric literal must appear as the left-most character. If no sign is present, the liter-
al is defined as a positive value.

e The decimal point may appear anywhere within the literal except for the right-most or left-most
character of a numeric literal. A decimal point within a numeric literal identifies the literal as a
REAL number. Absence of a decimal point denotes an integer.

e A numeric literal used for arithmetic manipulations cannot exceed 99 signed digits.

Non-Numeric Literal

A non-numeric literal may be composed of any allowable character. The beginning and ending of a non-
numeric literal is denoted by a quotation mark. Any character enclosed within quotation marks is part
of the non-numeric literal. Subsequently, all spaces enclosed within the quotation marks are considered
part of the literal. Two consecutive quotation marks within a non-numeric literal cause a single quote to
be inserted into the literal string. Four consecutive quotation marks will result in a single ” literal.

A non-numeric literal cannot itself exceed 99 characters.

Undigit Numeric Literals

Hexadecimal values 10 through 15 are represented as A through F, and must be bound by @ signs when
used. For example, hexadecimal 11 would be literalized by @B@. A hexadecimal literal cannot exceed
99 digits. Hexadecimal values 10 through 15, when enclosed in percent signs (%), will represent numeric
literals in byte format. For example, %F2% would cause a one-byte literal to be generated.

Table 2-5. Examples of literals

123 & numeric literal (integer)

1.49 & real number

@12@ & same as 12

@4F@ & two digit literal of 4F

”"ABC” & alpha literal

"AB”"C” & an alpha literal of AB”C

%C1C2C3% & same as "ABC” a

%4F% & 1-byte alpha literal of 2 4-bit values of 4F
"4F" & 2 alpha literals - alpha 4, alpha F (F4C6)
rnnn & a single alpha literal of a quotation mark

2-10

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

CONTROLLER FIELDS

Controller fields are used to override the natural attributes of the associated data name. Each controller
field is free form and order is not important. Each controller field must be preceded by a period (.). The
following is a list of valid controller field reserved words:

Table 2-6. Controller Field Reserved Words

UN - Unsigned numeric (4-bit)

UA - Unsigned alpha (8-bit)

SN - Signed numeric (4-bit)

IA - Indirect address (4-bit)

NM - 8 bit numeric

NO - No hardware controller desired.Used with

address constants and is also used to
override the generation of extended

addressing
Xt - Index register |
X2 - Index register 2
IX3 - Index register 3

NOTE
Indirect addressing and indexing may be used on most fields in statements
that produce BCTs. Indirection must be only one address deep for correct
compilation.

The following is a list of valid controller field overides:

Unsigned numeric literal
This number is considered an override field length and must be no greater than 6 digits long.
The override length will be in digits if the data item, after any attribute overrides, is of a 4-bit
type. This would include, for example, an item declared INTEGER and not overridden to a UA
or NM status, or any item with a controller override listed above as 4-bit.
The override length will be in bytes if the data item, after any attribute overrides, is of an 8-bit

type. This would include, for example, an item declared ALPHA or NUMERIC, or any item with
a controller override listed as 8-bit.

Signed numeric literal
Increment/decrement offset to the associated data name. This number may be up to 6 digits long.
Multiple increment or decrement controllers are allowed on a single operand. The resultant offset
on the operand is the sum of all increment or decrement operations.

Example: A.+4.—2.+71 is the same as A.+ 3.

5024789 : 2-11

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

Signed identifier

Plus or minus prior to an identifier takes the length of the identifier as a plus or minus offset to
the associated data name.

Identifier

An identifier in a controller override can be either the name of an indirect field length area or the
name of a data field whose length is used as a length override.

Indirect field length area:
If the identifier names a field located at address 38 or below, and the identifier is not preceded
by a + sign, the contents of the field will be used as an indirect field length. That is, the value in
that field will be taken as the length of the data name whose attribute is being overriden. If the

field contains zero, a length of 100 will be used. (This is the only mechanism for obtaining varia-
ble field lengths.)

Length of field as length override:

If the identifier names a field whose address is above address 38, the length of that field is used
as the length of the data name whose attribute is being overridden. (See EXAMPLES, notes 5 and
6.)

Index register

The address of the data name is offset (incremented/decremented) by the value in the specified
index register. The following limitations apply:

o The offset is always in digits regardless of other overrides.

o The sign of the value in the index register determines whether the offset is an increment
or a decrement. A + or — sign may not precede the index register name.

e Only one index register at a time can be used in a data name’s override.

o The index register can only be used as an address offset, not as a length override. REAL
DOUBLE or FIXED operands can only have the indexing overrides specified.

2-12

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

EXAMPLES:
BEGIN
INTEGER INFL (2) = 38;
ALPHA ABC (6):= "ABCDEF";
INTEGER DEF (10):=1234567890;
INTEGER G (6):= [ABC.NOJ];& note 1

G:= ABC.UN.+10.3:& note 2
G:= ABC.INFL.UA.IX1;& note 3
G:= ABC.INFL;& note 4
G:= ABC.G.UN;& note 5
G:= ABC.G.+G.UN; & note 6
END;
Notes:

o

. G would contain the address of ABC with NO address controller. The NO controller override
specifies that an address controller value of zero is desired regardless of the definition of ABC.

2. G would contain 3 digits; 2 from the end of ABC and 1 from the beginning of DEF. G contains
000C61.

3. If INFL contains 02 and IX1 contains 2 then G would contain 000023.
4. If INFL contains 1 then G contains 000001.
5. G would contain C1C2C3 the digit equivalent of the first 3 bytes of ABC.

6. G would contain information at six digits past the information in note 5.

FORMAT OF BPL PROGRAMS

BPL programs are segmented into logical subdivisions called blocks. Each block begins with a BEGIN
statement and terminates with an END statement. Blocks have a definite relationship to other blocks
within a program, either side by side (disjoint) or subordinate (nested).

A block is disjoint from any other block if neither is a statement within the other; and a block is nested
if it is wholly contained within another.

Block Format

A block is the basic structural element in BPL. Blocks have a rigid internal structure: first, all label and
identifier declarations and procedures; second, all executable statements, which may or may not include
nested blocks. The structure of all nested blocks must be exactly the same.

5024789 : 2-13

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Language Characteristics

A block becomes a segment when a BEGIN is followed by a declaration.

For example:

BEGIN
A:=B;
END;

is considered a block, but has no effect on the physical program structure.

BEGIN
INTEGER A (6);
END;

This block causes a new segment and its resulting overlay mechanism to be generated at this location.
Segmentation can be overridden; see the UNSEGMENTED declaration.

Program Entry Point

Execution of a BPL program starts at the first executable statement in the outermost block; that is, the
statement which follows all nested procedures. (See also Appendix B, How to Write a BPL Program, and
Appendix D, Type II ICMs, under Program Entry Point.)

Program Size Considerations
The first executable instruction in an overlayable segment cannot begin above address 300000.

A procedure entry and exit can occur at an address above 300000. In place of a simple EXIT, the compil-
er generates a branch to a routine in low memory. This routine moves the 6-digit return address from
the stack into an extended address field, and then exits to that extended address. This avoids the prob-
lems (such as unintended indirect addressing or indexing) which vvould otherwise occur when the high-
order digit of the address is 3 or greater.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

SECTION 3
STATEMENTS

GENERAL

Statements are the BPL equivalent of natural language sentences. They contain a complete sequence of
operations (one complete idea) which are logically separate from other similar sequences. Where an ex-
pression evaluation results in a numerical value, statement evaluation specifies functions or assignments
for the values. For example, the expression A + B results in a numerical value, while the statement X
:=A + B; (read X is replaced by A + B) assigns the value of the expression to the data-name X.

Statements are always terminated by a separator (;, ELSE, END, DO, UNTIL).

Statements fall into three main classifications: declaration, executable, and compiler directing.

DECLARATION STATEMENTS

DECLARATION statements relate memory space and data attributes to data-names and procedure lo-
cations.

EXECUTABLE STATEMENTS

EXECUTABLE statements are further broken down into control and assignment statements.

CONTROL statements determine the sequence in which statements are to be executed. They pass con-
trol to procedures, bind groups of statements together or conditionally specify which one of several state-
ments is to be executed next.

PROCEDURE CALL Statement

The major control statement in BPL is the PROCEDURE CALLing statement. It consists of a
procedure-name, followed by any parameters enclosed in parentheses and terminated by a semi-colon.
For example, a procedure ABS requiring one parameter would be invoked by the statement:

ABS (VALU);

There are two considerations governing the use of procedure calling statements. First the called proce-
dure must be within the scope of the calling procedure.

Second the called procedure will always return control to its calling procedure. To return control, the pro-
grammer should generally structure the program logic to “fall through” the last END statement in the
procedure, although alternate means are available and will be described later. The immediately following
executable statement in the calling procedure is executed when control is returned.

5024789 : 3-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Statements ~

DO UNTIL Statement

Statements may be bound or grouped together by the DO, IF ... THEN ... ELSE, or CASE statements.
The DO statement binds all following statements up to an UNTIL statement as if they were one
statement.

For example:

EXAMPLES :
BEGIN
INTEGER X(5);
INTEGER A(4);
PROCEDURE ROUTINE (Y,B);
INTEGER Y (5);
INTEGER B (4);

BEGIN
X:=Y*B;
END;
DO
BEGIN
X:=X+1;
A:=1;

ROUTINE (X,A);
END UNTIL X>5;
END;

A DO group is always executed at least once. The individual statements within the group may be any exe-
cutable statements including imbedded DO statements.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Statements

WHILE DO Statement

The WHILE condition DO statement performs iterations of the statements within the group until the

WHILE condition is met.

For example:

"EXAMPLE7:
BEGIN
INTEGER X(5);
INTEGER A(4);
PROCEDURE ROUTINE (Y,B);
INTEGER Y (5);
INTEGER B (4);
BEGIN
X:=Y*B;
END; :
PROCEDURE PRTN;
BEGIN
X:=X+1;
ROUTINE (X,A);

WHILE X<4 DO PRTN;

END;
PRTN;
END;

IF Statement

The conditional-expression within the IF statement, when evaluated, designates which of two statements

is to be executed.

For example:

EXAMPLES :
BEGIN
SIGNED INTEGER A (1);
SIGNED INTEGER B (1);
SIGNED INTEGER X (1):=5;

BEGIN
IF A GTR X THEN DO
BEGIN
A:=A-1;
B:=B+1;
END
UNTIL A LSS X
ELSE DO
BEGIN
A:=A-1;
B:=B-1;

END UNTIL A GTR X;

END;

After the chosen statement executes, control passes beyond the end of the IF statement.

5024789

3-3

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Statements

CASE Statement

The CASE statement is an expanded form of the IF statement. The conditional expression evaluat.ion
chooses one statement from among all the following statements up to the END statement for execution.
After that one statement is executed, control passes to the first statement beyond the END statement.

DO, IF, CASE, PROCEDURE invocations or ASSIGNMENT statements may be imbedded in any of
the above statements in any order and to any depth.

ASSIGNMENT Statements

The ASSIGNMENT operation moves the contents of one identifier, called the source field, into the
memory-space of another identifier, called the destination field. Alignment, truncation or padding is
performed during assignment and is controlled by the length attributes of the identifiers involved, and
by the type of the receiving field.

The type attribute divides alignment control into two cases. The first case is an alphabetic move, which
aligns the data-names on their left-most or high order characters. The assignment is then performed in
a left to right order until one of the fields is exhausted. If the destination field is the shorter, data is trun-
cated from the right. If the source field is the shorter, then the destination field is padded on the right
with space characters (%40%).

The second case is a numeric move, where the receiving field is aligned on the right-most, or low-order
digit. If the destination field is shorter than the number of significant digits in the sending field, the over-
flow indicator is set and the operation terminates. If the source field is the shorter, the destination field
is left-filled with zeros.

COMPILER DIRECTING STATEMENTS

Compiler Directing statements include those which handle forms control, library routine functions, the
building of Independently Compiled Modules (ICM), and conditional compiling.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

SECTION 4

DECLARATION STATEMENTS

GENERAL

Declaration statements are detailed in this section. For fast reference, an alphabetical list of these state-
ments is shown in table 4-1. This table lists the heading (in this section) where you will find a description

of each declaration statement.

Declaration

ADDRESS
ALPHA
ARRAY
BIT
CDATE
COMMON
CONTROL
DEFINE
DOUBLE
DYNAMIC
FILE

FIXED DOUBLE
FIXED INTEGER

FIXED REAL
INDIRECT
INTEGER
LABEL

MOD
NUMERIC
OWN
PICTURE
PROCEDURE
REAL

SIGNED INTEGER

SUBROUTINE

5024789

Table 4-1. Declaration Statements

Heading

ADDRESS

Data Declaration
Data Declaration
BIT

CDATE
COMMON
CONTROL
DEFINE

Data Declaration
DYNAMIC
FILE

Data Declaration
Data Declaration
Data Declaration
Data Declaration
Data Declaration
LABEL
ADDRESS/Data Declaration
Data Declaration
Data Declaration
PICTURE
PROCEDURE
Data Declaration
Data Declaration
SUBROUTINE

4-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

ADDRESS

The ADDRESS declaration is used to reset the location counter at compile time to a predetermined ad-
dress or memory location.

The format of the address is:

[MOD] integer }

ADDRESS = { DATA-name-1

ADDRESS

Figure 4-1. Format of ADDRESS

MOD, if used, must be followed by an integer which does not exceed four digits in length and which has
a value greater than zero.

The use of MOD with a value other than 1, 2, or 4 will cause the entire block in which it appears to start
at a MOD location that is the common denominator of all MOD statements within the block.

The “"ADDRESS =...” construct may be used inside a PROCEDURE to redefine either stack relative or
OWN local variables.

When ADDRESS is used with a register name (e.g., IX2), BASE or a literal, the address reverts to a BASE
relative address. Otherwise, this construct is used to provide a segment relative address. It should be
noted that data may be initialized while in a ”segment relative” mode; but cannot be initialized while
in a ”"base relative” mode at a location greater than the beginning of the segment dictionary, or 200,
whichever is smaller.

"ADDRESS ;” resets the location counter to the point referenced prior to the last “/ADDRESS ="
statement.

It should be noted that ”/ADDRESS =" and “ADDRESS ;” are nested in a similar way to BEGIN/ENDS.
Each "ADDRESS =" except "/ADDRESS MOD m” must have a matching YADDRESS ;” or a syntax
€rTor OCCUrs.

Example 1:
BEGIN
ADDRESS = BASE. +280;

INTEGER A(10):=3;
END;

This is an illegal statement because an address greater than 200 is being initialized.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Example 2:
BEGIN
INTEGER B(16) :=4;
ADDRESS = B ;
INTEGER C(16) :=5;
ADDRESS ;
END;

This statement is legal; segment relative location B and C will contain 0000000000000005.
Example 3:

BEGIN
INTEGER A(1) = BASE;
ADDRESS = A ;

END;

This is equivalent to:

BEGIN
INTEGER A(1) = BASE ;
ADDRESS = BASE ;

END;

5024789

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

BIT

The BIT construct is used to symbolically reference a bit in memory.

The format of the BIT declaration is:
TRUE
BIT [identifier-1]
FALSE [, identifier-1]

[., identifier-n] 5

Figure 4-2. Format of BIT

Identifier-2 through identifier-n, specifying additional bits, must be separated by commas (,). If a semi-
colon (;) is used, the declaration is terminated.

If the value TRUE is specified, the bit will be set (on). If the value FALSE is specified, or if a value is
not present, the bit will be reset (off).

For example:

EXAMPLEO :

BEGIN
BIT A, B, C ;
BIT D :=TRUE, E := FALSE ;
BIT F ;

END;

Bits of a digit are allocated in the order: 8-bit, 4-bit, 2-bit, and -bit.

-4-4

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

CDATE

The function of CDATE is to specify a compile time generation of the date compiled. The format for
CDATE is:

INTEGER identifier-1 (5) := CDATE

Figure 4-3. Format of CDATE

The compiler will store in identifier-1 the current date in Julian form (YYDDD).

CDATE may only be used in this form of declaration because it only has meaning at compile time.

5024789 4-5

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

COMMON

COMMON declarations are used to define and optionally initialize data areas being accessed by multi-
ple ICMs.

The format of the declaration is:

COMMON identifier-1 BEGIN common-declarations ; END :

Figure 4-4. Format of COMMON

Identifier-1 is a 6 character unique name by which the data area is known. Up to 100 uniquely named
common blocks are permitted. Common declarations may only be used in an ICM.

Common declarations provide for the definition of type and length of data areas, and for the initializa-
tion of the data declared. Refer to the heading DATA DECLARATIONS in this section for the appropri-

ate formats.
Example:

COMMON A BEGIN
SIGNED INTEGER C(11), D(11); (See note 1.)

END;
COMMON B BEGIN
INTEGER E (4) := 1; (See note 2.)
ALPHA JUNK (2); (See note 3.)
SIGNED INTEGER F(11) := +3; (See note 4.)
END;

Notes:
1. A 24 digit area has been set up consisting of two signed 11 digit fields.
2. E 1s preset to 1.
3. JUNK is an unitialized 2 character alpha field.
4. F is preset to C000000000003.

Refer also to Appendix D.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

CONTROL

The CONTROL statement is used to provide the BPL compiler information regarding the hardware fea-
tures and program format desired for the resultant object program.

The format of the CONTROL declaration is:

CONTROL option [, option. . .1 ;

Figure 4-5. Format of CONTROL

One or more options can be selected from the following list. When multiple options are specified, they
must be separated by commas.

Table 4-1. CONTROL Options

[MEMORY] := integer-1 EXTENDED

STACK := integer-2 DICTIONARY := integer-3
B3500 TAPE

OP {B 3300 } BREAKOUT {W}

CONTROL MEMORY requires an integer-l being no greater than 6 digits in length. The object program
memory size will be set to the specified size, rounded up to the next modulo 1000 digits. Absence of this
control will create an object program whose size is the size of the object program plus stack, rounded up
to the next modulo 1000 digits.

CONTROL STACK requires an ihteger-2 being no greater than 6 digits in length. The object program
stack size will be set to the specified length. Absence of this control will force a stack size of 1000 digits.

CONTROL OP specifies the valid instruction set. Absence of this statement will cause the B2500/B3500
OP code set to be considered valid. CONTROL OP B4700 permits the generation of certain machine in-
structions which were not available on B2500/B3500 processors, including accumulator operations, bit
set and reset, and search linked list (SLL and SLD) instruction.

If set, CONTROL OP 4700 will remain in effect until reset by a CONTROL OP B3500 statement, and
conversely. This allows B3500/B4700 programs to be maintained in a single symbolic file. Warning 0501
will be generated if an attempt is made to set (reset) an already set (reset) option.

Setting a data-name to zero with CONTROL OP 4700 will always produce a BIT RESET instruction.
However, signed fields will not use the bit reset instruction, as this destroys the sign (@C@).

5024789 4-7

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

If CONTROL OP B4700 is not set, FIXED REAL, FIXED DOUBLE, and FIXED INTEGER declara-
tions are not syntaxed. The following attributes are assigned in such a case:

FIXED REAL A ; - REAL A(8);
FIXED DOUBLE B ; - REAL B(16);
FIXED INTEGER C ; - SIGNED INTEGER C(7).

Warning 0500 will be produced when this situation exists. Note that mixed INTEGER and FIXED oper-
and arithmetics and assignments cannot be handled without the OP B4700 option set.

CONTROL EXTENDED specifies that the program may exceed 100000 digits of data and/or coding,
and that the extended address feature is available. All addresses within any segment that exceeds the
above limit will have extended addressing, and-all “INDIRECT” declarations and name parameters will
have extended addressing. It is important that this particular control statement appear before any decla-
ration that is affected by the above rules. If an arithmetic operation is performed on a variable declared
INDIRECT and CONTROL EXTENDED is set, then the computation will be performed on the right-
most six digits (as if a ”.+2.6” modifier was used).

