UNISYS A Series

~ Task Management

Programming
Guide

Release 3.9.0 ’ September 1991

Printed in U S America
Priced ltem : 8600 0494-000

UNISYS Product Information
Announcement

o New Release © Revision @ Update o New Mail Code

Title

A Series Task Management Programming Guide

This Product Information Announcement announces Update 1 to the September 1991 publication of the A Series
Task Management Programming Guide. The update is relative to the Mark 4.0.0 System Software Release, dated
July 1992,

The major changes described in this update to the reference manual are the following:
® Tasking security status

This new category of security status enables a program to execute with most of the privileges of a message
control system (MCS), without actually being an MCS.

® CALLCHECKPOINT

User programs can now initiate a checkpoint by invoking the exported MCP procedure CALLCHECKPOINT. The
CALLCHECKPOINT procedure is available to user programs written in all the languages that support libraries.

® (S| remote tasking
A Series remote tasking is now supported across Open Systems Interconnection (OS!1) networks.
® MP (Mark Program) system command

This system command has been extended to replace the functions of the CP (Control Program), MC (Make
Compiler), and PP (Privileged Program) system commands.

® C libraries

It is now possible to specify whether a C library has a temporary or permanent freeze. Further it is now possible
to pass parameters of ALGOL type Boolean to a C library parameter of type int.

® |ibrary usage

The Y (Status Interrogate) system command now displays the user programs linked to a library. A program can
obtain the same information through a new form of the type O (Mix Entries) GETSTATUS call.

® Test and Debug System (TADS)
TADS is now provided for the C and COBOL85 programming languages.

Various technical changes have been made to improve the quality and usability of the document.

Remove Insert
i through iv iii through iv
Xiii through xxiv xiii through xxiv
3-5 through 3-6 3-5 through 3-6
continued
Announcement only: Announcement and attachments: System: A Series
AS199 Release: Mark 4.0.0 July 1992

Part number: 8600 0494-010

Remove

3-15 through 3-16
4-1 through 4-2

4-3 through 4-4
- 5-3 through 5-4

5-5 through 5-6
5-9 through 5-10
5-13 through 5-18
6-5 through 6-6
6-11 through 6-16
7-1 through 7-6
8-3 through 8-4
9-9 through 9-10

10-5 through 10-6
10-13 through 10-16

11-1 through 11-10

11-15through 11-20
12-1 through 12-2
12-7 through 12-8

12-9 through 12-10
16-21 through 16-22
18-3 through 18-10

18-11 through 18-12
18-21 through 18-22
18-41 through 18-42

18-45 through 18-52
Glossary~19 through 24
Bibliography-1 through 4
Index—1 through 24

Insert

3-15 through 3-16

4-1 through 4-2

4-2A through 4-2B

4-3 through 4-4

5-3 through 5-4

5-4A through 5-4B

5-5 through 5-6

5-9 through 5-10

5-13 through 5-18

6--5 through 6-6

6-11 through 6-16

7-1 through 7-6

8-3 through 8-4

9-9 through ©-10
9-10A through ©-10B
10-5 through 10-6
10-13 through 10-16
10-16Athrough 10-168
11-1 through 11-10
11-10Athrough 11-10D
11-15 through 11-20
12-1 through 12-2
12-7 through 12-8
12-8A through 12-8B
12-9 through 12-10
16-21 through 16-22
18--3 through 18-10
18-10A through 18-10B
18-11 through 18-12
18-21 through 18-22
18-41 through 18-42
18-42A through 18-42B
18-45 through 18-52
Glossary-19 through 24
Bibliography-1 through 2
Index-1 through 24

Changes are indicated by vertical bars in the margins of the replacement pages.

Retain this Product Information Announcement as a record of changes made to the base publication.

To order additional copies of this document
-® United States customers call Unisys Direct at 1-800-448-1424
® All other customers contact your Unisys Subsidiary Librarian

® Unisys personnel use the Electronic Literature Ordering (ELO) system

UNISYS

A Series

Task Management

Programming
Guide

Copyright © 1991 Unisys Corporation.
All rights reserved. .
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0 : September 1991

Printed in U S America
Priced Item 8600 0494000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease -
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 25725
Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Page Issue
iii through iv -010
v through xii -000
xiii through xxi -010
XXii Blank
XXiii -010
XXiv Blank
1-1 through 1-11 -000
1-12 Blank
2-1 through 2-25 -000
2-26 ‘ Blank
3-1 through 3-4 -000
3-5 through 3-6 -010
3-7 through 3-14 -000
3-15 through 3-16 -010
3-17 through 3-28 -000
4-1 through 4-4 -010
4-5 through 4-28 -000
5-1 through 5-2 -000
5-3 through 5-6 -.-010
5-7 through 5-8 -000
5-9 through 5-10 -010
5-11 through 5-12 -000
5-13 through 5-17 -010
5-18 Blank
6-1 through 6-4 -000
6-5 through 6-6 -010
6-7 through 6-10 -000
6-11 through 6-15 -010
6-16 Blank
7-1 through 7-5 -010
7-6 Blank
8-1 through 8-2 -000
8-3 through 8-4 -010
8-5 through 8-8 -000
9--1 through 9-8 . -000
9-9 through 9-10B -010
9-11 through 9-16 -000
10-1 through 10-4 -000
10-5 through 10-6 -010
10-7 through 10-12 -000
10-13 through 10-16B -010
10-17 -000
continued

8600 0494-010

Page Status

continued
Page Issue
10-18 Blank
11-1 through 11-10D -010
11-11 through 11-14 -000
11-15 through 11-20 -010
11-21 through 11-22 -000
12-1 through 12-2 -010
12-3 through 12-6 -000
12-7 through 12-10 -010
12-11 through 12-15 -000
12-16 . Blank
13-1 through 13-4 -000
14-1 through 14-2 -000
15-1 through 15-5 -000
15-6 Blank
16-1 through 16-20 -000
16-21 through 16-22 -010
16-23 through 16-24 -000
17-1 through 17-39 -000
17-40 " Blank
18-1 through 18-2 -000
18-3 through 18-12 -010
18-13 through 18-20 -000
18-21 through 18-22 -010
18-23 through 18-40 -000
18-41 through 18-42B -010
18-43 through 18-44 -000
18-45 through 18-52 -010
18-53 through 18-79 -000
18-80 Blank
19-1 through 19-20 -000
20-1 through 20-2 -000
Glossary-1 through 18 -000
Glossary—19 through 23 -010
Glossary-24 - Blank
Bibliography—1 through 2 -010
Index~1 through 24 -010

Unisys uses an 11-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has ‘a suffix of —-000. A suffix of —-130 designates the
third update to revision 1. The third digit (2) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

8600 0494-010

About This Guide

Purpose

Scope

8600 0494-000

This guide describes the following types of operating system features that can be
accessed using programming languages:

[]

Tasking features

These are features that enable processes to initiate, monitor, and control other
processes. Examples of such features are the CALL, PROCESS, and RUN
statements, task variables, and task attributes. Features related to job restarting
and process history also fall into this category.

Interprocess communication features

These are features that enable user-defined information to be passed between
processes, or that help regulate the timing of parallel processes. Examples of such
features are events, libraries, and parameter passing.

This guide introduces basic concepts about tasking and interprocess communication,

and gives examples of many of the concepts discussed. However, the detailed reference
information for many of these topics resides in other manuals. Of particular note are the
following topics:

Task attributes

This guide introduces the functions of mény task attributes. However, the full
descriptions of these attributes reside in the A Series Task Attributes Programming
Reference Manual.

Port files

This important interprocess communication technique is only briefly introduced in
this guide. For a full description of how to use port files, refer to the A Series I/O
Subsystem Programming Guide. ’

Job queues

These mechanisms for controlling the behavior of Work Flow Language (WFL) jobs
are described in detail in the A Series System Administration Guide.

About This Guide

e Programming language syntax

This guide discusses features that are available in the A Series implementations
of a number of programming languages, including ALGOL, COBOL74, and WFL.
The detailed syntax information for these features is in the manuals for these
programming languages.

Audience

The audience for this guide consists of applications programmers who are familiar
with at least one high-level prog'rammmg language, such as ALGOL, C, COBOL74,
FORTRAN77, Pascal, or WFL.

Prerequisites

Before reading this guide, you should have a general familiarity with the concepts
discussed in the A Series Systems Functional Overview.

How to Use This Document

Because this guide addresses a variety of tasking and interprocess communication
techniques, it is unlikely that you will need to read the whole guide. For an overview of
tasking techniques, refer to Section 1,“Understanding Basic Tasking Concepts.” For an
overview of interprocess communication techniques, refer to Section 13, “Understanding
Interprocess Communication.” The information in these sections should help you
determine which of the other sections are relevant to your immediate needs.

Error messages related to tasking and interprocess communication are discussed
throughout this guide. The index at the end of this guide includes all these error
messages, and refers to the pages where they are discussed.

Statements about ALGOL in this guide apply also to DCALGOL, DMALGOL, and
BDMSALGOL unless otherwise specified.

The ANSI-68 version of COBOL is referred to as COBOL(68) in this guide. This

convention helps to distinguish between ANSI-68 COBOL and the newer COBOL
implementations (COBOL74 and COBOLSS5).

Organization
This guide is divided into the following parts and sections.

Part I. Tasking

The sections in this part describe basic concepts and features related to initiating,
monitoring, and controlling processes.

vi 8600 0494-000

About This Guide

Section 1. Understanding Basic Tasking Concepts

This section defines procedures, procedure entrance and initiation, task variables, and
task attributes. This section also gives an overview of the benefits and limitations of
tasking.

Section 2. Understanding Interprocess Relationships

This section discusses the concepts of inclusion, dependency, flow of control, jobs and
tasks, coroutines, process families, and predefined task variables.

Section 3. Tasking from Interactive Sources

This section explains how to initiate, monitor, and control processes by using the
Command and Edit (CANDE), Menu-Assisted Resource Control (MARC), and operator
display terminal (ODT) interfaces. This section also discusses the inheritance of task
attributes from each of these sources, and introduces task attributes that enable a
process to communicate with an operator.

Section 4. Tasking from Programming Languages

This section discusses the tasking capabilities of major languages. Capabilities discussed
include initiating various types of processes and using task attributes. Some examples
are also given. :

Section 5. Establishing Process Identity and Privileges

This section introduces the task attributes, such as USERCODE, MIXNUMBER, and
NAME, that establish process identity. This section also discusses the various categories
of security status that a process can have, and explains how to assign such a security
status to a process.

Section 6. Monitoring and Controlling Process Status

This section discusses the various states a process can have, such as active, scheduled,
suspended, and terminated. This section also explains the methods of monitoring and

controlling process state using programming languages.

Section 7. Controlling Processor Usage

This section discusses task attributes that affect process priority and record or limit
processor usage. This section also relates processor usage to the various accounts that
can be displayed through system commands. '

Section 8. Controlling Process Memory Usage

This section discusses task attributes that affect memory estimates for a process and
limit the memory usage of a process.

8600 0494-000 vii

About This Guide

viii

Section 9. Controlling Process 1/0 Usage

* This section discusses task attributes that affect various aspects of process I/O activity.

Included are discussions of attributes that affect disk files, printed output data comm
I/Os, and the total I/O activity of a process.

Section 10. Determining Process History

This section explains the various types of normal and abnormal terminations that a
process can have, and the means for determining how a process terminated. This section
also explains how to initiate and specify the contents of a program dump.

Section 11. Restarting Jobs and Tasks

_ This section discusses restarting WFL jobs automatically, using checkpoints to store

intermediate states of a process, and using the RESTART task attribute to reinitiate a
process after a fault termination.

Section 12. Tasking across Multihost Networks

This section explains how to initiate WFL jobs or other processes that run on a remote
host, how to monitor the status of a remote process, and how to ensure that a remote
process runs successfully in the environment of a remote host.

Part II Interprocess Communication

The sections in this part discuss the various ways that processes can communicate
user-defined information to each other.

Section 13. Understanding Interprocess Communication

This section introduces the types of objects that are most useful for sharing information
between processes, methods used to make these objects available to more than one -
process, and the means of synchronizing access to shared objects.

Section 14. Using Task Attributes

This section discusses the task attributes for passing user-defined information between
processes.

Section 15. Using Global Objects
This section discusses the scope of declarations in WFL and ALGOL, and the ability of

mternal tasks to access and share these global objects.

Section 16. Using Events

~ This section discusses the use of events to regulate the timing of asynchronous

processes. Topics include the available state, the happened state, interrupts, and buzz
loops.

8600 0494-000

About This Guide

Section 17. Using Parameters

This section discusses the effect of parameter passing on the scope of a declaration,
actual and formal parameters, parameter passing modes, and the use of tasking
parameters in interprocess communication.

Section 18. Using Libraries

This section explains basic concepts relating to libraries, and provides examples of
libraries and calling programs in each language. Topics include user programs, library
programs, duration and sharing, properties of a library object, library attributes,
library-related task attributes, and parameter-type matching.

Section 19. Using Shared Files

This section summarizes the capabilities of port files, host control (HC) files, and
HYPERchannel® (HY) files. This section also introduces the use of interprocess
communication techniques for regulating access to disk files. See the A Series I/O
Subsystem Programming Guide for details about all these topics.

Section 20. Communication across Multihost Networks

This section explains which interprocess communication techniques are available for use
between processes that run on separate host systems.

In addition, this guide includes a glossary, a bibliography, and an index.

Related Pr'oduct Information

A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with programming
concepts.

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 0296)

This manual describes the basic features of the Standard COBOL AN SI-74 programming
language, which is fully compatible with the American National Standard, X3.23-1974.
This manual is written for programmers who are familiar with programming concepts.

A Series Task Attributes Programming Reference Manual (form 8600 0502).
Formerly the A Series Work Flow Administration and Programming Guide

‘This manual describes all the task attributes available on A Series systems. It also gives
examples of statements for reading and assigning task attributes in various programming

languages.

HYPERchannel is a registered trademark of Network Systems Cbrporation.

8600 0494-000 ix

About This Guide

A Series Work Flow Language (WFL) Programming Reference Manual (form
8600 1047) .

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

8600 0494-000

Contents

About ThisGuide v

Part I. Tasking

Section 1. Understanding Basic Tasking Concepts

TaskingConceptsottt 1-1

Programs and Processesc0u.n.. 1-1

Task Attributes e 1-2

Interactive Tasking. 1-3

Programmatic Tasking 1-3

Process Termination 1-4

Internal and External Processes 1-5

Internal Processes v vii i i, 1-5

External Processes 1-6

Program Structure it e 1-6

Advantagesof Tasking. i, 1-7

Simplifying System Operations 1-8

Increasing Programmer Productivity 1-8

Modifying Program Behavior. 1-8

Using Programs as Modules 1-9

Using Multiple Languages in an Application 1-10

Improving Application Performance 1-10

Limitationsof Tasking 1-11
Section 2. Understanding Interprocess Relationships

Inclusion et e e 2-1

FlowofControl iiiiiennn. 2-2

Synchronous Processesc.oovvien.n, 2-2

Asynchronous Processes [P 2-2

Coroutinesciiiiiiiinnnnnnnnnn 2-3

Creating Coroutines 2-3

Using Continue Statements 2-4

Determining Where Execution Resumes 2-5

Block Structure and Coroutines. 2-5

Continuing the Partner Process 2-5

Communication between Coroutines 2-6

Complex Coroutine Structures 2-6

Dependency.ccuitiriiennniiinineannnns 2-7

Communications Effects 2-8

FlowofControl Effects 2-8

Synchronization, 2-8

Critical Blocks. v ii it i i e nn 2-9

Effects of a Critical Block Exit 2-9

8600 0494-000 . Xi

Contents

Defining the Critical Block 2-10

Preventing ALGOL Critical Block Exits . . 2-10

Preventing COBOL74 Critical Block Exits . . 2-11

Automatic Protection from WFL Critical

BlockExitso vvvii i 2-11

Critical Block Examples 2-11
ProcessFamilies 2-17
Familial Relationships 2-17
JobsandTasks 2-18
Special Typesof Jobs. oot 2-19
WFLJobs........................ 2-19
BDBASETasksoovviiininnnnn 2-20
MCSSessions.oovvviinnn... 2-20

Accessing Task Variables 2-21
MYSELF Task Variable 2-21

MYJOB Task Variable. 2-21
ExceptionTask 2-22

Partner Processes 2-23

Other Task Variables PR 2-24
Private Processes 2-24

Setting Resource Limits 2-24

Section 3. Tasking from Interactive Sources
CANDE et 3-1
CANDE Tasking Capabilities 3-1
Initiating Dependent Processes from CANDE. . . . 3-1
Initiating Compilations from CANDE 3-3
Initiating UtilitiesfromCANDE 3-3
Submitting WFL Jobs from CANDE 3-3
Access to Task Attributes in CANDE 3-4
Monitoring and Controlling Processes in CANDE . 3-5
Saving CANDE Commands for Later Use 3-6
CANDE Programming Considerations 3-6
Receiving Parameters from CANDE - 3-6
Access to Ancestral Processes in CANDE 3-6
Communicating with CANDE Terminals 3-7
MARC e e et e e 3-8
MARC Tasking Capabilities 3-8
Initiating Dependent Processes from MARC 3-9
Initiating Compilations from MARC 3-9
Initiating UtilitiesfromMARC 3-9
Submitting WFL Jobs fromMARC 3-9
Monitoring Processes Initiated from MARC - 3-10
Monitoring Other Processes in MARC. 3-11
Communicating with Interactive Processes in

MARC ... i e e 3-12

Access to Task Attributesin MARC 3-13
MARC Programming Considerations 3-14
Receiving Parameters fromMARC 3-14
Access to Ancestral Processes in MARC 3-14

Xii 8600 0494-000

Contents

Section 4.

8600 0494-010

ODT Tasking Capabilities
Submitting WFL Jobs fromanODT
Initiating Processes froman ODT
Initiating Compilations from an ODT
Initiating Utilities froman ODT
Monitoring and Controlling Processes at an ODT .
Access to Task Attributes froman ODT

ODT Programming Considerations
Receiving Parameters fromanODT
Access to Ancestral Processes in the ODT

Environment.
CommunicatingwithanODT

Tasking Command Equivalents.
Communicating withanOperator.

Displaying Information to Operators.
Accepting Information from Operators

Tasking from Programming Languages

Work Flow Language(WFL)

SubmittingWFL Input
Selectingthe Queueforaldob

Deciding on the Queueforaldob

Requesting the Queue foralJob e
Specifyinga Start Time
Structuringthe WFLJob
Initiating Dependent Processes fromWFL.
Initiating Compilations from WFL
Initiating UtilitiesfromWFL
Initiating Interactive Processes fromWFL
Submitting Other WFLJobs
Access to Task Attributesin WFL
Using File Equations in WFL...................
Responding to Error Conditions in WFL
Communicating with Other Processes in WFL
RestartingWFLJobs,
WFELEXample. i,

Structuring an ALGOL Program
Initiating Processes from ALGOL
Initiating Compilations from ALGOL
Initiating Utilities from ALGOL
Initiating Interactive Processés from ALGOL
Submitting WFL Jobs from ALGOL
Access to Task Attributes in ALGOL
Communicating with Other Processes from ALGOL ...
Restarting ALGOL Processes.
DCALGOL Featurescvivivinnvanes
ALGOLExamplescivviinvenn.. .

et e et el Tl Tl T o R Sy Y
OO ONNNNOOOY O

(iooo
—
[(e] o)

3-20
3-26
3-26
3-27

4-1
4-1
4-3
4-4
4-6
4-7
4-8
4-8
4-9
4-9
4-9

4-10

4-10

4-11

4-11

4-11

4-12

4-13

4-13

4-14

4-14

4-15

4-15

4-15

4-15

4-16

4-16

4-16

4-16

4-17

Xiii

Contents

o0 o Iy 7 4-19
Structuring a COBOL74 Program 4-19
Initiating Processes from COBOL74 4-20
Using Coroutines inCOBOL74 421
Entering Individual COBOL74 Procedures. 4-21
Initiating Compilations from COBOL74 - 4-22
Initiating Utilities from COBOL74 4-22
Initiating Interactive Processes from COBOL74 4-22
Submitting WFL Jobs from COBOL74 ©4-22
Access to Task Attributes in COBOL74............ 4-23
Invoking COBOL74 Programs vvuv . 4-23
Communicating with Other Processes from COBOL74 . 4-23
Restarting COBOL(68) Processes 4-23
COBOL74 Examples, 4-24

OtherLanguages0t iiinnnnns . 4-27

Section 5. Establishing Process Identity and Privileges

Processidentity e e e e 5-1
Mix Number and Stack Number 5-1
Usercode, Access Code, and ChargeCode 5-2
Name ...t e e e e 5-4
ObjectCode File, 5-4A

Transparent Object Code File Privileges 5-5
Delayed Effects of Object Code File Privileges . . . 5-6
Copying Privileged Object Code Files 5-6
OriginatingSource. ittt 5-6

Process Security Classes, 5-6
Nonprivileged Status, 5-7
Privileged Status e 5-9
Nonusercoded Statusciinn. 5-10
ODTStatusoty 5-12

" SYSTEMUSERStatus ..o, 5-13
Security Administrator Status 5-13
CompilerStatuso it 5-13
Message Control System Status 5-14

How an MCS Acquires Its Privileges. 5-14
PriorityofanMCS 5-14
Privilegesof anMCS 5-15
Inheritance of MCS Status 5-16
TaskingStatus i, 5-17

Section 6. Monitoring and Controlling Process Status

Understanding Process Status 6-1
STATUS Task Attribute e 6-3
WFL Task State Expression. 6-4
Mix Display Commands 6-5
Y (Status Interrogate) Stack States 6-6

Monitoring Changes in Process Status 67

Xiv 8600 0494-010

Contents

Section 7.

Section 8.

Section 9.

8600 0494-010

Controlling Process Status
Terminatinga Processccviiiennenn,
Thawingalibrary
Suspending and Resuming Processes.
Preparing a Task Variablefor Reuse
Preventing Process Scheduling
Preventing Process Suspension

Checking File Residence.
Using AUTORESTORE for Disk Files

Using a Serial Number for Tape Files
Using UNITNO and OMITTEDEOF for Unlabeled

TapeFiles.o i
Using the AUTORM Option [P
Using the ORGUNIT Value for ODT Files
Using Conditional ACCEPT Statements

Controlling Processor Usage

Controlling Process Priority e e
Limiting Processor Usage v,
Understanding Processor Usage Accounting

Controlling Process Memory Usage

Understanding Process Memory Usage
Main Memory and Virtual Memory e
ProcessComponents
Presence-BitOperations.

Controlling Code Segment Dictionary Sharing

Controlling Process Scheduling

Preventing Stack Stretches

Protecting against Looping Processes

Restricting Save Memory Usage.

Controlling Process /0 Usage

Establishing the Default Usercode for Files
Modifying File Attributes
Controlling Disk FileUsage
Specifying Family Substitution
Preventing File Duplications
Automatically Restoring Missing Disk Files

Limiting DiskUsageu...
Controlling Printing
Defauit Handling of Printer Output

Storing Printer Backup Files Temporarily

Titling of Printer Backup Files

Submitting Print Requests

Selecting PrintRequests.

6-10
6-11
6-11
6-11
6-12
6-12
6-13
6-13

6-13
6-14
6-15
6-15

\JI\I\I
wwe

8-1
8-1
8-2
8-3
8-3
8-4
8-6
8-7
8-7

9-1
9-1
9-3
9-4
9-5
9-6
9-6
9-7
9-7
9-7
9-8
9-9
9-9

XV

Contents

Programmatic Control Over Printing 9-10
Other Print-Related Task Attributes O-10A
Controlling Data Communications and Messages 9-12
Controlling Message Tanking. 9-12
Suppressing Unwanted Messages ©9-14
Localization, e 9-15

Limiting /OUsage i nnnnn. 9-16

Section 10. Determining Process History

Understanding Termination Messages 10-1
Using Log Information. 10-4
Specifying the Information to Be Logged 10-4
Controlling Job Summary Printing 10-5
Saving the Job Summary File 10-5
Analyzing the Systemlog 10-6
Programmatically Interrogating Process History 10-6
Determining the Type of Termination 10-7
Determining Whether a Compilation Was Successful .. - 10-7
Responding to Task Failures P 10-8
Determining Where a Fault Occurred 10-8
Designing a Program to Survive Faults 10-11
Controlling Program Dumps e 10-11

Using Program Statements to Control Program Dumps. 10-12
Using Operator Commands to Control Program Dumps 10-12

Controlling the Program Dump Destination......... 10-13
Usingthe TaskFile 10-16
Analyzing a Program Dump from a Running Process .. 10-16A
Causing Symbolic Dumps for RPG Processes 10-16B
Effect of Resource Limits on Program Dumps 10-17
Understanding Internal and External Causes 10-17

Section 11. Restarting Jobs and Tasks

Designing WFL Jobs for Automatic Restarts 1141
Preventing Job Side Effects. 11-2

Preventing Task Side Effects 11-2
Understanding Job Restart Failure 11-3

: Understanding Disk Resource Control Effects 11-4
Manually Restarting WFL Jobs 11-4
Checkpoint Facility it 11-5
Programmatically Invoked Checkpoints 11-5

Storing Information with a Checkpoint 11-6

Planning for File Recovery 11-6

Planning for Library Recovery 11-6

Invoking the Checkpoint. 11-7

Using a CHECKPOINT Statement 11-7

-Using the CALLCHECKPOINT Procedure . . 11-8

Creating Output Disk Files with a Checkpoint ... 11-10B

Restrictions on the Use of Checkpoints 11-10C

Xvi : 8600 0494-010

Contents

Determining Eligibility for Checkpoints 11-11
Determining Whether the Checkpoint Succeeded - 11-11
Operator-Invoked Checkpoints 11-15
Programmatically Preventing Operator
Checkpoints 11-16
Displaying the Checkpoint Status 11-16
Invoking a Checkpoint interactively 11-17
Canceling a Checkpoint Interactively 11-17
Operator Actions after the Checkpoint 11-18
Restarting a Checkpointed Task 11-18
Restarting Checkpointed Tasks Automatically ... 11-19
Initiating a Restart Explicitly 11-19
AutomaticRetries o i, 11-21

Section 12. Tasking across Multihost Networks

Submitting Remote WFL Jobs 12-2
Running a Local WFL Job on a Remote Host 12-2
Submitting a WFL Job Stored on a Remote Host 12-2
Meeting Remote Job Queue Requirements 12-3

Initiating Non-WFL Remote Processes 12-3
Specifying the Remote Host 12-3
Limitations on a Non-WFL Remote Process 12-4
Host Availability 12-5
Initiating Processes from a Remote Session 12-5
Interrogating the Remote Ancestry of a Process 12-6

Preventing User Identity Problems 12-6
Usercode Identity e e e 12-6
Accesscode and Charge Validation. 12-8A
FAMILY Identity 12-8A

Logging of Remote Processescc..... 12-8B
System LogEntries i 12-8B
Job Summaries for Remote Processes 12-9

Resource Limits for Remote Processes 12-10

Interacting with Remote Processes. 12-10
Viewing Remote Process Messages 12-10
Local Operator Control of Remote Processes 12-11
MARC Control of Remote Processes - 12-12
CANDE Control of Remote Processes. 12-13
Visibility of Remote Processes to Remote Operators. .. 12-13
Displaying TASKING/MESSAGE/HANDLER and

TASKING/STATE/CONTROLLER 12-13
Using Host Services-Supported Task Attributes - 12-14
Part II. Interprocess Communication

Section 13. Understanding Interprocess Communication

Objects Used in Interprocess Communication 13-2
‘Methods of Sharing Objects. 13-2

8600 0494-010 ' xvii

Contents

xviii

Section 14.

Section 15.

Section 16.

Methods of Synchronizing Access 13-3
Using Task Attributes

Using Global Objects

Communication through Giobal Objects in WFL 15-2
Communication through Global Objects in ALGOL 15-4

Using Events

Declaring Events i eninnnnn 16-2

Accessing the Available State 16-2
Procuring an Event Unconditionally 16-3
Procuring an Event Conditionally 16-3
Liberatingan Event 16-4
Partially LiberatinganEvent 16-4
Testing the Availability ofan Event 16-5
Determining the Ownership of an Event 16-6
Accessing the Happened State 16-7
CausinganBEvent 16-8
Implicitly CausinganEvent. 16-8
Causing and ResettinganEvent 16-9
Partially CausinganEvent 16-9
ResettinganEvent 16-9
WaitingonanEvent 16-10
WaitingonTime 16-10
Waiting on and ResettinganEvent 16-10
Waiting on MultipleEvents. 16-11
Testing the Happened State 16-11
Duration of the Happened State 16-12
Using Implicitly Declared Events 16-12
Using Interrupts oiiii i it iie i 16-13
Declaringinterrupts i 16-14
Attaching or Detaching anInterrupt 16-15
Enabling or Disabling an Interrupt 16-16
Using General Disable and Enable Statements 16-16
Waiting forinterrupts 16-17
Efficiency Considerations o 16-17
Buzzloopscoiiii it 16-18
Preventing Excessive Interrupt Overhead 16-18
Preventing Starvation Problems 16-19
Discontinued Processesand Events 16-20
Using EPILOG and EXCEPTION Procedures 16-20
Using Timed Wait Statements. 16-22
Using Conditional Procure Statements 16-22
Determining Whether to Liberate an Event 16-22
Exampleof EventUsage il 16-23

8600 0494-010

Contents

Section 17. Using Parameters

Determining the Scope of Parameters. 17-1
Parameter PassingModes 17-3
Call-by-Value Parameters 17-3
Call-by-Name Parameters. 17-3
Call-by-Reference Parameters 17-4
Read-Only Parameters 17-6

Specifying the PassingMode - 17-6

Using Tasking Parameters 17-6
Matching Each Parameter Type 17-7

Resolving Passing Mode Conflicts 17-30

PasSiNg ArTaYS . oo v vttt it et it e 17-32

Matching Dimensions and Elements 17-32

Matching Unbounded Arrays. 17-33

Matching Pascal Arrays 17-34

Passing Multidimensional Arrays 17-34

Passing Parameters to Pascal Schemata... 17-35
Passing COBOL74 Arrays to Bound Procedures.. 17-38

Section 18. Using Libraries

Creating LibraryProgramsciivn.. 18-2

ExportingObjects 18-2
Freezingthelibrary. 18-3
Controlling Library Sharing 18-4
Initiating Internal Library Processes 18-5
Reinitialization of Local Variables 18-5
Restrictions on OWN Objects 18-6
Restrictions on COBOL(68) and COBOL74 Libraries . . 18-7
Creating User Programs v, 18-8
ImportingObjects 18-8
Specifying Libraries 18-9
FUNCTIONNAME 18-9
INTNAME i, 18-10A
LIBACCESScciiiiiiiiininnnn. 18-10B
LIBPARAMETER iiiveen. 18-11
TITLE . e e 18-11
Controlling Library Linkage 18-11
LinkingtoLibraries 18-12
Initiating Library Processes 18-13
Implicitly Initiatinga Library 18-13
Explicitly Initiating a Library e 18-13
Linking Export and Import Objects e 18-14
DirectLinkage 18-14
Indirect Linkage 18-14~
Dynamic Linkage 18-14.
CircularLinkageot 18-15
Matching the Object Name. 18-16
TypeMatchingo 18-18
Matching Procedure Types 18-18

8600 0494-010 Xix

Contents

XX

Matching Parameter Types
C Parameter Types
COBOL(68) Parameter Types
COBOL74 Parameter Types

COBOL85 Parameter Types
FORTRAN and FORTRAN77 Parameter

Types. . oo e e

NEWP Parameter Types

Pascal Parameter Types

PL/I Parameter Types.

Matching Array Lower Bounds

Matching Parameter-PassingMode

Delinking from Libraries

Thawing and Resuming Libraries.
Determining Which Users Are Linked to a Library
Understanding Library Process Structure
ProcessStacks i

Library Task Attributes vt
ErrorHandling i

Providing Global Objects
Security Considerations.
Library Debugging
Library Examples e e e
ALGOL Library: OBJECT/FILEMANAGER/LIB

ALGOL User Program #1

ALGOL Library: OBJECT/SAMPLE/LIBRARY

ALGOL Library: OBJECT/SAMPLE/DYNAMICLIB

ALGOL UserProgram #2 i i ennn

ALGOL Circular User Programs

ALGOL Incorrect Circular Libraries.

Example 1: Indirect Self Referencing

Example 2: Direct Self Referencing

Example 3: Libraries that Wait on Each Other. . .

C Library and ALGOL User Program..............

C User Program Passing Array to ALGOL Library

C User Program Passing File to ALGOL Library
COBOL(68) Library: OBJECT/SAMPLEL
COBOL(68) Library: OBJECT/SAMPLEZ

COBOL74 Library: OBJECT/SAMPLE4.

COBOL74 Library: OBJECT/SAMPLES.
COBOL(B8) UserProgramcovvnn.

COBOL74 UserProgramccivuvunnnn

ALGOL UserProgram #3coiuu.n

COBOLS8S5 Libraries and User Program

FORTRAN Library and User Program
FORTRAN77 Library and User Program
Pascallibrary i

PL/l Library and User Program

8600 0494-010

Contents

Section 19. Using Shared Files

Sharing Communications Files 19-1
UsingPortFiles i, 19-1

COBOL74 Port File Example. e o 19-2

ALGOL Port FileExample 194

Using Host Control (HC) Files 19-5

Using HYPERchannel (HY) Files 19-6

Sharing Other Kindsof Files 19-7
Using Shared Logical Files - 19-7

Specifying the File Location 19-8

Synchronizing AccesstoaFile 19-8

Establishing Access Rights 19-9

Example: Nonprivileged Library Program .. 19-10
Example: Privileged Transparent Library

Program.............c..ccvvo... 19-11
Example: Parent and Task Accessing a

GuardedFile.................... 19-13
Understanding I/O Accounting. 19-13

File Sharing Examples 19-15
Using Shared Physical Files 19-17
Entering a File inthe Directory 19-17
Matching Physical Files 19-18
Ensuring Exclusive Access to a Physical File. ... 19-19
Sharing Nonexclusive Files 19-20

Section 20. Communication across Multihost Networks

GloSSarY e 1
Bibliography o 1
IndeX e 1

8600 0494-010 XXi

XXii

8600 0494-010

Tables

17-1.
17-2.

18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.
18-10.

8600 0494-010

Interactive Tasking Functions e e 3-22
WFL Execution Modes i e e 4-2A
WFL Statements Executed with Privilege e 5-12
ProcessStatescc it e e 6-2
Effects of GOINGAWAY and ACTIVE Assignments 6-10
Abnormal Termination Messages i 10-2
Checkpoint CompletionCodes.o it .. 11-12
Restart Messages A 11-20
Programming Language Parameter Types, 17-12
Matching Parameter Types« oottt e . 1721
C Parameters e et e e e e . 18-21 -
COBOL(B8) Parameters ot ittt it e e e 18-23
COBOL74 Parameters . .o v v v vt vttt ettt et e vt i e e e 18-25
COBOLB5 Parameterso v v in e it i es e ns 18-27
FORTRAN/FORTRAN77 Parameters, 18-29
NEWP Parameters ittt ennneens 18-30
Pascal Parameters. i i e i 18-32
PL/L Parametersc.iriiint ittt ittt et 18-37
Unbounded and Simple Array Declarations e 18-38
Parameter-Passing Modes i, 18-40
Xxiii

XXiv A \ 8600 0494-010

Part |
Tasking

. 8600 0494-000

8600 0494-000

Section 1
‘Understanding Basic Tasking Concepts

A Series tasking features are inherent in the overall system architecture. Various

A Series programming languages and operations interfaces provide you with access to
different subsets of the tasking capabilities of A Series systems. This section presents an
overview of A Series tasking features and discusses the advantages and limitations of
these features.

Tasking Concepts

The following subsections discuss the relationships between programs and processes, and
the methods you can use to monitor and control process behavior.

Programs and Processes

A program is a sequence of statements written in any of a number of languages,
including ALGOL, BASIC, C, COBOL74, COBOL85, FORTRAN77, Pascal, and Work
Flow Language (WFL). The file in which you write and store these statements is
referred to as a source file. By compiling the source file, you cause the creation of an
object code file. ‘

By using any of a number of commands or statements, you can cause a particular object
code file to be initiated. That is to say, you cause the system to start performing the
instructions in the object code file. At this point, the object code file is being executed.
However, in a sense, nothing is happening to the object code file itself. The system
merely reads instructions from the object code file; the contents of the file remain
unchanged. ‘

There is, nonetheless, a dynamic entity called a process, which is separate from the
object code file, but which reflects the current state of the execution of the object code
file. A process stores the current values of variables used by the program, as well as
information about which procedures have been entered and which statement is currently
being executed. (Procedures are discussed under “Internal and External Processes”
later in this section.) , o

Each process exists in the system memory, and consists of several distinct structures that
are discussed in Section 8, “Controlling Process Memory Usage.”

The distinction between object code files and processes is a very important one on

A Series systems. This is because, at any given time, there can be multiple processes
that are executing the same object code file; these are referred to as instances of that
object code file. A new instance is created each time a user or an existing process.
submits a statement that initiates the object code file.

8600 0494-000 ’ 1-1

Understanding Basic Tasking Concepts

Because many instances of the same object code file can be running at the same time, the
object code file title is not sufficient to uniquely identify a process. Therefore, in system
command displays, the various processes are identified both by an object code file title
and by a unique four-digit number called the mix number. For further information on
mix numbers, refer to Section 5, “Establishing Process Identity and Privileges.”

Even if processes are executions of the same object code file, the processes are
completely separate entities and do not interact with each other. For example, suppose
the object code file called OBJECT/PROG includes a declaration of an integer variable
named N, as well as various statements that assign values to N. In this case, each
instance of OBJECT/PROG has its own copy of variable N in memory. When one process
changes the value of N, there is no change to the value N has for the other processes.

The fact that processes are separate and maintain their own copies of variables generally
prevents confusion and simplifies program design. However, there can also be cases
where you want processes to have shared access to a particular variable. For these
cases, the A Series systems provide a variety of interprocess communication techniques,
which are described in Part II of this guide.

Tasking consists of using various A Series features to initiate, monitor, and control
processes. You can perform tasking functions by entering commands through various
system operation interfaces, or by writing programs that initiate, monitor, and control
the execution of other programs.

Task Attributes

Task attributes are entities that record various properties of a process, such as its
usercode, mix number, priority, printing defaults, and so on.

There are a limited number of task attributes, which are defined by the operating system
and have fixed meanings. Each process possesses all of these task attributes, but the
values of the task attributes can vary. For example, each process has a USERCODE task
attribute, but where one process might have a USERCODE value of JASMITH, another
process might have a USERCODE value of JANEDOE.

Task attributes record or modify many aspects of process execution, including security,
processor usage, memory usage, and I/O activity. You can assign task attributes to
a process either through commands entered at an interactive source, or through

- statements in a program.

This guide introduces many of the important uses of task attributes. The remaining
sections in Part I of this guide introduce task attributes within discussions of general
functional areas, such as processor usage, memory usage, and so on. For detailed
information about any of these task attributes, you can refer to the A Series Task
Attributes Programming Reference Manual, which presents the task attributes in
alphabetical order. :

8600 0494-000

Understanding Basic Tasking Concepts

Interactive Tasking
You can perform tasking functions through any of the following interactive interfaces:

e Command and Edit (CANDE)

This is a command-driven environment that provides file handling and taskmg
capabilities. -

e Menu-Assisted Resource Control (MARC)
This is a menu-driven interface to system operations functions.
e Operator display terminals (ODTs)

These are terminals that support an interface called system command mode.
Each of these products provides the following general types of tasking capabilities:

¢ A command or menu selection that allows you to initiate any object code file by
name. Examples are the RUN command in CANDE and MARC.

e Syntax for specifying task equations, which are task attribute assignments applied to
a process when it is first initiated.

o Task attribute inheritance, which causes a process to receive task attributes
associated with the initiating source.

e Various commands or selections for monitoring the status and resource usage of
processes, or for intervening in process execution in various ways.

The tasking capabilities of CANDE, MARC, and the ODT are described in Section 3,
“Tasking from Interactive Sources.”

Note that many commands entered by users can indirectly cause a process to be
initiated. For example, the Communications Management System (COMS) initiates
instances of direct window programs in response to variations in the message traffic
from users. Similarly, the system initiates processes to execute some specialized system
commands, such as LOG.

This guide does not attempt to describe all such cases of indirect tasking. CANDE,
MARC, and the ODT are all introduced in this guide because they provide direct,
generalized tasking interfaces. With these products, you can initiate any object code file,
as well as monitor and control any process (to the extent allowed by system security).

Programmatic Tasking
You can perform tasking functions using any of the following programming languages:
ALGOL, APLB, COBOL(68), COBOL74, PL/1, and WFL. This guide provides details

about the tasking capabilities of the newer and more popular of these languages, namely
ALGOL, COBOL74, and WFL.

8600 0494-000 . 1-3

Understanding Basic Tasking Concepts

Each of these languages provides you with the following types of taéking capabilities:

e Statements that allow you to initiate any object code file by name. Examples are the
CALL, PROCESS, and RUN statements in ALGOL and COBOL74.

e Constructs for reading and assigning the task attributes of a process before the
process is Initiated, while it is running, and after it completes execution.

The tasking capabilities of each of these languages are described in Section 4, “Tasking
from Programming Languages.”

At this point you might be aware of the potential for some ambiguity in the use of

task attributes within programs. For example, every process has a USERCODE task
attribute. If you write a program that makes an assignment to the USERCODE task
attribute, how does the system know which process the USERCODE should be applied
to?

The answer is that ALGOL, COBOL74, and WFL all provide a special type of variable
called a task variable. A task variable is also known as a control point in COBOL74. You
can declare one or more task variables in a program, each with a distinct name. When
you use a process initiation statement, you include a reference to a task variable in that
statement. The task variable thereafter becomes associated with the new process.

Statements that use task attributes always specify a task variable name as well as a task
attribute name. In this way, it is always clear which process is being referred to.

When one process initiates another process, many of the task attributes of the initiating
process are transferred to the new process. This transference is called inheritance.
Details about the task attributes that are inherited, and under what circumstances
they are inherited, are given in the A Series Task Attributes Programming Reference
Manual. ,

Process Termination

14

A process typically ends when the last instruction in the object code file is executed. This
is referred to as a normal termination.

However, a process can also terminate prematurely for any of a number of reasons. For
example, you can use the DS (Discontinue) system command to terminate a process. A
process can also terminate because a flaw in program design causes it to attempt to do
something impossible, such as dividing by zero. Additionally, all processes are terminated

_ in the event of a system halt/load. All of these types of terminations are referred to as

abnormal terminations because the inference is that something went wrong.

‘When you initiate a process, you usually want to be able to find out later whether it ran
successfully or not. The system provides a number of facilities to help you determine
whether the process ran successfully, and why it failed if it was not successful. These
facilities include the HISTORYTYPE, HISTORYCAUSE, and HISTORYREASON task
attributes, and the program dump facility. These facilities are described in Section 10,
“Determining Process History.”

8600 0494-000

Understanding Basic Tasking Concepts

Sometimes you might want to rerun a process that terminated abnormally. For example,
if the process was terminated by a system halt/load, then the underlying program

might be perfectly sound. Restarting the process could enable it to complete its work
successfully. However, a number of design issues must be considered for processes

that are intended to be restartable. These design issues, and the means of restarting
processes, are explained in Section 11, “Restarting Jobs and Tasks.”

Internal and External Processes

Up to this point, this section has discussed only cases where an object code file is
executed from beginning to end as a single process. However, A Series systems give you
the option of causing individual procedures to be initiated as separate processes. These
processes fall into two general categories: internal and external processes.

The following subsections describe the various types of internal and external processes.
For a discussion of the varying capabilities of these types of processes, refer to the
discussion of inclusion in Section 2, “Understanding Interprocess Relationships.”

Internal Processes

Many programming languages give you the ability to create groups of declarations

and statements within a program, and to assign a name to each group. In ALGOL,
these groupings are referred to as procedures. In WFL, these groupings are referred .
to as subroutines. However, the basic concept is similar in both cases, and the term
“procedure” in this guide refers equally to ALGOL procedures and WFL subroutines.

Other programmihg languages offer similar types of structures, but ALGOL and WFL
are the only languages that give you a choice between the following two methods of
invoking a procedure:

e Procedure entrance

The syntax for entering a procedure consists of using the procedure name as if it
were a statement. Entering a procedure causes the procedure to be executed as
part of the same process that invoked the procedure. When the process finishes
executing the procedure, the process exits that procedure.

e Procedure initiation

The syntax for initiating a procedure consists of using a CALL, PROCESS, or RUN
statement in ALGOL, or a PROCESS < subroutine> statement in WFL. Initiating
a procedure causes it to be executed as a new process, separate from the process
that invoked the procedure. This new process is referred to as an internal process
because it is executing part of the same object code file as the initiating process.

Of these methods, procedure entrance has the advantages of simplicity and low impact
on system resources, as discussed under “Limitations of Tasking” later in this section.
On the other hand, procedure initiation allows you to use parallel processing or to assign
the new process different task attribute values than those of the initiating process.
These features are introduced under “Advantages of Tasking” later in this section.

8600 0494-000 | | 15

Understanding Basic Tasking Concepts

Note that, if you use the Binder utility to bind a procedure from a subprogram into a
host program, that procedure is thereafter considered an internal procedure of the host
program. If the host program is an ALGOL program, the host program can either enter
or initiate the bound procedure. If the procedure is initiated, the resulting process is
considered to be an internal process. For information about the Binder utility, refer to
the A Series Binder Programming Reference Manual.

External Processes

An external process is one that results when a statement in a program initiates an
external procedure. An external procedure is one that resides in a program other than
the program containing the statement that invokes the procedure. External procedures
are of three types:

Separate programs

Any program, taken as a whole, can be thought of as an external procedure when
it is invoked by a statement in a different program. A separate program is always
executed as a separate process; that is, a process can initiate, but cannot enter, a
separate program. WFL, ALGOL, and COBOL74 all allow you to initiate separate
programs. In ALGOL and COBOL74, you must specify dummy procedures, called
declared external procedures, in statements that initiate separate programs.

Passed external procedures

These are procedures passed into the program as parameters. You can write
programs in ALGOL that accept procedures as parameters from the initiating
program. Statements in the receiving ALGOL program can either enter or initiate a
passed procedure. ‘

Library procedures

These are procedures that are provided by a special type of program called a library.
Libraries make procedures available for use by other programs. Statements in an
ALGOL program can either enter or initiate a library procedure. Programs written
in other languages can enter, but cannot initiate, a library procedure. The methods
for writing libraries and programs that use libraries are discussed in Section 18,
“Using Libraries.” '

Program Structure

1-6

* Each program is viewed by the operating system as having a certain block structure. The

block structure of the program can have implications for the critical block definition
and for the ability of processes to communicate through global objects. For further
information on these topics, refer to “Critical Blocks” in Section 2, “Understanding
Interprocess Relationships” and to Section 15, “Using Global Objects.”

The term flow of control refers to the order in which the statements of a program are
executed, Most statements perform an action and then pass control to the immediately
following statement. However, some statements can pass control to structures residing
elsewhere in the program.

8600 0494-000

Understanding Basic Tasking Concepts

A block is a program, or program subunit, that can contain a group of declarations and
a group of statements. The declarations create objects that are for local use by the
statements in the block. There are two kinds of blocks: procedures and simple blocks.

A procedure is a block that can be executed using a procedure invocation statement,
which passes control to the start of the procedure. When the procedure finishes
executing, control automatically returns to the procedure invocation statement, and
passes to the next statement in the program.

This abstract definition of a procedure corresponds to the way procedures are viewed by
the A Series operating system. Procedures are called by different names in the syntax
of the various programming languages. This definition of a procedure corresponds, for
example, to a PROCEDURE in ALGOL, a PROCEDURE or FUNCTION in Pascal, a
SUBROUTINE or FUNCTION in FORTRAN or FORTRAN77, or a nested program in
COBOLS5. It also corresponds to a complete program written in any of these languages.

Note that a complete program written in COBOL(68) or COBOL74 is also considered

a procedure. However, a paragraph or a section in these languages is not considered a
procedure. It is true that a PERFORM statement resembles a procedure invocation
statement in that it causes control to pass through the paragraph or section and then
return to the PERFORM statement. However, paragraphs and sections cannot include
declarations and thus are not treated as procedures by the operating system. Therefore,
the various properties of procedures discussed in this guide do not apply to COBOL(68)
or COBOL74 paragraphs or sections.

A simple block is a block that cannot be specified in a procedure invocation statement.
Simple blocks exist only in ALGOL, where they appear among the statements in the
program, rather than among the declarations. The beginning and end of a simple block
are marked by the keywords BEGIN and END. A simple block is executed in sequence
between the statements that immediately precede and follow the simple block.

Note that a BEGIN...END group is considered to be a simple block only if it contains at
least one declaration. Otherwise, it is considered a compound statement. Compound
statements do not affect tasking or interprocess communication issues, and will not be
further discussed in this guide.

Some languages, including WFL and ALGOL, allow blocks to be declared within other
blocks. This practice is referred to as nesting. A block that contains a nested block is
said to be global to that nested block. The most global block is referred to as the outer
block of the program.

The lexical level of a block is a measure of how deeply the block is nested. By default,
the outer block of a program has a lexical level of 2; however, compiler control options
can be used to cause the outer block to be compiled with a higher lexical level. Each
procedure has a lexical level one higher than the outer block or procedure in which it is
declared.

Advantages of Tasking

The benefits of tasking fall into the general areas of simplifying system operations,
increasing programmer productivity, and improving performance of an application.

8600 0494-000 1-7

Understanding Basic Tasking Concepts

Simplifying System Operations

Many applications involve running a sequence of programs, one after another in a certain
set order. Often it is necessary to specify parameters and task attribute assignments for
each of the programs. An operator can initiate the programs individually, providing the
needed parameters and task attribute assignments in each case. However, this proves

to be too time consuming in an environment where many applications are run during a
given work shift.

An alternative, which reduces the labor required of the operator, is to write a small
program whose only purpose is to initiate a series of other programs. Such a program
can provide a standard set of parameters and task attribute assignments. You can write
such a program in ALGOL, COBOL74, or WFL. This enables the operator to initiate a
single program and leave it to initiate all the others.

WFL is particularly suitable for implementing such programs because WFL programs
typically pass through job queues. An operator can use the MQ (Make or Modify Queue)
system command to create job queues and assign various job queue attributes to them.
The use of job queues enables the operator to submit jobs when it is convenient, while
relying on the system to initiate jobs at specified times or according to specified criteria.
Job queues are further discussed under “Selecting the Queue for a Job” in Section 4,
“Tasking from Programming Languages.”

Increasing Programmer Productivity

Tasking techniques can improve programmer productivity by modifying the behavior of
existing programs, by allowing you to use programs as modules in a larger application,
and by allowing multiple programming languages to be used in an application.

Modifying Program Behavior

Sometimes a program is designed to run in a particular environment, and later that
environment changes. For example, a program might be designed to read a file on a
family named DATAPK. Later, you might want to run a copy of that program on a
different system that does not have a family with that name. Rewriting the source
program and recompiling it can be a time-consuming process. Fortunately, many such
behaviors can be modified through task attribute assignments.

For example, there is a task attribute called FAMILY that causes a process to use files on
a different family than it otherwise would. Suppose a process expects to find all its input
files on the family named DATAPK. You can assign the FAMILY task attribute a value of
“DATAPK = CONTROL OTHERWISE DISK”. This causes the process to look for all
its input files on the family named CONTROL instead of the family named DATAPK.

1-8 : 8600 0494-000

Understanding Basic Tas‘king Concepts

You can assign a task attribute to a process in any of the following ways, none of which
requires recompiling or rewriting the program that is being initiated:

e Ifyou are running a program from CANDE or MARC, you can append task attribute
assignments to the RUN command that initiates the program.

e Youcan use a WFL MODIFY statement to assign default task attribute values to an
object code file. The system assigns these task attribute values each time the object
code file is run.

e ALGOL, COBOL74, and WFL all allow you to assign task attributes to a task
variable. If you then specify this task variable in a statement that initiates a
separate program, the task attribute assignments are applied to the new process.

The A Series Task Attributes Programming Reference Manual gives examples of these
methods of assigning task attributes.

Using Programs as Modules

A module is a body of code that can be reused in a variety of different contexts. The use
of modules simplifies the programmer’s job by making it unnecessary to repeat large
amounts of code. One advantage of tasking is that it allows you to use an entire program
as a module in one or more larger applications.

For example, you could have a report-formatting and printing program. You might also
have a program that retrieves customer data from a database, and another program
that does an inventory analysis. The customer data program and the inventory analysis
program could both use process initiation statements to invoke the report-formatting
and printing program and cause it to create reports using the data collected.

Tasking is only one of the methods that A Series systems provide for allowing code to be
reused by different programs. Some of the other methods are

¢ Compile-time options

You can use a $INCLUDE option in a program source file. At compilation, the
compiler inserts text from a separate source file specified by the $INCLUDE option.
This option is discussed in the manuals for each programming language.

e Binding

This technique enables you to to insert a compiled procedure from one object code
file into a separate object code file. This technique is documented in the A Series
Binder Programming Reference Manual. .

e Libraries
This technique enables a process to dynamically invoke a procedure in another
running process. This technique is described in the Section 18, “Using Libraries.”

All of these methods have their virtues. Compared to the SINCLUDE option or binding,
tasking has the advantage of enabling you to maintain the shared module separately
from the programs that call on it. You can make changes to the module without having
to recompile another program or rerun the Binder.

8600 0494-000 ’ - 1-9

Understanding Basic Tasking Concepts

On the other hand, both the INCLUDE option and binding have the advantage of
enabling you to insert an external procedure directly into the source or object program.
Because the inserted procedure is treated by the system as an internal procedure, the
main program can enter the procedure rather than initiating it. This results in savings of
processor time and memory.

Compared to libraries, tasking has a slight performance advantage in some situations.
Initiating a program carries a certain cost in terms of processor time, memory, and so on.
The cost of entering a library procedure varies, and can be higher or lower than the cost
of initiating a process. For the first call on a particular library, the system must initiate
the library process and establish a linkage between the calling program and the library.
Once the library is running, it is more economical to enter a library procedure than to
initiate a process.

Another advantage of the tasking method arises in situations where there already exists
a program that performs a function needed by your application. You can initiate that
program as a process without having to rewrite or recompile the program that performs
the function. Changing the program into a library would require rewriting, and binding
the program into another program requires using the Binder utility.

Using Multiple Languages in an Application

Different programming languages have different unique capabilities. These might
make it easier to implement some types of routines in one language, and other types of
routines in another language. If the same application requires routines in two or more
different languages, then those routines have to be stored in separate source files and
compiled separately.

One way to enable an application to use modules written in different languages is
through tasking. You can accomplish this by using statements that initiate separate
object code files. For example, you can write a COBOL74 program that initiates another
program written in ALGOL.

A nice thing about this technique is that A Series systems also enable you to pass
parameters between programs written in different languages. The operating system
allows parameters to match as long as they are of compatible types. Section 17,
“Using Parameters,” explains which parameter types are considered compatible by the
operating system. :

Alternatively, you could use binding or libraries to create an application that uses
modules written in different languages. The advantages of using tasking instead of
binding or libraries are introduced under “Using Programs as Modules” earlier in this
section.

Improving Application Performance
The definition of performance for an application has two general aspects: measurements

of the resource usage of an application and measurements of the elapsed time of the
application. Resource usage includes total processor time, average memory usage, and

1-10 8600 0494-000

Understanding Basic Tasking Concepts

so on. Elapsed time means the total clock time a batch program takes to run, or the
average time an online program takes to respond to a transaction.

If you find that the elapsed time of an application is of crucial importance to your
business, you can use tasking features to help decrease the elapsed tiine by allowing the
application to use system resources more intensively. The two features that allow you to
do this are process priorities and parallel processing.

A Series systems are designed to be able to execute large numbers of processes
simultaneously. However, each central processor can execute only one process at a time.
The operating system frequently reevaluates the processes waiting for processor service,
and assigns the processor to the process with the highest priority. You can use task
attributes and system commands to control some aspects of process priority, as discussed
in Section 7, “Controlling Processor Usage.”

Parallel processing consists of dividing your application into two or more processes that
run concurrently. Parallel processing enables the application to use system resources
more intensively than a single process can. This increased intensity of system resource
usage results because each process typically alternates among using the central
processor, I/O processor, and other resources. With parallel processes, one process can
use the central processor while the other is waiting for an I/O to complete, and so on.

You can create parallel processes by designing one process to initiate another process
of type PROCESS or type RUN. These process types are discussed in Section 2,
“Understanding Interprocess Relationships.”

Limitations of Tasking

If you do not need any of the benefits of tasking described in the preceding subsection,
you can simply implement your entire application as a single program, and use only
procedure entrance statements rather than procedure initiation statements. Procedure
entrance uses fewer system resources than procedure initiation, and allows your
application to complete faster and interfere less with other running applications.

Some of the expenses involved in initiating a procedure are

e It takes slightly more processor time than entering a procedure.

e It causes several hundred words of save memory to be allocated for the new process
stack.

e It causes the system to create additional system log entries, and thus adds to general
system overhead.

e It adds to the number of entries visible to the operator in a mix display. It thus tends
to complicate the system operator’s efforts to monitor the system.

The performance differences between entering and initiating a procedure are not great
if the procedure is to be executed only once. However, for a procedure that is invoked
many times, the performance loss can slow an application noticeably.

8600 0494-000 _ 1-11

1-12 o - 8600 0494-000

Section 2
Understanding Ivnterprocess Relationships

The relationship between a process and its initiator is defined in terms of three major
properties, which are defined in the following subsections. These properties are
inclusion, flow of control, and dependency. These properties affect the speed and
efficiency with which a process is executed, and the ability of the initiator to interact with
the process. You can control these properties in two ways:

¢ By choosing among the various process-initiation statements that are available

e By choosing a program structure appropriate to the type of process desired
This section examines these choices and their implications for a family of processes.

Several of the discussions that follow refer to the term parent. This term is defined fully
under “Dependency” in this section. For now, it is enough to know that the initiator of a
process is usually also the parent of that process.

Inclusion

Section 1, “Understanding Basic Tasking Concepts,” introduced the distinction between
internal and external procedures, and the concept that initiating procedures results

in internal or external processes. The differing properties of internal and external
processes are referred to in this guide as inclusion properties. The following are the
inclusion properties of internal and external processes:

e An internal process must be dependent. Similarly, external processes that result
from initiating library procedures or passed external procedures must be dependent.
Only external processes that result from initiating separate programs can be either
dependent or independent. Any attempt to initiate a procedure that is not a
separate program as an independent process causes the error “NON - EXTERNAL
RUN?”. For an explanation of the difference between dependent and independent
processes, refer to “Dependency” in this section.

e In ALGOL and WFL, internal procedures have access to variables declared globally
in the program. These global variables can serve as a medium for interprocess
communication if the internal procedure is initiated. For information about this

. interprocess communication technique, refer to Section 15, “Using Global Objects.”

e -Several task attributes that are inherited by internal processes are not inherited by
external processes. These task attributes include LIBRARY, NAME, OPTION,
STACKSIZE, and TADS. For a discussion of task attribute inheritance, refer to the
A Series Task Attributes Programming Reference Manual.

8600 0494-000 2-1

Understanding Interprocess Relationships

Flow of Control

In Section 1, “Understanding Basic Tasking Concepts,” control was defined as the path
execution takes among the various statements of a program. In a broader sense, control
is the path execution takes among the statements of a procedure and any procedures
initiated by that procedure. The programmer specifies the type of control path to be
used by choosing the corresponding process initiation statement.

The control path determines whether the initiating process and new process execute in
parallel or by taking turns. If they are executing by turns, the control path specifies
when and how often they take turns before the new process terminates. The following
subsections discuss the types of control paths that are available on Unisys A Series
systems.

Synchronous Processes

When a synchronous process is initiated, control is transferred from the initiating
process to the new process. In other words, the initiating process stops executing and
the new process begins executing. The initiating process is still considered active during
this period and its process stack still exists. When the new process terminates, the
initiating process begins executing again, starting with the first statement after the
process initiation statement.

Examples of statements that initiate synchronous processes are the CALL statement
in ALGOL or COBOL74 and the RUN statement in Work Flow Language (WFL).
Synchronous processes are sometimes referred to as coroutines, but more properly the
term coroutine has a different use. (Refer to “Coroutines” in this section for details.)

The initiating process can set the attributes of a synchronous process only at injtiation
time and can interrogate the attributes only after the synchronous process has
terminated.

Synchronous processes can be simpler to design than coroutines or asynchronous
processes because you do not have to deal with certain complexities of timing that arise
for these other types of processes.

Asynchronous Processes

2-2

When an asynchronous process is initiated, the necessary memory structures are created
for the new process. Thereafter, the new process and the initiator execute in parallel.
Although they execute at the same time, they do not necessarily execute at the same
speed. It is for this reason that the new process is called asynchronous.

Examples of statements that initiate asynchronous processes are the PROCESS
statement in ALGOL or COBOL74, and the PROCESS RUN or PROCESS
< subroutine> statement in WFL.

Asynchronous processes are useful because, in many situations, two or more processes
running in parallel can do needed work in less elapsed time than a single process. What

8600 0494-000

Understanding Interprocess Relationships

is saved in elapsed time does not necessarily translate into savings in processor or I/O
time, however.

The task attributes of an asynchronous process can be read or assigned by its initiator
while the asynchronous process is executing. This makes it possible for the initiator to
intervene in the execution of the asynchronous process.

A disadvantage to initiating processes asynchronously is that, except in WFL, the
programmer must take special measures to prevent a critical block exit error from
occurring. (See the discussion of “Critical Blocks” in this section.)

Also, initiating processes asynchronously can create ambiguous timing situations
because it is impossible to predict exactly how long a process will take to execute. If an
asynchronous process and its initiator share a data item, such as a global variable, and
both change the value of that data item, it will be difficult to predict the order in which
the changes will occur.

Various methods are used to regulate the timing of asynchronous processes. These
methods are discussed in Section 16, “Using Events.”

Coroutines

The term coroutines refers to a group of processes that exist simultaneously but take
turns executing, so that only one of the processes is executing at any given time.
Coroutines offer some of the advantages of asynchronous processes, but generally are
easier to design because coroutines execute in a sequential order that prevents any
ambiguities of timing. The use of coroutines offers the following benefits:

o The ability to execute a procedure repeatedly without incurring the processor time
required to enter or initiate the procedure each time

e The ability to execute a procedure repeatedly‘ without losing the values of objects
declared in the procedure between each execution

Note, however, that coroutines use the processor less efficiently than do asynchronous
processes. Only one coroutine runs at a time, and there might be periods when the
processor is unused because the coroutine is waiting for an I/O operation to complete.
Furthermore, the statements coroutines use to transfer control to other coroutines use
more processor time than the event-related functions that asynchronous processes can
use to suspend or resume each other.

Creating Coroutines

An ALGOL or COBOL74 process can create a coroutine by executing a CALL statement.
The new process and its initiator are referred to as coroutines. When the initiator
executes a CALL statement, the initiator temporarily ceases execution and its stack
state becomes “TO BE CONTINUED?”. The stack state can be displayed by using the Y
(Status Interrogate) system command. A coroutine with this stack state is referred to as
a continuable coroutine.

8600 0494-000 ' 2-3

Understanding Interprocess Relationships

Using Continue Statements

24

The new process has one of the stack states that indicate the process is being processed,
or soon will be, such as ALIVE or READY. The new process is referred to as an active
coroutine. '

The total number of coroutines increases each time an active coroutine executes a CALL
statement. The new process created is an active coroutine and all others are continuable
coroutines.

The concept of a coroutine is closely related to that of a synchronous process, as
defined in “Synchronous Processes” in this section. Every synchronous process is also
a coroutine; however, not every coroutine is a synchronous process. An asynchronous
process can execute a CALL statement and thus become a continuable coroutine.

(

An active coroutine can transfer control to a continuable coroutine by executing an
ALGOL CONTINUE statement or a COBOL74 CONTINUE or EXIT PROGRAM
statement. For convenience, these are all referred to as continue statements in the
following discussion.

The other programming languages (BASIC, FORTRAN, FORTRAN77, Pascal, PL/I,
RPG, and WFL) do not provide continue statements. Therefore, processes other than
ALGOL or COBOL74 processes can be considered coroutines only in a restricted

sense. For example, a WFL job can create a synchronous offspring by executing a RUN
statement. The stack state of the WFL job then becomes “TO BE CONTINUED”.
However, the system does not allow the offspring to use a continue statement to transfer
control to the WFL job. Instead, the system automatically continues the WFL job when
the offspring terminates. This act is referred to as an implicit continue and is discussed
further in “Continuing the Partner Process” in this section.

To understand the effects of a continue statement, suppose an active coroutine called
A executes a continue statement that specifies a continuable coroutine called B. When
the continue statement is executed, the coroutine A ceases execution and coroutine B
resumes execution. In other words, coroutine A becomes a continuable coroutine and
coroutine B becomes an active coroutine. Control passes from coroutine A to coroutine
B.

Coroutine B can later reverse this situation by executing a continue statement that
passes control back to coroutine A. However, control does not always have to pass back
and forth between the same pair of processes. For example, coroutine B might continue
another coroutine called C and that coroutine might then continue coroutine A.

Control can pass between coroutines any number of times. In the course of its lifetime,

a coroutine can execute many continue statements applying to any number of other -
processes. However, for a continue statement to be successful, it must be executed by an
active coroutine and it must specify a continuable coroutine. The continue statement
results in an “ILLEGAL VISIT” error if it transfers control to a process that is not a
continuable coroutine. ‘

Coroutines usually belong to the same process family because continue statements
must explicitly or implicitly specify the task variable of the process to be continued. A

8600 0494-000

Understanding Interprocess Relationships

process usually has access only to the task variables of processes in its own process
family. Process families are defined under “Process Families” in this section. The means
of accessing the task variables of related processes are discussed under “Accessing Task
Variables” in this section.

Determining Where Execution Resumes

When any coroutine continues an ALGOL coroutine, the ALGOL coroutine resumes at
the point where it left off. Thus, if an ALLGOL coroutine executes a CALL statement,
it later resumes with the first statement after the CALL statement. If an ALGOL
coroutine executes a CONTINUE statement, it later resumes with the first statement
after the CONTINUE statement.

By contrast, a COBOL74 coroutine can resume execution at either of two points. If

a COBOL74 coroutine executes a CONTINUE statement or an EXIT PROGRAM
RETURN HERE statement, then the coroutine later resumes at the point where it left
off. However, if a COBOL74 coroutine executes a simple EXIT PROGRAM statement,
then the coroutine later resumes with the first statement in the program. (Certain
limitations on the EXIT PROGRAM statement are discussed under “Continuing the
Partner Process” later in this section.)

Block Structure and Coroutines

Continue statements can occur in any of the procedures executed by a process. For
example, a process can execute a continue statement and, after being continued later

on, can enter another procedure and execute another continue statement. Both of those
continue statements can transfer control to the same coroutine, or they can transfer
control to different coroutines.

. If a coroutine uses a continue statement to resume its parent, and the parent exits
the critical block for that coroutine, then the parent is terminated with a “CRITICAL
BLOCK EXIT” error. The methods of preventing a critical block exit are discussed
under “Critical Blocks” in this section.

Continuing the Partner Process

There are two types of continue statements: specific continue statements and general
continue statements.

A specific continue statement is one that specifies a task variable. An ALGOL example
of a specific continue statement is CONTINUE (T1). A COBOL74 example of a specific
continue statement is CONTINUE T1. Either of these statements continues the
coroutine specified by the task variable T1.

A general continue statement does not specify a task variable. In ALGOL, the general
continue statement is CONTINUE. In COBOL74, the general continue statement is
EXIT PROGRAM or EXIT PROGRAM RETURN HERE.

The effect of the general continue statement is to continue the partner process. The
partner process is the process specified by the PARTNER task attribute. This task

8600 0494-000 ’ 2-5

Understanding Interprocess Relationships

attribute is said to be task-valued because it accesses the task variable of a particular
process. For a synchronous process, the system assigns the initiating process as the
partner process by default. You can design a program to assign a different task variable
to the PARTNER task attribute. Thereafter, any general continue statements affect the
process with that task variable.

When a synchronous process terminates, the system implicitly continues the partner
process. This is the reason the initiating process usually resumes after a synchronous
process terminates. However, if a synchronous process has another task variable
assigned to the PARTNER task attribute, then the system continues that partner
process rather than the initiating process.

Setting the PARTNER task attribute to a process other than the initiator is not
recommended. Such a practice causes general continue statements or implicit continues
to consume more processor time than they otherwise would. This practice also leads to
source code that is difficult to understand and maintain.

A process can interrogate the PARTNEREXISTS task attribute to determine whether
the current partner process is in a continuable state. This can be a useful method for
avoiding “ILLEGAL VISIT” errors.

For further information regarding the PARTNER and PARTNEREXISTS task
attributes, see the discussions of these attributes in the A Series Task Attributes
Programming Reference Manual.

Communication between Coroutines

When an active coroutine becomes a continuable coroutine, or vice versa, objects
declared by the coroutine retain their values and are not reinitialized.

Nevertheless, the values of objects declared by a continuable coroutine can be changed
by any active coroutine having access to those objects. For example, if a process executes
a CALL statement, passing call-by-reference parameters, the process becomes a
continuable coroutine. The offspring process is an active coroutine and can change the
values of the call-by-reference parameters. The offspring process can use this method to
communicate information to the parent process. When the parent process is continued,
it can check to see if the parameter values were changed.

Similar considerations apply to the task attributes of a coroutine. An active coroutine
can read or assign the task attributes of other coroutines, including continuable
coroutines. When a continuable coroutine is continued, it can check its task attribute
values to see if any were changed.

Complex Coroutine Structures

2-6

The continue statements implemented on A Series systems enable you to develop
complex coroutine structures that do not exactly correspond to the classical model of

- coroutines. A complex coroutine structure is one in which two or more active coroutines

exist at the same time. In a simple coroutine structure, only one of the coroutines is
active at a time. _

8600 0494-000

Understanding Interprocess Relafionships

A complex coroutine structure can result, for example, if a process called INITP initiates
an asynchronous offspring called PROCP, and then initiates a synchronous offspring
called CALLP. While INITP is waiting for CALLP to complete, INITP is in a “TO BE
CONTINUED” state. PROCP can, therefore, execute a continue statement that causes
INITP to resume. In this case, PROCP becomes a continuable coroutine and INITP and
CALLP are active coroutines at the same time.

In general, the use of complex coroutine structures is not recommended because they
lack the simplicity that is the primary benefit of using coroutines.

Dependency

The last of the three main properties the programmer can specify for a process is
dependency. To understand the concept of dependency, the programmer must first be
familiar with the following related concepts.

e Critical objects

Every process makes use of certain objects originally declared by another process.
These include the task variable, the procedure that the process is executing, and any
objects passed as actual parameters to the process. In this guide, these objects are
referred to as the critical objects of the process.

e Parents

When a process is initiated, it receives these critical objects from a process called the
parent. In most cases, the initiator of a process is also the parent of that process.
The exact method for determining which process is the parent of a particular process
is given under “Critical Blocks” later in this section.

