
• UNISYS A Series
System Software Utilities
Operations .
Reference Manual

Priced Item

July 1992

Printed in U S America
8600 0460-100

• UNISYS Product Information
Announcement

o New Release • Revision o Update 0 New Mail Code

Title

A Series System Software Utilities Operations Reference Manual

This revision of the A Series System Software Utilities Operations Reference Manual is relative to the Mark 4.0
release of the A Series operating system software. You can use this manual with the Mark 4.0 or higher system
software release.

The major changes described in this revision of the manual are

• The section concerning the DUMPALL utility has been revised to include additional information as well as a
reorganized physical structure.

• Miscellaneous technical corrections have been added to other sections.

To order additional copies of this document

• United States customers call Unisys Direct at 1-800-448-1424

• All other customers contact your U nisys Subsidiary Librarian

• Unisys personnel use the Electronic Literature Ordering (ELO) system

Announcement only: Announcement and attachments: System: A Series
AS148 Release: Mark 4.0.0 July 1992

Part number: 86000460-100

•
UNISYS A Series

System Software Utilities
Operations
Reference Manual

Copyright @ 1992 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release Mark 4.0.0

Priced Item

July 1992

Printed in U S America
8600 0460-100

The names, places, and/or events used in this publication are not intended to
correspond to any individual, group, or association existing, living, or otherwise.
Any similarity or likeness of the names, places, and/or events with the names of
any individual, living or otherwise, or that of any group or association, is purely
coi ncidenta I and un i ntentiona I.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product or related information described herein is only furnished pursuant and
subject to the terms and conditions of a duly executed agreement to purchase or
lease equipment or to license software. The only warranties made by Unisys, if
any, with respect to the products described in this document are set forth in such
agreement. Unisys cannot accept any financial or other responsibility that may be
the result of your use of the information in this document or software material,
including direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or
software material complies with the laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions
may be issued to advise of such changes and/or additions.

RESTRICTED RIGHTS LEGEND. Use, reproduction, or disclosure is subject
to the restrictions set forth in DFARS 252.227-7013 and FAR 52.227-14 for
commercial computer software.

Correspondence regarding this publication may be forwarded using the Product
Information card at the back of the manual, or may be addressed directly to
Unisys, Technical Publications, 25725 Jeronimo Road, Mission Viejo, CA
92691-2792.

Page Status

Page Issue

iii -100
iv Blank
v th rough xix -100
xx Blank
xxi -100
xxii Blank
xxiii -100
xxiv Blank
1-1 through 1-4 -100
2-1 through 2-7 -100
2-8 Blank
3-1 th rough 3-90 -100
4-1 through 4-19 -100
4-20 Blank
5-1 th rough 5-60 -100
6-1 through 6-39 -100
6-40 Blank
7-1 through 7-36 -100
8-1 through 8-19 -100
8-20 Blank
9-1 through 9-35 -100
9-36 Blank
10-1 through 10-19 -100
10-20 Blank
11-1 through 11-11 -100
11-12 Blank
12-1 through 12-59 -100
12-60 Blank
13-1 through 13-7 -100
13-8 Blank
A-I th rough A-8 -100
Glossary-1 through 10 -100
Bibliography-1 through 3 -100
Bibliography-4 Blank
Index-1 through 17 -100
Index-18 Blank

Unisys uses an II-dIgit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix
(x) designates a revision level; the second digit (y) designates an update level. For
example, the first release of a document has a suffix of -000. A suffix of -130
designates the third update to revision 1. The third digit (z) is used to indicate an
errata for a particular level and is not reflected in the page status summary.

8600 0460-100 iii

iv 8600 0460-100

About This Manual

Purpose
The A Series System Software Utilities Reference Manual describes the system
software utilities that are available to users of A Series systems. Each utility is used to
perform unique functions.

Scope
This manual is designed to provided descriptions and examples of the syntax and
explanations of how to run the software utilities.

Audience
This manual is intended to use by system operators, applications programmers and
system analysts.

Prerequisites
You should be familiar with one or more high level programming languages and with
A Series operation.

How to Use This Manual
This manual is designed to present an alphabetical listing of the system software
utilities and provides easy access to information.

Organization
Each section in this manual describes a different software utility or facility. This
manual is divided into the following sections.

Section 1. CARDLINE Utility

This section tells how to use the CARDLINE utility to print an EBCDIC or BINARY
data deck.

86000460-100 v

About This Manual

vi

Section 2. COMPARE Utility

This section tells how to use the COMPARE utility to compare one or more pairs of
files.

Section 3. DUMPALL Utility

This section tells how to use the DUMPALL utility to copy files from one medium to
another and to generate listings of files.

Section 4. FILECOPY Utility

This section tells how to use the FILECOPY utility to simplify library maintenance by
automating the creation of copy decks.

Section 5. FILEDATA Utility

This section tells how to use the FILEDATA utility to produce reports regarding files.

Section 6. INTERACTIVEXREF Utility

This section tells how to use the INTERACTlVEXREF utility interactively to provide
information on the identifiers in a program.

Section 7. KEYEDIO Support

This section describes how to use the SYSTEM/KEYEDIO library to provide PLIISAM
for COBOL 74 and RPG files. This section also includes descriptions of keyed file
structure, coarse tables, fine tables, file management, keyed file attributes, and
KEYEDIO procedures.

For information about KEYEDIOII, refer to the A Series KEYEDIOII Programming
Reference Manual.

Section 8. Mathematical Functions

This section describes the mathematical functions for the A Series systems.

Section 9. PATCH Utility

This section tells how to use the PATCH utility to merge one or more patch files into a
single patch file on disk or pack.

Section 10. PL/I Indexed Sequential-Access Method (PLIISAM)

This section tells how to use a set of software routines to implement the PLII Indexed
Sequential-Access Method (PLTISAM) of storing and retrieving data records.

8600 0460-100

About This Manual

Section 11. RLTABLEGEN Utility

This section tells how to use the SYSTEM/RLTABLEGEN program to specify the
format of tape labels defined at your installation.

Section 12. SORT Utility

This section tells how to use the SORT utility.

Section 13. XREFANALYZER Utility

This section tells how to use the XREFANALYZER utility to construct detailed
information about all identifiers declared in a program.

Appendix A. Understanding Railroad Diagrams

This appendix explains how to read the railroad diagrams used to show the syntax of
expressions and commands.

In addition, a glossary, a bibliography, and an index appear at the end of this manual.

Related Product Information

A Series File Attributes Programming Reference Manual· (form 8600 0064).
Formerly the A Series I/O Subsystem Reference Manual

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need
to understand the functionality of a given attribute. The A Series I/O Subsystem
Programming Guide is a companion manual.

A Series KEYEDIOn Programming Reference Manual (form 8600 0684)

This manual describes the KEYEDIOII software. KEYEDIOII is the Unisys indexed
sequential access method (ISAM) software for COBOL 74 and Report Program
Generator (RPG) programming languages. This manual is designed for applications
programmers and analysts, and others who are familiar with KEYEDIO.

A Series Mark 4.0 Software Release Capabilities Overview (form 8600 0015)

This overview summarizes the new features available with the Mark 4.0 software
release, describes any features deimplemented in that release, and lists manuals that
have been added or changed. The overview is written for system administrators,
programmers, and others who will be preparing for and using the new software release.

A Series Operating System Installation Guide (form 8600 1021)

This guide describes how to use the UTILOADER and LOADER programs to install
the operating system when a system is first initialized or when the operating system is
not functioning. Information about changing your operating system or using Simple
Installation are covered in other manuals. This guide is written for system
administrators and operators who are responsible for installing the operating system.

8600 0460-100 vii

About This Manual

viii

A Series Systems Functional Overview (form 8600 0353)

This manual presents an overview of the A Series systems and serves as a central
source of information for these systems. This overview is written for both new and
experienced users of A Series systems, and for anyone wanting an introduction to these
systems.

8600 0460-100

Contents

About This Manual. v

Section 1. CAROLI NE Utility

Printing a Data Deck 1-1
Punching a Data Deck 1-2
Examples Using the CAROLINE Utility. 1-3

Section 2. COMPARE Utility

Running the COMPARE Utility. 2-1
Using MARC to Run COMPARE 2-1
Using a WFL Job to Run COMPARE 2-1

Files Used by the COMPARE Utility . 2-3
Output from the COMPARE Utility. 2-3

Section 3. OUMPALL Utility

Understanding Key DUMPALL Concepts. 3-1
Using DUMPALL Commands 3-2
Understanding File Records. 3-2
Understanding Structural File Attributes. 3-3

General Information about DUMPALL File
Attributes. 3-4

Attributes for Files with Fixed-Length Records .. 3-6
Attributes for Files with Variable-Length Records 3-7

Files with BLOCKSTRUCTURE =
EXTERNAL. 3-7

Files with BLOCKSTRUCTURE=VARIABLE,
VARIABLE2, or VARIABLEOFFSET 3-8

Files with BLOCKSTRUCTURE=L1NKED . . 3-8
Specifying Data or Character Set Translations. 3-9

Standard Commands 3-12
ATTRIBUTES or FILE Command. 3-13
CAT Command. 3-14
COpy Command. •. 3-21
DEFINE Command . 3-38
DMPMT Command. 3-39
HEXDSK Command. 3-43
L1BMT Command . 3-45
LIST Command. 3-46
TEST Command. 3-52

Interactive List Routine Commands. 3-55
Interactive AGAIN Command. 3-56

8600 0460-100 ix

Contents

Interactive FILE or ATIRIBUTES Command 3-56
Interactive CONTINUE Command. 3-56
Interactive LIST Command. 3-57
Interactive MODE Command 3-59
Interactive NEXT Command. 3-60
I nteractive OPEN Com mand 3-60
Interactive PREVIOUS Command 3-61
Interactive PRINT Command 3-61
Interactive QUIT Command 3-62
Interactive RECORD Command. 3-62
Interactive SKIP Command 3-63

Running the DUMPALL Utility. 3-64
Parameter Mode. 3-64
Card Mode. 3-65
Interactive Mode. 3-65
Using the MARC Interface . 3-66
Controlling I/O Exceptions 3-67

Input to the DUMPALL Utility. 3-70
Basic DUMPALL Constructs. 3-70
Field Definition. 3-73
Format Definition 3-77
Old Specs 3-78
Print Option . 3-79
Record Range List. 3-80
Skip Specification . 3-82

Handling Tape Files 3-84
Description of Tape Formats. 3-84

Tape Marks 3-84
Unlabeled Tapes. 3-84
Labeled Tapes 3-85
Nonstandard Labeled Tapes. 3-87

Output Files. 3-87
Input Files from Labeled Tapes. 3-88
Input Files from Unlabeled Tapes. 3-88
Treating Labeled Tapes as Unlabeled Tapes. 3-89

Section 4. FI LECOPY Utility

Running the FILECOPY Utility. 4-1
Input to the FILECOPY Utility. 4-2
Basic FILECOPY Constructs 4-3
FILECOPY Task Requests . 4-5

CREATED, ACCESSED, or UPDATED Request 4-5
ADDED or ALLFILES Request. 4-6
EXPIRED Request. 4-7
FILECOPY Modifiers .. 4-8
FILECOPY Options 4-12

Sample FILECOPY Runs. 4-15
I ndex Files . 4-18

x 8600 0460-100

Contents

Section 5. FI LEDATA Utility

Basic FILEDATA Constructs. 5-1
Output Options. 5-4
Running the FILEDATA Utility. 5-5
FILEDATA Parameter List. 5-5
Selecting the Files to Be Reported On 5-6
Effects of Family Substitution 5-6
Error Reporting 5-6
Database Generation and Reuse 5-7
Sample FILEDATA Runs . 5-8
Task Requests .. 5-10

ARCHIVEINFO Request. 5-11
AREASUMMARY Request . 5-13.
ATIRIBUTES Request. 5-14
BACKUP Request. 5-17
CATALOGINFO Request. 5-20
CHECKERBOARD Request. 5-22
CODEFILEINFO Request. 5-24
COMPATIBILITY Request. 5-28
COPYDECK Request . 5-30
DEFINEOUTPUT Request 5-31
FILENAMES Request. 5-32
HEADERCONTENTS Request. 5-35
INCOMPATIBILITY Request. 5-37
NOREPORTS Request. 5-39
STRUCTUREMAP Request. 5-41
TAPEDIR Request. 5-43

FILEDATA Modifiers . 5-44
ABBREVIATED. 5-44
ALL. 5-44
ALTER DATE . 5-44
ARCHIVE. 5-44
ARCHIVEBACKUP 5-45
AREALENGTH 5-45
AREAS. 5-45
AREASIZE . 5-45
BACKUPSN . 5-45
BLOCKSIZE . 5-46
BLOCKSTRUCTURE . 5-46
CATALOGUE. 5-46
CCSVERSION . 5-46
CODEVERSION. 5-47
CREATION DATE . 5-48
CRU NCHED . 5-48
CYCLE. 5-48
DATABASE. 5-48
DI RECTORY . 5-48
DOCUMENTIYPE.......................... 5-49
EXTMODE . 5-49
FAMILYNAME. 5-49
FILEKIND 5-49

8600 0460-100 xi

Contents

FI LELENGTH . 5-49
FILEORGANIZATION . 5-49
FILESTRUCTURE . 5-49
FI LETYPE . 5-50
FRAMESIZE . 5-50
GUARDFILE . 5-50
IDENTITY. 5-50
I NTMODE 5-50
LASTACCESSDATE . 5-51
LASTRECORD 5-51
LEVEL. 5-51
LlCENSEKEY . 5-51
LlNEWIDTH . 5-51
LOCKEDFILE .. 5-51
MAXRECSIZE . 5-52
MINRECSIZE . 5-52
NAMESONLY . 5-52
NEWDATABASE . 5-52
NONRESIDENTONLY ... 5-52
NOTE. .. 5-52
PACKNAME . 5-52
PAGESIZE 5-53
PERMITIEDACTIONS . 5-53
RAWHEADERS. 5-53
RELEASEID ; 5-53
RESIDENTONLY. 5-53
SAVEFACTOR . 5-53
SECURITY. 5-53
TI MESTAMP . 5-54
TITLE. 5-54
TOTALSECTORS........................... 5-54
UNITS. 5-54
USERINFO. 5-54
VERSION. 5-54
WARNINGS. 5-54

Numeric Report Requests. 5-55
Old PACKDI R Syntax '. 5-56
Using System Commands to Initiate FILEDATA 5-58

DIR (Directory) Command. 5-58
TDIR (Tape Directory) Command 5-59

Section 6. INTERACTIVEXREF Utility

INTERACTIVEXREF Operation. 6-1
Files Used by the INTERACTIVEXREF Utility 6-1
Running the INTERACTIVEXREF Utility. 6-2
Input to the INTERACTIVEXREF Utility 6-3
Basic I NTERACTIVEXREF Constructs 6-3

Identifier Specification. 6-3
Range Specification. 6-7

INTERACTIVEXREF Commands. 6-9

xii 8600 0460-100

Contents

DECLARATIONS Command 6-10
EXPAND Command. 6-17
HELP Command. 6-20
LIST Command. 6-21
LOAD Command. 6-22
LOCATE Command . 6-23
MERGE and COINCIDENCE Commands 6-24
QUALIFY Command 6-28
RANGE Command 6-28
REFERENCE Command. 6-29
SET and RESET Commands. 6-32
STOP Command. 6-33
SUMMARY Command. 6-33
SYMBOL Command 6-34
TERMINAL Command. 6-35
WHAT Command. 6-36
WHATFILES Command . 6-36

Using the INTERACTIVEXREF Utility. 6-37
Use with Improperly Sequenced Source. 6-37
Use with COBOL74. 6-37
Use with FORTRAN and FORTRAN77. 6-38
Use with PASCAL . 6-38

Exam pie I NTERACTIVEXREF Program 6-38

Section 7. KEYEDIO Support

Physical Structure of KEYEDIO Files . 7-1
Coarse Tables. 7-1
Fine Tables. 7-2
Data Blocks. 7-2
Locati ng Data . 7-2

File and KEYEDIO Library Management 7-2
Removing and Installing a KEYEDIO Library. 7-3
KEYEDIO Program Interface. 7-3
Indexed KEYEDIO File Attributes. 7-4

Setting the FILEORGANIZATION Attribute. 7-5
Setting the EXCLUSIVE Attribute. 7-5
Setting the Value of the BUFFERS Attribute. 7-5

Impact of Number of Buffers on Processor Time. 7-5
Impact of Number of Buffers on Save Memory. . 7-5
Rules for Determining the Number of Buffers

Used. 7-6
Choosing a Value for the BLOCKSIZE Attribute. 7-7

Effect of Block Size on Processor Time 7-8
Effect of Block Size on Save Memory. 7-8
Calculating Actual Block Size. 7-8
Calculating User-Specified Block Size (2 Level). 7-9
Calculating Actual Area Size. 7-10

KEYEDIO Procedures. 7-10
Key Information 7-12
File Access Information. 7-13

86000460-100 xiii

Contents

Results Returned 7-13
ISMGETKEYSTRUCTURE Procedure. 7-14
ISMOPEN Procedure. 7-15
ISMCLOSE Procedure 7-16
ISMSTART Procedure 7-17
ISMSEQUENTIALWRITE Procedure. 7-18
ISMSEQUENTIALREAD Procedure 7-19
ISMRANDOMWRITE Procedure 7-20
ISMRANDOMREAD Procedure. 7-20
ISM REWRITE Procedure . 7-21
ISM DELETE Procedure 7-22
ISMSETUPLIMIT Procedure. 7-23

The KEYEDIO File Structure. 7-24
Segment 0 (Zero) of the File. 7-24
Block Information Layout. 7-28
Coarse Table Layout 7-29
Fine Table Layout . 7-29
Key I nformation Table Layout. 7-30
Logical Layout of a KEYEDIO File. 7-30
Inserting Keys. 7-32

Recovery Procedures 7-35
Recovery Messages and Warnings. 7-35

Section 8. Mathematical Functions

Single·Precision Functions 8-1
ALGAMA Function. 8-1
ALOG Function. 8-2
ALOGI0 Function. 8-2
ARCOS Function. 8-2
ARSIN Function . 8-2
ATAN Function . 8-3
ATAN2 Function . 8-3
COS Function. 8-3
COSH Function. 8-4
COTAN Function. 8-4
ERF Function . 8-4
ERFC Function. 8-5
EXP Function . 8-5
Single-Precision Exponentiation 8-5
GAMMA Function. 8-5
RANDOM Function . 8-5
SI N Function 8-6
SINH Function. 8-6
SQRT Function. 8-7
TAN Function . 8-7
TANH Function. 8-7

Double·Precision Functions . 8-7
DAR COS Function. 8-7
DARSIN Function . 8-8
DATAN Function . 8-8

xiv 8600 0460-100

Contents

DATAN2 Function. 8-8
DCOS Function. 8-8
DCOSH Function. 8-8
DERF Function. 8-9
DERFC Function . 8-9
DEXP Function. 8-9
DGAMMA Function . 8-9
DLGAMA Function 8-9
DLOG Function. 8-10
DLOGI0 Function. 8-10
DSIN Function . 8-10
DSINH Function. 8-10
DSQRT Function. 8-10
DTAN Function. 8-10
DTANH Function. 8-11
Double Precision Exponentiation. 8-11

Complex Functions. 8-11
Definitions Used in Complex Function Descriptions. . . 8-11
CABS Function. 8-12
CCOS Function. 8-12
CEXP Function . 8-13
CLOG Function. 8-13
CSIN Function 8-14
CSQRT Function. 8-14
Complex Exponentiation. 8-15

Comm on Consta nts 8-15
Permissible Argument Ranges. 8-16

Section 9. PATCH Utility

Running the PATCH Utility . 9-1
Using a WFL Job to Run the PATCH Utility 9-1
Using CANOE to Run the PATCH Utility. 9-2

Files Used by the PATCH Utility. 9-3
Patch Control Records 9-3

Patch Compiler Control Records ($ Records) 9-4
Patch Literal Compiler Records ($& Records) 9-5
Patch Delimiter Records ($# Records) 9-6
Patch Comment Records ($: Records). 9-6
Patch Patch Records ($- Records). 9-6
Patch WFL Records ($* Records) 9-7
Patch Control Records ($. Records) 9-8

Patch Control Record Options . 9-10
$.BRIEF Option 9-10
$. COBOL Option . 9-11
$.COBOL74 Option. 9-11
$.COMPARE Option 9-11
$.COMPILE Option. 9-12
$.CONFLICT Option 9-12
$.COUNT Option 9-13
$.CYCLE Option. 9-13

8600 0460-100 xv

Contents

$.DELETE Option. 9-13
$.DELIMOPT Option. 9-14
$.DISK Option . 9-15
$.DISK $ Option. 9-16
$.DUMP Option. 9-16
$.EOF Option. 9-17
$.ERRLlST Option. 9-17
$.EXECUTE Option. 9-17
$.FILE, $.DISK $, and $.PATCHDECK Options. 9-18
$.FLAG Option. 9-18
$.GUARD Option 9-19
$.INSERT Option 9-19
$.LABEL Option. 9-21
$.L1ST Option. 9-22
$.L1STD Option. 9-22
$. L1STI Option . 9-22
$.L1STN Option 9-23
$.L1STP Option. 9-23
$.MARK Option 9-23
$.MARKBLANK Option . 9-24
$.MOVE Option 9-25
$.NDLII Option. 9-26
$. NEW Option . 9-26
$.OUT Option. 9-26
$. PASCAL Option. 9-27
$. PATCHDECK Option. 9-27
$.RPG Option. 9-27
$.SINGLE Option 9-27
$.SQUASH Option 9-28
$.TOTAL Option . 9-28
$.VERSION and $.CYCLE Options 9-28
Debug $. Records. 9-29
Debug Options . 9-30

$.BUG Option 9-30
$.CANDE Option. 9-30
$.DISCARD Option. 9-31
$.END Option. 9-31
$.EQUATE Option. 9-32
$.PDUMP Option . 9-32

Examples of PATCH Utility Input. 9-33

Section 10. Pl/I Indexed Sequential-Access Method (PLIISAM)

Program Interface for Primitive and Standard ISAM 10-1
Primitive ISAM . 10-1
Standard ISAM . 10-2
Structure of ISAM Files .. 10-2

Pri me Data Area 10-3
Data Overflow Area . 10-3
Prime Data Area Overflow Space. 10-3
Fi Ie Overflow Area. 10-3

xvi 8600 0460-100

Contents

Tables for Locating Data
Data Record Links
ISAM Management of Overflow Areas

Planning for ISAM Files
Maximum Number of Records

Coarse Table Size
Computing Coarse Table Size
Fine Table Size
Computing Fine Table Size

INFO Record Size
AREAS and AREASIZE Values
Minimum Record Size (MINRECSIZE)
Maximum Record Size (MAXRECSIZE)
BLOCKSIZE Attribute
EXCLUSIVE USE Attribute
Fine Table Ratio
Key Length

Key Offset
Practical Considerations

Implementation for Primitive ISAM Procedures
ISAM Procedures

ISOPEN Procedure
ISCLOSE Procedure
ISREAD Procedure
ISWRITE Procedure
ISREADNEXT Procedure
ISREWRITE Procedure
ISKEYWRITE Procedure
ISDELETE Procedure

ISAM I/O Result Information
Primitive ISAM Result Information

Section 11. RLTABLEGEN Utility

10-3
10-4
10-4
10-5
10-5
10-5
10-5
10-5
10-6
10-6
10-6
10-7
10-7
10-7
10-7
10-7
10-8
10-8
10-8
10-9
10-9

10-10
10-12
10-13
10-14
10-15
10-15
10-16
10-17
10-17
10-18

General Information . 11-1
I nstallation Defined Tape Labels 11-1
Running the RLTABLEGEN Utility. 11-2

Input to the RLTABLEGEN Utility. 11-2
Label Description Format. 11-2
RLTABLEGEN Commands. 11-3

ID Command. 11-3
RECOGNITION Command 11-4
FIELD Command 11-5
RECORD Command 11-6

Section 12. SORT Utility

SORT Parameters. 12-2
Input Options. 12-2
Output Options. 12-3

8600 0460-100 xvii

Contents

xviii

Compare Procedure
Number of Tapes
Record Size
Memory Size

Determining Memory Size for Disk Sorting
Determining Memory Size for Tape Sorting
Determining Memory Size for Memory Sorting ..

Disk Size
SORT Operating Modes

Disk-Only Mode
Disk-Only Stringing Phase
Disk-Only Merging Phase

Tape-Only Mode
Tape-Only Stringing Phase
Tape-Only Merging Phase

lTD Mode
Memory-Only Mode

SORT Files
Control Fi les.
Work Files
Tape Files

Tag Sorting
Restart Capability

RESTART Parameter Values
Restarting during Stringing Phase

Error Recovery .
Control File Input Errors
Control File Output Errors
Work File I nput Errors
Work File Output Errors
User Output File Errors
Work File Input Errors during User Output

Using SORT in Various Languages
Using SORT in COBOL or COBOL74

SORT Input/Output (I/O) Procedure Logic Flow ..
COBOL SORT Example

Using SORT in ALGOL
ALGOL SORT Example
ALGOL Example Files "

Using SORT in Pl)1
Pl)1 SORT Example
Pl)1 Example Files

Using a Procedural Interface for SORT
SORTFILES
SORTPROCS
MERGEFILES
MERGEPROCS
TTABLE
Sample Programs

SORT Error Messages
SORT Statistical Array

12-3
12-4
12-4
12-4
12-5
12-6
12-6
12-6
12-7
12-8
12-8
12-9
12-9
12-9

12-10
12-10
12-11
12-11
12-11
12-12
12-13
12-13
12-15
12-17
12-19
12-19
12-20
12-20
12-20
12-20
12-21
12-21
12-21
12-21
12-21
12-22
12-25
12-25
12-26
12-26
12-27
12-28
12-29
12-29
12-32
12-33
12-35
12-37
12-39
12-42
12-46

8600 0460-100

Contents

Section 13. XREFANALYZER Utility

XREFANALYZER Files. 13-1
Invoking XREFANALYZER . 13-2

Implicit Execution. 13-2
Explicit Execution . 13-2
Compile Time Options. 13-3

Appendix A. Understanding Railroad Diagrams

What Are Railroad Diagrams? . A-I
Constants and Variables. A-2
Constraints. A-2

Following the Paths of a Railroad Diagram A-5
Railroad Diagram Examples with Sample Input. A-6

Glossary. 1

Bibliography. 1

Index. 1

86000460-100 xix

xx 8600 0460-100

Figures

7-L
7-2.
7-3.
7-4.
7-5.

12-1.
12-2.
12-3.

A-I.

8600 0460-100

Coarse Table Layout '
Fine Table Layout
KEYEDIO File Layout
I nserti ng a Key .. .
I nserting a Key into a Full Table

Creating a Tag .. .
Tag Sort, Nondisk I nput File
Tag Sort, Disk I nput File

Railroad Constraints

7-29
7-30
7-31
7-33
7-34

12-14
12-15
12-15

A-5

xxi

xxii 8600 0460-100

Tables

2-1.

3-1.
3-2.

5-1.

7-1.
7-2.

8-1.
8-2.
8-3.
8-4.

12-1.
12-2.
12-3.
12-4.

8600 0460-100

COMPARE Utility Files

Standard DUMPALL Commands
Default Field Type

Code File Status Information

Key Word Format
File Access Values

TANjCOTAN Calculation
Common Constants
Permissible Argument Ranges
Function Names

Determining SORT Operating Mode
Fatal Error Messages
Nonfatal Error Messages
SORT Collating Sequence

2-3

3-12
3-74

5-47

7-12
7-13

8-4
8-15
8-16
8-17

12-7
12-42
12-45
12-51

xxiii

xxiv 8600 0460-100

Section 1
CAROLINE Utility

The SYSTEM/CARDLINE utility to prints or punches an EBCDIC or BINARY data
deck. The output includes a printout of the card images, a card count, and a sequence
check. Columns 73 through 80 are checked for sequence errors.

In addition to the card-to-print function, you can perform other utility functions by
file-equating the inputor output files of the program. The input file is named CARD,
and the output file is named LINE.

Printing a Data Deck
To list a card deck with EBCDIC data, use the following Work Flow Language (WFL)
deck:

<i>BEGIN JOB CAROLINE;
RUN SYSTEM/CAROLINE; VALUE = <integer>;
EBCDIC

<data deck>

<i>ENO JOB

To list a card deck with BINARY data, use the following WFL deck:

<i>BEGIN JOB CAROLINE;
RUN SYSTEM/CAROLINE; VALUE = <integer>;
BINARY

<binary data>

BEND card
<i>ENO JOB

To list a disk file, FILE CARD is file-equated to disk as follows:

<i>BEGIN JOB;
RUN SYSTEM/CAROLINE; VALUE=<integer>;
FILE CARD (KINO=OISK, TITLE="MYFILE");
<i>ENO JOB

8600 0460-100 1-1

CAROLINE Utility

The <i> variable specifies an invalid EBCDIC character. When CARD LINE is run
from an operator display terminal (ODT) or a remote terminal, the <i> variable is the
question mark (?). When CARD LINE is run from a card reader, the <i> variable can
be any invalid punch. An <i> variable is optional when CARD LINE is run from an
ODT or a remote terminal; however, it is required when CARDLINE is run from an
card reader.

The VALUE = <integer> clause specifies spacing between output lines. If this clause
is not specified, 0 is the assumed value.

For EBCDIC files, the integer value must be within the range of 0 through 9. The
values 0 and 1 cause single spacing (no blank lines between the lines of data). The
values 2 through 9 cause the specified number of lines to be spaced; for example, if the
value is 5, four blank lines are placed between the lines of data.

For BINARY files, the integer value must be within the range of 10 through 19. The
first digit (the 1) indicates that the data is BINARY The second digit is interpreted the
same as for EBCDIC files: 0 and 1 cause single spacing; 2 through 9 cause the specified
number of lines to be spaced.

The BEND card is a special card that indicates the end of the data and is only used
with BINARY data. Refer to the "Job Initiation" section of the A Series Work Flow
Language (WFL) Programming Reference Manualfor information about creating
BEND cards.

Punching a Data Deck

1-2

To punch a card deck, file-equate FILE LINE to a card punch.

To punch a card deck with EBCDIC data, use the following WFL deck:

<i>BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE;
FILE LINE (KIND=PUNCH);
EBCDIC

<data deck>

<i>END JOB

8600 0460-100

CAROLINE Utility

To punch a card deck with binary data, use the following WFL deck:

<;>BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE;
FILE LINE (KIND=PUNCH);
BINARY CARD

<data deck>

BEND card
<;>END JOB

Examples Using the CAROLINE Utility
The following are examples of how to use the CARD LINE utility.

Example 1

The following WFL job initiates CARDLINE to produce a listing of the given EBCDIC
data:

Input

?BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE;
EBCDIC
THIS IS THE DATA TO BE LISTED.
MORE OF THE DATA.
?END JOB.

Output

THIS IS THE DATA TO BE LISTED.
MORE OF THE DATA.

8600 0460-100

0000100 CARD 0001
0000200 CARD 0002

NO SEQUENCE ERRORS

1-3

CAROLI NE Utility

1-4

Example 2

The following WFL job initiates CARD LINE to produce a listing of the disk file
MYFILE:

Input

?BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE; VALUE=2;
FILE CARD (KIND=DISK, TITLE=MYFILE);
?END JOB.

Output

CONTENTS OF THE FILE.

MORE OF THE FILE.

END OF THE FI LE.

00000100 CARD 0001

00000200 CARD 0002

00000300 CARD 0003

NO SEQUENCE ERRORS

8600 0460-100

Section 2
COMPARE Utility

The SYSTEM/COMPARE utility compares one or more pairs of files. This utility
performs a bit-by-bit comparison on each record, or on each sequence number and
record, for each pair of files. If the records or sequence numbers are not identical, or if
one of the specified files is not present, an appropriate error message is printed. The
comparison of a pair of files is terminated after a specified number of unsuccessful
comparisons have been made, and the utility proceeds to the next pair of files.

Running the COMPARE Utility
The COMPARE utility can be initiated through the Menu-Assisted Resource Control
(MARC) System Utilities screen or by means of a Work Flow Language (WFL) job.

Using MARC to Run COMPARE

On the System Utilities screen of the MARC interface, enter COMP in the Choice field.
The SYSTEM/COMPARE Specification screen is displayed. For menu-specific or
field-specific information, consult the help text associated with that menu or field.

To return to the MARC System Utilities screen, enter BYE in the Action field.

Using a WFL Job to Run COMPARE

The following WFLjob initiates the SYSTEM/COMPARE utility:

<;>BEGIN JOB;
RUN SYSTEM/COMPARE;
DATA
<compare input>
<;>END JOB

8600 0460-100 2-1

COM PARE Utility

2-2

<compare input>

-<file name 1>- . -<file name 2>- . -------------7

(-

/l\-<maximum errors> ~/l\-<sequence number column>-- - --<field length>=J

Explanation

<i>

Specifies an invalid character. When COMPARE is run from the operator display
terminal (ODT) or a remote terminal, the <i> variable is the question mark (?). When
COMPARE is run from the card reader, the <i> variable includes any invalid punch.
An <i> variable is optional when COMPARE is run from the ODT or a remote
terminal. However, it is required when COMPARE is run from the card reader.

<file name l>.<file name 2>.

Specifies the two files to be compared. A period (.) must follow each file name. The
system assumes that the files are disk files. If each file is not a disk file, they must first
be label-equated.

EBCDIC, ASCII, and HEX disk files can be compared. Input specifications are in
free-field format.

<maximum errors>

Specifies the number of unsuccessful comparisons that can be made before COMPARE
proceeds to the next pair of files. The default value for the maximum errors field is 5.

<sequence number column> - <field length>

Specifies the column in which the sequence numbers of the files begin and the field
length of the sequence numbers.

If no sequence information about the files is specified in the COMPARE input, the files
are compared record by record. A new record is read from each file for each comparison.
If a difference occurs, the record number at which the difference occurred is printed. If
a difference occurs in sequenced files, both records are printed. If the sequence
numbers agree but the records do not, the contents of both records are printed. If the
record sequence number of the first file is greater than the record sequence number of
the second file, the record from the second file is printed, and the next record from the
second file is compared against the first record from the first file, and vice versa.

Example

The following example initiates COMPARE on three pairs of files. PROGRAM/ONE
and PROGRAM/TWO are compared record by record until five unsuccessful

8600 0460-100

COMPARE Utility

comparisons have been made. PROGRAM/THREE and PROGRAMIFOUR are
compared until five unsuccessful comparisons have been made. The sequence
information for these two files begins in column 73 for a length of 8. PROGRAMIFIVE
and PROGRAM/SIX are compared record by record until 25 unsuccessful comparisons
have been made. PROGRAM/SEVEN and PROGRAM/EIGHT are compared until four
unsuccessful comparisons have been made. The sequence information for these two
files begins in column 1 for a length of6. PROGRAM/NINE and PROGRAM/TEN are
also compared until four unsuccessful comparisons have been made. The sequence
information for these two files begins in column 1 for a length of6.

?BEGIN JOB;
RUN SYSTEM/COMPARE;
DATA
PROGRAM/ONE.
PROGRAM/THREE.
PROGRAM/FIVE.
PROGRAM/SEVEN.
PROGRAM/NINE.
?END JOB

PROGRAM/TWO.
PROGRAM/FOUR. 73-8
PROGRAM/SIX. 25
PROGRAM/EIGHT. 1-6 4
PROGRAM/TEN. 4 1-6

Files Used by the COMPARE Utility
Table 2-1 shows the files that are used by COMPARE and that can be file-equated:

Table 2-1. COMPARE Utility Files

File Name Utility Use

LYNE The output printer file used for the listing of differences.

TOT The output printer file used for the summary report.

FILE1 The first file specified for the comparison.

FILE2 The second file specified for the comparison.

FILE3 The input file. This file contains the compare input parameters.

Output from the COMPARE Utility
The output listing contains the following information:

• A description of the two files being compared, which includes the
MAXRECORDSIZE, BLOCKSIZE, UNITS, INTMODE, and CREATIONDATE
attribute values. If the file is not in the directory, an error message is printed.

• If the files differ in blocking specifications (UNITS, BLOCKSIZE,
MAXRECORDSIZE), no comparison is made and a message is printed.

• The maximum number of errors specified is listed.

8600 0460-100 2-3

COMPARE Utility

2-4

• Ifsequence information is specified in the COMPARE input, it is printed;
otherwise, a message is printed stating that unsequenced files are assumed.

• If any differences occur, a list of the differences is printed.

• If the comparison of the files is terminated because the maximum number of errors
has been reached, a message is printed along with the current record number of
each file being compared.

• If an end-of-file (EOF) condition occurs in one file before the other, a message is
printed. The message also indicates in which file the end-of-file (EOF) condition
occurred.

• The number of differences is listed.

• The number of records in each file is given.

• A section is also printed that provides the information described previously, except
for the list of differences.

Example

Input

?BEGIN JOB;
RUN SYSTEM/COMPARE;
DATA
FILE/A. FILE/B. 73-8
MYFILE/l. MYFILE/2.
?END JOB

8600 0460-100

COMPARE Utility

Output

TOTAL FOR ALL FILES COMPARED

FILE 1 = FILE/A ON DISK.

MAXRECORDSIZE = 15
BLOCKSIZE = 420
UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 5/27/83

FILE 2 = FILE/B ON DISK.

MAXRECORDSIZE = 15
BLOCKSIZE = 4213

UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 5/27/83

----MAXIMUM ERROR DEFAULT = 5
----SEqUENCED FILES,

BEGINNING IN COL. 73 FOR A
LENGTH OF 8

NUMBER OF DIFFERENCES 3
NUMBER OF RECORDS IN FILE 1 = 27
NUMBER OF RECORDS IN FILE 2 = 27

FILE 1 = MYFILE/l ON DISK.

MAXRECORDSIZE = 14
BLOCKSIZE = 4213

UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 5/27/83

FILE 2 = MYFILE/2 ON DISK.

8600 0460-100

MAXRECORDSIZE = 14
BLOCKSIZE = 4213

UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 11/17/82

---MAXIMUM ERROR DEFAULT = 5---
---UNSEQUENCED FILES ASSUMED---

NUMBER OF DIFFERENCES
NUMBER OF RECORDS IN FILE 1 =

NUMBER OF RECORDS IN FILE 2 =

1
2
2

2-5

COMPARE Utility

2-6

FILE 1 = FILE/A ON DISK.

MAXRECORDSIZE = 15
BLOCKSIZE = 420
UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 5/27/83

FILE 2 = FILE/B ON DISK.

MAXRECORDSIZE = 15
BLOCKSIZE = 420

UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 5/27/83

----MAXIMUM ERROR DEFAULT = 5
----SEQUENCED FILES,

BEGINNING IN COL. 73 FOR A
LENGTH OF 8

*** LISTING OF DIFFERENCES ***

X := COUNTER - 1;
Y := COUNTER -1;

COUNTER := * + 2;
COUNTER := * + 1;

TOTAL := COUNTER;
TOTAL := * + COUNTER;

00001500 (ACCTDOC) FILE/A ON ACCOUNT.
00001500 (ACCTDOC)FILE/B ON ACCOUNT.

00004000 (ACCTDOC) FILE/A ON ACCOUNT.
00004000 (ACCTDOC)FILE/B ON ACCOUNT.

00010000 (ACCTDOC) FILE/A ON ACCOUNT.
00010000 (ACCTDOC) FILE/A ON ACCOUNT.

NUMBER OF DIFFERENCES = 3
NUMBER OF RECORDS IN FILE 1 = 27
NUMBER OF RECORDS IN FILE 2 = 27

8600 0460-100

COMPARE Utility

FILE 1 = MYFILE/1 ON DISK.

MAXRECORDSIZE = 14
BLOCKSIZE = 420

UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 5/27/83

FILE 2 = MYFILE/2 ON DISK.

8600 0460-100

MAXRECORDSIZE = 14
BLOCKSIZE = 420

UNITS = WORDS
INTMODE = EBCDIC

CREATION DATE = 11/17/82

---MAXIMUM ERROR DEFAULT = 5---
---UNSEQUENCED FILES ASSUMED---

*** LISTING OF DIFFERENCES ***

********* THE FILES DIFFER IN RECORD NUMBER 2

NUMBER OF DIFFERENCES
NUMBER OF RECORDS IN FILE 1 =
NUMBER OF RECORDS IN FILE 2 =

1
2
2

2-7

2-8 8600 0460-100

Section 3
DUMPALL Utility

You can use the SYSTEM/DUMPALL utility to print or copy various kinds of files such
as disk files, card files, and labeled and unlabeled tape files. The following list provides
an idea of what you can accomplish with the DUMPALL utility:

• You can copy a file from one kind of media, such as tape, to another kind of media,
such as disk.

• When you copy a file, you can specify that the new copy have file attributes that are
different from the original file.

• You can specify that only certain records in a file are to be copied or printed.

• You can copy records from several different input files to a single output file.

• You can add records from one or more input files to the end of an existing disk file.

• You can copy or print multivolume tape files, and you can copy or print files from
multifile tape volumes and unlabeled tape volumes.

• You can create multivolume tape files, multifile tape volumes, and unlabeled tape
volumes.

• You can copy or list files located on other host systems.

Understanding Key DUMPALL Concepts
An understanding of the following concepts is helpful in your use of DUMP ALL.

• You can run DUMP ALL in any of the following three modes:

Parameter mode

Card mode

Interactive mode

The mode you choose affects the way you enter the commands that you want
DUMPALL to execute.

• DUMP ALL prints or copies a file by reading records sequentially from the input file
and writing them sequentially to the output file. To use DUMP ALL, it is important
that you understand what a record is.

• To read and write records, DUMPALL needs to know the organization of the file,
the structure of the file, the size of the data records in the file, and the size of the
blocks of records in the file. DUMP ALL determines this information from the file
attributes of each file and from any file attributes that you specify in the command.

• In some cases, DUMP ALL translates the data in records from one character set,
such as EBCDIC, to another, such as ASCII. The specifications in the commands
that you use control the kind of data translations, if any, that DUMP ALL performs.

8600 0460-100 3-1

DUMPALL Utility

Using DUMPALL Commands

To use DUMPALL, you give the utility commands such as CAT, COPY, or LIST to cause
it to copy or print files. Refer to "Standard Commands" later in this section for
explanations of all the DUMPALL commands.

When you run DUMPALL, you input the commands in one of the following ways:

• As a quoted parameter

• As card images

• Interactively

• Through Menu-Assisted Resource Control (MARC)

The method you follow for entering commands depends on which mode you choose.
The method for entering commands for each mode is explained in "Running the
DUMPALL Utility" later in this section.

Understanding File Records

3-2

A record or a record in a file is a group of data elements treated as an entity by READ
and WRITE statements in programs. A block is a group of one or more records that the
logical I/O subsystem transmits to and from I/O units. Files are often structured with
multirecord blocks to increase the overall speed of I/O data transfers and to increase
the amount of data that can be stored in a given amount of disk or tape space.

DUMPALL reads and writes data records from and to files one record at a time.
DUMP ALL uses the ordinary logical I/O subsystem of the A Series operating system to
read and write files. DUMPALL does not simply read and write bulk masses of data as
the library maintenance utility does.

For these reasons, DUMP ALL needs to know the organization and structures of the
input and output files, and the size of each data record and block of data records in the
files. Some files, such as printer backup disk files, have special structures that the
DUMP ALL utility cannot copy properly. But most files on A Series systems are
structured with file attributes that logical I/O supports. DUMPALL can correctly copy
and print those kinds of files.

The keys to the success of printing and copying files with DUMPALL are as follows:

• Make sure that DUMPALL uses the correct values for MAXRECSIZE and
BLOCKSIZE when it reads the input files.

• Make sure that data translation does not occur unless you want it to.

• In the case of an unlabeled tape input file or a standard labeled input file, use the
SKIPTM option to correctly position the input tape to the area of the tape that
contains the data records of the input file you want to copy or print.

• In the case of multifile input or output tape files, use the MULTIFILE option
correctly.

8600 0460-100

DUMPALL Utility

DUMPALL might be able to process tape files written on other operating systems.
Success depends on the following factors:

• The files must be structured in a manner that the A Series logical I/O subsystem
supports.

• You must specify the proper values for record size and other file attributes in the
commands that you give to DUMPALL.

Understanding Structural File Attributes

To copy or print a file properly, DUMPALL needs to know the following:

• The structure of the input file

• The size of the data records in the file

• The size of the blocks of records in the file

For ordinary disk files, labeled tape files, and card files, DUMPALL can automatically
determine these requirements from the file attributes of the files. For such cases,
DUMPALL can proceed to copy or print the files without requiring you to specify any
file attributes - other than the file titles and Kind of I/O units - in your DUMP ALL
commands.

However, there are other cases where you need to understand how certain file
attributes affect DUMPALL so that you can specify the proper values in your
DUMPALL commands. These cases include the following:

• You want DUMPALL to copy a file so that the output file has different attributes
from the input file.

For this case, you must specify compatible file attributes for the output file, or
DUMPALL cannot properly copy the file.

• You want to print or copy files from an unlabeled tape.

For unlabeled input tape files, you must specify the proper values for the file
attributes, because DUMP ALL has no way to determine them on its own.

• You want to print or copy files from a tape generated by another operating system.

The tape labels written by other systems might not always be compatible with
A Series label standards. Therefore, logical I/O and DUMPALL might not be able
to determine the correct file attributes of the files on such tapes.

For these cases, as for unlabeled tapes, you must specify the proper value for the
file attributes, or DUMP ALL cannot correctly process the file.

• You want to print or copy a disk file, but the data records were written by a
program that used different file attributes from the program that initially declared
and created the file.

For a case like this, specify in the DUMP ALL commands the values of the file
attributes used by the program that wrote the data records into the file, because
the values that DUMPALL obtains automatically from the system might not work
properly.

8600 0460-100 3-3

DUMPALL Utility

You might sometimes have a combination of these cases, such as when you want to
copy a file from an unlabeled tape and give the output file-labeled or unlabeled-some
different attribute values, such as a different BLOCKSIZE.

For a complete discussion of all file attributes, refer to the A Series File Attributes
Programming Reference Manual.

General Information about DUMPALL File Attributes

3-4

The file attributes that DUMP ALL uses for each input and output file have a large
effect on whether DUMPALL prints or copies files correctly. The values for file
attributes that DUMPALL uses when it processes a file are determined by the following
criteria (in order of precedence):

1. The values you explicitly specify for file attributes in each DUMPALL command.

Note: Your explicit values have the highest precedence, and they override
values obtained from file labels, values that output files inherit from
input files, and default values.

2. For input files and existing output files, the values that the system obtains from
file labels· or headers.

Note: The CAT command with a TO <file name> clause writes output to
an existing output file instead of creating a new output file.

3. For output files that DUMPALL creates, the values of the corresponding file
attributes of the first input file.

4. The default values established by the system and DUMPALL.

For input files, DUMPALL sets the file attribute DEPENDENTSPECS equal to TRUE
unless you perform one or more of the following actions:

• Explicitly set the DEPENDENTSPECS attribute equal to FALSE.

• Explicitly specify a nonzero value for the MAXRECSIZE or BLOCKSIZE file
attribute.

Note: If you set only one of these attributes, the other one is set to the same
value by default.

• Input an unlabeled tape file by using the UL or FR options, or set the file attribute
KIND equal to TAPE and the file attribute LABEL equal to OMITTED or
OMITTEDEOF.

Refer to the explanation of DEPENDENTSPECS in the File Attributes Reference
Manual for an explanation of the other file attributes affected by
DEPENDENTSPECS.

For each input and output file, DUMPALL prints a report of the file attributes it used
for that file. You can use these reports to ensure that the correct attribute values were
used. These reports can also aid you in figuring out why DUMPALL did not print or
copy records correctly. For example, if the wrong BLOCKSIZE or MAXRECSIZE is
used, the data in some of the records that are printed or copied might be missing or
shifted.

8600 0460-100

DUMPALL Utility

In the syntax of DUMP ALL commands-such as the CAT and COPY commands-you
can specify file attributes for the input files and the output files. It is important to put
your file attribute specifications in the correct place in the command. For example, if
you want to copy a file from an unlabeled tape, make sure you specify the file attributes
of the input file in the location of the CAT or COPY command that is reserved for
specifying the attributes of the input file, rather than the location reserved for
specifying the attributes of the output file.

Use of the following file attributes affect how DUMPALL reads and writes files:

• The structure of records in a file - whether the file has fixed length records or
variable length records - and so forth, is determined by the BLOCKSTRUCTURE
file attribute.

• The size of records is determined by the FRAMESIZE and MAXRECSIZE file
attributes. In the case of files with variable length records, the size is limited by
MINRECSIZE.

• The size of blocks is determined by the FRAMESIZE and BLOCKSIZE file
attributes.

• The following attributes apply to disk files:

The method of accessing a file - whether it is a KEYEDIO file or a
NOTRESTRICTED file-is determined by the FILE ORGANIZATION file
attribute.

How the file is placed on disk - whether or not it is a STREAM file - is
determined by the FILESTRUCTURE attribute.

Note: When DUMPALL is copying to a disk file, the FILESTRUCTURE
attribute is not inherited from the input file. The I/O subsystem uses
the default value ALIGNED180 unless you explicitly specify
otherwise.

MAXRECSIZE and BLOCKSIZE are measured in FRAMESIZE units. FRAMESIZE
can have the following values:

Value

8

48

4

Meaning

8 bits or one character or byte

48 bits or one word

4 bits or one digit

Thus, to say that a file has a record size of 70 is not precise unless you know what the
value of the FRAMESIZE file attribute is. If FRAME SIZE is 8, then a record size of 70
means 70 bytes. But if FRAME SIZE is 48, then a record size of 70 means 70 words, or
420 bytes.

8600 0460-100 3-5

DUMPALL Utility

Programming note: Tapes written by other operating systems are
generally written with FRAMESIZE=8.
Unfortunately, the default value for FRAMESIZE is
48 when DUMPALL is reading from a tape that you
specify with the UL or FR options. So when you
specify UL or FR to read a tape generated by an
operating system other than an A Series system, you
should explicitly specify FRAMESIZE =8.

The way that DUMP ALL handles MAXRECSIZE and BLOCKSIZE depends on
whether the file has fixed length records or variable length records.

Attributes for Files with Fixed-Length Records

3-6

In a file with fixed-length records, all the records have the same length. The size of the
records is specified by the value of the MAXRECSIZE file attribute. The size of blocks
in a file with fixed-length records should be an integer multiple of the size of the
records and is specified by the value of the BLOCKSIZE file attribute. For example, a
file with fixed-length records with a MAXRECSIZE of 80 could have a BLOCKSIZE of
80, 160, or 240, and so fourth.

For a file with fixed-length records, the BLOCKSTRUCTURE file attribute has the
value FIXED.

For a file with a FILESTRUCTURE of STREAM, use the MAXRECSIZE attribute
rather than the BLOCKSIZE attribute.

By default, when you use the CAT command with the GIVING option, or when you use
the COpy command, DUMP ALL sets the attributes for the output file equal to those of
the input file. You can also give the output file other attribute values as necessary:

• You can change the block size of the output file by specifying a new BLOCKSIZE
value, but you should pick a size that is an integer multiple of the record size.

• You can change the record size of the output file by specifying a new value for the
MAXRECSIZE attribute:

If the new value is larger than the size of the input records, DUMPALL pads
the output records with trailing binary zeros.

If the new value is less than the size of the input records, DUMPALL truncates
the trailing part of each input record when DUMPALL writes the record to the
output file.

• When you change the value of the MAXRECSIZE attribute, you might also need to
change the value of the BLOCKSIZE attribute so that it is an integer multiple of
the new record size.

8600 0460-100

DUMPALL Utility

• You can change the value of the FRAMESIZE attribute of the output file. If you do
this, you might also want to make corresponding changes in the MAXRECSIZE
and BLOCKSIZE attributes. For example, if you change the FRAMESIZE value
from 48 to 8 (from words to bytes) you should multiply both the MAXRECSIZE and
BLOCKSIZE values by 6; otherwise the records DUMPALL writes to the output
file contain only one-sixth of the data that the input records contain.

Attributes for Files with Variable-Length Records

You can use DUMPALL to copy and print most files with variable-length records and
variable-length blocks. The structure of the variable-length blocks and records in file is
determined by the BLOCKSTRUCTURE file attribute. For files with variable-length
records, this attribute has one of the following values: EXTERNAL, LINKED,
VARIABLE, VARIABLEOFFSET, or VARIABLE2. DUMPALL normally opens input
files with DEPENDENTSPECS=TRUE. In general, when you want to print or copy a
labeled A Series file with variable-length records, you should leave
DEPENDENTSPECS=TRUE, and you should not specify any of the attributes that
control variable-length size. It is easier and safer to let logical I/O automatically pick
up the proper values for BLOCKSTRUCTURE, BLOCKSIZE, MAXRECSIZE, and
MINRECSIZE. In addition, for files with BLOCKSTRUCTURE= V ARIABLEOFFSET,
let logical I/O pick up the values for SIZEMODE, SIZEOFFSET, and SIZE2. For
unlabeled files and for files generated by operating systems other than the A Series
operating system, DUMP ALL is able to read the file correctly only if it has one of the
structures that logical I/O supports, and if you specify the proper values for the
attributes of the input file.

When DUMP ALL copies or prints files with variable-length records, the utility
proceeds as follows:

1. It issues read requests with lengths of the MAXRECSIZE attribute.

2. Logical I/O transfers the number of characters or words that the record has - up to
the value ofMAXRECSIZE-into the input buffer for DUMPALL.

3. DUMPALL checks to see how much data was transferred for the record.

4. DUMPALL then prints or writes that much data to the output file.

In the case of a COpy or CAT command, if the output file has a different
MAXRECSIZE or MINRECSIZE value than the input file, some records might be
truncated or padded when they are written to the output file-except for files with
BLOCKSTRUCTURE=EXTERNALorBLOCKSTRUCTURE=L~D.

When you copy a file with variable-length records, you can specify new values for the
BLOCKSIZE and MAXRECSIZE attributes of the output file when you want the new
file to have larger or smaller blocks or records.

Files with BLOCKSTRUCTURE = EXTERNAL

For input files with BLOCKSTRUCTURE=EXTERNAL, if the value of the
MAXRECSIZE attribute of the input file is equal to the value of the BLOCKSIZE
attribute of the input file, DUMPALL can successfully copy and print the files.

8600 0460-100 3-7

DUMPALL Utility

If the MAXRECSIZE value is less than the BLOCKSIZE value, DUMPALL cannot
determine the proper boundaries between the individual records in each block it reads.
DUMPALL assumes that all the records in each block are MAXRECSIZE long, except
that the last record in a block is shorter if the value ofMAXRECSIZE is not an integer
multiple of the MAXRECSIZE value. DUMPALL can copy these files from tape to tape,
from disk to disk, and from tape to disk as long as the output files have the same values
for BLOCKSIZE and MAXRECSIZE as the input files. But when you try to copy the
files from disk to tape, to print the files, or to change the BLOCKSIZE or
MAXRECSIZE of the output files, the results might not be entirely correct.

For an output file with a BLOCKS TRUC TURE = EXTERNAL, if the value of the
MAXRECSIZE attribute is less than the length of some of the input records,
DUMPALL proceeds as follows:

1. DUMP ALL writes the first part of an oversized input record to one output record.

2. DUMPALL then writes the next part of the input record to the next output record,
and so forth, until the oversized record is completely copied.

Files with BLOCKSTRUCTURE=VARIABLE, VARIABLE2, or VARIABLEOFFSET

DUMPALL can copy and print these files correctly-if you use the proper values for
BLOCKSIZE, MAXRECSIZE, INTMODE, and FRAMESIZE; and in the case of
BLOCKSTRUCTURE=VARIABLEOFFSET, if you use the proper values for
SIZEMODE, SIZEOFFSET, and SIZE2. When copying these files, you can specify new
values for BLOCKSIZE and MAXRECSIZE for the output file, and you can even specify
that the output file have a different BLOCKSTRUCTURE value, such as FIXED or
EXTERNAL.

Files with BLOCKSTRUCTURE=LlNKED

3-8

This kind of file is usually created by FORTRAN programs that execute WRITE
statements without FORMAT statements and by ALGOL programs that execute
binary WRITE statements - that is, WRITE statements with an asterisk (*) for the
data count. LINKED files do not use the concept of record size as described by the
MAXRECSIZE and MINRECSIZE attributes. In many cases DUMP ALL cannot print
or copy this kind of file correctly.

8600 0460-100

DUMPALL Utility

The information that follows briefly explains the internal structure of files with
BLOCKSTRUCTURE=LINKED and under what circumstances DUMPALL can
successfully print and copy these files.

• When a program writes data to a LINKED file, the logical I/O subsystem puts
special control words into each block before it writes the block to the file. One of
the features of LINKED files is that the READ and WRITE statements in a
program are not limited by the MAXRECSIZE or BLOCKSIZE attributes. A single
WRITE statement in a program can transfer more data than can fit into a single
block of the file, as determined by the BLOCKSIZE value. Logical I/O uses the
control words to link together the data transferred by one WRITE statement into
as many blocks as necessary. Subsequently, when a program tries to read that mass
of data, logical I/O checks the control words and assembles data from all the blocks
necessary. In summary, from the point of view of the program, each READ or
WRITE statement transfers one record, but logical I/O might have to gather data
from or distribute data to more than one block in the file.

• When DUMP ALL reads from a file, whether the file is LINKED or not, DUMPALL
executes a READ statement with a length equal to the value ofMAXRECSIZE. If
the program that wrote the file used WRITE statements that transferred more
data than the value of MAXRECSIZE, DUMP ALL does not receive all the data
when it reads such oversized, linked records. Thus, DUMPALL does not print or
copy all the data in such records.

• DUMPALL can correctly print all records in a LINKED file that are not longer
than the value ofMAXRECSIZE. DUMP ALL prints only the first part of records
that are longer than the MAXRECSIZE value of the input file.

• DUMPALL can correctly copy all records in a LINKED file that are not longer than
the value of MAXRECSIZE. DUMP ALL copies only the first part of records that
are longer than the MAXRECSIZE of the input file.

• When you want either to add records to a LINKED file (with the CAT command) or
to create a new LINKED file, DUMPALL correctly copies all the data that it reads
from the input file to the output file even if the MAXRECSIZE or BLOCKSIZE
values of the output file are smaller than the sizes of the input records.

Specifying Data or Character Set Translations

Normally DUMPALL does not perform data or character translation when it copies a
file while it executes a COpy or a CAT command. The only translations that
DUMPALL normally performs when it executes a LIST command are those required
by formats or fields you specify and those required by the default print options or the
print options you specify.

DUMP ALL can perform data or character-set translations if you explicitly specify
values for the INTMODE file attribute, the EXTMODE file attribute, or both.

8600 0460-100 3-9

DUMPALL Utility

3-10

Character set translations can occur in three places:

• When DUMPALL is reading the input file, logical I/O can perform data translation
if the INTMODE and EXTMODE attributes of the input file are not equal to each
other.

• When DUMPALL is copying data from the input buffer to the output buffer,
DUMPALL can perform data translation if the INTMODE value of the input file is
not equal to the INTMODE value of the output file.

• When DUMPALL is writing to the output file, logical I/O can perform data
translation if the INTMODE and EXTMODE attributes of the output file are not
equal to each other.

You must be careful whenever you specify values for INTMODE or EXTMODE for the
input file or the output file. If the records in the input file contain nontext data, such as
decimal or integer numbers (COMP), real or floating point numbers (COMP-2), or
other binary or numerical information, you probably should not let DUMPALL
perform any data translations. IfDUMPALL or logical I/O translate numerical fields in
the input records, that data might not be usable or correct in the output records.

By default, DUMPALL sets the INTMODE of the input file, the INTMODE of the
output file, and the EXTMODE of the output file all equal to the EXTMODE value of
the input file. So, by default, DUMP ALL does not perform data translations.

You can invoke and control data translations by using the following file attributes:

File Attribute

TRANSLATION

INTMODE

Function

By default, DUMPALL sets TRANSLATE to FULLTRANS for both the
input file and the output file. If the INTMODE and the EXTMODE
attributes of an input or output file differ, logical I/O can translate the
data in the records.

I NTMODE is not a permanent file attribute that is saved in the label
information for the file. Logical I/O uses the INTMODE values set by you
or by DUMPALL as one of the factors in determining whether it should
translate the data in the records.

By default, DUMPALL sets the INTMODE value of the input file equal to
the EXTMODE value of the input file; by default, DUMPALL sets the
INTMODE value of the output file equal to the INTMODE value of the
input file.

For a COpy or CAT command, DUMPALL compares the INTMODE value
of the input file with the INTMODE value of the output file. If the values
differ, DUMPALL can translate the data in each record when it copies
the data from the input buffer to the output buffer.

continued

8600 0460-100

continued

File Attribute

EXTMODE

CCSVERSION

DUMPALL Utility

Function

EXTMODE is a permanent file attribute that is stored in the label
information of labeled files. Logical I/O compares the EXTMODE value of
a file with the INTMODE value set by DUMPALL. If the values differ,
logical I/O can perform data translations when DUMPALL reads from or
writes to that file.

DUMPALL uses any value you specify for the EXTMODE attribute of an
input file only if the input file is unlabeled.

By default, DUMPALL sets the EXTMODE value of the output file equal
to the EXTMODE value of the input file.

The CCSVERSION file attribute is stored in the label information for disk
files only. The CCSVERSION attribute does not affect data translations
directly. But you should know that when DUMPALL copies from an input
disk file to an output disk file, DUMPALL sets the CCSVERSION value of
the output file equal to the value of the input file unless you do one of
the following:

• Explicitly specify CCSVERSION for the output file.

• Explicitly specify the INTMODE or EXTMODE value of the output
file.

The previous descriptions explain that when modes differ, data translations can occur.
For each of the three possible translations, whether or not a translation takes place
depends on the exact value of the two modes involved and is determined as follows:

• If the two modes are the same, no translations occur.

• If one mode is SINGLE (word) and the other mode is HEX, EBCDIC, or ASCII, no
translations occur.

• If one mode is HEX, EBCDIC, or ASCII, and the other mode differs but is also
either HEX, EBCDIC, or ASCII, translations occur.

• Otherwise, the translation that occurs is determined by a procedure in the
CENTRALSUPPORT library called CCSTOCCS_TRANS_TABLE. Ifa
transliteration table is available for for converting characters between the two
coded character sets specified by the two modes, translation occurs; if no
transliteration table exists, DUMP ALL reports an error. For more information,
refer to the A Series MultiLingual System (MLS) Administration, Operations, and
Programming Guide.

8600 0460-100 3-11

DUMPALL Utility

Standard Commands

3-12

Table 3-1 lists all the commands you can use when you run DUMPALL. You can use
these commands in any mode-parameter mode, card mode, or interactive mode-unless
otherwise noted.

Command

ATIRIBUTES or
FILE

CAT

COpy

DEFINE

DMPMT

HEXDSK

LlBMT

LIST

TEST

Table 3-1. Standard DUMPALL Commands

Function

Prints or displays the file attributes of disk or tape files.

Creates a new file that contains records read from one or more input files
or adds records read from one or more input files to the end of an
existing disk file.

Creates a new file that contains records read from one or more input
files. Creates multifile tapes with records copied from input files. Copies
files from multifile input tapes.

Enables you to specify fields and formats that you can reference in
subsequent print commands, such as DMPMT, LIST, and TEST
commands.

Prints or displays the contents of blocks read from an input tape volume.
DMPMT is useful as an aid to help you determine the contents and
structure of files on a tape.

Prints or displays the contents of the sectors of a disk file in hexadecimal
format.

Prints an EBCDIC listing of the tape directory and a hexadecimal listing
of the disk file headers and disk file data read from an input library
maintenance tape.

Prints or displays the contents of records read from an input file.

Reads a file to check for parity errors. Prints or displays defective data
contained in records that have parity errors.

In Table 3-1, the phrase prints or displays indicates that in card mode and parameter
mode DUMPALL prints the information on a printer. In interactive mode, DUMPALL
displays the information on the remote terminal unless you include a PRINT modifier
in the command.

8600 0460-100

DUMPALL Utility

ATTRIBUTES or FILE Command

The ATTRIBUTES or FILE command lists the file attributes of a file or of all the disk
files in a disk directory. ATTRIBUTES and FILE are synonyms.

Syntax

~ ATTRIBUTES ~<file title> I I I
L FI LE -.J L<di rectory t i tl e>-l L PRINTJ

Explanation

If the file title does not include an ON <family name> clause, DUMPALL searches for
one of the following matching files:

• For a disk file with a matching file name

• For a tape file with a matching file name

• For a card file with a matching file name

You can specify the file that is to be a tape file by using the family name TAPE as
follows:

<file name> ON TAPE

The <directory title> case applies only to disk files.

PRINT

Used in interactive mode to list file attributes of the specified file or files on the printer
instead of on the remote terminal.

Example

The following example lists the file attributes of the file INJFILE:

FILE IN/FILE;

8600 0460-100 3-13

DUMPALL Utility

CAT Command

3-14

The CAT command extends an existing disk file by copying records to the end of that
file from one or more input files. You can also use the CAT command to create a new
file with records copied from one or more input files.

Syntax

- CAT -------------------------

~-----~--~---~ l
~----------- THEN --------------,

-7 / 100'1<fil e t i tl e>--~....I.--.,..-----------_.__.I--l.--
UL <old specs> (-<file attribute>--)
FR <old specs> <record range 1 i st>----I

<skip specification::>------I
SKIPTM -<integer>-----t
MULTIFILE ------'

-7~ TO -<file specification>
L- GIVING -<file specification~ L- : - DONTPRINT ~

<file specification>

t <file title
UL ----I
FR---.....J

Explanation

CAT <file title>
THEN <file title>

(-<file attribute>--)
MULTIFILE --------1

L CRUNCH ---------'

Specify the name of an input file. If the file title does not include an ON <family
name> clause, DUMP ALL searches for a disk file with a matching file name, for a tape
file with a matching file name, and for a card file with a matching name. You can
specify the file to be a tape file by using the family name TAPE. That is, for a tape file
title, specify the following:

<file name> ON TAPE

For each subsequent input file that you specify, DUMPALL assumes that the input file
has the same file attributes as the preceding input file unless you specify otherwise. As
an example, assume that you have entered the following command:

CAT Fl/X ON HLPACK THEN Q/FILE GIVING NEWFILE

DUMPALL searches for the file Fl/X on the disk family HLPACK. Later, it also
searches for the input file QIFILE on HLPACK. Because you specified no special
attributes for the output file, DUMPALL also creates the new output file on the family
HLPACK.

8600 0460-100

DUMPALL Utility

GIVI NG <file title>

Specifies the name of the new output file that DUMPALL is to create. Unless you use a
(< file attribute>) clause for the output file, the output files attributes, which include
KIND, MAXRECSIZE, FILEKIND, and FAMILYNAME, become the same as those of
the first input file. If the first input file is a card file - (KIND = READER) - you must
specify a KIND for the output file either by including an ON <family name> clause in
the file title or by specifying KIND explicitly as a file attribute. For example,
DUMPALL produces an output card file if you specify KIND = PUNCH as follows:

••• GIVING C (KIND=PUNCH);

TO <file title>

Specifies the name of an existing output file to which DUMPALL is to add the records
read from the input file or files. You can use this form of the command only with
output disk files. Moreove:r; the file cannot be a crunched file or a code file b~cause
records cannot be added to the end ofa crunched file, and only a compiler can write
records into a codefile.

UL
UL <old specs>

Specify that an input or output file has a KIND attribute of TAPE and has no label.
You can use UL with a labeled tape; UL merely specifies that the tape be treated as
unlabeled.

Specify UL only for magnetic tape files. When you use UL, it is not necessary to specify
a KIND attribute value of TAPE. UL is ignored for disk and pack files.

The default INTMODE file attribute value is EBCDIC, and the default MAXRECSIZE
and BLOCKSIZE attribute values are 1500. You can specify other values for these
attributes with the <old specs> variable or with the «file attribute» syntax.

Programming note: The default FRAMESIZE is 48 (that is, words). If
you want to specify the MAXRECSIZE and
BLOCKSIZE attributes in bytes, you must include
FRAMESIZE=8 as a file attribute specification.

When you use UL in an output file specification, the system creates an unlabeled tape
as described in "Unlabeled Tapes" later in this section. The operating system demands
as many tapes as are required to hold the data being copied to the tape. UL and FR
perform the same functions for output files.

When you use UL for an input file whose options do not include SKIPTM or MULTI,
DUMP ALL can read more than one physical tape. In this case, when DUMPALL reads
a tape mark from the tape, it closes that tape volume. DUMPALL then attempts to
open the next input tape volume. This action causes the system to generate the
following RSVP message:

NO FILE UL (UNLABELED MT) Inn

8600 0460-100 3-15

DUMPALL Utility

3-16

You must reply to this message with either the UL (Unlabeled) or the FR (Final Reel)
system command.

When you use UL in an input file specification that includes SKIPTM or MULTI, UL is
equivalent to FR- that is, DUMPALL uses only one physical tape. In the latter case,
when DUMPALL reads a tape mark from the tape, DUMPALL closes the file and does
not generate a "NO FILE" RSVP message. If you need to copy a file from a
multivolume unlabeled set of tapes, and if you need to use the SKIPTM or MULTI
options, use the THEN clause of the CAT command to copy the various parts of the file
from the separate tape volumes. For example, suppose the fifth file on the first tape
was split into two parts by a volume-switch operation that occurred while the file was
being copied to the tapes. Then you could copy the entire file from the tapes by using a
command of the following form:

CAT UL SKIPTM 4 «file attribute»
THEN UL «file attribute» TO <file title>

FR
FR <old specs>

For input files, specify an unlabeled tape file that has only one reel. As in the case of
UL, the tape used need not be an unlabeled tape.

Specify FR only for magnetic tape files. When you use FR, it is not necessary to specify
a KIND attribute value of TAPE. DUMP ALL ignores FR for disk and pack files.

The default INTMODE file attribute value is EBCDIC, and the default MAXRECSIZE
and BLOCKSIZE attribute values are 1500. You can specify other values for these
attributes with old specs or with the (<file attribute>) syntax.

Programming note: The default FRAMESIZE is 48 (that is, words). If
you want to specify the MAXRECSIZE and
BLOCKSIZE attributes in bytes, you must include
FRAMESIZE=8 as a file attribute specification.

When used for an output file specification, FR specifies that the output tape is to be
unlabeled and formatted as described under "Unlabeled Tapes" later in this section.
The operating system uses as many tapes as are required to hold the data to be copied.

The use of FR instead of UL is important for input files only. That is, when you use FR
in an input file specification, it indicates that only one physical tape is to be used.
When DUMPALL reads a tape mark from the tape, it closes the file and does not
generate a "NO FILE" RSVP message. Refer to "Input Files from Unlabeled Tapes"
later in this section.

«file attribute»

Specifies how the file is to be written or read. Except for the file attributes you specify,
DUMPALL obtains the file attribute information for each input file from the disk file
header or the tape label. Except for the file attributes you specify and the
FILESTRUCTURE, SERlALNO and HOSTNAME attributes, DUMPALL obtains the

8600 0460-100

DUMPALL Utility

file attribute information for each output file from the first input file copied to that
output file.

DUMPALL determines the value of the KIND attribute for input files and output files
by one of the following processes:

• If you specified either UL or FR, then KIND is TAPE.

• If you specified a file title with an explicit ON family name clause, then KIND is
TAPE or DISK depending on whether or not you specified the family name ON
TAPE.

• If you explicitly specify a value for KIND in the «file attribute» syntax, then
DUMPALL uses that value.

• Otherwise DUMPALL determines the value for KIND automatically as follows:

For the first input file in the command, DUMPALL searches for the file on disk,
tape, and cards.

For all subsequent input files in the command for which you have not explicitly
or implicitly specified a value for KIND, DUMPALL uses the KIND value from
the preceding input file.

For the output file in the command, DUMPALL uses the KIND value from the
first input file in the command.

If you do not specify a value for SAVEFACTORfor the output file, DUMPALL assigns
the output file the same SAVEFACTOR value as the first input file. If that value is 0,
DUMPALL uses 2 instead.

Programming Note: A tape file with a SAVEFACTOR of zero expires the
day it is created. The system treats tapes containing
expired tape files as scratch tapes unless you remove
the write ring from the reel or switch the
write-protection knob on the tape cartridge.

If you specify the HOSTNAME file attribute, DUMPALL accesses the file on a remote
host system. In this case, distributed system services (DSS) requires that you also
explicitly specify the KIND file attribute.

The file attribute equation specifies how the file is to be written or read. If no file
attributes are specified for the input file, DUMPALL opens the input file with the
following logic:

• Labeled tape files are opened with DEPENDENTSPECS set to TRUE, INTMODE
set to EBCDIC, and EXTMODE set to the physical mode of the file.

• Disk files are opened with DEPENDENTSPECS set to TRUE and with INTMODE
and EXTMODE set to the physical mode of the input file.

The logical input file resembles the physical input file for disk files, and resembles the
physical file for tape files if the tape file has a physical mode of EBCDIC.

The record and block structures of the output file are the same as those of the first
input file if you do not specify any file attributes for either the input file or the output

8600 0460-100 3-17

DUMPALL Utility

file, and if the input file is either a tape file with a physical mode of EBCDIC or a disk
file. In this case, no data translations occur, so DUMPALL does not alter the records it
copies from the input file or files to the output file.

Specifying input file attributes such as DEPENDENTSPECS, EXTMODE, and
INTMODE might cause data translation and the alteration of other file attributes (for
example, MAXRECSIZE). Specification of such attributes might also avoid data
translation if the input file is a not an EBCDIC tape file. If data translation does occur,
the output file might not directly resemble the input file.

Refer to "Understanding Structural File Attributes" earlier in this section for an
explanation of the file structure, record size, block size, the DEPENDENTSPECS
attribute, and their effects on DUMPALL.

Refer to "Specifying Data or Character Set Translations" earlier in this section for an
explanation of the effects of the EXTMODE and INTMODE file attributes on
DUMPALL.

<record range list>
<skip specification>

Cause only the specified records of the file to be copied. If you do not specify a record
range list or skip specification, DUMPALL copies the entire file.

SKIPTM <integer>

Causes DUMP ALL to skip past the number of tape marks specified and to bypass any
records encountered between tape marks. Use SKIPTM to position an input tape at
the first record of a file to be read. You can use SKIPTM only with an input file that
you specify as UL or FR.

Refer to "Description of Tape Formats" later in this section for an explanation of where
tape marks appear on a tape.

MULTIFILE
MULTI

Specify that an input file is part of a multifile, labeled or unlabeled tape. The effect of
its use is that the tape is not rewound, but is positioned so that a subsequent file on the
same volume can be read from. In other words, MULTIFILE copies one or more
subsequent files from the same tape. DUMP ALL ignores the MULTIFILE specification
if the file is not a tape file. U se MULTIFILE only if you are using a single command to
read multiple files.

You must use MULTIFILE to copy a file from a multifile tape if the following
conditions are met:

• The tape is a standard labeled tape.

• The file is not the first file on the tape.

3-18 8600 0460-100

DUMPALL Utility

• The file has a nonstandard name. Normally, a tape file has a two-level name of the
following form: volumeid/fileid. A nonstandard tape file name is a name with only
one level, such as F 1 or MYFILE.

In such a case, when DUMPALL tries to open the file, the system produces a "NO FILE
<filename> (MT)" RSVP message. You must reply with the IL (Ignore Label) system
command to select the tape unit on which the tape with the requested file is mounted.

Normally, when DUMP ALL finishes copying a file to a tape, it closes the tape with the
LOCK option. So, depending on the kind of tape unit involved, the system either
unloads the tape volume or marks the unit as unloaded. However, if you specify
MULTIFILE on the output file that you want copied to tape, DUMPALL does not close
the tape with the LOCK option, and the tape simply rewinds. When the rewinding
finishes, the system leaves the tape online and ready for use in subsequent DUMP ALL
commands or subsequent programs.

CRUNCH

When the output disk or pack file is closed, DUMP ALL returns the unused portion of
the last row of disk space to the system. DUMP ALL ignores the CRUNCH option if the
file is not a disk or pack file.

DONTPRINT

Suppresses the printed report of the file attributes of the input files and the output file.

Example 1

Example 1 concatenates file A to existing file B:

CAT A TO B;

Example 2

Example 2 concatenates the files A, Band C to existing file D:

CAT A THEN B THEN C TO D;

Example 3

Example 3 concatenates the files A and B to create a new file named C. If a file named C
already exists, DUMPALL replaces the existing file. The new file named C has the
same file attribute values as file A.

CAT A THEN B GIVING C;

8600 0460-100 3-19

DUMPALL Utility

3-20

Example 4

Example 4 concatenates the files A, B, and C to an existing file D. DUMPALL
suppresses printed output.

CAT A THEN 8 THEN C TO 0 OONTPRINT;

Considerations for Use

If you use the CAT command to copy an input code file, the resulting output file has a
FILEKIND equal to DATA.

Programming note: A CAT command with a GIVING clause executes
just like a COpy command.

You cannot use DUMPALL to copy files with a FILEORGANIZATION attribute value
equal to PLIISAM, KEYEDIOII, or KEYEDIOIISE T. To copy KEYEDIOII and
KEYEDIOIISET files, use the KEYEDIOII Copy Utility as described in the A Series
KEYEDIOII Programming Reference Manual.

You can use DUMPALL to copy an input file with a FILEORGANIZATION value equal
to INDEXED or INDEXEDNOTRESTRICTED. DUMP ALL does not copy any records
that have been marked as deleted from these files. You can copy these files to output
files that are NOTRESTRICTED, INDEXED, or INDEXEDNOTRESTRICTED with
the following stipulations:

• You can add records copied from these files to existing disk files that have a
FILEORGANIZATION value equal to NOTRESTRICTED.

• You can copy these input files to create a new output file with a
FILE ORGANIZATION value of INDEXED or INDEXEDNOTRESTRICTED if the
system option KEYEDIOII is reset to FALSE.

• You can copy these input files to create a new output file that is not an INDEXED
file by specifying that the output file has a FILEORGANIZATION value of
NOTRESTRICTED.

An attempt to add records to an existing PLIISAM, INDEXED, or KEYEDIOII file by
means of the CAT command results in the following error message:

CANNOT CAT TO A FILE THAT DOES NOT HAVE A FILEORGANIZATION =
NOTRESTRICTED.

If the KEYEDIOSUPPORT library is not defined as a support library by means of the
SL (Support Library) system command, DUMPALL terminates with the following
message when DUMP ALL accesses an INDEXED file:

FILE <filename> OPEN ERROR: SUPPORT LIBRARY UNAVAILABLE.

The rules regarding input and output file specifications for labeled and unlabeled tapes
are the same as those for the COpy command with one exception. The variation of the
CAT command TO <destination file> that causes the input file to be appended to an
existing file is not allowed when the output file is a tape file.

8600 0460-100

DUMPALL Utility

COpy Command

The COpy command copies the specified records from one or more input files to an
output file. 'The files can reside on different devices or on multifile tapes.

You can use a single copy command to create several different output files. Each output
file is created with copies of records from the input files you specify for it. This multiple
output file form of the COPY command is almost equivalent to executing several
individual COpy commands in sequence. However, you must use the multiple output
file form of the COpy command if you want to create a multifile output tape. No more
than 100 input and output files can be specified in one COPY command.

Syntax

- COpy ----------------------------7

ll
f. ------------ THEN --------------,

f. THEN -----------, 1
c L J I

-7 /100\1<fil e ti tl e>----.,.-......I-...------'----,--J.----1--<dest
UL <old specs> «file attribute»
FR <manual input> <record range list

<dest>

- TO 1<file title
UL <old specs>
FR <old specs>

-7 [: _ DONTPRINT J

Explanation

COPY <file title>

<skip specification
SKIPTM <integer>
MULTIFILE ------I

(-<file attribute>--)
MULTIFILE ------1
CRUNCH -------~

Specifies the first or only input file from which DUMPALL is to copy records.

THEN <file title>

Specifies the name ofa subsequent input file from which DUMP ALL is to copy records.
If you do not specify the KIND or FAMILYNAME (in the case of disk files) for each
input file, DUMPALL uses the same KIND and FAMILYNAME as that of the previous
input file. Suppose you enter the following command:

COpy F/A ON XPACK THEN (UC)ONE TO TFILE

DUMP ALL searches for the input file (UC)ONE on the disk family XPACK. DUMPALL
creates the new output file TFILE on XPACK as well.

8600 0460-100 3-21

DUMPALL Utility

3-22

TO <file title>

Specifies the name of the output file that DUMPALL is to create and to which
DUMPALL is to copy the records from the preceding input files. If you do not specify
file attributes such as FRAMESIZE, MAXRECSIZE, BLOCKSIZE, KIND, FILEKIND,
and FAMILYNAME for the output file, DUMPALL uses the attribute values of the first
input file that you specified to be copied to the file.

UL
UL <old specs>

Specify that an input or output file has a KIND attribute of TAPE and has no label.
You can use UL with a labeled tape; UL merely specifies that the tape be treated as
unlabeled.

Specify UL only for magnetic tape files. When you use UL, it is not necessary to specify
a KIND attribute value of TAPE. UL is ignored for disk and pack files.

The default INTMODE file attribute value is EBCDIC, and the default MAXRECSIZE
and BLOCKSIZE attribute values are 1500. You can specify other values for these
attributes with the <old specs> variable or with the «file attribute» syntax.

Programming note: The default FRAMESIZE is 48 (that is, words). If
you want to specify the MAXRECSIZE and
BLOCKSIZE attributes in bytes, you must include
FRAMESIZE =8 as a file attribute specification.

When you use UL in an output file specification, the system creates an unlabeled tape
as described in "Unlabeled Tapes" later in this section. The operating system demands
as many tapes as are required to hold the data being copied to the tape. UL and FR
perform the same functions for output files.

When you use UL for an input file whose options do not include SKIPTM or MULTI,
DUMPALL can read more than one physical tape. When DUMP ALL reads a tape mark
from the tape, it closes that volume and attempts to open the next volume. This action
causes the system to generate the following RSVP message:

NO FILE UL (UNLABELED MT) Inn

You must reply to this message with either the UL (Unlabeled) or the FR (Final Reel)
system command.

When you use UL in an input file specification that includes SKIPTM or MULTI, UL is
equivalent to FR-that is, DUMPALL uses only one physical tape. In the latter case,
when DUMPALL reads a tape mark from the tape, DUMPALL does not try to proceed
to the next volume.

If you need to copy a file from a multivolume unlabeled set of tapes, and if you need to
use the SKIPTM or MULTI option, use the THEN clause of the COPY command to
copy the various parts of the file from the separate tape volumes. For example, suppose
the fifth file on the first tape was split into two parts by a volume switch operation that

8600 0460-100

DUMPALL Utility

occurred while the file was being copied to the tapes. Then you could copy the entire
file from the tapes by using a command of the following form:

COpy UL SKIPTM 4 «file attribute»
THEN UL «file attribute» TO <file title>

FR
FR <old specs>

For input files, specify an unlabeled tape file that has only one reel. As in the case of
UL, the tape used need not be an unlabeled tape.

Specify FR only for magnetic tape files. When you use FR, it is not necessary to specify
a KIND attribute value of TAPE. DUMPALL ignores FR for disk and pack files.

The default INTMODE file attribute value is EBCDIC, and the default MAXRECSIZE
and BLOCKSIZE attribute values are 1500. You can specify other values for these
attributes with old specs or with the «file attribute>) syntax.

Programming note: The default FRAMESIZE is 48 (that is, words). If
you want to specify the MAXRECSIZE and
BLOCKSIZE attributes in bytes, you must include
FRAMESIZE =8 as a file attribute specification.

When used in an output file specification, FR specifies that the output tape is to be
unlabeled and formatted as described under "Unlabeled Tapes" later in this section.
The operating system uses as many tapes as are required to hold the data to be copied.

The use of FR instead of UL is important for input files only. That is, when you use FR
in an input file specification, it indicates that only one physical tape is to be used. The
benefit of using FR is that when DUMPALL reads a tape mark from the tape, it closes
the input file and does not need an operator response. Refer to "Input Files from
Unlabeled Tapes" later in this section.

«file attribute>)

Specifies how the file is to be written or read. Except for the file attributes you specify,
DUMPALL obtains the file attribute information for each input file from the disk file
header or the tape label. Except for the file attributes you specify and the
FILESTRUCTURE, SERIALNO and HOSTNAME attributes, DUMPALL obtains the
file attribute information for each output file from the first input file copied to that
output file.

DUMP ALL determines the value of the KIND attribute for input files and output files
by one of the following processes:

• If you specified either UL or FR, then KIND is TAPE.

• If you specified a file title with an explicit ON family name clause, then KIND is
TAPE or DISK depending on whether or not you specified the family name ON
TAPE.

8600 0460-100 3-23

DUMPALL Utility

3-24

• If you explicitly specify a value for the KIND in the <file attribute> syntax, then
DUMP ALL uses that value.

• Otherwise DUMPALL determines the value for KIND automatically as follows:

For the first input file in the command, DUMPALL searches for the file on disk,
tape, and cards.

For all subsequent input files in the command for which you have not explicitly
or implicitly specified a value for KIND, DUMPALL uses the same value of
KIND as the preceding input file.

For the first output file in the command DUMPALL uses the same KIND value
as the first input file in the command.

For all subsequent output files in the command for which you have not
explicitly or implicitly specified a value for KIND, DUMPALL uses the same
value of KIND as the preceding output file.

If you do not specify a value for SA VEFACTOR for an output file, DUMP ALL assigns
the output file the same SAVEFACTOR value as the first input file. If that value is 0,
DUMPALL uses 2 instead.

Programming Note: A tape file with a SAVEFACTOR otzero expires the
day it is created. The system treats tapes containing
expired tape files as scratch tapes unless you remove
the write ring from the reel or switch the
write-protection knob on the tape cartridge.

If you specify the HOSTNAME file attribute, DUMP ALL accesses the file on a remote
host system. In this case, distributed system services (DSS) requires that you also
explicitly specify the KIND file attribute.

The file attribute equation specifies how the file is to be written or read. If no file
attributes are specified for the input file, DUMP ALL opens the input file with the
following logic:

• Labeled tape files are opened with DEPENDENTSPECS set to TRUE, INTMODE
set to EBCDIC, and EXTMODE set to the physical mode of the file.

• Disk files are opened with DEPENDENTSPECS set to TRUE and with INTMODE
and EXTMODE set to the physical mode of the input file.

The logical input file resembles the physical input file for disk files, and resembles the
physical file for tape files if the tape file has a physical mode of EBCDIC.

The record and block structures of the output file are the same as those of the first
input file if you do not specify any file attributes for either the input file or the output
file, and if the input file is either a tape file with a physical mode of EBCDIC or a disk
file. In this case, no data translations occur, so DUMPALL does not alter the records it
copies from the input file or files to the output file.