If CONTROL EXTENDED is set and a segment exceeds 100KD (100000) digits, base relative and stack
relative addresses will not be made extended if the program is not an ICM.

CONTROL DICTIONARY specifies (by integer-3) the base-relative address of the start of the segment
dictionary for the program. If no declaration appears, the segment dictionary will begin at base-relative
address 64. Integer-3 must be greater than or equal to 64, a MOD 4 address, and less than 6 digits in
length. The programmer should note that base-relative data may be pre-initialized only up to base-
relative address 200 or the start of the segment dictionary, whichever is lower.

CONTROL BREAKOUT is used to specify whether a programmatic BREAKOUT should be directed
to magnetic tape or disk. If omitted, any BREAKOUT will be to system default.

NOTE
A CONTROL declaration should be made only once for each type of varia-
tion. CONTROL EXTENDED, when used, must be declared before any
INDIRECT declarations. See examples under data declaration.

4-8

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

DATA DECLARATION

Data declarations are uued to define and optionally locate and/or initialize data areas within a BPL
program.

The format of the data declaration statements are:

Option 1:

[OWN] declaration-type [ARRAY]
[identifier-1] [Linteger-ﬂ] (integer-2)
[MOD integer-3 ; h

. (see option2)

3
1 = (see option3)

1 = (see option4) J

"

Figure 4-6. Format of Data Declaration, Option 1

The optional OWN declaration, if used within a procedure, causes those local variables preceded by
OWN to become segment relative as opposed to stack relative. OWN placed before any data type outside
of a procedure is ignored. The resources required for those declarations preceded by OWN are com-
manded only when that segment is in memory. This option offers to the programmer, a more efficient
utilization of resources.

The declaration-type must be one of the following:
ALPHA

to specify 8-bit alphabetic data. ALPHA type identifiers may not be used in an arithmetic opera-
tion unless a controller override is used (see CONTROLLER FIELDS).

BIT
to define an individual bit as data which can be referenced symbolically. This declaration may
contain a controller override, an index, or an increment or decrement. The order of allocation is
8-bit, 4-bit, 2-bit, 1-bit.

DOUBLE

Use to define a real number for use in a double precision operation. Accumulator instructions
will never be generated for any field defined in this category.

FIXED DOUBLE
Use to define a real number having a sixteen digit mantissa for use in a double precision opera-
tion. If OP B4700 (see CONTROL statement) has been specified, accumulator commands will

be used on this field whenever applicable.

5024789 4-9

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

FIXED INTEGER
Use to define an integer of seven digits plus sign. If OP B4700 (see CONTROL statement) has
been specified, accumulator commands will be used on this field whenever applicable.

FIXED REAL .
Use to define a real number having an eight digit mantissa. If OP B4700 (see CONTROL state-
ment) has been specified, accumulator instructions will be used on this field whenever applicable.

INDIRECT
Use to define a field to be used to store an address. Although the INTEGER statement could be
used for this purpose, INDIRECT will compile as a six or eight digit address depending on the
CONTROL EXTENDED setting and will be forced to a MOD 2 address.

INTEGER
Use to define a numeric (4-bit) field.

NUMERIC
Use to specify a numeric field of 8-bit characters. Data defined as NUMERIC may be used in
arithmetic operation.

REAL .
Use to define a real number for use in a single precision operation. Accumulator instructions will
never be generated for fields defined in this category. REAL and DOUBLE mean the same thing
for B3500 floating operators.

SIGNED INTEGER
Use to define a signed numeric (4-bit) field.

The ARRAY option is used to define a sequence of data-items which possess identical formats. If the
ARRAY option is used, any reference to identifier-1 must be subscripted (refer to SUBSCRIPTING).
It is the user’s responsibility to assure that the value of the subscript does not exceed the bounds of the
ARRAY.

Identifier-1 is the name to be assigned to this memory area (with the specified data attributes). If it is not
necessary to reference this declaration in the program, the identifier may be omitted.

Integer-1 specifies one less than the number of elements in an ARRAY and must be present when
ARRAY is used. When the identifier associated with an ARRAY is referenced, subscripting must be
used. If for example, integer-1 has a value of 5, the items in the ARRAY must be referenced as
identifier-1 [0] through identifier-1 [5].

Integer-2 denotes the size of the entry, and must be enclosed in parentheses. This size takes on the attri-
butes of the declaration-type; that is, the number of bytes for ALPHA, and the number of digits for IN-
TEGER. A SIGNED INTEGER declaration will take one more digit of memory than specified for
integer-2, this digit being the sign digit. REAL and DOUBLE will take 4 more digits than specified (sign,
2 digit exponent, sign). Integer-2 is required for all data declarations except those listed below, for which
it is invalid.

4-10

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Table 4-2. Declaration Types and Sizes
Declaration-Type Size
FIXED DOUBLE 19 digits plus sign (16 digit mantissa)
FIXED INTEGER 7 digits plus sign (8.UN if OP 4700 is set)
FIXED REAL 11 digits plus sign (12.UN if OP 4700 is set)

INDIRECT 6 digits unless CONTROL EXTENDED is
specified, in which case it is 8 digits.

MOD forces the address to the next exact multiple of a specified number (integer-3) unless the address
is currently modulo integer-3. ALPHA, INDIRECT and NUMERIC are assumed MOD 2 unless other-
wise specified. FIXED, DOUBLE, FIXED REAL, and FIXED INTEGER are always assumed MOD 4.

Reals cannot be mixed with other data types. Only FIXED operands and integers with mod-4 addresses
and proper sizes (7SN, 8UN, 11SN, 12UN, 19SN or 20UN) that are not name parameters can be mixed
within expressions, and only when CONTROL OP B4700 is set.

A semicolon is used to terminate the declaration.

Option 2:

(from Option 1) . . . , [ARRAY]

[identifier-2] [_[jntegér-4l] (integer-5)

[MOD integer-6]

(see Option 3)
i = (see Option 4)

Figure 4-7. Data Declaration, Option 2

A declaration-terminator of a comma allows additional declaration of the same declaration-type. All
fields following the comma have the same function as described for Option 1.

5024789 4-11

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Option 3

(from Option 1) . . L= {identifier-3}

integer-7
{ , (see Option 2)}

Figure 4-8. Data Declaration, Option 3

An equal sign is used to equate the identifier (identifier-1) address to the address of a previously defined
identifier (identifier-3) or to a base relative address (integer-7).

Option 4

(from Option 1) . .. : =

" [identifier-4] 7
TRUE
FALSE

ALL

L JSL _] literal-1 B (see Option 2)
JSR :

7

Figure 4-9. Data Declaration, Option 4

The colon-equal is used to preset the contents of the data area to either the ADDRESS OF identifier-4
or to a literal.

If identifier-4 is used, it must be enclosed in brackets. The contents of the data area will then be preset
to the ADDRESS OF identifier-4.

If TRUE is specified, the data area identifier-1 will contain the value 1; if FALSE is specified, the value
will be 0.

The ALL construct will force the entire data area to be initialized with repetition of the specified literal
(literal-1).

JSL is used to left-justify INTEGER or NUMERIC fields, appending any trailing zeros required; and
JSR is used to right-justify ALPHA fields, creating leading blanks when required.

If presetting an ARRAY, each element must be assigned a value.

NOTE
Uninitialized declarations will contain unpredictable data.

4-12

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Examples:
EXAMPLE 10:
BEGIN
CONTROL EXTENDED; & See note 1
CONTROL MEMORY : =200000; & See note 2
INTEGER ARRAY BIG [999] (100); & See note 3
INTEGER A(5); & See note 4
ALPHA B(6),&(1):="."; & See note 5
INTEGER C(6):=1; & See note 6
INTEGER D(8):=[A]; & See note 7
INTEGER ARRAY E [3] (2):-01,04,08,13; & See note 8
INTEGER INFL38 (2)=38; & See note 9
ALPHA F(200):=[ALL] "AB”; & See note 10
ALPHA G(5):=[JSR]"A”; & See note 11
END;
Notes:

1. CONTROL EXTENDED is used to indicate that the program may exceed 100000 digits and
that extended addressing will be generated whenever applicable.

2. This statement specifies that the program will be at least 200000 digits in size.
3. This entry will set up an array of 1000 entries of 100 digits each.

4. A is an uninitialized five digit field.

5. B is a six byte field, followed by a one byte field containing a period.

6. C is a six digit field preset to 000001.

7. D will contain the address of A in its extended form because it resides at an address over 100000
and CONTROL EXTENDED has been specified.

8. E is an array with four, two digit entries. These four entries are preset to 01, 04, 08, and 13
respectively.

9. INFL38 is a two digit field as absolute memory location 38, which may be used in indirect field
length moves.

10. F will be preset by the compiler to ABABAB...

11. G will be preset to "bbbbA” (b = space).

5024789 4-13

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

EXAMPLE 11:

BEGIN

CONTROL OP B4700; & See note 12
FIXED REAL R; & See note 13
FIXED INTEGER C:=1; & See note 14
FIXED REAL D:=100.0; & See note 15
FIXED DOUBLE D1:=100.0; & See note 16
SIGNED INTEGER E(7):= +3; & See note 17
SIGNED INTEGER F(7):= -0000003; & See note 18
INTEGER G(6):= "ABC”; & See note 19
ALPHA H(3):= 123; & See note 20
INTEGER I(10):= [BASE.UA]; & See note 21
ALPHA J(3):= 12345; & See note 22
END;
Notes:

12. The statement specifies that a program be generated which will utilize machine instructions
implemented since the B3500.

13. R is an uninitialized real number.

14. C is preset to 1.

15. D is preset to C03C10000000.

16. D! is a double precision number preset to C03C1000000000000000.
17. E will be preset to C0000003.

18. F will be preset to D0000003.

19. G will contain 000123.

20. H will contain F1F2F3.

21. I will contain 0000200000.

22. J will contain F1F2F3 truncated.

4-14

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Examples:
EXAMPLE 12:
BEGIN
CONTROL STACK:= 500,
BREAKOUT, .
DICTIONARY:= 200;
ALPHA A(4) MOD 100:=12; & See note 23
INDIRECT NAMEIA; & See note 24
INDIRECT B:= [A]; & See note 25
INDIRECT ARRAY C [3]: & See note 26
INDIRECT G:= [A.UA]; & See note 27
INDIRECT H:= [A.IX1]; & See note 28
INDIRECT I = A.+6; & See note 29
NUMERIC J(4):= 1234; & See note 30
DOUBLE K(12):= 100.0; & See note 31
REAL L(8):= 100.0; & See note 32
END;
Notes:

23. A is at the next even 100 address available and is preset to F1F24040.

24. NAMEIA is the name of a field which may be used for indirect data declaration.
25. B contains the address of A.

26. This is an array of indirect address containers

27. G contains the address of A with an Alpha controller.

28. H contains the address of A with an IX1 controller.

29. I points to the address of A plus 6.

30. J contains F1F2F3F4.

31. K is preset to C03C100000000000.

22. L is preset to C03C10000000.

5024789

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

DEFINE

The DEFINE statement provides the capability to insert multiple copies of specified BPL source text
into a program during compilation, from only one image of the source text; and to define often-used rou-
tines, with or without parameters, for use throughout a program.

Defines are transparent declarations that replace the calling DEFINE name with the defined portion.
The DEFINE declaration assigns the meaning of the defined identifiers. Any reference causes the re-
placement of the defined identifier being referenced by the exact text, including all punctuation, which
is associated with the identifier.

The format of the DEFINE declaration is:

DEFINE ident-1 [iparam. -1, param. -2, . . .)] = [defined-portion] # ;

Figure 4-10. Format of DEFINE

Identifier-1 is required and when (and wherever) used in the BPL program will reference the specified
definition (defined portion).

The parameter string is optional. If used, the DEFINE is known as a PARAMETRIC DEFINE. When
a PARAMETRIC DEFINE is referenced an argument may or may not be included for each parameter
specified. If excess arguments are provided, they will be ignored. If insufficient arguments are provided,
the corresponding rightmost parameters will be dropped from the symbolic code.

The defined-portion may be any BPL language element except a nested DEFINE declaration. The
defined-portion is optional; however, if omitted, spaces will replace the define call (identifier-1).

The number sign (#) is required to terminate the DEFINE, and the semicolon (;) is required to terminate
the statement. ~

During compilation, syntax errors (if any) in a definition are noted following the use of the defined
identifier.

A DEFINE statement must appear within the declaration section of the program or of a block. The scope
of a DEFINE is the same as the scope of any identifiers in that declaration section; that is, it exists in its
declaring block and all directly nested blocks.

Multiple DEFINEs may appear within one DEFINE statement and must be separated by commas.

Reserved words may be DEFINEA (used as identifier-1), but their special significance is lost within the
scope of the DEFINE statement.

The actual parameters associated with an occurrence of a definition name are not restricted to simple
identifiers. They may contain complex constructs but must be delimited by zero level commas, i.e., com-
mas not enclosed within paired parentheses or braces. The actual parameters replace the formal parame-
ters in the DEFINE statement in a left to right order and their number must be equal. The maximum
number of parameters is limited to ten per definition-name.

Definitions can be nested, but not more than eight levels; that is, defined identifiers may be used in other
definitions. For instance, in the table below, the definition for D3 is equivalent to the definition for DD.
In the example, the definition AA is considered nested one level in the first declaration. In the second
declaration, the definition AA 1is considered nested two levels, and so forth.

4-16

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Table 4-3. Definitions

Examples

1. DEFINE REPEAT = ABC
(TAGA, X) #;

IF X EQL 9 THEN REPEAT;

2. DEFINE IN = INTEGER #
AL = ALPHA #;
IN X (5);
AL Y (4);
IN Z (2);

3. DEFINE TRAIL (A, B, C) =
IF A EQL ZERO THEN A := B
ELSE C #;

TRAIL (TAGA, ABS [BX],
CX := SQRF [BX]);

4. DEFINE X = ABC #,
ABC = X #;

5. DEFINE D1 = AA #;
DEFINE D2 = D1 D1 #;
DEFINE D3 = D2 D2 #;
DEFINE DD = AA AA AA AA #;

5024789

Comments

The source code contained
between the = and the #

sign of the DEFINE statement
will be copied into the

BPL program whenever the
word REPEAT is used.

This statement is equivalent
to IF X EQL 9 THEN ABC
(TAGA, X);

The source code generated
would be:

INTEGER X (5);

ALPHA Y (4);

INTEGER Z (2);

This statement generates the
following:

IF TAGA EQL ZERO

THEN TAGA := ABS

[BX] ELSE CX := SQRF [BX];

This statement will cause an
diagnostic error at compile
time when the compiler
attempts to expand either

X or ABC into its TEXT.

Nesting example. D3 and DD
both generate the same
symbolic code (AA AA AA AA).

4-17

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Examples:
EXAMPLE 13:

BEGIN
INTEGER TAGA (5);
INTEGER X (1);
PROCEDURE ABC (A,B);
BEGIN
INTEGER A (5);
INTEGER B (1);
OWN INTEGER C (2);
C := 4;
A := A/C
A := A*B;
END;
DEFINE REPEAT = ABC (TAGA,X)#;
A: = 76;
B: = 2;
REPEAT;
REPEAT;
END;

EXAMPLE14:

BEGIN

DEFINE IN = INTEGER #, AL = ALPHA#;

IN X (5);

AL Y (4);

IN Z (2);

DEFINE X = ABC #, ABC = X#; & ERROR NUMBER 2719 IF
DEFINE D1 = AA#; & ABC OR X EVER USED
DEFINE D2 = D1; D1 #;

DEFINE D4 = D2; D2 #;

DEFINE DD = AA;AA;AA;AA#;

PROCEDURE AA;

BEGIN
IX1 := IX1 + 1;
END;
D1;
D2;
D4;
DD;
END;

4-18

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

DYNAMIC

The DYNAMIC declaration provides a means of addressing the area of memory between the largest
nested block (of the block in which the declaration is made) and the program stack.

The format of the DYNAMIC declaration is:

INTEGER
[identifier-1 (DYNAMIC [> integer-1]) ,
ALPHA { }

Figure 4-11. Format of DYNAMIC

The DYNAMIC declaration type must be ALPHA or INTEGER.

Identifier-1 is optional. If present, it is the symbolic name by which the DYNAMIC area is referenced;
if absent, the DYNAMIC area may not be referenced symbolically.

. Integer-1 specifies the minimum size of requested DYNAMIC areas and must be a numeric literal no
more than six (6) digits in length. The size is expressed in units of bytes for ALPHA declarations and in
units of digits for INTEGER declarations. A DYNAMIC area will always be adjusted to a MOD 4
address.

ADDRESS = MOD n within a dynamic block will reset the location counter for that block to a modulo-n
value. The dynamic block for that segment will begin at an address that is the least common multiple of
all mod factors for that block.

The use of a comma (,) allows more declarations of the same type (ALPHA or INTEGER) to follow; a
semicolon terminates the DYNAMIC declaration. However, these declarations will not address the DY-
NAMIC area.

The DYNAMIC statement does not reserve memory space, nor does it affect the memory size of a pro-
gram. If the requested (integer-1) amount of DYNAMIC memory is not available, a warning message will
be provided at compile time. To increase the amount of available DYNAMIC space, a CONTROL
MEMORY instruction must be provided.

Data areas in the DYNAMIC area may be defined by equating a data-name to the DYNAMIC name, or
by an ADDRESS construct, however a DYNAMIC area cannot be pre-initialized. BPL does not check
subscript range, therefore an array could be declared following an ADDRESS where the number of ele-
ments in the array is effectively ignored. Since the DYNAMIC area size may vary from compile to com-
pile, the number of array elements would also vary.

It is the responsibility of the programmer to manage this DYNAMIC area (from end of coding to base
of stack) using indexing since DYNAMIC may cross the 100 KD limit.

To use this feature, the user/programmer must do the following:

o Insert "DYNAMIC DECLARATIONS” in those segments where all subsections of coding are to
be protected.

5024789 : 4-19

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Example:

(OUTER SEGMENT)
INTEGER DYN (DYNAMIC > 1000);

(SEGMENT A)

The DYNAMIC area
starts at a MOD 4
location following
the longer of
segment A or

| (SEGMENT B) segment B.

Figure 4-12. Declaration of DYNAMIC

e Programmatically determine memory size prior to using the program stack. If memory size is
greater than compiled size, add an adjustment factor to the stack pointer (BASE.+40.UN.6).

Example:

INTEGER TOTAL MEM (6),
STACK_WANTED (4) := 2000;

TOTAL_MEM := MEMORY;

BASE.+40.6 := TOTAL_MEM - STACK_WANTED;

Figure 4-13. Determining the Size of Memory

e Manage the DYNAMIC area by:

- Determining its size by subtracting the address of its base from the program stack pointer or

- Saving the original stack pointer and considering it to be a limit address for DYNAMIC.

WARNING
If the stack pointer is adjusted following any procedure entry, then results
are unpredictable.

4-20

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

FILE

The FILE declaration is used to establish file attributes.
The format of the FILE declaration is:

FILE file-name, hardware-name

[SINGLE]
[[integer-1 BY] integer-2]

[, “literal-1""]
ALPHA

_,_RECORD identifier-1 integer-3

INTEGER
[LBUFFERS integer-4 [= file-name-2]

[L BLOCKED integer-5]

| oN
JIx2]
- OFF
WORKAREA
, 1 NO WORKAREA
[, WORK]

[, READ AFTER WRITE]

AREA)]
, ASSIGN BY CYLINDER
FILE

NN

[, SAVE integer-7]

[SAVE FILE]

ALPHA
BINARY
., MODE EBCDIC

' ODDPAR

5024739

\@Bj [integer-sl/ T

4-21

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

MULTIFILE “literal-2""]
OPTIONAL

(.
[,
SERIAL
RANDOM _ KEY identifier-2
SHARED
TAPE
BACKUP DISK
NO NO BACKUP DISKPACK

[TAPE}]
[RERUN L LDISK integer-9]

[, FORMS]
]
. TRANSLATE %
4
5
X _ 5
0 1
. CHECK 1
R 2 1
4
5
6
| L - JJ
[, PROCESSOR]
[, SORT]
[LABEL
IOERROR
. ROUTINE EQP identifier-3
SORTER
! STALEMATE
i " BUR
, LABEL |} USA [identifier-4] [integer-10]
uL
L L INST
I " IGNORE
. RETRY | ABORT
- RTSLRESET
| L RTSLSET

4-22

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

The keyword FILE must be the first word in the FILE statement. The remaining entries may be in any
order.