Dependency is the relationship between a process and its parent that determines how
these critical objects are stored. For an independent process, the system creates copies
of these critical objects when the process is initiated. For a dependent process, the
system creates references to the objects stored by the parent.

The programmer can specify the dependency of a process by choosing an appropriate
process initiation statement. The dependency of a process remains the same throughout
execution; if it is initiated as dependent, it cannot later become independent, or vice
versa. : 4

To initiate an independent process, you can use an ALGOL or COBOL74 RUN
statement or a ??RUN (Run Code File) system command. Also, a WFL job submitted
through a START statement is executed as an independent process.

To initiate a dependent process, you can use a CALL or PROCESS statement in ALGOL
or COBOL74, or a RUN statement in Command and Edit (CANDE), Menu-Assisted
Resource Control (MARC), or WFL.

Many implications result from the choice to initiate a process as dependent or
independent. However, the most crucial difference is that an independent process can
continue to exist after its parent has terminated. A dependent process must terminate
before its parent does.

8600 0494-000 ’ 27

Understanding Interprocess Relationships

" The second most crucial difference between dependent and independent processes

is that a dependent process and its parent can communicate through shared objects,
whereas an independent process and its parent cannot.

Communications Effects

Some objects declared by the parent process can be shared with a dependent process,
but not with an independent process.

For example, a parent can declare a task variable and include it in a process initiation
statement executed by the parent. For a dependent process, the task variable remains
associated with the process for as long as the process exists. After the dependent
process terminates, the task variable continues to store the final task attribute values of
the dependent process (though later assignments can change these values). The parent
can use the task variable to access the task attributes of the process before initiation,
while the process is in use, or after the process terminates. However, for an independent
process, the task variable ceases to be associated with the process once initiation is
complete. Only task attributes assigned to the task variable before initiation have any
effect on the independent process.

Similarly, a procedure declared in the parent can be initiated only as a dependent
process. A separate program, on the other hand, can be initiated as a dependent or
independent process. Thus, an independent process is always an external process.

Like any external process, an independent process is unable to access objects declared
globally in the parent. On the other hand, a dependent process, if it is also internal, can
access objects declared globally in the parent.

Finally, any parameters passed to an independent process must be passed by value. A
dependent process can be passed parameters by name, by reference, or by value.

Flow of Control Effects

The dependency of a process affects the ability of the process to be synchronous or
asynchronous, and the ablhty of the parent to exit certain blocks without incurring an
error.

Synchronization

2-8

An independent process is always asynchronous. The initiator of an independent process
continues execution without waiting for the independent process to terminate. By
contrast, a dependent process can be synchronous or asynchronous, depending on the
type of initiation statement that is used. Another difference is that an independent
process can continue executing after its parent has terminated, whereas a dependent
process must terminate before its parent does.

8600 0494000

Understanding Interprocess Relationships

Critical Blocks

Another flow of control issue related to dependency is the prevention of critical block
exits. To understand exactly what a critical block exit is and why it is important, you
must first understand the following basic concepts:

e Critical objects

This concept is introduced under “Dependency” earlier in this section. You should
be aware that the critical objects of a process can be stored in more than one process
stack, and they can be stored in more than one activation record in a process stack.
If any block that declares one of these critical objects is exited, the corresponding
activation record is removed and that critical object ceases to exist. This block exit
causes the process that is using that critical object to terminate abnormally.

e Critical block

This is a block that includes a definition of at least one critical object and is so
positioned that it is normally exited before any other blocks that declare critical
objects are exited. Ifyou ensure that the parent does not exit the critical block
prematurely, then the other blocks declaring critical objects also are not exited
prematurely.

At this point, the definition of a parent can be further refined as follows: the parent is
the process that owns the critical block of a specified process. In other words, the parent
has entered the critical block and not yet exited that block. A dependent process is said
to be an offspring of its parent.

You need to be concerned with the critical block for a process only if that process is
an asynchronous dependent process or a coroutine. If the process is either of these,
you must take steps to ensure that the critical block is not exited before the process
terminates.

By contrast, if a process is independent, it is not affected by critical block exits. If the
process is synchronous, then the parent ceases execution until the process terminates
and therefore has no opportunity to exit the critical block prematurely.

Effects of a Critical Block Exit

When a parent exits an offspring’s critical block, the parent is discontinued and the
error message “CRITICAL BLOCK EXIT” is displayed. When the parent terminates,
all its offspring processes currently in use are discontinued and a “PARENT PROCESS
TERMINATED” error message is displayed. "

8600 0494-000 2-9

Understanding Interprocess Relationships

Defining the Critical Block

The critical block of a process usually occurs somewhere in the program containing the
statement that initiated the process. Within that program, the critical block is the
procedure of the highest lexical level that contains any of the following items:

e The declaration of the task variable specified in the process initiation statement.

e The declaration of the procedure that was initiated, if it is an internal procedure,
a passed external procedure, or an imported library procedure. The position of a
declared external procedure has no effect on the critical block definition.

¢ The declarations of any actual parameters passed to the process. (It makes no
difference whether the parameters are passed as call-by-name, call-by-value, or
call-by-reference.)

e Any thunk generated for the process by the compiler. A thunk, which is also
referred to as an accidental entry, is generated if the procedure initiation statement
passes a constant or an expression to a call-by-name parameter. The thunk is located
in the procedure containing the procedure-initiation statement. For an illustration of
the effect of a thunk on the critical block definition, refer to Example 3 in “Critical
Block Examples” later in this section.

Note that the definition of the critical block can be affected if any of the critical objects
are passed as parameters from one procedure to another. If a critical object is passed as
a parameter to a procedure, then for purposes of defining the critical block, the formal
parameter that receives the critical object must be considered to be the declaration of
that critical object. For an illustration, refer to Example 4 in “Critical Block Examples”
later in this section.

There is one exception to the rule about the effects of passing critical objects as
parameters. If a task variable is passed as a parameter to an external procedure, the
critical block is affected by the declaration of the actual parameter rather than the
formal parameter. This exception holds true for all types of external procedures:
separate programs, passed external procedures, and imported library procedures. This
exception also makes it possible for the procedure-initiation statement to reside ina
different program than the critical block does. For an illustration, refer to Example 5in
“Critical Block Examples” later in this section.

The initiator of a process might or might not also be the parent of that process. This
issue is illustrated by Examples 1 and 2 in “Critical Block Examples” later in this section.

Preventing ALGOL Critical Block Exits

2-10

In ALGOL, the programmer can prevent a critical block exit by including a statement
such as the following at the end of the critical block:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT) 3

* In this example, T is the task variable of the dependent process. This statement causes

the parent to wait on its own EXCEPTIONEVENT task attribute, which is automatically

8600 0494-000

Understanding Interprocess Relationships

caused by the system whenever the offspring changes status. The program then checks
the status of the offspring and returns to a waiting state if the offspring has not yet
terminated. :

Preventing COBOL74 Critical Block Exits

A COBOL74 process cannot receive a critical block exit error for exiting a paragraph or a
section because paragraphs and sections are not blocks. However, a COBOL74 process
can incur a critical block exit error if the process

e Terminates while one of its offspring is in-use
e Exits a bound-in procedure that is the critical block for an offspring

e [Exits an imported library procedure that is the critical block for an offspring

Statements such as the following can be included at the end of a COBOL74 program to
prevent it from terminating before an offspring terminates:

PROCWAIT SECTION.
p2.
WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
IF ATTRIBUTE STATUS OF TASK-VAR-1 IS GREATER THAN
VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The preceding example assumes that an asynchronous offspring was initiated using task
variable TASK-VAR-1. The COBOL74 program waits on its own EXCEPTIONEVENT
task attribute, which is automatically caused whenever the offspring changes status.
The program then checks the status of the offspring and returns to a waiting state if the
offspring has not yet terminated.

Automatic Protection from WFL Critical Block Exits
The programmer does not need to include any special statements in WFL jobs to prevent
critical block exits. WFL implicitly waits for the termination of asynchronous processes

initiated by the job. The implicit wait occurs at the end of the subroutine that executed
the process initiation statement.

Critical Block Examples

The following examples illustrate various factors that affect the definition of the critical
block for a process. The more typical cases are presented first.

8600 0494-000 : 2-11

" Understanding Interprocess Relationships

2-12

- Example 1

In most cases, the initiator of a process is also the parent of that process. However, this
is not always the case. The following ALGOL program is an illustration of the difference
between the parent and the initiator:

108 PROCEDURE TRUEPARENT;

110 BEGIN

120 TASK T1, T2;

130 REAL I;

149 .

150 PROCEDURE WAITFOR(T);

160 TASK T3

179 BEGIN

180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
199 WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;
200 END;

219

229 PROCEDURE OFFSPRING(X);

230 REAL X;

249 BEGIN

250 X :=1;

260 END;

279

280 PROCEDURE INITIATOR;

299 BEGIN

300 PROCESS OFFSPRING(I) [T2]:
310 END;

329

339 PROCESS INITIATOR [T1];
349 WAITFOR(T1);

350 WAITFOR(T2);

36 END.

In this example, the procedure TRUEPARENT initiates the procedure INITIATOR
as an asynchronous process. INITIATOR then initiates the procedure named
OFFSPRING. In this situation, the initiator of OFFSPRING is INITIATOR, but the
parent is TRUEPARENT.

TRUEPARENT is considered the parent because the declarations of the procedure

OFFSPRING, the task variable T2, and the actual parameter I all occur in the outer
block of TRUEPARENT. -

8600 0494-000

Understanding Interprocess Relationships

Example 2

In the following ALGOL example, the process called INITIATOR is both the initiator
and the parent of the process named OFFSPRING. INITIATOR is considered the
initiator because INITIATOR includes the task initiation statement that initiates the
OFFSPRING procedure. INITIATOR is considered the critical block for OFFSPRING
because the task initiation statement passes OFFSPRING a parameter declared within
INITIATOR. An invocation of the WAITFOR procedure is added to INITIATOR to
prevent a critical block exit.

199 PROCEDURE OUTERBLOCK;

116 BEGIN
129 TASK T1, T2;
130

149 PROCEDURE WAITFOR(T);
158 TASK Ts

160 BEGIN

179 WHILE T.STATUS GTR VALUE(TERMINATED) DO
180 WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;
199 END;

200

210 PROCEDURE OFFSPRING(X);
228 REAL X3

230 BEGIN

240 X := 1;

250 END;

260

279 PROCEDURE INITIATOR;

280 BEGIN

299 REAL R;

300 PROCESS OFFSPRING(R) [T2];
319 WAITFOR(T2); :
320 END;

330

34g PROCESS INITIATOR [T1];
356 WAITFOR(T1);
360 END.

8600 0494-000 2-13

Understanding Interprocess Relationships

Example 3

The following is an ALLGOL example of a case where the presence of a thunk affects the
critical block definition for a process: :

160 PROCEDURE OUTERBLOCK;
110 BEGIN

126 TASK T1, T2;

136 REAL A, B, C, D;

149

156 PROCEDURE WAITFOR(T);
166 TASK T;

179 BEGIN

180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
199 WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;
200 END;

219

228 PROCEDURE OFFSPRING(X);

230 REAL X;

249 BEGIN

250 C := X;

269 END;

279

280 PROCEDURE INITIATOR;

299 BEGIN

309 PROCESS OFFSPRING(A + B) [T2];

319 WAITFOR(T2);

320 END;

339

340 A :=2;

350 B := 5;

369 PROCESS INITIATOR [T1];
370 . WAITFOR(T1);
380 END.

In the preceding example, X is a call-by-name formal parameter of the procedure
OFFSPRING. The statement that invokes OFFSPRING passes the expression (A + B)
to the parameter. This creates a thunk at the point of the procedure initiation. The
thunk causes the INITTATOR procedure, rather than the OUTERBLOCK procedure,
to be considered the critical block of OFFSPRING. Because the statement at line 360
initiates INITIATOR rather than entering it, INITIATOR becomes a separate process
that is the parent of OFFSPRING.

2-14 8600 0494-000

Understanding Interprocess Relationships

You can avoid some thunks by making the formal parameter call-by-value rather than
call-by-name. For example, you can avoid the thunk in the preceding example by adding
a line to the procedure heading of the procedure OFFSPRING at line 220. The revised
procedure heading appears as follows:

PROCEDURE OFFSPRING(X);
VALUE X;
REAL X;

This change has the side effect of making OUTERBLOCK the critical biock, instead of
INITIATOR.

Example 4

In the following ALGOL example, the location of the critical block is affected by a formal
parameter specification: :

128 PROCEDURE OUTERBLOCK;

110 BEGIN
126 TASK T1, TVAR;

13 REAL I;

149

150 PROCEDURE WAITFOR(T);

166 TASK T;

176 BEGIN

180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
199 WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;
200 END;

216

220 PROCEDURE OFFSPRING(X):

239 REAL X;

24 BEGIN

250 X 1= X + 1;

260 WAIT ((10));

276 END;

289

290 PROCEDURE INITIATOR(T2);
300 TASK T2;

310 BEGIN

320 PROCESS OFFSPRING(I) [T2];
330 WAITFOR(T2) ;

349 END;

350

360 PROCESS INITIATOR(T1) [TVAR];
370 WAITFOR(TVAR) ;
380 END.

In this example, INITIATOR is the critical block for the procedure OFFSPRING,
because the task variable T2 is declared in the procedure heading of INITIATOR. It
makes no difference that the actual parameter T1 is declared in the outer block. It is

8600 0494-000 _ 2-15

Understanding Interprocess Relationships

2-16

the formal parameter T2 that is mentioned in the procedure invocation statement, and
therefore the declaration of T2 takes precedence.

Example 5

In the following ALGOL examples, the critical block is located in a different program
than the one that contains the process-initiation statement. The following is program
OBJECT/CALL:)

100 BEGIN

116 TASK T, T1;

126 PROCEDURE OB (T);

139 TASK T;

140 EXTERNAL;

150 REPLACE T.NAME BY "OBJECT/CALL/2.";

160 PROCESS OB (T1) [T];

170 WHILE T1.STATUS GTR VALUE(TERMINATED)

189 DO WAITANDRESET (MYSELF.EXCEPTIONEVENT);
199 END.

The previous program initiates a separate program called OBJECT/CALL/2, passing a
task variable as a parameter. The following is the program OBJECT/CALL/2:

100 PROCEDURE 0B (T);

116 TASK T;

120 BEGIN

130 PROCEDURE X;

140 EXTERNAL;

150 REPLACE T.NAME BY "OBJECT/TASK.";
160 PROCESS X [T1;

170 END.

The preceding program uses its task variable parameter to initiate a third program. The
procedure declaration at lines 130 and 140 does not affect the critical block definition,
because it is an external procedure declaration. Note that since the process initiation
statement is PROCESS, and no WAIT statement follows it, the preceding program
finishes executing while the third program, OBJECT/TASK, is still running. However,
no CRITICAL BLOCK EXIT error occurs.

The following is the third program, OBJECT/TASK:

109 BEGIN
110 EBCDIC ARRAY FORMALARRAY[@:119];

120 REPLACE FORMALARRAY BY MYSELF.EXCEPTIONTASK.NAME;
130 DISPLAY (FORMALARRAY);

149 WAIT(MYSELF.ACCEPTEVENT);

150 END.

8600 0494-000

Understanding Interprocess Relatidnships

This program displays the name of its EXCEPTIONTASK, which, by default, is the
same as the parent. The name it displays is OBJECT/CALL, which is therefore the
parent. Because OBJECT/CALL is the parent, no CRITICAL BLOCK EXIT occurs
when OBJECT/CALL/2 terminates. '

Recall the rule about passing task variables to external procedures that is discussed
under “Defining the Critical Block” earlier in this section. It is the declaration of the
actual task variable parameter, at line 110 in OBJECT/CALL, that affects the critical
block definition. The critical block is therefore the outer block of OBJECT/CALL.
However, the process initiation statement occurs in OBJECT/CALL/2. This is the only
type of situation where it is possible for the process-initiation statement and the critical
block to reside in separate programs.

Process Families

A process family is a group of processes that have relationships based on dependency.
These relationships have many effects, including effects on interprocess communication,
handling of printer output, and enforcement of resource usage limits.

Familial Relationships'

Each process belonging to a process family is called a member of that process family.
Every process family includes a single independent process as its founding member. The
process family also includes any dependent offspring of that independent process, any
dependent offspring of those offspring, and so on. '

Familial terms are used to describe the relationships between the members of a process
family. Of these, parent and offspring are defined under “Critical Blocks” earlier in this
section. A related term is sibling. Offspring processes that have the same parent are
referred to as siblings.

Each offspring of a process is considered a descendant of the process. Any offspring of
the descendants of a process are also considered descendants of the original process.

Conversely, the parent of a process is considered to be an ancestor of the process, and
any ancestors of the parent are also considered to be ancestors of the same process.
Processes having a common ancestor, but not a common parent, are referred to as
cousins. The independent process in a process family is the common ancestor of all the
processes in that family.

Finally, processes are said to be related if they belong to the same process family, and
unrelated if they do not.

A dependent process is dependent on the continued existence of all its ancestors, not
only its parent. This is true because a type of domino effect occurs if any of the ancestors
terminates. The immediate offspring of the terminated process are discontinued with

a “PARENT PROCESS TERMINATED” error. The offspring of the discontinued
processes are, in turn, discontinued with the same error, and so on.

8600 0494-000 2-17

Understanding Interprocess Relationships

In contrast, a member of a process family does not depend on the continued existence
of any of its descendants. For example, the descendants of a process can terminate
abnormally without affecting the process.

Jobs and Tasks

The independent process in a process family is called the job for that family. The
dependent processes in a process family are referred to as tasks. -

Note that, in some older publications, you might find the term task used with a different
meaning than the one defined here. In addition to the meaning given here, task has
sometimes been used to refer to any process, to the offspring of some particular process,
or to any discrete unit of work. These usages are generally avoided in this guide, except
in the terms task attribute and task variable, which have been retained because they are
well known. (More properly, these terms would be process attribute and process variable
because they can apply to either jobs or tasks.)

Certain services that the system provides for a process family are linked to the job for
the family. The job provides the following services:

e Job logging

The job has a job file associated with it that stores the job log. The job log includes
information about the activities of all the processes in the process family. When the
job terminates, the system can issue a printout of the job log, called the job summary.
(The job file for a WFL job includes additional information, which is described under
“Special Types of Jobs” later in this section.)

e Printer output

By default, any printer or punch backup files created by process family members are
saved until the job terminates; they are then grouped together as a single entry in
the print queue.

Operators or programmers can use the following means to determine whether a process
is'ajob or a task:
e Process messages

The system displays a “BOJ” message when a job is initiated and an «“EQJ” message
when the job is terminated. For a task, the corresponding messages are “BOT” and
“EOT”.

e Job displays

The J (Job and Task Display) system command displays all the process families that
currently exist. The members of each process family appear in hierarchical order,
beginning with the job.

2-18 8600 0424-000

Understanding Interprocess Relationships

e Job number

A task has a job number that differs from the mix number and indicates the job or
session associated with the task. For ajob, the job number and mix number are
equal. The operator can see the job number and mix number in the output of many
system commands. A process can also read these values from the JOBNUMBER and
MIXNUMBER task attributes. .

e Process type

A process can determine whether a particular process is a job by reading the TYPE
task attribute. For WFL jobs, the value is JOBSTACK; for other jobs, the value is
RUN: For tasks, the value is CALL or PROCESS. '

Special Types of Jobs

The following subsections describe WFL jobs, BDBASE tasks, and MCS sessions, all of
which are special types of jobs and entities that resemble jobs.

WFL Jobs

A program written in WFL is usually executed as an independent process. Because
of this, the execution of a WFL program is referred to as a WFL job. The TYPE task
attribute of a WFL job usually has a value of JOBSTACK.

When a WFL job is submitted from one of the available sources, the system initiates the
WFL compiler. (The sources for submitting WFL jobs include START commands in
CANDE and MARC sessions, and various statements in programming languages.) The
WFL compiler creates the job file for the WFL job.

The job file for a WFL job contains several kinds of information that are not included in
the job file for any other kind of job. In addition to the logging information, a WFL job
file includes the following:

e A copy of the WFL source program.

e Object code for the job. The job file also serves as the code file for a WFL job.

o Data specifications used by the job. A data specification is a portion of the WFL
source program that can be used as an input file by one or more of the offspring of
the job. '

¢ Job restart information.

WFL jobs have several other properties not shared by any other type of process. For
details, refer to Section 4, “Tasking from Programming Languages.”

" 8600 0494-000 | ' 2-19

Understanding Interprocess Relationships

BDBASE Tasks

Setting the BDBASE option of the OPTION task attribute causes a task to assume some
characteristics of a job. The exact effects of the BDBASE option depend on whether it
is assigned before or after initiation of the task. If BDBASE is assigned before task
initiation, then the task receives the following joblike characteristics:

e Its own jobfile.
e Ability to produce a job summary.
e A mix number equal to its job number.

e “BOJ” and “EOJ” messages.

e Automatic printing, when the BDBASE task terminates, of any backup files created
by the BDBASE task or its descendants. Note that this behavior applies only to
backup files whose PRINTDISPOSITION file attribute has the default value of EOJ.

- If BDBASE is assigned after task initiation, then its only effect is to cause default

printing of backup files when the task terminates. Even if BDBASE is assigned before
initiation, it does not make the task into a true job. A BDBASE task differs from a job in
the following ways: : '

e The BDBASE task usually is not an independent process. (There is no point in
setting BDBASE for an independent process, because such a process already has all
job capabilities.)

e The JOBNUMBER value for a descendant of a BDBASE task does not equal
the MIXNUMBER of the BDBASE task. Rather, the JOBNUMBER equals the
MIXNUMBER of the job at the head of the process family. ~

o The MYJOB task variable never refers to a BDBASE task. For details, refer to
“MYJOB Task Variable” in this section.

In the past, the main use of the BDBASE option was to cause printer backup files
produced by a task to print when the task terminated, rather than being saved until
the job terminated. However, other Print System features now enable you to provide
the same control over printing, without assigning any other joblike characteristics

to the task. For further information, refer to the discussion of printing in Section 9,

. “Controlling Process I/O Usage.”

MCS Sessions

2-20

CANDE and MARC sessions have the foﬂowing job characteristics:
e Job summaries that are produced at the end of the session and that summarize the
activities of all tasks initiated from the session

o Default printing, when the session ends, of backup files produced by tasks initiated
from that session

e A mix number, also called the session number, that is inherited by the
JOBNUMBER task attribute of tasks initiated from the session

8600 0494-000

Understanding Interprocess Relationships

However, CANDE and MARC sessions are not really jobs because, in fact, they are

~ not even processes. Each session is merely a dialogue between the user and the
CANDE or MARC software. The MYJOB task attribute has a special meaning for tasks
initiated from CANDE and MARC sessions. For further information, refer to “Access
to Ancestral Processes in CANDE” and “Access to Ancestral Processes in MARC” in
Section 3, “Tasking from Interactive Sources.”

Accessing Task Variables
The system automatically provides several task variables, called predeclared task
variables, for use by a process. The process can use these task variables to access task
attributes of certain related members of the process family.

MYSELF Task Variable

A process can access its own task attributes by way of the predeclared task variable
MYSELF.

MYSELF has a special meaning for processes that are descendants of CANDE or MARC
sessions. For more information, refer to Section 3, “Tasking from Interactive Sources.”

MYJOB Task Variable

A process can use the pi'edeclared task variable MYJOB to access the task attributes of
its job. When a job uses MYJODB, it has the same meaning as the MYSELF task variable.

If a BDBASE task, or a descendant of a BDBASE task, uses the MYJOB task variable,
MYJOB does not refer to the BDBASE task. Instead, MYJOB refers to the independent
process that is the eldest ancestor of the BDBASE task and, therefore, the real head of
the process family. In other words, MYJOB refers to the job.

MYJOB has a special meaning for processes that originate from CANDE or MARC

sessions or from an ODT. For more information, refer to Section 3, “Tasking from
Interactive Sources.”

8600 0434-000 2-21

Understanding Interprocess Relationships

Exception Task

Every process has an associated exception task with which it has a special relationship.
There are two aspects to this relationship:

e Whenever the value of the STATUS task attribute of the process changes, the
system notifies the exception task by causing the EXCEPTIONEVENT task
attribute of the exception task.

e A process can access the task attributes of its exception task by way of its own
EXCEPTIONTASK task attribute. For example, the following ALGOL statement
assigns a value to the TASKVALUE task attribute of the exception task:

MYSELF.EXCEPTIONTASK.TASKVALUE := 5;

The parent of a dependent process is the default exception task of the process. An
independent process, by default, is its own exception task; however, in this case, the
exception task relationship embodies only the second of the aspects in the previous list.
The EXCEPTIONEVENT of the independent process is not caused when the status of
the independent process changes.

A dependent process can use the EXCEPTIONTASK task attribute to access the task
variable of any of its ancestors. The process can specify EXCEPTIONTASK repeatedly
to access ancestors two or more generations back (for example, the grandparent,
great-grandparent, and so on). The following statement assigns an attribute to the
grandparent of the process:

MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.SW1 := TRUE;

A process can override the default exception task and assign a different process as the
exception task. The following ALGOL statement specifies that the process identified by
the task variable TVAR be treated as the exception task:

MYSELF.EXCEPTIONTASK := TVAR;

The process assigned as the exception task must be either the process itself or an
ancestor, sibling, or cousin of the process. The exception task cannot be a descendant of
the process. An attempt to assign a descendant as the exception task results in the error
“UP LEVEL TASK ASSIGNMENT”.

Unisys recommends that only the process itself or one of its ancestors be assigned as the
-exception task. If a sibling or cousin is assigned as the exception task, then any attempt
to access the exception event of the exception task causes a “NON ANCESTRAL TASK
REFERENCE?” error. For example, in such a situation, the following statement would
cause an error: : -

CAUSE (MYSELF.EXCEPTIONTASK.EXCEPTIONEVENT);

2-22 8600 0494-000

Understanding Interprocess Relationships

Assigning a process that is not the parent as the exception task can also have more
subtle side effects. Suppose the task is called T and the parent contains a statement
such as the following:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT);

This statement causes the parent to wait until its exception event is caused, at which
point it checks the status of T. If T has terminated, the next statement in the parent is
executed. If T has not terminated, the parent goes back into a waiting state.

The problem is that, if a parent is not also the exception task for its offspring, then any
changes in the offspring’s status do not cause the parent’s exception event. Instead,
changes in the task’s status cause the exception event of the process assigned as the
exception task. Therefore, the parent continues waiting indefinitely, regardless of any
changes in the task’s status.

The same problem can occur in a WFL job that is waiting for an asynchronous task to
complete. Consider the following WFL statement:

DO WAIT UNTIL TVAR IS COMPLETED;

This statement checks the status of the task TVAR whenever the WFL job’s exception
event is caused. If the WFL job’s exception event is never caused, then the job waits
indefinitely, regardless of changes in the status of the task.

Sometimes, however, it is not desirable for the exception event of a process to be caused
whenever the status of any of its offspring changes. For example, the process might be
waiting for a HI (Cause EXCEPTIONEVENT) system command. In this case, each of
the offspring could be assigned itself as its exception task. This assignment prevents any
of the offspring from accidentally causing its parent’s exception event.

The MCS that controls a session is the parent of any tasks initiated from that session.
By default, therefore, the MCS is also the exception task for any tasks initiated from
that session.

Partner Processes

The partner process is the process specified by the task-valued task attribute
PARTNER. For a synchronous process, the default value of this attribute is the initiator.
However, a process can assign any task variable to this attribute. A process can use the
PARTNER task attribute as a convenient means of accessing the task attributes of the
partner process. For example, the following ALGOL statement assigns a value to the
TASKVALUE task attribute of the partner process:

MYSELF.PARTNER.TASKVALUE := 3;

The partner process has a special signiﬁcaﬁce for coroutines. For details, refer to
“Continuing the Partner Process” in this section.

8600 0494-000 2-23

Understanding Interprocess Relationships

Other Task Variables

A programmer can make it possible for two sibling or cousin processes to access each
other’s task variables by declaring the task variables in a common ancestor of the two
processes. Internal processes can access task variables that are declared globally in the
same object code file as the internal procedure declaration. Task variables can also be
passed as parameters to offspring processes.

Private Processes

A private process is a process whose task attributes cannot be altered by any of its
descendant processes. Assigning the private process option to the OPTION task
attribute causes the process to become a private process. Any descendant process that
attempts to access the task attributes of a private process is terminated with the error
“NON OWNER WRITE ACCESS OF A PRIVATE TASK”.

Both CANDE and MARC‘are private processes.

Setting Resource Limits

2-24

Any resource limits attached to a job are propagated downward through all the job’s
descendants. Resource limits are stored in the values of the task attributes DISKLIMIT,
ELAPSEDLIMIT, MAXCARDS, MAXIOTIME, MAXLINES, MAXPROCTIME,
PRIORITY, RESOURCE, SAVEMEMORYLIMIT, TEMPFILELIMIT, and WAITLIMIT.
Information about the amount of resources a particular process has used is stored

in the task attributes ACCUMIOTIME, ACCUMPROCTIME, ELAPSEDTIME,

and TEMPFILEMBYTES. If the accumulated usage of a resource rises above the
maximum allowed, the process terminates abnormally. Most of these resource limits are
propagated in two ways:

o When a task is initiated, by default each resource limit for the task is assigned
the difference between the parent’s own limit for the resource and the parent’s
accumulated usage of the resource. For example, if the parent’s MAXPROCTIME is
100 and its ACCUMPROCTIME is 75, then the task is assigned a MAXPROCTIME
of 25. The parent’s own MAXPROCTIME and ACCUMPROCTIME values are not
affected. The parent can assign resource limits to the task through task equation,
but the values are ignored unless they specify lower limits than the task would
receive by default. '

e When a task terminates, the values of its accumulated usage attributes are added
to the accumulated usage attributes of the task’s job. If this addition causes any
accumulated usage attribute of the job to be assigned a value greater than the
corresponding maximum usage attribute, the job is abnormally terminated. The
termination of the job in turn causes the termination of all the other members of the
process family.

The resource-limiting attributes of a task cannot be set above the values of the
corresponding attributes of the job. The MAXPROCTIME and MAXIOTIME task
attributes can be set above the job values for an inactive task, but when the task is
initiated, the values of these task attributes are automatically reduced to a value within
the allowed limits. :

8600 0494-000

Understanding Interprocess Relationships

If a job is a WFL job, then its resource-limiting attributes can inherit values specified
by the queue attributes of the job queue from which the WFL job was initiated. For

further information on queue limits, refer to Section 4, “Tasking from Programming
Languages.”

8600 0494-000 2-25

2-26 8600 0494-000

Section 3
Tasking from Interactive Sources

An interactive tasking source is one that enables you to enter at a terminal commands
that initiate, monitor, and control processes. This section reviews the tasking capabilities
of the most important sources for interactive tasking: Command and Edit (CANDE),
Menu-Assisted Resource Control (MARC), and the operator display terminal (ODT).

The information in this section ¢an help you decide which of these interfaces best serves
your needs. This section also explains considerations to keep in mind when writing
programs that are intended to be initiated from these sources.

Note that many users access applications primarily through Communications
Management System (COMS) direct windows. This interface is not reviewed here
because the direct window interface does not provide any direct means to control
processes. Rather, COMS initiates and controls direct window programs automatically,
within various parameters set by the system administrator. For information about direct
window programs, refer to the A Series Communications Management System (COMS)
Programming Guide.

CANDE

CANDE is a message control system (MCS) that enables you to interactively perform
functions such as file editing, program compilation, and program execution. You initiate
communications with CANDE by logging on at a terminal controlled by CANDE, or by
opening a CANDE window dialogue on a terminal controlled by COMS. Your interactions
with CANDE between the times you log on and log off are referred to as a session.
CANDE assigns each session an identifying number called the session number.

CANDE Tasking Capabilities

CANDE offers a number of process-initiation commands, as well as other commands for
monitoring or controlling processes. For details about any of the commands discussed in
the following subsections, refer to theA Series CANDE Operations Reference Manual.

Initiating Dependent Processes from CANDE

You can initiate a task from a CANDE session by using the RUN command. (EXECUTE
is a synonym for the RUN command.) The RUN command can pass only a single string
parameter to a program.

The CANDE RUN command is unique in that it usually specifies a program by its source

file title rather than by its object code file title. CANDE takes the file title specified
in the RUN command and looks for an object code file with the same title, except that

8600 0494-000 3-1

Tasking from Interactive Sources

3-2

the object code file title is prefixed by “OBJECT/”. For example, the object code file
OBJECT/TEST can be initiated by the command RUN TEST.

However, if you prefix the file title with a dollar sign ($), then CANDE interprets the file
title as an object code file title. You can use this form of the RUN statement to initiate
programs whose object code file title does not begin with “OBJECT/”. An example of
such a command is RUN $ACCOUNTS/INPUT, which initiates the object code file
named ACCOUNTS/INPUT.

CANDE also assumes that the file title is an object code file title if the file title is
nonusercoded. You can indicate that a file title is nonusercoded by including an

asterisk (*) at the start of the title. For example, you can initiate an object code file
titled *SYSTEM/FILEDATA with the command RUN *SYSTEM/FILEDATA.

If you omit the file title from the RUN statement, CANDE assumes the current work
file is the source program. If no object code file with the related file title exists, or

if the object code file does not reflect recent changes to the work file, then CANDE
automatically compiles the work file and executes the resulting object code file.

The task is asynchronous (that is, it runs in parallel with the CANDE software that
initiated it). However, the process appears to the user to be a synchronous task because
most CANDE commands are not available while the task is running. Only control
commands (commands, such as 7Y, that start with a question mark) can be used. It is not
possible to issue file maintenance or editing commands or to initiate another task until
the first task terminates.

An alternative to the RUN command is the UTILITY command. The UTILITY
command behaves like the RUN command in most respects. However, the UTILITY
command enables you to append to it unquoted text that is passed as a string parameter
to the program. If you do not append any text, the UTILITY command passes an empty
string parameter. The following are examples of UTILITY commands and the equivalent
RUN commands:

U DAILY UPDATE OUTPUT = PRINTER
RUN DAILY/UPDATE("OUTPUT=PRINTER")

U DAILY UPDATE
RUN DAILY/UPDATE("")

The UTILITY command also automatically passes certain task equations and file
equations to the program initiated. These equations make it possible for the program
to use the unsaved work file, work source, or work object associated with the session.
Certain utilities, such as the Editor, are designed to accept these task and file equations.
Such programs must be initiated with the UTILITY command instead of the RUN
command. For details about the task and file equations that are passed, refer to the
UTILITY command discussion in the A Series CANDE Operations Reference manual.

8600 0494-000

Tasking from Interactive Sources

Initiating Compilations from CANDE

You can use the COMPILE command to compile a program. This command allows you
to specify the compiler to use, the input file titles, the object code file title, and task
equations for the compiler and the resulting object code file. For example:

COMPILE DAILY/UPDATE/PATCH AS DAILY/UPDATE/NEW WITH COBOL74;
COMPILER FILE SOURCE = DAILY/UPDATE/SOURCE;
PRIORITY = 40;

This example initiates the COBOL74 compiler, specifying a primary input file called
DAILY/UPDATE/PATCH and a secondary input file called DAILY/UPDATE/SOURCE.
The object code file that results is called OBJECT/DAILY/UPDATE/NEW. The
compiler stores the PRIORITY assignment in the resulting object code file, so that
OBJECT/DAILY/UPDATE/NEW receives a default PRIORITY value of 40 whenever it
is run.

The COMPILE command can be used more simply than it is in the preceding example.

~ Suppose that DAILY/UPDATE is your work file. Simply entering COMPILE in your
CANDE session is sufficient to compile your work file. CANDE chooses the compiler that
matches the file type of the source file. The resulting object code file consists of the
source file title with “OBJECT/” prefixed (for example, OBJECT/DAILY/UPDATE.)

The COMPILE command cannot cause the execution of the resulting object code file.
However, a simple RUN command compiles and runs the work file if no object code file
exists.

Initiating Utilities from CANDE

The RUN and UTILITY commands can be used to initiate a variety of system utility
programs such as FILECOPY, LOGGER, and so on. However, CANDE also includes a
number of specialized commands that you can use to initiate particular utilities. The -
following are the commands and the names of the corresponding utilities:

Command Utility
BACKUPPROCESS Backup Processor
DCSTATUS DCSTATUS
LFILES FILEDATA

LOG LOGANALYZER

Submitting WFL Jobs from CANDE
You can submit WFL programs from CANDE sessions using the START or WFL
command. The START command submits a WFL program that is stored in a disk file.
The WFL command enables you to enter WFL statements directly at the terminal.

The START command can pass any number or type of parameters that are expected
by the WFL program. In addition, you can use the FOR SYNTAX clause for syntax

8600 0494-000 3-3

Tasking from Interactive Sources

checking. This clause causes the program to be compiled, but not executed, and displays
information about any syntax errors in the WFL program. You can also assign the
STARTTIME task attribute to delay initiation of the program. However, you cannot
assign any other task attributes to the program.

While the WFL program is compiling, only CANDE control commands are available.

If you enter any other CANDE commands during this period, CANDE queues the
commands and executes them when the compilation is finished. However, after the WFL
program is compiled and entered in a job queue, all CANDE commands are available
again. The WFL program executes as a job and can have a job summary or printer
backup files associated with it. By default, these files are queued for printing when the
WFL program terminates.

You can use the WFL command to submit one or more WFL statements. Simply enter
WFL, followed by the WFL statements. You can omit the 2BEGIN JOB and ?END JOB
statements. The WFL statements can include all the constructs defined in WFL with the

- exception of data specifications and STARTTIME specifications.

When you submit WFL input by way of the WFL command, only CANDE control
commands are available while the WFL input compiles and executes. Any other CANDE
commands that you enter during this period are queued for later execution. By default,
any backup files created by the WFL process are saved with the CANDE session. The
files are queued for printing when you end the CANDE session.

The CANDE ADD, COPY, and PRINT commands correspond to the WFL commands of
the same names. When you enter any of these commands, CANDE passes it to WFL for
execution.

Access td Task Attributes in CANDE

3-4

For each session, CANDE stores information about a few selected task attributes.
CANDE requests some of this information from the user at log-on time and obtains most
of the rest from usercode attributes defined in the USERDATAFILE. CANDE assigns
these task attribute values to any process initiated by that session (for example, by a
CANDE RUN command). The task attributes stored by CANDE include the following:

ACCESSCODE - JOBNUMBER PRINTDEFAULTS
CHARGE JOBSUMMARY PRIORITY
CONVENTION JOBSUMMARYTITLE SOURCESTATION
DESTNAME LANGUAGE _ STATION

FAMILY NOJOBSUMMARYIO USERCODE

For a task initiated from a CANDE session, CANDE assigns a JOBNUMBER equal to
the session number. A job initiated from a CANDE session receives a JOBNUMBER
equal to its MIXNUMBER.

You can use CANDE commands to change the values of some of the session attributes.
By using these commands, you create new defaults that are applied to all tasks initiated
later in that session. The ACCESS, CHARGE, DESTNAME, FAMILY, and LANGUAGE

8600 0494-000

Tasking from Interactive Sources

commands each display or assign the session attribute of the same name. Additionally,
the PDEF command displays or assigns the PRINTDEFAULTS session attribute.

You can also assign task attributes to specific processes through the use of task
equations. Task equations can be appended to most CANDE process initiation
statements, including RUN, UTILITY, COMPILE, and the various special-purpose
commands for initiating utilities. Task equations can assign values to all but task-valued
or event-valued task attributes, such as EXCEPTIONTASK or EXCEPTIONEVENT.

If a task equation conflicts with task attribute inheritance, the task equation takes
precedence. For example, the following CANDE command assigns to a process a
LANGUAGE value different from the LANGUAGE value of the session: ‘

RUN DRIVER;LANGUAGE = FRANCAIS

For information about the task attributes available in CANDE, refer to the A Series
CANDE Operations Reference Manual.

Monitoring and Controlling Processes in CANDE

Any messages generated by a task initiated from a CANDE session are automatically
displayed at that session, including any “BOT”, “EOT”, DISPLAY, and RSVP messages
and error or warning messages. However, for processes indirectly associated with a
session, the display of messages is optional. Processes indirectly associated with a

session include WFL processes initiated by a START or WFL command, the descendants
of such processes, and the descendants of any task initiated from a session. :

The CANDE session option MSG controls the display of messages by processes-
indirectly associated with a session. While MiSG is set, all messages generated by such
indirect processes are displayed at the session. While MSG is reset, all such messages
are suppressed. CANDE sets the MSG option to TRUE if the usercode attribute
CANDEGETMSG is set for the usercode of the session. You can also set the MSG
option to TRUE for a session by entering a CANDE SO MSG command. You can use the
equivalent CANDE control command, ?SO MSG, even when the station is busy.

A number of CANDE control commands are available for monitoring and controlling
particular processes. You can use these commands to monitor or control any process that
has the same usercode as the session usercode. This includes processes initiated from
the current session as well as processes initiated from other sources, such as MARC or
the ODT. '

Most CANDE commands related to process control correspond to system commands
with similar names. Some restrictions and differences in spelling apply to the CANDE
versions of these commands. For further information, refer to “Tasking Command
Equivalents” later in this section.

The system assigns a unique mix number, also known as the session number, to each
CANDE session. The CANDE session does not appear as a process in mix display
commands. However, the session mix number does appear in the output from two
System commands: Y (Status Interrogate) and C (Completed Mix Entries). The output
from these commands shows both the job number and the mix number of a process. If

8600 0494-010 3-5

Tasking from Interactive Sources

the process is a task, and it was initiated from a CANDE session, then the job number
shown is actually the CANDE session number.

Saving CANDE Commands for Later Use

You can achieve some of the convenience of programmatic task initiation and control by
saving CANDE commands in a file for later use. You can use the DO or SCHEDULE
command to execute the commands in the file. You can reuse the file as many times as
desired. '

The DO command takes effect immediately and prevents you from using most other
commands in the session until the DO file is completed. However, you can use the
SCHEDULE command to cause the file to be executed separately from your current
session or at a later time,

Files that store CANDE commands are different from programs in that they are not
compiled and are not executed as separate processes. Their process control abilities
are more limited than those of WFL, ALGOL, or COBOL74 programs, because no
conditional statements or variables are available.

CANDE Programming Considerations

When you design a program to be run from CANDE, you need to be aware of
CANDE features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from CANDE

If you are designing a program to be initiated from CANDE, be aware that the program .
can receive only one parameter from the RUN or UTILITY command that initiates it.
This parameter appears as a string to the user, but in the program it must be declared as
type Real Array (or compatible parameter type) with an unspecified lower bound. For
information about Real Array parameters and compatible parameter types, refer to
Section 17, “Using Parameters.”

Access to Ancestral Processes in CANDE

3-6

If you initiate a task from a CANDE session, and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a
reference to the CANDE MCS. The task can use the EXCEPTIONTASK task attribute
to query the values of the task attributes of the CANDE MCS. However, if the task
attempts to modify the task attributes of the CANDE MCS, the task is terminated with
a task attribute error. This error occurs because CANDE runs Wlth the private process
option of the OPTION task attribute set to TRUE. '

For a task initiated through a CANDE RUN command, the MYSELF task variable, the

MYJOB task variable, and the PARTNER task attribute all have the same meaning.
In most cases, each of these constructs refers to the task itself. However, when

8600 0494-010

Tasking from Interactive Sources

these constructs are used to access the JOBSUMMARY, JOBSUMMARYTITLE, and
NOJOBSUMMARYIO task attributes, these task attributes affect the job summary of
the CANDE session. For example, if the task sets the JOBSUMMARY attribute of the
MYSELF attribute to SUPPRESSED, the job summary for the session is suppressed.

The following ALGOL example assigns a value of SUPPRESSED to the JOBSUMMARY
task attribute of the session. If this program is initiated by a CANDE RUN command,
the program prevents a job summary from being printed when the session ends.

BEGIN .
MYJOB.JOBSUMMARY := VALUE (SUPPRESSED);
END. .

For WFL statements submitted through a CANDE WFL command, the MYJOB
task variable refers to the WFL compiler process. The NAME of the WFL compiler
process in this case is CANDE WFL, prefixed by the usercode of the session. The
MYSELF task variable refers to the task that is executing the compiled WFL
statements. The NAME of this task is WFLCODE, prefixed by the usercode of

the session. MYSELF(JOBNUMBER) returns the CANDE session number, but
MYJOB(MIXNUMBER) returns the mix number of the WFL compiler process.

When statements submitted through the WFL command use the MYJOB construct
to alter job summary-related task attributes, these changes affect the job summary of
the CANDE session. However, if the MYSELF variable is used to access these task
attributes, there is no effect on the job summary of the CANDE session.

The MCSNAME task attribute of tasks initiated from CANDE sessions typically returns
a value of SYSTEM/CANDE, which might or might not be preceded by an asterisk (*).
Note that the MCSNAME value can be different if CANDE was installed at your site
under a different name.

Communicating with CANDE Terminals

CANDE automatically assigns the logical station number (LSN) to the STATION and
SOURCESTATION task attributes of processes initiated from CANDE sessions. Most
programs initiated from CANDE can therefore declare and open a remote file at the
originating CANDE session without having to explicitly assign the STATION task
attribute or otherwise indicate where the remote file is to be opened.

However, for WFL jobs submitted by a START command, CANDE does not assign the
LSN to the STATION task attribute. CANDE does not assign a STATION value to such
WFL jobs because these WFL jobs are typically intended to run independently of the
originating CANDE session. In fact, a WFL job or offspring task that opens a remote file
at a CANDE session becomes to some extent dependent on that session. If the user logs
off and the process attempts to write to the remote file, the process receives an I/O error.

8600 0494-000 3-7

Tasking from Interactive Sources

It is nevertheless possible for a WFL job submitted through a CANDE START command
to initiate a task that opens a remote file. However, you must take certain precautions to
enable the task to open the remote file successfully. The simplest precaution is for the
job to assign its own SOURCESTATION value to its STATION value before initiating
any tasks. For example:

?BEGIN JOB;
MYSELF(STATION = MYSELF(SOURCESTATION));
RUN OBJECT/X;

RUN OBJECT/Y;

?END JOB

An alternate precaution is for the job to file-equate the TITLE attribute of a program’s
remote file to the job’s SOURCENAME task attribute value. Like the STATION
assignment shown previously, this file equation causes the remote file to be opened at the
originating station. In the following example, REM is the internal name of a remote file
used by the program OBJECT/PROG:

?BEGIN JOB;
RUN OBJECT/PROG; -
FILE REM(TITLE = #MYSELF(SOURCENAME));
2END JOB A

MARC

MARC is a COMS transaction processor that enables you to perform system operations

‘and tasking functions. You initiate communications with MARC by opening the MARC

window. Depending on the way your terminal is defined to COMS, the MARC window
might appear automatically after you log on to COMS. If it does not, you might still be
able to open the MARC window by entering the command ?ON MARC. Your interactions
with MARC between the time you open the MARC window and the time you log off or
close the window are referred to as a session. MARC assigns each session an identifying
number called the session number.

MARC Tasking Capabilities

MARC provides the only menu-assisted interface to tasking. You can use MARC menu
selections or commands to submit WFL jobs or to initiate programs written in any

language.

MARC offers commands and menu selections for initiating dependent processes,
submitting WFL jobs, and initiating utilities. Once the process is initiated, MARC
displays the TAsk command in the Action field of the current screen. By transmitting
this command, you can display a special screen called TASKSTATUS. You can use the
TASKSTATUS screen to monitor and control the process.

Because the system administrator can modify MARC to add or delete functions, some

features mentioned here might not be available at your site. The descriptions apply to
the version of MARC supplied by Unisys.

8600 0494-000

Tasking from Interactive Sources

The following paragraphs provide an overview of MARC tasking capabilities. For further
details about these features, refer to the A Series Menu-Asszsted Resource Control
(MARC) Operations Guide.

Initiating Dependent Processes from MARC

You can enter RUN in the choice field of the MARC home menu to initiate a program

as a dependent process. This selection can initiate a program written in any language
except WFL. Entering this selection displays the RUN screen. You can use the RUN
screen to specify the object code file title, any parameter that is to be passed, and any
assignment to the TASKVALUE task attribute. You enter TASKVALUE assignments in
the Value field of the screen.

An alternate method of initiating dependent processes is by using the RUN command.
You can enter this command in the Action field of a screen or on the COMND screen.
The syntax of this command is similar to the WFL RUN statement, except that the
command can pass only a single parameter. Depending on the requirements of the
program being initiated, the parameter can be a string of characters enclosed in
quotation marks (") or a number with no quotation marks. The following are both valid
examples:

RUN OBJECT/RECOMM("REPORT=DAILY")

RUN OBJECT/TELEMAX (346)

Initiating Compilations from MARC
You can initiate compilations from MARC in either of the following ways:

e By using the MARC WFL command to submit a WFL COMPILE statement. For
details, refer to “Submitting WFL Jobs from MARC?” later in this section.

e By using the EDIT screen to initiate an Editor session. While in the Editor, you can
use the Editor COMPILE command to initiate a compilation.

Initiating Utilities from MARC

You can initiate utilities by using either the RUN screen or the RUN command.
However, you can also use either of two special screens, UTIL or TOOLS, which list
many utilities as selections. By choosing one of the selections on the UTIL or TOOLS
screen, you cause the corresponding utility to be initiated. If parameters are needed,
MARC prompts you to supply them.

Submitting WFL Jobs from MARC

You can use the START selection on the MARC screen to submit a WFL program that
is stored in a disk file. Entering this selection displays the START screen. Use this
screen to enter the file title of the WFL program and any parameter values to be passed

8600 0494-000 | 3.9

Tasking from Interactive Sources

to the program. You can also use this screen to enter a value for the STARTTIME task
attribute of the WFL program. -

WFL programs stored in disk files can also be initiated by way of the START command.
The START command can pass parameters to the WFL program, but cannot include a
STARTTIME specification.

You can use the MARC WFL command to submit WFL statements directly at the
terminal. Simply type the word WFL, followed by the statements that constitute the
WFL program. You can omit the 2BEGIN JOB and ?END JOB statements. The
program cannot include any WFL constructs except data specifications or a STARTTIME
specification. For example, the following WFL input initiates another program and
assigns it a task attribute:

WFL RUN OBJECT/INVENTORY;FAMILY DISK = DPMAST OTHERWISE DISK

Monitoring Processes Initiated from MARC

3-10

When you initiate any dependent process, WFL job, or utility from a MARC session, the
TASK command appears as a prompt on the current screen. Entering TASK in the
Action field displays the TASKSTATUS screen. This sereen displays information about
the process and includes a field in which you can enter process control commands. You
can leave the TASKSTATUS screen at any time by entering one of the screen traversal
commands, such as HOME or GO, that are displayed. As long as the process is running,
you can return to the TASKSTATUS screen by using the TASK command.

The TASKSTATUS screen includes fields that display various types of information for

the process. The following are the fields and their meanings:

e The Task field displays the mix number and the name of the process.

e The Parameter field, if it appears, displays the value of the parameter passed to the
process. ’

e The Task Status field displays the current stack state of the process. For a
discussion of what the stack states mean, refer to Section 6, “Monitoring and
Controlling Process Status.”

e The Elapsed field displays the time elapsed since the process was initiated.
e The Processor field displays the processor time used by the process.
e The I/O field displays the accumulated I/O initiation time for the process.

e The area below the Elapsed, Processor, and I/O fields displays messages generated
by the process, including “BOT”, “EOT”, DISPLAY, and RSVP messages. ‘

You can enter process control commands in the Action field. The list of available actions
below the Action field includes the most common system commands used for process
monitoring and control. You can enter any of the listed commands without having to
prefix them with the mix number of the process; MARC automatically prefixes the
command with the mix number listed in the Task field. You can also enter system
process control commands that are not listed as actions, but you must prefix them

8600 0494-000

Tasking from Interactive Sources

with the mix number of the process. For a list of system commands related to process
- monitoring and control, refer to “Tasking Command Equivalents” in this section.

If you submit a WFL job by way of the START screen or the START command, then the
process control commands are displayed only during the compilation of the job. However,
you can enter these commands even after they no longer appear as prompts, provided
that you prefix them with a mix number. You can prefix them with the mix number

of the job or of any task initiated by the job. The TASKSTATUS screen continues

to display any messages generated by the job as it executes. You can initiate another
process as soon as the job has finished compiling and has been inserted in a job queue.

However, if you submit a WFL job by way of the MARC WFL command, the process
control commands continue to be displayed as the job executes. Also, it is not possible to
initiate new processes until the job terminates.

If you initiate a process that initiates offspring, then any messages created for the
offspring are included with the other process messages on the TASKSTATUS screen.
You can enter process control commands for the offspring in the Action field, but you
must always prefix the command with the mix number of the offspring process.

You can usually learn the mix number of the offspring by looking at its “BOT” message

in the process messages display. However, if MARC has scrolled this message off the
screen, you can learn the mix number by entering the VIEW command in the Action

field. This command causes MARC to display the TASKVIEW screen, which lists the mix -
numbers and the names of the original process and all its descendants in a hierarchical
order.

You cannot enter process control commands on the TASKVIEW screen. You can display
the TASKSTATUS screen for a particular offspring by entering the mix number of the
offspring in the Action field of the TASKVIEW screen. You can then enter process
control commands on that TASKSTATUS screen. Alternatively, you can return from
the TASKVIEW screen to the original TASKSTATUS screen by entering the RETURN
command in the Action field. :

Monitoring Other Processes in MARC

All system commands related to process monitoring and control can be entered through
MARC, except for the primitive commands (commands preceded by two question
marks). You can use these commands to monitor or control processes initiated from the
current MARC session or processes initiated from other sources, such as CANDE or an
ODT. '

You can enter system commands on the COMND screen or in the Action field of any
screen that displays “COmnd” as a prompt. However, system commands that you enter
through MARC are screened for security. Many system commands are available only if
the usercode of the session has privileged, SYSTEMUSER, or security administrator
status. For details, refer to “Tasking Command Equivalents” in this section.

Each MARC session receives a unique mix number, also called the session number, which

appears in the output from some system commands, including mix display commands.
The MARC session does not appear as a process in mix display commands. However, the

8600 0494-000 ‘ - 3-11

Tasking from Interactive Sources

session mix number does appear in the output from two system commands: Y (Status
Interrogate) and C (Completed Mix Entries). The output from these commands shows
both the job number and the mix number of a process. If'the process is a task, and it
was initiated from a MARC session, then the job number shown is the MARC session
number.

Communicating with Interactive Processes in MARC

3-12

A special window called a task window is created if a remote file is opened by a process
run from a MARC session. In most cases, when the process opens the remote file,
MARC automatically displays the task window. The current screen disappears and
MARC displays the following message:

Enter ?MARC for task status

If the process writes to the remote file, the messages appear in the task window. If you
type and transmit any text in the task window, MARC interprets this as input to the
remote file. The only exceptions are the ?MARC command and other Communications
Management System (COMS) commands that are prefixed with question marks.

You can return to the TASKSTATUS screen by entering the ?MARC command. You can
return to the task window by entering the TASK command in the Action field of any
screen.

If you are on the task window when the process terminates, then MARC returns you
to the originating screen. In some cases, MARC prompts you to press the SPCFY
key before making this transfer. For information about why this happens, refer to
“Communicating with MARC Terminals” later in this section.

Note that if you submit a WFL job through the START command and the job initiates a
task that opens a remote file, you are not automatically transferred to the task window
when the remote file is opened. When the task opens the remote file, a message of the

following form appears on the TASKSTATUS screen:

<time> <mix number> Remote window <remote window name> OPEN.
INTNAME = <internal name>. PROGRAM = <object code file title>.

Note the <remote window name > value in this message. You can transfer to the
remote window by entering a command of the form:

720N <remote window name>

You can return to the TASKSTATUS screen by entering the following command:

20N MARC

The shorter form, ?MARC, is not accepted in this situation.

8600 0494-000

Tasking from Interactive Sources

Access to Task Attributes in MARC

For each session, MARC stores information about a few selected task attributes. MARC
requests some of this information from the user at log-on time and obtains the rest from
usercode attributes defined in the USERDATAFILE. MARC assigns these task attribute
values to any process initiated by that session (for example, by a MARC RUN command).
The task attributes stored by MARC include the following:

BACKUPFAMILY JOBNUMBER PRINTDEFAULTS
CHARGE JOBSUMMARY SOURCESTATION
CONVENTION JOBSUMMARYTITLE STATION
DESTNAME LANGUAGE USERCODE -
EXCEPTIONTASK NOJOBSUMMARYIO

FAMILY PRIORITY

For a task initiated from a MARC session, MARC assigns a JOBNUMBER equal to the
session number. A job initiated from a MARC session receives a JOBNUMBER equal to
its MIXNUMBER.

Certain of the session attributes established for MARC dialogue 1 are inherited by any
sessions started in other MARC dialogues; these session attributes are USERCODE,
ACCESSCODE, CHARGE, FAMILY, and LANGUAGE.

MARC provides commands and menu selections that you can use to set the values of the

- following attributes: DESTNAME, FAMILY, JOBSUMMARY, JOBSUMMARYTITLE,
LANGUAGE, NOJOBSUMMARYIO, and PRINTDEFAULTS. The other attributes in
the previous list cannot be accessed by the user.

You can also assign task attributes to specific processes by using task equations. You can
enter task equations in MARC in either of the following ways:

o FILEEQUATE screen

The RUN screen includes boxes you can fill to indicate that file equations or task
attribute assignments are needed. If file equations are needed, the FILEEQUATE
screen is displayed. You can enter any number of file equations. Implicitly, these are
assignments to the FILECARDS task attribute. If task attribute assignments are
needed, the TASKATTR screen is displayed. This screen includes fields for assigning
selected task attributes. Only the following task attributes can be assigned:
BDNAME, DESTNAME, LANGUAGE, MAXLINES, OPTIONS, STATION, TADS,
and SW1 through SW8.

¢ RUN command

When you initiate a task by using a RUN command, you can include task equations
that assign task attribute values for the task. The following RUN command includes
several task equations:

RUN OBJECT/PROGA; TASKVALUE=1;DISPLAYONLYTOMCS=TRUE;FILE OUT=OUT/FILE;

8600 0494-000 , 3-13

Tasking from Interactive Sources

MARC Programming Considerations

When you design a program to be run from MARC, you need to be aware of
MARC features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from MARC

If you are designing a program to be initiated from MARC, be aware that the program
can receive only one parameter from the RUN screen or RUN command that initiates it.
If the user encloses the parameter in quotation marks ("), MARC passes the parameter
as type Real Array with an unspecified lower bound. If the user does not enclose

the parameter in quotation marks, MARC passes the parameter as type Real. For
information about the parameter types in each language that are compatible with the
Real and Real Array types, refer to Section 17, “Using Parameters.”

Access to Ancestral Processes in MARC

3-14

If you initiate a task through the MARC RUN command and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a
reference to the MARC library, *SYSTEM/MARC/COMMANDER. The task can use
the EXCEPTIONTASK task attribute to query the values of the task attributes of the
MARC MCS. However, if the task attempts to modify the task attributes of the MARC
MCS, the task is terminated with a task attribute error. This error occurs because
MARC runs with the private process option of the OPTION task attribute set to TRUE.

For tasks initiated through a MARC RUN command, the MYJOB task variable

and the PARTNER task attribute act as synonyms for the MYSELF task variable.
When such a task uses MYJOB or PARTNER to access any task attributes, the task
attributes accessed are those of the task itself. However, if the task changes the values
of the job summary-related task attributes, the changes affect the job summary of

the MARC session. The job summary-related task attributes are JOBSUMMARY,
JOBSUMMARYTITLE, and NOJOBSUMMARYIO.

.For WFL statements submitted through a MARC WFL command, the MYJOB task

variable refers to the WFL compiler process. The NAME of the WFL compiler
process in this case is MARC WFL, prefizxed by the usercode of the session. The
MYSELF task variable refers to the task that is executing the compiled WFL
statements. The NAME of this task is WFLCODE, prefixed by the usercode of
the session. MYSELF(JOBNUMBER) returns the MARC session number, but
MYJOBMIXNUMBER) returns the mix number of the WFL compiler process.

When statements submitted through the WFL command use the MYJOB construct to
alter job summary-related task attributes, these changes affect the job summary of the

- MARC session. However, if the MYSELF variable is used to access these task attributes,

there is no effect on the job summary of the MARC session.

8600 0494-000

Tasking from Interactive Sources

Note: When you use the JOBSUMMARY command to display the current
JOBSUMMARY value for the session, the output does not reflect
any JOBSUMMARY assignments made by tasks of the session.
Nevertheless, such assignments made by tasks do affect the job
summary of the session unless overridden by a later JOBSUMMARY
command.

The MCSNAME task attribute of tasks initiated from MARC sessions typically returns a
value of SYSTEM/COMS, which might or might not be preceded by an asterisk (*).

Communicating with MARC Terminals

MARC automatically assigns the logical station number (LSN) to the STATION and
SOURCESTATION task attributes of processes initiated from MARC sessions. The one
exception is that, for WFL programs submitted by a START command, MARC does not
assign the LSN to the STATION task attribute.

Most programs initiated from MARC can therefore declare and open a remote file
without having to explicitly assign the STATION task attribute or otherwise indicate
where the remote file is to be opened. However, when you use a START command to .
submit a WFL job from MARC, the job and its descendants must take precautions before
attempting to open any remote files. The simplest precaution is for the job to assign its
own SOURCESTATION value to its STATION value before initiating any tasks. For
example:

?BEGIN JOB;
MYSELF (STATION = MYSELF(SOURCESTATION));
RUN OBJECT/X;

RUN OBJECT/Y;

7END JOB

An alternate precaution is for the job to file-equate the TITLE attribute of a program’s
remote file to the job’s SOURCENAME task attribute value. Like the STATION
assignment shown previously, this file equation causes the remote file to be opened at the
originating station. In the following example, REM is the internal name of a remote file
used by the program OBJECT/PROG.

?BEGIN JOB;
RUN OBJECT/PROG;
FILE REM(TITLE = #MYSELF(SOURCENAME));
2END JOB '

The “Communicating with Interactive Processes” subsection pointed out that MARC
opens a task window to enable a process to communicate with a user through a remote
file. You can use the AUTOSWITCHTOMARC attribute to affect the handling of the
task window for users. If you set the AUTOSWITCHTOMARC task attribute to TRUE,
then users of the program are automatically transferred from the task window to the
originating screen when the process terminates. If AUTOSWITCHTOMARC is FALSE,
then the user must press the SPCFY key to return to the originating screen.

8600 0494-010 3-15

Tasking from Interactive Sources

oDT

An operator display terminal (ODT) is any data comm terminal or workstation that is
connected to the system through one of the following types of data link processors: the
ODT-DLP or the UIP-DLP. The system provides ODTs with access to two operational
modes: system command mode and data comm mode. When an ODT is in data comm
mode, you can log on to COMS and use various programs that run under COMS, such as
MARC. When an ODT is in system command mode, you can enter system commands or
view automatic displays of system information.

The following subsections discuss tasking capabilities and programming considerations
for an ODT running in system command mode. For details about any of the system
commands, refer to the A Series System Commands Operations Reference Manual.

ODT Tasking Capabilities

The ODT provides you with the capability to submit WFL jobs and initiate dependent
or independent processes. The ODT also enables you to conveniently monitor all the
processes in the system mix.

Submitting WFL Jobs from an ODT

3-16

You can submit WFL programs at an ODT by usihg any of the following methods:

e Typing in an entire WFL program, including a BEGIN JOB statement at the start,
and then transmitting it. (There is no need to include an END JOB statement.)

e Entering one or more WFL statements preceded either by a question mark (?) or by
the letters “CC”. (The BEGIN JOB is not necessary in this case.)

e Entering one of a certain group of WFL statements that do not require a BEGIN
JOB or any other prefix when used at the ODT. These include COMPILE, COPY,
PROCESS, RERUN, RUN, and START.

e Using the LD (Load Control Deck) system command, which submits a WFL program
that is stored on tape.

When you submit a WFL program through the LD command, the system executes

the program as a WFL job, which goes through the job queue mechanism. When you
submit WFL statements through the other methods listed previously, the system usually
executes the input as a WFL job. However, the system can execute some statements
directly, without creating a WFL job. Such statements do not pass through the job queue
mechanism, and therefore are not affected by job queue attributes. For a list of these
statements, refer to Section 4, “Tasking from Programming Languages.”

For further details about submitting WFL programs from an ODT, refer to the A Series
Work Flow Language (WFL) Programming Reference Manual

8600 0494-010

Tasking from Interactive Sources

Initiating Processes from an ODT

You can use the ?RUN (Run Code File) primitive system command to initiate a program
as an independent process. The program can be written in any language except WFL.
The resulting process receives its own job file and job summary.

Note that if you enter RUN without the two question marks, the system treats this
as the WFL RUN statement. The system creates a WFL job to execute the RUN
statement and enters the job in a job queue. The job can be delayed by the queue mix
limit or affected by other job queue attributes. Further, the job affects the job queue
active count. Therefore, you might prefer to use ??RUN to initiate processes, such as
MCSs, that you do not wish to go through the job queue mechanism.

Initiating Compilations from an ODT

You can initiate compilations at an ODT by using the WFL COMPILE statement. The
system responds to this command by creating a WFL job that includes the COMPILE
statement and sending it through the job queue mechanism for initiation.

Initiating Utilities from an ODT

Utilities can be initiated at the ODT by way of the ??RUN command or the WFL RUN
statement. There are other system commands that initiate specific utilities, such as
the TDIR (Tape Directory) command, which initiates the FILEDATA utility to list the
directory of a tape, and the DA (Dump Analyzer) system command, which initiates the
DUMPANALYZER utility.

Two WFL statements that initiate specific utilities can be entered at the ODT. The LOG
statement initiates the LOGANALYZER utility, and the PB statement initiates the
BACKUP utility. To use the WFL PB statement at the ODT, you must prefix it with a
question mark (?); otherwise, the system interprets it as the PB (Print Backup) system
command, which does not initiate the BACKUP utility.

Monitoring and Controlling Processes at an ODT

Of all the interactive sources for process initiation, the ODT provides the most complete
selection of commands for monitoring and controlling processes. The operator can use
these system commands to monitor or control all the processes on the system, including
processes initiated from any of the sources discussed in this section. These system
commands are listed under “Tasking Command Equivalents” in this section.

A unique feature of the ODT is Automatic Display mode. You initiate and control this
mode by using the ADM (Automatic Display Mode) system command. You can use this
feature to cause various types of information to be displayed at intervals, such as active
entries, waiting entries, completed entries, and process messages. This feature allows
you to monitor processes from beginning to end without having to enter commands
repeatedly. '

By default, Automatic Display mode displays seven lines of A (Active Mix Entries)
system command output, three lines of W (Waiting Mix Entries) system command

8600 0494-000 3-17

Tasking from Interactive Sources

output, two lines of S (Scheduled Mix Entries) system command output, five lines of C
(Completed Mix Entries) system command output, and devotes the remainder of the
display to MSG (Display Messages) system command output. By default, the system
updates the contents of the display every nine seconds. You can use the ADM command
to cause different system commands to be displayed or to change the time interval for
updates to the display.

Access to Task Attributes from an ODT

You can include task equations after a WFL task initiation statement submitted from the
ODT. Also, if you type in a complete WFL job at the ODT, you can include task attribute
assignments in the job attribute list. However, you cannot include task equations after
the ??RUN command.

When you initiate a process from the ODT, the process typically does not inherit any of
the task attributes that it would if you initiated the process from a MARC or CANDE
session. For example, the USERCODE, ACCESSCODE, CHARGE, and FAMILY va]ues
of the process are usually null, unless explicitly assigned.

However, usercode attributes are inherited in the following two cases:

o . If you submit a WFL job that includes a USERCODE assignment in the job
attribute list, then the following task attributes of the WFL job inherit values
from the corresponding usercode attributes: ACCESSCODE, CHARGE, CLASS,
FAMILY, PRINTDEFAULTS, and PRIORITY. This inheritance can be overridden by
assignments to these attributes in the job attribute list.

o You can use the TERM (Terminal) system command to assign a terminal usercode
to an ODT. This usercode is inherited by WFL jobs submitted from the ODT, unless
overridden by a USERCODE assignment in the job attribute list. The job also
inherits values for the same set of task attributes listed in the previous item in this
list.

Note that programs initiated by a ??RUN command do not inherit the terminal usercode
or any other usercode attributes.

Special types of security status apply to nonusercoded processes and certain WFL
statements when they are entered at the ODT. These privileges are discussed in Sectlon
5, “Establishing Process Identity and Privileges.”
ODT Programming Considerations
When you design a program to be run from the ODT, you need to be aware of

ODT features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from an ODT

If you are designing a program to be initiated by the ??RUN primitive system command,
be aware that the program cannot receive any parameters.

3-18 ‘ 8600 0494-000

Tasking from Interactive Sources

If the program is to be initiated by a WFL RUN statement entered at an ODT, the
program can receive the four parameter types passed by WFL: Boolean, integer, real,
and string. The string parameter should be declared in the program as a real array (or
compatible parameter type) with an unspecified lower bound. For information about
real array parameters and compatible parameter types, refer to Section 17, “Using
Parameters.”

Access to Ancestral Processes in the ODT Environment

For a process initiated by the ??RUN primitive system command, the MYJOB task
variable and the EXCEPTIONTASK and PARTNER task attributes are all references to
the process itself.

For a process initiated by a WFL RUN statement at an ODT, MYJOB,
EXCEPTIONTASK, and PARTNER are all references to the WFL job that was created
by the system to execute the RUN statement. The name of this WFL job consists of the
first 17 characters of the WFL input you submitted.

Communicating with an ODT

Interactive programs that are designed for use at remote terminals might not run
successfully if initiated from the ODT. You must design the program somewhat
differently if it is to be initiated at an ODT. If the process opens a file with KIND =
REMOTE, it is discontinued with an “UNKNOWN FILE/STATION” error. The process
should open a file with KIND = ODT instead. A process can determine whether it was
initiated from an ODT or a remote terminal by interrogating the SOURCEKIND task
attribute.

A process can open a file either at a labeled ODT or at a scratch ODT. A labeled ODT is
one that has been assigned a label by the LABEL (Label ODT) system command. A
scratch ODT is one that has not been assigned such a label.

To open a file at a labeled ODT, a process should first set the TITLE file attribute to
match the label assigned to the ODT. In addition, the NEWFILE file attribute value
should be FALSE or else unspecified. If NEWFILE is unspecified, the MYUSE file
attribute value should be IN or I0. When the process runs, the system opens the remote
file at any ODT with a matching label. If none of the ODTs has a matching label, the
process is suspended with a “NO FILE <file title> (SC)” RSVP message. The process
resumes execution when an operator uses the LABEL command to label an ODT with
the requested file title.

To open a file at a scratch ODT, a process should set the NEWFILE file attribute to
TRUE, or leave NEWFILE unspecified and set MYUSE to OUT. The value of the TITLE
file attribute makes no difference in this case. If the process was initiated from an ODT,
and that ODT is a scratch ODT, the system opens the file at that ODT. Otherw1se, the
system selects another scratch ODT and opens the file there.