Specifying input file attributes such as DEPENDENTSPECS, EXTMODE, and
INTMODE might cause data translation and the alteration of other file attributes (for
example, MAXRECSIZE). Specification of such attributes might also avoid data

8600 0460-100

DUMPALL Utility

translation if the input file is a not an EBCDIC tape file. If data translation does occur,
the output file might not directly resemble the input file.

Refer to "Understanding Structural File Attributes" earlier in this section for an
explanation of the file structure, record size, block size, the DEPENDENTSPECS
attribute, and their effects on DUMPALL.

Refer to "Specifying Data or Character Set Translations" earlier in this section for an
explanation of the effects of the EXTMODE and INTMODE file attributes on
DUMPALL.

<record range list>
< skip specification>

Cause only the specified portion of the file to be copied. If you do not supply a record
range list or a skip specification, DUMPALL copies the entire file.

SKIPTM <integer>

Causes DUMP ALL to skip past the number of tape marks specified and to bypass any
records encountered between tape marks. Use SKIPTM to position an input tape at
the first record of a file to be read. You can use SKIPTM only with an input file that
you specify as UL or FR.

Refer to "Description of Tape Formats" later in this section for an explanation of where
tape marks appear on a tape.

MULTIFILE
MULTI

Specify that an input or output file is part of a multifile labeled or unlabeled tape. After
DUMPALL finishes copying the file with the MULTIFILE specification to or from a
tape, the tape does not rewind. The operating system positions the tape so that
DUMPALL can read or write to a subsequent file on the same volume. In other words,
MULTIFILE leaves the tape assigned and positioned so that DUMPALL can copy a
subsequent file to or from the tape. DUMP ALL ignores the MULTIFILE option if the
file is not a tape file.

You must use MULTIFILE to copy a file from a multifile tape if the following
conditions are met:

• The file has a nonstandard name. Normally, a tape file has a two-level name of the
following form: volumeid/fileid. A nonstandard tape file name is a name with only
one level, such as F 1 or MYFILE.

• The tape is a standard labeled tape.

• The file is not the first file on the tape.

In such a case, when DUMP ALL tries to open the file, the system produces a "NO FILE
< filename> (MT)" RSVP message. You must reply with the IL (Ignore Label) system
command to select the tape unit on which the tape with the requested file is mounted.

8600 0460-100 3-25

DUMPALL Utility

3-26

Normally, when DUMPALL finishes copying a file or several files to a tape, it closes the
tape with the LOCK option. So, depending on the kind of tape unit involved, the
system either unloads the tape volume or marks the unit as locked. However, if you
specify MULTIFILE on the last or only output file that you want copied to tape,
DUMPALL does not close the tape with the LOCK option, and the tape simply rewinds.
When the rewinding finishes, the system leaves the tape online and ready for use in
subsequent DUMPALL commands or subsequent programs.

CRUNCH

When the output disk or pack file is closed, DUMPALL returns the unused portion of
the last row of disk space to the system. DUMPALL ignores the CRUNCH option if the
file is not a disk or pack file.

DONTPRINT

Suppresses the printed report of the file attributes of the input files and output files.

Examples of the COpy Command

This discussion provides three types of examples:

• General examples that illustrate various features of the COPY command.

• Examples that illustrate how to copy files from tapes to disk. These examples
include labeled, nonstandard labeled, and unlabeled tapes for single and multifile
tapes.

• Examples that illustrate how to copy files to and from tapes.

General Examples

The examples that follow illustrate various features of the COpy command.

Example 1

Example 1 copies the file INFILE to the file OUTFILE. The attributes of OUTFILE are
the same as those for INFILE. DUMP ALL searches for an online tape file with the
name INFILE, for an input card reader file with the name INFILE, and for a disk file
named INFILE on the family DISK. IfINFILE is on tape, DUMPALL writes OUTFILE
to tape. IfINFILE is on disk, DUMP ALL writes OUTFILE to disk. IfINFILE is on a
card reader file, DUMPALL receives an "OPEN ERROR" message on OUTFILE,
because an output file cannot be written with KIND = READER. For an input card
reader file, you must specify a valid output KIND for OUTFILE, such as DISK, TAPE,
PRlNTER, or PUNCH.

COpy INFILE TO OUTFILE;

8600 0460-100

DUMPALL Utility

Example 2

Example 2 creates a new file named F3 and copies to it all the records from file Fl
followed by all the records from file F2:

COPY Fl THEN F2 TO F3;

Example 3

Example 3 copies files Fl and F2 to the file F3, closes F3, and then copies files F4 and
F5 to the file F6:

COpy Fl THEN F2 TO F3
THEN F4 THEN F5 TO F6;

Example 4

Example 4 creates two new files: OUTFILEI and OUTFILE2. OUTFILEI has the
same file attributes and KIND as the input file FILEl and receives copies of records 20
through 49 of FILE 1. OUTFILE2 is a disk file. Its other file attributes match those of
input FILE2. OUTFILE2 receives copies of records 1 through 5 of FILE2 and is closed
with CRUNCH.

COpy FILEl REC 20 THRU 49 TO OUTFILEl
THEN FILE2 REC 1 THRU 5
TO OUTFILE2 (DISK) CRUNCH;

Example 5

Example 5 creates a single-file labeled tape with a standard tape name-that is, a
volume identifier ofT and a file identifier of FILE ONE:

COPY FILEONE TO T/FILEONE (KIND=TAPE);

Example 6

Example 6 copies three files to a multifile labeled tape. This example generates a tape
with nonstandard filenames, because the output filename does not include a volume
name; it contains only file identifiers. Notice that it is necessary to specify KIND =
TAPE for only for the first output file. Each DUMP ALL output file assumes the same
KIND as the previous output file unless you specify otherwise. The files are separated
by the standard tape header and trailer records (HDRl, HDR2, EOFl, EOF2).

COPY Fl TO FONE (KIND = TAPE), MULTIFILE
THEN F2 TO FTWO, MULTIFILE
THEN F3 TO FTHREE;

Example 7

Example 7 copies file F2 to disk from the tape generated by Example 6. The
MULTIFILE option is necessary because the tape does not use standard tape names of

8600 0460-100 3-27

DUMPALL Utility

3-28

the form volumeid/fileid and because F2 is not the first file on the tape. The operator
must reply to the RSVP message "NO FILE F2 (MT #1)" with the IL (Ignore Label)
system command to direct DUMPALL to the tape unit that contains the requested tape
volume.

COPY FTWO MULTIFILE (KIND=TAPE) TO F2 ON MYPACK

ExampleS

Example 8 creates a new file named B and copies the records from file A to it. The new
file has the same file attributes as file A. DUMPALL does not print a report showing
the file attributes.

COPY A TO B : DONTPRINT;

Examples of Copying Files from Tapes to Disk

The following are examples of copying single and multiple files from labeled tapes,
unlabeled tapes, and nonstandard labeled tapes to disk.

Example 1

Example 1 copies a tape file named TX/DATA from a labeled tape to DISK. It gives the
copy on DISK the file name NEW/TX/DATA. The disk file automatically inherits file
attributes such as MAXRECSIZE, BLOCKSIZE, FRAMESIZE, and EXTMODE from
the tape file.

COPY TX/DATA (TAPE) TO NEW/TX/DATA (DISK);

Example 2

Example 2 copies a file from an unlabeled tape to the disk family named PACK. It gives
the file on PACK the file name CD/FILE. You must specify file attributes of the input
file such as BLOCKSIZE and EXTMODE, because DUMPALL cannot determine the
proper values from the tape itself.

COPY UL (FRAMESIZE=8, MAXRECSIZE=80, BLOCKSIZE=240,
EXTMODE=EBCDIC)

TO CD/FILE ON PACK;

Example 3

Example 3 copies a file from a tape with nonstandard labels to the disk family named
DPPACK. The copy of the file on disk is given the name FJXFILE. Because the tape has
nonstandard labels, DUMP ALL cannot copy the file from tape by its name. Instead,
you must use the UL option. Because DUMP ALL cannot determine the proper values
for file attributes such as record size from the nonstandard tape labels, you must
specify them in the command. And finally, use SKIPTM to skip over the tape mark that
separates the labels from the first file on the tape.

8600 0460-100

COpy UL SKIPTM 1
(FRAMESIZE=8, MAXRECSIZE=120, BLOCKSIZE=720,

EXTMODE=EBCDIC)
TO F/XFILE ON DPPACK;

Example 4

DUMPALL Utility

Example 4 copies three named files from a labeled tape to a disk. The name of the tape
is XTAPE and the names of the three files to be copied are XTAPEIDATA,
XTAPE/SYM, and XTAPEIDOC. These tape files are to be copied to DISK with the file
names PROG/DATA, PROG/SYMBOL, and PROG/DOC respectively. Each copy
automatically inherits the specific values of file attributes such as record size and
EXTMODE from the corresponding tape file. The copy of the symbol is given the
FILEKIND of COBOLSYMBOL. The other two files receive the default FILEKIND of
DATA. Tape files do not have a FILEKIND attribute, so when you copy from tape,
DUMP ALL uses the default DATA for disk copies unless you specify an explicit value
for the FILEKIND attribute. For efficiency purposes, you should list the files to be
copied in the order they appear on the input tape unless you do not know the order. It
is not necessary to repeat the kinds TAPE and DISK for each input and output file,
because DUMPALL automatically assumes that each input or output file has the same
KIND as the first input or output file unless otherwise specified.

COPY XTAPE/DATA MULTIFILE (TAPE) TO PROG/DATA (DISK),
THEN XTAPE/SYM MULTIFILE

Example 5

TO PROG/SYMBOL (FILEKIND=COBOLSYMBOL),
THEN XTAPE/DOC TO PROG/DOC;

Example 5 copies three files from an unlabeled tape to disk. The input tape actually
has four files on it, but only the first, second, and fourth files are to be copied. The
input files do not have names, but the disk files receive the names T/F1, T1F2, and
T/F4. You must specify file attributes such as record size and EXTMODE for the tape
files, because DUMP ALL cannot automatically determine the actual values for files on
unlabeled tapes. The second and fourth files have the same attributes, so you do not
have to repeat the values in the command.

COpy UL MULTIFILE

8600 0460-100

(FRAMESIZE=8, MAXRECSIZE=100, BLOCKSIZE=900,
EXTMODE=EBCDIC)

TO T/Fl ON DISK
THEN UL MULTIFILE

(FRAMESIZE, MAXRECSIZE=80, BLOCKSIZE=80,
EXTMODE=EBCDIC)

TO T /F2
THEN UL SKIPTM 1

TO T/F4;

3-29

DUMPALL Utility

3-30

Example 6

Example 6 copies three files from a tape with nonstandard labels. Because the system
cannot understand the labels, you must use the UL or FR specification instead of file
names in the COPY command to locate the tape files. You must use MULTIFILE, or
the COPY command copies the first file from three separate tapes. You must use
SKIPTM to skip labels: the first SKIPTM skips over the beginning labels for the first
file; the second SKIPTM skips over the ending labels of the first file and the beginning
labels of the second file; and the third SKIPTM skips over the ending labels of the
second file and the beginning labels of the third file. You must specify file attribute
values for the input files, because DUMPALL cannot interpret the file attributes
recorded in nonstandard labels. To change the block size of the first file to a larger size
on disk, you must also specify this file attribute for the first output file.

COPY UL SKIPTM 1, MULTIFILE,
(FRAMESIZE=8, MAXRECSIZE=450, BLOCKSIZE=450)

TO FT/FILE1 ON DISK (BLOCKSIZE=900)
THEN UL SKIPTM 2, MULTIFILE,

(FRAMESIZE=8, MAXRECSIZE=70, BLOCKSIZE=770)
TO FT/FILE2 ON DISK

THEN UL SKIPTM 2,
(FRAMESIZE=8, MAXRECSIZE=98, BLOCKSIZE=98)

TO FT/FILE3 ON DISK;

Examples of Copying Files to and from Tapes

The examples that follow illustrate how to copy files to and from tapes.

Example 1

Example 1 creates a single-file labeled tape.

COPY FILEONE TO T/FILEONE (KIND=TAPE)

You create a single-file labeled tape by specifying a file title instead of UL or FR in the
output file portion of the COpy command and by specifying a KIND value of TAPE in
the output file attribute list. Many of the disk file attributes, such as BLOCKSIZE and
MAXRECSIZE are written into the tape labels so that they are preserved on tape. This
process makes it easier to copy the file back to disk with DUMP ALL and makes it easy
for programs to read the file directly from tape.

Programming note: Some programs that read the disk file sequentially
from disk could use the tape file T/FILEONE
directly. Simply enter label equation statements in
those programs to reference the tape file so you do not
have to copy the file back to disk to use it.

DUMPALL reads a single-file labeled tape when you specify a file title in the input file
portion of the COPY command corresponding to a file on the tape. KIND must equal
TAPE in the input file attribute list.

8600 0460-100

DUMPALL Utility

If mUltiple physical tape volumes are required to contain the copied file, the I/O
subsystem automatically requests the extra volumes as they are needed.

Example 2

Example 2 copies TIFILEONE back to disk:

COpy T/FILEONE (KIND=TAPE) TO FILEONE(KIND=PACK, PACKNAME=MYPACK);

When the file is copied, some of the file attributes, such as the BLOCKSIZE and
MAXRECSIZE, of the original disk file are preserved when the file is copied. Other
attributes, such as CREATIONDATE and TIMESTAMp, acquire new values. Some
attributes, such as USERINFO, are lost. And some attributes, such as AREASIZE and
FILEKIND, are given default values when the file is copied from tape to disk.

Example 3

Example 3 creates a single-file labeled tape:

COpy FILEONE THEN FILETWO THEN FILETHREE TO T/FIRSTSET (KIND=TAPE)

The file TIFIRSTSET is a single file that contains the records in FILEONE, followed by
the records in FILE TWO, followed by the records in FILETHREE. To copy the file
TIFIRSTSET back to disk, use the following command:

COpy T/FIRSTSET (KIND=TAPE) TO FIRSTSET (KIND=PACK,PACKNAME=MYPACK);

The separate files used to create the tape can be retrieved only by using a record range
list. If the identity of the separate files is to be maintained, create a multifile tape.

Example 4

Example 4 controls the output tape selection by specifying a serial number list.

COPY BIG/FILE TO T/FILEONE(KIND=TAPE, SERIALNO=("SNl","SN2","SN3"));

When you create a labeled tape and the file that is being written to the tape requires
more than one tape, the operating system takes appropriate action as each additional
tape is required.

Example 5

Example 5 creates a multifile labeled tape containing the files T/FILEONE,
TIFILETWO, and T/FILETHREE:

COPY FILEONE TO T/FILEONE (KIND=TAPE) MULTI
THEN FILETWO TO T/FILETWO (KIND=TAPE) MULTI
THEN FILETHREE TO T/FILETHREE (KIND=TAPE);

You can create a multifile labeled tape by using the word MULTI instead ofUL or FR in
the specification for each output file that is to be followed by another input file. If

8600 0460-100 3-31

DUMPALL Utility

3-32

multiple physical tapes are required to contain the set of files written, tapes are
selected automatically.

Similarly, DUMPALL reads a multifile labeled tape if you use the word MULTI in each
input file specification that is to be followed by another input file from the same tape.

Example 6

Example 6 copies a selected file back to disk:

COpy T/FILETWO (KIND=TAPE) TO FILETWO(KIND=PACK, PACKNAME=MYPACK);

Example 7

Example 7 copies multiple files back to disk:

COPY T/FILEONE (KIND=TAPE) MULTI
TO FILEONE (KIND=PACK, PACKNAME=MYPACK)
THEN T/FILETHREE
TO FILETHREE (KIND=PACK, PACKNAME=MYPACK);

Example 8

Example 8 creates a multifile labeled tape containing the files TIFIRSTSET and
T/SECONDSET:

COpy FILEONE THEN FILETWO THEN FILETHREE
TO T/FIRSTSET (KIND=TAPE) MULTI
THEN FILEFOUR THEN FILEFIVE THEN FILESIX
TO T/SECONDSET (KIND=TAPE);

TIFIRSTSETconsists of the records of FILE ONE, FILETWO, and FILETHREE.
T/SECONDSET consists of the records of FILEFOUR, FILEFIVE, and FILESIX. You
can copy either or both files back from the tape by using the following commands:

COPY T/SECONDSET (KIND=TAPE) TO SECONDSET(KIND=PACK, PACKNAME=MYPACK);

COpy T/FIRSTSET (KIND=TAPE) MULTI
TO FIRSTSET (KIND=PACK, PACKNAME=MYPACK)
THEN T/SECONDSET (KIND=TAPE)
TO SECONDSET (KIND=PACK, PACKNAME=MYPACK);

You can retrieve individual files that comprise FIRSTSET and SECONDSET only if
you specify a record range list.

8600 0460-100

DUMPALL Utility

Example 9

Example 9 creates a single-file unlabeled tape.

COPY FILEONE TO FR;

You might want to copy files to unlabeled tapes if you need to take those tapes to
systems other than A Series systems that might not be able to read the tape labels
produced by A Series systems. You can create an unlabeled tape by specifying UL or FR
in the output file specification of the COpy command.

If you want DUMP ALL to read files from an unlabeled tape, specify UL or FR in the
input file portion of the COPY command. FR causes DUMPALL to use only one input
tape volume, while UL permits DUMPALL to use more than one input tape volume.

The use of unlabeled input tapes requires greater user involvement, because the only
information available to DUMPALL is data separated by tape marks. You cannot use
file names to locate the proper input file or files. You might have to use SKIPTM to
position the tape to the proper file. You must specify structural file attributes such as
FRAMESIZE, MAXRECSIZE, and BLOCKSIZE for each unlabeled input tape file.

If all of FILE ONE fits on a single tape volume, use a command in the following format
to copy it from tape back to disk:

COpy FR «file attribute»
TO FILEONE (KIND=PACK, PACKNAME=MYPACK);

IfFILEONE is so large that it requires more than one tape volume, use a command in
the following format to copy it from tape back to disk:

COPY UL «file attribute»
TO FILEONE (KIND=PACK, PACKNAME=MYPACK);

In the previous two examples, you must specify file attributes such as FRAMESIZE,
MAXRECSIZE, and BLOCKSIZE.

Example 10

Example 10 copies the records of three files to one or more unlabeled tapes:

COpy FILEONE THEN FILETWO THEN FILETHREE TO FR;

When the command has been executed, the file on the tape or tapes contains the
records in FILEONE, followed by the records in FILETWO, followed by the records in
FILETHREE. To copy the concatenated file back to disk, use the following command:

COPY UL TO ONETWOTHREE (KIND=PACK, PACKNAME=MYPACK);

Example 11

Example 11 creates a multifile, unlabeled tape containing three files:

8600 0460-100 3-33

DUMPALL Utility

3-34

COPY FILEONE TO UL MULTI THEN FILETWO
TO UL MULTI THEN FILETHREE TO UL;

Example 12

Label information is not available when you copy files back from unlabeled tapes.
Therefore, you must position the tape at the file or files to be copied. You can copy any
number of files from the tape in succession by using one of the following commands:

COPY UL TO FILEONE (KIND=PACK, PACKNAME=MYPACK);

COPY UL MULTI TO FILEONE (KIND=PACK, PACKNAME=MYPACK)
THEN UL TO FILETWO (KIND=PACK, PACKNAME=MYPACK);

COpy UL MULTI TO FILEONE (KIND=PACK, PACKNAME=MYPACK)
THEN UL MULTI TO FILETWO (KIND=PACK, PACKNAME=MYPACK)
THEN UL TO FILETHREE (KIND=PACK, PACKNAME=MYPACK);

To copy a specific file, you must use the SKIPTM option to position the tape to the
desired file. DUMP ALL executes the SKIPTM option before it reads the file. To copy
the second file on the tape for the previous example, use the following command:

COPY UL SKIPTM 1 TO FILETWO (KIND=PACK, PACKNAME=MYPACK);

At the time DUMPALL executes this command, the operating system has positioned
the unlabeled tape so that DUMPALL can read the first record of the first file on the
tape. DUMPALL first skips one tape mark. Because the first tape mark is located
between the first and second files on the tape, skipping one tape mark positions the
tape so that DUMPALL can read the first record of the second file on the tape.

The following example copies files one and three:

COPY UL MULTI TO FILEONE (KIND=PACK, PACKNAME=MYPACK)
THEN UL SKIPTM 1 TO FILETHREE (KIND=PACK, PACKNAME=MYPACK);

At the time DUMPALL executes this command, the operating system has positioned
the unlabeled tape so that DUMPALL can read the first record of the first file on the
tape. DUMPALL reads the first input file-that is, the first file on the tape-and
creates the first output file, FILEONE. MULTI indicates that there is a subsequent file
to be copied, and so the tape does not rewind. DUMP ALL then proceeds to the second
input file. Currently, the tape is positioned to read the second file on the tape. The
SKIPTM 1 syntax causes DUMPALL to bypass this file to skip one tape mark between
files two and three. This action positions the tape at the first record of the third file on
the tape. DUMPALL then creates FILETHREE.

Example 13

Example 13 creates a multifile unlabeled tape containing two files:

COPY FILEONE THEN FILETWO THEN FILETHREE TO UL MULTI
THEN FILEFOUR THEN FILEFIVE THEN FILESIX TO UL;

8600 0460-100

DUMPALL Utility

The first file is a concatenated file containing the records of FILEONE, followed by
those in FILE TWO, followed by those in FILETHREE. To copy either or both files back
to disk, you can use one of the following three commands:

COPY UL TO ONETWOTHREE (KIND=PACK, PACKNAME=MYPACK);

COPY UL TO ONETWOTHREE (KIND=PACK, PACKNAME=MYPACK) MULTI
THEN UL TO FOURFIVESIX (KIND=PACK, PACKNAME=MYPACK);

COpy UL SKIPTM 1
TO FOURFIVESIX (KIND=PACK, PACKNAME=MYPACK);

You can retrieve the individual files that comprise each of the files on the tape only if
you specify a record range list.

Example 14

Example 14 copies the first, fourth, and fifth files from an unlabeled multifile tape, and
is limited to a single physical tape:

COpy FR MULTI TO FILEONE (KIND=PACK, PACKNAME=MYPACK)
THEN FR MULTI SKIPTM 2

TO FILEFOUR (KIND=PACK, PACKNAME=MYPACK)
THEN FR TO FILEFIVE (KIND=PACK, PACKNAME=MYPACK);

Example 15

Example 15 copies the first, fourth, and fifth files from an unlabeled multifile tape.
Although UL is used, the tape is limited to a single physical tape, because MULTI and
SKIPTM are used.

COPY UL MULTI TO FILEONE (KIND=PACK, PACKNAME=MYPACK)
THEN UL MULTI SKIPTM 2

TO FILEFOUR (KIND=PACK, PACKNAME=MYPACK)
THEN UL TO FILEFIVE (KIND=PACK, PACKNAME=MYPACK);

Example 16

If you need to copy a file that spans more than one tape volume from unlabeled tapes,
and if you need to use SKIPTM to position the input tape to the start of the file, specify
the input tape file as though it were two or more input files. Suppose you have copied
several files to a two-volume multifile unlabeled tape set. Suppose that while
DUMPALL is copying the third file to the tapes, the end of the first volume is reached,
and the system switches to the second volume. Then the first part of the third file is on
the first volume and the second part of the third file is on the second volume. To copy
the entire third file from those tapes to disk, use a command in the following format:

COPY UL SKIPTM 2 «file attribute»
THEN UL «file attribute» TO FILETHREE (DISK);

8600 0460-100 3-35

DUMPALL Utility

3-36

Example 17

Example 17 copies a file that is contained on one or more tapes to a disk:

COpy UL TO FILEONE (KIND=PACK, PACKNAME=MYPACK);

As each end of tape is reached, the system asks the operator if there are more input
tapes.

Example 18

Example 18 duplicates one file from a labeled tape containing the file TIFILEONE:

COPY T/FILEONE (KIND=TAPE) TO T/FILEONE (KIND=TAPE);

To duplicate all or part of a labeled tape, you must specify each input file from the
input tape and each output file. The tape can be single-file or multifile.

Example 19

Example 19 duplicates a multifile labeled tape containing the files TIFILEONE,
TIFILETWO, and TIFILETHREE:

COpy T/FILEONE (KIND=TAPE) MULTI
TO T/FILEONE (KIND=TAPE) MULTI

THEN T/FILETWO (KIND=TAPE) MULTI
TO T/FILETWO (KIND=TAPE) MULTI

THEN T/FILETHREE (KIND=TAPE)
TO T/FILETHREE (KIND=TAPE);

Example 20

Example 20 duplicates the first file of an unlabeled tape:

COPY UL «file attribute» TO UL

File attributes include FRAME SIZE, MAXRECSIZE, and BLOCKSIZE. The use ofUL
for the input file indicates that the input file can be a multivolume file.

To duplicate all or part of an unlabeled tape, you must specify an input file and an
output file for each file on the tape to be copied. The tape can be single-file or multifile.

Example 21

Example 21 duplicates the third, fourth, and fifth files of a multifile unlabeled tape:

COPY UL SKIPTM 2 MULTI «file attribute» TO UL MULTI
THEN UL MULTI «file attribute» TO UL MULTI
THEN UL «file attribute» TO UL;

86000460-100

DUMPALL Utility

The use of the SKIPTM 2 option causes the first two files on the tape to be skipped.
The file attributes for each input file must include the FRAMESIZE, MAXRECSIZE,
and BLOCKSIZE for the file. The use of MULTI in the input file specification causes a
subsequent file to be copied from the tape being duplicated; the use of MULTI in the
output file specification causes a subsequent file to be copied to the duplicate tape being
created. For this example, UL for the input files functions as ifit were FR, because
MULTI and SKIPTM are being used.

Considerations for Use

Except for file attributes you explicitly specify for the output file, the attributes for the
output file are determined as follows:

• Some of the file attributes, such as BLOCKSIZE and MAXRECSIZE, of the output
file are set to the same values as those of the input file.

• Other file attributes, such as CREATIONDATE and TIMESTAMp, receive new
values.

• Some attributes, such as USERINFO, FILESTRUCTURE, and CRUNCHED, are
not preserved in the output file; these attributes get default values.

• Some attributes, such as AREASIZE and FILEKIND of disk files, are given default
values unless the input file is being copied from disk.

If you use the COpy command to copy a code file, the resulting file has a FILEKIND
attribute equal to DATA.

You can use the COpy command to copy certain ISAM files, but many restrictions exist.

• You cannot use DUMPALL to copy files with a FILEORGANIZATION attribute
equal to PLIISAM, KEYEDIOII, or KEYEDIOIISET. To copy KEYEDIOII and
KEYEDIOIISET files, use the KEYEDIOII Copy Utility described in the
KEYEDIOII Reference Manual.

• You can use DUMP ALL to copy an input file with a FILE ORGANIZATION
attribute value equal to INDEXED or INDEXEDNOTRESTRICTED. DUMPALL
does not copy any records that have been marked as deleted from these files. You
can copy these files to output files that have the FILEORGANIZATION value equal
to NOTRESTRICTED, INDEXED, or INDEXEDNOTRESTRICTED.

- You can copy these input files to an output file with a FILEORGANIZATION
attribute value of INDEXED or INDEXEDNOTRESTRICTED if the system
option KEYEDIOII is reset to FALSE.

- You can copy such input files to files that are not ISAM files by either of the
following actions:

o By specifying that the output file has a FILEORGANIZATION attribute
value equal to NOTRESTRICTED.

o By copying the files to media other than disk. For example, you can copy
them to tape.

86000460-100 3-37

DUMPALL Utility

DEFINE Command

The DEFINE command declares and specifies fields and formats for use in subsequent
print commands such as LIST and DMPMT. Refer to "Format Definition" and "Field
Definition" later in this section.

Syntax

r~- L~_ J
- DEFINE -L,- FIELD -<field definition>>--.--'-----------i

L<format definiti on>>-----'

Explanation

You must assign a mnemonic name to each format that you define in this command.
You must also assign a mnemonic name to any field that you define that is not part of a
format definition.

Example 1

Example 1 declares and names the field Fl for use in subsequent print commands. Fl
describes a field that contains the first four bytes of a record in EBCDIC format.
EBCDIC is the default when the field offset is specified in bytes.

DEFINE FIELD [IFII:= BYTE 0 FOR 4]

Example 2

Example 2 declares and names the format FMTI for use in subsequent print
commands. FMTI consists of the field F2, which is also entered into the defines file,
the field F 1, which has been previously defined, and the unnamed field describing byte
80 of the record.

DEFINE FORMAT I FMTII : = [I F2 I : = WORD 7 DEC] I FII [BYTE 80]

3-38 86000460-100

DUMPALL Utility

DMPMT Command

The DMPMT command prints the blocks read from a tape volume. When DUMPALL
executes a DMPMT command, it does not use the BLOCKSIZE and MAXRECSIZE
attributes of the file or files it reads. DUMPALL simply reads each block of data and
prints it as a single entity. You can use the DMPMT command as an aid when you are
trying to determine the file structure, such as MAXRECSIZE and BLOCKSIZE, of files
on unlabeled tapes or files on tapes with nonstandard labels.

DMPMT and DUMPMT are synonyms.

Syntax

~ DMPMT ~<file title
L DUMPMT UL ------;

FR ------'

Explanation

<file title>

~-----~-~-----~

(--<file attribute>--)
<print option>-------i
/l\-<format definition
<record range 1 i st>----!
<s ki p sped fi ca t i on>-----i

TRAINID -- = --<train ID
SKI PTM --<i nteger>----!
PRINT -----------;
NULL --------------'

Specifies the name of the first file on the tape to be printed. DUMPALL prints that file
and all subsequent files on the tape.

UL
FR

Specifies an unlabeled tape-that is, a tape with a LABELTYPE attribute value of
OMITTED.

Data read from the tape is printed until a double tape mark is found. DUMPALL does
not attempt to switch to the next volume, if any, when it reaches the double tape mark.

<file attribute>

Causes DUMPALL to use the indicated file attributes when dumping the file.
DUMP ALL uses direct I/O for reading the input tape in the DMPMT command.
DUMPALL does not use the MAXRECSIZE value, and data translations do not occur.
If you do not specify the KIND value of the input file, the default is TAPE.

For tapes that do not have standard Large Systems (LS) labels, the default
M.AXRECSIZE is 10 words unless you specify otherwise in the file attribute option.
Refer to the File Attributes Reference Manual for information about all the file
attributes.

8600 0460-100 3-39

DUMPALL Utility

3-40

< print option>

Specifies the format to be used when the file or files are printed. If you do not use a
print option or a format specification variable in the command, the files are printed in
EBCDIC, hexadecimal, and octal.

You can specify one or more print options. If you specify more than one print option,
DUMPALL lists the record in word-sized chunks, one format below the other on a page.

Because DECIMAL is a subset of REAL, if you specify both, only REAL formatting
takes place.

If you specify a single print option and it is EBCDIC or ASCII, DUMPALL lists the
record as one unit in the format specified in the print option. If you specify a single
print option and it is REAL, DECIMAL, HEXADECIMAL, or OCTAL, DUMPALL lists
the record in word-sized chunks.

<format definition>

Describes one or more fields of the block and their formats. If you specify any formats
in the DMPMT command, DUMP ALL prints only the fields defined in those formats.
DUMPALL does not print the rest of each block.

Note that the operation of fields is different for the DMPMT command than for other
print commands. Because DMPMT handles each block read from the tape as a single
entity or record, the offset values in field definitions refer to the beginning of the block,
not the beginning of records. For example, suppose the blocks on a tape contained
three records each, such as MAXRECSIZE=9, BLOCKSIZE=27. Normally, a field
definition would be applied to each of the three records in a block. But for the DMPMT
command, a field definition applies to the block. In this case, if you want to display the
values of the field for all three records in each block, you would have to specify three
different fields with three different offsets.

<record range list>
<skip specification>

Cause only the portion of the file specified by the record range list or the skip
specification to be printed. The DMPMT command handles individual records rather
than blocks. Therefore, be aware of the following:

• The record numbers in a record range list are treated as block numbers.

• The count of records in a record range list and a skip specification are treated as a
count of blocks.

TRAINIO = <train 10>

Specifies the train to be used on the printer when the file is listed.

The train ID can be any valid train ID. Refer to the File Attributes Reference Manual
for a description of the TRAINID attribute and for a list of valid train IDs.

8600 0460-100

DUMPALL Utility

SKIPTM <integer>

Specifies the number of tape marks to be skipped before the file is printed. Refer to
"Description of Tape Formats" later in this section for an explanation of where tape
mar ks appear on a tape.

PRINT

Used in interactive mode to send the output to the printer instead of the remote
terminal.

NULL

Gives the block size, block number, and I/O result for each block in the file. DUMPALL
does not list the actual contents the file.

Considerations for Use

The DMPMT command is used to print the contents of a tape in whole or in part. By
default, DUMPALL prints the data on the tape in EBCDIC, hexadecimal, and octal.

The main differences between the DMPMT command and the LIST command are the
following:

• DMPMT deals with blocks; LIST deals with records.

• DMPMT prints the file you specify plus all the subsequent files on the tape; LIST
prints only one file.

• DMPMT prints tape files; LIST can print different kinds of input files including
disk, card, and tape files, and files on other host systems.

• DMPMT reads only one volume; LIST can print multivolume files.

When you use a file title, DUMP ALL expects a labeled tape. In this case, DMPMT
prints the contents of each file on the tape, starting with the file specified in the
command.

Example 1

Example 1 dumps a tape named DATATAPE. The output is printed in word groups (6
bytes or 12 hexades per word).
\

DMPMT DATATAPE EBCDIC, HEX

Example 2

Example 2 prints the entire contents of one tape:

DMPMT UL

8600 0460-100 3-41

DUMPALL Utility

3-42

When you specify UL or FR, DUMPALL treats the tape as unlabeled. The entire
contents of the tape, including tape marks, starting at the position you specified with
the SKIPTM option, are printed until DUMPALL encounters a double tape mark.

Example 3

Example 3 prints the entire contents of one tape starting after the third tape mark:

DMPMT UL SKIPTM 3

86000460-100

DUMPALL Utility

HEXDSK Command

The HEXDSK command lists a file on a sector-by-sector basis no matter what type of
file structure the file has. When it executes the HEXDSK command, DUMPALL
ignores the file attributes for MAXRECSIZE and BLOCKSIZE. The listing of the file
includes those areas of the file that are not normally accessible to programs, such as
gaps between blocks and any part of a sector that includes the end-of-file (EOF)
character that is past the actual EOF. The HEXDSK command lists a file both in
hexadecimal format and in ASCII or EBCDIC. If the EXTMODE value of the file is
ASCII, the second list is in ASCII; otherwise, the second list is in EBCDIC.

Syntax

- HEXDSK -<file title>>-......------------,r----------f
L-<record range list~
L-<skip specificatio~~

Explanation

HEXDSK <file title>

Lists the entire file in hexadecimal and EBCDIC formats.

< record range list>
<skip specification>

Cause only the portion of the file specified by the record range list or skip specification
to be listed. In this command, the record range list and skip specification refer to
sectors instead of records. The first sector of a file is sector number 1.

Example

The following example shows both the input to and the output from a HEXDSK
command. The output is of sector 4 of the disk file MYFILE/TEST. DUMPALL writes
the text in word-sized chunks in EBCDIC and then in hexadecimal.

HEXDSK MYFILE/TEST REC 4

SECTOR NUMBER: 00004

EBCDI CARRA Y ANAM E [0:2 5];
40C5C2C3C4C9 C340CID9D9Cl E840CID5CID4 C5404AF07AF2 F55A5E404040

404040404040 404040404040 404040404040 404040404040 404040404040

000002 30
404040404040 404040404040 F0F0F0F0F0F2 F3F040404040 404040404040

8600 0460-100 3-43

DUMPALL Utility

TRUTH SET NU MBERS ("0123 456789
40E3D9E4E3C8 E2C5E340D5E4 D4C2C5D9E240 4D7FF0FIF2F3 F4F5F6F7F8F9

") ;
7F5D5E404040 404040404040 404040404040 404040404040 404040404040

000002 35
404040404040 404040404040 F0F0F0F0F0F2 F3F540404040 404040404040

3-44 8600 0460-100

DUMPALL Utility

LIBMT Command

The LIBMT command lists a library maintenance tape in hexadecimal format. The
tape must have been made available by using the UL system command. Refer to the
A Series System Commands Operations Reference Manual for information about the
UL command. The LIBMTcommand is not available in interactive mode; you cannot
use the command with segmented tapes.

Syntax

- LIBMT --------------------------1

LIBMT produces a listing of a library tape in hexadecimal form. In addition, the listing
identifies the position of tape marks.

Library maintenance tapes have a special structure. If you use the LIST command in
DUMPALL to print a file on a library maintenance tape, the display does not
correspond exactly to a display of the original disk file. If you use the COpy command
in DUMPALL to copy a file from a library tape, the copied file does not have the
structure of the original disk file, and the copy contains extra data.

8600 0460-100 3-45

DUMPALL Utility

LIST Command

3-46

You can use the LIST command to print or display records from a card, disk, or tape
input file or from a file located on another host system.