File-name is used to identify this file for all file handling statements (READ, WRITE, OPEN, CLOSE,
etc.). File-name must be unique in the first six characters if the use of an MCP label equation (FILE) com-
mand is anticipated.

The hardware-name entry is required and defines the peripheral to be used by this file. Allowable
hardware-name entries are:

Table 4-4. Allowable Hardware-Name Entries

B500 DISKPACK TAPE (any type)

B774 DISPLAYUNIT TAPEGCR (Group-coded
recording tape only)

B2500 PRINTER TAPEPE (Phase-encoded tape
only)

B3500 PTPUNCH TAPE7 (7-channel tape only)

B4700 PTREADER TAPEY (9-channel tape only)

B9350 PUNCH TC500

B9352 READER TC700

DCP - SORTER) TOUCHTONE*

(Reader/Sorter not
on DLP or 4A Control)

DISC SORTER4 TWX

DISK (Reader/Sorter on
DLP or 4A Control)

* TOUCHTONE is a registered trademark of A.T. & T.

The SINGLE option is for DISKPACK files only and is used to restrict a file to one pack. If omitted, a
data file may be assigned to multiple packs.

The integer-1 BY integer-2 clause is required for DISK and DISKPACK files, and is invalid for any other
devices. Integer-1 specifies the number of areas (pages) to be assigned to the file. If the integer is omitted,
a default value of 20 will be used. The maximum number of areas allowed is 100.

5024789 : 4-23

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Integer-2 specifies the number of records per area, and must be a multiple of the blocking factor. Al-
though this clause is required for all DISK and DISKPACK files, the specified values will be ignored for
those files OPENed INPUT.

Literal-1 (enclosed in quotes) is used to specify the external file-ID. If not present, the first six characters
of the internal file name (file-name) will be used.

The RECORD entry is required and must be followed by an identifier (identifier-1) which specifies the
RECORD name (and work area) for this file. Identifier-1 must be previously declared unless the NO
WORKAREA technique is used, in which case the buffer address will be used when reference is made
to the identifier. The ALPHA or INTEGER entry is optional, and is used to describe the data type of
integer-3. If omitted, ALPHA will be used. Integer-3 is required and defines the maximum record size.

The BUFFERS clause is optional. If omitted, or if hardware-name is SORTER4 the default value of 1
is used. The maximum number of buffers (integer-4) which may be declared is 9, except that files of type
SORTER or SORTER4 must have no more than 3 buffers. Each buffer requires additional memory
space in the compiled object program. The file-name-2 option is used to equate the file buffers of the
present file to the buffer area of the previously declared file-name(s). The original buffer area ((8 + buffer
length) x number of buffers) must equal or exceed the buffer area size for the present file. Note that only
buffer areas are being equated.

The function of the BLOCKED clause is to specify the number of logical records to be contained in a
block. If this clause is omitted, records are assumed to be unblocked.

The IX2 option is used to set or reset the IX2 flag in the File Information Block. If set, each READ or
WRITE performed for this file will cause the MCP to update IX2 to point to the beginning of the next
logical record. This is primarily intended for use on blocked files using the buffer access technique (NO
WORKAREA).

The default values are:
" ON If NO WORKAREA and multiple buffers are used.
ON If NO WORKAREA and blocked records, regardless of number of buffers.
OFF 1If a work area is specified.

OFF If unblocked, one buffer, and NO WORKAREA 1is specified.

The NO WORKAREA option is used to specify that the records are accessed from the buffer area. A sep-
arate work area will not be assigned by the compiler. WORKAREA may be explicitly spec1f1ed if de-

sired, for documentation purposes.

The WORK option specifies to the MCP that this DISK or DISKPACK file is to be used as a work file,
and that the MCP should insert the program mix number in the second and third character position of
the file-ID, thus creating a unique file-name at object run time. The use of this option allows multi-
programming of the same program without creating duplicate file-IDs for commonly used work files. If
WORK is specified, PROCESSOR is assumed.

The READ AFTER WRITE option may be used after a DISK write to perform a read for parity check.

4-24

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

The ASSIGN clause is optional, and is permitted for DISK or DISKPACK files only. The allowable op-
tions are:

AREA
For 100-byte DISK files, this option will assign areas to successive EUs or IDs within the
default subsystem. For disk pack files, all areas after the first will be assigned to successive
packs in such a manner that no pack with the same restriction status (as the pack with the
first area) will have two areas of the file while another similarly restricted pack has none.

CYLINDER
This option applies only to disk pack files, and specifies that areas be assigned by cylinder
boundary. Cylinder boundary allocation can be limited in that the maximum areas as-
signed thus on a pack will be one less than the number of cylinders.

FILE ‘
This option applies only to 100-byte DISK files and assigns disk space on the default sub-
system by disk file number (within the program).

NN
This option applies only to 100-byte DISK files and assigns disk space on the EU, ID, or
subsystem defined by NN. If subsystem assignment (as opposed to specific EU or ID) is
desired, NN may be specified as 90 (default subsystem), or 91 - 93 (subsystem 1-3).

The SAVE option is used to specify the number of days a magnetic tape file is to be saved before it can
be automatically purged by the MCP and used for other purposes. Integer-7 is limited to numbers 001
through 999. If the SAVE clause is omitted, a save factor of 1 is assigned to preclude expiration action
when the system is being operated just prior to and shortly after midnight (2400).

The SAVE FILE option causes the file to be CLOSEd with LOCK by the MCP if the file is OPEN at End-
Of-Job. (If a disk or diskpack file has not been previously saved in the directory, and SAVE FILE has not
been specified, the file is purged if the creating program terminates without closing the file with RE-
LEASE or LOCK.)

The MODE clause is used to specify the recording mode for certain peripheral devices. Standard record-
ing mode is assumed if this clause is omitted. Allowable recording modes are:

Table 4-5. Allowable Recording Modes

DEVICE STANDARD NON-STANDARD
TAPE7 Odd Parity Even Parity
PUNCH EBCDIC BCL

PTPUNCH BCL Binary

The word VARIABLE specifies a magnetic-tape file containing variable-length records. The user must
specify the actual size (in bytes) of the variable-length records in the first four bytes of each record, and
each record size must be an even number of bytes. The four-character variable-size indicator is included
in the physical size of each record. Integer-8 must be used if the file is input to the SORT intrinsic to indi-
cate the most frequently used record size.

The MULTIFILE clause is used with multi-file tape and disk pack files. Literal-2 is required immediate-
ly following the word MULTIFILE, and is used as the MULTIFILE-ID.

5024789 4-25

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

The word OPTIONAL is used to declare an INPUT file which may not be required to execute the job.
If the file is not present at file OPEN time, the system operator may use the OF keyboard response to in-
dicate an OPTIONAL file, thus forcing an end-of-file condition on the first READ of the file.

The DISK or DISKPACK file types may be used to specify as RANDOM, SHARED, or SERIAL. The
default is SERIAL if this clause is omitted. If RANDOM is specified, the KEY clause is required.
Identifier-2 has different meanings depending upon the hardware-type used. For DISK or DISKPACK,
it is the identifier of the 8-digit actual key. For a SORTER file it contains the identifier of the manual
end of file. For an OLBANKING file it contains the address into which the MCP stores the terminal unit
number (DIGIT) upon completion of each I/0 operation. SHARED indicates a DISK or DISKPACK
file which may be shared between multiple processors. Files declared SHARED are assumed RANDOM
and the KEY clause must be used. The BACKUP option will cause printer or punch files to be assigned
to backup media depending upon the MCP options. BACKUP TAPE causes printer files to be assigned
to printer backup tape, regardless of MCP option settings, and BACKUP DISK or DISKPACK causes
printer or punch files to be placed on backup disk or diskpack, regardless of MCP options.

The NO BACKUP option will prevent the file from going to backup media unless otherwise specifically
directed by the operator through an ODT message or label equate action.

The RERUN clause sets up a communication with the MCP to create periodic control points (breakouts)
so that an operational program encountering a malfunction can be restarted at the last RERUN control
point instead of restarting from the beginning of the program. Integer-9, the rerun counter cannot exceed
five digits. TAPE or DISK may be indicated in the CONTROL statement to specify where the RERUN
(breakout) information should be stored. (Program breakout is not supported on MCP/VS 2.0 and later.)

Use of the FORMS option with a PRINTER or PUNCH file will cause the MCP to halt the program at
file OPEN time and to display a console message stating that special forms are required. For files sent
to a backup medium (by the BACKUP option or an operator’s action), the special forms message is dis-
played when the file is printed/punched.

The TRANSLATE option is used if code translation is to be performed on data before it is input to the
program’s buffer or written to the output medium.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Declaration Statements

The TRANSLATE values have the following meanings:

Table 4-6. The Functions of TRANSLATE Values

TRANSLATE Value Function
0 (default for non- Most devices - no translation
datacomm devices) PTPUNCH, PTREADER - process 7-bit
odd parity

4 (default for

PTPUNCH, PTREADER - translate
BCL/EBCDIC
(6-bit odd parity)

PTPUNCH, PTREADER - process 8-bit,

no parity

Datacomm - translate lower case to
upper case (non-standard
translation)

Datacomm - Standard translation

datacomm devices) MT7 - translate BCL/EBCDIC

TAPEPE, TAPEGCR - translate
ASCII/EBCDIC

The programmer must also be aware of the TRANSLATE executable statement, which allows digit/
character translation by table.

The CHECK clause is for MICR files only (except those using 4A controls) and is used to specify which
MICR check control is to be set in the I/O DESCRIPTOR. The allowable options are:

Integer

5024789

0

Table 4-7. Integer Settings in the I/O DESCRIPTOR
» Function

Read and check all fields or 7.75 inches
maximum.

End read validity check at seconds S2.
End Read at second S2.

Format and report errors in amount and trans-
mit fields.

Both 1 and 4.

Both 2 and 4.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

The PROCESSOR option causes the MCP to put the processor number in the fifth position of disk file
file-IDs. Processor is assumed if the WORK option is specified.

The SORT option indicates to the compiler that the attributes of this file (record length, blocking factor,
etc.) are to be used to compute the minimum amount of memory required for the SORT intrinsic.

The ROUTINE clause is used to specify procedures which are in addition to the standard procedures
supplied by the MCP. These are commonly known as “use” routines,in reference to the COBOL conven-
tion of file USE routines in the DECLARATIVES section. BPL USE routines correspond to COBOL
USE routines. Allowable ROUTINE types are:

Table 4-8. Allowable Routine Types
ROUTINE Type Function

LABEL Magnetic tape - identifies a label
handling routine.
SORTER - identifies the routine to
process memory access, cannot read,
unencoded, and double document errors.

IOERROR Magnetic tape - identifies the routine
to which the MCP will transfer control
if it encounters an irrecoverable parity
error on this file.

Datacomm - specifies BREAK key
procedure.

SORTER - amount field error procedure.

EOP PRINTER - end of page routine
(channel 12).

SORTER - transmit field error routine.
SORTER SORTER - item pocket - select routine.

STALEMATE DISK - contention use routine.Entered
when MCP detects a stalemate condition
on a shared file.

Identifier-3 is the procedure name and must immediately follow the ROUTINE type. In addition,
identifier-3 must have been previously declared as a label.

A use routine is defined to be a cluster of program instructions, identified by a use routine label and ter-
minated by the reserved word "EXITROUTINE” followed by the file name.

A use routine label is simply a BPL label occurring somewhere in the segment in which the file is de-
clared. A use routine is not a procedure and must not be declared with a PROCEDURE declaration. It
is merely a branch point within the mainline code of the segment containing the FILE declaration.

4-28

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Since the use routine is a labeled routine, the normal blocking rules of BPL will guarantee that the use
routine itself is not segmented outside of the segment containing the File Information Block. Each use
routine has a special exit to the MCP and therefore should not be executed by other routines unless the
EXITROUTINE communicate is bypassed.

A use routine is entered when the MCP detects the occurrence of the condition specified in the preceding
paragraphs under FUNCTION, during an input or output operation possibly including OPEN/CLOSE
on the file. It is then the programmer’s responsibility to take any necessary action.

A LABEL routine is entered whenever a label is encountered or written on the file for which routine
LABEL is specified. LABEL use routines have access to the following information through the reserved
word ROUTINETYPE:

Table 4-9. LABEL-use Routines

Identifier Indicator
ROUTINETYPE. 1 0=Input, 1=Output.
ROUTINETYPE. + 1.1 0=Beginning, 1=Ending.
ROUTINETYPE.+2.1 0=File,1 =Reel.
ROUTINETYPE.+3.3 Reel number for multi-reel files

It is the programmer’s responsibility to check ROUTINETYPE fields for the applicable label type.

The LABEL type clause is used to specify the type of label required for this file. Allowable types are: BUR
to indicate Unisys standard label, USA to indicate USASCII standard label, UL to indicate an unlabelled
file or INST to indicate an installation-defined label. Identifier-4 provides a symbolic reference to the
label area and must not be previously declared. integer-10, when used denotes the length in bytes of any
user area above the standard label size. For example, a Unisys standard label is 80 bytes in length. If
integer-10 is used as a value of 20, the total label area reserved will be 100 bytes.

The RETRY option allows retry short/long (RTSL) action for variable length files. IGNORE initiates no
special action, no matter what the setting of the MCPVI option RTSL is. ABORT always gives action
on short/long reads. RTSLSET gives action only if RTSL is set (default).

The STALEMATE clause is used to specify the action to be taken when shared disk is used, and two proc-
essors are accessing the same file. While one processor may try to read a record which is locked by a sec-
ond processor, the second proessor may try to read a record locked by the first processor. This condition
will cause both processors to wait indefinitely unless the USE ON STALEMATE option is used.

5024789 : 4-29

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Example:
BEGIN
LABEL LABELPROC;
FILE X ..., ROUTINE LABEL LABELPROC, ...;
& Procedure declarations

& Executable code

LABELPROC:

& Program branches to this point when a label is
& detected on file X
EXITROUTINE;

END;

4-30

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

LABEL

The LABEL declaration is used to reserve identifiers which will be used as control points within a proce-
dure or block.

The format of the LABEL declaration is:

LABEL label-1 [, label-2,. . ., label-n]

’

Figure 4-14. Format of LABEL Declaration

All LABEL declarations must appear in the declaration portion of the block in which they are to be used.
Duplicate labels may appear in a program in different blocks; if duplicate labels appear within the same
block, they cause a compile time syntax error.

When labels are used within the program body, they must be followed by a colon (:). They may only occur
within coding. This is used to specify a control point which may be used in a transfer of control statement

" such as GO TO or end-of-file.

5024789 : 4-31

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

PICTURE

The PICTURE declaration is used with the EDIT statement to create an edited field, primarily for
printing.

The format of the PICTURE declaration is:

PICTURE identifier-1 i= ”Iiteral-1:;'

Figure 4-15. Format of PICTURE Declaration

The word PICTURE is required to identify the PICTURE declaration.

Identifier-1 may be any BPL identifier and will be used in the EDIT statement to reference the PIC-
TURE declaration.

The colon-equal (:=) is required.

Literal-1 may be any valid COBOL editing picture, and must be contained in quotation marks and termi-
nated with a semicolon.

The micro-operator string generated by the PICTURE declaration assumes a standard edit table at
BASE. +48 containing its characters plus sign (+), minus sign (-), asterisk (*), period (.), comma (,), dollar
sign ($), zero, and space.

Examples:
" PICTURE PICT1 := ”99/99/99";
PICTURE PIC2 := "Z(8)”;
PICTURE PC3 := "ZZ9=99-=9999";

4-32

B 2000/B 3000/B 4000/V Series BPL. Compiler Programming Reference Manual
Declaration Statements

PROCEDURE

A PROCEDURE declaration defines the procedure-identifier as the name of a procedure. Whenever the

identifier followed by the appropriate parameters appears in the program, it produces a call upon the
procedure.

The format of the PROCEDURE declaration is:

[FORWARD] [SEGMENTED] [level-number] PROCEDURE [.]

procedure-identifier [(formal-parameter-listl] ,
[VALUE value-parameter-list ;] [parameter-specifications ;]
BEGIN [procedure-body-declarations _;] procedure-body

END ;

Figure 4-16. Format of PROCEDURE Declaration

The optional word FORWARD indicates that the following procedure declaration isa FORWARD dec-
laration and that the actual declaration follows elsewhere in the same block. FORWARD PROCEDURE
declarations are used in order to satisfy a BPL rule that procedures must be declared before they are used.
If A calls B and B calls A, one of them must be declared FORWARD with the actual declaration appear-
ing later in the segment. FORWARD PROCEDURE declaration up to and including the
parameter-specifications.

The optional word SEGMENTED is used to indicate that the following procedure is to be SEGMENT-
ED (i.e., an overlay).

Level-number is used as a method to structure PROCEDURE overlay levels without having the PROCE-
DURESs physically structured. The level-number may be 0-99 inclusive with 0 being the default. Level
numbers are relative to each other, within a block.

For example:

Program Declarations Memory Layout
PROCEDURE A; [A GLOBAL
SEGMENTED PROCEDURE B; [F GLOBAL
SEGMENTED 7 PROCEDURE C;

SEGMENTED 5 PROCEDURE Dj; B [E LEVEL O
SEGMENTED PROCEDURE E;

PROCEDURE F; [D LEVEL 1 (5)

SEGMENTED 7 PROCEDURE G;
[C [G LEVEL 2 (7)

5024789 | 4-33

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

The word PROCEDURE is required to specify the type of declaration. The optional dot (period) indi-
cates that an increment instruction to protect any local variables in the stack should not be generated
since this is a low level procedure which does not call any other procedures.

The procedure-identifier is required and may be any allowable BPL identifier. The procedure-identifier
will be used within the program (block) to invoke the procedure.

The formal-parameter-list is used to name any formal parameters which may be required by the PROCE-
DURE. The formal-parameter-list, if used, must be enclosed in parentheses, and multiple parameters
must be separated by commas. The maximum number of parameters for any PROCEDURE is 10.

The semicolon following the formal-parameter-list is required.

The VALUE option allows for the declaration of VALUE parameters (as opposed to name parameters).
VALUE parameters are actually contained in the stack when a PROCEDURE is entered; whereas name
parameters have their addresses in the stack, and are accessed indirectly. VALUE parameters have no
meaning outside of the PROCEDURE in which they are declared. The word VALUE, followed by one
or more of the named parameters in the formal-parameter-list specifies that those parameters are
VALUE parameters. If the value-parameter-list contains more than one entry, they must be separated
by commas. A semicolon delimiter is required to terminate the VALUE parameter list.

Parameter-specifications are required if parameters are involved. Each parameter named in the formal-
parameter-list must be declared, regardless of whether or not it is included in the
value-parameter-list.

The word BEGIN is required to indicate the beginning of the PROCEDURE body.

The procedure-body-declarations are those variables local to the PROCEDURE. Labels used within the
PROCEDURE should be declared here. Those declarations not preceded by OWN are stack-relative;
that is they are placed in the stack. OWN declarations are segment-relative. Only OWN variables can be
pre-initialized. A stack variable cannot be forced to a MOD n address.

The PROCEDURE body is a statement that is to be executed when PROCEDURE is called. This state-
ment may be any of those listed in the syntax of statements and therefore may be a PROCEDURE state-
ment calling upon itself. Procedures may thus be called recursively.

A PROCEDURE body itself must not be labeled. A GO TO statement appearing in a PROCEDURE
should not lead outside that PROCEDURE. Branching outside the PROCEDURE without an EXT
causes the stack to retain its PROCEDURE state when the program is no longer there. If any statement
in a PROCEDURE body is labeled, the declaration of that label must appear in the appropriate block
heading within the PROCEDURE body.