To open a file at a particular ODT, regardless of whether that ODT is labeled or scratch,

the process can assign the UNITNO file attribute a value equal to the physical unit
number of the ODT. The system opens the file at the requested ODT even if the ODT

8600 0494-000 3-19

Tasking from Interactive Sources

is labeled and the label does not match the TITLE file attribute. However, note that
use of the UNITNO file attribute is restricted on systems running InfoGuard security
enhancement software at the S2 level; refer to the Security Administration Guide for
details.

To open afile at the ODT where the process was initiated, regardless of whether that

ODT is labeled or scratch, the process should first read the physical unit number from
its own SOURCESTATION or ORGUNIT task attribute value. The process can then
assign the physical unit number to the UNITNO file attribute, as described previously.

When a process opens an ODT file, automatic display mode at the ODT is temporarily
suspended. However, system commands continue to be available. You can enter text
into the ODT file by preceding the text with a GS character. The GS character is also
known as the delta character and looks like an upward-pointing triangle. (Do not
confuse the GS character with the circumflex character, which resembles an inverted
letter V) Refer to the documentation for your terminal to find out whether your terminal
supports the GS character, and which key it is mapped to.

You can indicate that there is no more input, and cause an end-of-file condition, by
entering the GS character, followed by ?END.

When the process closes the ODT file, the system removes the label from the ODT and
resumes Automatic Display mode. You can also resume Automatic Display mode while
the ODT file is still open by entering an ADM OK command at the ODT.

An example of a program that uses an ODT file is given in the ORGUNIT description in
the A Series Task Attributes Programming Reference Manual.

Tasking Command Equivalents

MARC and the ODT allow you to enter almost all of the same system commands for
process initiation, monitoring, and control. In addition, CANDE allows you to enter
process control commands that correspond fairly closely to system commands.

The system commands available in MARC for process control are spelled the same
as those available at an ODT, and have the same functionality, with the following
exceptions:

e Security

If the Communications Management System (COMS) security category
COMMANDCAPABLE is defined, then system commands can be submitted in
MARC only by users defined as COMMANDCAPABLE. Further, some commands
are available only to users with SYSTEMUSER or privileged status. Some

other commands are filtered: in other words, they are limited to monitoring and
controlling processes with the same usercode as the MARC session. For further
information about COMMANDCAPABLE, SYSTEMUSER, and pr1v1leged status,
refer to the A Series Security Administration Guide.

e Spelling
The MSG (Display Messages) system command is spelled SMSG in MARC.

3-20 ‘ : ; 8600 0494-000

Tasking from Interactive Sources

CANDE process control commands differ from the corresponding system commands in
the following ways: :

e Spelling

The CANDE process control commands each begin with a single question mark (?).
In addition, the following spelling differences exist:

— ?JA corresponds to the J (Job and Task Structure) system command.

— ?CS corresponds to the mix number system command, which is formally known
as the COMPILE STATUS (Information for Compiler Task) command. Note
that the ?CS command in CANDE is not related to the CS (Change Supervisor)
system command. '

— ?MXA corresponds to the MX (Mix Entries) system command. ?MXA can be
abbreviated as MX or 7M.

e Implicit mix numbers

For commands that apply to a dependent process initiated directly from the CANDE
session, you can omit the mix number from the command. For example, instead of
entering 21234 Y, you can enter simply ?Y.

e Security

In general, the CANDE process control commands can monitor or control only
processes running with the same usercode as the CANDE session. If you attempt

to apply a CANDE process control command to a process running with a different
usercode, CANDE displays the message “INVALID NUMBER”. However, CANDE
makes one exception to this restriction. If you initiate a process ina CANDE
session, and that process later changes its own usercode, CANDE still enables you to
apply process control commands to that process.

e Mix display options

The CANDE mix display commands (?C, ?JA, ?LIBS, and ?MXA) do not provide
the following options of the equivalent system commands: ALL, IN, MCSNAME,
QUEUE, and USER. However, the ALL option is implicitly set for all CANDE mix
display commands. Furthermore, CANDE mix display commands do offer one
feature that the corresponding system commands do not: the ability to specify a
logical station number (LSN), which limits the display to processes originating from
the specified station. '

Table 3-1 shows the equivalent commands in these three interfaces and briefly

states the function of each command. In Table 3-1, the abbreviations (f), (pu), and

(su) are used in the MARC column to indicate commands that are filtered or that

require SYSTEMUSER status or privileged status. For complete descriptions of these
commands, refer to the A Series Systern Commands Operations Reference Manual, the
A Series Menu-Assisted Resource Control (MARC) Operations Guide , and the A Series
CANDE Operations Reference Manual. For a general introduction to process monitoring
and control from an ODT, refer to the A Series System Operations Guide.

8600 0494-000 ' 3-21

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions

Functional Area oDT MARC CANDE Specific Function
Initiating LD LD (su & pu) None Initiate a WFL job from
Processes tape.
77RUN None None Initiate an object code file
as an independent
process.
RUN RUN RUN, Initiate an object code file
UTILITY as a dependent process.
<WFL WFL WFL Submit WFL statements.
statements>
START START START Submit a WFL program
stored in a file.
Managing DS DS (f) ?<mixno> ‘Discontinue a queued WFL
Queued WFL DS job.
Jobs :
FS FS (su) None Force initiation of a queued
WFL job. v
MOVE MOVE (su) None Change order of queued
WFL jobs.
PF PF (su) None Display FETCH message
associated with a WFL job.
PQ PQ (su) None Discontinue all the WFL
jobs in a queue.
PR PR (su) None Change the priority of a
queued WFL job.
SQ SQ (f) 8Q Display the WFL jobs in a
queue.
STARTTIME STARTTIME ?<mixno> Assign a start time to a
4] STARTTIME queued WFL job.
Y Y () ?<mixno> Y Display information about
a queued WFL job.
Legend continued
f Filtered if not SYSTEMUSER
pu Privileged status required
su SYSTEMUSER status required
_mixno Mix number
3-22 8600 0494-000

Tasking from Interactive Sources

Table 3-1.

Interactive Tasking Functions (cont.)

Functional Area oDT MARC CANDE Specific Function
Monitoring the ADM None None Periodically display system
Mix mix and other items.

C COMND C (f) 7C Display completed entries.

DBS DBS (su) None Display database stacks.

J J(f) 72JA Display active mix entries,
grouped into process
families.

LIBS LIBS (f) 2LIBS Display library processes.

MSG SMSG {f) 7MSG Display process messages.

MX -MX(f) IMXA Display active, scheduled,
and waiting mix entries.

S S (su) 7S Display scheduled mix
entries.

w W () w Display waiting mix
entries.

Displaying Y Y Y Display current status of a
Process Status process.
. <mixno>t <mixno> 7<mixno> or Display the status of a
CS compilation.

oT OT (f) 20T Display contents of a
selected word in the
process stack.

Displaying Cu CuU () CU Display current memory
Process usage of a process.
Resource Usage

T TH(D M Display accumulated

processor, I/O, presence
bit, ready queue, and
elapsed times for a
process.

1t The <mixno> syntax is formally known as the COMPILE STATUS
(Information for Compiler Task) system command.

Legend
f

pu
su

mixno

8600 0494-000

Filtered if not SYSTEMUSER .

Privileged status required

' SYSTEMUSER status required
Mix number

continued

3-23

Tasking from Interaétive Sources

Table 3-1. Interactive Tasking Functions (cont.)

Functional Area oDT MARC CANDE Specific Function
Communicating T HI HI (f) ?HI Cause process
with a Process » EXCEPTIONEVENT and
optionally assign a
TASKVALUE.
AX AX (f) 7AX Pass a string of text to a
process.
B 1B (su) None Display instruction block

associated with a WFL job.

PF PF (su) None Print a FETCH message
associated with a WFL job.

Modifying an PR : PR (su) None Change the priority of a
Active f’rocess _ ' process.
ST ST () 8T . Suspend execution of a
process.
DS DS (f) DS : ~ Abnormally terminate
; execution of a process.
Responding to AX AX (f) ?7AX Pass a string of text to a
Suspended : . process.
Processes ' ,
Ds Ds (f) DS Discontinue a process.
,FA FA (f) - A Modify file attributes used
by a process.
FM FM (su) None Change the printer form
’ used by a process.
FR FR () - ?FR Specify that a tape.reel is

the last of a multireel set.

L IL (su) None Change the physical unit
used for an input file.

NF NF (f) NF Return an open error to a
process opening a file that
is not an optional file.

Legend continued
f Filtered if not SYSTEMUSER

pu Privileged status required

su SYSTEMUSER status required

mixno Mix number

3-24 : 8600 0494-000

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions (cont.)

Functional Area oDT MARC CANDE Specific Function
Responding to NOTOK NOTOK (f) ~ INOTOK Prevent the process from
Suspended attempting a given action,
Processes but do not discontinue the
(cont.) process.
OF OF (f) ?20F Indicate an optional file is
not present.
oK OK (f) 70K Cause a suspended
process to attempt to
resume processing.
ou OU (su) None Change the physical unit
_ used for an output file.
RM RM (f) 7RM Remove a file specified in

a DUP LIBRARY message.

UL UL (su) None Assign an unlabeled tape
file to a particular process.

Saving and BR BR (su) None Display checkpoint .
Restarting eligibility or initiate a
Processes ' checkpoint.
OK OK (f) 20K Allow automatic restart of
a process.
Ds DS (f) DS Deny automatic restart of a
process.
RERUN WFL RERUN WFL RERUN Initiate manual restart of a
process.
Legend
f Filtered if not SYSTEMUSER
pu Privileged status required
su SYSTEMUSER status required

mixno Mix number

8600 0494-000 3-25

Tasking from Interactive Sources

Co.mmun'icativng with an Operator

You can design a process to display information to an operator or accept information
from an operator. You can accomplish this communication through any of the following
methods: '

e By accepting parameters from the operator in the statement that initiates the
process. This topic is discussed earlier in this section under “Receiving Parameters
from CANDE,” “Receiving Parameters from MARC,” and “Receiving Parameters
from an ODT.”

e By performing read and write operations on a remote file or ODT file. This topic is
discussed in the following subsections of this section: “Communicating with CANDE
Terminals,” “Communicating with MARC Terminals,” and “Communicating with an
ODT” ' '

e By using certain statements and task attributes that the system provides for
operator communications. These methods are discussed in the following subsections.

Displaying Information to Operators

3-26

A process can display information to operators using any of the following features:
DISPLAY statements, instruction blocks, and fetch specifications.

DISPLAY statements are the most commonly used of these methods. The DISPLAY

" statement is implemented in ALGOL, COBOL74, and WFL. This feature is also available

as the Display procedure in Pascal. The following is a WFL example of this statement:

DISPLAY "INCORPORATING NEW DATA - MAY TAKE AWHILE";

The output from a DISPLAY statement is referred to as a DISPLAY message. The
DISPLAY message appears as one of the entries in the response to the MSG (Display
Messages) system command. If the process is initiated from a CANDE or MARC session,
the DISPLAY message is automatically displayed at the session. The programmer can
use the DISPLAYONLYTOMCS task attribute to limit the display of the message to the
originating session. If this task attribute is TRUE, then the DISPLAY message does not
appear at the ODT.

You can use instruction blocks to store information that an operator can display at any
time. By contrast, DISPLAY messages are only temporarily visible to the operator,
because the MSG command displays only the most recent system messages. Instruction
blocks are created using the INSTRUCTION statement, which is available only in WFL.,
The following is an example of this statement.

INSTRUCTION 3 TESTTAPE IS IN TAPE RACK 3.;

An operator can use the IB (Instruction Block) system command to display instruction
blocks for a WFL job. For example, a command of the form 7645 IB displays the most

8600 0494-000

Tasking from Interactive Sources

recent instruction block for the WFL job with mix number 7645. A command of the form
7645 IB 3 displays instruction block 3 for that WFL job.

The disadvantage of instruction blocks is that nothing prompts the operator to use the
IB command. The operator has to know in advance that instruction blocks exist for a
particular WFL job. If you want to be sure that an operator sees a message, you can use
the FETCH task attribute. This task attribute can be used only in WFL jobs, and only in
the job attribute list at the start of the job. You can assign any arbitrary string of text to
this attribute. The following is an example of a FETCH assignment:

FETCH = "THIS JOB NEEDS THREE TAPE DRIVES";

If the operating system option NOFETCH is not set, then when a WFL job containing
a FETCH assignment reaches the head of a job queue, the system suspends the job
rather than initiating it. The job appears in the W (Waiting Mix Entries) system
command display with an RSVP message of REQUIRES FETCH. The operator can use
the PF (Print Fetch) system command to display the FETCH specification, and the OK
(Reactivate) system command to cause the job to be initiated.

If NOFETCH is set, then the system does not suspend jobs with FETCH specifications.
However, the PF system command can still be used to display FETCH specifications.

If you enter a PF command for a process that has no FETCH specification, the system
displays the message “NO FETCH STATEMENT".

Accepting Information from Operators

A process can be passed information by an operator using either the HI (Cause
EXCEPTIONEVENT) or the AX (Accept) system command.

EXCEPTIONEVENT is an event-valued task attribute, meaning that it has either

of two states: HAPPENED or NOT HAPPENED. The HI command causes the
EXCEPTIONEVENT, meaning that the value is changed to HAPPENED. This action
has no effect on process execution unless the program is specifically designed to monitor
the status of the EXCEPTIONEVENT. Only programs written in WFL, ALGOL, or
COBOL74 have access to this attribute.

A program can monitor the EXCEPTIONEVENT in any of the following ways:

¢ To suspend execution until the EXCEPTIONEVENT is caused, the process can use a
simple wait statement such as WAIT(MYSELF.EXCEPTIONEVENT) in ALGOL or
WAIT; in WFL.

e To suspend execution until either the EXCEPTIONEVENT or some other
event occurs, the process can use a complex wait statement that lists the
EXCEPTIONEVENT as one of several events. '

e To continue doing other work until the EXCEPTIONEVENT is caused, the process
can attach an interrupt to the EXCEPTIONEVENT.

In addition to causing the EXCEPTIONEVENT, the HI command can also pass an
assignment to the TASKVALUE task attribute of the process. For example, the

8600 0494-000 ‘ 3-27

Tasking from Interactive Sources

3-28

comiand 3874 HI 14 causes the EXCEPTIONEVENT of the process with mix number
3874 and assigns a TASKVALUE of 14. To design a process to use this type of input,
you must first use a wait statement or interrupt to monitor the EXCEPTIONEVENT.
Whenever the EXCEPTIONEVENT occurs, the process can read its own TASKVALUE
and take appropriate action.

Because the programmer controls the way an application responds to a HI command, the
operator has no direct way of discovering whether a HI command is needed or what
effect it has. Another feature is available that allows the process itself to prompt the
operator for certain types of input. This feature is the ACCEPT statement.

The ACCEPT statement displays a string of text to the operator and suspends execution
of the process. The process appears in the W (Waiting Mix Entries) system command
display, where it can attract the attention of an operator. Execution resumes when the
operator uses an AX (Accept) system command to pass another string of text to the
process.

In some situations, you might find it more convenient for a process to continue executing
until AX input is available from the operator. This goal can be achieved in any of the
following ways:

e If the operator is familiar with the program, and knows that an AX command is
required later, he or she can enter the AX command without waiting for the process
to become suspended. The system saves the text that was input by the operator.
When the process executes an ACCEPT statement, the process retrieves this saved
text and immediately continues executing.

e By using a conditional ACCEPT statement. This form of ACCEPT checks for
AX text previously submitted by the operator. The conditional ACCEPT returns
a Boolean value indicating whether such text was found. The process continues
executing normally, regardless of whether an AX text was available.

¢ By using the ACCEPTEVENT task attribute. The system causes the
ACCEPTEVENT of a process whenever the operator enters an AX command for
that process. A process can monitor the ACCEPTEVENT using wait statements or
interrupts, similar to those used for monitoring the EXCEPTIONEVENT. Whenever
the ACCEPTEVENT is caused, the process can execute an ACCEPT statement to
capture the AX input.

8600 0494-000

Section 4
Tasking from Programming Languages

Work

The A Series implementations of several programming languages include Unisys
extensions for process initiation and control. You can use these features to

o [Initiate related suites of programs, so there is no need for an operator to initiate
them individually

¢ Divide an application into two or more cooperating, parallel processes for faster
execution

The languages with the most advanced process initiation and control capabilities are
WFL, ALGOL, and COBOL74. Of these, WFL is the simplest to use, and also has the
advantage of passing through the job queue mechanism and offering automatic job
restart after a halt/load. On the other hand, ALGOL and COBOL74 offer sophisticated
features such as user-declared events, interrupts, port files, and a large variety of
parameter types. Each of these languages provides access to task attributes.

This section describes the tasking capabilities of WFL, ALGOL, and COBOL74 in

some detail and provides brief examples of tasking programs written in each of these
languages. Additionally, this section includes a brief overview of the tasking capabilities
of other languages supported by A Series systems.

Flow Language (WFL)

Work Flow Language (WFL) is a programming language that is designed specifically
for use in task initiation and control. WFL is a block-structured language with syntax
similar to ALGOL, although WFL is simpler and easier to learn.

The following subsections explain how WFL jobs are submitted and how they can be
used to initiate other processes.

For further information about WFL, refer to the A Series Work Flow Language (WFL)
Programming Reference Manual.

Submitting WFL Input

WFL statements can be stored in disk or tape files or in arrays in programs written
in other languages. You can also enter and transmit WFL statements at a terminal.
Regardless of how WFL statements are stored or submitted, a group of one or more
WFL statements is referred to as WFL input.

WFL input must be submitted with special-purpose statements such as START and ZIP.
You cannot use general-purpose initiation statements such as CALL, PROCESS, and
RUN to initiate a WFL job. :

8600 0494-010 4-1

Tasking from Programming Languages

4-2

The system can compile WFL input and execute it as a job or a task, or it can skip the
compilation and simply interpret the WFL input. The statement you use to submit the
WFL input and the statements contained in the WFL input together determine how the
system executes that input.

Table 4—-1 summarizes the factors that determine how the system executes WFL input.
The various sources that can submit WFL input are listed at the left. The headings of
the two right hand columns give information about the contents of the WFL input. The
following are the meanings of these headings:

The Single Interpretive Statement column indicates WFL input consisting of a single
statement that is one of the following statements: ALTER, CHANGE, PRINT,
REMOVE, RERUN, SECURITY, or START. The WFL input can also include a
FAMILY job attribute assignment, but cannot include any other job attributes. For
example, the following input is treated as a single interpretive statement:

FAMILY DISK = SYSPK ONLY;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

The Other Statements column indicates WFL input that consists of either more than
one statement or a single statement that is not one of the interpretive statements.

A WFL input also falls into this category if it includes assignments to job attributes
other than the FAMILY attribute. For example, the following input would fall into
this category:

JOBSUMMARY = SUPPRESSED;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

8600 0494-010

Tasking from Programming Languages

Table 4-1. WFL Execution Modes

Single
Interpretive Other
Sources.for Submitting WFL Input Statement Statements
CALL SYSTEM WFL (COBOL74) Interpreted Job
CALL SYSTEM WITH ZIP (COBOL(68))
With Array: Interpreted Job
With File: Job Job
-CONTROLCARD function (DCALGOL)
With [38:01] = 1 and Interpreted Task
[07:08] = 4 (Array Input):
Otherwise: Interpreted Job
LC (Load Control) System Command Job Job
START Statement (CANDE, MARC, or WFL) Job Job
WFL Command (CANDE or MARC) Interpreted Task
WFL Statements Entered at the ODT Interpreted Job
(except PRINT,
which is
executed as a
job)
ZIP Statement (ALGOL, FORTRAN, or RPG)
With Array: Interpreted Job
With File: Job Job

8600 0494-010 : 4-2A

Tasking from Programming Languages

If the system executes the WFL input as a job, it first calls an independent runner called
CONTROLCARD to compile the job and create a job file. CONTROLCARD invokes the
WFL compiler, which is a procedure exported by the system library WFLSUPPORT.
CONTROLCARD runs in a special high-priority category that prevents it from being
scheduled or suspended by the system if there is a shortage of available memory. The job
file that CONTROLCARD creates contains more information than a typical job file, as
discussed in Section 2, “Understanding Interprocess Relationships.”

The system then inserts the job file in a job queue. (For a description of the job queue
mechanism, refer to “Selecting the Queue for a Job” later in this section.) Later, the

- system selects the job file from the job queue and initiates it as a job (an independent
process). When the job terminates, the system usually prints the job summary and any
backup files associated with the job and its tasks. The system then deletes the job file.

If the system executes the WFL input as a task, the system initiates CONTROLCARD
to compile the input and create an object code file. The system then initiates the WFL
input as a task (a dependent process); the task does not pass through the job queue
mechanism. When the task terminates, the system removes the object code file.

By default, no job summary or backup files are associated with the WFL task. For
example, if the WFL task was initiated from a CANDE session, then backup files
produced by the WFL task or its descendants are associated with the CANDE session
and queued for printing only when the session is ended.

If the system handles the WFL input interpretively, then CONTROLCARD executes
the WFL statément without creating a WFL job or a WFL task. In this case,
CONTROLCARD neither creates a job file or an object code file, nor does it use the job
queue mechanism.

4-2B 8600 0494-010

Tasking from Programming Languages |

Selecting the Queue for a Job

A job queue is a list of WFL jobs that are awaiting initiation. Job queues are defined by
the system administrator and managed by the operating system.

The purpose of job queue definitions is to allow the system administrator to set up some
general parameters affecting the flow of WFL jobs on the system. Because a WFL jobis
typically an agent for initiating batch programs, the job queue system by implication can
be used to regulate the initiation of batch programs in general.

Before defining the job queues, the system administrator usually analyzes the batch
programs run on the system in terms of their patterns of resource usage and their
relative urgency. The administrator then defines a separate job queue for each set

of batch programs that show similar characteristics. For example, if there is a payroll
application that has to finish processing before a precise deadline, the administrator
might assign the application to a high-priority job queue. The administrator uses an MQ
(Make or Modify Queue) system command to define the job queue.

For a complete explanation of job queues and using job queues in system administration,
refer to the A Series System Administration Guide. For information about using system
commands to monitor and interact with jobs in queues, refer to the A Series System
Operations Guide. The following subsections describe the features of JOb queues that
are of most direct interest to a programmer.

8600 0494-010 4-3

Tasking from Programming Languages

Deciding on the Queue for a Job

Depending on the policies that are in effect at your site, you might be required to ask
your system administrator which job queue to submit a particular WFL job to. However,
if the system administrator allows you to decide on the job queue, then you need to
examine the job queue definitions to determine which queue is most suitable to your job.

The system command for displaying job queue definitions is QF (Queue Factors). The
following is an example of a QF command and the response:

QF 4

QUEUE 4:
MIXLIMIT = 2
DEFAULTS:
PRIORITY =
PROCESSTIME = 100
LIMITS:
PRIORITY = 68
PROCESSTIME = 200

In this example, 4 is the job queue number. This number uniquely identifies a job queue.
If the QF command does not specify a number, the output displays the definitions of all
job queues on the system.

The MIXLIMIT value specifies, roughly, the maximum number of jobs and descendant
tasks initiated through this job queue that can be running concurrently. If the actual
number of jobs and tasks originating from this job queue equals or exceeds the
MIXLIMIT value, the system temporarily ceases initiating jobs from this job queue.
After one or more of the jobs and tasks in this job queue terminates, the system resumes
initiating jobs from this job queue.

The DEFAULTS and LIMITS portions of the job queue definition specify default values
and maximum values for various task attributes that restrict the resource usage of a
process.

The job queue defaults are inherited by the corresponding task attributes of a WFL
job. However, the job can override this inheritance with assignments in the job header;
that is, assignments that follow the BEGIN JOB construct but precede any of the
declarations and statements in the job. Consider the following example:

?BEGIN JOB;
CLASS = 4,
PRIORITY = 55;
TASK T;
MYSELF (MAXPROCTIME = 158);
RUN OBJECT/PROG;
2END JOB

4-4 ' 8600 0494-010

Tasking from Programming Languages

Assume that this job is submitted through the job queue that was previously shown

in the QF command example. Queue 4 has default values for both PRIORITY and
PROCESSTIME (which corresponds to the MAXPROCTIME task attribute). The
PRIORITY assignment in the job is part of the job header, and therefore overrides the
PRIORITY queue default. However, the MAXPROCTIME assignment in the job is not
part of the job header. Therefore, the job does inherit the default MAXPROCTIME of
100 at initiation. The statement that assigns MAXPROCTIME a value of 150 has no
affect, because the system does not allow a process to increase its MAXPROCTIME
value after initiation. : ’

Now consider the following job:

?BEGIN JOB;
CLASS = 4;
PRIORITY = 75;
MAXPROCTIME = 300;
TASK T;

" RUN OBJECT/PROG;
2END JOB

The system would never accept this job into queue 4, because the job header assigns
values to PRIORITY and MAXPROCTIME that are both higher than the queue limits
for these attributes. Since the CLASS attribute explicitly requests queue 4, the system-
rejects the job and displays a “Q-DS” message. (The CLASS attribute is explained
under “Requesting the Queue for a Job,” later in this section.)

The following are the job queue attributes that establish resource usage limits, and the
task attributes that correspond to the job queue attributes:

Job Queue Attribute Task Attribute Effect
CARDS MAXCARDS Limits the number of cards the job and its
_ tasks can punch
DISKLIMIT DISKLIMIT Limits the space the job and its tasks can
' allocate for disk files
ELAPSEDLIMIT ELAPSEDLIMIT Limits the amount of time a job can be in
use
IOTIME MAXIOTIME Limits the amount of processor time that

can be devoted to initiating /O operations
for the job and its tasks

LINES MAXLINES Limits the number of lines the job and its
: tasks can print

PROCESSTIME ' MAXPROCTIME Limits the amount of processor time that a
- process can use for computations

PRIORITY PRIORITY Specifies the relative urgency of jobs and
: tasks as compared to other processes in
the mix

SAVEMEMORYLIMIT SAVEMEMQRYLIMIT Limits the amount of save memory the job
- and its tasks can use

continued

8600 0494-000 ' : 4-5

Tasking from Programming Languages

continued
Job Queue Attribute Task Attribute Effect
TEMPFILELIMIT TEMPFILELIMIT Limits the space the job and its tasks can
allocate for temporary disk files
WAITLIMIT WAITLIMIT Limits the amount of time the job and its
tasks can remain waiting after executing a
WAIT statement

If the actual resource usage of the job or its tasks exceeds one or more of the resource
usage limits, the system discontinues the process that exceeded the limit. The point of
this behavior is to encourage you to reexamine the job queue definitions and submit the
job through the appropriate job queue.

In summary, you can determine an appropriate job queue for a job by estimating the
resource usage requirements of the job and choosing a job queue whose resource usage
limits are adequately high. There are, however, some additional restrictions that you
need to be aware of:

e The system administrator can assign two attributes to your usercode that
specify which job queues you are allowed to use. These attributes are
CLASSLIST and ANYOTHERCLASSOK. If ANYOTHERCLASSOK s set, then
CLASSLIST is interpreted as a list of the job queues you are forbidden to use. If
ANYOTHERCLASSOXK is not set, then CLASSLIST is interpreted as a list of all the
job queues you are allowed to use. You should ask the system administrator whether
these attributes are defined for your usercode.

e The system administrator can use the UQ (Unit Queue) system command to specify
that all WFL jobs submitted from a particular device be routed into a particular job
queue. ODTs and card readers are examples of input devices that can be specified in
aUQ command. The inquiry form of the UQ command can be used to display the
unit queue assignments in effect on the system.

¢ The job queue definition can include a FAMILY attribute that corresponds to the
FAMILY task attribute. However, the FAMILY queue attribute is not exactly a
default or a limit. Rather, it excludes any job from the job queue if the job header
includes a FAMILY assignment different from the FAMILY queue attribute. You
can use the QF command to determine whether a job queue has a FAMILY queue
attribute. '

Requesting the Queue for a Job

4-6

If you have decided that a specific job queue is most appropriate for your job, then you
can request the job queue through a CLASS assignment in the job header. For example,

~ the following job requests queue 10:

?BEGIN JOB;

CLASS = 103
RUN OBJECT/PROG;
?END JOB

8600 0494-000

Tasking from Programming Languages

If the job does not include a CLASS assignment, it can inherit a value from the CLASS
usercode attribute. An inherited CLASS value has the same effect as an assigned
CLASS value.

The system evaluates the eligibility of a job for a requested job queue on the basis of the
factors discussed previously: queue resource usage limits, usercode class limits, unit
queue assignments, and the FAMILY value. If the job qualifies for the requested queue,
the system places the job in the queue. If the job does not qualify for the requested
queue, the system rejects the job and displays the message “Q-DS.”

If the job has no assigned or inherited CLASS value, the system attempts to find
an appropriate job queue to place the job in. The method the system uses for

making this selection depends on whether the operating system compile-time option
QFACTMATCHING is set.

If the job has no CLASS assignment and QFACTMATCHING is set, then the system
examines the various job queues to determine their eligibility for receiving the job. The
system selects the first job queue that meets the following criteria:

e Any resource limits specified for the queue are greater than or equal to the
corresponding resource limits in the WFL job header. For example, if the queue has
a PRIORITY limit of 50, the job must either have no PRIORITY assignment in the
job header or a PRIORITY assignment less than 51.

e The job queue must be one that is legal for a job with this usercode.

If the job has no CLASS assignment and QFACTMATCHING is reset, then the system
selects the default job queue. The system administrator defines the default job queue
using the DQ (Default Queue) system command. If no default queue has been defined,
the system checks all the job queues, just as it would if QFACTMATCHING were set.

Whether QFACTMATCHING is set or not, the system performs an additional check. If
the job queue selected by the system has a FAMILY attribute and the job also has a
FAMILY assignment in the job header, the system checks to see whether they match.

If they do not specify identical family values, the system rejects the job and displays a
“Q-DS” message.

Specifying a Start Time

You can use the STARTTIME task attribute to specify the earliest time and date that

a particular job can be selected from a job queue. This task attribute can be assigned
only to WFL jobs. It can be assigned in the task attribute list of the WFL job or in

the statement that initiates the WFL job. You can also use the STARTTIME (Start
Time) system command or the CANDE ?STARTTIME command to assign this attribute
toajob in a job queue. However, any changes made using these commands are not
maintained across a halt/load. '

8600 0494-000 : 4-7

Tasking from Programming Languages

When you initiate a job with a STARTTIME specification, the job is compiled
immediately and placed in an appropriate job queue. The job remains in the job queue at
least until the date and time specified by the STARTTIME. You can use the SQ (Show
Queue) system command to display the STARTTIME of jobs in a queue. The following is
an example of the output for the command SQ 2:

QUEUE 2
6643 @1 TEST/WFL (#0001) .
QUEUED: 12/19/89 AT 15:41:31 STARTTIME = 18:00:00 ON 12/20/89

The STARTTIME specification provides a convenient means of scheduling a job for

a time when the system load is lighter, such as in the evening or during a weekend.
STARTTIME is also a convenient means of scheduling jobs that must run at regular
intervals, such as every morning. The following example job, which is stored in the file
(JASMITH)WFL/RUN, restarts itself on a daily basis:

?BEGIN JOB WFL/RUN;

RUN OBJECT/PROG;

START (JASMITH)WFL/RUN;STARTTIME = 18:80 ON +1
?END JOB

Structuring the WFL Job

A complete WFL job is considered a block, and each subroutine declared in the job is also
a block. The WFL job can enter or initiate subroutines. WFL automatically protects
against critical block exits by performing an implicit wait at the end of the block that

~ contains a task initiation statement. Control does not exit this block until all tasks
initiated in that block have terminated.

WFL includes CASE, DO UNTIL, GO, IF, and WHILE DO statements that you can
use to direct the flow of control in a job. By using these statements together with
task attribute interrogations, a WFL job can provide conditional control over tasks.
For example, the job can initiate the SYSTEM/PATCH utility as a task. When
SYSTEM/PATCH terminates, the job can interrogate the task attributes of the
SYSTEM/PATCH task. If the attribute values indicate that SYSTEM/PATCH ran
without errors, the job can compile the merged source program. If the compilation is
free of errors, the job can run SYSTEM/XREFANALYZER to produce an analysis of
cross-references in the program.

Initiating Dependent Processes from WFL
In WFL, the RUN statement can be used to initiate an object code file as a synchronous
dependent process. The TYPE task attribute of the resulting process shows a value of
“CALL. The initiated program can be written in any language except WFL.
The PROCESS keyword is used as a modifier in front of other initiation statements to

cause the process to run asynchronously. Thus, a PROCESS RUN statement initiates an
asynchronous task. The TYPE task attribute of the task has a value of PROCESS.

4-8 8600 0494-000

Tasking from Programming Languages

WFL cannot initiate a program as an independent process. Also, a WFL job is never
considered to be a coroutine; that is, a WFL job and its offspring cannot use CONTINUE
statements to pass control back and forth.

There are some noteworthy differences between task initiation in WFL and task
initiation in ALGOL or COBOL74. In the latter two languages, RUN initiates an
independent process and PROCESS initiates an asynchronous dependent process.
Another difference is that WFL does not use external procedure declarations. Also,
there is no need to include a NAME task attribute assignment in WFL; the name of the
object code file to be executed is specified in the RUN statement.

WFL jobs can also initiate internal procedures. An internal procedure in WFL

is referred to as a subroutine. If the PROCESS keyword precedes a subroutine
invocation statement, the system initiates the subroutine as an internal, asynchronous,
fully dependent process. (If you do not use the PROCESS keyword, the subroutine
invocation statement enters, rather than initiates, the subroutine.)

Initiating Compilations from WFL

A WFL job can initiate compilations by using the COMPILE statement. The COMPILE
statement initiates a compiler and specifies the object code file to be compiled. The
COMPILE statement can also include an object code file disposition, which specifies
whether the object code file is to be executed once it is compiled, and whether the object
code file is to be saved. The COMPILE statement can also be used to invoke the Binder.
BIND is a synonym for the COMPILE statement.

Initiating Utilities from WFL

In addition to the RUN statement, WFL provides various special-purpose initiation
statements. These statements include ADD, COPY, LOG, and PB. The COPY and ADD
statements each initiate the visible independent runner LIBRARY/MAINTENANCE

to copy a file. The LOG statement initiates the LOGANALYZER utility, and the PB
statement initiates the BACKUP utility.

Initiating Interactive Processes from WFL

A WFL job can initiate an interactive process, but you might need to include a STATION
" task attribute assignment for the interactive process to run properly. The STATION
“task attribute specifies the logical station number (LLSN) of the station where any remote
files used by the process are to be opened. WFL jobs initiated through a CANDE or
MARC START command do not inherit the LSN associated with the remote terminal
where they are initiated. You can remedy this problem by including the following
statement at the start of the job:

MYJOB (STATION = MYSELF(SOURCESTATION));

This statement assigns the LSN of the station that initiated the job to the STATION -
attribute of the job. This STATION value is inherited by all tasks initiated by the job.

8600 0494-000 : - 4-9

Tasking from Programming Languages

(Note that this assignment is lost across a halt/load. For details, refer to Section 11,
“Restarting Jobs and Tasks.”)

Submitting Other WFL Jobs

A WFL job can include a START statement to initiate another WFL job. The START
statement can initiate only WFL programs that are stored on disk files. This statement
can include any of the parameter types that WFL recognizes. The START statement can
also include an assignment to the STARTTIME task attribute, which specifies when the
WPFL job should be initiated.

Access to Task Attributes in WFL

4-10

A WFL job can include a job attribute list, which specifies task attributes to be applied
to the job before initiation. Certain task attributes, if included in this list, can help
determine the job queue in which the job is placed. The CLASS task attribute has
the most direct effect on job queue selection; for more information about the CLASS
attribute, refer to “Selecting the Queue for a Job” later in this section.

A WFL job can specify initial values for the attributes of a task if you include a task
equation list in a task initiation statement. All task initiation statements in WFL
(including RUN, COPY, and COMPILE) allow the use of task equations.

A WFL job can also use task variables to interrogate or modify the task attributes of

a process. The task variable becomes associated with a task by being included in the
task initiation statement. Assignments to the task variable before task initiation have
the same effect as task equations. A job can monitor and control an asynchronous task
while it is executing by accessing its task variable. After a task terminates, the job can
interrogate the task variable to return task history information.

A WFL job can use the predeclared task variable MYSELF to access the job’s own task
attributes. A job can also use the predeclared task variable MYJOB, which has the same
meaning as MYSELF unless it is referred to in an asynchronous subroutine. For an
asynchronous subroutine, MYJOB refers to the parent WFL job and MYSELF refers to
the subroutine’s task attributes.

The COMPILE statement can specify task attributes that are stored in the object code

_ file created by the compilation. These task attribute values are used each time the object

code file is executed, unless the values are overridden by task equations at run time.
Also, a WFL job can use the MODIFY statement to assign task attributes to an object
code file that already exists.

WFL jobs can directly access all task attributes except for task-valued or event-valued
task attributes and the HISTORYREASON task attribute.

In general, the syntax for accessing task attributes in WFL is simpler than that used in
ALGOL. Mnemonic-valued task attributes return string values rather than integers.
Pointer-valued task attributes also return string values. Attributes that record resource
usage, such as ACCUMPROCTIME, return values in units of seconds instead of 2.4
microseconds.

8600 0494-000

Tasking from Programming Languages

Using File Equations in WFL

Assignments to the FILECARDS task attribute are referred to as file equations. In
WFL jobs, FILECARDS can be abbreviated to FILE. Using this task attribute, the job
can modify the attributes of the logical files used by the task. The TITLE attribute can
be used to cause the task to use a different physical file than it otherwise would.

You can include a construct called a global file assignment in a WFL job to cause

an offspring to use a file declared in the WFL job. A global file assignment assigns

a particular file declared by the WFL job to a particular internal name used by the
offspring. Whenever the offspring attempts to use the file with that internal name, the
system causes it to use the global file instead. This mechanism amounts to a hidden
call-by-reference parameter because the job and its offspring use the same logical file.

A unique feature of WFL is the ability to include data specifications in the WFL source
program. Whenever an offspring attempts to read from a card reader file, it reads
instead from a data specification, if one is available. You can also use data specifications
to replace other kinds of input files used by an offspring. To do this, you must include a
file equation in the statement that initiates the offspring. The file equation must assign
the input file a KIND file attribute value of READER. The offspring then reads lines
from the data specification as if they were lines of the input file; for this reason, data
specifications are also known as pseudo-reader files.

Responding to Error Conditions in WFL

Use the ON TASKFAULT statement to specify actions to be taken if a task terminates
abnormally or if a compilation is terminated for syntax errors. WFL can also interrogate
the values of the STATUS and HISTORYTYPE task attributes after a task terminates
to determine the type of termination and take appropriate action.

Communicating with Other Processes in WFL

WEFL jobs can communicate with their tasks by using any of several methods. The
following list reviews each method of interprocess communication:

o ' Globally declared objects

A subroutine initiated with a PROCESS < subroutine> statement can access
objects declared globally to the subroutine in the WFL job.

e Parameters

The RUN statement can include Boolean, integer, real, or string parameters. By
default, these parameters are call-by-value parameters. However, you can specify
that a parameter is call-by-reference by including the word REFERENCE after the
parameter. A WFL job and an asynchronous task can communicate by interrogating
and modifying the value of a call-by-reference parameter.

8600 0494-000 4-11

Tasking from Programming Languages

Events

A WFL job cannot declare events or interrupts and cannot access event-valued task
attributes directly. However, a WFL job can use the WAIT statement, which can
wait on many different types of implicitly declared events. For example, the simple
form of the WAIT statement waits on the job’s exception event. A job can also use
WAIT statements to wait for a task to terminate or for one of the task attributes to
attain a specified value. A WFL job can also access the LOCKED task attribute.
LOCKED is a Boolean task attribute that acts like an event.

Librarjes

Libraries cannot be written in WFL, nor can WFL use libraries written in other
languages.

Port files and disk files

WFL jobs cannot read from or write to files. A WFL job can create a single disk

file and specify the contents of that file by using the DECK statement. However,
the DECK statement, if used, must be the only statement in the job. Another
useful feature is the ability of WFL to create a dummy file by simply declaring a file,
opening it, and closing it. Such files can be used as flags to other processes. For
example, a WFL job can perform a file-residence inquiry to determine whether a file
with a certain title exists.

For details about any of these interprocess communication methods, refer to Part II of
this guide, “Interprocess Communication.”

Restarting WFL Jobs

4-12

A WFL job automatically restarts if interrupted by a halt/load. WFL is the only language
with this automatic restart capability. WFL also plays an important role in the restarting

of checkpointed ALGOL or COBOL(68) processes. These processes must be offspring of

a WFL job in order to be checkpointed. Also, the WFL RERUN statement is the means
used to restart a checkpointed process. For further information, refer to Section 11,

“Restarting Jobs and Tasks.”

8600 0494-000

Tasking from Programming Languages

WFL Example

The following example illustrates some WFL capabilities for task initiation and control:

?BEGIN JOB AUTOPB/HELP(STRING SOURCE, STRING PATCH);
JOBSUMMARY = SUPPRESSED;
DISPLAYONLYTOMCS = TRUE;
CLASS = 15;
TASK T;
STRING RUN1, HELPTITLE;
HELPTITLE := (PATCH & "/LEVELl/HELPBOOK");
RUN1 := ("SOURCE=" & SOURCE
& ",PATCH=" & PATCH
& ",0UT=" & PATCH & "/LEVEL1/ED"
& ",HELP=" & HELPTITLE
& ", MESSAGEFILE=" & PATCH & "/LEVELI/MESSAGES");
DISPLAY "RUNNING AUTOPB WITH " & RUN1;
RUN OBJECT/AUTOPB ON DOCMAST(RUN1) [T];
FILE TEACHUTILNAME=*SYSTEM/HELP/UTILITY ON DOCMAST;
IF T(TASKVALUE) NEQ 1
THEN BEGIN
DISPLAY "HELPBOOK NOT CREATED; PRINTING ERRORS FILE";
RUN *OBJECT/AUTOLP ON DOCMAST;
TASKVALUE = : .
FILE SOURCE = #PATCH/LEVEL1/MESSAGES;
END;
?END JOB

The main point of this job is to run a program called AUTOPB. The AUTOPB program
accepts two input files, SOURCE and PATCH, and produces three output files, OUT,
HELP, and MESSAGEFILE.

The job accepts two string parameters that provide the titles of the SOURCE and
PATCH files. Using these, the job constructs an elaborate string parameter to pass to
AUTOPB. This string parameter defines the titles for all the input and output files.

AUTOPB sets its own TASKVALUE to 1 unless it finds errors in the input files.
The job inspects the TASKVALUE after AUTOPB terminates and prints out the
MESSAGEFILE if there are errors.

ALGOL

ALGOL is a structured, high-level programming language with advanced computational
and I/O capabilities. ALGOL also provides the most complete process initiation and
control capabilities of any language available on A Series systems.

Closely related to ALGOL are several extended versions of the ALGOL language.
DCALGOL is an extended ALGOL that includes some system control and data comm
interfaces. DMALGOL includes special constructs for data management software.
BDMSALGOL contains extensions for accessing Data Management System II (DMSII)

8600 0494-000 4-13

Tasking from Programming Languages

databases. In the following discussion, the features described are available in each of
these languages, except where otherwise noted.

For further information about the ALGOL tasking features discussed in the following
subsections, refer to the A Series ALGOL Programming Reference Manual, Volume 1:
Basic Implementation.

Structuring an ALGOL Program
The following ALGOL structures are considered blocks:

e Anycomplete ALGOL program. A complete ALGOL program can be initiated but
cannot be entered.

e Any typed procedure; that is, any procedure designed to be invoked as a function
that returns a value. (For example, Boolean procedures or real procedures.) Typed
procedures can be entered but cannot be initiated.

e Any untyped procedure; that is, any procedure that does not return a value.
Untyped procedures can be entered or initiated.

e A simple block, which is any group of declarations and statements that appears
between the words BEGIN and END and is not preceded by a procedure heading.
(An exception is the outer block of the program, which is not considered a simple
block.) Such a block cannot be entered or initiated. The block is executed when
control passes either from the previous statement in the program or from a GO TO
statement elsewhere in the program. (Note that a BEGIN...END statement is not
treated as a block if it does not include any declarations. In this case, it is simply a
compound statement.)

When you initiate one of these ALGOL structures, the system creates a process stack.
When you enter one of these ALGOL structures, the system creates an activation
record. When a BEGIN...END block that includes declarations is executed, the system
also creates an activation record. ' '

An ALGOL program that initiates an asynchronous process should usually include a wait
statement to prevent the critical block from being exited while the offspring is in use.
An example of this wait statement is given in Section 2, “Understanding Interprocess
Relationships.” .

ALGOL includes an abundance of flow-of-control statements, such as CASE, DO, FOR,

IF and WHILE. By using these statements together with task attribute interrogations,
an ALGOL program can provide conditional control over tasks.

Initiating Processes from ALGOL

An ALGOL program can initiate any untyped procedure, including imported library
procedures, passed external procedures, and separate programs.

To initiate another object code file, an ALGOL program must declare an external

procedure and a task variable. The program must also assign the title of the object
code file to the NAME attribute of a task variable. The program can then initiate the

414 8600 0494-000

Tasking from Programming Languages

object code file with a process initiation statement that specifies the declared external
procedure and task variable that were previously prepared. :

Three process initiation statements are available. The CALL statement initiates a
dependent, synchronous process. The PROCESS statement initiates a dependent,
asynchronous process. The RUN statement initiates an independent process.

You can implement coroutines in ALGOL through the use of CALL and CONTINUE
statements. The CALL statement creates an active coroutine and changes the initiating
process into a continuable coroutine. Coroutines can pass control back and forth by
using CONTINUE statements.

Initiating Compilations from ALGOL

ALGOL does not provide any statement specifically for initiating compilations. However,
an ALGOL program can submit a WFL job that includes a COMPILE statement.
Alternatively, an ALGOL program can initiate a compiler like any other program, with

a CALL, PROCESS, or RUN statement. An example of this method is given under
“ALGOL Examples” later in this section. '

Initiating Utilities from ALGOL

ALGOL does not provide any statements specifically for initiating utilities. However, the
CALL, PROCESS, and RUN statements can initiate any utility and pass any parameters
that are required by that utility. An example of an ALGOL program that initiates the
LOGANALYZER utility is given under “ALGOL Examples” later in this section.

Initiating Interactive Processes from ALGOL

An ALGOL program initiated from a MARC or CANDE session inherits the STATION
task attribute of the session. The STATION attribute is in turn inherited by any
processes initiated by the ALGOL program. As a result, the processes initiated by the
ALGOL program can open a remote file at the originating terminal without having to
‘make any special remote file assignments. However, an ALGOL program initiated
from a WFL job or from an ODT might not inherit a STATION value. For further
information, refer to “Work Flow Language (WFL)” in this section and to the ODT
discussion in Section 3, “Tasking from Interactive Sources.”

Submitting WFL Jobs from ALGOL

You can use the ZIP statement to submit a WFL job for execution. You can store the
WEFL job source in a disk file or in an array in the ALGOL program itself. Note that
messages produced by the WFL job or its descendants will not be forwarded to the
CANDE or MARC session that originated the ALGOL program. However, you can use
the CANDE ?MSG command or the MARC SMSG command to display these messages.

8600 0494-000 | 4-15

Tasking from Programming Languages

Access to Task Attributes in ALGOL

An ALGOL program can declare task variables for use in accessing the task attributes
of offspring processes. Every process-initiation statement must specify a task variable,
which thereafter is associated with the new process. An ALGOL program can
interrogate or assign task attribute values of the task variable before or after the task
variable is used in a process initiation statement. Assignmzents made to a task variable
before initiation are saved and applied to the process at initiation time.

An ALGOL program can use the predeclared task variables MYSELF and MYJOB to
access its own task attributes and those of its job.

An ALGOL program can interrogate and modify task attributes that store any of the
possible data types, such as Boolean, integer, and so on. The task attribute types
available in ALGOL include two types that are not available in WFL: event and task.

Communicating with Other Processes from ALGOL

ALGOL programs have full access to all of the interprocess communication methods
discussed in this guide, including globally declared objects, call-by-reference or
call-by-name parameters, events and interrupts, port files, and libraries. For details
about any of these interprocess communication methods, refer to Part II of this guide,
“Interprocess Communication.”

Restarting ALGOL Processes

An ALGOL program can include a CHECKPOINT statement that creates a checkpoint
file. The checkpoint file stores information about the current state of a process. You can
use the checkpoint file after a halt/load to restart the process. For further information,
refer to Section 11, “Restarting Jobs and Tasks.”

DCALGOL Features

4-16

In addition to the ALGOL features previously discussed, DCALGOL includes the
CONTROLCARD function, which you can use instead of the ZIP statement to submit
WFL jobs for execution. The CONTROLCARD function has several capabilities that are
unavailable through ZIP. For example, the CONTROLCARD function can

¢ Specify whether the WFL job should be a dependent or independent process

e Compile the job for syntax checking only, without executing it

e Specify that any messages generated by the job be routed to an MCS for display in
the originating session

e Define the invalid character to be something other than a question mark (?)
e Submit a job that is stored as a message in a DCALGOL queue

Additionally, the process that submits the CONTROLCARD function can determine
whether the WFL job compiled without syntax errors. If a WFL job submitted through

8600 0494-000

Tasking from Programming Languages

CONTROLCARD has syntax errors, the system assigns the value 1 to the TASKVALUE
of the process that submitted the job.

A privileged DCALGOL process can also duplicate the process initiation and control
capabilities that are available at an ODT. You can use the DCKEYIN statement to submit
system commands to the operating system. The GETSTATUS and SETSTATUS
functions directly invoke the operating system interfaces that are accessed by system
commands. For information about ODT process initiation and control capabilities, refer
to Section 3, “Tasking from Interactive Sources.”

ALGOL Examples

The following sample program initiates a separate program called REPORTER.
The REPORTER program is initiated twice, both times as an asynchronous task,
and is passed a different parameter each time. The sample program then uses a
WAITANDRESET statement to prevent a critical block exit.

BEGIN
EBCDIC ARRAY DAILYTYPE[8:5],
WEEKLYTYPE[@:6] ;
TASK T, T2;
PROCEDURE REPORTS (ACTUALARRAY);
EBCDIC ARRAY ACTUALARRAY[*];
EXTERNAL;

REPLACE T.NAME BY " (JASMITH)OBJECT/REPORTER ON DATAPK.";
REPLACE DAILYTYPE[@] BY "DAILY";
-PROCESS REPORTS (DAILYTYPE) [T];

REPLACE T2.NAME BY "(JASMITH)OBJECT/REPORTER ON DATAPK.";
REPLACE WEEKLYTYPE[@] BY "WEEKLY";
PROCESS REPORTS (WEEKLYTYPE) [T2];

WHILE (T.STATUS GTR @ OR T2.STATUS GTR @) DO

WAITANDRESET (MYSELF.EXCEPTIONEVENT);
END. . ‘

8600 0494-000 : 4-17

Tasking from Programming Languages

4-18

The following is an example of initiating a compilation from an ALGOL program. The
sample program passes an array parameter and makes FILECARDS assignments to tell
the compiler what files to use:

BEGIN

TASK CTASK;
ARRAY SHEET[@:32];

PROCEDURE ALGOLCOMPILER(SHEET);
ARRAY SHEET[*];
EXTERNAL ;

REPLACE CTASK.NAME BY "*SYSTEM/ALGOL ON DISK.";
REPLACE CTASK.FILECARDS BY f
"FILE CARD (KIND=DISK, TITLE=ALGOL/TASK);"
"FILE CODE (KIND=DISK, TITLE=OBJECT/ALGOL/TASK);"
48"@@“;
REPLACE SHEET BY @ FOR 33 WORDS;
SHEET[8] := VALUE(LIBRARY); % This statement specifies the
% object code file disposition.
SHEET[@] := @ & 1[47:1];
CALL ALGOLCOMPILER(SHEET) [CTASK];

END.

The following is an example of initiating a utility from ALGOL. This sample program
includes a statement that initiates LOGANALYZER:

BEGIN
TASK T; _
PROCEDURE LOGRUN (FORMAL_OPTIONS);

ARRAY FORMAL_OPTIONS[*];

EXTERNAL;
ARRAY ACTUAL_OPTIONS[9:19];
REPLACE T.NAME BY "*SYSTEM/LOGANALYZER ON DISK.";
REPLACE ACTUAL_OPTIONS BY "PRINTER JOB 1260",48"00";
CALL LOGRUN (ACTUAL_OPTIONS) [T];
END.

8600 0494-000

Tasking from Programming Languages

The following ALGOL example submits WFL programs for execution in two different
ways. The first ZIP statement submits the WFL program stored in array WFLARRAY.
The second ZIP statement submits the WFL program stored in the file WFL/TEST. Note
the use of triple quotes (") in WFLARRAY wherever a single quote (") is to occur in the
WFL program. v

BEGIN
EBCDIC ARRAY WFLARRAY[1:120];
FILE WFLFILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE,
TITLE="WFL/TEST."); '

REPLACE WFLARRAY BY
"CLASS=2;JOBSUMMARY=SUPPRESSED ; ELAPSEDLIMIT=120;"
"MYSELF (STATION=MYSELF(SOURCESTATION)) ;"

IIDISPLAY (llllllHIllllll);ll;

ZIP WITH WFLARRAY;

ZIP WITH WFLFILE;

END.

COBOL74

COBOL is available in three different A Series implementations: COBOL(68),
COBOL74, and COBOLS85. These correspond to the ANSI-68, ANSI-74, and ANSI-85
levels of COBOL, respectively. Note that COBOL(68) is frequently referred to simply
as COBOL in other A Series documentation. The suffix (68) is used in this guide to
differentiate the ANSI-68 version of COBOL from the other versions.

Of the A Series COBOL implementations, COBOL74 and COBOL(68) incorporate a full
range of tasking capabilities. COBOL74 is the newer of these two languages and the
preferred language for writing new COBOL tasking applications. COBOL85 does not
have tasking capabilities at this time. In the following subsections, statements about
COBOL74 apply equally to COBOL(68) except where otherwise noted.

" For further information about COBOL74, réfer to the A Series COBOL ANSI-74
Programming Reference Manual, Volume 1: Basic Implementation. For further
information about COBOL(68), refer to the A Series COBOL ANSI-68 Programming
Reference Manual.

Structuring a COBOL74 Program

In a typical COBOL74 program, the outer block of the program is the only block of the
program. Paragraphs and sections within a COBOL74 program are not considered
blocks, because executing a paragraph or a section does not result in the creation of an
activation record.

A COBOL74 program can contain more than one block only if the Binder is used to

bind a procedure from a separate object code file into the program. The bound-in
procedure could be another COBOL74 program or a procedure from a program written
in some other language. A COBOL74 program can enter, but cannot initiate, a bound-in
procedure.

8600 0494-000 4-19

Tasking from Programming Languages

The following rules govern COBOL74 access to external procedures:

e Separate programs

A COBOL74 program can declare external procedures and use them to initiate
separate programs.

e Passed external procedures

COBOL74 does not provide any method for passing procedures as parameters.
Therefore, a COBOL74 program generally has no access to passed external
procedures. Thunks are the only exception to this rule. When a program passes a
constant or an expression by name to a COBOL74 program, the system creates a
thunk. Whenever the COBOL74 program interrogates the parameter, the system
executes the thunk on the COBOL74 program’s process stack.

e Imported library procedures
A COBOL74 program can enter, but cannot initiate, a procedure imported from a
library.

A critical block exit error can occur if the COBOL74 program terminates before an
asynchronous offspring or a coroutine. For information about how to prevent such
critical block exits, refer to Section 2, “Understanding Interprocess Relationships.”

Initiating Processes from COBOL74

A COBOL74 program can initiate separate programs as processes, but cannot initiate
internal sections and paragraphs.

Separate object code files are uutlated by statements that have the following general
form:

<verb> <task variable> WITH <section name> [USING <parameter list>]

The verb in this statement can be CALL, which initiates a synchronous, dependent
process; PROCESS, which initiates an asynchronous, dependent process; or RUN, which
initiates an independent process. EXECUTE is a synonym for RUN.

The task variable in this statement is a data item declared w1th a usage of TASK,
CONTROL-POINT, or CP.

The section name in this statement must have been previously defined in the
DECLARATIVES portion of the PROCEDURE DIVISION. The section name definition
in the DECLARATIVES must be followed by a USE EXTERNAL statement.

420 | A 8600 0494-000

Tasking from Programming Languages

The COBOL74 program must also associate an object code file title with a < section
name > by one of the following methods:

¢ By using a mnemonic name in the SPECIAL-NAMES paragraph. This is the
preferred method.

e By using a MOVE statement to assign the object code file title to the identifier that
was specified in the USE EXTERNAL statement in the DECLARATIVES.

e By assigning the NAME task attribute to the task variable before task initiation.
The title assigned must be a string that is enclosed in quotes and terminated with a
period.

The USING <parameter list> clause passes parameters to the initiated program. If no
parameters are to be passed, you can omit this clause.

Using Coroutines in COBOL74

You can implement coroutines in COBOL74 through the use of CALL, CONTINUE,
and EXIT PROGRAM statements. The CALL statement creates a synchronous task
that is an active coroutine and changes the parent process into a continuable coroutine.
The task can return control to its parent by executing an EXIT PROGRAM statement.
The parent can return control to its task by executing a CONTINUE <task variable>
statement. :

The EXIT PROGRAM statement, in addition to transferring control to the parent, also
specifies where execution resumes when the parent later continues the task. The simple
form EXIT PROGRAM specifies that the task resumes from the beginning. The EXIT
PROGRAM RETURN HERE form specifies that the task resumes with the statement
that follows the EXIT PROGRAM statement.

Entering Individual COBOL74 Procedures

COBOL74 allows the use of certain special formats for the CALL statement that enter,
rather than initiate, a procedure.

A COBOL74 program can use a CALL statement with one of the following forms to enter
a bound-in procedure:

CALL <section name>.
CALL <section name> USING <parameter list>.

A COBOL74 program can use any of several forms of the CALL statement to enter an
imported library procedure. The following is an example:

CALL "PROCEDUREDIVISION OF OBJECT/COBOL74/PROG" USING PARAMI.

By contrast, the GO and PERFORM statements do not enter procedures. They simply
transfer control to a selected paragraph or section without creating an activation record.

8600 0494-000 4-21

Tasking froni Programming Languages

Initiating Compilations from COBOL74

COBOL74 does not include any statement specifically for initiating compilations.
However, a COBOL74 program can submit a WFL job that includes a COMPILE"
statement. Alternatively, a COBOL74 program can initiate a compiler like any other
program, with a CALL, PROCESS, or RUN statement.

Initiating Utilities from COBOL74

COBOL74 does not include any statements specifically for initiating utilities. However,
the CALL, PROCESS, and RUN statements can initiate any utility and pass any
parameters that are required by the utility.

Initiating Interactive Processes from COBOL74

A COBOL74 program initiated from a MARC or CANDE session inherits the STATION
task attribute of the session. The STATION attribute is, in turn, inherited by any
processes initiated by the COBOL74 program. As a result, these processes can open a
remote file at the originating terminal without having to make any spemal remote file
assignments.

However, a COBOL74 program initiated from a WFL job or from an ODT might not
inherit a STATION value. For further information, refer to “Work Flow Language
(WFL)” earlier in this section and to “Communicating with an ODT” in Section 3,
“Tasking from Interactive Sources.”

Submitting WFL Jobs from COBOL74

4-22

A COBOL74 program can submit WFL jobs with a statement of the following form:

CALL SYSTEM WEL USING <identifier>

The identifier in this statement must be associated with a data item that contains the
complete WFL source program.

Note that when a COBOL74 program submits a WFL job, any messages produced by the
WFL job or its descendants are not forwarded to the CANDE or MARC session that
originated the COBOL74 program. However, you can use the CANDE ?MSG command
or the MARC SMSG command to display these messages.

The syntax for submitting WFL jobs is slightly different in COBOL(68). In that
language, you must use a statement of the following form, where < 1dent1ﬁer > is the
name of an array or file containing the source WFL program:

CALL SYSTEM ZIP <identifier>,

8600 0494-000

Tasking from Programming Languages

Access to Task Attributes in COBOL74

A COBOL74 program can access task attributes by using a task variable. A COBOL74
program can create a task variable by declaring a data item with a USAGE of TASK, CB,
or CONTROLPOINT in the DATA DESCRIPTION entry.

The MYSELF and MYJOB task variables are available in COBOL74 and enable a
COBOL74 program to access its own task attributes or those of its job.

A COBOL74 program can assign task attribute values using the CHANGE statement
(the preferred method), the MOVE statement, or the SET statement. A COBOL74
program can interrogate task attributes using the MOVE statement. COBOL(68)
supports MOVE and SET statements, but does not support the CHANGE statement.

COBOL74 programs can use all types of task attributes, including event-valued and
task-valued task attributes.

Invoking COBOL74 Programs

Most COBOL74 programs can be invoked in either of two ways: through process
initiation statements or through the library linkage mechanism. If the COBOL74
program is invoked through the library linkage mechanism, the program automatically
freezes and exports the PROCEDURE DIVISION. This automatic freeze occurs even
though the program does not include a FREEZE statement or export declaration. For
further information about COBOL74 library capabilities, refer to Section 18, “Using
Libraries.”

Communicating with Other Processes from COBOL74

COBOL74 programs have access to almost all the interprocess communication methods
discussed in this guide, including call-by-reference parameters, events and interrupts,
port files, and libraries. The only interprocess communication method that does

not apply to COBOL74 is the use of globally declared objects, because COBOL74
cannot initiate an internal procedure. For details about any of these interprocess
communication methods, refer to Part II, “Interprocess Communication.”

Restarting COBOL(68) Processes

A COBOL(68) process can use a CHECKPOINT statement to create a checkpoint file
that describes the current process state. You can use the checkpoint file after a halt/load
to restart the process. The CHECKPOINT statement is not available in COBOL74. For
further information, refer to Section 11, “Restarting Jobs and Tasks.”

8600 0494-000 4-23

Tasking from Programming Languages

COBOL74 Examples

4-24

The following COBOL74 program initiates a separate COBOL74 program called
OBJECT/COBOL/TEST using the task variable TASK-VAR-1:

" IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
@1 TASK-VAR-1 USAGE IS TASK.
@1 EXT-NAME PIC X(8@).
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.
USE EXTERNAL EXT-NAME AS PROCEDURE.
END DECLARATIVES.

START-HERE SECTION.

P1.
MOVE "OBJECT/COBOL/TEST." TO EXT-NAME.
PROCESS TASK-VAR-1 WITH PROC-EXTERNAL.

PROCWAIT SECTION.
p2. :
WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
IF ATTRIBUTE STATUS OF TASK-VAR-1 IS GREATER THAN

VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The following COBOL74 program also invokes OBJECT/COBOL/TEST; but this
program invokes OBJECT/ALGOL/TEST as an imported library procedure rather than
as a task. OBJECT/COBOL/TEST is executed as part of the calling process.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START-HERE SECTION.
P1.
CALL "PROCEDUREDIVISION IN OBJECT/COBOL/TEST".
STOP RUN.

8600 0494-000

Tasking from Programming Languages

The following is the program OBJECT/COBOL/TEST, which can be invoked by either of
the preceding two programs: -

IDENTIFICATION DIVISION.
~ ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 MIXNO BINARY PIC 9(11).

PROCEDURE DIVISION.

START-HERE SECTION.

P1.
MOVE ATTRIBUTE MIXNUMBER OF MYSELF TO MIXNO.
DISPLAY MIXNO.

STOP RUN.

The following COBOL74 program submits WFL input in array form for execution. The
WFL statements are stored in an array of picture items. Note that if any of the WFL
statements includes a quotation mark ("), the quotation mark must be represented by
two quotation marks (") in the MOVE statement that stores the statement in the array.
The use of double quotation marks is necessary because the compiler interprets a single
quotation mark as the end of the WFL input rather than as part of the WFL input.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

B1 PARAM.
@5 PARAM-1 PIC X(80).
@5 PARAM-2 PIC X(89).
@5 PARAM-3 PIC X(80).

PROCEDURE DIVISION.

START-HERE SECTION.

P1.

MOVE "CLASS=2;J0OBSUMMARY=SUPPRESSED;ELAPSEDLIMIT=120;" TO PARAM-1.
MOVE "MYSELF(STATION=MYSELF(SOURCESTATION));" TO PARAM-2.

MOVE “"DISPLAY (""HI AGAIN"");" TO PARAM-3.

CALL SYSTEM WFL USING PARAM.

STOP RUN.

8600 0494-000 4-25

Tasking from Programming Languages

4-26

The following COBOL74 program initiates a utility. This example also shows how to pass
parameters to a task from a COBOL74 program.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

@1 TASK-VAR-1 USAGE IS TASK.

21 EXT-NAME PIC X(89).

@1 ACTUALPARAM PIC X(19).

LOCAL-STORAGE SECTION.

LD PARAMS.

@1 FORMALPARAM PIC X(19).

PROCEDURE DIVISION.

DECLARATIVES.

PROC~EXTERNAL SECTION.
USE EXTERNAL EXT-NAME AS PROCEDURE
WITH PARAMS USING FORMALPARAM.

END DECLARATIVES.

START-HERE SECTION.

P1.
MOVE "*SYSTEM/LOGANALYZER ON DISK." TO EXT-NAME.
MOVE "PRINTER JOB 126@" TO ACTUALPARAM.
CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.
STOP RUN.

The following COBOL74 example initiates a compilation:
IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.
DATA DIVISION.

- WORKING-STORAGE SECTION.

@1 TASK-VAR-1 USAGE IS TASK.
91 EXT-NAME PIC X(80).
#1 VALUE-ONE PIC 9(11) BINARY VALUE 1.
@1 ACTUALPARAM.
@3 PARAMWORD BINARY PIC 9(11) OCCURS 33.
LOCAL~-STORAGE SECTION.
LD PARAMS.
@1 FORMALPARAM.
#3 FORMALWORD BINARY PIC 9(11) OCCURS 33.
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.
USE EXTERNAL EXT-NAME AS PROCEDURE
WITH PARAMS USING FORMALPARAM.
END DECLARATIVES.
START-HERE SECTION.
P1.
MOVE "*SYSTEM/ALGOL ON DISK." TO EXT-NAME.
MOVE VALUE LIBRARY TO PARAMWORD (9).

8600 0494-000

Tasking from Programming Languages

MOVE VALUE-ONE TO PARAMWORD (1) [@9:47:91].
CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO

"FILE CARD (KIND=DISK,TITLE=ALGOL/TASK);".
CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO

"FILE CODE (KIND=DISK,TITLE=OBJECT/ALGOL/TASK);".
CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.
STOP RUN.

In this example, the COBOL74 program initiates the compiler directly as a task. An
alternative would be for the program to submit in array form a WFL program that
contains a COMPILE statement.

Other Languages

The other user languages available on A Series systems are APLB, BASIC, C,
COBOLS85, FORTRAN, FORTRAN77, Pascal, PL/I, and RPG. These languages are not
primarily intended for process initiation and control. However, most of these languages
have one or more of the following tasking capabilities:

¢ Submitting WFL jobs

If a program can submit a WFL job, the job can, in turn, initiate and control
programs written in any language.

e Invoking library procedures

You can implement ALGOL or COBOL74 libraries that export procedures that
initiate or control processes. Any language that can use libraries can invoke these
procedures

e Using bound-in procedures

You can bind ALGOL procedures or complete COBOL74 programs into programs
written in other languages. These bound-in procedures can be designed to initiate
and control processes.

The following are the tasking capabilities of each language:

e APLB

Provides the task utility, which can be used to initiate tasks and to read or write
task attributes. Also provides the zip utility for submitting WFL jobs. For further
information, refer to the A Series APLB Programming Reference Manual.

e BASIC

Has no tasking capabilities. This language is described in the A Series BASIC
Programming Reference Manual.

o C

Has no process-initiation capabilities. C programs can invoke library procedures in
libraries that are written in other languages. For further information, refer to the
A Series C Programming Reference Manual.

8600 0494-000 4-27

Tasking from Programming Languages

¢ COBOLS5

Has no process-initiation capabilities. COBOLS5 programs can invoke procedures
in libraries that are written in other languages. Additionally, you can add tasking
features to a COBOLS5 program by binding in ALGOL procedures or COBOL74
programs. For further information, refer to the A Series COBOL ANSI-85
Programming Reference Manual, Volume 1: Basic Implementation.

e FORTRAN

Can include ZIP statements that are used to submit WFL jobs for execution.
FORTRAN programs can invoke library procedures in libraries that are written in
other languages. Additionally, you can add tasking features to a FORTRAN program
by binding in ALGOL procedures or COBOL74 programs. For further information,
refer to the A Series FORTRAN Programming Reference Manual.

e FORTRAN77

Can invoke library procedures in libraries that are written in other languages.
Additionally, you can add tasking features to a FORTRAN77 program by binding in
ALGOL procedures or COBOL74 programs. For further information, refer to the
A Series FORTRAN77 Programming Reference Manual

e Pascal

Can invoke library procedures in libraries that are written in other languages.
Additionally, you can add tasking features to a Pascal program by binding in ALGOL
procedures or COBOL74 programs. For further information, refer to the A Series
Pascal Programming Reference Manual, Volume 1: Basic Implementation.

o PL/A

Provides the process-initiation statements that are standard to this language. PL/I
programs can read or assign task attributes. PL/I programs can also invoke library
procedures in libraries that are written in other languages. For further details, refer
to the A Series PL/I Reference Manual.

¢ RPG

Can include ZIP statements that submit WFL jobs for execution. An RPG program
can use the external indicators U1 through U8 to interrogate the SW1 through
SW8 task attributes. For further information, refer to the A Series Report
Program Generator (RPG) Programming Reference Manual, Volume 1: Basic
Implementation.

4-28 . 8600 0494-000

Section 5
Establishing Process Identity and
Privileges

Process identity is the term used in this guide for a number of task attributes and
other features that uniquely identify a process and its capabilities. The “Process
Identity” subsection of this section describes the various aspects of process identity and
their implications for security, billing, and operations. The “Process Security Classes”
subsection explains the security classes a process can belong to, and the privileges
associated with each of these classes.

Process ldentity

Some of the aspects of process identity, such as mix numbers, are assigned by the
operating system. You can control other aspects of process identity, such as the
usercode, although the system provides default values for these aspects if you do not.

Mix Number and Stack Number

In Section 1, “Understanding Basic Tasking Concepts,” it was pointed out that there can
be multiple processes running that are instances of the same object code file. Thus, the
object code file title cannot serve as a unique identification for a process. Instead, the
system assigns two identifying numbers to a process: the mix number and the stack
number.

The mix number is a 4-digit number that the system assigns to each process when the
process is initiated. The name arises because all the processes running on the system are
collectively referred to as the system mix, and the mix number distinguishes a process
from the other processes in the mix. Mix numbers identify processes in the system log as
well as in many system commands and CANDE commands that affect running processes
or provide information about them.

Additionally, mix numbers serve to identify entities that are not processes, but which
resemble processes from the point of view of the operator or user. Thus, Menu-Assisted
Resource Control (MARC) and Command and Edit (CANDE) assign a mix number to
each session at log-on time. (The mix number of a session is also known as the session
number.) The system assigns mix numbers to WFL jobs when they are first entered into
a job queue. This mix number remains the same when the WFL job leaves the queue
and begins executing.