Syntax

t LISTq<file title>
LISTAN <directory title>
LAN UL ----.------i

<old specs>
FR ----.------i

<old specs>

~--------~--~--------~

~~~--------------------~--------------------------~ 

( --<file attribute>-- ) 
<pri nt opt i on>----------i 
/l\-<format definition> 
<record range 1 is t>,-----i 
<ski p speci fi cati on>---i 

TRAINID -- = --<train ID> 
SKI PTM --<i nteger>------i 
PRI NT ----------------' 

Explanation 

LIST <file title> 

Lists the file in EBCDIC format. If the INTMODE attribute value is not EBCDIC, 
DUMPALL converts all characters to EBCDIC representation for output. 

By default, INTMODE is set to the value of the EXTMODE attribute of the file named 
in the LIST command. But you can explicitly set the values of INTMODE and 
EXTMODE that you want DUMPALL to use. 

LlSTAN <file title> 
LAN <file title> 

List the file in a particular format depending on the INTMODE attribute value of the 
file as follows: 

INTMODE Value 

SINGLE 

HEX 

EBCDIC 

ASCII 

Print Option 

EBCDIC, Hexadecimal 

Hexadeci mal 

EBCDIC, Hexadecimal 

ASCII, Hexadecimal 

By default, INTMODE is set to the value of the EXTMODE attribute of the file named 
in the LISTAN command. But you can explicitly set the values of INTMODE and 
EXTMODE that you want DUMPALL to use. 

8600 0460-100 



DUMPALL Utility 

<directory title> 

Causes all files in the specified disk pack directory to be listed. 

UL 
UL <old specs> 

Specify an unlabeled file - that is, a file with a LABELTYPE value of OMITTED. 

Specify UL only for tape files. For UL, DUMPALL assigns the tape a default 
MAXRECSIZE and a BLOCKSIZE value of 1500 words. If you specify file attribute 
values other than the default values, DUMPALL assigns those values. If the attribute 
values are incorrect, the list might be incomplete. 

UL specifies that an input file has a KIND attribute value of TAPE and has no label. 
UL does not require an unlabeled tape; it merely specifies that the tape be treated as 
unlabeled. When you use UL, it is not necessary to specify a KIND attribute value of 
TAPE. DUMPALL ignores UL for disk and pack files. 

When you use UL for an input file whose options do not include SKIPTM or MULTI, 
DUMPALL can read more than one physical tape. When DUMPALL reads a tape mark 
from one tape, it closes that volume and attempts to open the next volume. The system 
then displays the "NO FILE" RSVP message for the next volume. You must respond to 
the RSVP message with either the FR (Final Reel) or the UL (Unlabeled) system 
command. 

When you use an input file specification that includes SKIPTM or MULTI, UL is 
equivalent to FR- that is, DUMPALL uses only one physical tape. In this case, when 
DUMPALL reads a tape mark for the tape, the operating system does not attempt a 
volume switch. 

FR 
FR <old specs> 

Specify an unlabeled tape file that has only one reel, with reel switching 
suppressed - that is, the file has a LABELTYPE attribute value of OMITTEDEOE 

FR specifies that an input file has a KIND attribute value of TAPE and has no label. As 
in the case ofUL, the tape used need not be an unlabeled tape. When you use FR, it is 
not necessary to specify a KIND value of TAPE. 

The difference between the FR and the UL DUMPALL options is that when you use 
UL, DUMPALL reads a tape mark from the tape, closes the file, and does not generate 
a "NO FILE" RSVP message. Refer to "Handling Tape Files" later in this section. 

«file attribute>) 

Causes DUMPALL to use the specified attributes when listing the file. If you specify 
the HOSTNAME file attribute, DUMPALL requests access to a file on a remote host 
system; in this case, Distributed Systems Services (DSS) requires that you also specify 
the KIND attribute. Refer to the File Attributes Reference Manual for more 
information about the KIND attribute. 

8600 0460-100 3-47 



DUMPALL Utility 

3-48 

Refer to "Understanding Structural File Attributes" earlier in this section for an 
explanation of the file structure, record size, block size, DEPENDENTSPECS 
attribute, and their effects on DUMPALL. 

Refer to "Specifying Data or Character Set Translations" earlier in this section for an 
explanation of the effects of the EXTMODE and INTMODE file attributes on 
DUMPALL. 

<print option> 

Specifies the format to be used when the file is listed. You can specify one or more print 
options. 

If you specify a single print option and it is EBCDIC or ASCII, DUMPALL lists the 
record as one unit in the format specified in the print option. If you specify a single 
print option and it is REAL, DECIMAL, HEXADECIMAL, or OCTAL, DUMPALL lists 
the record in word-sized chunks. 

If you specify more than one print option, DUMPALL lists the record in word-sized 
chunks, one format below the other on a page. Because DECIMAL is a subset of REAL, 
if you specify both, only REAL formatting takes place. 

<format definition> 

Describes one or more fields of the record and their formats. If you do not specify any 
fields or formats in a print command, DUMPALL prints each record in full. If you 
specify any fields or formats in a print command, DUMPALL prints only the parts of 
the record you request. 

<record range list> 
<skip specification> 

Cause only the specified records of the file to be listed. 

TRAINID = <train ID> 

Specifies the train to be used on the printer when the file is listed. 

The train ID can be any valid train ID. Refer to the File Attributes Reference Manual 
for a description of the TRAINID attribute and for a list of valid train IDs. 

SKIPTM <integer> 

Causes DUMPALL to skip past the number of tape marks specified, bypassing any 
records encountered between tape marks. Use SKIPTM to position an input tape at 
the first record of a file to be read. You can use SKIPTM only with an input file that 
you specify as UL or FR. 

Refer to "Description of Tape Formats" later in this section for an explanation of where 
tape marks appear on a tape. 

8600 0460-100 



DUMPALL Utility 

PRINT 

Used in interactive mode to cause the file to be listed on the printer instead of the 
terminal. 

Example 1 

Example 1 lists all files in the directory *SOU/999. The output goes to the printer. 

LIST *SOU/999/= PRINT 

Example 2 

Example 2 lists an unlabeled EBCDIC tape file with 80-byte records, 10 records per 
block, in EBCDIC and hexadecimal formats after skipping two tape marks: 

LAN UL EBC 80 800 CHAR SKIPTM 2 

Example 3 

Example 3 lists records 4,5,6, 7,8, 13, 14, 15, and 100 through the end of the file in 
decimal format from a tape file named X: 

L X(KIND=TAPE) DEC REC 4 THRU 8, SKIP 4 3, REC 100 THRU END 

Example 4 

Example 4 shows both a LIST command and the output from that command. The first 
number on the first output record is the record number (one-relative) of the record 
being listed. The letter E that follows the number specifies that the print option is 
EBCDIC. A vertical bar (I) separates the record number from the text; one space 
always follows the bar. A number appears at the end of the last line to indicate the total 
size of the record in print option units. 

This example converts all characters in the file FILE1 to EBCDIC for printing. In this 
case, FILEI has data. 

LIST FILEI 

lEI ABCDEFGHIJKLMNOPQRSTUVWXYZ013456789 ••• 36 

Example 5 

Example 5 lists record 5 of the file MYFILE in EBCDIC format. The second line begins 
with byte 120 of the record. Bytes are the units used to specify offset when the print 
option value is EBCDIC. The record is 143 bytes long. A number in parentheses 
appears at the beginning of the second and all following lines to indicate the offset 
(zero-relative), in print option units, of the data listed on that line. 

8600 0460-100 3-49 



DUMPALL Utility 

3-50 

LIST MYFILE EBCDIC REC 5 

5EI THIS IS THE DATA IN THE RECORD 
(0000120)EI MORE OF THE SAME RECORD ••• 143 

Example 6 

Example 6 lists record 17 of the file ABC in hexadecimal format. The record is 60 digits 
(5 words) long. The second line begins with digit 48 of the record. 

LIST ABC HEX REC 17 

17HI 0123456789AB I 000000000000 I 12345AFE5400 I 333333333333 I 
(0000048)HI 0000000000FD 1 ••• 60 

Example 7 

Example 7 lists record 120 of the file XYZ in decimal and EBCDIC formats. The record 
is 5 words (30 bytes) long. The ALPHA on line 3 indicates that the word has bit 47 ON 
and is not considered to be a numeric field. The REAL on line 3 indicates that the word 
is not an integer but a real number. 

LIST XYZ DECIMAL EBCDIC REC 120 

Example 8 

12001 
E I ?17111 

(0000003)01 ALPHA 
(0000018)EI RECORD 

?1?111 

I REAL 
I 120 

1 I 
I 111171 

I ••• 5 
I ••• 30 

2 I 
I 

Example 8 lists the contents of the file TIFILETHREE, which resides on one or more 
labeled tapes. 

LIST T/FILETHREE (KIND=TAPE) 

Example 9 

Example 9 lists the third file of a multifile tape, which either is unlabeled or is to be 
treated as an unlabeled tape. Because SKIPTM is specified, only one input tape is used. 

LIST UL SKIPTM 2 

Considerations for Use 

The LIST command can handle INDEXED, KEYEDIOII, and PLIISAM files. Since 
DUMPALL uses the KEYEDIOSUPPORT, the KEYEDIOIISUPPORT, and the 
PLISUPPORT libraries respectively to access these files, deleted records are not listed. 

8600 0460-100 



DUMPALL Utility 

If the KEYEDIOSUPPORT, KEYEDIOIISUPPORT, or PLISUPPORT libraries are not 
installed with the SL (Support Library) system command, when an INDEXED, 
KEYEDIOII or PLIISAM file is accessed by DUMPALL, DUMPALL terminates with 
the following message: 

FILE <filename> OPEN ERROR: SUPPORT LIBRARY UNAVAILABLE 

8600 0460-100 3-51 



DUMPALL Utility 

TEST Command 

3-52 

The TEST command tests a file for parity errors. DUMPALL reads the file and prints 
only those records that contain parity errors. 

Syntax 

-- TEST 1<file title 
UL --<old specs 
FR --<old specs 

Explanation 

<file title> 

Specifies the file to be tested. 

UL <old specs> 

~--------,----.-------~ 

( --<file attribute>-- ) 
<print option>--------I 
/l\-<format definition 
<record range 1 i st>-----i 
<ski p speci fi cat i on>-----I 

TRAINID -- = --<train ID 
SKI PTM --<i nteger>;>-----i 
PRI NT ---------------' 

Specify an unlabeled file-that is, a file with a LABELTYPE value of OMITTED. 

Specify UL only for tape files. For UL, DUMPALL assigns the tape default 
MAXRECSIZE and BLOCKSIZE values of 1500 words. If you specify file attribute 
values other than the default values, DUMPALL assigns those values. If the attribute 
values are incorrect, the list might be incomplete. 

UL specifies that an input file has a KIND attribute value of TAPE and has no label. 
UL does not require an unlabeled tape; it merely specifies that the tape be treated as 
unlabeled. When you use UL, it is not necessary to specify a KIND attribute value of 
TAPE. DUMPALL ignores UL for disk and pack files. 

When you use UL for an input file whose options do not include SKIPTM or MULTI, 
DUMPALL can read more than one physical tape. When DUMPALL reads a tape mark 
from one tape, it closes that volume and attempts to open the next volume. The system 
then displays the "NO FILE" RSVP message for the next volume. You must respond to 
the RSVP message with either the FR (Final Reel) or the UL (Unlabeled) system 
command. 

When you use an input file specification that includes SKIPTM or MULTI, UL is 
equivalent to FR- that is, DUMP ALL uses only one physical tape. In this case, when 
DUMPALL reads a tape mark for the tape, the operating system does not attempt a 
volume switch. 

86000460-100 



DUMPALL Utility 

FR <old specs> 

Specify an unlabeled tape file that has only one reel, with reel switching 
suppressed-that is, the file has a LABELTYPE attribute value ofOMITTEDEOF. 

FR specifies that an input file has a KIND attribute value of TAPE and has no label. As 
in the case of UL, the tape used need not be an unlabeled tape. When you use FR, it is 
not necessary to specify a KIND value of TAPE. 

The difference between the FR and the UL DUMPALL options is that when you use 
UL, DUMPALL reads a tape mark from the tape, closes the file, and does not generate 
a "NO FILE" RSVP message. Refer to "Handling Tape Files" later in this section. 

«file attribute» 

Causes DUMPALL to use the specified attributes when listing the file. If you specify 
the HOSTNAME file attribute, DUMPALL requests access to a file on a remote host 
system; in this case, distributed systems services (DSS) requires that you also specify 
the KIND attribute. Refer to the File Attributes Reference Manual for more 
information about the KIND attribute. 

Refer to "Understanding Structural File Attributes" earlier in this section for an 
explanation of the file structure, record size, block size, DEPENDENTSPECS 
attribute, and their effects on DUMPALL. 

Refer to "Specifying Data or Character Set Translations" earlier in this section for an 
explanation of the effects of the EXTMODE and INTMODE file attributes on 
DUMPALL. 

< print option> 

Specifies the format to be used to print the records. You can specify one or more print 
options. 

If you specify a single print option and it is EBCDIC or ASCII, DUMP ALL lists the 
record as one unit in the format specified in the print option. If you specify a single 
print option and it is REAL, DECIMAL, HEXADECIMAL, or OCTAL, DUMPALL lists 
the record in groups the size of words. 

If you specify mUltiple print options, DUMPALL lists the record in groups the size of 
words, one format below the other on a page. Because DECIMAL is a subset of REAL, 
if you specify both, only REAL formatting takes place. 

<format definition> 

Describes a particular field within a record and its format. DUMPALL prints only the 
specified field of a record if a REAL error occurs. 

8600 0460-100 3-53 



DUMPALL Utility 

3-54 

<record range list> 
< skip specification> 

Cause only the specified range of the file to be tested. 

SKI PTM < integer> 

Causes the specified number of tape marks to be skipped before the file is tested. 

PRINT 

Used in interactive mode to send the output to the printer instead of the remote 
terminal. 

TRAINIO = <train 10> 

Tests the file and writes the records that contain parity errors to the printer using the 
specified train. DUMP ALL generates a separate print file for each use of the train ID 
option. 

The train ID can be any valid train ID. Refer to the File Attributes Reference Manual 
for a description of the TRAINID attribute and for a list of valid train IDs. 

The rules regarding tape usage for the TEST command are the same as those for the 
LIST command. The purpose of the command is to test a file for parity errors. 
DUMP ALL prints only those records that have parity errors. 

Example 

The following example tests the file Fl for parity errors. In the output, IOCWis the I/O 
control word issued to the I/O subsystem, lORD is the I/O result descriptor returned by 
the I/O subsystem, IOET is the direct I/O error type, and BLOCK is the block number 
in the file where a parity error occurred. Refer to the File Attributes Reference Manual 
regarding the use of IOCW, lORD, and the IOERRORTYPE file attribute. 

TEST Fl 

IO EXCEPTION IOCW=NNNNNNNNNNNN IORD=MMMMMMMMMMMM IOET=XXX 
BLOCK=YYYY 

8600 0460-100 



DUMPALL Utility 

Interactive List Routine Commands 
When DUMPALL is run in interactive mode, you can initiate all the previously 
described commands, one after the othet; with the exception of the LIBMT command. 
In addition, while in interactive mode, you can set up an interactive list routine by 
using the OPEN command or by using a standard LIST command to open a file. 

During a list routine, you can use the interactive list routine commands to switch back 
and forth between pages of a record display, to change the display mode, and to 
reposition the listing to any record in the file. 

You can use only the interactive list routine commands during the list routine. The list 
routine must end before you can use any standard DUMPALL command. You can end 
the list routine with the interactive QUIT command. The following are the interactive 
list routine commands: 

• AGAIN 

• FILE or ATTRIBUTES 

• CONTINUE 

• LIST 

• MODE 

• NEXT 

• OPEN 

• PREVIOUS 

• PRINT 

• QUIT 

• RECORD 

• SKIP 

8600 0460-100 3-55 



DUMPALL Utility 

Interactive AGAIN Command 

The interactive AGAIN command relists the current record on the screen. 

Syntax 

- AGAIN -------------------------4 

Interactive FILE or ATTRIBUTES Command 

The interactive FILE or ATTRIBUTES command displays the attributes of the file 
that is being listed. This command can be entered at any time during the listing. 
ATTRIBUTES and FILE are synonyms. 

Syntax 

--r FILE 
L ATTRIBUTES ] [ PRINT ] 

Explanation 

PRINT 

Lists the attributes of the file on the printer. 

Interactive CONTINUE Command 

3-56 

The interactive CONTINUE command displays the next record of the file. When the 
last page of a record display is listed on the screen, the word CONT is displayed in the 
upper left corner of the screen. You can either transmit the CONT command, or you 
can enter another interactive command. 

Syntax 

- CONTINUE -----------------------1 

8600 0460-100 



DUMPALL Utility 

I nteractive LIST Com mand 

The interactive LIST command lists the file opened by the preceding OPEN command. 
This command differs from the standard LIST command in that you do not specify a 
file name. 

Syntax 

L~_ , ] C -r 1IST I I I 
L- LAN ~ ~<print option 

/l\-<format definition>----
<record range 1 i st;;>-"---f 
<ski p speci fi cati on"::>------! 

SKI PTM -<i nteger>-----l 
PRINT ---------1 

L- TRAINID - = -<train ID~ 

Explanation 

LIST 

Lists the file in the format specified by the INTMODE attribute of the file. 

LAN 

Lists the file in a print option depending on the INTMODE attribute value of the file as 
follows: 

INTMODE 

SINGLE 

HEX 

EBCDIC 

ASCII 

<print option> 

Print Option 

EBCDIC, Hex 

Hex 

EBCDIC, Hex 

ASCII, Hex 

Specifies the print option to be used. 

If you specify a single print option and it is EBCDIC or ASCII, DUMPALL lists the 
record as one unit in the format specified in the print option. If you specify a single 
print option and it is REAL, DECIMAL, HEXADECIMAL, or OCTAL, DUMP ALL lists 
the record in word-sized chunks. 

If you specify more than one print option, DUMPALL lists the record in word-sized 
chunks, one format below the other on a page. Because DECIMAL is a subset of REAL, 
if you specify both, only REAL formatting takes place. 

8600 0460-100 3-57 



DUMPALL Utility 

3-58 

<format definition> 

Describes one or more particular fields within a record and their formats. DUMPALL 
lists only the specified fields. 

<record range list> 
<skip specification> 

List the part of the file specified by the record range list or the skip specification. 

SKIPTM <integer> 

Causes the specified number of tape marks to be skipped before the file is listed. 

PRINT 

Lists the file on the printer. 

TRAINIO = <train 10> 

Lists the file on the printer using the specified train. 

8600 0460-100 



DUMPALL Utility 

Interactive MODE Command 

The MODE command lists the current record in a specific mode or format. You can also 
use the MODE command to alter the mode (print option) or format in which the 
remaining records are to be listed. 

Syntax 

[ MODE ] 
I r~- ASCII --------r--L.....J '-l= IBCDIC --------1 

~ 
!!EXADECIMAL I 
OCTAL -------;. 
REAL -------i 

t QECIMAL I 
/l\-<format definition~ 

Explanation 

MODE 

Lists the current record in the default mode. 

MODE ASCII 
MODE EBCDIC 
MODE HEXADECIMAL 
MODE OCTAL 
MODE REAL 
MODE DECI MAL 

List all subsequent records with the new print option or format until another MODE 
command is entered. If you omit the prefix MODE, DUMP ALL lists only the current 
record in the new mode, and formatting reverts to the old mode when DUMP ALL 
reaches the next record. The various print options are explained under "Print 
Options" in "Input to the DUMPALL Utility" earlier in this section. 

<format definition> 

Describes one or more fields within a record and their formats or print options. 
DUMP ALL lists only the fields defined in the format definition. 

8600 0460-100 3-59 



DUMPALL Utility 

Interactive NEXT Command 

The interactive NEXT command displays the next page ofa record. When DUMPALL 
lists any page of a record other than the last one on the screen, the word NEXT 
appears in the upper left corner of the screen. You can retransmit NEXT or enter 
another interactive command. 

Syntax 

- NEXT --------------------------; 

Interactive OPEN Command 

3-60 

The interactive OPEN command opens a file for listing and initiates the interactive list 
routine. A list of the file attributes is given in response to the command. After the 
OPEN command completes, you can use only the interactive list routine commands. 
The list routine must end-with a QUIT command, for example- before you can enter 
the standard DUMPALLcommands. ' 

Syntax 

- OPEN 1<file title> j L I 
UL -<old specs ( -<file attribute>-- ) ~ 
FR -<old specs 

Explanation 

OPEN <file title> 

Initiates an interactive list routine session for the specified file. After the file attributes 
are listed, you can enter any interactive list routine command. 

UL <old specs> 

Specifies an unlabeled file. Use old specs to assign values to the INTMODE, 
MAXRECSIZE, and BLOCKSIZE attributes for the file. 

FR < old specs> 

Specifies an unlabeled tape file that has only one reel, with reel switching 
suppressed - that is, the file has a LABEL attribute value of OMITTEDEOF. You can 
use old specs to assign values to the INTMODE, MAXRECSIZE, and BLOCKSIZE 
attributes for the file. 

«file attribute» 

Causes DUMP ALL to use the specified file attributes when it opens the file. 

8600 0460-100 



DUMPALL Utility 

Interactive PREVIOUS Command 

The interactive PREVIOUS command displays the previous page of the record on the 
screen. If the current page is the first or only page of the record, the PREVIOUS 
command displays that page again. 

Syntax 

- PREVIOUS ------------------------l 

Interactive PRINT Command 

The interactive PRINT command lists the current record on the printer in the specified 
mode. Ifno mode information is specified in the PRINT command, DUMPALL uses the 
current default mode. 

Syntax 

L PRINT .J 

Explanation 

PRINT ASCII 
PRINT EBCDIC 

f- ASCII --------1 
f- EBCDIC --------i 
f- HEXADECIMAL ------i 
r- OCTAL --------1 

t REAL d 
DECIMAL ------1 

/I\-<format definition 

PRINT HEXADECIMAL 
PRINT OCTAL 
PRINT REAL 
PRI NT DECI MAL 

I 

Print the file in the specified mode. The specific modes are described under "Print 
Option" earlier in this section. 

<format definition> 

Describes a particular field within a record and its format. DUMPALL lists only the 
specified field. 

8600 0460-100 3-61 



DUMPALL Utility 

Interactive QUIT Command 

The interactive QUIT command has three uses: 

• While displaying records, the list routine displays the word CaNT in the upper left 
corner of the screen. If you enter QUIT in response, the display of records ends, 
and the list routine asks for your next interactive list routine command. 

• If you enter QUIT while the list routine is waiting for your next interactive list 
routine command, the list routine terminates giving the reply "END OF LIST 
ROUTINE." Then DUMPALL asks you to enter your next standard DUMPALL 
command. 

• If you enter QUIT while DUMPALL is waiting for your next standard DUMPALL 
command, DUMPALL goes to end of task (EaT). 

Syntax 

- QUIT -----------------------~ 

Interactive RECORD Command 

3-62 

The interactive RECORD command repositions a file that is being listed to the 
specified record in that file. A record number beyond the end of the file causes 
termination of the list routine. Records are I-relative-that is, the first record is record 
1. The values specified for the record range list and skip specification parameters in the 
LIST command override the interactive SKIP and RECORD commands. Therefore, 
after you enter an interactive SKIP command, the specifications in the LIST command 
can cause subsequent repositioning of the file or termination of the list routine. 

Syntax 

- RECORD -<number>::>----------------------i 

Example 

The following example repositions the file to the fourth record: 

RECORD 4 

8600 0460-100 



DUMPALL Utility 

Interactive SKIP Command 

The interactive SKIP command repositions the file that is being listed in interactive 
mode. The operating system can position the file either forward or backward, but 
positioning beyond the end of the file causes termination of the list routine. The values 
that you specify for the record range list and skip specification parameters in the LIST 
command override the interactive SKIP and RECORD commands. Therefore, after you 
enter an interactive SKIP command, the specifications in the LIST command can cause 
subsequent repositioning of the file or termination of the list routine. 

Syntax 

-- SKIP ~ ~ =r-<number> 

Example 

The following example repositions the file backward three records from the current 
record: 

SKIP - 3 

8600 0460-100 3-63 



DUMPALL Utility 

Running the DUMPALL Utility 

You can execute the DUMPALL Utility by using the RUN statement or through the 
Menu-Assisted Resource Control (MARC) System Utilities screen. 

If an error occurs while DUMPALL is either reading from or writing to a file, 
DUMPALL sets the TASKVALUE attribute to a value of 1. If no error occurs, 
TASKVALUE has a value ofO. WFLjobs can detect whether a DUMPALL task 
completed successfully by attaching a task variable to the DUMPALL execution. 
Following the completion of the process, the WFLjob can check to see ifDUMPALL was 
successful or not by testing the value of the TASKVALUE attribute of the task variable. 

Through the RUN statement, you can execute DUMP ALL in parameter mode, card 
mode, or interactive mode. 

Parameter Mode 

3-64 

In parameter mode, specify the input to DUMPALL at the same time that the program 
is executed. You can enter several commands separated by semicolons (;) in the same 
statement. 

To run DUMPALL in parameter mode, use the following syntax: 

- RUN [ $ ] SYSTEM/DUMPALL - ( - II -<command 1 i s t>- II - ) ---1 

Explanation 

$ 

Must be used when running DUMPALL through Command and Edit (CANDE). 

<command list> 

Lists the commands DUMPALL is to use. The list of commands must appear within 
double quotation marks ("). The command list consists of one or more DUMP ALL 
commands separated by semicolons (;). Work Flow Language (WFL) permits a 
maximum of 256 characters to be entered in the command list. Refer to the 
descriptions in "Standard Commands" earlier in this section. 

Example 1 

Example 1 produces a listing of the file TESTFILE. 

RUN $SYSTEM/DUMPALL(IILIST TESTFILE"); 

8600 0460-100 



DUMPALL Utility 

Example 2 

Example 2 produces a listing of the files TESTFILE and NEWFILE. 

RUN $SYSTEM/DUMPALL("LIST TESTFILE; LIST NEWFILP); 

Card Mode 

In card mode, you put one or more DUMPALL commands separated by semicolons (;) 
onto one or more card images. DUMPALL reads these records and acts on your 
commands. DUMP ALL uses only columns 1 through 72 of each card image. You can 
use the remainder of the record for a sequence number or comments. If you put a 
percent sign (%) on a card image, DUMPALL ignores all the text after the percent sign. 
You can use percent signs to put comments into your DUMP ALL input card file. 

To run DUMP ALL from a WFLjob in card mode, put together your card deck or job file 
in the following form: 

RUN SYSTEM/DUMPALL ("CARDn); 
DATA 

card images with DUMPALL commands 

? 

The card or record with the question mark (?) in column one terminates the card 
images to be read by DUMPALL. 

You can also store your DUMP ALL commands in a disk file, such as a CANDE TEXT 
file or ALGOLSYMBOL file. To input commands from a disk file to DUMP ALL, use the 
following WFL or CANDE statement: 

RUN *SYSTEM/DUMPALL (nCARDn); 
FILE CARD = <file name> ON <family name>; 

Example 

In the following example, DUMPALL executes the commands contained in the file 
MYCARD on the pack MYPACK: 

RUN SYSTEM/DUMPALL("CARDn); FILE CARD(TITLE=MYCARD ON MYPACK); 

I nteractive Mode 

In interactive mode, DUMPALL commands are entered and processed one at a time 
from a remote device. You must enter the commands in all uppercase letters. You can 
use all commands interactively except for the LIBMT command. Additional commands 
that you can use only during an interactive DUMP ALL list routine are included in 
"Interactive List Routine Commands" earlier in this section. 

8600 0460-100 3-65 



DUMPALL Utility 

To run DUMPALL in interactive mode, use the following syntax: 

- RUN ~r----.- SYSTEM/DUMPALL - ( "INTER" ) 
L$~ 

Explanation 

$ 

Must be used when running DUMPALL through CANDE. 

C'INTER") 

Specifies that DUMPALL is to be run interactively. 

Example 

The following example initiates DUMPALL in interactive mode through CANDE: 

RUN $SYSTEM/DUMPALL(IIINTER II ) 

Using the MARC Interface 

3-66 

Through the MARC interface, you can execute SYSTEM/DUMP ALL by selecting 
options from menus. To run DUMP ALL, enter DALL in the Choice field of the System 
Utilities screen. The DUMP ALL Choice Menu appears. Enter one of the following 
options in the Choice field: 

Command 

COpy 

CAT 

LIST 

HEXDSK 

INTER 

Function 

Displays the Copy option menu, which enables you to copy some or all 
of a file with optional file changes. Refer to uCOPY Command" earlier in 
this section for more information. 

Displays the Concatenate INPUT file option menu, which enables you to 
copy multiple files concatenated into a new or an old file. Refer to uCAT 
Command" earlier in this section for more information. 

Displays the List option menu, which enables you to list some or all of a 
file or directory in one or more formats. Refer to uLiST Command" earlier 
in this section for more information. 

Displays the List Disk Sectors in Hex option menu, which enables you to 
list disk sectors in EBCDIC or hexadecimal format. Refer to uHEXDSK 
Command" earlier in this section for more information. 

Runs SYSTEM/DUMPALL in interactive mode. Refer to IIlnteractive 
Mode" earlier in this section for more information. 

For menu-specific or field-specific information on any of the DUMP ALL option menus, 
consult the help text associated with that menu or field. 

To return to the MARC System Utilities screen, enter BYE in the Action field. 

8600 0460-100 



DUMPALL Utility 

Controlling I/O Exceptions 

DUMPALL gives you an opportunity to react to I/O exceptions when it executes a LIST, 
COPY, CAT, or TEST command. IfDUMPALL is in interactive mode, you can respond 
through the remote file that is open at the remote device. IfDUMPALL is not in 
interactive mode, you can respond by using the AX system command. Depending on 
the type of exception and the command being executed, DUMPALL displays an 
appropriate set of options. 

When a response is required and DUMPALL is not in interactive mode, DUMPALL 
displays the nature of the error and waits for you to return AX input. The DUMPALL 
task appears in the waiting mix entry list as shown in the following example: 

6757/7118 50 *SYSTEM/DUMPALL 
ACCEPT:PLEASE ENTER SHOW, CONT, OR QUIT 

The following is a valid response at the operator display terminal (ODT): 

7118 AX CO NT 

Example 1 

If the Y system command is used on the waiting entry, the RSVP message portion of 
the response contains the entire message. Example 1 shows an example input and 
response: 

7118 Y 

STATUS OF TASK 7118 AT 9:34:58 
PRIORITY = 50 
ORIGINATION: LSN 509 
USERCODE: USER 
STACK STATE: WAITING ON AN EVENT 
PROGRAM NAME: *SYSTEM/DUMPALL 
RSVP: ACCEPT:PLEASE ENTER SHOW, OR QUIT. 
ERROR ON INPUT FILE: (USER)A/FILE ON MYPACK 
PARITY ERROR (RECORD = 9675 BLOCK = 387 FILE ;1) 
SHOW WILL PRINT THE CONTENTS OF THE BUFFER AND CONTINUE. 
CO NT WILL SKIP THE RECORD AND CONTINUE. 
QUIT WILL TERMINATE THE CURRENT COMMAND. 

Example 2 

IfDUMPALL is executed from a data comm terminal, the same message as shown in 
Example 1 is displayed on the terminal. Example 2 shows this kind of message display: 

7118 ACCEPT:PLEASE ENTER SHOW, CONT, OR QUIT 
ERROR ON INPUT FILE: (USER)A/FILE ON MYPACK 
PARITY ERROR (RECORD = 9675 BLOCK = 387 FILE ;1) 
SHOW WILL PRINT THE CONTENTS OF THE BUFFER AND CONTINUE. 
CO NT WILL SKIP THE RECORD AND CONTINUE. 
QUIT WILL TERMINATE THE CURRENT COMMAND. 

8600 0460-100 3-67 



DUMPALL Utility 

3-68 

Example 3 

Example 3 shows a valid response at the data comm terminal: 

? AX CONT 

Example 4 

IfDUMPALL is running in interactive mode, the system displays the same message as 
shown in Example 1 at the remote device. The task then waits for your response. The 
display and response are presented and received by means of the remote file as shown 
in Example 4: 

PLEASE ENTER SHOW, CONT, OR QUIT 
ERROR ON INPUT FILE: (USER)A/FILE ON MYPACK 
PARITY ERROR (RECORD = 9675 BLOCK = 387 FILE ;1) 
SHOW WILL PRINT THE CONTENTS OF THE BUFFER AND CONTINUE. 
CONT WILL SKIP THE RECORD AND CONTINUE. 
QUIT WILL TERMINATE THE CURRENT COMMAND. 

Example 5 

Example 5 shows a valid response at the remote device: 

CONT 

Depending on the command, one or more of the following options are allowed: 

Option 

SHOW 

CaNT 

NEXT 

QUIT 

Purpose 

Prints the contents of the buffer. DUMPALL continues processing the 
command. 

Skips this record and continues processing the command. 

Switches to the next reel and continues processing the command. This 
option is provided only on files whose KIND attribute has the value 
TAPE, where an END OF TAPE exception has occurred. 

Terminates the current command. If an output file is being created, it is 
saved. If DUMPALL is in interactive mode, the next command is 
requested. If it is not in interactive mode, DUMPALL terminates. 

8600 0460-100 



DUMPALL Utility 

The following are recommendations regarding exceptions: 

Exceptions 

For LIST and TEST 
commands 

For input files on CAT 
and COpy commands 

For input files on CAT, 
COPY, LIST, and TEST 
commands 

For output files on CAT 
and COPY commands 

8600 0460-100 

Recommendations 

PARITY, DATA ERROR, and END OF TAPE exceptions defer to you 
for response. All other exceptions display an error message, set the 
DUMPALL TASKVALUE attribute to an error value (1), and 
terminate the current command. If it is not in interactive mode, 
DUMPALL terminates. The available options for an END OF TAPE 
exception are HELP, NEXT, and QUIT. In all other cases, the options 
are HELP, SHOW, CONT, and QUIT. 

PARITY, DATA ERROR and END OF TAPE exceptions defer to you 
for direction. All other exceptions except SHORTBLOCK display an 
error message, set the DUMPALL TASKVALUE attribute to an error 
value (1), and terminate the current command. If it is not in 
interactive mode, DUMPALL terminates. The available options for 
an END OF TAPE exception are HELP, NEXT, and QUIT. In all other 
cases, the options are HELP, CONT, and QUIT. 

A SHORTBLOCK exception occurs in certain cases when the size of 
a data block read from an input tape is less than the BLOCKSIZE of 
the file. The SHORTBLOCK exception displays an error message. 
You also see messages about the options you can take, such as as 
SHOW, CONT, and QUIT. 

For example, if you enter the command COPY UL E 95 380 to 
NEWFILE, and the tape file contains 378 characters per block, you 
receive a SHORTBLOCK error. This message occurs because 378 is 
2 bytes less than the 380 specified in the command. 

All exceptions defer to you. The available options for an END OF 
TAPE exception are HELP, NEXT, and QUIT. In all other cases, the 
options are HELP, CO NT, and QUIT. 

3-69 



DUMPALL Utility 

Input to the DUMPALL Utility 
The following text describes the basic constructs, range lists, and format definitions 
used in DUMPALL commands. 

Basic DUMPALL Constructs 

3-70 

The following items commonly appear as syntactic variables in the syntax diagrams 
featured in this section. 

<alphanumeric character> 

Anyone of the characters A through Z or 0 through 9. 

< Boolean-valued attribute> 

t 
DEPENDENTSP~ECS 
FLEXIBLE ----1 

SINGLEUNIT 

<digit> 

Anyone of the decimal digits 0 through 9, inclusive. 

<directory name> 

1 
( --<usercode>-- ) 

i --<usercode>-- ) j 
[~/l1\-<~a~ 

Specifies the name of a directory. 

< directory title> 

-<directory name> 
L ON --<fami ly name:.-J 

Specifies a particular directory. 

< EBCDIC string character> 

Anyone of the 256 EBCDIC characters except the double quotation mark ("). 

8600 0460-100 



DUMPALL Utility 

<family name> 

~/17\-,- <1 etter>-or--L ,--------------------i 
L <di gi t> --.J 

Identifies a disk family. 

A family is a logical means of grouping mass storage devices together so that they 
function as one logical unit. Specification of the family name indicates a named 
native-mode disk pack, and any continuation packs, whose name is the specified family 
name. A file with a KIND attribute value of DISK or PACK refers, by default, to the 
family with the family name DISK. 

The following diagrams identify the file attributes that can be assigned specific values 
for certain commands. Refer to the File Attributes Reference Manual for explanations 
of these attributes. 

<file attribute assignment> 

1
~ · <integer-valued attribute>--

<Boolean-valued attribute>-­

<pointer-valued attribute>--

<file title> 

= L<attribute mnemonic' I I 

<integer' 
I 

= L TRUE 
FALSE 

= ~d;rectorY name' 
<directory title>----
<family name' 
<file title 
<host name 
<seri a 1 number' 

(-- /--, 
-~--------...__I-/12\-<name>-l:>-.....I...o-"T'"---------,....--l [ i -<usercode>-- ) J L ON -<family name~ 

Specifies a particular file. File titles containing the suffix ON <family name> can be 
used to specify a family other than the default family (DISK). 

<host name> 

-<name>:>-------------------------------------------i 

Identifies a host computer system. 

<hyphen> 

The single hyphen (-) character. 

8600 0460-100 3-71 



DUMPALL Utility 

3-72 

<identifier> 

/17 \-<a 1 phanumeri c cha racter>>-l-I---------,---------------I -t
~---------------------~ 

II -L/17\-<EBCDIC string character>=l II J 
<integer> 

--.L/ 11 \-<d i gi t>>-....I.-------------------------------I 

< integer-valued attribute> 

AREAS -------,,------------------------~ 
AREALENGTH 
AREASIZE --~ 
BLOCKSIZE ----I 
BLOCKSTRUCTURE 
BUFFERSIZE 
CCSVERSION 
CYCLE --------l 
DENSITY ------l 
EXTMODE ------l 
FILEKIND --~ 
FI LETYPE ---i 
FILEUSE ------l 
FILESTRUCTURE 
FRAMESIZE ----I 
INTMODE ------l 
KI ND ------I 
LAB EL -------l 
MAXRECSIZE 
MINRECSIZE 
PARITY ---~ 
PROTECTION 
SAVEFACTOR 
SIZEMODE --~ 
SIZEOFFSET 
S I ZE2 --------l 
UN ITS -------l 
VERSION -----' 

<name> 

<letter~~---------------~-----~---------_4 
<digit 

/16 \-<1 et ter>-r--'---' 
<digit>------l 
<hyphen:>----t 
<underscore 

II -L/17\-<non quote EBCDIC character>=L II 

<pointer-valued attribute> 

1 FAMILY~ HOSTNAME 
SERIALNO 
TITLE 

8600 0460-100 



DUMPALL Utility 

<serial number> 

i/6\-r<d; g; t>>-i---,---1-------------------i 
L<l etter>-J 

Identifies a tape or disk volume. 

<underscore> 

The single underscore C) character. 

<usercode> 

- <name> -------------------------1 

Field Definition 

A field definition describes a field within a record and its format. It is used alone or 
with other field definitions to form a format definition. You can use fields and formats 
in various print commands to cause DUMPALL to process only the specified fields from 
each record and to specify how each field is to be printed. 

<field definition> 

- [ --.-----------~,<f;eld offset> L 1 -7 

L I -<mnemon; c>- I : = .J <fi e 1 d 1 ength>-l 

-7 L<f i e 1 d type>J 

<field offset> 

--r- WORD -<number> 

I - ~ ~~~~A~<number1 

~ 
L DIGIT ---.-J 

CHARACTER T<number>-> --------' 
BYTE ---1-4 

L DIGIT --.J 

<field length> 

1 
FOR -<number> ~ WORDS I 

BYTES ------l. 
DIGITS ~ 
CHARACTERS ~ 

L ~TS -<number~ ~o~<number~ 

8600 0460-100 3-73 



DUMPAll Utility 

3-74 

<field type> 

I I 
L IN -.J 

~
' ~mMAL ~ 

HEXADECIMAL 
QCTAL I 
~BCDIC --I 

L ASCII I 

Explanation 

'<mnemonic>' := 

Names the field. The mnemonic is entered into the defines file and can be used in 
subsequent format definitions to represent the field mnemonic. The mnemonic can 
be any valid identifier from 1 to 63 characters in length. If the field definition is part 
of a define command, this option must be present. Refer to the DEFINE command 
description in this section. 

<field offset> 

Specifies the offset of the field within the record. This offset can be specified in words, 
8-bit characters or bytes, 4-bit digits, words and characters, words and bytes, or words 
and digits. WORD specifies 48-bit or 6-byte units. If you specify words and characters 
or words and bytes, the number of characters of bytes must be 5 or less. If you specify 
words and digits, the number of digits must be 11 or less. CHARACTER and BYTE 
specify 8-bit units. DIGIT specifies 4-bit units. The offset value is zero relative. The 
first word, character, byte, or digit of a record is at offset 0, the second is at offset 1, and 
so forth. 

<field length> 

Specifies the length of the field. If you do not specify the units for the field length, such 
as words or bytes, DUMPALL uses the units that you specified for the field offset. If 
you do not specify a field length, DUMP ALL assumes the length of the field is 1. 

<field type> 

Specifies the type of formatting to be used. If you do not specify a field type, DUMPALL 
determines the type from the field length and units according to Table 3-2. 

Units 

WORDS 

WORDS 

BYTES 

Table 3-2. Default Field Type 

Length 

2 or less words 

more than 2 words 

Type 

Real 

Hex 

EBCDIC 

continued 

8600 0460-100 



Units 

CHARACTERS 

DIGITS 

BITS 

WORD <number> 

Table 3-2. Default Field Type (cont.) 

Length 

DUMPALL Utility 

Type 

EBCDIC 

Hex 

Real 

Specifies the number of the word in the field where the field definition begins. Word 
numbers are relative to O. The first word of a record is word 0, the second word is 
word 1, and so forth. 

CHARACTER <number> 
BYTE <number> 
DIGIT <number> 

Following the WORD < number> option, these options specify the character, byte, 
or digit in the word where the field definition begins and is zero-relative. The first 
character, byte, or digit of a word is number 0, the second is number 1, and so 
forth. If no WORD < number> option appears, these options specify a particular 
character, byte, or digit where the field definition begins and is zero-relative. The first 
character, byte, or digit of a record is number 0, the second is number 1, and so forth. 
CHARACTER and BYTE define 8-bit (EBCDIC) offsets or lengths, and DIG IT defines 
4-bit (HEXADECIMAL) offsets or lengths. 

FOR <number> WORDS 
FOR <number> BYTES 
FOR <number> DIGITS 
FOR <number> CHARACTERS 

Specify the field length in words, bytes, digits, or characters. If no unit (WORDS, 
BYTES, DIG ITS, or CHARACTERS) is specified, the length is in the units used to 
specify the field offset. 

If you specified the field offset in digits or in words and digits, you cannot specify the 
field length in bytes or characters. 

BITS <number> FOR <number> 

Specifies a partial word field with a length of one word. The first number specifies the 
left bit of the field and must be between ° and 47, inclusive. The second number 
specifies the number of bits in the field and must range from 1 through 48, inclusive. 

If you specify less than 48 bits, DUMPALL fills the missing leading bits with binary 
zeros to obtain a full 48-bit entity. If you specify the field type as HEXADECIMAL, 

8600 0460-100 3-75 



DUMPALL Utility 

3-76 

DUMPALL prints the field bit as 12 hexadecimal characters. If you specify the field 
type as EBCDIC or ASCII, DUMPALL prints the field bit as 6 characters. In the latter 
case, the leading binary zeros print as question marks (?). 

DECIMAL 

Specifies an integer field (COMP). If the field identified does not evaluate to an integer 
value, it is displayed as though REAL had been specified. 

REAL 

Specifies a floating-point field (COMP-2). 

HEXADECI MAL 

Specifies a 4-bit alphanumeric field (COMP-2). 

OCTAL 

Specifies a 3-bit field. 

EBCDIC 

Specifies an 8-bit alphanumeric field (DISPLAY). If you specified the field offset in 
digits or in words and digits, you cannot specify a field type of EBCDIC. 

ASCII 

Specifies a 7-bit alphanumeric field (ASCTI). If you specified the field offset in digits or 
in words and digits, you cannot specify a field type of ASCII. 

Example 1 

Example 1 describes a field that contains word 3 of the record in real format. Because 
the field length is not specified, it defaults to 1 word - word in this example because the 
field offset is specified in words. The field type is not specified so, according to Table 
3-1, a one-word field defaults to type real. 

[WORD 3] 

Example 2 

Example 2 describes a field that contains the first five bytes of the record in EBCDIC 
format. Because the units for field length are not specified, they default to the units 
specified for the field offset, which in this example is bytes. The field type is not 
specified so, according to Table 3-1, a field of bytes defaults to the type EBCDIC. 

[BYTE 0 FOR 5] 

8600 0460-100 



DUMPALL Utility 

Example 3 

Example 3 describes a field that contains bits 47 through 24 of word 4 in hexadecimal 
format. The field is entered in the defines file under the mnemonic FLD 1. 

['FLD11:=WORD 4 BITS 47:24 IN HEX] 

Example 4 

Example 4 describes a field that contains digits 72 through 75 of the record in 
hexadecimal format. The field offset of digit 72 is equivalent to the offset of word 6 
because there are 12 digits per word. The field type is not specified, so with the units 
for the field length (digits), we determine from Table 3-1 that the type is hexadecimal. 

[WORD 6 FOR 4 DIGITS] 

Example 5 

Example 5 describes a field that contains bytes 20 through 29 of the record in EBCDIC. 
The units for the field length are not specified, so they default to the units for the field 
offset, which in this example is bytes. The field type is not specified, so according to 
Table 3-1, a field of bytes defaults to the type EBCDIC. 

[BYTE 20 FOR 10] 

Format Definition 

A format definition is made up of one or more field definitions. A field definition 
describes a particular field within a record and the type or format of the data in that 
field. A format definition can be specified in various print commands to cause 
DUMPALL to process only the specified fields from each record and to specify how 
DUMPALL is to print each field. If you specify more than one field in a format, when 
DUMPALL prints data, DUMPALL separates the display for each field from that of the 
preceding field by 2 blank characters. 

Syntax 

-- FORMAT -,-------------r------------' 
[ I --<mnemonic>- I __ := ] 

8600 0460-100 

~­
I --<format m~emonic>- I 

I --<field mnemonic>- I 

<field definition>------' 

3-77 



DUMPALL Utility 

Explanation 

'<mnemonic>' := 

Defines the subsequent format and gives it the specified name. You can use the 
mnemonic in subsequent commands to represent its associated format definition. A 
mnemonic can be any valid identifier from 1 to 63 characters in length. 

'<format mnemonic>' 
'<field mnemonic>' 

Specify a format or field that you have previously defined by using the mnemonic 
option of the format definition or field definition. 

Example 1 

Example 1 defines a format by using two field definitions. The first field describes the 
first 6 bytes of the record in EBCDIC format. (EBCDIC is the default format when the 
field length is specified in bytes.) The second field describes word 7 of the record in 
decimal format. 

FORMAT [BYTE 0 FOR 6] [WORD 7 DECIMAL] 

Example 2 

Example 2 defines a format named FMTl, which is entered into the defines file. FMTI 
consists of two fields. The first field is named FLDI and is entered into the defines file. 
FLD 1 describes bytes 20 through 24 of the record in EBCDIC format. The second field 
is not named. This field describes byte 50 of the record in EBCDIC format. (EBCDIC is 
the default format when the field length is specified in bytes.) 

FORMAT 'FMTl':=['FLDl':=BYTE 20 FOR 5] [BYTE 50] 

Example 3 

Example 3 defines a format named FMT2, which is entered into the defines file. FMT2 
consists of the previously defined field FLD 1 and the previously defined format FMTI. 

FORMAT 'FMT21:='FLD1' 'FMT1' 

Old Specs 

3-78 

Use old specs with unlabeled or nonstandard labeled tape files to assign values to the 
attributes INTMODE, MAXRECSIZE, and BLOCKSIZE. B3500 and B5500 standard 
labeled tape files are examples of nonstandard labeled tape files. 

8600 0460-100 



DUMPALL Utility 

<old specs> 

I- A~ T<maxrecsize>-<block size> ] t J L CHAR 

Explanation 

The following list explains the available options: 

• The A indicates INTMODE value of ASCII format. 

• The E indicates INTMODE value of EBCDIC format. 

• The N indicates INTMODE value of nonstandard format. 

• The maxrecsize is an integer specifying the MAXRECSIZE value of the file. 

• The block size is an integer specifying the BLOCKSIZE value of the file. 

• The CHAR specifies that maxrecsize and block size are in characters. The default 
is words. 

The default setting ofINTMODE is EBCDIC, and the default settings for 
MAXRECSIZE and BLOCKSIZE are 1500. You can also specify these file attributes 
directly by using the «file attribute> ) clause in DUMPALL commands. The default 
value for FRAMESIZE is 48 - that is, words. You can change the default value by 
specifying a different value with the ( <file attribute> ) clause. 

Print Option 

Use the print option to indicate the format of the output from DUMPALL. 

< print option> 

L a~t-A~-----lJ--r-1 -'---------------------i 
~ EBCD I C ---l 

t HEXADECIMAL ~ 
ASCII 
QCTAL 

8600 0460-100 3-79 



DUMPALL Utility 

Explanation 

REAL 

Prints output in single-precision, floating-point (COMP-4) format. 

DECIMAL 

Prints output in single-precision integers (COMP, COMP-I) format. 

EBCDIC 

Prints output in 8-bit EBCDIC (DISPLAY) format. 

HEXADECI MAL 

Prints output in 4-bit digit (COMP-2) format. 

ASCII 

Prints output in 7-bit ASCII format. 

OCTAL 

Prints output in 3-bit OCTAL format. 

Record Range List 

3-80 

A record range list specifies a group of records to be processed. All record numbers 
used in the record range list are I-relative; that is, the first record of a file is record 1. 

<record range list> 

- RECORD -<record number>>---rj----------.---------I 

Explanation 

RECORD <record number> 

t <count 
INCLUDE .J 
THRU -,-<record number 

LEND -------' 

Causes only the record given by the record number to be processed. Record number is 
an integer. 

8600 0460-100 



DUMPALL Utility 

RECORD < record number> <count> 
RECORD <record number> INCLUDE <count> 

Cause the range to begin with the record specified by the record number and to include 
the number of records specified by count. Count is an integer. 

RECORD <record number> THRU <record number> 

Includes all records from the first record number through the second record number, 
inclusive. The second record number must be greater than the first record number. 

RECORD <record number> THRU END 

Includes all records beginning with the record number through the end of the file. 

Example 1 

The following range consists only of record 5: 

RECORD 5 

Example 2 

The following range consists of records 5, 6, and 7: 

RECORD 5 3 

Example 3 

The following range consists of records 5,6, 7, 8, and 9: 

RECORD 5 THRU 9 

Example 4 

The following range consists of records 5 through the end of the file: 

RECORD 5 THRU END 

Considerations for Use 

You can use a list that contains a mixture of record range lists and skip specifications. 
However, after you specify END in either one, you cannot specify any other record 
range lists or skip specifications. 

8600 0460-100 3-81 



DUMPALL Utility 

Skip Specification 

3-82 

The skip specification specifies a group of records to be processed. The skip is relative 
to the current record number: 

• The current record number is 1 if this is the first skip specification for this input 
file in the command and there are no preceding record range list specifications for 
this input file in the command. 

• Otherwise, the current record number is the record number plus one of the last 
record of the preceding skip specification or record range list. 

< skip specification> 

-- SKIP ~ ~ =r-<count 
t------,-<co un t>-------l 

Explanation 

SKIP + <count> 

Causes the file to be repositioned forward the number of records specified for the count 
variable. The range begins at the record whose record number is equal to the current 
record number plus the count value and ends at the end of the file. 

SKIP - <count> 

Causes the file to be repositioned backward the number of records specified for the 
count variable. The range begins with the record whose record number is equal to the 
current record number minus the count value and ends at the beginning of the file. 

SKIP + <count> <count> 
SKIP - <count> <count> 
SKIP + <count> INCLUDE <count> 
SKIP - <count> INCLUDE <count> 

Cause the range to begin at the record whose record number is equal to the current 
record number plus the count value or to the current record number minus the count 
value and to include the number of records specified by the second count value. 

The keyword INCLUDE is optional. 

SKIP + <count> THRU <record number> 
SKIP - <count> THRU <record number> 

Cause the range to begin at the record whose record number is equal to the current 
record number plus the count value or equal to the current record number minus the 
count value and to end at the record specified by the record number. 

8600 0460-100 



SKIP + <count> THRU END 
SKIP - <count> THRU END 

DUMPALL Utility 

Cause the range to include all the records from the record whose record number is 
equal to the current record number plus the count value or equal to the current record 
number minus the count value through the end of the file. 

Examples 

All the examples that follow assume that the preceding record range list consisted of 
records 5 through 10, so that the current record number is 11. 

Example 1 

Example 1 skips three records from the current record number and includes the three 
records following the skip. The new range includes records 14 through 16, inclusive. 

SKIP + 3 3 

Example 2 

Example 2 skips two records from the current record number. The new range includes 
records 13 through 18, inclusive. 

SKIP + 2 THRU 18 

Example 3 

Example 3 skips backward 3 records from the current record number. The new range 
begins with record 8 and ends at the end of the file. 

SKIP - 3 

Considerations for Use 

You can use a list that contains a mixture of record range lists and skip specifications. 
However, after you specify END in either one, you cannot specify any other record 
range lists or skip specifications. 

8600 0460-100 3-83 



DUMPALL Utility 

Handling Tape Files 
This subsection explains concepts of labeled and unlabeled tapes, single-file tapes, and 
multifile tapes. DUMPALL can copy or print files stored on labeled or unlabeled tapes, 
and DUMPALL can copy files to labeled or unlabeled tapes. You can instruct 
DUMPALL to copy more than one file from the same input tape by specifying the 
MULTIFILE option for input files. You can instruct DUMPALL to create a multifile 
tape by specifying the MULTIFILE option for output files. 

Description of Tape Formats 

When you want to print or copy files located on an unlabeled tape or a tape with 
nonstandard labels, you must use the FR or UL specification for the input file. To use 
these tapes successfully with DUMP ALL, you must understand the location of the tape 
marks and data records on the input tapes so that you can position the tape correctly. 

The following terms are necessary to your understanding the DUMPALL syntax 
required to create and read tapes: 

• Tapemark 

• Unlabeled tape 

• Labeled tape 

• Nonstandard labeled tape 

For a description of multivolume tapes, refer to the A Series I/O Subsystem 
Programming Guide. 

Tape Marks 

A tape mark is a special physical record that a system or program writes on a magnetic 
tape volume to delimit logical entities, such as files, from one another. By convention, 
the last valid data block or label record on a tape is followed by two tape marks in 
sequence. 

Unlabeled Tapes 

3-84 

An unlabeled tape is a tape that has no label records. An unlabeled tape does not have 
a serial number. 

A single-file unlabeled tape contains one file and has the following format: 

data blocks for file 
tape mark 
tape mark 

8600 0460-100 



DUMPAll Utility 

A multifile unlabeled tape is a tape that contains more than one file and no label 
records. A multifile unlabeled tape has the following format: 

data blocks for first file 
tape mark 

data blocks for second file 
tape mark 

data blocks for last file 
tape mark 
tape mark 

The PER MT system command entered at an ODT for an unlabeled tape produces a 
display similar to the following: 

-------------------------- MT STATUS 
84 P 1600 1 UNLABELED 

labeled Tapes 

A labeled tape is a tape that has label records. The label records contain information 
needed to locate a specific file on the tape. Each file on a labeled tape is preceded and 
followed by a set of label records. A tape mark is used to separate the label records 
from the records of a file on the tape. Refer to the I/O Subsystem Programming Guide 
for information on standard tape label formats. 

Note that library maintenance tapes, which are labeled tapes, contain label information 
that is unique to library maintenance tapes. A library maintenance tape cannot be 
read as a labeled tape by DUMP ALL, and a labeled tape as described in the preceding 
paragraph cannot be read by the library maintenance utility. 

A single-file labeled tape contains one file and label records and has the following 
format: 

VOL label records for tape 
HDR label records for file 

tape mark 
data blocks for file 

tape mark 
EOF label records for file 

tape mark 
tape mark 

8600 0460-100 3-85 



DUMPALL Utility 

3-86 

A multifile labeled tape contains more than one file and label records. A multifile 
labeled tape has the following format: 

VOL 1 abel records for tape 
HDR 1 abel records for fi rst fil e 

tape mark 
data blocks for first fi 1 e 

tape mark 
EOF 1 abel records for first fi 1 e 

tape mark 
HDR 1 abel records for second fil e 

tape mark 
data blocks for second file 

tape mark 
EOF label records for second fil e 

tape mark 

HDR label records for last file 
tape mark 

data blocks for last file 
tape mark 

EOF labels for last file 
tape mark 
tape mark 

The PER MT system command entered at an ODT for a labeled tape produces a display 
similar to the following: 

------------------------ MT STATUS ---------------~-------
84 P [SERNUM] 1600 1 1:0 T/FILEONE 

When it creates a label record for a multifile tape, the operating system uses only the 
first and last identifiers from the file title for each file written to the tape. For example, 
the file FIXfY/Z/A is labeled F/A on the tape. Furthermore, if the first identifier in the 
title of each file on the tape is the same, a program need only set the internal file title 
of the program to the first and last identifiers (as it stands on the tape) to access 
a particular file on the tape. When the system opens a file, the system automatically 
positions the tape to read the first record of the required file. For example, if a labeled 
multifile tape contains the files F/A, FIB, F/C, and F/D, a program that opens an 
internal file with a KIND attribute value of TAPE and a TITLE attribute value ofF/C 
accesses the records contained in file Fie on the tape. 

When you create a labeled tape, you can use a single identifier for each file title. In this 
case, DUMPALL can read files other than the first file on the tape only if you specify 
the MULTIFILE option and the operator replies with an IL (Ignore Label) system 
command to the "NO FILE" RSVP message. 

86000460-100 



DUMPALL Utility 

Some of the advantages of labeled tapes are the following: 

• Labeled tapes have a serial number recorded in the VOL label that helps you and 
your installation keep track of tape volumes. 

• Because the file name is stored in the HDR labels of a file, labeled tapes enable you 
to reference and locate tape files by name. 

• Because the HDR and EOF labels record the values of file attributes such as record 
size, block size, and creation date, programs such as DUMPALL can automatically 
determine the proper attributes to be used to access a file stored on labeled tape 
volumes. 

• The system automatically handles switching from one volume to the next 
whenever a read, write, or copy action reaches the end of a labeled tape volume. 

Nonstandard Labeled Tapes 

Some tapes created by systems other than A Series might have labels that are not fully 
compatible with the A Series system. For such tapes, you can use the PER MT system 
command to show the tapes as labeled or unlabeled. However, DUMP ALL might not be 
able to retrieve files by name from such tapes, or DUMP ALL might not be able to 
determine the correct record size and block size of the files on such tapes. To copy or 
print such tapes, you might need to use the UL or FR option to indicate that 
DUMPALL is to ignore the labels. If you use the UL or FR option, you might also need 
to use the SKIPTM option to position the tape past the tape mark that separates the 
label records from the data blocks for the files. Also, you must specify the 
MAXRECSIZE and BLOCKSIZE file attributes for the files on nonstandard labeled 
tapes. Refer to "Treating Labeled Tapes as Unlabeled Tapes" later in this section. 

Output Files 

You can control tape selection by specifying a serial number or list of serial numbers in 
the file attribute list associated with the output file. If the required tape is not available 
when the output file is opened, DUMPALL is suspended with the following message: 

<mix number> <file name> REQUIRES MT [<serial number>] #1 

If a serial number is not specified and tapes are required to run the DUMP ALL utility, 
the operating system performs one of the following operations: 

• If the system option SERIALNUMBER is not set, the operating system selects any 
available scratch tape. If a scratch tape is not available, the operating system 
suspends DUMPALL with the following message: 

<mix number> <file name> REQUIRES MT #n 

When a scratch tape becomes available, the operating system assigns the tape to 
DUMPALL. 

8600 0460-100 3-87 



DUMPALL Utility 

• If the system option SERIALNUMBER is set, the operating system suspends 
DUMPALL with the following message: 

<mix number> <file name> REQUIRES MT #n 

When a scratch tape becomes available, the operator responds with the following 
system command. The variable nn is the unit number of the tape drive. 

<mix number> OU MT nn 

IfDUMPALL fills up the entire tape volume and still has more data to copy, it requests 
another tape volume from the operator by the same process it used for the first volume. 
When that tape is assigned, DUMPALL continues the copy process on the new volume. 

Input Files from Labeled Tapes 

You can control the tape input to DUMPALL by specifying the correct file title of the 
tape file that you want DUMPALL to print or copy. DUMPALL automatically picks up 
the record size and block size information for the file from the tape labels. 

If you do not specify the correct file title, if the file is not the first file on the tape and 
the tape does not have a standard tape file name in the form volumeid/fileid, or if the 
tape is not online when you run DUMPALL, the operating system suspends DUMPALL 
with the following message: 

<mix number> NO FILE <file name> (MT) #n 

The operator can mount the appropriate tape or use the IL (Ignore Label) or FA (File 
Attribute) system command to force the operating system to select a tape. 

Input Files from Unlabeled Tapes 

3-88 

You can use the FR or UL option, explained under "Standard Commands" earlier in 
this section, to indicate that the input file has no label. Without label information, 
DUMPALL cannot determine the record size or block size to use, so you must specify 
the MAXRECSIZE and BLOCKSIZE file attributes. Without label information, the 
operating system cannot identify the tape to select without operator intervention. 
Thus, when DUMP ALL opens the input tape file, the operating system suspends 
DUMPALL with one of the following messages: 

<mix number> NO FILE UL (UNLABELED MT) #1 

<mix number> NO FILE FR (UNLABELED MT) #1 

By entering the following system command, the operator assigns to DUMPALL an 
unlabeled file on the indicated unit: 

<mix number> UL MT nn 

8600 0460-100 



DUMPALL Utility 

If you specify UL and do not use either the MULTI or the SKIPTM option, the 
operating system perfonns an automatic reel switch when it reads a tape mark from 
the tape. It then suspends DUMPALL with the following RSVP message: 

<mix number> NO FILE UL (UNLABELED MT) #2 

The operator can continue to force the operating system to select a tape by using the 
UL (Unlabeled) system command. After the operating system reads the last tape, the 
operator must enter the following response to inform the operating system that the 
last tape used was the final reel: 

<mix number> FR 

If you specified FR, or used UL in conjunction with MULTI, SKIPTM, or both, the 
system requests no further input file at the end of the first input tape. 

Note: The operator can also select a labeled tape as a response to the "NO 
FILE" message. If this happens, your DUMPALL command probably 
executes incorrectly because DUMPALL treats the beginning label 
records as the data blocks of the first file on the tape. So, DUMP ALL 
copies or prints the label records instead of the data records. 

Treating Labeled Tapes as Unlabeled Tapes 

DUMP ALL and the operating system permit you to read any tape-labeled, unlabeled, 
or with nonstandard labels - as though it had no label records. You might want to use 
this feature if, for some reason, the labels on the tape are defective or not compatible 
with the A Series operating system, or if you do not know the names of the files on the 
tape. When you choose to treat a labeled tape as an unlabeled tape, DUMP ALL and the 
operating system do not attempt to interpret any of the labels on the tape. The data 
contained on the tape is assumed to comprise one or more files. File boundaries are 
delimited by tape marks. 

DUMPALL provides the capability to treat any tape as if it were unlabeled by using the 
UL or FR option. When you specify UL or FR, DUMP ALL opens an input file as an 
unlabeled tape. This enables you to access any file from the tape. However, you must 
then make sure you position the tape at the desired file. This action requires a precise 
knowledge of the location of the file to be read-that is, the number of tape marks that 
must be skipped to reach the file. 

When DUMPALL opens the tape, the operating system suspends the program and 
requires an RSVP to the following message: 

<mix number> NO FILE UL (UNLABELED MT) #1 

The operator must identify the location of the unlabeled tape by entering the following 
response: 

<mix number> UL MT <unit number> 

86000460-100 3-89 



DUMPALL Utility 

3-90 

For example, in the case of labeled tapes, beginning and ending labels are now treated 
as files on the tape. Normally, a labeled tape contains n files. When the tape is treated 
as unlabeled, it appears to contain 3n + 1 files. DUMPALL treats each set of beginning 
label records and each set of ending label records as separate files. Thus, to copy the 
third file on a labeled tape being treated as unlabeled, the following DUMPALL 
command is required: 

COPY UL SKIPTM 7 TO FILETHREE (KIND=PACK, PACKNAME=MYPACK) 

Note that seven files (three beginning labels, two ending labels, and two files) had to be 
skipped to reach the third file. 

If you are unsure of the position of the tape marks on the tape, use the DMPMT 
command to list the contents of the tape. The resulting display lists the location of the 
tape marks. 

8600 0460-100 



Section 4 
FI LECOPY Utility 

The FILECOPY utility simplifies library maintenance by automating the creation of 
copy decks. You specify the location and types of files to be copied. FILECOPY uses this 
information either to start a Work Flow Language (WFL) program to do the copying or 
to produce a punched card deck that, ifrun, performs the desired function. The library 
maintenance files processed by the ZIP command run from the same queue as the 
FILECOPY run. The class for the FILECOPY run is included as part of the output job 
deck. If the WFL deck is punched by FILECOPY, a user card must be added to the 
punched deck to be read into a secured reader. If the WFL deck is too large for WFL to 
compile, an appropriate error message is displayed. FILECOPY is discontinued after all 
WFL jobs have been initiated if any of the WFL compilations received a syntax error. 

Files can be copied from pack or disk; however, they cannot be copied from tape. Files 
can be copied to tape, pack, or disk. The device number and serial number of the 
output device can be specified. If the information copied is expected to be long enough 
to require continuation reels, a serial number list can be specified. 

Files can be copied by using their file names and directory names, and their creation, 
access, update, or expiration dates. 

FILECOPY uses the GETSTATUS procedure of the operating system to initiate all its 
file and directory requests, thus causing system security to control file access. 

FILE COpy does not apply family substitution when searching for and selecting the 
disk files to be copied; however, all input and output files used or created by FILECOPY 
are affected by family substitution. For runs of FILECOPY that do not use family 
substitution, output files are created on the family on which FILE COPY resides, unless 
requested from some other family. 

Running the FILECOPY Utility 
The following WFL job initiates FILECOPY: 

<i>RUN SYSTEM/FILECOPY 
<i>EBCDIC CARD 

<input to filecopy> 

<i>END JOB. 

The <i> variable specifies an invalid character. When FILECOPY is run from an 
operator display terminal (ODT) or a remote terminal, the <i> variable is the question 
mark (?). When FILECOPY is run from a card reader, the <i> variable includes any 

8600 0460-100 4-1 



FI LECOPY Utility 

invalid punch. An <i> variable is optional when FILECOPY is run from an ODT or a 
remote terminal; however, it is required when FILECOPYis run from a card reader. 

Input to the FILECOPY Utility 

4-2 

FILECOPY receives its instructions through a file called INPUT. This file is assumed 
to have card-reader characteristics, but its records must be randomly accessible. 
Instructions are in a free-field format. FILECOPY correctly handles input from a 
15-word-record-size disk file with a FILEKIND value of JOBSYMBOL. 

You can enter a maximum of five separate sets of instructions separated by semicolons, 
to produce a mixture of punch card decks or WFLjobs that are processed by the ZIP 
command. A set includes a FILECOPY task request and a FILECOPY modifier. The 
FILECOPY task requests specify the method by which individual files are to be 
included in the copy output. The FILECOPY modifiers provide data needed for the 
checking performed by a FILECOPY task request, plus other control information. The 
task requests and modifiers are explained later in this section. 

The input syntax to FILECOPY can include three lists of files. A FILES list specifies 
files that FILECOPYis to check against the specified criteria (EXPIRED, CREATED, 
and so forth). An INCLUDE list permits files to be included that do not match the 
criteria. An EXCLUDE list permits files to be excluded that do meet the criteria. These 
lists allow several files or directories to be specified from a single family. 

Additional information is derived from index files. An index file contains a complete list 
of all files that meet the testing criteria of the task or are included in the task. The 
format of the index file is shown under "Index Files" later in this section. An index file 
is created by FILECOPY when the LOCKINDEX option is specified, and is demanded 
by FILECOPY in response to the ADDED task request. 

After the desired FILECOPY request is entered, any options can be placed in free form 
in any order on one or more records. Order is important only in cases in which some 
options override others. 

Default specifications exist for each option except the FILECOPY task requests. 
Default specifications, requested options, and results are listed at the end of a run 
unless they have been suppressed. 

If any input errors are detected, the entire run is terminated, although all input is 
checked for syntax errors. This action is performed so that an intended multiple run 
can be completed as such, rather than as two runs taking a longer total time. 

If errors are found during the creation of copy lists, attempts are made to recover. If 
these attempts fail, processing is terminated for those requests that have been flagged 
with error messages, but other requests proceed unaffected. 

The output consists of a list showing each line of the input. If any line contains errors, 
these errors are flagged with a message immediately below the offending line. Errors 
that are detected only after the entire input has been processed appear after all input 
has been printed. For ease of reference, the invalid task request is printed along with 
the associated error message. 

8600 0460-100 



FI LECOPY Utility 

< input to filecopy> 

r~ • ----------------~ 
-L/5\-<fi 1 ecopy task reque~t>-<f; 1 ecopy modi fi er>--'---------------t 

Basic FI LECOPY Constructs 
The following items commonly appear as syntactic variables in the syntax diagrams 
featured in this section. 

< identifier> 

~/17\-<al phanumer; c character>>---L1--------,r------------I 

L II ~/17\-<EBCDIC stri ng character>l II ] 

Explanation 

<alphanumeric character> 

Any of the characters A through Z or 0 through 9, inclusive. 

< EBCDI C string character> 

Anyone of the 256 EBCDIC characters except a double quotation mark (II). 

<file name> 

~/ 14 \-<; de~ti fi er>>-....Jl--------------.--------------------l 

[: : ~usercOde>-- ) ~/13\-<ide~tifier~ 
Explanation 

< usercode > 

An identifier that specifies the usercode of the file. The quoted form of the identifier 
cannot be used for the usercode. 

< identifier> 

Specifies a file that is not associated with a usercode. 

If the file name is part of a file title that includes an ON <family name> specification, 
then the maximum number of identifiers the file-name part can contain is reduced by 1 
(that is, from 12 to 11 if no usercode appears, or from 11 to 10 if a usercode appears). 

8600 0460-100 4-3 



FI LECOPY Utility 

4-4 

<file title> 

--<file name>~.----------------.------------------------~ 
[ ON --<fami ly name>:] 

Explanation 

ON <family name> 

Specifies a disk family. The default family is DISK. 

<family name> 

Identifies a family. A family is a logical means of grouping mass storage devices 
together so that they function as one logical unit. Specifying the identifier as the family 
name indicates a named native-mode disk pack (with any continuation packs) whose 
name is the specified family name. A file with a KIND attribute value of DISK or PACK 
refers, by default, to the DISK family. The quoted form of the identifier cannot be used 
as a family name. 

<timestamp> 

t 
I @ ~/4\-<i nteger> 

<date>--l 
TODAY --.-----------------1 

L - --<i nteger>>-----' 

<date> 

-- <digit> <digit> -- / -- <digit> <digit> -- / -- <digit> <digit> ~ 

Explanation 

<date> 

The date is specified in the form mm/dd/yy, where m, d, and yare digits representing 
the month, day, and year, respectively. 

<date> @ <integer> 

Specifies the day and time of day. Ifa <date> is not specified, the current date is used. 
If@ <integer> is not specified, a value of zero (0) is used. 

TODAY 

Indicates that the timestamp to be used is the date that FILECOPY is executed. 

TODAY - <integer> 

Indicates that the timestamp refers to <integer> days before the TODAY value. 

8600 0460-100 



FI LECOPY Utility 

FILECOPY Task Requests 
The following text describes the task requests that you can use when running 
FILECOPY. 

Each task request passes over the specified files and directories and produces a single 
list that contains all files found that meet the specified criteria. A maximum of five task 
requests are allowed in a single run of FILECOPY. The following diagram lists the 
possible task requests. Each request is defined under a separate heading in the 
following text. 

<filecopy task request> 

t
<created/accessed/uPdated request> 
<added/all fil es request>>-------i 
<expi red request>>----------l 

CREATED, ACCESSED, or UPDATED Request 

The CREATED/ACCESSED/UPDATED requests copy files that have been created, 
accessed, or updated during a specified period. 

< created/accessed/updated request> 
I 

CREATED -r---------------------­
L ACCESSED~ 

[ UPDATED ~ 

-7L~ 11\1 BEFORE <timestamp> _______ -.,.--1.... _____ -\ 

AFTER --<timestamp 
BETWEEN --<timestamp>-- - --<timestamp 

<filecopy modifier>------------' 

Explanation 

CREATED 

Copies files whose creation date (the date the file was first locked on disk or a disk 
pack) is less than the BEFORE <timestamp> value, greater than or equal to the 
AFTER <timestamp> value, or between (inclusive) the specified timestamps specified 
by the BETWEEN option. The FILEKIND of the WFL deck created by the 
LOCKDECK command defaults to JOBSYMBOL when BETWEEN is specified. 

ACCESSED 

Copies files whose date of last access (the date the file was last opened for input or 
output) is less than the BEFORE <timestamp> value, greater than or equal to the 
AFTER <timestamp> value, or between (inclusive) the timestamps specified by the 
BETWEEN option. The FILEKIND of the WFL deck created by the LOCKDECK 
command defaults to JOBSYMBOL when BETWEEN is specified. 

8600 0460-100 4-5 



FI LECOPY Utility 

UPDATED 

Copies files whose timestamp value is within the specified time range or whose 
ALTERDATE and ALTERTIME values are within the specified time range. The 
attributes contain the date and time the file was last closed after being written to and 
is less than the BEFORE <timestamp> value, greater than or equal to the AFTER 
<timestamp> value, or between (inclusive) the timestamps specified by the 
BETWEEN option. The FILEKIND of the WFL deck created by the LOCKDEF 
command defaults to JOBSYMBOL when BETWEEN is specified. 

<timestamp> 

Indicates a particular date. If no timestamp is specified, the TODAY value is used, and 
checking is done with the AFTER option. 

Ifno @ <integer> portion of the timestamp is specified, a value of zero (0) is used, 
except in the second timestamp in the BETWEEN option, in which case a value of2359 
is used. 

<filecopy modifier> 

Provides data needed for the checking performed by the FILECOPY task request plus 
other control information. 

ADDED or ALLFILES Request 

4-6 

The ADDED and ALLFILES requests copy files created since a particular date or 
simply copy all files encountered. 

<addedlallfiles request> 

--r ADDED [ L/1\- SINCE -<file title>>-.--I-.--------l 
L ALLFI LES .J <fi 1 ecopy modi fi er>>------' 

Explanation 

ADDED SINCE <file title> 

Copies files whose creation date is less than the creation date of the index file specified 
by the file title and that are not listed in that index file. 

ALLFILES SINCE <file title> 

Copies all files encountered except the files listed in the index file specified by the file 
title. The file title must refer to an index file. Index files are explained under "Index 
Files" later in this section. 

8600 0460-100 



FI LECOPY Utility 

ALLFILES <filecopy modifier> 

Copies all files encountered (subject to any exclusion lists or criteria specified in the 
modifiers ). 

<filecopy modifier> 

Provides data needed for the checking performed by the FILECOPY task request, plus 
other control information. 

EXPIRED Request 

The EXPIRED request copies files that are older than a particular date. 

<expired request> 

-- EXPIRED ~/1\- AFTER --<ti:estamp 

SAVECONSTANT ~<integer 
<f11ecopy modifier>-------' 

Explanation 

EXPIRED AFTER <timestamp> 

Copies files whose last access date plus the minimum of the SAVEFACTORand the 
SA VECONSTANT values of each file is less than or equal to the timestamp. The 
default value for SA VECONSTANT is 60. 

If no AFTER <timestamp> value is specified, the TODAY value is extracted from the 
system, and checking is done with the AFTER option. 

EXPIRED SAVECONSTANT <integer> 

Overrides the SA VEFACTOR value of each file if the value of SA VECONSTANT is less 
than the value of SAVE FACTOR. The algorithm used for EXPIRED is as follows: 

LASTACCESSDATE + MIN(SAVEFACTOR,SAVECONSTANT) 
LEQ AFTER date 

In this algorithm, LASTACCESSDATE is the date the file was last accessed. 

Normally the SAVECONSTANT value is used to determine the EXPIRED condition 
for all files having a SAVEFACTOR value of zero (0). The SFACTORZERO option 
causes the zero SAVEFACTORofa file to be used in determining whether the file is 
expired. Refer to "FILECOPY Options" later in this section for more information. 

The default value of SAVE CONSTANT is 60. The default can be altered by recompiling 
FILECOPY after changing the define DEFAULTSFOVERIDE in SYMBOL/FILECOPY. 

8600 0460-100 4-7 



FI LECOPY Utility 

The SA VECONSTANT option enables the system to define when a file has expired 
instead of permitting each file to define its expiration date. 

<filecopy modifier> 

Provides data needed for the checking performed by the FILECOPY task request plus 
other control information. 

FILECOPY Modifiers 

4-8 

The following text describes the FILECOPY modifiers and options that can be specified 
with the FILECOPY task requests. 

Unless overriding FILE COpy modifiers are given, the following defaults are used for 
each task request: 

• The date used in checking is the TODAY value extracted from the system. In the 
task requests CREATED, ACCESSED, and UPDATED, the testing is done with the 
AFTER option. 

• The WFL deck resulting from a successful run is processed by a ZIP command. 

• The WFL deck is a simple COpy operation (without COMPARE or BACKUP). 

• No index file is created. 

• An output summary is printed. 

• The usercode under which FILECOPY is running is prefixed to all file names 
except files that explicitly specify a usercode, to system files, or to a file name that 
includes the equal sign (=). 

• If no family name is specified, the files are assumed to reside on the family DISK. 

• Files are copied to a tape whose default name is that of the task request 
(CREATED, EXPIRED, and so forth) with no DENSITY, UNITNO, or SERIALNO 
attribute values specified. 

• If the task request is EXPIRED, all files are considered to be expired if they were 
last accessed more than 60 days before the current system date. The default value 
for SA VECONSTANT attribute is 60. 

<filecopy modifier> 

L 
. I <fil e speci fi cati on> 

<optlon~ L<option:-J 

<file specification> 

t 
FI LES fj ( -<source>- ) 
INCLUDE 
EXCLUDE 

C=<destination~ 

8600 0460-100 



FI LECOPY Utility 

<source> 

r~' • 
----..L<source from group>>-1--------------------j 

<source from group> 

~<file na~e>~--~-L-~--------_,---------------~ 
-----r=<directory name~ L-<from clause~ 

<source file name> 

<file name> 1
-
*USERCODE/= ~ 

<from clause> 

- FROM ---r<i dent i fi er>-- I I I CDROM ---r ) --.-------1 

DISK --l ~ 
L KIND - =.....J t PACK -l 

PACK -------------------i 
DISK ------------------~ 

<destination> 

- TO -<identifier>>-----------------------7 

-> [ (1~ /1\ r I <~utput medium'" 
L- KIND - = -I 

/1\- DENSITY - = -<density value>-------i 

/1\- UNITNO - = ~/5\-<integer':::>--'~-----i 
/1\- SERIALNO - = -<serial number list 

<output medium> 

1 
TAPE 
TAPE7 
TAPE9 PETAP§ 
PACK 
DISK 

<serial number list> 

-Q
~ . 

- ( ~ /6~-<i nteger>>---L..--.---J-
<s t rl ng>~------' 

<string> 

rf-

] 

----..L/6\- II -<EBCDIC string character>-- II --'-_________ ---; 

8600 0460-100 4-9 



FI LECOPY Utility 

4-10 

<density value> 

--r- BPI200 
r- BPI800 

BPI1250 
BPI1600 

E :m~~:j 
Explanation 

<file specification> 

Specifies a list of files to be considered, included, or excluded. Either a FILES list or an 
EXCLUDE list must be specified. 

FILES «source» 

Causes the files listed in the source variable to be checked against the criteria'from the 
FILECOPY task request. The files that meet the criteria and that are not excluded in 
some way, are copied. Files specified in this list are obtained by way of GETS TAT US 
calls and checked against the specified testing criteria. 

INCLUDE «source» 

Causes the files listed in the source variable to be copied whether or not they meet the 
specified criteria. 

INCLUDE overrides EXCLUDE; that is, if a file is on an EXCLUDE list, specified 
either by name or by FILEKIND value, and is explicitly included by name, the file is 
included. 

EXCLUDE «source» 

Causes the files listed in the source variable not to be copied, even if they meet the 
specified criteria. Files can also be excluded based on their FILEKIND attribute values 
(CODE, DATA, and so forth) as specified under "FILECOPY Options" later in this 
section. Both the file name and the FILEKIND cannot be used in the same EXCLUDE 
statement, although each type can appear alone several times in the following form: 

EXCLUDE «file names» EXCLUDE FILEKIND«kinds» 

<source from group> 

In a <source from group> phrase, a FROM clause applies to all source file names in 
that source from group. 

If no FROM clause is specified, files are assumed to reside on the family DISK. 

8600 0460-100 



FI LECOPY Utility 

<source file name> 

Specifies the name of the input files. 

The equal sign (=) specifies all files. 

The <file name>/= format specifies a directory. All files under that directory are 
processed. If the file name is not followed by a slash and an equal sign (/=), it refers to 
only one file. 

The *USERCODE/= format specifies all usercoded files. 

<from clause> 

Specifies the location of the input files. The input files can reside on the family DISK or 
PACK, but not on TAPE. 

The identifier can be used to name a particular family. 

A FROM clause can be specified for each input file in the task. If a FROM clause is not 
specified for an input file, the file is assumed to reside in the location specified by the 
next-mentioned FROM clause. For example, the statement FILES A, B FROM PACK 
specifies that files A and B both reside on PACK. 

If no FROM clause is specified, or if there is no next-mentioned FROM clause, files are 
assumed to reside on the family DISK. For example, the statement FILES A, B 
specifies that files A and B both reside on DISK The statement FILES A, B FROM 
PACK, C specifies that files A and B reside on PACK and that file C resides on DISK. 

<destination> 

Specifies the name and type of the output medium. If no destination is specified, files 
are copied to a tape whose default name is that of the task request (CREATED, 
ACCESSED, and so forth) with no UNITNO or SERIALNO attribute value supplied. 

TO <identifier> 

Labels the output medium. 

KIND = <output medium> 

Specifies the output medium (PETAPE, PACK, and so forth) to which the files are to be 
copied. 

DENSITY = <density value> 

Specifies the density of the medium on which the file is copied. 

8600 0460-100 4-11 



FI LECOPY Utility 

UNITNO = <integer> 

Specifies the unit number of the medium to which the file are to be copied. The 
maximum unit number allowed is 32767. The unit number can be used only if the 
OLDWFL option is specified. 

SERIALNO = <serial number list> 

Specifies a serial number list to be attached to each destination volume. Serial 
numbers must be no more than 6 characters long and are not allowed in the same task 
with partitioning. 

FI LECOPY Options 

4-12 

Certain options can be specified with the file specifications to indicate how the 
FILECOPY should be run. 

<option> 

-1 EXCLUDE FILEKIND( .-.L~eki~ ) -----,--'-------1 

PARTITION ( ~ <letter><hyphen><letter> ~ ) 
INDEXLABEL -r<fil e ti tl e>---------l 

~ DECKLABEL ---l 

~ LOCKINDEX ----------------1 
~ NOSUMMARY ----------------1 

~ 
COMPARE 
BACKUP ----------------1 
PUNCH --------------------1 
REMOVE ----------------------1 

~ 
IOCKDECK 
NOZIP -------------------------l 
JOBSYMBOL ----------------------1 
JOBSUMMARY ----------------1 

~ 
SFACTORZERO 
SYNTAX -----------------------1 
CLASS -<i nteger>---------------I 

/1\-r TASKFAULT 
L OLDWFL ------------------1 

Explanation 

<filekind> 

Any FILEKIND attribute defined in the A Series File Attributes Programming 
Reference Manual. 

EXCLUDE FILEKIND «filekind» 

Prevents files from being copied based on their FILEKIND values (CODE, DATA, and 
so forth). Files can also be excluded by name in an EXCLUDE list in the file 
specifications. Both kinds of EXCLUDE options cannot be used in the same EXCLUDE 
statement, although each can appear alone several times in the following form: 

8600 0460-100 



FI LECOPY Utility 

EXCLUDE «file names» EXCLUDE FILEKIND «filekinds» 

If a file is in an EXCLUDE list, either by name or by FILEKIND value, and is explicitly 
included by name, the file is included. 

PARTITION <letter> - <letter> 

Allows the files copied to be divided by volume based on the first character of the file 
name. The ranges specified by <letter>-<Zetter> are used as test points. When the 
first character of a file name crosses a partition boundary; the WFL program reflects 
this crossing by sending the copy to the current volume and starting a new copy to a 
new volume, but with the same KIND attribute value. Also, if an index file is being 
generated, it is closed and locked, and a new one is opened to handle the next partition. 

The partition bounds are appended to the destination tape and index disk file title 
(either explicitly specified or assumed by default). For example, if the partition is A-H, 
the LABEL value is AHCREATED and the index filename is INDEX/CREATED/AH. A 
single-character partition such as P-P is valid. Partitions must not overlap in any way. 
Any unspecified partitions are interpolated: (given) A-H,Q-T (final) A-H,I-P'Q-T,U-Z. 
Files that start with special characters are placed in the first partition, while those 
starting with numbers are placed in the last. 

INDEXLABEL <file title> 

Names the index file. The default name of the index file is INDEX/<identifier> , where 
the identifier is the name of the medium to which the files are to be copied. The index 
file is created only if LOCKINDEX is requested. This file is a complete list of all files 
that meet the testing criteria of the task or have been processed by the INCLUDE 
command. The format of the index file is shown under "Index Files" later in this 
section. 

DECKLABEL <file title> 

Names the output WFL deck. The default name of the file is T<n> OUTPUT, where 
<n> is the number of the task, for example TIOUTPUT, T30UTPUT. 

LOCKINDEX 

Creates and locks an index file. 

NOSUMMARY 

Suppresses the summary listing of the FILECOPY run. 

COMPARE 

Causes the library maintenance option COMPARE to be used when FILECOPY is run. 

8600 0460-100 4-13 



FI LECOPY Utility 

4-14 

BACKUP 

Causes the library maintenance option BACKUP to be used when FILECOPY is run. 
On a cataloging system, this option causes the backup information for the copied files 
to be stored in the catalog. The destination disk or tape for the copied information 
must be listed in the volume library. 

PUNCH 

Sends the generated WFL program to the card punch. This deck is ready for use as 
card reader input as soon as the LABEL cards are taken off. 

REMOVE 

Removes the copied files as soon as the copy is complete. The operator must OK the 
removal before it takes place. 

LOCKDECK 

Locks the WFL deck on disk for future use. By default, all decks are processed by the 
ZIP command and removed. If the LOCKDECK option is specified, the deck is 
processed by the command but not removed. This feature permits FILECOPY to 
generate a COpy deck that you can modify, use, and reuse. 

NOZIP 

Allows creation of the output WFL deck without using the ZIP command. 

JOBSYMBOL 

Causes the FILEKIND value of the WFL deck created by LOCKDECK to be 
JOBSYMBOL. The default FILEKIND value for the WFL deck is DATA. 

JOBSUMMARY 

Adds a MYJOB (JOBSUMMARY= UNCONDITIONAL); statement to the tasks 
output WFL deck. This option is RESET by default and causes no job summary to be 
printed. 

SFACTORZERO 

Only valid for the EXPIRED task request. When SFACTORZERO is specified, 
FILECOPY uses the zero SA VEFACTOR value of a file, rather than the modifier 
SAVECONSTANT, for all files having a SAVEFACTOR value of zero. 

8600 0460-100 



FI LECOPY Utility 

SYNTAX 

Causes FILECOPY to do syntax checking of only the input. The use of the SYNTAX 
option in any task request of a multi task FILECOPY run causes all task requests to 
stop after the input syntax checking is complete. 

CLASS <integer> 

Specifies the class of the output WFL deck. If the CLASS option is not specified, the 
WFL deck inherits the class of the FILECOPY that created it. The <integer> value 
must be within the range 0 through 1023. 

TASKFAULT 

Adds an ON TASKFAULT, GO TO THETOP statement to the output WFL deck of the 
task. With the corresponding LABEL"THETOP:" statement, any abnormal 
termination, including operator use of the DS command, causes the task to restart. 
The value of this option is RESET by default and causes no changes in the current 
format of the output WFL deck. 

OLDWFL 

Causes FILECOPY to create old (pre-2.9) WFL output decks that allow quoted file 
titles. New WFL (post-2.9 WFL) does not allow any characters in a file title other than 
letters, numbers, hyphens (-), and underscores C); the use of quotation marks (") is not 
allowed. The use of a hyphen or an underscore in a file title causes FILE COpy to quote 
the title only if the option OLDWFL is specified. For FILECOPY task requests that do 
not use the OLDWFL option, files that violate the title syntax are reported on the 
summary report and are not copied. 

If the OLDWFL option is specified, the option TASKFAULTcannot be used because it 
uses WFL features not supported in pre-2.9 WFL. 

Note: Eventually, OLDWFL will no longer be supported; its use is not 
recommended. 

Sample FILECOPY Runs 
The following text contains several examples of running FILECOPY. Although up to 
five of the examples shown can be strung together as shown in the <input to filecopy> 
syntax, this stringing is not done here. Each example illustrates several features of the 
program. 

The following example creates a punch deck that causes COpy & COMPARE of all files 
on the family named DISK that were created between (inclusive) the dates given. The 
files are to be dumped to a tape PETAPE whose name is to be WEEK36/FILEOOO. The 
serial number of the first tape is WK36XO, and the serial numbers of the first and 
second continuation reels are WK36Xl and WK36X2, respectively. A summary of the 
task is suppressed. 

8600 0460-100 4-15 



FI LECOPY Utility 

4-16 

CREATED BETWEEN 9/8/90 - 9/14/90 COMPARE PUNCH 
FILES (= FROM DISK) TO WEEK36 (KIND=PETAPE, 
SERIALNO= (IIWK36X0 11 

, IIWK36X1 11
, IIWK36X2 11 » NOSUMMARY 

The following example copies all usercoded files on the diskpack PK that are EXPIRED 
and then, following the operator's OK, removes them. Files chosen for copying are 
those whose LASTACCESSDATE modifier value, plus the minimum of60 or the file 
SA VEFACTOR value, is less than or equal to September 31, 1990. However, no files 
under the usercode of SITE are copied or removed, even though they can meet the 
expired criteria. A WFL file is generated and the ZIP command is used to do the 
copying. The library maintenance statement generated is 
COPY&COMPARE&BACKUP. Files are copied to a tape named EXPIRED by default. 

EXPIRED AFTER 2/13/90 FILES (USERCODE/= FROM PK (PACK» 
EXCLUDE ((SITE)= FROM PK (KIND=PACK» 
COMPARE BACKUP REMOVE 

The following example copies all files created or altered on the pack SAFEPACK prior 
to 12:30 on September 10. However, BD files and the file whose name is SYMBOL/MCP 
are not copied. An index file of all copied files is created with the name 
SAFETY/DUMP. The files are copied to a tape named UPDATED by default. 

UPDATED BEFORE 9/10/90 @ 1230 FILES (= FROM SAFEPACK 
(KIND=PACK» EXCLUDE (*BD/=, *SYMBOL/MCP 
FROM SAFEPACK (PACK» LOCKINDEX 
INDEXLABEL SAFETY/DUMP 

The following example copies all files on DISK that are not listed in the index file 
SAFETY/DUMP and whose creation date is less than the creation date of 
SAFETY/DUMP. The files are copied to a tape mounted on unit 116 and labeled 
ADDER. 

ADDED SINCE SAFETY/DUMP FILES (=) TO ADDER (UNITNO=116) 

The following example copies all usercoded files on the default family DISK whose 
LASTACCESSDATE modifier value, plus the minimum of 14 or the file SA VEFACTOR 
value, is less than or equal to September 15, 1990. Also, all files whose first node is 
SYSTEM and the file named ADM are copied even if they are not usercoded or do not 
meet the EXPIRED criteria. Several volumes are created. These volumes are on tape 
and are labeled AHOLDUSERS, IROLDUSERS, and SZOLDUSERS. Each volume 
contains only files whose first title character falls within the bounds indicated by the 
leading two characters of the tape label. 

EXPIRED AFTER 9/15/90 SAVECONSTANT 14 
PARTITION (A-H,S-Z) FILES (USERCODE/=) 
INCLUDE (SYSTEM/=, ADM) TO OLDUSERS 

The following example copies all usercoded files created after September 21, 1990, that 
are not MCPCODE files or ESPOLSYMBOLIC files. However, the INCLUDE option 