The word END is required to terminate the PROCEDURE declaration.

4-34

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Examples:

EXAMPLE:
BEGIN
PROCEDURE A; (See note 1.)
BEGIN
IX1 := O;
IX2 := 1;
END;
PROCEDURE Bj; (See note 2.)
BEGIN
INTEGER TEMP (2);
IX1 := O;
TEMP := IX2.UN.+6.2;
END;
PROCEDURE. C (Al, B1l, Cl) (See note 3.)
VALUE Al, C1; ‘
INTEGER Al (6);
ALPHA B1(11);
SIGNED INTEGER C1(7);
BEGIN
OWN INTEGER D1(1):=0;
IX1 := Cl+Al;
Bl := ”I LOVE LUCY”;
D1 :=1
END;
FORWARD PROCEDURE D; & (See note 4.)
FORWARD PROCEDURE E(J,K,L,); & (See note 5.)
VALUE J, K, L;
BIT J, K, L;
SEGMENTED PROCEDURE F(X,Y); & (See note 6.)
ALPHA X(6);
NUMERIC Y(4);
BEGIN
LABEL L;
L: X :=Y;
END;
PROCEDURE E (J,K,L); & (See note 7.)
VALUE J,K,L;
BIT J,K,L;
BEGIN
J := TRUE
END;
PROCEDURE D; & (See note 8.)
BEGIN
DISPLAY "PROC D”;
END;
END;

5024789 4-35

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

Notes:
1. A is a procedure with no formal parameters and no local variables.

2. B is a procedure with no formal parameters but a 2 digit local variable (TEMP, which is stack
relative).

3. Cis a procedure that is not to have an INC as first instruction to protect local variables. There
are 3 formal parameters (2 of which are VALUE parameters) and a segment relative local varia-
bles (D1).

4. Simple FORWARD PROCEDURE.

5. Eisa FORWARD PROCEDURE declaration of a PROCEDURE having 3 VALUE parameters
J, K, L.

6. F is a SEGMENTED PROCEDURE that has 2 name parameters.
7. E is actual declaration of PROCEDURE mentioned in note 5.

8. D is actual declaration of PROCEDURE mentioned in note 4.

4-36

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

SUBROUTINE

The function of a SUBROUTINE declaration is to specify that another Type I ICM will be called from
within this Type I ICM, and designates the structure of its parameters.

The format of the SUBROUTINE declaration is:

SUBROUTINE subroutine-identifier [(formal-parameter-list) |

[parameter-specifications ;]

Figure 4-17. Format of SUBROUTINE Declaration

SUBROUTINE is treated by the compiler much asa FORWARD PROCEDURE declaration, in that it
merely states that a Type I ICM will be called, and describes its parameters. It does not occupy any mem-
ory locations.

The subroutine-identifier is required and may be any allowable BPL identifier. The subroutine-
identifier will be used within the Type I ICM to invoke the SUBROUTINE.

The formal-parameter-list is used to name any formal parameters which may be required by the SUB-
ROUTINE. The formal-parameter-list, if used, must be enclosed in parentheses, and multiple parame-
ters must be separated by commas. The maximum number of parameters is 10.

The semi-colon following the formal-parameter-list is required.

Parameter-specifications are required if parameters are involved. Each parameter named in the formal-
parameter-list must be declared. All parameters involved with a SUBROUTINE must be name
parameters.

The SUBROUTINE declaration is valid only when being compiled to a Type I ICM file and is not per-
mitted otherwise.

Example:
BEGIN
@?ICM ” ANYTNG” & Type I ICM DECLARATION
PROCEDURE HERE;
BEGIN
SUBROUTINE THERE (ONE, TWO); & SUBROUTINE DECLARATION
SIGNED INTEGER ONE (7), TWO (7); & PARAMETERS
SIGNED INTEGER ABC (7), DEF (7); & LOCAL VARIABLES
ABC :=IX1;
DEF :=1IX2;]
THERE (ABC,DEF); & SUBROUTINE CALL
END; & OF ICM
@ICM
END;

5024789 4-37

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Declaration Statements

UNSEGMENTED

The UNSEGMENTED declaration is used to inhibit segmentation and its resultant overlay mechanism
when encountering a BEGIN followed by declarations.

The format of the UNSEGMENTED declaration is:

BEGIN UNSEGMENTED

Figure 4-18. Format of UNSEGMENTED
The BEGIN must be matched by a corresponding END to complete the UNSEGMENTED block.

Care must be taken to ensure that the block is not ”“fallen into” as invalid instructions may result. It is
the programmer’s responsibility to manage this area.

4-38

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

SECTION 5
EXECUTABLE STATEMENTS/CONTROL AND ASSIGNMENT

GENERAL

Executable statements perform the data transformations and the decision-making functions of a BPL
program. For ease of reference, they are described in alphabetical sequence on the following pages.

5024789 5-1

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

ACCEPT

The function of the ACCEPT statement is to permit entry of low-volume data through the operator’s
console (ODT).

The format of the ACCEPT statement is:

ACCEPT identifier-1

Figure 5-1. Format of ACCEPT Statement

This statement causes the operating object program to halt and wait for appropriate data to be entered
on the operator’s console (ODT). The ODT entry will replace the contents of memory specified by the
identifier. The systems operator answers an ACCEPT halt by keying in the following message:

mix-index AXdata-required

If a blank appears between the AX and data-required, the blank character will be included in the data-
stream.

If the number of characters entered exceeds the size of the receiving identifier, the data will be truncated
from the right. If the number of characters entered is less than the size of the receiving identifier, an ETX
(@03@) will be placed in memory following the last character entered. The number of characters entered
may not exceed 60.

Because of the inefficiency of entering data through the keyboard, this technique of data transmission
should be solely restricted to low-volume input data.

An indirect field length override on identifier-1 will be ignored.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

ACCUMULATOR CONSTRUCTS

A twenty-digit accumulator is provided for fixed-length arithmetic operations. Accumulator load, store,
and arithmetic commands consist of a two digit operation code and one address syllable. The Accumula-
tor Manipulate instruction is a four-digit instruction consisting of a two-digit operation code and two
variant digits. The functions of the Accumulator Manipulate instruction are:

e Normalize Accumulator

e Convert real to integer

e Set signrof Mantissa to +.

o Set sign of Mantissa to -.

o Complement Sign of Mantissa

o Clear Accumulator to -99+0

o Increment Algebraically the Exponent by the value in the second variant digit.

o Decrement Algebraically the Exponent by the value in the second variant digit.
Accumulator instructions are generated only when CONTROL OP B4700 is specified.

All data referenced by accumulator commands is assumed to be word-aligned, fixed-length data in the
form (FIXED INTEGER or FIXED REAL) requested by the instruction, and REAL numbers may be
single or double precision, as specified in the address controller of the instruction.

The accumulator commands are associated with an error trap for overflow, underflow, or d1v1de by zero
conditions. If the error trap has been enabled by the programmer, error branching and passing required
parameters are a by-product of the accumulator instructions.

Accumulator instructions are generated by the compiler as they are needed, as explained in succeeding
text. Except as shown, there is no BPL syntax to generate explicit Accumulator Manipulate instructions.

The BPL language provides the following means to use the accumulator:
IACCUM is used to specify usage FIXED INTEGER.

RACCUM is used to specify usage FIXED REAL.
DACCUM is used to specify usage FIXED DOUBLE.

5024789 5-3

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Following are examples of accumulator usages:

FIXED INTEGER X,A;

FIXED REAL R;

FIXED DOUBLE DOUBON;
JACCUM := X ;

X := TIACCM ;

RACCUM := R ;

JACCUM := RACCUM ;

JACCUM := IACCUM + A ;
RACCUM := RACCUM + 100.0 ;
RACCUM := RACCUM * 100 ;

INTEGER LOAD

INTEGER STORE

REAL LOAD

CHANGE REAL TO INTEGER
INTEGER ADD

REAL ADD 403410000000
ACCUMULATOR MANIPULATE
ADJUST EXPONENT BY + 2
ACCUMULATOR MANIPULATE
ADJUST EXPONENT BY - 1
LOAD DOUBLE TO ACCUMULATOR
CHANGE INTEGER TO REAL AND
REAL MULTIPLY

RACCUM := RACCUM / 10 ;

DACCUM := DOUBON ;
RACCUM := IACCUM * 1.5 ;

R RRRRPPRRRRRRR

An accumulator name on the right side of an assignment statement states previous usage of the accumu-
lator. No check is made by the compiler to ensure this.

Example:

THE ACCUMULATOR’S
USAGE IS INTEGER FROM
FIRST INSTRUCTION YET
SECOND INSTRUCTION
SAYS PRIOR USAGE IS
REAL

CORRECT USAGE

JACCUM := 5 ;
RACCUM : RACCUM. +3.5;

PR R R R

RACCUM := TIACCUM.+3.5;

Multiple instructions may be generated by the compiler to get the individual operands in the same mode
etc., for arithmetic operations.

5-4

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

ARM

The function of ARM is to request that the processor error/program exception soft interrupt be enabled.
The format of the ARM statement is:

ARM

Figure 5-2. Format of ARM Statement

The ARM statement is most valuable for programs which must provide a graceful termination or take
special actions at a processor or program error or at breakout/restart time. If ARM is enabled, a processor
error or program exception, defined as follows, will cause the MCP to transfer control to the program’s
soft interrupt routine. If ARM is not enabled when an error occurs, the program is terminated.

When an exception occurs, the MCP places the following data into the ARMed program:

Location Contents

BASE. +64.6 Base-relative program address at the time of
the interrupt.(Absolute address with MCPs
prior to ASR 6.1 MCPVI.)

BASE.+70.3 Base register value
BASE.+73.3 Limit register value
BASE. +76.1 ASCII, overflow, and comparison flip-flops
stored as:
8-bit = ASCII
4-bit = Overflow
2-bit = COM L
1-bit = COM H
BASE. +80.4 Result descriptor (see following text)

The program is then reinstated at the address specified in BASE. + 94 if that is a valid address. If it is not
valid, the program is not terminated.

NOTE _
Since the segment dictionary begins at address 64 by default, it must be
moved to at least address 100 using the CONTROL DICTIONARY

clause.

5024789 5-5

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Three classes of Result Descriptors may be returned to the program if it is ARMed. The first class con-
sists of Pseudo-Processor Result Descriptors indicating hardware-detected errors. The second class con-
sists of Breakout/Restart Result Descriptors indicating a breakout or restart has occurred or that the op-
erator attempted a breakout (BR or BD request) when operator-initiated breakout is inhibited. The third
class consists of Preterm Error Codes denoting various software detected program errors.

Processor Result Descriptors are of the form Cn00, where n is a 1-digit integer.

Breakout/Restart Result Descriptors are of the form COn0, where n is a 1-digit integer.
Pretermination Result Descriptors are of the form 9nn0, where nn is a 2-digit integer.

Result Descriptor numbers are documented in the System Software Interfaces Reference Manual.

The ARM statement complements the current setting of the soft interrupt toggle. If the toggle is off, ARM
will turn it on. If it is already on, executing the ARM statement will turn it off. It is the programmer’s
responsibility to know the ARM status.

A program is no longer ARMed when the ARM branch has been taken.
For additional information concerning the ARM statement, refer to the DISARM statement.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

ASSIGNMENT

The assignment statement is used to assign the value of an expression to a specified identifier.

The formats of the assignment statement are:

@]
T
Byl

<
<
(@]

—
3l2[S
rloln
[—

identifier-1 : = [[

literal-1
identifier-2

|
>
—
r
[

|
wn
—

[
[%2]
Py

Figure 5-3. Format of the Assignment Statement, Option 1 (MOVE)

The double special character colon-equal (:=) is called the assignment symbol and is read as "is replaced
by”.

The value of literal-1 or identifier-2 to the right of the assignment symbol is assigned (moved) to
identifier-1. Any identifier must have been previously declared before it can be used.

Assignment overrides are used primarily in the simple assignment statement to override (or force) a par-
ticular compiler action. The following assignment overrides are available:

5024789 5-7

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Executable Statements/Control and Assignment

5-8

Override

ALL

CHR

JSL

JSR

MVC

TGL

WDS

Table 5-1. Assignment Overrides
Function

The [ALL] override indicates that some form of ”spreading” is to
take place. If indirect addressing is specified for the receiving
field, and the size of the receiving field is not an integral multi-
ple of the size of the sending field, a syntax error will result. The
entire contents of the sending field (identifier-2) or the literal
value (literal-1) will be repeated throughout the entire receiving
field. If indirect field length is specified in either the sending or
receiving field (or both), the lengthof the receiving field is taken
as the number of repetitions of the entire sending field desired;
that is, the effective length of the receiving field will be the prod-
uct of the lengths of the sending and receiving fields. The send-
ing field (or literal) may not be signed, nor may it exceed 100
(bytes or digits) in length.

The ”“character” override forces the generation of a “move alpha”
(MVA) command. Both addresses must be MOD 2 or a syntax
error will occur. A literal (literal-1) is not allowed with this override.

The ”justified left” override has meaning only when it is desired
to have a numeric field justified left with zero fill to the right.

The ”justified right” override has meaning only when it is de-
sired to have an alpha-numeric field justified right with blank fill
to the left.

The “move and clear” override is the same as the [WDS] over-
ride except that the sending field is set to 4-bit zeros.

The "toggle” override indicates that the comparison indicator
setting following this instruction is significant and the compiler
should not attempt to optimize this particular move instruction.
An error message will result if a single move instruction cannot
complete the operation.

The “words” override forces the generation of a “move words”
(MVW) command. Both addresses must be MOD 4 or a syntax
error will occur. If sizes are not equal, a warning is issued and
the smaller size is used. The size (or number of words) to be
moved is placed right-justified in the digit AF and BF fields of
the generated code. If indirect field length is indicated for either
operand, these AF and BF fields will be changed. Specifying indi-
rect field length for identifier-2, the sending field, will place the
indirect field length in the AF field, which is the number of thou-
sands and hundreds of words to be moved. Specifying indirect
field length for identifier-1, the receiving field, will place this in-
direct field length in the BF field, which is the number of tens
and units of words to be moved.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Consider the following example:

BEGIN LABEL DOIT;

INTEGER INFLA (2) = 36;
INTEGER INFLB (2) = 38;
INTEGER WORDA (8) MOD 4;
INTEGER JUNKA (400);
INTEGER WORDB (8);

. INTEGER JUNKB (400);
DOIT:

INFLA := 1;

INFLB := 2;

WORDA.INFLB := [WDS] WORDB.INFLA;
END:

This example will generate a move of 0102 words (408 digits) starting at WORDB and moving to
WORDA. A literal (literal-1) is not allowed with this override.

If the sending field size is greater than the receiving field length, OVERFLOWA may occur. A numeric
move will not take place and no warning is generated. If the sending field is 100 or more longer than the
receiving field, numeric move OVERFLOW results are defined.

identifier-3 : = identifier-4 L)_(ﬂ-l]_ identifier-5 ;

Figure 5-4. Format of the Assignment Statement, Option 2 (EXCHANGE)

The “exchange” option causes the generation of a “move links” (MVL) instruction to “exchange” the
contents of the sending and receiving fields (identifier-3 and identifier-4). Both fields must be the same
size and type, and must not overlap. The presence of a third identifier (identifier-5) causes generation
of a 3-way “move-links” (MVL) instruction to replace the contents of identifier-3 with the contents of
identifier-4, replace the contents of identifier-5 with the contents of identifier-3. The [XCH] override
may appear anywhere after the receiving field operand and prior to the semicolon, however the above
format is recommended. All fields (identifiers) must be the same size and type, and must not overlap.

‘A move links may not be embedded within an expression.

identifier-6 TO identifier-7 i=
identifier-8 FORWARD
: REVERSE

Figure 5-5. Format of the Assignment Statement, Option 3 (MOVE DATA, CONTROL OP B4700 only)

5024789 5-9

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

When two identifiers precede the assignment symbol (:=) a “move data” (MVD) instrcution is generated.
This instruction is valid only when CONTROL OP B4700 is specified.

A "move data” FORWARD (default) statement will cause data to be moved from identifier-8 into the
location beginning at identifier-6 up to the beginning of identifier-7.

A "move data” REVERSE will cause data to be moved from the memory preceding identifier-8 into the
area preceding identifier-6 until the lower limit identifier-7 is reached.

All addresses must be MOD 4 or a syntax error will result.

A move data may not be embedded within an expression.

identifier-10
identifier-9 : = literal-2 arithmetic-operator

{identifier-ﬂ} [_[.F_P_Tl] [_[Iﬂ/l]_] H

literal-3

Figure 5-6. Format of the Assignment Statement, Option 4 (COMPUTE)

For more information on option 4, refer to note 1 at the end of the ”Assignment” portion of this section.

The preceding format causes the contents of identifier-9 to be replaced by the result of the arithmetic op-
eration performed.

Allowable arithmetic operators are:

Operator Function

+ (plus sign) Addition

- (minus sign) Subtraction

* (asterisk) or MUL Multiplication
/ (slash) or DIV Division

In all operations, a literal may be used on either side of the arithmetic operator.

A Boolean operand must not be used in an arithmetic operation

5-10

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

If one operand of an arithmetic operation is FIXED, the other operand must fulfill one of the following
requirements:

. It must be FIXED.
2. It must have an “IA” controller and be pointing to a valid fixed field and defined in (1) or (3).

3. It must be an integer with a mod-4 ‘address and is not a name parameter and is of one of the fol-
lowing sizes:

7-SN

8-UN
11-SN
12-UN
19-SN
20-UN

If the size declared for the result field does not conform to rules for the hardware operation, leading ze-
roes will be provided, or leading digits dropped, in the code generated by the compiler. This can result
in extra instructions and work-areas being generated.

™o s o

If the user intends to check for overflow after an arithmetic operation, it is his responsibility to assure
that overflow is off prior to that operation. If overflow is detected during an operation, the result field
is not changed.

When using the DIV operator the length of the dividend must be greater than the length of the divisior.

REMAINDER is a reserved word provided to gain access to the remainder of a divide operation. The
length of any remainder is the length of the divisor plus the length of the quotient. Its type is signed nu-
meric. The remainder location is volatile and if needed should be used promptly following a divide oper-
ation since any subsequent divides in the same segment will destroy previous results.

If an indirect field length is specified on the divisor and/or the quotient, REMAINDER is not used. In-
stead, the dividend field is used. A warning is issued by the compiler if this condition exists.

If an indirect field length is specified on only the dividend, the REMAINDER length is the sum of the
lengths of the divisor and quotient; however, this may cause a run time overflow condition.

The following assignment overrides are available for use in an arithmetic operation:
Table 5-2. Assignment Overrides in Arithmetic Operations
Override Function

FPT The ”floating point” override causes generation of a floating
point instruction to perform the indicated operation. In a com-
pound expression it applies to the entire expression and all its
operations.

REM The “remainder” override causes the divident of a divide opera-
tion (identifier-10) to be replaced with the remainder. The loca-
tion accessed by the reserved word REMAINDER 1is not affected
if the [REM] override is used. In a compound expression it ap-
plies to the entire expression.

5024789 5-11

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

NOTE
Overlapping fields in arithmetics generate extra moves to overcome hard-
ware limitations. To prevent extra moves, the REM override may be used.

Compound arithmetic expressions are permitted. Refer to Note 1 at the end of the ”Assignment” portion

O|J>
0 Z
O

Z|
o
=

of this section.
identifier-12 L= literal-4 -} literal-b
identifier-13 identifier-14

m
]
py

Figure 5-7. Format of the Assignment Statement, Option 5 (LOGICAL OPERATORS or BOOLEAN
OPERATORS)

For more information on option 5, refer to note I at the end of the ”Assignment” portion of this section.

The logical operators assignment type statement is used to manipulate or check individual bits, and is
used to generate logical AND, NOT and OR instructions. The operands must both be unsigned integers,
or both “numeric” or "alpha”. An operand must not be signed, “real”, or a Boolean value.