The mix numbers of processes, sessions, and queued jobs are chosen from the same
pool of numbers, so no two of these different entities have the same mix number. Each
process, session, or queued WFL job is generally assigned a mix number one higher than
the last assigned mix number. However, a jump in the numbering can occur after a

8600 0494-000 . : 5-1

Establishing Process Identity and Privileges

halt/load. This jump occurs because the system periodically reserves a range of numbers
for use by new processes. After a halt/load, the system avoids reusing any number in the
range reserved at the time of the halt/load.

When the mix numbers reach 9999, the numbering starts over. Certain low numbers are
reserved and are not used. Also, a number cannot be reused if the last process to which
it was assigned is still in the mix.

Processes can determine their own mix numbers, or the mix number of a related
process, by interrogating the MIXNUMBER task attribute. However, the mix number
has little use in programmatic tasking. A process accesses the task attributes of another
process by specifying a particular task variable, rather than by specifying a particular
mix number.

Like the mix number, the stack number of a process is a number assigned by the
operating system. The stack number is unique to the process and remains constant for
the lifetime of the process. However, while the mix number is intended primarily for use
by system operators, the stack number of a process is intended primarily for internal use
by the operating system. Yet the stack number is visible to operators and programmers
in the following contexts:

e The stack number appears in the system log records for Major Type 0, Minor Type 1
(Establish Identity) and Major Type 1, Minor Types 1 (BOJ), 2 (EOJ), 8 (BOT), and
4 (EOT). The stack number is expressed in hexadecimal format.

e The output from the OT (Inspect Stack Cell) system command includes the stack
number for the process. The stack number is expressed in hexadecimal format.
Thus, in the following output, the stack number is 011B:

©11B STACK CELL 20= 7 99624650003 (HEX)

o The PROCESSID function in ALGOL returns the stack number of the process. The
stack number is expressed in decimal format.

e The stack number can appear in memory dump analyses created by
DUMPANALYZER. The stack number is expressed in hexadecimal format.

Usercode, Access Code, and Charge Code

5-2

USERCODE, ACCESSCODE, and CHARGE are three closely-related task attributes
that help to specify the identity and privileges of a process. ’

The USERCODE task attribute stores a value that is intended to identify the user who
initiated the process. In actual practice, more than one user of the system can use the
same usercode, but only if all the users agree to do so. This is because you must know
the password associated with a usercode to use the usercode, and only the owner of the
usercode can tell you the password.

Usercodes are created by the security administrator for the system, usually through
the use of the MAKEUSER utility. The security administrator can associate a variety
of usercode attributes with each usercode. Some of these usercode attributes confer
various types of special security privileges, as described under “Process Security
Classes” later in this section.

8600 0494-000

Establishing Process Identity and Privileges

Other usercode attributes interact with the values of various task attributes. Some of
these usercode attributes provide default values for the corresponding task attributes.
Other usercode attributes define a range of permitted values for a task attribute, or
specify whether the task attribute must have a value. The following are these usercode
attributes and the task attributes that are related to them:

Usercode Attribute Task Attribute
ACCESSCODELIST, ACCESSCODENEEDED ACCESSCODE
CHARGECODE, CHARGEREQ, CHARGE
USEDEFAULTCHARGE '
CANDEDESTNAME DESTNAME

CLASS, CLASSLIST, ANYOTHERCLASSOK CLASS
CONVENTION CONVENTION
DEPTASKACCOUNTING DEPTASKACCOUNTING
FAMILY FAMILY
FILEACCOUNTING FILEACCOUNTING
LANGUAGE LANGUAGE
PRINTDEFAULTS PRINTDEFAULTS
PRIORITY PRIORITY _
SAVEMEMORYLIMIT SAVEMEMORYLIMIT
TEMPFILELIMIT TEMPFILELIMIT

The values supplied by usercode attributes are propagated to their corresponding task
attributes in the following ways:

e MARC and CANDE read some usercode attributes when you log on, and store the
corresponding task attribute values for your session. Thereafter, if you initiate a
process from that session, the process inherits the task attributes of the session.

e ' Ifa WFL job includes a USERCODE assignment in the job header, the WFL job
inherits the attribute values associated with the usercode.

For details about the effects of usercode attributes on task attributes, refer to the task
attribute descriptions in the A Series Task Attributes Programming Reference Manual.

The ACCESSCODE task attribute serves as a form of secondary identification, in
addition to the usercode. This identification is relevant only when a process attempts
to use a file that is guarded by a guard file; refer to “Nonprivileged Status” later in this
section for further details.

The CHARGE task attribute serves as a form of group identification for billing purposes.
Thus, all the people working in a particular department might have usercodes with the
same CHARGECODE usercode attribute. The system records the CHARGE attribute of
each process in the system log. This makes it possible for site personnel to write billing
programs that analyze the system usage on a charge code by charge code basis. For
further information about billing programs, refer to the A Series System Administration
Guide.

8600 0494-010 5-3

Establishing Process ldentity and Privileges

You can override the propagation of most usercode attriputes to task attributes by
explicitly assigning task attributes to the process in question. However, the system
enforces some consistency checks to ensure that the USERCODE, ACCESSCODE,
and CHARGE attribute values are consistent with each other. For details about these
consistency checks, refer to the descriptions of these attributes in the A Series Task
Attributes Programming Reference Manual.

A process can change its own usercode while it is running by making an assignment to
the USERCODE attribute. Such an assignment must specify the password as well as
the usercode. The system verifies the correctness of the usercode and password before
making the usercode assignment.

Name

The name of a process is stored in the NAME task attribute of the process. The value of
this attribute is, by default, the same as the title of the ¢bject code file that the process is
executing. The process name appears in system log entries generated for the process.
The process name also appears in the output from system mix display commands such as
A (Active Mix Entries), W (Waiting Mix Entries), and C (Completed Mix Entries).

In addition to aiding the operator, the process name can affect the ability of the process
to use some files. If a file has a guard file associated with it, the guard file can include a
PROGRAM clause that specifies access rights for processes with a given name.

In some cases, the NAME value for a process can be different from its object code
file title. This can occur if a WFL process or an ALGOL Pprocess initiates an internal
procedure. The initiating process can make an arbitrary assignment to the NAME
attribute of the new process before initiating it.

The initiating process can even assign the internal process the NAME of an entirely
different program. This method enables the process to fircumvent the PROGRAM
clause in a guard file. To prevent such abuses, a CODEFILE clause is also available for
guard files. This clause ignores the process name and instead specifies access rights
for processes having a particular object code file title. For details, refer to the A Series
Security Features Operations and Programming Guide-

5.4 | 8600 0494-010

Establishing Process ldentity and Privileges

Object Code File

An operator can use the MP (Mark Program) system command to assign any of several
options to an object code file. Some of these options confer special types of security
status on a process, and these options are the following:

L]

COMPILER. This option marks an object code file with compiler status. Object code
files can also be marked with compiler status by the MC (Make Compiler) system
command, which is scheduled for deimplementation. The effects of compiler status
are described under “Compiler Status” later in this section.

CONTROL. This option marks an object code file with control program status.
Object code files can also be marked with control program status by the CP (Control
Program) system command, which is scheduled for deimplementation. The effects
of control program status are discussed under “Controlling Process Priority” in
Section 7, “Controlling Processor Usage.”

PU. This option marks an object code file with privileged status. Object code files
can also be marked with privileged status by the PP (Privileged Program) system
command, which is scheduled for deimplementation. The effects of privileged status
are discussed under “Privileged Status” later in this section.

SECADMIN. This option marks an object code file with security administrator
status. Object code files can also be marked with security administrator status

by the PP (Privileged Program) system command, which is scheduled for
deimplementation. The effects of security administrator status are described under
“Security Administrator Status” later in this section.

TASKING. This option marks an object code file with tasking status. The effects of
tasking status are described under “Tasking Status” later in this section.

When an object code file is initiated, the resulting process receives the privileges that
were assigned to the object code file. The process can make some of the procedures

in the object code file available to other processes by initiating an internal procedure,
by initiating a process and passing a procedure parameter, or by becoming a library

and exporting procedures. Any of these processes temporarily assumes the privileges
assigned to the object code file while it is executing procedures from the object code file.

The following subsections explain how these privileges are propagated to processes from
object code files.

8600 0494-010 5-4A

Establishing Process Identity and Privileges

5-4B : ' 8600 0494-010

Establishing Process Identity and Privileges

Transparent Object Code File Privileges

Most of the options available through the MP (Mark Program) system command have
only two states: set or reset. However, the MP command enables you to specify a

third state for the PU, SECADMIN, and TASKING options. This third state is called
transparent. The following are MP commands and the security categories they assign:

MP Command Security Category

MP <file title> + PU Privileged

MP <file title> + PU TRANSPARENT Privileged transparent

MP <file title> — PU ~ Nonprivileged

MP <file title> + SECADMIN ' Security administrator

MP <file title> + SECADMIN TRANSPARENT Security administrator transparent
MP <file title> — SECADMIN Non-security administrator

MP <file title> + TASKING Tasking

MP <file title> + TASKING TRANSPARENT Tasking transparent

MP <file title> — TASKING Nontasking

Each option can be in only one state at a time: enabled, disabled, or transparent.
However, the three options (PU, SECADMIN, and TASKING) do not have to be in the
same state. The following command assigns privileged status and security administrator
transparent status, and removes tasking status:

MP <file title> + PU, + SECADMIN TRANSPARENT, - TASKING

The concept of transparent status is intended primarily for libraries, to enable the
actions of a library to be applied with the status of the user program that invokes the
library. If a procedure resides in an object code file that has one of these options in the
transparent state, then

e If the procedure is initiated, the resulting process is treated as if the option were
disabled.

e If the procedure is entered, it inherits the enabled or disabled state of the option of
the invoking procedure. Privileged, security administrator, or tasking status can be
- inherited through a series of privileged transparent procedures.

For example, if a privileged program initiates a procedure in a privileged transparent
library, the procedure is executed as nonprivileged. However, if the privileged program
enters the same procedure instead of initiating it, the procedure is executed as
privileged.

For information about how privileged transparent status applies to file access rights,
refer to Section 19, “Using Shared Files.”

8600 0494-010 55

'————_—_———_

Establishing Process Identity and Privileges

Delayed Effects of Object Code File Privileges

A process can receive privileged, security administrator, or compiler status from an
object code file only if the process uses a code segment dictionary that was created after
the object code file was marked with the specified status. Marking an object code file
with privileged or compiler status does not affect processes that are already in progress.

- Even a process initiated after the object code file is marked might not receive the

specified privileges in some situations. For further information, refer to the discussion of
code segment dictionary sharing in Section 8, “Controlling Process Memory Usage.”

Copying Privileged Object Code Files

If you copy an object code file marked with privileged, security administrator, or compiler
status, the copy retains the same privileges as the original. However, the system
administrator can limit the ability to copy or execute such object code files by using the
RESTRICT (Set Restrictions) system command. For details, refer to the discussion of
the RESTRICT command in the A Series Security Administration Guide. .

Originating Source

When you initiate a process through a peripheral device, the system records the type of
peripheral device in the SOURCEKIND attribute. There is one situation in which the
SOURCEKIND value can make an important difference in the capabilities of the process.
If the SOURCEKIND value is ODT, the system accords the process ODT status, which is
described under “Process Security Classes” in this section.

Additionally, the system records the physical unit number or logical station number
(LSN) of the originating peripheral device in the SOURCESTATION task attribute.

. The value of this attribute allows messages generated by a process to be routed back to

the station that originated the process, so that you can easily monitor the progress of
your processes.

MARC and CANDE similarly assign the LSN of a session to the STATION task attribute
of any tasks (but not jobs) initiated from that session. Refer to Section 9, “Controlling
Process I/O Usage” for a discussion of the effects of this attribute. :

The system also records the name of the originating station in the SOURCENAME task
attribute. The station name can be more stable than the LSN, which often changes after
a halt/load or COMS quit. '

Process Security Classes

A Series software provides a number of security features that you can use to regulate
the ability of processes to access other users’ files or perform other restricted actions.
Processes are classified according to security classes, and each security class allows the
process to perform a somewhat different set of restricted actions.

The following subsections describe the capabilities of each of the process security classes
and explains how a process can be assigned to a particular class. For further information

8600 0494-010

Establishing Process Identity and Privileges

about any of the security features discussed, refer to the A Series Security Features
Operations and Programming Guide and the A Series Security Administration Guide.

The following are the security classes a user process can belong to: nonprivileged,
privileged, nonusercoded, operator display terminal (ODT), security administrator, and
compiler. A process can belong to more than one of these classes, although certain
classes are mutually exclusive. In addition, a process can belong to different security
classes at different points in its execution.

Additional security classes exist for operating system processes. For information about
system library security and library linkage classes, refer to Section 18, “Using Libraries.”

For a discussion of certain special security issues that arise from the sharing of logical
files between processes, refer to Section 19, “Using Shared Files.”

Nonprivileged Status

The default security class for a process is nonprivileged. On a typical system, the vast
majority of processes fall into this class. A nonprivileged process can perform any of the
following actions:

e Inspect or modify any object within the extended addressing environment of the
process. For information about the addressing environment, refer to Section 15,
“Using Global Objects,” and Section 17, “Using Parameters.”

e Create, remove, open, close, read, write, copy, or access the file attributes of data
files.

e Initiate, copy, remove, open, close, read, or access the file attributes of object code
© files.

e Use the nonprivileged form of the GETSTATUS directory call. The nonprivileged
form of this call provides information only about directories having the same
usercode as the process.

¢ Use the VOLUME CHANGE form of the WFL VOLUME statement to affect tape
volumes whose FAMILYOWNER value is the same as the usercode of the process.

e Use the WFL ARCHIVE command to back up, roll out, or restore files that have the
same usercode as the process.

The ability of a nonpriviléged process to access a particular disk file is determined by the
values of certain task attributes and file attributes. The following task attributes affect
file access rights:

e USERCODE

The USERCODE value generally grants the process access to files that are stored
under the usercode. Certain USERCODE values can also grant special privileges,
as discussed under “Privileged Status” and “Nonusercoded Status” later in this
section.

8600 0494-000 5-7

Establishing Process Identity and Privileges

ACCESSCODE

The ACCESSCODE value can grant the process access to some files that are
protected by guard files, as discussed later in this subsection.

NAME

The value of this task attribute can grant the process access to some files that are
protected by guard files, as discussed later in this subsection.

FILEACCESSRULE
The effects of this task attribute are discussed in Section 19, “Using Shared Files.”

The process that creates a disk file can assign security-related file attributes to
determine which nonprivileged processes can access the file. Thereafter, only privileged
processes or processes running with the same usercode as the file can change the
values of these security-related file attributes. Following are brief descriptions of the
security-related file attributes:

TITLE

This file attribute includes the usercode under which the file is stored. For
nonusercoded files, an asterisk (*) is included instead of a usercode. Only privileged
or nonusercoded processes can create a nonusercoded file.

SECURITYTYPE

This file attribute specifies whether a process must have the same usercode as the
file in order to access the file. A value of PUBLIC allows any process to access the
file. A value of PRIVATE enables nonprivileged processes to access the file only if
the processes are running under the same usercode as the file. For nonusercoded
files, a value of PRIVATE enables only privileged processes and nonusercoded
processes to access the file. A value of GUARDED or CONTROLLED specifies that
a guard file is used to determine which nonprivileged processes can access the file.

SECURITYUSE

This file attribute specifies whether nonprivileged processes having a usercode
different from the file can read from or write to the file. SECURITYUSE does not
restrict the ability to initiate an object code file. SECURITYUSE has effect only if
the SECURITYTYPE file attribute value is PUBLIC.

SECURITYGUARD

For files with a SECURITYTYPE value of GUARDED or CONTROLLED, the
SECURITYGUARD file attribute specifies the title of the guard file to be used.

These file attributes are described in detail in the A Series File Attributes Programrﬁing
Reference Manual.

Guard files can be created using the GUARDFILE utility, which is described in the

A Series Security Features Operations and Programming Guide. A guard file can
include detailed information about the types of access allowed to various nonprivileged
processes. The guard file can include USERCODE or ACCESSCODE clauses that
discriminate between processes on the basis of the corresponding task attributes. The
guard file can also include a PROGRAM clause that discriminates between processes on
the basis of the NAME task attribute value. . '

8600 0494-000

Establishing Process Identity and Privileges

If a guard file is used, it overrides the value of the SECURITYUSE attribute.

If the InfoGuard tape volume security feature is enabled on the system, then the

rights of a nonprivileged process to access a particular tape file are regulated by

the task attributes and file attributes listed in the previous discussion as well as

by the tape volume attributes FAMILYOWNER, PERMANENTLYOWNED, and
MATCHONLYSERIALNO. The tape volume attributes can be assigned only by a
privileged user or a privileged process with the WFL VOLUME statement. The security
administrator can enable tape volume security by using the SECOPT (Security Options)
system command to set the security option TAPECHECK to AUTOMATIC. If tape
volume security is not enabled, then a nonprivileged process can open a tape file on any
tape unit that is not currently in use by another process.

An additional security restriction for disk files is system file status. The operating
system marks disk files that are part of the acting system software as system files.
Examples of system files are the object code file of the current MCE, the job description
file, and the current system log. An application process cannot remove or change the
title of any system file. Some files have a modified form of system file status. Thus, the
USERDATAFILE has system file status and additionally is protected from being read by
any application process (only system software can read this file).

Privileged Status

A privileged process has the capabilities of a nonprivileged process, as well as the
following capabilities:

e The ability to access physical files stored under other usercodes, regardless of the
SECURITYTYPE, SECURITYUSE, and SECURITYGUARD file attribute values.
Any guard files are ignored.

e The ability to use the WFL ARCHIVE command to backup, roll out, or restore files
regardless of their usercode.

e The ability to initiate nonusercoded processes and create nonusercoded files.

e The ability to survive most task attribute access errors.

Privileged status also grants several other capabilities on systems where the InfoGuard
security administrator feature is not enabled. On systems where the security
administrator feature is enabled, these capabilities are wholly or partially reserved for
processes with security administrator status. (Refer to “Security Administrator Status”
later in this section.) The following are the capabilities:

e The ability to create or alter usercode definitions.

e The ability to access certain system interfaces, including the DCKEYIN,
GETSTATUS, and SETSTATUS functions in DCALGOL.

o The ability to read from the USERDATAFILE.

e The ability to remove the current INFOGUARDSUPPORT library object code file.
This file has a modified form of system file status that enables it to be removed by
privileged processes, but does not allow title changes.

8600 0494-010 59

Establishing Process Identity and Privileges

Note that the following types of file access are not granted by privileged status: the
ability to remove or change the titles of most system files, and the ability to write

to object code files. Further security restrictions can apply if the privileged process
accesses the file through a shared logical file, as discussed in Section 19, “Using Shared
Files.”

A process is automatically considered privileged if it is running under a privileged
usercode. The usercode of a process is stored in the USERCODE task attribute. An
operator can assign privileged status to a usercode by running the MAKEUSER utility or
using the MU (Make User) system command. A usercode can also be assigned privileged
status by a program that uses the USERDATA function in DCALGOL. For further
information about these features, refer to the A Series Security Administration Guide.

A process usually inherits the usercode of the session or process that initiated it. A
different usercode can be assigned by task attribute assignment, use of the DCALGOL
USERDATA function, or use of the WFL USER statement. However, in each of these
cases, the statement that assigns the usercode must also specify a password, which is
checked for validity. Only processes with special privileges can assign a usercode without
specifying a password. Message control systems (MCSs) and processes with tasking
status use this feature when assigning a usercode to a process initiated by a session.

If a process is not running under a privileged usercode, then the ability of a process to
perform a privileged action is determined by the privilege status of the object code file
that contains the request.

A process can execute code from several different object code files. This is the case if
the process has entered either a library procedure or a passed external procedure.

(For an introduction to external procedures, refer to Section 1, “Understanding Basic
Tasking Concepts.”) The various object code files might not have the same privilege
status. The current privilege status for the process is determined by the privilege status
of the object code file containing the procedure that was most recently entered. This
procedure contains the code that is currently being executed. For further details about
this concept, refer to “Object Code File” earlier in this section.

Note that a privileged program has no special privileges when accessing files on a remote
host. For example, suppose a process sets the HOSTNAME attribute of a file to specify
a remote host, and then attempts to open that file. This action is executed with privilege
on the remote host only if the process usercode is privileged on that host.

Nonusercoded Status
A nonusercoded process is one whose USERCODE task attribute value is a null string.

By default, a process runs without a usercode if you initiate it from one of the following
sources: a nonusercoded MARC session, a card reader; or a load control tape.

5-10 8600 0494-010

Establishing Process Identity and Privileges

In addition, a process initiated from an QDT is nonusercoded by default unless one of the
following conditions is true:

e The ODT has been assigned a terminal usercode by the TERM (Terminal) system
command. The terminal usercode is the default usercode for most processes
initiated at that ODT.

However, processes initiated at an ODT by a primitive system command default to a
null usercode, even if there is a terminal usercode associated with the ODT. ?22COPY
(Copy Files) and ??RUN (Run Code File) are two primitive system commands that
initiate processes.

e The process is a remote WFL job and the system has a host usercode. Host
' usercodes are assigned by the HU (Host Usercode) system command.

Processes initiated by a nonusercoded process are, by default, also nonusercoded.

Processes initiated by usercoded processes are, by definition, always usercoded. It is
possible for a process to assign a null usercode to a task variable that is not in use, and
then initiate a process with that task variable. However, the null usercode value in the
task variable is overridden by task attribute inheritance, and the new process runs with
the usercode of its initiator. '

It is possible for a usercoded process to be assigned a null usercode after initiation.
However, only a privileged process can assign a null usercode to an in-use process. Thus,
for example, a privileged process can change its own usercode to a null usercode. When
the usercode of a privileged process is changed to a null usercode, the process retains its
privileged status. .

A privileged process can also initiate a task with a nonprivileged usercode, and then
change the usercode of the task to a null while the task is running. The task then
assumes nonusercoded security status. Processes that are nonusercoded from the time
they are first initiated also have nonusercoded security status.

A process with nonusercoded status has the same capabilities as a nonprivileged process, .
with the following additions:

o The ability to create nonusercoded files; that is, files whose TITLE file attributes
begin with an asterisk (*) instead of a usercode.

e The ability to initiate a nonusercoded process; that is, a process whose USERCODE
task attribute value is a null string.

e The ability to use the UNITNO file attribute, even on a system running with the
security option S2RESTRICTIONS set.

8600 0494-000 5-11

Establishing Process Identity and Privileges

Further, certain WFL statements are treated as privileged when submitted by a
nonusercoded process. These statements, and other conditions affecting their privilege
status, are shown in Table 5-1. This table refers to two concepts not discussed
previously:

e Single-statement WFL inputs. These are single WFL statements entered directly at
an ODT, entered in CANDE or MARC with the WFL prefix, or submitted in array
form by a ZIP statement in a program.

e ODT status. This concept is defined under “ODT Status” later in this section.

Table 5-1. WFL Statements Executed with Privilege

WFL Statements Conditions Granting Privilege

ADD, COPY Privileged if the process is nonusercoded. .

CHANGE, REMOVE, RERUN, Privileged if a nonusercoded', single-statement WFL input.

SECURITY, START

PRINT Privileged if a nonusercoded, single-statement WFL input
that does not have ODT status.

VOLUME Privileged if either of the following is true:

o The process is nonusercoded and has ODT status.

e The process has ODT status, only the VOLUME ADD or
VOLUME DELETE form of the command is used, and
the statement affects only volumes with the same
usercode as the process.

ODT Status

5-12

A process is said to have ODT status if it was initiated from an ODT, or if it is descended
from a process initiated from an ODT. The exception to this rule is that processes
initiated with the ??RUN (Run Code File) primitive system command do not receive ODT
status, nor do the descendants of such processes.

Processes initiated from an ODT frequently run without a usercode and receive
nonusercoded status, as discussed under “Nonusercoded Status™ earlier in this section.

Regardiess of whether it has a usercode, a process with ODT status is granted access to
all GETSTATUS calls in DCALGOL. This access includes the privileged form of the
GETSTATUS directory call. (The privileged form of this call can return information
about directories stored under any usercode.)

Certain WFL statements are treated as privileged when submitted by a process with

ODT status. For a list of these statements, and other conditions affecting their privilege
status, refer to Table 5-1, “WFL Statements Executed with Privilege”.

8600 0494-000

Establishing Process Identity and Privileges

SYSTEMUSER Status

A process receives SYSTEMUSER status if it is running under a usercode whose
SYSTEMUSER usercode attribute is set. SYSTEMUSER status enables a process to
use the DCKEYIN, GETSTATUS, and SETSTATUS functions in DCALGOL, even if
the process does not have privileged status. A process can use these functions to submit
system commands and perform other system operations functions.

By default, SYSTEMUSER status gives access to all the possible DCKEYIN,
GETSTATUS, and SETSTATUS calls. However, certain restrictions can apply on
a system running InfoGuard security enhancement software. Refer to the following
subsection, “Security Administrator Status.”

Security Administrator Status

On a system where InfoGuard security enhancement software is installed, the
system administrator can enable a special security administrator status. If security
-administrator status is enabled for the system, then certain system commands that
would otherwise be available to any privileged or SYSTEMUSER process are instead
reserved for use only by processes with security administrator status. The DCKEYIN
and SETSTATUS functions corresponding to these system commands are similarly
restricted. In addition, the ability to create or alter usercode definitions, which would
otherwise be available to any privileged user, is restricted to processes with security
administrator status.

The security administrator can also use the RESTRICT command to prevent or limit the
use of certain system commands. For information about the RESTRICT command, refer
to the A Series System Commands Operations Reference Manual.

The system administrator can enable security administrator status on the system by
setting the system SECADMIN option. This option is set using the 22SECAD system
command. Once the SECADMIN option is set, a process assumes security administrator
status if either of the following conditions are true:

e The process is running with a usercode for which the SECADMIN attribute is set in
the USERDATAFILE.

e The process is executing code from an object code file that has been marked with
system administrator status. This concept is discussed further under “Object Code
File” earlier in this section.

For further information about security administrator capabilities, refer to the A Series
Security Administration Guide. ’

Compiler Status

A process with compiler status is allowed to create an object code file or write to an
existing object code file. You can mark an object code file with compiler status by using
the MP <file title> + COMPILER form of the MP (Mark Program) system command.
An operator can use this command to mark any program with compiler status, whether
or not the program is really a compiler.

8600 0494-010 5-13

Establishing Process Identity and Privileges

If a process without compiler status attempts to write to an object code file that is a
permanent file, the write operation is not performed and the process is abnormally
terminated. A process without compiler status can write to an object code file that is a
temporary file. However, if the process attempts to lock the file, the system changes
the file from an object code file into a data file. (For information about the concepts

of permanent and temporary files, refer to the A Series I/O Subsystem Programming
Guide.)

Note that a compiler program has no special privileges when accessing object code files

on a remote host. For example, suppose you initiate a compiler and file equate the
HOSTNAME attribute of the CODE output file to a remote host. The compiler receives
a file attribute error when it attempts to create the object code file. A compiler must
create object code files on the host where the compiler is running.

Message Control System Status

Message control systems (MCSs) differ from other interactive programs in that they
interface directly to the data comm subsystem (rather than opening a remote file) in
order to send or receive messages from terminals. This interface is possible because
MCSs are written in DCALGOL, an extended version of ALGOL with special data comm
capabilities. The system extends a number of special privileges to MCSs.

How an MCS Acquires Its Privileges

The MCS security privileges and MCS priority are not granted to a program simply
because it is written in DCALGOL; the system must also recognize the program as an
MCS. Two things are necessary for the system to recognize a program as an MCS:

¢ Each MCS on a system must be named in the data comm network definition for that
system. Only one MCS of a given name can be active.

e The MCS must invoke the DCALGOL DCWRITE function to initialize its primary
queue. Every MCS must have such a queue and must initialize it in order to be
recognized as an MCS.

Priority of an MCS

5-14

An MCS automatically runs in the same priority category that control programs

run in. This priority category gives the MCS higher priority than WFL jobs and
application programs. However, the priority of an MCS is lower than that of any invisible
independent runner. The priority of MCSs relative to each other is determined by the
PRIORITY task attribute. For an explanation of process priority, refer to Section 7,
“Controlling Processor Usage.” For a discussion of how and when this special priority
can be inherited by offspring of an MCS, refer to “Inheritance of MCS Status” later in
this section.

8600 0494-010

Establishing Process Identity and Privileges

Privileges of an MCS

MCS status includes all the privileges associated with privileged status, as discussed
under “Privileged Status” earlier in this section. This is true even if the MCS has not
been marked as a privileged program. The following paragraphs describe other special
privileges and features of MCS status.

An MCS is allowed the fo]lowmg privileges with regard to the DCALGOL USERDATA
function:

Ability to temporarily assume the usercode of a user by calling USERDATA
function 3 (Validate Usercode/Password). If the MCS sets bit [1:1] of the locator
parameter to USERDATA, then the MCS temporarily loses its MCS privileges.
When bit [1:1] is set and bit [0:1] is also set, then the MCS assumes the privileges
that the requested usercode would normally have; if [1:1] is set but bit [0:1] is reset,
then the MCS runs as nonprivileged.

When an MCS uses USERDATA function 3 to temporarily assume a usercode, the
MCS does not appear in GETSTATUS mix request calls that request mix entries
with that usercode. The MCS also does not appear in the output from system
commands that display the mix and that request mix entries with that usercode.

Ability to change a user’s password with USERDATA function 6, subfunction 1,
which is normally disallowed on a system using password generation.

Ability to call the USERDATA function to validate a usercode/password combination
or, optionally, a usercode without the password. This USERDATA function allows
the MCS to run with the specified usercode so the MCS can perform a function on
behalf of that usercode. .

Ability to call the USERDATA function to validate a usercode/chargecode
combination.

Ability to call the USERDATA function to validate an accesscode/accesscode
password combination.

Ability to call USERDATA function 9 (Privileged Fetch and Examine).

Ability to specify that the last log-on information for a usercode should be updated as
aresult of the current USERDATA call.

Ability to survive USERDATA errors that would normally be fatal. The errors are
returned in the USERDATA error result field.

An MCS receives the following special privileges with regard to other restricted
DCALGOL functions:

Ability to call the DCWRITE function, which handles station message traffic.

Ability to call the MCSLOGGER function, which creates sessions or logs session
activity.

Ability to survive SETSTATUS errors that would otherwise be fatal. The
SETSTATUS error reporting mechanism returns the error to the MCS process.

Trusted status that causes the operating system not to perform validation on any
mix numbers specified by the MCS in SETSTATUS calls.

8600 0494-010 5-15

Establishing Process Identity and Privileges

An MCS receives the following special privileges with regard to initiating processes:

Ability to survive errors in initiating an external object code file, such as security
errors, that would otherwise be fatal. Also, the ability to attempt to initiate a
missing external code file without becoming suspended with a NO FILE condition.
The MCS can determine if initiation was successful by inspecting the task variable
used in the process initiation statement. If initiation failed, the STATUS task
attribute has a value of BADINITIATE. The reason for the failure is reported in the
HISTORYTYPE, HISTORYCAUSE, and HISTORYREASON task attributes.

Ability to pass a single array parameter to an offspring process by value instead of by
reference.

Trusted status that causes the operating system not to perform validation of any
sheet array parameter the MCS passes when initiating a compiler.

An MCS receives the following special privileges with regard to task attribute access:

Ability to survive task attribute errors that would normally be fatal. The MCS can
determine whether an error occurred, and the type of error, by interrogating the
TASKERROR task attribute of the task variable that was accessed.

Ability to commit task attribute errors in reading a task attribute without any error
messages resulting.

Ability to assign values to the BACKUPFAMILY, JOBNUMBER, and
SOURCESTATION task attributes. Also, ability to set the ACCESSCODE task
attribute to a null string, and to set the FILEACCESSRULE task attribute to a
value of ACTOR.

An MCS has the following special privileges with regard to file access:

Ability to invoke the exported MCP procedure CHANGESECURITY which changes
the security attributes of files.

Ability to survive security errors that occur while changing file security.

Abi]ity to call the exported MCP procedure DRCDETERMINEUSERLIMITS, which
reports on the file usage limits imposed on a user by the disk resource control (DRC)
system.

Ability to exceed DRC limits at file open time without any error messages beillg
displayed.

An MCS has sufficient privilege to access library objects that have a linkage class of 3.
For information about library linkage classes, refer to “Security Considerations” in
Section 18, “Using Libraries.”

Inheritance of MCS Status

5-16

In some cases it can be useful for an MCS to initiate one or more tasks to handle some of
its work, By default, these tasks do not receive any special privileges as a result of being
initiated by an MCS. These tasks also do not receive the special MCS priority category,
and by default they receive a PRIORITY task attribute value of 50 rather than inheriting
the PRIORITY value of the MCS.

8600 0494-010

Establishing Process Identity and Privileges

However, the MCS can grant MCS privileges and priority to any of its offspring by
assigning a value of TRUE to the INHERITMCSSTATUS task attribute of the offspring.

Tasking Status

Tasking status grants a process most of the privileges associated with MCS status,
without the process actually having to be an MCS. Tasking status is well suited to
interactive programs that service multiple users and need to be able to assume the
identity of those users temporarily.

A process receives tasking status when both of the following conditions are true:

[

The process is executing code from an object code file that has been marked with
tasking status. You can mark object code files with tasking status by using the

MP (Mark Program) system command. For information about how processes receive
privileges from their object code files, refer to “Object Code File” earlier in this
section.

The process is nonusercoded. If an object code file with tasking status is initiated
under a usercode, the process runs with the privileges of that usercode. The process
receives tasking status when and if it changes its own USERCODE task attribute
value to a null string,

Tasking status provides the same privileges and restrictions as MCS status, with the
following exceptions:

Tasking status does not grant access to the DCALGOL functions DCWRITE and
SETUPINTERCOM.

Tasking status does not allow a process to make assignments to the
SOURCESTATION task attribute.

Tasking status does not cause the process to run in the MCS priority category.

Multiple instances of the same tasking program can be running at the same time.

Further, the INHERITMCSSTATUS task attribute does not cause tasking status to be
inherited.

8600 0494-010 5-17

5-18 : 8600 0494-010

Section 6
Monitoring and Controlling Process
Status

During its lifetime, a process can pass through several distinct states. These states
characterize whether the process is currently executing, and if not, why not. You can
design programs to monitor and modify process states through the use of task attributes
and related expressions. You can also monitor process status through the use of system
commands.

Understanding Process Status

From the time a process is initiated until it terminates, it is considered an in-use process.
An in-use process can pass through several process states. These process states indicate
whether the process is current executing, and if not, why not.

When a process is not in use, the task variable for that process stores any of several
process states. These process states specify if the process has not been initiated, if
initiation failed, or if the process has terminated. It is possible for the task variable to
store this information because the task variable of a process exists before the process
is initiated and continues to exist after the process terminates. In the following WFL
example, task variable T is created when the system executes the declaration TASK T,
and continues to exist until the system executes the END JOB statement:

?BEGIN JOB;
TASK T;
RUN OBJECT/PROG [T];

?END JOB

Information about process status is available through several mechanisms, including
the STATUS task attribute, the task state expression in WFL, mix display commands,
and the STACK STATE line of the Y (Status Interrogate) system command output.
Each of these programming constructs and system commands uses a slightly different
terminology to portray process status. Table 6-1 shows the possible values of the
STATUS task attribute and the corresponding status values returned by the other

8600 0494-000 < 6-1

Monitoring and Controlling Process Status

Table 6-1. Procesé States

process monitoring methods. The meé.nings of the various process states are discussed
in the subsections following the table.

STATUS Task _ STACK STATE inY
Attribute WEFL Task State Mix Display Commands Display
NEVERUSED None None None
SCHEDULED Both of these: Both of these: One of these:
SCHEDULED S (Scheduled Mix SCHEDULED
INUSE Entries) SELECTED
MX (Mix Entries)
ACTIVE Both of these: All of these: One of these:
ACTIVE A (Active Mix Entries) . ALIVE
INUSE J (Job and Task Display) HOLDING
MX (Mix Entries) READY
TO BE CONTINUED
WAITING ON AN EVENT
SUSPENDED Both of these: Both of these: WAITING ON AN EVENT
STOPPED W (Waiting Mix Entries)
. INUSE MX (Mix Entries) -
FROZEN Both of these: LIBS (Library Task FROZEN
ACTIVE Entries)
INUSE
GOINGAWAYt None None None
BADINITIATE ABORTED C (Completed Mix None
Entries)
TERMINATED One or more of these: C (Completed Mix None
COMPLETED Entries)
COMPLETEDOK
COMPILEDOK
ABORTED
t GOINGAWAY is a write-only value. That is, assignjng GOINGAWAY actually
changes the STATUS value to ACTIVE, with additional effects that are
described under “Thawing a Library” later in this section.
6-2 8600 0494-000

| Monitoring and Controlling Process Status

STATUS Task Attribute

The following are explanations of the STATUS task attribute values shown in Table 6-1.

NEVERUSED

The task variable being interrogated has never been used in a process initiation
statement, or has been reinitialized since it was last used. Refer to “Preparing a
Task Variable for Reuse” later in this section.

SCHEDULED

A process initiation statement has been executed, but the system is delaying
initiation of the process. For further information, refer to “Preventing Process
Scheduling” later in this section.

ACTIVE

Process execution is proceeding normally. In the Y command output, this status is
expressed through any of several more specific values, which are described under “Y
(Status Interrogate) Stack States” later in this section.

SUSPENDED

The process is waiting on an event that might require operator intervention. For
example, the process might be trying to open a tape file, and the operator might
need to mount the appropriate tape on a drive. Or the process might have executed

“an ACCEPT statement, which requires a response from an operator. For further

information, refer to the discussion of responding to waiting entries in the A Series
Systemn Operations Guide.

FROZEN

The process is a frozen library process. It might be a permanent or temporary
library. For information about library processes, refer to Section 18, “Using
Libraries.”

GOINGAWAY

You can assign this value to a frozen library process to cause it to resume execution
as soon as possible. For details, refer to “Thawing a Library” later in this section.

BADINITIATE

An unsuccessful attempt was made to initiate the process. Process initiation can fail,
for example, if the specified object code file is missing or if the object code file expects
different parameters than are passed by the initiator. Note that BADINITIATE is
only one of the terminations that can cause the WFL task state of ABORTED to
return a value of TRUE. See the following description of TERMINATED.

TERMINATED

The process initiated successfully and later terminated. You cannot tell from
the STATUS value whether the process completed normally or whether some
circumstance caused the process to fail. For further information about process
terminations, refer to “WFL Task State Expression” later in this section and to
Section 10, “Determining Process History.”

8600 0494-000 . 6-3

Monitoring and Controlling Process Status

WFL Task State Expression

The task state expression in WFL returns a Boolean value indicating whether a process
is in a specified state. For example, the following statement fragment takes a specified
action if the process with task variable T1 has completed execution.

IF T1 IS COMPLETED THI.EN.‘..

Some of the task states that can be queried correspond to single STATUS task attribute
values. Other task states correspond to two or more STATUS task attribute values.
Thus, at any given time, it is possible that more than one of the possible task state
expressions will return a value of TRUE. The following are values that can be used in a
WFL task state expression, and the conditions that cause them to evaluate to TRUE:

SCHEDULED

The system is delaying initiation of the process. The STATUS task attribute value is -
SCHEDULED.

ACTIVE
The process is executing normally. The STATUS task attribute value is ACTIVE.
STOPPED

The process is waiting on an event that might require operator action. The STATUS
task attribute value is SUSPENDED.

INUSE

The process is in use; that is, it has been initiated but has not yet terminated. The
STATUS task attribute value is SCHEDULED, ACTIVE, or SUSPENDED.

'COMPLETED

The process terminated. The STATUS task attribute value is TERMINATED or
BADINITIATE.

COMPLETEDOK

The process completed execution normally, but if it was a compilation, it might

not have compiled the program successfully. The STATUS task attribute value is
TERMINATED and the HISTORYTYPE task attribute value is NORMALEOTV or
SYNTAXERRORV.

COMPILEDOK

The process completed execution normally. If the process was a compilation,
it compiled the program successfully. The STATUS task attribute value is
TERMINATED and the HISTORYTYPE task attribute value is NORMALEOTV.

ABORTED

The process terminated abnormally, for example, because of a fault or because of
operator entry of a DS (Discontinue) system command. The STATUS task attribute
value is TERMINATED or BADINITIATE, and the HISTORYTYPE task attribute
value is DSEDV. ‘

8600 0494-000

Monitoring and Controlling Process Status

The COMPLETEDOK, COMPILEDOXK, and ABORTED values give you the ability
to determine whether a process completed successfully. For further information on
determining how and why a process terminated, refer to Section 10, “Determining
Process History.”

Mix Display Commands

Several different system commands are available for displaying all the processes that are
in a particular state. The following are the system mix commands and the process states
they display:

A (Active Mix Entries)

Displays processes that are running normally. The STATUS task attribute value is
ACTIVE.

C (Completed Mix Entries)

Displays processes that have recently terminated. The STATUS task attribute value
is TERMINATED or BADINITIATE.

J (Job and Task Display)

Displays all processes that are running normally. The processes are grouped into
process families in the display. The STATUS task attribute value is ACTIVE.

LIBS (Library Task Entries)
Displays frozen library processes. The STATUS task attribute value is FROZEN.
MX (Mix Entries) '

Displays all in-use processes that are not frozen libraries. The STATUS task
attribute value is SCHEDULED, ACTIVE, or SUSPENDED.

S (Scheduled Mix Entries)

Displays processes that the system is delaying initiating. The STATUS task
attribute value is SCHEDULED.

W (Waiting Mix Entries)

Displays processes that are waiting on an event that might require operator
intervention. The STATUS task attribute value is SUSPENDED.

In addition to being available through individual system commands, these displays are
available as part of the ADM (Automatic Display Mode) output. For information about
using ADM to track processes, refer to the A Series System Operations Guide.

8600 0494-010 6-5

Monitoring and Controlling Process Status

Y (Status Interrogate) Stack States

6-6

The Y (Status Interrogate) system command returns several types of information about
a process, including the mix number, usercode, program name, and stack state. In the
following example, the stack state is WAITING ON AN EVENT:

Status of Task 3251\4441 AT 16:15:28
Program name: *OBJECT/ED ON DOCPK
Priority = 50

Origination: SA154/CANDE/3 (LSN 288)
MCS: SYSTEM/CANDE

Usercode: JASMITH

Chargecode: 6825

Stack State: Waiting on an event

The following are explanations of the STACK STATE values shown in Table 6-1:

ALIVE

The process is currently bound to a processor. That is, it is actually being processed
rather than being in any type of waiting state. You can see this state displayed

only on a multiprocessor system, because on a single processor system, the
CONTROLLER independent runner has to take over the only processor to execute
the Y command.

FROZEN
The process is a frozen library.
HOLDING

The process is waiting on interrupts. This type of waiting is described in Section 16,
“Using Events.”

READY

The process is in the ready queue and will proceed as soon as a processor is available.
It is not unusual for a process to be in this state, because each central processor on
the system can be executing only one process at a time, and the mix can contain
many processes. The priority of a process can affect the amount of time it spends in
the ready queue; refer to Section 7, “Controlling Processor Usage.”

SCHEDULED

The system is delaying initiation of the process for any of various reasons. For
information about process scheduling, refer to “Preventing Process Scheduling”
later in this section. : '

SELECTED
The process is being initiated.
TO BE CONTINUED

This value indicates a process that has initiated a synchronous task that has not yet
completed, or a process that has executed a CONTINUE statement and is waiting on
its coroutine.

8600 0494-010

Monitoring and Controlling Process Status

e WAITING ON AN EVENT

If no RSVP line appears in the Y command output, then this value means the process
is waiting for an I/O operation to be completed or for a particular event to be caused.
For a general discussion of events, refer to Section 16, “Using Events.”

If an RSVP line appears in the Y command output, then the WAITING ON AN
EVENT value means that the process is waiting on an event that might require
operator intervention. The RSVP line lists system commands that might be helpful
responses to the situation. For more information about responding to waiting
entries, refer to the A Series System Operations Guide.

Monitoring Changes in Process Status

A process can monitor the status of its offspring by waiting on its own
EXCEPTIONEVENT task attribute. This method works because, whenever the status
of a process changes, the system causes the EXCEPTIONEVENT of the parent of the
process.

If you design a process to wait on its own EXCEPTIONEVENT, it can resume execution
and check the status of its offspring each time the EXCEPTIONEVENT is caused. For
example, to wait for a task to terminate, the parent process can execute the following
ALGOL statement:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;

Note that a WAITANDRESET statement is used rather than a simple WAIT statement.
If a simple WAIT statement were used, then the WHILE loop would execute an infinite
number of times after the first time the EXCEPTIONEVENT was caused.

The most typical reason for using such WAIT statements is to prevent critical block exits
for ALGOL or COBOL74 programs that initiate asynchronous tasks. Critical block exits
are discussed in Section 2, “Understanding Interprocess Relationships.”

8600 0494-000 : 6-7

Monitoring and Controlling Process Status

It is not necessary to take steps to prevent critical block exits in WFL. WFL
automatically waits at the end of each block if any processes initiated by statements in
the block are still in use. However, there can be other reasons for a WFL job to wait on
the termination of an asynchronous task. For example, suppose you have an application
consisting of three programs. The first two programs create files that are used as input
by the third program. The following WFL job runs the first two programs in parallel, and
waits for them to complete before initiating the third program:

100 ?BEGIN JOB;
118 TASK T1, T2, T3;

126 PROCESS RUN OBJECT/RUNEX [T1];

139 PROCESS RUN OBJECT/TADCOM [T2];

140 WHILE T1 ISNT COMPLETED OR T2 ISNT COMPLETED DO
150 WAIT;

160 PROCESS RUN OBJECT/DIALUP [T3];

170 ?END JOB

Note that the statement at line 150 is simply WAIT, rather than WAITANDRESET
(MYSELF.EXCEPTIONEVENT) as it would be in ALGOL. This difference arises
because WFL has no syntax for directly accessing the EXCEPTIONEVENT task
attribute, or events in general for that matter. However, the simple WAIT in WFL has
the effect of implicitly waiting on and resetting the EXCEPTIONEVENT.

WFL provides some other useful expressions for monitoring process status. You can
design a WFL job to wait for a task to terminate, to wait for the task to assume a
particular status, or to wait for any attribute of the task to assume a desired value.
For details, refer to the discussion of the WAIT statement in the A Series Work Flow
Language (WFL) Programming Reference M anual.

Controlling Process Status

You can accomplish some changes to process status through programmatic assignments
to the STATUS task attribute. Additionally, you can prevent many instances of process
scheduling or suspension through careful program design.

6-8 8600 0494-000

Monitoring and Controlling Process Status

Terminating a Process

You can interactively terminate a process by entering the DS (Discontinue) system
command. You can can design a program to terminate a process by assigning the
STATUS task attribute a value of TERMINATED. The following is a WFL program that
terminates a task if it becomes suspended:

160 ?BEGIN JOB ACCOUNTS/JOB;

116 JOBSUMMARY = SUPPRESSED;

126 CLASS = 2;

139 TASK T; _

149 PROCESS RUN OBJECT/DAILY/ACCOUNTS [T];
150 WHILE NOT DONE DO

168 BEGIN

178 WAIT;

18 IF T IS STOPPED THEN

199 BEGIN

200 T(STATUS = TERMINATED);

219 MYSELF (JOBSUMMARY = UNCONDITIONAL);
220 END;
.23 IF T IS COMPLETED THEN

249 DONE := TRUE;

250 END;

268 ?END JOB

The presumption behind this WFL program is that OBJECT/DAILY/ACCOUNTS

is a program that does not normally become suspended at any point in its run. If

this particular program becomes suspended, it means that something has gone

wrong and it is something that an operator cannot easily fix. Further, it is assumed
that job queue 2, which this job is initiated from, has a mix limit of 1. Thus, if
OBJECT/DAILY/ACCOUNTS becomes suspended, it is impossible for any more WFL
jobs to be initiated from that job queue until an operator notices the situation and
discontinues the process.

The WHILE statement at lines 150 to 250 is included to prevent this job from ever
uselessly blocking up the job queue. Within the WHILE statement, the WAIT statement
at line 170 causes the WFL job to wait until its own EXCEPTIONEVENT is caused.

The system automatically causes the job’s EXCEPTIONEVENT when the STATUS
value of any of the job’s offspring changes. When the status value of the offspring
changes, the statement at line 180 uses the task state expression to determine if
OBJECT/DAILY/ACCOUNTS is suspended,; if so, then the statement at line 200 assigns
a STATUS of TERMINATED to discontinue OBJECT/DAILY/ACCOUNTS. The
statement at line 210 causes printing of the job summary. For information about job
summaries, refer to Section 10, “Determining Process History.”

The statement at lines 230 to 240 causes the loop to be exited when

OBJECT/DAILY/ACCOUNTS terminates (whether it terminated normally or was
discontinued).

8600 0494-000 : 6-9

Monitoring and Controlling Process Status

Thawing a Library

Thawing a library is the act of changing a permanent or control library into a temporary
library. A temporary library automatically resumes execution as soon as it has no more
users. By contrast, a permanent library remains frozen indefinitely, and a control library
remains frozen until it exits the control procedure. Thawing a library is thus a first

step toward removing a permanent or control library process from usage (for example,
because you want a newer version of the library program to be used). Thawing the
library is less drastic than discontinuing the library process with a DS (Discontinue)
system command or a STATUS assignment of TERMINATED.

You can design a program to thaw a library process by assigning either of two values to
the STATUS task attribute: ACTIVE or GOINGAWAY. Table 6-2 summarizes the
differences in the effects of these two assignments.

Table 6-2. Effects of GOINGAWAY and ACTIVE Assignments

Effects

GOINGAWAY Assignment

ACTIVE Assignment

Time Execution Resumes

When there are no more
users

.When there are no more

users

New Users of Shared

Are linked to a new

Are linked to the existing

Libraries invocation of the latest library process
version of the library object r
code file

STATUS Task Attribute ACTIVE FROZEN

WEFL Task State ACTIVE, INUSE ACTIVE, INUSE

Mix Commands A, J, MX LIBS

Y Stack State WAITING ON AN EVENT FROZEN

The key difference between GOINGAWAY and ACTIVE assignments is that the
GOINGAWAY assignment prevents any additional user processes from linking to
the library process. For libraries that are shared by many users, this can make a
big difference in how long the library process takes to resume execution. If you use
an assignment of ACTIVE instead, new processes can continue linking to the (newly
temporary) library, with the result that the library remains frozen indefinitely.

Note that neither the GOINGAWAY assignment nor the ACTIVE assignment actually
changes the STATUS task attribute to the requested value. After a GOINGAWAY
assignment, the STATUS value is ACTIVE. GOINGAWAY is therefore never returned
as a value when a process reads the STATUS task attribute. By contrast, after an
ACTIVE assignment, the STATUS remains FROZEN until there are no more users of
the library. Then the library STATUS changes to ACTIVE and the process resumes

execution.

You can thaw a library interactively with the THAW (Thaw Frozen Library) system
command. This command has the same effect as assigning a value of ACTIVE to the

STATUS task attribute.

6-10

8600 0494-000

Monitoring and Controlling Process Status

Suspending and Resuming Processes

You can interactively suspend execution of a process with the ST (Stop) system
command, and resume execution of the process with an OK (Reactivate) system
command. You can design a program to achieve the same result by assigning the
STATUS task attribute a value of SUSPENDED or ACTIVE. However, note that if

the process is suspended by the system, the OK command or ACTIVE assignment
frequently is not enough to resolve the cause of the suspension. In this case, the process
is suspended again by the system without progressing any further in its execution.

One reason to suspend a process programmatically is for testing. For example, you can
add a statement in a program that causes it to be suspended at a certain point where a
problem has been occurring. Then you can force a memory dump or program dump
through the DUMP (Dump Memory) system command, with the knowledge that the
dump will reflect the state of the process at a selected point in its execution.

Parallel processes can also use assignments of SUSPENDED or ACTIVE as a means of
coordinating their activities. However, A Series systems provide special variables called
events that are better suited to coordinating parallel processes. For details, refer to
Section 16, “Using Events.”

Preparing a Task Variable for Reuse

As was stated earlier in this section, a task variable can be in use by only one process
at a time. However, it is possible to reuse a task variable so long as the first process
terminates before the task variable is used in another process initiation statement.
The side effects that can result from such reuse of task variables are discussed in the
A Series Task Attributes Programming Reference Manual.

Suffice it to say here that the side effects involve task attribute values that are retained
from one use of the task variable to the next. To restore all the task attributes of the
task variable to their default values, you can assign the STATUS task attribute a value
of NEVERUSED. In WFL, you also have the option of using an INITIALIZE statement,
which has the same effect as the STATUS assignment.

Preventing Process Scheduling

A process is said to be SCHEDULED when it has been submitted for initiation, but the
system is delaying initiation of the process. Scheduling can have any of several causes,
the most common of which is a lack of available memory on the system. If the system
estimates that a particular process will require more memory for efficient execution
than is currently available, the system places the process in a scheduled state until more
memory becomes available.

8600 0494-010 | ' 6-11

Monitoring and Controlling Process Status

There are two methods you can use to help prevent a process from being scheduled
because of a shortage of available memory: .

e You can override the system’s memory estimate for the process through assignments
to the CORE and STACKSIZE task attributes. For details, refer to Sectlon 8,
“Controlling Process Memory Usage.”

¢ You can assign the process with control program status by marking its object code
file with the MP <file title> + CONTROL form of the MP (Mark Program)
system command. For information about control program status, refer to Section 7,
“Controlling Processor Usage.”

For further information about the causes of scheduling, refer to the process scheduling
discussion in the A Series System Administration Guide.

Preventing Process Suspension

Many cases where a process becomes suspended by the system can be prevented with a
little planning. To be sure, there are situations that cannot be anticipated that might
make it necessary for the system to suspend a process. One such example is an extreme
shortage of available memory. However, a good many cases of process suspension result
from such causes as failed attempts to open files or ACCEPT statements that require
immediate input from the operator.

In many of these cases, it might be preferable to allow the process to become suspended.
The advantage to this is that the process appears in the W (Waiting Mix Entries) display
with a message explaining why it is suspended. This is desirable if the situation is one
that an operator can easily remedy. A common example of such a situation is one where
a process is attempting to open a tape file. When the process appears in the W display,
the operator is prompted to mount the appropriate tape. :

However, if you are interested in automating operations at your site as much as possible,
then you might find the techniques discussed in the following subsections to be useful.
For further information about the file attributes mentioned in the following discussions,
refer to the A Series File Attributes Programming Reference Manual.

Checking File Residence

6-12

You can design a program to read the AVAILABLE or RESIDENT attributes of a file
before attempting to open the file. RESIDENT returns a value of TRUE or FALSE to
indicate whether the file is available. AVAILABLE returns a numeric value indicating
whether the file can be opened, and if not, why not.

If the file is available, the program can execute an OPEN statement. If the file is not

available, the program can skip the OPEN statement and take whatever recovery actions
are deemed appropriate by the programmer.

8600 0494-010

Monitoring and Controlling Process Status

Using AUTORESTORE for Disk Files

You can use the AUTORESTORE task attribute to request that the system
automatically attempt to restore any missing disk file requested by a process. Automatic
restoration can prevent the process from becoming suspended with a NO FILE
condition. Refer to the discussion of disk file usage in Section 9, “Controlling Process I/O
Usage.”

Using a Serial Number for Tape Files

When a process opens a tape file, the process can become suspended even if the
requested tape is already mounted on an available tape drive. The suspension occurs if
the process does not give the system sufficient information to identify the particular tape
to search for the file. If the process becomes suspended, the operator can use system
commands such as IL (Ignore Label) or OU (Output Unit) to specify the correct tape
drive so process execution can resume.

Nothing you can do removes the need for someone to mount a tape containing the tape
file on a tape drive. However, you can set things up so that an operator does not have
to take any further action beyond mounting the tape and later removing it. You can
write the program to assign a value to the SERIALNO attribute of the tape file. When
the process attempts to open the file, the system checks to see whether a tape with that
SERIALNO value is mounted on any of the available drives. If the tape is mounted,
then the system looks for the requested file on that tape, without ever suspending the
process.

SERIALNO is also available as an option in the WFL COPY statement. The following is
an example:

COPY (JASMITH)= FROM SYSPK(PACK) TO LABCON(TAPE,SERIALNO="LABIN");

This example creates a tape named LABCON with a SERTALNO value of “LABIN”. The
SERIALNO value can include letters as well as digits. Any letters in the string must be
capitalized.

Sometimes you want the program to write output to a tape, but you do not really care
which tape, as long as it goes to a tape that is not otherwise in use. In this case, you
can leave the SERIALNO value empty and set the FILEUSE file attribute to OUT. If
the SERIALNUMBER operating system option is not set, then the system writes the
file to any scratch tape that is mounted and not in use. An operator can set or reset the
SERTALNUMBER option with the OP (Options) system command.

Using UNITNO and OMITTEDEOF for Unlabeled Tape Files

By default, any tapes created by an A Series system have ANSI-standard tape labels.
These tape labels store identification information for the tape. However, you might
have occasion at some time to use a tape on an A Series system that was created by
a different type of computer system. If the different computer system did not create
an ANSI-standard tape label, you must design your program to read the tape as an

8600 0494-010 : 6-13

- Monitoring and Controlling Process Status

unlabeled tape. You can also use this technique to enable a program to read a tape
whose label has become corrupted.

When a process attempts to open an unlabeled tape, the process typically becomes
suspended until an operator enters a UL (Unlabeled) system command. This command
specifies the tape drive to use for the file. You can prevent the need for the operator to
enter this command. However, you must use a different technique than was previously
described for labeled tapes. The SERIALNO attribute has no meaning for unlabeled
tapes. ' ’

Instead, if you know the physical unit number of the drive where the correct tape will
be mounted, you can design the program to assign the physical unit number of that tape
drive to the UNITNO file attribute. A file open operation then opens any tape that -
happens to be on the specified tape drive. This method should not be used unless you
can ensure that the correct tape will be mounted on the tape drive when the program
runs. Note also that access to unlabeled tapes and to the UNITNO file attribute might
be restricted on systems running InfoGuard security enhancement software at the S1 or
S2 level; refer to the A Series Security Administration Guide for details.

A process can also be suspended when it reaches the end of an unlabeled tape file. This
happens because, depending on the circumstances, a tape mark can indicate the end

of the file or simply the end of a reel. If the LABEL file attribute value is OMITTED,
the tape mark is interpreted to mean that the file continues on another tape reel. The
process becomes suspended until the operator enters a UL command (to specify where
the next reel is located) or an FR (Final Reel) system command.

If you know in advance that the unlabeled tape file will be confined to a single reel, you
can prevent the process from suspending at the end of the file. To do this, you must
declare the file with a LABEL value of OMITTEDEOF. In this case, when the process
reads to the end of the file, the system returns an end-of-file condition on the read
operation. The process can check the result of the read operation and take appropriate
action. This method saves the operator the trouble of entering the FR command.

Using the AUTORM Option

6-14

A process can become suspended if it attempts to enter a file into the disk directory and
a file of the same title already exists. The system displays a “DUP LIBRARY” RSVP
message for the process. The process does not proceed any further until an operator
enters an RM (Remove) system command. The RM command causes the system

to remove the existing file. You can save the operator from having to enter an RM
command by setting the AUTORM option. AUTORM can be set for a process through
assignments to the OPTION task attribute, or for the whole system through the OP
(Options) system command. The AUTORM option causes the system to automatically
remove any old duplicate files that a process encounters. For further information about
disk directories and the AUTORM option, refer to “Entering a File in the Directory” in
Section 19, “Using Shared Files.”

8600 0494-010

Monitoring and Controlling Process Status

Using the ORGUNIT Value for ODT Files

A process can become suspended when it executes a statement that opens an ODT file.
For information about how to prevent this process suspension from occurring, refer

to the discussion of ODT terminal communications in the Section 3, “Tasking from
Interactive Sources.”

. Using Conditional ACCEPT Statements

A process can become suspended when it executes an ACCEPT statement to prompt
the operator for input. For information about how to prevent this suspension from
occurring, refer to the discussions of the conditional ACCEPT statement and the
ACCEPTEVENT task attribute in Section 8, “Tasking from Interactive Sources.”

8600 0494-010 6-15

6-16 : , 8600 0494-010

~ Section /7
Controlling Processor Usage

You can control two aspects of the processor usage for a process: process priority and
total processor usage. In addition, you can monitor the processor usage of a particular
process to gain an understanding of the resource usage patterns of the process.

Controlling Process Priority

A Series systems are designed to efficiently execute large numbers of processes
simultaneously. However, each system incorporates a limited number of processors,
including central processors, I/O processors, and data link processors (DLPs). Each
system also has a finite amount of main memory. On a heavily used system, all the
processes in the mix are competing for the use of these system resources.

However, it may be that not all these processes are equally urgent from the user’s point
of view. A Series systems provide the concept of priority to allow you to specify which
processes should receive preference in the competition for system resources.

The primary effect of process priority occurs in cases where more than one process is
ready to use a central processor. Each central processor executes only one process at a
time, but divides its time among all the processes on the system. The system maintains a
list, called the ready queue, of all processes that are waiting for a processor, arranged in
priority order.

A processor continues executing a particular process until one of three things happens:
the process reaches a natural stopping point (for example, because it is waiting for an
1/0 to complete), a higher-priority process appears in the ready queue, or the process
exceeds its time slice and a process of equal priority is present in the ready queue. The
processor then retrieves the higher-priority process from the ready queue and begins
executing it. :

The priority of a process is determined by several factors, only some of which can
be controlled by the user. For example, some system software processes have

a higher priority than can be assigned to an ordinary application process. For a.
complete overview of factors affecting process priority, refer to the A Series System
Administration Guide.

One aspect of priority that you can control, within certain limits, is the PRIORITY task
attribute value. The PRIORITY task attribute has a range of values from 0 to 99, with
the higher values indicating higher priority. The default value is 50. You can assign a
PRIORITY value to a process anytime before initiation, either through task equations
or assignments to a task variable. Once a process is initiated, any programmatic
assignments to the PRIORITY task attribute change the task attribute value without
affecting the actual priority at which the process executes. The new PRIORITY task
attribute value is returned when the task attribute is read, and displayed in the output
of various system commands.

8600 0494-010 ’ 7-1

Controlling Processor Usage

The only way to effectively change the priority of an in-use process is with the PR
(Priority) system command. This command changes the PRIORITY task attribute value
and also causes the system to enforce the new priority value.

One point to bear in mind about this attribute is that its effects are absolute rather than
proportional. That is to say, the system always gives the processor to the highest-priority
process that is ready to use it. A PRIORITY value of 51 gives as much advantage over a
PRIORITY of 50 as a PRIORITY value of 99 does. If the process with the PRIORITY

of 51 is very processor-intensive, it could prevent the process with PRIORITY 50 from
receiving any processor time at all. For this reason, you should be cautious about raising
the PRIORITY value of a processor-intensive process.

On the other hand, it is sometimes helpful and appropriate to raise the priority of
interactive processes. An interactive process is one that is largely driven by input from a
user at a terminal. Such a process typically spends most of its time waiting for the user
to enter commands. Once the user does enter a command, the user typically has to wait
for a response before being able to accomplish any further useful work. If the processor
usage of the process is small and occasional, you can improve response time by raising
the priority with relatively little impact on overall system performance.

For information about how to determine whether a process is processor-intensive, refer
to “Understanding Processor Usage Accounting” later in this section.

The system administrator can place some constraints on the values you are able to
assign to the PRIORITY task attribute. For example, the administrator can assign a
PRIORITY limit to a job queue. If you write a WFL job that is initiated from that job
queue, the job cannot request a PRIORITY value higher than the job queue PRIORITY
limit. Similarly, the system administrator can assign a value to the PRIORITY attribute
of your usercode. CANDE and MARC read the PRIORITY attribute of your usercode
when you log on. When you initiate a task from a CANDE or MARC session, CANDE
and MARC do not allow you to assign the PRIORITY task attribute a value higher than
your PRIORITY usercode attribute.

)
Aside from the PRIORITY task attribute, the major feature you can use to manipulate
process priority is the MP <file title> + CONTROL form of the MP (Mark Program)
system command. This option marks an object code file as a control program.
Thereafter, whenever that program is initiated, it runs in the same priority category that
message control systems (MCSs) do. This category gives higher priority than WFL jobs
or application programs have, but lower priority than invisible independent runners.

The system also places WFL jobs in a special priority category. WFL jobs receive higher
priority than all application programs, but lower priority than control programs, MCSs,
and invisible independent runners.

The system uses the PRIORITY task attribute only when comparing processes that are

in the same priority class. Thus, a WFL job running with a PRIORITY value of 1 still has
a higher priority than an ordinary process with a PRIORITY of 99.

8600 0494-010

Controlling Processor Usage

An additional effect of control program status is that it prevents the system from
scheduling a process (that is, delaying initiation of the process) when there is a shortage
of available memory. If you mark too many programs with control program status, the
result can be that system memory becomes overloaded, with a resulting adverse effect
on system performance. Therefore, you should use caution in marking programs with
control program status.

The system places WFL jobs in the high priority class because their only purpose in most
cases is to initiate tasks; the sooner the job initiates each task, the sooner the system can
evaluate the priority of each task on its own merits. However, it would not be possible to
rewrite a typical application in WFL to take advantage of its priority. WFL is specialized
for tasking functions and has no ability to read from or write to files.

Because the PRIORITY task attribute and control program assignments have a potential
to affect overall system performance, you should generally consult with the administrator
of your system before raising the priority of any particular process.

Limiting Processor Usage

You can use the MAXPROCTIME task attribute to set a limit on the amount of
processor time that a process can use. The accumulated processor time for a process is
stored in the ACCUMPROCTIME task attribute. When ACCUMPROCTIME reaches
a value equal to that of MAXPROCTIME, the system discontinues the process and
displays the error message EXC PROC TIME.

The main use of the MAXPROCTIME task attribute is to ensure that WFL jobs are

placed in the proper job queues. For example, suppose there is a high-priority job queue

that is intended for short jobs. The system administrator can use the PROCESSTIME
“job queue attribute to provide default and limiting values for the MAXPROCTIME

task attribute of all WFL jobs that use the job queue. If you submit an extremely

processor-intensive job through that job queue, the system discontinues the job when

it exceeds the MAXPROCTIME value. This gives you an incentive to resubmit the job

through a different job queue. For an introduction to the subject of job queues, refer to

the discussion of WFL in Section 4, “Tasking from Programming Languages.”

Understanding Processor Usage Accounting

Programs vary a lot in terms of their patterns of processor usage. Understanding the
processor usage of a program can help you to decide the priority at which it should run.
It can also help you to diagnose inefficiencies in program design or problems in overall
system performance.

The system divides the processor usage of a process into several categories, which can be

displayed through system commands, examined through task attributes, or read in the
system log.

8600 0494-010 7-3

Controlling Processor Usage

The system cominand that displays processor usage information is the TI (Times)
command. The following is an example of the output:

5825 TI

TIMES FOR 5825

PROCESS = ©0:00:37 LIMIT 0:01:20
10 = 0@:00:91 LIMIT 8:02:40
READYQ = (@:00:56

INITPBIT = 0@:09:96 3217 OPERATIONS
OTHERPBIT = £@0:00:02 1521 OPERATIONS
ELAPSED = ©@:11:40

In the TI command output, all the times are expressed in a format of
<hours>: <minutes>: <seconds>. The following are the meanings of these fields in
the T1 command output:

7-4

PROCESS

The accumulated processor usage of the process, with the exception of the
process time spent on presence-bit operations. (See the following descriptions of
INITPBIT and OTHERPBIT.) The LIMIT time, if displayed, corresponds to the
MAXPROCTIME task attribute value.

10

The accumulated I/O usage for the process. The LIMIT time, if displayed,
corresponds to the MAXIOTIME task attribute value.

READYQ

The accumulated ready queue time for the process. Ready queue time is the time
spent waiting for the processor to become available. If this value is excessive, '
it indicates either that the processor is overloaded or that other higher priority

_processes are dominating the processor.

INITPBIT
The amount of processor time spent on initial presence-bit operations. These are

operations that create arrays, files, and code segments for this process. This value is
followed by a count of the number of presence-bit operations.

If the value of INITPBIT is high compared to the value of PROCESS, this can be a
symptom of poor program structure. For example, if a large local array is declared in
a procedure that is entered repeatedly, then much processor time is spent recreating
the array each time the procedure is entered, thus resulting in a high INITPBIT
value. You can prevent this problem by declaring the array globally to the procedure,

‘or by declaring the array with an OWN clause (in ALGOL programs only).

8600 0494-010

Controlling Processor Usage

e OTHERPBIT

The amount of processor time spent on noninitial presence-bit operations for this
process. Noninitial presence bit operations read arrays and code segments back into
main memory after they have been overlaid. The value of OTHERPBIT can vary
widely for different runs of the same program, depending on the memory demands
that are made by other active processes. If this value is very high, it might indicate
that memory is overloaded and the system is thrashing.

¢ ELAPSED

The amount of real time that has passed since the process was initiated. This value
is stored in a different form in the ELAPSEDTIME task attribute.

The value of ELAPSED can be greater than or less than the sum of the other values
listed in the TI display. The ELAPSED value can be greater because it includes
time spent waiting on events, and this waiting time is not displayed separately. The
ELAPSED value can be less because, in some cases, a process might be using the
processor and performing one or more I/O operations at the same time.

Most of the resource usage information that can be displayed for a process can also be:
interrogated through task attributes.

The ACCUMPROCTIME task attribute returns the accumulated processor time.

The value does not include processor time spent on presence-bit operations. The
INITPBITTIME, INITPBITCOUNT, OTHERPBITTIME, and OTHERPBITCOUNT
task attributes return the times and counts for presence-bit operations. The
ACCUMIOTIME task attribute returns the accumulated I/O time for the process. The
ELAPSEDTIME task attribute returns the total elapsed time.

The values these task attributes return are expressed in units of 2.4 microseconds,
except if the attributes are read from WFL, which expresses the values in units of
seconds.

The system log (SUMLOG) records several categories of processor usage for each
process. This information includes the processor time, I/O time, ready queue time, and
p-bit times and counts. This information is stored in the Major Type 1, Minor Type

2 (EOJ) and Minor Type 4 (EOT) log entries. For a description of these log entry types,
refer to the A Series System Software Support Reference Manual.

8600 0494-010 7-5

8600 0494-010

Section 8
Controlling Process Memory Usage

Process execution takes place in a memory environment that is shared with all the other
processes in the mix. Understanding that environment can help you to improve process
performance and prevent a process from impairing overall system performance.

This section is aimed at programmers, and concentrates on the aspects of process
memory usage that can be affected by task attributes and object code file location.

Understanding Process Memory Usage

A process consists of several distinct components, some of which reside in main
memory and some of which can reside in virtual memory. The system uses presence-bit
operations to create or re-create some of the process components in main memory.

" Main Memory and Virtual Memory

The effective memory capacity of an A Series system consists of the following two
components:

e Main memory
This is the total amount of memory that is physically present.
e Virtual memory

This is an additional amount of memory whose existence is simulated by temporarily
copying segments of main memory out to disk. The use of virtual memory enables
the system to handle more processes than can fit into main memory at the same
time.