overrides the CREATED criteria and the EXCLUDE list; therefore, all files under the 
usercode of SITE are copied even if they were created before September 21, 1990 or are 

8600 0460-100 



FI LECOPY Utility 

MCPCODE files or ESPOLSYMBOLIC files. The WFL deck is locked and processed by 
the ZIP command on the family X and is called SA VEWFL. 

CREATED AFTER 9/21/90 FILES (USERCODE/=) 
EXCLUDE FILEKIND (MCPCODE, ESPOLSYMBOLIC) 
INCLUDE ((SITE)=) LOCKDECK DECKLABEL SAVEWFL ON X 

The following example illustrates a syntax error. Due to the multiple volumes that are 
created (AHX, IPX, QZX), compliance with the SERIALNO request is impossible. 
Hence, this task (and any others requested in the same run) is not run. Instead, the 
syntax error message "PARTITIONING, SERIAL S NOT OK" appears. 

CREATED AFTER 9/1/90 FILES (USERCODE/=) 
PARTITION (I-P) TO X (SERIALNO=123) 

The following example attempts to create a copy list of all files that were created today 
on the specified families. The files are copied to a tape named CREATED. However, the 
family IMNOT is not available, which causes FILECOPY to wait for this family to 
become available. 

CREATED FILES (= FROM IMHERE (KIND=PACK), = FROM 
IMNOT (KIND=PACK), ABC FROM BUTIAM (KIND=PACK)) 

In the following example, consider what happens if a hardware or MCP error causes 
FILECOPY to detect an error in the file information in the family HEADCRASH. If 
elements of the family have already been included in the copy list, then the task is 
terminated since it is impossible to recall the (possibly) bad information that has 
already been copied. However, if the problem is detected before any part of 
HEAD CRASH has been used, then that family is ignored (although the copy deck 
reflects the lack of information from the family), and the program continues with the 
family COMFORTABLE. 

ALLFILES FILES (= FROM BRANDNEW (KIND=PACK), = FROM 
HEADCRASH (KIND=PACK), = FROM COMFORTABLE(KIND=PACK)) 

The following example copies all usercoded files on disk (not MYP ACK) that are 
updated the day FILECOPY is run. The index file and output WFL deck are locked on 
a pack named MYPACK under the usercode PRIV with titles SA VEINDEX and 
SAVEDECK. 

Family substitution does not apply to files accessed by FILECOPY; however, input and 
output files used or created by FILECOPY are affected by family substitution. For runs 
of FILE COpy that do not use family substitution, output files are created on the family 
on which FILECOPY resides, unless requested from some other family. 

?BEGIN JOB RUNFILECOPY; USER=PRIV/ILEGED; 
FAMILY DISK=MYPACK OTHERWISE DISK; 
RUN FILECOPY ON DISK; EBCDIC CARD 
UPDATED 

8600 0460-100 

FILES(USERCODE/= FROM DISK) 
LOCKINDEX LABELINDEX SAVEINDEX 
LOCKDECK DECKLABEL SAVEDECK 

?END JOB 

4-17 



FILECOPY Utility 

The following example copies all usercoded files on disk (not MYPACK) that were 
updated the day FILECOPY is run. The index file is locked on a pack named MYPACK 
(in the system node, not the usercode node) with the title SA VEINDEX. The output 
WFL deck is locked on a pack called CONTROL in the system node with the title 
SAVEDECK. 

?BEGIN JOB RUNFILECOPY; USER=PRIV/ILEGED; 
FAMILY DISK=MYPACK OTHERWISE DISK; 
RUN FILECOPY ON DISK; EBCDIC CARD 
UPDATED 

FILES(USERCODE/= FROM DISK) 
LOCKINDEX LABELINDEX *SAVEINDEX 
LOCKDECK DECKLABEL *SAVEDECK ON CONTROL 

?END JOB 

In the following example, the usercode PRIV has no family associated with it. All 
usercoded files on TEMP that were updated the day FILECOPY is run are copied. The 
index file is locked on the pack from which FILECOPY is being run (UTILPACK) and 
is titled (PRIV)SAVEINDEX. 

?BEGIN JOB RUNFILECOPY; USER=PRIV/ILEGED; 
?RUN FILECOPY ON UTILPACK; EBCDIC CARD 
UPDATED 

FILES(USERCODE/= FROM TEMP(KIND=PACK)) 
LOCKINDEX LABELINDEX SAVEINDEX 

?END JOB 

Index Files 

4-18 

An index file contains a complete list of all files that meet the testing criteria of the 
task or are included in the task. These files are created by the program only if the 
option LOCKINDEX is specified. However, they are used as input by FILECOPY when 
the ADDED request is used. 

An index file is a disk or disk pack file with a MAXRECSIZE value of 30 words. The 
first record is reserved for future use. The body of an index file consists of logical 
records describing files. Each record contains the file name and other information. A 
logical record can extend over more than one physical record. Each logical record starts 
at the boundary of a physical record. 

8600 0460-100 



The following describes the file layout: 

Logical Record 0 
Length: 30 words 

Contents: Reserved 

Logical Record 1 - end 

8600 0460-100 

Length: Variable in 30-word segments 

Contents: 
Word 0 
Word 1 

Reserved 
Word displacement from 
start of record to 
start of standardform 
<file name>. 

Word 2 - (Word 1) : Reserved 

Words (Word 1) - End of logical record: 
Standardform <file name>. 

FI LECOPY Utility 

4-19 



4-20 8600 0460-100 



Section 5 
FI LEDATA Utility 

The SYSTEM/FILEDATA utility produces selected reports regarding permanent disk 
files and library maintenance tapes. The following are some of the report types you can 
request, together with the name of the task request to use for each report type: 

• A hierarchical list of files with certain file attributes (FILENAMES request). 

• A hierarchical list of files with archive information about each file (ARCHIVEINFO 
request). 

• A hierarchical list of files with catalog information about each file (CATALOGINFO 
request). 

• The storage layout of files (STRUCTUREMAP request). 

• Disk checkerboarding (CHECKERBOARD request). 

• A list of files selected and/or sorted by the value of their AREASIZE attribute 
(AREASUMMARY request). 

• Specified attributes ofa file or a group of files (ATTRIBUTES request). 

• A list of file names contained in the directory of a library maintenance tape 
(TAPEDIR request). 

• A list of library maintenance tapes that contain backup copies of cataloged files 
(BACKUP request). 

• Specified attributes of a code file or group of code files (CODEFILEINFO request). 

• A list of code files compatible or incompatible with a given set of host systems 
(COMPATIBILITY and INCOMPATIBILITY requests). 

• A file suitable for use in a library maintenance COpy statement (COPYDECK 
request). 

• A raw (HEX) dump of disk file headers and, optionally, catalog information and 
archive records (HEADERCONTENTS request). 

Each of these task request types is discussed in more detail later in this section. 

Basic FILEDATA Constructs 
The following items commonly appear as syntactic variables in the syntax diagrams 
featured in this section. The variables are presented in alphabetical order (ignoring 
nonalphabetic characters). 

<alphanumeric character> 

Any of the characters A through Z or 0 through 9, inclusive. 

8600 0460-100 5-1 



FI LEDATA Utility 

5-2 

<digit> 

Anyone of the decimal digits 0 through 9, inclusive. 

< EBCDI C string character> 

Anyone of the displayed EBCDIC characters except the double quotation mark ("). 

<family name> 

~.----------------------~ 
---L.I 17\-<a 1 phanumeri c character>>--L-----------------i 

Identifies a disk family. The actual disk family reported on can be affected by family 
substitution, as discussed under "Effects of Family Substitution" later in this section. 

<file name> 

r~ I ---., 
---,r--------------or-'--I 12\-<i dent i fi er>>--'---r----r--------l 

L * -.J L /= ~ 
L ( --<usercode>-- ) ~ 

<file title> 

--<file name»~-------~--------------~ 
L ON --<fami ly name>J 

<hex digit> 

Anyone of the hexadecimal digits 0 through 9 or A through F. Hexadecimal digits can 
be used to create strings. 

<hex string> 

r~------' 

---L.<hex digi t>;;>-~---------------------I 

< identifier> 

<a 1 phanumeri c character>;>--LI------,------------t -t.
-/17 \ 

+-/17\ J 
1111 Lnonquote EBCDIC character>=L 1111 

When non-alphanumeric characters are included in an identifier, the identifier must be 
enclosed in two sets of quotation marks. The quotation marks must be doubled because 
they are embedded within a longer string (the parameter list). 

<integer> 

-.L/ll \-<di gi t>;>--Io-----------------------t 

8600 0460-100 



FI LEDATA Utility 

<nonquote EBCDIC character> 

Any EBCDIC character for which the hexadecimal code is greater than or equal to 
hexadecimal 40 and which is not the quotation mark ("). 

<relation> 

> --.---------------------------------------------~ 
< 

GTR 
LSS 
EQL 
LEQ 
GEQ -.J 

The GTR and > operators both mean greater than. The LSS and < operators both 
mean less than. The EQL and = operators both mean equal to. The GEQ operator 
means greater than or equal to, and the LEQ operator means less than or equal to. 

< release level> 

~<digit>--<digit> >=J 
L-<digit>-- . --<digit 

<tape name> 

rE-

--1--/17 \-<a 1 phan umeri c cha racter>;>--'----------------------------! 

<tape serial number> 

J=:/6\-<a 1 phanumeri c character>>-....L.----------------------I 

<unit number> 

--<integer>>--------------------------------------------~ 

< usercode > 

r~'-----------------------, 
--1--/ 17\-<a 1 phanumeri c character>>-....L.------------------------~ 

<volume name> 

rE-
--1--/17\-<a 1 phanumeri c character>>-....L.----------------------~ 

The name ofa tape or CD-ROM optical disk. 

8600 0460-100 5-3 



FllEDATA Utility 

Output Options 

5-4 

You can use output options to specify the device that FILEDATA writes a report to. 
These output options can be specified in each FILEDATA task request. The following 
are the output options provided by FILEDATA: 

< output option> 

-/1\1= ~~~~~ER I 
~ i~~EEN 
L- FILENAME -- = --<file title>-J 

• PRINTER 

Causes output to be written to a line printer file. The default form size, in terms of 
characters per line and lines per page, is determined by the convention under 
which FILEDATA runs. To determine your current convention and to view the 
convention definition, enter GO CONVENTION in the Action field of the MARC 
home menu. For further information about conventions, refer to the A Series 
MultiLingual System (MLS) Administration, Operations, and Programming Guide. 

• PUNCH 

Causes output to be punched on a card punch, on a default card size 80 columns 
wide. 

• SCREEN 

Causes output to be displayed on the originating remote terminal or ODT, with a 
default screen size of 80 characters by 24 lines. You should use SCREEN for ODT 
devices that have been configured with invisible end-of-text (ETX) characters. 

• SPO 
Causes output to be displayed on the originating ODT, on a default screen size of 80 
characters by 24 lines. You should use SPO for ODT devices that have been 
configured with visible end-of-text (ETX) characters. Paging is controlled 
interactively by you. 

• TTY 
Causes output to be displayed on the originating remote terminal, on a default 
form size of 80 characters by 60 lines. There is no interactive paging control. 

8600 0460-100 



FI LEDATA Utility 

• FILENAME = <file title> 

Causes output to be written to a disk file, by default a data file with a record size of 
80 characters. The title of the output file is the supplied file title. 

Note: The FILENAME = <file title> option is used to write output to a 
disk file that has a default record size of 80 characters. However, 
some of the FILEDATA task requests require a record size of 132 
characters. If you use the FILENAME option with one of these task 
requests, you must first use the DEFINEOUTPUT request to specify 
a LINEWIDTH of 132 characters. Otherwise, an error occurs and 
your job is terminated. 

Refer to the descriptions of the FILEDATA task requests for 
information on output and all default values. 

Running the FILEDATA Utility 
The FILEDATA utility program can be executed in the following three ways: 

• By using a RUN command in a CANDE or MARC session, in a WFL job, or at an 
ODT. The RUN command must be of the form 
RUN *SYSTEM/FILEDATA(" <parameter list> I~. 

• By entering the DIR (Directory) or TDIR (Tape Directory) system commands. 
Refer to "Using System Commands to Initiate FILEDATA" later in this section. 

• By entering the CANDE LFILES command. The LFILES command can be used to 
display information for one or more files in the same directory. For an explanation 
of the CANDE LFILES command, refer to the A Series CANDE Operations 
Reference Manual. 

• By entering the DATA selection on the UTIL screen in a MARC session. 

Examples of statements that run FILEDATA are given under "Sample FILEDATA 
Runs" later in this section. 

FILEDATA Parameter List 
The input to FILEDATA determines the files that are to be reported on, the 
information that is to be included in the report, and the format of the output. 

< parameter list> 

Ufo <task requesf>>------,.......J.--,---------------l 
<numeric report request~ 

old packdir syntax>>-----..j 

Explanation 

<task request> 

For information about task requests, refer to "Task Requests" later in this section. 

8600 0460-100 5-5 



FI LEDATA Utility 

<numeric report request> 

Numeric report requests can be specified in the parameter list or in an assignment to 
the TASKVALUE task attribute. For information about numeric report requests, refer 
to "Numeric Report Requests" later in this section. 

<old packdir syntax> 

Uses an olde:t; nonpreferred syntax to initiate various FILEDATA reports. For 
information about this syntax, refer to "Old PACKDIR Syntax" later in this section. 

Selecting the Files to Be Reported On 
If you run FILEDATA under a privileged usercode or from an ODT, then by default 
FILEDATA reports on all the files on the disk family. However, if you use the TITLE, 
DIRECTORY, or DATABASE modifier, then FILEDATA limits its report to files in the 
specified directory or in the specified database. 

If you run FILEDATA under a nonprivileged usercode, then by default FILEDATA 
reports on all public, nonusercoded files. You can use the TITLE, DIRECTORY, or 
DATABASE modifier to limit the report. However, if you use the TITLE or 
DIRECTORY modifier to specify files stored under a different usercode, FILEDATA 
returns the message "REQUESTED FILE OR DIRECTORY NOT FOUND" . 

Effects of Family Substitution 
By default, FILEDATA reports on the family named DISK. The FAMILYNAME 
modifier can be used to specify that a different disk family should be reported on. 

IfFILEDATAis run with the FAMILY task attribute set, this attribute can direct 
FILEDATA to report on different families than it otherwise would. For example, if the 
FAMILY task attribute value is "DISK = XPACK OTHERWISE DISK", then XPACK 
becomes the default family for FILEDATA reports. If the FAMILY value is "XPACK = 
DBFAM ONLY", and a FILEDATA task request uses the modifier FAMILYNAME = 
XPACK, then FILEDATA reports on family DBFAM instead. For a detailed explanation 
of the FAMILY task attribute, refer to the A Series Task Attributes Programming 
Reference Manual. 

FILEDATA overrides the effects of the FAMILY task attribute for task requests that 
include the GUARDFILE modifier. Refer to "GUARDFILE" later in this section. 

Error Reporting 

5-6 

Your input to FILEDATA can include more than one request, separated by semicolons. 
FILEDATA handles one request at a time. First it scans the input text for a request 
and then, if there are no severe errors in the syntax, it produces the requested report. 
Then FILEDATAprints out the identifier of the requested task, your input syntax for 
that task, and error or warning messages for any discrepancies FILEDATA found in 
your input. 

8600 0460-100 



FI LEDATA Utility 

Database Generation and Reuse 
In order to handle any specific request and generate a report, FILEDATA uses 
information in the disk or tape directory to build a disk file called the database, or else 
selects an existing database for reuse. FILEDATA then reads information from the 
database and generates the report you requested. 

By default, FILEDATA creates a new database for the first request in a run, and this 
database is reused for each subsequent request in the same run. At the end of the 
FILEDATA run, the database is removed. The following rules modify this default 
behavior: 

1. FILEDATA always creates a new database for a request that includes any of the 
following modifiers: DIRECTORY, FAMILYNAME, LEVEL, PACKNAME, TAPE, 
or TITLE. 

2. If a request includes the NEWDATABASE = <file title> modifier, FILEDATA 
creates a new database for the request and saves the database as a permanent file 
with the specified title. Subsequent requests, in the same or later FILEDATA 
runs, can use the DATABASE = <file title> modifier to reuse this database. 

3. You can use the NOREPORTS request to create a database without issuing any 
report immediately. The NEWDATABASE modifier must be used with this 
request. 

4. If a request includes none of the modifiers discussed in rules 1 through 3, then the 
request reuses the database that was used in the immediately preceding request. 

Note: A database contains information only about files specified by the 
request that creates the database. For example, if the request that 
creates the database includes the DIRECTORY modifier, then 
subsequent requests that reuse that database can report only on the 
files in that directory. 

Certain requests make use of information that is not always included in a database 
when it is created. The following are modifiers that should be used in the 
database-creating request if the database is to be reused for particular reports: 

• If a database is intended for reuse by an ARCHIVEINFO request, then the 
ARCHIVE modifier should be used in the database-creating request. 

• If a database is intended for reuse by an CATALOGINFO request, then the 
CATALOGUE modifier should be used in the database-creating request. 

• If a database is intended for reuse by a HEADERCONTENTS request, then the 
RA WHEADERS modifier should be used in the database-creating request. 

• If a database is intended for reuse by an ATTRIBUTES or CODEFILEINFO 
request that includes the WARNINGS modifier, the WARNINGS modifier should 
be used in the database-creating request. 

8600 0460-100 5-7 



FILEDATA Utility 

Database Examples 

The following examples illustrate when FILEDATA creates a database and when it 
reuses an old database. 

RUN *SYSTEM/FILEDATA(IIATTRIBUTES:ALL;FILENAMES II ) 

In the preceding statement, the "ATTRIBUTES:ALL" request causes a new database to 
be created. This database is reused for the FILENAMES request. 

RUN *SYSTEM/FILEDATA(IISTRUCTUREMAP:DATABASE=MYDB;FILENAMES:DIRECTORY=A; 
HEADERCONTENTS:DIRECTORY=B") 

In the preceding statement, the STRUCTUREMAP request reuses the existing 
database titled MYDB ON DISK. The FILENAMES and HEADERCONTENTS 
requests both create new databases, because each includes a DIRECTORY modifier. 
Only the database created by HEADERCONTENTS includes raw headers. 

RUN *SYSTEM/FILEDATA("FILENAMES:RAWHEADERS; 
CHECKERBOARD:DIRECTORY=A RAWHEADERS; 
ATTRIBUTES:MAXRECSIZE MINRECSIZE BLOCKSIZE") 

In the preceding statement, the FILENAMES request creates a database because 
FILENAMES is the first request, and the CHECKERBOARD request creates a 
database because of the DIRECTORY modifier. Raw disk file headers are included in 
both these databases because of the RA WHEADERS modifier. The ATTRIBUTES 
request reuses the database from the CHECKERBOARD request. 

Sample FILEDATA Runs 

5-8 

The following WFL job prints a hierarchical listing of the file names under the 
directory SYMBOL/= on the family DISK. The report includes the file kind, creation 
date, size in disk segments, security, and status of each file under the directory. Refer 
to "FILENAMES Request" later in this section. 

BEGIN JOB; 
RUN *SYSTEM/FILEDATA ("FILENAMES: TITLE =SYMBOL"); 

END JOB 

The following WFL job prints a report of those disk segments in use by permanent files 
on the family XPACK and those disk segments not in use by permanent files-that is, 
those segments that are available or in use by temporary files. Refer to 
"CHECKERBOARD Request" later in this section. 

BEGIN JOB; 
RUN *SYSTEM/FILEDATA ("CHECKERBOARD: FAMILY=XPACK"); 

END JOB 

8600 0460-100 



FI LEDATA Utility 

The following WFL job prints a FILENAMES report, a STRUCTUREMAP report, and 
a CHECKERBOARD report for the family DISK. Refer to "Numeric Report Requests" 
later in this section. 

BEGIN JOB; 
RUN *SYSTEM/FILEDATA (II II); VALUE = 0; 

END JOB 

The following CANDE command initiates a FILEDATA report with three task 
requests. The DEFINE OUTPUT request defines the output for the following requests. 
The output is sent to a terminal screen and has 79 characters per line. The 
ATTRIBUTES request reports the LASTRECORD and security information on all files 
in the XYZ directory. The COPYDECK request produces a copydeck of all files with 
two-level file names in the XYZ directory. In this request the output is sent to the card 
punch. The HEADERCONTENTS request produces a report from the family 
MYPACK. In this request, the output is sent to the printer. 

RUN *SYSTEM/FILEDATA (IIDEFINEOUTPUT: MEDIATYPE = SCREEN LINEWIDTH = 79; 
ATTRIBUTES: LASTRECORD SECURITY DIRECTORY = XYZ; 
COPYDECK: LEVEL = 2 PUNCH DIRECTORY = XYZ; 
HEADERCONTENTS: PRINTER FAMILYNAME = MYPACK II ); 

The following CANDE command initiates a FILEDATA run with three task requests. 
The first request, NOREPORTS, does not produce a report but creates a database 
MYDB. MYDB contains information for all the files on the family MYPACK. MYDB is 
used in the FILENAMES and ATTRIBUTES requests. FILEDATA retrieves the 
information from the database rather than having to gather the information 
independently for each task request. 

RUN *SYSTEM/FILEDATA C'NOREPORTS: NEWDATABASE = MYDB 
FAMILYNAME = MYPACK; 
FILENAMES: NAMESONLY DATABASE = MYDB; 
ATTRIBUTES: ALL DATABASE = MYDB II ); 

The following CANDE command generates three FILEDATA reports. The 
DEFINE OUTPUT request defines the output for the requests that follow it. The 
output is sent to a remote terminal assumed to be a hard-copy print device. The length 
of each line is 80 characters, and the page size is 24 lines. The STRUCTUREMAP 
request produces a map showing file storage layout for all files under the usercode 
JPLANG E. The CHECKERBOARD request reports on all files from the pack 
OTHERPACK. The ATTRIBUTES request reports on the file MYFILE. The file name 
and the timestamp are included in the report. 

RUN *SYSTEM/FILEDATA ("DEFINEOUTPUT: MEDIATYPE = TTY 
LINEWIDTH = 80 PAGESIZE = 24; 

8600 0460-100 

STRUCTUREMAP: TITLE=(JPLANGE); 
CHECKERBOARD: FAMILYNAME = OTHERPACK; 
ATTRIBUTES: TITLE = MYFILE TIMESTAMP"); 

5-9 



FI LEDATA Utility 

Task Requests 

5-10 

The following are the available task requests: 

<task request> 

<a rchi vei nfo reques t>·---.---------------------l 
<areasummary request>---; 
<attri butes request>-----i 
<backup request::>-----t 
<cataloginfo request>---; 
<checkerboard request 
<codefileinfo request 
<compatibility request 
<copydeck request>-----t 
<defineoutput request 
<fi 1 enames request>----i 
<headercontents request 

~
<incompatibility request 
<noreports request>----i 
<structuremap request 
<tapedi r request>-------l 

The following subsections provide the syntax and explanations of the task requests. 
Various modifiers that can be used in task requests are explained under "FILEDATA 
Modifiers" later in this section. 

8600 0460-100 



FI LEDATA Utility 

ARCHIVEINFO Request 

The ARCHIVEINFO request produces a hierarchical list of files, including the access 
and the creation dates, the size in segments, the security class, the status and the file 
kind. This request produces the same report that is produced by the FILENAMES 
request that includes the ARCHIVE modifier. Refer to the description of the 
FILENAMES request in this section for more information. The output is sent to the 
printer by default. 

<archiveinfo request> 

- ARCHIVEINFO ---------------------

~~---------------------~--------~ 

BACKUPSN - = -<tape seri a 1 number>-r--'--' 
CATALOGUE ------------1 
DATABASE ---r = -<fi 1 e ti tl e>---~ 

~ 
GUARDFILE ~ 
iITRECTORY 
NEWDATABASE 

I 

f 
TITLE 
ARCHIVEBAC KUP - = 1= ANY 

CURRENT 
NONCURRENT -

L NONE 

~<CODEVERSIO 
LEVEL - = 
NAMESONLY 

N modifier 
-<integer" 

~
<outPut opt 

FAMILYNAME -,­
PACKNAME ----1 
NONRESIDEN 

ion' 

TONLY 

= -<family name' 

t RESIDENTONLY -----------i 
RAWHEADERS ------------' 

Explanation 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• ARCHIVE BACKUP 

• BACKUPSN 

• CATALOGUE 

• CODEVERSION 

• DATABASE 

• DIRECTORY 

• FAMILYNAME 

• GUARDFILE 

• LEVEL 

8600 0460-100 5-11 



FI LEDATA Utility 

5-12 

• NAMESONLY 

• NEWDATABASE 

• NONRESIDENTONLY 

• RESIDENTONLY 

• RAWHEADERS 

• TITLE 

ARCHIVEINFO Examples 

The following example produces a ARCHIVEINFO report on all the files specified in 
the database UTILITYDB. UTILITYDB is a database created by a previous FILEDATA 
run. 

RUN *SYSTEM/FILEDATA (JIARCHIVEINFO: DATABASE = UTILITYDB"); 

The following statement produces a report of all files under the directory SYMBOL/X 
ON PACK that do not have any archive backups: 

RUN *SYSTEM/FILEDATA (JIARCHIVEINFO: ARCHIVEBACKUP=NONE 
DIRECTORY = SYMBOL/X FAMILY = PACK"); 

The following statement, when run under a privileged usercode or started from an 
ODT, produces a report of all the files on the family WORKPACK that have backup 
copies on the tape with the serial number X12. 

RUN *SYSTEM/FILEDATA (JIARCHIVEINFO: BACKUPSN = X12 FAMILY = WORKPACK If
); 

Note that the report includes both resident and nonresident files. If tape X12 was 
originally produced by a WFLARCHIVE BACKUP or ARCHIVE ROLLOUT statement 
for the family WORKPACK, then you could use this FILEDATA report to determine 
whether tape X12 is still needed. 

8600 0460-100 



FI LEDATA Utility 

AREASUMMARY Request 

The AREASUMMARY request produces a list of files showing the AREASIZE value, 
the number of uncrunched and crunched rows, the total segments, and the file name. 
The default output option is SPO. 

<areasummary request> 

-- AREASUMMARY --

Explanation 

SIZE = <integer> 

i <output opt i on>--------.,--J.-----! 
FAMILYNAME ~ = --<family name 
PACKNAME ---.J 
SIZE -- = --<integer'>-------1 

L SORT -------------~ 

Specifies the minimum number of segments per area of files to be included in the 
report. For crunched files with just one area allocated, if the number of segments in 
that area is less than the specified size, the file is reported. If the SIZE clause is not 
specified, AREASUMMARY reports on all files. 

SORT 

Causes the output to be sorted in descending order by the size of the full areas. 
Crunched files with just one area allocated are sorted by the last area. The potential 
size of full areas in such files is reported in parentheses. 

FILEDATA Modifiers 

The following modifiers are used to specify the disk family to be reported on, as 
discussed under "FTI..,EDATA Modifiers" later in this section. 

• FAMILYNAME 

• PACKNAME 

8600 0460-100 5-13 



FI LEDATA Utility 

ATTRIBUTES Request 

5-14 

The ATTRIBUTES request produces a report about various requested attributes of a 
file or group of files. The output is sent to the printer by default. The ATTRIBUTES 
request performs many of the same functions as the CODEFILEINFO request. 

<attributes request> 

- ATTRIBUTES --r-"j -------------------.,....-; 

L : ~----------------------~ 

Explanation 

FILEDATA Modifiers 

ABBREVIATED ---------,...--J---' 
ALL--------------~ 
ARCHIVE I 

I ARCHIVEBACKUP - = 1 ANY I 
CURRENT ---j 
NONCURRENT --1 

~ 
L NONE 

BACKUPSN -- = -<tape serial number 
CATALOGUE --------------j 
DATABASE ~ = <file title> 

~ ~~~~~~~~~~ I NEWDATABASE 
TITLE 
LEVEL - = <integer> 

~ 
NAMESONLY I 

<output option> =1 
FAMILYNAME ~ = <family name> 
PACKNAME ---.J 

I- RAWHEADERS I 
L<fi 1 e attri butes> 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• ABBREVIATED 

• ALL 

• ARCHIVE 

• CATALOGUE 

• DATABASE 

• DffiECTORY 

• FAMILYNAME 

• LEVEL 

• NAMESONLY 

• NEWDATABASE 

8600 0460-100 



FI LEDATA Utility 

• RAWHEADERS 

• TITLE 

<file attributes> 

FILEDATA reports information only for the file attributes you request. The following 
table lists the available attributes and their abbreviated names. The file attributes are 
explained in "FILEDATA Modifiers" later in this section. 

Attribute Name Minimum Abbreviation 

ALTER DATE ALT 

AREALENGTH AREAL 

AREAS AREAS 

AREASECTORS AREASE 

AREASIZE AREASI 

BLOCKSIZE BL 

BLOCKSTRUCTURE BLOCKST 

CCSVERSION CCSV 

CODEVERSION CODEV 

CREATIONDATE CRE 

CRUNCHED CRU 

CYCLE CY 

DOCUMENTTYPE DOC 

EXTMODE EXE 

FILEKIND FILEK 

FILELENGTH FILEL 

FI LEORGAN IZATION FILEO 

FILESTRUCTURE FILEST 

FILETYPE FILET 

FRAMESIZE FRA 

IDENTITY ID 

INTMODE IN 

LASTACCESSDATE LASTA 

LASTRECORD LASTR 

L1CENSEKEY L1C 

LOCKEDFILE LOCK 

MAXRECSIZE MA 

MINRECSIZE MI 

NOTE NOTE 

PERMITIEDACTIONS PER 

continued 

8600 0460-100 5-15 



FI LEDATA Utility 

5-16 

continued 

Attribute Name 

RELEASEID 

SAVEFACTOR 

SECTORSIZE 

SECURITY 

TIMESTAMP 

TOTALS ECTORS 

UNITS 

USERINFO 

VERSION 

WARNINGS 

ATrRIBUTES Example 

Minimum Abbreviation 

RE 

SA 

SECT 

SE 

TIM 

TOTA 

UN 

US 

V 

WARN 

The following command initiates an ATTRIBUTES report on all files under the 
directory ACCOUNTS. The report includes the timestamp, creation date, number of 
the last record, and the version number of each file. The output is sent to the printer 
by default. 

RUN *SYSTEM/FILEDATA ("ATTRIBUTES: DIR = ACCOUNTS 
TIMESTAMP CREATIONDATE LASTRECORD VERSION") 

The following command produces a report of all the files under the directOlY 
SYMBOLIX ON PACK that do not have any archive backups. The report includes the 
ALTERDATE, CREATIONDATE, SAVEFACTOR, and TIMESTAMP of those files. 

RUN *SYSTEM/FILEDATA ("ATTRIBUTES: ARCHIVEBACKUP=NONE, 
DIRECTORY=SYMBOL/X, FAMILYNAME=PACK, 
ALTERDATE, CREATIONDATE,SAVE, TIMESTAMp lI

); 

8600 0460-100 



FI LEDATA Utility 

BACKU P Request 

The BACKUP request reports the usage information of backup library maintenance 
tapes for cataloged and archived disk files. You can use this report to determine 
whether library maintenance backup tapes contain active backups for a specified disk 
family or directory. 

The BACKUP request produces a printed report of backup tapes for the specified disk 
family or for the files in a specified directory of the disk family. The report lists the 
tapes that contain active backup copies of the disk files according to the SERIALNO 
value and the number of active backup files for each serial number. For archive backup 
tapes, the report also includes the name of each tape, the date and time the tape was 
written, and any abnormal status for the tape. 

<backup request> 

- BACKUP [ 

Explanation 

BACKUP 

Lir ~HIVE --------------,,...--1--' 

~ 
BACKUPSN - = -<tape serial number 
CATALOGUE -------------1 
DATABASE ----r- = --<file title 
DIRECTORY ---l I 

F NEWDATABASE -' S 
FAMILYNAME - = -<family name 
ARCHIVEBACKUP -- = -r- ANY 

r- CURRENT 

~ t NONCURRENT 
NONE -----i 

LEVEL - = -<; nteger>-------I 
NONRESIDENTONLY ---------1 

t RESIDENTONLY /1\-1 PRINTER 
SCREEN -----------l 
SPO ------------' 

You can specify that the report is to be for the backup tapes of a specific file or directory 
of files by specifying DIRECTORY = <filename> or DIRECTORY = <directory 
name>. 

The default value for this request reports both catalog and archive tape information. If 
you specify CATALOGUE and not ARCHIVE or ARCHIVEBACKup, then only catalog 
backup tape information is reported. If you specify ARCHIVE or ARCHIVEBACKU~ 
and not CATALOGUE, then only archive information is reported. 

Both resident and nonresident files are reported unless the RESIDENTONLYor 
NONRESIDENTONLY modifier is specified. For ARCHIVE tapes, the report includes 
tapes for files that are resident or nonresident files that have backup copies whose 
generation and timestamp values match those values for the resident files. 

86000460-100 5-17 



FI LEDATA Utility 

5-18 

If you specify ARCHIVE BACKUP = CURRENT, then FILEDATA reports on all tapes 
that include archive backup copies of nonresident files or of resident files whose 
generation and timestamps match those of their backup copy. 

If you specify ARCHIVE BACKUP = NONCURRENT, then FILEDATAreports on all 
tapes that include archive backup copies for resident files with generations and 
timestamps that do not match those of their backup copies. 

If you specify a tape serial number using the BACKUPSN modifier, then only the files 
on that tape are reported. 

The PRINTER, SCREEN, and SPO options have the effects described under "Output 
Options" earlier in this section. 

FILEDATA Modifiers 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. Further information about these modifiers is provided under "FILEDATA 
Modifiers" later in this section. 

• ARCHIVE 

• ARCHIVE BACKUP 

• BACKUPSN 

• CATALOGUE 

• DATABASE 

• DIRECTORY 

• FAMILYNAME 

• LEVEL 

• NEWDATABASE 

• NONRESIDENTONLY 

• RESIDENTONLY 

BACKUP Examples 

The following statement produces a report of all the archive backup tapes for the user 
UC on the family DISK. The tapes reported for this statement might also contain 
backup copies of files that do not belong to the user UC. However, the FILE COUNT 
reported for the tapes does not include those files. 

RUN *SYSTEM/FILEDATA (IIBACKUP: ARCHIVE DIRECTORY=USERCODE/UC"); 

8600 0460-100 



FI LEDATA Utility 

The following statement, if run by a privileged user or submitted from an ODT, 
produces a report of all the archive and catalog backup tapes for all the files on the disk 
family named XPACK: 

RUN *SYSTEM/FILEDATA (IIBACKUP: FAMILYNAME=XPACK II ); 

The following statement, if run by a privileged user or submitted from an ODT, 
produces a report of all the archive backup tapes for all the files on the family DISK for 
which there is not a resident file on the family. Some of the tapes reported for this 
example might also contain backup copies of resident files, but the FILE COUNT 
reported for the tapes does not include those files. 

RUN *SYSTEM/FILEDATA C'BACKUP: NONRESIDENT II ); 

You can use the following statement to determine if any files under the directory 
SYMBOL on the family PACK were backed up on a tape with the serial number X12: 

RUN *SYSTEM/FILEDATA ("BACKUP: DIRECTORY=SYMBOL FAMILYNAME = PACK 
BACKUPSN = X12"); 

8600 0460-100 5-19 



FI LEDATA Utility 

CATALOGINFO Request 

5-20 

The CATALOGINFO request produces a hierarchical list of files, including the access 
and creation dates, the size in segments, the security class, the status, and the file kind. 
The CATALOGINFO request produces the same output as the FILENAMES request 
with the CATALOGUE modifier. Refer to "FILENAMES Request" in this section for 
more information. The output is sent to the printer by default. 

<cataloginfo request> 

- CATALOGINFO ---------------------~ 

~'~---------------------.-----~ [:--,-___________________ --1 

err: ~HIVE I 

~ 
BACKUPSN - = -<tape serial nU~ber>:1 
DATABASE =r = -<file title 
GUARDFILE I 
DIRECTORY 

Ej 

~ 
NEWDATABAS 
TITLE -­

<CODEVERSIO 
ARCHIVEBAC 

N modi fi er~ 
KUP -- = ~ ANY 

CURRENT t NONCURRENT -
NONE I LEVEL _ = 

~ NAMESONLY 
--<integer 

~
<outPut opt 

FAMILYNAME -r 
PACKNAME --1 
NONRESIDEN 

ion .... 

TONLY 

= --<family name 

t RESIDENTONLY RAWHEADERS _________ ....J 

Explanation 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• ARCHIVE 

• ARCHIVE BACKUP 

• BACKUPSN 

• CODEVERSION 

• DATABASE 

• DmECTORY 

• FAMILYNAME 

• GUARDFILE 

• LEVEL 

• NAMESONLY 

8600 0460-100 



FI LEDATA Utility 

• NEWDATABASE 

• NONRESIDENTONLY 

• PACKNAME 

• RAWHEADERS 

• RESIDENTONLY 

• TITLE 

CATALOGINFO Example 

The following example produces a CATALOGINFO report on the file ACCOUNTS and 
all files in the directory ACCOUNTS/=. 

RUN *SYSTEM/FILEDATA ("CATALOGINFO: TITLE = ACCOUNTS JI
); 

8600 0460-100 5-21 



FILEDATA Utility 

CHECKERBOARD Request 

5-22 

The CHECKERBOARD request produces a disk checkerboard displaying permanent 
files and the space around them. The output includes the family index, the base 
address, the end address, the length, the area, the file name, and the space between 
rows. 

< checkerboard request> 

- CHECKERBOARD -,.----------------------.-----i 

L r~ : --l.-..,--------,.-l---I 

<family option> 

NEWDATABASE ~ = -<file title 
DATABASE --l I 

<family option> ~ 
FILENAME - = -<file title>-----1 
RAWHEADERS I 

L SUMMARY -------------1. 

--r FAMILYNAME ~ = -<family name> 
L PACKNAME ---.J L<range~ 

<range> 

- INDEX - = -<integer> 
L ~EGIN - = -<integer~ 

? [ ~ND - = -<integer>=J 

Explanation 

FI LENAME = <file title> 

Causes the output to be saved as a disk file instead of being printed. 

Note: If you use the FILENAME output option with CHECKERBOARD, 
then you should precede the CHECKERBOARD request with a 
DEFINEOUTPUT request that sets LINEWIDTH = 132. Otherwise, 
the record size defaults to 80 bytes, which is too short for a 
CHECKERBOARD report. 

<range> 

Specifies an address range to list only the files in that range. A family name and a 
family index must also be supplied. 

SUMMARY 

Suppresses the listing of the location of each file and available area. Only file conflicts, 
the total in-use and available sectors counts, and the summary graph of available and 
in-use areas are reported. 

8600 0460-100 



FI LEDATA Utility 

FILEDATA Modifiers 

The following FILEDATA modifiers perform functions such as selecting the disk family 
to be reported on, and specifying the types of information to be reported for each file. 
These modifiers are explained under "FILEDATAModifiers" later in this section. 

• DATABASE 

• FAMILYNAME 

• NEWDATABASE 

• RAWHEADERS 

CHECKERBOARD Example 

The following command produces disk checkerboard information on all the files under 
the family MYPACK: 

RUN *SYSTEM/FILEDATA("CHECKERBOARD: FAMILYNAME = MYPACK") 

8600 0460-100 5-23 



FI LEDATA Utility 

CODEFILEINFO Request 

The CODEFILEINFO request produces a report about various requested attributes of 
a code file or group of code files. The output is sent to the printer by default. The 
CODEFILEINFO request performs many of the same functions as the ATTRIBUTES 
request. 

<codefileinfo request> 

- CODEFILEINFO I I 

~ [ 

L-<relation>--<release level~ 

~= ABBREVIATED --------..,....-'---' 
ALL-------------~ 

ARCHIVE ----------1 

~ 
CATALOGUE I 
DATABA~SE <file title> 
DIRECTORY 
TITLE 

~ 
FAMILYNAME ~ = -<family name>-1 
PACKNAME ~ I 

<file attributes> 
LEVEL ------------1-

E 
NAMESONLY 
NEWDATABASE -- = --<file title 

<output opt i on>--------l 
RAWHEADERS -------------1 

Explanation 

< relation> < release level> 

Reports on each code file whose version number bears the indicated relationship to the 
given release level. 

FILEDATA Modifiers 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• ABBREVIATED 

• ALL 

• ARCHIVE 

• CATALOGUE 

• DATABASE 

• DIRECTORY 

• LEVEL 

5-24 8600 0460-100 



FI LEDATA Utility 

• NAMESONLY 

• NEWDATABASE 

• PACKNAME 

• RAWHEADERS 

• TITLE 

<file attributes> 

FILEDATA reports information only for the file attributes you request. The following 
table lists the available attributes and their abbreviated names. The file attributes are 
explained in "FILEDATA Modifiers" later in this section. 

Attribute Name Minimum Abbreviation 

ALTER DATE ALT 

AREALENGTH AREAL 

AREAS AREAS 

AREASECTORS AREASE 

AREASIZE AREASI 

BLOCKSIZE BL 

BLOCKSTRUCTURE BLOCKST 

CCSVERSION CCSV 

CODEVERSION CODEV 

CREATION DATE CRE 

CRUNCHED CRU 

CYCLE CY 

DOCUMENTTYPE DOC 

EXTMODE EXE 

FILEKIND FILEK 

FILELENGTH FILEL 

FI LEORGAN IZATION FILEO 

FILESTRUCTURE FILEST 

FILETYPE FILET 

FRAMESIZE FRA 

IDENTITY ID 

INTMODE IN 

LASTACCESSDATE LASTA 

LASTRECORD LASTR 

L1CENSEKEY L1C 

LOCKEDFILE LOCK 

MAXRECSIZE MA 

continued 

8600 0460-100 5-25 



FI LEDATA Utility 

5-26 

continued 

Attribute Name 

MINRECSIZE 

NOTE 

PERMITTEDACTIONS 

RELEASEID 

SAVEFACTOR 

SECTORSIZE 

SECURITY 

TIMESTAMP 

TOTALS ECTORS 

UNITS 

USERINFO 

VERSION 

WARNINGS 

Minimum Abbreviation 

MI 

NOTE 

PER 

RE 

SA 

SECT 

SE 

TIM 

TOTA 

UN 

US 

V 

WARN 

CODEFILEINFO Examples 

The following command initiates a CODEFILEINFO report on all code files under the 
directory MYFILES whose version numbers are Mark 3.8 or earlier. The report 
includes the timestamp, number of the last record, and the version number of each file. 
The output is sent to the printer by default. 

RUN *SYSTEM/FILEOATA ("CODEFILEINFO LEQ 3.8 OIR = MYFILES 
TIMESTAMP LASTRECORO VERSION"); 

The following command initiates a CODEFILEINFO report on all code files under the 
directory USER whose version number is Mark 3.6 or earlier. The report includes the 
code version (with code file privileges and status such as MC, Pp, nonexecutable or 
UNSAFE) and security (such as SECURITYTYPE, SECURITYUSE, or guard file title 
if applicable) of each file. Refer to the description of CODEVERSION and SECURITY 
modifiers under "FILEDATA Modifiers" in this section for more details. 

RUN *SYSTEM/FILEOATA("COOEFILEINFO LEQ 3.6 : OIR = (USER) 
CODEVERSION SECURITY") 

8600 0460-100 



FI LEDATA Utility 

The following output is sent to the printer by default: 

(USER) 
· TEST 

. OBJECT 
· AL 

. HELLO COOEVERSION=36 EXECUTABLE 
SECURITY=GUAROEO BY *TEST/GUARO ON DISK. 

· TAOS 
. TEST COOEVERSION=36 TAOS-CAPABLE EXECUTABLE 

SECURITY=PRIVATE (I/O) 
· • • TEST 

· . UNSAFE: COOEVERSION=36 NON-EXECUTABLE:UNSAFE 
SECURITY=PRIVATE (I/O) 

• SYSTEM 
• • OBJECT 

· POINTER COOEVERSION=35 MC-EO EXECUTABLE 
SECURITY=CONTROLLEO BY (USER)TEST/GUAR02 ON MYPACK. 

86000460-100 5-27 



FILEDATA Utility 

COMPATIBILITY Request 

The COMPATIBILITY request produces a report indicating compatibility with a 
specified host or set of hosts for all code files in a given directory, with a given title, or 
on a given pack. The report includes a list of systems and MCP levels compatible with 
each request. 

<compatibility request> 

- COMPATIBILITY -<compatibility specification>>----------

~.-r--------------------------------~------------~ 

: ~ LEVEL - = -<i nteger>-----,--'---' 
NEWDATABASE -r- = --<file title 
DATABASE --j 

t ~~~~~TORY =j J 
~ FAMILYNAME -r- = -<family name 

t PACKNAME ---l I 
<output option> 

< compatibility specification> 

--L<A Seri es system>>-J.---------------------------------------! 

<A Series system> 

MI CROA -r-------------------------------------l 
Al 
A2 
A2ASD 
A3 
A3ASD 
A4 
A5 
A6 
A9 
A9ASD 
Al0 
Al0ASD 
Al2 
Al5 
Al5ASD 
Al6 
All 

Explanation 

COMPATI 81 LlTY < compatibility specification> 
COMPATI 81 LlTY < compatibility specification>: 

Produce a report of code files that are compatible with the systems included in the 
compatibility specification. The compatibility report contains the following 
information on each code file: 

• FILEKIND 

• Mark level 

5-28 86000460-100 



FI LEDATA Utility 

• Cycle number 

• Compatible systems 

FILEDATA Modifiers 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• DATABASE 

• DIRECTORY 

• LEVEL 

• NEWDATABASE 

• PACKNAME 

• TITLE 

8600 0460-100 5-29 



FI LEDATA Utility 

COPYDECK Request 

5-30 

The COPYDECK request causes the printing or punching of a COPY&COMPARE card 
deck (with no FROM or TO specifications), which can then be modified and used as a 
library maintenance statement. The output is sent to the card punch by default. 

<copydeck request> 

-- COPYDECK --r-I --------------------,.----1 
L:--r-----------------i 

Explanation 

CATALOGUE ----------r--i--I 
DATABASE ----r- = --<file title>-1 
DIRECTORY ----t I 

~ 
~i~~~TABASE j d 

<CODEVERSION modifier 
LEVEL -- = --<integer 

~ 
NAMESONLY 

<output opti on>---------i 
FAMILYNAME ~ = --<family name 
PACKNAME ---.J 

L RAWHEADERS -----------' 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• CATALOGUE 

• CODEVERSION 

• DATABASE 

• DIRECTORY 

• FAMILYNAME 

• LEVEL 

• NAMESONLY 

• NEWDATABASE 

• RAWHEADERS 

• TAPE 

• TITLE 

COPYDECK Example 

The following example punches a copydeck that includes all the files on the family 
MYPACK: 

RUN *SYSTEM/FILEDATA C'COPYDECK: FAMILYNAME = MYPACK"); 

8600 0460-100 



FILEDATA Utility 

DEFINEOUTPUT Request 

The DEFINE OUTPUT request formats a report's output. This request permits you to 
explicitly control line width, page size, and output medium. The DEFINEOUTPUT 
request applies to all task requests that appear after the DEFINEOUTPUT request in 
the FILEDATA statement. If one of the subsequent task requests specifies its own 
output parameters (as the ATTRIBUTES request can with the options PRINTER or 
SCREEN), then those output parameters apply only to that task request. 

<defineoutput request> 

- DEFINEOUTPUT -,-----------------,---------; 

L rf-

Explanation 

MEDIATYPE 

: -'--,----_r-'--' 
~ fAGESIZE ~ = -<integer~ 
t LINEWIDTH -.l ~ 

MEDIATYPE - = 1= PRINTER 
PUNCH 
TTY 

~ SCREEN -1 
L SPO ----l 

Specifies the output device. For an explanation of the device options, refer to "Output 
Options" earlier in this section. 

FILEDATA Modifiers 

The following modifiers are used to modify the output. Refer to "FILEDATA 
Modifiers" later in this section. 

• PAGESIZE 

• LINEWIDTH 

CHECKERBOARD Example 

This example generates a CHECKERBOARD report and saves it in a disk file titled 
CBIREPORT ON PACK. The DEFINE OUTPUT request is used to specify a 132-byte 
record size, which is the minimum needed for a CHECKERBOARD report. 

RUN *SYSTEM/FI LEDATA C'DEFINEOUTPUT: LINEWIDTH=132; 
CHECK: FAMILY=DBFAM, FILENAME=CB/REPORT ON PACK") 

8600 0460-100 5-31 



FILEDATA Utility 

FILENAMES Request 

5-32 

The FILENAMES request produces a hierarchical list of files, including access and 
creation dates, size in segments, security class, status, and file kind. The output is sent 
to the printer by default. 

If the output is written to a disk file, the LINEWIDTH value specified in the 
DEFINE OUTPUT request must be 132. 

<file names request> 

-- fILENAMES ----------------------

~~-----------------------~-----~ 

ARCHIVE ____________ --.--..1.......J 

BACKUPSN -- = --<tape serial number 
CATALOGUE ------------1 

r- GUARDFIlE 
r- DATABASE =r = --<file title, 

r- DIRECTORY 

~ 
NEWDATABASE j I 
TITLE -----' 

<CODEVERSION modifier> 
ARCHIVEBACKUP -- = -r ANY ---~. 

l t CURRENT 
NONCURRENT 
NONE -----I 

lEVEL -- = --<i nteger>--------I 

~ 
NAMESONLY 

<output opt i on>>-------------I 
FAMILYNAME -r = -<family name> 
PACKNAME ---l 

~ 
NONRESIDENTONlY 
RESIDENTONlY -----------\ 
TAPE -- = -r<tape name 

L-<unit number SORT 
RAWHEADERS -------------' 

Explanation 

TAPE = <tape name> 
TAPE = <unit number> 

The TAPE = <tape name> and TAPE = <unit number> modifiers cause FILEDATA 
to report on the files on the specified library maintenance tape. Multiple reel tapes 
function best when the unit number is specified. The TAPE modifier overrides the 
DATABASE, DIRECTORY, and FAMILYNAME modifiers. 

SORT 

Causes FILEDATA to sort the file names from the specified tape in the same order that 
files on disk are reported. 

8600 0460-100 



FI LEDATA Utility 

FILEDATA Modifiers 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• ARCHIVE 

• ARCHIVE BACKUP 

• BACKUPSN 

• CATALOGUE 

• CODEVERSION 

• DATABASE 

• DffiECTORY 

• FAMILYNAME 

• GUARD FILE 

• LEVEL 

• NAMESONLY 

• NEWDATABASE 

• NONRESIDENTONLY 

• RESIDENTONLY 

• RAWHEADERS 

• TITLE 

FILENAMES Examples 

The following example produces a FILENAMES report on all the files specified in the 
file UTILITYDB. UTILITYDB is a file created by the NEWDATABASE modifier in a 
previous FILEDATA run. 

RUN *SYSTEM/FILEDATA (II FILENAMES: DATABASE = UTILITYDB II ); 

The following example produces a report of all the nonresident files for the family 
PACK under the usercode UCX that have archive backup copies, catalog backup copies, 
or both on tape: 

RUN *SYSTEM/FILEDATA (IIFILES: DIR=USERCODE/UCX 
FAMILY=PACK NONRESIDENTONLY") 

8600 0460-100 5-33 



FI LEDATA Utility 

5-34 

The following example produces a FILENAMES report on the file MYFILES. The 
report is written to the disk file FDREPORT and is formatted with a line width of 132 
characters. 

RUN *SYSTEM/FILEDATA C'DEFINEOUTPUT: LINEWIDTH=132; 
FILENAMES:TITLE=MYFILES FILENAME=FDREPORT"); 

8600 0460-100 



FI LEDATA Utility 

HEADERCONTENTS Request 

The HEADERCONTENTS request produces a hexadecimal dump of file headers, row 
address words, GUARDED or CONTROLLED attribute security information and, 
optionally, catalog and archive record information. The output is sent to the printer by 
default. 

< headercontents request> 

- .!:!.EADERCONTENTS -------------------~ 

~ [ 

L::t; ~H IVE I 

~ 
CATALOGUE >1 
DATABASE ----r- = -<file title 
DIRECTORY --j 

~ 
NEWDATABASE j ~ 
TITLE -----' 
LEVEL - = -<i nteger>>-------i 

<output opt i on>>---------t 
FAMILYNAM~ = -<family name> 
PACKNAME 

Explanation 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• ARCIDVE 

• CATALOGUE 

• DATABASE 

• DffiECTORY 

• FAMILYNAME 

• LEVEL 

• NEWDATABASE 

• PACKNAME 

• TITLE 

HEADERCONTENTS Example 

The following command produces a hexadecimal display of the disk file header for the 
file (CAD)RILIST and for any files under that directory on the family XPACK: 

RUN *SYSTEM/FILEDATA (IIHEADERCONTENTS: FAMILYNAME=XPACK 
DIRECTORY= (CAD) R/LIST II ) 

8600 0460-100 5-35 



FI LEDATA Utility 

5-36 

HEADERCONTENTS Considerations for Use 

The HEADERCONTENTS request can be performed successfully only on a database 
containing raw headers. The database used for the request contains raw headers if 
either of the following conditions is true: 

• The database was created for a previous HEADERCONTENTS request, or is newly 
created for this HEADERCONTENTS request. 

• The RA WHEADERS modifier was included in the request that created the 
database currently in use. 

The circumstances that control whether FILEDATA reuses a database for a request or 
creates a new database for the request are discussed under "Database Generation and 
Reuse" earlier in this section. 

When a HEADERCONTENTS request that does not create a new database encounters 
a database that does not contain raw disk file headers, one of following two error 
messages is printed: 

• If the database used by the program was created by an earlier run of FILEDATA, 
then this message is printed: 

THE DATABASE SPECIFIED DOES NOT CONTAIN RAW HEADERS 

• If the database was created during the same run by an earlier request to 
FILEDATA, then this message is printed: 

THE DATABASE CREATED BY AN EARLIER REQUEST DOES NOT CONTAIN RAW HEADERS 

To correct this situation, rerun FILEDATA with the RA WHEADERS modifier in the 
last database-creating request prior to the HEADERCONTENTS request, or with just 
the HEADERCONTENTS request on the same files. 

86000460-100 



FI LEDATA Utility 

INCOMPATIBILITY Request 

The INCOMPATIBILITY request gives information on all code files in a given directory 
with a given TITLE, or on a given FAMILYNAME. 

<incompatibility request> 

- INCOMPATIBI LITY -<i ncompati bil ity speci fi cati on>--------? 

~ [ : --t::;:: illEL - = -<i nteger> I 

~ 
NEWDAT§BASE = -<file titlel 
DATABASE 
DIRECTORY 
TITLE 

t FAMILYNAME ~ = -<family name>-l 
PACKNAME ---..l I 

<output option>:>---------' 

< compatibility specification> 

----.L<A Seri es system>>--L---------------------t 

<A Series system> 

MICROA ---r-----------------------I 
Al 
A2 
A2ASD 
A3 
A3ASD 
A4 
A5 
A6 
A9 
A9ASD 
Al0 
Al0ASD 
Al2 
Al5 
Al5ASD 
Al6 
All 

Explanation 

INCOMPATIBILITY <incompatibility specification> 
I NCOMPATI BI LlTY < incompatibility specification>: 

Produce a report of code files that are not compatible with the systems included in the 
incompatibility specification. The incompatibility report contains the following 
information on each code file: 

• FILEKIND 

• mark level 

8600 0460-100 5-37 



FI LEDATA Utility 

5-38 

• cycle number 

• incompatible systems 

FILEDATA Modifiers 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• DATABASE 

• DIRECTORY 

• LEVEL 

• NEWDATABASE 

• PACKNAME 

• TITLE 

The following is an example of the output for the above command. 

*SYSTEMCOMS/PROCESSING/ITEMS : DCALGOLCODE 37.114 
*SYSTEMCOMS/STATISTICS/FORMATS : ALGOLCODE 37.112 
*SYSTEMMARCUS/FORMATS/BACKUP : DCALGOLCODE 37.263 
*SYSTEMSIMPLEINSTALL/SCREENS : DCALGOLCODE 37.141 
*SYSTEMSIMPLEINSTALL/SCREENS/ENGLISH : ALGOLCODE 37.212 

8600 0460-100 



FI LEDATA Utility 

NOREPORTS Request 

The NOREPORTS request generates a new database without generating any reports. 
The database produced by FILEDATA contains file information gathered from the disk 
directory for the family and files you specify. This new database can then be used as the 
database in future runs of FILEDATA, thus making it unnecessary for FILEDATA to 
gather file information from scratch. To use a database produced by a NOREPORTS 
request in a previous FILEDATA run, specify the DATABASE option in the task 
request. 

<noreports request> 

- NOREPORTS - : - NEWDATABASE - = -<fil e titl e>>-------

~-.--------------------------r_--------------------~ 
ARCHIVE ~ = -<file title 
CATALOGUE 
DATABASE 

~ 
D I RECTORY -l J 
TI T LE ----.J 
FAMILYNAME ~ = -<family name 

f 
PACKNAME ~ 
TAPE - = ~<tape name~-------1 

L<uni t number>-----1 
RAWHEADERS --------------~ 

L WARNINGS _______________ --l 

Explanation 

TAPE = <tape name> 
TAPE = <unit number> 

Causes FILEDATA to report on the tape with the specified tape name or unit number. 

FILEDATA Modifiers 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be stored in the new database, and specifying the types of information 
to be stored for each file. These modifiers are explained under "FILEDATA Modifiers" 
later in this section. 

• ARCIDVE 

• CATALOGUE 

• NEWDATABASE 

• DATABASE 

• DIRECTORY 

• TITLE 

• FAMILYNAME 

• PACKNAME 

8600 0460-100 5-39 



FI LEDATA Utility 

5-40 

• TAPE 

• RAWHEADERS 

NOREPORTS Example 

In the following examples, the first statement creates a database file containing 
information about files on the family XPACK. This information is then used in the 
subsequent runs to display information about code files that were on XPACK. 

RUN *SYSTEM/FILEDATA("NOREPORTS: NEWDATABASE = FD/XPACK 
FAMILY = XPACK"); 

RUN *SYSTEM/FILEDATA("CODEFILEINFO: DATABASE=FD/XPACK CODEVERSION"); 

RUN *SYSTEM/FILEDATA("COMPATIBILITY A15: DATABASE=FD/XPACK II
); 

8600 0460-100 



FI LEDATA Utility 

STRUCTUREMAP Request 

The STRUCTUREMAP request produces a map showing file storage layout by family 
index and address. The report contains the file name, the areas, the area class, the 
family index, the segment address, the size in segments, and the number of segments 
on the family. Output is sent to the printer by default. 

<structuremap request> 

- STRUCTUREMAP [ 

Explanation 

~--------------------------~ 
ARCHIVE ----------.-~ 
CATALOGUE ----------------i 
DATABASE ----r- = -<file title>-1 
DIRECTORY ---I I 

~ 
NEWDATABASE l I 
TITLE - I 
LEVEL - = --<integer> 

<output option> >1 
FAMILYNAME ~ = -<family name 
PACKNAME ---l 
RAWHEADERS I 

The following FILEDATA modifiers perform functions such as selecting the disk family 
or file names to be reported on, and specifying the types of information to be reported 
for each file. These modifiers are explained under "FILEDATA Modifiers" later in this 
section. 

• ARCHIVE 

• CATALOGUE 

• DATABASE 

• DIRECTORY 

• F .AM:ILYNAME 

• LEVEL 

• NEWDATABASE 

• PACKNAME 

• RAWHEADERS 

• TITLE 

8600 0460-100 5-41 



FI LEDATA Utility 

5-42 

STRUCTUREMAP Example 

The following command generates a STRUCTUREMAP request on all files and 
directories on MYPACK with one or two level file names. The output is sent to a remote 
terminal. 

RUN *SYSTEM/FILEDATA(IISTRUCTUREMAP: 
LEVEL = 2 SCREEN FAMI LYNAME = MYPACK") 

86000460-100 



FI LEDATA Utility 

TAPEDIR Request 

The TAPEDIR request reads library maintenance tape or CD-ROM directories and 
prints the volume name, the unit number, the serial number, the creation date, the 
tape type, and a list of the disk file names that were copied to that volume. The 
TAPEDIR request can be requested only by a privileged user because security usercode 
information is accessible. TAPEDIR and TPDIR are synonyms. 

<tapedir request> 

( . L TAPEDIR -r : -r'---~-p-o-~-.,.--L--'--L<un;t number>>------.,--'----; 
TPDIR -----1 r ----j <vol ume name>>---.1------1-

I- SCREEN -1 I- (CDROM) -l 
L- PUNCH ~ L- (CD) ~ 

TAPEDIR Examples 

The following command produces a FILEDATA report on the library maintenance tape 
MYTAPE: 

RUN *SYSTEM/FILEDATA ("TAPEDIR : MYTAPE II
) 

The following command produces a FILEDATA report on the tape mounted on unit 
number 15: 

RUN *SYSTEM/FILEDATA ("TAPEDIR : 15 11
) 

8600 0460-100 5-43 



FI LEDATA Utility 

FI LEDATA Modifiers 
Modifiers specify options for task requests. Each task request permits a different 
set of modifiers. The modifiers apply to all reports until they are overridden by the 
specification of another modifier. 

The FILEDATA modifiers are explained in the following text. 

ABBREVIATED 

ALL 

Causes the titles of the requested attributes AREALENGTH is output as ALEN when 
ABBREVIATED is specified. 

Displays all the attributes of the specified files, except FILE TYPE, UNITS, and 
USERINFO. Even though FILETYPE and UNITS are not displayed, equivalent 
information is available as part of the display of the BLOCKSTRUCTURE and 
FRAME SIZE attribute values. 

ALTERDATE 

Displays the date and time that the specified file was last written. 

ARCHIVE 

5-44 

Causes FILEDATA to select resident and nonresident disk files and to display archive 
information for those files. 

When the ARCIDVE modifier is used with the ATTRIBUTES request, FILEDATA 
displays the backup tape names, serial numbers, and backup times for each resident or 
nonresident file selected that has archive backup information. 

When the ARCHIVE modifier is used with the CODEFILEINFO request, FILEDATA 
displays the backup tape names, serial numbers, and backup times for each resident 
code file selected that has archive backup information. 

When the ARCHIVE modifier is used with the HEADERCONTENTS request, 
FILEDATA displays the hexadecimal value of the archive record for each resident or 
nonresident file selected that has archive backup information. 

When the ARCHIVE modifier is used with the NOREPORTS request, FILEDATA 
collects the archive backup information for files and puts the information into the 
database so that later requests can report the information. 

8600 0460-100 



FILEDATA Utility 

ARCHIVEBACKUP 
If you specify ARCHIVE BACKUP = ANY, then FILEDATAreports only those files that 
have archive backups. FILEDATA reports on files even if their backups do not match 
the resident file or even if there is not a resident file. 

If you specify ARCHIVE BACKUP = NONE, then FILEDATAreports information only 
for those files that do not have archive backup copies listed in the directory. 

If you specify ARC HIVE BACKUP = CURRENT, then FILEDATAreports information 
for nonresident files that have archive backup copies and resident files with generation 
and timestamp values that match the values of their archive backup copy. 

If you specify ARCHIVEBACKUP = NONCURRENT, then FILEDATA reports only on 
resident files whose archive backup copies have a generation or timestamp value that 
does not match the values of the resident file. 

The reports that FILEDATA produces for ARCHIVE BACKUP = NONCURRENT and 
ARCHIVEBACKUP = NONE together include all the files that would be copied by the 
WFL ARCHNE INCREMENTAL statement. These two FILEDATA reports would 
also include a few special files, such as BADDISK files, that would not be copied by 
ARCHNE INCREMENTAL statements. 

AREALENGTH 

AREAS 

Displays the size of an area in the specified file in FRAMESIZE units and also the 
number of full sized records that can be completely contained within that area. A full 
sized record is a record whose size is equal to the value of the MAXRECSIZE modifier. 

A file with variable length records can contain records that are smaller than the 
MAXRECSIZE value and can, therefore, contain a larger number of records in an area. 
The displayed values do not include any unused portions of the area. The specified file 
can be either uncrunched or crunched. 

Displays the number of words in the file header allocated for row addresses. 

AREASIZE 
Displays some of the same information as the AREALENGTH modifier. The value of 
the AREASIZE file attribute is the second number in the AREALENGTH attribute 
display. The value displayed is the number of records in the area. 

BACKUPSN 
The BACKUPSN = <tape serial number> modifier limits the report to files that have 
an archive or catalog backup copy on the tape with a specified serial number. 

8600 0460-100 5-45 



FllEDATA Utility 

The BACKUPSN modifier implies that FILEDATA should retrieve archive or catalog 
information, or both. If you do not explicitly specify either the ARCHIVE modifier or 
the CATALOGUE modifier, and if the task request is neither ARCHIVEINFO nor 
CATALOGINFO, then FILEDATA searches for the tape serial number in both the 
archive and catalog directories (if available). 

BLOCKSIZE 

Displays the block size - that is, the length of a block of the specified file in 
FRAMESIZE units. 

B LOCKSTRUCTU RE 

Displays the format of the records for the specified file. Refer to the A Series File 
Attributes Programming Reference Manual for information about the various 
BLOCKSTRUCTURE values. 

CATALOGUE 

Causes FILEDATA to select resident and nonresident files and to display catalogue 
information for the files. 

When the CATALOGUE modifier is used with an ATTRIBUTES request, FILEDATA 
displays the catalog information for each resident and nonresident file selected. 

When the CATALOGUE modifier is used with a CODEFILEINFO request, FILEDATA 
displays the catalog information for each resident code file selected. 

When the CATALOGUE modifier is used with a FILENAMES request or an 
ARCHIVEINFO request, FILEDATA displays the catalog information for each resident 
or nonresident file selected. Note that this is the same output as that generated by the 
CATALOGINFO request. 

When the CATALOGUE modifier is used with a HEADERCONTENTS request, 
FILEDATA displays the catalog information, in hexadecimal format, for each resident 
and nonresident file selected. 

When the CATALOGUE modifier is used with a NOREPORTS request, catalog 
information for files is collected and put into the new database so that later requests 
can report the information. 

CCSVERSION 

5-46 

Displays the current character set. For more information about the CCSVERSION 
attribute, refer to the A Series File Attributes Programming Reference Manual. 

8600 0460-100 



FI LEDATA Utility 

CODEVERSION 

Depending on the context in which you use it, the CODEVERSION keyword 
is interpreted by FILEDATA as either the CODEVERSION modifier or the 
CODEVERSION file attribute. In all the syntax diagrams in this section, the 
metatoken <CODEVERSION modifier> is used to refer to CODEVERSION in its 
sense as a modifier. Where CODEVERSION is used in its sense as a file attribute, the 
metatoken <file attributes> appears in the syntax diagram, and CODEVERSION is 
listed as one of the permitted file attributes in the explanation of the task request. The 
following paragraphs discuss the CODEVERSION modifier and the CODEVERSION 
file attribute separately. 

CODEVERSION Modifier 

- CODEVERSION I I 
L-<relation>--<release level~ 

The simple CODEVERSION form of the modifier causes FILEDATA to report only on 
the code files that will not be executable with the next release. 

The CODEVERSION <relation> <release level> form of this modifier specifies that 
FILEDATA is to report on only the code files whose version number bears the indicated 
relationship to the given release level. 

CODEVERSION File Attribute 

Displays the version numbers of the code files among the specified files, the version of 
the compiler that compiled the code file, and the relevant code file privilege or status 
information, as shown in Table 5-1. 

Status 

MC-ED 

CPed 

PPed 

PP: TRANSPARENT 

TAOS-CAPABLE 

EXECUTABLE 

NON-EXECUTABLE: 

UNSAFE 

Table 5-1. Code File Status Information 

Explanation 

A compiler code file, enabled by the MC system command 

A control program, enabled by the CP system command 

A privileged program, enabled by the PP system command 

A privileged-transparent program 

A TAOS-capable program 

The default for a code file 

A nonexecutable program, contains UNSAFE code 

The program uses constructs, that if not properly used, could 
damage the system. 

The terms EXECUTABLE and NON-EXECUTABLE refer to the privilege category 
that allows you to execute a given code file. Normally, a user with the appropriate 
privilege can run any EXECUTABLE code file. A nonprivileged user cannot run a 

8600 0460-100 5-47 



FI LEDATA Utility 

NON-EXECUTABLE code file. For example, only an operator can apply the CM 
(Change MCP) system command to an MCP code file, while only a privileged user, a 
system user, or an operator can apply the SL (Support Library) system command to an 
unsafe library code file. 

CREATION DATE 

Displays the date and time that the specified file was created. 

CRUNCHED 

CYCLE 

Indicates whether the specified file has been closed with CRUNCH; that is, whether 
the specified file has returned the unused portion of its last area to the system. 

Identifies generations of a permanent file. The most current file is indicated by the 
highest cycle and the highest version of that cycle. 

DATABASE 

The DATABASE = <file title> modifier causes FILEDATA to obtain information 
from a database file created in a previous run of FILEDATA instead of gathering the 
information from a disk or tape directory. A database file can be created by using the 
NEWDATABASE modifier. 

The copy of FILED AT A that creates a database and the copy of FILED AT A that uses 
the database must be of the same Mark level or compatible Mark levels. IfFILEDATA 
detects that the database file was created by an incompatible version of FILEDATA, 
then the following error message is printed: 

DATABASE AND FILEDATA LEVELS ARE NOT COMPATIBLE 

For the HEADERCONTENTS request to be used on an existing database, the database 
must contain raw disk file headers; otherwise, the following error message is printed: 

DATABASE SPECIFIED DOES NOT CONTAIN RAW HEADERS 

DIRECTORY 

5-48 

The DIRECTORY = <file title> modifier causes FILEDATA to report on the specified 
file or on all the files in the specified directory. If the file title represents a file and a 
directory, both are reported on. TITLE and DIRECTORY are synonyms. 

8600 0460-100 



FI LEDATA Utility 

DOCUMENTTYPE 

Displays the DOCUMENTTYPE file attribute, which enables File Access, Transfer, 
and Management (FTAM) to detect the type of file being transferred. Refer to the 
A Series File Attributes Programming Reference Manual for a description of the 
DOCUMENTTYPE file attribute. 

EXTMODE 

Displays the EXTMODE file attribute of the specified file. Refer to the A Series File 
Attributes Programming Reference Manual for information on the EXTMODE file 
attribute. 

FAMILYNAME 

The FAMILYNAME = <family name> modifier changes the source of information 
from the family named DISK to the named disk pack. The en tire pack is used in the 
report. This modifier overrides the DATABASE, DIRECTORY, TITLE, and TAPE 
modifiers. FAMILYNAME is the preferred mnemonic for PACKNAME. 

FILEKIND 

Describes the internal structure and purpose of a record of a disk file. Refer to the 
A Series File Attributes Programming Reference Manual for the various FILEKIND 
attributes. 

FILELENGTH 

Displays the size of the specified file in FRAMESIZE units. 

FI LEORGAN IZATION 

Describes the organization under which the specified file was opened. 
FILEORGANIZATION is shown only if the FILEKIND value is greater than or equal 
to the VALUE(DATA) value. 

FILESTRUCTURE 

Displays the FILESTRUCTURE file attribute of the specified file. Refer to the 
A Series File Attributes Programming Reference Manual for information on the 
FILESTRUCTURE file attribute. 

8600 0460-100 5-49 



FI LEDATA Utility 

FILETYPE 

Displays the format of the records and the structure of the specified file. Refer to the 
A Series File Attributes Programming Reference Manual for a description of the various 
FILETYPE values. 

FRAMESIZE 

Displays the number of bits transferred as a unit during an I/O procedure to the 
specified file. Refer to the A Series File Attributes Programming Reference Manual for 
a description of the FRAMESIZE file attribute. 

GUARDFILE 

The GUARDFILE = < file title> modifier causes the FILENAMES request of 
FILEDATA to report only on the files guarded or controlled by the specified guard file. 
Because family substitution is not applied for either the input guard file title or the 
guard file titles associated with the files, you should provide the exact guard file title, 
including the usercode or the family name, to ensure proper matching with guarded 
files. 

FILEDATA also checks for existence of the specified guard file. Warning messages such 
as "GUARDFILE DOES NOT EXIST" and "GUARDFILE IS NOT VISIBLE" are 
displayed to caution you about potential errors with the requested guard file. Despite 
such warnings, any files that are guarded or controlled by the specified guard file are 
still reported. 

Ifno files are found to be guarded by the specified guard file, the output is the following: 

TOTAL SEGMENTS SHOWN = 0 

IDENTITY 

Displays the IDENTITY attribute of the specified file. The attribute is used in 
DISPLAY and ACCEPT messages. Use the MP (Mark Program) system command to 
set the IDENTITY attribute. 

INTMODE 

5-50 

Causes the EXTMODE value to be displayed; however, U nisys recommends that you 
not use this modifier. The INTMODE file attribute is not an attribute for a permanent 
file; therefore, this attribute cannot be displayed by FILEDATA. Refer to the A Series 
File Attributes Programming Reference Manual for a description of the INTMODE file 
attribute. 

86000460-100 



FI LEDATA Utility 

LASTACCESSDATE 

Displays the date and time the specified file was last accessed. 

LASTRECORD 

LEVEL 

Displays the record number of the last record. The records are zero-relative; that is, 
the first record is record O. The message "LASTRECORD IS UNKNOWN" is displayed 
for this attribute for files that were not defined with a BLOCKSTRUCTURE attribute 
value of FIXED. 

The LEVEL = <integer> modifier specifies the number of file name levels that 
should be listed beyond the name given in the DIRECTORY or TITLE parameter. For 
example, if the files NB, NC/D, and NEIF /G exist, and a FILEDATA report is initiated 
on DIR = A LEVEL = 2, FILEDATA would report on NB and NC/D. It would also 
show that the directory NEIF exists, but would not report on the file NEIF/G. If no 
DIRECTORY or TITLE value is given, LEVEL specifies the total number of levels to be 
listed. U sercodes are always counted as a level. 

When LEVEL is specified, only information about the files that are shown is listed. 
Information, such as size in segments, is not listed for files that are not shown and is 
not included in any totals of such information. 

LEVEL does not work if DATABASE or TAPE is specified. 

LICENSEKEY 

Displays the key used to control any copy operations performed on the file by Library 
Maintenance. Refer to the A Series File Attributes Programming Reference Manual for 
more information on the LICENSE KEY attribute. 

LINEWIDTH 

The LINEWIDTH = <integer> modifier defines the length of an output line. 

LOCKEDFILE 

Indicates whether the LOCKED FILE attribute has been set to TRUE. When the 
LOCKEDFILE attribute has been set, the file cannot be removed and the file title 
cannot be changed unless the attribute value is reset to FALSE. To reset the value, use 
the WFL ALTER statement or reset the value programmatically. You must request 
that this value be displayed if the attribute value is not set to TRUE. 

8600 0460-100 5-51 



FI LEDATA Utility 

MAXRECSIZE 

Displays the maximum size of logical records in the specified file. 

MINRECSIZE 

Displays the minimum size of logical records in the specified file. 

NAMESONLY 

Causes only the file names to be displayed. Header information is to be neither 
extracted nor processed in any report. 

NEWDATABASE 

The NEWDATABASE = < file title> modifier causes FILEDATA to create a permanent 
disk file that contains the directory information gathered for the request. In 
subsequent runs, if DATABASE is specified with the name of the file created by 
NEWDATABASE, FILEDATA retrieves the information from that file rather than 
gathering the information again from the disk or tape directory. 

NONRESIDENTONLY 

NOTE 

Specifies that FILEDATA is not to report on any resident files, even if they have archive 
or catalog backup copies. FILEDATA is to report only on files that are not currently 
resident on disk but do have at least one archive or catalog backup copy on tape. You 
can use this report to locate files that you no longer need (the files you might want to 
issue WFL ARCHNE PURGE or CATALOG PURGE statements for). 

A request that includes the NONRESIDENTONLYand ARCHIVE modifiers, but 
not the CATALOGUE modifiet; reports on the same files that a WFL ARCHNE 
RESTORE ADD statement would copy from tape to disk. 

Displays the value, if any, of the NOTE file attribute. For a printer backup file, this is 
the message to be printed on the banner page that precedes the file if the BANNER 
attribute has a value of TRUE. Refer to the A Series File Attributes Programming 
Reference Manual for more information on the NOTE file attribute. 

PACKNAME 

Use of the FAMILYNAME modifier is preferred. 

5-52 8600 0460-100 



FI LEDATA Utility 

PAGESIZE 

The PAGESIZE = <integer> modifier specifies the number of output lines per page. 

PERMITTEDACTIONS 

Reports the value of the PERMITTEDACTIONS file attribute, which specifies the 
actions that can be performed on a file through File TransfeJ; Access, and Management 
(FTAM). Refer to the A Series File Attributes Programming Reference Manual for more 
information on the PERMITTEDACTIONS file attribute. 

RAWHEADERS 

When this modifier is used along with a database creating FILEDATA request, 
FILEDATAincludes raw disk file headers in the database it creates. All FILEDATA 
requests, except HEADERCONTENTS, that create a new database should contain the 
RAWHEADERS modifier if the database they create is ever to be used as input to a 
HEADERCONTENTS request. Refer to "HEADERCONTENTS Request" earlier in 
this section. 

RELEASEID 

Displays the software release level of a file, if any. Refer to the A Series File Attributes 
Programming Reference Manual for a description of the RELEASEID file attribute. 

RESIDENTONLY 

Specifies that FILEDATA is not to report on any nonresident files. The report includes 
resident disk files, regardless of whether the files have archive or catalog backup copies 
on tape. 

SAVEFACTOR 

Displays the expiration date of a file in terms of the number of days past the creation 
date. 

SECURITY 

Displays the SECURITYTYPE and SECURITYUSE attributes of a file. If the 
SECURITYTYPE value is .GUARDED or CONTROLLED, the SECURITYGUARD file 
attribute value is also shown. The guard file title displayed for SECURITYGUARD is 
the exact title of the file that is checked for access restrictions. No family substitution 
is done when the system searches for the guard file at access check time. Refer to the 
A Series File Attributes Programming Reference Manual for more information on 
security. 

8600 0460-100 5-53 



FI LEDATA Utility 

TIMESTAMP 

TITLE 

Displays the date and time that the last alteration was made to the file. 

The TITLE = <file title> modifier causes FILEDATA to report on the specified file or 
on all the files in the specified directory. If the file title represents a file and a directory, 
both are reported on. TITLE and DIRECTORY are synonyms. 

TOTALSECTORS 

UNITS 

Causes FILEDATA to report the TOTALSECTORS file attribute value of each file 
reported. For a description of the TOTALSECTORS file attribute, refer to the A Series 
File Attributes Programming Reference Manual. 

Displays the value of the UNITS attribute of the file. 

USERINFO 

Displays the file attribute USERINFO in hexadecimal form. The entire word is 
displayed. This modifier must be specified explicitly to obtain the USERINFO display. 

VERSION 

Identifies generations of a permanent file. The most current file is indicated by the 
highest cycle and the highest version of that cycle. Refer to the A Series File Attributes 
Programming Reference Manual for more information. 

WARNINGS 

5-54 

Reports the warnings that have been accumulated by a file. The report includes the 
text of the warnings. 

NOREPORTS requests should include the WARNINGS modifier if the resulting 
database is to be used as input to an ATTRIBUTES or CODEFILEINFO request with 
the WARNINGS modifier specified. 

8600 0460-100 



FI LEDATA Utility 

Numeric Report Requests 
A numeric report request permits a report to be requested by number. All 
numeric report requests are implemented as executable statements within 
SYMBOLIFILEDATA. These requests reduce the amount of input that must be 
supplied for standard functions such as LISTDlRECTORY. Any number that has been 
defined in SYMBOL/FILEDATA to represent a particular report can be specified in a 
numeric report request. Numeric report requests cannot contain modifiers. 

A numeric report request can be entered by way of a VALUE = <numeric report 
request> statement or in the regular parameter list. A numeric report request entered 
by way ofa VALUE = <numeric report request> statement is performed before the 
parameter list, if any, is processed. The numeric report requests in the parameter list 
are treated like any other FILEDATA task request. 

Reports for 0, 1,3, and 5 are currently defined. A number 0 includes the FILEDATA 
task requests FILENAMES, STRUCTUREMAP, and CHECKERBOARD. A number 
1 is equivalent to the FILENAMES task request. A number 3 is equivalent to the 
CODEFILEINFO task request. A number 5 is equivalent to the COMPILEDECK task 
request. 

<numeric report request> 

--<integer>~--------------------------------------------~ 

Example 

The following command initiates three FILEDATA reports. The first report is a 
numeric report request number O. The second report includes the task request 
ATTRIBUTES with the modifiers DIRECTORY and ALL. The third request specifies 
the numeric report request number 1. 

RUN SYSTEM/FILEDATA ("0;ATTRIBUTES:DIR=MYSELF ALL; 1 ") 

8600 0460-100 5-55 



FI LEDATA Utility 

Old PACKDI R Syntax 

5-56 

The old PACKDIR syntax is composed of keywords that initiate various FILEDATA 
reports. The keywords are equivalent to certain FILEDATA task requests. 

If the <old packdir syntax> variable is used, all nonalphanumerics except the slash are 
translated to blanks and hence are treated as delimiters. Therefore, names preceded 
by an asterisk (*), parenthesized usercodes, and names containing special characters, 
whether the names are quoted or not, are cannot be used. The file name can represent 
a directory, a file, or a directory and a file with the same name. In the last case, both 
the directory name and the file name are reported. A family name can be specified 
separately in the old packdir syntax. An alpha token that is not one of the keywords 
indicated in the syntax diagram is treated as a file name; also, the first identifier in a 
file name cannot be any of those keywords, or a syntax error occurs. 

<old packdir syntax> 

~---------------
/1\- RAW I 
/1\-r MAP ----------1 

L NOMAP --------------------t 
/1 \- 0 I SK -..-----------------1 

L NAME - = -<file name>­
/1\- NAME - = -<file name>--------I 
/1 \-<family name>-------------I 

Explanation 

RAW 

Equivalent to the HEADERCONTENTS task request. 

MAP 

Equivalent to the CHECKERBOARD task request. 

NOMAP 

I 
I 

Suppresses the disk checkerboard information. NOMAP is the default. 

DISK 

Generates a FILENAMES and STRUCTUREMAP report on all files on the family 
DISK. 

DISK NAME = <file name> 

Generates a FILENAMES and STRUCTUREMAP report on all files under the 
directory specified by the file name value residing on the family DISK. 

8600 0460-100 



FI LEDATA Utility 

NAME = <file name> 

Generates a FILENAMES and STRUCTUREMAP report for all files under the 
directory specified by the file name value. For disk packs, the first level of the name 
must be the family name. No blanks, quotes, or parentheses can occur anywhere in the 
family name. 

<family name> 

Indicates on which family the files reside. 

8600 0460-100 5-57 



FI LEDATA Utility 

Using System Commands to Initiate FILEDATA 
DIR (Directory) and TDIR (Tape Directory) are system commands that initiate 
SYSTEM/FILEDATA. 

DI R (Directory) Com mand 

5-58 

The DIR system command is used to obtain disk directory information. 

<dir command> 

- DIR ~------------------~------------------------~: 
-<parameter 1 i st>,-----i 
-<numeric report request>-
r- - ---------------i 
'-<old packd i r syntax>----' 

Explanation 

DIR 

Causes FILEDATA to generate a FILENAMES report and a STRUCTUREMAP report 
for all files on the DISK family. 

<parameter list> 

Initiates a FILEDATA report by specifying various FILEDATA task requests. The 
variable parameter list is defined later in this section. 

<numeric report request> 

This variable is explained later in this section. 

DIR-

Invokes numeric report request number 1. 

<old packdir syntax> 

Uses key words to initiate various FILEDATA reports. This variable is explained later 
in this section. 

Examples 

The following command initiates a FILEDATA report on the directory AlB on the 
family DISK: 

OIR DISK NAME=A/B 

8600 0460-100 



FI LEDATA Utility 

The following command requests a report on the UZERPK family: 

DIR UZERPK RAW 

Either of the following commands invokes the numeric report request number 1: 

DIR 1 
DIR-

The following command produces three FILEDATA reports. The first report invokes 
the COPYDECK task request with the CATALOGUE modifier. The second report 
invokes the CHECKERBOARD task request. The third report invokes the numeric 
request number O. 

DIR COPYDECK: CATALOGUE; CHECKERBOARD; 0 

TDIR (Tape Directory) Command 

The TDIR system command lists the directory of the specified library maintenance 
tape or tapes, or a library maintenance format CD-ROM. 

<tdir command> 

. 
- TOI R -.-------.--..I...-..r-'<un; t number>'--------..--L--------I 

<YO 1 ume name> I ~ 

Explanation 

TOIR <unit number> 
TOIR <volume name> 

~ (COROM) 
L (CD) 

Lists the directory of the tape volume that is mounted on the specified unit or that has 
the specified tape name. 

As many intermixed tape names or unit numbers as desired can be specified. Each 
must be separated from the next by a comma (,). 

The unit number must be used in place of specifying tape name if the nth reel ofa 
multireellibrary dump is required. 

If none of the output options PUNCH, SCREEN, or SPO is specified, the output is sent 
to the printer. 

8600 0460-100 5-59 



FI LEDATA Utility 

5-60 

TOIR <unit number> 
TOIR <volume name> (COR OM) 

Displays the directory of the CD that is loaded on the specified unit or the directory of 
the CD volume that has the specified name. 

SPO 

Displays the directory of the specified tape on the originating ODT, This option should 
be used if the aDT is configured with visible end-of-text (ETX) characters. 

SCREEN 

Displays the directory of the specified tape on the originating ODT. This option should 
be used if the aDT is configured with invisible end-of-text (ETX) characters. 

PUNCH 

Causes the directory of the specified tape to be punched by the card punch. 

8600 0460-100 



Section 6 
INTERACTIVEXREF Utility 

I NTERACTIVEXREF Operation 
The SYSTEM/INTERACTIVEXREF utility permits interactive access to detailed 
information about the identifiers declared in a program. 

A cross-reference of a program contains an entry for each identifier declared in the 
program. This entry is referred to as the header line information. The header line 
contains the following information about the identifier: 

• The alphabetic name 

• The declared type of the identifier 

• The program environment 

• The stack location 

• The sequence number of the declaration 

Files Used by the INTERACTIVEXREF Utility 

The INTERACTIVEXREF utility obtains information from files generated by the 
SYSTEM/XREF ANALYZER utility. 

These files are called XREFFILES and have the titles XREFFILES/<code file 
name> /DEeS and XREFFILES/ <code file name> /REFS. The code file name is the 
name of the code file that was being generated by the compiler when the XREFFILES 
were created. When compiled through the Command and Edit (CANDE) message 
control system (MCS), the code file name is normally prefixed by OBJECT followed by 
a slash (f). 

You can produce the XREFFILES by using the compiler control option XREFFILES. 
When XREFFILES is TRUE, the compiler runs SYSTEM/XREF ANALYZER to produce 
the cross-reference files. 

Assigning another compiler control option, XREF, the value SET causes 
XREFANALYZER to produce only a printed output of the cross-reference information. 

When both XREFFILES and XREF are TRUE, both the XREFFILES and a printed 
output are produced. These options are available in the following compilers: 

• ALGOL 

• COBOL74 

8600 0460-100 6-1 



I NTERACTIVEXREF Utility 

• ESPOL 

• FORTRAN 

• FORTRAN77 

• NEWP 

• PASCAL 

• RPG 

If any syntax errors are encountered, XREFANALYZER is not run. 

The XREFFILES can also be produced by running XREFANALYZER with a negative 
task value. The XREFANALYZER input file TITLE=XREF/<code file name> must be 
specified during initialization. 

Version information is included in the XREFFILES. INTERACTIVEXREF checks the 
version compatibility of the XREFFILES and displays an appropriate error message if 
the XREFFILES were created with an incompatible XREFANALYZER. These files 
must be present for INTERACTIVEXREF to run. 

Information from the original symbol file used in the compilation is needed by several 
commands. 

Running the INTERACTIVEXREF Utility 

6-2 

To run INTERACTIVEXREF from a terminal, enter the following CANDE command: 

RUN $SYSTEM/INTERACTIVEXREF 

This command initializes INTERACTIVEXREF. You must then load the XREFFILES 
using the LOAD command. The original symbol file used in the compilation is needed 
only for certain commands and can be loaded by means of the SYMBOL command. The 
LOAD and SYMBOL commands are explained later in this section. 

To load the XREFFILES and the symbol file during initialization enter the following 
CANDE command: 

RUN $SYSTEM/INTERACTIVEXREF; FILE LOAD=<load file name>; 
FILE SYMBOL=<symbol file name> 

Running INTERACTIVEXREF with the SWI task attribute set to TRUE causes the 
program to create a LOCS file, if one does not already exist. The LOCS file can be used 
by the LOADXREF command in DUMPANALYZER, as described in the A Series 
System Software Support Reference Manual. 

After INTERACTIVEXREF has been initialized and the XREFFILES have been 
loaded, you can enter commands to obtain specific information about the identifiers. 
Commands can be entered one at a time, or multiple commands can be placed on the 

8600 0460-100 



I NTERACTIVEXREF Utility 

same line, separated by semicolons (;). You can continue a command line over two or 
more lines by ending each line with a percent sign (%) and continuing on the next line. 

You can discontinue a command by entering BREAK. At that point, any remaining 
commands on the current input line are ignored. 

Caution: 

Make sure that the correct symbol file is associated with the correct XREFFI LES 
file. INTERACTIVEXREF cannot recognize an error, and unexpected responses 
could result. 

Input to the INTERACTIVEXREF Utility 

The following text explains the basic constructs and the commands used when running 
INTERACTIVEXREF. 

Basic INTERACTIVEXREF Constructs 

The following items commonly appear as syntactic variables in the syntax diagrams in 
this section. 

Identifier Specification 

An identifier specification defines a particular identifier within a program. If the 
identifier is redeclared in many different procedures or blocks, you can also indicate the 
particular procedure or block by specifying an identifier qualification along with the 
identifier value. 

< identifier specification> 

-<identifier> 
L-<identifier qua1ification~ 

< identifier> 

-<1 etter>>--r--------.-----------------l 

~-/61\~ <letter 
<digit 

8600 0460-100 6-3 



I NTERACTIVEXREF Utility 

6-4 

<identifier qualification> 

1 
AT FIRST 
AT -<sequence number>-"---------------l 
IN -<procedure sped fi cati on>-----------I 
OF -<procedure sped fi cati on ">------------1 
AT -<sequence number>-- IN -<procedure specification>-

<sequence number> 

1 
I 

~<di9it>~I--------------------------~ 

<procedure specification> 

r~ OF 
---1...-<procedure i dent i fi er>>--'---------------------! 

Explanation 

<identifier> 

An alphanumeric identifier beginning with a letter that is composed entirely of any 
combination of letters (A through Z), digits (0 through 9), and underscores (_). In an 
ALGOL program, an identifier of the form B.0002 is acceptable. 

< identifier qualification> 

Qualifies the occurrence of the identifier that is intended in case the same identifier is 
redeclared in many different procedures or blocks. 

AT FIRST 

Selects the first occurrence of the identifier that the compiler encountered. 

AT <sequence number> 

Selects the occurrence of the identifier declared, or used closest to, the specified 
sequence number. If an exact match is not found, a warning message is given. The 
identifier qualification gives undefined results if the symbol file that was loaded is not 
sequenced properly. 

IN <procedure specification> 

Causes INTERACTIVEXREF to look for a use of the identifier in the specified 
procedure. INTERACTIVEXREF looks first for an identifier declared by the specified 
procedure. If the identifier is not declared by the specified procedure, an identifier 
declared in a procedure nested within the specified procedure is sought. If this search 
fails, a global identifier referenced by the procedure is sought. If all these searches fail, 
an error occurs. 

8600 0460-100 



INTERACTIVEXREF Utility 

OF < procedure specification> 

Selects the occurrence of the identifier declared by the specified procedure. An 
occurrence of the identifier declared by a procedure contained within the specified 
procedure is not acceptable. 

AT <sequence number> IN <procedure specification> 

Selects the occurrence of the identifier declared or referenced closest to the specified 
sequence number within the specified procedure. This option is useful as an alternative 
to AT <sequence number> when the specified procedure, but not the entire source, is 
properly sequenced. Refer to "Use with Improperly Sequenced Source" in this section. 

< procedure specification> 

Specifies a particular procedure. The procedure specification need be only long enough 
so that its outermost environment-a module or a procedure-is the best candidate of 
all the possible environments specified by that identifier. The best candidate is defined 
as follows: 

• If only one environment exists and uses the procedure identifier name, it is used. 

• If more than one environment exists with this name, the most global environment 
is used. 

• If equally global environments exist with this name, the first environment is used. 

If more than one environment exists for a specified name, a warning of possible 
ambiguity and the name of the chosen environment are displayed. 

Examples 

The following examples use the example INTERACTIVEXREF program contained at 
the end of this section. 

The following REFERENCE command requests information on the identifier B at line 
5600: 

REF B AT 5600 

CLOSEST MATCH: B @ 00005400 
B •• REAL @ (2,2) •• DECLARED @ 00001200 

00002600 *00005400 *00005800 
~ o 

8600 0460-100 6-5 



I NTERACTIVEXREF Utility 

6-6 

The following REFERENCE command requests information on the identifier B at line 
5601: 

REF B AT 5601 

CLOSEST MATCH: B @ 00005800 
B .• REAL @ (2,2) •. DECLARED @ 00001200 

00002600 *00005400 *00005800 

The following REFERENCE command requests information on the identifier B at line 
2600. Because this command does not specify a <procedure specification> value, the 
global REAL B is used by default. Therefore, the INTEGER B declared at 3300 is not 
located. 

REF B AT 2600 

CLOSEST MATCH: B @ 00002600 
B •• REAL @ (2,2) •• DECLARED @ 00001200 

00002600 *00005400 *00005800 

The following REFERENCE command requests information on the INTEGER type B 
in procedure TWO: 

REF B IN TWO 

B OF TWO :: INTEGER @ (3,2) DECLARED @ 00003300 
*00004600 

The following REFERENCE command requests information on the identifier C in 
procedure TWO: 

REF C IN TWO 

C OF THREE OF TWO :: INTEGER @ (4,2) .• DECLARED @ 00003700 
*00003800 00003900 

The following command causes an error because C is not declared by procedure TWO. 
OF <procedure specification> does not check nested procedures for an occurrence of 
the identifier. 

REF C OF TWO 

ERROR: REFERENCES - IDENTIFIER NOT DECLARED BY SPECIFIED ENVIRONMENT. 
SCANNING C 

8600 0460-100 



INTERACTIVEXREF Utility 

Either one of the following two REFERENCE commands would produce information 
on the identifier C in procedure THREE of TWO: 

REF C OF THREE 
REF C OF THREE OF TWO 

C OF THREE OF TWO :: INTEGER @ (4,2) .. DECLARED @ 00003700 
*00003800 00003900 

~ o 

Range Specification 

A range specification is used to restrict a request to a certain subset of the source file. 
Ranges can be specified in terms of either sequence numbers or environments 
(procedure names). Sequence numbers and environments cannot be intermixed in the 
same range specification. 

< range specification> 

--~--~ * ----------------------~--------------------~ t -j * J <subrange specification] 

< subrange specification> 

1E
<procedure speci fi cat i on~r-'----------------------.-....I...-..--I 

- THRU <procedure specification> 
( -<procedure speci fi cati on>-- ) _____________ ---l 

~ , -----------------, 
<sequence number>--...---------------------.---l..---------------------..l 

- -<sequence number 
- - END --------' 

Explanation 

* 

Specifies the current default reference range. 

-* 

Specifies the opposite of the current default reference range. 

<subrange specification> 

Specifies a procedure range or sequence range to be included. 

8600 0460-100 6-7 



I NTERACTIVEXREF Utility 

6-8 

< procedure specification> 

Includes the specified procedure and all procedures nested within it. 

-< procedure specification> 

Includes all procedures except the one specified, and all procedures nested within this 
procedure. 

<procedure specification> THRU <procedure specification> 

Includes all procedures in order of declaration from the first specified procedure 
through the second specified procedure. 

-<procedure specification> THRU <procedure specification> 

Includes all procedures except the procedures in order of declaration from the first 
specified procedure through the second. 

«procedure specification» 

Includes the specified procedure, but not the procedures nested within it. 

- ( < procedure specification» 

Includes all procedures except the one specified. The procedures nested within that 
procedure are included. 

Examples 

The following examples use the example INTERACTIVEXREF program contained at 
the end of this section. 

The following range specification includes all sequence numbers from 1850 through 
2300 and 5000 through the end of the file: 

1850-2300, 5000-END 

The following range specification includes global procedure ONE and all procedures 
declared within it, and global procedure TWO, but not the procedure declared within 
it-that is, procedure THREE: 

ONE, (TWO) 

8600 0460-100 



INTERACTIVEXREF Utility 

The following range specification includes the entire source file except the global 
procedure ONE and all the procedures declared within it: 

-ONE 

The following range specification specifies the opposite of the current default reference 
range: 

-* 

The following range specification includes the current default reference range as well 
as global procedure ONE and all the procedures declared within that procedure: 

*, ONE 

The following range specification includes the entire source file except for the global 
procedure TWO. The procedures nested within TWO are included. 

-(TWO) 

I NTERACTIVEXREF Commands 
The following list names all the commands that you can enter while running 
INTERACTIVEXREF: 

• DECLARATIONS Command 

• EXPAND Command 

• HELP Command 

• LIST Command 

• LOAD Command 

• LOCATE Command 

• MERGE and COINCIDENCE Commands 

• QUALIFY Command 

• RANGE Command 

• REFERENCE Command 

• SET and RESET Commands 

• STOP Command 

• SUMMARY Command 

• SYMBOL Command 

• TERMINAL Command 

8600 0460-100 6-9 



I NTERACTIVEXREF Utility 

• WHAT Command 

• WHATFILES Command 

DECLARATIONS Command 

6-10 

The DECLARATIONS command causes a specified set of declarations to be isolated and 
listed along with optional information. The options available fall into three categories: 

• Those that select the set of declarations 

• Those that specify the output to be produced for each selected declaration 

• Those that specify the order and destination of the output 

The identifier specified in the most recently entered LOCATE, REFERENCE, 
EXPAND, or SUMMARY command is called the work identifier. INTERACTIVEXREF 
remembers the work identifier from command to command and can use it as a default 
identifier in certain commands. To avoid confusion, the DECLARATIONS command 
nullifies the work identifier. 

If no other options are specified as part of the DECLARATIONS command, the defaults 
are as follows: 

• All declarations are included. 