If the two operands have different lengths then they are left-justified. The shorter operand is filled with
trailing zeroes for AND and OR, or trailing hexadecimal Fs for NOT and EOR. The data type of the re-
sult is the same as that of both the operands.

The logical operator AND will compare the identifier-13 field bits with the corresponding identifier-14
field bits and store a 1 bit into the corresponding identifier-12 field bit if the corresponding identifier-13
and identifier-14 field bits are both on.

The logical OR will compare the identifier-13 field bits with the corresponding identifier-14 field bits
and store a 1 bit into the corresponding identifier-12 field bit if either or both of the corresponding
identifier-13 and identifier-14 field bits are on.

The logical NOT and EOR will compare the identifier-13 field bits with the corresponding identifier-14
field bits and store a 1 bit into the corresponding identifier-12 field bit if the corresponding identifier-13
and identifier-14 field bits are not equal. Either sending field (but not both) may be a literal. If the send-
ing fieds are not the same length, the shorter field will be assumed to have trailing 4-bit zeros. Indirect
addressing may be used, however the final data type of all three fields must be the same, and may not
be signed numeric (SN).

Examples:
A := (@37(@ AND B.2UN;
A.IX1 := @1@ OR A.IX1 ; & The @ is not required.

Compound expressions are permitted. Refer to Note 1 at the end of the ”Assignment” portion of this
section.

5-12

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

[DATE)
JDATE
QUICKTIME }
TIME
TIMEGO

1]
A

identifier-15 : =

J

Figure 5-8. Format of the Assignment Statement, Option 6 (SPECIAL BRANCH COMMUNICATES)

For more information on option 6, refer to note 3 at the end of the ”Assignment” portion of this section.

The special branch communicate instructions are used to assign values unknown at compile time to

identifier-15 at execute time.

The special names involved and their formats are:

Table 5-3. Names of Special Brand Communicate Instructions

Name
(Reserved Word) Format Function
DATE 6UN MMDDYY Current Calender Date
JDATE . SUNYYDD Current Julian Date -
QUICKTIME 10UN Time of day - milliseconds
MMMMMMMMMM See note.
TIME 10UN Time of day - milliseconds
MMMMMMMMMM
TIME 6010UN 00HHMMSSss Time of day Hours,
minutes, seconds,
60/seconds
identifier-16 : i[SEGDICT [. (literal-6) 115

Figure 5-9. Format of the Assignment Statement, Option 7 (SEGDICT)

For more information on option 7, refer to note 3 at the end of the ”Assignment” portion of this section.

5024789

5-13

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Identifier-16 will contain the address of the segment dictionary.

The literal-6 option is used to get the address of a specific segment dictionary entry. Default case points
to the same Segment Dictionary entry in which the statement appears.

SEGDICT may also be used in an ADDRESS = statement.
NOTE

BPL considers the start of the segment dictionary to be segment 0. The pro-
gram main block is segment 1.

identifier-17 : = SEGMENT ;

Figure 5-10. Format of the Assignment Statement, Option 8 (SEGMENT)

For more information on option 8, refer to note 3 at the end of the ”Assignment” portion of this section.
Identifier-17 will contain the segment number of the current block.
Identifier-17 must be declared INTEGER (4).

identifier-18 : = FIND literal-7
identifier-19

Figure 5-11. Format of the Assignment Statement, Option 9a (INTERROGATE FILE on disk)

literal-7 literal-7b
identifier-18 : = FINDPACK identifier-19 | ON identifier-19b

Figure 5-12. Format of the Assignment Option 9b (INTERROGATE FILE on Diskpack)

For more information on options 9a and 9b, refer to note 3 at the end of the “Assignment” portion of
this section.

Option 9a requests the MCP to check for the presence of a disk file with a value of ID equal to literal-7
or identifier-19.

Option 9b requests the MCP to check for the presence of a diskpack file with a name equal to literal-7
or identifier-19, on the pack family named by literal-7b or identifier-19b.

Identifier-19 and identifier-19b must be declared ALPHA (6). Literal-7 and literal-7b must be alpha
literals of six characters or less.

Identifier-18 must be declared INTEGER (1).

5-14

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Upon execution, the MCP will place a 0 or 1 in identifier-18. If the file is found in the disk directory,
identifier-18 will equal 1; otherwise, it will equal 0.

MEMORY
identifier-20 : = TRACE INTERROGATE
JOB INFO

Figure 5-13. Format of the Assignment Statement, Option 10a (PROGRAM PARAMETER BRANCH
COMMUNICATES, ANY MCP)

[MIX W
MIXCALLER
identifier-20 = 9 Mprogram-id t
MIXNUM program-id
MIXTBL

L

Figure 5-14. Format of the Assignment Statement, Option 10b (PROGRAM PARAMETER BRANCH
COMMUNICATES, PRE-MCP/VS 2.0)

[MIX-RUNNING mcp-id)
MIXCALLER RUNNING mcp-id
identifier-20 : = 4 MIXID RUNNING mcp-id program-id >

MIXNUM RUNNING mcp-id program-id
MIXTBL RUNNING mcp-id

Figure 5-15. Format of the Assignment Statement, Option 10c (PROGRAM PARAMETER BRANCH
COMMUNICATES, MCP/VS 2.0 AND LATER)

The program parameter branch communicates are used to determine, at runtime, values concerning the
program and its environment.

5024789 5-15

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Table 5-4 lists communicates that can be used with any current MCP.

The special names involved and their formats are:

Table 5-4. Special Names for Use with Any Current MCP

Name Format Function
MEMORY 6 UN MMMOOO Memory assigned to program
in thousands of digits.
See Note 3.
TRACE INTERROGATE 1 UN Returns a 1 if the calling

program is being traced.

JOBINFO See Note 4 Allows the programmer to
determine information on
the environment of the
operating system.

Table 5-5 lists communicates that can be used with MCP/VS 1.0 and the previous operating system. Pro-
grams using these communicates will not run on MCP/VS 2.0 systems with job mix limits greater than
99. The special names involved and their formats are:

Table 5-5. Communicates

Name
(Reserved Word) Format Function

MIX 2 UN Number of programs in the Mix.

MIXCALLER 2 UN Mix number of calling program.

MIXID program-id 2 UN Number of programs in the Mix with an
identifier indicated by program-id.
Program-id must be a six-character alpha
literal or an identifier declared ALPHA (6).

MIXNUM program-id 2 UN Mix number of programs identified by
program-id. Program-id must be a six char-
acter alpha literal or an identifier declared
ALPHA (6).

MIXTBL See Note 5 Returns information from the MCP mix

table to the calling program.

5-16

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

The functions MIX, MIXCALLER, MIXID, MIXNUM and MIXTBL all generate a MIXTBL BCT (see
the V Series Program Interfaces Programming Reference Manual). The format of the MIXTBL BCT will
vary depending on the operating system.

The mix functions defined in Option 10c require you to specify the MCP name (mcp-id). The code gener-
ated by these functions can be transported between MCP/VS 1.0 and MCP/VS 2.0 operating systems.
The same program cannot contain statements using option 10b and statements using option 10c. A syn-
tax error occurs if the two formats are used in the same program.

MCP-id must be a 17-character alpha literal or an identifier declared ALPHA (17). A value in MCP-id
of "MCP” followed by all spaces indicates the 2.0 or later version of MCP/VS. Any other MCP name
(such as "MCPIX” or “MCP/VS”) indicates an MCP prior to 2.0 MCP/VS.

The special names involved and their formats for Option 10c are:

Table 5-6. Special Names for Option 10c¢

Name
(Reserved Word) Format Function

MIX RUNNING mcp-id 4 UN Number of programs in the
Mix.

MIXCALLER RUNNING 4 UN Mix number of calling

mcp-id program.

MIXID program-id 4 UN Number of programs in the

RUNNING mcp-id Mix with an identifier

. indicated by program-id.

Program-id must
be a six character alpha
literal or an identifier
declared ALPHA (6).

MIXNUM program-id 4 UN Mix number of programs

RUNNING mcp-id : : identified by program-id.
Program-id must be a six
character alpha literal or
an identifier declared
ALPHA (6).

MIXTBL RUNNING See Note 6. Returns information from

mcp-id the MCP mix table to the

calling program.

5024789 : 5-17

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Note 1 (Arithmetic and Conditional Expressions):
Compound arithmetic and conditional expressions are allowed. The operators and their priorities are:

Highest: +,— (Monadic - acts on only one operand)
*
+,— (Dyadic - acts on two operands)
LSS, EQL, LEQ, GTR, GEQ, NEQ
AND
OR
EOR, NOT (Dyadic)
Lowest: NOT (Monadic)

Examples:

A=B+C+D
1s equated to
temp:= B + C
A :=temp+ D
A=B+C*D
1s equated to
temp := C*D
A := B+temp
If an expression contains operators of the same priority then these operators are evaluated from left to
right.

The replacement operator (:=) is also a valid operator. It has higher priority than all operators to its left,
and lower priority than all operators to its right.

Example:

A:=B:=C IS EQUIVALENT TO

>
T

Parentheses may be used to change these priorities.
Note 2 (All Branch Communicate instructions):
Any identifier in a BCT cannot be indexed.

Note 3 (Memory):

For compilers, the format is 7 UN, MMMXEES. MMM is the memory assigned to the compilér in thou-
sands of digits. X is not used. EE is the disk Eu or ID number specified in the COMPILE command for
the code file, S is the SYNTAX flag (S = 1 if COMPILE.....SYNTAX). If identifier-20 is 7 UN, the BPL

compiler generates a warning.

5-18

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Referenée Manual

Executable Statements/Control and Assignment

Note 4 (JOBINFO):

It is the programmer’s responsibility to allocate a response area of sufficient size according to the follow-

ing format:

[\
~

— A==
-

\O
()

" Note 5 (MIXTBL):

UA - 00 indicates normal response
04 indicates response area too small
UA - MCP name

UA - MCP release number

UA - MCP patch level

UN - MCP version date

UN - Processor number of caller
UA - Hostname

UN - MIX number of caller

UN - Batch/TSM Flag (7 or A indicates TSM:
all other values indicate Batch)

UN - <Reserved>

It is the programmer’s responsibility to allocate a table of sufficient size according to the following

format:
Header
Jobs in mix 3 UN
Memory available 3 UN (mod 1000; first available area)
Body (one entry for each program)
MIX-ID 6 UA (program name)
MIX-MF 6 UA (multi-program name)
MIX-NO 2 UN (mix number)
MIX-BC 1 UN (reserved, always zero)
MIX-CA 3 UN (memory used by job, including disk
file headers)
5024789 5-19

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Note 6 (MIXTBL Running mcp-id):

It is the programmer’s responsibility to allocate a table of sufficient size according to the following
format:

Header
Jobs in mix 4 UN
Memory available 10 UN (mod 1000)

Body (one entry for each program)

Program Id 6 UA
Multi-Program Id 6 UA
Task Number 4 UN
Memory used by task 7 UN (code and data)
Processor priority 1 UN
Memory priority 1 UN
Special program code 1 UN

= Program is a generator
Program is DMPALL
Dskout or Pack Squash
Program has DCP or MCS status
7 = Timesharing process

8 = Timesharing Handler

A = Generator in shared area
B = DMS Control Program
C = WFL Handler

D = BNA Handler

E = Program is copy

1
2
5
6

Program Status Code 2 UN
00 = EXECUTING
01 = COMPILING
02 = WAITING I/0
03 = WAITING CORE-TO-CORE
04 = STOPPED
05 = NO COMPLEX WAIT TABLE SPACE
06 = WAITING COMPLEX WAIT
07 = WAITING STOQUE ENTRY
08 = WAITING STOQUE MEMORY
09 = WAITING STOQUE NAME SLOT
10 = WAITING STOQUE PROCESSING
11 = WAITING TRACE
12 = WAITING OPERATOR ACTION
13 = WAITING MEMORY
14 = SLEEPING

5-20

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

BREAKOUT

The function of the BREAKOUT statement is to specify that a programmatic breakout is to be taken at
this point, for possible restart.

The format of the BREAKOUT statement 1is:

BREAKOUT

See CONTROL BREAKOUT for further explanation. Refer also to the OCS commands BD, BR, and
RB in the System Software Operation Guide for MCP/VS 1.0, MCPIX, or MCPVI.

The program must have no DISKPACK files open when a BREAKOUT is executed.

NOTE
BREAKOUT is not permitted under MCP/VS 2.0.

5024789 5-21

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

CASE

The CASE statement selectively executes one statement within a case-group of statements.

Two formats for CASE statements are shown in the figures 5-16 and 5-17.

Format 1
CASE [NO] identifier-1 OF
BEGIN
statement-0 ELSE
statement-1 ELSE
statement-2 ELSE
statement-n
END B
Figure 5-16. The CASE Statement, Format 1
Format 2
CASE _ [NO] identifier-1 OF
BEGIN

statement-0 ELSE

statement-1 ELSE

statement-2 ELSE

statement-n-1 ELSE BEGIN

statement-n
ESAC ;

Figure 5-17. The CASE Statement, Format 2

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

The word CASE or CASE_ is required, identifying the CASE statement. The NO option, if present, will
cause the compiler to omit the validity checking code on the value contained in identifier-1 at execution
time.

Statement-0, statement-1, ... statement-n make up the statements in the CASE-group.

At execution time, the value of identifier-1 is examined and used as a selector to choose from the state-
ments in the CASE-group. The statements in the group are numbered from zero (0) to N-1 for N state-
ments, and a single statement in the group is executed, depending on value contained in identifier-1. A
value which is greater than the number of statements in the CASE-group will cause the highest value to
be assumed, unless the NO option was used. In this case, a value out of range will not be detected and
the results will be unpredictable.

Any valid BPL statement, including nested CASE statements, DO-group statements, and IF-THEN-
ELSE statements and blocks are allowed and are counted as single statements.

CASE statements consisting of only "ELSE GO TO...” will generate more efficient code.

The CASE variable is limited to a maximum of 6 digits. Code and data space is slightly optimized for
atwo to six digit variable. The CASE statement destroys the previous value in IX1, leaving IX 1 negative.

CASE__ differs from CASE in that it must be terminated by ESAC. ESAC provides a visible end to the
. CASE_ statement, and functions as both an implicit END END and an implicit branch label.

Since ESAC is an implicit END END, an END must not be coded for the BEGIN at the start of the
CASE_ statement. However, since ESAC is two implicit ENDs, a BEGIN must be coded before the final
statement in the case-group (statement-n), even if that is a single statement.

ESAC is an implicit branch label, permitting the verb EXITCASE to be used in a CASE_ statement.
EXITCASE causes an immediate branch to the first executable statement following ESAC. EXITCASE
must be surrounded by BEGIN \and END.

Refer also to IN_, OUT_, and ELSE_ in Appendix G.

5024789 5-23

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual

Executable Statements/Control and Assignment

Examples:
CASE I OF
BEGIN
GO TO LO ELSE & IF I = 0 THEN GO TO LO
GO TO L1 ELSE & IF I = 1 THEN GO TO L1
GO TO L2 ELSE & IF I = 2 THEN GO TO L2
GO TO INVALIDL & IF > 2 ITS INVALID
END ; & END OF CASE STATEMENT
CASE NO ABC OF & NO RANGE CHECK ON ABC
BEGIN
GO TO LO ELSE & IF I =0
PROC ELSE & IF I = 1, CALL PROC (A
& PROCEDURE)
BEGIN & IF I = 2 DO
A : =B ; & THIS
C: =D ; & COMPOUND
END ELSE & STATEMENT
GO TO INVALIDL & IF I = 3 ITS INVALID
& IF I > 3 RESULTS
& UNSPECIFIED
END ; & END OF CASE STATEMENT
CASE_. B OF
BEGIN
DISPLAY ”0” ELSE
DISPLAY "1” ELSE BEGIN
EXITCASE END ELSE BEGIN
DISPLAY ”3”

ESAC;

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

CLOSE

The function of the CLOSE statement is to communicate to the MCP that the designated file-name being
operated on or created is programmatically completed, and to fulfill the stated action requirements.

The format of the CLOSE statement is:

" [LOCK N
PURGE
RELEASE
NO REWIND
REWIND » _
NO REWIND RELEASE =
REMOVE

NO DISCONNECT
LOCK CRUNCH
| U RELEASECRUNCH J

CLOSE [REEL] file-name-1 1

Figure 5-18. Format of the CLOSE Statement

File-names must not be those defined as being SORT files.
A file must have been OPENed previously before a CLOSE statement can be executed for that file.
This statement applies to the following categories of input and output files:
e Files whose input and output media involve print files, card files, etc.
« Files which are contained entirely on one reel of magnetic tape and are the only files on that reel.
» Files which may be contained on more than one physical reel of magnetic tape. Furthermore, the
number of reels might possibly be higher than the number of physical tape units provided on the

system.

o Disk files.

5024789 : 5-25

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

To show the effects of the CLOSE options, each type of file will be discussed separately.

Card and MICR Input.

CLOSE - releases the input areas, but does not release the reader.

| CLOSE NO REWIND - same as CLOSE.

CLOSE RELEASE - releases the input areas and returns the reader to MCP.
CLOSE LOCK - same as CLOSE WITH RELEASE.
CLOSE PURGE - same as CLOSE WITH RELEASE.

e Card Output.

CLOSE - punches the trailer label (if any), releases the output areas, but does not release the
punch.

CLOSE NO REWIND - same as CLOSE.

CLOSE RELEASE - releases the output areas and returns the punch to the MCP.
CLOSE LOCK - same as CLOSE WITH RELEASE.

CLOSE PURGE - same as CLOSE WITH RELEASE.

e Tape Input

CLOSE - checks the trailer label (if any) and rewinds the tape. It does not release input areas,
and the unit remains assigned to the program.

CLOSE NO REWIND - same as CLOSE except the tape is not rewound.

CLOSE LOCK - releases the input areas, checks the trailer label (if any), rewinds the tape, and
the MCP marks the unit not ready.

CLOSE RELEASE - releases the input areas, checks the trailer label (if any), rewmds the tape,
and returns the unit to the MCP.

CLOSE PURGE - releases the input areas, checks the trailer label (if any), rewinds the tape,
and if a write ring is in the reel, over-writes the label, making the tape a scratch tape which be-
comes a candidate for use by the MCP. The unit is returned to the MCP.

CLOSE NO REWIND RELEASE - same as CLOSE RELEASE except the tape is not rewound.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

e Tape Output.

- CLOSE - writes the trailer label (if any), and rewinds the tape. The unit remains assigned to the
program.

- CLOSE NO REWIND - writes the trailer label (if any). The tape remains positioned beyond
the trailer label (or tape mark if there is no trailer label). The unit remains assigned to the pro-
gram.

- CLOSE LOCK - releases the output areas, writes the trailer label (if any). rewinds the tape, and
the MCP marks the unit not ready.

- CLOSE RELEASE - releases the output areas, writes the trailer label (if any), rewinds the tape,
and returns the unit to the MCP.

- CLOSE PURGE - releases the output areas, writes the trailer label (if any), rewinds the tape,
returns the unit to the MCP, and the MCP over-writes the label making it a scratch tape, which
makes it a candidate for use by the MCP.

- CLOSENOREWIND RELEASE -same as CLOSE RELEASE except the tape is not rewound.

e Printer and Lister Output.

- CLOSE - prints the trailer label (if any), releases the output areas but does not release the print-
er or lister.

- CLOSE NO REWIND - same as CLOSE.
- CLOSE RELEASE - réleases the output areas and returns the printer or lister to the MCP.
- CLOSE LOCK - same as CLOSE WITH RELEASE.
- CLOSE PURGE - same as CLOSE WITH RELEASE.

o Disk Files. The actions takén on files assigned to DISK will be discussed in terms of old files and
new files. An old file is one that already exists on disk and appears in the MCP Disk Directory.
A new file is one created by the program and does not appear in the Directory. A new file may
only be referenced by the program which creates it.