To facilitate memory management, the system classifies each of the segments of main
memory into one of the following three categories:

e Available memory

This is memory that is not assigned to an in-use process. The system is free to
allocate this memory as the need arises.

e Qverlayable memory

This is memory that is assigned to in-use processes, but which can nevertheless
be overwritten if necessary. For data segments, the system must copy the data to
a different location in main memory or to an overlay disk file before reusing the
memory segment. For code segments, the system can simply overwrite the code
segment with other code or data. The system can read the code segment back in
from the object code file the next time it is needed.

8600 0494-000 ' ' 8-1

Controlling Process Memory Usage

Save memory

Save memory consists of structures that, for performance reasons, must be kept in
main memory at all times. The system never copies these segments out to disk, nor
does it move them around in main memory except for stack stretches. (Refer to
“Preventing Stack Stretches” later in this section.)

When the processes in the mix require far more memory than exists as main memory,
the processor is forced to spend a lot of time performing overlays. When the time spent
performing overlays begins to significantly impair system performance, the situation is
called thrashing.

Process Components

8-2

Every running process includes the following basic structures in memory:

°

Process information block (PIB)

This structure contains process control information visible only to the operating
system. The PIB also contains a reference to the TAB.

Task attribute block (TAB)

This structure stores the task variable for the process and includes the values of all
task attributes. In addition to the TAB of the process, the system creates a separate
TAB for each task variable the process declares. Thus, reusing a task variable can
slightly reduce the memory usage of a process. For cautions related to task variable
reuse, refer to the A Series Task Attributes Programming Reference Manual.

Process stack

This structure includes storage areas, or descriptors pointing to outside storage
areas, for all variables declared by the process. The top of the process stack also
serves as a working storage area that the processor can use when evaluating
expressions. For information about estimating and limiting process stack size, refer
to “Controlling Process Scheduling,” “Preventing Stack Stretches,” “Protecting
against Looping Processes,” and “Restricting Save Memory Usage” later in this
section. : :

Code segment dictionary

This structure includes descriptors pointing to the locations of

— The code segments used by the process.

— Constant data used by the process, such as value arrays and translate tables.

— Sequence numbers for all the code segments, if the program was compiled with
. the LINEINFO compiler options set. (For information about LINEINFO, refer
to Section 10, “Determining Process History.”)

For further information about code segment dictionaries, refer to “Controlling Code
Segment Dictionary Sharing” later in this section.

8600 0494-000

Controlling Process Memory Usage

Presence-Bit Operations

When the processor constructs an array, a logical file, or a code segment for a process in
memory, this action is referred to as a presence-bit operation. An initial presence-bit
operation is one that creates an array or a code segment because the related procedure
has just been invoked. A noninitial presence-bit operation is one that copies an array or
a code segment back into main memory from disk.

The number of initial presence-bit operations performed by a process, and the processor
time they take, are relatively stable from one run of a program to the next (provided that
each run results in the same sequence of procedure entrances). However, the number of
noninitial presence-bit operations performed by a process depends to a large extent on
how much memory is being used by all the other processes in the mix. When memory is
crowded, more noninitial presence-bit operations are performed.

You can monitor the number of presence-bit operations for a process, and the processor
time spent on them, by using the TI (Times) system command, by interrogating task
attributes, or by reading system log entries. Refer to the discussion of processor usage
accounting in Section 7, “Controlling Processor Usage.”

Controlling Code Segment Dictionary Sharing

The system generally causes processes to share the same code segment dictionary if the
processes are executions of the same program. This technique reduces total memory
usage and thus reduces the system overhead for memory management. The result is
that all the processes in the mix are able to run more quickly.

There are a few situations in which the system does not use the same code segment
dictionary for processes that are executing the same program. Understanding these
situations can help you to conserve memory and control process privileges.

To decide whether two processes are executions of the same program, the system
compares the object code file title for each process. Suppose you have one copy of
OBJECT/PROG on the family SYSPK, and another copy on a family called DOCPK.
In this case, the family part of the object code file title is different. The system -
therefore regards these as two different programs. If people are using both programs
simultaneously, the system has to create two separate code segment dictionaries. You
can eliminate this duplication, and thus reduce system overhead, by placing a single
object code file in a central location where all the users have access to it.

8600 0494-010 ‘ 8-3

Controlling Process Memory Usage

Even if two processes have the same object code file title, the system still assxgns them
different code segment dictionaries in the following cases:

o Ifeither of the processes is running in Test and Debug System (TADS) mode. A
process runs in this mode if you compile the program with the TADS compller option
set and run the program with the TADS task attribute set. TADS mode gives
ALGOL, C, COBOL74, COBOL85, or FORTRANT77 processes access to the TADS
facility for debugging programs. You can prevent unnecessary duplication of code
segment dictionaries by using TADS mode only for the rare cases when you are
actually doing debugging.

o If the object code file is overwritten. An object code file can be overwritten if, for
example, you recompile the program or use a COPY statement to replace it with a
-different program having the same title. If the object code file of a running process
is overwritten, the system retains the old object code file as a temporary file. The
running process continues to use its code segment dictionary and the old object code
file. However, any new processes that are initiated with the same object code file
title receive a code segment dictionary reflecting the new object code file. The main
point to bear in mind is that updatmg or removing an object code file has no effect on
processes that are already running.

The MP (Mark Program) system command can be used to assign various options to
object code files. These options are described in Section 5, “Establishing Process
Identity and Privileges.” Be aware that these options do not affect new instances of the
program if an old version of the code segment dictionary is lingering in memory. The
code segment dictionary remains in memory as long as any process is using it. Further,
for programs marked with the RP (Resident Program) system command, the code
segment dictionary remains in memory until the next system halt/load.

If you assign a new security status to a program, and the program is frequently used
or has resident program status, you might consider the following method of updating
the code segment dictionary. You can copy the object code file over itself with a COPY
statement such as the following:

COPY (JASMITH)OBJECT/PROG AS (JASMITH) OBJECT/PROG

Subsequent instances of the program will reflect the new privilege status.

—

Controlling Process Scheduling

8-4

A process is said to be scheduled when it has been submitted for initiation, but the
system is delaying initiation of the process. Scheduling can occur for any of a number
of reasons, most of which are not preventable by the programmer. For an explanation
of these reasons, refer to the discussion of process scheduling in the A Series System
Administration Guide.

One type of process scheduling that you can prevent, to some exfent, is scheduling due to

a lack of available memory. The system performs this type of scheduling if it estimates
that a particular process requires more memory for efficient execution than is currently

8600 0494-010

Controlling Process Memory Usage

available. The system places the process in a scheduled state until more memory
becomes available.

The injtial memory estimate for a process is created by the compiler and stored in the
object code file. The memory estimate is an estimate of the average amount of memory
that must be available for the process to run efficiently (that is, without excessive
overlays). This ideal amount of memory is referred to as the working set of the process.

Each time the object code file is executed, the system writes an updated memory
estimate into the object code file. The updated estimate is based on the average of

the existing estimate and the memory usage during the current run. The effect is to
gradually refine and improve the accuracy of the memory estimate each time the object
code file is run.

The memory estimate for a process consists of two separate statistics: the estimated
process stack size, and the estimated memory usage for data and code segments. You
can override the process stack size estimate through an assignment to the STACKSIZE
task attribute. You can override the data and code estimate through an assignment to
the CORE task attribute. By assigning large or small values to the STACKSIZE and
CORE attributes, you can make it more or less likely that the system will schedule a
process when it is submitted for initiation.

It is rarely necessary or desirable for you to make assignments to the STACKSIZE

and CORE task attributes. It is true, for example, that you can help ensure that a
process will not be scheduled by setting STACKSIZE and CORE to artificially low values.
However, doing so could cause a system to begin thrashing, with the result that system
performance could dramatically worsen.

The following are situations in which it might make sense to assign STACKSIZE and
CORE values:

e When initiating a program that is newly compiled. The memory estimate in such an
object code file has not been refined through repeated use.

e When initiating a program that is stored on a read-only disk. Many types of disk
drives have a switch that enables an operator to put the disk drive in read-only
mode. If an object code file is stored on a read-only disk, the system is not able to
update the memory estimate in the object code file after each run.

e When initiating an program whose memory usage varies widely from one run to the
next. This can be the case if the memory usage depends on the type and quantity of
the data passed to the program for processing.

Even in these situations, there is no point in your assigning a CORE or STACKSIZE
value unless you have some information about what the working set of the program
really is. You can get some general idea of the memory usage of a program by

running it and examining statistics with the LOGANALYZER utility. You can use the
LOGANALYZER MIX option to return log entries for a particular process. In the Major
Type 2, Minor Types 4 and 5 (EQJ and EOT) log entries, you can find figures for the
average memory usage of a process.

8600 0494-000 ‘ o 85

Controlling Process Memory Usage

Processes” earlier in this section. This mlght also happen if the process uses large
numbers of arrays and files.

You can prevent a process from exceeding a planned level of save memory usage by
assigning a value to the SAVEMEMORYLIMIT task attribute. If the save memory
usage of the process exceeds the limit set by this attribute, the system discontinues the
process and displays the message “USER SAVE MEMORY LIMIT EXCEEDED”.

If a process is discontinued with the “USER SAVE MEMORY LIMIT EXCEEDED”
error, you should check to see if it was running normally or looping. If it was running
normally, you can consider program design measures to reduce the save memory usage.
Alternatively, you can raise the SAVEMEMORYLIMIT value and plan to run the process
at a time when the system is not very busy.

The system administrator can place some limits on the SAVEMEMORYLIMIT

value your processes can have. For example, the system administrator can assign a
SAVEMEMORYLIMIT value to your usercode. This value becomes the maximum
SAVEMEMORYLIMIT value for all processes initiated with your usercode. If you
assign a different SAVEMEMORYLIMIT value to a process, the system uses the lower
of your SAVEMEMORYLIMIT assignment and the usercode SAVEMEMORYLIMIT

assignment.

You might also find that the system administrator has assigned a SAVEMEMORYLIMIT
value to a job queue you use for your WFL jobs. If the SAVEMEMORYLIMIT

is assigned as a job queue default, you can override it with a different
SAVEMEMORYLIMIT assignment in the job header of your WFL job. If the
SAVEMEMORYLIMIT is assigned as a job-queue limit, your WFL job is rejected from
the job queue if the job header includes a higher SAVEMEMORYLIMIT assignment.

For more information about job queues, refer to the discussion of WFL in Section 4,
“Tasking from Programming Languages.”

8-8 8600 0494-000

Section 9
- Controlling Process I/O Usage

The I/O activity of a process is primarily determined by various I/O statements that
the process executes. These include statements for reading from, writing to, opening,
and closing files. For an overview of I/O features available in A Series programming
languages, refer to the A Series 1I/O Subsystem Programming Guide.

There are also a number of task attributes that affect various global aspects of process
I/O activity. For example, you can use task attributes to establish default locations for

files used by a process; or to specify defaults for handling printer output produced by a
process. This section introduces the functions of task attributes that affect process I/O
activity and some related system commands.

Establishing the Default Usercode for Files

One of the effects of the USERCODE task attribute is to supply a default usercode for
all files used by a process. For example, suppose a process runs with a USERCODE
value of FERMAT. Suppose also that this process attempts to open a file with a TITLE
file attribute of INPUT/DATA ON DBFAM”. In this case

o If the NEWFILE file attribute is TRUE, the system creates the file under usercode
FERMAT and changes the TITLE file attribute to “(FERMAT)INPUT/DATA ON
DBFAM”. '

o Ifthe NEWFILE file attribute is FALSE, the system searches for the file first under
the title “(FERMAT)INPUT/DATA ON DBFAM?. If no file of that title exists, the
system searches for the file under the title “*INPUT/DATA ON DBFAM”.

A process can override the default behavior by assigning a usercode as part of the TITLE
file attribute before attempting to open the file. For example, a process could assign
TITLE the value (LUANN)INPUT/DATA ON DBFAM. In this case, the system searches
for the file only under usercode LUANN.

Modifying File Attributes

File attributes are entities that describe the properties of files on A Series systems.
For example, file attributes specify the title of the file and the physical device type on
which it resides (such as disk or tape). Programs can specify attributes for a file in the
file declaration. Programs can also add to or change file attributes with file attribute
assignment statements later in the program.

After you have written and compiled a program, you might later find that you would like

the program to start using a different set of file attributes than were originally specified
in the program. One method for doing this is to rewrite and recompile the program.

8600 0494-000 9-1

Controlling Process I/0 Usage

9-2

This method can be time consuming for the programmer, and can make heavy use of
system resources such as processor time and memory.

Alternatively, you can modify the file attributes used by a program through constructs
called file equations. For example, suppose a program uses a file called IN and another
file called OUT. In a CANDE RUN command, you could use file equations to specify
different titles for these files in the RUN statement that initiates the program. The
following is an example:

RUN REPORT1;FILE IN = (HKANE)INDATA, OUT = (HKANE)OUTDATA

File equations thus enable you to modify the file attributes used by a program without
having to rewrite or recompile the program. However, in order to use a file equation
you first have to know the internal name of the file. The internal name of the file is
determined by the value of the INTNAME file attribute. If the program does not specify
a value for INTNAME, then INTNAME defaults to the value of the file identifier used
for the file in the program. You can determine the internal name of a file by looking at
the file declaration in the program source file. Thus, either of the following ALGOL
declarations creates a file with an internal name of SOURCE:

FILE CUSTDATA(INTNAME = "SOURCE.");
FILE SOURCE;

The syntax for file equations in CANDE, MARC, and WFL is almost identical. For
example, to change the device kind of the file with the internal name of SOURCE, you
can append the following to a RUN statement submitted through any of these sources:

FILE SOURCE(KIND = REMOTE);

The flexibility provided by file equations can be so convenient that programmers
sometimes design a program with the intention that the user will use file equations. For
example, in the documentation for various A Series compilers and utilities, you can find
descriptions of the internal names of files used by these compilers and utilities. These
internal names are documented so that you can use them in file equations.

Note that the same file attribute can be assigned different values by file declarations, file
attribute assignment statements, and file equations. In these cases, the values assigned
through file equations override those specified in the file declaration. File equations

are in turn overridden by any conflicting file attribute assignment statements executed
by the program. A programmer can prevent file equations from having effect simply

by specifying file attributes through file attribute assignment statements rather than
through attribute assignments in the file declaration.

When you specify file equations for a process, the system stores the equations in the
FILECARDS task attribute of the process. For further information about FILECARDS,
refer to the A Series Task Attributes Programming Reference Manual.

One of the file attributes that it is frequently useful to change at run time is the
FAMILYNAME file attribute. You can save yourself the trouble of including

8600 0494-000

Controlling Process 1/0O Usage

FAMILYNAME equations for each file in the program by using the FAMILY task
attribute instead. Refer to “Specifying Family Substitution” later in this section. Also,
you can establish default values for the file attributes related to printing by using the
PRINTDEFAULTS task attribute, as described under “Programmatic Control Over
Printing” later in this section.

You might find occasionally that you initiated a process and forgot to specify the correct
file equations. The system suspends the process if both the following conditions are true:

e The process attempts a open operation with the WAIT option specified or with no
specific open option.

e The process is unable to open the specified file because of a missing or incorrect file
attribute value.

You cannot use file equations to remedy this problem, because file equations must be
specified at process initiation. Instead, you can use the FA system command to supply
the needed file attribute values. For example, suppose a process is suspended because
it tried to open a file SOURCE with KIND = TAPE, and the file is a disk file. The Y
system command output looks like this:

STATUS OF JOB 5692\5692 AT 16:34:45
CLASS = 2

PRIORITY = 5@

ORIGINATION: SB154/CANDE/3 (LSN 320)
MCS: SYSTEM/CANDE

USERCODE: JASMITH

CHARGECODE: MANUFACTURING

STACK STATE: WAITING ON AN EVENT
PROGRAM .NAME: WFL/TEST

RSVP: NO FILE SOURCE (MT) #1

REPLY: FA,UL,IL,O0K,DS

Note that the name SOURCE, which appears on the RSVP line, is the file title rather
than the internal name. However, it does not matter if you do not know the internal
name in this case. When you specify file attribute assignments in an FA command, the
system automatically applies the assignments to the file the process is trying to open.
The following FA command enables the process to open the file and resume running
normally:

5692 FA KIND = DISK

For detailed desériptions of all the file attributes available on A Series systems, refer to
the A Series File Attributes Programming Reference Manual.

Controlling Disk File Usage

You can use task attributes to take advantage of some of the unique features of A Series
disk storage, including the concept of disk families, disk directories, and the disk
resource control system.

8600 0494-000 ' 9-3

Controlling Process I/0 Usage

Specifying Family Substitution

9-4

Disk families are groups of disk units that are labeled with a common name and treated
as a logical unit. Disk families are defined through system configuration and system
commands. Once a family has been defined, a program can use the FAMILYNAME file
attribute to specify that a file is located on that family.

It is quite often the case that all the input and output files used by a process are located
on one, or possibly two, disk families. Now, suppose that you include FAMILYNAME file
attribute assignments in the program for each file used by the program. The system
administrator might later decide to change the name of a disk family, or might ask you to
place your files on a different family. Further, you might need to run your program on
a different host system, where no family of the original name exists. For any of these
reasons, it might become desirable for the program to look for its files on a different
family than is specified in the program code.

The simplest way to make a process use a different family is by assigning the FAMILY
task attribute. This task attribute specifies a target family and one or two substitute
families to be searched for files. For example, suppose a process expects to find its files
on the family SYSPK. This is considered the target family. To make the process look for
its files on the family PARTS instead, you could use the assignment “FAMILY SYSPK =
PARTS ONLY”.

Note that this FAMILY value affects only files with a FAMILYNAME value of SYSPK.
For example, if the file has a FAMILYNAME of DBFAM, then the process still looks for
the file on DBFAM.

Note also that only one FAMILY value can be in effect at a time. For example, suppose

. the existing FAMILY value of a process is “FAMILY SYSPK = PARTS ONLY”. In

this case, an assignment such as “FAMILY DBFAM = PACK ONLY” disables family
substitution for the SYSPK family and enables substitution for the DBFAM family.

If a program does not specify a FAMILYNAME for a disk file, the system searches
for the file on the family named DISK. If you want the users of a program to specify
a FAMILY value, you can leave the FAMILYNAME unspecified for all the files. The
user can override the default FAMILYNAME of DISK with a FAMILY task attribute
assignment such as “FAMILY DISK = DBFAM ONLY”.

Sometimes it is useful to specify two substitute families in the FAMILY value. For
example, you might have a WFL job that runs utilities stored on the family named
DBFAM, which in turn use data files stored on the family named SYSPK. In this case,
you can use a FAMILY statement like the one in the following WFL job:

?BEGIN JOB;
FAMILY DISK = DBFAM OTHERWISE SYSPK;
RUN OBJECT/DAILY/RUN;
RUN OBJECT/REPORT/GENERATOR;
?END JOB

Because the FAMILY assignment is in the job header, the system searches for
OBJECT/DAILY/RUN and OBJECT/REPORT/GENERATOR on DBFAM family and

- 8600 0494-000

Controlling Process 1/0 Usage

then on SYSPK family. The FAMILY task attribute value is inherited by both tasks,
which search for their data files on DBFAM and SYSPK families.

When a family statement specifies two substitute families, the first is referred to as
the primary family and the second as the alternate family. In the previous example,
DBFAM is the primary family and SYSPXK is the alternate family.

When a process attempts to create a new file on the target family, the system creates
the file on the primary family instead. When a process attempts to open or execute an
existing file on the target family, the process searches for the file first on the primary
family and then on the alternate family. If the TITLE file attribute of the existing file
does not specify a usercode, the system searches for the file in the following locations, in

the order shown:
1. On the primary family, under the usercode of the process
2. On the primary family, as a nonusercoded file
3. On the alternate family, under the usercode of the process
4. On the alternate family, as a nonusercoded file

If the TITLE attributé of a file does not specify a usercode, and the NEWFILE file
attribute is TRUE, the system creates the file on the primary family under the usercode
of the process. :

Another method for overriding the FAMILYNAME file attribute is through file
equations, as described under “Modifying File Attributes” earlier in this section. The
following are two advantages to using FAMILY instead of file equations for this purpose:

e A single FAMILY assignment affects all the files in the program that have the
specified target FAMILYNAME. Using file equations, you must specify each file
individually.

e The FAMILY assignment overrides the target FAMILYNAME wherever it is
mentioned in the program. By contrast, file equations are applied when a file is
first declared. The program can later use file attribute assignment statements to
override the values supplied through file equations.

Preventing File Duplications

The system does not allow two permanent disk files with the same title to exist on the
same disk family. In order to handle attempts to duplicate disk file titles, most system
administrators set the system option AUTORM. If a process attempts to enter a file

in the disk directory for a family, but a file with the same name already exists in that
family’s disk directory, then the AUTORM option causes the existing file to be removed.
For further information, refer to the discussion of preventing process suspension in
Section 6, “Monitoring and Controlling Process Status.”

8600 0494-000 9-5

Controlling Process 1/0 Usage

Automatically Restoring Missing Disk Files

If your site uses the archiving subsystem to perform system backups, you can use the
AUTORESTORE task attribute to reduce the likelihood that a process will be suspended
for attempting to open a nonresident disk file.

If a process with an AUTORESTORE value of TRUE attempts to open a disk file, and
the disk file is not present on the requested family, the system checks to see if there is an
archive record specifying the location of a backup copy of the file. The system issues a
request for an operator to mount the necessary tape. When the tape is mounted, the
system copies the file back onto disk. At this point, the process that was attempting to
use the tape resumes execution.

If the system is unable to restore the file for any reason, the process becomes suspended
and appears in the W (Waiting Entries) system command display with a “NO FILE”
RSVP message.

For an overview of the system archiving and AUTORESTORE features, refer to the
A Series System Administration Guide.

Limiting Disk Usage

The system administrator can use the disk resource control (DRC) system to limit

the disk usage of each user. For each usercode, the administrator can establish the
maximum amount of space the user can use on each family. The limits are applied in a
somewhat different manner for permanent and temporary disk files.

For permanent disk files, the limits imposed by the system administrator apply to the
total of all the user’s files on a given family. Any process that attempts to increase the
total file usage beyond the limit receives an I/O error. For example, suppose the system
administrator has established a limit of 2 megabytes on the disk usage for usercode
CHAN on DBFAM family. Suppose there are already 1999999 bytes of permanent

files under CHAN usercode on DBFAM, and a process attempts a write operation

that requires another area to be allocated for one of these files. In this case, the write
operation fails.

For temporary disk files, the limits imposed by the system administrator apply to
individual processes running under the specified usercode. The administrator specifies
the limit by assigning a TEMPFILELIMIT attribute to the usercode. This in turn sets
a limit on the value that can be stored by the TEMPFILELIMIT task attribute of
processes running under the usercode. If a process attempts to increase its temporary
file usage beyond the number of megabytes specified by TEMPFILELIMIT, the process
receives an I/O error. '

For example, if the TEMPFILELIMIT for usercode CHAN is 3 megabytes, there can
be two different processes running with CHAN usercode that each use 2 megabytes

for temporary files. The total temporary file usage is thus 4 megabytes. Thisisnot a
violation of the TEMPFILELIMIT because the limit is enforced on a process-by-process
basis.

9-6 , : 8600 0494-000

’Confrolling Process 1/0 Usage

Note also that, unlike the permanent disk file limits, the TEMPFILELIMIT cannot be
linked to a particular disk family. The process might allocate its temporary files on
any family. For example, if the TEMPFILELIMIT is 3 megabytes, and the process has
allocated 2 megabytes of temporary files on DBFAM, the process can allocate no more
than 1 megabyte on SYSPK.

At any given time, the TEMPFILEMBYTES task attribute records the total number of
disk megabytes in use by the process for temporary files. The process can interrogate
this task attribute to determine the process is nearing the TEMPFILELIMIT value.
Alternatively, you can design the process to include I/O error handling that enables the
process to recover from temporary file limit errors.

For information about permanent and temporary disk files, and about I/O error handling,
refer to the A Series I/O Subsystem Programming Guide. For more information about
the DRC system, refer to the A Series Disk Subsystem Administration and Operations
Guide.

Controlling Printing

One aspect of process control is the ability to direct the printer output generated by a
task. A process can control the printer output of an offspring through the use of relevant
task attributes, such as PRINTDEFAULTS and FILECARDS.

The following subsections briefly introduce the printing control features of A Series
systems and the role that task attributes play in printing control. The statements
made about printer output in these subsections also apply to punch output, unless
otherwise stated. For complete details about controlling printer and punch output,
refer to the A Series Print System (PrintS/ReprintS) Administration, Operations, and
Programming Guide.

For information about printing job summaries, refer to Section 10, “Determining Process
History.”

Default Handling of Printer Output
The system handles printer output in certain typical ways if operators, programmers,
and users do not use printing-related statements to request different treatment. The
following subsections describe the typical handling of printer and punch output.

Storing Printer Backup Files Temporarily

The system temporarily stores the printer backup files created by a process on a backup
medium before printing them. ‘

A process can use the BACKUPKIND file attribute to speéify the kind of medium on

which backup files are to be created. If the BACKUPKIND is DISK or PACK, the
backup file is created on the family with that name and is automatically printed later.

8600 0494-000 9-7

Controlling Process I/O Usage

If the BACKUPKIND value is TAPE, TAPEPE, TAPE?7, or TAPEY, then the process is
suspended and displays an RSVP message asking the operator to mount a tape. When
the tape is mounted, the backup file is created on the tape. The system does not print
the backup file automatically. However, you can later use SYSTEM/BACKUP or a WFL
PRINT command to cause the file to be printed.

If the BACKUPKIND value is DONTCARE, then the LPBDONLY operating system
option and the BACKUP option of the OPTION task attribute determine how the
backup file is handled. If either or both of these options are set, the backup file is
created on the family DISK. If both of these options are reset, the backup file is routed
directly to a printer. If no printer is available, the process is suspended until a printer
becomes available. The operator can use the OP (Options) system command to set or
reset the LPBDONLY option.

The operator can use the SB (Substitute Backup) system command to specify a
substitute backup medium for each possible BACKUPKIND value. The SB setting can
convert any BACKUPKIND value to any other BACKUPKIND value. For example, SB
can specify that all files with a BACKUPKIND of DISK be created on PACK instead.
Note that if the LPBDONLY operating system option is set, SB substitutions for DISK
also affect any backup files that have a BACKUPKIND of DONTCARE. ‘

The SB command can also convert any BACKUPKIND value to DLBACKUP. This value
cannot be specified directly by the BACKUPKIND file attribute; only the SB setting can
cause this value to be applied to a backup file. The DLBACKUP value causes the backup
file to be created on the family specified by the DL BACKUP ON < family name> form
of the DL (Disk Location) system command. '

Titling of Printer Backup Files

9-8

If no title is specified by the process that created a backup file, the system automatically
assigns the backup file a title of the following form:

*BD/@@F<mix number>/..../<file number><internal name> ON <backup family>

In this title, the *BD node indicates that this is a printer backup file. The prefix for
punch backup files is *BP. On a system running InfoGuard security software with the
USERCODEDBACKUP option set to TRUE, the backup file titles are prefixed with the
usercode of the process, rather than an asterisk (*).

The first node of the title is followed by one or more nodes that store mix numbers. The
first of of these nodes contains the mix number of the job or the session. Other mix
number nodes, if there are any, contain the mix numbers for other ancestors of the
process, in order, from eldest to youngest. The last of the mix number nodes contains
the mix number of the process itself. If there is only one mix number node, the backup
file was created directly by a job or session. Each mix number node begins with three
or four zeros: three zeros if the mix number is 4 digits long, and four zeros if the mix
number is 3 digits long.

The last node of the file name stores a file number and an internal name. The internal
name is the value of the INTNAME file attribute, which can be assigned by the process.

8600 0494-000

Controlling Process I/0 Usage

If INTNAME is not assigned, its value defaults to the file 1dent1ﬁer used in the file
declaration.

The file number is a 3-digit number that indicates the chronological order of this backup
file compared to other backup files produced by the same process. For example, suppose
a process declares a backup file with an INTNAME of A and another with an INTNAME
of B. If the process opens and closes A three times, the system creates multiple backup
files whose titles end with 000A, 001A, and 002A. If the process then opens B, the
system creates a backup file whose title ends with 003B.

The backup family is the family determined by the rules discussed under “Stonng
Printer Backup Files Temporarily” earlier in this section.

Note that the backup file title can be affected by the task attributes discussed under
“Other Print-Related Task Attributes” later in this section.

Submitting Print Requests

When a job terminates, the system groups the backup files produced by the job and its
tasks into print requests. These print requests are groups of all the backup files that
can be printed on the same device. The system then queues all the print requests for
printing. In this context, a session is treated like a job, and backup files produced by
tasks of the session are queued for printing when you end the session.

For WFL jobs submitted through a MARC or CANDE WFL command, the backup files
are associated with the session and are queued for printing when the session ends. '
However, for WFL jobs submitted through a MARC or CANDE START command,

the backup files are associated with the job and are queued for printing when the job
terminates. :

Selecting Print Requests

When one of the default printers becomes available, the system chooses one of the
queued print requests to be the next print request printed. By default, short print
requests are chosen before longer print requests. However, if the BACKUPBYJOBNR
operating system option is set, then backup files are printed in order according to job
number. The operator can set or reset this system option by using the OP (Options)
system command.

Normally, the system removes any backup file from disk once the backup files has
been printed. However, the system does not delete the backup file in the following
circumstances:

¢ The SAVEBACKUPFILE file attribute is assigned the value TRUE.

e The LOCKEDFILE file attribute is assigned the value TRUE.

e The file resides on a CD-ROM disk.

¢ The file resides on a disk that is write-protected.

8600 0494-010 : 9-9

Controlling Process 1/0 Usage

Programmatic Control Over Printing

9-10

A program can control the handling of printer output by specifying print attributes and
print modifiers. Using these attributes and modifiers, the program can control such
issues as

e The location and the device kind of the backup file

e The printer used

e The time the print request is considered for printing
e The number of copies that are printed

e The portions of the backup file to be printed

e The formatting and translation of printed output

The final values of the print attributes and print modifiers for a backup file are the
result of several different factors, most of which are controlled by a programmer. To
begin with, each print attribute and modifier has an ultimate default value that is used

if no other factor affects the value. The ultimate defaults can be overridden by process
defaults. The process defaults are established by the PRINTDEFAULTS task attribute.
The PRINTDEFAULTS value consists of a list of print attributes and modifiers and their
associated values. The system applies these values to all backup files produced by the
process, unless the values are overridden for particular backup files.

The PRINTDEFAULTS value is itself the outcome of several layers of possible
assignments. These sources of these assignments include the PRINTDEFAULTS
usercode attribute in the USERDATAFILE, the PRINTDEFAULTS attribute of a
session, inheritance from a parent process, assignments to the object code file, run-time
task equations, and assignments to an active process.

You can override the process defaults for particular backup files by assigning print
attributes to the backup file. Print attributes is the name given to file attributes that are
related to printing, and they are assigned in the same way as any other file attribute.
Using print attributes, a process can cause each backup file to be handled differently.

Another option for printing files is to use the WFL PRINT statement. You can enter
this statement in WFL jobs, in MARC or CANDE sessions, or at an ODT. The PRINT
statement is used mainly to print permanent backup files.that were created on an earlier
occasion. The backup files remain on disk when printing is completed, so they can be
reused later.

The PRINT statement can assign print attributes and modifiers for any or all of the
backup files printed. These assignments override all previous assignments for the
backup files. '

A prdcess can affect the print handling for another process by making assignments to the
PRINTDEFAULTS task attribute of the process. Where more specific control is needed,
you can use the FILECARDS task attribute to specify print attributes for each backup
file.

8600 0494-010

Controlling Process 1/0 Usage

However, the PRINTDEFAULTS and FILECARDS values that are assigned externally
can be overridden internally. A process can assign a different value to its own
PRINTDEFAULTS task attribute after initiation. Also, file attribute assignments made

by the process outside the file declaration override any conflicting ass1gmnents made by
way of the FILECARDS task attribute.

Other Print-Related Task Attributes

Aside from PRINTDEFAULTS and FILECARDS, the following task attributes are
related to printing: BACKUPFAMILY, BDNAME, DESTNAME, DESTSTATION, and
OPTION (BACKUE BDBASE, and NOSUMMARY options only). However, these task
attributes were implemented before the current Print System. You can now use various
print attributes to achieve effects similar to the effects of most of these task attributes.
Print attributes are the preferred method for achieving such print control.

8600 0494-010 9-10A

J

Controlling Process 1/0 Usage

9-10B ' 8600 0494-010

Controlling Process I/0O Usage

The BDNAME task attribute, if assigned, prevents a backup file from being
automatically printed; instead, the file is saved on disk. In addition, BDNAME causes
the backup file to be stored under the usercode of the process. The BDNAME value
replaces *BD as the beginning of the file name. However, the remainder of the file name
follows the standard backup-file naming conventions.

As we have seen, BDNAME has several effects. You can achieve some of the same
effects through the use of several print attributes. You can prevent automatic printing
by setting the PRINTDISPOSITION attribute to DONTPRINT. You can assign a file
name by setting USERBACKUPNAME to TRUE and assigning the desired name to
FILENAME. The following example shows what these assignments look like in WFL:

FILE OUT (PRINTDISPOSITION=DONTPRINT, USERBACKUPNAME=TRUE,
FILENAME= <file name>)

An advantage to using print attributes instead of BDNAME is that the print attributes
give you complete control over the backup file name, whereas BDNAME only affects
the prefix. On the other hand, this method is admittedly somewhat more complex
than using BDNAME. A single BDNAME assignment affects all backup files used by a
process, whereas when print attributes are used, separate FILENAME assignments
must be made for each backup file. For example, if a process creates multiple backup
files by opening and closing the same logical file repeatedly, then the FILENAME value
should be changed before each file open operation; otherwise, each time the file is
opened, the previous backup file with the same FILENAME is removed.

If BDNAME is assigned a non-null value, the backup file is saved and not printed,
regardless of the PRINTDISPOSITION and SAVEBACKUPFILE values.

If BDNAME has a non-null value and USERBACKUPNAME is FALSE, then the
FILENAME value is ignored. However, if both BDNAME and USERBACKUPNAME
are TRUE, then the FILENAME value is used as the file title. If FILENAME was not
assigned, then the INTNAME file attribute value is used as the title. If INTNAME was
not assigned, then the file identifier is used as the title.

You can use the BACKUPFAMILY task attribute to specify the family where backup
files produced by a process are to be stored. Only a WFL job or a message control
system (MCS) can assign this task attribute. You can also assign the family for a

backup file by using the FAMILYNAME print attribute. If there is a conflict between
FAMILYNAME and BACKUPFAMILY, the FAMILYNAME value takes precedence over
the BACKUPFAMILY value.

The DESTNAME task attribute specifies that output is to be printed at a particular
station where a remote printer is attached. The DESTSTATION task attribute has the
same effect as DESTNAME, but specifies the station by number instead of name. You
can also specify a destination station by using the DESTINATION print attribute. If
there is a conflict, the DESTINATION value takes precedence over the DESTNAME or
DESTSTATION value.

You can use the BDBASE option of the OPTION task attribute to cause the task to

assume some of the characteristics of a job. One of the effects of this option is to
cause task backup files to be submitted for printing when the task terminates. If

8600 0494-000 | 9-11

Controlling Process 1/O Usage

BDBASE is not set, the backup files are not submitted for printing until the task’s job
terminates. Another method of controlling the timing of print requests is to use the
PRINTDISPOSITION print attribute. Assigning PRINTDISPOSITION a value of EOT
has the same effect on printing as setting the BDBASE option.

If you set BDBASE, then the PRINTDISPOSITION value is treated as it would be for a
job. PRINTDISPOSITION values of EOT and EQJ are synonyms in this case, and both
cause backup files to be printed when the task terminates. PRINTDISPOSITION values
of CLOSE, DIRECT, and DONTPRINT have their usual effect, regardless of whether
BDBASE is set.

The BACKUP option of the OPTION task attribute is discussed earlier in this section

under “Storing Printer Backup Files Temporarily.” The NOSUMMARY option of the

OPTION task attribute is discussed under “Controlling Job Summary Prmtmg” in the
“Determining Process History” section.

Controlling Data Communications and Messages

You can use task attributes to help control the handling of remote files, to suppress
unwanted messages, or to specify the language in which messages are to be displayed.

In addition to the topics discussed here, you can find helpful information in the .
discussions of CANDE, MARC, and ODT terminal communications in Section 3, “Tasking
from Interactive Sources.”

Controlling Message Tanking

9-12

Processes can communicate with terminals by way of remote files. Tanking is a method
the system can use to temporarily store messages that a process writes to a remote file.
You can use the TANKING task attribute to specify the default tanking mode for all
remote files used by a process. The effects of this task attribute vary, depending on
whether or not the terminal that the process writes to is controlled by COMS.

When a process writes a message to a remote file, the system inserts the message in an
output queue. The system transfers messages from the output queue to the remote
device as fast as the remote device is able to accept them. If the process writes messages
to the remote file faster than the remote device can receive them, then the output queue
can become full. If the output queue is full, and the process writes another message to
the remote file, then the system can respond by tanking the output. Tanked output is
stored in a file called the fank file on disk. The system retrieves messages from the tank
file and places them in the output queue when space becomes available.

If the output queue is full and tanking is not enabled for the remote file, and the process
attempts to write to the remote file, then the process must wait for room to become
available in the output queue before the write operation can complete. The result can be
a delay in the execution of the process. However, the process does not actually become
suspended and does not appear in the W (Waiting Mix Entries) system command display.

The tanking mode for a particular remote file is determined primarily by the file
attribute TANKING. To prevent tanking from occurring, you can assign TANKING

8600 0494-000

Controlling Process I/0 Usage

a value of NONE. To enable tanking, you can assign TAN KING a value of SYNC. To
enable a process to close the remote file and continue execution while tanked output
still exists, you can assign TANKING a value of ASYNC. When ASYNC is used and the
process closes the remote file, the system continues to transfer messages from the tank
file to the output queue until the tank file is empty. For details about the TANKING file
attribute, refer to the A Series File Attributes Programming Reference Manual.

The default value of the TANKING file attribute is UNSPECIFIED. If the file attribute
has this value, then tanking is determined by the TANKING task attribute and the
MCS. The TANKING task attribute has the same possible range of values as the
TANKING file attribute. Thus, setting the TANKING task attribute to NONE, SYNC,
or ASYNC causes these values to be applied to all remote files whose TANKING file
attribute is UNSPECIFIED.

If the TANKING file attribute and the TANKING task attribute are both
UNSPECIFIED, the MCS controlling the station can set the tanking mode for the
remote file. The MCS can do this by way of a parameter to the Station Assignment
to File DCWRITE. The DCWRITE statement is described in the A Series DCALGOL
Programming Reference Manual.

For remote files that communicate with terminals controlled by the CANDE MCS,

an operator can use the ?TANKING network control command to specify the default
tanking mode. The ?TANKING command can specify default values of UNSPECIFIED,
NONE, SYNC, or ASYNC.

For remote files that communicate with terminals controlled by COMS, the effects of the
TANKING file and task attributes vary depending on the type of program involved.
Three types of application programs can run under COMS: direct window programs,
remote-file programs, and MCS window programs.

Direct window programs communicate with terminals through special COMS structures
rather than through remote files. Consequently, the TANKING file attribute and task
attribute have no meaning for these programs.

Remote-file programs are programs that communicate through declared or dynamic
remote-file windows. Declared remote-file windows are windows that appear in the
COMS configuration file and have particular programs associated with them. Dynamic
remote-file windows are created by COMS at run time when a program initiated from a
MARC session opens a remote file.

For remote-file programs with a TANKING value of NONE, the system does not perform
tanking for the remote file. If the TANKING value is UNSPECIFIED, SYNC, or
ASYNC, the system performs tanking as if the TANKING value were ASYNC.

Unisys recommends that you enable tanking for a remote-file program unless the
program services only a single terminal. If a remote-file program services multiple
terminals and uses a TANKING value of NONE, the program can go into a waiting state
when writing output to a terminal. While the program is in a waiting state, it is unable
to service input from other terminals. On the other hand, if a remote-file program
services a single terminal, it can be reasonable for the program to wait for all output to
be displayed before accepting any further input.

8600 0494-000 9-13

Controlling Process /O Usage

)

An MCS window program is a program that you initiate from a COMS window devoted
to a subsidiary MCS. For example, any programs you initiate by entering a RUN
command in a CANDE window are considered MCS window programs. For such
programs, the system supports the full range of TANKING file attribute and task
attribute values: NONE, SYNC, ASYNC, and UNSPECIFIED. The subsidiary MCS,
such as CANDE, can specify a tankmg mode if the TANKING file and task attribute are
both UNSPECIFIED.

In addition to the system-level tanking that has been described up to this point,
COMS:-level tanking is provided for the programs that run in a COMS environment.
COMS-level tanking affects direct window programs, remote-file programs, and MCS
window programs. COMS places output messages in the COMS tank file if the messages
are being written faster than the station can receive them, or if the messages are sent to
a window dialogue that is suspended. :

By default, only messages generated for the user’s current window dialogue are
displayed at the terminal, and all other window dialogues are considered suspended. The
user can resume another dialogue by using an ON command to transfer to the dialogue,
or by entering a RESUME command that specifies the dialogue. When the window
dialogue is resumed, COMS retrieves tanked messages and sends them to the station.

COMS:-level tanking is a necessary feature in the COMS windowing environment and is
performed regardless of the value of the TANKING file and task attributes.

Suppressing Unwanted Messages

9-14

Although system messages are intended to be helpful, there can be situations where you
might find it more convenient to suppress the display of certain messages.

Deimplementation warning messages are a good example of this principle. The system
issues a deimplementation warning message for a process when the process uses a
feature that has been scheduled for future deimplementation. These warning messages
can be very valuable because they help you to identify programs that need to be modified
before you can migrate your system to a new Mark release.

However, the system displays these deimplementation warnings each time the program
isrun. If you run the program frequently, you may see the warning messages more often
than you care to be reminded of the pending deimplementation. You can suppress the
messages by using the SUPPRESSWARNING task attribute. This attribute enables
you to specify a list of warning message numbers or number ranges, as in the following
example:

RUN OBJECT/PROG;SUPPRESSWARNING = "1,4,8-10";

You can learn the identifying number for a message in either of two ways. First, you can
note the warning number when it appears in the message itself. For example, after
seeing the following message, you might assign SUPPRESSWARNING a value of “13”.

WARNING 13: DISK FILE HEADER CHANGES. SEE 3.7 MCP D-NOTE 6638

8600 0494-000

Controlling Process I/0O Usage

Second, you can interrogate the TASKWARNINGS task attribute. This task attribute
returns the value of the WARNINGS file attribute of the object code file that is being
executed. The WARNINGS file attribute, in turn, stores the message numbers for all
the warning messages that the system has ever displayed for processes executing code
from that object code file. The following is an example of a declaration and statements
you can use in an ALGOL program to suppress all previously displayed warning
messages: '

EBCDIC ARRAY WARN[@:999];
~ REPLACE WARN BY MYSELF.TASKWARNINGS;
REPLACE MYSELF.SUPPRESSWARNING BY WARN;

You might also find it useful to suppress DISPLAY messages. A process issues a
DISPLAY message by executing a DISPLAY statement. DISPLAY messages are used

to enable a process to communicate information to the user without actually opening a
remote file or ODT file. DISPLAY messages appear in the MSG (System Messages)
system command display, at the terminal of the user that initiated the process, and in the
system log.

If a process is initiated by a user at a data cornm terminal, the DISPLAY messages
issued by the process are probably of interest only to that user. The appearance of these
messages in the MSG display can be a needless distraction to the system operator. You
can eliminate this distraction by setting the DISPLAYONLYTOMCS task attribute to
TRUE for the process. When this attribute is TRUE, if the process is initiated from a
data comm terminal, DISPLAY messages appear at the originating terminal but do not
appear in the MSG display at the ODT.

Localization

Localization is the process of tailoring the user interface of a program to users of a
particular nation or culture. Two task attributes can assist you in the localization
process: the LANGUAGE task attribute and the CONVENTION task attribute.

You can use the LANGUAGE task attribute to specify the language that is used for a
process. This task attribute has effects on two levels:

e The system attempts to use the specified language when displaying any system
messages generated for the process, such as BOT, EOT, and RSVP messages. The
LANGUAGE value has effect only if system messages in the specified language have
been installed on your system.

o The specified language becomes the default language for any messages
that are displayed by MESSAGESEARCHER statements in an ALGOL or
NEWP program. The LANGUAGE value has effect only if a version of the
OUTPUTMESSAGEARRAY using the specified language has been bound to the
object code file.

You can use the CONVENTION task attribute to specify the conventions for dates,
times, and currency used by a process. This task attribute affects processes that use
the CENTRALSUPPORT library to format data according to requested conventions.

8600 0494-000 | 9-15

Controlling Process 1/0 Usage

The CONVENTION task attribute specifies a default convention to'be used for
CENTRALSUPPORT procedure calls. The user process can selectively override this
default through parameters to the CENTRALSUPPORT procedures.

For further information about localization, refer to the A Series MultiLingual System
(MLS) Administration, Operations, and Programming Guide.

Limiting I/O Usage

When a process executes an I/O statement, the central processor must execute some
operating system code to initiate the I/O operation. Thereafter, I/O processors (IOPs),
data link processors (DLPs), and various peripheral devices such as disk drives might all
devote varying amounts of time to executing the I/O operation. At the completion of the
I/O operation, the central processor executes some I/O finish code.

Of all the system resource usage caused by I/O operations, only the I/O initiation time

is recorded by the system for individual processes. The accumulated /O initiation time
for a process is stored in the ACCUMIOTIME task attribute. The 1/O initiation time for
a process is also visible in the output from the TI (Times) system command and in the
Major Type 1, Minor Types 2 and 4 (EOQJ and EOT) system log entries.

You can use the MAXTOTIME task attribute to set a limit on the amount of I/O initiation
time that a process can use. When the ACCUMIOTIME task attribute reaches a value
equal to that of MAXTIOTIME, the system discontinues the process and displays the
error message “EXC I/O TIME”.

The main use of the MAXIOTIME task attribute is to ensure that WFL jobs are placed
in the proper job queues. For example, suppose there is a high-priority job queue that is
intended for jobs that are not very I/O intensive. The system administrator can use the
IOTIME job queue attribute to provide default and limiting values for the MAXIOTIME
task attribute of all WFL jobs that use the job queue. If you submit an extremely I/O
intensive job through the job queue, the system discontinues the job when it exceeds the
MAXITOTIME value. This enforcement of the MAXIOTIME value gives you an incentive
to resubmit the job through a different job queue. For an introduction to the subject of
job queues, refer to the discussion of WFL in Section 4, “Tasking from Programming
Languages. ” .

It is also possible for the system administrator to limit each person’s usage of disk space.
Refer to “Limiting Disk Usage” earlier in this section. :

9-16 . ' 8600 0494-000

Section 10
Determining Process History

Process history consists of information about how a process terminated, the accumulated
resource usage of the process, and what actions the process took while it was active.
Process history information can help you determine if a program is running as intended,
and can help you to locate the source of any problems that arise.

This section describes the uses of various sources of process history information,
including termination messages, job summaries, system log entries, history-related task
attributes, and program dumps.

Understanding Termination Messages

You can quickly find out how a process terminated by examining the C (Completed Mix
Entries) system command display. The following is an example of this display:

---Job-Task-Time-~Hist==ecou-uux COMPLETED ENTRIES =--=-=sm-cevecaaa-
* 1962\3430 11:43 EOT (LANJ) *LIBRARY/MAINTENANCE
* 2619\3368 11:43 EOT (ELMER) *OBJECT/MAIL ON PACK
* 3353\3354 11:43 SNTX (ORDS) *BINDER ON SYS37 MCP/FIXSBP ON DPMAST
3384\3422 11:42 0-DS (JAS) (JAS)MARC WFL
3384\3423 11:42 P-DS (JAS) (JAS)WFLCODE
3327\3327 11:42 EOJ (RALPH) JOB (RALPH)OBJECT/BNATEST ON DPMAST

For each entry, the following information is displayed: the job number, the mix number,
the time the process terminated, the type of termination, the usercode of the process,
and the name of the process (which is usually the object code file title).

If the process was initiated from a Menu-Assisted Resource Control (MARC) session,
then a similar termination message is automatically displayed on the TASKSTATUS
screen. The following is an example:

12:10 3384\3718 EOT (ROLLINS)MARC WFL

For a process initiated from a Command ahd Edit (CANDE) session, abnormal
terminations result in a display of the termination type and other process history
information. The following is an example:

#2316 OPERATOR DSED @ (00000120)*
#0-DS @ 00000120, :
#ET=3.2 PT=0.1 10=0.1

8600 0494-000 10-1

Determining Process History

The first two lines shown in the preceding example would be displayed only for an
abnormal termination. These lines give the mix number, the cause of the termination,
and the sequence number of the statement the process was executing when it
terminated. (The sequence number is replaced by a code address if the program was
compiled without the LINEINFO compiler option being set. For information about how
to interpret the code address, refer to “Determining Where a Fault Occurred” later in
this section.)

All terminations, whether normal or abnormal, result in the display of a line similar to
the third line shown in the preceding example. This line gives statistics on the elapsed
time, accumulated processor time, and accumulated I/O time for the process.

The CANDE, MARC, and ODT termination messages make use of the same termination
type abbreviations. Of these, the following indicate normal terminations:

EOQJ The process was a job that terminated normalily.
EOT The process was a task that terminated normally.
SNTX The process was a compilation that encountered syntax errors. The

process terminated normally, but no object code file was created.

Table 10-1 lists the abnormal termination messages, their meanings, and the
corresponding values for history-related task attributes. For an introduction to
history-related task attributes, refer to “Determining the Type of Termination” later in
this section.

Table 10-1. Abnormal Termination Messages

Message

HISTORYTYPE HISTORYCAUSE Meaning

A-DS 8 0 The process was a Work Flow

D-DS 4 6 The process encountered a data

E-DS The process encountered a Data

F-DS 4 4 The process requested a machine

I-DS 4 7-9 The process encountered an /O

Language (WFL) job whose initiation
failed because the job attribute list
included an invalid task attribute
assignment; or, the process was
discontinued but is now executing
an EPILOG procedure.

comm error.

Management System 1l (DMSII)
error.

operation that could not be
executed. Examples are dividing by
zero or reading past the end of an
array.

error.

- 10-2

continued

8600 0494-000

Determining Process History

, Table 10-1. Abnormal Termination Messages (cont.)

Message HISTORYTYPE HISTORYCAUSE Meaning
N-DS 4 13 The process encountered a BNA
error.
0-DS 4 1 The process was discontinued by an
operator command.
P-DS 4 2 The process attempted an illegal

action or deliberately set its STATUS
task attribute to TERMINATED, or
was terminated because its parent
terminated.

Q-DS 7 0 The process was a job that did not
qualify for any job queue, or was
discontinued by an operator
command while it was in a job

queue.

R-DS 4 3 The process exceeded a resource
limit, such as MAXPROCTIME.
S-Ds 4 5 The process violated system
: parameters.
U-DS 4 10-11 The process was discontinued by an
v unknown cause.
Unn-DS Not specified nn The process was discontinued with

an unrecognized HISTORYCAUSE
value. In the actual message, the
digits nn are replaced by the
HISTORYCAUSE value.

2-DS 4 0 The process was discontinued by an
unknown cause.

8600 0494-000 : : 10-3

Determining Process History

Using Log Information

The system records the activity of each process in two types of logs:

e The system log (SUMLOG)
This is a central log that stores information about all kinds of actions on the system.
e Joblogs

A separate job log is created for each job on the system and is stored in the job’s job
file. The system creates a job log for WFL jobs and other independent processes, as
well as for CANDE and MARC sessions. The job log contains information about the
job (or session) and its descendant tasks. Depending on the values of various task
attributes and system options, the system might create a printout of the job log,
called the job summary.

The following subsections explain how the programmer and system operator can control
the contents of these logs and the generation of reports from these logs.

Specifying the Information to Be Logged

10-4

An operator can use the LOGGING (Logging Options) system command to select the
major and minor log entry types that are to be logged. You can specify that a particular
type of log entry is to appear in the job log, in the system log, in both, or in neither. The
following LOGGING command causes Major Type 1, Minor Type 5 (File Open) entries to
appear in job logs, and Major Type 1, Minor Type 6 (File Close) entries to appear in the
system log: '

LOGGING 1,5 JOBFILE ALL3;1,6 SUMLOG ALL;

You can use the DEPTASKACCOUNTING task attribute and the FILEACCOUNTING
task attribute to control certain types of logging. These task attributes affect the system
log and the job log equally. You can use DEPTASKACCOUNTING to prevent the system

‘from generating log entries to record the initiation and termination of a dependent

process. You can use the FILEACCOUNTING task attribute to prevent the system
from generating log entries to record file open and close actions. You can create defaults
for these task attributes on a systemwide basis with the ACCOUNTING (Resource
Accounting) system command. You can create defaults for these task attributes on a

usercode basis through assignments to the usercode attributes with the same names in
the USERDATAFILE.

You can use either of two system commands to log comments about the history of a
particular process. The LC (Log Comment) system command enters a comment in
the system log only. The LJ (Log to Job) system command enters a comment in both
the system log and the job log of a particular job. The following is an example of this
command:

3335 LJ JOB RAN NORMALLY

8600 0494-000

Determining Process History

You can use the NOJOBSUMMARYIO task attribute to suppress the logging of
information in the job log. If NOJOBSUMMARYIO is set, no entries are written

to the job log, except for the Major Type 1, Minor Type 1 (BOJ) entry or the Major

Type 4, Minor Type 1 (Log-on) entry. NOJOBSUMMARYIO can also be set and reset
throughout a job to prevent selected parts of the job from appearing in the job log. Using
NOJOBSUMMARYIO saves I/O time and thus allows the job to run more efficiently.

You can use the LG (Log for Mix Number) system command and the LOGSELECT
usercode attribute to enable logging of selected types of events for a particular usercode.
These features enable the system administrator to monitor the activities of a particular
user who might be committing some type of security breach. These features affect the
system log only.

Controlling Job Summary Printing

The printing of job summaries is controlled primarily by the JOBSUMMARY task
attribute. To cause job summary printing, you can assign a value of UNCONDITIONAL,
and to prevent job summary printing, you can assign a value of SUPPRESSED. To cause
conditional printing of job summaries, you can use either of two values: ABORTONLY
or CONDITIONAL. Either of these values causes job summary printing if the job or

any of its tasks terminate abnormally. The difference between the two values is that

the CONDITIONAL value also causes job summary printing if the job has any printer
backup files associated with it or if a compiler task encounters syntax errors.

If the JOBSUMMARY task attribute has a value of DEFAULT, then job‘/summary
printing is controlled by either of two types of defaults.

o If the NOSUMMARY option of the OPTION task attribute is set, then a
JOBSUMMARY task attribute of DEFAULT is interpreted as CONDITIONAL.

o Ifthe NOSUMMARY option of the OPTION task attribute is reset, then the Print
System JOBSUMMARY option controls the job summary printing. The Print
System JOBSUMMARY option is set or reset through the PS DEFAULT system
command. The JOBSUMMARY option can specify any of the following values:
CONDITIONAL, UNCONDITIONAL, SUPPRESSED, or ABORTONLY.

Note that the Print System JOBSUMMARY option replaces the operating system option
NOSUMMARY, which is no longer supported.

A job summary can be printed for any WFL job that compiled suécessfu]ly. This is true

even if the job never ran because no job queue would accept it or because an operator
discontinued the job while it was queued.

Saving the Job Summary File

You can use the JOBSUMMARYTITLE task attribute to cause the job summary file to
be saved as a permanent disk file.

8600 0494-010 . 10-5

Determining Process History

If the JOBSUMMARYTITLE value is a null string (the default value), then the system
creates a job summary file only if a job summary is-to be printed. If the system does
create a job summary file, the system removes the file once it is printed. The job
summary file title usually has the following form: ’

*BD/@BO<job number>/BABSUMMARY

If you assign a file title to JOBSUMMARYTITLE, then the system creates a job
summary file with the specified file title. The job summary file remains on disk, whether
or not the system prints the job summary. You can use a Command and Edit (CANDE),
Menu-Assisted Resource Control (MARC), or WFL PRINT command to print out the job
summary file later. For a description of the PRINT command, refer to the A Series Print
System (PrintS/ReprintS) Administration, Operations, Programming Guide.

Analyzing the System Log

You can use the LOGANALYZER utility to obtain a detailed report of the history of a
particular process. You can invoke LOGANALYZER by using the LOG command from
CANDE, MARC, WFL, or an ODT. The LLOG command causes the current system log to
be searched, unless the title of an old system log is specified.

The following command displays all log entries for the job with mix number 7483 and for
all descendants of that job:

LOG JOB 7483

The following command displays all log entries for the process with mix number 8923:

LOG MIX 8923

You can specify various options to limit the types of entries that are displayed for the
process and to direct the output to an ODT, a remote terminal, or a printer. For details,
refer to the discussion of LOGANALYZER in the A Series System Software Support
Reference Manual.

Programmatically Interrogating Process History

10-6

After a task terminates, the task variable associated with it continues to exist until the
parent exits the block that contains the task variable declaration. As long as the task
variable exists, the parent can use it to interrogate the final task attribute values of the
task. By interrogating history-related task attributes, the parent can find out whether
the task terminated normally.

On the other hand, the history of a job cannot be interrogated through task attributes.

The task variable of a job can be accessed only by the job itself and its descendants, and
the descendants cannot survive the termination of the job.

8600 0494-010

Determining Process History

Determining the Type of Terrhination

Several task attributes and a special WFL expressmn are available for determlmng

how a task terminated. The relevant WFL expression is the fask state inquiry. This
expression can be used to determine whether termination was normal or abnormal. For
example, the following WFL statement causes a specified action to be taken if the task
terminated abnormally:

IF TSK ISNT COMPLETEDOK THEN

Another way to determine whether a task terminated normally is to inspect the
HISTORYTYPE task attribute. A HISTORYTYPE value of NORMALEOQOTYV indicates
that the termination was normal. A value of DSEDV indicates that termination was
abnormal. Most of the other values indicate that the process has not yet terminated and
give an indication of its current state.

If termination was abnormal, the HISTORYCAUSE task attribute can be interrogated
to determine the general type of abnormal termination that occurred. For example, a
value of OPERATORCAUSEYV indicates that an operator command discontinued the
process and a value of DCERRV means that the process was discontinued because of a
data comm error.

A more detailed account of why a task terminated abnormally is stored in the
HISTORYREASON task attribute. For example, suppose the HISTORYCAUSE
value is RESOURCECAUSE, meaning that a resource limit was exceeded. The
HISTORYREASON value might be PROCESSEXCEEDEDYV, which means speclﬁcally
that the processor time limit was exceeded.

The system uses the HISTORYTYPE and HISTORYCAUSE values to determine what
termination message to display for a process. The correspondence between these task
attributes and the termination messages is shown in Table 10-1.

Determining Whether a Compilation Was Successful

You can use any of several methods to determine programmatically whether a particular
compilation uncovered syntax errors in the source program.

For a compilation initiated from WFL, the task state expression can be used to
determine whether the compilation was successful. To use this expression, a task
variable must first be associated with the compilation in the COMPILE statement. The
following is an example:

COMPILE OBJECT/PROG WITH ALGOL [COMPILETASK] LIBRARY;
IF COMPILETASK IS COMPILEDOK THEN
RUN SYSTEM/XREFANALYZER (@);

Another way to determine whether the compilation was successful is to interrogate the
HISTORYTYPE task attribute of the compilation. A value of NORMALEOTV means

8600 0494-000 10-7

Determining Process H istory

that the compilation was successful, but a value of SYNTAXERRORV means that syntax
errors were found.

Another method that can be used is to interrogate the TASKVALUE task attribute.
TASKVALUE has a value of 0 (zero) if the compilation was successful or 1 if syntax
errors were found.

Responding to Task Failures

WFL includes a special statement that specifies actions to be taken if any offspring
terminates abnormally. This is the ON TASKFAULT form of the ON statement. The
ON TASKFAULT statement remains in effect for the remainder of the job unless
overridden by another ON TASKFAULT statement. For example, a WFL job could
include the statement ON TASKFAULT, ABORT. This statement causes the job to
terminate abnormally when any of its offspring terminates abnormally.

Determining Where a Fault Occurred

10-8

You can use the STACKHISTORY task attribute to determine the statement that was
being executed and the procedures that had been entered when a process terminated

-abnormally. To understand the value returned by this attribute, you must have compiled

the program that was being executed with one or both of the following compiler options
set: LINEINFO and LIST.

Setting LINEINFO causes the STACKHISTORY value to include the sequence number
for each of the relevant statements in the source program. Setting LIST causes the
compiler to produce a printout of the source program that includes code addresses for
each line. The code addresses are needed to interpret the STACKHISTORY value if
LINEINFO was not set.

8600 0494-000

Determining Process History

The following is an example of the source program printout for a program that was _
compiled with the LIST and LINEINFO options set. (The example has been condensed
horizontally to fit on the page.)

BEGIN 00000200 000:0000:9
BLOCK#1 IS SEGMENT 9093

1 00000390 ©803:0000:1

. 00000400 093:0000:1
REAL X, Y; 20000500) 003:0000:1

PROCEDURE ONE; ' 00000600 003:9000:1
BEGIN T 00000708 ©03:0000:1
PROCEDURE TWO3 00000800 ©@03:0000:1

ONE IS SEGMENT 0024
2 00000%90 004:0000:1

BEGIN 00001000 ©04:0000:1
Y := X DIV @; 00001100 004:0000:1

END; 3 00001200 004:0001:2

' 3 00001300 004:0001:3

TWO; 00001400 004:0001:3
END; 00001500 0B4:0002:1

ONE(294) LENGTH IN WORDS IS 2085
2 00001608 ©03:0000:1
: - 00001700 903:0000:1
ONE; 00001808 003:0000:1

00001900 003:0000:5

END. 00002008 ©03:0000:5
' BLOCK#1(9@3) LENGTH IN WORDS IS 2006

In this example, each line of source code ends with the sequence number and code
address of the line. The code address is divided into three parts by colons; the first part
is the code segment number, the second is the word number, and the third is the syllable
number. The numbers in the code address are in hexadecimal format.

If a process terminates normally, the STACKHISTORY value is a null string. However,
if the process terminates abnormally, STACKHISTORY returns a value such as the

following:
004:0000:5 (00001100), 904:0002:1 (00001400), 003:0000:5 (90081800).

This value gives the code address and sequence number for the statement that was being
executed when the process terminated and for each procedure invocation statement that
was in effect when the process terminated. Thus, the value in this example indicates
that the statement at line 1100 was being executed when the process terminated, and
that procedure invocation statements at lines 1400 and 1800 were in effect.

If LINEINFO is set, STACKHISTORY returns the following value:
004:9000:5, 204:0002:1, 003:0000:5.

8600 0494-000 ' 109

Determining Process History

10-10

The numbers in this example give a somewhat less exact idea of the locations of the
statements that were being executed when the process terminated. Each statement
usually occurs on the line preceding the specified code address. The address 004:0000:5
does not appear in the printout, but the statement occurs on the next lower-numbered
line: 004:0000:1.

Note that if the object code file was produced by the Binder, you must use some

extra care in interpreting the code addresses or sequence numbers returned in the
STACKHISTORY value. When the Binder produces a bound object code file, the Binder
changes the code segment numbers for statements in the subprogram. Fortunately, if
you use the Binder option LIST, the Binder produces a printout that lists such changes.
The following is an example of such a printout:

OBJECT/ALGOL/BIND ON DISK

HOST IS OBJECT/ALGOL/HOST;) 00001270

BIND PRINTIT FROM OBJECT/ALGOL/SUB; 00081272
STOP; 00001274

BEGIN BINDING PRINTIT OF BLOCK#1 FROM OBJECT/ALGOL/SUB
PRINTIT (@2,8006) CHANGED TO (92,0006)
K <---- NEW GLOBAL ADDED TO HOST -- WARNING ONLY
K (92,2084) CHANGED TO (92,0008)
LINE (@2,8005) CHANGED TO (22,0003)
J (02,0003) CHANGED TO (92,0005)
BUFFER (@2,0002) CHANGED TO (02,0004)
7910 (91,0006) CHANGED TO (21,2006)
<SEG DICT ITEM> (91,0092) CHANGED TO (91,0005)
<SEG DICT ITEM> (91,0093) CHANGED TO (91,0007)
<SEG DICT ITEM> (91,0004) CHANGED TO (o1,0008)
END OF BINDING PRINTIT

g3 0000013000081
@5 97000000005F
025 080000540002

Note the three lines near the bottom of the list that begin with “ <SEG DICT ITEM>".
These list changes to the address couples for code segments in the subprogram. The
second number in each address couple is the offset, which is the same as the code
segment number for that code segment. The list informs us that code segment number 2
was changed to 5, 3 was changed to 7, and 4 was changed to 8. Therefore, you should
look at the STACKHISTORY value for code addresses that begin with 5, 7, or 8, and
make a note that they really begin with 2, 3, or 4, respectively. Then you can look for the
code addresses in the compiler listing that was created when you originally compiled the
subprogram. Suppose that the STACKHISTORY value is as follows:

005:000F:1, 003:0017:3.

You should translate the first address into 002:000F:1, and then look at the compiler
listing of the subprogram to determine which statement had that code address. The
second address does not begin with 5, 7, or 8, so you don’t need to translate it. You can
find the procedure invocation referred to by the second address at 003:0017:3 in the
compiler listing for the host program.

8600 0424-000

Determining Process History

If the host program and the subprogram were compiled with the LINEINFO compiler
option set, and the Binder was run with the LINEINFO Binder option set, then the
bound object code file contains sequence numbers that appear in the STACKHISTORY
value. The Binder does not change the sequence numbers of the host program or the
subprogram. When interpreting the sequence number, beware of the possibility that the
same sequence number occurred in both the host program and the subprogram file. For
example, suppose that the following is the STACKHISTORY value:

005:000F:1 (00000750), 093:0017:3 (90001350).

The subprogram and the host program both might contain lines with the sequence
number 750, and they also both might contain lines with the sequence number 1350.
However, the last address in the STACKHISTORY value always refers to a statement
in the host program. At line 1350 in the host program listing is a procedure invocation
statement. If this statement invokes the bound-in procedure, then line 750 is found in
the subprogram listing. Otherwise, line 750 is found in the host program listing.

Another task attribute that provides information related to process history is the
STOPPOINT task attribute. This real-valued attribute has fields defined that store the
fault reason and the code address. The fault reason is the same as the value returned by
the HISTORYREASON task attribute, and the code address is the same as the first code
address of the STACKHISTORY value.

Designing a Program to Survive Faults

A fault is an illegal action that is detected by the hardware, such as an attempt to divide
by zero. In general, a process is discontinued if it encounters a fault. However, ALGOL
provides a unique feature that can be used to allow the process to continue normal
execution after a fault. The ALGOL ON statement specifies actions to be taken if a fault -
occurs. In addition, the ON statement can be used to interrogate the type of fault and
the stack history. The stack history value returned is identical in format to that returned
by the STACKHISTORY task attribute.

If any fault occurs, the following ON statement stores the stack history into array
FAULTARRAY and the fault type into FAULTNO. The statement then invokes the
procedure HANDLEFAULTS, passing the fault type to it as a parameter:

ON ANYFAULT [FAULTARRAY:FAULTNO], HANDLEFAULTS(FAULTNO);

Another method of responding to faults is to use the RESTART task attribute. For -
details, refer to Section 11, “Restarting Jobs and Tasks.”

Controlling Program Dumps

A program dump is a printout of information about the current state of a process. You
can use this information to help debug a defective program. The following subsections
explain how to specify when program dumps are to occur, and how to specify which types
of information should be included in the dump.

8600 0494-000 10-11

Determining Process History

On a system running InfoGuard security enhancement software, some security options
can restrict the contents of program dumps and the ability to copy program dumps.
Refer to the A Series Security Administration Guide for details.

Using Program Statements to Control Program Dumps

You can initiate and control program dumps in either of two ways: by using program
dump statements, or by using the OPTION task attribute.

The program dump statements that are available are the ALGOL PROGRAMDUMP
statement, the COBOL(68) CALL PROGRAM DUMP statement, the COBOL74

and COBOLS85 CALL SYSTEM DUMP statement, the FORTRAN or FORTRAN77
DEBUG PROGRAMDUMP statement, and the Pascal Programdump procedure.
Some languages provide other statements to dump process information, but these are
language-specific features. The preceding statements call an operating system feature
that is available from a variety of sources.

Alternatively, you can enable a program dump by setting certain options of the CPTION
task attribute. If the FAULT option is set, then the process generates a program

dump if it terminates abnormally because of an internal cause. If the DSED option is
set, then the process generates a program dump if the process terminates abnormally
because of an external cause. For a definition of internal and external causes, refer to
“Understanding Internal and External Causes” later in this section.

You can also specify various dump options, which determine the types of information
that are included in the program dump. These dump options can be accessed through
assignments to the OPTION task attribute. In ALGOL, FORTRAN, FORTRAN77, and
Pascal, these options can also be set by parameters in a program dump statement.

If a program dump statement specifies dump options, then the dump options specified in
that statement are used, and the value of the OPTION task attribute is ignored. If the
program dump is caused by the DSED or FAULT option of the OPTION task attribute,
or by a program dump statement that does not specify any dump options, then the dump

- options specified by the OPTION task attribute are used for the dump.

The possible dump options are ARRAY, BASE, CODE, DBS, FILE, LIBRARIES,
PRESENTARRAYS, PRIVATELIBRARIES, SIBS, TODISK, and TOPRINTER. The
effects of these options are explained in the discussion of the OPTION task attribute
in the A Series Task Atiributes Programming Reference Manual. The effects of the
TODISK and TOPRINTER options are also discussed under “Controlling the Program
Dump Destination” later in this section.

Using Operator Commands to Control Program Dumps

10-12

If a process is behaving abnormally, you might want to invoke a program dump for the
process. You can use the dump later to help debug the process.

8600 0494-000

Determining Process History

One way you can invoke a dump is by using the DUMP (Dump Memory) system
command. The <mix number> DUMP form of this command initiates a program dump
for the specified process. The <mix number> DUMP <option list> form of this
command assigns dump-related options to the OPTION task attribute and then initiates
a program dump. The OPTION values are retained and affect any later program dumps
for the process, unless overridden by later assignments. The following example dumps
information about arrays and files for a process with the mix number 3457:

3457 DUMP ARRAYS, FILES

It is possible to view the program dump while the process is still running. Refer to
“Analyzing a Program Dump from a Running Process” later in this section.

You can also trigger a dump by way of the DS (Discontinue) system command. The
<mix number> DS <option list> form of this command initiates a program dump and
discontinues the process. The option list in this command controls the contents of the
dump by assigning options to the OPTION task attribute. The following example dumps
arrays and code segments and discontinues the process with mix number 3457:

3457 DS ARRAYS, CODE

Note that the simple form of the DS command, <mix number> DS, causes a program
dump if the DSED option of the OPTION task attribute was previously set through
object code file assignments, task equations, or task attribute assignments executed by
the process. You can prevent such a dump from occurring by using the <mix number>
DS NONE form of the DS command.