• The header line is given. The information contained in the header line includes the 
name, the compiler class, the environment where declared, the stack location, the 
sequence number where declared, and the aliases. 

• The output is ordered alphabetically by identifier name and is sent to the terminal. 

<declarations command> 

- DECLARATIONS --.-, --------------r-, -------
L- - -<identifier 

L-<identifier> ~ 

L : - LITERAL 

~-<declaration specification>>--------------------t 

8600 0460-100 



I NTERACTIVEXREF Utility 

< declaration specification> 

.-/1\- : - ANY I I 
I 

f-/1\- : - DECLARED -<range specification 
f-/1 \- : L USED 

UNUSED ~ L-<range specification> 
~/1\- : - ALSOUSED -<range specification' 
f-/1 \- : - ONLYUSED -<range specification> 

f-/1 \- : - CLASS [f-<al pha i dentifi er l 
[_J 

f-/1 \- : - KEYWORD I ] <alpha identifier L _ 
f-/1 \- : - LEVELS -<hex integer 

L<hex integer' 
f-/1 \- : - DISPLACEMENTS -<hex integer> 1 

L<hex i nteger>-
f-/1\- : - IDSONLY 

L· <1 nteger'" 
f-/1\- : -<reference' 
f-/1 \- : -<expand' 
f-/1\- : - SUMMARY 
f-/1\- : - SHORT 
f-/1\- : -<sort' 
f-/1\- : - PRINTER 
f-/1\- : - REMOTE 
~ 1 - : - FILE -<file name / \ 

<reference> 

- REFERENCE ----------------------~ 

• Li;/1\- • - 9!ANGEO ___________ -,--...I..-.J 

t
/1\- . - ALIASES 
/1\- . - TEXT -.-------------1 

- L<i nteger> 
/1\~ . - ENVIRONMENTS ~ I I 

l L L<number:>-l L ONLY 
. - GLOBALENV I RONMENTS -,--------1 

ONLY ----I 
/1\- . - RANGE -<rang~ specification>------.l 

<expand> 

- EXPAND --.--------------,.-------------i 

~/ 1 \- • - FULL --.--'---' 
/1\- . - BLOCKED -J 
/1\- . -<Tnteger~ 

<sort> 

- SORT ~/l\-lliNUMBER --1-,--1---------------1 

t/1\- ADDRESSCOUPLE -1 
/1\- ALPHABETICAL ~ 

8600 0460-100 6-11 



I NTERACTIVEXREF Utility _ 

6-12 

Explanation 

Options that control the selection of the set of declarations are defined as follows: 

DECLARATIONS 

Gives declaration information on all identifiers. 

<identifier> 

Gives declaration information for the specified identifier. 

<identifier> - <identifier> 

Gives declaration information for all the identifiers that are alphabetically between the 
specified pair of identifiers. The identifier pair must be ordered alphabetically. 

<identifier> : LITERAL 

Gives declaration information for all identifiers that contain the specified identifier as a 
substring. 

ANY 

Gives declaration information only for the first declaration meeting all other 
qualifications. 

DECLARED <range specification> 

Gives declaration information for all identifiers declared within the specified range. 

USED 

Gives declaration information for all identifiers that are referenced somewhere in the 
program. If a range is specified, this option restricts the set to identifiers referenced 
within that range. 

UNUSED 

Gives declaration information for identifiers that are declared but never referenced 
in the program. If a range is specified, the set is restricted to identifiers that are not 
referenced within the specified range. 

ALSOUSED <range specifications> 

Restricts declaration information to identifiers that also have references in this 
specified range. 

8600 0460-100 



I NTERACTIVEXREF Utility 

ONLYUSED <range specification> 

Gives declaration information for identifiers referenced within the specified range and 
not referenced elsewhere. 

CLASS <alpha identifier> 

Gives declaration information for all identifiers with the specified compiler class or 
group of compiler classes. The compiler class must appear exactly as it appears in a 
header line-for example, BOOLEAN ARRAY, INTEGER, FORMAL NAME REAL. 
Only one compiler class can be specified for each CLASS option; however, the compiler 
class can contain more than one alpha identifier - for example, REAL PROCEDURE). 
CLASS can be specified as often as desired; thus, a group of classes can be specified. 

CLASS - <alpha identifier> 

Gives declaration information for all identifiers in all the compiler classes except those 
specified in the alpha identifier list. 

KEYWORD <alpha identifier> 

Gives declaration information for the identifiers in the group of compiler classes that 
contain the specified alpha identifier. For example, KEY BOOLEAN causes classes such 
as BOOLEAN, BOOLEAN ARRAY, and BOOLEAN PROCEDURE to be included. 
KEYWORD and CLASS can be specified as often as desired to generate the desired 
group of classes. 

KEYWORD - <alpha identifier> 

Gives declaration information for the identifiers in the group of compiler classes that 
do not contain the specified alpha identifier. For example, KEY - BOOLEAN includes 
exactly the opposite of the classes included by KEY BOOLEAN. 

LEVELS <hex integer> 

Gives declaration information for the identifiers that have stack cells with the specified 
lexicographical levels . 

DISPLACEMENTS <hex integer> 

Gives declaration information for the identifiers that have stack cells with the specified 
displacements. 

Options that specify the output to be produced for each selected declaration are 
described as follows: 

8600 0460-100 6-13 



I NTERACTIVEXREF Utility 

I DSONLY 

Displays only identifier names and omits the other header information. The output is 
displayed in ascending alphanumeric order with a default field width of 20. The field 
width can be altered by specifying <integer> as the new fie~d width. 

REFERENCE 

Displays references to the selected declaration. This option can itself be modified 
by any of the options listed under the REFERENCE command except PRINTER 
or REMOTE, with the same effects. For an explanation of these options, refer to 
"REFERENCE Command" later in this section. 

EXPAND 

Writes out the text of the selected declaration if the identifier is an item such as a 
DEFINE, ARRAY, or FILE statement that has text associated with its declaration. 

If this option is modified by FULL, the text is completely expanded before it is 
displayed. If a full expansion of a DEFINE statement is requested, it is performed in 
the context of its first use. 

If this option is modified by BLOCKED, the output is indented at the BEGIN 
statement, and statements are placed on separate lines. Only the first or the final 
expansion can be obtained. 

The integer value specifies an approximate limit on the lines of text printed for each 
declaration. The default limit is 10. 

SUMMARY 

Lists a summary of the number and kinds of references to the selected declaration. 

SHORT 

Suppresses listing of the aliases of the selected declaration. Currently, only ESPOL and 
NEWP keep track of aliases. SHORT has no effect for other languages. 

Options that specify the order and destination of output are described as follows: 

SORT 

Controls the order in which the selected declarations are printed: 

• 'When SORT is followed by SEQNUMBER, the output is sorted by sequence 
number where each declaration was declared. 

• 'When SORT is followed by ADDRESSCOUPLE, the output is sorted first on the 
address couple-the the lexicographical level and the displacement of stack cell-of 
each declaration, and then on the sequence number where each was declared. 

6-14 8600 0460-100 



I NTERACTIVEXREF Utility 

• When SORT is followed by ALPHABETICAL, the output is sorted first 
alphabetically, and then in order of occurrence. This output is the same output that 
would be produced if SORT were not specified. 

When SORT is followed by more than one item, multiple sets of output are produced. 

PRINTER 

Sends output to the line printer by way ofa file internally named LINE. 

REMOTE 

Sends output to the terminal. This option can be used when PRINTER has been 
specified so that output is sent to the terminal as well as to the printer. 

FILE <file name> 

Causes all referenced text lines from the symbol file to be output to a disk file with 
the specified file name. This file cannot already exist. The file name is created with 
the same FILETYPE value as the file loaded by the SYMBOL command. Refer to the 
"SYMBOL Command" in this section. Ifno symbol file is loaded, an error message is 
given at the terminal. The FILE option is valid only when used with the REFERENCE 
option. 

Examples 

The following examples use the example INTERACTIVEXREF program contained at 
the end of this section. 

The following command requests information about all the declarations of the 
identifier B. The output is listed following the command. 

DECLARATIONS B 

B •. REAL @ (2,2) •• DECLARED @ 00001200 
B OF TWO :: INTEGER @ (3,2) :: DECLARED @ 00003300 

8600 0460-100 6-15 



I NTERACTIVEXREF Utility 

The following command requests information about all of the declarations for 
identifiers that are alphabetically between B and MEAN inclusive: 

DECLARATIONS B - MEAN 

B :: REAL @ (2,2) •• DECLARED @ 00001200 
B OF TWO :: INTEGER @ (3,2) :: DECLARED @ 00003300 
B.0000 ::PROCEDURE @ (1,2)::DECLARED @ 00001100 ENDS @ 00006000 
C :: REAL @ (2,3) :: DECLARED @ 00001200 
C OF THREE OF TWO :: INTEGER @ (4,2) :: DECLARED @ 00003700 
EQUATION :: DEFINE :: DECLARED @ 00002000 
FOURR :: DEFINE :: DECLARED @ 00001900 
I • . INTEGER @ (2,6) . . DECLARED @ 00001300 
MEAN :: REAL @ (2,4) :: DECLARED @ 00001200 

The following command lists information about declarations of identifier B under the 
compiler class of INTEGER: 

DECLARATIONS B: KEYWORD INTEGER 

B OF TWO :: INTEGER @ (3,2) .. DECLARED @ 00003300 

The following command lists information for references to the identifier MEAN where 
its value can change: 

DECLARATIONS MEAN: REF. CHANGED. TEXT 

MEAN :: REAL @ (2,4) :: DECLARED @ 00001200 
*00002400 MEAN:=2; 
*00002600 MEAN:= MEAN * B; 
*00003900 . MEAN: = MEAN + C; 
*00004200 MEAN:= MEAN / 3; 

The following command lists information about all identifiers that are global to 
procedure TWO but are used within procedure TWO: 

DECLARATIONS: DECLARED -TWO: USED TWO 

C •• REAL @ (2,3) •. DECLARED @ 00001200 
I •. INTEGER @ (2,6) :: DECLARED @ 00001300 
MEAN :: REAL @ (2,4) :: DECLARED @ 00001200 
ONEE :: DEFINE :: DECLARED @ 00001500 
R :: REAL ARRAY @ (2,7) :: DECLARED @ 00001400 
TWOO :: DEFINE :: DECLARED @ 00001600 

6-16 8600 0460-100 



INTERACTIVEXREF Utility 

The following command lists information about all identifiers that have stack cells 
within lexicographical level 2: 

DECLARATIONS: LEVELS 2 

B · . REAL @ (2,2) . . DECLARED @ 00001200 
C · . REAL @ (2,3) . . DECLARED @ 00001200 
I · . INTEGER @ (2,6) · . DECLARED @ 00001300 
MEAN .. REAL @ (2,4) · . DECLARED @ 00001200 
ONE .. PROCEDURE @ (2,8) . . DECLARED @ 00002200 ENDS @ 00002900 
R · . REAL ARRAY @ (2,7) . . DECLARED @ 00001400 
STRG .. REAL @ (2,5) · . DECLARED @ 00001200 
TWO .. PROCEDURE @ (2,9) . . DECLARED @ 00003100 ENDS @ 00005000 
~ 0 

EXPAND Command 

The EXPAND command causes the text of a specified declaration to be written out 
(expanded) if the identifier is an item such as a DEFINE, ARRAY, or FILE statement 
that has text associated with its declaration. 

The identifier specified in the EXPAND command becomes the new work identifier. If 
no identifier is specified, the current work identifier is used. 

Unless the EXPAND command is modified by the available options, the action taken is 
as follows: 

1. The first time the work identifier is expanded, the text of the declaration is given. 

2. Subsequent requests to expand the work identifier cause this text to be scanned 
for occurrences of other DEFINE statements. If such nested DEFINE statements 
are found, they are replaced by their text. This process can be repeated, one step 
at a time, until the text is completely expanded (that is, no more nested DEFINE 
statements are found), a new work identifier is specified, or the work identifier is 
nullified. 

3. Once the expansion is complete, a message to that effect is displayed. Subsequent 
requests to expand the work identifier cause the final version to be displayed. 

The expansion of a DEFINE statement is context-sensitive. A DEFINE statement can 
be used within a procedure or block more local than that in which it was declared. In 
this case, the inner procedure or block might have redeclared some of the identifiers 
used in the text of the DEFINE statement. Unless the identifier was specified using 
a qualification such as AT<sequence number>, which gives some indication of the 
context to be used, a context must be chosen. If the DEFINE statement is referenced, 
it is expanded in the context of its first reference. If the DEFINE statement is never 
referenced, it is expanded in the context of its declaration. In either case, a. warning 
message is displayed. 

You must load the symbol file to use this command. 

8600 0460-100 6-17 



INTERACTIVEXREF Utility 

6-18 

<expand command> 

- EXPAND -,------------------,-1--------1 

~I f- -I 1-\----FU-L-L -=--=--=--=--=--=--=--=--=--=--=-~-=I---,I 
II \- - PARAMETERS -----l 
11\- - ~LOCKED ------i 

Explanation 

EXPAND 

E
/1\- : - PRINTER 
11\- : - REMOTE ---------1 
11\~<identifier specification>­

L- AT -<sequence number>----

Expands the work identifier. The work identifier is the identifier used in the most 
recently entered LOCATE, REFERENCE, EXPAND, or SUMMARY command. If no 
identifier is specified and the work identifier is empty, an error occurs. 

FULL 

Causes the text to be completely expanded before it is displayed. 

PARAMETERS 

If the identifier being expanded is a DEFINE with parameters, and if it is being 
expanded in the context of a reference, then actual parameters are extracted from the 
text of that reference and substituted for the formal parameters in the expansion. 
Even if the expansion was complete before the actual parameters were inserted, the 
expansion reverts to the incomplete state because the actual parameters can contain . 
identifiers that are DEFINE statements. 

Note: If both the FULL option and the PARAMETERS option are specified, 
the actual parameters are inserted before the full expansion is 
performed. PARAMETERS works only if the DEFINE statement was 
referenced directly and not by another DEFINE statement. 

BLOCKED 

Causes the first expansion to be blocked, that is, to indent at the BEGIN statement and 
place statements on separate lines. By default, the first expansion is printed out exactly 
as it appears in the symbol file (including comments). Subsequent levels of expansion 
are blocked. 

PRINTER 

Sends output to the line printer by way ofa file internally named LINE. 

8600 0460-100 



INTERACTIVEXREF Utility 

REMOTE 

Sends output to the terminal. This option can be used when PRINTER has been 
specified so that output is sent to the terminal as well as the printer. 

<identifier specification> 

Specifies the identifier to be expanded. 

AT <sequence number> 

Expands the identifier in the context of the reference nearest the specified sequence 
number. 

Examples 

The following examples use the example INTERACTIVEXREF program contained at 
the end of this section. These examples feature each step of the expansion process in 
order to show the effect of entering several EXPAND commands in a row. 

The following command establishes EQUATION as the work identifier and gives the 
text of the declaration: 

EXPAND EQUATION 

EQUATION :: DEFINE .. DECLARED @ 00002000 
EQUATION=R[ONEE] + R[TWOO] * R[THREE] - R[MORE] / R[ONEE]; 

The first time the work identifier is expanded, the output is the expansion of all 
first-level defines, as follows: 

EXPAND 

*** WARNING: EXPANDING IN CONTEXT OF FIRST USE *** 
EQUATION=R[l] +R[2] *R[3] -R[FOURR] /R[l] ; 

The next EXPAND command causes the expansion of all second-level defines: 

EXPAND 

8600 0460-100 

EQUATION=R[1]+R[2]*R[3]-R[4]/R[1]; 
% 

6-19 



I NTERACTIVEXREF Utility 

The next time the work identifier is expanded, the following message indicates that the 
work identifier is fully expanded: 

EXPAND 

EXPANSION COMPLETE 

Every time following the completed expansion of the work identifier, the final expansion 
is given as follows: 

EXPAND 

EQUATION=R[1]+R[2]*R[3]-R[4]/R[1]; 

Considerations for Use 

The room available for storing expansion text is limited. The first level of expansion is 
always completely printed out. Higher levels might be truncated if internal storage is 
insufficient. 

For any given expansion, expansion of nested DEFINE statements is carried out in only 
one context. Also, text is displayed in complete syntax form, and declarations cannot be 
distinguished from other statements. As a consequence, higher-level expansions of 
DEFINE statements that contain declarations might be incorrect. 

HELP Command 

6-20 

The HELP command displays a list of all commands, with a short description of each. 

<help command> 

- HELP 
[ : - PRINTER -1 

Explanation 

HELP: PRINTER 

Causes the listing to go to the printer. 

8600 0460-100 



I NTERACTIVEXREF Utility 

LIST Command 

The LIST command lists text from the symbol file. The symbol file must be loaded 
before the LIST command can be used. 

< list command> 

- LIST -,-------------------y------------i 

/1 \~f-<sequence r~nge>----,--'--,-...!-....J 
<procedure identifier 
<interface identifier 

/1\- - PRINTER -------1 
/1\- - REMOTE -------1 
/1\- - fILE -<file name>---.J 

<sequence range> 

-<sequence number> 
L- < -<;nteger~ L- - -<sequence number>-j L- __ END ______ ---.J 

Explanation· 

LIST 

Lists the entire file. 

<sequence number> 

Lists only the line specified by the sequence number. The file must be properly 
sequenced if any of the sequence number options are to be used. 

<sequence number> < <integer> 

Causes the command to begin listing the specified number of lines back from the 
sequence number and to list through the end of the file. 

<sequence number> - <sequence number> 

Lists the file beginning with the first sequence number through the second sequence 
number. 

<sequence number> - END 

Lists the file beginning with the specified sequence number through the end of the file. 

<procedure identifier> 
< interface identifier> 

List only the specified procedure or interface. 

8600 0460-100 6-21 



INTERACTIVEXREF Utility 

PRINTER 

Sends the output to the line printer by way ofa file internally named LINE. 

REMOTE 

Sends the output to the terminal. This option can be used with the PRINTER option to 
send the output to the terminal as well as to the PRINTER. 

FILE <file name> 

Causes all lines in the sequence range, or all lines of the requested procedures or 
interfaces, to be written to a disk file with the specified file name. This file cannot 
already exist. The file name is created with the same FILETYPE value as the file 
loaded by the SYMBOL command. Refer to "SYMBOL Command" in this section. 

Examples 

The following command lists procedure ONE: 

LIST ONE 

00002200 PROCEDURE ONE; 
00002300 BEGIN 
00002400 MEAN:=2; 
00002500 FOR 1:= 0 STEP 1 UNTIL 5 DO 
00002600 
00002700 
00002800 
00002900 

MEAN:= MEAN * B; 
C:= C * MEAN; 
STRG:= EQUATION; 

END ONE; 

LOAD Command 

6-22 

The LOAD command loads the INTERACTlVEXREF information files - that is, the 
XREFFILES. To prevent confusion, this command nullifies any previous SYMBOL 
command. Refer to "SYMBOL Command" in this section. 

<load command> 

- LOAD -<fil e name>>---------------------I 

Explanation 

LOAD <file name> 

Loads the XREFFILES associated with the specified file name. The file name should 
specify the object file generated by the compiler when the XREF information files were 

8600 0460-100 



I NTERACTIVEXREF Utility 

generated. The titles of the XREF information files are constructed from this file name 
and then loaded. 

Note: When compiling a CANDE work file, use the format CANDE/CODE 
<number> for the name of the file. 

Example 

The following command causes the files XREFFILES/CANDE/CODE390/REFS and 
XREFFILES/CANDE/CODE390/DECS to be loaded: 

LOAD CANDE/CODE390 

The following command causes the files XREFFILES/OBJECT!MA V /INTX/REFS and 
XREFFILES/OBJECT/MA V/INTX/DECS to be loaded: 

LOAD OBJECT/MAV/INTX 

LOCATE Command 

The LOCATE command provides the following information about the specified 
identifier: 

• The alphabetic name 

• The declared type 

• The program environment 

• The stack location 

• The sequence number of the declaration 

• Any of the aliases 

Other commands, such as REFERENCE, also print out this header line information. 

< locate command> 

- LOCATE -<identifier specification>>----------------i 

Examples 

The following examples use the example INTERACTlVEXREF program contained at 
the end of this section. 

8600 0460-100 6-23 



I NTERACTIVEXREF Utility 

The following command locates the identifier B declared or used closest to sequence 
number 5500: 

LOCATE B AT 5500 

CLOSEST MATCH: B @ 00005400 
B •. REAL @ (2,2) •• DECLARED @ 00001200 

The following command locates the identifier C declared by procedure THREE of global 
procedure TWO: 

LOCATE C OF THREE OF TWO 

C OF THREE OF TWO :: INTEGER @ (4,2) •• DECLARED @ 00003700 

MERGE and COINCIDENCE Commands 

6-24 

The MERGE command produces a merged list of the references to the specified 
identifiers . 

The COINCIDENCE command produces a list of the places where all the references to 
the specified identifiers appear on the same line. 

Note: Although the identifiers can be used in the same statement or 
expression, the statement or expression can be split across a line 
boundary, in which case the identifiers would not be {lagged by the 
COINCIDENCE command. 

<merge command> 
<coincidence command> 

~ MERGE ----~I---------------------------------------~ 
L COINCIDENCE .oJ 

1 
~ 

~ , I /1*\ <identifier specification 
/1\- : -- RANGE -<range specification' 
/1\- : -- CHANGED 
/1\- : -- ALIASES 
/1\- : -- !EXT 

L· <lnteger 
/1\1 : -- ENVIRONMENTS L. .~! 

<number L ONLY -
: -- GLOBALENVIRONMENTS I 

~/1\- L ONLY -----I 
-- PRI NTER -----------------------1 
-- REMOTE --------------1 t /1\­

/1\- -- £1 LE -<f i 1 e name>>-----------------' 

I I 
I 

86000460-100 



I NTERACTIVEXREF Utility 

Explanation 

< identifier specification> 

Specifies the identifiers to be used in the command. 

RANGE < range specification> 

Produces a MERGE or a COINCIDENCE list of references to the identifiers in the 
specified range. The default reference range, as specified by the RANGE command, is 
used if a range specification is not specified. The default value of the RANGE command 
is the entire program. 

CHANGED 

'When specified with MERGE, causes only references where the value of the identifier 
might be changed by the statement to be listed. 

'When this option is specified with COINCIDENCE, it produces a list where all the 
specified identifiers appear on one line and where one or more might be changed by the 
statement within which it appears. 

ALIASES 

'When specified with MERGE, produces a list of all references to the identifiers and all 
their aliases (if any exist). 

'When the ALIASES option is specified with COINCIDENCE, it produces a list of the 
locations where all specified identifiers and all their aliases appear. 

For either command, sequence numbers where an alias is referenced are marked with a 
plus sign (+). Currently, only the ESPOL and NEWP languages keep track of aliases. 

TEXT 

Causes the text from the symbol file to be printed with each reference. If an integer is 
specified with this option, that many lines of text, centered at the line containing the 
reference, is displayed with each reference. You must load the symbol file to use this 
option. Refer to "SYMBOL Command" in this section. 

ENVIRONMENTS 

'When specified with MERGE, produces a list of the names of the 
environments-procedures and blocks-where the references to any of the specified 
identifiers occur, appropriately interleaved with the references. 

'When ENVIRONMENTS is specified with COINCIDENCE, it produces a list of the 
names of the environments in which all specified identifiers appear on the same line, 
appropriately interleaved with the references. 

8600 0460-100 6-25 



INTERACTIVEXREF Utility 

6-26 

When either command is modified by the <number> value, then only <number> 
levels of environments are listed. When either command is modified by ONLY then 
only the environments and not the references are listed. ENVIRONMENTS ONLY and 
TEXT are mutually exclusive options. 

GLOBALENVI RONMENTS 

When specified with MERGE, produces a list of the names of the global environments 
(global procedures and blocks) where the references to the specified identifiers occur, 
appropriately interleaved with references. 

When GLOBALENVIRONMENTS is specified with COINCIDENCE, it produces a list 
of the names of the global environments in which all specified identifiers appear on the 
same line, appropriately interleaved with the references. 

When either command is modified by the number value, then only that many levels of 
environments are listed. When either command is modified by ONLY, then only the 
global environments and not the references are displayed. GLOBALENVIRONMENTS 
ONLY and TEXT are mutually exclusive options. 

PRINTER 

Sends the output to the line printer by way of a file internally named LINE. 

REMOTE 

Sends the output to the terminal. This option can be used when PRINTER has been 
specified so that output is sent to the terminal as well as to the printer. 

FI LE <file name> 

Causes all referenced text lines from the symbol file to be output to a disk file with 
the specified file name. This file cannot already exist. The file name is created with 
the same FILETYPE as the file loaded by the SYMBOL command. You must load the 
appropriate symbol file to use this option. 

Examples 

The following examples use the example INTERACTIVEXREF program contained at 
the end of this section. 

8600 0460-100 



I NTERACTIVEXREF Utility 

The following command produces a merged list of references to the identifiers B, C, and 
MEAN. The references are grouped by the procedures within which they occur, and the 
name of the procedure precedes each group. The main procedure references are listed 
first. Text for the references is also printed. 

MERGE B, C, MEAN: ENVIRONMENTS: TEXT 

B .. REAL @ (2,3) .. DECLARED @ 00001200 
C .. REAL @ (2,3) •. DECLARED @ 00001200 
MEAN .. REAL @ (2,4) :: DECLARED @ 00001200 

*00005400 B:= 3; 
*00005500 C:= 25; 
*00005800 B:=5; 

ONE: 
*00002400 MEAN:=2; 
*00002600 MEAN:= MEAN * B; 
*00002700 C:= C * MEAN; 

TWO: 
*00004200 MEAN:= MEAN / 3; 
*00004800 C:= 43; 

THREE OF TWO: 
*00003900 MEAN:= MEAN + C; 

The following command produces a list of statements where the value ofB or C might 
change: 

MERGE B, C: CHANGED: TEXT 

B .. REAL @ (2,2) 
C •• REAL @ (2,3) 

DECLARED @ 00001200 
.. DECLARED @ 00001200 

*00002700 
*00004800 
*00005400 
*00005500 
*00005800 

C:= C * MEAN; 
C:= 43; 

B:= 3; 
C:= 25; 

B:=5; 

The following command produces a list of statements where both B and MEAN appear: 

8600 0460-100 

COINCIDENCE B, MEAN:TEXT 

B :: REAL @ (2,2) :: DECLARED @ 00001200 
MEAN .. REAL @ (2,4) :: DECLARED @ 00001200 

*00002600 MEAN:= MEAN * B; 
~ o 

6-27 



I NTERACTIVEXREF Utility 

QUALIFY Command 

The QUALIFY command establishes a new default identifier qualification. The default 
value is AT FIRST. When an identifier specification is encountered that does not have 
an explicit identifier qualification, the default identifier qualification is used to locate 
the identifier. 

When an identifier specification has an explicit identifier qualification, the default 
qualification is overridden rather than supplemented. 

<qualify command> 

- qUALIFY -,.------------,------------; 
L-<identifier qualification~ 

Explanation 

QUALIFY 

Displays the current default identifier qualification. 

QUALI FY < identifier qualification> 

Establishes the identifier qualification as the default to be used when an identifier 
specification is encountered that does not have an explicit identifier qualification. 

Example 

The following example establishes the procedure TWO as the default identifier 
qualification. OF TWO is used to qualify any identifier specification that does not 
already contain an explicit identifier qualification. 

QUAL OF TWO 

RANGE Command 

6-28 

The RANGE command establishes a default range specification. The default range 
specification is used when processing a REFERENCE, MERGE, COINCIDENCE, or 
DECLARATIONS command that does not include its own range specification. 

If no RANGE command has been entered, the default reference range is the entire 
program. 

<range command> 

- RANGE -.----------.----------------1 
L-<range spec;f;cat;on~ 

8600 0460-100 



I NTERACTIVEXREF Utility 

Explanation 

RANGE 

Displays the current default reference range. 

RANGE < range specification> 

Establishes the range specification as the default range. If the range specification is a 
procedure and is enclosed in parentheses, it does not list lines of nested procedures. If 
the range specification is not enclosed in parentheses, it does not list lines in nested 
procedures. 

Example 

The following command establishes the procedure TWO and all procedures nested 
within it as the default range specifications: 

RANGE TWO 

NEW DEFAULT RANGE ESTABLISHED: TWO 

REFERENCE Command 

The REFERENCE command lists the references to a particular identifier. 

Unless modified by some of the options, the references are given in the following form: 

• The 8-digit sequence number of each line where the identifier is referenced is given. 

• The sequence number is preceded by an asterisk (*) if the value might be changed 
by the statement. The sequence number is followed by a number sign (#) if the 
reference occurred as part of an expanded DEFINE statement. 

<reference command> 

- REFERENCE -----------------------? 
J 

Lt:-/1 \-<i denti fi er speci fi cat; on I I 
I 

~/1\- : - RANGE -<range specification' 
~/1\- : - CHANGED 
-/1\- : - ALIASES 
-/1\- : - lEXT 

L<integer 
~/1\1 : - ENVIRONMENTS L. .~ L 

<number ONLY -
: - GlOBAlENVIRONMENTS L 

ONLY 
~/1\- - f.RINTER 

t /1\- - REMOTE -----------; 
/1\- - fILE -<file name>>--------...... 

86000460-100 6-29 



I NTERACTIVEXREF Utility 

6-30 

Explanation 

REFERENCE 

Lists the references to the work identifier. The work identifier is the identifier used 
in the most recently entered LOCATE, REFERENCE, EXPAND, or SUMMARY 
command. If the work identifier is empty, an error occurs. 

< identifier specification> 

Specifies a particular identifier. All references to that identifier are listed. 

RANGE <range specification> 

Restricts the range over which references are to be listed. The default reference range, 
as specified by the RANGE command, is used if the RANGE option is not specified. If 
no RANGE command has been specified, the entire program is used. 

CHANGED 

Lists only references where the value of the identifier might be changed by the 
statement. 

ALIASES 

Produces a merged list of references to the identifier and all its aliases (if any exist). 
Sequence numbers where an alias is referenced are marked with a plus sign (+). 
Currently, only the ESPOL and NEWP languages keep track of aliases. 

TEXT 

Lists the text from the symbol file with each reference. You must load the symbol file to 
use the TEXT option. 

TEXT <integer> 

Causes the specified number of lines, centered at the line containing the reference, to 
be printed with each reference. 

ENVIRONMENTS 

Lists the names of the environments - procedures and blocks - where the references 
occur, appropriately interleaved with the references. If modified by a specified 
<number> value, then only <number> levels of environments are listed. If 
modified by ONLY, then only the environments and not the references are listed. 
ENVIRONMENTS ONLY and TEXT are mutually exclusive options. 

86000460-100 



I NTERACTIVEXREF Utility 

GLOBALENVI RONMENTS 

Similar to ENVIRONMENTS, except that references are broken down only by global 
environment - global procedure. When this command is modified by ONLY, then only 
the global environments and not the references are listed. GLOBALENVIRONMENTS 
ONLY and TEXT are mutually exclusive options. 

PRINTER 

Sends the output to the line printer by way ofa file internally named LINE. 

REMOTE 

Sends the output to the terminal. This option can be used when PRINTER has been 
specified so that output goes to the terminal as well as to the printer. 

FILE <file name> 

Causes all referenced text lines from the symbol file to be output to a disk file with the 
specified file name. This file cannot already exist. The file name is created with the 
same FILETYPE value as the file loaded by the SYMBOL command. You must load the 
symbol file to use this option. 

Examples 

The following examples refer to the program under "Example INTERACTIVEXREF 
Program" in this section: 

The following command locates the identifier MEAN used in procedure TWO and all 
procedures nested within it, and lists the associated line numbers: 

REFERENCE MEAN: RANGE TWO 

MEAN :: REAL @ (2,4) •• DECLARED @ 00001200 
*00003900 *00004200 

The following command locates the identifier MEAN used in procedure TWO and lists 
all associated line numbers for procedure TWO, but not the procedures nested within it: 

REFERENCE MEAN: RANGE (TWO) 

MEAN :: REAL @ (2,4) DECLARED @ 00001200 
*00004200 

~ o 

8600 0460-100 6-31 



INTERACTIVEXREF Utility 

The following command locates the identifier C used in procedure THREE of procedure 
TWO. A list of references where the value ofC might be changed and the line of text 
corresponding to each reference is displayed. 

REFERENCE C OF THREE OF TWO:CHANGED:TEXT 

C OF THREE OF TWO :: INTEGER @ (4,2) :: DECLARED @ 00003700 
*00003800 C:= 5; 

The following command locates the identifier MEAN and lists all references with the 
associated text. The references are grouped by the procedures within which they occur. 
The name of the procedure precedes each group. 

REFERENCE MEAN: TEXT: ENVIRONMENTS 

MEAN :: REAL @(2,4) •. DECLARED 00001200 
ONE: 
*00002400 
*00002600 
00002700 

TWO: 

MEAN:=2; 
MEAN:= MEAN * 8; 
C:= C * MEAN; 

*00004200 MEAN:= MEAN / 3; 
THREE OF TWO: 
*00003900 MEAN:= MEAN + C; 

SET and RESET Commands 

6-32 

The SET and RESET commands enable or disable run-time options, respectively. 

<set command> 
<reset command> 

r- L~_ ] 
L SET ~ CONTEXTWARNING--,--1-'--------------1 

RESET ENVIRONMENTS ~ 

Explanation 

CONTEXTWARNING 

When used with the SET command, causes a warning to be given when the EXPAND 
command is forced to expand a DEFINE statement in the context of its first use. When 
this option is used with the RESET command, the warning is suppressed. The default 
is the SET command. 

8600 0460-100 



I NTERACTIVEXREF Utility 

ENVI RONMENTS 

When used with the SET command, the environment information is included in 
the header line of a nonglobal identifier. When this option is used with the RESET 
command, environment information is not included. The default is the SET command. 

STOP Command 

The STOP command terminates the INTERACTIVEXREF session. 

<stop command> 

-- STOP ----------------------------------------------~ 

SUMMARY Command 

The SUMMARY command lists a summary of the number and kinds of references to a 
given identifier. 

<summary command> 

-- SUMMARY 
C=<identifier specification~ 

Explanation 

SUMMARY 

Lists the SUMMARY information for the work identifier. The work identifier is the 
identifier used in the most recently entered LOCATE, REFERENCE, EXPAND, or 
SUMMARY command. If the work identifier is empty, an error occurs. 

SUMMARY <identifier specification> 

Lists the SUMMARY information for the specified identifier. 

8600 0460-100 6-33 



INTERACTIVEXREF Utility 

Example 

The following example refers to the program under "Example INTERACTIVEXREF 
Program" in this section. 

The following command prints a summary of references to the global identifiers MEAN, 
B, and C: 

SUMMARY MEAN; SUMMARY B; SUMMARY C; 

MEAN :: REAL @ (2,4) :: DECLARED @ 00001200 
TOTAL REFERENCES = 5 
NUMBER POSSIBLY CHANGED = 4 
REFERENCES OCCUR IN RANGE 00002400-00004200 

B :: REAL @ (2,2) :: DECLARED @ 00001200 
TOTAL REFERENCES = 3 
NUMBER POSSIBLY CHANGED = 2 
REFERENCES OCCUR IN RANGE 00002600-00005800 

C :: REAL @ (2,3) :: DECLARED @ 00001200 
TOTAL REFERENCES = 3 
NUMBER POSSIBLY CHANGED = 3 
REFERENCES OCCUR IN RANGE 00002700-00005500 

SYMBOL Command 

6-34 

The SYMBOL command loads the symbol file from which text for DEFINE statement 
expansion, text corresponding to a given reference, and text for the LIST command are 
taken. If none of these items is desired, a symbol file need not be loaded. 

<symbol command> 

- SYMBOL -<file name>>---------------------t 

86000460-100 



I NTERACTIVEXREF Utility 

Explanation 

SYMBOL <file name> 

Loads the specified file. The file name should refer to the source file that was compiled 
when the INTERACTIVEXREF information files were generated. It is desirable, but 
not necessary, that the symbol file and the XREF information files correspond exactly. 
If discrepancies are found when a command that requires information from both 
sources is processed, a warning or error is issued. 

Example 

The following command loads the symbol file MAV /INTX: 

SYMBOL MAV/INTX 

TERMINAL Command 

The TERMINAL command specifies attributes that control the format of output to 
the terminal. If no attributes are specified, the current terminal specifications are 
displayed. The initial values of PAGE and LINE options are taken from the file 
attributes of the remote file when it is opened. 

<terminal command> 

- TERMINAL ---.--------------..------------j 

Explanation 

LINE <integer> 
LINE = <integer> 

LINE ~~-~<integer 
L=.J 

PAGE 
L=.J 

<integer 

WAIT ----------l 
L CONTINUOUS ------' 

Specify the maximum width of an output line, expressed in characters. The integer 
value must be between 72 and 132. 

PAGE <integer> 
PAGE = <integer> 

Specify the number of lines on each page. This option is relevant only if WAIT is 
specified. 

8600 0460-100 6-35 



I NTERACTIVEXREF Utility 

WAIT 

Groups the output into pages in the form described by the LINE and PAGE options. 
After each page except the last page, the program stops and waits for input from the 
terminal. If the input is blank, the next page is printed; otherwise, the command is 
aborted, as if a break on output had occurred. 

CONTINUOUS 

Disables the WAIT option. 

Examples 

The following command sets the maximum width of an output line on the terminal to 
80 characters: 

TERM LINE 80 

The following command causes each page of output to contain 23 lines. The program 
waits for a blank response at the end of each page. The count starts at the beginning of 
each command. 

TERM PAGE 23 WAIT 

WHAT Command 

The WHAT command lists a description of the current work identifier, which is 
used as the default identifier in subsequent REFERENCE, EXPAND, or SUMMARY 
commands. 

<what command> 

- WHAT -------------------------1 

WHATFILES Command 

6-36 

The WHATFILES command produces a list that indicates which INTERACTlVEXREF 
information files and which symbol file are loaded. 

<whatfiles command> 

- WHATFILES -----------------------1 

8600 0460-100 



I NTERACTIVEXREF Utility 

Using the I NTERACTIVEXREF Utility 
The information that follows explains several different methodologies for using the 
INTERACTIVEXREF utility. 

Use with Improperly Sequenced Source 

The environment information in each header line clearly identifies an identifier 
even if the sequence number is meaningless. The ENVIRONMENTS ONLY and 
GLOBALENVIRONMENTS ONLY options of the REFERENCE command list the 
procedures within which an identifier is used. If individual procedures are properly 
sequenced, then the ENVIRONMENTS and GLOBALENVIRONMENTS options give 
the procedure names and sequence numbers where the references are located. Because 
references are sorted first by procedure and then by sequence number, all references 
within a given procedure are grouped together. 

If the source is not properly sequenced, the AT <sequence number> option does not 
work. The form AT <sequence number> IN <procedure specification> has been 
provided especially for cases where the specified procedure is sequenced properly and 
contains nested blocks, procedures that redeclare some of its identifiers, or both. 

Environment ranges work regardless of the sequencing of the source. Sequence 
number ranges produce undefined results if the source is improperly sequenced. 

The EXPAND and LIST commands, the TEXT option, and the EXPAND option in the 
DECLARATIONS command perform binary searches on the SYMBOL file to obtain 
needed text. Therefore, these constructs work only if the needed text is obtained from 
the currently loaded symbol file and if that file is properly sequenced. 

Use with COBOL74 

Any valid COBOL74 identifier is accepted as a valid identifier when COBOL74 XREF 
files are loaded. The identifier qualification terms IN and OF also can be used with 
record specifications. This use of IN and OF specifies a particular record identifier that 
contains or owns the given identifier. 

The EXPAND command is not available when INTERACTIVEXREF is run against 
COBOL 74 programs. 

8600 0460-100 6-37 



INTERACTIVEXREF Utility 

Use with FORTRAN and FORTRAN77 

FORTRAN does not keep track of environments for INTERACTIVEXREF; therefore, 
no environment information is included in the header line. The ENVIRONMENTS and 
GLOBALENVIRONMENTS options are not available, nor are any of the environment 
ranges, identifier environment ranges, or identifier qualifications - with the exception 
of AT FIRST and AT <sequence number>. 

The EXPAND command is not available when INTERACTlVEXREF is run against 
FORTRAN and FORTRAN77 programs. 

A number (FORTRAN or FORTRAN77 label) or an identifier containing dollar signs 
($) is accepted as a valid identifier when FORTRAN and FORTRAN77 XREFFILES are 
loaded. 

Use with PASCAL 

A number (Pascal label) is accepted as a valid identifier when Pascal XREF files are 
loaded. 

Example INTERACTIVEXREF Program 

6-38 

The following program is used for the examples in this section. This program has 
several procedures, and redeclares some of its identifiers. 

00001000 $SET XREFFILES 
00001100 BEGIN 
00001200 REAL B, C, MEAN, STRG; 
00001300 INTEGER I; 
00001400 ARRAY R[1:3]; 
00001500 DEFINE ONEE = 1 #, 
00001600 TWOO = 2 #, 
00001700 THREE = 3 #, 
00001800 MORE = FOURR #, 
00001900 FOURR = 4 #, 
00002000 EQUATION= R[ONEE] + R[TWOO] * R[THREE] - R[MORE]/R[ONEE] 
00002200 PROCEDURE ONE; 
00002300 BEGIN 
00002400 MEAN:=2; 
00002500 FOR I:= 0 STEP 1 UNTIL 5 DO 
00002600 MEAN:= MEAN * B; 
00002700 C:= C * MEAN; 
00002800 STRG:= EQUATION; 
00002900 END ONE; 
00003100 PROCEDURE TWO; 
00003200 BEGIN 
00003300 INTEGER B; 
00003500 PROCEDURE THREE; 
00003600 BEGIN 
00003700 INTEGER C; 

8600 0460-100 



00003800 c:= 5; 
00003900 MEAN:= MEAN + C; 
00004000 END THREE; 
00004200 MEAN:= MEAN / 3; 
00004300 R [lJ : = 1; 
00004400 R [2] : = 2; 
00004500 R [3J : = R [ONEEJ 
00004600 B:= 28; 
00004700 1:= 5; 
00004800 c:= 43; 
00004900 THREE; 
00005000 END TWO; 
00005400 B:= 3; 
00005500 C:= 25; 
00005600 ONE; 
00005700 TWO; 
00005800 B:=5; 
00005900 ONE; 
00006000 END. 

8600 0460-100 

+ R[TWOO]; 

I NTERACTIVEXREF Utility 

6-39 



6-40 86000460-100 



Section 7 
KEYEDIO Support 

The COBOL74 and RPG indexed sequential-access method permits a file sequenced 
by keys to be processed in both random and sequential modes. The COBOL74 and 
RPG indexed sequential-access method is provided by the SYSTEM/KEYEDIO 
library (KEYEDIO) and has the same capabilities as the ISAM intrinsic in the 
SYSTEM/PLISUPPORT library. However, files created by PLISUPPORT cannot 
be referenced by KEYEDIO, nor can files created by KEYEDIO be referenced by 
PLISUPPORT. You can obtain access to KEYEDIO procedures as follows: 

• For COBOL 74 and RPG programs, through code that is generated by compilers. 

• For ALGOL, DCALGOL, and Pascal programs, through procedures in the 
GENERALSUPPORT system library. Refer to "KEYEDIO Procedures" later in 
this section. 

This section explains ISAM files that have FILEORGANIZATION value equal to 
INDEXED or INDEXEDNOTRESTRICTED. The KEYEDIO system is compatible 
with KEYEDIOII - ISAM files that have a FILE ORGANIZATION value equal to 
KEYEDIOII or KEYEDIOIISET. KEYEDIOII includes several new features that 
increase system performance over that of KEYEDIO and is documented in the 
KEYEDIOII Reference Manual. For information about ISAM files that have a 
FILEORGANIZATION value equal to PLIISAM, refer to Section 10, "PLII Indexed 
Sequential-Access Method (PLIISAM)." 

Physical Structure of KEYEDIO Files 
KEYEDIO files consist of three logical areas contained within one physical file: coarse 
tables, fine tables, and data. The size of these areas increases during the life of a file 
as records are added and deleted. The areas are not distinct from one another and 
are intermixed throughout the file. Each block of data in a KEYEDIO file contains 
information for a single type of area. Control information describing the block and how 
to access it is appended to the beginning of each block in the file. 

Coarse Tables 

Coarse tables contain key values that describe fine tables or other coarse tables. One 
entry exists in the coarse tables for each fine table. Several coarse tables are created if 
more fine tables are present than can be indexed by a single coarse table. These coarse 
tables are then ordered by another level of coarse tables. This hierarchy continues 
until only one table remains at the top level; this table is called the root table. A coarse 
table entry consists of a key value equal to the largest key in the next lower table and a 
pointer to that table. 

8600 0460-100 7-1 



KEYEDIO Support 

Fine Tables 

Fine table blocks contain one key entry for each record. A key entry consists of a key 
value and a pointer to the data record associated with that key value. 

Data Blocks 

Data blocks contain your records. The records are stored in these blocks exactly as they 
were written, but the record size is increased if you specify that relative keys are to be 
used. This addition is internal to the file only and need not be used when calculating 
record size (MAXRECSIZE). A data block is accessed by going through fine tables. 

Locati ng Data 

To find a specific record, your key value is first compared against the key values in the 
coarse tables. The first key value in the coarse table that is greater than or equal to 
your key value is used to locate the coarse table at the next level. This process 
continues until a fine table is encountered. The fine table is then searched for your key 
value, and the data referenced by that key entry is returned. 

Because fine tables are sequentially ordered, they are linked together so that only the 
fine tables and the data areas need to be read when the file is being accessed 
sequentially. 

A set of coarse and fine tables is created for each key you define. Also, coarse and fine 
tables are created for the relative key. 

There is a limit of 48 keys per KEYEDIO data file. If the number of keys exceeds 48, 
one of the following error messages is given: 

FILE CONTAINS TOO MANY KEYS (GREATER THAN 48) FOR KEYEDIO TO HANDLE 

USER OPEN REQUEST DECLARES TOO MANY KEYS (GREATER THAN 48) FOR 
KEYEDIO TO HANDLE 

File and KEYEDIO Library Management 

7-2 

All KEYEDIO file management routines are contained in the SYSTEM/KEYEDIO 
library. Information about all the users of the file is also contained in the library stack. 
The library mechanism permits multiple users to access the same file and also provides 
links for all users of the same file to the same library stack. Your position in the file is 
maintained by a current record pointer that points to the fine table entry corresponding 
to your current record in the file. 

When a file is opened, if the FILEORGANIZATION file attribute is equal to INDEXED 
or INDEXEDNOTRESTRICTED, the user program is linked to the 
SYSTEM/KEYEDIO library routines instead of to the normal FIBSTACK procedures. 

8600 0460-100 



KEYEDIO Support 

The KEYEDIO open routine performs certain checks to ensure file integrity. Refer to 
the A Series File Attributes Programming Reference Manual for more information. 

If the file is declared to be of type INDEXED, all keys declared when the file was 
created must be declared by your program each time the file is opened, and these keys 
must match exactly. If the file is of type INDEXEDNOTRESTRICTED, keys not 
known-not declared- by your program are still updated. 

When the file is updated, recovery information is stored so that file integrity can be 
maintained in the event of abnormal termination. Because of the overhead involved, 
this information is not saved when the file is being created. 

KEYEDIO files can be used by more than one user program at a time. Any number of 
user programs can be reading the file, but when one of the programs attempts to 
update-add, delete from, or rewrite-the file, other users of the file are locked out for 
the duration of the update transaction. This lockout feature permits more than one 
program to have the file open in update mode, while also preserving the integrity of the 
data. No mechanism exists for locking out other users for more than a single 
transaction; record level lockout is not provided. 

The KEYEDIO library keeps track of the number of programs currently reading and 
writing to the file. For the file to be updated, both the reader and writer counts must 
equal zero (0). For the file to be read, the write count must equal zero (0). 

Removing and Installing a KEYEDIO Library 
The KEYEDIO library is written and compiled in NEWP. The base library is frozen 
permanently. Because the base library is frozen, you must perform the following steps 
if the SYSTEM/KEYEDIO library needs to be removed from the active library list: 

1. Find the mix number of the KEYEDIO library by entering the LIDS (Library Task 
Entries) system command. Refer to the A Series System Commands Operations 
Reference Manual for more information. 

2. Enter <mix number> THAW at the ODT to remove the KEYEDIO library from 
the list. 

Note: KEYEDIO terminates only when no tasks are using it. 

The KEYEDIO library job summary is then printed. 

Mter the old KEYEDIO library has terminated, you can install a new KEYEDIO 
library by using the SL (Support Library) system command. 

KEYEDIO Program Interface 
Only COBOL74 and RPG can create files that define keys within a record. All 
languages can use the INDEXEDNOTRESTRICTED value of the 
FILE ORGANIZATION attribute and normal sequential or random I/O statements to 
access or create files sequentially or with relative keys. Files created and later opened 

8600 0460-100 7-3 



KEYEDIO Support 

as INDEXEDNOTRESTRICTED and used with keys have all keys updated during an 
update, even if you have not specified all the keys. 

For RPG and COBOL, the procedures provided by the KEYEDIO library can be used 
only through normal compiler I/O constructs. For languages such as ALGOL and 
Pascal, the KEYEDIO operations are available through procedures provided by the 
GENERALSUPPORT library. 

Indexed KEYEDIO File Attributes 

7-4 

There are two kinds of attributes discussed in this section: file attributes that must be 
set in a special way when indexed files are created and accessed 
(FILE ORGANIZATION, EXCLUSIVE, BUFFERS, and BLOCKSIZE), and attributes 
that are internal to SYSTEM/KEYEDIO and can only be accessed by the compilers 
(ISAMKEYS and ACCESSMODE). 

To ensure maximum processing efficiency and minimum use of save memory, the 
BLOCKSIZE and BUFFERS attributes should be set carefully. Refer to the A Series 
File Attributes Programming Reference Manual for descriptions of these and other file 
attributes. 

Increasing the number of buffers used by KEYEDIO reduces the time needed to process 
an indexed file at the expense of increased usage of save memory. In contrast, reducing 
the number of buffers increases processing time and decreases save memory usage. 

Increasing the block size to allow for one- or two-level access to data in the indexed file 
decreases processing time but also increases usage of save memory. Decreasing block 
size to allow for three- or four-level data access increases processing time and decreases 
save memory usage. 

Consider the needs of your particular installation when choosing BLOCKSIZE and 
BUFFERS values. Suggestions for how to choose BUFFERS and BLOCKSIZE values 
are given in the following paragraphs. 

Accessing a KEYEDIO file using a record size other than the record size with which the 
file was created could cause file corruption or faults in the KEYEDIO library. To 
prevent one of these results, KEYEDIO verifies that the values specified by a program 
for the MAXRECSIZE and UNITS file attributes are identical to those specified at the 
time the file was created. If a mismatch is detected, the program is discontinued with 
the following message: 

RECORD LENGTH MISMATCH (FILE MAXRECSIZE=nnn; PROGRAM MAXRECSIZE=mmm) 

The value of nnn is the MAXRECSIZE value assigned at file creation, and the value of 
mmm is the MAXRECSIZE value specified by the program. 

To open a file in which the key structure is not known, set the file attribute 
DEPENDENTSPECS to TRUE and use the procedure ISMGETKEYSTRUCTURE to 
get key information. See "ISMGETKEYSTRUCTURE Procedure" later in this section 
for details. 

8600 0460-100 



KEYEDIO Support 

Setting the FILEORGANIZATION Attribute 

The FILEORGANIZATION attribute can be set in one of two ways for an indexed file: 
indexed files that have relative keys have FILEORGANIZATION attribute equal to 
INDEXEDNOTRESTRICTED. (RPG files have relative keys by default.) Indexed files 
that do not have relative keys have FILEORGANIZATION attribute equal to 
INDEXED. The FILEORGANIZATION attribute must be set each time the indexed 
file is opened. Refer to the A Series File Attributes Programming Reference Manual for 
more information about the FILE ORGANIZATION attribute. 

Setting the EXCLUSIVE Attribute 

The EXCLUSIVE attribute can be set to TRUE only for files that are accessed by only 
one user at a time, or for files that are accessed by only users currently operating in the 
same subsystem. For more information about the EXCLUSIVE attribute, refer to the 
A Series File Attributes Programming Reference Manual. 

Setting the Value of the BUFFERS Attribute 

You can control the number of buffers used by the KEYEDIO library in processing an 
indexed file. 

A program can indicate the number of buffers KEYEDIO is to use by setting the value 
of the BUFFERS attribute of the indexed file. The value of the BUFFERS attribute is 
used by the library to determine how many buffers to allocate for processing that 
indexed file. 

Impact of Number of Buffers on Processor Time 

Increasing the number of buffers used by KEYEDIO reduces the time needed to 
process an indexed file at the expense of increased usage of save memory. Reducing the 
number of buffers decreases save memory usage but increases processing time. In 
general, programs doing random accesses to the indexed file are more sensitive to the 
number of buffers than programs doing serial accesses. 

The effect of changing the number of buffers on the time needed to process a file tends 
to be proportional to the reciprocal of the number of buffers; that is, reducing the 
number of buffers lengthens the processing time more than increasing the number of 
buffers by the same amount decreases the time. For this reason, decisions to decrease 
the number of buffers below the KEYEDIO default of 10 buffers should be the result of 
careful consideration and measurement. 

Impact of Number of Buffers on Save Memory 

Increasing the number of buffers increases the save memory usage of the KEYEDIO 
library; save memory is equal to the number of buffers multiplied by the actual block 
size and is explained later in this section. You should take into account the overall 
performance of the system, as well as the processing time of the specific application, 
when deciding to increase the number of buffers. 

8600 0460-100 7-5 



KEYEDIO Support 

The value specified for the BUFFERS attribute at file creation time is especially 
important because this value becomes the permanent default number of buffers to be 
allocated whenever the file is used later. The time needed to create the file is usually 
not as strongly affected by the number of buffers as later uses of the file are. For this 
reason, specifying the proper number for the permanent default is generally of greatest 
importance when specifying the BUFFERS value to use for file creation. 

Rules for Determining the Number of Buffers Used 

7-6 

KEYEDIO determines how many buffers to use for processing an indexed file according 
to the following rules: 

1. First, the value of the BUFFERS attribute specified when the file is created is 
stored permanently in the file itself. This value is used by the KEYEDIO library 
both when creating the file and as the default number of buffers to allocate each 
time the file is subsequently opened. 

If the value of the BUFFERS attribute is not specified at file creation time or the 
value specified for the BUFFERS attribute is 2 or less, KEYEDIO uses the default 
value 12 for the number of buffers both for file creation and as the default number 
of buffers when the file is subsequently opened for use by a single user. 

For files with a BUFFERS value greater than 2, KEYEDIO allocates 10 more 
buffers than the number of buffers specified in the creating program. For example, 
if program A sets the attribute BUFFERS of file F to 5, and then opens the file, 
HEADERBUFFERS is 13, and 15 buffers are allocated. 

2. Second, the value of the BUFFERS attribute specified when an existing indexed 
file is opened is used to indicate the number of buffers the KEYEDIO library 
should use in processing that file. KEYEDIO determines the number of buffers to 
use for an existing file in the following way: 

When the file is not being used by any other programs at the time it is opened, and 
if the number of buffers specified is 3 or greater, the number of buffers allocated is 
2 more than specified by the opening program, or it is the number of buffers 
allocated when the file was created, whichever is greater. 

For example, if program A has closed file F and program B reopens the file with 
BUFFERS equal to 15, then 17 buffers are allocated. 

When the file is being used by other programs at the time it is opened, either of 
the following can be true: 

• If the original number of buffers allocated at file creation is more than 2 
greater than the number of buffers allocated by the additional opening 
program, then KEYEDIO allocates 2 additional buffers. 

• If the number of buffers allocated at file creation is more than 2 less than the 
number of buffers allocated by the additional opening program, then 
KEYEDIO allocates 4 more buffers than the difference between 
program-specified buffers and the original creation buffers. 

• In certain languages the number of buffers is a default value determined by 
the compiler (as described in the following). 

8600 0460-100 



KEYEDIO Support 

When there are mUltiple users of an indexed file, the buffers are allocated in a 
common pool by the KEYEDIO library and are shared by all users. 

For example, if program B has file F open with BUFFERS equal to 15, and 
program C sets F.BUFFERS to 20 and then opens the file, 9 more buffers (2 + 20-
13) are allocated for a total of26. 

If program A sets BUFFERS equal to 7, then HEADERBUFFERS becomes 15 and 
17 buffers are allocated while A is running. If program B reopens the file with 
BUFFERS equal to 15, 1 7 buffers are allocated. If program C sets F.BUFFERS 
equal to 20 while B is still running, then 7 more buffers (2 + 20 - 15) are allocated, 
for a total of 24. 

Some compilers automatically set the value of BUFFERS even when the program 
has not specified a value for BUFFERS. In particular, the COBOL74 compiler sets 
BUFFERS to 2 if a value is not specified; the RPG compiler sets BUFFERS to 1 if 
a value is not specified for an indexed file. 

The compiler-set defaults do not interfere with the default assignment of 10 
buffers at file creation time for an indexed file - because the compiler default is 2 
or less-or with the assignment of 10 buffers by default when a single access is 
made to an already existing indexed file. The compiler default has an impact when 
many programs access an indexed file. Each new program accessing the indexed 
file increments the number of buffers in use by the compiler default setting. 

The maximum value that can be set for the BUFFERS file attribute is 63. The 
maximum total number of buffers used by the KEYEDIO library is 255. Once this limit 
is reached, additional buffers are not allocated, regardless of the BUFFERS 
specifications of later users. 

If the BUFFERS attribute of an indexed file is interrogated, the value returned is the 
value currently established for that file by the program, not the total number of 
BUFFERS that are actually being used by KEYEDIO at that time. 

Choosing a Value for the BLOCKSIZE Attribute 

The actual block size used by KEYEDIO is different from the block size provided by 
you because space must be added to round the record size to an exact multiple of 6 
characters, to provide room for the relative keys of an INDEXNOTRESTRICTED file, 
and to provide for the 10 words of header information in each block. Actual block size 
is used to calculate how much save memory is actually occupied by the KEYEDIO file. 
If the actual block size that has been calculated is not satisfactory to the programmer, 
it might be necessary to adjust the specified block size; that is, the BLOCKSIZE 
attribute value. 

Make sure the block size is large enough to store more than one key for each block. If 
the block size is not large enough to store more than one key, an error occurs. 

The specified block size is saved in the KEYEDIO file and is returned as the value of 
the BLOCKSIZE file attribute when the indexed file is open. If this attribute is 
interrogated when the file is closed, it always returns the value of 30, which is the 
value that the KEYEDIO library uses when creating the file. (This is a side effect of the 
fact that the KEYEDIO library manipulates the file using DIRECT I/O.) 

8600 0460-100 7-7 



KEYEDIO Support 

Effect of Block Size on Processor Time 

The proper specification of block size is extremely important to the performance of 
applications that use indexed files because the actual block size (calculated according to 
the algorithm described in "Calculating Actual Block Size") is used not only for storing 
the data but also as the size of the key index tables used to access the data. The size of 
these tables and the number of records in the file determine how many tables must 
be searched in order to find a particular record. Each additional table that must be 
searched increases the processor and I/O time that is required to access a record. 

The most efficient access is obtained when only a single table must be searched in order 
to find the key. A single-table search requires that the block size be large enough to 
hold the keys for all the records in the file; thus, this block size is usually not a practical 
choice except for files with a small number of records. 

The next most efficient access is obtained when only two tables - a coarse table and a 
fine table-must be searched to find the key. A two-table search requires a block size 
large enough to hold a number of keys equal to the square root of the number of 
records in the file. A block size of this value is generally the most suitable choice for all 
but very small or very large indexed files. A block size smaller than this square root 
value requires multiple table accesses and noticeably increases the time required for 
random accesses to the file. 

Effect of Block Size on Save Memory 

The buffers used by KEYEDIO occupy save memory. The amount of save memory to be 
used for a given indexed file can be approximated by multiplying the actual block size 
(calculated according to the algorithm given in "Calculating Actual Block Size") by the 
number of buffers to be used for the file. 

If the save memory requirements for block sizes that provide one- or two-level access 
to data are too great, a new block size should be calculated that provides three- or 
four-level access. This block size can be calculated using the algorithm given under 
"Calculating User-Specified Block Size (2 Level)"; but at step 2 compute the cube root 
or fourth root of the number of records instead of the square root. 

Calculating Actual Block Size 

7-8 

The actual block size used by KEYEDIO is different from the BLOCKSIZE 
attribute specified by you because space must be added to round the record size 
up to an exact mUltiple of 6 characters, to provide room for the relative keys of 
an INDEXEDNOTRESTRICTED file, and to provide for the 10 words of header 
information in each block. 

8600 0460-100 



KEYEDIO Support 

KEYEDIO uses the following algorithm to compute the actual block size for a file: 

1. Divide the specified BLOCKSIZE by the specified record size (MAXRECSIZE), 
truncating any remainder. This gives the records per block value. 

2. Round the specified record size up to the next multiple of6 characters, ifit is not 
already an exact multiple of 6 characters. Convert this record size to the number 
of words required to hold the record by dividing by six. 

3. If this is an INDEXEDNOTRESTRICTED file, add 1 (word) to the record size to 
allow space for the relative key. 

4. Compute a trial block size by multiplying the record size in words (calculated in 
steps 2 and 3) by the specified records per block (calculated in step 1). Then add 10 
words to provide space for the header information in each block. 

5. Calculate the actual block size by rounding the trial block size (from step 4) up to 
the next multiple of 30 words, if it is not already an exact multiple of 30 words. 

Once the actual block size has been calculated, as many records as can fit are placed in 
each block. That is, if the rounding process of step 5 adds enough space to the block 
for additional records, that space will be used, and the actual records per block will be 
greater than the specified records per block calculated in step 1. 

Calculating User-Specified Block Size (2 Level) 

To calculate the proper block size for an indexed file, assuming the two-level table 
search is desired, make the following calculation: 

1. Calculate the number of records the file will contain over its lifetime. 

2. Compute the square root of the number of records. Then multiply this value by an 
adjustment factor to allow for the fact that not all the tables will be completely 
filled. The result of this computation is the desired number of keys per block. 

The value of the adjustment factor is determined by the way the file is created 
and updated. If the file is created sequentially with the entries for all the keys in 
ascending ordeJ; and few records will be added later, a small adjustment factor of 
1.1 can be used. If the file is created sequentially, but more records are to be added, 
use an adjustment factor of about 1.3 (or greater, if many records will be added). If 
the file is created with the entries for some of the keys occurring in random order, 
use an adjustment factor of2.0. 

3. Compute the size of the largest key entry by performing the following steps: 

• Find the size of the largest key in the record. 

• Round this size up to the next multiple of 6 characters, ifit is not already a 
multiple of 6 characters. 

• Add 6 characters to provide space for the key entry's pointer to the data record. 

4. Compute the desired block size by multiplying the desired number of keys per 
block (from step 2) by the size of the largest key entry (from step 3). 

86000460-100 7-9 



KEYEDIO Support 

5. Round this desired block size up to the next multiple of the record size, if it is not 
already a mUltiple of the record size. This last step ensures that the block size 
chosen is suitable for storing the data records as well as the keys. 

The block size calculated by this procedure provides two-level access, but its impact on 
the system must be determined before deciding that this block size is the correct block 
size to use. Conside:t; in particular, the effects of the block size on memory usage. Refer 
to "Effect of Block Size on Save Memory" in this section. 

Calculating Actual Area Size 

KEYEDIO uses the following algorithm to calculate the actual AREASIZE ofKEYEDIO 
files: 

1. Converts the declared AREASIZE value to the number of blocks by dividing the 
AREASIZE value by the number of records per block. 

2. Multiplies the result by the actual block size in segments. 

3. If the resulting AREASIZE value is too small, assigns a size sufficient for one block 
per area. 

The KEYEDIO file does not actually contain an area equal to the product of AREASIZE 
times AREAS, because many of the blocks in the file are used to hold index tables for 
the keys. 

KEYEDIO Procedures 

7-10 

The GENERAL SUP PORT library makes KEYEDIO library procedures available 
indirectly to programs in languages such as ALGOL and Pascal that have no direct 
interface to the KEYEDIO library. The KEYEDIO procedures that are exported from 
the GENERALSUPPORT library are described in the following subsections. 

The library and the desired procedure should be declared as follows. 

LIBRARY ISAMLIBRARY (LIBACCESS = BYFUNCTION, 
FUNCTIONNAME = IIGENERALSUPPORT II

); 

REAL PROCEDURE ISMGETKEYSTRUCTURE(ISAMFILE,KEYINFO,OPTION,OFFSET); 
VALUE OPTION,OFFSET; 
FILE ISAMFILE; 
ARRAY KEYINFO[0]; 
REAL OPTION,OFFSET; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMOPEN(ISAMFILE,FILEINFO,OPENTYPE); 
VALUE OPENTYPE; 
FILE ISAMFILE; 
ARRAY FILEINFO[0]; 
REAL OPENTYPE; 

LIBRARY ISAMLIBRARY; 

86000460-100 



KEYEDIO Support 

REAL PROCEDURE ISMCLOSE(ISAMFILE,CLOSETYPE); 
VALUE CLOSETYPE; 
FI LE ISAMFI LE; 
REAL CLOSETYPE; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMSTART(ISAMFILE,KEYOFREF,KEYLEN,RECORD,CHOOZ); 
VALUE KEYOFREF,KEYLEN,CHOOZ; 
FI LE I SAMFI LE; 
REAL KEYOFREF,KEYLEN; 
ARRAY RECORD [0] ; 
REAL CHOOZ; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMSEQUENTIALWRITE(ISAMFILE,RECORD); 
FI LE I SAMFI LE; 
ARRAY RECORD [0] ; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMSEQUENTIALREAD(ISAMFILE,RECORD); 
FILE ISAMFILE; 
ARRAY RECORD [0] ; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMRANDOMWRITE(ISAMFILE,RECORD); 
FILE ISAMFILE; 
ARRAY RECORD [0] ; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMREWRITE(ISAMFILE,OPTION,RECORD); 
VALUE OPTION; 
FILE ISAMFILE; 
REAL OPTION; 
ARRAY RECORD [0] ; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMDELETE(ISAMFILE,OPTION,RECORD); 
VALUE OPTION; 
FILE ISAMFILE; 
REAL OPTION; 
ARRAY RECORD [0] ; 

LIBRARY ISAMLIBRARY; 

REAL PROCEDURE ISMRANDOMREAD(ISAMFILE,KEYOFREF,RECORD); 
VALUE KEYOFREF; 
FILE ISAMFILE; 
REAL KEYOFREF; 
ARRAY RECORD [0] ; 

LIBRARY ISAMLIBRARY; 

8600 0460-100 7-11 



KEYEDIO Support 

REAL PROCEDURE ISMSETUPLIMIT(ISAMFILE,KEYOFREF,RECORDLEN,RECORD); 
VALUE KEYOFREF,RECORDLEN; 
FILE ISAMFILE; 
REAL KEYOFREF,RECORDLEN; 
ARRAY RECORD [0] ; 

LIBRARY ISAMLIBRARY; 

The opening of keyed files requires two kinds of information for which no provision is 
made in nonkeyed files: key information and file access information. 

Key Information 

7-12 

The key information describes the keys declared by your program. Each key is one 
word of information in an array parameter. The key information word format is shown 
in Table 7-1. 

Table 7-1. Key Word Format 

Name Field Value Meaning 

KEYFLAGF [46:01] Relative or keyed key 

a Relative key 

1 KEYEDIO key 

ALTERNATEKEYF [45:01] Alternate or primary 

a Primary key 

1 Alternate key 

DUPLICATEF [44:01] Duplicates 

a No d u pi icates 

1 Duplicates 

KEYORGANIZATIONF [43:01] Key organization 

1 Ascending. This key must be set. 
The value 0 (zero) for descending 
keys is not valid. 

KEYSIGNPOSITIONF [39:04] Sign information 

0 No sign: alphanumeric data 

1 Leading separate: numeric data, 
leading separate sign 

2 Trailing zone: numeric data, 
trailing zone 

continued 

8600 0460-100 



KEYEDIO Support 

Table 7-1. Key Word Format (cont.) 

Name Field Value Meaning 

3 Leading zone: numeric data, 
leading zone sign 

4 Trailing separate: numeric data, 
trailing separate sign 

5 Operand 

6 Two's complement 

KEYTYPEF [35:04] Type of key 

0 Word 

2 HEX field 

4 HEX or EBCDIC field 

8 ASCII or EBCDIC 

KEYLENGTHF [31:16] Length in KEYTYPEF units 

KEYOFFSETF [15:16] Offset in record in KEYTYPEF 
units 

File Access Information 

The ACCESSMODE attribute determines the way the file is accessed. The 
ACCESSMODE attribute is also contained in the file description. The values and 
mnemonics of the ACCESSMODE attribute are shown in Table 7-2. 

Table 7-2. File Access Values 

Value Mnemonic Meaning 

0 SEQU ENTIALACCESS File access is sequential only 

1 RAN DOMACCESS File access is random only 

2 DYNAMICACCESS File access is sequential and random 

Results Returned 

Results are returned from the operating system, the G ENERALSUPPORT library, or 
KEYEDIO. The results returned by the procedures in GENERALSUPPORT are 
preceded by an asterisk (*). The results returned by the GENERALSUPPORT 
procedures will also have a value of 0 (zero) in bits 26:10 of the result. Results from 
KEYEDIO depend on the type of operation performed, such as OPEN, READ or 

8600 0460-100 7-13 



KEYEDIO Support 

WRITE. Most of the frequently returned results are returned for each operation. Refer 
to the descriptions ofIlO result enumerated values and open, close, and respond results 
in the A Series File Attributes Programming Guide. 

ISMGETKEYSTRUCTURE Procedure 

7-14 

ISMGETKEYSTRUCTURE is used to inquire on the structure of the ISAM file. 

For files in which the MAXRECSIZE is not known, the file attribute 
DEPENDENTSPECS should be set to TRUE before calling this procedure. 

The ISMGETKEYSTRUCTURE procedure uses the following parameters to return the 
requested key information: 

ISMGETKEYSTRUCTURE (ISAMFILE, KEYINFO, OPTION, OFFSET) 

• ISAMFILE-The user's file. 

• KEYINFO - An array that contains file and key information. The meanings of the 
values returned in word 0 (zero) of the array are as follows: 

Field 

[26:01] 

[25:01] 

[19:04] 

[15:08] 

Value 

o 
1 

o 
1 

Meaning 

Relative key option 

No relative key 

Relative key 

Record unit 

Words 

Characters 

Record length option 

Start key pointer; index into this array 
for the start key 

[7 :08] Number of keys 

The meanings of the values returned in word 1 of the array are as follows: 

Field 

[31:16] 

[15:16] 

Meaning 

Block size 

Maximum record size 

Words 2 through n + 1 (1 greater than the number of keys) contain 1 word of key 
information for each key. See "Key Information" earlier in this section. 

• OPTION - Indicates the type of information to be returned in the KEYINFO array. 

Value 

o 

1 

Meaning 

Get all the key structure 

Get primary key information 

continued 

8600 0460-100 



continued 

Value 

2 

3 

Meaning 

Get relative key information 

Get key located at offset 

KEYEDIO Support 

• OFFSET-Indicates the record offset of the key to be reported on. OFFSET is only 
used when OPTION equals 3. 

Error Results 

The following results are returned by the GENERALSUPPORT procedure 
ISMGETKEYSTRUCTURE (note the *). Bit 0:1 also has a value of 1 and bit 26:10 has 
a value of 0 for these results. 

• *[2: 1] 1 = OPTION was not a valid value. 

• * [5: 1] 1 = The key was not found. 

ISMOPEN Procedure 

ISMOPEN opens a file that has its FILE ORGANIZATION attribute equal to 
INDEXED or INDEXEDNOTRESTRICTED. If a new file is being created, the file is 
initialized and the key information is saved. Initialization includes creation of a key 
root table for each key defined by your program. If your program is accessing an 
existing file, your file declaration and key information are checked against those of the 
existing file, and your current record pointer and current key of reference are 
established. 

The information in the FILEINFO parameter is used only when a new output file is 
opened. If file attributes other than the default values are necessary, the values can be 
set according to the information found in the A Series File Attributes Programming 
Reference Manual. The record unit, block size, and maximum record size values must 
be supplied in the FILEINFO parameter. 

The ISMOPEN procedure uses the following parameters and returns an open result: 

ISMOPEN (ISAMFILE~ FILEINFO~ OPENTYPE) 

• ISAMFILE - The user's file. 

• FILEINFO - Information contained in the array is only returned when the 
OPENTYPE value is 2 (OUTPUT). When you open a file, the following information 
should be available in word 0 (zero): 

Field 

[25:01] 

[7:08] 

8600 0460-100 

Value 

o 
1 

Meaning 

Record unit 

Words 

Characters 

Number of nonrelative keys 

7-15 



KEYEDIO Support 

The meanings of the values returned in word 1 of the array are as follows: 

Field 

[31:16] 

[15:16] 

Meaning 

Block size 

Maximum record size 

Words 2 through n+ 1 (1 greater than the number of keys) contain 1 word of key 
information for each key. See "Key Information" earlier in this section. 

• OPENTYPE - Specifies how the file is to be opened. OPENTYPE has the same 
value as the FILEUSE attribute. 

Value 

1 

2 

3 

Meaning 

Input 

Output 

I n put/Output 

If the open result is 1, the open was successful. Other odd numbered results are errors 
detected in the ISMOPEN procedure. These errors are given in the following text. For 
even-numbered results, refer to the explanation of the OPEN results in the A Series 
File Attributes Programming Reference Manual. 

Error Results 

Note that bit 0 is included in the value. 

Field Value Meaning 

*[3:4] 3 The length of FILEINFO was less than that required 
for the number of keys given. 

5 OPTION was not a valid value. 

7 An Error in key setting. 

9 The file was already open. 

11 Two primary keys were found. 

13 No pri mary key was found. 

15 The keys overlap. 

ISMCLOSE Procedure 

7-16 

ISMCLOSE flushes buffers, unlocks any remaining locks (present due to abnormal 
termination), and closes the file. 

The ISMCLOSE procedure requires the following parameters to return a CLOSE 
result: 

ISMCLOSE (ISAMFILE, CLOSETYPE) 

8600 0460-100 



KEYEDIO Support 

• ISAMFILE- The user's file. 

• CLOSETYPE - Specifies how the file is to be closed. 

Value Meaning 

0,1 Rewind 

2 No rewind 

3 Save 

4 Lock 

5 Purge 

6 Crunch 

If the close result is 1, the close was successful. Other odd-numbered results are 
errors detected in the ISMCLOSE procedure. These errors are given below. For 
even-numbered results, refer to the explanation of the CLOSE Results in the 
A Series File Attributes Programming Reference Manual. 

Error Results 

Value 

*[2:1] 

*[3:1] 

ISMSTART Procedure 

Meaning 

1 OPTION was not a valid value. 

1 File already closed. 

ISMS TART positions your current record pointer to the logical record currently in the 
file whose key satisfies the comparison. If the comparison is not satisfied by any record 
in the file, a "RECORD NOT FOUND" result is returned- bits 0 and 9 SET. A 
successful START operation establishes the RECORDKEY parameter as the key of 
reference. The key of reference is the key that is used on any subsequent sequential 
operations. No data is transferred during a start operation. 

The ISMSTART procedure requires the following parameters to return a START result: 

ISMSTART (ISAMFILE, KEYOFREF, KEYLEN, RECORD, CHOOZ) 

• ISAMFILE-The user's file. 

• KEYOFREF - Specifies the key to be used for the START operation. If the 
KEYFLAGF (bit 46) is SET, a keyed START is indicated, and KEYOFREF specifies 
the key information format. If the KEYFLAGF is not SET, a relative START is 
indicated and the value contained in KEYOFREF is used as the relative key. The 
values of CHOOZ and KEYLEN are checked against the value stored in 
KEYOFREF. 

• KEYLEN - The length of the key to be used in the START operation. KEYLEN 
must be less than or equal to the key-length field of the KEYOFREF. IfKEYLEN is 
less than the key-length field of the KEYOFREF, a partial key start is indicated. 

• RECORD - The user's record area. 

8600 0460-100 7-17 



KEYEDIO Support 

• CHOOZ - Specifies the type of start to be done, as shown in the following: 

Value 

o 
15 

20 

Meaning 

Start equal. Finds the key with the same value as the key in your record. 

Start greater than or equal to. Finds the first key with a value greater 
than or equal to the key in your record. 

Start greater than. Finds the first key with a value greater than the key 
in you r record. 

The START result values are listed as follows. The results with an asterisk (*) are 
returned by the GENERALSUPPORT procedure ISMS TART. The other results are 
returned by KEYEDIO. 

Field 

[0:01] 

*[2:1] 

[9:1] 

Value 

1 

o 
1 

1 

Result 
[26:10] 

o 

95 

98 

Mnemonic 

NOERROR 

RECORDNOTFOUND 

KEYISINVALID 

Meaning 

An error occurred 

No error occurred 

The value in CHOOZ 
was not valid. Bit 0 
also equals 1. 

No key met the 
cond itions Bit 0 wi II 
also equal 1. 

The key is invalid. Bit 
o also equals 1. 

ISMSEQUENTIALWRITE Procedure 

7-18 

ISMSEQUENTIALWRITE updates the file with your record and updates all key tables. 
Recovery information is saved before the key tables are updated. A WRITE operation 
physically updates the keyed file. ISMSEQUENTIALWRITE does not affect the 
current record pointer. 

The ISMSEQUENTIALWRITE procedure requires the following parameters to return 
a sequential WRITE result: 

ISMSEQUENTIALWRITE (ISAMFILE, RECORD) 

• ISAMFILE-The user's file. 

• RECORD - The user's record area. 

8600 0460-100 



Field Value 

[0:1] 1 

[5:1] 1 

[6:1] 1 

Result 
[26:10] 

100 

97 

101 

Mnemonic 

01 FFER ENTLENGTH RECOR D 

OU PLICATEKEYS 

PRIMARYKEYOUTOFOROER 

KEYEDIO Support 

Meaning 

This record length 
is not the same 
as the record 
length in the file. 

A duplicate key 
was found, and 
duplicate keys are 
not allowed. 

The key was out 
of order. 
Sequential 
WRITE operations 
require the 
current key to be 
greater than the 
previous key. Bit 
o also equals 1. 

The sequential write result values can be found in the A Series File Attributes 
Programming Reference Manual in the explanation of the STATE general file attribute. 

ISMSEQUENTIALREAD Procedure 

ISMSEQUENTIALREAD reads the record specified by the current record pointer. The 
current record pointer is then updated to point to the next record in the file. 

The ISMSEQUENTIALREAD procedure requires the following parameters to return a 
sequential READ result: 

ISMSEQUENTIALREAD (ISAMFILE, RECORD) 

• ISAMFILE - The user's file. 

• RECORD - The user's record area. 

The sequential read result values are listed as follows: 

Field 

[0:1] 

[9:1] 

8600 0460-100 

Value 

o 
1 

1 

Result 
[26:10] Mnemonic 

100 DI FFERENTLENGTH RECORD 

46 ENDOFFILE 

Meaning 

No errors 

This record length 
is not the same 
as the record 
length of the We. 

End of file. Bit 0 
is also equal to 1. 

7-19 



KEYEDIO Support 

ISMRANDOMWRITE Procedure 

ISMRANDOMWRITE physically updates the KEYEDIO file with your record and 
updates all key tables. Recovery information is saved before the key tables are updated. 
ISMRANDOMWRITE does not affect the current record pointer. 

The ISMRANDOMWRITE procedure requires the following parameters to return a 
random WRITE result. ISMRANDOMWRITE uses the primary key by default. 

ISMRANDOMWRITE (ISAMFILE, RECORD) 

• ISAMFILE-The user's file. 

• RECORD-The user's record area. 

Result 
Field Value [26:10] Mnemonic 

[0:1] 1 100 DI FFER ENTLENGTH RECORD 

[5:1] 1 97 DUPLICATEKEYS 

Meaning 

This record length 
is not the same 
as the record 
length of the file. 

A duplicate key 
was found but 
duplicate keys are 
not allowed. 

The random write result values can be found in the A Series File Attributes 
Programming Reference Manual in the explanation of the STATE general file attribute. 

ISMRANDOMREAD Procedure 

7-20 

ISMRANDOMREAD reads the record specified by RECORDKEY. The key specified by 
RECORDKEY becomes the key of reference, and the current record pointer is updated 
to point to the next record. 

The ISMRANDOMREAD procedure requires the following parameters to return a 
random READ result: 

ISMRANDOMREAD (ISAMFILE, KEYOFREF, RECORD) 

• ISAMFILE - The user's file. 

• KEYOFREF -Specifies the key to be used for the read. If the KEYFLAGF (bit 46) 
is SET, a keyed read is indicated, and KEYOFREF has the key information word 
format. If the KEYFLAGF is RESET, a relative read is indicated, and the value 
contained in KEYOFREF is used as the relative key. 

• RECORD-The user's record area. 

8600 0460-100 



The random READ result values are listed as follows: 

Field 

[0:01] 

[9:1] 

Value 

o 
1 

1 

ISMREWRITE Procedure 

Result 
[26:10] Mnemonic 

100 DI FFER ENTLENGTH RECORD 

95 RECORDNOTFOUND 

98 KEYSINVALID 

KEYEDIO Support 

Meaning 

No errors 

This record length 
is not the sa me 
as the record 
length of the file. 

Record not found. 
Bit 0 is also 
equal to 1. 

The key is 
invalid. The 
KEYFLAGF was 0 
indicating a 
relative key, but 
the file was not a 
relative file. Bit 0 
is also equal to 1. 

ISMREWRITE rewrites the record specified by the primary key. If a serial rewrite is 
done, the next record specified by the current record pointer is rewritten. If a random 
rewrite is done, the primary key specifies the record to be rewritten. ISMREWRITE 
does not affect the current record pointer. 

The ISMREWRITE procedure requires the following parameters to return a 
REWRITE result: 

ISMREWRITE (ISAMFILE, OPTION, RECORD) 

• ISAMFILE - The user's file. 

• OPTION - Specifies whether a serial or random rewrite is to be done. 

Value 

o 
1 

Meaning 

Serial rewrite. 

Random rewrite. 

• RECORD - The user's record area. 

The REWRITE result values are listed in the following table. The results with an 
asterisk (*) are returned by the GENERALSUPPORT procedure ISMREWRITE. The 
other results are returned by KEYEDIO. 

8600 0460-100 7-21 



KEYEDIO Support 

Field 

[0:1] 

*[2:1] 

[6:1] 

[9:1] 

Value 

o 

1 

1 

1 

1 

Result 
[26:10] 

99 

o 

96 

95 

98 

Mnemonic 

LASTIOMUSTBEREAD 

NOERROR 

PRI MARYKEYSNOTEQUAL 

RECORDNOTFOUND 

KEYSINVALID 

Meaning 

No errors 

The last i/o was 
not a READ. A 
random I/O was 
attempted when 
the 
ACCESSMODE 
was 
SEQU ENTIAL. 

The value in 
OPTION was not 
valid. Bit 0 is 
also equal to 1. 

The pri mary key 
was changed. 
Only alternate 
keys and data 
can be changed 
with 
ISMREWRITE. 
Bit 0 is also 
equal to l. 

The record was 
not found. No 
record met the 
key conditions. 
Bit 0 is also 
equal to 1. 

The key is 
invalid. The 
KEYFLAGF was 0 
indicating a 
relative key, but 
the file was not a 
relative file. Bit 0 
is also equal to 1. 

ISM DELETE Procedure 

7-22 

ISMDELETE deletes the specified record. The previous I/O operation must have been 
a successful READ if a serial delete is to be done. A serial DELETE removes the record 
previously read. A random DELETE removes the record specified by the primary key. 
ISMDELETE does not affect the current record pointer. 

8600 0460-100 



KEYEDIO Support 

The ISMDELETE procedure requires the following parameters to return a DELETE 
result: 

ISMDELETE (ISAMFILE, OPTION, RECORD) 

• ISAMFILE-The user's file. 

• OPTION - Specifies whether a serial or random delete is to be done. 

Value 

o 
1 

Meaning 

Serial delete 

Random delete 

• RECORD - The user's record area. 

The DELETE result values are listed in the following table. The results with an 
asterisk (*) are returned by the GENERALSUPPORT procedure ISMDELETE. The 
other values are returned by KEYEDIO. 

Field 

[0:1] 

*[2:1] 

[6:01] 

[9:1] 

Value 

o 
1 

1 

1 

1 

ISMSETUPLIMIT Procedure 

Result 
[26:10] 

99 

o 

95 

98 

Mnemonic 

LASTIOMUSTBEREAD 

NOERROR 

RECORDNOTFOUND 

KEYISINVALID 

Meaning 

No errors 

The last i/o was not a 
read. A random i/o 
was attempted when 
the ACCESSMODE 
was SEQU ENTIAL. 

OPTION was not a 
valid value. Bit 0 is 
also equal to 1. 

Primary keys are not 
equal 

The record was not 
found. No record met 
the key conditions. 
Bit 0 will also equal 
1. 

The key is invalid. 
The KEYFLAGF was 0 
indicating a relative 
key, but the file was 
not a relative file. Bit 
o will also equal 1. 

ISMSETUPLIMIT defines the upper bounds of the file. This logical end-of-file (EOF) is 
set only for the key defined by KEYOFREF. The user's RECORD contains the value of 

8600 0460-100 7-23 



KEYEDIO Support 

the upper bound. IfUPPERLIMIT has a value and an attempt is made to access 
beyond this limit, an end-of-file (EOF) condition is returned. 

The ISMSETUPLIMIT procedure requires the following parameters to return a 
set-upper-limit result: 

ISMSETUPLIMIT (ISAMFILE, KEYOFREF, KEYLEN, RECORD) 

• ISAMFILE-The user's file. 

• KEYOFREF-Contains the key information used to carry out key comparisons. 
The key length must be set in [31:16]. Refer to the key information under 
"KEYEDIO Procedures." 

• KEYLEN -Specifies the length of the entire record. 

• RECORD-The user's record area. 

The set-upper-limit result value is listed as follows: 

Result 
Field Value [26:10] Mnemonic 

[9:1] 1 98 KEYISINVALID 

Meaning 

KEYOFREF did not 
match any of the 
keys. Bit 0 will also 
equal 1. 

The KEYEDIO File Structure 
The following text describes the structure of the KEYEDIO file. 

Segment 0 (Zero) of the File 

7-24 

When a KEYEDIO file is created, the following information about the file is saved in 
segment 0 of the file. Words in segment 0 are specified as offsets from the standard 
block information area at the start of every block. Since the block information area is 
currently 10 words long, word 0 of segment 0 is actually located at word 10 of the block. 

Word 0 

Describes the physical characteristics of the file. The values stored in this word are 
calculated at file creation time based on your file declarations and space requirements 
needed for maintaining the file. 

Field 

[47:08] 

[39:08] 

Meaning 

The offset into the recovery area where the contents of the new record 
are stored for recovery of a rewrite operation. 

The default number of buffers to allocate when this file is opened. This 
default is established by the setting of the BUFFERS attribute when the 
file was created. 

continued 

8600 0460-100 



continued 

Field 

[31:16] 

[15:16] 

Word 1 

KEYEDIO Support 

Meaning 

The size of the records contained in the file in words. This value might 
be different from your declared MAXRECSIZE because of relative keys. If 
your program has specified relative keys, the record size is adjusted to 
allow relative keys. 

The block size of the file in words. This value is different from the user's 
declared block size. 

Contains information about the keys and the program that created the file. This word 
is copied directly from the FILEINFO [0] parameter in ISAMOPEN at file creation 
time. 

Field 

[47:04] 

[43:04] 

[39:08] 

[31:04] 

[27:01] 

[26:01] 

[25:01] 

[15:08] 

8600 0460-100 

Value 

0 

1 

2 

3 

9 

o 

1 

2 

o 
1 

o 
1 

o 
1 

Meaning 

File format level (currently 1) 

Status of file 

Closed 

Open input 

Open output 

Open inpuVoutput 

Locked 

Language of program opening the file; 
same values as in the MCP language 
table. 

Type of access to use on file 

Sequential 

Random 

Dynamic 

Deleted record flag 

Deleted records are not visible 

Deleted records are visible 

Presence of relative keys 

No relative keys 

Relative keys 

Record units 

Words 

Characters 

Relative index into FlLEINFO of first key of 
first key attribute (in words) 

continued 

7-25 



KEYEDIO Support 

7-26 

continued 

Field 

[19:04] 

[07:08] 

Word 2 

Value 

o 
1 

Meaning 

Record length flag 

Fixed 

Variable 

Number of keys 

Specifies the timestamp of the last update. The timestamp is used in recovery. The 
current value of TIME (6) is stored in this word whenever the file is about to be 
updated. Every block that is written because of the update contains this timestamp. 
Refer to "Recovery Procedures" in this section. 

Word 3 

Specifies the segment that describes the keys - the key information table as follows: 

Field 

[39:20] 

[19:20] 

Word 4 

Not currently used. 

Word 5 

Meaning 

Length of the key information 

Relative segment number of key information block 

Specifies the first block in the file that has never been used. All blocks beyond the 
specified one are available for use. 

Word 6 

Specifies the next available record slot. When a record is added, the new record is 
stored at the location specified by this word. 

Field 

[43:24] 

[19:20] 

Meaning 

The relative segment number of the current block 

The offset into the block of the next record location 

8600 0460-100 



KEYEDIO Support 

Word 7 

Specifies the last user record to be updated. This word is only valid if nonzero. (Refer 
to "Recovery" in this section.) 

Field Meaning 

The type of update in process [47:04] 

[43:24] 

[19:20] 

The relative segment number of the last updated block 

The offset into the block of the last updated record 

WordS 

The next relative key to be allocated. If relative keys have been specified, this word 
contains the next relative key value to be allocated. 

Word 9 

The MINRECSIZE value specified when the file was created. 

Word 10 

The MAXRECSIZE value specified when the file was created. 

Word 11 

The BLOCKSIZE value specified when the file was created. 

Word 12 

The FRAMESIZE value specified when the file was created. 

Word 13 

The BLOCKSTRUCTURE value specified when the file was created. 

Word 14 

The UNITS value specified when the file was created. 

Word 15 

The EXTMODE value specified when the file was created. 

8600 0460-100 7-27 



KEYEDIO Support 

Block I nformation Layout 

7-28 

A keyed file is made up of data and tables. Data and tables have the same size, and 
each block contains the following control information: 

Word 0 

Contains the following information about the block, table organization, and key size: 

Field 

[47:04] 

[43:01] 

[15:16] 

Word 1 

Value 

1 

2 

3 

o 
1 

Meaning 

Type of block 

Coarse table 

Fine table 

Data block 

Table organization (coarse and fine tables) 

Descending order by key 

Ascending order by key 

Size of each key entry (coarse and fine 
tables) 

Contains the following information about the keys for coarse and fine tables: 

Field 

[47:16] 

[31:16] 

[15:16] 

Word 2 

Meaning 

First key entry (word offset) 

Number of keys currently in table 

Maximum number of key entries that can fit in the table 

Address (relative segment number) of this block. 

Word 3 

Address (relative segment number) of the next sequential fine table. This word links 
fine tables together so that the file can be accessed sequentially. 

Field Meaning 

[43:24] Relative segment number of the first available block 

8600 0460-100 



KEYEDIO Support 

Word 4 

Address (relative segment number) of the previous sequential fine table. This word 
maintains the sequential ordering of fine tables. 

Field Meaning 

[43:24] Relative segment number of the first available block 

Word 5 

Timestamp of the block. This word is used in recovery. 

Coarse Table Layout 

Coarse tables are made up of keys and table pointers. The key value is the value of the 
last key contained in the block specified by the table pointer. The table pointers are 
relative segment numbers into the file of the next table down in the structure. Table 
pointers are aligned on word boundaries. 

Figure 7-1 shows a coarse table layout. 

Block info 

Fine Table Layout 

Size of each r- key .entry ., 

Table PTR Table PTR 

Figure 7-1. Coarse Table Layout 

Table PTR 

Fine tables are made up of keys and pointers. The key value is the same value that 
the record specified by the data pointer contains. The pointers are relative segment 
numbers into the file and a word offset of where the data starts within the block. The 
data pointers have the following format: 

Field 

[43:24] 

[19:20] 

Meaning 

The relative segment number of the block that contains the 
record 

The word offset into the block of the beginning of the record 

Figure 7-2 shows a fine table layout. 

8600 0460-100 7-29 



KEYEDIO Support 

B10ck info 

Size of each I key entry I 
Key Data PTR 

(segment) 
(offset) 

Key. Data PTR 

(segment) 
(offset) 

Figure 7-2. Fine Table Layout 

Key Data PTR 

(segment) 
(offset) 

Key I nformation Table Layout 

The key information table contains 3 word entries that describe each key in the file and 
the first tables to be used in accessing the file with that key. 

The first word of each key information table entry describes the key. It contains the 
same information in the same format as used for the ISAMKEYS file attribute 
discussed under "Indexed (KEYEDIO) File Attributes." 

The second word of each entry contains the relative segment address of the root table 
of the index tables for this key. If all the entries for this key will fit into a single table, 
the root table will be a fine table. Otherwise it will be a coarse table. The root table is 
the highest block in the hierarchical structure of index tables; it is the first table to be 
searched when accessing a file randomly. 

The third word of each key information table entry contains the relative segment 
address of the first fine table for this key. It is used to find the first record when 
accessing the file sequentially. 

Logical Layout of a KEYEDIO File 

The logical layout of a KEYEDIO file is illustrated in Figure 7-3. 

7-30 8600 0460-100 



I 

KEYEDIO Support 

Key info word I (word 3 of segment zero) 

(coarse 
tables) 

(fine 
tables) 

KEY INFO TABLE 

3 word entry per key 3 word entry per key 

Key Root First Key Root First 
data Table fine data Table fine 

/ \ 
( ) ~ key .values ----=-- ( 7 ) 
e w # (# is an EOF marker) 0 70 ## 

(coarse 
tables) 