- CLOSE

For an old file, the file is left in the Directory and remains assigned to the program (a subse-
quent OPEN by the program does not require a disk directory search for the file.

For a new file, the file is not entered in the Directory, however, it remains on the disk and may
be OPENed again by this program.

- CLOSE NO REWIND - not permitted on disk files.

5024789 5-27

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

- CLOSE RELEASE.

For an old file, the file is left in the Directory, and is available to other programs (a subsequent
OPEN by the program requires a Directory search for the file).

For a new file, the file is entered in the Directory (thereby making it an old file). The file is avail-
able to be OPENed by any program.

- CLOSE LOCK.
For an old file, the file remains in the Directory and is made available.
A new file is entered in the Directory. Subsequent action is identical to an old file.
- CLOSE PURGE.
An old file is immediately removed from the disk and deleted from the Directory.
A new file will be immediately removed from the disk.
- CLOSE REMOVE.

An old file with the same name on disk is removed from the Directory and the new file is en-
tered in the Directory.

- CLOSE LOCK CRUNCH.
No effect on old file.
On a new file, all unused disk will be returned to the MCP.
- CLOSE RELEASE CRUNCH.
Same as CLOSE LOCK CRUNCH.
e Remote Devices (Data Communications).
- CLOSE - releases the input areas, but does not release the adapter.
- CLOSE RELEASE - releases the input areas and returns the remote device to the system.

- CLOSE NO DISCONNECT - the file is released to the system, but the line is not disconnected.

If a file has been specified as being OPTIONAL, the standard END-OF-FILE processing is not permitted
whenever the file is not present.

If a CLOSE statement without the REEL option has been executed for a file,a READ, WRITE, or SEEK
statement for that file must not be executed unless an intervening OPEN statement for that file is execut-
ed.

The CLOSE REEL option signifies that the file-name being CLOSEd is a multi-reel magnetic tape input/

output file. The reel will be CLOSEd at the time of encountering the CLOSE REEL statement and an au-
tomatic OPEN of the next sequential reel of the multi-reel file will be performed by the MCP.

5-28

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

COMMENT

The function of COMMENT is to allow the programmer to write explanatory statements in his program
which are to be produced on the source program listing for documentational clarity.

The format of the COMMENT statement is:

COMMENT [any statement] o

Figure 5-19. Format of the COMMENT Statement

Any combination of the characters from the allowable character set may be included in the character
string excluding the semicolon (;).

If an ampersand (&) appears in a source image, the remaining information (through column 72) in that
record is COMMENT.

COMMENT may not be used following the reserved word "DEFINE” and before the equal sign (=) in
a define.

5024789 | 5-29

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

COMPARE

The function of the COMPARE is to generate a compare or test, with no branch following. Figures 5-20
and 5-21 show the formats for the COMPARE statement.

Option 1

COMPARE condition-1

Figure 5-20. Format of the COMPARE, Option 1

This construct is primarily designed for those who require a test to occur, with the appropriate setting
of the comparison indicator, but who do not want any kind of conditional branching. The COMPARE
statement may be described as an IF statement without any THEN action.

The compiler will not optimize this instruction to a BOT when comparing for zero.

Condition-1 may be any expression containing a relational-operator or boolean-operator as defined for
the IF statement option 1 and option 2.

Option 2

COMPARE identifier-1 '_I'Q identifier-2 H
literal-1 literal-2

Figure 5-21. Format of the COMPARE, Option 2

This construct allows a COMPARE without stipulating the relational operator. A COMPARE literal-1
TO literal-2 is not allowed.

5-30

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

COPY

The function of COPY is to allow library routines contained on a source language library file to be incor-
porated into the program.

The format of the COPY statement is:

COPY “library-name”

Figure 5-22. Format of the COPY Statement

A single COPY statement may contain only one library-name. The library-name is bounded by quotes
and may not contain more than 6-characters. The library-name is the external (disk directory) name of

the library file.

The library file is inserted in the source program immediately after the COPY statement at compilation
time. The result is the same as if the library data were actually a part of the source program.

Library data can encompass an entire procedure which may be any number of statements.
Library files may not contain COPY statements.

The COPY construct is completely free form and may be surrounded by BPL statements on the same
symbolic record. Any merging of patches will stop until the entire file has been copied.

A library file may be created by inserting the @LIBR compiler directing statement in the source text, or
by any program which writes 80-character source records, blocked 5 or 9, to disk. When using @LIBR,
the records placed into the library file are simultaneously compiled into the program. See the @LIBR
statement under Compiler Directing Statements.

Library files copied from the library are flagged on the output listing by a counter preceded by an “L".
The counter will not be initialized by successive copy statements within a single program.

5024789 5-31

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment ‘

DISARM

The function of the DISARM statement is to request that the processor error soft interrupt for the pro-
gram be disabled. The format of the DISARM statement is:

DISARM

Figure 5-23. Format of the DISARM Statement

For further information, refer to ARM.

NOTE
ARM and DISARM generate the same code, the effect of which is to toggle
the processor error soft interrupt event for the given program.

5-32

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

DISPLAY

The function of DISPLAY is to provide for the printing of low-volume data, error messages, and opera-
tor instructions on the console SPO or OCS display. Figures 5-24 and 5-25 show the formats for the DIS-
PLAY statement.

Option 1

DISPLAY literal-1
identifier-1 i

Figure 5-24. Format of DISPLAY, Option 1

The option 1 DISPLAY statement causes the contents of literal-1 or identifier-1 to be written, preceded
by the program identification (<P-ID> = <mix-no>).

Identifier-1 may be subscripted and can be declared as an INTEGER or ALPHA item.

A maximum of 60 digits/characters can be DISPLAYED with one statement in option 1 if the program
is executed on disk. The limit is 50 if executed on pack, due to the longer program identifier (“on <pack-
id>").

Option 2.

literal-1
DISPLAY LINES identifier-1 identifier-2 i

Figure 5-25. Format of DISPLAY, Option 2

The option 2 DISPLAY LINES statement is used for multiline messages to ensure contiguity of all lines.
Identifier-1 may be subscripted, and can be declared as an INTEGER or ALPHA item.

Literal-1 is a numeric literal not exceeding 3 digits. Identifier-2 is an integer data item not exceeding 3
digits. Literal-1 or identifier-2 specifies the number of lines (up to 999) to be displayed.

Each line must be 72 or fewer bytes in length. Lines less than 72 bytes must be delimited by a NULL
(&00&) character.

The program identification (<P-ID> = <mix-index>) is not written on the ODT display.
An indirect field length override on identifier-1 or identifier-2 will be ignored.

5024789 5-33

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

DO

DO causes a statement or set of statements to be executed repetitevely. Figures 5-26 and 5-27 describe
the formats of the DO statement.

[WHILE condition-1] @ statement-1 [UNTIL condition-2]

Figure 5-26. Format 1 for DO

[WHILE condition-1] DO_ statement-1 OD [UNTIL condition-2] B

Figure 5-27. Format 2 for DO

Statement-1 represents either a single statement or multiple statements. If there are multiple statements,
they must be surrounded by a standard BEGIN...END when using Format-1. When using Format-2, the
BEGIN...END areimplicitly provided by the compiler.

Statement-1 is executed repetitevely and indefinitely (in a loop) until some programmatic action forces
an exit from the loop, unless a WHILE clause prevents the DO from being executed.

If WHILE is specified, the loop is executed while condition-1 is true. The WHILE is evaluated before the
loop is entered. (That is, WHILE condition-1... is equivalent to IF condition-1 THEN... .) Thus, if
condition-1 is false when the statement is first executed, the DO loop is never entered.

IfUNTIL is specified, the loop is executed until condition-2 becomes true. The UNTIL is evaluated after
the loop is executed. Thus, if only an UNTIL clause is present, the loop is executed at least once.

Both WHILE and UNTIL clauses may be specfied. In that case, the loop is entered if condition-1 is true,
and is terminated when either condition-1 becomes false or condition-2 becomes true.

Format-2 differs from Format-1 in the following ways:
o« A BEGIN...END is implicitly provided around statement-1.
e DO_ includes an implicit branch label, permitting the TOPLOOP verb to be used.
e DO_ must be followed by OD. This provides a visible end to the loop on the program listing.

e OD includes an implicit branch label, permitting the EXITLOOP verb to be used.

5-34

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

The loop can be exited in four ways:
1. If WHILE is specified, the loop ends when condition-1 becomes false.
2. If UNTIL is specified, the loop ends when condition-2 becomes true.

3. The program can branch to a label outside of the DO. Such a label can be specified in a GO or
in the action-label portion of a statement permitting such a label (such as READ or FILL).

4. With DO_...OD (not DO), the verb EXITLOOP causes control to be transferred to the first exe-
cutable statement after the next OD. (If UNTIL is present with that OD, UNTIL is bypassed.)

If statement-1 consists of multiple statements, all of those statements are executed in one execution of
the loop mentioned in exit conditions 1 and 2 above.

Condition-1 and condition-2 conform to the rules for conditions under the IF statement. Refer to IF.

When using Format 2 (DO_...OD) the verbs TOPLOOP and EXITLOOP can be used within statement-
1. :

TOPLOOP causes control to be transferred to the first executable statement in statement-1.

EXITLOOP causes an immediate branch out of the loop.

Examples:

= A + 1 or DO_ A:=A + 1
UNTIL A = 9; UNTIL A = 9

The above statement is equivalent to:

Ll: A := A+1 ;
IF A NEQ 9 GO TO LI;

Statement-1 can be a compound statement bounded by BEGIN/END.

5024789 5-35

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

For example

WHILE Y < 500 or WHILE Y < 500
DO BEGIN DO_
A = X*2; A =X * 2;
Y := Y+A; Y :=Y + A;
END oD
UNTIL A = 100; UNTIL A = 100;

The above state is equivalent to:

L1l: IF Y LSS 500 THEN
BEGIN
A 1= X*2;
Y := Y+A;
IF A NEQ 100 GO TO L1;
END;

Condition-1 1is tested before execution of the DO loop and condition-2 is tested after execution of the
DO loop.

Although the UNTIL clause does not have to be explicitly stated, the programmer must provide some
mechanism for leaving the DO loop. The UNTIL clause may be contained in statement-1.

For example:

DO or DO_
BEGIN READ X [EOF]; READ X [EOF];
WRITE X; WRITE X;
END; OD;
EOF: v EOF:

This is a valid DO statement with a self-contained UNTIL in the READ statement.

5-36

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

This example illustrates TOPLOOP and EXITLOOP. The statements on the right are equivalent to

those on the left.

WHILE <condition>
DO_
<Sstatement>

IF <condition> THEN
EXITLOOP;

IF <condition> THEN
TOPLOOP ;

oD
UNTIL <condition>;

5024789

LABEL A, B:
WHILE <condition>
A:
DO BEGIN

<statement>

IF <condition> THEN
GO B;

IF <condition> THEN
GO A

END
UNTIL <condition> ;

5-37

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

DOZE

The function DOZE will cause the suspension of an executing object program for a specified number of
seconds.

The format of the DOZE statement is:

DOZE literal-1 .
identifier-1

Figure 5-28. Format of the DOZE Statement

A DOZE statement specifying a literal will cause the executing object program to be suspended for that
number of seconds and to automatically become reinstated, after the specified period of time has ex-
pired, by the MCP.

The DOZE statement is particularly effective in continuous polling loops where polling is required every
few seconds, thus releasing the intervening time to the other programs in the mix.

Ifidentifier-1 is specified as containing the DOZE value, it must be an INTEGER field of 5 digits or less.
The maximum DOZEing period is 23 hours, 59 minutes, and 59 seconds (86,399 seconds).

5-38

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

DUMP

The DUMP statement causes the contents of the specified memory locations to be dumped to a line
printer or disk.

The format of the DUMP statement is:

DUMP [DISK] [identifier-1 [TO identifier-2] 1

Figure 5-29. Format of the DUMP Statement

DUMP with no data-name option causes a complete program DUMP.

DISK specifies a DUMP to head-per-track disk.

DUMP identifier-1 will cause at least 1000 digits to be dumped including the complete value of
identifier-1. The number of digits dumped will always be MOD 1000.

DUMP identifier-1 TO identifier-2 will give a dump beginning at the MOD 1000 address containing
identifier-1, and will occur in 1000 digit segments to include all digits between the identifiers indicated.
Identifier-1 and identifier-2 may be program labels, however as no length is associated with a label the
dump will begin with 1000 digit area containing the start of identifier-1, and will terminate with the 1000

digit area containing the start of identifier-2.
After the DUMP, execution of subsequent instructions continues normally.

Examples:

DUMP ;

DUMP X;

DUMP X TO LAB ;
DUMP DISK ;

5024789 5-39

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

EDIT

The function of the EDIT statemeunt is to move and edit data, usually for printing on a line printer.
The format of the EDIT statement is:

EDIT identifier-1 WITH identifier-2 TO identifier-3

Figure 5-30. Format of the EDIT Statement

The contents of identifier-1 will be edited through the mask contained in identifier-2 and the result will
be placed in the field specified by identifier-3. Identifier-2 must reference an ALPHA field, and should
usually reference a field created with the PICTURE declaration. Identifier-3 must reference an ALPHA
(or 8-bit) field.

Examples:
EDIT A WITH PICT TO B ;

EDIT A PICT B ;
EDIT A WITH Q.UA.3 TO B;

5-40

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

ENTER

The function of the ENTER statement is to cause control information and parameters to be copied into
the subroutine stack, and transfer control to a specified address.

The format of the ENTER statement is:

ENTER identifier-1 [WITH literal-1]

Figure 5-31. Format of the ENTER Statement

Identifier-1 is the name of the subroutine, procedure or label to be ENTERed.

Literal-1 (if used) is the number of bytes of parameters to be passed. These parameters must be located
immediately following the ENTER instruction (using the STORE instructions).

The setting of the comparsion and overflow indicators are stored, then cleared by this instruction.

The parameters may be referenced by using the contents of IX3 plus 16, since the IX3 value points to
the beginning of the current stack entry and linkage information occupies the first 16 positions of the

entry.

NOTE
It is the programmer’s responsibility to provide a corresponding EXIT
statement for each ENTER, if entering a label. If the programmer has en-
tered a procedure or subroutine the compiler will generate an EXIT.

5024789 5-41

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

EXIT

The function of EXIT is to allow branching from an ENTERed subroutine or procedure, thus reversing
the stack action taken upon entry to the subroutine or procedure.

The format of the EXIT statement is:

EXIT TO label-1 B
identifier-1

Figure 5-32. Format of the EXIT Statement

An address following the EXIT statement is optional. If omitted, control is transferred to the address
specified in the first six digits of the stack entry (the address of the first instruction following the subrou-
tine call). If label-1 is specified, control will be returned to the address of label-1, and the current entry
in the stack will be removed.

No validity checking will be performed on the address specified by label-1, or identifier-1, therefore it
is the responsibility of the programmer to ensure that control is returned to a valid address.

If a branch or an EXIT is coded immediately before a procedure END, the implied exit is not produced.
If an EXIT is coded before an ELSE of an IF statement, the implied branch is not produced.

5-42

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

EXITBLOCK

The EXITBLOCK statement causes an immediate branch out of the range of the current BEGIN_
...END block. Figure 5-33 shows the format of this statement.

EXITBLOCK ;

Figure 5-33. Format of the EXITBLOCK Statement

EXITBLOCK is permitted anywhere within a statement block which begins with the reserved word
BEGIN_. When EXITBLOCK is executed, it causes control to be transferred to the first executable
statement following the END which corresponds to the first BEGIN_ preceding that EXITLOOP.

5024789 5-43

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

EXITCASE

The function of the EXITCASE statement is to return control from within a CASE__ statement through
a mechanism other than the normal completion of the statement.

EXITCASE

Figure 5-34. Format of the EXITCASE Statement

EXITCASE is permitted only with the CASE_ statement. It is not permitted with the CASE statement.
EXITCASE can appear anywhere within the CASE_ statement and when it is executed, control is trans-
ferred to the first executable instruction after the ESAC statement.

5-44

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

EXITCOND

The function of EXITCOND is to permit an early exit from a conditional statement before the complete
processing of the statement is finished. ,

EXITCOND

Figure 5-35. Format of the EXITCOND Statement
EXITCOND is permitted anywhere within an IF_ statement. It causes control to be passed to the first

statement following the FI.
Refer to IF_ (Format 2 of the IF statement) for further details.

5024789 , 5-45

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

EXITLOOP

The EXITLOOP statement causes an immediate branch out of the range of a DO_ statement. Figure
5-36 shows the format of this statement.

EXITLOOP ;

Figure 5-36. Format of the EXITLOOP Statement

EXITLOOP is permitted only with the DO_ version of the DO statement. EXITLOOP can appear any-
where within the statement loop. When executed, it causes control to be transferred to the first executa-
ble statement after the OD statement.

Refer to DO for further details.

5-46

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

EXITROUTINE

EXITROUTINE causes an exit from a file use routine. Figure 5-37 shows the format of this statement.

EXITROUTINE <file name >

Figure 5-37. Format of the EXITROUTINE Statement

A use routine is any of those specified in a ROUTINE clause in a FILE declaration.

EXITROUTINE must be the last statement executed in a file use routine. When executed, it causes con-
trol to be passed to the first statement following the I/O statement which causes the branch to the use rou-
tine.

EXITROUTINE causes the program to be reinstated at the address in FIBRCW of the first buffer status
block for the file. Consequently, a use routine must not perform an action which can result in entry to
~ another use routine, or the return linkage can be destroyed.

Refer also to ROUTINE under the FILE declaration.

5024789 5-47

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

FILL

The function of the FILL statement is to pass data from one program to another when both programs
are operating in the same multiprogramming mix.

Figure 5-38 shows the format of the FILL statement.

FILL identifier-1 non-numeric-literal-1
OUT identifier-2

WwDS
[[action label]] [[{QH_R }]] ;
= - DGT -

Figure 5-38. Format of the FILL Statement

The MCP Core to Core (CRCR) option must be set “ON” when an object program containing the FILL
verb is being operated under the control of a version of the MCP prior to the MCP/VS 2.0.

FILL OUT is the data-sending construct whereby a program using this statement can converse from a
self-contained data-name, with another operating program in the same multiprogramming mix. The size
of identifier-1 is restricted only by the amount of memory required by the programs themselves.
Identifier-2 must be declared as a 6 byte field (or literal) which specifies the program-identifier of the re-
ceiving program as reflected in the MCP Program Directory. The receiving program must be in the MCP
mix. If the literal-1 is “bbbbbb” (blank), it specifies that any number of receiving programs are to become
eligible for the transmission of data.

The action label branch, when specified, will be taken when there is no receiving program ready to re-
ceive a transmission. If the action label clause is not used, the program will wait until the FILL has been
completed, before proceeding to the next instruction.

FILL IN is the data-receiving construct whereby a program using this statement can receive data from
a sending program (identifier-2) into a self contained field (identifier-1). The sending program must be
in the MCP mix. If literal-1 is “bbbbbb” (blank), it specifies that any number of sending programs are
to become eligible for the transmission of data.

The action label branch, when specified, will be taken if the sending program is not ready to transmit.
The data types of the sender and receiver must match.

Reference should be made to the DATACOMM FILL verb located in the Data Communications section
of this manual.

5-48

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

GO

The function of GO is to alter the normal flow of the program by transferring control to another location
in the program and continuing execution from that point.

Figure 5-39 shows the format of the GO statement.

G_O_ 'LO_ label-1
identifier-1

Figure 5-39. Format of the GO Statement

Two restrictions apply to GO statements:
o A GO statement within a procedure cannot refer to a label or identifier outside that procedure.

o A GO statement within a block cannot refer to a label or identifier outside that block.

Except for the above restrictions, no validity checking will be performed on the address specified by
label-1 or identifier-1, therefore it is the responsibility of the programmer to ensure that control is passed
to a valid address.

5024789 : 5-49

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

IF

The function of the IF statement is to allow a program to select between alternate paths depending on
the results of a test.

Figures 5-40 and 5-44 show the two formats you can use for IF statements.