Controlling the Program Dump Destination

You can direct a program dump to a printer backup file for printing, to a disk file for later
analysis and printing, or both. You can control the program dump destination through
two dump options: TOPRINTER and TODISK. These options are available in ALGOL,
FORTRAN77, and Pascal through program dump statements. Languages that provide
access to task attributes can also assign these options by way of the OPTION task
attribute. Additionally, these options can be assigned in a DS (Discontinue) or DUMP
(Dump Memory) system command.

The TOPRINTER option causes any program dumps generated by the process to be

directed to a printer backup file called the task file. For details about the task file, refer
to “Using the Task File” later in this section.

8600 0494-010 10-13

Determining Process History

The TODISK option causes any program dumps generated by the process to be directed
to a disk file. The contents of the program dump are determined by the other dump
options, except for the BASE option. Whenever TODISK is set, the BASE option is
treated as if it is also set. The following are advantages to using the TODISK option
instead of the TOPRINTER option:

e The dump is performed more rapidly, and produces less printer output at the time of
the dump. This factor makes it convenient for you to set the dump options to dump
all possible information. By setting all the dump options, you reduce the likelihood of
having to try to reproduce the problem later to obtain more information.

o The disk file stores dump information in a format that can be analyzed by the
DUMPANALYZER utility. DUMPANALYZER also enables you to decide at
analysis time what information to include in the report. You can even run
DUMPANALYZER repeatedly to producesreports on different information from the
same dump. Another benefit is that DUMPANALYZER provides a detailed analysis
of the process information block (PIB).

You can also use DUMPANALYZER to produce a report similar to one created by

the TOPRINTER option. Like TOPRINTER reports, DUMPANALYZER reports
include the names of all the identifiers used by the process. (However, identifiers are
included in the report only if all object code files used by the process are present when
DUMPANALYZER is run.) For information about running the DUMPANALYZER
utility, refer to the A Series System Software Support Reference Manual.

When the TODISK option is used, the default title for the resulting disk file has the
following format:

(<usercode>) PDUMP/<process name>/<date>/<time>/<mix number> ON <family>

The values of the various elements of this title are as follows:

Title Element Value
<usercode> The value of the USERCODE task attribute of the process.
<process name> The value of the NAME task attribute of the process, except that any

usercode or family name is omitted. If the resulting process name is
more than eight nodes long, then only the first eight nodes are included.

<date> The current date, in the form YYMMDD.

<time> The current time, in the form HHMMSS.

<mix number> The value of the MIXNUMBER task attribute of the process.

<family> DISK, unless the FAMILY task attribute provides a primary family to be

used in place of DISK.

The following is an example title:

(SMITH)PDUMP/OBJECT/TEST/X/8908195/155815/9210 ON STAFFPK

10-14 | 8600 0494-010

Determining Process History

You can use file equations to specify a different file name or family name for a dump to
disk. You can file-equate the FILENAME, FAMILYNAME, and TITLE file attributes.
The file equations must specify PDUMP as the internal name of the file. For example, a
WFL job can use the following statement to initiate a program and specify the title of any
program dumps generated by the program. Note that the file equation has effect only if
the TODISK option is specified, either in the OPTION task attribute or in the statement
that invokes the program dump.

RUN OBJECT/JADCON;
FILE PDUMP(TITLE = JADCON/DUMP ON PACK);
OPTION = (FAULT, TODISK);

If a program dump occurs, the system adds a suffix to the file-equated title. The

suffix is a 3-digit integer ranging from 000 to 999. The suffix is incremented by one

for each program dump generated by the process. Thus, in the previous example, if
OBJECT/JADCON runs under usercode BLAKE and generates three program dumps in
a single run, the program dumps receive the following titles:

(BLAKE) JADCON/DUMP /@83 ON PACK;
(BLAKE) JADCON/DUMP/@@1 ON PACK;
(BLAKE) JADCON/DUMP /@02 ON PACK;

You can include a usercode in the PDUMP file equation, but only a privileged process can
assign the program dump a usercode different from that of the process. If the process is
nonprivileged, and PDUMP is equated to a different usercode, then a security violation
results when a program dump occurs. The system deletes the program dump file rather
than saving it under the requested usercode.

If neither the TODISK nor the TOPRINTER option is set, the operating system option
PDTODISK determines whether the program dump is directed to a disk file or to the
task file. If the PDTODISK option is set, program dumps are written by default to a disk
file; otherwise, program dumps are directed by default to the task file. An operator can
use the OP (Options) system command to set or reset the PDTODISK option.

If either the TODISK or TOPRINTER option is set for a process, the program dump is
directed only to the destination specified by the option: a disk file for TODISK, or the
task file for TOPRINTER. If both of these options are set, then two program dumps
occur: the first is directed to disk and the second is directed to the task file.

If the TODISK and TOPRINTER options are both used, the two dumps that result can
differ slightly. This is because the act of directing a program dump to disk can cause
some arrays used by the process to be made present or overlayed. The contents of the
arrays are not affected, and both present and overlayed arrays are included in the dump.
However, if you compare both of the dumps that were produced, you might see the same
array indicated as present in one dump, and overlayed in the other dump.

8600 0494-010 10-15

Determining Process History

Using the Task File

The task file is a predeclared printer backup file that is associated with each process. If a
program dump is directed to a task file, the task file is automatically queued for printing,
in the same way as other printer backup files produced by a process. If a process
generates multiple program dumps, then by default, they are all stored in the same task
file.

You can use the TASKFILE task attribute to write comments to the task file or
interrogate the file attributes of the task file. You can also use this task attribute in a
program to force multiple program dumps to be stored in separate backup files. The
program can achieve this effect by closing the task file after each dump and then writing
a comment to the task file. An example of this method is given in the TASKFILE task
attribute description in the A Series Task Attributes Programming Reference Manual.

A program can also use the TASKFILE task attribute to access the task file of an
ancestor process.

You can assign file attributes to the task file through file equation. This task attribute
can be assigned only before process initiation. The following is a WFL example of such
an assignment:

RUN OBJECT/PROG;
FILE TASKFILE (PRINTDISPOSITION=DONTPRINT,USERBACKUPNAME=TRUE,
FILENAME=PROG/DUMP) ;

You can also use the BDNAME task attribute to save the task file and assign a prefix
other than *BD to the file title.

Some security restrictions apply if file equations or a BDNAME task attribute
assignment is used to prefix the task file title with a usercode other than that of the
process. The following are WFL examples of such statements:

RUN OBJECT/PROG;
BDNAME = (FRAN)PROGDUMP;

RUN OBJECT/PROG;
FILE TASKFILE (PRINTDISPOSITION=DONTPRINT,USERBACKUPNAME=TRUE,
FILENAME= (FRAN) PROGDUMP) ;

In general, a process must have privileged status to open a file under another usercode. .
The system enforces this rule even more strictly for task files by requiring that the
process have a privileged usercode rather than merely being a privileged program. The
purpose of this restriction is to prevent nonprivileged users of privileged programs from
using a program dump to overwrite files under another usercode.

10-16 . 8600 0494-010

Determining Process History

This restriction is not foolproof, however. If a privileged program is running under a
nonprivileged usercode, and the program opens the task file with a write statement
before the dump takes place, the program can successfully open the task file under
another usercode. The following is an ALLGOL example of such a write statement:

WRITE (MYSELF.TASKFILE,//,"DUMP NUMBER ONE");

When the program dump takes place later, the dump is directed to the already-opened
task file. For this reason, if you are designing a privileged program intended for use by
nonprivileged users, you should not include any statements that would cause the task file
to be opened before the dump.

Analyzing-a ProgAram Dump from a Running Process

Some program dumps occur when a program is terminated, either by a fault or by a DS
(Discontinue) system command. However, there can also be situations when it is useful
to generate a program dump for a process while it is still running. Such a dump can be
initiated by the DUMP (Dump Memory) system command or by a PROGRAMDUMP
statement in the program.

By default, program dumps are directed to printer and do not print until the process and
its job have terminated. The following paragraphs explain how you can gain access to the
program dump while the process is still running.

One method of gaining immediate access to a program dump is by directing the program
dump to disk. For information on directing dumps to disk, refer to “Controlling the
Program Dump Destination” earlier in this section. If the program dump is directed to
disk, then the dump file becomes available as soon as the dump is completed. You can
then run the DUMPANALYZER utility to analyze the disk file. For a description of
DUMPANALYZER, refer to the A Series System Software Support Reference Manual.

If the program dump is directed to printer, you can enable immediate printing by setting
the PRINTDISPOSITION attribute of the task file to CLOSE. You can accomplish this
assignment with a task equatlon in the statement that runs the program. The following
is a WFL example:

RUN OBJECT/TEST/ALGOL/TASK;FILE TASKFILE(PRINTDISPOSITION= CLOSE)

Alternatively, you can assign the task file PRINTDISPOSITION through a FILECARDS
task attribute assignment within the program. The following is an ALGOL example:

REPLACE MYSELF.FILECARDS BY -
"FILE TASKFILE(PRINTDISPOSITION = CLOSE);" 48"g@";

If the program dump is initiated by the DUMP command, the system closes the task file
at the end of the program dump. The PRINTDISPOSITION attribute then causes the
program dump to be queued for printing.

8600 0494-010 10-16A

Determining Process History

If the program dump is initiated by a PROGRAMDUMP statement in the program, the
task file is not closed automatically at the end of the dump. To cause immediate printing,
the program must follow the PROGRAMDUMP statement with a statement that closes
the task file. The following is an ALGOL example:

CLOSE(MYSELF.TASKFILE); -

Causing Symbolic Dumps for RPG Processes

10-168B

The task file of an RPG process can store a symbolic dump instead of, or in addition to, a
program dump. A symbolic dump provides much of the same information as a program
dump, but is shorter and simpler to read. A symbolic dump can be produced in any of
the following ways:

e The RPG process can execute a DUMP operation code. This operation produces a
symbolic dump, but no program dump. By default, the symbolic dump is written to
the task file. However, the RPG process can specify that the symbolic dump is to be
written to another file previously declared by the process.

e The operator can enter the AX DUMP form of the AX (Accept) system command in
response to a halted RPG program. This action produces a symbolic dump, but no
program dump. The symbolic dump is always written to the task file.

o The RPG process can generate a program dump when the process terminates
abnormally and dump options were specified in a DS (Discontinue) system command
or the DSED or FAULT option was set in the OPTION task attribute. If an
abnormal termination results in a program dump, a symbolic dump appears in the
task file after the program dump. If there is no program dump, then no symbolic
dump is produced either.

The DUMP (Dump Memory) system command, when applied to an RPG process,
produces a program dump, but no symbolic dump.

8600 0494-010

Determining Process History

- For further information, refer to the discussion of the DUMP operation code in the
A Series Report Program Generator (RPG) Programming Reference Manual, Volume 1:
Basic Implementation.

Effect of Resource Limits on Program Dumps

Resource limits imposed by task attributes are deliberately overridden by the system
for a process that is generating a program dump. Task attributes that might be
overridden include DISKLIMIT, ELAPSEDLIMIT, MAXCARDS, MAXIOTIME,
MAXLINES, MAXPROCTIME, MAXWAIT, SAVEMEMORYLIMIT, STACKLIMIT,
TEMPFILELIMIT, and WAITLIMIT. This policy ensures that a process can generate a
complete program dump, even when the termination is caused by the process exceeding
one of these limits.

Understanding Internal and External Causes

The causes of abnormal terminations are divided into two categories: internal and
external. The difference between these two types of causes can determine whether a
process generates a program dump, and whether the process restarts automatically.
To be more specific, the FAULT option of the OPTION task attribute causes a
program dump if a process is discontinued by an internal cause. The DSED option of
the OPTION task attribute causes a program dump if a process is discontinued by an
external cause. The RESTART task attrlbute causes a process to restart only if it is
termmated by an internal cause.

An abnormal termination is considered to be due to an external cause if the
HISTORYCAUSE and HISTORYREASON task attributes have any of the following
combinations of values:

HISTORYCAUSE , HISTORYREASON
OPERATORCAUSE Any

FAULTCAUSE DISKPARITYV

RESOURCECAUSE Any

PROGRAMCAUSE DEATHINFAMILYV, INFANTICIDEYV,

CLIENTDIEDINACRY, or LIBMAINTV

An abnormal termination is considered to be due to an internal cause if the
HISTORYCAUSE and HISTORYREASON values are not any of the combinations listed
in the preceding table.

8600 0494-000 10-17

10-18 8600 0494-000

Section 11
Restarting Jobs and Tasks

A process can be discontinued by any of a variety of causes, including system commands,
program faults, or resource limits. In most situations, this discontinuation is permanent.
The system does not attempt to continue execution of the process or restart it from the
beginning. The system removes the process stack, process information block (PIB), task
attribute block (TAB), and any temporary files that the process was using. Only the
permanent files used by the process are preserved and reflect all changes made by the
process before it terminated.

However, in certain cases you can cause a process to be saved for later restarting.
Work Flow Language (WFL) jobs automatically restart after being terminated by a
system halt/load. Processes written in other languages can invoke a checkpoint, which
stores information that allows the process to be re-created later from a given point in
its execution. Also, any process can be designed to restart from the beginning after
encountering a program fault.

This section explains how to restart processes and how to design processes so they can
‘be restarted successfully.

Designing WFL Jobs for Automatic Restarts

AWFL job is the only type of user process that automatically restarts if interrupted by a
halt/load. If a halt/load occurs while a WFL job is executing, then the WFL job and its
offspring are terminated. After the halt/load, the job recovers in one of two ways.

If the restarted WFL job was executing a checkpointed task at the time of the halt/load,
then a process called JOBRESTART appears in the W (Waiting Entries) system
command display. For information about how to respond to this waiting entry, refer to
“Restarting a Checkpointed Task” later in this section.

If the job was not executing a checkpointed task at the time of the halt/load, the system
begins execution of the job from the last point at which no offspring were in use. The
following examples illustrate this point:

e Suppose that at the time of the halt/load the WFL job is waiting for a single
synchronous task to complete. After the halt/load, the WFL job resumes by
executing the task initiation statement again. This creates a new task that is an
instance of the same program.

e Suppose that the WFL job initiates a total of three asynchronous tasks before the
halt/load, and all of these tasks are still in-use when the halt/load occurs. After the
halt/load, execution resumes with the first of the three task initiation statements.

8600 0494-010 11-1

Restarting Jobs and Tasks

¢ Suppose the WFL job initiated an asynchronous task called A and then another
asynchronous task called B. Then task A terminates. Then a halt/load occurs while
task B is still in use. After the halt/load, execution of the job resumes with the
statement that initiated task A. This was the last point at which no in-use task
existed, because task A still existed when task B was initiated.

Preventing Job Side Effects

The values of string variables declared in the WFL job are not retained across a
halt/load.

The values of the task attributes of the job are also lost, except for the MIXNUMBER
task attribute and any task attributes assigned in the job attribute list. Thus, for
example, values assigned to any task attribute using the MYJOB task variable are not
retained. Further, the effects of the ST (Stop) system command are not retained across
a halt/load, because the ST system command simply assigns the STATUS task attribute
a value of SUSPENDED.

The ON RESTART statement can be used to specify actions that are taken immediately
after a halt/load. Typically, the ON RESTART statement is used to restore the values of
string, file, and task variables before job execution continues.

Task equations included in task initiation statements are reexecuted when the task
initiation statement is reexecuted. Therefore, the ON RESTART statement does not
need to restore attributes specified in task equations.

The job can determine whether it has been restarted by interrogating the RESTARTED
task attribute. This task attribute returns a value of TRUE if the job has been
restarted.

Preventing Task Side Effects

11-2

When the WFL job reinitiates a task, the physical files used by the new task reflect any
changes made by the old task before the halt/load. When designing a program that is to
be initiated by a WFL job, you must plan ahead for this possibility and provide a way for
the program to produce appropriate audit trails.

A WFL task that opens a remote file might not be able to do so after a halt/load.
Normally, a task equation such as the following is used to enable a WFL task to open a
remote file:

RUN OBJECT/PROG;
STATION = MYSELF(SOURCESTATION);

This task equation directs the task to open any remote files at the station that initiated
the WFL job. However, the requested station might not exist after a halt/load. This is
the case, for example, if the job was initiated from a pseudostation, such as a Command
and Edit (CANDE) dialogue opened through the Communications Management System
(COMS). This pseudostation is discarded during a halt/load and is not reestablished until

8600 0494-010

Restarting Jobs and Tasks

you log on to the same CANDE dialogue again. The task terminates abnormally if it
attempts to open a remote file at a nonexistent pseudostation.

Understanding Job Restart Failure

Any of the following circumstances can prevent a WFL job from restarting after a
halt/load:

e The system switches to using a different job description file after the halt/load. The
operator can use system commands to cause the switch to a different job description
file. For further information, refer to the discussion of the job description file in the
A Series System Administration Guide.

e The operator physically transfers the pack containing the job description file to a
different type of system and attempts to make it the new job description file for that
system.

If the operator uses the DL JOBS ON <family> command to mark the pack as the
location of the next job description file, then after the next halt/load, the system
attempts to restart the jobs from the specified job description file. The jobs should
restart successfully, provided that the pack was transferred to the same type of
system with the same type of memory architecture; for example, from one A 15
system with Actual Segment Descriptor (ASD) memory to another.

However, transfers from an A 3 to an A 10 system, and so on, are not supported and
might cause the system to halt/load again.

e The operating system option AUTORECOVERY is reset. The operator can reset
this option using the OP (Options) system command. Resetting AUTORECOVERY
causes the mix limit for each job queue to be set to zero after a halt/load. Any job
that would have restarted will instead remain in a job queue until the operator uses
the MQ (Make or Modify Queue) system command to assign a new mix limit to the
job queue.

Resetting AUTORECOVERY also prevents automatic halt/loads in some situations.
For details, refer to the A Series System Commands Operations Reference Manual.

e An operator changes the job queue definitions after the job is initiated, but before
the halt/load. For example, the job attribute list of a job might set CLASS =
10 and MAXPROCTIME = 60. The definition of job queue 10 might include a
PROCESSTIME limit of 120. The job is submitted through job queue 10 originally.
While the job is executing, an operator might use the MQ (Make or Modify Queue)
system command to lower the PROCESSTIME limit for that job queue to 30. Then
a halt/load might occur. -After the halt/load, the job cannot restart because its
MAXPROCTIME value is greater than the PROCESSTIME limit that is now defined
for job queue 10. The job terminates abnormally with a queue violation.

e A task of the job executed a checkpoint and then was terminated by the halt/load.
In this case, the job is suspended after the halt/load and appears in the W (Waiting
Entries) system command display. For information about operator responses to this
situation, refer to “Restarting a Checkpointed Task” later in this section.

8600 0494-010 11-3

Restarting Jobs and Tasks

Understanding Disk Resource Control Effects

On systems using the Disk Resource Control (DRC) system, the system normally delays
restarting WFL jobs until the DRC system becomes active. The WFL jobs remain in
their job queues, and the system displays an RSVP message notifying the operator that
DRC initialization is underway. You can use the F'S (Force Schedule) system command
to force a queued WFL job to restart before DRC is active. However, be aware that the
following statements in a WFL job can have unexpected effects if they execute before
DRC is active:

¢ CHANGE and REMOVE statements
If these statements specify usercoded files, they are ignored.
e COPY statement

If this statement creates a usercoded copy of a file, the copy proceeds normally, but
DRC is not notified of the increased disk usage for that usercode. Therefore, it
might become possible for the actual disk usage of that usercode to exceed the limit
set in DRC.

For further information about DRC, refer to the A Series Disk Subsystem
Administration and Operations Guide.

Manually Restarting WFL Jobs

11-4

You restart a running WFL job with the RESTART (Restart Jobs) system command.
This command first discontinues the current job and its tasks, and then restarts the
new job as though a halt/load had occurred. For example, the job resumes execution
from the last point at which no offspring were in use. For further information about the
restart point, as well as about job and task side effects that you should plan for, refer to
“Designing WFL Jobs for Automatic Restarts” earlier in this section.

If the DSED program‘dump option is set for any task of the job, the RESTART command
causes the task to generate a program dump.

You can use the RESTART command to achieve some of the effects of a halt/load without
interrupting the system. For example, if you need to perform maintenance on a disk
unit, you must terminate any jobs that have files open on that disk unit. You can set the
mix limit for the relevant job queue to 0, then apply the RESTART command to such a
job (rather than using the DS command). You can then hold the restarted job in the job
queue until pack maintenance is completed. When you increase the mix limit, the job
restarts from the last point where it had no tasks active.

You can also use the RESTART command to test ON RESTART statements in WFL jobs
without having to halt/load the machine. :

If the WFL job had no checkpointed task in progress at the time of the RESTART

command, then the system automatically submits the job to a job queue. The job
resumes execution whenever it is selected from that job queue.

8600 0494-010

Restarting Jobs and Tasks

If the WFL job was executing a checkpointed task at the time the RESTART command
was entered, the job does not restart immediately after the command. Instead, the
independent runner JOBRESTART appears in the W (Waiting Mix Entries) system
command display. For information on how to respond to this waiting entry, refer to
“Restarting Checkpointed Tasks Automatically” later in this section.

Checkpoint Facility

The checkpoint facility provides the ability to restart a terminated task from any
selected point in its execution. Invoking a checkpoint causes the creation of a checkpoint
file, which records the state of the task when the checkpoint was invoked. Either a
statement in the task or a BR (Breakout) system command can invoke a checkpoint.
Later, you can use the RERUN statement to restart the task from the point at which the
checkpoint was invoked.

The main application of the checkpoint facility is the restarting of tasks that were
terminated by a system halt/load. The unique advantage of the checkpoint facility is
the ability to restart a task from a selected point during the task’s execution. You can
invoke repeated checkpoints for the same task and restart the task from any of these
checkpoints.

ALGOL and COBOL(68) each provide a CHECKPOINT statement that enables a
program to invoke a checkpoint during its execution. Additionally, programs can

invoke a checkpoint by calling the exported MCP procedure CALLCHECKPOINT.

The CALLCHECKPOINT procedure can be invoked from any of the languages that
support libraries, including C, COBOL74, COBOLS85, FORTRAN, FORTRAN77, NEWDB,
and Pascal. You can also use operator commands to initiate a checkpoint for ALGOL,
COBOL(68), and COBOL74 tasks. However, checkpoints cannot be initiated for BASIC,
WFL, or RPG tasks.

There are several restrictions on the circumstances in which a checkpoint can be
invoked. One restriction is that the task must have been initiated from WFL, rather
than from a session or a user program. Another is that the task must not have any
offspring. These restrictions, and others, are discussed in detail in the following
subsections.

Programmatically Invoked Checkpoints

Designing a program to be checkpointed and successfully restarted involves more than
simply including a checkpoint invocation statement. You must verify that the program is
not using features that are disallowed for checkpointing. You must also plan for recovery
of data file contents and libraries.

8600 0494-010 11-5

Restarting Jobs and Tasks

Storing Information with a Checkpoint

Invoking a checkpoint causes the following types of information about the task to be
stored:

¢ The structure of the process stack, including information about the procedures that
have been entered, but have not yet exited, and the statement that is currently
being executed

e The current values of all objects declared by the task
¢ The current values of the task attributes of the task

Planning for File Recovery

The checkpoint facility does not store a record of the contents of files used by a task.
Instead, information is stored about the attributes of the files; that is, whether each file
is open and the current position of the record pointer for each file. You must plan for the
fact that file contents might have been modified, or files might have been removed or
replaced, between the time the task was checkpointed and the time it is restarted.

When the task is restarted, each data file must be on the same type of medium as it was
when the checkpoint was invoked. They do not have to be on the same physical units or
at the same locations on disk. They must retain the same basic characteristics, such as
blocking.

If a temporary disk file is open when the checkpoint is invoked, the file is locked and
assigned a title that begins with the letters CP However, the system does not assign
this title to the TITLE attribute of the logical file; instead, the TITLE attribute retains
whatever value it was assigned by the program. If this file is later locked by the
program, the system enters the file in the disk directory under the title specified in
the TITLE file attribute. At restart, the process looks for the file only under the CP
directory, and the task is suspended with a NO FILE condition.

To prevent this situation, all files that will eventually be locked can be opened as
permanent files. That is, the file attribute PROTECTION can be set to SAVE. You can
design the task to remove this file later by closing the file with the PURGE option set.
Another method of avoiding this problem is never to lock a temporary file.

- Planning for Library Recovery

11-6

It is possible to checkpoint a user task that is linked to a library, but only if the task

is not currently executing a library procedure. When a user task linked to a library is
checkpointed, the checkpoint records the values of the library attributes. However, the
checkpoint does not store any information about the state of the library or its contents.

When the user task restarts, the task is not immediately relinked to the library. The
library link is reestablished the first time the user task calls a library procedure.

8600 0494-010

Restarting Jobs and Tasks

You must be aware that the values of global objects in the library might have changed
since the user task was checkpointed. Global objects in the library might have changed
for any of the following reasons:

e The user task might have invoked a library procedure after the checkpoint and
before the user task terminated. This library procedure might have included
statements that modified the values of global objects in the library.

o If the library was frozen with a duration of TEMPORARY and a sharing option of
PRIVATE, then the library thaws when the user task terminates, and the system
removes the library process. The values of all global objects in the library are lost
when the library terminates. When the user task restarts, its first attempt to use
the library causes the creation of a new instance of the library.

¢ Ifthe library has a sharing option of SHAREDBYALL, then other tasks have access
to the library and might make changes to global objects in the library after the
original user task is checkpointed.

Invoking the Checkpoint

The task invokes a checkpoint by executing a CHECKPOINT statement or by invoking
the exported MCP procedure CALLCHECKPOINT. These methods are discussed
separately in the following pages.

Using a CHECKPOINT Statement

ALGOL and COBOL(68) each provide a CHECKPOINT statement. You can create
multiple checkpoints by including a CHECKPOINT statement at several points in the
program. Later, you can restart the task from any of these checkpoints.

Each CHECKPOINT statement can specify the following options:

¢ Device option

Determines the family where the checkpoint-related files are to be created. A
value of DISK causes checkpoint files to be created on the family named DISK. A
value of DISKPACK causes checkpoint files to be created on the family named
PACK. In ALGOL, but not in COBOL(68), you can specify PACK as a synonym for
DISKPACK.

¢ Disposition option

Determines whether checkpoint files are saved. If the value is PURGE, then the
checkpoint files are removed if the task terminates normally. If the value is LOCK,
then checkpoint files are saved indefinitely. Later, you can use the checkpoint files to
restart the task even if it terminated normally.

The disposition option also determines if a checkpoint removes any previous
checkpoint files created by the same task: If the disposition is PURGE, then any
previous checkpoints that were invoked with a disposition of PURGE are removed.
If the disposition is LOCK, then no previous checkpoints are removed.

8600 0494-010 : 11-7

Restarting Jobs and Tasks

e Exception action option

This option specifies that some particular statement is to be executed if the
checkpoint is not successful. This option is available only in COBOL(68). In
ALGOL, other means are used to determine if the checkpoint was successful.

Examples
The following is an ALGOL example:

CHECKPOINT (DISK,PURGE);

The following is a COBOL(68) example:

CHECKPOINT TO DISKPACK WITH LOCK; ON EXCEPTION GO P2.

Using the CALLCHECKPOINT Procedure

A program can invoke a checkpoint by calling the MCP exported procedure
CALLCHECKPOINT. You can create multiple checkpoints by invoking
CALLCHECKPOINT at several points in the program. Later, you can restart the task
from any of these checkpoints.

CALLCHECKPOINT is an integer procedure that receives four integer parameters, in
the following order: UTYPE, CPTYE, CCODE, CPNUM, and RSFLAG. The following table
explains these parameters. '

Parameter
Name Type Input/Output Meaning
UTYP Integer : Input Similar to the device option in a CHECKPOINT

statement. The UTYP parameter determines the family
where the checkpoint-related files are to be created. A
value of 1 causes checkpoint files to be created on the
family named DISK. A value of 17 causes checkpoint
files to be created on the family named PACK. These
values can also be represented by the VALUE function in
ALGOL as VALUE(DISK) and VALUE(PACK).

CPTYP Integer Input Similar to the disposition option in a CHECKPOINT
statement. The CPTYP parameter determines whether
checkpoint files are saved. A value of O is the same as a
disposition of PURGE: the checkpoint files are removed if
the task terminates normally. A value of 1 is the same as
a disposition of LOCK: the checkpoint files are always
saved indefinitely. Later, you can use the checkpoint files
to restart the task even if it terminated normally.

continued

11-8 © 8600 0494-010

Restarting Jobs and Tasks

continued

Parameter
Name Type Input/Output Meaning

The CPTYP parameter also determines if a checkpoint

removes any previous checkpoint files created by the

same task. If the disposition is O (PURGE), then any

previous checkpoints that were invoked with a

disposition of 0 or PURGE are removed. if the

disposition is 1 (LOCK), then no previous checkpomts
are removed.

CCODE Integer Output If the checkpoint is unsuccessful, the CCODE parameter
stores one of the values listed in Table 11-1, “Checkpoint
Completion Codes.”

CPNUM Integer Output CPNUM returns the number that the system assigned to
this checkpoint. The numbering scheme is explained
under “Creating Output Disk Files with a Checkpoint”
later in this section.

RSFLAG Integer Output If the task was restarted from a checkpoint, then
RSFLAG returns a value of 1 the next time the task
invokes the CALLCHECKPOINT procedure. In this case,
CALLCHECKPOINT actually does not invoke a
checkpoint for the task. If the task invokes
CALLCHECKPOINT a second time, RSFLAG returns a
value of 0 and the checkpoint is actually invoked.

Procedure Integer Output A value of 0 indicates a successful checkpoint. A vaiue

result of 1 indicates that the checkpoint was not taken, in
which case either the CCODE parameter or the RSFLAG
parameter should be nonzero.

The following are AL.GOL statements that declare the CALLCHECKPOINT procedure
and invoke it:

LIBRARY MCPSUPPORT (LIBACCESS=BYFUNCTION,FUNCTIONNAME="MCPSUPPORT.");
INTEGER PROCEDURE CALLCHECKPOINT(UTYP, CPTYP, CCODE, CPNUM, RSFLAG);
INTEGER UTYP, CPTYP, CCODE, CPNUM, RSFLAG;
LIBRARY MCPSUPPORT;
INTEGER CCODE_ACTUAL, CPNUM_ACTUAL, RSFLAG_ACTUAL, CPRESULT;

CPRESULT := CALLCHECKPOINT(VALUE(DISK),1, CCODE_ACTUAL, CPNUM_ACTUAL,
RSFLAG_ACTUAL) ;

8600 0494-010 11-9

Restarting Jobs and Tasks

The following COBOLS85 program uses the explicit library interface to invoke the
CALLCHECKPOINT procedure. The invocation specxﬁes a device option of PACK and a
disposition of PURGE.

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECK-POINT.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT ATTR-FILE ASSIGN TO DISK.
DATA DIVISION.
FILE SECTION.
FD ATTR-FILE.
@1 ATTR-REC PIC X(89).

WORKING-STORAGE SECTION.

77 CHECKPOINTDEVICE PIC S9(11) USAGE BINARY.

77 CHECKPOINTTYPE PIC S9(11) USAGE BINARY.

77 COMPLETIONCODE PIC S9(11) USAGE BINARY.

77 CHECKPOINTNUMBER PIC S9(11) USAGE BINARY.

77 RESTARTFLAG PIC S9(11) USAGE BINARY.

77 RSLT “PIC S9(11) USAGE BINARY.

77 VALUE-OF-PACK. PIC S9(11) USAGE BINARY.

77 VALUE-OF-PURGE PIC S9(11) USAGE BINARY VALUE @.

~ LOCAL-STORAGE SECTION.
LD LD-CALLCHECKPOINT.
77 CHECKPOINTDEVICE PIC S9(11) USAGE BINARY.
77 CHECKPOINTTYPE PIC S9(11) USAGE BINARY.
77 COMPLETIONCODE PIC S9(11) USAGE BINARY.
77 CHECKPOINTNUMBER PIC S9(11) USAGE BINARY.
77 RESTARTFLAG PIC S9(11) USAGE BINARY.
77 RSLY PIC S9(11) USAGE BINARY.

PROGRAM-LIBRARY SECTION.
LB MCPSUPPORT IMPORT
ATTRIBUTE -
FUNCTIONNAME IS "MCPSUPPORT"
LIBACCESS IS BYFUNCTION.
ENTRY PROCEDURE CALLCHECKPOINT
WITH LD-CALLCHECKPOINT
USING
CHECKPOINTDEVICE
CHECKPOINTTYPE
COMPLETIONCODE
CHECKPOINTNUMBER
RESTARTFLAG
GIVING
RSLT.

11-10 “ 8600 0494-010

Restarting Jobs and Tasks

PROCEDURE DIVISION.

INIT-PARA.
CHANGE ATTRIBUTE KIND OF ATTR-FILE
TO PACK.
MOVE ATTRIBUTE KIND OF ATTR-FILE

TO VALUE-OF-PACK.
PERFORM CHECKPOINT-PARA.
STOP RUN.

CHECKPOINT-PARA.
MOVE VALUE-OF-PACK TO CHECKPOINTDEVICE.
MOVE VALUE-OF-PURGE TO CHECKPOINTTYPE.
CALL CALLCHECKPOINT
USING
CHECKPOINTDEVICE
CHECKPOINTTYPE
COMPLETIONCODE
CHECKPOINTNUMBER
RESTARTFLAG
GIVING
RSLT.

8600 0494-010 11-10A

Restarting Jobs and Tasks

Creating Output Disk Files with a Checkpoint

11-10B

Invoking a checkpoint causes the creation of one or more of the following
checkpoint-related disk files: a checkpoint file, a checkpoint job file, and checkpoint
temporary files. The following paragraphs explain what these files are, and the factors
that determine whether they are created.

A checkpoint file is always created if the checkpoint is successful. This file stores a
complete description of the checkpointed task and is titled according to the following
convention:

(<usercode>)CP/<job number>/<checkpoint number> ON <family name>

The usercode in the checkpoint file title is the usercode of the task. The job number is
the 4-digit mix number of the job that initiated the task. The checkpoint number is a
3-digit number used to distinguish this checkpoint from any other checkpoints executed
by the same task. The family name is taken from the value of the device option in the
CHECKPOINT statement.

If the disposition option is set to PURGE, the checkpoint number is always 0 (zero)
and each succeeding checkpoint with PURGE set removes the previous checkpoint file.
If the disposition option is set to LOCK, the checkpoint number starts at a value of 1
for the first checkpoint, and is incremented by 1 for each succeeding checkpoint that

is invoked with LOCK. If a task invokes some checkpoints with LOCK and some with
PURGE, then the “locked” checkpoints use ascending checkpoint numbers and the
“purged” checkpoints use a checkpoint number of 0.

‘A checkpoint job file is produced by the first checkpoint in the task that is invoked with

LOCK. This checkpoint job file makes it possible to restart the checkpointed task after
its original job has terminated. Later checkpoints with LOCK do not produce a job file,
nor do any checkpoints invoked with PURGE. The checkpoint job file is titled according
to the following convention:

(<usercode>)CP/<job number>/JOBFILE ON <family name>

Checkpoint temporary files store the contents of temporary files in use by the
checkpointed task. Checkpoint temporary files are created only in certain circumstances,
which are discussed under “Planning for File Recovery” earlier in this section. These

files are titled according to the following convention:

(<usercode>)CP/<job number>/F<file number> ON <family name>

In the checkpoint temporary file title, the file number is a 3-digit file number that starts
at 1 and is incremented by 1 for each temporary disk file.

The way the checkpointed task terminates can have an effect on the checkpoint-related
files. If the checkpointed task terminates abnormally and the last checkpoint has a
disposition of PURGE, the system retitles the checkpoint file to have the next sequential
checkpoint number and creates a checkpoint job file if none exists. If the checkpointed

8600 0494-010

Restarting Jobs and Tasks

task terminates normally and all checkpoints have a disposition of PURGE, then the
system removes all checkpoint-related files that were created for the task.

For tasks that invoke a large number of checkpoints with the LOCK disposition,

the checkpoint number is incremented up to 999 and then is recycled to 1 (leaving 0
undisturbed). When this happens, the checkpoint files previously numbered 1, 2, and so
on are lost as new ones using those numbers are created.

When a task restarts at a checkpoint that was not the last, subsequent checkpoints
invoked from the restarted task continue in numerical sequence from the one used for
the restart. Old high-numbered checkpoints are thus lost.

If a rerun is initiated and the original job number is in use by another task, then a new
job number is assigned to the job. The titles of all checkpoint-related files for the task
are changed to reflect the new job number.

Restrictions on the Use of Checkpoints

There are certain restrictions on the features that can be in use by a task when it is
checkpointed. These restrictions apply to both programmatically initiated checkpoints
and operator initiated checkpoints. If any of these features are in use, they prevent

a successful checkpoint. If a checkpoint fails, the task continues normally, but no
checkpoint files are created.

The following restrictions apply to the tasking environment of the checkpointed task:

¢ The task must have have been initiated by a RUN statement in a WFL job. The
checkpointed task must be the only in-use offspring of the WFL job at the time the
checkpoint is invoked.

e The task cannot be a remote task. That is, it must not be initiated on a BNA host
system other than that on which the job is running.

e The task must not have any offspring at the time of the checkpoint. However, the
task can have offspring at earlier, or later, points in its execution.

A checkpoint cannot be invoked from within the following types of procedures:

e Animported library procedure. The checkpoint cannot take place if an imported
library procedure is anywhere in the process stack. However, the checkpoint can be
invoked if the user process is merely linked to a library.

¢ A SORT input or output procedure. (SORT provides its own restart capability; refer
to the A Series System Software Utilities Operations Reference Manual.)

¢ A TUSE procedure in COBOL(68).
Several types of files cannot be open at the time of the checkpoint. However, the process
can close these files, take a checkpoint, and then reopen the files and continue to use

them. The following are the restricted types of files:

e Direct files

o Duplicated files

8600 0494-010 : 11-10C

Restarting Jobs and Tasks

11-10D

Files whose FILESTRUCTURE attribute value is not ALIGNED180
ISAM files

Muiltireel unlabeled tape files

ODT files |

Remote files

Paper tape files

Port files

Reversed tape files

Some restrictions also apply to printer output. No backup files that have a '
PRINTDISPOSITION file attribute value of CLOSE, DIRECT, or EOT can be open. In
addition, the BDBASE option of the OPTION task attribute cannot be set. ’

The process cannot have an open Data Management System IT (DMSII) set at the time
of the checkpoint. ‘

No direct arrays can be in the process stack at the time of the checkpoint. A direct array
can be declared in a procedure in the program. However, the procedure must not have
been entered, or must have been entered and exited, before the checkpoint.

8600 0494-010

Restarting Jobs and Tasks

The checkpoint file cannot be created if doing so would cause the user’s file usage on a
family to exceed the limits enforced for the user by the disk resource control (DRC)

system. For information about the disk resource control system, refer to the A Series
Disk Subsystem Administration and Operations Guide. '

Determining Eligibility for Checkpoints

A task can determine whether it is probably eligible for checkpoints by interrogating the
CHECKPOINTABLE task attribute. This read-only Boolean attribute is assigned by
the system. The system assigns a value of FALSE if the task does not meet certain basic
requirements for a checkpointed task. However, a CHECKPOINTABLE value of TRUE
does not guarantee that a checkpoint will succeed. For details, refer to the discussion of
CHECKPOINTABLE in the A Series Task Attributes Programming Reference Manual.

Determining Whether the Checkpoint Succeeded

The checkpoint facility returns a value indicating the result of the attempted checkpoint.
This value is divided into the following fields:

[46:01] If this bit is set, then the current task was restarted from this checkpoint.

[25:12] If the checkpoint succeeded, this field stores the checkpoint humber
assigned to the checkpoint files.

[10:10] If the checkpoint failed, this field stores the completion code that
indicates why the checkpoint failed. For a list of the possible completion
codes, refer to Table 11-1. :

[00:01] This is the exception bit. If this bit is set, then either the checkpoint did
not succeed or the process was restarted from this checkpoint.

In ALGOL, you can store the result value in a Boolean variable by invoking the
checkpoint facility as a function. This Boolean value can then be stored in a real variable,
and the various fields of the real variable can be conveniently interrogated.

In the following ALGOL example, BOOL is a Boolean variable and the other variables
are real.

BOOL := CHECKPOINT(PACK,LOCK);
REALRSLT := REAL(BOOL); ,
CPRESTART := REALRSLT.[46:01];
CPNUMBER := REALRSLT.[25:12];
CPCOMPLETION := REALRSLT.[10:10];
CPEXCEPTION := REALRSLT.[98.01];

In COBOL(68), the result value is automatically stored in a special register called
CHECKPOINT-STATUS. This is a predefined Level-2 variable that stores the result
value for the most recent checkpoint statement. If the task was restarted from this
checkpoint, then CHECKPOINT-STATUS stores a negative value. You can use MOVE
statements to extract the values of the checkpoint number, completion code, and
exception fields. :

8600 0494-000 11-11

Restafting Jobs and Tasks

The following example copies the value of CHECKPOINT-STATUS into a variable called
CPSTATUS. The example then extracts the values from various fields of CPSTATUS
and stores them in four separate variables. The variables CPSTATUS, CPRESTART,
CPNUMBER, CPCOMPLETION, and CPEXCEPTION were all declared as 77-level
COMP PIC 9(11).

CHECKPOINT TO DISK WITH LOCK.

MOVE CHECKPOINT-STATUS TO CPSTATUS.

MOVE CPSTATUS TO CPRESTART [46:80:01].
MOVE CPSTATUS TO CPNUMBER [25:11:12].
MOVE CPSTATUS TO CPCOMPLETION [1£:09:10].
MOVE CPSTATUS TO CPEXCEPTION [#8:00:01].

You can tell whether a checkpoint was successful by observing the completion message
that is displayed. The following is an example of a successful completion message:

#1082 CHECKPOINT #1080/081 TAKEN @ F54:004E:0 @ (229940)*

The following is an example of the completion message for a checkpoint that failed:

#1111 CHECKPOINT ABORTED: BAD IPC ENVIRONMENT @ (929998)*

Each completion message corresponds to one of the completion codes from field [10:10]
of the checkpoint result. The completion messages are listed in Table 11-1.

Table 11-1. Checkpoint Completion Codes

Completion
Code Completion Message and Meaning
0 "~ CHECKPOINT # <mix number>/<checkpoint number> TAKEN
‘ The checkpoint was executed successfully.
1 INVALID AREA IN STACK ’
2 SYSTEM ERROR
Completion errors 1 and 2 both mean that a system error occurred.
3 BAD IPC ENVIRONMENT
The process has offspring or was not initiated by a WFL RUN statement.
4‘ NO USER DISK FOR CP FILE |
The family requested by the device option in the checkpoint statement is not available.
5 10 ERROR DURING CHECKPOINT
An |/O error occurred. |

coritinued

11-12 : - 8600 0494-000

Restarting Jobs and Tasks

Table 11-1. Checkpoint Completion Codes (cont.)

Completion
Code Completion Message and Meaning
6 # ROWS IN CP FILE > 1024
The process is t0o large to be successfully checkpointed.
7 DIRECT FILE NOT ALLOWED
The process has a direct file that is open.
8 TOO MANY TEMPORARY DISK FILES
The process has more than 998 temporary files.
9 ILLEGAL FILEKIND
The process is using a file for writing directly to a line printer or a card punch.
10 DUPLICATED FILE NOT ALLOWED
The process is using a duplicated file.
11 ILLEGAL FILE ORGANIZATION
The process is using an Index Sequential Access Method (ISAM) file.
12 INSUFFICIENT MEMORY TO CHECKPOINT
Not enough memory is available to checkpoint the process.
13 OPEN REVERSED TAPE FILE NOT ALLOWED
The process is using a reversed tape file.
14 ICM AREA IN STACK
| “The process is using a BNA Version 2 port file.
15 DMS AREA IN STACK
The process is using a DMSII data set.
16 DIRECT ARRAY IN STACK
The process has entered, and not yet exited, a block that includes a direct array
declaration.
17 SECURITY ERROR SAVING TEMPORARY DISK FILE

The process has a temporary file open under another usercode. This situation can
occur, for example, if both the following are true:

e The process opened a permanent disk file that resided under someone else’s
usercode.

e While the process had the file open, another process attempted to remove the
file, thus changing it to a temporary file.

8600 0494-000

continued

11-13

Restarting Jobs and Tasks

Table 11-1. Checkpoint Completion Codes (cont.)

Completion
Code Completion Message and Meaning

19 STACKMARK
A system error occurred.

20 SORT AREA IN STACK
The process is using the SORT function.

21 IN USE ROUTINE NOT ALLOWED
The process has entered a USE procedure.

22 ILLEGAL CONSTRUCT
Either the process has opened a port file or there is operating system code in the
process stack. The latter can occur, for example, when a fault causes the execution of
an ALGOL ON statement.

23 BDBASE ILLEGAL
The BDBASE option of the OPTION task attribute has been set.

24 ILLEGAL FILESTRUCTURE
The process has an open file with a FILESTRUCTURE value for which checkpointing is
not implemented.

25 MULTI-REEL UNLABELED TAPE NOT ALLOWED

" The process has opened a multireel unlabeled tape file.

26 SURROGATE TASK NOT ALLOWED
The task was initiated on a BNA host other than that on which the job is running.

28 PROGRAM USES LIBRARIES
The process is executing an imported library procedure.

30 ROW SIZE TOO SMALL FOR CP FILE » ‘
The process stack is too large to fit in a row of the checkpoint file. The maximum size
of a process stack that can be checkpointed is approximately 22700 words.

32 OPERATOR CHECKPOINT REQUEST CANCELED
A checkpoint or restart was already underway.

34 BR REQUEST REJECTED
The BRCLASS task attribute value is NOBR.

36 OPEN BACKUP FILE WITH PRINTDISPOSITION = EOT NOT ALLOWED

37 OPEN BACKUP FILE WITH PRINTDISPOSITION = CLOSE NOT ALLOWED

continued
11-14 8600 0494-000

Restarting Jobs and Tasks

Table 11-1. Checkpoint Completion Codes (cont.)

Completion
Code Completion Message and Meaning

38 OPEN BACKUP FILE WITH PRINTDISPOSITION = DIRECT NOT ALLOWED
Each of these three values means that the PRINTDISPOSITION file attribute has a
value not allowed for checkpoints.

40 ATTEMPT TO EXCEED TEMPORARY FILE LIMIT ON CP FILE

41 ATTEMPT TO EXCEED FAMILY LIMIT ON CP FILE

42 FAMILY INTEGRAL LIMIT EXCEEDED ON CP FILE
These three values mean that the checkpoint file cannot be created because doing so
would cause the user's file usage on a particular family to exceed the limits set by the
disk resource control system. For information about the disk resource control (DRC)
system, refer to the A Series Disk Subsystem Administration and
Operations Guide.

43 CHECKPOINT ABORTED: INVALID ENVIRONMENT IN STACK

The process has invoked and not yet exited a library procedure. Either the process is
currently executing code from that procedure, or it is executing code from some other
procedure that was invoked from the library procedure.

44 CHECKPOINT ABORTED: DISK TYPE MUST BE DISK OR PACK

A process invoked the exported MCP procedure CALLCHECKPOINT and passed a
value of other than 1 (disk) or 17 (pack) to the UTYP parameter.

45 CHECKPOINT ABORTED: CHECKPOINT TYPE MUST BE ZERO OR ONE

A process invoked the exported MCP procedure CALLCHECKPOINT and passed a
value of other than O (purge) or 1 (lock)to the CPTYP parameter.

Operator-Invoked Checkpoints

You can initiate checkpoints for a task by using the BR (Breakout) system command.
This feature is designed to allow you to checkpoint tasks when an external condition
prevents execution from continuing. For example, checkpointing a task just before
halt/loading the system preserves the work done up to that point.

The BR command, if it is completed successfully, has the same effect as a CHECKPOINT
statement in a program. All restrictions that apply to a programmed checkpoint also
apply to an operator-initiated checkpoint. For example, the task must have been
initiated from a WFL job and must not have any offspring. The task must be written

in ALGOL, COBOL(68), or COBOL74. For details about these restrictions, refer to
“Restrictions on the Use of Checkpoints™ earlier in this section. .

The programmer is responsible for designing a task to recover data file contents and
libraries after a restart. It can be difficult to design such recovery mechanisms without

8600 0494-010 11-15

Restarting Jobs and Tasks

knowing exactly when the checkpoint will take place. You can overcome this difficulty
through the use of the BRCLASS task attribute. This task attribute specifies whether
the task currently allows an operator-invoked checkpoint.

Programmatically Preventing Operator Checkpoints

You can use the BRCLASS task attribute to specify how a task will respond to an
operator-invoked checkpoint. Through the use of repeated assignments to BRCLASS,
you can specify that operator checkpoints are allowed at some points in the task and not
at others.

You can disallow operator checkpoints by assigning BRCLASS a value of NOBR (the
default). You can allow a single checkpoint, and cause the task to be discontinued
automatically after the checkpoint, by assigning BRCLASS a value of ONCEONLY.
You can allow multiple checkpoints, and allow the task to continue normally after each
checkpoint, by assigning BRCLASS a value of MULTIPLE.

Note: Multiple operator checkpoints are possible only if BRCLASS is set to
MULTIPLE for both the job and the task. It is not sufficient to assign
MULTIPLE to the task alone.

The BRCLASS task attribute has effect only if the CHECKPOINTABLE task attribute
is TRUE. ‘

Displaying the Checkpoint Status

You can use the <mix number> BR system command to determine whether a task is
eligible for an operator checkpoint and whether the task is currently being checkpointed
or restarted. The response has the following form:

TASK <mix number> <checkpoint status>

The following are possible responses if the task is not currently being checkpointed

or restarted. The phrase “CANNOT CONTINUE AFTER BR” indicates that the
BRCLASS task attribute has a value of ONCEONLY. When BRCLASS = ONCEONLY,
the system automatically discontinues the process after the checkpoint completes.
However, the process can continue if the operator cancels the checkpoint with an OF
(Optional File) system command, as discussed under “Operator Actions after the
_Checkpoint” later in this section.

TASK <mix number> IS NOT CHECKPOINTABLE BY THE OPERATOR
TASK <mix number> IS CHECKPOINTABLE
TASK <mix number> IS CHECKPOINTABLE (CANNOT CONTINUE AFTER BR)

11-16 8600 0494-010

Restarting Jobs and Tasks

The following are responses that indicate that a checkpoint has been requested or is
underway:

TASK <mix number> CHECKPOINT REQUESTED

TASK <mix number> CHECKPOINT REQUESTED (CANNOT CONTINUE AFTER BR)
TASK <mix number> CHECKPOINT RUNNING

TASK <mix number> CHECKPOINT RUNNING (CANNOT CONTINUE AFTER BR)

The following responses indicate that a restart is underway. In these responses, the
phrase “PROGRAM” means that the checkpoint was initiated by a CHECKPOINT
statement in the task. The phrases “ONCEONLY” and “MULTIPLE” specify the value
of the BRCLASS task attribute in cases where the checkpoint was operator initiated.

TASK <mix number> : RESTARTING

TASK <mix number> : RESTARTING {PROGRAM)
TASK <mix number> : RESTARTING {ONCEONLY)
TASK <mix number> : RESTARTING (MULTIPLE)

The Y (Status Interrogate) system command displays more limited information about the
checkpoint status of a task. If a checkpoint or restart action has been requested for a
task, a line of the following form appears in the Y display:

CHECKPOINT STATUS : <status>

The possible <status> values are REQUESTED, RUNNING, or RESTARTING. These
values have the same meaning they do in the BR display.

Invoking a Checkpoint Interactively

You can invoke a checkpoint for a task by entering the <mix number> BR + form of
the BR command. If the checkpoint is accepted, it is executed with DISK as the device
option and PURGE as the disposition option. Checkpoint files are therefore created on
DISK family, with a checkpoint number of 0.

If the BRCLASS task attribute value is ONCEONLY, the task is discontinued after the
checkpoint.

The system might delay execution of the checkpoint request if it is not immediately able
to save the task stack correctly. For example, a checkpoint request cannot be completed
while the task is waiting on an event. If the checkpoint request is being delayed, a BR
command shows a checkpoint status of REQUESTED.

Canceling a Checkpoint Interactively
If the checkpoint status is REQUESTED, you can cancel the checkpoint request by

entering a BR command of the form <mix number> BR —~. This command cancels the
request immediately.

8600 0494-010 ' 11-17

Restarting Jobs and Tasks

‘Operator Actions after the Checkpoint

As soon as the checkpoint has been taken successfully and the checkpoint file is entered
into the directory, the checkpoint function waits for an operator action. The following is
an example of the W (Waiting Mix Entries) system commands display for such a process:

---Job-Task-Pri---Elapsed-~-==~= 5 WAITING ENTRIES =---mmmeccmmcccceeeem
6927\6928 58 1:44 (JASMITH) (JASMITH)OBJECT/ALGOL/CP ON SYSPK
OPERATOR CHECKPOINT #6927/80@ TAKEN @ 112F:0QEA:1 @ (00020509)

You can determine the possible responses to this. waiting state by entering a <mix
‘number> Y command. The REPLY line of the Y command display lists one or more of
the following possible responses: ’ ’

e < mix number> DS

This command immediately discontinues the checkpointed task and its job. Any
user protection, such as EPILOG procedures, will not be considered during the DS
operation. This restriction ensures that neither the job nor the task will change the
state of any of its files after the checkpoint has been taken. This response is always
available after an operator-initiated checkpoint.

e < mix number> OF

This command cancels the checkpoint, removes the files created by the checkpoint,
and causes the checkpointed task and its job to continue their normal execution.
This response can be used if you decide that the checkpoint was not needed.

e < mix number> QK

This command causes the system to complete the checkpoint, and causes the
checkpointed task and its job to continue execution normally after the checkpoint.
Any files created by the checkpoint are saved. This response is allowed only if the
BRCLASS task attribute value was MULTIPLE.

Additionally, if the task was checkpointed in preparation for a halt/load, the ??PHL
(Programmatic Halt Load) system command can be used to initiate the halt/load. After
the halt/load, you can enter a command to restart the task.

Restarting a Checkpointed Task

11-18

- A checkpointed task can be restarted automatically after a halt/load or explicitly with a
WFL RERUN statement.

8600 0494-010

~ Restarting Jobs and Tasks

Restarting Checkpointed Tasks Automatically

If a WFL job was executing a checkpointed task when a halt/load occurred, the job does
not immediately restart after the halt/load. Instead, an independent runner called
JOBRESTART appears in the W (Waiting Entries) system command display. The
following is an example of the entry:

---Mix-Pri---Elapsed-------=---- 2 WAITING ENTRIES --=--- ————
7082 50 :55 JOB JOBRESTART
RESTART PENDING 7119 DAILY/RUNNIT

In this example, DAILY/RUNNIT is the job that is pending restart, and its mix number
is 7119. The checkpointed task does not appear in the display. JOBRESTART is a job
that was initiated by the system software to do the restarting, and its mix number is
7082. The following are the possible operator responses to this example and the effects
of the responses:

e 7082 0K
This command restarts the job and restarts the task at the last checkpoint.
e 7082DS

This command discontinues the job and the task. Any checkpoint files are saved,
regardless of whether the disposition was LOCK or PURGE. The checkpoint number
of PURGE files is left as 0 (zero).

e 7082QT _
In this context, QT has the same effect as DS.

Initiating a Restart Explicitly

You can use a WFL RERUN statement to restart a checkpointed task. The checkpoint
files of the task to be restarted must have been permanently saved. Checkpoint files
are permanently saved if the checkpoint disposition is LOCK, if the job terminates
abnormally, or if the checkpoint is initiated by an operator BR command.

The RERUN statement can be included in a WFL job. Also, you can enter the RERUN
statement directly at the ODT, in which case the RERUN statement causes the creation
of a WFL job that does the restart. The RERUN statement has the following form:

RERUN <job number> / <checkpoint number>

In the RERUN statement, the job number is'the mix number of the job that initiated the
checkpointed task. The checkpoint number identifies the checkpoint that is to be used.

8600 0424-010 . 11-19

Restarting Jobs and Tasks

11-20

If the checkpointed task had a usercode, the checkpoint files are stored under that
usercode. To restart such a task, you must enter the RERUN command in a job that
specifies the usercode. The following can then be entered at an ODT:

?BEGIN JOB;USERCODE = <usercode> / <pa$sword>;
RERUN <job number> / <checkpoint number>

Following are some of the conditions that can prevent a successful restart:

e The usercode of the checkpointed task or its job is no longer valid.
e The program has been recompiled since the checkpoint was created.

¢ The system is now running on a different MCP release level than it was when the
checkpoint was created. For example, the system is now running a 4.0 MCE, and the
* checkpoint was created on a system running a 3.8 MCP.

e The system is now using different intrinsics from when the checkpoint was taken.

e The checkpoint files are not present on DISK family or PACK family. The files must
be on one of these two families, regardless of any FAMILY equations entered with
the RERUN statement.

e The process was restarted on a different type of machine from the one where the
checkpoint was taken. For example, the process was checkpointed on an A 3 and
restarted onan A 9.

If a rerun is initiated and the job number is in use by another job, a new job number
is assigned and the checkpoint files are automatically retitled to reflect the new job
number.

Table 11-2 lists the messages that can be displayed to show the result of the restart
attempt.

Table 11-2. Restart Messages

"Message Text

RESTART PENDING

RESTART INITIATED

RESTART ABORTED: MISSING CHECKPOINT FILE
RESTART ABORTED: 10 ERROR DURING RESTART
RESTART ABORTED: USERCODE NO LONGER VALID
RESTART ABORTED: OPERATOR DSED RESTART
RESTART ABORTED: OPERATOR QTED RESTART
RESTART ABORTED: MISSING CODE FILE

RESTART ABORTED: NOT ABLE TO RESTART

continued

8600 0494-010

Restarting Jobs and Tasks

. Table 11-2. Restart Messages (cont.)

Message Text

RESTART ABORTED: INVALID JOB FILE
RESTART ABORTED: ERR COPYING JOB FILE
RESTART ABORTED: MISSING JOB FILE
RESTART ABORTED: FILE POSITIONING ERROR
RESTART ABORTED: WRONG JOB FILE
RESTART ABORTED: WRONG CODE FILE
RESTART ABORTED: BAD CHECKPOINT FILE
RESTART ABORTED: BAD STACK NUMBER
RESTART ABORTED: WRONG MCP

RESTART ABORTED: MISSING FAMILY MEMBER
RESTART ABORTED: MACHINE TYPES DIFFER

RESTART ABORTED: PAGED ARRAY PAGE SIZE HAS
CHANGED

RESTART ABORTED: FILE IS RESTRICTED

RESTART ABORTED: FILE IS ON A RESTRICTED
FAMILY

RESTART ABORTED: TAPE LABELKIND CONFLICTS
WITH FILEUSE '

Automatic Retries

You can design a process to be restarted automatically if it is terminated because of an
error. This effect is achieved by assigning a value to the RESTART task attribute. The
value of this task attribute specifies the number of times the process is to be restarted
following an error termination. Execution of the restarted process begins with the first
statement in the outer block. After each restart, the RESTART task attribute value is
decremented by one. When the RESTART value is zero, the next error termination is
final. . :

When the process is restarted, no “EOJ” or “EOT” messages are displayed. Some
elements of the process survive the error termination and are reused. These elements
are the PIB, the code segment dictionary, and the base of the process stack. All task
attribute values of the original process are retained, including the mix number. In
addition, the values of any parameters the process received from its initiator are saved.

However, the values of all objects declared by the process are lost. These include

all variables, arrays, and so on, that are declared in the process. These objects are
re-created and reinitialized after the process restarts. '

8600 0494-000 11-21

Restarting Jobs and Tasks

11-22

If the process has tasks, they are discontinued with a “PARENT PROCESS
TERMINATED” error each time the process has an error termination. However, each
time the process is restarted, it can execute the task initiation statements again and
create new tasks.

A process that was discontinued by an operator command does not restart, regardless of
the value of the RESTART attribute. The RESTART value also does not cause a process
to be restarted after a halt/load.

The RESTART task attribute is primarily useful in situations where the process might
be discontinued by a temporary hardware fault or where the process will receive
different input data after it restarts. If the process is attempting to do something invalid
or contradictory, repeated restarts are not helpful. The process terminates abnormally
each time.

If the process includes a statement that assigns a value to RESTART, make sure that the
statement is not reexecuted after each restart. If the statement is always reexecuted,
then the value of RESTART can never reach zero and the process restarts infinitely.

The following is an example of an ALGOL program that would enter such a loop:

199 BEGIN

2080 REAL X;

309 MYSELF.RESTART := 4;
499 X := X DIV O3

500 END.

The following example shows how the program could be modified so that it would not
enter an infinite loop. The SW1 task attribute is used as a flag to indicate whether the
process has been executed at least once.

108 BEGIN

200 REAL X;

306 IF NOT MYSELF.SW1 THEN MYSELF.RESTART := 4;
490 MYSELF.SW1 := TRUE;

500 X := X DIV O;

609 END.

In ALGOL, you can use the ON statement to prevent an abnormal termination from
occurring after a program fault. The ON statement has fewer applications than the
RESTART task attribute because it applies only to errors that would otherwise cause
the process to be discontinued with HISTORYCAUSE = FAULTCAUSE. However, for

- these cases, the ON statement provides more flexible error handling than the RESTART

task attribute.

For more information about the ALGOL ON statement, refer to “Designing a Program
to Survive Faults” in Section 10, “Determining Process History.”

8600 0494-000

Section 12
Tasking across Multihost Networks

The linking of systems into a multihost network provides the capability for a type
of distributed processing. Each process executes on a single host system. However,
the various members of a process family can run on different host systems and can
communicate with each other in most of the same ways they could if they were all
running on the same system.

This type of distributed processing is referred to as remote tasking and is provided
by Host Services software. Remote tasking is supported across BNA Version 1,
BNA Version 2, and Open Systems Interconnection (OSI) networks.

This section uses some specialized terminology to discuss remote tasking. The term
remote process is used to refer to a process that is initiated from one host system, but
runs on another host system. The host from which the remote process is initiated is
referred to as the local host. The host at which the remote process runs is referred to as
the remote host.

In the same way, the local operator is an operator at the system from which the remote
process is initiated. The remote operator is an operator at the system where the remote
process runs.

A remote process can be initiated from programs or from interactive sources such as

the operator display terminal (ODT), a Command and Edit (CANDE) session, or a
Menu-Assisted Resource Control (MARC) session. Any messages generated by the
process are routed back to the local ODT and originating terminal. You can monitor and
control the remote process by transmitting ODT commands to the remote host system.

The following are reasons why you might want to initiate a remote process:

e To equalize the processor load on the various systems at an installation. If the local
system is overloaded, a process may be able to run more quickly at a remote host.

e To make use of a program that is stored at a remote host. A process must run on
the same system where the object code file is stored. Therefore, initiating a program
that is stored at another system implies the creation of a remote process.

e To more efficiently access files that are stored on a remote host. A remote process
running on the remote host can access these files more efficiently than a local process
that accesses the files using Host Services Logical I/O. The result can be savings in
I/O time and elapsed time.

For further information about Host Services, other than remote tasking, refer to
the A Series Distributed Systems Service (DSS) Operations Guide. For additional
information about Host Services Logical I/O, refer to the A Series I/O Subsystem
Programming Guide.

8600 0494-010 12-1

Tasking across Multihost Networks

Submitting Remote WFL Jobs

Any Work Flow Language (WFL) job can be designed to run on a remote host.
Additionally, a local operator can initiate jobs that are stored on remote hosts.

Running a Local WFL Job on a Remote Host

In some cases, it might be convenient to store a WFL job source program on the local
host, even though the job is to be run on a remote host. For these cases, you can include
an AT <hostname> specification at the start of the job.

You can submit the WFL job for execution by entering a START command at the local
host. If the AT hostname specification in the job requests a hostname that is not
currently available, the system rejects the job and displays the message “UNKNOWN
HOST SPECIFIED”. If the requested hostname is available, the system transfers the
job to the remote host. The entry “JOB/HANDLER/<local hostname >” appears in the
mix at the remote host and indicates that a job has been transferred to the remote host.
The job compilation, job queuing, and job execution all take place at the remote host.

If the AT <hostname> phrase is used, the job cannot include a job parameter list, any
BINARY data specifications, or a null character within a quoted string. Also, if the WFL
source program is stored in a disk file, a question mark must be included before the END
JOB statement. If the WFL source program is submitted in array form, it should not
include any strings with embedded null characters; otherwise, the job receives a syntax
error at the remote host.

The following is an example of the job heading for a job that is tb run on a remote host
named CHICAGO: :

?AT CHICAGO BEGIN JOB REMOTE/RUNNER;

Submitting a WFL Job Stored on a Remote Host

12-2

If a WFL source program resides on a remote host, you can submit the WFL program for
execution with the command AT <hostname> START <file title>. The following is an
example of this command:

AT CHICAGO START (SMITH)REMOTE/RUNNER ON DPMAST

The WFL program is compiled and executed on the remote host where it resides.

A WFL job initiated in this way runs without a usercode in some circumstances. For a
discussion of these circumstances, refer to “Usercode Identity” later in this section.

8600 0494-010

Tasking across Multihost Networks

Meeting Remote Job Queue Requirements

‘You must be aware of the possibility that the job queue definitions on the remote host

~ might be different from those on the local host. The job is enqueued on the remote host
just as it would be if it were a local job submitted on that host. If the job does not qualify
for any of the queues, it is discontinued.

The job queuing algorithm is outlined in “Selecting the Queue for a Job” in Section 4,
“Tasking from Programming Languages.”

Initiating Non-WFL Remote Processes

You can initiate remote processes from a local session or a local process. Several
restrictions apply to the features that can be used by the remote process.

Specifying the Remote Host

The HOSTNAME task attribute can be used to specify the remote host at which the
process is to run. This task attribute can be assigned through a task equation or an
assignment to the task variable before initiation.

The HOSTNAME task attribute can be accessed from ALGOL, COBOL74, and WFL.
Therefore, remote processes can be initiated from any of these languages. For example,
the following ALGOL statements initiate a remote process:

PROCEDURE RUNNER;
EXTERNAL ;
REPLACE T.NAME BY "OBJECT/RUNNIT ON DPPACK.";
REPLACE T.HOSTNAME BY “SEATTLE.";
CALL RUNNER [T];

CANDE and MARC also enable HOSTNAME to be included as a task equation following
a RUN statement. The following is an example of a CANDE command that initiates a
remote process:

RUN RUNNIT;HOSTNAME=MIAMI

The equivalent statement in MARC is as follows:

RUN OBJECT/RUNNIT ;HOSTNAME=MIAMI

8600 0494-000 12-3

Tasking across Multihost Networks

Limitations on a Non-WFL Remote Process

12-4

The following restrictions apply to a remote process that is not a WFL job:

e The remote process must be an external process whose object code file is stored on
the remote host.

e The remote process can be passed no more than one parameter. The parameter
must be a real array of one dimension. The actual parameter must have a zero lower
bound. The system automatically chooses a passing mode of call-by-value for the
parameter. :

¢ The WFL COMPILE statement cannot cause the resulting object code file to
be executed as a remote process. For example, suppose the compiler equation
COMPILER HOSTNAME = SFA15C is used. The compilation can run successfully
on the foreign host with a disposition of LIBRARY or SYNTAX, but is rejected if the
disposition is GO or LIBRARY GO.

If one of the preceding restrictions is violated, the initiating process is discontinued
with HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 31
(ILLEGALTASKXFERYV). The following error message is displayed:

ILLEGAL HOST-TO-HOST TRANSFER OF TASK

Another restriction is that a WFL job cannot use global file assignments for remote tasks
initiated by the job. For example, the following sequence of statements is illegal:

FILE IN(KIND=DISK,TITLE=NEW/INPUT/DATA);
RUN OBJECT/UPDATE;

HOSTNAME = ALBANY;

FILE CARD := IN;

Global file assignments have no effect when applied to remote tasks initiated from WFL.
The remote task executes normally, but the file used by the task does not receive any

of the file attributes specified for the global file in the WFL job. When the remote task
opens the file, the following nonfatal attribute error message is displayed:

[<hostname>] <mixno> ATTRIBUTE ERROR:<file internal name>.GLOBALFILESIRW

A remote task initiated from a local WFL job cannot read from any data specifications
in the WFL job. When the remote task attempts to read from a data specification,

it is suspended with a “NO FILE” condition and waits for a card reader file with the
requested title to appear. An RSVP message such as the following is routed back to the
local host:.

[ALBANY] 2879 RSVP (JASMITH)OBJECT/UPDATE ON USERPK. NO FILE CARD (CR)

A coroutine cannot use a continue statement to transfer cbntrol to a coroutine on a
remote host. By default, the PARTNER task attribute of a remote task is treated as

8600 0494-000

Tasking across Multihost Networks

MYSELF and the PARTNEREXISTS task attribute of a remote task returns a value of
FALSE. In this case, any continue statement executed by the remote task has no effect.
Execution simply proceeds to the next statement in the remote task.

The MYJOB task variable of a remote task is treated as a reference

to the DSSSUPPORT library on the remote host. Any references to
MYSELEEXCEPTIONTASK in the remote task are treated as references to
TASKING/MESSAGE/HANDLER, a task that is initiated by DSSSUPPORT on

the remote host. TASKING/MESSAGE/HANDLER is discussed under “Displaying
TASKING/MESSAGE/HANDLER and TASKING/STATE/CONTROLLER?” later in this
section. Any references to MYJOB.EXCEPTIONTASK in the remote task are treated
as references to the remote task itself. :

.Any files accessed by a remote process are searched for on the remote host by default.
If the remote process uses a file on the local host, the HOSTNAME file attribute must
be assigned. For the remote process to open a remote file on the local host, the process
must also set its STATION task attribute to zero and assign the desired station name to
the FILENAME task attribute.

Host Availability

If a process attempts to initiate a task at a remote host that is nonexistent or
currently unavailable, the initiation fails, but the initiating process continues normally.
The task variable of the task stores a STATUS value of -2 (BADINITIATE), a
HISTORYTYPE of 4 (DSEDV), and a HISTORYCAUSE of 13 NETWORKCAUSEV).
The HISTORYREASON value varies depending on the exact reason the host is
unreachable.

A pair of messages such as the following are displayed when this error occurs:

6749 TASK NOT INITIATED AT TESTSYS : ERROR - HOST NOT REACHABLE
6749 FOREIGN TASK INITIATION FAILED @ 193A:0001:4 @ (99000234)*

Initiating Processes from a Remote Session

An alternate method of initiating a process on a remote host is to initiate it from a
remote CANDE or MARC session. You can establish a remote session by using the
Station Transfer feature provided by Host Services. A process initiated from such a
session is considered a local process because the session is under the direct control of the
remote host. The process is therefore not limited by any of the restrictions previously
discussed under “Limitations on a Non-WFL Remote Process” in this section.

For a detailed discussion of Station Transfer, refer to the A Series Distributed Systems
Services (DSS) Operations Guide.

8600 0494-000 ' ' 12-5

Tasking across Multihost Networks

Interrogating the Remote Ancestry of a Process

N

A process can find out which host system it is running on by interrogating its own
HOSTNAME task attribute. This feature makes it possible to write a single program
that will take different actions when it is run on different systems.

A process can interrogate its remote ancestry by inspecting the ITINERARY task
attribute. This task attribute stores the hostnames of the host systems where each of
the ancestors of the process are running. This task attribute can be useful for cases
where the process needs to transmit information back to the user and thus needs to
know where the user is located.