(fine 
tables) 

(coarse 
tables) 

(fine 
tables) 

(coarse 
tables) 

(fine 
tables) 

(ree 1) (ree 8) (ree 9) (ree 6) (ree 9) (ree 8) 

(ree 3) (ree 7) (ree 4) (ree 4) (ree 7) (ree 3) 

(ree 5) (ree 6) (ree 2) (ree 2) (ree 5) (ree 1) 

Data Data Data 

ree 1 ree 2 ree 3 ree 4 ree 5 ree 6 ree 7 ree 8 ree 9 

Figure 7-3. KEYEDIO File Layout 

The end-of-file (EOF) marker is actually a key entry of all bits SET and a data pointer 
of zero. 

8600 0460-100 7-31 



KEYEDIO Support 

I nserti ng Keys 

7-32 

Information contained in the block information is used for determining how to add the 
new key. The first entry in the table, the number of entries currently in the table, and 
the maximum number of entries that can fit in the table are saved in the block 
information. If the number of entries is less than the maximum number of entries, 
keys to the left of the new key are moved to the left, and the new key is inserted. To 
add a new key entry to a table that is already full, the table is split. When the split is 
made, all entries to the left of the new key and the new key go into one table, and all 
entries to the right go into another table. 

Note: The tables are always right-justified. 

8600 0460-100 



KEYEDIO Support 

Example of Inserting a Key: 

Key .i nfo table 
(Segme'nt #1) 

Root table 
Segment #5 

Coarse table 
Segment #9 

Coarse table 
Segment #19 

Fine table 
Segme'nt #57 

Data block 
(Segme'nt #111) 

Key ,i nformati on Root PTR 1st fine 

key Jl ag = 1 
alternate key = False 
duplicate keys = True 
key 9rganization = ascending 5 
key .si gn = no sign 
key type = EBCDIC 
keylength = 7 
keyoJfset = 3 

I 

r-------------...J 
L 

r-----

L~I 
I 

Block Baker info 

r----

L ~I 
r 
L 

Block I Allen info 

Word 
1.0 

--1 

19 

I 
...J 

21 

__ -.J 

note: 
'#######' 

Hill 23 

Andrews 57 

I 
_...J 

Word 
23 

21 

is the EOF marker 

Johnson 35 

Baker 47 

Segment 321 
Offset 36 

.0.01ABCDEFG 12345 .0.02ANDERS 34567 

Figure 7-4. Inserting a Key 

86000460-100 7-33 



KEYEDIO Support 

Example of Inserting a Key into a Full Table: 

Example of inserting a key:, 

Key Data PTR 

FINE TABLE BBBBBB 137 
KEY ENTRY 23 

added to 

Block Additional 
info key entries Key Data PTR Key Data PTR 

FINE TABLE IIIIIIII IIII 
IIIIIIII IIII 

become's Block 
info Key Data PTR Key, Data PTR Key, Data PTR 

FINE TABLE 

Examp'l e of inserting a key ,i nto a fu 11 table: 

Key. Data PTR 

FINE TABLE AAABBB 137 
KEY ENTRY 23 

added to 
Block 
info Key, Data PTR Key Data PTR Key Data PTR 

FINE TABLE 

(Segment 10) 
become's 

Block Additional 
info key ,entri es Key, Table PTR Key, Table PTR 

COARSE TABLE IIIIIIII 1III 
II1IIII1 1I1I 

(Segment 14) 

Block Additional 
info key ,ent ri es Key, Data PTR Key, Data PTR 

FINE TABLE 1111//11 11II 
I1I1III1 11II 

(Segment 15) 

Block Additional 
info key ,entri es Key Data PTR Key Data PTR 

FINE TABLE 11111/1/ 111I 
II/II/II IIII 

(Segment 51) 

Figure 7-5. Inserting a Key into a Full Table 

7-34 8600 0460-100 



KEYEDIO Support 

Recovery Procedures 
To ensure that the file is always in a consistent state, recovery information is saved 
before any updating is done to the file. The recovery information consists of a 
timestamp and a pointer to the record that is being updated. Recovery information is 
not saved when the file is being created. 

The following sequence of events takes place when a file is updated: 

1. The recovery information is saved in segment 0 of the file. 

2. Information is written to the file in a careful order so that data is not lost if the 
WRITE operations are not completed. The data record affected by the update is 
the last record changed. 

If the update is terminated before step 2 is finished, the update is completed the next 
time the file is opened. The recovery process begins when the record referenced by the 
recovery information in segment 0 is read. The file is then updated with that record. 
During the update process, if a block is read that has a timestamp equal to that of the 
recovery timestamp, that block is treated as already reflecting the update. Mter the 
update is done, the recovery information is zeroed out, and segment zero is rewritten. 

Note: Because enhancements were made for the Mark 3.7 release in the 
recovery procedure and in the way the recovery record is stored, the 
Mark 3.7 version or later of KEYEDIO should not be used to recover 
a file whose recovery record was stored by an earlier version of 
KEYEDIO. This will not be a problem if you make sure that all 
KEYEDIO files have been properly closed and do not need recovery 
before installing Mark 3.7 KEYEDIO. 

Recovery Messages and Warnings 
The following warning message is displayed when a KEYEDIO file has Mark 3.3 PRI 
or earlier recovery information: 

FILE TOO OLD FOR HALTLOAD RECOVERY. 
FILE MUST BE RE-CREATED WITH 3.4.1 OR LATER KEYEDIO. 

The recovery can still be attempted, if necessary. If KEYEDIO is unable to begin 
recovery with the information in the file, the following message is displayed: 

INSUFFICIENT RECOVERY STATE. 

If there is sufficient information to begin recovery but the recovery cannot be 
completed, the following message is displayed: 

UNABLE TO RECOVER FILE. 

8600 0460-100 7-35 



KEYEDIO Support 

7-36 

For both of these conditions, you also receive the following message: 

WARNING: FILE MAY BE CORRUPTED. 
THIS FILE SHOULD BE RELOADED USING 3.4.1 OR 
LATER KEYEDIO. 
IHII TO CONTINUE, IDS I TO ABORT. 

Enter HI to resume processing and terminate the recovery attempt. Enter DS to 
discontinue the application. 

8600 0460-100 



Section 8 
Mathematical Functions 

This section describes the mathematical functions used in the A Series systems to 
support user-written mathematical intrinsics. Programs written in various languages 
can use these functions to perform mathematical operations. The compilers in which 
the functions are used cannot refer to the function by the names given to them in this 
section. (For example, in ALGOL, the function ARCTAN actually refers to the function 
ATAN described in this section.) The names used in this section are identical to those 
used in the A Series FORTRAN Programming Reference Manual. See "Permissible 
Argument Ranges" in this section for a list offunction names used in various other 
languages. 

The functions are grouped as single-precision, double-precision, and complex. A brief 
description of each function is given. In some instances this description is followed by 
the algorithm used in computing the function or notes regarding the derivation of the 
algorithm. 

Certain constants such as pi and e are used throughout the algorithms. These 
constants are defined under "Common Constants." These values are stated in both 
single- and double-precision forms, where necessary. The appropriate value should be 
chosen according to whether the algorithm under consideration is single- or 
double-precision. 

Several procedures are used in exponentiation and are called implicitly by the 
compilers. Because of their similarity, these procedures are grouped under the heading 
"Single-Precision Exponentiation," "Double-Precision Exponentiation," or "Complex 
Exponentiation. " 

Single-Precision Functions 
The following paragraphs describe the single-precision mathematical functions. 

ALGAMA Function 

The ALGAMA function accepts a positive real number and returns the natural 
logarithm of the GAMMA function at that number. The algorithm used varies 
depending on the value of argument x. 

If x is less than 3.28, the following algorithm is used: 

ALGAMA(x) = ALOG(GAMMA(x)) 

8600 0460-100 8-1 



Mathematical Functions 

If x is greater than or equal to 3.28, the calculation is more direct, relying on Stirling's 
approximation as follows: 

GAMMA (x) = (e**{-x)*x**{x-l/2)*SQRT{2*p;))g{x) 

In the preceding calculation, the function g(x) is an error polynomial. 

ALOG Function 

The ALOG function accepts any positive number and returns the natural logarithm 
(that is, the logarithm to base e) of that number. ALOG(x) returns a positive number if 
the argument x is greater than 1 and returns a nonpositive number if the argument x is 
between 0 and 1. 

ALOGIO Function 

The ALOG10 function accepts any positive number and returns the common 
logarithm-that is, the logarithm to the base 10 of that number. This function is 
computed by using the ALOG(naturallogarithm) function in the following identity: 

ALOG10{x)=ALOG{x)*ALOG10{e) 

The value of the common logarithm of e is given under "Common Constants" later in 
this section. 

ARCOS Function 

ARCOS is the arccosine trigonometric function. ARCOS is also called the inverse 
cosine function. The ARCOS function accepts a number between -1 and 1 inclusive 
and returns the angle from the range 0 through +pi that has that cosine. 

The arccosine is calculated similarly to the arcsine function and uses the following 
identity: 

ARCOS{x)= pi/2 - ARSIN(x) 

The value of pi/2 is given under "Common Constants" later in this section. 

ARSIN Function 

8-2 

ARSIN is the arcsine trigonometric function. ARSIN is also called the inverse sine. 
The ARSIN function accepts a number between -1 and 1 inclusive and returns the 
angle from the range -pi/2 through +pi/2 radians that has that sine. 

8600 0460-100 



Mathematical Functions 

ARSIN is calculated using a rational approximation for the argument x in the range 0 
through 0.5 only. Ifx is outside this range, x is first reduced to being in the range in the 
following ways: 

• If x is less than 0, the following identity is used: 

ARSIN(x) = -ARSIN(-x) 

• If x is greater than 0.86602, the following identity is used: 

ARSIN(x) = pi/2 - 2*ARSIN(SQRT«1-x)/2» 

• If x is greater than 0.5 and less than 0.86602, the following identity is used: 

ARSIN(x) = pi/4 + 1/2*ARSIN(2 * x**3 -1) 

The value ofpi/2 is listed under "Common Constants" later in this section. 

ATAN Function 

ATAN is the arctangent function. ATAN is also called the inverse tangent. The ATAN 
function accepts any number and returns the angle from the range -pi/2 through + pi/2-
radians that has that tangent. 

ATAN2 Function 

ATAN2 accepts any two numbers x andy and returns the arctangent of the quotient of 
those two numbers. 

ATAN2 is defined for all real x andy values. This function is adapted to fall in the 
range of -pi through +pi by choosing it in a quadrant determined by the signs of x and 
y. In effect, this function is used in complex arithmetic as follows: given the complex 
number x+iy, ATAN2 (x,y) returns the argument of that number between -pi and pi. 
This function is calculated from the function ATAN, as follows: 

• ABS (x) < ABS (y) Ify > 0 then ATAN2 = ATAN(x/y). Ify < 0 then ATAN2 = 
ATAN(x/y) - sign(x) * pi. 

• ABS(x) > = ABS(y) Ifx neq 0 then ATAN2 = -ATAN(y/x) + pi/2 * sign(x). Ifx = 0 
then ATAN2 = pi/2. 

COS Function 

The COS function accepts a number that indicates the number of radians in an angle, 
and returns the cosine of that angle. The angle is first reduced to lie between 0 and 
pi/2, using the following identities: 

COS(-x) = COS (x) 
COS(2*N* pi + x) = COS (x) 
COS (pi + x) = COS(pi/2 - x) 

8600 0460-100 8-3 



Mathematical Functions 

The final calculation is one of two polynomial approximations, depending on the value 
of the reduced argument. 

COSH Function 

The COSH function accepts a real number and returns the hyperbolic cosine of that 
number. Depending on the value of the argument x, COSH(x) is computed by means of 
the following identities: 

COSH(-x) = COSH(x) 
COSH(x) = EXP(x - ALOG(2)) + .25/(EXP(x - ALOG(2)) 

COlAN Function 

COTAN is the trigonometric cotangent function. The COTAN function accepts a 
number that indicates the number of radians in an angle, and returns the cotangent of 
that angle. 

The method used for calculating the COTAN(x) is identical to the method for 
calculating TAN(x). However, because COTAN(x) is the reciprocal of TAN (x) , the final 
calculation for COTAN(x) is obtained by use of the following relationships: 

Table 8-1. TAN/COTAN Calculation 

Octant COTAN(x) 

0 T/R 

1 R/T 

2 (-R)!T 

3 (-T)/R 

ERF Function 

8-4 

ERF is the error function used in calculating probability. This function accepts any 
number and returns a value between -1 and 1. The error function is defined as follows: 

ERF(x) = 2/SQRT(pi)*(INTEGRAL(e**((-t)**2 )dt)from 0 to x) 

This function is slightly different from the normal probability curve, Gauss's 
probability integral, which is defined as follows: 

phi (x)=1/SQRT(2*pi)*(INTEGRAL(e**(((-t)**2 )/2)dt)from 0 to x) 

8600 0460-100 



Mathematical Functions 

The relationship between ERF(x) and phi(x) is as follows: 

ERF(x) = 2*phi(SQRT(2)*x) 

ERFC Function 

ERFC is the complement of the ERF error function. ERFC(x) is defined as follows: 

ERFC(x) = 1 - ERF(x) 

EXP Function 

The EXP function accepts any number less than 157.9 and returns e (the base of the 
natural logarithm) raised to that power as a real value. The EXP function is defined as 
follows: 

EXP(x) = e**x 

The value of the constant e is given under "Common Constants" later in this section. 

Single-Precision Exponentiation 

Single-precision exponentiation is performed by the intrinsic RTOR- a real number to 
a real power. 

GAMMA Function 

The GAMMA function accepts any number less than or equal to 53.4, except 0 or a 
negative integer, and returns the value of the gamma function at that number. The 
GAMMA function is defined for positive numbers by the following integral: 

GAMMA (x) = INTEGRAL((t**(x - l)*e**(-t))dt) from 0 to infinity 

RANDOM Function 

The RANDOM function accepts a call-by-name integer and returns a pseudorandom 
real number that is greater than or equal to 0 and less than 1. The number is generated 
by the mixed congruent method, which is designed to give a uniform distribution. 

RANDOM is the only function described in this section that takes a call-by-name input 
parameter. The parameter gives an initial value that is thereafter changed to give 
succeeding values by the procedure itself. 

8600 0460-100 8-5 



Mathematical Functions 

You can obtain starting values to acquire a good sequence of pseudorandom numbers 
by picking odd integers close in value to 2**19, 2**40 , or 2**41. 

The procedure for RANDOM generates integers in the range 0 through 2**(39-1) and 
then returns those integers divided by 2**39. The integer variable N given to 
RANDOM is changed as follows: 

ABS(N):=(A * ABS(N) + 116177073375) MOD (2**39) 

The operator: = is the replacement operator. A is a constant whose value depends on 
the sign ofN (which is never changed), as follows: 

• For nonnegative N: A = 152587890725 

• For negative N: A = 277626315293 

These values permit two different pseudorandom sequences depending on whether the 
starting value was positive or negative. 

The random number is computed as follows: 

RANDOM(N) = ABS(N)/(2**39) 

SI N Function 

The SIN function accepts a number that indicates the number of radians in an angle 
and returns the sine of that angle. SIN (x) is always between -1 and 1 inclusive. The 
angle is first reduced to lie between 0 and pi/2, by means of the following identities: 

SINe-x) = -SIN(x) 
SIN(2*N*pi + x) = SIN (x) 
SIN (pi + x) = -SIN(pi - x) 
SIN(pi/2 + x) = SIN(pi/2 - x) 

The final calculation is one of two polynomial approximations, depending on the value 
of the reduced argument. 

SINH Function 

8-6 

The SINH function accepts a real number and returns the hyperbolic sine of that 
number. Depending on whether the value of the argument is less than 1 or not, 
SINH (x) is computed by means of either a polynomial approximation or the following 
identity: 

SINH(x) = EXP(x - ALOG(2)) - 0.25/(EXP(x - ALOG(2))) 

8600 0460-100 



Mathematical Functions 

SQRT Function 

The SQRT function accepts any positive number and returns the square root of that 
number. The square root is always positive. The algorithm for deriving a square root is 
essentially the traditional Newton-Raphson method. However, an initial estimate is 
first derived. 

TAN Function 

The TAN function accepts a number that indicates the number of radians in an angle 
and returns the tangent of that angle. TAN(x) is either positive or negative depending 
on the argument x. To compute TAN(x), the argument x is reduced ifit is outside the 
range 0 through pi. 

TANH Function 

The TANH function accepts any number and returns the hyperbolic tangent of that 
number. TANH(x) for a real argument x is computed either by means of the following 
identities or by a rational approximation depending on the value of the argument: 

TANH(-x) = TANH(x) 
TANH (x) = 1 - 2((exp(2x) + 1) 

Double-Precision Functions 
The following paragraphs describe the double-precision mathematical functions. 

Many double-precision functions are calculated in the same manner as the equivalent 
single-precision functions. For these functions, all references to single-precision 
functions are changed to references to double-precision functions, and all references to 
the arithmetic operations are assumed to be to double-precision operations. 

DARCOS Function 

DARCOS is the inverse cosine function. This function accepts a number between-1 
and 1 inclusive and returns the angle from the range 0 through +pi that has that 
cosine. 

DARCOS is calculated similarly to the arcsine function and uses the following identity: 

ARCOS(x) = pi/2-DARSIN(x) 

The value of pi/2 is given under "Common Constants" later in this section. 

8600 0460-100 8-7 



Mathematical Functions 

DARSI N Function 

DARSIN is the inverse sine function. This function accepts a number between -1 and 1 
inclusive and returns the angle from the range -pi/2 through +pi/2 that has that sine. 

DATAN Function 

DATAN is the inverse tangent function. This function accepts a double-precision 
number and returns the angle that has that tangent. The argument x is reduced to the 
range O<x<=l, where 1=tan(pi/4). 

DATAN2 Function 

DATAN2 accepts any two numbers x and y and returns the arctangent of the quotient 
of those two numbers. 

DATAN2 is defined for all real x andy values. This function is adapted to fall in the 
range of -pi through +pi by choosing it in a quadrant determined by the signs of x and 
y. In effect, this function is used in complex arithmetic as follows: given the complex 
number x + iy, DATAN2 (x,y) returns the argument of that number between -pi and pi. 

DATAN2 is calculated from the function DATAN as follows: 

• If y is equal to 0, then 

DATAN2(x,0) = sign(x)*pi/2 

• If y is less than 0, then 

DATAN2(x,y) = DATAN(x/y) + sign(x)*pi 

• If y is greater than 0, then 

DATAN2(x,y) = DATAN(x/y) 

In these calculations, sign(x) is a function that has the value + 1 if x is greater than or 
equal to 0, otherwise the value is -1. 

DCOS Function 

The DCOS function accepts a number that indicates the number of radians in an angle, 
and returns the double-precision value of the cosine of that angle. 

DCOSH Function 

8-8 

The DCOSH function accepts a number and returns the double-precision value of the 
hyperbolic cosine of that number. Depending on the value of the argument x, 
DCOSH(x) is computed either directly from the definition by using the DEXP function 
or by a polynomial approximation. 

8600 0460-100 



Mathematical Functions 

The argument is reduced to the first quadrant by the method used in calculating the 
single-precision COS. The calculation then uses the same approximation as is used for 
DSIN and then uses the following identity: 

DCOS{x) = DSIN{pi/2 - x) 

DERF Function 

DERF is the double-precision error function used in calculating probability. This 
function accepts any number and returns a value between -1 and 1. DERF is defined 
the same as ERF, as follows: 

DERF{x) = 2/SQRT(pi)*{INTEGRAL(e**((-t)**2 )dt) from 0 to x) 

DERFC Function 

DERFC is the complement of the DERF double-precision error function. DERFC(x) is 
defined as follows: 

DERFC(x) = 1 - DERF(x) 

DEXP Function 

The DEXP function is the double-precision exponential function. This function is 
calculated in the same manner as is the single-precision exponential function. 

DGAMMA Function 

The DGAMMA function accepts any number except 0 or a negative integer as an 
argument and returns the double-precision value of the gamma function at that 
number. The DGAMMA function is the double-precision equivalent of the GAMMA 
function, as follows: 

DGAMMA(x)=INTEGRAL((t**(x - 1)) (e**(-t))dt)from 0 to infinity 

DLGAMA Function 

The DLGAMA function accepts a number and returns the double-precision value of the 
natural logarithm - that is, the logarithm to base e of the GAMMA function at that 
number. The constant e is defined under "Common Constants" later in this section. 

8600 0460-100 8-9 



Mathematical Functions 

DLOG Function 

The DLOG function accepts any positive number and returns the double-precision 
value of the natural logarithm-that is, the logarithm to base e of that number. 

DLOGIO Function 

The DLOG10 function accepts any number and returns the double-precision value of 
the common logarithm-that is, the logarithm to the base 10 of that number. This 
function is computed by means of the DLOG function in the following identity: 

DLOG10(x) = DLOG(x)*DLOG10(e) 

The value ofDLOG 10(e) is given under "Common Constants" later in this section. 

DSI N Function 

The DSIN function accepts a number that indicates the number of radians in an angle 
and returns the double-precision value of the sine of that angle. The argument is 
reduced to the first quadrant by the method used in calculating the single-precision 
sine. The calculation proceeds by means of a polynomial approximation. 

DSINH Function 

The DSINH function accepts a number and returns the double-precision value of the 
hyperbolic sine of that number. DSINH is computed either directly from the definition 
by means of the DEXPT function or by approximation, depending on the value of the 
argument- in the same manner as SINH. 

DSQRT Function 

The square root of a double-precision argument is computed by the following two steps: 

1. The single-precision square root of the most significant half of the argument is 
computed by means of the algorithm for finding the single-precision square root. 

2. One additional Newton-Raphson iteration, using the original double-precision 
argument, double-precision arithmetic, and the single-precision square root is 
computed. The exponent is shifted if necessary. 

DTAN Function 

8-10 

The DTAN function accepts a number that indicates the number of radians in an angle 
and returns the double-precision tangent of that angle. DTAN(x) returns a positive or 
negative number depending on the value of x. To compute the tangent of an angle, the 
angle is reduced ifit is outside the range 0 through pi. 

86000460-100 



Mathematical Functions 

DTANH Function 

The DTANH function accepts a number and returns the double-precision hyperbolic 
tangent of that number. The double-precision hyperbolic tangent is computed either 
directly from the definition by means of the intrinsic DEXP or by approximation, 
depending on the value of the argument (in the same manner as TANH). 

Double Precision Exponentiation 

Double precision exponentiation is performed in the same manner as single-precision 
exponentiation by means of two routines: RTOD (real-to-double) and DTOD 
(double-to-double). In either case, the result is double-precision. 

Complex Functions 
The following subsections describe the complex mathematical functions. 

Definitions Used in Complex Function Descriptions 

All the complex functions are derived by the use of the real functions. In these 
functions, several methods are used to write a complex number. When a complex 
number is described as a simple variable, the letter z is used. Several equivalent ways 
of writing z exist. In the following example, x and yare real numbers and i equals 
SQRT(-l): 

z = x + iy 

The variable z can also be expressed as follows: 

z=re**(i*phi) 

The variables r and phi are the absolute value and the displacement, respectively. They 
are related to x and y as follows: 

x = r COS (phi) 
y = r SIN (phi) 
r**2 = x**2 + y**2 
TAN(phi) = x/y 

These identities also indicate DeMoivre's formula as follows: 

e**(i*phi) = COS(phi) + iSIN(phi) 

These basic relationships are used to determine most of the complex algorithms. 

8600 0460-100 8-11 



Mathematical Functions 

CABS Function 

The CABS function accepts a complex number and returns the absolute value of that 
number. The absolute value of a complex number z is defined to be ABS(r). Refer to 
"Definitions Used in Complex Function Descriptions" earlier in this section. 

Therefore, given the following equation: 

CABS(x + iy) = SQRT(x**2 + y**2 ) 

If ABS(x) > = ABS(y), the following identity is used: 

SQRT(l + (y/x)**2 )*ABS(x) 

If ABS(x) < ABS(y), the following identity is used: 

SQRT(l + (x/y)**2 )*ABS(y) 

The following special function is evaluated using iterations similar to Newton-Raphson 
iterations. 

F(z) = SQRT(l + z) - 1 

The final computation is 

CABS = F(z)*w+w 

The variables z equals (y/x)**2 or (x/y)**2 and w equals ABS(x) or ABS(y). 

ceos Function 

8-12 

The CCOS function accepts a complex number and returns the cosine of that number. 
The cosine of a complex number z is calculated by using the identity for COS (a + b) on 
the number x+iy. Then the following identities are applied: 

COS(iy) = COSH(y) 

SIN(iy)=iSINH(y) 

8600 0460-100 



Mathematical Functions 

These relationships are derived according to the definitions given under "Definitions 
Used in Complex Function Descriptions" earlier in this section. When the definitions 
of the hyperbolic sine and cosine are substituted in the equation, the algorithm 
becomes the following: 

CCOS(x+;y) = (+ or -)1/2 SQRT(1-SIN**2(x)) (e**y + e**(-y)) - ;/2* 
SIN (x)*(e**y - e**(-y)) 

The value of x is taken modulo 2pi before the sine function is applied. The negative 
sign is applied on the square root if the original x is in the second or third 
quadrants - that is, x is greater than or equal to pi/2 and less than or equal to 3pi/2. 

CEXP Function 

The CEXP function accepts any complex number and returns the value of e raised to 
that number. The value of the exponent is calculated by the use ofDeMoivre's 
relationship. Refer to the information given under "Definitions Used in Complex 
Function Descriptions" earlier in this section. The basic identity that 
COS**2 (x) = 1 - SIN**2 (x), is the following: 

e**(x+iy) = e**x ((+ or -)SQRT{1-SIN**2 (y))+i SIN{y)) 

The value of y is taken modulo 2(PiJ before the sine function is applied. The negative 
sign on the square root is chosen if the original y is in the second or third quadrant. 

CLOG Function 

The CLOG function accepts a complex number and returns the natural logarithm- to 
base e - of that number. The complex natural logarithm of a number is calculated by 
means of DeMoivre's relationship and the relationships among x, y, r, andphi as 
follows: 

CLOG(x + ;y) = ALOG(r) + ;*phi 

In this algorithm, phi is chosen to fall in the principal range noted, and both r andphi 
are as previously defined. The natural logarithm is computed as a real number. The 
value of phi is computed by the real intrinsic ATAN2, which is designed for use in this 
application. Then the algorithm becomes the following: 

CLOG(x+;y) = ALOG(SQRT(x**2 +y**2 ))+ i ATAN2(y,x) 

Because the complex logarithm is not a single-value function, the value returned by 
CLOG is in the range -pi through +pi. 

8600 0460-100 8-13 



Mathematical Functions 

CSI N Function 

The CSIN function accepts a complex number and returns the sine of that number. 
The sine ofa complex number z is calculated by the use of the identity for SIN(a+b) on 
the complex number x+iy. Then the identities cOS(iy) = cOSH(y)and 
SIN(iy) = SINH(y) are applied. Refer to the definitions under "Definitions Used in 
Complex Function Descriptions" earlier in this section. 'When the definitions of the 
hyperbolic sine and cosine are substituted in the equation, the algorithm is as follows: 

CSIN(x+iy) = (+or-)1/2*SQRT(1-COS**2 (x))*(e**y+e**(-y)) 
+i/2 COS(x)*(e**y-e**(-y)) 

The value of x is taken modulo 2pi before the COS function is applied. The negative 
sign is applied on the square root if the original x was in the third or fourth quadrant. 

CSQRT Function 

8-14 

The CSQRT function accepts a complex number and returns the complex square root 
of that number. The complex square root of a number is calculated first by means of 
DeMoivre's relationship and then taking its square root, as follows: 

CSQRT(z)=(r)**l /2(COS(phi/2) + i SIN(phi/2)) 

Using the half-angle formulas for the cosine and sine and rearranging the preceding 
relationship, the following equation is derived: 

CSQRT(z)=SQRT(r(1+COS(phi))/2)+(SQRT(r(1-COS(phi))/2)*i) 

The identity x/r= COS (Phi) and algebraic manipulation result in the algorithm that is 
used. 

Ifx > = 0 and r = CABS(x+iy), then 

CSQRT(x+iy)=SQRT((r+x)/2)+iy/(2 SQRT((r+x)/2)) 

Ifx < 0, then the trigonometric functions in polar form are complemented, and the 
following algorithm results, where r = CABS (x+iy): 

(SQRT(x+;y)=y/(2*SQRT((t+ABS(x))/2))+ i SIGN(y)*SQRT((r+ABS(x))/2) 

SIGN(y) is a function that has the value + 1 ify is not negative and the value-1 
otherwise. 

8600 0460-100 



Mathematical Functions 

Complex Exponentiation 

Exponentiation of a complex number is perfonned by two routines: CTOR, for complex 
numbers to a real power, and CTOD, for complex numbers to a double-precision power. 
The only difference between the double-precision power and the real power is that 
computations are performed by the use of the double-precision functions. Because the 
final result must be a complex number and no double-precision complex type is 
supported by any computers, exponentiation to a double-precision power might result 
in little increased accuracy at a high cost in time, depending on the particular case. 

Common Constants 
The following table lists common constants used in computing the mathematical 
functions. Real and, where necessary, double-precision values are given for each of the 
constants. Because fewer double-precision functions than real functions exist, some of 
the constants are unnecessary in the double-precision cases. 

Table 8-2. Common Constants 

Constant Single-Precision Value Double-Precision Value 

pi 3.14159265359 3.1415926535897932384626 

pi/2 1.57079632697 1.5707963267948966192313 

pi/4 0.785298163397 

pi/6 0.523598775598 0.52359877559829887307711 

3(pi)/4 2.35619449019 

SQRT(3) 1.732050807570 1.7320508075688772935275 

SQRT(2)/2 0.707106781187 

ALOG(2) 0.693147180560 0.69314718055994530941723 

ALOG(SQRT(2pi) ) 0.91893853321 

e 2.71828182846 2.7182818284590452353603 

ALOG10(e) 0.434294481903 0.43429448190325182765113 

LOG2(e) 1.4426950409 

TAN(pi/40) 0.0787017068246 

TAN(pi/20) 0.158384440326 

TAN(3pi/40) 0.240078759080 

TAN(pi/10) 0.324919696234 

8600 0460-100 8-15 



Mathematical Functions 

Permissible Argument Ranges 

8-16 

Table 9-3 lists the permissible argument ranges for each of the mathematical 
functions. The word All signifies that all single-precision numbers - or 
double-precision numbers if the function is double-precision - are permitted. All is 
often modified in some obvious manner. If a function has more than one argument, the 
requirements for each are listed separated by commas (,). The notation (0,0) means 
that both the first and second arguments are 0 (zero). 

Table 8-3. Permissible Argument Ranges 

Function Name Permissible Argument Range 

ALGAMA All positive 

ARCOS All <-1 and >+1 

ARSIN All <-1 and >+1 

ATAN All 

ATAN2 All except (0,0) 

COS ASS < 10**24 

COSH All 

COTAN All 

ERF All 

EXP All 

EXPON ENT( RTOR) All for exponent; all for base except negative numbers to nonintegral 
exponent 

GAMMA All except negative integers and ° 
ALOG All positive 

ALOGI0 All positive 

RANDOM ASS < 2**39 

SIN ASS < 10**24 

SINH All 

SQRT All nonnegative 

TAN ASS < 10**22 

TANH All 

DATAN All 

DATAN2 All except (0,0) 

DCOS ASS < 10**24 

DEXP All 

continued 

8600 0460-100 



Mathematical Functions 

Table 8-3. Permissible Argument Ranges (cant.) 

Function Name Permissible Argument Range 

DLOG All positive 

DLOG10 All positive 

DSIN ASS < 10**24 

DSQRT All nonnegative 

EXPONENT For both RTOD and DTOD: 

(RTOD) All for exponent 

(DTOD) All nonnegative for base 

CABS All 

CCOS All 

CEXP All 

CLOG All 

CSIN All, -107< y <159 

CSQRT All 

EXPONENT For both CTOR and CTOD: 

(CTOR) All for base; 

(CTOD) All real or double-precision for exponent 

The following table lists the function names in various languages. The names used in 
this section are the FORTRAN names. 

Table 8-4. Function Names 

FORTRAN FORTRAN77 ALGOL COBOL BASIC PASCAL 

ALGAMA LNGAMMA LNGAMMA 

A LOG A LOG LN LN LOG LN 

ALOGI0 ALOGIO LOG LOG 

ARCOS ACOS ARCCOS ARCCOS 

ARSIN ASIN ARCSIN ARCSIN 

ATAN ATAN ARCTAN ARCTAN ATN ARCTAN 

ATAN2 ATAN2 ARCTAN2 

CABS CABS CABS 

continued 

8600 0460-100 8-17 



Mathematical Functions 

Table 8-4. Function Names (cant.) 

FORTRAN FORTRAN77 ALGOL COBOL BASIC PASCAL 

CCOS CCOS CCOS 

CEXP CEXP CEXP 

CLOG CLOG CLN 

COS COS COS COS COS COS 

COSH COSH COSH COSH 

COTAN COTAN COT COTAN 

CSIN CSIN CSIN 

CSQRT CSORT CSQRT 

DARCOS DACOS DARCCOS 

DARSIN DASIN DARCSIN 

DATAN DATAN DARCTAN 

DATAN2 DATAN2 DARCTAN2 

DCOS DCOS DCOS 

DCOSH DCOSH DCOSH 

DERF DERF 

DERFC DERFC 

DEXP DEXP DEXP 

DGAMMA DGAMMA 

DLGAMA DLGAMMA 

DLOG DLOG DLN 

DLOGIO DLOGIO DLOG 

DSIN DSIN DSIN 

DSINH DSINH DSINH 

DSQRT DSORT DSQRT 

DTAN DTAN DTAN 

DTANH DTANH DTANH 

ERF ERF ERF 

ERFC ERFC 

EXP EXP EXP EXP EXP EXP 

GAMMA GAMMA GAMMA 

RANDOM RANDOM RANDOM RANDOM 

continued 

8-18 8600 0460-100 



Mathematical Functions 

Table 8-4. Function Names (cont.) 

FORTRAN FORTRAN77 ALGOL COBOL BASIC PASCAL 

SIN SIN SIN SIN SIN SIN 

SINH SINH SINH SINH 

SQRT SQRT SQRT SQRT SQR SQRT 

TAN TAN TAN TAN TAN 

TANH TANH TANH TANH 

8600 0460-100 8-19 



8-20 8600 0460-100 



Section 9 
PATCH Utility 

The patch merge program (SYSTEM;PATCH) is a utility program used to merge one or 
more patch decks into a single patch deck on disk or pack. This disk file can then be 
used as the input CARD file for an ALGOL, BASIC, COBOL, COBOL 74, DCALGOL, 
FORTRAN, FORTRAN77, Network Definition Language II (NDLII), Pascal, PL/I, or 
RPG compilation. 

The PATCH utility merges all input patch records by sequence number. Only numeric 
or blank sequence numbers are accepted. The PATCH utility permits resequencing and 
patching into resequenced areas of a patch. 

Running the PATCH Utility 
The PATCH utility can be run through either Work Flow Language (WFL) or the 
Command and Edit (CANDE) message control system (MCS). 

Using a WFL Job to Run the PATCH Utility 

The following WFL job can be used to initiate the PATCH utility: 

BEGIN JOB PATCH; 
RUN SYSTEM/PATCH; 

<file equation>; 

DATA 

<input record> 

<i>END JOB. 

8600 0460-100 9-1 



PATCH Utility 

< input record> 

l
<patch compiler record 
<literal compiler record 
<patch delimiter record 
<patch comment record 
<patch patch record>---I 
<patch WFL record>----i 
<patch control record 

Explanation 

<file equation> 

Contains the necessary file equations for the files discussed later in this section. The 
files to be used in the $.DISK, $.DISK $, $.FILE, $.PATCHDECK, and $.INSERT 
options can also be file-equated in this section of the WFLjob. Refer to theA Series 
Work Flow Language (WFL) Programming Reference Manual for a definition of file 
equation. 

< input record> 

Contains the data necessary to run the PATCH utility. The input record consists of 
patches, dollar records and comments. 

Considerations for Use 

When running the PATCH utility using a WFL job, you can interrogate the 
TASKVALUE attribute of the PATCH utility task to determine if errors were detected 
in the patches. IfTASKVALUE is not equal to 1, errors have been detected. 

Using CANOE to Run the PATCH Utility 

9-2 

The following CANDE command causes an interactive run of the PATCH utility to be 
initiated: 

RUN *SYSTEM/PATCH; <file equation> 

After the command is entered, the PATCH utility responds as follows: 

ENTER INPUTS--

The information for the patch can then be entered. Any of the patch control records 
can be used when running the PATCH utility in interactive mode. The debug options 
are especially useful in interactive mode. An example of how to run the PATCH utility 
interactively is given under "Examples of PATCH Utility Input" later in this section. 

8600 0460-100 



PATCH Utility 

Files Used by the PATCH Utility 
The PATCH utility uses the following files, which can be file-equated in the file 
equation section of the input to SYSTEM/PATCH. The internal names for these files 
can have multiple nodes. If these files are not file-equated, they are assumed to be 
named CARD, LINE, NEWSOURCE, NEWTAPE, PATCH, PATCHES, SOURCE, and 
TAPE. 

Any files referenced by the option $.DISK, $.DISK $, $.FILE, $.PATCHDECK, or 
$.INSERT can also be file-equated in the file equation section. The internal names for 
these files are described as follows. These file names can have only one node; that is, 
they cannot contain slashes. 

File Name 

CARD 

LINE 

NEWSOURCE 

NEWTAPE 

PATCH 

PATCHES 

SOURCE 

TAPE 

Description 

The input card file containing patches to be merged by the PATCH utility 
and other instructions to the PATCH utility. 

The output printer file. 

The output disk file created when the PATCH file and the SOURCE or TAPE 
file are merged. For a SOURCE or TAPE file that is a BASIC, FORTRAN, or 
PLjI symbol file, the PATCH utility uses a specified NEWTAPE file, or 
lacking a NEWTAPE file, creates one. For all other SOURCE or TAPE files, if 
a file equation exists for both NEWSOURCE and NEWTAPE, NEWSOURCE 
is used. If NEWSOURCE or NEWTAPE is used alone, the specified name is 
used. NEWSOURCE is a synonym for NEWTAPE. 

See NEWSOURCE. A synonym of NEWSOURCE. For a SOURCE or TAPE 
file that is a BASIC, FORTRAN, or PLjI symbol file, the PATCH utility uses a 
specified NEWTAPE file, or lacking a NEWTAPE file, creates one. For all 
other SOURCE or TAPE files, if a file equation exists for both NEWSOURCE 
and NEWTAPE, NEWSOURCE is used. If NEWSOURCE or NEWTAPE is 
used alone, the name specified is used. 

The output disk file containing the merged patches. 

The output disk file containing the input specified by the $.OUT option. 
Refer to U$.OUT Option". 

The symbolic disk file to which the patches and $ options of GO TO, SEQ, 
and MERGE, and the $. options of INSERT, MOVE, COMPARE, L1STN, 
CYCLE, VERSION, and NEW are applied. If a file equation exists for both 
SOURCE and TAPE, SOURCE is used. If SOURCE or TAPE is used alone, 
the specified name is used. SOURCE is a synonym for TAPE. 

See SOURCE. 

Patch Control Records 
Seven categories of patch control records are acceptable as input to the PATCH utility. 
These categories are distinguished by a unique character or a blank immediately 
following the dollar sign. 

8600 0460-100 9-3 



PATCH Utility 

The PATCH utility requires the following conditions: 

• A $# record must directly precede each patch. 

• Within a patch (delimited by $# records), all records not being resequenced must 
occur with increasing sequence numbers. Records that occur while $SEQ is TRUE, 
or when the $.INSERT (syntax 2) or the $.MOVE (syntax 2) option is used, are not 
checked for the order of their sequence numbers. 

• The $ options SEQ, VOID, and VOIDT must be FALSE at the end of each patch. 

• All input to the PATCH utility must be in uppercase characters. 

The following text describes the different categories of patch control records. 

Patch Com piler Control Records ($ Records) 

9-4 

A compiler control record is one of the following: 

• A record with a dollar sign ($) in column 1-or in column 7 for COBOL, COBOL74, 
orCOBOL85 

• A record with a dollar sign in both columns 1 and 2-or in columns 7 and 8 for 
COBOL, COBOL74, or COBOL85 

• A record with a blank in column 1 and a dollar sign in column 2 - or a blank in 
column 7 and a dollar sign in column 8 for COBOL or COBOL74 but not for 
COBOL85 

A dollar sign in any other column is not recognized. Normally, the PATCH utility 
protects a temporary compiler control record from being suppressed by a record with 
the same sequence number in a succeeding patch. This protection is removed for 
compiler control records that have nothing on them. 

The interpretation of temporary and permanent compiler control records depends on 
the symbol input file equate (SOURCE or TAPE) as shown in the following table: 

Equate Column 1 Column 2 Compiler Control Record Type 

TAPE $ Any character Temporary 

Blank $ Permanent 

SOURCE $ Any character Temporary 
except $ 

$ $ Permanent 

The PATCH utility handles the following compiler control options: 

• DELETE 

• SEQ 

• SEQUENCE 

• VOID 

8600 0460-100 



PATCH Utility 

• VOIDT 

• MERGE 

• GOTO 

• BUMPTO 

These option functions are performed by the PATCH utility and are not passed to the 
compiler. For this reason, these options (except for MERGE) are erased from the 
record on which they appear before that record is written to the PATCH file. The 
PATCH utility creates SET and POP VOIDT records as needed to simulate the 
functions of these options. Ifa $.COBOL74, $.NDLII, $.PASCAL, or $.RPG record is 
included as input to SYSTEM/PATCH, then DELETE cards are created instead of 
VOIDT cards. SEQUENCE is a synonym for SEQ. 

All other compiler options are passed to the compiler by way of the PATCH file, but are 
ignored by the PATCH utility. The following compiler options are checked for format, 
because their associated parameters could cause invalid actions if improperly specified: 

• ERRORLIMIT 

• INSTALLATION 

• LEVEL 

• LIMIT 

• VERSION 

• INCLUDE 

• MAKEHOST 

If no option value is specified, SET is assumed. 

When handling permanent compiler options, PATCH passes $ records and $$ records 
to the compiler with the $ or $$ unchanged. 

Refer to the appropriate language reference manual for the syntax and an explanation 
for all the compiler control options. 

Patch Literal Com piler Records ($& Records> 

< literal compiler record> 

- $& -<compiler control record>>------------------t 

$& records are control records that you do not want the PATCH utility to handle. The 
PATCH utility replaces the ampersand (&) character with a blank and places the 
record into the PATCH file as shown in the following: 

8600 0460-100 9-5 



PATCH Utility 

Example 

$& SET SEQ 90000 + 1000 

$ SET SEQ 90000 + 1000 

Patch Delimiter Records ($# Records) 

<patch delimiter record> 

- $# -<comment> [ 
<control informat;on>~ 

$# records are patch delimiter records. Each individual patch within the input deck 
must be immediately preceded by a record with a $# in columns 1 and 2-columns 7 
and 8 when the COBOL control option is TRUE. The remainder of the record is for 
comments and control information. 

The control information contains information necessary for the $.COUNT, $.LABEL, 
$.MARK, and $.VERSION options. 

Patch Comment Records ($: Records) 

<patch comment record> 

- $: -<comment>>----------------------i 

$: records contain comments about the patch. These records are listed ifLISTP is 
TRUE and are written to the output PATCHES file if OUT is TRUE; otherwise, they 
are ignored. They can occur anywhere in the patch input. No limit exists on the 
number of records that can occur. 

Patch Patch Records ($- Records) 

9-6 

< patch patch record> 

- $- -<patch>>-----------------------I 

$- records are used to patch a patch. A patch patch record is treated as a regular record 
in that it must have a sequence number and can delete a record in a previous patch 
at that sequence number; however, it is not included in the PATCH file. The records 
let the original source filter through with the original patch number (if any) without 
changing an established patch or repunching the source and losing the patch number. 

8600 0460-100 



PATCH Utility 

Patch WFL Records ($* Records) 

< patch WFL record> 

- $* -<WFL statement>>---,-----,------------------l L_J 

$* records contain special \VFL statements (without comments). The PATCH utility 
puts these records into an array and performs an ALGOL ZIP WITH ARRAY 
operation. The PATCH utility modifies the $* records by placing a semicolon at the end 
of each statement and preceding each statement with a question mark (?) as shown in 
the following example. You can suppress this modification feature for that record by 
placing a hyphen (-) in column 80. 

Example 

$*RUN MYPROG ON MYPACK 

?RUN MYPROG ON MYPACK; 

8600 0460-100 9-7 



PATCH Utility 

Patch Control Records ($. Records> 

9-8 

< patch control record> 

-- $. ~~----~~--------------~~------------.---~ 

<immediate option> 

<immediate option 
<Boolean option 
<value option>------' 

<GUARD option 

<EOF opt i on>-----,---I.----------------------------------I 
<DISK opti on>----I 
<DISK $ option 
<FILE opti on>----I 
<PATCHDECK option 
<INSERT option 
<MOVE opti on>-----' 

< Boolean option> 

~<BOO 1 ean option name>>-....I.-------------------------------~ 

A Boolean option name is one of the following: 

• BRIEF option 

• COBOL option 

• COBOL 74 option 

• COMPARE option 

• COMPILE option 

• CONFLICT option 

• DELETE option 

• DELIMOPT option 

• DUMP option 

• ERRLIST option 

• EXECUTE option 

• LABEL option 

• LISTD option 

• LISTI option 

• LISTN option 

• LISTP option 

• MARK option 

• MARKBLANK option 

8600 0460-100 



PATCH Utility 

• NDLII option 

• NEW option 

• OUT option 

• PASCAL option 

• RPGoption 

• SINGLE option 

• SQUASH option 

<value option> 

l
<count OPtiO~ <cycle option 
<flag option 
<LABEL option 
<total option 
<version option 

Explanation 

$. records are control records to the PATCH utility that are similar to compiler control 
records. They are used to control the PATCH utility and are not included in the 
PATCH file. These records must be in all uppercase letters. The specific record options 
are described under "Patch Control Record Options" later in this section. 

Additional $. records are available if the PATCH utility was compiled with $ SET 
DEBUG. For an explanation of these additional $. records, refer to "Debug $. Records" 
later in this section. 

A $. record must have a dollar sign ($) in column 1 and a period (.) in column 2. The 
text can appear in columns 3 through 80 (9 through 80 if$.COBOL or $.COBOL74 is 
TRUE). Parsing of this text field is terminated by a percent sign (%). Unlike compiler 
options, no action is taken on options not specifically mentioned. 

<immediate option> 

Causes the PATCH utility to perform a function independent of the subsequent 
processing. 

< Boolean option> 

An option that is either enabled (TRUE) or disabled (FALSE). When enabled, it causes 
the compiler to apply an associated function to all subsequent processing until the 
option is disabled. 

8600 0460-100 9-9 



PATCH Utility 

The keywords SET, RESET, and POP affect the setting of Boolean options in different 
ways. Each Boolean option has an associated stack in which up to 48 previous values of 
the option are saved. The management of the current value, along with the stack of 
previous values of the option, is as follows: 

• If a Boolean option is the object of SET or RESET, the option is enabled or disabled 
(assigned a current value of TRUE or FALSE), respectively, and the previous value 
is pushed onto the stack. In other words, the option is assigned a new current 
value, and the previous values are saved in the stack. 

• If a Boolean option is the object of POp, the current value of the option is discarded, 
and the previous values are moved up in the stack. 

• If a Boolean option is not the object of an explicit SET, RESET, or POp, it is 
implicitly enabled (assigned a current value of TRUE), and all previous values 
saved on the stack for that option are discarded. In addition, the stacks for all 
other resettable standard Boolean options are discarded, and all such options are 
assigned a current value of FALSE. In other words, first the current value and all 
previous values of all resettable standard Boolean options are discarded; then the 
options appearing on the compiler control record are assigned a current value of 
TRUE. 

<value option> 

Nonimmediate options that cause the PATCH utility to store a value associated with a 
given function. 

<guard option> 

Has the same characteristics of an immediate option; that is, it performs a function 
independent of subsequent processing. However, the GUARD option must appear as 
the last option on the record. 

Patch Control Record Options 
The following text describes the $. options in alphabetical order. These options must be 
in all uppercase letters. 

$.BRIEF Option 

9-10 

(Type: Boolean, Default: FALSE) 

<$.BRIEF option> 

- $.BRIEF ------------------------l 

The $.BRIEF option is used with the $.COMPARE option to suppress printing of more 
than six consecutive voided lines. The first record voided, the last record voided, and 
the number of records voided are printed instead. 

8600 0460-100 



PATCH Utility 

$.COBOL Option 

(Type: Boolean, Default: FALSE) 

<$.COBOL option> 

- $.COBOL ------------------------i 

The $.COBOL option tells the PATCH utility to expect input in COBOL format, that is, 
with sequence numbers in columns 1 through 6 and a dollar sign in column 7. "When 
this option is TRUE, all special $ records recognized by the PATCH utility must begin 
in column 7, but the record actually setting this option must have a $. starting in 
column 1. 

$.COBOL74 Option 

(Type: Boolean, Default: FALSE) 

<$.COBOL74 option> 

- $ .COBOL74 --------------------------l 

The $.COBOL74 option tells the PATCH utility to expect input in COBOL74 
format-that is, sequence numbers in columns 1 through 6 and dollar signs in column 
7. When the $.COBOL74 option is TRUE, all special $ records recognized by the 
PATCH utility must begin in column 7, but the record actually setting the $.COBOL74 
option must have a$. starting in column 1. If the $.COBOL74 option is TRUE, any 
$DELETE or $VOIDT records produce $DELETE records. If COBOL 74 is FALSE, 
$VOIDT records are produced. 

$.COMPARE Option 

(Type: Boolean, Default: FALSE) 

<$.COMPARE option> 

- $ .COMPARE ------------------------i 

The $.COMPARE option flags instances in which lines from two different patches are 
adjacent or interleaved at the same point in the source. 

This option causes the PATCH utility to print a report comparing the PATCH utility 
input with the TAPE file. All patch records are listed. Source lines from TAPE are 
shown if they are deleted by the patch or if they appear immediately before or after a 
newly inserted line. Each line in the patch is identified in the right-most column of the 
report. Simple patch lines have the ordinal patch number; moved, resequenced, or 
inserted lines are identified with the original patch number - or as SOURCE - and 
with the modifying patch number. If lines from more than one patch fall adjacent to 

8600 0460-100 9-11 



PATCH Utility 

each other with no intervening unmodified TAPE source lines, the final column is 
prefixed with a right angle bracket (» character. These second-order conflicts often 
require investigation. 

Because all $ records from the patch decks are shown in the $.COMPARE listing, the 
same flags appear if one patch makes insertions into an area voided by an earlier patch. 
If $.BRIEF is TRUE, the listing of deleted sections of the TAPE file is abridged. 

The $.COMPARE option or the $.LISTD option can be SET to list the patch delimiter 
$# records but not the bodies of the patches. A COMPARE listing is produced only if 
the final value of $.COMPARE is TRUE. However, any time that $.COMPARE is TRUE 
while $.LISTP is FALSE during the input phase, patch delimiter records are listed as if 
$.LISTD were TRUE. Refer to "$.LISTD Option" in this section. 

$.COMPILE Option 

(Type: Boolean, Default: FALSE) 

<$.COMPILE option> 

- $.COMPILE -------------------------1 

The $.COMPILE option causes the PATCH utility to automatically start the 
compilation of the TAPE or SOURCE file with the PATCH file if no fatal errors are 
discovered. See "Files Used by the PATCH Utility" for information on the selection of 
the SOURCE or TAPE file. The CARD and TAPE files are file-equated automatically 
by the PATCH utility. Other information for the compilation must be passed by $* 
records supplied by you. 

The $.COMPILE and $.EXECUTE options cannot be TRUE at the same time. 

Example 

$. SET COMPILE 
$* COMPILE MIA WITH ALGOL LIBRARY 
$* ALGOL FILE NEWTAPE (TITLE = SIMlA) 

$.CONFLICT Option 

9-12 

(Type: Boolean, Default: TRUE) 

<$.CONFLICT option> 

- $.CONFLICT --------------------___ 

The $.CONFLICT option controls printing of patch conflicts-records deleted in 
previous patches by records in later patches. When the conflict option is set to TRUE, 
these conflicts are listed in the LISTP section of the output. 

8600 0460-100 



PATCH Utility 

$.COUNT Option 

(Type: value, Default: FALSE) 

<$.COUNT option> 

- $ .COUNT -r--------,-------------------i 
L<i nteger>J 

If this option is SET or no value is specified, the $.COUNT option must be followed by 
an unsigned integer number. If this option is RESET or POp, the $.COUNT option 
must not be followed by a number. The number following the $.COUNT option 
indicates a column on the $# record and the number in that column indicates the 
number of records in the patch. The PATCH utility checks the number of records 
actually found against the number specified by the $# record and issues an error if the 
numbers differ. 

This option permits flexibility because different areas on the $# record can be used to 
specify the record count for different patches. The $ records are counted, the non $ 
records are counted, and the $. records with $.MOVE or $.INSERT options are 
counted. 

$.CYCLE Option 

(Type: value, Default: FALSE) 

Refer to "$.VERSION and $.CYCLE Options" in this section. 

$.DELETE Option 

(Type: Boolean, Default: FALSE) 

<$.DELETE option> 

- $.DELETE L<integer>;;>---~----__,__....J....---------__; 
~<integer>-- - -<integer~ 

When the $.DELETE option is TRUE, the PATCH utility deletes the patches specified 
in the number list. Patches already processed are not affected. Each patch can have its 
$.DELETE option specified as SET, RESET, or POP as desired. A deleted patch is listed 
if $.LISTP is TRUE, but is otherwise ignored. Deleted patches are not included in the 
PATCHES file. 

8600 0460-100 9-13 



PATCH Utility 

$.DELIMOPT Option 

9-14 

(Type: Boolean, 'Default: FALSE) 

<$.DELIMOPT option> 

- $ .DELIMOPT -----------------------1 

The $.DELIMOPT option insulates succeeding patches from option changes in a 
particular patch. Whenever $.DELIMOPT is SET-implicitly or explicitly-on a $. 
record, the option on the record is SET, and the current value is recorded for each of 
the following options: 

• $.CONFLICT 

• $.LISTP 

• $.MARK 

• $.MARKBLANK 

• $.OUT 

Whenever a $# patch delimiter record is read while $.DELIMOPT remains TRUE, all 
these options are restored to the values they had when $.DELIMOPTwas last TRUE. 
The stacked historical values of these options are RESET; thus, a POP is equivalent to 
a RESET for an option like $.LISTP that has been restored by a $# record read while 
$.DELIMOPT was SET. 

A patch control record can specify SET, RESET, or POP for the $.DELIMOPT option. 
If the patch control record specifies POP for the $.DELIMOPToption, and this changes 
the $.DELIMOPT option from RESET to SET, the option values from the most recent 
occasion when $.DELIMOPT was SET are restored. 

The simplest way to use $.DELIMOPT is to SET it as the last option before the first $# 
delimiter in the input set. Then the specified or default values of the several options 
apply to each patch in turn, even if a prior patch has changed one or more options. 

8600 0460-100 



PATCH Utility 

Example 

In the following example, the $.MARKBLANK option applies to the input for patch 
one, but not for patches two or three. The $.MARK option applies to patches one and 
three but not to patch two. 

$.SET COMPARE MARK DELIMOPT 
$#PATCH ONE 
$.MARKBLANK 

$#PATCH TWO 
$.RESET MARK 

$#PATCH THREE 

$.DISK Option 

(Type: immediate) 

<$.DISK option> 

-- $.DISK ~<!ile title>-t 
L<l ntname>----l 

The $.DISK option tells the PATCH utility to get input from the specified file. This 
option performs tasks similar to the tasks performed by the $.FILE option, but with 
the following exceptions: 

• The input from the specified file cannot contain $.DISK, $.DISK $, 
$.PATCHDECK, or $.FILE options. 

• Mark field information from the input file is preserved even if the $.MARK option 
is SET. The mark information from the input file is used only if the input file 
records are long enough to contain mark information. 

If either the $.COBOL or $.COBOL 74 option is SET, the record must contain at 
least 80 characters for mark field information to be retained. The mark 
information is taken from columns 73 through 80. 

In all other cases, the mark information is taken from columns 81 through 90 of 
the record, and all records must be a minimum of 90 characters in length. Records 
that are not at least 90 characters long have a blank value in the mark field after 
the patch is merged. 

Other $. options can appear on the same $. record after the options $.DISK, $.DISK $, 
$.FILE, and $.PATCHDECK. 

8600 0460-100 9-15 



PATCH Utility 

The files used in the $.DISK, $.DISK $, $.FILE, and $.PATCHDECK options can be 
file-equated in the file equation section of the input. The internal name must consist of 
only one node - that is, no slashes (f) can be used. 

Example 

The following example tells the PATCH utility to get input from the file 
NEW/EMPLOYEE/NUMBERS: 

$.DISK NEW/EMPLOYEE/NUMBERS 

The following WFLjob shows a PATCH utility run that file-equates the file used in the 
$.DISK option: 

BEGIN JOB PATCHER; 
RUN SYSTEM/PATCH; 
FILE TAPE(TITLE = SYMBOL/SOURCE ON PACK01); 
FILE MYPATCH(TITLE = PATCH/SDURCE/23 ON PACK02); 
DATA CARD 
$#PATCH SEPARATOR CARD 1 
$ SET LIST MERGE NEW 
$#PATCH SEPARATOR CARD 2 
$.DISK MYPATCH COMPARE 
? 
END JOB. 

$.DISK $ Option 

(Type: immediate) 

Refer to "$.FILE, $.DISK $, and $.PATCHDECK Options" in this section. 

$.DUMP Option 

9-16 

(Type: Boolean, Default: FALSE) 

<$.DUMP option> 

- $.DUMP ------------------------1 

If$.DUMP is TRUE, and the first fatal error occurs in patch N (N > 1), the PATCH 
utility merges the first n-l patches and locks them on a disk file. If the PATCH utility 
file had the title x/y/Z, then this file has the title DUMPIXIYIZ. The $.DISK option can 
then be used to restart the merge operation without rereading the first n-l patches. 

8600 0460-100 



PATCH Utility 

$. EOF Option 

(Type: immediate) 

<$.EOF option> 

- $.EOF -----------------------1 

The $.EOF option indicates the end of all input. $.EOF can occur in any input file. The 
PATCH utility does not read any records following the EOF record. 

The $.EOF option is used to end an interactive run from a remote terminal. For more 
information about running the PATCH utility interactively, refer to the description 
under "Using CANDE to Run the PATCH Utility." 

SET or RESET context is ignored for $.EOF. 

$.ERRLIST Option 

(Type: Boolean, Default: TRUE) 

<$.ERRLlST option> 

- $ .ERRLIST ------------------------1 

The $.ERRLIST option is meaningful only during an interactive run from a remote 
terminal. If$.ERRLIST is TRUE, all errors and warnings are displayed at the 
terminal. If $.ERRLIST is FALSE, this listing is suppressed. If execution is not from a 
remote terminal, changing the value of $.ERRLIST has no effect. 

Refer to description of "Running the PATCH Utility" for more information about 
running the PATCH utility interactively. 

$.EXECUTE Option 

(Type: Boolean, Default: FALSE) 

<$.EXECUTE option> 

- $.EXECUTE -<file name>>-----------------; 

The $.EXECUTE option tells the PATCH utility to automatically start a specified 
program if no fatal errors are discovered. This option uses the $* records in the same 
way the $. COMPILE option does, except that no file equation occurs. The terminal 
END JOB control statement is supplied by the PATCH utility. EXECUTE and 
COMPILE cannot be TRUE at the same time. 

8600 0460-100 9-17 



PATCH Utility 

$.FILE, $.DISK $, and $. PATCH DECK Options 

(1)npe: innnnediate) 

<$.FILE option> 
<$.DISK option> 
<$.PATCHDECK option> 

t $.FILE ~ L<file title>t 
$.DISK$ <intname~ 
$.PATCHDECK 

The $.FILE, $.DISK$, and $.PATCHDECK options are synonymous and are extensions 
of the CARD file. When one of these options is encountered, the PATCH utility reads 
from the specified file until it reaches end-of-file (EOF) or another $.FILE, $.DISK $, 
$.PATCHDECK, or $.DISK option. If$.LISTP is TRUE, the file title of the disk file 
from which a record is read is printed to the right of the sequence number in the 
prin ter listing. 

The files used in the $.DISK, $.DISK $, $.FILE, and $.PATCHDECK options can be 
file-equated in the file equation section of the input. The internal name must be only 
one node-that is, it cannot contain any slashes (f). 

The $.FILE option, and any options that are synonymous with this option, differs from 
the $.DISK option in two important ways. The input from the $.FILE option is marked 
if the $.MARK option is set to TRUE. In addition, the specified input file may contain 
the $.DISK option, the $.DISK$ option, the $PATCHDECK option, or the $.FILE 
option and these options can be nested within other options up to 10 levels. 

Exam.ples 

$.FILE MY/FILE ON MYPACK 
$.PATCHDECK A/B 
$.DISK $ MY/OTHER/FILE ON MYPACK 

$.FLAG Option 

9-18 

(1)npe: value, Default: FALSE) 

<$.FLAG option> 

- $. FLAG -<versi on number>- . -<eyel e number>>---------t 

When the source file contains patch marks in the form of version and cycle numbers, 
the $.FLAG option can be used in the COMPARE listing to call attention to 
neighboring or deleted lines that have marks greater than or equal to the specified 
values. Source lines whose marks begin uu.ccc or uuccc (where u and c are digits) are 
flagged if uu is greater than or equal to the version number and ccc is greater than or 
equal to the cycle number. If no cycle number is provided, the cycle number defaults to 
o (zero). The flag appears as an asterisk (*) preceding the mark field. 

8600 0460-100 



PATCH Utility 

SET or RESET context is ignored for $.FLAG. If more than one $.FLAG value is 
provided, the last value specified is used throughout the COMPARE phase. $.FLAG is 
ignored if$.COMPARE is FALSE and is not fully effective if$.BRIEF is TRUE. 

Example 

The following $.FLAG option causes all source lines whose version number is greater 
than or equal to 33 and whose cycle number is greater than or equal to 320 to be 
flagged with an asterisk (*) preceding the mark field: 

$.FLAG 33.320 

$.GUARD Option 

(Type: immediate) 

<$.GUARD option> 

- $.GUARO -<integer>- - -<integer>-<comment>>-----------l 

<comment> 

-<any character string>>--------------------t 

The $.GUARD option causes all patch records within a specified sequence range to be 
flagged with the specified comment in a special report in the printer output. No more 
than 100 areas can be guarded in this manner. Ifa fatal error occurs, no $.GUARD 
output is generated. The $.GUARD option must be the last control option specified on 
the $. record. 

$.INSERT Option 

(Type: immediate) 

Syntax 1 

<#.INSERT option> 

- $.INSERT [ >J <first>- - -<last>- AT -<baseinc> 
<file 10 

8600 0460-100 9-19 



PATCH Utility 

9-20 

Syntax 2 

<$.lNSERT option> 

- $.INSERT <first>-- AT -<baseinc>>----------I 
[<file ID~ 

<patch records to the inserted material> 

~ POP ~ INSERT -<last> 
L RESET -1 

<baseinc> 

~<base>J 
L NEXT L + -<i ncrement~ 

<file 10> 

~<intname> 
L II -<title>-- II -1 

The $.INSERT option serves two functions. The $.INSERT option described in syntax 
1 inserts a copy of a portion of the virtual TAPE :file (the TAPE file plus previous 
patches) or a portion of an external file (indicated by <file ID» at the specified base. 
The $.INSERT option described in syntax 2 permits text that is being inserted to be 
patched. 

Explanation 

<file 10> 

Specifies the file to be inserted. If the file ID is not specified, the virtual TAPE file is 
inserted. 

The intname is used if the file was file-equated in the :file equation section. 

The title specifies an external file name. 

<baseinc> 

Specifies the sequence number at which the inserted text is to begin. If no increment 
option is specified, then the last value of the sequence increment is used. Since the 
base and increment used for the $.INSERT option are the same as the base and 
increment used for handling the $.SEQ $ option and the $.MOVE option, their values 
can be changed during the INSERT operation by a $ <integer> record or + 
<increment> option featured in syntax 2. The base and increment are not reset to 
their default values until the next patch ($# record). 

8600 0460-100 



PATCH Utility 

NEXT 

If the value of $.SEQ is TRUE, then NEXT causes the the present value of the 
sequence base to be used as the base. If the value of$.SEQ is FALSE, NEXT causes the 
sequence number of the last record in this patch plus the value of the increment to be 
used as the base. 

An INSERT operation cannot be done while $.VOID is TRUE, while $.MERGE is 
FALSE, or while a $.MOVE is being done. $.VOID cannot be SET, MERGE cannot be 
RESET, a MOVE operation cannot be done, a $ GO TO cannot occur, and $.SEQ cannot 
be changed during an INSERT operation. $ records cannot occur in text inserted from 
an external file. If the INSERT is from an external file, then $.VOIDT can be SET 
when the INSERT begins but cannot be changed during the INSERT. If the INSERT is 
not from an external file, then $.VOIDT cannot be in a SET state at any time during 
the INSERT. INSERT options cannot be nested - that is, no INSERT options can 
appear in the file to be inserted. The range to be inserted cannot overlap the 
destination range if the INSERT is from the virtual TAPE file. The destination range 
cannot overlap sequence numbers in the virtual TAPE file. 

$.LABEL Option 

(Type: value, Default: FALSE) 

<$.LABEL option> 

- $.LABEL [ >J 
<number 

If the option value is SE T or no value is specified, the $.LABEL option must be 
followed by an unsigned integer. If the option value is POP or RESET, the $.LABEL 
option must not be followed by this unsigned integer. This integer indicates the column 
on the $# record where the LABEL information for that patch begins. The LABEL 
information is terminated by the first blank character. If$.COBOL or $.COBOL74 is 
TRUE, this LABEL information is right-justified in column 80 for a maximum length 
of 8. If$.COBOL or $.COBOL74 is FALSE, the LABEL information is prefaced by a 
percent character (%) and right-justified in column 72. If a nonblank character is 
present in the destination field of the record to be labeled, the LABEL information for 
that record is suppressed. 

Example 

In the following example, the patch records would be labeled %MYPATCH 
right-justified in column 72 if$.COBOL or $.COBOL74 is FALSE. If$.COBOL or 
$.COBOL74is TRUE, the patch records would be labeledMYPATCH, right-justified in 
column 80. 

$.SET LABEL 3 
$#MYPATCH 

8600 0460-100 9-21 



PATCH Utility 

$.LIST Option 

(Type: Boolean, Default: FALSE) 

<$.L1ST option> 

- $.LIST -----------------------; 

The $.LIST option tells the PATCH utility to list the created PATCH file-if no fatal 
errors occurred in the LINE file. 

$. LISTD Option 

(Type: Boolean, Default: FALSE) 

<$.LlSTD option> 

- $.LISTD ----------------------1 

If $.LISTD or $.COMPARE is TRUE and $.LISTP is FALSE, all patch delimiter $# 
records and certain control $. records (but not the bodies of the patch) are listed. Each 
delimiter record is shown with the ordinal patch number assigned to that patch. This 
number is the number used in the CONFLICT and COMPARE listings to refer to 
individual input patches. The control records $.BRIEF, $.CYCLE, $.FLAG, and 
$.VERSION are listed if $.LISTD or $.COMPARE is TRUE when the control record is 
processed. 

If$.LISTD and $.LISTP are TRUE, the entire input is listed. 

$.LISTI Option 

9-22 

(Type: Boolean, Default: TRUE) 

<$.LlSTI option> 

- $.LISTI -----------------------i 

If$.LISTI is TRUE, the PATCH utility lists input inserted from external files, as 
specified by the $.INSERT option, in the LISTP section of the LINE file. 

8600 0460-100 



PATCH Utility 

$. LISTN Option 

(Type: Boolean, Default: FALSE) 

<$.L1STN option> 

- $.LISTN L<integer>>---'-----.-..l------------l 
~<integer>-- - --<integer~ 

If$.LISTN is TRUE, then specified ranges of the virtual NEWTAPE file are listed in 
the LINE file. If the specified range is empty, then the complete virtual NEWTAPE file 
is listed. 

If the value of$.LISTN is FALSE, then specified ranges of the virtual NEWTAPE file 
are not listed in the LINE file. If the specified range is empty, then none of the virtual 
NEWTAPE file is listed. You can reset all or parts of ranges that were previously set. 

The virtual NEWTAPE file is the NEWTAPE file the PATCH utility creates or the 
NEWTAPE file the PATCH utility would create if NEW were TRUE. 

The default value for the $.LISTN option is as if$.LISTN had been specified FALSE 
with an empty sequence range - that is, no portion of the virtual NEWTAPE file is 
listed. 

$. LISTP Option 

(Type: Boolean, Default: TRUE) 

<$.LlSTP option> 

-- $.LISTP ---------------------~ 

If$.LISTP is TRUE, the PATCH utility lists the input to the LINE file. All $, $#, $:, 
$&, $*, $-, and $. records are listed in this section as they are found. 

$.MARK Option 

(Type: Boolean, Default: FALSE) 

<$.MARK option> 

-- $.MARK -----------------------1 

, If$.MARK is TRUE, the PATCH utility places mark-level information in columns 81 
through 90 of the file records. If the file is an ESPOL symbolic file, columns 81 through 
88 of the merged patch are marked. 

If$.VERSION is FALSE, the mark number is taken as the first item immediately 
following the first nonblank character string on each $# record. 

8600 0460-100 9-23 



PATCH Utility 

If $.VERSION is TRUE, the PATCH utility concatenates the version number, cycle 
number, and patch number to form the mark number. The patch number can be 1 to 4 
digits long and is taken as the first item immediately after the first nonblank character 
string on the $# record. Refer to "$.VERSION and $.CYCLE Options" later in this 
section for more information about the use of the $.VERSION and $.CYCLE options. 

The information retained by $.MARK is not stored into record images that contain a 
dollar sign ($) in column 1. 

Examples 

In both of the following examples, all records from the patch - except records read in 
from a file specified by a $.DISK option-contain 33.320.056 in columns 81 through 90 
in the merged patch. These records are also labeled %XYZ in columns 69 through 72. 
The PATCH utility also checks that this patch has exactly 12 records in it. Refer to 
"$.LABEL Option" and "$.COUNT Option" in this section. 

$.MARK LABEL 5 COUNT 3 
$#12XYZ 33.320.056 

$.MARK LABEL 5 COUNT 3 
$.VERSION 33.320 
$#12XYZ 56 

$.MARKBLANK Option 

9-24 

(Type: Boolean, Default: FALSE) 

<$.MARKBLANK option> 

- $. MARKBLANK -----------------------; 

The $.MARKBLANK option is a conditional form of the $.MARK option. If 
$.MARKBLANK is TRUE, and if the mark field (columns 81 through 90 or columns 81 
through 88 for ESPOL files) contains all blanks, then the PATCH utility inserts the 
mark-level information as it does in the $.MARK option. If the mark field of the input 
record already contains nonblank data, the field contents are retained. Any record read 
from a file with a MAXRECSIZE value that is less than the number of columns 
necessary to completely contain the mark field automatically has a blank mark field. In 
this case $.MARKBLANK is equivalent to $.MARK. 

Ifboth $.MARKBLANK and $.MARK are TRUE, $.MARKBLANK is still effective. 

8600 0460-100 



PATCH Utility 

$.MOVE Option 

(1)npe: innnnediate) 

Syntax 1 

<$.MOVE option> 

- $ .MOVE -<fi rst>-- - -<1 ast>-- TO -<basei nc>>------------.< 

Syntax 2 

<$.MOVE option> 

- $.MOVE -<first>-- TO -<baseinc>>-----------------J 

<patch records to the moved material> 

- $. -r POP --,- MOVE -<1 ast> 
L RESET -1 

<baseinc> 

-,- <base> I 
L NEXT ---l L + -<; ncrement:-J 

The $.MOVE option moves portions of the virtual TAPE file - that is, the TAPE file 
plus previous patches-to a range beginning at the specified base. The PATCH utility 
places SET and POP VOIDT around the range to be moved and creates a copy of the 
moved text at the new range. The $.MOVE option described in syntax 2 permits text 
that is being moved to be patched. 

Explanation 

<baseinc> 

Specifies the sequence number at which the moved text is to begin. If no increment is 
specified, then the last value of the sequence increment is used. Since the base and 
increment used for the $.MOVE option are the same as the base and increment used 
for handling the $.SEQ $ option and the $.INSERT option, their values can be changed 
during the MOVE operation by a $ integer record or $ + <increment> option featured 
in syntax 2. They are not reset to their default values until the next patch ($# record). 

NEXT 

If the value of $.SEQ is TRUE, then NEXT causes the present value of the sequence 
base to be used as the base. If the value of$.SEQ is FALSE, NEXT causes the sequence 

8600 0460-100 9-25 



PATCH Utility 

number of the last record in this patch plus the value of the increment to be used as the 
base. 

A MOVE operation cannot be done while VOIDT or VOID is TRUE, while $.MERGE is 
FALSE, or while an INSERT operation is being performed. $.SEQ cannot be changed 
and a $ GO TO cannot occur while a MOVE operation is being performed. $.MOVE 
options cannot be nested. The range to be moved cannot overlap the destination range, 
and the destination range cannot overlap sequence numbers in the virtual TAPE file. 

$. N DLII Option 

(Type: Boolean, Default: FALSE) 

< NOLI I option> 

- $.NDLII ------------------------1 

The $.NDLII option tells the PATCH utility to expect input in NDLII format-that is, 
sequence numbers in columns 73 through 80 and a dollar sign in column 1. If $.NDLII 
is TRUE, any $DELETE or $VOIDT records produce $DELETE records. If $.NDLII is 
FALSE, $VOIDT records are produced. 

$.NEW Option 

(Type: Boolean, Default: FALSE) 

< $.NEW option> 

- $.NEW ------------------------; 

If$.NEWis TRUE and the PATCH utility finds no fatal errors, the PATCH file is 
merged with the SOURCE or TAPE file to create the NEWSOURCE or NEWTAPE file. 
See "Files Used by the PATCH Utility" for information on selection of SOURCE or 
TAPE. The NEWTAPE file contains no $ records; even $ records passed through as $& 
records are not included. The blocking factors of the NEWTAPE file are the same as 
those that a compiler-created NEWTAPE would have. 

$.OUT Option 

9-26 

(Type: Boolean, Default: FALSE) 

<$.OUT option> 

- $.OUT----------------------~ 

When $.OUTis TRUE, $, $*, $#, $:, $-, and $. records with $.MOVE or $.INSERT 
options and regular patch records are written to the output disk file PATCHES. This 
file is locked after all input has been processed. 

8600 0460-100 



PATCH Utility 

$.PASCAL Option 

(Type: Boolean, Default: FALSE) 

< $. PASCAL option> 

- $.PASCAL -----------------------i 

The $.PASCAL option tells the PATCH utility to expect input in the Pascal format, that 
is, with sequence numbers in columns 73 through 80 and a dollar sign ($) in column 1. 
When $.PASCAL is TRUE, any $DELETE and $VOIDT records produce $DELETE 
records. When $.PASCAL is FALSE, $VOIDT records are produced. 

$.PATCHDECK Option 

Refer to "$.FILE, $.DISK $, and $.PATCHDECK Options" in this section. 

$.RPG Option 

(Type: Boolean, Default: FALSE) 

<$.RPG option> 

- $.RPG-----------------------------~ 

The $.RPG option tells the PATCH utility to expect input in RPG format; that is, with 
sequence numbers in columns 1 through 5 and a dollar sign ($) in column 6. When 
$.RPG is TRUE, all special $ records recognized by the PATCH utility must appear in 
column 6. But the record actually setting the $.RPG option must have a $. starting in 
column 1. IfRPG is TRUE, any $DELETE or $VOIDT records produce $DELETE 
records. 

$.SINGLE Option 

(Type: Boolean, Default: TRUE) 

<single option> 

- SINGLE ----------------------------1 

When $.SINGLE is TRUE, the PATCH utility single-spaces the output to the LINE file. 
When $.SINGLE is FALSE, this output is double-spaced. 

If the PATCH utility was compiled with the compiler user option DOUBLE set to 
TRUE, the default value is FALSE. 

8600 0460-100 9-27 



PATCH Utility 

$.SQUASH Option 

(Type: Boolean, Default: TRUE) 

< $.SQUASH option> 

- $ • SQUASH ------------------------1 

When $.SQUASH is TRUE, each patch in the LISTP listing is separated by a line of 
equal signs (=). When $.SQUASH is FALSE, each patch is listed beginning on a new 
page. 

$.TOTAL Option 

(Type: value, Default: FALSE) 

<$.TOTAL option> 

- $. TOTAL [ >OJ 
<number 

If the specified option value is SET, or if no value is specified, $. TOTAL must be 
followed by an unsigned integer. This integer specifies the total number of patches in 
the input. When all input has been processed and the value of $. TOTAL is TRUE, the 
PATCH utility checks the number of patches actually found against the number 
specified. lfthe two numbers do not agree, a fatal error is issued, and the PATCH file is 
not locked. 

$.VERSION and $.CYCLE Options 

9-28 

(Type: value, Default: FALSE) 

<$.VERSION Option> 
<$.CYCLE Option> 

L 
$.VERSION - <version number> L . -<cycle number>-j 
$.RESET VERSION -----------------1 

- $.CYCLE - <cycle number> ----------------1 

When $.VERSION and $.CYCLE are used, the PATCH utility concatenates the version 
number, cycle number, and patch number, separated by periods, to form the mark 
number. The PATCH utility does not use the separators in this concatenation if the 
TAPE file is an ESPOL symbolic. 

Both a version number and a cycle number must be specified. A cycle number can be 
specified with either the $.VERSION option or the $.CYCLE option. The version 
number or cycle number can be changed separately at any time. 

8600 0460-100 



PATCH Utility 

The patch number is taken as the first item immediately after the first nonblank 
character string on the $# record. The patch number can only be changed at the 
beginning of each patch by the $# record. 

All three numbers (version number, cycle number, and patch number) must be in the 
correct range. The version number can be two digits, the cycle number can be three 
digits, and the patch number can be four digits. 

The mark field in the PATCH file record contains the version number, cycle number, 
and patch number. Periods are used as separators if the patch number is three digits or 
less, (that is, the mark field is created as vv.cc.nnn. If the patch number is four digits, 
periods are not used as separators-that is, the mark field is created as vvcccnnnn and 
column 90 is blank. 'When the mark field is listed, the PATCH utility inserts periods 
between the fields for readability purposes. 

$.RESET VERSION restores the default mechanism as if no $.VERSION or $.CYCLE 
had appeared. 

The $.VERSION and $.CYCLE options are ignored unless $.MARK or $.MARKBLANK 
is TRUE. 

Debug $. Records 

The compile-time option DEBUG is available to facilitate the debugging and 
development of the PATCH utility. Various $. records exist that can be used only if the 
PATCH utility is compiled with $ SET DEBUG. These additional $. records allow the 
flow of control through many critical procedures and the values of many important 
variables to be traced at will. These options are especially useful when the PATCH 
utility is run interactively through a remote terminal. 

The following syntax diagrams show the $. options that can be used if the PATCH 
utility has been compiled with $ SET DEBUG in the symbolic. The text following the 
diagrams give the syntax and an explanation for each option. All these options (except 
$.CANDE) can be used in WFLjobs. 

<debug option> 

- $. --'-......----.,.....-r--<;debug value opti on>---,........L...-'-------~ 

~ [<equate opt i on>J 

<debug value option> 

<debug immediate option 
<debug Boolean option 

-<bug opti on>>-------------------------I 

8600 0460-100 9-29 



PATCH Utility 

<debug immediate option> 

~<d;scard option~ 
L<end opt;on>-l 

<debug Boolean option> 

~<pdump opt;on~ 
L<CANDE opt; on>-l 

Debug Options 

The following paragraphs describe all the debug options in alphabetical order. 

$.BUG Option 

(Type: value, Default: FALSE) 

<$.BUG option> 

- $. BUG (-<; nteger>>---'------,---L--------------I 
~<;nteger>-- - -<integer~ 

$.BUG specifies SET, RESET, or POP for the $.BUG option as indicated by <integer> 
or all the $.BUG options indicated by the range < integer>-< integer> . The specific 
action of each $.BUG option is subject to change and can be found in the BUG 
DIRECTORY near the beginning of the symbolic. 

$.CANDE Option 

9-30 

(Type: Boolean, Default: FALSE) 

<$.CANDE option> 

- $.CANDE ------------------------1 

This option is valid only when you run the PATCH utility interactively from a remote 
terminal through CANDE. Changing the value of CANDE has no effect when the 
PATCH utility is initiated through a WFLjob. When $.CANDE is TRUE, you can enter 
text that has sequence numbers by typing the sequence numbers first. 

8600 0460-100 



PATCH Utility 

Example 

The first group of records is equivalent to the second group in the following example: 

$.CANOE 
$# PATCH 005 
$.SET COMPARE 
500$ SET VOlOT 
01000$ POP VOlOT 

$#PATCH 005 
$.SET COMPARE 
$ SET VOlOT 
$ POP VOlOT 

$.DISCARD Option 

(Type: immediate) 

<$.DlSCARD option> 

00000500 
00001000 

- $.DISCARD ------------------------1 

The $.DISCARD option causes the PATCH utility to close and purge the LINE printer 
file so that all printer output up to this point is eliminated. 

$.END Option 

(Type: innnnediate) 

<$.END option> 

- $.END ------------------------1 

The $.END option indicates the end of all input to be merged for this particular set of 
patches. If no errors occur, the PATCH utility then creates the PATCH file and does the 
COMPARE operation and other optional output functions that have been specified. 
The utility then starts reading from the primary input file - CARD file or remote 
file-and expects input for another PATCH utility run. This capability permits 
mUltiple patches to be entered in one PATCH utility run. The $.EOF option is used to 
indicate that no more patches are to follow. 

8600 0460-100 9-31 



PATCH Utility 

$.EQUATE Option 

(Type: special) 

< $. EQUATE option> 

-- $. EQUATE 1 TAPE ~ = --<file name> 
PATCH 
PATCHES 
NEWTAPE 

The $.EQUATE option causes the PATCH utility to change the name of one of the four 
files specified to the name given. An ON <family name> clause cannot be specified 
with the file name. At least one blank must precede the file name. 

This option must be the last option on the $. record. When used with the $.END 
option, multiple patches can be entered against different pieces of software with 
different PATCH, PATCHES, and NEWTAPE files created in one PATCH utility run. 
Separate printer files are created for each run. 

If the $.EQUATE option is not used, the PATCH utility looks for a file named TAPE 
and creates files named PATCH, PATCHES, and NEWTAPE. 

SET and RESET context are ignored for the $.EQUATE option. 

Example 

$.EQUATE TAPE = MYFILE 
$.EQUATE PATCH = MYFILE/PATCH 

$.PDUMP Option 

9-32 

(Type: Boolean, Default: FALSE) 

<$.PDUMP option> 

-- $. PDUMP -------------------------l 

If $.PDUMP is TRUE, the PATCH utility performs a program dump when any error is 
encountered. 

8600 0460-100 



PATCH Utility 

Examples of PATCH Utility Input 
This section shows two examples of running the PATCH utility. The first example uses 
a WFL job. The second example uses CANDE to initiate an interactive session. 

The following example shows a WFLjob initiating the PATCH utility. This example 
declares two internal files, INCL1 and INCL2, which are used in the $.INSERToptions. 

BEGIN JOB PATCH; 
RUN SYSTEM/PATCH; 
FILE TAPE(TITLE=SYMBOL/PATCH ON SYSPACK); 
FILE PATCH(TITLE= PATCH/NEWPATCH); 
FILE PATCHES(TITLE= PATCH/NEWPATCHES); 
FILE INCLI (TITLE=(USCODE)INCLUDE/FILE/l); 
FILE INCL2 (TITLE=(USCODE)INCLUDE/FILE/2); 
FILE NEWTAPE(TITLE=SYMBOL/NEW/PATCH ON SYSPACK); 

DATA CARD 

$.SET NEW COMPARE BRIEF EXECUTE LIST 
$:THE FOLLOWING $* COMMANDS CAUSE MY/PROGRAM ON MYPACK TO BE RUN 
$:USING KARD/FILE AS THE INPUT CARD FILE. 
$*RUN MY/PROGRAM ON MYPACK 
$*FILE CARD(KIND=DISK,TITLE=KARD/FILE) 

$# DOL L ARC A R D S 
$ SET MERGE 
$ SET NEW 
$ SET LISTP 
$ SET LINEINFO 
$ SET SEQERR NEWSEQERR 
$:THESE ARE SOME STANDARD $ CARDS FOR A COMPILE 
$.MARK TOTAL 5 OUT DELETE 5 

$# FIRST PATCH 31.099.001 
$.PATCHDECK MY/PATCH/FILE ON MYPACK 

$# NEXT PATCH 31.099.002 

<patch records> 

$.VERSION 32.020 

$# COMMENT 001 
$.MOVE 50000-52000 TO 600100+100 
$.MOVE 800000 TO NEXT+20 

<patches to the moved material> 

8600 0460-100 9-33 



PATCH Utility 

9-34 

$.POP MOVE 8001000 
$.INSERT INCL1 0-500 AT 900000 + 30 
$.INSERT INCL2 6000-7000 AT NEXT 
$.INSERT "MY/THIRD/INCL/FILE ON MYPACK" 61000 AT NEXT+300 

<patches to the inserted material> 

$.RESET INSERT 75000 
$.INSERT 2100-2500 AT NEXT % THIS IS A COMMENT 

$# COMMENT 2 
$:THIS IS A COMMENT ABOUT THIS PATCH 
$.FILE A/B 
$.POP MARK RESET LISTP 
$.DISK $ MY/OTHER/A/B ON MYPACK2 
$.EOF 
$:THIS CARD WILL NOT BE READ BY THE PATCH UTILITY 
$:NOR WILL THIS ONE 
? 
END JOB. 

The following example shows an interactive run of the PATCH utility. Lines that are 
preceded by a right angle bracket (> ) indicate a system response. In this· example, two 
patches are entered to show the use of the $.END option. After the $.END option, the 
PATCH utility displays the number of errors found, the number of warnings found, 
and the number of conflicts encountered. The word ENCOUNTERED is truncated to 
E. It then expects input for another patch. The $.EOF option is used to indicate the 
end of the run. 

RUN *SYSTEM/PATCH 

> RUNNING <mix number> 
> ? 
>ENTER INPUTS--

$:START OF FIRST INTERACTIVE PATCH RUN 
$.EQUATE TAPE = SYMBOL/SOURCE 
$#PATCH SEPARATOR CARD 1 
$ SET LIST MERGE NEW 
$# PATCH SEPARATOR CARD 2 
$.FILE PATCH/SOURCE/23 
$:END OF FIRST PATCH RUN 
$.END 

><mix number> DISPLAY:OK TO COMPILE 
> 0 ERROR(S) WERE FOUND 0 WARNING(S) WERE ISSUED 0 CONFLICTS WERE E 

$:START OF 2ND PATCH RUN 
$.EQUATE TAPE = MY/SYMBOL 
$.EQUATE PATCH = OUT/PATCH 

8600 0460-100 



PATCH Utility 

$.EQUATE NEWTAPE = OUT/NEWTAPE 
$.CANDE 
$# PATCH 13135 
$.SET COMPARE 
5f3f3$SET VOIDT 
131131313$ POP VOIDT 
$# PATCH 13136 
$.DISK MY/PATCH 
$: END OF RUN 
$.EOF 

><mix number> DISPLAY:OK TO COMPILE 
> 13 ERROR(S) WERE FOUND 13 WARNING(S) WERE ISSUED 13 CONFLICTS WERE E 
> ET=6:39.4 PT=2.4 10=6.1 

8600 0460-100 9-35 



9-36 8600 0460-100 



Section 10 
PL/I Indexed Sequential-Access Method 
(PLIISAM) 

This section describes a set of software routines that implement indexed-sequential 
access methods of storage and retrieval of data records. Indexed sequential access 
method (ISAM) permits a keyed file to be processed in both random and serial fashion. 
This section is intended for use as a reference document for experienced programmers. 

This section explains ISAM files that have a FILEORGANIZATION value equal to 
PLIISAM. For information about ISAM files that have a FILEORGANIZATION value 
equal to INDEXED or INDEXEDNOTRESTRICTED, refer to Section 7, "KEYEDIO 
Support." For information about ISAM files that have a FILEORGANIZATION equal 
to KEYEDIOII or KEYEDIOIISET, refer to the KEYEDIOII Reference Manual. 

This section contains some information that applies to both standard and primitive 
ISAM and other information that applies only to primitive ISAM. A discussion of 
the differences between standard and primitive ISAM is given directly following this 
introduction. Most of the material concerning standard ISAM, including lists of 
exception codes, is contained in the A Series PL/I Reference Manual and in the A Series 
COBOL ANSI-74 Programming Reference Manual Volume 2: Product Interfaces. 

You can access the ISAM facility by using only the COBOL (with or without the 
$ANSI74 option), PL/I, and ALGOL compilers. The COBOL74 and RPG compilers 
do not use ISAM; they use KEYEDIO. Capabilities similar to ISAM are also available 
through Data Management System II (DMSII). For further information, refer to the 
A Series DMSII Data and Structure Definition Language (DASDL) Programming 
Reference Manual and the DMSII User Language Interface Programming Guide. 

The support procedures for ISAM are contained in the SYSTEM/PLISUPPORT library. 
All documentation notes pertaining to ISAM appear under the heading PLISUPPORT. 
To initiate PLISUPPORT, use the SL (Support Library) system command. Refer to the 
A Series System Commands Operations Reference Manual. 

Program Interface for Primitive and Standard ISAM 
The following paragraphs define the two ways of invoking ISAM, the primitive method 
and the standard method. 

Primitive ISAM 

A set of ISAM procedures for creating and updating ISAM files is listed later in this 
section under "Implementation Information for Primitive ISAM Procedures" and 
"ISAM Procedures." Primitive ISAM involves direct calls of the procedures that 

8600 0460-100 10-1 



PL/I I ndexed Sequential-Access Method (PLIISAM) 

perform the ISAM functions rather than use of special language syntax. Parameters 
must be passed explicitly. Each procedure returns a value indicating its results. In 
primitive ISAM, the program must detect exception conditions by interpreting the 
result word whose contents are explained at the end of this section. ISAM exception 
conditions do not cause program termination when primitive ISAM is used. Primitive 
ISAM permits the highest amount of selection and control. ALGOL must use primitive 
ISAM. COBOL can select either primitive or standard ISAM. PLII must use standard 
ISAM. 

Standard ISAM 

The standard interface simplifies programming effort by permitting you to use normal, 
higher level language input/output (I/O) statements such as READ and WRITE rather 
than requiringyou to directly invoke the ISAM procedures. No loss of efficiency results 
when standard ISAM is used. PLII must use the standard method. COBOL can select 
either the standard or primitive method. PLII and COBOL each have unique 
implementation features. 

The standard interface includes the use of ISAM file options. Functionally, ISAM file 
options are similar to file attributes but they exist only for ISAM files. Unlike file 
attributes, ISAM file options cannot be assigned a value or be modified by control cards 
or programmatic file attribute statements. Each ISAM file option is assigned a value 
when the file is created and opened as OUTPUT. Examples of COBOL ISAM file 
options include the settings for KEYSPERENTRY, AREAOVERFLOW, and 
FILEOVERFLOW. Some keyed file options for PLII include KEYLENGTH, 
KEYORDER, FILEOVERFLOW, and WAITUPDATEIO. 

Standard ISAM deals with exception conditions differently from primitive ISAM. 
Primitive ISAM procedures return an information word to reflect the results of the 
ISAM invocation. In standard ISAM, the compiler emits code for observing the results 
and initiating appropriate action. ISAM exception conditions can occasionally cause 
program termination in standard ISAM. Tables listing the exception codes for standard 
ISAM are given in theA Series COBOL ANSI-74 Programming Reference Manual 
Volume 2: Product Interfaces and the A Series PL/I Reference Manual. 

Structure of ISAM Files 

An ISAM file consists of the following logical sections within one physical file: 

• The prime data area 

• The prime data area overflow space 

• The data overflow area 

• The file overflow area 

These sections are defined in the following paragraphs. 

10-2 8600 0460-100 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

Prime Data Area 

The prime data area holds all the keyed data records that are entered when the file is 
first created. You can determine the maximum size of this area (in records) by 
multiplying the values of two file attributes: AREAS and AREASIZE. The number of 
prime data area rows is specified by the value of the AREAS attribute. The number of 
records in each prime data area row is specified by the value of the AREASIZE 
attribute. File space is automatically reserved by the ISAM program for nondata 
purposes (coarse and fine tables); the amount reserved is determined by the values of 
the attributes AREAS and AREASIZE. 

ISAM files do not assume the default values of a normal file for AREAS and AREASIZE 
because these values should be carefully chosen for optimum performance. The values 
associated with AREAS and AREASIZE must be specified when creating (and opening 
as OUTPUT) an ISAM file, but they do not need to be specified at any other time. 

When an ISAM file is created, all unused space contained in the final row of the prime 
data area is incorporated into overflow space for the final row, and totally unused prime 
data area rows are incorporated into the file overflow area. 

Data Overflow Area 

The data overflow area of the file is the unoccupied data area. Records added after file 
creation are always placed in an overflow area. Two types of physical overflow areas 
are provided: the prime data area overflow space and the file overflow area. 

Prime Data Area Overflow Space 

Area overflow space can be provided in each row containing prime data and is specified 
when the file is created (it is opened as OUTPUT at file creation time.) In standard 
ISAM, row overflow space is indicated by a file option such as AREAOVERFLOW in 
COBOL. In primitive ISAM, row overflow space is indicated through a parameter to 
the ISOPEN procedure. When records are deleted, the occupied space can be returned 
to the overflow pool in the prime data area row in which the record resides. The 
deleted record option, set to ON when the file is created and opened as OUTPUT, 
specifies the disposition of the space occupied by deleted records. 

File Overflow Area 

A file overflow area outside of the prime data area can also be specified when the file is 
created and opened as OUTPUT. Again, a file option in standard ISAM or the ISOPEN 
procedure in primitive ISAM indicates the size of the overflow area. Records are placed 
in the file overflow area only after all available overflow space in the specific prime data 
area row in which the record would normally reside has been filled. 

Tables for Locating Data 

Two levels of tables are used by the ISAM procedures: fine tables and coarse tables. 
Each prime data area row of the file contains a fine table. The fine table is a list of keys 

8600 0460-100 10-3 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

and associated file addresses. One key (and address) is placed in the table for each n 
records, where n is a program-selected value when the ISAM file is first created. The 
fine table is stored at the physical end of its corresponding file area. 

The entire file has one coarse table that contains pairs of keys and addresses. Each key 
entry is identical to the first key entry of the corresponding fine table, and the address 
entry is the address of the fine table rather than the address of a data record. The 
coarse table is stored at the physical beginning of the file overflow area. Therefore, an 
ISAM file always has at least one physical row of file overflow space. 

Data Record Links 

ISAM data records are linked together in a logical sequence. Each record automatically 
contains both a forward and backward link to its logical successor and predecessor. A 
link is an address of a data record. The first data record contains a backward link that 
is zero (0), and the last data record contains a forward link that is zero (0). Forward 
links are used to locate data records. Both forward and backward links are used to 
insert and delete data records. Data record links are the innermost level of file 
structure in an ISAM file. 

The coarse table serves to locate a fine table; the fine table, in turn, locates a data 
record. ISAM uses the data record links in following the trail to the desired record 
when necessary. Data records are not physically moved to accommodate additions and 
deletions. Instead, the data record links are modified, so that file changes are handled 
in a logical rather than physical fashion. Because links are physically contained in 
every data record, ISOPEN must increase the record size to provide space for the links. 
Increasing record size is accomplished by rounding the original record size up to the 
nearest full word and then adding one more word to contain the links. 

ISAM Management of Overflow Areas 

10-4 

'When an ISAM file is created, unoccupied space can be reserved in each prime data 
area row, and at least one entire row can be reserved for overflow records. The fine 
table that corresponds to a row also contains information that provides a link to the 
next available unoccupied space. Overflow space that is reserved when an ISAM file is 
created is allocated in serial fashion. If deleted record space is subsequently made 
available for reuse (an option selected by the program), the deleted records are linked 
into the available record chain for the corresponding area and are reassigned on a 
last-in, first-out (LIFO) basis. Record space made available for reassignment is reused 
before unused space is assigned. 

The coarse table contains the link to the next available space in the file overflow area. 
Space assignment in the file overflow area is the same as overflow assignment in a 