!f [NOT] condition-1 THEN statement-1 [ELSE statemenfc-Z]

Figure 5-40. Format 1 for the IF Statement

NOT may be placed immediately after the IF thus reversing the comparison results.

Condition-1 may be represented in three ways, described by Options 1, 2, and 3 below.

The word THEN is required; if missing, a syntax error will result.

Statement-1 can be any BPL statement, procedure, or block. This statement will be executed if the condi-
tion tested for is met (true).

The optional ELSE condition (statement-2) will be executed if the condition tested for is not met (false).

The options shown in figures 5-41 through 5-43 describe the condition (condition-1) that may be tested
with the IF statement. (Refer to Note 4 under ASSIGNMENT for compound expressions.)

identifier-1 identifier-2
« 4 literal-1 relational-operator literal-2
operand-1 operant-2

THEN

Figure 5-41. Test of Condition-1 with IF, Option 1

The result of an arithmetic operation can be used as an operand (for example, IFA+1 = B*3 THEN ...).

Either operand may be a literal, but not both.

5-50

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Relational operators are:

Table 5-7. Relational Operators

Operator Function
= (or EQL) Test for equal
—-= (or NEQ) Test for unequal
< (or LSS) Test for less than
<= (or LEQ) ' Test for less than or equal
> (or GTR) Test for greater
>= (or GEQ) Test for greater than or equal to

The double special-character representation of NEQ, LEQ and GEQ must be written as shown above.
Illegal usage would be =", =<, or =>. '

identifier-3 identifier-4
literal-3 logical-operator literal-4 THEN

Figure 5-42. Test for Condition-1 with IF, Option 2

An assignment or the result of an arithmetic operation can be used as an operand.
Either operand may be a literal, but not both. A literal, if used, must not exceed two digits (or one byte).
Table 5-8 lists the logical operators (or Boolean operators) that are permitted, in hierarchical order.

5024789 : 5-51

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Table 5-8. Permitted Logical Operators

Operator

AND

OR

NOT (or %)

Function

To generate an AND instruction which determines
the logical truth of the low-order bits of
identifier-3 and identifier-4.If true (both bits are
”on”), the THEN action will be taken.If a literal is
used, a ”bit one test” (BOT) instruction will be
generated using the literal as a mask to be generat-
ed using the literal as a mask to be repetitively ap-
plied against each byte of the entire identifier spec-
ified, and if any bit in the mask corresponds to a
bit in the identifier, the THEN action will be taken.

To generate an ORR instruction that determines
the logical truth of the low-order bits of
identifier-3 and identifier-4. If true (either bit or
both “on”), the THEN action will be taken. A liter-
al used with the OR operator has no meaning and
will generate a syntax error.

To generate a NOT instruction that determines the
logical truth of the low order bits of identifier-3
and identifier-4.If true (either bit “on” but not
both), the THEN action will be taken. If a literal is
used, a "bit zero test” (BZT) instruction will be
generated using the literal as a mask to be
repetitevely applied against each byte od the entire
identifier specified. If any bit in the mask corre-
sponds to a zero (bit off) in the mask corresponds
to a zero (bit off) in the identifier, the THEN ac-
tion will be taken.

{

relational-operator
identifier-5 THEN

OVERFLOW

Figure 5-43. Test for Condition-1 with IF, Option 3

B 2000/B 300C/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

If arelational operator is used (see Option 1) a test will be generated against the setting of the comparison
indicators. This form is used following, for example, a COMPARE or SCAN command. If the condition
is met, the THEN action will be taken.

If an identifier is specified, the low-order bit of the identifier will be tested, and if set (on) the THEN ac-
tion will be executed. If identifier-5 references a bit, that bit will be tested.

If OVERFLOW is specified, the overflow indicator will be tested. If set (on) it will be turned off (reset)
and the THEN action will be executed. To force the overflow indicator off: ITFOVERFLOW THEN:

1F_ [NOT] condition-1 THEN BEGIN statement-1

[END ELSE BEGIN statement2] FI

Figure 5-44. Format 2 for the IF Statement

Format 2 includes the features of Format 1, with extensions.
An IF_ statement must end with FI. FI thus provides a visible end to the IF_ statement.

Since FI is an implicit END, THEN must be followed by BEGIN. Because FI is an implicit branch label,
the EXITCOND verb may be used within an IF_ statement.

An early exit from an IF_ statement can be caused by EXITCOND. EXITCOND causes control to be
transferred to the first executable instruction following FI.

Example:

IF_ condition-1 THEN BEGIN
Y :=Y + 1 ;
IF Y = 10 THEN
EXITCOND ; & Bypass the READ
READ Z;
FI ;

Refer also to ELSE_, ELIF, and THEN_ in Appendix G.

5024789 | 5-53

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

LOCK

The function of LOCK is to lock a block of a shared disk or diskpack file, without the transfer of data
taking place. Figure 5-45 describes the format of the LOCK statement.

LOCK file-name [WITH SEEK]

Figure 5-45. Format of LOCK Statement

LOCK file-name locks a block of disk file without transferring data from the file. If the block is currently
locked, LOCK waits to relock it. The SEEK option functions the same, excepting it will not wait if the
block is currently locked.

While LOCK does not transfer data from the file into the program’s buffer, it does destroy the contents
of the file’s record area. Following a LOCK, therefore: (1) a record must be initialized before a WRITE
is executed (2) information previously in the record area may be lost.

Under MCP releases prior to MCP/VS 2.0, the use of LOCK is valid only when the MCP SHRD option
is set.

In any case, the FILE declaration must include the SHARED attribute.

5-54

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

OPEN

The function of OPEN is to initiate the processing of both input and output files. The MCP performs
checking or writing, or both, of labels and other input-output operations. Figure 5-46 describes the for-
mat of the OPEN statement.

IN LoCK
ouT _ LOCK ACCESS

OPEN 10 file-name REVERSE :
Qi NO REWIND

Figure 5-46. Format of OPEN Statement

With every OPEN, the type of OPEN must be specified. Allowable options are IN (input), OUT (output),
IO (input-output) or OI (output-input).

The IO and OI options pertain to disk and disk pack files. In addition, IO may be specified for data com-
. munication devices.

The file-name must be the name (not identifier) assigned to the file in the FILE declaration.

When an OPEN OUT statement is executed for a magnetic tape file, the MCP searches the assignment
table for an available scratch tape, writes the label as specified by the program and executes any label rou-
tines for the file. If no scratch tape is available, a message to the operator is typed and the program is sus-
pended until the operator mounts one, or one becomes available due to the termination of a multiproces-
sing program. OPENing of subsequent reels of multi-reel tape files is handled automatically by the MCP
and requires no special consideration from the programmer.

The 10 option permits the OPENing of a disk or disk pack file for input and/or output operations. This
option assumes the existence of the file on disk, and cannot be used if the file is being initially created.
That is, the file to be OPENed must be present in the MCP Disk Directory, or have previously been creat-
ed and CLOSEd in the same run of the program.

When the IO option is used, the MCP immediately checks the Disk Directory to see if the file-identifier
is present, or if this file has been created and CLOSEd in the same run of the program. The system opera-
tor will be notified if it is absent, and the file can then be loaded (if available), or the program can be DSed
(discontinued).

The Ol option is identical to OPEN 1O with the exception being that the file is assumed to be a new RAN-
DOM file to the Disk Directory. The OI option does not, nor was it intended to, replace the OPEN 10
option, since the use of OPEN OI assumes that a new file is to be created each time.

The LOCK option, executed on a permanent disk or disk pack file, will be performed only on a file not
in use by any other program. Once a file is OPENed with LOCK, no other program will be able to OPEN
the file until the LOCKing program has CLOSEA it.

5024789 5-55

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment ’

The LOCK ACCESS option, executed on a permanent disk or disk pack file, will be performed if the file
isnot OPEN in any manner other than INput by any other program. Once a file is OPENed with LOCK
ACCESS. any program may OPEN the file as INput, but not 10.

With either LOCK or LOCK ACCESS, if the OPEN action cannot be completed by the requesting (or
any other) program, that program will be suspended until the program LOCKing the file has CLOSEd;
then will be automatically reinstated by the MCP.

The NO REWIND option is used to OPEN magnetic tape files without OPENing (output) the second
and all subsequent files on a multi-file reel of magnetic tape.

The REVERSE option can only be used with single reel, single file, tape files. When the REVERSE op-
tion is specified, the subsequent READ statements for the file make the data-records available in reverse
record order starting with the last record. Each record will be read into its record-area and will appear
as if it had been read from a forward moving file.

If the peripheral assigned to the file permits rewind action, the following rules apply:

e When neither the REVERSE nor the NO REWIND option is specified, execution of the OPEN
statement for the file will cause the file to be positioned ready to read the first data-record.

o When either the REVERSE or the NO REWIND option is specified, execution of the OPEN
statement does not cause the file to be positioned. When the REVERSE option is specified, the
file must be positioned at its physical end. When the NO REWIND option is specified, the file
must be positioned at its physical beginning.

5-56

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

OVERLAY

The function of OVERLAY is to request the MCP to call in a specified overlayable segment if it is not
present and when it becomes present, branch to the first executable instruction in that segment. Figure
5-47 describes the format of the OVERLAY statement.

literal-1
OVERLAY identifier-1

Figure 5-47. Format of OVERLAY Statement

Literal-1 or identifier-1 is the segment dictionary entry for the requested segment. Identifier-1 must be
declared INTEGER (3).

If the overlay is not in memory, the MCP reads the requested segment into the appropriate memory area
and marks the segment present, thus any future call on a “present” overlay results in a direct branch to
the segment without MCP intervention.

5024789 : 5-57

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Procedure Call

The procedure call statement passes control to (enters) a procedure. After the procedure has been com-
pleted, the program control will return (exit) to the statement which follows the calling statement.

The format for a procedure call is:

procedure-name [(actual-parameter-list)]

Figure 5-48. Format for a Procedure Call

A procedure call is a statement. A procedure call must never appear adjacent to an assignment or com-
parison operator.

The procedure being called must reside within range. An overlayable procedure may not be called from
another procedure occupying the same area of memory. Parameters are optional (see PROCEDURE
declaration) but if used must be enclosed in parentheses. Multiple parameters must be separated by com-
mas and may be composed of data-names or literals in any order. Evaluation of the actual parameter list
is performed left to right. Only a single “name” or “value” will be passed for each parameter. The actual
parameters passed at object run-time will be matched left to right with the formal parameter names con-
tained in the PROCEDURE declaration of the invoked procedure. The maximum number of parame-
ters that can be passed is 10.

A value will not be returned from a called procedure. If such a requirement exists, the result must be com-
municated through the use of global data-names, or by passing a parameter by name and specifying the
corresponding formal parameter in the procedure to the left of a replacement operator within an executa-
ble statement.

Table 5-9. Calling Procedures

Examples Comments
PROX; The procedure PROX is being invoked.
IF X THEN PROX One of the two procedures will be
ELSE PROY; called depending on the data-name X.

5-58

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

READ

The function of this statement is twofold:

o When processing sequential input files, a READ statement will cause the next sequential record
to be moved from an input buffer area to the actual work area, thus making the record available
to the program. The READ statement permits a branch to a specified label when an end-of-file
condition is detected by the MCP.

o Forrandom file processing, the READ statement communicates with the MCP to explicitly cause
the reading of a physical record from a disk file and also allows a branch to a specified label if the
contents of the associated KEY data item is found to be invalid.

The format of the READ statement 1s:

READ file-name [identifier-1] WITH LOCK [[eof-label]]
— WITH NO UNLOCK - -

Figure 5-49. Format of READ Statement

An OPEN statement must be executed for a file prior to the execution of the first READ statement for
that file.

File-name must be the name (not identifier) of a file declared in a FILE statement.

The use of identifier-1 in a READ statement changes the WORKAREA location (see the FILE declara-
tion) for this and all subsequent READ operations on the specified file. If this option is used, a
WORKAREA must have been specified in the FILE declaration.

The eof-label provides an address to which program control will be returned when the logical end-of-file
is reached. If used, it must reference a defined label and must be enclosed in brackets. If end-of-file is
reached and no eof-label is provided, the program will be terminated.

If the end of a magnetic tape reel is recognized during execution of a READ statement, the following op-
erations are carried out:

1. The standard ending reel label routine and the user’s ending reel label routine, if specified by the
ROUTINETYPE statement, are carried out.

o

. A tape swap is performed.

3. The standard beginning reel label routine and the user’s beginning label routine, if specified, are
executed.

4. The first data record on the new reel is made available.

5024789 5-59

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

For RANDOM files, the READ statement implicitly performs the functions of the SEEK statement. If
the contents of the associated KEY data item is out of the range of the file, the MCP will return control
to the address specified. For RANDOM files, the sensing of an end-of-file condition does not preclude
further READs on that file. For sequential files, a READ following end-of-file is invalid, and the program
will terminate.

If a READ parity error occurs, the MCP will retry the READ operation until the record is successfully
read, or until a specified number of retry attempts has been reached. If the parity error is unrecoverable,
the MCP will branch to the ERROR routine provided by the programmer. If an ERROR routine is not
found, the program will be terminated.

The use of the MCP Shared file capability allows three shared disk READ constructs.

Table 5-10. READ Constructs

READ file-name... READS file even if block is locked.

READ file-name with READS and locks a block of a disk

LOCK file.

READ file-name with Locks a block of a shared file,

NO UNLOCK performs a read, and then unlocks
the block.

If the requested block is locked by

another program, READ WITH NO UNLOCK
waits until the record is unlocked.

If the block is already locked by the

program issuing the READ WITH NO
UNLOCK, no delay is necessary.

This statement obtains the contents of

a record at a time when no other

program has the record locked. It

differs from READ WITH LOCK in that
READ WITH NO UNLOCK does not leave the
record locked.

Under MCP releases prior to MCP/VS 2.0, the MCP’s SHRD option must be set in order to use the
LOCK or UNLOCK options. In any case, the FILE declaration must incLude the SHARED attribute.

5-60

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SCAN

The function of the SCAN statement is to scan a data field for a delimiting character. Figure 5-50 de-
scribes the format of the SCAN statement.

' EQUAL identifier-1
SCAN [ZONE] | UNEQUAL literal-1

FOR identifier-2 N
literal-2

Figure 5-50. Format of SCAN Statement

The SCAN command compares the first identifier-1 field character with all identifier-2 field characters,
and if the condition tested for (EQUAL or UNEQUAL) is found, the SCAN is complete. If not, the next
identifier-1 field character is compared with all identifier-2 characters, and so forth until a match is
found or until the identifier-1 field is exhausted.

Every SCAN instruction stores a character count (not storage position) into Program Reserved Memory
location 00038-39 according to the following rules:

e (0 is stored if the first identifier-1 character satisfies the condition tested.

o The number of characters in the identifier-1 field preceding the equal (or unequal) character is
stored if the non-first character in the identifier-1 field satisfies the condition tested.

e The length of the identifier-1 field minus one is stored if no identifier-2 field character satisfies
the condition tested.

Use of the ZONE and/or the EQUAL/UNEQUAL options permits four variations of the SCAN state-
ment:

1. The SCAN EQUAL option (default):

If the first character in the identifier-1 field equals any of the delimiters in the identifier-2 field,
the comparison is set to LOW. If any character in the identifier-1 field other than the first is equal
to one of the delimiters in the identifier-2 field, the comparison indicator is set EQUAL. If none
of the characters in the identifier-1 field are equal to any of the delimiters in the identifier-2 field,
the comparison indicator is set HIGH.

5024789 5-61

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

5-62

o

. The SCAN UNEQUAL option:

If the first character in the identifier-1 field is not equal to any of the delimiters in the identifier-2
field, the comparison indicator is set LOW. If any character in the identifier-1 field other than
the first is not equal to any of the delimiters in the identifier-2 field, the comparsion indicator is
set EQUAL. If all characters in the identifier-1 field are equal to any of the delimiters in the
identifier-2 field, the comparison indicator is set HIGH.

. The SCAN ZONE EQUAL option:

If the zone portion of the first identifier-1 field character is equal to the zone portion of any of
the identifier-2 delimiter-zone characters, the comparison indicator is set LOW. If the zone por-
tion of any character in the identifier-1 field other than the first is equal to the zone portion of
any of the identifier-2 field delimiter-zone characters, the comparison indicator is set EQUAL.
If no zone portion of any of the identifier-1 field characters is equal to the zone portion of any
of the identifier-2 field delimiter-zone characters, the comparison indicator is set HIGH.

. The SCAN ZONE UNEQUAL option:

If the zone portion of the first identifier-1 character is not equal to the zone portion of any of the
identifier-2 field delimiter-zone characters, the comparison indicator is set to LOW. If the zone
portion of any character in the identifier-1 field other than the first is not equal to the zone por-
tion of any of the identifier-2 delimiter-zone characters, the comparison indicator is set EQUAL.
If the zone portion of every identifier-1 field character matches an identifier-2 field delimiter-
zone character, the comparison indicator is set HIGH.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SEARCH

The function of SEARCH is to cause a search of a table to locate a table element that satisifes a specific
condition, and store the address of the table element in IXI.

Figure 5-51 describes the format of the SEARCH statement.

EQUAL
SEARCH [LOW] identifier-1 [THRU identifier-2]
LOWEST
FOR identifier-3 fiteral-2
literal-1 [INCREMENT { ADDRESS identifier-4 }] 5
’ indirect-field-length-identifier

Figure 5-51. Format of the SEARCH Statement

The SEARCH statement will generate a hardware SEARCH command, which uses the C address con-
troller to determine the type of SEARCH: UN indicates SEARCH EQUAL, SN indicates SEARCH
LOW, and UA indicates SEARCH LOWEST. If the search type is omitted EQUAL is assumed.

The SEARCH action for each of the three types is as follows:

1. EQUAL (default)

The value contained in identifier-3 (or literal-1) is compared with the value in identifier-1, then
with the value in identifier-1 plus the INCREMENT, and so forth. until an equal condition is de-
tected; or until the address developed by incrementing identifier-1 is equal to or greater than the
address of identifier-2 (THRU option). If the THRU option is not specified, the length of the
search will be the length defined for identifier-1. If an EQUAL condition is detected, the compar-
ison indicator is set EQUAL, and the address of the EQUAL entry (identifier-1 plus increments)
is stored in IX 1. If an EQUAL condition is not detected, the comparison indicator is set HIGH
and IX1 is unchanged.

2. LOW

The value contained in identifier-3 (or literal-1) is compared with the value in identifier-1, then
the value in identifier-1 plus the INCREMENT, and so forth until an entry is found where the
value of identifier-1 (plus increments) is lower than the value of identifier-3; or until the address
developed by incrementing identifier-1 is equal to or greater than the address of identifier-2
(THRU option). If the THRU option is not specified, the length of the search will be the length
defined for identifier-1. If a LOW condition is detected, the comparison indicator is set EQUAL,
and the address of the LOW entry (identifier-1 plus increments) is stored in IX 1. Ifa LOW condi-
tion is not detected, the comparison indicator is set HIGH and IX1 unchanged.

5024789 5-63

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

3. LOWEST

The value contained in identifier-3 or (literal-1) is compared with the value in identifier-1, then
with the value in identifier-1 plus the INCREMENT, and so forth until the address developed by
incrementing identifier-1 is equal to or greater than the address of identifier-2 (THRU option).
If the THRU option is not specified, the length of the search will be the length defined for
identifier-1. If, on any comparison, the value of identifier-1 is lower than the identifier-3 value,
that value will be used in all remaining comparisons. If at least one identifier entry is found to
be lower than the identifier-3 entry, the comparison indicator is set EQUAL, and IX1 will con-
tain the address of the LOWEST entry found. If no lower entry is found the comparison indicator
will be set HIGH, and IX 1 will contain the address of identifier-3. If a literal is used, IX 1 will con-
tain the address of the literal. '

NOTE
The test for the bounds of the SEARCH is done before the SEARCH com-
parison is made.