Preventing User Identity Problems

The user identity of a process consists of several related task attributes, including
USERCODE, ACCESSCODE, CHARGE, and FAMILY. Each system in a multihost
network has its own USERDATAFILE, which stores definitions of the users that are
allowed on the system. These definitions can be different on different host systems. For
a remote process to run successfully, it must be assigned an identity that is recognized on
the remote host.

Usercode Identity

12-6

The most basic user identity requirement is that a remote process must run with a
usercode that is allowed at the remote host, or it must run without a usercode.

If the remote process has a usercode, then the usercode must be one that is permitted as
aremote user at the remote host. Remote users are defined by REMOTEUSER entries
in the USERDATAFILE of the remote host. REMOTEUSER entries can specify in
detail the hosts that can submit a process with a particular usercode. The following is an
example of a REMOTEUSER entry at a remote host that allows processes with usercode
JASMITH to be initiated from the host named CHICAGO:

RU JASMITH OF CHICAGO

In addition to the REMOTEUSER entry, there must be a USER entry for the usercode
of the process in the USERDATAFILE at the remote host. A USER entry defines a
usercode and assigns usercode attributes to the usercode.

A system administrator at the remote host can cause remote processes that request
a particular usercode to be run under a different usercode instead. The substitute
usercode is referred to as a local alias usercode. A remote process assumes a local
alias usercode if the REMOTEUSER entry at the remote host specifies a local alias -
for the requested usercode. The local alias usercode must also be defined by a USER
entry in the USERDATAFILE at the remote host. The following is an example of a
REMOTEUSER entry that specifies a local alias usercode:

RU JASMITH OF CHICAGO LOCALALIAS=JOHNSMITH

8600 0494-000

Tasking across Multihost Networks

. The following is an example of a USER entry for the local alias:

USER = JOHNSMITH
MAXPW = 1
PASSWORD = ?
FAMILY DISK = SYSPK OTHERWISE DISK
IDENTITY = "ALIAS FOR JASMITH FROM CHICAGO"

Local alias usercodes are intended for use in cases where two different users on two
different systems happen to have the same usercode. Establishing local alias usercodes
allows these users to run processes on each other’s systems, but prevents them from
accessing each other’s files.

Alternatively, the system administrator can use a local alias usercode to cause many
usercodes from remote systems to be mapped to a single usercode at the local system.
This mechanism can be useful if the users need to have access to the same set of files.

If no local alias usercode is defined for the requested usercode, then the requested
usercode must itself be defined by a USER entry in the USERDATAFILE at the remote
host. Note that one or more of the usercode attributes can have different values on the
remote host than they have on the local host. These differences do not prevent remote
process initiation.

In addition, the usercode can have passwords on the remote host that are different from
those defined for that usercode on the local host. If the remote process inherits the
usercode of the local process, the password is implicitly changed to a password that

is accepted at the remote host. However, if the remote process is explicitly assigned

a usercode at initiation time, the password specified should be one of the passwords
defined for the usercode at the local host. If the remote process changes its usercode
after it is initiated, the process must specify a password that is allowed on the remote
host. :

A WFL job is the only type of remote process that can run without a usercode. The
following are sources from which a remote WFL job can receive a usercode, listed in
order of precedence: :

1. Assignments to the USERCODE task attribute in the job attribute list.
The usercode of a session, if the job is submitted from a CANDE or MARC session.

The terminal usercode, if the job is submitted from an ODT. An operator can assign
a terminal usercode to an ODT by using the TERM (Terminal) system command.

4. The host usercode of the system, if the job is submitted from an ODT or a
nonusercoded MARC session. The host usercode is assigned by the HU (Host
Usercode) system command. You can create a nonusercoded MARC session by
logging on with an asterisk (*) at a SUPERUSER-capable station.

If a process does not receive a usercode from any of the first three sources listed, then
the host usercode is evaluated for SYSTEMUSER status. If the USER entry for the
usercode at the remote host assigns SYSTEMUSER status, then the job runs without a
usercode. Otherwise, the host usercode is used as the usercode for the job.

8600 0494-010 12-7

Tasking across Muiltihost Networks

12-8

A local process cannot initiate a nonusercoded remote process. In the first place, any null
usercode explicitly assigned to a process is overridden at initiation time by inheritance
from the parent. For example, if the local process assigns a null USERCODE value to a
task variable, and then initiates a remote process with the task variable, then the null
USERCODE assignment is ignored. The task is initiated successfully, but inherits the
usercode of its parent. In the second place, if the local process is nonusercoded, and it
does not explicitly assign a usercode to the remote process, then the remote process
inherits a null usercode. However, the system cannot initiate a remote process that has a
null usercode, so the system displays error messages such as the following:

DISPLAY: 18070@@ HOST SERVICES ERROR 17: USER ERROR - NO USERCODE

TASK OBJECT/ALGOL/TASK ON PACK NOT INITIATED AT PARIS : USER ERROR
~ NO USERCODE

FOREIGN TASK INITIATION FAILED @ 109E:0001:4 @ (090012500)*

For more information about usercode definitions and the REMOTEUSER command,

 refer to the A Series Security Administration Guide.

8600 0494010

Tasking across Multihost Networks

Accesscode and Charge Validation

A remote process does not inherit the CHARGE task attribute value of its parent. If no
CHARGE value is explicitly assigned to the remote process, it runs without a charge
code. However, the remote process runs with a CHARGE value if one is explicitly
assigned by a statement in the parent process. Note that usercode definitions in the
USERDATAFILE can specify the range of CHARGE values that are valid for processes
with a given usercode. If the CHARGEREQ attribute is set in the usercode definition at
the remote host, then the remote task must have one of the CHARGE values defined by
the CHARGECODE usercode attribute at the remote host.

The ACCESSCODE task attribute also is not inherited by remote processes, but it can
be assigned. However, if it is assigned, it must be assigned a value that is allowed for the
remote process usercode on the remote host.

FAMILY Identity

A remote task does not inherit the FAMILY task attribute value of its parent. Instead,
the remote task inherits the FAMILY specification in the usercode definition at the
remote host, if there is such FAMILY specification. If there is no FAMILY specification
in the usercode definition at the remote host, then by default the remote task runs with
a null FAMILY value.

The parent process can override the FAMILY specification at the remote host by
explicitly assigning a FAMILY value to the remote task, either with a task equation or
with an assignment to the task variable of the remote task.

8600 0494-010 12-8A

Tasking across Multihost Networks

Logging of Remote Processes

The system loggiﬁg and job logging responsibilities for remote process families are
divided between the local host and the remote host.

System Log Entries

When a local process or session initiates a remote process, the local system log does not
contain a log entry to record the event. However, if no other remote processes have
been active recently, then the system makes a log entry showing that a port file called
TASKPORT has been opened. The following is an example of an entry that can appear
in the local log if a local process initiates a remote process. The initiating process in this
example had a mix number of 1799:

14:18:15 OPEN 1799 EXT NAME: TASKPORT.
INT NAME: TASKPORTS.
FILE ACCESS RULE = UNION (ACTOR
JOB 6717, TASK 6733)

STACK @352,

(DECLARER

STACK 9165,
JOB 4677, TASK 4677)

USE = IN KIND=PORT UNIT NUMBER @ '

OPENTYPE: OFFER, POSITION: AT FRONT, MOTION:
NONESUBFILE: 9009

All system log entries for the remote process are made in the system log at the remote
host. The remote process receives BOJ and EQJ log entries, even if it is actually a

task. The BOJ log entry shows the originating unit as 0 (zero) and also includes a line
called ITINERARY that specifies the host that initiated the process. The following is an
example of this log entry:

14:10:26 BOJ 9295 (WHSMITH)OBJECT/REPORTER ON DPMAST.
CODE COMPILED: FEB 25, 1987 15:87:00 BY ALGOL 37.
165
QUEUE: @
ORIGINATING UNIT: @
PRIORITY: 5@
USERCODE: WHSMITH.
ITINERARY: SANTAFE

12-8B ' - 8600 0494-010

Tasking across Multihost Networks

Job Summaries for Remote Processes

The job summary for a process family is printed on the system where the job runs. Thus,
for WFL jobs that include an AT' < hostname > specification, the job summary is printed
at the remote host. The same is true for WFL jobs started by an AT < hostname >
START command. Any other independent remote processes, such as programs initiated
by an ALGOL RUN statement, also print job summaries on the remote host.

When a local job initiates a remote task, a single entry is made in the job summary
indicating that the remote task was initiated. No other job summary entries are made
for the remote task. The following is an example of this entry:

17:55:18 1708 DISPLAY: [MIAMI] 3382 BOT (JAS)OBJECT/UPDATE/FILES.

8600 0494-010 12-9

Tasking across Multihost Networks

Resource Limits for Remote Processes

Remote processes do not inherit resource limits from their local parents. For example,
if a local job has a MAXPROCTIME limit, remote tasks do not inherit that limit.
Furthermore, the local job cannot be discontinued because of excessive resource usage
by its remote tasks. '

The only way resource limits are propagated across networks is by explicit assignment.
Thus, a local process can initiate a remote task and assign it a MAXPROCTIME value.
If the remote task uses more processor time on the remote host than MAXPROCTIME
allows, the remote task is discontinued.

For information about how resource limits are propagated in a local process family, refer
to Section 2, “Understanding Interprocess Relationships.”

Interacting with Remote Processes

An operator at the local host system can use system commands to monitor or interact
with processes running on remote host systems. A user at a MARC or CANDE session
can also use MARC or CANDE commands to monitor or interact with processes running
on remote host systems.

Viewing Remote Process Messages

In general, any messages generated by a remote process are routed back to the local
host. These include “BOT” and “EOT” messages, display messages, accept messages,
and RSVP messages. The following are the only exceptions to this rule:

e WFL jobs initiated by an AT <hostname> START command. No messages are
returned to the local host for such a job. (On the other hand, messages are returned
for WFL jobs that use an AT <hostname > specification in the job header.)

e Non-WFL independent processes. These include any remote processes initiated by
an ALGOL or COBOL74 RUN statement. Only a single “BOJ” message is routed
back to the local host, and the mix number displayed is always 0000.

Remote process messages appear in the MSG (Display Messages) system command
display at the local host, prefixed by the hostname of the remote host, as in the following
example: '

e MiX-TiMmEmmmmmmmm e mmmm MESSAGES == - mmmm o mcmmmmmmmmmmm o
* %% 19:33 [PARIS] 1057 EOT (JASMITH)OBJECT/REPORTER ON DPMAST.
* #% 19:25 [PARIS] 157 BOT (JASMITH)OBJECT/REPORTER ON DPMAST.

12-10 ' 8600 0494-010

Tasking across Multihost Networks

If the remote process was initiated from a CANDE or MARC session, the process
messages are also routed back to the CANDE or MARC session. The following is an
example of a CANDE command that initiates a remote task and the messages that are
returned:

RUN REPORTER ON DPMAST;HOSTNAME=PORTLAND

#RUNNING 6881 AT PORTLAND.

#[PORTLAND] 6881 BOT (JASMITH)OBJECT/REPORTER ON DPMAST.
#ET=1:00.2 PT=0.0 10=0.2 ‘

#[PORTLAND] 6881 EOT (JASMITH)OBJECT/REPORTER ON DPMAST.

The message “#ET = 1:00.2 PT=0.0 IO =0.2” is the termination message displayed for
the process by CANDE. The elapsed time, processor time, and I/O time displayed in this
message summarize the resource usage accumulated by the process on the remote host.

Note that the local termination message for the process appears before the EOT
message from the remote host. This occurs because there is a slight delay in the
forwarding of messages from the remote host.

Local Operator Control of Remote Processes

At the local host, you can control and interrogate remote processes by using system
commands prefixed with the phrase AT <hostname>. You can direct any system
command to a remote host in this way. However, security restrictions can be
implemented at the remote host to limit or prevent the execution of such commands.

The system provides a usercode for each system command that is directed to a remote
host. If the ODT has a terminal usercode, the terminal usercode is used. You can assign
a terminal usercode with the TERM (Terminal) system command. If there is no terminal
usercode, the host usercode is used. You can assign a host usercode with the HU (Host
Usercode) system command.

If a process uses the DCKEYIN statement to submit a system command with an AT
<hostname > prefix, the system command is submitted under the usercode of the
process that executed the DCKEYIN statement.

For the command to be accepted at the remote host, the associated usercode must have a
USER entry and a REMOTEUSER entry in the USERDATAFILE at the remote host.
Otherwise, an error occurs at the remote host and the command is not executed. The
command is also rejected if no usercode is associated with it. (The command might not
have a usercode if neither a terminal usercode nor a host usercode is defined.)

If the REMOTEUSER entry defines a local alias usercode, the system command becomes
associated with the local alias usercode. In this case, the USERDATAFILE must include
a USER entry for the local alias usercode.

The remote host inspects the USER entry of the associated usercode to find out whether
SYSTEMUSER status is set for the usercode. If SYSTEMUSER status is set for

the usercode, then the system command is always allowed. If the usercode is not a
SYSTEMUSER, then only a limited subset of the system commands can be used.

8600 0494-000 12-11

Tasking across Multihost Networks

If the command usercode does not have SYSTEMUSER status, then the output of
mix display commands is filtered so that only processes running under the command
usercode are displayed. Likewise, commands that specify a particular process can only
be applied to processes running under the command usercode. The following are the
tasking-related commands that are available:

e AX (Accept)

e C (Completed Mix Entries)

e CU (Core Usage)

¢ DBS (Database Stack Entries)

e DS (Discontinue)

¢ DUMP (Dump Memory)

o FA (File Attribute)

¢ FR (Final Reel) ,

¢ HI (Cause EXCEPTIONEVENT)

e J (Job and Task Structure Display)

e LIBS (Library Task Entries)

e MSG (Display Messages)

¢ MX (Mix Entries)

e OF (Optional File)

® OK (Reactivate)

e OT (Inspect Stack Cell)

o RM (Remove)

e SL (Support Library)

¢ SQ (Show Queue)

o ST (Stop)

e THAW (Thaw Frozen Library)

e TI (Times)

¢ Y (Status Interrogate)

MARC Control of Remote Processes

12-12

You can enter system commands in MARC and direct them to a remote host by including
the AT <hostname> prefix. The security checking that is done is the same as that done
for commands entered at the ODT. However, the usercode of the MARC session is used
as the command usercode. If the MARC session has no usércode, then the system uses
the host usercode.

8600 0494-000

Tasking across Multihost Networks

CANDE Control of Remote Processes

You can direct system commands to a remote host from a CANDE session by prefixing
the command with AT <hostname>. These system commands are subject to the same
restrictions as commands entered using AT <hostname> at an ODT. The usercode

of the CANDE session, or its local alias, is inspected for SYSTEMUSER status at the
remote host and the commands are handled according to the results of this test.

Visibility of Remote Processes to Remote Operators

- A remote process is visible to an operator at the remote host in the same way as it would
if it were a local process. However, the remote process appears to be a job, even if it
is actually a task. The following is an example of the Y (Status Interrogate) system
command display for a remote task:

STATUS OF JOB 1450/1450 AT 15:58:01.

PRIORITY = 80

ORIGINATION: UNIT @

USERCODE: CYNTHIA

CHARGECODE: 6825

STACK STATE: WAITING ON AN EVENT

PROGRAM NAME: (CYNTHIA)OBJECT/UPDATER ON SYSPK

The “ORIGINATION?” displayed is always “UNIT 0” if the process was initiated from a
remote host. (However, there are other circumstances that can also cause an origination
of “UNIT 0” to be displayed.)

The following is an example of how such a task might appear in the J (Job and Task
Structure) system command display. No job is displayed for the task.

1450 50 .+ (CYNTHIA) (CYNTHIA)OBJECT/ALGOL/TASK ON SYS37

Displaying TASKING/MESSAGE/HANDLER and
TASKING/STATE/CONTROLLER

The networking software creates two special processes that handle initiation of

remote processes and communication between the remote processes and their local
parents. These processes are tasks initiated by the DSSSUPPORT library on the local
host and the remote host. Their names are TASKING/MESSAGE/HANDLER and
TASKING/STATE/CONTROLLER. One instance of each of these tasks appears in the
mix at a host as long as any remote processes or parents of remote processes are running
at the host. These tasks also continue to appear in the mix for a few minutes after all
remote processes have terminated.

8600 0494-000 12-13

Tasking across Multihost Networks

Using Host Services-Supported Task Attributes

Host Services supports the majority of the task attributes discussed in this guide.
However, there are some task attributes that cannot be used across multihost networks.
If Host Services does not support a task attribute, then that task attribute cannot be
accessed by a process running on a different host system. For example, if a parent
process is running on one system and its task is running on another system, the parent
cannot access some of the task’s task attributes.

The following list shows all the task attributes. Each task attribute supported by Host
Services is marked with an asterisk (*).

ACCEPTEVENT

* ACCUMPROCTIME.
AUTOSWITCHTOMARC
BRCLASS

* CLASS
CORE
DEPTASKACCOUNTING
DISKLIMIT

* ELAPSEDTIME
EXCEPTIONTASK

* FILEACCESSRULE
HISTORY

* HISTORYTYPE
INHERITMCSSTATUS

* [TINERARY
JOBSUMMARYTITLE
LIBRARYSTATE

* MAXCARDS

* MAXPROCTIME

* MIXNUMBER
NOJOBSUMMARYIO
OTHERPBITCOUNT
PARTNEREXISTS

* RESOURCE

* SAVEMEMORYLIMIT

* SOURCESTATION

* STACKSIZE

* STATUS

* SW1

* ACCESSCODE
APPLYLIST
BACKUPFAMILY

* CHARGE

* COMPILETYPE
DATABASE

* DESTNAME
DISPLAYONLYTOMCS
ERROR

* FAMILY
FILEACCOUNTING

* HISTORYCAUSE

* HOSTNAME
INITPBITCOUNT

* JOBNUMBER

* LANGUAGE
LIBRARYUSERS

* MAXIOTIME

* MAXWAIT
MYPPB

~ * OPTION

OTHERPBITTIME
PRINTDEFAULTS
RESTART

* SOURCEKIND

* STACKHISTORY
STARTTIME

* STOPPOINT

* SW2

* ACCUMIOTIME
AUTORESTORE

* BDNAME
CHECKPOINTABLE

* CONVENTION
DECKGROUPNO

* DESTSTATION

* ELAPSEDLIMIT
EXCEPTIONEVENT
FETCH

* FILECARDS

* HISTORYREASON
HSPARAMSIZE
INITPBITTIME

* JOBSUMMARY
LIBRARY
LOCKED

* MAXLINES

* MCSNAME

* NAME
ORGUNIT
PARTNER

" * PRIORITY

RESTARTED
SOURCENAME

* STACKLIMIT

* STATION
SUPPRESSWARNING

*8W3

continued

8600 0494-000

Tasking across Multihost Networks

continued

* SW4 * SW5 * SW6.

* SwW7 * SW8 TADS
TANKING TARGET TASKERROR
TARGET TASKERROR TASKFILE
TASKLIMIT TASKSTRING * TASKVALUE
TASKWARNINGS * TEMPFILELIMIT * TEMPFILEMBYTES

* TYPE * USERCODE VALIDITYBITS

* WAITLIMIT

In most cases, if Host Services does not support a task attribute, then any attempt

to access the task attribute through Host Services is ignored. No error results,

but the task attribute remains unchanged. A warning message is displayed if the
DSSSUPPORT library on the system was compiled with the DIAGNOSTICS option set.
However, if a process attempts to access the ACCEPTEVENT, EXCEPTIONEVENT, or
TASKFILE task attribute of another process across a multihost network, the accessing
process is discontinued.

It is possible for hosts running different software release levels to be linked in the

same network. When accessing the task attributes of a remote task, be aware of the
possibility that the remote host may be running an old version of Host Services that does
not support all the task attributes that the current version of Host Services does.

8600 0494-000 12-15

12-16 ’ 8600 0494-000

Part 1l
Interprocess Communication

8600 0494-000

8600 0494-000

Section 13
Understanding Interprocess
Communication

Interprocess communication, or IPC, is a voluntary exchange of information between
two or more processes. Interprocess communication is sometimes referred to as
interprogram communication. The latter term is avoided in this guide for two reasons.

First, a program is an artifact stored in a file that doesn’t do anything. When the
program is initiated, a process is created, and the process can communicate with other
processes.

Second, the processes involved in interprocess communication are not necessarily
instances of different programs. They might be two different instances of the same
program, or they might be internal processes created by initiating procedures within the
same program. '

If the distinction between programs and processes seems unclear to you, read Section 1,
“Understanding Basic Tasking Concepts,” before proceeding any further in this section.

Information in a computer system is always stored in a particular form. For example,

to store information about whether a given condition is true or false, a process might
declare a Boolean variable. To store numeric data, the process might declare an -
integer variable or real variable. To record a set of instructions that can be invoked
repeatedly, the process might declare a procedure. All of the things that can be declared
in processes can be thought of, in a general way, as “objects.”

With this point in mind, you can see that IPC consists of processes making use of
objects declared by other processes. For example, if one process assigns a value of 3
to an integer variable declared in another process, this assignment is an example of
interprocess communication. If a process invokes a procedure declared by another
process, this procedure invocation is another example of interprocess communication.

Why should two processes need to have access to the same objects? The following are
some examples:

e Inan electronic mail system. One way for such a system to work would be for each
user to initiate his or her own mail process. The mail processes could then use IPC
techniques to send messages back and forth.

e For transaction processing. For example, you might have a file that is updated by
many different online users. You can use IPC techniques to ensure that different
users’ updates do not overwrite each other.

e To promote reuse of code. You might write a procedure that is useful in many
different applications. You can place the procedure in a library where it can be used
by many different applications.

8600 0494-000 A 13-1

Understanding Interprocess Communication

A Series systems provide a variety of IPC techniques. When you design applications that
use IPC techniques, there are three main decisions you need to make:

o The type of object that is to be shared

o The method by which the object is to be shared

¢ The means of synchronizing access to the share_d dbject

A factor contributing to all of these decisions is programming language restrictions. Not

all types of objects, sharing methods, or synchronization methods are available in all
programming languages.

Objects Used in Interprocess Communication

The types of objects you use for IPC depends on the types and quantlty of data or code
that are to be shared.

To exchange Boolean, numeric, or text data, it can be convenient to use the types

of variables in which you would normally store such information in a program. For
example, if the information to be communicated is an integer, you could store it in a level
77 BINARY elementary item in COBOL74, or in an INTEGER variable in ALGOL or
WFL. Also, arrays generally can be used for IPC.

For certain simple data types, you also have the option of using task attributes to store
the value. The operating system provides several task attributes as storage areas for use
by the application. Refer to Section 14, “Using Task Attributes.”

For communicating large volumes of textual data, you might want to use a port file.

Processes can read from and write to port files much as if they were physical files.

However, the port file exists only as a communication path between two or more
processes. Port files help to prevent ambiguity and timing problems by providing
separate input and output queues for each pair of communicating processes. For an

overview of port file capabilities, refer to Section 19, “Using Shared Files.”

For code that is to be shared between processes, you can use a procedure declaration.
Information about sharing procedures is given in Section 15, “Using Global Objects;”
Section 17, “Using Parameters;” and Section 18, “Using Libraries.”

Methods of Sharing Objects

13-2

A Series systems provide several methods of sharing objects among processes.
Your choice among these methods is determined to a large extent by the way the
communicating processes are related.

For example, suppose that a WFL or ALGOL program initiates an internal procedure as
a task. Statements in the procedure are able to access any variables declared globally
to the procedure within the program. The parent of the task also has access to these
globally-declared objects, which therefore can be used to pass information between the
parent and one or more tasks. This method of sharing objects is discussed in Section 15,
“Using Global Objects.”

8600 0494-000

Understanding Interprocess Communication

Another TPC method exists for communication between a process and its initiator.

This method is called tasking parameter passing. WFL, ALGOL, and COBOL74 are
able to specify most types of variables as parameters in process-initiation statements.
Depending on the passing mode used, the parameter can provide one-way or two-way
communication between the process and its initiator. ALGOL is also capable of passing
a procedure as a parameter to another ALGOL program or a Pascal program. This
makes parameter passing a viable method for sharing code as well as data. For further
information about parameter passing, refer to Section 17, “Using Parameters.”

Processes belonging to the same process family can conveniently access each other’s
task attributes by way of certain predefined task variables. Thus, a task can access
the attributes of its job by way of the MYJOB task variable. The task can access the
attributes of its parent and other ancestors by way of the EXCEPTIONTASK task
attribute. Any two tasks in the same process family can exchange information through
the task attributes of a common ancestor. Predefined task variables are discussed in
Section 2, “Understanding Interprocess Relationships.”

One IPC method that does not require the communicating processes to be related in any
way is the library mechanism. A library is a type of process that stores procedures for
use by other processes. Libraries can be written in ALGOL, C, COBOL(68), COBOL74,
COBOLS85, FORTRAN, FORTRAN77, NEWE, Pascal, and PL/I.

You can design libraries to have any of several levels of sharing properties. In the case
of SHAREDBYALL libraries, each process using the library accesses the same instance
of the library program. Each procedure exported by the library can access variables in
the library that are declared globally to the procedure. Processes using a shared library
can communicate by assigning and reading values of global variables in the library. For
further information about libraries, refer to Section 18, “Using Libraries.”

Port files are another IPC tool that is available between unrelated processes. In the
case of port files, the sharing method is part of the design of the object itself. When one
process attempts to open a port file, the system searches for a matching process that

is attempting to open the other end of the port file. When the system finds a correct
match it establishes the port file link between the processes. Port files can be used in all
A Series programming languages except WFL. WFL is excepted because it is not capable
of reading from or writing to any kind of file. For further information about port files,
refer to Sectlon 19, “Using Shared Files”. :

Methods of Synchronizing Access

When two or more processes are able to update the value of a common data item,
the possibility arises that the updates can interfere with and overwrite each other.
An example is that of a variable that records the current balance of a customer
.account. Suppose the account has a current balance of $100. One process m1ght
have responsibility for subtracting $10 from the account. Another process, running
simultaneously, might have responsibility for adding $15 to the account. The net result
should be a balance of $105. However, the actual results can be quite different.

8600 0494-000 13-3

Understanding Interprocess Communication

The problem arises because this type of update involves building ori the value that is
already present. If more than one process updates the account, a sequence like the
‘following can occur:

Process A reads the account balance ($100) into variable Al.

Process B reads the account balance ($100) into variable B1.

Process A subtracts $10 from variable Al, leaving $90.

Process B adds $15 to variable B1, leaving $115.

Process A assigns the value from A1l to the account balance, leaving a balance of $90.
Process B assigns the value of Bl to the account balance, leaving a balance of $115.

e N R

In other words, process B can unintentionally delete the effect of the update performed
by process A. The result is that the customer balance is left at $115 instead of the correct
$105.

To prevent such situations from occurring, it is sometimes necessary that a process be
able to secure exclusive access to an object for the duration of the transaction. A Series
systems provide a special type of variable called an evenf for handling these and other
types of timing problems. You must use some means, such as global declarations,
parameters, or SHAREDBYALL libraries, to provide the communicating processes with
access to the event. You can then design the processes to use the event as a sort of flag
to signal the availability of another object, such as a variable or file.

Events can be declared and used in ALGOL, COBOL/(68), and COBOL74. Certain

implicitly declared events can also be accessed by WFL. For fufthervinformation about
events, refer to Section 16, “Using Events.”

13-4 ; 8600 0494-000

Section 14
Using Task Attributes

Certain task attributes exist only for the purpose of transmitting information between
different members of a process family. These attributes have no meaning to the system,
and thus can be used only for storing values to be read later. The following are the task
attributes that fall into this category:

e LOCKED

This Boolean-valued task attribute accesses the availability state of an event. For
further information, refer to “Using Implicitly Declared Events” in Section 16,
“Using Events.”

e SW1 through SW8
Each of these attributes stores a Boolean value.
¢ TARGET
This attribute stores an integer value.
e TASKSTRING
This attribute stores a string value.
e TASKVALUE
This attribute stores a real value.
In a more general way, all task attributes are instruments for interprocess
communication (IPC). After all, each task attribute stores information about the process
. it applies to, and this information is visible to any other process that can access the task

variable. What distinguishes the task attributes in the preceding list is that they have no
meaning at all, except what is established by convention between two processes.

These task attributes provide the simplest means of IPC. There is no need to create and
define complex data structures, as all task attributes are predeclared.

Each of the attributes involved stores only a single Boolean or arithmetic value.
However, the values can be changed and read repeatedly during process execution.

A disadvantage to using these task attributes is that the task attribute names are fixed
and thus do not convey any information about what is being stored in the attribute.
Someone reading the program might have trouble understanding why the attribute is
being used. By contrast, a variable can always be assigned a meaningful name.

Another disadvantage is that it generally takes more processor time to read or write a
task attribute than to read or write variables declared by the process.

For two processes to communicate using task attributes, one or both must have access
to a common task variable. If two processes belong to the same process family, they

8600 0494-000 ' ' ' 14-1

Using Task Attributes

14-2

can always communicate by way of the MYJOB task variable. If two processes have a
common parent, they can communicate by way of their own EXCEPTIONTASK task
attribute. For further information about the task variables a process can access, refer to
Section 2, “Understanding Interprocess Relationships.”

The task attribute most commonly used for IPC is TASKVALUE, and its most common
use is in task equations. For example, you could use TASKVALUE to instruct a program
whether to produce a printout. The program could contain the following statement:

IF MYSELF.TASKVALUE = 1 THEN F.KIND := VALUE(PRINTER)
ELSE F.KIND := VALUE(REMOTE);

If TASKVALUE has a value of 1, the program produces a printout; otherwise the
program displays its output at the user’s terminal. You might use a statement like the
following to initiate the program and cause the program to produce a printout:

RUN REPORT/GENERATOR;TASKVALUE = 1

8600 0494-000

Section 15
Using Global Objects

In Section 1, “Understanding Basic Tasking Concepts,” the concept of an internal
task was introduced. An internal task is created by a statement that initiates a single
procedure within a program. The capability of initiating internal tasks exists only in
WFL and ALGOL. .

WFL and ALGOL share a similar type of program structure. Both languages allow you
to create blocks that can include declarations of objects for use within the block. Both
languages allow you to nest blocks within other blocks. Both languages allow nested
blocks to use objects declared in the blocks they are nested within. These objects are
referred to as global objects.

Globally declared objects can be used to allow an internal task to communicate with its
parent or with other internal tasks of the same parent. Even widely separated members
of a process family can communicate with each other by way of global objects. For
example, sibling or cousin tasks could communicate, or a task could communicate with an

~ ancestor. For an introduction to the possible relationships in a process family, refer to
Section 2, “Understanding Interprocess Relationships.”

Processes can communicate through a particular global object only if the processes meet
both the following rules:

e Each process is one of the following: the process that executed the declaration of the
global object, or an internal task of that process, or an internal task of one of these
internal tasks, and so on.

e Each process must have been created by initiating a procedure that falls within the
scope of the declaration of the global object.

The scope of a declaration consists of all the blocks that have access to the object
declared. Conversely, the addressing environment of a block consists of all the objects
that can be used by statements in the block. The following subsections discuss the
scope of declarations in WFL and ALGOL, and give examples of related processes that
communicate through global objects.

Global objects can also be used in SHAREDBYALL libraries to provide communication

between unrelated processes. The use of global objects in libraries is discussed in
Section 18, “Using Libraries.”

8600 0494-000 15-1

Using Global Objects

Communication through Global Objects in WFL

- 15-2

The types of blocks that can occur in a WFL job are the outer block and any
SUBROUTINE declarations in the job. The scope of a declaration in WFL is limited to
the following blocks:

o The block in which the declaration occurs

e Any blocks that are nested in the declaration block and that occur after the
declaration '

The following WFL example illustrates the effects of these scope rules:

108 ?BEGIN JOB;

119 INTEGER OUTERINT1;

12¢ SUBROUTINE FIRSTSUB;

136 BEGIN

149 INTEGER FIRSTINT;

150 SUBROUTINE NESTEDSUB;

168 BEGIN

178 INTEGER NESTEDINT;
180 OUTERINT1 := 3;
199 FIRSTINT := 3;
200 NESTEDINT := 33
210 END NESTEDSUB;

220 OUTERINT1 := 2;

230 "FIRSTINT := 2;

248 END FIRSTSUB;
250 INTEGER OUTERINT2;
268 OUTERINTI := 1;
27@ OUTERINT2 := 1;
280 ?END JOB

This example includes three procedures: the outer block of the job and two subroutines,
of which NESTEDSUB is nested within FIRSTSUB. Each procedure includes integer
variable declarations. Additionally, each procedure that is within the scope of an integer
variable declaration includes a statement making an assignment to the integer variable.

Thus, the integer variable OUTERINT1 can be used by statements in the outer block,
the FIRSTSUB subroutine, and the NESTEDSUB subroutine. This is because the scope
of a declaration includes the procedure it is declared in and all nested procedures. By
contrast, the integer variable OUTERINTZ2 cannot be used by statements in FIRSTSUB
or NESTEDSUB, because these subroutines are declared prior to OUTERINT2.

The integer variable FIRSTINT can be used by statements in FIRSTSUB, because
FIRSTINT is declared in FIRSTSUB; and by statements in NESTEDSUB, because it is
nested in FIRSTSUB. However, FIRSTINT cannot be used by statements in the outer
block, because the outer block is not nested inside FIRSTINT.

The integer variable NESTEDINT can be used only by statements in NESTEDSUB,
because no other procedures are nested in NESTEDSUB.

8600 0494-000

Using Global Objects

The next example shows the use of global objects in WFL to provide an elementary type
of IPC. o

106 ?BEGIN JOB GLOBAL/DISPLAY;
116 CLASS = @;

120 STRING MSG;

130 TASK S1, §2;

144 SUBROUTINE SUBONE;

150 BEGIN
160 WHILE S2(STATUS) ISNT SUSPENDED DO
179 WAIT(1);

180 MSG := ACCEPT("ENTER A MESSAGE PLEASE");
190 S2(STATUS = ACTIVE);

200 END SUBONE;

210 SUBROUTINE SUBTWO;

226 BEGIN

230 MYSELF (STATUS = SUSPENDED);
240 DISPLAY (MSG) ;

25¢ END SUBTWO;

260

278 PROCESS SUBONE [S1];

280 PROCESS SUBTWO [S2];

290

390 7END JOB

In this example, two subroutines, SUBONE and SUBTWO, are initiated as
asynchronous tasks. Both subroutines fall within the scope of the string MSG, which

is declared in the outer block. SUBONE waits for SUBTWO to become suspended.
SUBTWO executes a statement that suspends itself. At this point, SUBONE resumes
execution and assigns an operator ACCEPT message to the MSG string. SUBONE then
changes the status of SUBTWO to ACTIVE. When SUBTWO resumes execution, it
displays the value of the MSG string.

This is a simple example, but even in this example it was necessary to take measures to
regulate the timing of the asynchronous tasks. For example, the statement at line 180
should execute before the statement at line 240; otherwise, the DISPLAY statement at
line 240 displays an empty value. This example uses assignments to the STATUS task
attribute to suspend and restart execution of the asynchronous tasks. Other timing
methods available in WFL include the LOCKED task attribute and various forms of the
WAIT statement. These timing methods are discussed under “Using Implicitly Declared
Events” in Section 16, “Using Events”.

8600 0494-000 : 15-3

15-6

8600 0494-000

Section 16
Using Events

Shared objects and task attributes provide a relatively simple means of communicating
information if all the tasks involved are synchronous tasks. If the tasks in a process
family are all synchronous, then only one process is executing at a time. The order in
which processes access shared objects is therefore fixed.

However, in cases where asynchronous processes access the same object, the order in
which they access the shared objects is not fixed. This fact can create many unexpected
side effects in communication. For example, suppose two processes communicate a vital
bit of information by way of a shared integer variable. How is one process to know that
the other process has updated the variable, so that it is now ready to be read?

The answer is that a programmer must implement flags to indicate whether a particular
variable is to be accessed at this time. You can implement many types of flags. For
example, a process could reset the value of a variable to zero after reading it. Another
process could be designed to write a new value to the variable whenever the variable
contains a zero. In this example, the zero value is being used as a flag to show that the
variable has been read and is ready to have a new value written into it.

One problem with these types of flags is that the processes involved have to keep
checking the flag periodically to see if it has been set. These repeated checks waste
processor time. Another problem is that, between the time that one process reads the
flag and the time it sets the flag, another process might have written to or read the flag.
The flag is, therefore, not completely reliable.

You can avoid both of these problems by using events. An event is a special type of object
that is used only for regulating the timing of asynchronous processes. A process can wait
for an event to assume a certain state, without using any processor time while it waits.

When the event assumes the desired state, the process resumes execution automatically.

Events can be declared in ALGOL and COBOL74 programs, but not in other languages.
Work Flow Language (WFL) jobs can wait on certain predeclared and implicitly declared
events.

Events can be made available to tasks in the same way as other objects can. That
is, internal tasks can access events declared globally in their parents. An internal or
external task can be passed an event as a parameter. :

An event consists of an identifier that has two states associated with it: the available
state and the happened state. The available state can be AVAILABLE or NOT
AVAILABLE. The happened state can be HAPPENED or NOT HAPPENED. These
values can be inspected or changed by any of several event-related statements that are
described in the following pages.

The available state of an event is typically used to temporarily restrict accesstoa
particular object, so that only one process can access the object during a given period of

8600 0494-000 ' ‘ 16-1

Using Events

time. The happened state is used to allow one or more processes to wait without using
any processor time while waiting.

The initial available state of an event is AVAILABLE. The initial happened state of an
event is NOT HAPPENED.:

Declaring Events

In ALGOL, an event declaration is similar to a simple variable declaration. The following
statement declares two events: .

EVENT EDATA, EACCESS;

Events can be grouped in ALGOL as a one-dimensional event array. The following
example declares an event array:

EVENT ARRAY EVNT[1:12];

The elements of this array can be used wherever an event is allowed. For example,
EVNT[8] accesses the third event in the previous array declaration.

Events can be declared in COBOL74 as elementary or group items. The following
example declares an event as an elementary item:

77 E1 USAGE IS EVENT.

The following example declares a group item that contains two events and a
two-dimensional event array:

@1 EGROUP USAGE IS EVENT.
g3 E-1.
@3 E-2.
@3 E-3 OCCURS 5.
@5 E-4 OCCURS 1@,

Accessing the Available State

16-2

The available state of an event records whether the event is currently assigned to a
process. An event can only be assigned to one process at a time. If the event is currently
assigned to a process, the available state is NOT AVAILABLE. If the event is not
assigned to a process, the available state is AVAILABLE. A procure statement is one
that changes the available state from AVAILABLE to NOT AVAILABLE. A liberate
statement is one that changes the available state to AVAILABLE.

To prevent two processes in a process family from accessing the same object at the

same time, you declare an event that can be used by all the processes that access the
object. The processes should be designed according to a common convention so that each

8600 0494-000

Using Events

attempts to procure the declared event before accessing the shared object. If the event
cannot be procured immediately, the process should either wait for the event to become
AVAILABLE or proceed with other business until the event becomes AVAILABLE.
When a process is finished using the shared object, it should liberate the event and thus
make the shared object AVAILABLE for use by other processes.

This mechanism of protecting a shared object depends on the cooperation of all the
processes that access the object. The system is not aware of any link between the event
and the object it protects.

Furthermore, procuring an event does not prevent other processes from accessing the
event. It simply prevents other processes from directly procuring the event. These
other processes could execute statements to liberate the event and then procure it,

or execute statements that access the happened state. This fact allows considerable
flexibility in the use of events.

Procuring an Event Unconditionally

An unconditional procure statement is one that stops execution of the process until
the requested event becomes AVAILABLE. When the event becomes available,

the unconditional procure statement immediately changes the event back to NOT
AVATLABLE and allows the process to resume executing. If the requested event is
already AVAILABLE, then the unconditional procure does not stop execution of the
process; instead, the unconditional procure immediately changes the event to NOT
AVAILABLE and allows the process to continue executing.

The following ALGOL statement unconditionally procures the event E1:

PROCURE (E1);

The following COBOL74 statement has the same effect:

LOCK (E1).

There is one situation that can cause an unconditional procure to continue waiting even
after an event becomes AVAILABLE. For details, refer to “Partially Liberating an
Event” later in this section.

Procuring an Event Conditionally

A conditional procure statement allows the process to continue execution if the
requested event cannot be immediately procured. The process makes one attempt to
procure the event and, if the event is AVAILABLE, changes the available state to NOT
AVAILABLE. The conditional procure statement returns information that enables the
process to tell whether the conditional procure action was successful.

8600 0494-000 | 16-3

Using Events

The following ALGOL statement conditionally procures the event E1 and stores the
result in the Boolean variable BOOL. If the conditional procure succeeds, BOOL receives
a value of FALSE. If the conditional procure fails, BOOL receives a value of TRUE.

BOOL := FIX (E1);

The following COBOL74 statement conditionally procures the event E1. The AT
LOCKED clause specifies an action to be taken if the procure fails.

LOCK (E1) AT LOCKED GO P2.

Liberating an Event

A liberate statement sets the available state of the event to AVAILABLE and sets the
happened state to HAPPENED. (For information about the happened state, refer to
“Accessing the Happened State” later in this section.) The process then continues
normally.

If another process was waiting to procure the event, that process procures the event and
continues execution. The available state returns to NOT AVAILABLE. If more than one
process was waiting to procure the event, then only one of the processes succeeds, and
the other processes continue to wait until the event is liberated again. The programmer
cannot predict which of the contending processes will procure the event. However, the
highest priority process is the one with the best chance of succeeding.

The following ALGOL statement liberates event E1:

LIBERATE (E1);

The following COBOL74 statement has the same effect:

UNLOCK (E1).

Partially Liberating an Event

16-4

A partial liberate statement sets the available state of an event to AVAILABLE, but
leaves the happened state unchanged. The process that performs the partial liberate
statement continues execution normally. The partial liberate statement differs from a
liberate statement in that it does not cause waiting processes to resume execution. Any
processes that had previously executed a wait statement or an unconditional procure
statement will continue to wait indefinitely. However, because the partial liberate
statement changes the event to AVAILABLE, the event can be procured by procure
statements executed after the partial liberate statement.

You should be very careful when using the partial liberate statement. You need to

either cause or liberate the event eventually so that the processes that are waiting on
the event can resume. (The cause statement is discussed under “Causing an Event”

8600 0494-000

Using Events

later in this section.) However, because the partial liberate statement changes the
state to AVAILABLE, another process could procure the event before the first process
fully liberates it. Unless you design the code carefully, two different processes might
accidentally use the resource flagged by the event at the same time.

In ALGOL, the partial liberate statement is called FREE. The following is an example of
this statement:

FREE (E1);

The partial liberate statement can also be used as a function that returns a Boolean
value. If the event is already AVAILABLE, a value of FALSE is returned. If the event is
NOT AVAILABLE, a value of TRUE is returned, and the event is set to AVAILABLE.
The following ALGOL statement partially liberates event E1 and stores the result in
BOOL:

BOOL := FREE (E1);
The partial liberate statement is not available in COBOL74.

Testing the Availability of an Event

An availability test returns a Boolean value that indicates whether the event is
AVAILABLE. If the available state is AVAILABLE, the test returns TRUE. If the
available state is NOT AVAILABLE, the test returns FALSE. The process continues
normal execution in either case; it does not wait for the event to become AVAILABLE.
The availability test does not make any change to the event and does not affect processes
waiting on the event.

The following ALGOL statement tests the available state of the event E1:

WHILE AVAILABLE (E1) DO . . .

The availability test is not available in COBOL74.

Note that the availability test is not an adequate substitute for the conditional procure
statement. Thus, the effects of the following two statements are quite different:

FIX (E1);
IF AVAILABLE (E1) THEN PROCURE (E1);

Suppose these statements are executed by a process called A. The first statement, FIX,
causes a conditional procure. This statement procures event El1 if it is AVAILABLE,
but abandons the procure and allows process A to continue running if E1 is NOT
AVAILABLE. The second statement attempts an unconditional procure if E1 is
AVAILABLE. However, there might be another process, hereafter referred to as B.
Process B might procure E1 after process A executes the availability test, but before

8600 0494-000 16-5

Using Events

process A executes the unconditional procure. In that case, process A would cease
execution until process B eventually liberated the event.

The lesson to be learned from this example is that the availability test should be used
only in cases where the process does not need to procure the event, but only needs to
determine whether the event is currently in use by another process. However, even
this use can cause efficiency problems if done with excessive frequency. Refer to “Buzz
Loops” later in this section for details.

Determining the Ownership of an Event

16-6

A process becomes the owner of an event when the process successfully procures that
event, and remains the owner until the event is liberated. A process can use the MCP
procedure EVENT STATUS to determine whether that process is the current owner of
the event.

The EVENT_STATUS procedure is primarily useful in fault-handling code, EPILOG
procedures, and EXCEPTION procedures. In these contexts, the EVENT_STATUS
result enables the process to determine whether it should liberate the event before
exiting a procedure, to make the event available to other processes. For further
information about EPILOG and EXCEPTION procedures, refer to “Using EPILOG and
EXCEPTION Procedures” later in this section.

Note: The EVENT STATUS procedure is the only safe method of
determining the owner of an event. Unsafe NEWP programs that
manipulate events directly should be avoided, because the format
of events differs among A Series systems and is subject to change
without notice. Use of the EVENT _STATUS procedure makes it
unnecessary to modify application programs when the event format
changes.

The following declarations can be included in an ALGOL program to enable the
EVENT_STATUS procedure to be used:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
- REAL PROCEDURE EVENT_STATUS(EV);
EVENT EV;
LIBRARY MCPSUPPORT;

DEFINE LOCKOWNERF = [42:39] #; % Lock owner field in EVENT_STATUS result

8600 0494-000

Using Events

The program passes the event in question to the EV parameter of the EVENT STATUS
procedure. This procedure returns information about the event in the procedure result.
The format of this result is as follows:

Field Meaning
[42:39] Stack number of the process that owns this event
[3:2] Event usage

0 = Normal event

2 = Interrupt attached

[1:1] Availability state
0 = AVAILABLE
1 = NOT AVAILABLE
[0: 1] Happened state
0 = NOT HAPPENED
1 = HAPPENED

Note: The information in the EVENT STATUS result reflects the state of
the event at a single moment in time. If other processes have access
to the event, ownership of the event could change between the time a
process calls EVENT STATUS and the time the process reads the
result.

Assuming that EVENT_STATU S, the MCPSUPPORT library, and the LOCKOWNERF
field have been declared as shown previously, the following ALLGOL statement can be
used to determine whether the current process owns an event:

IF PROCESSID = EVENT_STATUS(EVENT1).LOCKOWNERF THEN
BEGIN

% Take various appropriate actions
END;

Accessing the Happened State

A process can use the happened state of an event to inform another process that some
expected condition has been fulfilled. A statement that sets the happened state to
HAPPENED is said to cause the event. A statement that sets the happened state to
NOT HAPPENED is said to reset the event. Every process that has visibility to the
event also has the right to cause or reset the event.

A process can also wait on an event, in which case execution of the process is suspended
until another process causes the event. A process that is waiting on an event does not
use any processor time. The waiting process cannot resume execution until the event is
caused by some other process. Any number of processes can wait on the same event.

8600 0494-000 ’ 16-7

Using Events

~ Processes that wait on the happened state and processes that wait on an unconditional

procure statement are in a similar situation. In both cases, the process can take

no further action until another process modifies the event. However, the following
differences might make it more convenient to use the happened state in some cases and
the availability state in others:

e Causing the happened state reactivates all the processes that are waiting on the
happened state. However, liberating the available state reactivates, at most, one
process. Other processes attempting unconditional procures will continue to wait.

e A single process can wait on the happened state of more than one event
simultaneously. If any of the events are caused, the process resumes execution. By
contrast, a single process can attempt to procure only one event at a time.

e The functions that wait on the happened state and functions that reset the
happened state can be used separately or together. By contrast, a function that
waits on the availability state of an event always resets the availability state at the
same time that it reactivates the process.

Causing an Event

The cause statement sets the happened state to HAPPENED and reactivates all
processes that are waiting on the happened state of an event. Causing an event has no
effect on the available state. The process that performs the cause continues without
interruption.

Reactivating a process simply makes that process eligible for processor time. The
priority of the process, compared to other processes in the mix, determines how soon the
process resumes execution.

The happened state can be reset as soon as it is caused, if another process is waiting
on the event with a wait and reset statement. Refer to “Waiting On and Resetting an
Event” later in this section.

An ALGOL statement can cause only one event at a time. The following ALGOL
statement causes the event EVNT:

CAUSE (EVNT);

A single COBOL74 statement can cause one or more events, as in the following example:

CAUSE EVNT1, EVNT2, EVNT3.

Implicitly Causing an Event |

16-8

A secondary effect of liberating an event is that the happened state is set to
HAPPENED, and processes waiting on the happened state are reactivated. For more
information about the liberate statement, refer to “Liberating an Event” earlier in this
section.

8600 0494-000

Using Events

Causing and Resetting an Event

The cause and reset statement reactivates waiting processes and then returns the event
to NOT HAPPENED. If the event is already HAPPENED when this function is applied,
the effect is to reset the event to NOT HAPPENED.

The following ALGOL statement causes and resets the event EVNT1:

CAUSEANDRESET (EVNT1); .

The following COBOL74 statement causes and resets three events:

CAUSE AND RESET EVNT1, EVNT2, EVNT3.

Partially Causing an Event

The partial cause statement sets the happened state of an event without reactivating
any processes that are waiting on the event. The waiting processes cannot reactivate

. until a later statement causes the event. In addition, any new processes that attempt to
wait on the event will immediately continue because the event is already HAPPENED.

The following ALGOL statement partially causes the event EVNT:

SET (EVNT);
The partial cause statement is not available in COBOL74.

Resetting an Event

The reset statement changes the happened state of an event to NOT HAPPENED. This
statement makes it possible to reuse an event after it has been caused. If the event is
not reset after it is caused, then any processes that try to wait on the event will continue
immediately instead of waiting.

The following ALGOL statement resets the event EDATA:

RESET (EDATA);

The following COBOL74 statement resets two events:

RESET EDATA, ECONTROL.

You can also reset the happened state with the statements discussed under “Causing and
Resetting an Event” earlier in this section or “Waiting on and Resetting an Event” later
in this section. '

8600 0494-000 16-9

Using Events

Waiting on an Event

The wait statement suppresses execution of the process until another process causes the
event. If the happened state is already HAPPENED, then the wait statement has no
effect and the process proceeds immediately. The wait statement does not change the
happened or available states of the event.

The waiting process does not use any processor time. Nevertheless, the waiting process
is considered active, rather than suspended, and does not appear in the W (Waiting
Entries) system command display.

A waiting process is discontinued if it exceeds the time limit speciﬁed by the
WAITLIMIT task attribute.

The following is an ALGOL statement that waits on the event EVNT1. The COBOL74
syntax is identical, except that it terminates with a period rather than a semicolon:

WAIT (EVNTI);

Waiting on Time

A wait statement can also cause the process to wait for a specified number of seconds.
The wait statement implicitly causes the system to create an event. The system causes
the event after the specified time period. The actual time can be somewhat longer than
the requested time, depending on the priority of the process and how busy the processor
is.

The maximum time delay that a process can request is 164926 seconds (about 46 hours).
If a wait statement specifies a longer period of time, the system reduces it to this
maximum value.

The following ALGOL statement waits for 123 seconds:

WAIT ((123));

The WFL syntax is the same, except that only one set of parentheses is used.

In COBOL74, the statement appears as follows:

WAIT UNTIL 123.

Waiting on and Resetting an Event

The wait and reset statement has the same effect as the wait statement, except that the
happened state of the event is reset to NOT HAPPENED after the process reactivates.

16-10 8600 0494-000

Using Events

The following ALGOL statement waits and resets the event EWAIT:

WAITANDRESET (EWAIT);

The following COBOL74 statement has the same effect:

WAIT AND RESET UNTIL EWAIT.

Waiting on Multiple Events

The wait statement can specify a list of events. The process waits until any one of

the events is caused. If any one of the events is already HAPPENED when the wait
statement is executed, the process does not wait at all. The wait statement can returna
value that specifies which one of the events was caused. If more than one of the events
~was caused, the value returned indicates the leftmost of the caused events in the list.

A wait and reset statement can also wait on multiple events. This statement resets to
" NOT HAPPENED the single event that reactivates the process.

The following ALGOL statement waits for 10 seconds, or until event E1 or E2 is caused,
whichever comes first. - The relative position of the event that reactivates the process is
stored in T. For example, if E1 reactivates the process, T receives a value of 2.

T := WAIT ((1@), E1, E2);

The following COBOL74 statement has the same effect:

WAIT UNTIL 18, E1, E2 GIVING T.

Testing the Happened State

The happened test inspects the happened state of an event. This test returns a value of
TRUE if the event is HAPPENED and FALSE if the event is NOT HAPPENED.

Note that repeated happened tests are not the most efficient method of waiting on an
event. Refer to “Efficiency Considerations” later in this section.

The following ALGOL statement invokes the procedure PFILE if the event E1 is
HAPPENED:

IF HAPPENED (E1) THEN PFILE;

The following COBOL74 statement has the same effect:
IF E1 THEN GO PFILE.

8600 0494-000 16-11

Using Events

Duration of the Happéned State

You can use an event to flag either a momentary condition or an elapsed condition. A
momentary condition is one that is relevant only to the particular process or processes
that are already waiting for the condition. An elapsed condition is one that continues to
be relevant to other processes in the future.

You can flag a momentary condition by using statements that cause the event and then
immediately reset it. An event is immediately reset after being caused if either of the
following conditions are true:

e The event was caused by a cause and reset statement.

e At least one of the processes waiting on the event used a wait and reset statement.

The program will be easier to understand and maintain if these methods of resetting the
event are not mixed. If you use a wait and reset statement, you should use a simple
cause statement. If you use a simple wait statement, you should use a cause and reset
statement.

You can flag an elapsed condition by using simple cause and wait statements. After the
event is caused, it remains in the HAPPENED state. When the elapsed condition ends, a -
reset statement returns the event to the NOT HAPPENED state.

-Note that the use of separate reset statements automatically implies an elapsed
condition. Even if the reset statement is the first action executed after a cause or

wait statement, a significant interval of time can elapse before the reset statement is
executed. Only through the use of wait and reset or cause and reset statements can you
flag a truly momentary condition.

Using Implicitly Declared Events

A process can access a number of types of events that are never explicitly declared.
Some of these are predeclared and always available. Others are created by the system in
response to certain forms of the wait statement.

Two predeclared events that are associated with every process are the exception event
and the accept event. You can access these events by using the EXCEPTIONEVENT
and ACCEPTEVENT task attributes. A process can wait on, cause, or reset these
events by way of their associated task attributes. The following ALGOL statement waits
on the exception event of the process:

WAIT (MYSELF.EXCEPTIONEVENT);

The following COBOL 74 statement has the same effect:

WAIT UNTIL EXCEPTIONEVENT OF MYSELF.

16-12 | 8600 0494-000

Using Events

The following WFL statement has the same effect:

WAIT;

The accept event cannot be accessed in WFL. The ALGOL and COBOL74 syntax for
accessing the accept event parallels that used for the exception event. In addition,
COBOL74 allows the following special syntax for waiting on the accept event:

WAIT UNTIL ODT-INPUT-PRESENT.

You can access another predeclared event by using the LOCKED task attribute. This
attribute translates Boolean assignments into procure and liberate statements. Thus,
a statement that sets the LOCKED attribute of a process to TRUE has the effect of
unconditionally procuring the predeclared event. Setting LOCKED to FALSE liberates
the predeclared event. If LOCKED is already TRUE, then any processes that attempt
to set LOCKED to TRUE are queued until another process sets LOCKED to FALSE.
The main virtue of this task attribute is that it provides WFL jobs with an easy way of
protecting a resource, even though WFL jobs cannot access events directly.

Certain types of objects have event-valued attributes associated with them. These
objects include DCALGOL queues, Direct I/O buffers, port files, and remote files.
Processes can wait on these event-valued attributes just as if they were explicitly
declared events. For information about DCALGOL queues, refer to the A Series
DCALGOL Programming Reference Manual. For information about Direct I/O buffers,
port files, and remote files, refer to the A Series I/O Subsystem Programming Guide.

The WAIT statement in WFL can also include clauses that cause the job to wait until
specified task attribute values or file attribute values are attained. Refer to the A Series
Work Flow Language (WFL) Programming Reference Manual for full details.

Using Interrupts

An interrupt is a procedure that is associated with an event. Specifying an interrupt
allows a process to continue executing other statements at the same time that it waits on
an event. When the event is caused, control passes directly to the interrupt procedure.
When the interrupt procedure finishes, the process resumes execution where it left off.

An interrupt cannot be invoked using any of the standard procedure invocation
statements. An interrupt is entered only when the associated event is caused. Causing
an event invokes the interrupt even if the event is already in a HAPPENED state.
Therefore, there is no effective difference between using a cause statement or a cause
and reset statement to invoke the interrupt.

You can use attach and detach statements to specify with the event an interrupt is
associated with. Execution of the interrupt can be selectively allowed or suppressed
through the use of enable and disable statements. The statements that attach or detach
and enable or disable an interrupt can occur in any order, and do not affect each other.
For example, detaching an interrupt does not also cause it to be disabled. The initial
state of an interrupt is detached and enabled.

8600 0494-000 16-13

Using Events

An interrupt might not always execute immediately when its event is caused. Any of the
following three circumstances can delay execution of an interrupt:

¢ The interrupt is disabled.

e The process is waiting on an event. Any interrupts that are caused are queued and
executed when the process resumes.

e The processor is engaged in executing a higher-priority process.

Declaring Interrupts

The purpose of an interrupt declaration is to assign an identifier to the interrupt and
specify the statements that are to be executed when the associated event is caused.

An interrupt cannot be passed any parameters. Otherwise, it has the same addressing
environment as a procedure would have if it were declared at the same point in the
program. That is, in ALGOL the interrupt can access objects declared within the
interrupt and within any procedures that are declared globally to the interrupt.

In rare instances, you might want to restart the process at a point other than the point
at which the process was interrupted. You can achieve this effect in ALGOL with a bad
GO TO statement (that is, a GO TO statement that transfers control to a statement
outside the interrupt). However, COBOL74 does not allow a GO TO statement to
transfer control outside of the interrupt.

You should be aware of a side effect that arises from using a bad GO TO to exit an
interrupt. During execution of an interrupt, the system automatically executes a
general disable on all other interrupts used by the process. A bad GO TO out of an
interrupt leaves the process with all interrupts disabled. You should include a general
enable statement to correct this situation. (Refer to “Using General Disable and Enable
Statements” later in this section.)

The following is an ALGOL example of an interrupt declaration:

INTERRUPT BLOCK1;
BEGIN
DISPLAY ("ERROR") ;
DISPLAY("INTERRUPT BLOCK1 OCCURRED");
END;

16-14 8600 0494-000

Using Events

In COBOL74, an interrupt declaration can occur only in the DECLARATIVES section of
the procedure division. The following is an example of a DECLARATIVES section that
includes an interrupt calied INT-1:

DECLARATIVES.
INT SECTION. |

USE AS INTERRUPT PROCEDURE.
INT-1.

DISPLAY "ERROR".

DISPLAY "“INTERRUPT 1 OCCURRED".
END DECLARATIVES.

Attaching or Detaching an Interrupt

The attach statement associates an interrupt with an event. If the interrupt is already
attached to another event, it is automatically detached from the old event and then
attached to the new event. '

You can attach each interrupt to only one event.. However, you can attach more than one
interrupt to the same event. When the event is caused, the associated interrupts are
queued for execution in the reverse of the order that they were attached to the event.

It is possible to attach an interrupt to an event that is declared in a different process.
The interrupt executes as part of the process that declared it, even if it is associated with
an event in a different process. The interrupt declaration cannot be more global than
the event declaration, or an “UP LEVEL ATTACH?” error results. This error occurs at
compile time if the compiler detects the problem. Otherwise, it occurs at run time.

The detach statement removes the association of an interrupt with an event. If the
interrupt is not currently associated with an event, the detach statement has no effect
" and execution continues normally.

Note that if the interrupt is disabled, queued instances of the interrupt might have
accumulated. Detaching the interrupt, or attaching the interrupt to a different event,
causes these queued instances to be deleted. You can prevent this problem by enabling
the interrupt before detaching it from an event or attaching it to a different event.

The following are ALGOL statements that attach and detach an interrupt. The first
statement attaches the interrupt INT1 to the event E1. The second statement implicitly
detaches the interrupt and then attaches it to the event E2. The third statement then
detaches the interrupt and leaves it detached.

ATTACH INT1 TO El;
ATTACH INT1 TO E2;
DETACH INT1;

8600 0494-000 16-15

Using Events

The following COBOL74 statements attach two interrupts to the same event and then
detach them:

ATTACH INT-1 TO E1.
ATTACH INT-2 TO E1.
DETACH INT-1, INT-2.

Enabling or Disabling an Interrupt

There might be periods during process execution when it would be undesirable for

the interrupt to occur. These are generally periods when the process isaccessing
objects that are also modified by the interrupt. A programmer can selectively suppress
execution of interrupts through the use of enable and disable statements.

If an interrupt’s event is caused while the interrupt is disabled, the interrupt is queued
for later execution. If the event is caused more than once, then multiple instances of the
interrupt are queued for execution. When a later statement enables the interrupt, the
queued interrupts are executed one at a time in reverse chronological order.

All interrupts are implicitly disabled while any interrupt is executing. That is, any
interrupts that are caused while an interrupt is executing are queued for later execution.
When the interrupt completes, the queued interrupts are executed one at a time in
reverse chronological order. '

Because the queuing of interrupts creates substantial overhead for a process, you should
leave the interrupt in the enabled state whenever possible.

The following are examples of ALLGOL statements that enable and disable an interrupt.
Each statement can specify only one interrupt:

ENABLE INT1;
DISABLE INTI;

The following are examples of COBOL74 statements that enable and disable multiple
interrupts: :

ALLOW INT1, INT2.
DISALLOW INT1, INT2.

Using General Disable and Enable Statements

l16-16

You can use a general disable statement to disable all the interrupts declared by the
process. Interrupts declared in other related processes, such as a parent or offspring,
are not affected. While a general disable is in effect, any interrupts whose events are
caused are queued for later execution.

To again enable the interrupts that were disabled by the general disable statement, use
a general enable statement. For the most part, the general enable statement does not

8600 0494-000

Using Events

enable interrupts that were already disabled when the generai disable statement was
entered. However, if a statement enables a specific interrupt while a general disable
statement is in effect, then the general enable statement also enables that interrupt.

The following ALGOL statements illustrate the interaction of specific and general
enables and disables for three interrupts, INT1, INT2, and INTS:

ENABLE INT1l; % Enables INTI.
DISABLE INT2; Disables INT2.
DISABLE INT3j Disables INT3.

NN

DISABLE; % Disables INT1. 1INTZ2 and INT3 remain disabled.
ENABLE INT2; % A1l three events remain disabled.
ENABLE; % Enables INT1 and INT2. INT3 remains disabled.

The following are the general disable and enable statements in COBOL74:

DISALLOW INTERRUPT.
ALLOW INTERRUPT.

Waiting for Interrupts

You can use a special form of the wait statement to make the process wait for interrupts.
‘While the process is waiting for interrupts, any interrupt can execute; as soon as

the interrupt completes, the process returns to its waiting state. The only way the
process can proceed any further is if an interrupt executes a bad GO TO statement that
transfers control to a different statement outside the interrupt.

Waiting for interrupts can be useful for processes, such as message control systems
(MCSs), that are driven by input received over time from a variety of sources. However,
waiting on multiple events might be more efficient in these cases; refer to “Efficiency
Considerations™ later in this section.

In ALGOL, the following wait statement causés the process to wait for interrupts:
WAIT;

The COBOL74 equivalent is the following statement:

WAIT UNTIL INTERRUPT.

Efficiency Considerations

The event and interrupt features provide a very efficient method of synchronizing
processes, provided that they are used as intended. However, some misuses of these
features can cause performance problems. The following subsections describe some
possible problems and ways to avoid them.

8600 0494-000 16-17

Using Events

Buzz Loops

Several of the event-related statements allow a process to test the state of an event
without causing the process to wait. These are the happened test, the availability test,
the conditional procure statement, and the partial liberate statement.

These statements are designed for occasional, rather than frequent, use because each
execution of the statement uses processor time. In particular, looping continuously on
these statements is a very inefficient way of making a process wait. Such a loop is called
a buzz loop. The following is an ALGOL example of such a loop:

WHILE NOT HAPPENED (E1) DO;

This loop repeats the happened test over and over until the event E1 attains a state of
HAPPENED. This loop causes two problems:

e It wastes processor time that could be devoted to executing other processes,
including the process that will eventually cause the event. |

e On a single-processor system, it could become an infinite loop. Assume that another
process is supposed to cause event E1. If the looping process has higher priority, it
will completely monopolize the processor. The second process never executes and
thus never causes event E1.

You should replace the buzz loop with some form of the wait statement, which does not
use any processor time. The ALGOL statement WAIT (E1) could replace the loop shown
in the preceding example.

Preventing Excessive Interrupt Overhead

Use of interrupts increases the processor usage of a process. The processor overhead
is small if only one interrupt is used and the interrupt is not often caused. However,
the overhead is much greater when multiple interrupts are used and greater still when
interrupts are queued because an interrupt was disabled.

By contrast, a wait statement does not cause any continuing drain on processor
resources. A process that executes a wait statement is simply ignored untll the
associated event is caused.

Because of these facts, wait statements should be used in preference to interrupts
where possible. This is particularly true where the process needs to wait on several
events simultaneously. In these cases, a statement that waits on multiple events is more
efficient than a statement that waits on multiple interrupts.

16-18 . 8600 0494-000

Using Events

Preventing Starvation Problems

A process that waits on multiple events must be carefully designed or there is a
possibility that some events might be overlooked. This possibility arises because the
value returned by the wait statement always indicates the leftmost of the events in
the event list that have been caused. For example, consider the following ALGOL
statement:

ENUM := WAIT (E1, E2, E3);

If E1 is caused, ENUM receives a value of 1. If E1 and E2 are caused, ENUM still
receives a value of 1. Now, suppose that E1 is an event that happens very frequently.
Each time the wait statement is executed and E1 has already happened, the wait
statement returns 1 as a value; thus, the process might never be notified that event E2
or E3 has happened. This situation is referred to as a starvation problem.

Strictly speaking, a starvation problem exists only if the repeated wait statement is not
fulfilling the needs of the particular application. The effect of the wait statement is to
give preference to the leftmost events in the event list. But if the leftmost events occur
infrequently, there will be no starvation. If you order the list so that the most important.
events are on the left, then the starvation condition might even be desirable.

However, if you want to ensure that no event can be overlooked, then a simple solution
is to use happened tests after each execution of the wait statement. You could apply

a happened test to each event that is to the right of the event that was returned by
the wait statement. The following is an ALGOL example of a procedure that uses this
technique:

PROCEDURE EVENTWAIT;
BEGIN
BOOLEAN BOOL;
INTEGER ENUM;
DO BEGIN
ENUM := WAIT (E1, E2, E3);
CASE ENUM OF

BEGIN
1: BOOL := INPUTHANDLER (TRUE, HAPPENED(E2), HAPPENED(E3));
2: BOOL := INPUTHANDLER (FALSE, TRUE, HAPPENED(E3));
3: BOOL := INPUTHANDLER (FALSE, FALSE, TRUE);

END; ,

END
UNTIL BOOL;
END EVENTWAIT;

The procedure EVENTWAIT is responsible for waiting on three events, E1, E2, and E3,
which were declared globally. When at least one of these events is caused, EVENTWAIT
invokes another procedure called INPUTHANDLER and passes it Boolean values
indicating whether each of the three events has been caused. The ENUM value
indicates the leftmost event that has happened. The happened test is used for each of

8600 0494-000 16-19

Using Events

the events to the right of that event. You increase efficiency by mmumzmg the number
of happened tests.

INPUTHANDLER is expected to make whatever response is appropriate for each event.
INPUTHANDLER returns a Boolean value of TRUE if there is no need to wait on any
more events. INPUTHANDLER is also expected to reset the events that were caused,
so that it will be meaningful to wait on them again.

Note that the INPUTHANDLER invocation is used in this example for the sake of
simplicity. From an efficiency standpoint, such repeated procedure invocations are
rather expensive. It would be better to include the code that handles each event in the
EVENTWAIT procedure.

Discontinued Processes and Events

‘When a number of processes are being synchronized through the use of events,

unexpected problems can occur if one of the processes is discontinued. A process
might be discontinued by the system because of an error, or by an operator usinga DS -
(Discontinue) system command.

If the process has procured an event, but has not yet liberated it, then the event
remains procured when the process is discontinued. Any other processes attempting to
unconditionally procure the event will wait indefinitely.

Similarly, if the process was supposed to execute a cause statement, but was
discontinued first, then the event is never caused. Other processes waiting on the event
will wait indefinitely.

The programmer can ignore these problems if none of the processes using an event is
ever likely to be discontinued. However, in environments such as a SHAREDBYALL
library, where a large number of user processes from various sources can access the
same event, the programmer might want to take special precautions. The following
subsections describe methods of dealing with these problems.

Using EPILOG and EXCEPTION Procedurés

16-20

An EPILOG procedure is a special type of procedure that is available only in DCALGOL.
An EPILOG procedure is executed whenever the block that declares it is exited, even if
the block exit was caused by the process being discontinued. The EPILOG procedure
can be designed to perform cleanup actions, such as liberating or causing an event.

An EPILOG procedure can determine whether the block exit is normal or whether
the process is being discontinued, by inspecting the STATUS, HISTORYTYPE,
HISTORYCAUSE, and HISTORYREASON task attributes of the MYSELF task

variable. You can design the EPILOG procedure to take different actions, depending on

whether the block exit is normal.
Note that the EPILOG procedure can itself be discontinued and, thus, prevented from

completing all its cleanup functions. For example, if you enter two DS commands for a
process, the first causes the EPILOG procedure to be entered. The second DS command

8600 0494-000

Using Events

discontinues the EPILOG procedure if it has not yet finished executing. This problem
should rarely occur if the EPILOG procedure is kept brief.

If you need to ensure that certain actions are always performed when a procedure is
exited abnormally, you can use an EXCEPTION procedure instead of an EPILOG
procedure. EXCEPTION procedures are available in DCAL.GOL, DMALGOL, and
NEWP. These procedures serve a similar function to EPILOG procedures. However,
an EXCEPTION procedure is executed only if the block that declares it is exited
abnormally, whereas an EPILOG procedure is executed even if the block exit is normal.
Block exits are considered abnormal in either of the following cases:

e If the block is exited because of a bad GO TO statement. This is a GO TO statement
that transfers control to a label outside the block.

e If the block is exited because the process was discontinued, either because of an
operator DS (Discontinue) system command or an internal fault.