prime data row. New records are not placed in the file overflow area if they can be 
placed in the prime data area. A given record is never eligible for placement in more 
than one prime data area row, and the only alternative placement for it is in the file 
overflow area. 

8600 0460-100 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

Planning for ISAM Files 
ISAM provides a specific set of capabilities that you must consider during preparation 
for application programs and systems. You can make trade-off's to favor a particular 
course of action. All features of the ISAM procedures are not available to every mode of 
operation and every language. The following paragraphs discuss the factors that you 
should consider when planning for ISAM files. 

Maximum Number of Records 

The maximum number of records that can be contained in a single ISAM file is 
16,777,215. Some of this space is required for a coarse table, fine tables, and an INFO 
record. Data records can occupy the remaining space. 

Coarse Table Size 

One coarse table is created for the entire file. 

Coarse table size is determined by the number of prime data area rows used during file 
creation; however, the number of rows used cannot exceed the value of the AREAS 
attribute because the coarse table cannot expand. Not more than 999 prime data area 
rows can be requested because at least 1 row is required for file overflow. The default 
value of AREAS is 1. One entry is made in the coarse table for each prime data area 
row. The table is contracted when fewer prime data area rows are used than specified. 
Key length also directly affects table size. 

If the coarse table size exceeds 393,210 bytes, an error message is issued. The following 
explains how to compute the number of bytes needed for a coarse table. 

Computing Coarse Table Size 

Use the following formula to compute the coarse table size. All units are bytes (8-bit 
characters) . 

Coarse table size = 

(number of table entries * (key length + 3) 
+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE. 

Record space loss to coarse table = 

coarse table size DIV BLOCKSIZE * number of records per block. 

Fine Table Size 

One fine table is created for each prime data area row. A prime data area is a row of the 
ISAM file that was written into while the file was being created. All other rows of the 

8600 0460-100 10-5 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

file are allocated to file overflow and do not contain fine tables. In any ISAM file, all 
fine tables have identical size. 

A fine table ratio is specified to determine the number of entries in each fine table. The 
ratio can range between 1 and 63; the default value is 1. When duplicate records are 
permitted, only the first record in the duplicate set is eligible for entry in the fine table 
or is counted in meeting the fine table ratio. Key length also directly affects fine table 
size. Space for the fine table is automatically allocated for the fine table by the ISAM 
program. 

If the fine table size exceeds 393,210 bytes, an error message is given. The following 
explains how to compute the number of bytes needed for fine table size. 

Computing Fine Table Size 

All units are bytes (8-bit characters). 

Fine table size = 

(number of table entries * (key length + 3) 
+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE. 

Record space loss to fine table = 

fine table size DIV BLOCKSIZE * number of records per block 
* number of fine tables. 

INFO Record Size 

The first record of each ISAM file is a special record that contains attribute 
information about that particular ISAM file. This INFO record is essential for proper 
access of the data records of the ISAM file. The current length of the INFO record is 7 
words. One data record space is normally required to contain the INFO record, but 
more can be used if the data record length is less than 7 words (42 bytes). 

AREAS and AREASIZE Values 

10-6 

The file attributes AREAS and AREASIZE are more important to ISAM files than to 
non-ISAM files. You must specify both attributes when you are creating a new ISAM 
file, but these attributes are not needed at other times. The default value is 1 for both 
attributes. The value of AREAS indicates the number of prime data area rows expected 
for the ISAM file; the value of AREAS cannot exceed 999. When an ISAM file is first 
created, a few more areas thal! needed should be specified. The value of AREASIZE, as 
specified by the program, indicates the number of data records per prime data area row. 

The value of the AREASIZE attribute is automatically increased by the ISAM program 
to allow the fine table to be written in the same area (or row) of the file as the data it 
represents. The value of the AREASIZE attribute is also increased by the number of 
overflow records per area that is specified by a file option in standard ISAM or by an 

8600 0460-100 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

ISOPEN procedure in primitive ISAM. Similarly, the value of the AREAS attribute is 
increased by the number of file overflow areas specified by a file option in standard 
ISAM or by an ISOPEN procedure in primitive ISAM. This increase is very similar to 
allowing the file to expand via the FLEXIBLE attribute; the increase does not affect 
the size of the coarse table. When a given ISAM file is closed, the AREAS and 
AREASIZE attributes are reset to their original values. 

Minimum Record Size (MINRECSIZE) 

ISAM does not provide for variable-length records. Therefore, the value of the 
MINRECSIZE attribute should be 0 or identical to the value of the MAXRECSIZE 
attribute. 

Maximum Record Size (MAXRECSIZE) 

The value chosen for the MAXRECSIZE attribute is entirely dependent upon the needs 
of the program and the absolute limits allowed by the system. ISAM increases the 
value of the MAXRECSIZE attribute by at least 1 word (6 bytes) and at most 11 bytes. 
The program should not assign a new value to the MAXRECSIZE attribute of a given 
ISAM file except when the file is first created and opened. When the ISAM file is closed, 
the MAXRECSIZE attribute is reset to its original value. The maximum usable values 
for MAXRECSIZE are 65,534 words or 65,535 characters. 

BLOCKSIZE Attribute 

The BLOCKSIZE attribute is used in association with the MAXRECSIZE attribute to 
determine the number of records per block. The value ofBLOCKSIZE is always 
changed by ISAM. When the program specifies a nonzero value for BLOCKSIZE, ISAM 
retains the number of records per block specified by the program. The value of 
BLOCKSIZE is increased to accommodate larger records. When the program specifies 
a BLOCKSIZE of zero (0), ISAM computes a new value for BLOCKSIZE in order to 
conserve disk storage space. Mter the value MAXRECSIZE has been increased, ISAM 
computes the smallest number of records that exactly fits into a multiple of 30-word 
disk segments. The BLOCKSIZE attribute is reset to its original value when the file is 
closed. 

EXCLUSIVE USE Attribute 

The EXCLUSIVE USE attribute is a Boolean attribute that is set to TRUE by ISAM 
when an ISAM file is opened as INPUT-OUTPUT. Programs cannot share ISAM files 
unless all programs open the file as INPUT only. 

Fine Table Ratio 

You can select any value from 1 through 63 for the fine table ratio; a value of 1 signifies 
a table entry for each record, and a value of 63 signifies a table entry for each 63 
records. The most successful choice is highly data- and program-dependent. A small 

8600 0460-100 10-7 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

value is generally appropriate when records are often accessed randomly rather than 
sequentially. In order to improve or restore performance, you can reorganize the file 
after a number of changes have occurred. 

Key Length 

Some key modes permit specific maximum key lengths of 5, 6, or 11 bytes. Refer to the 
mode of key description under "ISOPEN Procedure" for a full list of key modes. 
Character keys of 4-bit or 8-bit characters are limited only by the 14-bit field that 
contains key length. The maximum usable key lengths are 8-bit characters for 1020 
bytes and 4-bit characters for 508 bytes (1016 hexadecimal characters). Shorter keys 
yield faster performance and smaller fine and coarse tables. 

Key Offset 

ISAM provides a 15-bit field that permits an offset of 32767 for 8-bit characters and 
16382 for 4-bit characters. 

Practical Considerations 

10-8 

In an unstable environment, ISAM files can become corrupted-a condition in which the 
coarse table, fine tables, or data record links do not concur. Corruption of ISAM files 
can occur when the physical file on disk has not yet been updated to reflect the changes 
that have been made to buffers in memory. If an event occurs that prevents the 
updated buffers from being written into the physical file, the file can become corrupted. 
Use of standard ISAM helps to prevent this situation. 

In those cases where the program terminates prematurely because of an invalid index, 
a divide-by-zero errol; a termination, or some other reason, standard ISAM closes the 
ISAM file in an orderly manner, while primitive ISAM might not be able to close the file 
properly. However, the possibility of file corruption exists only after the file has been 
opened as INPUT-OUTPUT and additions or deletions have occurred. File damage is 
by no means inevitable, and two file options, W AITUPDATEIO and 
PHYSICAL UPDATE, are available to further reduce such a possibility. Refer to the 
descriptions of the WAITUPDATEIO and PHYSICALUPDATE options discussed 
under "ISOPEN procedure." 

ISAM files cannot be specified as output files to the SORT utility, except in PL/I. They 
must be read and written by INPUT or OUTPUT procedures. Other system software 
might also encounter similar situations when attempting to process ISAM files in a 
direct fashion without use of the ISAM procedures. 

ISAM files cannot be implicitly opened using the PRESENT or AVAILABLE file 
attributes. ISAM files must be explicitly opened using the OPEN verb in standard 
ISAM or the ISOPEN verb in primitive ISAM. 

ISAM files can be accessed simultaneously by several programs, if they all open the file 
as INPUT. Only one program can access the file while it is open as OUTPUT or 
INPUT-OUTPUT. 

8600 0460-100 



PLII Indexed Sequential-Access Method (PLIISAM) 

Because direct I/O is used by ISAM procedures to access the data, the ISAM file must 
be a direct file. In primitive ISAM, the program must declare the file as direct. The 
compiler properly declares the file in the standard method. The direct arrays used by 
the ISAM procedures are created by ISOPEN and returned by ISCLOSE. The program 
does not need other direct arrays to access the data. 

ISAM files cannot be used in an Interprogram Communication (IPC) environment in 
which the file is passed from one task to another. 

Implementation for Primitive ISAM Procedures 
ISAM is implemented by a set of procedures in the PLISUPPORT support library. 
Symbolics for these procedures are contained in the PLISUPPORT symbol file. The 
procedures called directly from programs are as follows: 

• ISOPEN - Open and set up file. 

• ISCLOSE - Close file. 

• ISREAD - Randomly read a record. 

• ISWRITE - Add a record to the file. 

• ISREADNEXT - Read the next sequential record. 

• ISREWRITE - Rewrite the record just read. 

• ISKEYWRITE - Randomly rewrite a record. 

• ISDELETE - Delete a record. 

You must use these ISAM procedures to open, close, create, and access ISAM files. You 
cannot use these procedures to access non-ISAM files. Non-ISAM file OPEN, CLOSE, 
READ, and WRITE statements and accesses by means of file attributes are not 
disallowed; however, the use of any of them can cause unexpected results that might be 
detrimental to the integrity of the ISAM file. The ISCLOSE procedure should be used 
to close the ISAM file. Using an implicit CLOSE statement on an ISAM file to exit a 
block does not properly save the file. 

A $SET INSTALLATION 1 record must appear at the beginning of the symbol file in 
all ALGOL programs that invoke ISAM procedures. 

ISAM Procedures 

The following procedures comprise ISAM. Each procedure is defined in terms of its 
function or functions within the general ISAM operating method and in terms of its 
interaction, if any, with other ISAM procedures. The standard program interface does 
not require direct use of these procedures and their parameters. However, the 
primitive program interface uses these procedures directly. 

8600 0460-100 10-9 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

ISOPEN Procedure 

10-10 

The ISOPEN procedure opens an ISAM file for INPUT, OUTPUT, or INPUT-OUTPUT. 
ISAM files require additional information not provided for non-ISAM files. The 
ISOPEN procedure uses and creates the additional information according to the 
method of file opening. Non-ISAM files cannot be opened by this procedure. 

Use one of the following program-calling sequences to open an ISAM file: 

ALGOL: RS:= ISOPEN(FILE,VALUE,STACK); 

COBOL (PRIMITIVE): COMPUTE RS = ISOPEN (FILE, VALUE, STACK). 

The following parameters are used in the ISAM calling sequence for ISOPEN: 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 

The ISAM file being opened. FILE must be declared as a DIRECT FILE in ALGOL 
and COBOL. 

• VALUE 
A numeric value that specifies how the ISAM file is to be opened: 

Open as INPUT. 

Open as OUTPUT. 

Open as INPUT-OUTPUT. 

INPUT and INPUT-OUTPUT require an existing ISAM file. OUTPUT always 
means creation of a new file. 

OUTPUT requires specification of additional file information. High-order bits in 
the VALUE parameter are used to convey certain information necessary for file 
creation. Bits and fields contained in this parameter are as follows: 

Field 

47:1 

46:15 

31:2 

Description 

Separate key (PL/I only). 

Offset of the key, in bytes, from the start of the record. It is the TRUE 
(zero-relative) offset. A value of zero means the start of the record. 

Open action (open as INPUT or as INPUT-OUTPUT only). 

o -Open the file. 

1 - Use PRESENT attribute to open. 

2 - Use AVAILABLE attribute. 

3 - Not used. 

29:14 Actual key length in bytes. 

continued 

8600 0460-100 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

continued 

Field 

8600 0460-100 

15:4 

Description 

Mode of key. Values are as follows: 

o - BINARY (6-byte maximum) 

1 - 8-bit character 

2 - 8-bit unsigned numeric (11 bytes maximum) 

3 - 8-bit MSD signed numeric (11 bytes maximum) 

4 - 8-bit LSD signed numeric (11 bytes maximum) 

5 - 4-bit characters 

6 - 4-bit unsigned numeric (5 bytes maximum) 

7 - 4-bit MSD signed numeric (6 bytes maximum) 

8 - 4-bit LSD signed numeric (6 bytes maximum) 

11: 1 Duplicate key option. If this field is zero (0), records with duplicate keys 
cannot be added to the file. If this field is 1, duplicates are chained in 
first-in, first-out (FIFO) sequence. A duplicate key condition exists when the 
keys in two records are equal. 

10:1 Deleted record option. If this field is zero (0), deleted records are physically 
delinked and their record space becomes available for reuse. If this field is 
1, deleted records are flagged by having 4u FF" (all bits ON) placed in the 
first byte of the record. Records marked as deleted can be retrieved using 
READ NEXT if bit 2 of this parameter word equals 1. 

9:1 Sequence option. If this field is zero (0), the file is in ascending sequence. 
If this field is 1, the file is in descending sequence. 

8:6 Fine table ratio. During file creation, this field controls the number of 
entries made in the fine tables and specifies the number of unique records 
to be added to the file between fine table entries. 

2:1 See deleted record option. If this field is zero (0), deleted records are not 
visible to the program. If this field is 1, deleted records can be visible to the 
program if the deleted record option is set to 1 and the READNEXT 
attribute is used. 

1:2 Open type (previously described). 

0- invalid 

1 - INPUT 

2 - OUTPUT 

3 - INPUT-OUTPUT 

10-11 



PLII Indexed Sequential-Access Method (PLIISAM) 

• STACK 

Specifies the first offour consecutive words in the programs stack. The location of 
the first word is used by ISOPEN to build data descriptors in all four words. The 
location is retained in the file information block (FIB) for use as long as the file 
remains open. The program must provide the space by declaring the four 
consecutive stack locations preferably with four type REAL variables in ALGOL or 
four usage COMP-l variables in COBOL. The four words are not usable by the 
program while the ISAM file is open. A program reference to any of the four words 
during the time the file is open causes an "INVALID OPERATOR" message. 

Additional file information is conveyed to ISOPEN by use of the first of the four 
consecutive words. 

Field 

47:24 

23:1 

22:1 

21:6 

15:16 

Description 

Number of overflow records per prime record area row. This field is used only 
when the file is opened as OUTPUT. At file creation, this field is used to 
increase the value of the AREASIZE attribute specified for the file. The new, 
larger value of AREASIZE becomes a permanent attribute of the file. 
Unoccupied space, large enough to contain the number of records specified by 
this field, is allocated in each row of the file. 

Wait update I/O field. If 1, this field causes ISAM procedures to wait for I/O 
completion of all outstanding I/Os before returning to the program. This field 
cannot be set to 1 if the ANSI74 option is set in COBOL. 

Physical update I/O field. If 1, this field causes the ISAM procedures to initiate 
IIOs for all buffers and tables that have been modified and need to be rewritten. 
This field cannot be set to 1 if the ANSI74 option is set in COBOL. 

Unused at present but reseNed for future implementation. 

Number of file overflow area rows. This field is used only when the file is 
opened as OUTPUT. At file creation, this field is used to increase the value of 
the AREAS attribute specified for the file. The new, larger area becomes a 
permanent attribute. Any areas represented by this field are not used to contain 
prime data. Prime data area rows unused at file creation are, however, placed 
in the file overflow area pool. Therefore, when in doubt, it is better to make the 
AREAS attribute larger. 

ISCLOSE Procedure 

10-12 

The ISCLOSE procedure closes an ISAM file in an orderly fashion. The normal CLOSE 
statement is not sufficient to close an ISAM file properly. Certain additional file 
information is saved within the file by the ISCLOSE procedure, and the four 
consecutive stack words are cleared or restored. Non-ISAM files cannot be closed by 
this procedure. 

Use the following program calling sequences to close an ISAM file: 

ALGOL: RS:= ISCLOSE (FILE, TYPE); 

COBOL (PRIMITIVE): COMPUTE RS = ISCLOSE (FILE, TYPE). 

8600 0460-100 



PL/I Indexed Sequential-Access Method (PlIlSAM) 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 

The ISAM file to be closed. 

• TYPE 
A numeric value that specifies how the ISAM file is to be closed: 

Close the file and release it from the program. This numeric value indicates a 
normal close. The file does not remain on disk unless it has been previously 
locked. 

Close the file with a lock. The file is entered into the directory and remains on 
disk. Any previous file with a duplicate name can be removed. 

Close the file and purge its entry from the directory. Any disk space occupied 
by the file becomes available for reassignment by the system. 

ISREAD Procedure 

The ISREAD procedure reads a record in a random fashion using the program-supplied 
key. If the program-supplied key matches a record in the ISAM file, the matching 
record is returned. When no matching record exists, the next logically sequential 
record is returned. 

The ISAM file must be opened as INPUT or INPUT-OUTPUT by the ISOPEN 
procedure before the ISREAD procedure can be used to read records. The ISREAD 
procedure cannot be used to read non-ISAM files. 

Use the following program calling sequences to read an ISAM file: 

ALGOL: RS:= ISREAD (FILE, KEY, AREA); 

COBOL (PRIMITIVE): COMPUTE RS = ISREAD (FILE, KEY, AREA). 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 
The ISAM file. 

• KEY 
The key identifying the record to be read. For ALGOL, KEY must be a pointer. For 
COBOL, KEY must be a data item. 

8600 0460-100 10-13 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

• AREA 

. The area to contain the record to be read. The AREA must be at least as large as 
the record. For ALGOL, AREA must be a pointer. For COBOL, AREA must be a 
data item. 

ISWRITE Procedure 

10-14 

The ISWRITE procedure writes a record, using the provided key, from the provided 
area. This procedure never overwrites or rewrites previously existing records but 
always adds (or attempts to add) records to the file. 

When the ISAM file is opened as OUTPUT, a new file is created. The ISWRITE 
procedure is used to create coarse and fine tables in addition to placing records into the 
ISAM file. Records must be presented in the sequence specified by the program when 
the ISAM file is created. Duplicate record acceptance depends on the setting of the 
duplicate key option. 

When the ISAM file is opened as INPUT-OUTPUT, a previously existing file is utilized. 
Records need not be presented in any special sequence. The records are written into 
area overflow or file overflow space and appropriately linked into the ISAM file. 

The file must be opened as OUTPUT or INPUT-OUTPUT by the ISOPEN procedure 
before the ISWRITE procedure can be used. The ISWRITE procedure cannot be used 
for non-ISAM files. 

Use the following program calling sequences to write to an ISAM file: 

ALGOL: RS:= ISWRITE (FILE, KEY, AREA); 

COBOL (PRIMITIVE): COMPUTE RS = ISWRITE (FILE, KEY, AREA). 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 
The ISAM file. 

• KEY 
The key identifying the record. The value associated with KEY must match the 
value in the key location in the record. For ALGOL, KEY must be a pointer. For 
COBOL, KEY must be a data item. 

• AREA 
The record to be written. The area must be at least as large as the record. For 
ALGOL, AREA must be a pointer. For COBOL, AREA must be a data item. 

8600 0460-100 



PL/I Indexed Sequential-Access Method (PLIISAM) 

ISREADNEXT Procedure 

The ISREADNEXT procedure reads the next logically sequential record. The record 
returned to the program is the record whose key immediately follows in sequence after 
the most recent record obtained by ISREAD or ISREADNEXT. 

The ISAM file must be opened as INPUT or as INPUT-OUTPUT by the ISOPEN 
procedure before the ISREADNEXT procedure can be used. Non-ISAM files cannot be 
accessed by the ISREADNEXT procedure. 

The purpose of the ISREADNEXT procedure is to provide a sequential processing 
capability. When ISREADNEXT is used in combination with ISREAD and 
ISREWRITE, records can be sequentially processed and updated for all or part of any 
ISAM file. ISREADNEXT can be used to read an entire ISAM file in a sequential 
manner. 

Use he following program calling sequences for the ISREADNEXT procedure: 

ALGOL: RS:= ISREADNEXT(FILE, AREA); 

COBOL (PRIMITIVE): COMPUTE RS = ISREADNEXT (FILE, AREA). 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 

The ISAM file. 

• AREA 
The area to contain the record to be read. The area must be at least as large as the 
record. For ALGOL, AREA must be a pointer. For COBOL, AREA must be a data 
item. 

ISREWRITE Procedure 

The ISREWRITE procedure replaces the record previously read with the data currently 
in the record area. This procedure permits records to be updated. Either the ISREAD 
or ISREADNEXT procedure must immediately precede the ISREWRITE procedure. 
The key contained in the record to be rewritten must match the key in the record that 
was read by the immediately preceding file operation. 

The file must be an ISAM file and must be opened as INPUT-OUTPUT. Additional 
records cannot be added to the file by the ISREWRITE procedure. 

8600 0460-100 10-15 



Pl/I Indexed Sequential-Access Method (PLIISAM) 

Use the following program calling sequences for the ISREWRITE procedure: 

ALGOL: RS:= ISREWRITE(FILE, AREA); 

COBOL (PRIMITIVE): COMPUTE RS = ISREWRITE (FILE, AREA). 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 
The ISAM file. 

• AREA 
The record to be written. The area must be at least as large as the record. For 
ALGOL, AREA must be a pointer. For COBOL, AREA must be a data item. 

ISKEYWRITE Procedure 

10-16 

The ISKEYWRITE procedure provides a random access update capability for ISAM 
files. It replaces a currently existing record from the file with the record provided by 
the program. 

The file must be an ISAM file and must be opened as INPUT-OUTPUT. The 
ISKEYWRITE procedure provides update capability and does not add additional 
records to the file. 

Use the following calling sequences for the ISKEYWRITE procedure: 

ALGOL: RS:= ISKEYWRITE(FILE, KEY, AREA); 

COBOL (PRIMITIVE): COMPUTE RS = ISKEYWRITE (FILE, KEY, AREA). 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 
The ISAM file. 

• KEY 
The key identifying the record to be replaced. The value associated with KEY must 
match the value in the key location in the record passed in the AREA parameter. 
For ALGOL, KEY must be a pointer. For COBOL, KEY must be a data item. 

• AREA 
The record to be written. The area must be at least as large as the record. For 
ALGOL, AREA must be a pointer. For COBOL, AREA must be a data item. 

8600 0460-100 



Pl/I I ndexed Sequential-Access Method (PLIISAM) 

ISDELETE Procedure 

The ISDELETE procedure drops or deletes records from the file. When duplicate 
records are allowed, the first (the oldest) record is deleted. This procedure provides 
random access delete capability. 

The file must be an ISAM file and must be opened as INPUT-OUTPUT. The ISDELETE 
procedure deletes the first (that is, oldest) record with a matching key. The record can 
be physically or logically deleted depending on the DELETED RECORD option. 

Use the following calling sequences for the ISDELETE procedure. 

ALGOL: RS:= ISDELETE(FILE, KEY); 

COBOL (PRIMITIVE): COMPUTE RS = ISDELETE (FILE, KEY). 

• RS 
The result word returned to the program. RS is type BOOLEAN in ALGOL and 
COMPUTATIONAL in COBOL. 

• FILE 
The ISAM file. 

• KEY 
The key identifying the record to be deleted. For ALGOL, KEY must be a pointer. 
For COBOL, KEY must be a data item. 

ISAM I/O Result Information 

The ISAM procedures return result values to the calling program. These result values 
indicate success or failure of the program request. Each value returned is a 48-bit 
word. In primitive ISAM, the result word is type BOOLEAN in ALGOL and COMP-l 
or COMP in COBOL. In standard ISAM, PLJI uses CONDITION CODES and COBOL 
uses FILE STATUS. The A Series PL/I Reference Manual describes CONDITION 
CODES. FILE STATUS is described in the A Series COBOL ANSI-74 Programming 
Reference Manual Volume 2: Product Interfaces. 

8600 0460-100 10-17 



PL/I Indexed Sequential-Access Method (PLIISAM) 

Primitive ISAM Result Information 

10-18 

The value returned when primitive ISAM is used is a 48-bit word that is not 0 (zero) 
when an exception condition exists and zero (0) when no exception condition occurs. 
Specific, individual bits are used to indicate the exception condition. If several different 
exceptions occur, the corresponding bit is ON for each condition and creates the 
possibility of reporting back several exceptions for a single request. The rightmost and 
least significant bit (bit 0) is used for a specific purpose. Bit 0 is ON when any exception 
condition occurs and OFF when no exception exists. The remaining bits convey the 
following meanings: 

Bit 

1:1 

2:1 

3:1 

4:1 

5:1 

6:1 

7:1 

8:1 

9:1 

10:1 

11:1 

12:1 

13:1 

14:1 

Meaning 

A hardware error, - for example, a parity error - occurred while processing 
the request. Another bit (7, 8, 9, or 10) is turned ON to further define the 
problem. 

An attempt was made to read or write beyond end-of-file (EOF). 

No record was found in the file whose key matches the requested key. 

No space is available in the file to contain the record just written. (This 
condition applies for adding records to the file; it does not apply to file 
creation.) 

A request was made to add a record to the file, and the key contained in the 
record matched a record that existed in the file. Refer to bit 6. 

A record was added to the file and the key of the record matched an existing 
record of the file. The duplicate key option permits or does not permit this 
situation. When duplicates are allowed, both bit 5 and bit 6 are ON to indicate 
that a duplicate record has been added. Refer to bit 5. 

A hardware error occurred while reading a data record. Bit 1 is also ON. 

A hardware error occurred while writing a data record. Bit 1 is also ON. 

A hardware error occurred while reading an ISAM table. Bit 1 is also ON. 

A hardware error occurred while writing an ISAM table. Bit 1 is also ON. 

This bit is not used. 

An attempt was made to open the ISAM file, and the parameters passed to 
ISOPEN failed to meet one or more reqUirements. The first of four stack words 
parameter must be a Stuffed Indirect Reference Word (SIRW). The file must be 
declared in a block that will be entered no sooner than the block in which the 
four stack words reside. The file must not reside in a different stack from the 
program performing the ISOPEN. The block containing the four stack words 
must also contain a file, an array, or something that causes a tag-6 word for the 
block. The tags of all four stack words must be zero (0). The key must be 
defined to be contained in the records, have a size greater than zero (0), and 
have a valid mode. 

An attempt was made to open a non-ISAM file. 

Either the file has not been opened, or the open type does not permit the 
request. (For example, an ISWRITE is not permitted on a file opened as 
INPUT.) 

continued 

8600 0460-100 



continued 

Bit 

15:1 

16:1 

17:1 

18:1 

19:1 

20:1 

21:1 

22:1 

23:1 

24:1 

43:8 

46:1 

8600 0460-100 

Pl/I Indexed Sequential-Access Method (PLIISAM) 

Meaning 

An ISREWRITE was requested, and the key of the record being rewritten does 
not match the key in the last record read, or the previous request was not an 
ISREAD or an ISREADNEXt 

The ISAM file is being created, and the record just written did not maintain 
proper file sequence. Records must be presented in sequence during file 
creation. A duplicate record also causes this bit to be ON when duplicates are 
not allowed. 

The value of AREAS specified is not large enough to contain the data records 
written in the prime data area during file creation. 

ISOPEN is requested to open an already open file. 

In an IPC enVironment, one program closed an ISAM file, and another 
attempted an I/O after the file was closed. 

An ISWRITE is requested, and the key supplied does not match the key 
contained in the supplied record. 

The ISAM file is not a direct file. 

An attempt was made to write a record containing the deleted record indicator 
(hex FF) in the first byte. 

This bit indicates a PL/I program error condition. The program is requesting an 
I/O that is not allowed for keyed files. An ON condition is raised in the PLII 
program. 

This bit is ON if ISOPEN is requested - by way of an open action - to open 
the ISAM file using the PRESENT or AVAILABLE file attribute; this bit also 
indicates that the desired file could not be located. Refer to bit 43:8. 

This bit contains the result of testing the PRESENT or AVAILABLE file attributes 
in the ISOPEN procedure. If the file could not be opened, bit 24:1 is also ON. 

This bit is ON if the physical update I/O action is ON, the wait update I/O 
option is OFF, and an I/O error occurred as the result of doing an update I/O in 
the previous invocation of an ISAM procedure. Bit 1:1 is ON, and either bit 8:1 
or bit 10:1 is ON. 

10-19 



10-20 8600 0460-100 



Section 11 
RLTABLEGEN Utility 

General Information 
This section describes the SYSTEM/RLTABLEGEN utility, which permits the system 
to accept nonstandard tape labels by constructing value arrays and compiling them 
into the operating system. 

Installation Defined Tape Labels 

The MCP LABEL recognition routine READALABEL recognizes a large class of 
installation-defined tape labels in addition to standard tape labels. Refer to the A Series 
I/O Subsystem Programming Guide for a discussion of standard tape LABEL formats. 

To invoke the LABEL recognition routine, a description of the desired nonstandard 
labels must be written and passed through a table-building program called 
RLTABLEGEN. RLTABLEGEN places the information concerning nonstandard tape 
labels into a value array and then compiles the value array into the present MCP called 
SYSTEM/MCP. The new MCP is called SYSTEM/NEWMCP. The installation then 
changes the MCP to SYSTEM/NEWMCP through the CM (Change MCP) system 
command. Refer to the A Series System Commands Operations Reference Manual for a 
description of this command. 

Installation-defined tape labels can be used in the same manner as standard tape 
labels. However, the following restrictions apply: 

• The LABEL records must be a contiguous group of EBCDIC records at the 
beginning of the tape, and must be separated from the data by one tape mark. 

• The LABEL type must be determined by examination of the first record only. 

• The LABEL record size must not exceed 229 characters. 

• The MCP does not recognize any user labels - for example, users' trailer label 
(UTL) and users' header label (UHL),-on these LABEL types. 

• No up tape labels are recognized. That is, once the file is opened and the tape is 
positioned to the beginning of the data, the tape is treated as an unlabeled 
tape - that is, LABEL=OMITTEDEOF. 

• Because READALABEL checks for the appearance of installation-defined labels 
before checking for standard labels, the recognition sequence must be sufficiently 
complete so that it does not interfere with standard LABEL recognition. 

8600 0460-100 11-1 



RLTABLEGEN Utility 

Running the RLTABLEGEN Utility 

RLTABLEGEN accepts source-input records from the input file whose internal name is 
CARD. The output file generates a listing from the printer file named LINE. 

The line printer listing contains a pseudo-reproduction of the input commands that 
RLTABLEGEN generates from the table produced by the input commands. Successful 
operation occurs when the essential information in the input records is contained in 
the output listing. The end of the output listing contains the value array generated by 
the program. 

RLTABLEGEN automatically reconfigures the MCP by automatically starting the 
NEWP compiler. RLTABLEGEN requires that the present MCP have the title 
SYSTEM/MCP and that an MCP symbolic file having the title SYMBOL/MCP be 
available. 

The following Work Flow Language (WFL) job can be used to run RLTABLEGEN: 

<;> BEGIN JOB; 
RUN SYSTEM/RLTABLEGEN; EBCDIC CARD 
<RLTABLEGEN commands> 

<;> END JOB 

Explanation 

<i> 

Specifies an invalid character. When RLTABLEGEN is run from the ODT or a remote 
terminal, the <i> variable is the question mark (?). When RLTABLEGEN is run from 
the card reader, the <i> variable can be any invalid punch. An <i> variable is optional 
when RLTABLEGEN is run from the aDT or a remote terminal; however, it is 
required when RLTABLEG EN is run from the a reader. 

< rltablegen commands> 

See "RLTABLEGEN Commands" for definitions of these commands. 

Input to the RLTABLEGEN Utility 
RLTABLEGEN input consists of a number of LABEL descriptions. 

Label Description Format 

A label description must consist of the following two divisions: 

• The ID division 

• The FIELD division 

11-2 8600 0460-100 



RLTABLEGEN Utility 

A label description is created using the commands described under "RLTABLEGEN 
Commands." 

RLTABLEGEN Commands 

The following commands can be used as input to RLTABLEGEN: 

<rltablegen commands> 

~ 

4<id command 
<recognition command 
<field command>------I 
<record command>-----I 

10 Command 

The ID command, which starts the ID division, identifies the character code and the 
recording mode to be used for the LABEL description. 

<id command> 

-- lQENTIFICATION 1<comment 
MODE -- = -- EBCDIC 
NSUSASI ---------1 

+-- , 
( ALL ---.--'­

PE 

Explanation 

<comment> 

7 ---I 
9 ---i 
SEVEN 
NINE 
TAPE7 
TAPE9 
PETAPE 

Specifies an EBCDIC character string. It is used to document the program. 

EBCDIC 

Specifies that the EBCDIC mode is to be used for a tape label. 

NSUSASI 

Required for nonstandard ANSI tapes in which HDR2 and EOF2 LABEL records are 
omitted. (The first 4 characters of the second file header are HDR2, and the first 4 

8600 0460-100 11-3 



RLTABLEGEN Utility 

characters of the second end-of-file (EOF) LABEL are EOF2.) Most forms of the IBM® 
disk operating systems (DOS) omit these LABEL records. IfRLTABLEGEN is used for 
such tapes and this attribute is not specified, the tape file closes with a LABEL error 
because the MCP expects to find the nonpresent EOF2 record. 

ALL 

Identifies a tape label that can be used on a phase-encoded (PE) 9-track magnetic tape, 
a 7-track magnetic tape, and a 9-track magnetic tape. 

7 
SEVEN 
TAPE7 

Identify a tape label that can be used on a 7-track magnetic tape. 

9 
NINE 
TAPE9 

Identify a tape label that can be used on a 9-track magnetic tape. 

PE 
PETAPE 

Identify a tape label that can be used on a PE 9-track magnetic tape. 

Examples 

The following ID command identifies the LABEL description as EBCDIC for a PE 
9-track magnetic tape or a 9-track magnetic tape: 

ID MODE = EBCDIC FOR (PE, NINE) TRACK TAPES. 

The following ID command identifies the nonstandard USASI LABEL description for 
PE 9-track, 7-track, and 9-track magnetic tapes as EBCDIC: 

ID FOR NSUSASI LABELS (ALL) MODE = EBCDIC. 

RECOGNITION Command 

The RECOGNITION command, which belongs to the ID division, follows the ID 
command. It is used to describe the fields used to recognize this label. This command 
can appear as often as necessary. 

IBM is a registered trademark of International Business Machines Corporation. 

11-4 8600 0460-100 



RLTABLEGEN Utility 

<recognition command> 

- @ -<column>-r- = 9 '<string>' I" 
L- NOT - = 8 1<string>' 

"<string>" 
81 <string>" 

Explanation 

<column> 

An integer from 01 to 80 that specifies the column where the first character of the 
string appears. 

'<string>' 
II <string> II 

Specifies a string of characters that fills the designated columns. These characters can 
include any alphanumeric or graphic character except the double quotation mark ("). 
However, if II < string> II contains an apostrophe ('), it must be enclosed in double 
quotations marks. 

8' <string>' 
8" <string> II 

Specifies a string of 8-bit (EBCDIC) characters. These characters can include any 
alphanumeric or graphic character except the double quotation mark ("). If 
S"<string>" contains an apostrophe ('), it must be enclosed in double quotation marks. 

Examples 

The following recognition command indicates VOL1 should be found in columns 1 
through 4 of the tape label: 

@ 01 = II VOL1" • 

The following recognition command indicates that a blank should be found in column 
29 of the tape label: 

@ 29 = II II 

FIELD Command 

The FIELD command starts the FIELD division, which contains descriptions of the 
various fields found in the tape label. This command also denotes the beginning of the 
LABEL description and marks the end of the RECOGNITION command and the ID 
division. 

8600 0460-100 11-5 



RLTABLEGEN Utility 

<field command> 

- FI ELDS -,------,--
-- [<comment>J 

Explanation 

<comment> 

Specifies an EBCDIC character string. 

Example 

In the following example, the FIELD division is specified: 

FIELDS BEGINNING OF LABEL DESCRIPTION. 

RECORD Command 

11-6 

The RECORD command describes the various fields found in the label. Each field is 
used to store file attribute information. The file attributes BLOCKSIZE, 
CREATIONDATE, CYCLE, DENSITY, FILESECTION, MAXRECSIZE, MFID, FID, 
SERlALNO, MINRECSIZE, PARITY, UNITS, and VERSION are all discussed at 
length in the A Series File Attributes Programming Reference Manual. 

The RECORD command, which belongs to the FIELD division, must follow the FIELD 
command. Label fields can be specified as bit, string, or number fields. Each field is 
used to store file attribute information. 

Each attribute value is of an assumed type. The character type (EBCDIC) is assumed 
to be the type specified by the MODE clause in the ID statement. Attributes of 
STRING type can be requalified to override the expressed mode but cannot be changed 
to type BINARY or NUMBER. 

NUMBER or BINARY attributes can be requalified to any mode or type except 
STRING. 

< record command> 

~ RECORD - ; -<record number>------------,.---'--· 
-------C<attribute field>-- @ -<column>-- FOR -<length>-r----I 

~- . -------------------------------------~ 

8600 0460-100 



RLTABLEGEN Utility 

<attribute field> 

1 
BLOC 
CREA 
CYCL 
DENS 
FlO 
MFID 
FILE 
MAXR 
MINR 
PARI 
RCDF 
SERI 
UNIT 
VERS 

<mode> 

KSIZE 
TIONDATE -
E 
ITY 

SECTION -
ECSIZE -
ECSIZE -
TY 
RMT 
AL 
S 
ION 

[ ( -.---_r-" EBCDIC - ) J 

Explanation 

RECORD; <record number> 

I 
I 

Groups attribute fields according to the records in which they appear. Counting within 
records of columns and lengths begins at 1. Each record number must reference a 
higher record than the previous one. 

< attribute ,field> 

Specifies the file attribute with which the value in the field is associated. The file 
attributes are explained later in this section. 

<column> 

An integer from 01 through 80 that represents the starting column location within the 
current record. 

<length> 

An integer that represents the length of the field being described. 

<mode> 

Specifies the mode that is to be used. 

EBCDIC 

Specifies that EBCDIC mode is to be used. Information is in 8-bit characters. 

86000460-100 11-7 



RLTABLEGEN Utility 

11-8 

STRING 

Indicates that the attribute field contains a string of characters. Any alphanumeric or 
graphic character except the double quotation mark (") can be included. 

The STRING attributes can be requalified to override the expressed <mode>; 
however, they cannot be changed to NUMBER or BINARY. 

NUMBER 

Indicates that the attribute field contains an integer - a digit string of no more than 11 
digits. 

The value of these attributes can be changed to any mode or type except STRING. 

BINARY 

Indicates that the attribute field contains a binary number. 

The value of these attributes can be changed to any mode or type except STRING. 

File Attributes 

The following file attributes can be specified with the RECORD command: 

BLOCKSIZE 

Indicates the block length of the file. BLOCKSIZE is type NUMBER. The value of 
BLOCKSIZE is assumed to be an integer of no more than 11 digits and is significant 
only if FILETYPE 7 or 8 is specified when the file is opened. 

CREATIONDATE 

Returns the date a file was created. CREATIONDATE is type NUMBER. The value of 
CREATIONDATE is assumed to be an integer of no more than 11 digits and is 
significant only if FILETYPE 7 or 8 is specified when the file is opened. 

CYCLE 

Denotes the different generations of a permanent file. CYCLE is used in conjunction 
with the VERSION attribute to determine the genealogy of a file. CYCLE is type 
NUMBER. The value of CYCLE is assumed to be an integer of no more than 11 digits 
and is significant only if FILETYPE 7 or 8 is specified when the file is opened. 

DENSITY 

Automatically sets the field based on the density of the LABEL records. DENSITY is 
type BINARY. If this attribute is specified, it must reflect the density in its low-order 2 
bits. 

8600 0460-100 



FlO 
MFID 

RLTABLEGEN Utility 

FID is the last and MFID is the first identifier in the TITLE of a logical file on a tape 
containing multiple files. MFID and FID are used in the external name of that physical 
tape file. 

Both Fill and MFID are type STRING. The maximum length is 17 characters. Either 
field is optional. Ifboth fields are missing or ifboth referenced fields are blank, the tape 
is labeled "untitled". All leading and trailing blanks are deleted from the two fields. 

FILESECTION 

Specifies the ISO, BSI, and ANSI file section number of the first header LABEL record. 
FILESECTION is type NUMBER. The value of FILE SECTION is assumed to be an 
integer of no more than 11 digits and is significant only if FILE TYPE 7 or 8 is specified 
when the file is opened. 

MAXRECSIZE 

Specifies the maximum size of records in the logical file. MAXRECSIZE is type 
NUMBER. The value of MAXRECSIZE is assumed to be an integer of no more than 11 
digits and is significant only if FILETYPE 7 or 8 is specified when the file is opened. 

MINRECSIZE 

Specifies the minimum size of records in the logical file. MINRECSIZE is type 
NUMBER. The value ofMINRECSIZE is assumed to be an integer of no more than 11 
digits and is significant only if FILETYPE 7 or 8 is specified when the file is opened. 

PARITY 

This field is automatically set to the parity of the LABEL records; but ifit is specified, 
the field must be in accordance with the manner in which this LABEL attribute works 
on A Series standard labels. PARITY is type BINARY. (If the low-order bit of the field is 
equal to one, standard parity is implied.) 

RCOFRMT 

Indicates the FILETYPE of the file. RCDFRMT is type BINARY. The low-order 8 bits 
of the field are assumed to be an EBCDIC letter. The following demonstrates the 
conversion from EBCDIC letter to FILETYPE value: 

Letter FILETYPE 

F 0 

D 1 

V 2 

4 

Z 6 

continued 

86000460-100 11-9 



RLTABLEGEN Utility 

11-10 

continued 

SERIAL 

Letter 

Any other letter 

FILETYPE 

3 

Indicates the SERIALNO value of the file. SERIAL is type STRING. The maximum 
length of the field is 6 characters. If no field is specified for SERIAL, the SERIALNO is 
assumed to be all zeros. 

UNITS 

Indicates whether or not the transfer of data in the file is word- or character-oriented. 
UNITS is type BINARY. 

VERSION 

Distinguishes successive iterations of the same generation of a permanent file. 
VERSION is used in conjunction with the CYCLE attribute. VERSION is type 
NUMBER. The value of VERSION is assumed to be an integer of no more than 11 
digits and is significant only if FILETYPE 7 or 8 is specified when the file is opened. 

Examples 

The following RECORD command specifies the first record: 

RECORD; 1. 

The following RECORD command specifies that the block length of a file is found in 
columns 6 through 10. It also declares the mode to be NUMBER and the character 
type to be EBCDIC. 

BLOCKSIZE @06 FOR 5 (NUMBER EBCDIC). 

The following RECORD command specifies that the creation date of a file is found in 
columns 43 through 47: 

CREATIONDATE @43 FOR 5. 

The following RECORD command specifies that the generation of a permanent file is 
found in columns 36 through 39: 

CYCLE @36 FOR 4. 

The following RECORD command specifies that the FID title is found in columns 5 
through 21: 

FlO @05 FOR 17. 

8600 0460-100 



RLTABLEGEN Utility 

The following RECORD command specifies that the MFID title is found in columns 12 
through 28: 

MFID @12 FOR 17. 

The following RECORD command specifies that the ISO, BSI, and ANSI file section 
number of the first header LABEL record is found in columns 32 through 35: 

FILESECTION @32 FOR 4. 

The following RECORD command specifies that the maximum record size of a logical 
file is found in columns 11 through 15: 

MAXRECSIZE @11 FOR 5. 

The following RECORD command specifies that the minimum record size of a logical 
file is found in columns 16 through 19: 

MINRECSIZE @16 FOR 4. 

The following RECORD command specifies that the parity that is used on a file is 
found in column 18: 

PARITY @18 FOR 1. 

The following RECORD command specifies that the record format of a file is found in 
column 5: 

RCDFRMT @05 FOR 1. 

The following RECORD command specifies that the transfer of data in a file is word- or 
character-oriented in column 24: 

UNITS @24 FOR 1. 

The following RECORD command specifies that the distinguishing of successive 
iterations of the same generation ofa permanent file is found in columns 40 and 41: 

VERSION @40 FOR 2. 

8600 0460-100 11-11 



11-12 8600 0460-100 



Section 12 
SORT Utility 

This section describes the SORT utility. SORT is a procedure in the operating system 
that sorts a file or a set of records into a single file of ordered records. SORT can also 
merge a set of presorted files into a single ordered file. SORT can be activated through 
ALGOL, COBOL, COBOL74, COBOL85, FORTRAN77, PL/I, C, Pascal, Pascal83, the 
sort procedural interface, the Interactive Sort (ISORT) utility, or the SORT compiler. 
Refer to the A Series Interactive Sort aSORT) Operations Guide for more information 
on the Interactive Sort utility. 

The SORT compiler supports the MultiLingual System (MLS), allowing error and 
warning messages as well as header and trailer messages to be reworded or translated 
according to need. For more information, refer to the A Series Message Translation 
Utility (MSGTRANS) Operations Guide. 

SORT accepts a number of parameters that specify where to get the input, the 
comparison technique to be used, where to place the sorted records, what system 
resources to use for the sort operations, and so forth. 

All languages except the SORT compiler require you to provide a certain set of 
parameters - such as input, output, and comparison. The SORT compiler builds the 
calls on the SORT intrinsic, based on the information you enter in the SORT language. 
Refer to the A Series SORT Language Programming Reference Manual for a detailed 
description of the SORT compiler. This section does not discuss the SORT compiler. 

SORT can be operated in four different modes: 

• Disk-only mode 

• Tape-only mode 

• Integrated tape and disk (lTD) mode 

• Memory mode 

Sort operations can be restarted. 

Sorting is performed in two phases: 

• The sorting or stringing phase 

• The merging phase 

SORT begins by reading records from the input file or procedure and sorting them into 
groups, called strings, on the sort work files. 

After the last input record is read, the merging phase begins. The strings of sorted 
records are merged into larger strings until the result is one string containing the 

8600 0460-100 12-1 



SO RT Utility 

ordered records from the input file. The ordered records are then written to the output 
file or procedure, and the SORT utility terminates. 

SORT Parameters 
The following text describes the meaning of the SORT parameters and their effects on 
the operation of the SORT utility. 

The SORT parameters should be chosen based on the relative priority of the job and 
the importance of total system efficiency. Knowing what particular sort is necessary 
and experimentation can provide optimized parameter values. 

Refer to the appropriate volumes of the following manuals for more details on the 
SORT parameters: 

• A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation 

• A Series C Programming Reference Manual 

• A Series COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic 
Implementation 

• A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic 
Implementation 

• A Series COBOL ANSI-68 Programming Reference Manual 

• A Series FORTRAN77 Programming Reference Manual 

• A Series Pascal Programming Reference Manual, Volume 1: Basic Implementation 

• A Series Pascal ANSI-83 Programming Reference Manual 

I nput Options 

12-2 

You can specify an input file or an input procedure to indicate how the records are to be 
provided to the SORT utility. 

If an input file is specified, SORT invokes a standard input procedure that opens the 
file and reads the records. For efficiency, the input file should be blocked in increments 
greater than 500 words and should contain approximately 50 (or more) records per 
block. The input file must be closed when it is passed to SORT. 

The correct values of the NEWFILE attribute for a file passed to the SORT utility are 
FALSE for an input file and TRUE for an output file. If the NEWFILE attribute was 
set to the wrong value, SORT changes it to the correct value before opening the file. 
This change is necessary when the same file is used for both the input and the output. 

If your input procedure is specified as the input option, the procedure is called to 
provide the input records to SORT. Control is passed to the input procedure before the 
records are sorted. The records released from the input procedure are then sorted. The 
input procedure must not contain any SORT or MERGE statements. 

8600 0460-100 



SORT Utility 

SORT programs that contain lengthy input or output procedures can impact other jobs 
because much of the memory used by SORT is nonoverlayable (save) space. The use of 
input or output procedures should not be discouraged but should be considered in 
proper perspective for the job to be accomplished. In some cases, overall system 
performance can be improved by having the input procedure produce a file that is read 
by SORT and having SORT produce a file that is processed by the output procedures. 
The process of calling input or output procedures does not present an excessive burden 
to SORT or the system. 

Output Options 

You can specify an output file or an output procedure to indicate how the sorted records 
are to be returned from the SORT utility. 

If an output file is specified, SORT invokes a standard output procedure that writes the 
sorted records to the output file. For efficiency, the output file should be blocked in 
increments greater than 500 words and should contain approximately 100 (or more) 
records per block. The output file must be closed when it is passed to SORT. The file is 
closed after the SORT statement is completed. 

If you specify an output procedure, the procedure is called once for each sorted record 
and once for the end of output action. The output procedure must not contain any 
SORT or MERGE statements. 

Compare Procedure 

SORT calls the compare procedure to determine which of two records should be used 
next in the sorting process. Different keys or fields in the records can be compared; 
however, programs can be made more efficient by simplifying the individual keys and 
consolidating them into a single key. The comparison technique is determined entirely 
by you in the compare procedure. 

In COBOL, the length and number of keys directly affects the amount of time required 
for comparison. A large number of keys scattered in the record should not be used 
because setup time increases comparison overhead. Arithmetic or numeric 
comparisons are generally faster than string comparisons. COBOL sorts should use the 
EBCDIC character set for string comparison whenever possible. 

In ALGOL, the compare procedure should be coded to return TRUE when the two 
arrays are unequal and the first array must precede the second array. A FALSE should 
be returned when the arrays are equal or when the second array must precede the first 
array. In ALGOL sort operations, partial word comparisons are normally faster than 
string comparisons when characters within a word are tested. 

SORT attempts to recognize when the input data is less than 40 percent in sequence 
and switches comparison either from ascending to descending or from descending to 
ascending. SORT remembers the change of mode and processes the data accordingly. 
The switch is done as often as necessary in order to produce longer strings. Given a set 
of input data in exact reverse sequence, SORT produces two strings - rather than the 
maximum use of strings - and completes the sort much faster. 

8600 0460-100 12-3 



SORT Utility 

Number of Tapes 

This value specifies the number of tapes to be used in sorting. If the number of tapes is 
greater than 0, an integrated tape/disk sort or a tape-only sort occurs. You can use 
between 3 and 8 tapes. With integrated tape/disk or tape-only sorting, using more sort 
tapes generally increases sorting speed. However, gains made by using more than 5 
sort tapes are marginal. 

Record Size 

This value specifies the length of the records submitted to SORT. Variable-length 
records should be edited into fixed-length records by an input procedure and edited 
back to variable-length records by an output procedure. 

The record length specifies the length in words or characters - depending on whether 
the array parameters of the procedure are word or character arrays, respectively-of 
the largest item to be sorted. 

In ALGOL, if the record size is not a positive integer, the largest integer not greater 
than the absolute value of the expression is used. For example, a record length of 12 
would be used if an expression had a value of -12.995. If the value of the record size is 
0, the program terminates. 

Memory Size 

12-4 

The memory size specifies the number of words in memory to be used when sorting. If 
memory size is not specified, SORT assumes a default value of 12,000 words. SORT 
calculates the number of records to be kept simultaneously in memory with a limit of 
65535 records. SORT also calculates the number of buffers to be used for each string, 
with a limit of 256 buffers per string. 

The memory size estimate determines stringing and merging vector sizes, which, in 
turn, control string length and merging. Producing a small number of long strings is 
desired for sorting because fewer merge passes are required. Increasing the memory 
available to SORT is the most effective way to increase sorting efficiency. However, if 
the memory size is increased beyond the optimum, SORT might run slower rather than 
faster. The optimum memory size varies according to file size, which includes the 
record size, the blocking factor, and the number of records. Optimum memory size is 
also affected by the number of other jobs in the mix at the time of the sort operation. 

SORT attempts to be processor-bound in both the stringing and merging phase (as 
opposed to processor-bound during the stringing phase and lIO-bound during the 
merging phase). Unless the memory size specified is relatively small for a given sort, 
SORT achieves the goal of being processor-bound. When this condition is obtained, 
speed improvements can be realized only by methods that reduce processor time. 
Decreasing the amount of processor time helps system throughput as well as reducing 
sort timings. 

8600 0460-100 



SORT Utility 

In general, memory allocation proceeds through the following steps: 

1. Memory size provided by the program is reduced by 1,500 words. The reduced size 
is used for all subsequent calculations. The reduction is a generous estimate of the 
amount of space required for working storage and the space required for various 
SORT procedures. 

2. A buffer size is selected for the internal disk or tape files or both. SORT tries to 
select buffer sizes so that it does not become I/O-bound. For disk sorting, SORT 
normally allocates two buffers for each string. For tape sorting with n tapes, 
SORT allocates l/nth of memory as buffers for each tape. 

3. During executions of the stringing phase, two output buffers are nonnally 
allocated; thus, the remainder of memory is left for the sort vector. During 
execution of the merge phase, virtually all available memory is used for buffers. 

In general, U nisys recommends a memory estimate of 4,000 or more words. 
Memory estimates of 20,000 or more are recommended only on large systems. 
Information on how to determine memory size for different sorting modes is given 
later in this section. 

When the memory allocation is completed, SORT initializes its internal files with 
the proper computed attributes. SORT takes into account any change made to 
these file attributes through file equation. However, these file attributes override 
memory size specification; therefore, actual memory size can be less than or 
greater than the memory size specified to SORT. Refer to "SORT Files" in this 
section for more information on file equation of SORT internal files. 

Determining Memory Size for Disk Sorting 

Use the following to determine memory size for disk sorting: 

1. Convert the sort record size to the number of words required to contain a single 
record. For example, a I-character record requires 1 word, and fifteen 6-bit 
characters require 2 words, while fifteen 8-bit characters require 3 words. 

2. Add 3 additional words to the record size-to be used only by SORT. 

3. Multiply the number obtained in step 2 by the desired number of records 
according to the following steps: 

• For fast sorting, memory size should provide enough space to contain at least 
2,000 records. 

• For reasonably fast sorting, memory size should provide enough space to 
contain at least 1,200 records. 

• For adequate sorting, memory size should provide enough space for 600 
records, as a general rule. 

4. After memory has been computed for the number of records times the record size, 
add 1,500 words to provide for sort working space. 

8600 0460-100 12-5 



SORT Utility 

Determining Memory Size for Tape Sorting 

Use the following to determine memory size for tape sorting: 

1. Convert the record size to words. 

2. Add 3 additional words-to be used only by SORT. 

3. Multiply the number obtained in step 2 by the number of tapes specified in the 
SORT statement. 

4. Multiply the number obtained in step 3 by one of the following: 

• 300 for fast sorting 

• 200 for reasonably fast sorting 

• 100 for adequate sorting 

5. Add 1,500 words to provide for sort working space. 

Tape sorts are similar to disk sorts in that providing more memory generally yields 
faster sorts. However, the point of diminishing returns is more data-dependent for tape 
sorting. In general, using more sort work tapes rather than providing additional 
memory is more efficient. Providing more memory and more tapes is ideal when speed 
is the most important factor. 

Determining Memory Size for Memory Sorting 

Use the following for memory-only sorting: 

1. Convert the record size to words. 

2. Add 3 additional words-to be used only by SORT. 

3. Multiply the number obtained in step 2 by the number of records to be sorted. 

For COBOL sort operations, the record size is determined from the SD description, 
rounded up to the number of words required to contain the record. 

Disk Size 

12-6 

The disk size specifies the amount of disk storage in words to be used during the sort 
operation. If disk size is not specified, the default disk size is used. The default disk 
size for ALGOL and PLII is 600,000 words, and for COBOL 900,000 words. 

If disk size is set to 0 and the number of tapes is greater than 0, a tape-only sort occurs. 

If disk size is set to 0 and no tapes are specified, SORT operates in memory-only mode. 

Normally, SORT allocates 20 disk areas with varying area sizes, depending on your disk 
estimate. 

Disk size significantly affects the speed of disk sorting. If sufficient disk is not made 
available to contain the output of the merge phase, SORT is unable to merge as many 

8600 0460-100 



SORT Utility 

disk strings. Therefore, SORT merges fewer strings, when possible, and attempts to 
reduce the risk of terminating due to lack of disk space (SORT ERROR #5). 

Disk estimates must be large enough to accommodate your input file. The amount of 
disk space required for merging depends on several factors. Estimating a precise 
amount of disk space is difficult because of the gaps created by unfilled buffers at the 
end of strings. However, a safe disk estimate is two times the input file size. The 
following method for estimating disk size is suggested: 

1. Convert the record size to words. Do not add 3 additional words as described 
under "Memory Size" in this section.) 

2. Multiply the record size (in words) by the number of records to be sorted. 

3. MUltiply the number obtained by step 2 by one of the following: 

• 1.5 to obtain a near minimum estimate. 

• 2.25 to obtain a safe estimate. 

• 3.5 or more if a restartable sort is to be performed. 

SORT Operating Modes 
SORT can operate in four different modes: disk-only, tape-only, integrated tape and 
disk, or memory-only. 

The combination of disk size and number of tapes determines the sort mode as shown 
in Table 12-1. 

Table 12-1. Determining SORT Operating Mode 

Number of Tapes Disk Size Mode 

Not = 0 0 Tape-only 

Not = 0 Not = 0 ITO 

0 Not = 0 Disk-only 

0 0 Memory-only 

The following text identifies important characteristics of various SORT modes. The 
SORT modes are then described in detail. 

Disk-only mode 

The following are characteristics of disk-only sorting mode: 

• Disk-only is generally faster than tape-only mode. 

• A disk is the most reliable peripheral device. 

• Less operator intervention is required than when you use tape-only mode. 

8600 0460-100 12-7 



SORT Utility 

• The sort operation is limited by disk resources. 

Tape-only mode 

The following are characteristics of tape-only sorting mode: 

• The input file can be an indefinite length. 

• A particular machine configuration is required - that is, you need several tape 
drives that must be capable of performing backward reads. 

lTD mode 

The following are characteristics of lTD sorting mode: 

• The disk develops longer strings on tape. 

• The input file can be an indefinite length. 

Memory-only mode 

The following are characteristics of memory-only sorting mode: 

• Memory-only is generally the fastest mode. 

• Memory-only is the mode least likely to encounter I/O problems. 

• Memory-only mode is limited to the amount of data it can sort: 

It can sort a large number of small records 

It can sort a small number of large records 

It cannot sort a large number of large records 

Disk-Only Mode 

If the number of tapes is 0 and the disk size is greater than 0, SORT operates in 
disk-only mode. In this mode, all sort work files are maintained on disk. Disk-only 
mode is generally the fastest mode. 

Disk-Only Stringing Phase 

12-8 

Strings are written serially to the sort work file, titled DISKF, as they are formed 
during the stringing process. For each string, a disk control word is retained for use 
during the merge phase. A disk file, titled DISKC, is allocated for these control word 
records. 

If disk space is exhausted during the stringing phase, the sort operation is terminated. 

8600 0460-100 



SORT Utility 

Disk-Only Merging Phase 

The disk merging phase begins after the stringing phase is completed and merges 
strings into longer strings on disk. As each newly merged string is formed, a new 
control word is built. When the number of strings remaining to be merged is less than 
or equal to the number of strings that can be merged at one time, SORT writes the 
records to the output file or procedure. 

During the merging phase, wraparound on the work file might occur. Wraparound 
occurs when merged records are written at the beginning of the work file. Wraparound 
is possible because the strings occupying the space at the beginning of the work file 
have already been handled by the merge operation. This wraparound action means 
that sorting can be done into the same work file. 

Tape-Only Mode 

If the number of tapes is greater than 0 (zero), and disk size is specifically set to 0, a 
tape-only sort is performed. In this mode, all sort work files are maintained on tape. It 
is advisable to use tapes in good condition when performing tape sorts. You can specify 
from 3 to 8 tapes for SORT to use as work files. The sorting method used for tape 
sorting is the polyphase merge/reverse technique. 

Unlike a disk-only sort, where strings are written serially on the work file as they are 
formed, special string distributions and string-sequencing techniques are required for 
a tape sort. String distributions are based on a generalized Fibonacci number series. 
The string sequencing (ascending or descending) is specifically designed for reverse 
tape reads. 

Ta pe-Only Stringing Phase 

In the initial stringing phase, one work tape is designated as the first merge output 
tape and thus is not used during the stringing process. For example, in a 3-tape sort, 
strings are written to only two tapes. Strings are then dispersed to the stringing tapes 
in a special pattern until the current level in the distribution is satisfied. The 
distribution is transferred to the next level, and stringing continues. When the last 
input record is strung, the stringing phase is complete. 

A special-string sequencing pattern is required by SORT because of the reverse 
tape-read technique used in the merging phase. The pattern is as follows: 

1. Strings are written to an individual tape in alternating sequence - ascending, 
descending, ascending, and so on). 

2. In an ascending sort operation, all tapes except the tape with the odd number of 
strings - that is, the last tape - begins with a descending string. The odd tape 
begins with an ascending string. In a descending sort, the sequence pattern is 
reversed. 

8600 0460-100 12-9 



SORT Utility 

The following example depicts the stringing phase of a 5-tape ascending sort: 

TAPE 1 TAPE 2 TAPE 3 TAPE 4 

13 Strings D D D A 
Distribution is: 2,4,4,3 A A A D 

D D A 
A A 

D DESCENDING STRING. A = ASCENDING STRING. 

During the stringing phase, SORT moves cyclically on the tapes-that is, from tape 1 
to tape n, where n represents an integer from 2 through 8 -looking for a tape to string. 
If the distribution is satisfied on a given tape, SORT moves to the next tape. When the 
distribution is satisfied on all tapes, the Fibonacci distribution is transferred to the 
next level. 

At the completion of the stringing phase, if the number of strings distributed is less 
than the desired Fibonacci distribution level, the tapes are padded with dummy strings 
to fill out the distribution. The dummy strings are recorded internally but are not 
physically written on the tapes. 

Tape-Only Merging Phase 

The merging phase of the tape sort operation uses the polyphase merge/reverse tape 
read technique. In the polyphase method, strings from working tapes are merged to a 
designated output tape until one of the tapes contains no more strings. This tape now 
becomes the output tape and is the end of a merge pass or level. The string totals on 
the remaining tapes now correspond to the next lower level in the distribution table. 
The merging operation continues until one final string can be written to the output file 
or procedure. 

ITO Mode 

12-10 

If the number of tapes specified is greater than 0 and the disk size is greater than 0, 
SORT operates in lTD mode. The lTD or disk/tape mode of sorting uses disk work files 
with tape backup. 

lTD sorting can improve on tape-only sorting by 50 percent or more. The reason for 
this degree of improvement is that fewer strings are created on tape, which causes tape 
merging to be completed much sooner. The amount of improvement depends on the 
inherent sequence of the data and the amount of disk space provided. In most cases, 
100,000 words or less of disk space is sufficient to obtain the increased speed from an 
lTD sort. 

SORT begins stringing records on disk; however, if disk space is exhausted during 
stringing operations, a special merge operation is performed to tape, and the sort 

8600 0460-100 



SORT Utility 

operation is not terminated. This creates strings on tape in the normal tape 
distribution, but the number of strings written on tape is less than that resulting from 
a tape-only sort operation. Stringing then resumes normally on disk until disk space is 
exhausted again. When the stringing phase is complete, a regular tape merge is 
performed. 

During an lTD sort operation, file equations are not used for the internal tape files 
used during the stringing phase. If SORT requires a scratch tape, either a scratch tape 
can be mounted or the sorting program can be terminated. 

If disk space is exhausted during the merging phase of an lTD sort, the strings are 
merged to tape, and the remaining merging operations are completed on tape. 

One advantage of the lTD sort mode is its ability to circumvent a limited disk resource 
to sort large files. Another advantage is that it reduces tape merge time because of the 
use of disk space to consolidate many short strings into a few longer strings. 

Memory-Only Mode 

If no sort work files are specified on tapes, and the disk size is specifically set to 0, a 
memory-only sort operation is performed. Failure to set the disk size to 0 results in the 
default value for disk being used, and a disk-only sort operation occurs. 

SORT does not open sort files; it attempts to read your input directly into memory. If 
sort memory is filled before the last user input record is read, SORT terminates with 
SORT ERROR #3. If the specified amount of memory can contain all input records, 
SORT proceeds normally to produce user output. 

Memory-only sorting is of particular value when the number of records to be sorted is 
small. To determine whether or not you have an optimum number of records to sort, 
use the following formula as a guide: 

• Multiply the number of records to be sorted by the size of the records measured in 
words. 

• The product of this result must be less than the memory size specification 

SORT Files 
SORT uses two disk files when disk or lTD sorts are requested: a control file to store 
the control records and a work file to store the data or records being sorted. The 
internal name for the control file is DISKC, and the title is SORTJDISKC. The internal 
name for the work file is DISKF, and the title is SORTJDISKF. 

SORT uses between 3 and 8 tape files when lTD or tape-only sorts are requested. 

Control Files 

The control file is normally a very small disk file whose size is based on the maximum 
number of strings that can be produced for the sort operation currently being executed. 

8600 0460-100 12-11 



SORT Utility 

Control file records are 3 words in length, and blocks are 90 words in length. The 
maximum number of control file rows is 64, and the number of physical blocks per row 
is 4 - unless the amount of disk space provided is extremely large. The last two rows of 
the control file contain restart information when restartable sorts are requested. When 
a restartable sort is desired, file equation should be used to give a unique title to the 
control file. For example: 

<i> FILE DISKC (TITLE=JOBNAME/SORTCONTROL) 

Other attributes in the file equation for the control file can be modified, but the 
probability of failure is high if attributes such as AREAS, AREASIZE, MAXRECSIZE, 

, and BLOCKSIZE are modified by file equation. 

Work Files 

12-12 

The work file size is provided explicitly or implicitly by your program. SORT first 
determines the desired block size and then computes the number of disk rows provided 
by you. The maximum number of rows that SORT allocates to the work file is 183; 
partial rows are rounded up to a full row. Row sizes do not exceed 1,320 segments 
unless an extremely large amount of disk is provided. When a restartable sort is 
requested, file equation should be used to give a unique title to the work file. For 
example: 

<i> FILE DISKF (TITLE=JOBNAME/SORTWORK) 

A new BLOCKSIZE and MAXRECSIZE can be provided in the file equation for the 
work file. Other attributes in the file equation for the work file can be modified, but the 
probability of failure is high when attributes such as AREAS and AREASIZE are 
modified by file equation. 

The BLOCKSIZE and MAXRECSIZE attributes must be compatible in order to open 
the file. Modifying the buffer size overrides the normal memory allocation algorithms 
of SORT. However, care should be exercised when these values are changed. When the 
buffer size is increased, the number of disk segments per disk row is proportionately 
increased, and SORT proceeds using the larger disk rows. If the buffer size is 
decreased, the number of disk segments per disk row is proportionately decreased, 
which might result in a work file that is not large enough to accomplish the sort. One 
method of alleviating this condition is to specify a larger quantity of disk space. 
Modification of the buffer size is usually less effective than providing a different 
memory size for use by SORT. However, sort operations are always data-dependent, 
and with some ordering of data, a better sorting can be obtained by judicious selection 
of buffer size. 

8600 0460-100 



SO RT Utility 

Tape Files 

SORT uses tape files when lTD or tape-only sort operations are requested. SORT can 
use between 3 and 8 tapes. To eliminate the necessity for operator intervention to 
resolve "DUP FILE" messages, the sort tape files are named as follows: 

SORT0M<task number> 
SORT1M<task number> 
SORT2M<task number> 
SORT3M<task number> 
SORT4M<task number> 
SORT5M<task number> 
SORT6M<task number> 
SORT7M<task number> 

Tag Sorting 
In a normal sort operation, records are continually handled throughout the stringing 
and merging phases. In other words, the sort algorithms are concerned only with the 
various keys, but the entire record - including the keys - is carried along throughout 
the sorting process. 

For files that have large records and small keys, it might be more efficient to perform a 
tag sort. In tag sorting, only the keys and the address of each record are handled 
throughout the sorting process. 

In performing a tag sort, you must provide an input procedure that filters the incoming 
records, extracting the sort keys and appending the disk address of the location of the 
entire record. The keys are arranged by the input procedure in a contiguous string. 
This tag is then submitted to the stringing phase. This structure eliminates the need 
to accumulate the keys from various fields in the record whenever a comparison is 
required. 

During the final merging phase, the output procedure uses the address portion of the 
tag to retrieve the records in the correct sequence. 

The input file is read twice: once by the input procedure (in a serial fashion) for the 
stringing phase, and once again by the output procedure (in a random fashion) for the 
final merge phase. Tag sorting requires less disk and memory space to complete the 
job. Retrieving the output records is the most time-consuming factor and is highly 
data-dependent. 

If a sort program is heavily used, both entire-record and tag sorts should be tested to 
determine which sort operation produces the best results. 

Figure 12-1 shows the extraction of one or more keys from the incoming record and 
the building of the tag. 

8600 0460-100 12-13 



SORT Utility 

12-14 

Input record 

I 
L 

Input 

I Key .1 

Tag 

(Tag) 

I Key ,3 

I 

r---.J 

Record 
address 

Figure 12-1. Creating a Tag 

Sort 

8600 0460-100 



SORT Utility 

Figure 12-2 shows a functional diagram of a tag sort that has one or more nondisk 
input files. The input file must be copied in its entirety to disk. 

Input files Input 
fil e 

Figure 12-2. Tag Sort, Nondisk Input File 

Output files 

Legend 

-----:11:-- Records 

- - - Tags 

Figure 12-3 shows the functional diagram of a tag sort that has a disk file as its input 
medium. 

Legend 

Restart Capability 

Input 
fil e(s) 

Figure 12-3. Tag Sort, Disk Input File 

Output files 

Restart capability enables SORT to resume processing at the most recent control point 
following the discontinuation of the program. 

8600 0460-100 12-15 



SORT Utility 

12-16 

Restart capability can be excluded from SORT by setting the RESTART option to 
FALSE in the SORT portion of the MCP symbolic and then recompiling the MCP. 
Omitting the code associated with RESTARTIERROR recovery results in sorts that run 
between 2 and 15 percent faster, with an average improvement of six to ten percent. 
Disk and lTD sorts are the only sorts measurably improved by this omission. 

Operating SORT in restart mode provides the necessary restarting information for the 
sort but requires certain program inputs that are defined in the following text. The 
program must provide logic to restore and maintain stack variables, arrays, files, and 
pointers that are defined for and by the program. In other words, the program must 
provide the means to restore everything necessary for it to continue from the point of 
discontinuation. This capability can be simple or complex and is entirely 
program-dependent. The program cannot use the CHECKPOINT/RERUN function 
when a sort is executing. 

Restart capability is implemented for disk sorts only; however, a partially restartable 
lTD sort is also possible. When SORT is not in the tape phase of an lTD sort, it 
functions as a disk sort. Mter the data is written from disk to tape during an lTD sort, 
SORT cannot be restarted. 

If SORT is started as a disk-only restartable sort with insufficient disk space provided 
to accomplish the sort, SORT terminates with SORT ERROR #4 or #5. After error 
termination, SORT can be restarted as an lTD sort by indicating a RESTART and 
specifying the number of tapes desired. Any other kind of restart is impossible under 
this condition. 

If a restartable sort terminates during the first output of data from disk to tape 
(possibly as a result of an irrecoverable tape I/O error), SORT can be restarted and the 
data is written to tape as if no problem had occurred. 

When using SORT in restartable mode, file equation should be used to give unique 
titles to the control file and the work file. Refer to "SORT Files" for more information 
about these files. Conflicts might arise when two or more sorts use identical file titles 
for their sort disk files. 

When SORT attempts to restart a previously incomplete sort, sort record size and 
character size of the sort record characters are verified to ensure that continuation is 
compatible with the previous sort. For ALGOL programs, record size is explicitly 
specified by the program while character size is 0 (default size is 8). COBOL programs 
use the SD to determine sort record and character size. When record size or character 
size does not match the previous sort, error termination occurs. 

Other sort parameters-except number of tapes-can be modified. Different values for 
memory size or disk size are ignored, and the original values are used. However, both 
values must be valid nonzero values. Different procedures can be specified (for input, 
output, or comparing) if desired, files can be substituted for input or output 
procedures, and input or output procedures can be specified for files. The program 
requesting the restart need not be the originating program. Because SORT can only 
attempt to meet your request and cannot determine appropriateness of requests, you 
must make sure that you get the desired results. 

8600 0460-100 



SORT Utility 

RESTART Parameter Values 

SORT inspects various bits of the restart parameter to determine the action it is to 
take. You must supply proper file title attributes for the two disk work files if these files 
were previously file-equated. Individual bits and combinations of bits can be set by the 
program to control SORT. The bits and their meanings are as follows: 

Bit 0 

• ON 
The program is restarting a previous sort operation. SORT tries to open its two 
disk files and obtain restart information. After successfully obtaining this 
information, SORT continues from the last known restart point. 

• OFF 
SORT is starting from the beginning. If the sort operation is restartable and 
previous sort files with identical titles exist, these sort files are removed and 
replaced by new sort files. 

Bit 1 

• ON 
The program is requesting a restartable sort operation. SORT saves its two 
internal files and can be restarted on program request. If bit 2 is ON, bit 1 is set by 
default. 

• OFF 
A normal sort operation is requested, and no sort files are saved (unless bit 2 is on, 
which sets bit 1 by default). 

Bit 2 

• ON 
The program is requesting a restartable sort and desires extensive recovery from 
I/O errors. With this option set, if I/O errors occur while accessing either of the two 
sort files, SORT attempts to backtrack and remerge strings as necessary. To use 
this option, the program must provide at least three times as much disk space as 
required to contain the input data. When less space is provided, SORT emits the 
message "CHANGE TO RESTARTABLE ONLY MODE" and continues the sort 
without further capability to backtrack. 

• OFF 
Recovery from internal errors is not requested. 

Bit 3 

This bit has meaning only if a restartable sort operation is requested. This option 
controls SORT during the stringing phase as your input is being read by SORT. Use 
of this bit determines how SORT restarts-when a restart is requested-if the 
restart occurs while SORT is in the stringing phase. 

86000460-100 12-17 



SORT Utility 

• ON 
The SORT is to restart at the beginning of your input. This restart is the 
equivalent of starting an entirely new sort. In case the restarted sort operation had 
passed from the stringing phase into the merge phase, it continues from the merge 
phase. This bit can be set during a restart even ifit was not initially set. Once set, 
it cannot be reset by subsequent restarts. 

• OFF 
The SORT is to restart at the last restart point that occurred during the stringing 
phase. If SORT is still in the stringing phase, it skips over the records already 
processed and continues from the last restart point. Refer to "Restarting During 
Stringing Phase" for more information about this process. If SORT is in the 
merging phase, it continues from the last merge phase restart point. Not setting 
the bit is normally less efficient than setting the bit because more strings are 
created during the stringing phase. 

Bit 4 

This bit is reserved for expansion and is not currently used by SORT. 

Parameter Values that Combine Bits 0 through 4 

When a program is initially starting a sort operation and desires restart ability the 
restart value should be set as follows: 

• Decimal 2 (bit 1 ON) if a restartable sort operation that is capable of restarting at 
any point during the stringing or merge phase is desired. 

• Decimal 10 (bits 1 and 3 ON) if a restartable sort operation that can restart at any 
point during the merging phase but only at the beginning of the stringing phase is 
desired. 

• Decimal 4 or 6 (bit 2 ON or bits 1 and 2 ON) if a restartable sort operation that can 
attempt extensive recovery from internal sort I/O errors and can restart at any 
point during the stringing or merge phase is desired. 

• Decimal 12 (bits 2 and 3 ON) or Decimal 14 (bits 1, 2, and 3 ON) if a restartable 
sort operation that can attempt extensive recovery from internal sort I/O errors 
and can restart at any point during the merging phase but only at the beginning of 
the stringing phase is desired. 

• Decimal 1, 3, 5, or 7 - significant bits are bit 0 ON and bit 3 OFF - if a previously 
incomplete sort operation that can be restarted is desired. The prior incomplete 
sort must have been capable of restart, and the two sort disk files must be present. 
A restart is attempted using the values obtained from the sort files. The previous 
setting of bit 3 controls the sort if it is restarted during the stringing phase. The 
previous values of bits 1 and 2 are used. 

12-18 8600 0460-100 



SORT Utility 

• Decimal 9, 11, 13, or 15 (significant bits are bits 0 and 3 ON) if a restart ofa 
previously incomplete sort is desired, and if a restart from the beginning of input is 
desired during the stringing phase. The prior incomplete sort must have been 
capable of restart, and the two sort disk files must be present. A restart is 
attempted using the values obtained from the sort files. Bit 3 is set and remains set 
through all subsequent restarts. Bits 1 and 2 take on their previous values. 

• Decimal 0 or 8 - no bits ON or bit 3 ON - causes the sort operation to perform a 
normal sort with no restart capability. 

Restarting during Stringing Phase 

Restarting during the stringing phase - while SORT is still reading input 
records - requires special consideration. If SORT has been passed a file, either a seek is 
performed or records are read until the desired restart point is reached. However, an 
input procedure presents a different problem because the program must find the 
proper restart record. To be able to locate the proper restart record, SORT places 
values in the first word of the array passed to the input procedure. 

The values are negative or positive integers in binary form or 0 to indicate that nothing 
special is happening. A positive integer is placed in the first word (word 0) to tell the 
input procedure the relative number of the next record desired by SORT. For example, 
if SORT has previously processed and saved 99 records, it requests record number 100. 
A positive nonzero integer occurs in the first word only once, on the first call to the 
input procedure. 

SORT places a negative nonzero integer in the first word to inform the input procedure 
that SORT has just established a restart point. The absolute value of the number 
returned represents the number of records saved by SORT. This information can be 
used by the program to establish its own separate restart points. 

Error Recovery 
SORT has extensive internal error recovery ability for irrecoverable I/O errors that 
occur when a sort disk file is accessed. If such an error occurs, SORT issues the 
following message: 

SORT ERROR Inn: IRRECOVERABLE I/O ERROR ON <sort file name> FILE 

The nn is a number from 10 through 14, and the sort file name is the name of the 
internal sort file that is in error. SORT then waits for an OK or DS system command. 
If the operator requests error recovery by entering OK, SORT attempts to recover. If 
the operator responds by entering DS, SORT is terminated. 

The sort disk files under discussion are the work files, which contain the data being 
sorted, and the control file, which contains control information for SORT. These two 
types of files are described under "Sort Files." 

I/O error recovery depends on the file and the kind of error encountered. The degree of 
recovery possible is always dependent on the request that SORT carry out error 

8600 0460-100 12-19 



SO RT Utility 

recovery for the program. Error recovery is never attempted beyond one level of 
recovery. If recovery is attempted while recovering from a prior errol; SORT 
terminates. The primary areas of error recovery are described in the following 
paragraphs. 

Control File I nput Errors 

If an error occurs while a record is being read, an attempt is made to obtain the record 
by rereading the error record several times. If the error record is unreadable and error 
recovery is not requested, SORT terminates. If error recovery is requested, SORT 
attempts to read its duplicate copy of the error record. 

Control File Output Errors 

If an error occurs while a record is being written, an attempt is made to successfully 
write the error record. If writing is not successful after several retries and error 
recovery is not requested, SORT terminates. If error recovery is requested, SORT 
marks as a bad disk the row of the disk containing the error record. SORT retains the 
other copy of that row for subsequent use. Ifpossible, SORT continues in full error 
recovery mode; otherwise, SORT displays "SORT ERROR #31" and continues in error 
recovery mode for the work file. Further error recovery for the control file is no longer 
possible. In either case, if SORT is unable to write the error record after the bad row 
has been marked, SORT terminates. Only one disk row is marked as bad disk on an 
error so that it is not possible to get into a loop and mark large quantities of disk as bad. 

User output file error recovery is not dependent on the system option RESTART. 

Work File I nput Errors 

If an error occurs when a record is being read, an attempt is made to obtain the record 
by rereading the error record several times. If the error record is unreadable and error 
recovery is not requested, SORT terminates. If error recovery is requested and the 
data has been duplicated, an attempt is made to read the duplicate copy. If the error 
record was written by the merge phase and no duplicate copy exists, SORT attempts to 
re-create the string of information containing the error record. Before backtracking to 
the previous merge, SORT writes and reads a test record in the error record location. If 
the test is unsuccessful, SORT marks as bad disk the row of the disk containing the 
error record location. After testing and possibly marking the affected areas of the disk, 
SORT backtracks to the desired point for restarting the merge phase. At most, one row 
of the disk is marked as bad disk for each occurrence of an input error for the work file. 

Work File Output Errors 

12-20 

If an error occurs when a record is being written, an attempt is made to successfully 
write the error record. If writing is not successful after several retries and error 
recovery is not requested, SORT terminates. If error recovery is requested, SORT 
marks the row of the disk containing the error record as bad disk. If possible, SORT 
continues in full error recovery mode; otherwise, SORT displays "SORT ERROR #32" 

8600 0460-100 



SORT Utility 

and continues with error recovery reset. If SORT is in the stringing phase, an attempt 
is made to write the error record and if the attempt is unsuccessful, SORT terminates. 
If SORT is in the merge phase, it backtracks to the desired point of restarting the 
merge phase. At most, one row of disk is marked for each occurrence of an output error 
for the work file. 

User Output File Errors 

When the program has given SORT an output file-as opposed to an output 
procedure-SORT closes and purges the output file and restarts the output from the 
first output record. If the output file is a disk file and insufficient space was allocated to 
contain the data, SORT either sets the FLEXIBLE attribute before restarting the 
output or, if setting the FLEXIBLE attribute is not possible, terminates with SORT 
ERROR #8. Output error recovery is not dependent on program request for error 
recovery. 

Work File I nput Errors during User Output 

When your output is a file, the file is closed and purged, and SORT attempts to remerge 
the desired string. If the output is a procedure and error recovery is specified, SORT 
repositions itself to remerge the desired string and subsequently terminates with 
SORT ERROR #19. When SORT is restarted, it remerges the desired string and starts 
user output with the first output record. 

Using SORT in Various Languages 

Using SORT in COBOL or COBOL74 

In COBOL or COBOL 74, the SORT intrinsic is invoked by the SORT statement. The 
sort work file, input procedure or file, output procedure or file, sort keys, and sorting 
criteria are specified in the SORT statement. The sort work file must be described in a 
sort-merge file-description entry in the DATA DMSION and in a SELECT clause in 
the FILE-CONTROL paragraph. The SELECT clause determines the sort mode to be 
used. 

Memory size, disk size, and restart information are optional parameters. (For a 
complete description of the COBOL or COBOL 74 SORT statement, refer to the 
A Series COBOL ANSI-68 Programming Reference Manual or the A Series COBOL 
ANSI-74 Programming Reference Manual, Volume 1: Basic Implementation. 

SORT Input/Output (I/O) Procedure Logic Flow 

The following logic chart shows the interaction of the SORT utility with a COBOL 
procedural sort operation: 

• Sort 1. Begin SORT initialization phase. 

• Sort 2. Open sort work files. 

8600 0460-100 12-21 



SORT Utility 

• Sort 3. Go to beginning of your INPUT PROCEDURE. 

IPI. = Open input file. 

IP2. = Read input file record (at end, go to IP6). 

IP3. = If record is to be used, place in record area of sort file; otherwise, go to 
IP2. 

IP4. = Release sort file record (transfer to Sort 4). 

• Sort 4. Place the released record in sorting process. 

• Sort 5. Execute internal sorting, creating strings on sort work files. 

• Sort 6. Return to INPUT PROCEDURE at IP5. 

IP5. = Execute using logic; then go to IP2. 

IP6. = Execute AT END logic, including close of input file (transfer to Sort 7). 

• Sort 7. Complete SORT stringing of all input records. 

• Sort 8. Begin merge phase of SORT. 

• Sort 9. Merge all strings on sort work files until one string remains. 

• Sort 10. Go to beginning of OUTPUT PROCEDURE. 

OP!. = Open output file (transfer to Sort 11). 

• Sort 11. Execute final internal merging operation. 

• Sort 12. = Pass merged record to OUTPUT PROCEDURE at OP2. 

OP2. = Return sort file record to user record area (at end, go to OP4). 

OP3. = Execute user logic (transfer to Sort 11). 

OP4. = Execute AT END logic, including close of output file (transfer to sort 
13). 

• Sort 13. = Close all sort work files. 

• Sort 14. Exit from SORT. 

COBOL SORT Example 

12-22 

The following is an example of a COBOL disk sort, including the actual input and 
output files: 

IDENTIFICATION DIVISION. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. 85900. 
OBJECT-COMPUTER. B5900 

DISK SIZE 20000 WORDS 
MEMORY SIZE 3000 WORDS. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT NEWTRANS ASSIGN TO CARD-READER. 
SELECT CREDITFILE ASSIGN TO 5000 DISK. 

8600 0460-100 



8600 0460-100 

SELECT DEBITFILE ASSIGN TO 5000 DISK. 
SELECT SORTFILE ASSIGN TO SORT DISK. 

DATA DIVISION. 
FILE SECTION. 
FD NEWTRANS VALUE OF ID IITRANSACTIONS II . 

01 NEWTR SZ 80. 
FD CREDITFILE VALUE OF ID IINEW II / II CREDITS II 

BLOCK CONTAINS 15 RECORDS. 
01 CR-REC SZ 80. 

FD DEBITFILE VALUE OF 10 IINEW II ;UDEBITS II 

BLOCK CONTAINS 15 RECORDS. 
01 DR-REC SZ 80. 

SO SORTFILE. 
01 SRT. 

03 CODE-KEY PIC 99. 
03 ACCOUNT-KEY PIC 9(10). 
03 DATE-KEY PIC 9(6). 
03 FILLER PIC X(62). 

PROCEDURE DIVISION. 
SORTIT SECTION. 
SRTRN. 

SORT SORTFILE ON DESCENDING KEY CODE-KEY 
ASCENDING KEY ACCOUNT-KEY DATE-KEY 
USING NEWTRANS 