The INCREMENT option allows specification of the table entry size. If a literal is used (literal-2), it must
be an integer with a value of 1 to 100; and will represent digits or bytes depending on the attributes of
identifier-1. If the ADDRESS option is used, a compile-time calculation of the INCREMENT will be
performed by subtracting the address of identifier-1 from the address of identifier-4. The difference must
fall within the value range defined for literal-2. If the INCREMENT entry is omitted, the default value
(of literal-2) will be one.

When indirect addressing is used on identifier-2, it is the programmer’s responsibility to set the appro-
priate address controller in the final address field.

An indirect address may not be used for identifier-1 or identifier-4 if the ADDRESS option is used. A
syntax error will result because the indirect address does not provide sufficient information for calcula-
tion of the increment.

Because comparison length is independent of the entry length, the SEARCH statement may be used for
scanning as well as table lookup. This is accomplished by addressing the data area to be scanned
(identifier-1 THRU identifier-2), the keyword address (identifier-3) and an INCREMENT value of one
(1). When this occurs, the entire data field will be scanned for occurrence of the keyword.

5-64

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SEARCH LINK/DELINK

The function of the SEARCH LINK statement is to search a non-contiguous table for an element that
satisifes a specific condition. and store the address of the table element in IX 1. SEARCH DELINK per-
forms the same function but in addition saves the address of the previous table entry.

Figure 5-52 shows the format of the SEARCH LINK DELINK statement.

r EQUAL
LINK ANY . .
SEARCH {ﬁNK} NONE identifier-1
| GREATER
FOR {IiteraH } . literal-2
. . RE)
identifier-2 OFESET ADDRESS ' B i
—_— identifier-3
L indirect-field-length-identifier

Figure 5-52. Format of the SEARCH LINK DELINK Statement

The SEARCH LINK (or DELINK) instruction will test the table element addressed by identifier-1 in the
manner prescribed by the search mode (described below). If the condition is not met, the first six digits
contained in this table element (called link address) will be used as the address of the next table element
to be tested, etc. until the condition is met, or until the first six digits of an element are zeros. If the condi-
tion tested for is found, the address of the table element will be placed in IX1. In addition, if DELINK
is specified, the address of the previous table element is placed in IX2. If the condition is not met, IX1
and IX2 are not changed.

Either LINK or DELINK must be specified. The search mode defines the type of SEARCH to be per-
formed. If the search mode is not specified, EQUAL 1s assumed. Allowable options are:

e EQUAL (default)

The contents of each table element are compared with the contents of identifier-2, or with
literal-1 until an equal condition is found. If an equal condition is found, the comparison indica-
tor is set EQUAL, otherwise it is set HIGH.

o ANY

The contents of identifier-2 or literal-1 are a mask which specify bits of the table elements to be
considered in the test. A bit on in the mask signifies that the corresponding bit in the table ele-
ment is to be considered; a bit off in the mask signifies that the corresponding bit in the table ele-
ment is to be ignored. If any of the bits considered in the table element is on, the search is satis-
fied. If such a match is found, the comparison indicator is set EQUAL: otherwise it is set HIGH.

5024789 5-65

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

e NONE

The contents of identifier-2 or literal-1 are a mask which specify bits of the table elements to be
considered in the test. A bit on in the mask signifies that the corresponding bit in the table ele-
ment is to be considered; a bit off in the mask signifies that the corresponding bit in the table ele-
ment is to be ignored. If all the bits considered in the table element are off, the search is atisfied.
If such a match is found, the comparison indicator is set EQUAL: otherwise it is set HIGH.

e GREATER

The contents of each table element are compared with the contents of identifier-2, or literal-1
until an elment is found that is less than or equal to the contents of identifier-2. If none are found.,
the comparison indicator is set HIGH. If an EQUAL condition is found, the comparison indica-
tor is set EQUAL; if a less than condition is found, the comparison indicator is set LOW.

The address controller of identifier-1 is set by the type of SEARCH requested, as follows:

0 - EQUAL
[- ANY

2 - GREATER
3 - NONE

Indirect addressing cannot be specified for identifier-1. Indexing may be used with identifier-1, however
neither indirect addressing nor indexing may be used on any link address.

The address controller of identifier-2, or literal type, if literal-1 is used determines the data type of both
fields; identifier-1 and identifier-2. The length of the field to be tested is determined by the length of
identifier-2, and must not exceed 100 (digits or bytes). Indexing may be used with identifier-2; indirect
addressing may be specified only if CONTROL OP B4700 is used.

The OFFSET option defines the location in the table element to be used for comparison. If not specified,
the default value is zero, resulting in a test on the link address. If a literal is used, that value, digits or
bytes, depending on the address controller specified for identifier-2, is added to identifier-1 to determine
the starting point in the table element for the comparison. Again the length of the field to be compared
is determined by the length of identifier-2. If the ADDRESS option is used, identifier-3 will address the
field in the table element to be used and the compiler will calculate the OFFSET value.

NOTE

If CONTROL OP B4700 has been specified, a Search Link List or Search
Link Delink instruction will be generated to perform this function.

5-66

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Typically, the table would appear as:

link 1 data of element 15
identifier-1 identifier=1 plus offset
address-———____i : address

link 2 daté of element 2?
link=1 ﬁ link=1 address plus offset
address /

link 3 data of element 3 |
link=2 i
address)

etc.

In the three-element table shown in the example above, if the conditions were met while pointing to ele-
ment 3 during a SEARCH LINK statement, IX1 would contain the address in link-2 (that is, the “link-2
address” which is the address of element 3). If the conditions were met during a SEARCH DELINK
statement, IX1 would point to link-2 address and IX2 would point to link-1 address.

5024789 5-67

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SEEK

The function of SEEK is to initiate the accessing of a disk or disk pack record for a subsequent READ
and/or WRITE operation.

Figure 5-53 shows the format of the SEEK statement.

SEEK file-name WITH LOCK
NO UNLOCK

Figure 5-53. Format of the SEEK Statement

A SEEK statement pertains only to disk or disk pack storage files in the RANDOM access mode, and may
be executed prior to the execution of each READ and/or WRITE statement.

The SEEK statement uses the contents of the data-name in the associated KEY clause for the location
of the record to be accessed. At the time of execution, the determination is made as to the validity of the
contents of the KEY data item for the particular disk storage file. If the key is invalid, the invalid key
branch ([eof label]) of the next executed READ or WRITE statement for the associated file is taken.

The key identifier should be set to the desired record before the SEEK is initiated. To preclude the possi-
bility of overlaying input buffers, more than one data area should be specified in the FILE declaration.

Two or more successive SEEK statements for a random storage file may logically follow each other. Any
validity check associated with the first SEEK statement is negated by the execution of a second explicit
or implied SEEK statement.

If a READ or WRITE statement for a file assigned to disk or disk pack is executed, but an explicit SEEK
has not been executed since the last previous READ or WRITE for the file, the implied SEEK statement
is executed as the first step of the READ/WRITE statement.

An explicit alteration of KEY after the execution of an explicit SEEK has been performed, but prior to
a READ/WRITE, causes the initiation of an implied SEEK of the specified record, negating the value
of the explicit SEEK.

The use of the MCP Shared file capability allows three shared disk SEEK constructs.

5-68

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Table 5-11. Shared Disk SEEK Constructs

SEEK file-name Seeks even if locked.
SEEK file-name with LOCK Seeks record and locks a block of
a disk file.
SEEK file-name with Initiates a LOCK and a SEEK. If the
NO UNLOCK requested block is locked by another

program, SEEK NO UNLOCK waits until
the record is unlocked. If the block

is already locked by the program

issuing the SEEK NO UNLOCK, no delay
1S necessary.

This statement obtains the contents

of a record at a time when no other
program has the record locked. It
differs from SEEK LOCK in that

SEEK NO UNLOCK does not leave the
record locked.

Under MCP releases prior to MCP/VS 2.0, the MCP’s SHRD option must be set in order to use the

LOCK or UNLOCK options. In any case, the FILE declaration must include the SHARED attribute.

5024789

5-69

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SORT

The function of the SORT statement is to perform a disk sort on an input file of records by transferring
such data into a disk work file and sorting those records on a set of specified keys. The final phase of the
sort operation produces an output file in the specified sequence.

The SORT statement invokes the MCP’s SORT. intrinsic.

Figure 5-54 shows the format of the SORT statement.

SORT file-name-1 TO file-name-2, RECORD

END
PURGE [WORK

identifier-1, [PARITY Lrun | 1| FILESIZE titeral1
AREA
CYLINDER
[ASSIGN | BY | FILE [TO DISKPACK [SINGLE]]]
L NN

[BREAKOUT, | [SUPPRESS, |

(NO REWIND 7
RELEASE
) . [INPUT —
[TRANSLATE "literal-2”] — CLOSE LOCK ,
- | QUTPUT | — +
ST PURGE
_ REMOVE]
ASCENDING
DESCENDING identifier-2 [, identifier-3,. . .] [.SA]

Figure 5-54. Format of the SORT Statement

The SORT option should be specified in the file statement of the file to be sorted (file-name-1) to ensure
that sufficient memory is allocated for execution. All records residing in file-name-1 will be transferred
to file-name-2 in the specified sequence upon encountering the generated SORT verb object code. At the
time of execution of the SORT statement, file-name-1 must not be OPEN. The SORT statement auto-
matically performs the function necessary to OPEN, READ, and CLOSE file-name-1.

Also, at the time of execution of the SORT statement, file-name-2 must not be OPEN. File-name-2 will
be automatically OPENed before the sorted records are transferred from the work file and in turn, will
be CLOSEd after the last record in the work file has been transferred.

5-70

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Identifier-1 is the name of the sort RECORD area and will be used for the declaration of the sort keys:
identifier-2, identifier-3, and so forth.

The PARITY option, if used, may specify one of the following actions to be performed on an irrecovera-
ble I/0O parity error:

e END (default)

The program will be terminated with appropriate operator notification.

e PURGE

All records in the block containing the parity error will be dropped.

e RUN

All records in the block containing the parity error will be retained, and sorted as if the parity
error had not occurred.

The WORK option is used to specify the number of records per area. The FILESIZE option is used to
specify the total number of records in the file to be sorted. Literal-1 may be up to 8 digits. For DISK or
DISKPACK input files this clause is not used, but may be specified for documentation. For input files
other than DISK or DISKPACK the clause should be included for more efficient sort performance.

The ASSIGN option is used to specify work file assignment technique, and the allowable options have
the same meaning as described for the FILE declaration.

DISKPACK is used to indicate that disk packs are to be the work file medium; SINGLE restricts the sort
to a single disk pack.

BREAKOUT specifies that rerun points will be available during the SORT.
SUPPRESS specifies that the record count will not be printed on the SPO.

The TRANSLATE clause may be used if a collating sequence other than the standard hardware collating
sequence is required. Literal-2 is a 1-6 character literal used by the sort as the file-id of the translation
table. This must be 400 byte single area file on head-per-track disk. The collating sequence specified in
the translate file replaces the normal hardware collating for the sort key fields described as unsigned 8
bit (alpha-numeric). If there are 4 bit fields in the sort key, the translation will not apply to those parts
of the sort key. Translate table files in the format required by the sort, may be created through the use
of the MAKTRN program.

The CLOSE clause is optional and may be used to specify the type of CLOSE required on file-name-1
(input) and file-name-2 (output).

ASCENDING and DESCENDING specify the direction of the sort on each key. The sort key can be
mixed ascending and descending, if desired, but their total length cannot exceed 290 bytes. Those may
be up to 40 individual sort keys subject to the foregoing length restriction.

The ”.SA” option may be used as an override on the sort keys to indicate signed alpha.

Refer to the System Software Operation Guide (SOG) for a discussion of MAKTRN and the SORT. in-
trinsic: Volume 2 in MCP/VS 1.0 and MCPIX SOGs, and Volume 3 in MCP/VS 2.0 or later SOGs.

5024789 5-71

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SORT RETURN

The function of the SORT RETURN is to request a return from the sort intrinsic to the user program.
Figure 5-55 shows the format of the SORT RETURN statement.

SORT RETURN ;

Figure 5-55. Format of the SORT RETURN Statement

The SORT RETURN statement is used only by the SORT intrinsic.

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SPACE

The statement is used to cause forward spacing of line printer paper, or forward/reverse record spacing
on magnetic tape, paper tape, head-per-track disk or disk pack files.

Figure 5-56 shows the format of the SPACE statement.

FORWARD .
SPACE file-name-1 REVERSE literal-1
CHANNEL identifier-1

[Lidentifier-2l]

Figure 5-56. Format of the SPACE Statement

File-name-1 may only be assigned to TAPE, DISK, PRINTER, PTREADER, or DISKPACK. Literal-1
must be numeric.

For non-printer files identifier-1 or literal-1 represents the number of records to be spaced (or posi-
tioned) and should not exceed 4 digits in length. For a printer file, identifier-1 or literal-1 represents ei-
ther the number of lines to be spaced, or the channel number (on a carriage control tape), neither of which

should exceed 2 digits in length.
Identifier-2 specifies the end-of-file or end-of page label, and must be enclosed in brackets (indicating ad-
dress constant).

Space Construct:
REVERSE is an illegal option if a print file is specified.
CHANNEL is an illegal option if a non print file is specified.

Output paper tape files may not be saved.
Output magnetic tape files may be REVERSE spaced only.

5024789 5-73

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

SPOMESSAGE

The functions of the SPOMESSAGE statement are to pass keyboard input messages to the MCP and to
request that responses be returned to the program.

Figure 5-57 describes the format of the SPOMESSAGE statement.

SPOMESSAGE identifier-1 identifier-2
“literal-1"

Figure 5-57. Format of the SPOMESSAGE Statement

Identifier-1 or literal-1 may be 1 data-name of an ALPHA keyboard input message or a non-numeric lit-
eral being the keyboard input message itself. This message must be in the same format as the keyboard
input message actually typed at the ODT, and should be terminated by either a period or an ETX charac-
ter (%03%).

The following keyboard commands may be passed to the MCP in identifier-1 or literal-1 of the
SPOMESSAGE statement.

Table 5-12. Keyboard Commands in SPOMESSAGE

Al CN FN MR RA ST
AX DA FP MX RB SW
BD DB FR NL RD TI
BF DC GO NT RF TO
BK DM GT OF RK UL
BP DP HN OK RM UP
BR DQ IL OL RS WB
CA DS IN oT SB wC
CD FA LC ou SK WD
CK FM LP PD SS WJ

If a keyboard command other than those listed in the preceding text is passed, identifier-2 contains
@0707@ followed by **KBD IGNORED: REQUEST NOT ALLOWED. ‘

Each response line is placed in identifier-2 as it would appear on the SPO (including removal cf—’extré,ne-
ous blanks if appllcable) Each line is terminated by carriage return and line feed characters @ A{%)

the last (or only) line is additionally terminated by an ETX character (%03%). /

Identifier-2 must be at least 160 digits long. If identifier-2 is too small for all lines of the response, a
NULL character (%00%) follows the full last line which could fit into the area. If no lines could fit the
first character of identifier-2 is NULL.

Identifier-1 and identifier-2 must not share any portion of their memory allocation.

5-74

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

STOP

The function of the STOP statement is to halt the object program temporarily or to terminate execution.
Figure 5-58 shows the format of the STOP statement.

STOP [literal-1] i
identifier-1

Figure 5-58. Format of the STOP Statement

If STOP is used alone, then all files which remain OPEN will be CLOSEd automatically. Output files as-
signed to DISK or DISKPACK, when FILE declarations do not include the SAVE FILE option, will be
CLOSEd PURGE and all others will be CLOSEd RELEASE. All storage areas for the object program are
returned to the MCP and the job is then removed from the MCP Mix.

The STOP is not used for temporary stops within a program. STOP must be the last statement of the pro-
gram execution sequence.

If the literal-1 or identifier-1 option is used, it will be DISPLAYed on the SPO and the program will be
suspended. When the operator enters the MCP continuation message mix-index AX, program execution
resumes with the next sequential operation. This option is normally used for operational halts to cause
the system’s operator to physically accomplish an external action.

5024789 5-75

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

STOQUE

The function of the STOQUE type statements is to receive/send data from/to a storage queue via the
MCP STOQUE mechanism.

Figure 5-59 shows the format of the STOQUE type statement.

POPQ
PUTQ
1 PUSHQ identifier-1 [[action-label]]
PULLO])
POLLQ

Figure 5-59. Format for STOQUE Statements

Identifier-1 contains the address of the program’s Storage Queue Parameter Block (see following text).

Action-label is not valid with POLLQ, and is optional for the other constructs. When present, it specifies
the label to which the program will branch if either of the following conditions occur and the program
is not to wait for resolution: a) storage space is not available for a storage request; b) the data sought in
a retrieval request is not in the queue. These conditions are further explained in the following para-
graphs.

The Storage Queue (STOQUE) functions are performed by the STOQUE extension module of the MCP.
If its facilities are used, it must be loaded into memory by setting the STOQ system option. Under the
2.0 and later releases of MCP/VS, STOQ is loaded automatically when it is needed.

The STOQUE module has the basic function of transferring data from a data area in the program to an
external memory buffer and retrieving that data upon request. The mechanism may be used simultane-
ously by any number of programs as a means to transfer data between processes, or even as temporary
storage for a single process. The data elements placed into the memory buffer are organized into one or
more program-independent, symbolically named lists called storage queues.

The STOQUE mechanism differs significantly from the Core to Core Feature (see the FILL verb) in that
no synchronization of the sending and receiving programs is required. This is due to the fact that
STOQUIE does not transfer data directly from one program to another but stores the message in an exter-
nal memory area until it is requested. This means that multiple transactions may be in the storage queue
simultaneously; thus the use of STOQUE permits the complete overlap of processing between programs,
with no necessity to interlock for each transaction.

All requests made of the STOQUE function refer to the STOQUE Parameter Block area in the user pro-
gram, whose address is given in identifier-1 preceding. This program-maintained area contains the infor-
mation needed by STOQUE to control the data elements; its format is as follows:

5-76

B 2000/B 3000/B 4000/V Series BPL Compiler Programming Reference Manual
Executable Statements/Control and Assignment

Table 5-13. Storage Queue Parameter Block

ALPHA <queue name> (6) & Identifies Individual
& Queue
INTEGER <entry name length> (2) & Name Length in Bytes
& (0=NULL)
ALPHA <entry name> (NIN) & Entry Name (Optional)
INTEGER <entry data length> (4) & Data Length in Bytes
& (0=NULL)
& POLLQ Response Area
ALPHA <entry data> (NNNN) & Data Field (Optional)
Notes

I. <queue name> identifies the programmatically assigned symolic name of the queue list to which
the request pertains.

2. <entry name length> specifies the size of the optional entry name field.

3. <entry name>, if present, specifies the name associated with the individual queue entry. This
name may be used to provide a substructure to a list and provides the means to access data ele-
ments which are at locations other than the top or bottom of the queue.

4. <entry data length> specifies the size of the entry data area which in turn contains the transac-
tion to be accessed for a storage request. The maximum size of the entry data field is 2300 bytes.
This field serves as the response area for a queue inquiry request (POLLQ).

5. <entry data>, if present, contains the data to be added to the queue in a PUSHQ or PUTQ opera-
tion; it receives the data in.a POPQ or PULLQ operation. This field is not applicable to a queue
inquiry request (POLLQ) operation. ‘

Programs may execute three types of calls on the STOQUE module: store data, retrieve data and queue
inquiry.

The storage constructs, PUSHQ and PUTQ), put data into the queue at the top or bottom, respectively.
The first PUSHQ or PUTQ executed cause the creation of a queue with the name specified if it does not
already exist. If insufficient space is available in the queue for the storage request, the sending program
is suspended until space becomes available unless the optional action-label (above) has been specified.

The retrieval constructs, POPQ and PULLQ, retrieve data from the top or bottom of the queue respec-
tively. Ifthe designated queue is empty or no individual entry satisfies any specified name constraint (see
following), the program is suspended until the desired element is placed into the queue unless the option-
al action-label (preceding) h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>