Another important feature of EXCEPTION procedures is that you can prevent

them from being interrupted. To do this, you simply add the PROTECTED clause

to the EXCEPTION procedure declaration. The PROTECTED clause is available in
DMALGOL and NEWE, but not in DCALGOL. If the block that declares a protected
EXCEPTION procedure is exited abnormally, then the EXCEPTION procedure executes
in protected mode. A protected EXCEPTION procedure cannot be interrupted by the
DS (Discontinue) or ST (Stop) system commands, or by stack stretches. Note, however,
that the system marks an object code file as nonexecutable if it contains a protected
EXCEPTION procedure. An operator must use the MP <file title> + EXECUTABLE
form of the MP (Mark Program) system command or the SL (Support Library) system
command before the object code file can be executed.

If you want an EXCEPTION procedure to be executed before any block exit, normal or
abnormal, you can include an explicit call on the EXCEPTION procedure in the block.
The following is an example:

700 PROCEDURE P1;
716 BEGIN

726 FILE MYFILE(KIND=DISK);

738 PROTECTED EXCEPTION PROCEDURE CLEANUP;

748 BEGIN
750 CLOSE(MYFILE,LOCK) ;
760 END;

990 CLEANUP;
910 END;

The vertical ellipsis points in this example denote lines that are omitted because they are
not essential to the point being illustrated. If P1 exits normally, then the EXCEPTION
procedure CLEANUP is explicitly invoked by the statement at line 900. Note that in
this case, CLEANUP executes without protected status. If P1 exits abnormally, the
system automatically invokes CLEANUP and executes it with protected status.

8600 0494-010 16-21

Using Events

Using Timed Wait Statements

By including a time limit on a wait statement, you can make it possible for a process
to recover if a particular important event is not caused. For example, the following
statement could be used in ALGOL:

ENUM := WAIT ((120),E1);

This statement waits for 120 seconds or until event E1 is caused, whichever comes

first. For example, you might know that if E1 is not caused within 120 seconds, then
something has gone wrong. The process could check the value of ENUM to determine
if the wait timed out. If so, the process could check the STATUS task attribute of the
process that was supposed to cause the event and find out whether that process was
discontinued. (This type of checking is possible only if the process has access to the task
variable of the process that was supposed to cause the event.)

Using Conditional Procure Statements

There is no direct way to set a time limit on an unconditional procure statement. One
alternative is to use a conditional procure statement, such as the FIX statement in

. ALGOL or a LOCK statement with an AT LOCKED clause in COBOL74. If the
conditional procure fails, the process could attempt it again after a specified time period.
(Note that the process should not execute conditional procures in rapid succession, as
this causes the problem discussed under “Buzz Loops” earlier in this section.) If several
conditional procures fail, the process could check the status of other processes that might
have procured the event.

Determining Whether to Liberate an Event

If the state of an event is NOT AVAILABLE, then the process that most recently
procured the event can be referred to as the owner of that event. A process can use
the MCP procedure EVENT _STATUS to determine whether that process is the
current owner of an event. The EVENT_STATUS procedure is especially useful

in fault-handling code and in EPILOG and EXCEPTION procedures. Refer to
“Determining the Ownership of an Event” earlier in this section.

16-22 ' 8600 0494-010

Using Evehts

Example of Event Usage

The following is a simplified example of an online application that has one driver process
and three servers. The driver process reads input from users and passes it on to
whichever server is not currently busy. The underlying assumption is that the user is
capable of submitting input faster than any single server can process it; this could be
the case if the server has to perform many time-consuming actions, such as disk I/Os,

to process the input. However, this example concentrates on the timing and resource
control aspects of this situation, and so the servers in the example do not really do any
useful work.

16 BEGIN

119 FILE TERM(KIND=REMOTE);

120 BOOLEAN FINISHED;

13¢ EBCDIC ARRAY MSG[p:71];

140 EVENT INMSG_EVENT, MSG_READ;
150 INTEGER I, READNUM;

16 TASK T1, T2, T3;

179

180 PROCEDURE SERVER;

199 BEGIN

200 BOOLEAN DONE;

210 EBCDIC ARRAY MSGCOPY[@:71];
226 WHILE NOT DONE DO

236 BEGIN

246 PROCURE (INMSG_EVENT);
250 REPLACE MSGCOPY BY MSG FOR 72;
260 CAUSE(MSG_READ);

276 IF MSGCOPY = "QUIT" THEN

280 DONE := TRUE

290 ELSE BEGIN

300 REPLACE MSGCOPY[68] BY MYSELF.MIXNUMBER FOR 4 DIGITS;
318 WRITE(TERM,72,MSGCOPY) ;

320 END;

336 END;

340 END;

350

360 PROCURE (INMSG_EVENT) ;
370 PROCESS SERVER [T1];
380 PROCESS SERVER [T2];
398 PROCESS SERVER [T3];
400

410 OPEN(TERM);

420 WHILE NOT FINISHED DO
430 BEGIN

440 WAIT(TERM.INPUTEVENT);
450 READ(TERM,72,MSG);
460 IF MSG = "QUIT" THEN

47@- BEGIN

480 FINISHED := TRUE;
490 READNUM := 3;

500 END

8600 0494-000 16-23

Using Events

16-24

510 ELSE READNUM := 1;

52 I :=1;

539 WHILE I LEQ READNUM DO

540 BEGIN

550 LIBERATE (INMSG_EVENT) ;

564 WAITANDRESET (MSG_READ);

579 I:=*+1;

580 END;

590 END;

600

610 WHILE T1.STATUS GTR VALUE(TERMINATED) OR
620 T2.STATUS GTR VALUE(TERMINATED) OR
630 T3.STATUS GTR VALUE(TERMINATED) DO
640 WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;
6590

660 END.

The communication in this example takes place between the parent process and three
asynchronous tasks that are instances of procedure SERVER. The communication takes
place by way of the array MSG and the events INMSG_EVENT and MSG_READ. Of
these, MSG is used to convey messages from the parent process to the servers. The
parent process uses INMSG_EVENT to inform the servers that there is a message
waiting to be read. A server uses MSG_READ to inform the parent that it has
successfully read the message, so the parent can now reuse the MSG array.

When this program is initiated, the driver process procures INMSG_EVENT and
initiates three instances of the SERVER procedure Each of these servers begins by
attempting to procure INMSG_EVENT; since the driver has already procured this
event, all the servers wait.

The driver process then enters the loop on lines 420-590. Within this loop, the driver
waits for input from a user to appear in the remote file, and then reads the input

into MSG. In most cases, the driver then liberates INMSG_EVENT and waits on the
MSG_READ event. When the driver liberates INMSG_. EVENT, one of the servers
succeeds in procuring the event and copies the contents of MSG to the local array
MSGCOPY. The server then causes MSG_READ, informing the driver that MSG is again
available for use as a buffer. The server then performs some processing on the input in
MSGCOPY and notifies the user of the result by writing a message to the remote file.

If the input received from the user is the command QUIT, then the driver takes some
special actions. It liberates INMSG_EVENT and waits on MSG_READ three times
without performing any more read operations. This allows the contents of the MSG
array to be read by each of the three servers. Each server recognizes the QUIT
command and terminates gracefully. Then the driver terminates as well.

Note that this program uses the available state of INMSG EVENT, but uses the
happened state of MSG_READ. This difference reflects the different purposes for which
these events are used. The program alternates between two phases: a phase in which
the driver uses the MSG array, and a phase in which any single one of the servers can
use the MSG array. Causing MSG_READ initiates the phase in which the driver uses
MSG; liberating INMSG_EVENT initiates the phase in which one of the waiting servers
is allowed to use MSG.

8600 0494-000

Section 17
Using Parameters

A parameter is an object passed to a procedure by the procedure invocation statement.
Note that the term “procedure” is used here, as it is throughout this guide, to refer

to complete programs as well as to subroutines within a program. Most A Series
programming languages can pass parameters to procedures. Parameters can be of many
types, and in each language, most or all of the types of available variables can be passed
as parameters.

Each parameter has two aspects: an actual parameter and a formal parameter. The
actual parameter is the parameter specified in the procedure invocation statement.
The formal parameter is the parameter as it is declared in the procedure that is being
invoked.

Parameters that are used in a process initiation statement provide an avenue of
communication between the initiating process and the new process. Such parameters
are referred to hereafter as tasking parameters.

Parameters that are used in a library procedure invocation statement provide another
type of interprocess communication. Such parameters are hereafter referred to as
library parameters.

The “Determining the Scope of Parameters” and “Parameter Passing Modes”
subsections of this section provide information that is relevant to both tasking
parameters and library parameters. The remainder of this section addresses only
tasking parameters. For further information about library parameters, refer to Section
18, “Using Libraries.”

Determining the Scope of Parameters

Section 15, “Using Global Objects,” defined the scope of a declaration as all the blocks in
a program that have access to an object declared in the program. That section explained
how the scope of a declaration extends through nested blocks in a program.

You can use parameters to pass an object to a procedure that does not fall within the
scope of the declaration of that object. This fact makes parameters a more general tool
for IPC than global objects. A parameter can increase the scope of an object in the

following ways:

e An object can be passed as a parameter to a procedure that is not nested within the
block that declares the object.

e A parameter can be passed to an external procedure, whether the procedure is a
passed external procedure, a library procedure, or a separate program.

8600 0494-000 17-1

Using Parameters

17-2

The objects a procedure can access, because the objects are declared in the procedure

or are declared globally to the procedure, are referred to as the direct addressing
environment of the procedure. The objects in the direct addressing environment,
together with any objects passed as parameters to the procedure, comprise the extended
addressing environment of the procedure.

If a procedure is passed as a parameter to another procedure, the invoked procedure
gains access to the passed procedure. However, the scope is extended only one way. The
passed procedure does not automatically gain access to objects declared in the invoked
procedure. -

The following ALGOL example includes two cases where the scope of a declaration has
been increased by the effects of parameter passing:

Example

100 BEGIN

119

126 PROCEDURE P(Q);
13 PROCEDURE Q (R);
149 REAL R;

150 FORMAL;

160 BEGIN

176 REAL A;

188 A :=2;

199 Q(A)s

200 DISPLAY (STRING(A,*));
210 END;

220

230 PROCEDURE Y;

249 BEGIN

250 PROCEDURE X(Z);
260 REAL Z;

278 BEGIN

280 Z:=1%*2;

299 END;

309

319 P(X);

329 END;

339

339 Y;

35@

364 END.
Case 1

Procedure X cannot be directly invoked by a statement in procedure B, because the
declaration of procedure X occurs within procedure Y. However, the statement at line
310 that invokes procedure P passes procedure X as an actual parameter to the formal
parameter Q. Thus, the statement at line 190, which invokes the formal parameter Q,

8600 0494-000

Using Parameters

actually results in an invocation of procedure X. In this way, a statement in procedure P
is able to invoke a procedure outside the direct addressing environment of procedure P.

Case 2

Real variable A cannot be directly accessed by a statement in procedure X because A is
declared within procedure P. However, the statement at line 310 passes procedure X as
an actual parameter to formal parameter Q of procedure P. The statement in procedure
P at line 190 then passes A as a parameter to procedure Q, thus making it possible for
procedure X to access A.

Even after being passed to B X does not automatically have access to objects declared in
P. Thus, X could not have accessed A if A had not been passed as a parameter to X.

Parameter Passing Modes

There are several different passing modes that govern the relationship between

the actual parameter and the formal parameter. The passing mode determines, for
example, whether assignments made to the formal parameter are reflected by the actual
parameter. The passing mode can also make a large difference in program performance
in cases where the actual parameter is an expression. The three types of passing modes
available on A Series systems are call-by-value, call-by-name, and call-by-reference.

The following subsections describe the three types of passing modes and explain how you
can specify which passing mode is used.

Call-by-Value Parameters

If a parameter is passed by value, the system evaluates the actual parameter when the
procedure is invoked and assigns the value to the formal parameter. Changes made

to the value of the formal parameter do not affect the value of the actual parameter.
Similarly, any changes made to the value of the actual parameter after procedure
invocation do not affect the value of the formal parameter.

An advantage to using call-by-value parameters is that they never result in the accidental
creation of a thunk. (Thunks are defined in the discussion of call-by-name parameters
that follows.) Another advantage is that they simplify program structure. Because the
actual parameter and the formal parameter do not affect each other, new values can be
assigned to either without creating unexpected side effects.

Call-by-Name Parameters
When a parameter is passed by name, the system never creates the formal parameter.
Instead, the system substitutes the actual parameter for the formal parameter wherever

the formal parameter is mentioned in the procedure.

The effect of passing by name is simplest in cases where the actual parameter is a simple
variable. When the procedure accesses the formal parameter, the effect is as if the

8600 0494-000 | | 17-3

Using Parameters

procedure were using a global variable. Any changes made to the value of the formal
parameter immediately affect the value of the actual parameter and vice versa. This
feature makes call-by-name parameters a useful means of communicating information
between an asynchronous process and its initiator.

When an actual parameter that is a constant or an expression is passed by name, the
compiler generates a thunk. A thunk (also known as an accidental entry) is a piece of
code that evaluates the actual parameter and assigns the resulting value to the formal
parameter. The system substitutes the thunk for the formal parameter wherever the
formal parameter is mentioned in the procedure.

Thunks can be undesirable because they slow execution of the program and affect

the definition of the critical block. (Critical blocks are discussed in Section 2,
“Understanding Interprocess Relationships.”) The programmer can prevent the
creation of a thunk by passing each element of the expression as a separate parameter.

If a constant is passed by name, then whenever the value of the formal parameter is

‘read, the formal parameter returns the value of the constant. The value of the formal

parameter cannot change. An attempt to assign a value to the formal parameter results
in a run-time error.

The effect of passing an expression by name varies, depending on whether the
expression evaluates as a reference to a single object. For example, A[I] evaluates into
a reference to a single element of array A. In this guide, such an expression is referred
to as a simple expression. Other examples of simple expressions are the POINTER
function in ALGOL and references to character-based record fields. On the other hand,
an expression such as A + B does not evaluate as a reference to a single element. Such
an expression is referred to as a complex expression.

For a simple expression, the system passes a thunk that reevaluates the expression
each time the the parameter is used in the procedure. For example, suppose the actual
parameter A[I] is passed to the formal parameter F. At the time of the procedure
invocation, I has a value of 5. The formal parameter F becomes a reference to element 5
of array A. When F is read, it reflects the most recent value of A[5]. When F is assigned,
it changes the value of A[5]. IfI is then assigned a value of 10, F becomes a reference to

'A[10]. Thereafter, reading or assigning F really accesses the value stored in A[10].

For a complex expression, the system passes a thunk that reevaluates the expression
each time the formal parameter is read in the procedure. However, it is impossible to
assign a value to the formal parameter; any attempt to do so results in a run-time error.

Call-by-Referenée Parameters

17-4

When a parameter is passed by reference, the system passes the formal parameter
areference to the place where the actual parameter is stored in memory. Passinga
parameter by reference is essentially the same as passing it by name, except that the
compiler does not create a thunk for a call-by-reference parameter. Any expressions
passed by reference are, therefore, evaluated immediately and changed into simple
values or pointers to simple values.

8600 0494-000

Using Parameters

The effects of passing a parameter by reference are somewhat different in FORTRAN77
and FORTRAN than in other languages. In non-FORTRAN languages, the effects of
passing by reference are as follows:

e When a simple variable is passed by reference, the effect is the same as if it had been
passed by name. Changes made to the value of the formal parameter immediately
affect the value of the actual parameter and vice versa.

¢ In most languages, constants and complex expressions cannot be passed by
reference; a syntax error results from an attempt to do so. However, simple
expressions can be passed by reference. For a simple expression, the system passes
a reference to the location of the element. This location never changes, even if the
value of the subscript later changes. For example, suppose the actual parameter
A[I] is passed to the formal parameter F and I has a value of 5. Formal parameter
F becomes a reference to array element A[5]. Even if I is later assigned a different
value, F remains a reference to A[5}]. When F is read, it reflects the most recent
value of A[5]. When F is assigned, it changes the value of A[5].

In FORTRAN77 and FORTRAN, the effects of passing by reference are as follows:

¢ For simple variables of type integer, real, double precision, complex, or logical, two
different kinds of call-by-reference passing are available. The default method is
known as call-by-value-result. With this method, the value of the actual parameter
is assigned to the formal parameter. Thereafter, assignments to the actual
parameter have no effect on the formal parameter. Assignments to the formal
parameter have no immediate effect on the actual parameter; however, when the
procedure is exited, the value of the formal parameter is assigned to the actual
parameter. The alternate method is true call-by-reference passing, in which the
formal parameter receives a reference to the actual parameter itself; changes to the
actual parameter are immediately visible to the formal parameter and vice versa.
The programmer can request true call-by-reference passing by enclosing the formal
parameter in slashes (/).

e For parameters that are character variables, arrays, or subprograms, the parameter
is always treated as a true call-by-reference parameter. Any changes to the actual
parameter are immediately visible to the formal parameter and vice versa.

o Constants of type integer, real, double precision, complex, or logical can be passed
by reference, but character or array constants cannot. The receiving procedure can
make assignments that change the value of the formal parameter, but the value of
the actual parameter is never updated to reflect the change.

e For an actual parameter that is a simple expression, the parameter is treated as
either call-by-value-result, or true call-by-reference, depending on the way the formal
parameter is declared. If the formal parameter is a character variable or array,
then the parameter is treated as a true call-by-reference parameter. If the formal
parameter is an integer, real, double precision, complex, or logical variable, then
by default the parameter is treated as call-by-value-result; however, if the formal
parameter is enclosed in slashes, the parameter is treated as true call-by-reference.

e For an actual parameter that is a complex expression, the system evaluates the
expression and passes the value to the formal parameter. The receiving procedure
can make assignments that change the value of the formal parameter, but the value

~ of the actual parameter remains unchanged.

8600 0494-000 17-5

Using Parameters

Read-Only Parameters -

A concept related to parameter passing modes is that of read-only parameters. The term
“read-only” refers, not to a passing mode, but to a restriction on the ways a parameter
can be used.

Formal parameter declarations in a Pascal program can include a CONST clause, which
causes a parameter to be treated as a read-only parameter. The CONST clause prevents
the receiving Pascal program or procedure from making any changes to the value of the
formal parameter. However, the CONST clause does not guarantee that the formal
parameter has a constant value. The formal parameter value can change because the
CONST clause does not affect the passing mode. If the actual parameter is passed by
name or by reference, then any changes made by the initiator to the value of the actual
parameter are immediately reflected in the value of the formal parameter.

Specifying the Passing Mode

You will seldom have the opportunity to choose among all three of these passing modes
for a particular parameter. The choice of passing modes is restricted on the basis of
several different considerations, including parameter type, language, and process type.

Though there are many different parameter types, these types fall into two basic
categories: word and descriptor. Boolean variables, integer variables, and real variables
are examples of word types. Strings, arrays, files, and other complex data structures are
descriptor types.

Word-type parameters can be passed by value, by name, or by reference.

In most languages, descriptor-type parameters must be passed by name or by reference.
Exceptions are Pascal, which allows descriptor type parameters to be passed by value,
and WFL, which can pass strings by value. Also, message control systems (MCSs) and
Host Services tasking can pass descriptor type parameters by value. Host Services
tasking makes it possible to write a program that passes an array to a remote process
by value. (Remote processes are discussed in Section 12, “Tasking across Multihost
Networks.”)

Each language imposes a different set of restrictions on the passing mode. For example,
ALGOL passes descriptor types by name or by reference and word types by name,

by reference, or by value. COBOL(68) and COBOL74 pass all library parameters

by reference, and parameters to tasks or bound-in procedures by reference or by

value. WFL passes parameters either by reference or by value. For details about these
language restrictions, refer to the programming language reference manuals.

One additional restriction is based on the process type. A statement that initiates an
independent process can pass parameters only by value, not by name or by reference.

Using Tasking Parameters

A Series software provides the application programmer with the ability to design a
program in one language that initiates a program written in a different language. The

17-6 ' : 8600 0494-000

Using Parameters

initiating program can even pass parameters to the initiated program. However, because
each language provides a different set of parameter types, the programmer needs to
understand which types of parameters are compatible.

The languages that can initiate a process and pass it parameters are ALGOL,
COBOL(68), COBOL74, and Work Flow Language (WFL).

The languages that can receive tasking paré.meters from another program are ALGOL,
C, COBOL(68), COBOL74, COBOLS8S5, Pascal, and PL/I.

WFL jobs can also receive parameters. However, strictly speaking, these are
compile-time rather than tasking parameters because a WFL job is recompiled each time
it is submitted. ALGOL, COBOL(68), COBOL74, FORTRAN, and RPG can all submit
WFL jobs, but none of them can pass a parameter to the WFL job. Parameters can be
passed to a WFL job only by a START statement. START statements can be submitted
in Command and Edit (CANDE) or Menu-Assisted Resource Control (MARC) sessions
or at an operator d1splay terminal (ODT). START statements can also be submitted by
DCALGOL programs using the DCKEYIN function or by WFL jobs.

The remainder of this section discusses only tasking parameters and not WFL
compile-time parameters.

Whenever a process passes a tasking parameter, the system software checks that the
number of actual parameters the calhng program passes matches the number of formal
parameters declared in the receiving program.

The system also compares each actual parameter with the matching formal parameter
to determine if they are of compatible types. The matching is done based on parameter

_order rather than parameter names. It is permissible for the actual and formal
parameters to have different names.

In many cases, the system allows matches between similar, though not identical,
parameter types. For instance, an integer actual parameter can generally be passed to a
real formal parameter. Also, types that are, in effect, identical might have different
names in different languages. Details about which parameter matches are allowed by the
system software are given under “Matching Each Parameter Type” later in this section.

Information about how the passing mode is determined for tasking parameters is given
under “Resolving Passing Mode Conflicts” later in this section.

Special considerations for arrays passed as tasking parameters are discussed under
“Passing Arrays” later in this section.

Matching Each Parameter Type

By using Tables 17-1 and 17-2 at the end of this subsection, you can find out what
parameter types in a given language match particular parameter types in any other
given language. In the following discussion, the term original parameter refers to the
parameter you want to find a match for. The original parameter might be either an
actual parameter or a formal parameter. The term matching parameter refers to the

8600 0494-000 17-7

Using Parameters

17-8

parameter about which you are uncertain. The tables can help you decide what type the
matching parameter should be.

Note: The tablesin this section document the tasking parameter-type-
matching rules enforced by the system at process initiation time. If
jyou are initiating an imported library procedure, you should dlso be
aware of the library parameter matching rules discussed in Section
18, “Using Libraries.” These rules are enforced by the operating
system at library linkage time. In general, the library parameter
matching rules are much stricter than the tasking parameter
matching rules.

Further, if you are initiated a bound-in procedure, you should be

aware of the binding parameter matching rules discussed in the

A Series Binder Programming Reference Manual. These rules are

enforced by the Binder during its run, and in general are still more
- limiting than the library parameter matching rules.

To use the parameter matching tables, you must start out knowing the following
characteristics of the original parameter: the language, the name of the parameter type,
and whether it is a formal or an actual parameter. For the matching parameter, you
must know the language in which it will be specified.

Begin by looking at Table 17-1. Table 17-1 is separated into three columns labeled
Language, Parameter Type, and General Type. Look down the Language column until
you find the language of your original parameter. Next, scan down the Parameter Type
column until you find the type of your original parameter. Next, look immediately to the
right, in the General Type column, and make a note of the general type that is listed
there.

In some cases, the general type shown is “(Unique)” instead of a word or a phrase.

This means that your original parameter is of a unique type that does not match any
other parameter type. For example, an ALGOL Boolean direct array can be passed only
to another ALGOL Boolean direct array. In this case, you can skip the rest of these
directions, because there are no other matching parameter types to be found.

Next, look at Table 17-2. This table extends over several pages and each page includes
one or more boxes; each box is a separate entry. A General Type heading appears at the
upper left of each box. The boxes appear in alphabetical order based on the General
Type headings. Look for the box whose General Type heading corresponds to the
general type you noted earlier.

Within the box you selected, scan down the Language and Parameter Type columns.
Make a note of the parameter types that are in the language you want to find out about.

At this stage, you can consider yourself finished if you want to be. You can take the
parameter types you noted and look in the appropriate programming language reference
manual for the detailed syntax of the parameter types. However, if this initial search did
not uncover any parameters in the language you want, or if you want a more complete
list of the possible parameter types for the matching parameter, then the information in
the Special Matches column of the box can help you to extend your search.

8600 0494-000

Using Parameters

The Special Matches column of each box can include up to three subentries that

list general types that match your original parameter, but only in some limited
circumstances. Examine each of the subentries that appears in the Special Matches
column of the box. The following are the possible subentries and their meanings:

e Matching Actuals

This is a list of general types that can match your original parameter, provided that
your original parameter is a formal parameter and you are looking for an actual
parameter to match it. If you are looking for an actual parameter, then make a
note of each of these general types. Then, for each of these general types, do the

following:
— Go to the box that is labeled with the name of the specific general type.

— Look at the main parameter group in the box and note any parameter types
shown that are in the language you want for your matching parameter.

- Ignore any Matching Actuals, Matching Formals, or COBOL Matches subentries
that appear in the box.

e Matching Formals

This is a list of general types that can match your original parameter, provided that
your original parameter is an actual parameter and you are looking for a formal
parameter to match it. To translate these general types into specific parameter
types, follow the same steps that you did for the Matching Actuals subentry.

¢ COBOL(68 & 74) Matches

This is a list of general-type matches that are allowed if the calling program or the
receiving program is written in COBOL(68) or COBOL74. If this is the case, then
note the general types shown. For each general type, do the following:

— Go to the box that is labeled with the name of the specific general type.

— If the original parameter is in COBOL(68) or COBOL74, then note any
parameters shown in the Parameter Types column that are in the language
you want for your matching parameter. If the original parameter is not in
COBOL(68) or COBOL74, then note only the COBOL(68) and COBOL74 types
that appear in the Parameter Types column.

— Ignore any Matching Actuals, Matching Formals, or COBOL Matches subentries
that appear in the box.

You now have a complete list of the possible parameter types for your matching
parameter. Refer to the various programming language reference manuals for the
syntax used to declare the parameter types you have listed.

Note that the programming languages restrict some parameter types so that they can be
used only as formal parameters or only as actual parameters. The syntax given in the
programming language reference manuals should explain any such restrictions.

The following examples illustrate the method for finding matching parameter types.

8600 0494-000 17-9

Using Parameters

Example 1

Suppose you want to pass a string value from a WFL job to an ALGOL program. Look at
the last line of Table 17-1. The parameter type shown is WFL STRING. The general
type shown is Real Array.

Now look through Table 17-2 until you find the box labeled Real Array. The main
parameter group in the box includes two ALGOL types: REAL ARRAY and REAL
VALUE ARRAY. ’

In addition, the Matching Formals list specifies the general type integer array. Look
at the box labeled Integer Array. The main parameter group in the box includes the
following ALGOL types: INTEGER ARRAY and INTEGER VALUE ARRAY.

You now have a list of four different ALGOL parameter types. However, if you refer to
the ALGOL manual, you will find that value arrays are not allowed as formal parameters
(although they can be actual parameters). Therefore, a WFL STRING parameter can be
passed to two ALGOL types: REAL ARRAY or INTEGER ARRAY.

Example 2

Suppose you want to pass an 01 DISPLAY Group Item from a COBOL74 program to an
ALGOL program. Look through Table 17-1 until you find the line that says COBOL74
01 DISPLAY Group Item. The general type shown is EBCDIC Array.

Now look through Table 17-2 until you find the box labeled EBCDIC Array. The ALGOL
parameter types shown in the box are EBCDIC ARRAY and EBCDIC VALUE ARRAY.
Note these.

The Special Matches column of the box includes three general types as COBOL(68 & 74)
Matches: Hex Array, Integer Array, and Real Array. Go to the box for Hex Array. The
Parameter Types column includes two ALGOL types: HEX ARRAY and HEX VALUE
ARRAY. Note these. Repeat this process for each of the general types that you noted.

When you have finished this process, you have the following list of ALGOL formal
parameter types:

EBCDIC ARRAY

EBCDIC VALUE ARRAY
HEX ARRAY

HEX VALUE ARRAY
INTEGER ARRAY
INTEGER VALUE ARRAY
REAL ARRAY

REAL VALUE ARRAY

Of these, you should discard the value arrays because they cannot be used as formal
parameters. The matching parameter could be any of the remaining ALGOL types from
this list. ‘

17-10 ‘ 8600 0494-000

Using Parameters

Example 3

Suppose you want to pass a real array from an ALGOL program to a COBOL74 program.
Scan through the ALGOL parameters in Table 17-1 until you find REAL ARRAY. The
General Type shown is also Real Array.

Now look through Table 17-2 until you find the box labeled Real Array. One COBOL74
parameter is shown in the Parameter Types column: 01 BINARY Group Item. Note
this. Additionally, the box contains entries in the Special Matches column for Matching
Actuals, Matching Formals, and COBOL(68 & 74) Matches. You can mterpret these
entries as follows:

¢ Matching Actuals

Ignore this entry, as your original parameter is the actual parameter. The matching
parameter you are looking for is a formal parameter.

e Matching Formals

The entry shown under this heading is Integer Array. Go to the box for Integer
Array. In the Parameter Type column, you find one COBOL74 parameter: 77
BINARY Elementary Item. Make a note of this.

e COBOL(68 & 74) Matches
The entries shown under this heading are EBCDIC Array and Hex Array.

— Go to the box for EBCDIC Array. The COBOL74 parameters shown in the
Parameter Type column are 01 DISPLAY Group Item and 01 KANJI Group
Item. Make a note of these.

— Go to the box for Hex Array. The COBOL74 parameters shown in the
Parameter Type column are 01 COMP Group Item and 01 INDEX Group Item.
Make a note of these.

When you finish this process, you find that the COBOL74 formal parameter can be of
any of the following types:

@1 BINARY Group Item

@1 COMP Group Item

@1 DISPLAY Group Item

@1 INDEX Group Item

21 KANJI Group Item

77 BINARY Elementary Item

Example 4

Suppose you want to pass a HEX DIRECT ARRAY from an ALGOL program to a
COBOL74 program. Look through Table 17-1 until you find the line that lists ALGOL
HEX DIRECT ARRAY. The General Type column lists “(Unique)” instead of the general
type. This means that HEX DIRECT ARRAY is a unique parameter type that can match
only a parameter of exactly the same type. In this case, there is no need for you to look
at Table 17-2.

8600 0494-000 17-11

Using Parameters

17-12

Table 17-1. Programming Language Parameter Types

Language Parameter Type General Type
ALGOL ASCIlI PROCEDURE REFERENCE ARRAY (Unique)
ALGOL ASCIlI ARRAY ASCI} Array
ALGOL ASCII DIRECT ARRAY (Unique)
ALGOL ASCII PROCEDURE (Unique)
ALGOL ASCI!I STRING (Unique)
ALGOL ASCII STRING ARRAY (Unique)
ALGOL ASCII VALUE ARRAY ASCI! Array
ALGOL BOOLEAN Boolean
ALGOL BOOLEAN ARRAY Boolean Array
ALGOL BOOLEAN DIRECT ARRAY (Unique)
ALGOL BOOLEAN PROCEDURE Boolean Procedure
- ALGOL BOOLEAN PROCEDURE REFERENCE (Unique)

ARRAY
ALGOL BOOLEAN VALUE ARRAY Boolean Array
ALGOL COMPLEX {Unique)
ALGOL COMPLEX ARRAY Complex Array
ALGOL COMPLEX PROCEDURE (Unique)
ALGOL COMPLEX PROCEDURE REFERENCE - (Unique)

ARRAY
ALGOL COMPLEX VALUE ARRAY Complex Array
ALGOL DIRECT FILE (Unique)
ALGOL DIRECT SWITCH FILE (Unique)
ALGOL DOUBLE Double
ALGOL DOUBLE ARRAY Double Array
ALGOL DOUBLE DIRECT ARRAY (Unique)
ALGOL DOUBLE PROCEDURE Double Procedure
ALGOL DOUBLE PROCEDURE REFERENCE (Unique)

ARRAY
ALGOL DOUBLE VALUE ARRAY Double Array
ALGOL EBCDIC ARRAY EBCDIC Array
ALGOL EBCDIC DIRECT ARRAY (Unique)

continued
8600 0494-000

Using Parameters

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General Type
ALGOL EBCDIC PROCEDURE ARRAY (Unique)
- ALGOL EBCDIC STRING (Unigue)
ALGOL EBCDIC STRING ARRAY (Unique)
ALGOL EBCDIC.VALUE ARRAY (Unique)
ALGOL EBCDIC PROCEDURE REFERENCE (Unique)
’ ARRAY
ALGOL ENTITY REFERENCE (Unique)
ALGOL ENTITY REFERENCE ARRAY (Unique)
ALGOL EPILOG PROCEDURE (Unique)
ALGOL EVENT Event
ALGOL EVENT ARRAY Event Array
ALGOL FILE File
ALGOL FORMAT (Unique)
ALGOL HEX ARRAY Hex Array
ALGOL HEX DIRECT ARRAY {Unique)
ALGOL HEX PROCEDURE (Unique)
ALGOL HEX STRING (Unique)
ALGOL HEX STRING ARRAY (Unique)
ALGOL HEX VALUE ARRAY Hex Array
ALGOL HEX PROCEDURE REFERENCE ARRAY (Unique)
ALGOL INTEGER Integer
ALGOL INTEGER ARRAY integer Array
ALGOL INTEGER DIRECT ARRAY Integer Direct Array
ALGOL INTEGER PROCEDURE Integer Procedure
ALGOL INTEG'ER PROCEDURE REFERENCE (Unique)
ARRAY
ALGOL INTEGER VALUE ARRAY Integer Array
ALGOL LABEL (Unique)
ALGOL LIST (Unique)
ALGOL PICTURE (Unique)
continued
8600 0494-000 17-13

Using Parameters

17-14

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General Type
ALGOL PICTURE ARRAY (Unique) |
ALGOL POINTER Pointer
ALGOL PROCEDURE (SUBROUTINE) Procedure
ALGOL QUERY VARIABLE (Unique)
ALGOL QUEUE (Unique})
ALGOL QUEUE ARRAY (Unique)
ALGOL REAL Real
ALGOL REAL ARRAY Real Array
ALGOL REAL DIRECT ARRAY Real Direct Array
ALGOL | REAL PROCEDURE Real Procedure
ALGOL REAL PROCEDURE REFERENCE ARRAY (Unique)
ALGOL REAL VALUE ARRAY Real Array
ALGOL SWITCH (Unique)
ALGOL SWITCH FILE (Unique)
ALGOL SWITCH FORMAT (Unique)
- ALGOL SWITCH LIST (Unique)
ALGOL TASK Task
ALGOL TASK ARRAY Task Array
ALGOL TRANSAQTION RECORD ALGOL Transaction Record
ALGOL TRANSACTION RECORD ARRAY ALGOL Transaction Record
ALGOL UNTYPED PROCEDURE REFERENCE (Unique)
ARRAY
c int arge, char* argvl]l Real Array (unbounded)
COBOL(68) 01 ASCI! Group item \ EBCDIC Array
COBOL(68) 01 COMP Group ltem Real Array
COBOL(68) 01 COMP-2 Group ltem Hex Array
COBOL(68) 01 CONTROL-POINT Elementary Item Task
COBOL(68) 01 CONTROL-POINT Group ltem Task Array
continued
8600 0494-000

Using Parameters

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

COBOL(68) 01 DISPLAY Group Item EBCDIC Array

COBOL(68) 01 EVENT Group ltem Event Array

COBOL(68) 01 INDEX Group ltem Hex Array

COBOL(68) 01 LOCK Group ltem Event Group ltem

COBOL(68) - 77 COMP-1 Elementary Item Integer

COBOL(68) 77 COMP-4 Elementary Item Real

COBOL(68) -77 COMP-5 Elementary ltem Double

COBOL(68) 77 CONTROL-POINT Elementary ltem Task

COBOL(68) 77 EVENT Elementary ltem Event

COBOL(68) 77 LOCK Elementary ltem Event

COBOL(68) File File

COBOL(68) Transaction Record Transaction Record

COBOL74 01 BINARY Group ltem Real Array

COBOL74 01 COMP Group ltem Hex Array

COBOL74 01 CONTROL-POINT Elementary ltem . Task

COBOL74 01 CONTROL-POINT Group ltem Task Array

COBOL74 '01 DISPLAY Group Item EBCDIC Array

COBOL74 01 EVENT Group ltem Event Array

COBOL74 01 INDEX Group ltem Hex Array

COBOL74 01 KANJ! Group ltem EBCDIC Array

COBOL74 01 LOCK Group ltem Event Array

COBOL74 77 BINARY Elementary ltem Integer

COBOL74 77 CONTROL-POINT Elementary ltem Task

COBOL74 77 DOUBLE Elementary ltem Double

COBOL74 77 EVENT Elementary ltem Event

COBOL74 77 LOCK Elementary ltem Event

COBOL74 77 REAL Elementary ltem Real

COBOL74 File File

continued

8600 0494-000 17-15

Using Parameters

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General Type
COBOL74 Transaction Record Transaction Record
COBOL85 01 BINARY Group Item Integer Array
COBOLS5 01 COMP Group ltem Hex Array
COBOL85 01 REAL Group ltem Real Array
COBOL85 01 DOUBLE Group ltem Double Array
COBOL85 01 DISPLAY Group ltem EBCDIC Array
COBOL85 77 REAL Elementary ltem Real
COBOL85 77 DOUBLE Elementary Item Doﬁble
COBOL85 77 BINARY PIC 9(1-11) Elementary ltem Integer
COBOL85 77 BINARY PIC 9(11-23) Elementary Double
ltem ‘
COBOLS85 77 File File
Pascal Array of Boolean . Boolean Array
Pascal Array of Char Integer Array
Pascal Array of Cha(Subrange Integer Array
Pascal Array of Enumeration Integer Array
Pascal Array of Enumeration Subrange ' Integer Array
Pascal Array of Explicit Data Type Real Array
Pascal Array of Fixed (n < 12) Integer Array
Pascal Array of Fixed (n > 11) Double Array
Pascal Array of Integer Integer Array
Pascal Array of Integer Subrange lhteger Array
Pascal Array of Packed Array Real Array
Pascal Array of Real Real Array
Pascal Array of Record Real Array
Pascal Array of Set Real Array
Pascal Array of Sfixed (n < 12) Integer Array
Pascal Array of Sfixed (n > 11) Double} Array
continued
17-16 8600 0494-000

Using Parameters

Table 17-1. Programming Language Parameter Types (cont.)

8600 0494-000

Language Parameter Type General Type
Pascal Array of Vistring Real Array

Pascal Binary (n) EBCDIC Array
Pascal Bits (n) EBCDIC Array
Pascal Boolean Boolean

Pascal Boolean Subrange Boolean

Pascal Booleanl Hex Array

Pascal Boolean4 Hex Array

Pascal Char Integer

Pascal Char Subrange Integer

Pascal Digits (n) Hevarray

Pascal Digits_s (n) Hex Array

Pascal .Display_s (n) EBCDIC Array
Pascal Display_z (n) EBCDIC Array
Pascal Enumeration Integer

Pascal Enumeration Subrange Integer

Pascal Explicit Record (call-by-value) Real Array

Pascal Explicit Record (var) EBCDIC Array
Pascal - Fixed (n < 12) Integer

Pascal Fixed (n > 11) Double

Pascal Function: Boolean Boolean Procedure
Pascal Function: Boolean Subrange Boolean Procedure
Pascal Function: Char Integer Procedure
Pascal Function: Char Subrange Integer Procedure
Pascal Function: Enumeration Integer Procedure
Pascal Function: Enumeration Subrange Integer Procedure
Pascal Function: Fixed (n < 12) integer Procedure
Pascal Function: Fixed (n > 11) Double Procedure
Pascal Function: integer Integer Procédure
Pascal Function: Integer Subrange Integer Procedure

continued

17-17

Using Parameters

17-18

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General Type
Pascal Function: Real Real Procedure
Pascal Function: Sfixed (n < 12) Integer Procedure
Pascal Function: Sfixed (n > 11) Double Procedure
Pascal Hex (n) Hex Array
Pascal Integer Integer
Pascal Integer Subrange Integer
Pascal Integer48 (n) EBCDIC Array
Pascal Integer96 (n) EBCDIC Array
Pascal Long Set (> 48 Elements in Set) Real Array
Pascal Packed Array of Boolean Hex Array
Pascal Packed Array of Char EBCDIC Array
Pascal Packed Array of Enumeration

(0-16 Elements) Hex Array

(17-256 Elements) EBCDIC Array

(> 256 Elements) Integer Array
Pascal Packéd Array of Fixed (n < 12) Integer Array
Pascal Packed Array of Fixed (n > 11) Double Array
Pascal Packed Array of Integer Intéger Array
Pascal Packed Array of Real Real Array
Pascal Packed Array of Record Real Array
Pascal Packed Array of Set Real Array
Pascal Packed Array of Sfixed (n < 12) Integer Array
Pascal Packed Array of Sfixed (n > 11) Double Array
Pascal Packed Array_of Subrange

(0-16 Elements) Hex Array

(17-256 Elements) EBCDIC Array

(> 256 Elements) Integer Array
Pascal Packed Array Of Vistring Real Array
Pascal Procedure Procedure

continued

8600 0494-000

Using Parameters

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

Pascal Real Real

Pascal Real48 (n) EBCDIC Array

Pascal Record Real Array

Pascal Schema Refer to “Passing
Parameters to Pascal
Schemata” later in this
section.

Pascal Sfixed (n < 12) Integer

Pascal Sfixed (n > 11) Double

Pascal Short Set (1-48 Elements In Set) Real

Pascal S_digits (n) Hex Array

Pascal S_display (n) EBCDIC Array

Pascal U_display (n) EBCDIC Array

Pascal Vistring Real Array

Pascal Word48 (n) EBCDIC Array

Pascal Word96 (n) EBCDIC Array

Pascal Z_display (n) EBCDIC Array

PL/I Boolean (48-bit Op) Boolean

PL/I Character Array (8-bit) EBCDIC Array

P Dimensions/Lower Bounds (Unique)

PL/ Dimensions/No Lower Bounds (Unique)

PL/I Double Array Double Array

PL/ Double (96-bit Op) Double

PUI File File

PUI Integer (48-bit Op) Integer

PU/I Pointer _ Pointer

PL/I Real (48-bit Op) Real

PL/I Single Array Boolean Boolean Array

PU/I Single Array Integer Integer Array

continued
8600 0494-000 17-19

Using Parameters

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General Type |
PLI Single Array Real Real Array
WFL BOOLEAN) Boolean

WFL INTEGER Integer

WFL REAL Real

WFL , STRING Real Array

17-20 8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types

General Type Language Parameter Type Special Matches
ASCIl Array
ALGOL ASCIl ARRAY
ALGOL ASCIl VALUE ARRAY
Boolean
ALGOL BOOLEAN Matching Actuals:
Pascal Boolean Boolean Procedure
(with ‘no parameters)
Pascal Boolean Subrange Integer
P! 48-bit Op Boolean Real
WFL BOOLEAN

Matching Formals:
Integer

Real

Boolean Array

ALGOL BOOLEAN ARRAY
ALGOL ' BOOLEAN VALUE ARRAY
Pascal Array of Boolean
PY/I Single Array Boolean
Boolean
Procedure
ALGOL BOOLEAN PROCEDURE
ALGOL BOOLEAN VALUE ARRAY
Pascal Array of Boolean
Pascal Function: Boolean
PL/I Single Array Boolean
Complex Array
ALGOL COMPLEX ARRAY
ALGOL COMPLEX VALUE ARRAY
Direct File
ALGOL DIRECT FILE

continued

8600 0494-000 - 17-21

Using Parameters

17-22

Table 17-2. Matching Parameter Types (cont.)
General Type Language Parameter Type Special Matches
Double
ALGOL DOUBLE
COBOL(68) 77 COMP-5 Elementary ltem
COBOL74 77 DOUBLE Elementary ltem
COBOL85 77 BINARY PIC 9(11-23)
Elementary Item
COBOL85 77 DOUBLE Elementary item
Pascal Fixed (n > 11)
Pascal Sfixed (n > 11)
PUI 96-bit Op Double
Double Array
ALGOL DOUBLE ARRAY
ALGOL DOUBLE VALUE ARRAY
COBOL85 01 DOUBLE Group ltem
Pascal Array of Fixed (n > 11)
Pascal Array of Sfixed (n > 11)
Pascal Packed Array of Fixed (n >
11)
Pascal Packed Array of Sfixed (n >
11)
PL/I Double Array
Double
Procedure
‘ ALGOL DOUBLE PROCEDURE
Pascal Function: Fixed (n>11)
Pascal Function: Sfixed (n>11)

continued

8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches
EBCDIC Array
ALGOL EBCDIC ARRAY Matching Actuals:
ALGOL EBCDIC VALUE ARRAY Integer Array
COBOL(68) 01 ASCII Group ltem
COBOL(68) 01 DISPLAY Group ltem Matching Formals:
COBOL74 01 DISPLAY Group item Integer Array
COBOL74 01 KANJI Group Item
COBOL85 01 DISPLAY Group ftem COBOL(68 & 74) Matches:
Pascal Binary (n) Hex Array
Pascal Bits (n) Integer Array
Pascal Display s (n) Real Array
Pascal Display z (n)
Pascal Explicit Record (var)
Pascal Integer48 (n)
Pascal integer96 (n)
Pascal Packed Array of Enumeration
(17-256 Elements in
Enumeration)
Pascal Packed Array of Subrange
(17-256 Elements in
Subrange)
Pascal Packed Array of Char
Pascal Real48 (n)
Pascal S display (n)
Pascal U display (n) *
Pascal Word96 (n)
Pascal Word48 (n)
Pascal Z display (n)
P! 8-bit Character Array

8600 0494-000

continued

17-23

Using Parameters

Table 17-2.

Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches
Event
ALGOL EVENT
COBOL(68) 77 EVENT Elementary ltem
COBOL(68) 77 LOCK Elementary ltem
COBOL74 77 EVENT Elementary ltem
COBOL74 77 LOCK Elementary Item
Event Array
ALGOL EVENT ARRAY
COBOL(68) 01 EVENT Group Item
COBOL(68) 01 LOCK Group item
COBOL74 01 EVENT Group Item
COBOL74 01 LOCK Group Item
File
ALGOL FILE
COBOL(68) File
COBOL74 File
- COBOL85 77 File
PL/ File
Hex Array v
ALGOL HEX ARRAY Matching Actuals:
ALGOL HEX VALUE ARRAY Integer Array
COBOL(68) 01 COMP-2 Group item
COBOL(68) 01 INDEX Group ltem Matching Formals:
COBOL74 01 COMP Group ltem Integer Array
COBOL74 01 INDEX Group ltem
COBOL85 01 COMP Group Item COBOL(68 & 74) Matches:
Pascal ; Booleanl EBCDIC Array
Pascal Boolean4 Integer Array
Pascal Digits s (n) Real Array
continued
17-24 8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches
Hex Array Pascal Digits (n) |
(cont.)
Pascal Hex (n)
Pascal Packed Array of Enumeration
(0-16 Elements)
Pascal Packed Array of Subrange
(0-16 Elements)
Pascal Packed Array of Boolean
Pascal S digits (n)
Integer
ALGOL INTEGER Matching Actuals:
COBOL(68) 77 COMP-1 Elementary ltem Boolean
COBOL74 77 BINARY Elementary ltem Integer Procedure
(with no parameters)
COBOL85 77 BINARY PIC 9(1-11) Real
Elementary ltem ,
Pascal Char Real Procedure
(with no parameters)
Pascal Char Subrange
Pascal Enumeration Matching Formals:
Pascal Enumeration Subrange Boolean
Pascal Fixed (n < 12) Real
Pasca.l Integer
Paséal Integer Subrange'
Pascal Sfixed (n < 12)
P/ 48-bit Op Integer
WFL INTEGER

8600 0494-000

continued

17-25

Using Parameters

Table 17-2. Matching Parameter Types (cont.)
General Type Language Parameter Type Special Matches
Integer Array
ALGOL INTEGER ARRAY Matching Actuals:
ALGOL INTEGER VALUE ARRAY EBCDIC Array
¢ COBOL85 01 BINARY Group Item Hex Array
Pascal Array of Char Real Array
Pascal Array of Char Subrange
Pascal Array of Enumeration Matching Formals:
Pascal Array of Enumeration EBCDIC Array
Subrange
Pascal Array of Fixed {n < 12) Hex Array
Pascal Array of integer Real Array
Pascal Array of Integer Subrange
Pascal Array of Sfixed (n < 12) |
Pascal Packed Array of Enumeration
(> 256 Elements)
Pascal Packed Array of Fixed
(n <12)
Pascal Packed Array of Integer
Pascal Packed Array of Subrange
(> 256 Elements)
Pascal Packed Array of Sfixed
(n < 12)
PUI Single Array Integer
Integer Direct
Array
ALGOL INTEGER DIRECT ARRAY Matching Actuals:

Real Direct Array
Matching Formals:

Real Direct Array

17-26

continued

8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types (cont.)
General Type Language Parameter Type Special Matches
Integer '
Procedure
ALGOL INTEGER PROCEDURE Matching Actuals:
Pascal Function: Char Real Procedure
Pascal Function: Char Subrange
Pascal ‘ Function: Enumeration Matching Formals:
Pascal Function: Enumeration Integer
Subrange
Pascal Function: Fixed (n < 12) Real
Pascal ~ Function: Integer Real Procedure
Pascal Function: Integer Subrange
Pascal Function: Sfixed (n < 12)
Pointer
ALGOL POINTER
PU/I Pointer
Procedure
ALGOL PROCEDURE (SUBROUTINE)
Pascal Procedure
. Real
ALGOL REAL Matching Actuals:
COBOL(68) 77 COMP-4 Elementary item Boolean
COBOL74 77 REAL Elementary:ltem Integer
COBOL85 ' 77 REAL Elementary ltem Integer Procedure
Pascal Real Real Procedure
‘ (with no parameters)
Pascal Short Set (1-48 Elements in |
Set) .
PU/I 48-bit Op Real Matching Formals:
WFL REAL Boolean
' Integer
continued
8600 0494-000 17-27

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Real Array
ALGOL REAL ARRAY Matching Actuals:
ALGOL REAL VALUE ARRAY Integer Array
c " Int arge, Char *argv [] ‘
COBOL(68) 01 COMP Group Item Matching Formals:
COBOL74 01 BINARY Group item Integer Array
COBOL85 01 REAL Group ltem
Pascal Array of Explicit Data Type " COBOL(68 & 74) Matches:
Pascal Array of Packed Array EBCDIC Array
Pascal Array of Real Hex Array
Pascal Array of Record
Pascal Array of Set
Pascal Array of Vlstring
Pascal Explicit Record (call-by-value)
Pascal Long Set (> 48 Elements in

Set)
APascal Packed Array of Real
Pascal Packed Array of Record
Pascal Packed Array of Set
Pascal Packed Array of Vistring
Pascal Record
Pascal Vlstring
P/ Single Array Real
WFL STRING
continued
8600 0494-000

17-28

Using Parameters

Table 17-2. Matching Parameter Types (cont.)
General Type Language Parameter Type Special Matches ‘
Real Direct
Array
ALGOL REAL DIRECT ARRAY Matching Actuals:
Integer Direct Array
Matching Formalé:
Integer Direct Array
Real
Procedure
ALGOL REAL PROCEDURE Matching Actuals:
Pascal Function: Real * Integer Procedure
Matching Formals:
Integer
Integer Procedure
Real
Task
ALGOL TASK
COBOL(68) 01 CONTROL-POINT
Elementary Item _
COBOL(68) 77 CONTROL-POINT
Elementary Item
COBOL74 01 CONTROL-POINT
Elementary item
COBOL74 77 CONTROL-POINT
Elementary ltem
Task Array
ALGOL TASK ARRAY
COBOL(68) 01 CONTROL-POINT Group
ltem
COBOL74 - 01 CONTROL-POINT Group
ltem
continued
8600 0494-000 17-29

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches
Transaction ’
Record

ALGOL TRANSACTION RECORD

ALGOL TRANSACTION RECORD

ARRAY
COBOL(68) Transaction Record
COBOL74 Transaction Record

Resolving Passing Mode Conflicts

17-30

Some programming languages, such as WFL and ALGOL, allow the initiating program to
specify the passing mode for a tasking parameter. In addition, programming languages
typically allow the receiving program to specify a passing mode for the formal parameter.
Thus, it is possible for the calling program and the receiving program to request different
passing modes for the same parameter.

The system is very forgiving of these types of mismatches and generally allows any
combination of actual and formal passing modes without issuing an error. However,
when the calling program and the receiving program request different passing modes,
the system uses the passing mode requested by the calling program. For example, if a
call-by-value actual parameter is passed to a call-by-reference formal parameter, the
system passes the parameter by value.

Note that the system is less forgiving of passing mode mismatches for parameters passed
to library procedures. For a discussion of the allowable passing mode combination for
library procedures, refer to Section 18, “Using Libraries.”

Be very careful when writing a program that is intended to be initiated, and passed a
parameter, by calling programs written by other people. The calling program might use a
different passing mode for the parameter than you expected. For example, you might
design the receiving program to receive a parameter by value, and make assignments to
the parameter. However, if the calling program actually passes an expression by name,
then the receiving program terminates with an error when it attempts to assign a value
to the formal parameter. This is true because the calling program implicitly passed a
thunk, and it is not possible to store values into thunks. You can avoid these types of
problems by not making assignments to the formal parameter. -

There is one type of passing mode problem that can make it impossible even for the
receiving program to read the value of the formal parameter. If the calling program
specifies a constant or an expression as a call-by-name actual parameter, then the
compiler creates a thunk. If the receiving program specifies the formal parameter
as call-by-reference, then the formal parameter cannot receive a thunk. The calling

8600 0494-000

Using Parameters

program can initiate the receiving program successfully. Howéver, when the receiving
program attempts to interrogate or modify the value of the formal parameter, the system
issues an “INVALID OPERATOR?” error and discontinues the receiving program.

Note that this error does not occur if the call-by-name actual parameter is a variable,
rather than a constant or an expression. If a variable is used, then the compiler does
not create a thunk. The receiving program can use the formal parameter without any
problems. ‘

Examples

Suppose that the following COBOL74 program is the receiving program. Note that the
formal parameter specification indicates the parameter REAL-PARAM is to be received
by reference:

106 IDENTIFICATION DIVISION.

110 ENVIRONMENT DIVISION.

120 DATA DIVISION.

130 WORKING-STORAGE SECTION.

140 77 REAL-PARAM BINARY PIC 9(11) RECEIVED BY REFERENCE.
150 PROCEDURE DIVISION USING REAL-PARAM.

168 START-HERE SECTION.

179 P1.

180 MOVE 15 TO REAL-PARAM.

199 STOP RUN.

The following ALGOL program invokes the preceding program and passes the real
variable ACTUALREAL as the actual parameter. Note that the statement at line 150

in the following example specifies that the parameter is to be passed by value. This
statement overrides the RECEIVED BY REFERENCE clause and causes the parameter
to be passed by value. When the receiving program assigns a value of 15 to the formal
parameter, the value of the actual parameter is not affected. Thus, the statement at line
210 displays a value of 5; but if the statement at line 150 were deleted, the statement at
line 210 would display a value of 15.

100 BEGIN

110 FILE TERM (KIND=REMOTE);

120 TASK T;

139 REAL ACTUALREAL;

140 PROCEDURE COBOLTASK (RVAL);

156 VALUE RVAL;

160 REAL RVAL;

176 EXTERNAL;

180 ACTUALREAL := 5;

199 REPLACE T.NAME BY "OBJECT/COBOL/TASK.";
200 CALL COBOLTASK (ACTUALREAL) [T1;
216 WRITE (TERM,*//,ACTUALREAL);

220 END.

8600 0494-000 ' 17-31

Using Parameters

Now suppose that the COBOL74 program was invoked by a WFL job instead. The
following WFL job invokes the COBOL74 program and passes a real parameter by value
(the default passing mode in WFL):

100 ?BEGIN JOB WFL/TEST;

116 CLASS = 2; ‘
120 JOBSUMMARY = SUPPRESSED;

139 ELAPSEDLIMIT = 120;

149 REAL R := 5;

156 RUN OBJECT/COBOL/TASK (R);

168 DISPLAY STRING(R,*);

170 ?END JOB

The statement at line 160 displays a value of 5. However, if you change the RUN
statement to read RUN OBJECT/COBOL/TASK (R REFERENCE); then the
parameter is passed by reference and the statement at line 160 displays a value of 15.

Passing Arrays

When an array is passed as a parameter, the actual and formal arrays must be of
compatible data types (such as integer, real, and so on). The actual and formal arrays
must also be compatible structurally. That is, the number of dimensions and the lower
bounds for each dimension must be compatible.

The following subsections discuss these types of compatibility issues for arrays that

are passed in process initiation statements. Note that this discussion centers on the
compatibility issues the system enforces at run time. If the parameter is passed between
procedures in a single program, the compiler can enforce additional restrictions at
compile time. For information about any such compile-time restrictions, refer to the
appropriate programming language manuals.

Matching Dimensions and Elements

17-32

When the calling program passés arrays, the actual array and the formal array must
have the same number of dimensions.

However, it is not necessary for the actual array and the formal array to have the same
number of elements in each dimension. Some languages allow formal array parameters
that do not specify the number of elements in each dimension. For example, ALGOL
does not allow upper bounds to be specified for the dimensions in a formal array
parameter specification; and Pascal allows formal array parameters, called schemata,
that are incompletely specified. (Schemata are discussed under “Passing Parameters to
Pascal Schemata” later in this section.) In these cases, the system assigns the formal
parameter the same number of elements as the actual parameter at run time.

Even if the formal parameter specifies the number of elements in each dimension of

_ an array, the actual parameter can have a different number of elements. The system

does not issue an error or warning in these cases. If the actual parameter passes more
elements than the formal parameter can receive, the system ignores the extra elements.

8600 0494-000

Using Parameters

Matching Unbounded Arrays

Some languages, such as ALGOL, allow formal array parameters that do not specify the
lower bounds for array dimensions. Such array parameters are referred to in this guide
as unbounded array parameters. Array parameters that explicitly specify the lower
bounds are referred to as simple array parameters.

Be aware that parameter mismatch errors can result from passing an actual array with
an unspecified lower bound to a formal array with a specified lower bound, or vice versa.
For example, WFL STRING parameters are passed as unbounded real arrays. If a WFL
program passes a string parameter to an ALGOL program, the ALGOL program must
declare the formal parameter as unbounded; otherwise, a PARAMETER MISMATCH
error occurs at run time.

The following is an example of an ALGOL program that is passed a string parameter
from a WFL job. ' '

199 PROCEDURE OUTER(ARR);

118 REAL ARRAY ARR[*];

120 BEGIN

13@ FILE TERM(KIND=REMOTE);

149 INTEGER ARR_SIZE;

150 POINTER P;

160 P := ARR;

178 ARR_SIZE := SIZE(ARR) * 6;

189 WRITE(TERM,*//,P FOR ARR_SIZE);
190 END.

In the preceding pregram, the SIZE function at line 170 returns the size of the array
parameter in words. This value is multiplied by 6 to give the length of the array
parameter in characters.

COBOL74 is somewhat more forgiving than ALGOL in that formal array parameters
in COBOL74 programs can receive either simple or unbounded actual parameters.
Consider the following COBOL74 program:

100 IDENTIFICATION DIVISION.

119 ENVIRONMENT DIVISION.

120 DATA DIVISION.

130 WORKING-STORAGE SECTION.

149 01 PARAM PIC X(12) DISPLAY.
150 PROCEDURE DIVISION USING PARAM.
160 START-HERE SECTION.

17g PlL.

180 DISPLAY PARAM.

190

200 STOP RUN.

8600 0494-000 17-33

Using Parameters

The preceding COBOL74 program is initiated twice by the following ALGOL program.
The first time, the ALGOL program passes an unbounded array parameter. The second
time, the ALGOL program passes a simple array parameter. In each case, the actual
parameter is received by the formal parameter PARAM in the COBOL74 program. The
COBOL74 program runs normally and displays the same output in each case.

100 BEGIN
110 REAL ARRAY ARRIN[:12];

120 TASK T;

130 PROCEDURE EX1(ARRACT);

146 REAL ARRAY ARRACT[*];

156 EXTERNAL;

168 PROCEDURE EX2(ARRACT);

176 REAL ARRAY ARRACT[2];

180 EXTERNAL;

199 REPLACE ARRIN BY “"HI THERE";

200 REPLACE T.NAME BY "(JASMITH)OBJECT/TEST/COBOL/TASK.";
216 CALL EX1 (ARRIN) [T];

220 CALL EX2 (ARRIN) [T];

230 END.

Note that the preceding comments about COBOL74 hold true only for tasking
parameters. COBOL74 programs display less flexible behavior when they are invoked
as libraries. In this case, the programmer must know in advance whether the actual
array parameter is simple or unbounded. If the actual parameter is unbounded, the
programmer must use a LOWER-BOUNDS clause in the formal array declaration, or
else declare an extra BINARY parameter to receive the lower bound. Of these two
techniques, the LOWER-BOUNDS clause is equally compatible with tasking or library
calls, whereas the extra BINARY parameter works only for library calls.

For further information about unbounded array parameters to library procedures, refer
to Section 18, “Using Libraries.”

Matching Pascal Arrays

Some special rules apply for passing parameters to a Pascal formal parameter that is
either a multidimensional array or an incompletely defined array. .

Passing Multidimensional Arrays

17-34

Pascal arrays are all stored internally as one-dimensional arrays. Declaring a Pascal
array with multiple dimensions creates an indexing compiler scheme, which makes it
appear that the array has multiple dimensions. Within the Pascal program, the fact that
the array is really one dimensional is never visible. However, this fact is visible when
parameters are passed to a Pascal program from a program written in another language.

Because Pascal formal array parameters are implicitly one dimensional, actual array

parameters passed to Pascal programs must always be one dimensional. The elements
of the actual array are mapped into the formal array according to an algorithm that

8600 0494-000

Using Parameters

increments the indexes for the highest dimension, then the next highest dimension, and
SO on. '

For example, suppose the actual parameter is an ALGOL EBCDIC array of one
dimension, [1:27]. The initiating process could pass this parameter to a Pascal formal
parameter that is a three-dimensional packed array of char. Suppose each dimension is
declared with indexes [1..3]. The following table illustrates the mapping of elements
from the ALGOL actual array into the Pascal formal array:

ALGOL index Pascal Index
1 1,11
1,1,2
1,1,3
1,2,1
1,2,2
1,2,3
2,1,1
2,1,2
2,13

O 00 N O O~ W N

The initiating process maps the remaining elements in a similar way.

Passing Parameters to Pascal Schemata

Before reading the rules for passing parameters to Pascal schemata, you should
understand the following Pascal terms:

e Index

An index specifies a location in a particular array dimension. If a dimension has
indexes running from 1 to 5, then there are five indexes in that dimension.

e Discriminant

A discriminant appears in an array declaration and specifies the highest-numbered or
lowest-numbered index for a particular dimension. If the discriminant is an integer,
it is called a constant discriminant. If the discriminant is a variable, it is called a
dynamic discriminant.

o Element

An element is a single location in an array. An element is identified by an index for
each dimension stating the element’s location in that dimension.

e Schema

A schema is an array declaration that includes one or more dynamic discriminants.
In other words, a schema is a type of incomplete array declaration. Using a schema -

-as a formal parameter makes it possible to pass arrays with different bounds and
different numbers of elements to the same formal parameter. The plural of schema
is schemata.

8600 0494-000 17-35

Using Parameters

17-36

‘When passing an array to a formal parameter that is a Pascal schema, the uutlatmg
process must pass one or more additional parameters. This is the only situation in which
the system requires that the number of actual parameters be different from the number
of formal parameters. The additional actual parameters provide information about the
size of the actual array. Each of these additional parameters is a call-by-value integer.

The following are Pascal schemata types and the rules for passing parameters to each of
these schemata types:

A vistring (variable-length string). This formal parameﬁer receives two actual
parameters: a parameter that contains the string value, followed by a call-by-value
integer parameter that records the length of the string.

A one-dimensional packed array of char whose upper discriminant is dynamic. This

.formal parameter receives the following two actual parameters a one-dimensional

array, followed by one call-by-value integer parameter that gives the value of the
dynamic discriminant.

Any other type of array or packed array whose declaration includes at least one
dynamic discriminant. This type of formal parameter receives the following actual
parameters, in the order listed:

A one-dimensional array of a compatible type.

For each dimension, a call-by-value integer parameter specifying the total
number of elements in that dimension and all higher dimensions. For example,
imagine an array with five indexes in the first dimension, three in the second
dimension, and two in the third dimension. The first integer parameter is 30,
which is the result of multiplying 5, 3, and 2 together. The second integer
parameter is 6, which is the result of multiplying 3 and 2 together The third
integer parameter is 2.

For each dynamic discriminant, a call-by-value integer parameter giving the
value of the discriminant. The order of the integer parameters is as follows:
first-dimension lower discriminant, first-dimension upper discriminant,
second-dimension lower discriminant, second-dimension upper discriminant, and
so on. Any constant discriminants are omitted.

8600 0494-000

Using Parameters

Examples

The following programs illustrate how an ALGOL program can pésé an array to a Pascal
two-dimensional packed array of char. The ALGOL program passes a one-dimensional
EBCDIC array.

% ALGOL PROGRAM
BEGIN
EBCDIC ARRAY
ALGOLARRAY [@:24] ;
TASK T3

PROCEDURE OUTSIDE(ACTUALARRAY);
EBCDIC ARRAY ACTUALARRAY[*];
EXTERNAL;

REPLACE T.NAME BY "OBJECT/PASCAL/TWODIM/CHAR.";
REPLACE ALGOLARRAY[@] BY "ONETWOONETWOONETWOONETWO";
CALL OUTSIDE(ALGOLARRAY) [T];

END.

{ PASCAL PROGRAM }
program pascalarray((formalarray : formalarraytype));
TYPE
indexrange = 1..18;
formalarraytype = packed array [2..5, 2..7] of char;
VAR
' arrayindex, arrayindex2 : indexrange;
BEGIN
for arrayindex := 2 to 5 do
for arrayindex2 := 2 to 7 do
formalarray[arrayindex, arrayindex2] := 'a';
END.

8600 0494-000 17-37

Using Parameters

The following example shows what would happen if the formal parameter formalarray
in the preceding example were changed from a fully-specified array to a schema.
Because of this change, the ALGOL program must pass additional call-by-value integer
parameters. :

% ALGOL PROGRAM
BEGIN
EBCDIC ARRAY
ALGOLARRAY [@:24];
INTEGER
ONEDIM, TWODIM, DISC1, DISCZ2;
TASK T,
PROCEDURE OUTSIDE (ACTUALARRAY, ONEDIM, TWODIM, DISC1, DISC2);
~ VALUE ONEDIM, TWODIM, DISC1, DISC2;
EBCDIC ARRAY ACTUALARRAY [*];
INTEGER ONEDIM, TWODIM, DISC1, DISC2;
EXTERNAL;

REPLACE T.NAME BY "OBJECT/TASK/SCHEMA/PASCAL/TWODIM/CHAR.";
ONEDIM := 24;

TWODIM := 6
DISC1 := 2
DISC2 := 7;

REPLACE ALGOLARRAY [@] BY "ONETWOONETWOONETWOONETWO"; .
CALL OUTSIDE (ALGOLARRAY, ONEDIM, TWODIM, DISC1, DISCZ) [m;
END.

{ PASCAL PROGRAM }
- program pascal_twodim_schema((formalschema : formalschematype));
TYPE '
indexrange = 1..10;
formalschematype(discl, disc2 :indexrange) =
packed array [discl..5, 2..disc2] of char;
VAR
indexschema, indexschema2 : indexrange;
BEGIN
for indexschema := formalschema.discl to 5 do
for indexschema2 := 2 to formalschema.disc2 do
formalschema[indexschema, indexschema2] := 'a';
END.

Passing COBOL74 Arrays to Bound Procedures

A COBOL74 host program can initiate a bound subprogram as a task with a PROCESS
statement or with the CALL <task identifier> WITH <section name> form of the
CALL statement. If the host program passes an array parameter to the task, the
subprogram can receive various run-time errors (such as INVALID OPERATOR or SEG

17-38 ' 8600 0494-000

Using Parameters

ARRAY ERROR) when it attempts to use the array. These errors can occur even if the
arrays in the host and subprogram are the same type and length.

Specifically, arrays of usage BINARY, COMPUTATION, REAL, or DOUBLE always
receive run-time errors when passed as parameters to a bound subprogram called as a
task. EBCDIC arrays (0l1-level with usage DISPLAY) are the only type of array that can
be passed successfully to such a subprogram. Nonarray items (77-level) can be passed
without a problem.

If it is necessary for the bound subprogram to share a non-EBCDIC array with the host
program, you can declare the array in the subprogram as a global array rather than a
parameter. This method allows the same data to be shared between the subprogram and
host, and does not cause run-time errors.

8600 0494-000 " 17-39

17-40 | 8600 0494-000

Section 18
Using Libraries

A library is a type of process that provides a set of objects that can be used by other
processes, which are known as user processes. The objects provided by a library are
called library objects. These objects are said to be exported by the library, and imported
by the user process. Multiple user processes can import objects from the same library
Pprocess.

You can write library programs in ALGOL, C, COBOL(68), COBOL74, COBOLSS5,
FORTRAN, FORTRAN77, NEWP, Pascal, and PL/I. You can write user programs in all
of these languages, as well as in RPG. A library written in one language can be used by
programs written in other languages.

A procedure is the type of object most commonly exported by libraries. By consolidating
related procedures into a library, you can avoid duplicating the procedures in all the
programs that need to use them. Further, you can maintain and enhance the shared
procedures more easily when they reside in a library, because you don’t have to repeat
your work in every program that uses the procedures. ‘

A Series systems provide several other methods by which programs can make use of
a shared procedure, including binding, installation intrinsics, and separate programs.
Compared to binding, libraries offer the following advantages:

e Libraries export objects at run time, whereas the Binder adds procedures from
one object code file to another for permanent storage. You have to run the Binder
separately for each object code file to which a procedure is to be added. You have to
run the Binder again for each of these object code files whenever you make changes
to the shared procedure.

o Libraries allow procedures to be shared between programs in a wider variety of
languages than the Binder permits.

Compared to installation intrinsics, libraries offer the following advantages:

e Libraries can include objects that are declared globally to the exported procedures.
These could include files, databases, and so on.

e Libraries can contain initialization and termination code.

e Libraries can themselves call other libraries.

e Individual users can create their own libraries without possessing special privileges.

e Libraries can be written in more languages than can installation intrinsics.

e More than one version of a library can be in use at a time.

8600 0494-000 18-1

Using Libraries

Another method for sharing procedures is to write each procedure as a separate
program. Any other program that needs to make use of one of these shared procedures
can initiate the appropriate program as a task. Compared to this method of sharing
procedures, libraries offer the following advantages:

e The shared procedures can either be entered or initiated by the user program,
whereas a separate program can only be initiated. Procedure entrance takes less
time and system resource than process initiation.

e There are more programming languages that provide the ability to use libraries than
there are programming languages that provide the ability to initiate programs.

In addition to their role in providing shared procedures, libraries can also provide data
structures to user processes. FORTRAN and FORTRAN77 libraries can export files and
arrays in much the same way as exported procedures. Additionally, libraries can provide
user processes with indirect access to data objects that are declared in a library but not
actually exported. The use of libraries to allow user processes to share data objects is
discussed in “Providing Global Object<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>