OUTPUT PROCEDURE RECORDS-OUT. 

ENDIT. STOP RUN. 
RECORDS-OUT SECTION. 
CREDITS-OUT. 

OPEN OUTPUT CREDITFILE DEBITFILE. 
LOOP-CR. 

RETURN SORTFILE AT END GO TO XIT. 
IF CODE-KEY> 49 

WRITE CR-REC FROM SRT INVALID KEY GO TO IVK 
ELSE GO TO LOOP-CR. 

LOOP-DR. 

XIT. 

IVK. 

WRITE DR-REC FROM SRT INVALID KEY GO TO IVK. 
RETURN SORTFILE AT END GO TO XIT 
ELSE GO TO LOOP-DR. 

CLOSE CREDITFILE LOCK DEBITFILE LOCK. 
GO TO ENDIT. 

DISPLAY IIERROR TERMINATION II • 
DISPLAY CODE-KEY ACCOUNT-KEY. 

ENDIT. EXIT. 

SORT Utility 

12-23 



SORT Utility 

12-24 

Input File to be Sorted: 

121000000233040770 
121000000233040970 
121000000233041270 
031200000042041270 
031200000042041370 
031200000042041670 
031200000042040970 
551000000012050170 
551000000012052370 
551000000012051470 
551000000012050570 
471000000012050570 
471000000012052270 
720900000243060270 
720900000243061970 
720900000243062170 
710900000243062170 
710900000243062670 
124000000035062670 
900000000017070370 

Sorted Output Files: 

NEW/CREDITS output file 

900000000017070370 
720900000243060270 
720900000243061970 
720900000243062170 
710900000243062170 
710900000243062670 
551000000012050170 
551000000012050570 
551000000012051470 
551000000012052370 

NEW/DEBITS output file 

471000000012050570 
471000000012052270 
121000000233040770 
121000000233040970 

,121000000233041270 
124000000035062670 
031200000042040970 
031200000042041270 
031200000042041370 
031200000042041670 

8600 0460-100 



SORT Utility 

Using SORT in ALGOL 

In ALGOL, the SORT intrinsic is invoked by the SORT statement. The input option 
procedure or file, output option procedure or file, number of tapes, compare procedure, 
and record length are required parameters in the ALGOL syntax. The sort keys and 
sorting criteria are determined solely by the compare procedure. 

Memory size and disk or pack size are optional parameters. If restart specifications are 
used, they appear outside the parameter list, in brackets. For a complete description of 
the ALGOL SORT statement syntax, refer to the the A Series ALGOL Programming 
Reference Manual, Volume 1: Basic Implementation. 

ALGOL SORT Example 

BEGIN 
COMMENT 
THIS IS AN EXAMPLE OF A SIMPLE, ASCENDING SORT. THE PROGRAM 
SORTS A FILE WITH NAMES IN THE FIRST 12 COLUMNS AND WRITES 
THE SORTED FILE TO A PRINTER FILE. IF COLUMN 13 CONTAINS AN 
ASTERISK (11*11), THE RECORD IS DISCARDED AND IS NOT SORTED. 
THIS PROGRAM USES A PROCEDURE AS THE INPUT OPTION AND A FILE 
AS THE OUTPUT OPTION. (FOR SIMPLICITY, ANY EXCEPTION 
OCCURRING ON THE INPUT FILE IS ASSUMED TO BE END-OF-FILE.) 

FILE INFILE(KIND=DISK,DEPENDENTSPECS), 
OUTFILE(KIND=PRINTER, MAXRECSIZE=72); 

DEFINE SKIPCODE = 11*11#, 
SKIPFIELD = POINTER(R[2J,8)#; 

BOOLEAN PROCEDURE INPROC(R); 
ARRAY R[0J; 

BEGIN 
BOOLEAN RESULT; 
DO 

RESULT := READ(INFILE,12,R[*]) 
UNTIL RESULT OR SKIPFIELD NEQ SKIPCODE; 
INPROC := RESULT; 
END INPROC; 

BOOLEAN PROCEDURE COMPARE(R1,R2); 
ARRAY R1, R2 [0J; 

BEGIN 
COMPARE := POINTER(R1,8) LSS POINTER(R2,8) FOR 12; 
END COMPARE; 

SORT(OUTFILE,INPROC,0,COMPARE,12); 
END. 

8600 0460-100 12-25 



SORT Utility 

ALGOL Example Files 

Input File to be Sorted 

GLENN 
JACK 
EARL 
ROLLIE 
STEVE 
DAVE 
JOEL 
HARRY 
HANSEL * 
SHERRY 
RICHARD 
DICK 
BILL 
GRETEL * 
DON 
JIM 
CAROLYN 

Sorted Output File 

BILL 
CAROLYN 
DAVE 
DICK 
DON 
EARL 
GLENN 
HARRY 
JACK 
JIM 
JOEL 
RICHARD 
ROLLIE 
SHERRY 
STEVE 

Using SORT in PL/I 

12-26 

In PL/I, the SORT intrinsic is invoked by the SORT statement. The sort work file, 
keys, and sorting criteria are specified in the statement. 

The input option procedure or file, output option procedure or file, number of tapes, 
coresize, disk size, and pack size are optional parameters and can be specified in the 
statement. For a complete description of the PL/I SORT statement, refer to the 
A Series PL/I Reference Manual. 

86000460-100 



PL/I SORT Example 

SORTEXAMPlE: PROC; /* OPTIONS (MAIN) */ 

DCl AA FILE INPUT RECORD ENV (KIND='READER ' , MAXRECSIZE=80); 

DCl BB FILE OUTPUT RECORD ENV (KIND='PRINTER ' ,MAXRECSIZE=132); 

DCl 1 COURSES, 
2 DEPT 
2 COURSENAME 
2 INSTRUCTOR 
2 REQUIRED 

CHAR (5), 
CHAR (20), 
CHAR (10), 
CHAR (1); 

SORTIN: PROCCA) RETURNS (BIT (1)) OPTIONS (SORTINPUT); 
DCl A CHAR (*); 
ON ENDFIlE (AA) GO TO EOF; 

lOOP: READ FILE (AA) INTO (COURSES); 
IF REQUIRED = 1*1 THEN RETURN (10 IB); 

ELSE GO TO lOOP; 

EOF: RETURN (IIIB); 
END SORTIN; 

SORT COURSES ON 
ASCENDING KEY (COURSES.DEPT, COURSES.COURSENAME, 
COURSES. INSTRUCTOR) 
INPUT (SORTIN) 
GIVING FILE (BB); 

END SORTEXAMPlE; 

8600 0460-100 

SORT Utility 

12-27 



SORT Utility 

PL/I Example Files 

Input File to be Sorted 

MATH TRIGONOMETRY LAMBERT * 
HIST AMERICAN HISTORY JERONIMO * 
MUS MIXED CHORUS PAINTER 
ENG ELECTRONICS SHERIDAN * 
MATH CALCULUS I GUILFORD * 
ENGL READING COMP WOODS * 
MATH CALCULUS II GUILFORD * 
MATH STATISTICS GALLOP 
MATH MATRIX THEORY WAIHAU * 
HIST WESTERN CIV GREENLEAF 
MUS MUSIC APPREC PAINTER * 
ENG SURVEYING SHERIDAN * 
ACCT ACCOUNTING I BLOCK * 
BUS BUSINESS LAW BAILEY * 
MATH ALGEBRA MULBERRY * 
MUS INSTRUMENTAL MUSIC BLAIR * 
ACCT ACCOUNTING II BLOCK * 
MATH LINEAR ALGEBRA GUILFORD 
MATH CALCULUS I AMSDALE * 
ACCT COST ACCOUNTING BLOCK * 
ACCT ACCOUNTING I ANOLA * 
HIST AMERICAN HISTORY LIVERMORE * 

Sorted Output File 

ACCT ACCOUNTING I ANOLA * 
ACCT ACCOUNTING I BLOCK * 
ACCT ACCOUNTING II BLOCK * 
ACCT COST ACCOUNTING BLOCK * 
BUS BUSINESS LAW BAILEY * 
ENG ELECTRONICS SHERIDAN * 
ENG SURVEYING SHERIDAN * 
ENGL READING COMP WOODS * 
HIST AMERICAN HISTORY JERONIMO * 
HIST AMERICAN HISTORY LIVERMORE * 
MATH ALGEBRA MULBERRY * 
MATH CALCULUS I AMSDALE * 
MATH CALCULUS I GUILFORD * 
MATH CALCULUS II GUILFORD * 
MATH MATRIX THEORY WAIHAU * 
MATH TRIGONOMETRY LAMBERT * 
MUS INSTRUMENTAL MUSIC BLAIR * 
MUS MUSIC APPREC. PAINTER * 

12-28 8600 0460-100 



SORT Utility 

Using a Procedural Interface for SORT 

The SORT/MERGE procedural interface provides a means for those languages that do 
not support a SORT or MERGE statement to invoke the SORT utility in the MCP. This 
is done through library calls to procedures made available in the system library 
GENERALSUPPORT. For a program to invoke these library entrypoints, the program 
must be in a language that supports the type of parameters described for these 
entrypoints. 

SORTFILES 

This procedure sorts an input file into a specified output file. The declaration of this 
procedure in GENERALSUPPORT is as follows: 

PROCEDURE SORTFILES (INFO_STRING, 
TRANS_TABLE, 
COMPARE_PROC, 
OUTPUT_FILE, 
INPUT FI LE) ; 

EBCDIC ARRAY INFO_STRING-[*]; 
ARRAY TRANS_TABLE [*]; 
BOOLEAN PROCEDURE COMPARE PROC (A, B); 

ARRAY A, B[*]; FORMAL;-
FILE INPUT_FILE, OUTPUT_FILE; 

The following text describes the input attributes for the procedure: 

Attribute Explanation 

COMPARE PROC 

OUTPUT FILE 

8600 0460-100 

A string in which the user can describe some additional parameters for 
the sort. The format of this string is described following this table. 

An optional array containing a translate table that identifies the alternate 
collating sequence to use for the sort. Translation of keys using the 
collating sequence is performed only on alphanumeric key types. This 
parameter is used only if the COLLSEQ clause is present in the 
INFO_STRING parameter and the user compare procedure is not to be 
used. The TIABLE routine should have been used to build the translate 
table prior to passing this array for use by sort. The TIABLE routine is 
described under uTTABLE" later in this section. If TRANS TABLE is 
used, the size of this array should be at least 64 words in length. 

A reference to the user's compare procedure. The compare procedure 
must be coded as a Boolean function with two array parameters. The 
function is called every time two records are to be compared. This 
procedure is called by the sort only if an indication to use it is present in 
the info string (COMP). The alternative to using a compare procedure is 
to include the key description in the KEY clause of the INFO_STRING 
parameter. 

The file to which the output from the sort is written. If the file is a disk 
file for which the file attribute SAVEFACTOR has a nonzero value, it is 
closed and locked after the sort. The output file must not be open when 
it is passed to SORTFILES by the program. 

continued 

12-29 



SORT Utility 

12-30 

continued 

Attribute 

INPUT FILE 

Explanation 

The input file to be used during the sort. The input file must not be open 
when it is passed to SORTFILES by the program. 

The INFO _STRING parameter provides the means for the user to specify additional 
parameters for the sort or merge. This parameter is specified in the form of specific 
clauses. The clauses must be separated by blanks or commas, and the entire string 
must be terminated by a period. The only required clauses are RSZ, and KEY or COMP. 
The following are the clauses that can be specified in the info string: 

RSZ=record 
length 

KEY =key-desc 

KEY=(d, ... ,d) 

COMP 

COLLSEQ 

Record length in bytes. 

Describes a single key. 

Describes several keys. The first key listed is the primary key. 
Subsequent keys are used to further sort or merge any records that were 
identical in terms of the previous key. Each key description takes the 
form: position/length/sequence/type. 

• Position - Position beginning at 1, in bytes, unless hex type. If type 
is hex, position must be specified in hex digits 

• Length - In bytes, unless hex type. If type is hex, length must be 
specified in hex digits. (default 1) 

• Sequence - A (ascending) or D (descending). Default is A. 

• Type - Character specifying format of the key. Each format is 
byte-or hex-oriented. This orientation affects position and length. 

The types are: 

N - display numeric (default, byte-oriented) 

S - alphabetic/alphanumeric (byte-oriented) 

B - integer binary (byte-oriented) 

E - real, binary with exponent (byte-oriented) 

X - double, extended (byte-oriented) 

V - left overpunched sign (byte-oriented) 

Q - right overpunched sign (byte-oriented) 

R - left separate sign (byte-oriented) 

T - right separate sign (byte-oriented) 

U - unsigned (hex-oriented) 

L - left signed (hex-oriented) 

P - right signed (hex-oriented) 

Appears only if a comparison routine is used. Either COMP or KEY must 
appear, but not both, meaning that if there is no comparison routine, 
then KEY must be used. 

Indicates an alternate collating sequence is to be used. 

continued 

8600 0460-100 



continued 

DUPL 

CORE=size 

WORKFILE=type 

WORKFILE=(t,t) 

SORT Utility 

Indicates that duplicate keys should be ordered based on order of 
appearance (for SORT only). 

Core size, in words (default 12000). 

Describes type of a single workfile. WORKFILE can be abbreviated to 
WORK. 

Describes disk and tape workfiles. The workfile type can be: 

• DISK/size. Indicates disk workfile. Size is number of words Default 
size is 600,000 words. 

• TAPE/#tapes. Indicates tape workfiles. #tapes indicates number of 
tapes between 3 and 8. Default number is 3. 

If no workfiles are specified, a memory only sort is performed. 

CCSVERSION=name Specifies coded character set version 

CCSVERSION Uses default version if no name is specified. 

RESTART =r-val Describes restart functions. The default is 0 (zero). 

The allowable values for r-val are: 

• 0 - No restart capability. 

• 1 - Restart previous sort. The prior uncompleted sort must have 
been capable of restart. 

• 2 - Allow restartable sort. 

• 4 or 6 - Allow restartable sort and enable extensive error recovery 
from I/O errors. 

• 9 - Restart previous sort if all input has been received. The prior 
uncompleted sort must have been capable of restart. 

• 10 - Allow restartable sort after all input received. 

• 12 or 14 - Options 4 and 10. 

8600 0460-100 12 -31 



SORT Utility 

SORTPROCS 

12-32 

This procedure performs the sort on a set of records where input is provided from a 
procedure in the user's program and output is sent to a procedure in the user's 
program. SORTPROCS should be used when there are files to be sorted which are 
variable in length. The declaration of this procedure in GENERALSUPPORT is as 
follows: 

PROCEDURE SORTPROCS (INFO_STRING, 
TRANS_TABLE, 
COMPARE_PROC, 
OUTPUT PROC, 
INPUT PROC); 

EBCDIC ARRAY INFO_STRING-[*]; 

ARRAY TRANS_TABLE [*]; 
BOOLEAN PROCEDURE COMPARE PROC (A, B); 

ARRAY A, B[*]; FORMAL; 
PROCEDURE OUTPUT_PROC (B, A); 

VALUE B; 
BOOLEAN B; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC (A); 
ARRAY A[*]; FORMAL; 

The following text describes the input attributes for the procedure: 

Attributes 

INFO STRING 

COMPARE PROC 

Description 

A string in which the user can describe some additional parameters for 
the sort. (Refer to the description of SORTFILES for a complete 
description of this string). 

An optional array containing a translate table that identifies the alternate 
collating sequence to use for the sort. Translation of keys using the 
collating sequence is performed only on alphanumeric key types. This 
parameter is used only if the COLLSEQ clause is present in the 
INFO_STRING parameter and the user compare procedure is not to be 
used. The TIABLE routine should have been used to build the translate 
table prior to passing this array for use by the sort. The TIABLE routine 
is described under uTIABLE" later in this section. If TRANS_TABLE is 
used, the size of this array should be at least 64 words in length. 

A reference to the user's compare procedure. The compare procedure 
must be coded as a Boolean function with two array parameters. The 
function is called every time two records are to be compared. This 
procedure is called by the sort only if an indication to use it is present in 
the info string. The alternative to using a compare procedure is to 
include the key description in the KEY clause of the INFO_STRING 
parameter. 

continued 

8600 0460-100 



SORT Utility 

continued 

Attributes Description 

OUTPUT PROC The procedure in the user's program that receives each output record 
from the sort. This procedure takes two parameters. The first parameter 
is a Boolean parameter, and the second parameter is an array parameter 
which contains the output record. The array parameter can be any type 
which is compatible with an ALGOL Real array. The Boolean parameter 
contains FALSE as long as the second parameter contains a valid sorted 
record. When all the records have been returned, the first parameter is 
TRUE and the second parameter must not be accessed. 

The function which provides the input records to be used during the 
sort. This is a Boolean function with one array parameter in which the 
record to be used during the sort is provided. The function is to return a 
TRUE result to indicate the end of input data. 

MERGEFILES 

This procedure merges from two to eight files into one file. The declaration of this 
procedure in GENERALSUPPORT is as follows: 

PROCEDURE MERGEFILES (INFO_STRING, 
NUM_FILES, 
TRANS_TABLE, 

COMPARE_PROC, 
OUTPUT_FILE, 
INPUT_FILEl, 
INPUT_FILE2, 
INPUT_FILE3, 
INPUT_FILE4, 
INPUT_FILES, 
INPUT_FILE6, 
INPUT FI LE7 , 

INPUT=FILE8); 
EBCDIC ARRAY INFO STRING [*]; 
ARRAY TRANS_TABLE-[*]; 

BOOLEAN PROCEDURE COMPARE PROC (A, B); 
ARRAY A, B[*]; FORMAL;-

FILE OUTPUT_FILE, 
INPUT_FILE1, INPUT_FILE2, INPUT_FILE3, INPUT_FILE4, 
INPUT_FILES, INPUT_FILE6, INPUT_FILE7, INPUT_FILE8; 

The following text describes the input attributes for the procedure: 

Attributes Description 

INFO STRING A string in which the user would describe some additional parameters 
for the merge (refer to "SORTFILES" earlier in this section for a complete 
description of this string). 

8600 0460-100 

Indicates how many of the input files are valid and are to be used during 
the merge. 

continued 

12-33 



SO RT Utility 

continued 

Attributes 

COMPARE PROC 

OUTPUT FILE 

INPUT_FILE2 

INPUT_FILE3 

INPUT FILE4 

INPUT FILE5 

INPUT FILE6 

INPUT FILE7 

Description 

An optional array containing a translate table which identifies the 
alternate collating sequence to use for the merge. Translation of keys 
using the collating sequence is only performed on alphanumeric key 
types. This is used only if an indication to use this is present in the Info 
string (COLLSEQ) and if the user compare procedure is not to be used. 
The TTABLE routine (described later in this section) should have been 
used to build the translate table prior to passing this array for use by the 
merge. If used, the size of this array should be at least 64 words in 
length. 

A reference to the user's compare procedure. The compare procedure 
must be coded as a Boolean function with two array parameters. The 
function is called every time two records are to be compared. This 
procedure is only called by the merge if an indication to use it is present 
in the info string. The alternative to using a compare procedure is to 
include the key description in the info string. 

The file to which the output from the merge is written. If the file is a 
disk file for which the file attribute SAVEFACTOR has a nonzero value, it 
is closed and locked after the MERGE. The output file must not be open 
when it is passed to MERGEFILES by the program. 

An input file to be used during the merge. The input files 
(INPUT_FILEl - INPUT-FILE8) must not be open when they are passed 
to MERGEFILES by the program. 

An input file to be used during the merge. 

An input file to be used during the merge. This may be a dummy file if 
only 2 files are to be merged. 

An input file to be used during the merge. This may be a dummy file if 
only 3 or less files are to be merged. 

An input file to be used during the merge. This may be a dummy file if 
only 4 or less files are to be merged. 

An input file to be used during the merge. This may be a dummy file if 
only 5 or less files are to be merged. 

An input file to be used during the merge. This may be a dummy file if 
only 6 or less files are to be merged. 

An input file to be used during the merge. This may be a dummy file if 
only 7 or less files are to be merged. 

Note: If the user wishes to merge only two files, the number two would be 
entered for the NUM_FILES parameter, the first two input file 
parameters would be the files that would be merged, and dummy files 
would be entered for the remaining input files. These files are 
ignored by the library procedure. 

12-34 86000460-100 



SORT Utility 

MERGEPROCS 

This procedure uses from two to eight input procedures to perform the merge, giving 
the results to the output procedure. MERGEPROCS should be used when there are 
files to be merged which are variable in length. The declaration of this procedure in 
GENERALSUPPORT is as follows: 

PROCEDURE MERGEPROCS (INFO_STRING, 
NUM_PROCS, 
TRANS_TABLE, 
COMPARE_PROC, 
OUTPUT_PROC, 
INPUT~PROC1, 

INPUT_PROC2, 
INPUT_PROC3, 
INPUT_PROC4, 
INPUT_PROC5, 
INPUT_PROC6, 
INPUT_PROC7, 
INPUT_PROC8); 

EBCDIC ARRAY INFO,,-STRING [*]; 
ARRAY TRANS_TABLE [*]; 
BOOLEAN PROCEDURE COMPARE PROC (A, B); 

ARRAY A, B[*]; FORMAL;-
PROCEDURE OUTPUT_PROC (B, A); 

VALUE B; 
BOOLEAN B; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROCl (A) ; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC2 (A) ; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC3 (A) ; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC4 (A) ; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC5 (A) ; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC6 (A) ; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC7 (A) ; 
ARRAY A[*]; FORMAL; 

BOOLEAN PROCEDURE INPUT PROC8 (A) ; 
ARRAY A[*]; FORMAL; 

8600 0460-100 12-35 



SORT Utility 

The following text describes the input attributes for the procedure: 

Attributes 

INFO STRING 

NUM PROCS 

TRANS TABLE 

COM PARE PROC 

OUTPUT PROC 

INPUT PROCI 
through 
INPUT PROC8 

Description 

A string in which the user can describe some additional parameters for 
the merge. Refer to "SORTFI lES" earlier in this section for a complete 
description of this string. 

Indicates how many of the input procedures are valid and are to be used 
during the merge. 

An optional array containing a translate table which identifies the 
alternate collating sequence to use for the merge. Translation of keys 
using the collating sequence is performed only on alphanumeric key 
types. This parameter is used only if the COllSEQ clause is present in 
the INFO_STRING parameter and the user compare procedure is not to 
be used. The TTABlE routine should have been used to build the 
translate table prior to passing this array for use by the merge. the 
DABlE routine is described under "nABlE" later in this section. If 
TRANS_TABLE is used, the size of this array should be at least 64 
words in length. 

A reference to the user's compare procedure. The compare procedure 
must be coded as a Boolean function with two array parameters. The 
function is called every time two records are to be compared. This 
procedure is called by the merge only if an indication to use it is present 
in the info string. The alternative to using a compare procedure is to 
include the key description in the KEY clause of the INFO_STRING 
parameter. 

The procedure in the user's program that receives each output record 
from the merge. This procedure takes two parameters. The first 
parameter is a Boolean parameter, and the second parameter is an array 
parameter which contains the output record. The Boolean parameter 
contains FALSE as long as the second parameter contains a valid sorted 
record. When all the records have been returned, the first parameter is 
TRUE and the second parameter must not be accessed. 

The functions which provide the input records to be used during the 
merge. These are Boolean functions each with one array parameter in 
which the record to be used during the merge is provided. The functions 
are to return a TRUE result to indicate the end of input data. Only 
INPUT_PROCI and INPUT_PROC2 are required, the rest of the 
functions can be dummy functions which are never accessed during the 
merge. 

Note: If the user wishes to use only two procedures for the merge, the 
number 2 would be entered for the NUM _PROCS parameter, the first 
two input procedure parameters would be the procedures that would 
be used for the merge, and dummy procedures would be entered for 
the remaining input procedures. Dummy procedures are ignored by 
the library procedure. 

12-36 86000460-100 



TTABLE 

SORT Utility 

This routine provides the means for the user to specify an alternate collating sequence 
to be used for the sort or merge procedural interface. This routine creates a translate 
table based on the user's specification of a collating sequence. The format for this 
library procedure declaration is as follows: 

PROCEDURE TTABlE (IN_ARRAY, 
TRANS_TABLE); 

EBCDIC ARRAY IN_ARRAY [*J; 
ARRAY TRANS_TABLE [*]; 

8600 0460-100 12-37 



SORT Utility 

The following text describes the input attributes for the procedure: 

Attributes 

IN ARRAY 

TRANS TABLE 

12-38 

Description 

The array that contains the user-specified collating sequence. The 
contents must be in the following form and must contain a terminating 
period to denote the end of the string: 

• If specifying a user defined collating sequence then: 

[- 1 iteral-2 
literal-1 [& literal-3 [ & literal-4] 

[ [ - 1 itera 1 -6 ] ] 
[literal-5 [& literal-7 [& literal-8] .•• ] ] 

Where literals may either be character-strings delimited by 
quotation marks CU) or numeric literals in the range of 0 
through 255. Numeric literals denote the ordinal number of a 
character within the native character set. The literals following 
and preceding the ampersand (&) and hyphen (-) characters 
must be one character in length. 

Example: 
"WGF" "R" & 232 90 - 100 

The order in which the literals appear specifies, in ascending 
sequence, the ordinal number of the character within the 
collating sequence being specified. 

Any characters within the native collating sequence that are 
not explicitly specified in the literal phrase assume a position 
greater than any of the explicitly specified characters in the 
collating sequence being specified. The relative order within 
the set of these unspecified characters is unchanged from the 
native collating sequence. 

If the hyphen (-) character is used, the set of contiguous 
characters in the native character set beginning with the 
character specified by the value of literal-l and ending with the 
character specified by the value of literal-2 is assigned a 
successive ascending position in the collating sequence being 
specified. A given hyphen (-) specification can specify 
characters of the native character set in either ascending or 
descending sequence. 

If the ampersand (&) character is specified, the characters of 
the native character set specified by the value of literal-I, 
literal-3, literal-4, and so on are assigned to the same position 
in the collating sequence being specified. 

• If specifying the ASCII collating sequence then the IN_ARRAY 
parameter must contain only the following: 

ASCII. 

ASCII is not delimited by double quotes, must be in uppercase, and 
must end in a period (.). 

The array that receives the output from the routine and contains the 
resulting translate table. This array must be at least 64 words in length. 

8600 0460-100 



SORT Utility 

The translate table resulting from this routine can be passed in the SORTPROCS, 
SORTFILES, MERGEPROCS, or MERGEFILES routines with a COLLSEQ clause in 
the INFO_STRING parameter specifying that this table is to be used. 

Sample Programs 

SortProcs Example Program 

PROGRAM P; 
TYPE 

Info_string_type 
File Buff -

PACKED ARRAY [1 •. 500] OF CHAR; 
= PACKED ARRAY [1 .. 35] OF CHAR; 

Array_type RECORD 

File_Buff); 
CASE BOOLEAN OF 

TRUE : (F Arry 
FALSE: (R=Arry 

END; 
Trans_table_type 

PACKED ARRAY [1 •• 6] OF REAL; 

= ARRAY [1 •• 64] OF REAL; 

LIBRARY Gensupport (LIBACCESS = BYFUNCTION, 
FUNCTIONNAME = 'GENERALSUPPORT ' ); 

PROCEDURE SortProcs (VAR Info_string: Info_String_type; 
VAR Trans_table: Trans_table_type; 
FUNCTION Compare proc 

(VAR Aryl Array type; 
VAR Ary2 : Array=type): 

BOOLEAN; 
PROCEDURE Output proc 

(Done -: BOOLEAN; 
VAR Ary : Array_type); 

FUNCTION Input proc 
(VAR A~y : Array type): 

- BOOLEAN); 

VAR 
If_string 
T table -
In file 
Out fil e -
I Status 

Gensupport; 

Info_string_type; 
Trans_table_type; 
FILE OF File_buff; 
FILE OF File_buff; 
INTEGER; 

FUNCTION Dummy_Comp_proc (VAR Aryl 
VAR Ary2 

BEGIN 

Array type; 
Array=type) 

If Ary1.R.Arry[1] > Ary2.R.Arry[1] then 
Dummy_Comp_Proc :+ True 

else 
Dummy_Comp_proc := False; 

END; 

BOOLEAN; 

86000460-100 12-39 



SORT Utility 

PROCEDURE Output_proc (Done: BOOLEAN; 
VAR Ary : Array_type); 

BEGIN 
IF Done THEN 

CLOSE (Out_file, SAVE) 
ELSE 

BEGIN 
Out_file@ := Ary.F_arry; 
PUT (Out_file); 
END; 

END; 

FUNCTION Input_Proc (VAR Ary : Array_type): BOOLEAN; 
BEGIN 
IF I_Status = IORES(EOF) THEN 

Input_proc := TRUE 
ELSE 

BEGIN 
I_Status := GET (In_file); 
Ary.F_array := In_file@; 
Input_proc := FALSE; 
END; 

END; 

BEGIN 

(* set file attributes for input and output file *) 

If string := 'RSZ = 35, KEY = 10/3/A/S. ' ; 
OPEN (In file); 
OPEN (Out file, NEW); 
SortProcs-(If string, T table, Dummy_comp_proc, Output_proc, 

Input_proc);-

END. 

MergeFiles Example Program 

12-40 

PROGRAM P; 
TYPE 

Info_string_type 
File Buff 
Array_type 

CASE BOOLEAN OF 
TRUE : (F _Arry 
FALSE: (R_Arry 

END; 
Trans_table_type 
Fil e_Type 

= PACKED ARRAY [1 •• 500] OF CHAR; 
= PACKED ARRAY [1 •• 35] OF CHAR; 
= RECORD 

File_Buff); 
PACKED ARRAY [1 •• 6] OF REAL; 

= ARRAY [0 •• 64] OF REAL; 
= SYSTEMFILE (CHAR); 

8600 0460-100 



LIBRARY Gensupport (LIBACCESS = BYFUNCTION, 
FUNCTIONNAME = 'GENERALSUPPORT ' ); 

PROCEDURE MergeFiles (VAR Info_string Info_String_type; 
Num files INTEGER; 
VAR Trans_table Trans table type; 
FUNCTION Compare_proc 

(VAR Aryl Array_type; 
VAR Ary2 : Array_type): 

VAR Output_ fil e 
VAR In file1 -
VAR In fil e2 
VAR In file3 
VAR In file4 
VAR In fil e5 -
VAR In file6 
VAR In fil e7 -
VAR In file8 

Gensupport; 

VAR 
If_string 
T table -
In fil e1 
In fil e2 
Out fil e -
Dummy_file 

Info_string_type; 
Trans_table_type; 
File_type; 
Fil e_ type; 
File_type; 
File_type; 

Fil e_ type; 
Fil e _type; 
Fil e _type; 
File_type; 
File~type; 

Fil e _type; 
File_type; 
Fil e _type; 
File_type); 

BOOLEAN; 

FUNCTION Comp_proc (VAR Aryl 
VAR Ary2 

Array type; 
Array= type) BOOLEAN; 

VAR 
Sl STRING(35); 
S2 STRING(35); 

BEGIN 
Sl := Aryl.F_arry; 
S2 := Ary2.F_arry; 
IF Sl <= S2 THEN 

Comp_proc := TRUE 
ELSE 

Comp_proc := FALSE; 
END; 

BEGIN 

SORT Utility 

(* set file attributes for in_file1, in_file2, and out_file *) 

8600 0460-100 

If_string := 'RSZ = 35, COMP.'; 
MergeFiles (If_string, 2, T_table, Comp_proc, Out_file, 

In_file1, In_file2, 

END. 

Dummy_file, Dummy_file, Dummy file 
Dummy_file, Dummy_file, Dummy=file); 

12-41 



SORT Utility 

SORT Error Messages 

12-42 

All error messages are displayed in the following form: 

<job number> SORT ERROR #<error number> 

Table 12-2 contains the numbers for fatal error messages and an explanation of the 
possible errors. 

Refer to Table 12-3 for nonfatal error messages. 

Table 12-2. Fatal Error Messages 

Error 
Number Message, Cause, and Solution 

1 RECORD SIZE ZERO. The record size specified was either equal to 0 or equal to 
or greater than 65.536. Specify the correct record size. 

2 INPUT AND OUTPUT RECORD COUNTS DIFFER. The counts of sort input 
records and sort output records do not agree. Contact your Unisys field engineer. 

4 SORT DISKEXHAUSTED DURING STRINGING. The sort disk was exhausted 
during the stringing phase, and no tapes were specified. Rerun the sort and 
specify more disk space. 

6 INPUT FILE PASSED ALREADY OPEN. Input file passed to SORT was already 
open. Change the program so close the file before calling the sort routine. 

7 UNMATCHED BLOCK NUMBER FROM TAPE INPUT. During a tape or lTD sort, 
the block number of the last record read from a sort work tape did not match the 
expected block number. Look for tape I/O error messages and rerun the sort 
routine. If the problem exists, contact your Unisys field engineer. 

8 OUTPUT FILE PASSED NOT LARGE ENOUGH. The output file passed to SORT 
was not large enough to contain the output, and SORT was unable to expand the 
output file. Increase the size of the output file or decrease the number of records 
to be sorted. 

9 OUTPUT FILE PASSED ALREADY OPEN. The output file passed to SORT was 
already open. Change the program so that it closes the file before calling the sort 
routine. 

10 IRRECOVERABLE I/O ERROR ON WORKFILE READ. An irrecoverable I/O error 
occurred while the system was reading a sort work tape or work disk file. Look for 
I/O error messages, use a different disk or tape unit, and rerun the sort routine. 

11 IRRECOVERABLE I/O ERROR ON WORKFILE WRITE. An irrecoverable I/O error 
occurred while the system was writing a sort work tape or work disk file. Look for 
I/O error messages, use a different disk or tape unit, and rerun the sort routine. 

12 IRRECOVERABLE I/O ERROR ON CONTROL FILE. An irrecoverable I/O error 
occurred while the system was reading or writing control records in the sort 
control file. Look for I/O error messages, use a different disk or tape unit, and 
rerun the sort routine. 

continued 

8600 0460-100 



SORT Utility 

Table 12-2. Fatal Error Messages (cont.) 

Error 
Number Message, Cause, and Solution 

13 IRRECOVERABLE I/O ERROR ON USER OUTPUT FILE. An irrecoverable I/O error 
occurred while the system was writing your output file. Look for I/O error 
messages, use a different disk or tape unit, and rerun the sort routine. 

14 IRRECOVERABLE I/O ERROR ON USER INPUT FILE. An irrecoverable I/O error 
occurred while reading your input file. Look for I/O error messages, use a different 
disk or tape unit, and rerun the sort routine. 

15 RESTART RECORD SIZE DIFFERS FROM ORIGINAL. A restart was attempted, 
but the record size (or character size of the record) did not match the originating 
sort. When a restartable sort is not able to continue, it saves restart information 
so that this error occurs during subsequent restart attempts. You can either rerun 
the restart with the correct record or character size or rerun the original sort 
routine without the restart option. 

16 USER INPUT FILE DIFFERENT AT RESTART TIME. The system attempted to 
restart, and your input file reached end-of-file (EOF) the system read the restart 
record. Your input file is shorter at restart time than the original file. Get the 
correct input file and run the restart again or use the program with a new input 
file and without the restart option. 

17 UNABLE TO READ RESTART INFORMATION. A restart was attempted, but SORT 
was unable to obtain the necessary restart information from the control file. 
Check for I/O errors. 

18 INPUT FILE HAS AN INDEXED FILE ORGANIZATION. CANNOT BE SORTED. The 
input file type is invalid. Files using the FILEORGANIZATION attribute with a 
value of INDEXED or PLIISAM cannot be sorted by the SORT utility. 

19 IRRECOVERABLE ERROR DURING RESTART. An irrecoverable error occurred 
while the system was reading the sort work file; the system had already passed 
some output records to your output procedure. This error occurs only for 
restartable sorts with output procedures. Because the sort is restartable, you 
should specify a restart so that the SORT utility can perform the necessary 
recovery. 

20 DIRECT FILE USED AS INPUT. A direct file was used as an input file. Change the 
program so that it does not use a direct file declaration. 

21 DIRECT FILE USED AS OUTPUT. A direct file was used as an output file. Change 
the program so that it does not use a directfile declaration. 

22 INPUT FILE HAS VARIABLE LENGTH RECORDS. A variable record length file 
was used as an input file. The SORT utility cannot handle variable-length records. 

23 OUTPUT FILE HAS VARIABLE LENGTH RECORDS. A variable record length file 
was used as an output file. The SORT utility cannot handle variable-length 
records. 

continued 

8600 0460-100 12-43 



SORT Utility 

Table 12-2. Fatal Error Messages (cont.) 

Error 
Number Message, Cause, and Solution 

24 SPECIFIED CORESIZE TOO LARGE. The memory size parameter specified for the 
sort exceeds the number of words of memory physically present on the system. 
Reduce the value of the memory size parameter in the program. 

25 SPECIFIED DISK SIZE EXCEEDS MAXIMUM DISK FILE SIZE. The disk size that 
you specified is larger than what is allowed. Reduce the specified disk size to a 
value less than 258,435,456 words. 

27 SORT KEY GREATER THAN RECORD SIZE. The sort key that you specified is 
larger than the record size you specified in your program. Either change the 
specification for the sort key location and length to be within the record size or 
correct the record size. 

76 INVALID UNIT TYPE. When SORT requested that an additional tape be loaded, a 
file on some medium other than tape was specified using the FA (File Attribute) 
system command. Rerun the program again and avoid using the FA command. 

84 CONTROL FILE TOO SMALL. The control file is not large enough to contain all 
control records. This error is an internal sort error and can be circumvented by 
specifying more disk or a different memory size, or both. 

f 
-"-'\.. 

12-44 8600 0460-100 



SORT Utility 

The errors in Table 12-3 appear on the display like other sort error messages, but the 
SORT does not terminate as a result of these errors. 

Table 12-3. Nonfatal Error Messages 

Error Number Message, Cause, and Solution 

3 INSUFFICIENT MEMORY FOR MEMORY SORT. Insufficient memory was 
specified for a memory-only sort. If the SORTLIMITS option of the OPTION 
task attribute was set, SORT waits on an RSVP after issuing the message 
ENTER OK TO ALLOW SORT TO INCREASE MEMORY FROM xx TO yy 
where xx is the original (insufficient) core size and yy is xx plus the default 
core size. A response of OK causes SORT to expand the file and continue 
processing. A response of NOTOK causes SORT to terminate and display an 
error message. If the task attribute option SORTLIMITS was set to FALSE, 
normal error handling results in SORT being terminated. 

5 SORT DISK EXHAUSTED DURING MERGING. Sort disk was exhausted 
during the merge phase, and no tapes were specified. If the SORTLIMITS 
option of the OPTION task attribute was set, SORT waits on an RSVP after 
issuing the message SORT FILE FILL = OK TO EXPAND SORT FILE BY xx 
SEGMENTS ON <pack name> where xx is the default core size and <pack 
name> is the name of the disk pack on which the sort file is located. A 
response of OK causes SORT to expand the file and continue processing. A 
response of NOTOK causes SORT to terminate and display an error 
message. If the task attribute option SORTLIMITS was set to FALSE, 
normal error handling results in SORT being terminated. 

26 TOO MANY RECORDS FOR MEMORY SORT. DISK SORT WILL BE USED. 
Not enough memory is available for a memory sort. The system performs a 
disk sort instead. 

30 CONTROL FILE NOT LARGE ENOUGH. The control file is not large enough 
to contain two copies of the control records. Two copies are maintained for 
sorts with error recovery. This error is an internal sort problem and can be 
circumvented by specifying more disk or a different memory size. SORT 
continues when this error occurs; however, the error recovery function is 
disabled. 

31 I/O ERROR ON CONTROL FILE WRITE. An irrecoverable I/O error occurred 
while writing the control file for an error recovery sort. One copy of the 
control records is discarded, and SORT continues using one copy of the 
control records. 

32 I/O ERROR ON WORK FILE WRITE. An irrecoverable I/O error occurred 
while writing the sort work file. Error recovery mode is abandoned, and 
SORT continues as a normal restartable sort. 

33 WORKFILE TOO SMALL FOR ERR/REC. Insufficient disk space was 
provided for the work file to contain three copies of the data. This situation 
occurs only when error recovery mode is requested. SORT continues as a 
normal restartable sort with error recovery reset. 

continued 

8600 0460-100 12-45 



SORT Utility 

Table 12-3. Nonfatal Error Messages (cont.) 

Error Number Message, Cause, and Solution 

Unnumbered RESTART ALLOWED ON DISK SORT ONLY-SORT IGNORED. A restart is 
not allowed on a disk sort. The sort procedure will proceed to do the entire 
sort from the beginning of the routine. 

Unnumbered INVALID CORESIZE GIVEN-WILL USE A DEFAULT OF 12000. You 
specified an invalid coresize. The program will use a default value. 

Unnumbered INVALID CORESIZE GIVEN-WILL USE A DEFAULT OF 75000. You 
specified an invalid coresize. The program will use a default value. 

SORT Statistical Array 

12-46 

If the MCP is compiled with the compiler control option SORTSTAT set to TRUE, a 
sort statistical array that contains data collected while SORT was executing is created. 
This option must be set to TRUE before the first reference to the option. 

A copy of the sort statistical array is written into a file titled SORT/STATISTICX and is 
passed to the output procedure of your program if such a procedure exists. A program 
SYMBOL/SORTSTAT (source language) or SYSTEM/SORTSTAT (object code) is 
provided on the system release tapes. This program reads the SORT/STATISTICX file 
and produces a report from the sort statistical information. The sole purpose of this 
program is to guide you in using the sort statistical information. Any other use of this 
program or the sort statistical information is left entirely to you. When the contents of 
the sort statistical array are changed, those changes are reflected in 
SYMBOL/SORTSTAT and SYSTEM/SORTSTAT. 

The following describes the contents of the sort statistical array. Unless otherwise 
specified, units are words. 

Word Field Value Contents 

0 Control word from compiler. 

[46:01] 

1 Merge. 

0 Sort. 

[43:02] Compiler identification. 

1 COBOL. 

Any other ALGOL. 
value. 

[13:04] Number of merge inputs. 

continued 

8600 0460-100 



SORT Utility 

continued 

Word Field Value Contents 

[09:01] Output destination of SORT. 

1 Procedure. 

0 File. 

[08:01] Input source to SORT. 

1 Procedure. 

0 File. 

[07:08] This word contains eight fields of 1 bit 
each. The bit number equals the 
source number; that is, bit 0 = source 
O. Source is input to merge. 

1 Merge input procedure. 

0 Merge file. 

1 Memory utilization information. 

[47:12] Merge order (records). 

[35:16] Stringing vector size (records). 

[19:20] Specified memory size (words). 

2 Work file information. 

[47:06] Disk work file unit type. 

[41:10] Number of tapes specified. 

[31:16] Sort disk block (words). 

[15:16] Sort tape block (words). 

3 Processor time of stringing phase 
(units of 2.4 microseconds). 

4 Processor time of merging phase (units 
of 2.4 microseconds). 

5 Disk input. This word contains six 
fields of eight bits each. 

continued 

8600 0460-100 12-47 



SORT Utility 

continued 

Word Field Value Contents 

Each field reflects the number of rows 
for a particular disk type. 

[47:08] 118-6 

[39:08] 118-2 

[31:08] IC-4 

[23:08] 5N 

[15:08] IC-3 

[07:08] PACK 

6 Disk output. This word contains six 
fields of eight bits each. each field 
reflects the number of rows for a 
particular disk type. 

[47:08] 118-6 

[39:08] 118-2 

[31:08] IC-4 

[23:08] 5N 

[15:08] IC-3 

[07:08] PACK 

7 Run date (TIME(15». 

8 Disk size specified (words). 

9 MCP level. 

[47:16] Mark level. 

[31:16] Release level. 

[15:16] Patch level. 

10 Time(11) at initialization. 

11 Time(11) at end of stringing phase. 

12 Time(11) at end of merging phase. 

continued 

12-48 8600 0460-100 



SO RT Utility 

continued 

Word Field Value Contents 

13 10 time during string phase (units of 
2.4 microseconds). 

14 10 time during merging phase (units of 
2.4 microseconds). 

15 Number of strings created when 
stringing to disk (DISK and ITO sorts). 

16 Number of strings created when 
stringing to tape (TAPE sort) or 
merging disk to tape (ITO sort). 

17 Sort record information. 

[47:16] Sort record size. Size is in characters 
for COBOL; otherwise, size is in words. 

[31:32] Number of input records. 

18 Number of calls on compare procedure 
during merging phase. 

19 Number of calls on compare procedure 
during stringing phase. 

20 Unit type information. This word 
contains eight fields of 6 bits each. 
Each field contains the unit type of one 
of the eight possible work tape or 
merge inputs. 

[47:06] FILE7. 

[41:06] FILE6. 

[35:06] FILE5. 

[29:06] FILE4. 

[23:06] FILE3. 

[17:06] FILE2. 

[11:06] FILE!. 

continued 

8600 0460-100 12-49 



SORT Utility 

continued 

Word Field Value Contents 

[05:06] FILEO. 

21 Input and output file types and file 
density information for the eight 
possible work tapes or merge inputs, 
and input and output files. 

[47:06] Input file unit type. 

[41:06] Output file unit type. 

[29:03] File7 density code. 

[26:03] FI LE6 density code. 

[23:03] FI LE5 density code. 

[20:03] FI LE4 density code. 

[17:03] FI LE3 density code. 

[14:03] FI LE2 density code. 

[11:03] FILE1 density code. 

[08:03] FI LEO density code. 

[05:03] Output file density code. 

[02:03] Input file density code. 

22 Number of rows for various types of 
work disk files. This word contains six 
fields of 8 bits each. Each field reflects 
the number of rows for a particular 
disk type. 

[47:08] 118-6 

[39:08] 118-2 

[31:08] IC-4 

[23:08] 5N 

[15:08] IC-3 

[07:08] PACK 

23 Reserved for expansion. 

24-29 Job name in standard form 
representation. 

12-50 8600 0460-100 



SORT Utility 

Table 12-4 shows the collating sequence used by the SORT utility. 

Table 12-4. SORT Collating Sequence 

Binary Hexadecimal EBCDIC 

00000000 00 NUL 

00000001 01 SOH 

00000010 02 STX 

00000011 03 ETX 

00000100 04 

00000101 05 HT 

00000110 06 

00000111 07 DEL 

00001000 08 

00001001 09 

00001010 OA 
\ 

00001011 OB VT 

00001100 OC FF 

00001101 00 CR 

00001110 OE SO 

00001111 OF Sl 

00010000 10 DLE 

00010001 11 DC1 

00010010 12 DC2 

00010011 13 DC3 

00010100 14 

00010101 15 NL 

00010110 16 BS 

00010111 17 

00011000 18 CAN 

00011001 19 EM 

00011010 1A 

00011011 1B 

00011100 1C FS 

00011101 1D GS 

00011110 IE RS 

continued 

8600 0460-100 12-51 



SORT Utility 

Table 124. SORT Collating Sequence (cont.) 

Binary Hexadecimal EBCDIC 

00011111 IF US 

00100000 20 

00100001 21 

00100010 22 

00100011 23 

00100100 24 

00100101 25 LF 

00100110 26 ETB 

00100111 27 ESC 

00101000 28 

00101001 29 

00101010 2A 

00101011 2B 

00101100 2C 

00101101 2D ENQ 

00101110 2E ACK 

00101111 2F BEL 

00110000 30 

00110001 31 

00110010 32 SYN 

00110011 33 

00110100 34 

00110101 35 

00110110 36 

00110111 37 EOT 

00111000 38 

00111001 39 

00111010 3A 

00111011 3B 

00111100 3C DC4 

00111101 3D NAK 

continued 

12-52 8600 0460-100 



SORT Utility 

Table 12-4. SORT Collating Sequence (cant.) 

Binary Hexadecimal EBCDIC 

00111110 3E 

00111111 3F SUB 

01000000 40 SP (blank) 

01000001 41 

01000010 42 

01000011 43 

01000100 44 

01000101 45 

01000110 46 

01000111 47 

01001000 48 

01001001 49 

01001010 4A [ 

01001011 4B 

01001100 4C < 

01001101 4D ( 

01001110 4E + 
01001111 4F ! 

01010000 50 & 

01010001 51 

01010010 52 

01010011 53 

01010100 54 

01010101 55 

01010110 56 

01010111 57 

01011000 58 

01011001 59 

01011010 5A ] 

01011011 5B $ 

01011100 5C * 

continued 

8600 0460-100 12-53 



SORT Utility 

Table 12-4. SORT Collating Sequence (cant.) 

Binary Hexadecimal EBCDIC 

01011101 5D ) 

01011110 5E ; 

01011111 5F "-

01100000 60 -

01100001 61 / 

01100010 62 

01100011 63 

01100100 64 

01100101 65 

01100110 66 

01100111 67 

01101000 68 

01101001 69 

01101010 6A I 
I 

01101011 68 , 

01101100 6C % 

01101101 6D -
01101110 6E > 

01101111 6F ? 

01110000 70 

01110001 71 

01110010 72 

01110011 73 

01110100 74 

01110101 75 

01110110 76 

01110111 77 

01111000 78 

01111001 79 \ 

01111010 7A : 

continued 

12-54 8600 0460-100 



SORT Utility 

Table 12-4. SORT Collating Sequence (cant.) 

Binary Hexadecimal EBCDIC 

01111011 78 ; 

01111100 7C @ 

01111101 7D , 

01111110 7E = 

01111111 7F 01 

10000000 80 

10000001 81 a 

10000010 82 b 

10000011 83 c 

10000100 84 d 

10000101 85 e 

10000110 86 f 

10000111 87 g 

10001000 88 h 

10001001 89 i 

10001010 8A 

10001011 88 

10001100 8C 

10001101 8D 

10001110 8E 

10001111 8F 

10010000 90 

10010001 91 j 

10010010 92 k 

10010011 93 I 

10010100 94 m 

10010101 95 n 

10010110 96 0 

10010111 97 P 

10011000 98 q 

continued 

8600 0460-100 12-55 



SORT Utility 

Table 12-4. SORT Collating Sequence (cont.) 

Binary Hexadecimal EBCDIC 

10011001 99 r 

10011010 9A 

10011011 98 

10011100 9C 

10011101 9D 

10011110 9E 

10011111 9F 

10100000 AO 

10100001 Al 1111 

10100010 A2 s 

10100011 A3 t 

10100100 A4 u 

10100101 A5 v 

10100110 A6 w 

10100111 . A7 x 

10101000 A8 Y 

10101001 A9 z 

10101010 AA 

10101011 A8 

10101100 AC 

10101101 AD 

10101110 AE 

10101111 AF 

10110000 80 

10110001 81 

10110010 82 

10110011 83 

10110100 84 

10110101 85 

10110110 86 

10110111 87 

continued 

12-56 8600 0460-100 



SORT Utility 

Table 12-4. SORT Collating Sequence (cont.) 

Binary Hexadecimal EBCDIC 

10111000 B8 

10111001 B9 

10111010 BA 

10111011 BB 

10111100 BC 

10111101 BD 

10111110 BE 

10111111 BF 

11000000 CO { 

11000001 C1 A 

11000010 C2 B 

11000011 C3 C 

11000100 C4 D 
J 

11000101 C5 E 

11000110 C6 F 

11000111 C7 G 

11001000 C8 H 

11001001 C9 I 

11001010 CA 

11001011 CB 

11001100 CC 

11001101 CD 

11001110 CE 

11001111 CF 

11010000 DO } 

11010001 D1 J 

11010010 D2 K 

11010011 03 L 

11010100 04 M 

11010101 05 N 

11010110 06 a 

continued 

8600 0460-100 12-57 



SORT Utility 

Table 12-4. SORT Collating Sequence (cont.) 

Binary Hexadecimal EBCDIC 

11010111 D7 P 

11011000 08 Q 

11011001 09 R 

11011010 DA 

11011011 DB 

11011100 DC 

11011101 DD 

11011110 DE 

11011111 OF 

11100000 EO \ 

11100001 E1 

11100010 E2 S 

11100011 E3 T 

11100100 E4 U 

11100101 E5 V 

11100110 E6 W 

11100111 E7 X 

11101000 E8 Y 

11101001 E9 Z 

11101010 EA 

11101011 EB 

11101100 EC 

11101101 ED 

11101110 EE 

11101111 EF 

11110000 FO 0 

11110001 F1 1 

11110010 F2 2 

11110011 F3 3 

11110100 F4 4 

11110101 F5 5 

continued 

12-58 8600 0460-100 



SORT Utility 

Table 12-4. SORT Collating Sequence (cont.) 

Binary Hexadecimal EBCDIC 

11110110 F6 6 

11110111 F7 7 

11111000 F8 8 

11111001 F9 9 

11111010 FA 

11111011 FB 

11111100 Fe 

11111101 FD 

11111110 FE 

11111111 FF 

8600 0460-100 12-59 



12-60 8600 0460-100 



Section 13 
XREFANALYZER Utility 

The SYSTEM/XREFANALYZER utility is a system software utility that constructs 
detailed information about all identifiers declared in a program. 

The cross-reference files (XREF files) generated by XREFANALYZER contain entries 
for each identifier in a program. Each separate entry is referred to as the header line 
information. The header line contains the following information about the identifier: 

• The alphanumeric name 

• The environment 

• The declared type 

• The stack location 

• The sequence number of the declaration 

This information is helpful in developing, debugging, and updating programs. 

Cross-reference information is generated by a compiler during the compilation of a 
particular version of a program. Thus, the XREF files do not reflect changes that are 
made to a file after the compilation was performed. Also, if any syntax errors are 
encountered during the compilation of a program, XREFANALYZER is not run. 

The language compilers that have the capability to execute XREFANALYZER are 
ALGOL, DCALGOL, FORTRAN, Pascal, and COBOL74. FORTRAN does not keep 
track of environment information; therefore, no environment information is included 
in the header line. 

When XREFANALYZER is executed, it makes two passes through its input file. The 
first pass builds the REFERENCES file. The second pass alphabetically sorts the 
identifiers and writes the actual cross-reference listing. 

XREFANALYZER Files 
The two files that can be created by XREFANALYZER are titled XREFFILES/<code 
file name>/DECS andXREFFILES/<code file name>/REFS. The code file name is the 
title of the code file that was generated by the compiler when the XREF file was 
created. If compiled through the Command and Edit (CANDE) message control system 
(MCS), the code file name normally has the prefix OBJECT/. 

The DECS file contains information about all declarations in a file. The REFS file 
contains information about the references to all identifiers in a program. 

These files are used by the A Series Editor and by SYSTEM/INTERACTNEXREF to 
interactively access the cross-reference information for a program. XREFANALYZER 

8600 0460-100 13-1 



XREFANALYZER Utility 

includes version information in the XREF files, so that when INTERACTIVEXREF is 
executed, if it finds that the version information is not compatible, an error message is 
displayed indicating that the XREFFILES were created by an incompatible 
XREFANALYZER. 

Invoking XREFANALYZER 

Implicit Execution 

Two compiler control options are used to produce a printed output of the 
cross-reference information for a program, to create the files necessary for the Editor 
and INTERACTIVEXREF, or both. 

When the compiler control option XREF is TRUE in a program, the language compiler 
creates and saves a file titled XREF/<code file name>, which contains raw 
cross-reference information. XREFANALYZER is then run to organize and print the 
data contained in the XREF file. XREFANALYZER then purges the XREF file. 

When the compiler control option XREFFILES is TRUE in a program, the language 
compiler creates and saves the XREF file, XREFANALYZER is run to create and save 
the DECS and REFS files, and finally the XREF file is purged. 

When both XREF and XREFFILES are TRUE, the printed output and the DECS and 
REFS files are produced. 

Both of these options are available in all language compilers that are capable of 
running XREFANALYZER. Refer to individual language manuals for any additional 
compiler options that are available for use with XREFANALYZER. 

Explicit Execution 

13-2 

You can also obtain cross-reference information by runningXREFANALYZER 
explicitly. The input file TITLE =XREF/< code file name> must be specified during 
initialization, and you should be aware of the following: 

Files 

XREFFILE 

This is the input file and it should be label-equated to a valid XREF file produced by a 
compiler. This file is purged when XREFANALYZER is done with it unless the 
compile-time option DEBUG is TRUE. The title of this file should normally begin with 
XREF/. If an invalid XREF file is used, the following error message is printed and 
XREFANALYZER is terminated. 

;;;;;;;;;; XREF ERROR: 1 ;;;;;;;;;; 

8600 0460-100 



XREFANALYZER Utility 

LINE 

This is the output file. 

DECLARATIONS 

This file contains information about all declarations and can optionally be saved for 
later use. Its title is constructed from the XREF file by replacingXREFI with 
XREFFILESI and appending IDEeS to the end of the title. 

REFERENCES 

This file contains information about all references and can optionally be saved for later 
use. Its title is constructed from the XREF file by replacing XREFI with XREFFILESI 
and appending IREFS to the end of the title. 

Parameters 

LlNEWIDTH 

XREF ANALYZER is a procedure that has one REAL parameter: the line width of the 
output file LINE. The value of this parameter can be set between 72 and 132 
characters. Ifit is set at less than 72, then the value is adjusted to 72. Ifit is set at 
more than 132, then the value is adjusted to 132. If it is set at 0, then printed output is 
not produced. 

TASKVALUE 

If the task value for XREFANALYZER is set to a negative number, then cross-reference 
information is saved in the DECLARATIONS and REFERENCES files. 

Compile Time Options 

The compile-time options that are available for XREFANALYZER are the following: 

• FAST 

• DEBUG 

When FAST is set to TRUE, blank lines are not inserted between items in the XREF 
output, and the following character substitutions are made to increase printing speed. 
The default is FALSE. 

• - FOR: 

• EFOR= 

• ATFOR@ 

8600 0460-100 13-3 



XREFANALYZER Utility 

13-4 

When DEBUG is set to TRUE, it aids in debugging XREFANALYZER. DEBUG adds 
extra checks to the code and prevents the XREF file from being purged. The default is 
FALSE. 

Examples 

The following is an ALGOL program with its corresponding cross-reference listing. 

8600 0460-100 



0000911910 $SET XREF 
000091200 BEGIN 
009191913091 REAL B, C, MEAN; 
0009104910 INTEGER I; 
000919159191 ARRAY R[1:3]; 
000091600 DEFINE ONEE= 1;, 
9191091079191 TWOO= 2;, 
0910919189191 THREEE= 3;; 
91910919199191 
910001919191 PROCEDURE ONE; 
000011910 BEGIN 
00001200 MEAN:= 2; 
000013910 FOR I:= 0 STEP 1 UNTIL 5 DO 
00001400 MEAN:= MEAN * B; 
00001500 C:= C * MEAN; 
000016910 END ONE; 
00001700 
000911800 
000019091 R[ONEE]:= 1; 
910002000 R[TWOO]:= 2; 
00002100 R[THREEE]:= R[ONEE] + R[TWOO]; 
00002200 B:= 3; 
00002300 C:= 25; 
00002400 ONE; 
00002500 B:= 5; 
0000269191 ONE; 
09191027910 END. 

B---REAL AT (2,2)---DECLARED AT 9191919103910 
091910149191 *09109122910 *091919125091 

XREFANALYZER Utility 

B.91919191 - PROCEDURE AT (1,2) - DECLARED AT 919191029191 ENDS AT 919191027091 
C---REAL AT (2,3)---DECLARED AT 009191913910 

*09191015091 *0919191239191 
I---INTEGER AT (2,5)---DECLARED AT 9100004091 

*091910139191 
MEAN---REAL AT (2,4)---DECLARED AT 9191091039191 

*919191012091 *00919114910 919191911500 
ONE - PROCEDURE AT (2,7) - DECLARED AT 0919191191910 ENDS AT 919191016091 

9191910249191 091919126910 
ONEE---DEFINE---DECLARED AT 00091069191 

091919119091 00919121910 
R---REAL ARRAY AT (2,6)---DECLARED AT 91009105910 

*919100199191 *91091912000 *919191912100 
THREEE---DEFINE---DECLARED AT 000008910 

0919102100 
TWOO---DEFINE---DECLARED AT 000007091 

0919191209191 091919121910 

Each reference consists of an 8 digit sequence number, preceded by either an E if the 
reference appears in an address equation or an asterisk (*) if the value might be 
changed by the statement. 

8600 0460-100 13-5 



XREFANALYZER Utility 

13-6 

The sequence number is followed by a number sign (#) if the reference occurs as part 
of an expanded define. 

The following is a FORTRAN program with its corresponding cross-reference listing. 

101010101011010 $SET XREF 
101010101021010 REAL B, C, MEAN 
101010101031010 INTEGER I 
101010101041010 DIMENSION R(3) 
101010101051010 R(I) = 1 
101010101061010 R(2) = 2 
101010101071010 R(3) = R(I) + R(2) 
101010101081010 B = 3 
101010101091010 C = 25 
101010101101010 
10101010111010 
10101010121010 
10101010131010 
10101010141010 
10101010151010 
10101010161010 
10101010171010 
10101010181010 
10101010191010 110 
101010102101010 
10101010211010 

CALL ONE 
B = 5 
CALL ONE 
END 
SUBROUTINE ONE 

MEAN = 2 
DO 110 1=10,5,1 

MEAN = MEAN * B 
C = C * MEAN 

CONTINUE 
RETURN 
END 

B ---REAL---DECLARED AT 10101001021010 
*101010101081010 *10101010111010 

B ---REAL---DECLARED AT 10101010171010 
C ---REAL---DECLARED AT 101010101021010 

*101010101091010 
C ---REAL---DECLARED AT 10101010181010 

*1010101018100 
I ---INTEGER---DECLARED AT 10101010031010 
I ---INTEGER---DECLARED AT 100101016100 

*010101016100 
MEAN ---REAL---DECLARED AT 10001010200 
MEAN ---INTEGER---DECLARED AT 101001015010 

*10100015010 *101001017100 010010181010 
ONE ---SUBROUTINE---DECLARED AT 101010101101010 

10000121010 1001010141010 
R ---REAL ARRAY---DECLARED AT 010101010400 

*1001010051010 *10101010106010 *10100101071010 
110 ---LABEL---FORWARD AT 10101010161010 OCCURS AT 10101010191010 

Each reference consists of an 8 digit sequence number, preceded by an asterisk (*) if 
the value might be changed by the statement. 

The following job gives an example of running XREF ANALYXER explicitly to generate 
the files that are necessary for Editor and INTERACTIVEXREF to perform 
cross-referencing commands. 

8600 0460-100 



XREFANALYZER Utility 

1000 ?BEGIN JOB WBM; 
2000 INTEGER TASKVAL; 
3000 TASK T; 
4000 TASKVAL:= -1; 
5000 COMPILE OBJ/WBM/1 ALGOL [T] LIBRARY; 
6000 DATA 
7000 $SET NOXREFLIST XREF 
8000 BEGIN 
9000 INTEGER I; 
10000 1:= 0; 
12000 END. 
13000 ?%END OF ALGOL DATA 
14000 IF T IS COMPILEDOK THEN 
15000 BEGIN 
16000 RUN SYSTEM/XREFANALYZER (0); 
17000 VALUE=TASKVAL; 
18000 FILE XREFFILE (TITLE=XREF/OBJ/WBM/1); 
19000 FILE REFERENCES (SECURITYTYPE=PUBLIC,SECURITYUSE=IO); 
20000 FILE DECLARATIONS (SECURITYTYPE=PUBLIC,SECURITYUSE=IO); 
21000 END; 
22000 ?END JOB 

The title of the ALGOL program is WBM/l. When compiled, it generates 
cross-reference information containing a list of all identifiers that appear in the 
program and saves it as the XREF file. Since NOXREFLIST is TRUE, 
XREFANALYZER is not initiated by the ALGOL compiler and consequently no 
cross-reference listing is printed. When XREFANALYZER is run explicitly, the 
TASKVALUE equal to -1 causes the DECS and REFS files to be created and saved. 
Since the LlNEWIDTH parameter is equal to 0, no printed output is produced. 

8600 0460-100 13-7 



13-8 8600 0460-100 



Appendix A 
Understanding Railroad Diagrams 

What Are Railroad Diagrams? 
Railroad diagrams are diagrams that show you the rules for putting words and symbols 
together into commands and statements that the computer can understand. These 
diagrams consist of a series of paths that show the allowable structure, constants, and 
variables for a command or a statement. Paths show the order in which the command 
or statement is constructed. Paths are represented by horizontal and vertical lines. 
Many railroad diagrams have a number of different paths you can take to get to the 
end of the diagram. For example: 

- REMOVE E j 
SOURCE 
OBJECT 

If you follow this railroad diagram from left to right, you will discover three acceptable 
commands. These commands are 

• REMOVE 

• REMOVE SOURCE 

• REMOVE OBJECT 

If all railroad diagrams were this simple, this explanation could end here. However, 
because the allowed ways of communicating with the computer can be complex, 
railroad diagrams sometimes must also be complex. 

Regardless of the level of complexity, all railroad diagrams are visual representations of 
commands and statements. Railroad diagrams are intended to 

• Show the mandatory items. 

• Show the user-selected items. 

• Present the order in which the items must appear. 

• Show the number of times an item can be repeated. 

• Show the necessary punctuation. 

To familiarize you with railroad diagrams, this explanation describes the elements of 
the diagrams and provides examples. 

Some of the actual railroad diagrams you will encounter might be more complex. 
However, all railroad diagrams, simple or complex, follow the same basic rules. They 

8600 0460-100 A-I 



Understanding Railroad Diagrams 

all consist of paths that represent the allowable structure, constants, and variables for 
commands and statements. 

By following railroad diagrams, you can easily understand the correct syntax for 
commands and statements. Once you become proficient in the use of railroad notation, 
the diagrams serve as quick references to the commands and statements. 

Constants and Variables 

A constant is an item that cannot be altered. You must enter the constant as it appears 
in the diagram, either in full or as an allowable abbreviation. If a constant is partially 
underlined, you can abbreviate the constant by entering only the underlined letters. In 
addition to the underlined letters, any of the remaining letters can be entered. Ifno 
part of the constant is underlined, the constant cannot be abbreviated. Constants can 
be recognized by the fact that they are never enclosed in angle brackets « » and are 
in uppercase letters. 

A variable is an item that represents data. You can replace the variable with data that 
meets the requirements of the particular command or statement. When replacing a 
variable with data, you must follow the rules defined for the particular command or 
statement. Variables appear in railroad diagrams enclosed in angle brackets. 

In the following example, BEGIN and END are constants while <statement list> is a 
variable. The constant BEGIN can be abbreviated since it is partially underlined. Valid 
abbreviations for BEGIN are BE, BEG, and BEGI. 

- BEGIN -<statement list>- END ----------------1 

Constrai nts 

A-2 

Constraints are used in a railroad diagram to control progression through the diagram. 
Constraints consist of symbols and unique railroad diagram line paths. They include 

• Vertical bars 

• Percent signs 

• Right arrows 

• Required items 

• User-selected items 

• Loops 

• Bridges 

A description of each item follows. 

Vertical Bar 

The vertical bar symbol (I) represents the end of a railroad diagram and indicates the 
command or statement can be followed by another command or statement. 

8600 0460-100 



Understanding Railroad Diagrams 

-- SECONDWORD -- ( --<arithmetic expression>-- ) 

Percent Sign 

The percent sign (%) represents the end of a railroad diagram and indicates the 
command or statement must be on a line by itself 

-- STOP --------------------------------------------------% 

Right Arrow 

The right arrow symbol (> ) is used when the railroad diagram is too long to fit on one 
line and must continue on the next. A right arrow appears at the end of the first line, 
and another right arrow appears at the beginning of the next line. 

-- SCALERIGHT -- ( --<arithmetic expression>-- , ---------~ 

~-<arithmetic expression>-- ) 

Required Items 

A required item can be either a constant, a variable, or punctuation. A required item 
appears as a single entry, by itself or with other items, on a horizontal line. Required 
items can also exist on horizontal lines within alternate paths or nested (lower-level) 
diagrams. If the path you are following contains a required item, you must enter the 
item in the command or statement; the required item cannot be omitted. 

In the following example, the word EVENT is a required constant and <identifier> is 
a required variable: 

-- EVENT --<i dent; fi er>>-----------------------------i 

User-Selected Items 

User-selected items appear one below the other in a vertical list. You can choose any 
one of the items from the list. If the list also contains an empty path (solid line), none 
of the choices are required. A user-selected item can be either a constant, a variable, or 
punctuation. In the following railroad diagram, either the plus sign ( + ) or the minus 
sign (-) can be entered before the required variable <arithmetic expression>, or the 
symbols can be disregarded because the diagram also contains an empty path. 

E ~ j <ari thmet; c express; on> 

8600 0460-100 A-3 



Understanding Railroad Diagrams 

A-4 

Loop 

A loop represents an item or group of items that you can repeat. A loop can span all or 
part of a railroad diagram. It always consists of at least two horizontal lines, one below 
the other, connected on both sides by vertical lines. The top line is a right-to-Ieft path 
that contains information about repeating the loop. 

Some loops include a return character. A return character is a character-often a 
comma (,) or semicolon (;) - required before each repetition of a loop. If there is no 
return character, the items must be separated by one or more blank spaces. 

f---. 

~<f; el d ~a~>-.....1----------------------f 

Bridge 

Sometimes a loop also includes a bridge, which is used to show the maximum number 
of times the loop can be repeated. The bridge can precede the contents of the loop, or it 
can precede the return character (if any) on the upper line of the loop. 

The bridge determines the number of times you can cross that point in the diagram. 
The bridge is an integer enclosed in sloping lines (f \). Not all loops have bridges. Those 
that do not can be repeated any number of times until all valid entries have been used. 

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two 
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more 
than three times. 

i/2\-,- LINKAGE .J-,.....-I-------------------I 
L RUNTIME 

i[/2\ 
LINKAGE -.J,...-J-I-------------------I 
RUNTIME 

In some bridges an asterisk (*) follows the number. The asterisk means that you must 
cross that point in the diagram at least once. The maximum number of times that you 
can cross that point is indicated by the number in the bridge. 

~/2*\- LiNKAGE-...-'-11------------------1 
--C RUNTIME ----.J 

In the previous bridge example, you must enter LINKAGE at least once but no more 
than twice, and you can enter RUNTIME any number of times. 

The following figure shows the types of constraints used in railroad diagrams. 

8600 0460-100 



Understanding Railroad Diagrams 

SYMBOL/PATH EXPLANATION 

Vertical bar. Indicates that the 
I comma'nd or stateme'nt can be fo 11 owed 

by ,another comma'nd or statement. 

Percent sign. Indicates that the 
0/0 comma'nd or stateme'nt must be on a 

1 i ne by ,i tse 1 f. 

) Right arrow. Indicates that the 
diagram ~ccupies more than one 

> line. 

Requi red items'. Indicates the 
--< required >- constants, variables, and 

punctuation that must be entered 
in a comma'nd or stateme'nt. 

t YNE: =J 
User-selected items. Indicates the 
items that appear one below the 
other in a vertical list. You 
select which item ~r items to include. 

1< I A loop. Indicates an item 'or group 
of items that can be repeated. 

~/2\~ 
A bridge. Indi cates the maximum' 
number of time's a loop can be 
repeated. 

Figure A-i. Railroad Constraints 

Following the Paths of a Railroad Diagram 
The paths of a railroad diagram lead you through the command or statement from 
beginning to end. Some railroad diagrams have only one path, while others have 
several alternate paths. The following railroad diagram indicates there is only one path 
that requires the constant LINKAGE and the variable <linkage mnemonic>: 

- LINKAGE -<linkage mnemonic>>------------------l 

Alternate paths provide choices in the construction of commands and statements. 
Alternate paths are provided by loops, user-selected items, or a combination of both. 
More complex railroad diagrams can consist of many alternate paths, or nested 
(lower-level) diagrams, that show a further level of detail. 

For example, the following railroad diagram consists of a top path and two alternate 
paths. The top path includes an ampersand (&) and the constants (that are 

8600 0460-100 A-5 



Understanding Railroad Diagrams 

user-selected items) in the vertical list. These constants are within a loop that can be 
repeated any number of times until all options have been selected. The first alternate 
path requires the ampersand and the required constant ADDRESS. The second 
alternate path requires the ampersand followed by the required constant ALTER and 
the required variable <new value>. 

- & ~ TYPE; -=r-----r--'----T-------i 
I r= i~~:~ I 

I 
r- ~~~DIC ---j I 

t OCTAL==1 
f- ADDRESS 
L- ALTER --<new value>-J 

Railroad Diagram Examples with Sample Input 

A-6 

The following examples show five railroad diagrams and possible command and 
statement constructions based on the paths of these diagrams. 

Example 1 

< lock statement> 

- LOCK -- ( - <file identifier> - ) --------------1 

Sample Input 

LOCK (FILE4) 

Example 2 

<open statement> 

Explanation 

LOCK is a constant and cannot be altered. Because no part 
of the word is underlined, the entire word must be entered. 

The parentheses are required punctuation, and FILE4 is a 
sample file identifier. 

- OPEN --r--------.,...-·<database name>>-----------------I 
L INQUIRY~ 
L UPDATE -.J 

Sample Input 

OPEN DATABASE! 

Explanation 

The constant OPEN is followed by the variable DATABASE!, 
which is a database name. 

The railroad diagram shows two user-selected items, 
INQUIRY and UPDATE. However, because there is an empty 
path (solid line), these entries are not required. 

continued 

8600 0460-100 



continued 

Sample Input 

OPEN INQUIRY DATABASEI 

OPEN UPDATE DATABASEI 

Example 3 

<generate statement> 

Understanding Railroad Diagrams 

Explanation 

The constant OPEN is followed by the user-selected 
constant INQUIRY and the variable DATABASEI. 

The constant OPEN is followed by the user-selected 
constant UPDATE and the variable DATABASEI. 

-- GENERATE --<subset>-- = ~ NULL 
L<subset>--r-----------I 

Sample Input 

GENERATE Z = NULL 

GENERATE Z = X 

GENERATE Z = X AND B 

GENERATE Z = X + B 

8600 0460-100 

AN~D <subset 
OR 
+ 

Explanation 

The GENERATE constant is followed by the variable Z, an 
equal sign (=), and the user-selected constant NULL. 

The GENERATE constant is followed by the variable Z, an 
equal sign, and the user-selected variable X. 

The GENERATE constant is followed by the variable Z, an 
equal sign, the user-selected variable X, the AND command 
(from the list of user-selected items in the nested path), and 
a third variable, B. 

The GENERATE constant is followed by the variable Z, an 
equal sign, the user-selected variable X, the plus sign (from 
the list of user-selected items in the nested path), and a 
third variable, B. 

A-7 



Understanding Railroad Diagrams 

A-8 

Example 4 

< entity reference declaration> 

fo-------

- ENTITY REFERENCE -'c<enti ty ref ID>- "-<cl ass ID>- ) --'-___ -I 

Sample Input 

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR) 

ENTITY REFERENCE ADVISOR1 (INSTRUCTOR), 
ADVISOR2 (ASST-,NSTRUCTOR) 

Example 5 

Explanation 

The required item ENTITY 
REFERENCE is followed by the 
variable ADVISOR1 and the variable 
INSTRUCTOR. The parentheses are 
required. 

Because the diagram contains a 
loop, the pair of variables can be 
repeated any number of times. 

-- PS -- MODIFY --------------------~ 

Ufo <request number>---' --------.--.l........y------~ 
<request number>- - --<request number 

ALL ~-----------------~ fXCEPTIONS __________ ....l 

~_r--------------------~r_----------~ 

L.......L.-.-------,-<f i 1 eat t ~i b u te ph rase>--r--'---' 

I---~<pri nt modi fi er phrase 

Sample Input 

PS MODI FY 11159 

PS MODIFY 11159,11160,11163 

PS MOD 11159-11161 DESTINATION = 
II LP711 

PS MOD ALL EXCEPTIONS 

Explanation 

The constants PS and MODIFY are followed 
by the variable 11159, which is a request 
number. 

Because the diagram contains a loop, the 
variable 11159 can be followed by a 
comma, the variable 11160, another 
comma, and the final variable 11163. 

The constants PS and MODI FY are followed 
by the user-selected variables 
11159-11161, which are request numbers, 
and the user-selected variable DESTINATION 
= "LP7", which is a file attribute phrase. 
Note that the constant MODIFY has been 
abbreviated to its minimum allowable form. 

The constants PS and MODIFY are followed 
by the user-selected constants ALL and 
EXCEPTIONS. 

8600 0460-100 



Glossary 

A 
actual segment descriptor (ASD) 

ALGOL 

ASD 

B 
block 

BNA 

c 
CANDE 

CD-ROM 

COBOL 

Pointer to the location of a data or code item in memory or on disk. 

Algorithmic language. A structured, high-level programming language that provides 
the basis for the stack architecture of the U nisys A Series systems. ALGOL was the 
first block-structured language developed in the 1960s and served as a basis for such 
languages as Pascal and Ada. It is still used extensively on A Series systems, primarily 
for systems programming. 

See actual segment descriptor. 

(1) A group of physically adjacent records that can be transferred to or from a physical 
device as a group. (2) A program, or a part of a program, that is treated by the processor. 
as a discrete unit. Examples are a procedure in ALGOL, a procedure or function in 
Pascal, a subroutine or function in FORTRAN, or a complete COBOL program. 

The network architecture used on A Series and V Series systems, as well as CP9500 
and CP 2000 communications processors to connect mUltiple, independent, compatible 
computer systems into a network for distributed processing and resource sharing. 

See Command and Edit. 

Compact disk read-only memory. A high-density read-only storage medium. The data 
is stored on a removable polycarbonate disk, and is read by a laser beam. 

Common Business-Oriented Language. A widely used, procedure oriented language 
intended for use in solving problems in business data processing. The characteristics 
are the easy readability of programs and a considerable degree of machine 
independence. COBOL is the most widely used procedure-oriented language. 

8600 0460-100 Glossary-1 



Glossary 

COBOL74 
A version of the COBOL language that is compatible with the American National 
Standard X3.23-1974. 

COBOL85 
The latest version of the COBOL language. This version is compatible with the 
American National Standard X3.23-1985. 

Command and Edit (CANDE) 
A time-sharing message control system (MCS) that enables a user to create and edit 
files, and to develop, test, and execute programs, interactively. 

Communications Management System (COMS) 

COMS 

D 

A general message control system (MCS) that controls online environments on the 
A Series systems. COMS can support the processing of multi program transactions, 
single-station remote files, and multistation remote files. 

See Communications Management System. 

Data Management System II (DMSII) 
A specialized system software package used to describe a database and maintain the 
relationships among the data elements in the database. 

Data Communications ALGOL (DCALGOL) 
A U nisys language based on ALGOL that contains extensions for writing message 
control system (MCS) programs and other specialized system programs. 

DCALGOL 
See Data Communications ALGOL. 

directory name 
A name used to refer to a group of files whose file names are identical to the directory 
name, except that the file names have at least one additional node following the 
directory name. 

distributed systems service (DSS) 

DMSII 

DSS 

Glossary-2 

One of a collection of services provided on U nisys hosts to support communications 
across multihost networks. DSSs can be services such as file handling, station transfet; 
and mail transfer. 

See Data Management System II. 

See distributed systems service. 

8600 0460-100 



Glossary 

E 
EMS 

See Entry and Medium Systems. 

Entry and Medium Systems (EMS) 
A designation referring to the Micro A and A 1 through A 10 systems. 

F 
family name 

The name, consisting of up to 17 alphanumeric characters, assigned by an installation 
to identify a family of disks. 

file attribute 
An element that describes a characteristic of a file and provides information the system 
needs to handle the file. Examples of file attributes are the file title, record size, 
number of areas, and date of creation. For disk files, permanent file attribute values 
are stored in the disk file header. 

file equation 

file name 

file title 

A mechanism for specifying the values of file attributes when a program is compiled or 
executed. A file equation implicitly assigns a value to the FILECARDS task attribute. 

(1) A name or word that designates a set of data items. (2) A unique identifier for a file, 
consisting of name constants separated by slashes. Each name constant consists of 
letters, digits, and selected special characters. A file name can be optionally preceded 
by an asterisk (*) or usercode, and optionally followed by ON and a family name. (3) In 
RPG, a name that designates a set of data items. (4) In COBOL, a user-defined word 
that names a file described in a file description entry or a sort-merge file description 
entry within the FILE SECTION of the DATA DIVISION. 

The complete identifier for a file that consists of the file name, the word ON, and the 
family name. 

file transfer 
The communication of files between host systems, workstations, or terminals. The 
category of distributed systems service (DSS) that enables a user to transfer files 
between host systems, workstations, or terminals. See also library maintenance. 

File Transfer, Access, and Management (FTAM) 
The standard developed by the International Standards Organization (ISO) for file 
exchange and management across an Open Systems Interconnection (OS!) network. 
FTAM systems can access file attributes (for example, password information) and the 
contents of files (including individual records, as well as entire files). 

FORTRAN 
Formula Translation. A high-level, structured programming language intended 
primarily for scientific use. 

8600 0460-100 Glossary-3 



Glossary 

FORTRAN77 

FTAM 

G 

A version of the FORTRAN language that is compatible with the ANSI X3.9-1978 
standard. 

See File Transfe1; Access, and Management. 

GEMCOS 
See Generalized Message Control System. 

Generalized Message Control System (GEMCOS) 

H 
HDP 

HDU 

A message control system (MCS) developed for online systems. GEMCOS is 
transaction oriented. 

See host dependent port. 

See host data unit. 

host data unit (HDU) 
The A 12 and A 15 system host interface to the I/O subsystem. An HDU is configured 
with up to three host dependent ports (HDPs), each of which supports two message 
level interface (MLI) cables. 

host dependent port (HDP) 

I/O 

A hardware module capable of interfacing a processor to the message level interface 
(MLI). 

See input/output. 

I/O processor (IOP) 
A specialized processor for moving data between system memory and the I/O 
subsystem. 

indexed sequential-access method (ISAM) 
A method that provides efficient, flexible random access to records identified by keys 
stored in an index. 

initialization, verification, and relocation (IVR) 

G I ossa ry-4 

A maintenance procedure used to write sector boundaries and a blank label on a disk. 
You can use the IVR procedure to make a new disk pack usable by the system or a 

8600 0460-100 



Glossary 

damaged disk reusable by eliminating defective sectors. The end product of an IVR is a 
master available table (MAT) of available disk segments. 

input/output (I/O) 

lOP 

I SAM 

IVR 

J 
job 

job log 

An operation in which the system reads data from or writes data to a peripheral device 
such as a disk. 

See I/O processor. 

See indexed sequential-access method. 

See initialization, verification, and relocation. 

(1) A group of one or more tasks under the control of a single Work Flow Language 
(WFL) program. The system assigns each job a mix number and treats each job as a 
discrete unit of work. (2) See WFLjob. 

A log that is stored in ajob file and contains log entries for a particular job and its 
descendant tasks. When the job terminates, the job log is processed to produce the job 
summary. 

job queue 
A structure in the system software that stores a list of jobs that have been compiled 
and are waiting to be initiated. 

job summary 

L 
label 

A file, produced after ajob completes execution, that lists information such as the tasks 
initiated by the job, the beginning and ending times for each task, and the termination 
information for each task. 

(1) The first 28 sectors on a disk, in which information about the disk is stored. This 
information includes the family name and serial number, the master available table 
(MAT), the family index number, information about the family's base pack, and a 
pointer to the flat directory if the disk contains a directory. (2) An area on a magnetic 
tape (MT) that contains permanent attributes associated with the tape volume or 
with individual files on the volume, such as the volume serial number and the file 
name. (3) In some programming languages, a name that identifies either a point in the 
Calculation Specifications where a GOTO operation branches or the beginning of a 
subroutine. 

8600 0460-100 Glossary-5 



Glossary 

labeled tape 
A tape that has label records. The label records contain information needed to locate a 
specific file on a tape. Each file on a labeled tape is preceded and followed by a set of 
label records. A tape mark is used to separate the label records from the records of a 
file on the tape. 

large systems 

library 

Refers to systems that interface with a host data unit (HDU) or a resource management 
module (RMM). 

(1) A collection of one or more named routines or library objects that are stored in a file 
and can be called by other programs. (2) A program that exports objects for use by user 
programs. 

library maintenance tape 
A tape created by library maintenance that contains backup copies of disk files. 

logging 
The process of recording events, and, often, their times of occurrence. 

LS 
See large systems. 

M 
magnetic tape (MT) 

MARC 

A tape with a surface layer that can be magnetized, on which data can be stored by 
magnetic recording, and from which data can be retrieved. 

See Menu-Assisted Resource Control. 

master available table (MAT) 
A table stored on each disk that lists the valid sectors on the disk that were successfully 
processed by the initialization, verification, and relocation (IVR) procedure. Pointers to 
defective sectors are deleted from the MAT so that these sectors will not be accessed. 
Normally, the MAT shows the entire disk as being available, minus any defective 
sectors. 

master control program (MCP) 

MAT 

MCP 

Glossary-6 

The central program of the A Series operating system. The term applies to any master 
control program that U nisys may release for A Series systems. 

See master available table. 

See master control program. 

8600 0460-100 



Glossary 

MCS 
See message control system. 

Menu-Assisted Resource Control (MARC) 
A menu-driven interface to A Series systems that also enables direct entry of 
commands. 

message control system (MCS) 
A program that controls the flow of messages between terminals, application programs, 
and the operating system. MCS functions can include message routing, access control, 
audit and recovery, system management, and message formatting. 

message level interface (MLI) 
The interface between the host system, the I/O subsystem, and the data 
communications subsystem. 

message level interface processor (MLIP) 
See I/O Processor (lOP) and Entry and Medium Systems (EMS). 

MLI 
See message level interface. 

MLIP 
See message level interface processor. 

MT 
See magnetic tape. 

multivolume 

N 
NDLII 

A tape file or a set of tape files that have been written to successive tape volumes. 
When the end of a tape volume is reached while the system is reading or writing a file, 
the system automatically switches to the next tape volume for that file. 

See Network Definition Language II. 

Network Definition Language II (NDLII) 
The U nisys language used to describe the physical, logical, and functional 

. characteristics of the data communications subsystem to network support processors 
(NSPs), line support processors (LSPs), and data communications data link processors 
(DCDLPs). 

network support processor (NSP) 
A data communications subsystem processor that controls the interface between a 
host system and the data communications peripherals. The NSP executes the code 
generated by the Network Definition Language II (NDLII) compiler for line control 
and editor procedures. An NSP can also control line support processors (LSPs). 

8600 0460-100 Glossary-7 



Glossary 

nonstandard labeled tape 

NSP 

o 
ODT 

A tape created by systems other than A series systems. Such a tape might have a label 
that is not fully compatible with the A Series system. 

See network support processor. 

See operator display terminal. 

operating system 
The set of programs that control the operational environment of a computer system 
by activities such as managing processors, memory, and peripherals, logging system 
activities, enforcing security, and executing system commands. On A Series systems, 
the operating system consists of a master control program (MCP) and system 
libraries such as CENTRALSUPPORT, GENERALSUPPORT, JOBFORMATTER, and 
PRINTSUPPORT. 

operator display terminal (ODT) 

p 

Pascal 

(1) A terminal or other device that is connected to the system in such a way that it 
can communicate directly with the operating system. The ODT allows operations 
personnel to accomplish system operations functions through either of two operating 
modes: system command mode or data comm mode. (2) The name given to the system 
control terminal (SCT) when it is used as an ODT. 

A high-level programming language developed by Niklaus Wirth, based on the block 
structuring nature of ALGOL 60 and the data structuring innovations of C.A.R. Hoare. 
Pascal is a general purpose language. 

peripheral device 

R 
record 

A hardware device used for input, output, or file storage. Examples are magnetic tape 
drives, printers, and disk drives. 

(1) A group of logically related items of data in a file that are treated as a unit. (2) The 
data read from or written to a file in one execution of a read or write statement in a 
program. 

remote job entry (RJE) 

Glossary-8 

A U nisys message control system (MCS) that permits jobs, data, and control commands 
to be sent to a central system from a remote card reader; RJE also permits output of 
data from the central system to be sent to remote peripherals. 

8600 0460-100 



Glossary 

Report Program Generator (RPG) 
See RPG. 

RJE 

RPG 

T 

See remote job entry. 

Report Program Generator. A high-level, commercially oriented programming language 
used most frequently to produce reports based on information derived from data files. 

tape mark 

task 

A special physical record that a system or program writes on a magnetic tape volume to 
delimit logical entities, such as files, from one another. 

(1) A dependent process. (2) Any process, whether dependent or independent. See also 
process. 

transliteration 

u 

The mapping of characters in one representation to characters in another 
representation. 

unit number 
A number assigned by an installation to a peripheral device (such as a disk drive) and 
used to identify the device. The unit number is commonly used in conjunction with 
an acronym indicating the type of unit to provide a unique identifier for a particular 
peripheral. 

unlabeled tape 

usercode 

v 
volume 

A tape without any identifying data at the beginning of the tape. An unlabeled tape can 
be read only as data and cannot be used as input to library maintenance or the print 
system. 

An identification code used to establish user identity, control security, and provide for 
segregation of files. Usercodes can be applied to every task, job, session, and file on the 
system. A valid usercode is identified by an entry in the USERDATAFILE. 

The medium of a mass storage device such as a disk, disk pack, or tape reel. The term 
volume is not restricted to the volume library on a cataloging system or the volume 

8600 0460-100 Glossary-9 



Glossary 

w 
WFL 

WFLjob 

directory on a system with tape volume security. For example, on the BTOS™ family 
of workstations, the hard disk is a volume, and each floppy disk is a volume. When a 
volume is initialized, it is assigned a volume name and an optional password. 

See Work Flow Language. 

(1) A Work Flow Language (WFL) program, or the execution of such a program. (2) 
A collection of Work Flow Language (WFL) statements that enable the user to run 
programs or tasks. 

Work Flow Language (WFL) 
A U nisys language used for constructing jobs that compile or run programs on A Series 
systems. WFL includes variables, expressions, and flow-of-control statements that offer 
the programmer a wide range of capabilities with regard to task control. 

BTOS is a trademark of Unisys Corporation. 

Giossary-IO 8600 0460-100 



Bibliography 

A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation 
(form 8600 0098). U nisys Corporation. 

A Series ALGOL Programming Reference Manual, Volume 2: Product Interfaces (form 
86000734). Unisys Corporation. 

A Series BNA Version 1 Operations Guide (form 8600 0783). U nisys Corporation. 

A Series C Programming Reference Manual (form 3950 8775). Unisys Corporation. 

A Series CANDE Operations Reference Manual (form 8600 1500). Unisys Corporation. 

A Series COBOL ANSI-68 Programming Reference Manual (form 8600 0320). U nisys 
Corporation. 

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic 
Implementation (form 8600 0296). U nisys Corporation. 

A Series COBOL ANSI-74 Programming Reference Manual, Volume 2: Product 
Interfaces (form 8600 0130). Unisys Corporation. 

A Series COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic 
Implementation (form 86001518). Unisys Corporation. 

A Series COBOL ANSI-85 Programming Reference Manual, Volume 2: Product 
Interfaces (form 86001526). Unisys Corporation. 

A Series DCALGOL Programming Reference Manual (form 86000841). Unisys 
Corporation. 

A Series File Attributes Programming Reference Manual (form 8600 0064). U nisys 
Corporation. 

A Series FORTRAN Programming Reference Manual (form 1222691). Unisys 
Corporation. 

A Series FORTRAN77 Programming Reference Manual (form 3950 8759). Unisys 
Corporation. 

A Series GETSTATUS/SETSTATUS Programming Reference Manual 
(form 8600 0346). Unisys Corporation. 

A Series I/O Subsystem Programming Guide (form 8600 0056). Unisys Corporation. 

A Series Interactive Sort aSORT) Operations Guide (form 8600 1583). Unisys 
Corporation. 

8600 0460-100 Bibliography-1 



Bibliography 

A Series KEYEDIOII Programming Reference Manual (form 86000684). Unisys 
Corporation. 

A Series LINC II Installation & Configuration Guide (form 3943 4469). U nisys 
Corporation. 

A Series Mark 4.0 Software Release Capabilities Overview (form 86000015). Unisys 
Corporation. 

A Series Menu-Assisted Resource Control (MARC) Operations Guide (form 8600 0403). 
U nisys Corporation. 

A Series Message Translation Utility (MSGTRANS) Operations Guide 
(form 8600 0106). Unisys Corporation. Formerly A Series Message Translation 
Utility Operations Guide. 

A Series MultiLingual System (MLS) Administration, Operations, and Programming 
Guide (form 8600 0288). U nisys Corporation. 

A Series NEWP Programming Reference Manual (form 5044233). Unisys 
Corporation. 

A Series Operating System Installation Guide (form 8600 1021). Unisys Corporation. 

A Series Pascal Programming Reference Manual, Volume 1: Basic Implementation 
(form 8600 0080). Unisys Corporation. 

A Series Pascal Programming Reference Manual, Volume 2: Product Interfaces (form 
8600 1294). U nisys Corporation. 

A Series PL/I Reference Manual (form 1169620). Unisys Corporation. 

A Series SORT Language Programming Reference Manual (form 1169794). U nisys 
Corporation. 

A Series System Administration Guide (form 8600 0437). Unisys Corporation. 

A Series System Commands Operations Reference Manual (form 8600 0395). U nisys 
Corporation. 

A Series System Configuration Guide (form 8600 0445). Unisys Corporation. 

A Series System Software Support Reference Manual (form 8600 0478). Unisys 
Corporation. 

A Series Systems Functional Overview (form 8600 0353). U nisys Corporation. 

A Series SYSTEMSTATUS Programming Reference Manual (form 8600 0452). U nisys 
Corporation. 

A Series Task Attributes Programming Reference Manual (form 8600 0502). U nisys 
Corporation. 

Bibliography-2 8600 0460-100 



Bibliography 

A Series Task Management Programming Guide (form 8600 0494). Unisys 
Corporation. 

A Series Work Flow Language (WFL) Programming Reference Manual (form 
8600 1047). U nisys Corporation. 

8600 0460-100 Bibliography-3 



Bibliography-4 8600 0460-100 



Index 

A 

<A Series system>, COMPATIBILITY 
request, in FILEDATA, 5-28 

<A Series system>, INCOMPATIBILITY 
request, in FILEDATA, 5-37 

ABBREVIATED modifier, in FILEDATA, 
5-44 

ACCESSMODE attribute, in KEYEDIO, 
7-13 

ADDED/ALLFILES request, in FILECOPY, 
4-6 

AGAIN command, in DUMP ALL, 3-56 
ALGAMA mathematical function, 8-1 
ALGOL, use of SORT, 12-3 
ALL modifier, in FILEDATA, 5-44 
ALOG mathematical function, 8-2 
ALOG 1 0 mathematical function, 8-2 
<alpha identifier>, DECLARATIONS 

command, in INTERACTIVEXREF, 
6-11 

<alphanumeric character> 
basic constructs, in DUMP ALL, 3-70 
basic constructs, in FILECOPY, 4-3 
basic constructs, in FILEDATA, 5-1 
tape serial number, in FILEDATA, 5-3 
usercode, in FILEDATA, 5-3 
volume name, in FILEDATA, 5-3 

ALTERDATE modifier, in FILEDATA, 5-44 
<any character string>, in comment, in 

PATCH, 9-19 
ARCHIVE modifier, in FILEDATA, 5-44 
ARCHIVE BACKUP modifier, in FILEDATA, 

5-45 
ARCHIVEINFO request, in FILEDATA, 

5-11 
ARCOS mathematical function, 8-2 
AREALENGTH modifier, in FILEDATA, 

5-45 
AREAS attribute 

in FILEDATA, 5-45 
in ISAM, 10-6 

AREASIZE attribute 

8600 0460-100 

in FILEDATA, 5--45 
in ISAM, 10-6 

AREASUMMARY request, in FILEDATA, 
5-13 

ARSIN mathematical function, 8-2 
ATAN mathematical function, 8-3 
ATAN2 mathematical function, 8-3 
<attribute field>, RECORD command, 11-7 
ATTRIBUTES 

command, in DUMPALL, 3-12, 3-13, 3-56 
request, in FILEDATA, 5-14 

8 

BACKUP request, in FILEDATA, 5-17 
BACKUPSN modifier, in FILEDATA, 5-45 
<base> 

$.INSERT option, in PATCH, 9...:.19 
$.MOVE option, in PATCH, 9-25 

<baseinc> 
$.INSERToption, in PATCH, 9-19 
$.MOVE option, in PATCH, 9-25 

binary data in CARDLINE printing, 1-1 
block size, in DUMP ALL, 3-6 
<block size>, old specs, in DUMPALL, 3-78 
BLOCKSIZE attribute 

inDUMPALL 
effects on MAXRECSIZE, 3-4 

in FILEDATA, 5-46 
in ISAM, 10-7 

BLOCKSIZE attribute, in DUMPALL, 3-6 
BLOCKSTRUCTURE 

EXTERNAL, 3-8 
LINKED, 3-9 
VARIABLE, 3-8 
VARIABLEOFFSET, 3-8 
V ARIABLE2, 3-8 

Index-l 



Index 

BLOCKSTRUCTURE modifier, in 
FILEDATA, 5-46 

<Boolean option name>, in PATCH, 9-8 
<Boolean option>, in PATCH, 9-8 
<Boolean-valued attribute>, in DUMPALL, 

3-70 
BRIEF option, in PATCH, 9-8 
<bug option>, in PATCH, 9-29 

c 
CABS mathematical function, 8-12 
<CANDE option>, in PATCH, 9-30 
CARD LINE utility, 1-1 

printing, 1-1 
CAT command, in DUMPALL, 3-12, 3-14 
CATALOGINFO request, in FILEDATA, 

5-20 
CATALOGUE modifier, in FILEDATA, 5-46 
CCOS mathematical function, 8-12 
CCSVERSION 

file attribute, copying in DUMPALL, 3-11 
modifier, in FILEDATA, 5-46 

CEXP mathematical function, 8-13 
character set translation, in DUMP ALL, 3-9 
CHECKERBOARD request, in FILEDATA, 

5-22 
CLOG mathematical function, 8-13 
CM (Change MCP) system command, using 

with RLTABLEGEN, 11-1 
coarse tables 

in ISAM files, 10-4 
size ot; 10-5 

in KEYEDIO files, 7-1 
COBOL 

option, in PATCH, 9-8 
use of SORT, 12-3 

COBOL74 option, in PATCH, 9-8,9-11 
<code file name>, in XREFANALYZER, 

13-1 
coded character set transliteration, in 

DUMPALL, 3-9 
CODEFILEINFO request, in FILEDATA, 

5-24 
CODEVERSION modifier, in FILEDATA, 

5-47 . 
< CODEVERSION modifier> 

ARCHIVEINFO request, in FILEDATA, 
5-11 

CATALOGINFO request, in FILEDATA, 
5-20 

Index-2 

COPYDECK request, in FILEDATA, 5-30 
FILENAMES request, in FILEDATA, 

5-32 
COINCIDENCE command, in 

INTERACTIVEXREF, 6-24 
collating sequences, in SORT, 12-51 
<column> 

RECOGNITION command, in 
RLTABLEGEN, 11-5 

RECORD command, in RLTABLEGEN, 
11-6 

commands 
DUMPALL utility, 3-12 

ATTRIBUTES, 3-12, 3-13 
CAT, 3-12, 3-14 
COPY, 3-12, 3-21 
DEFINE, 3-12 
DUMPMT, 3-12 
FILE, 3-12, 3-13 
HEXDSK, 3-12 
LIBMT, 3-12 
LIST, 3-12,3-57 
list ot; 3-12 
MODE, 3-59 
OPEN, 3-60 
PREVIOUS, 3-61 
PRINT, 3-61 
QUIT, 3-62 
RECORD, 3-62 
SKIp, 3-63 
TEST, 3-12,3-52 

INTERACTIVEXREF utility 
COINCIDENCE, 6-24 
DECLARATIONS, 6-10 
EXPAND, 6-17 
HELP, 6-20 
LOAD, 6-22 
LOCATE, 6-23 
MERGE, 6-24 
QUALIFY, 6-28 
RANGE, 6-28 
REFERENCE, 6-29 
RESET, 6-32 
SET, 6-32 
STOp, 6-33 
SUMMARY, 6-33 
SYMBOL, 6-34 
TERMINAL, 6-35 
WHAT, 6-36 
WHATFILES, 6-36 

RLTABLEGEN utility 
FIELD, 11-6 

8600 0460-100 



ID,ll-3 
RECOGNITION, 11-5 
RECORD, 11-6 

commands, DUMPALL utility 
NEXT, 3-60 

<comment> 
FIELD command, in RLTABLEGEN, 11-6 
ID command, in RLTABLEG EN, 11-3 
patch comment record, in PATCH, 9-6 
$.GUARD, in PATCH, 9-19 

common constants in mathematical 
functions, 8-15 

COMPARE 
option, in PATCH, 9-8 
utility, 2-1 

running, 2-2 
<compare input>, 2-2 
<compatibility specification>, in 

FILEDATA, 5-28 
COMPATIBLITY request, in FILEDATA, 

5-28 
COMPILE option, in PATCH, 9-8 
<compiler control record>, in PATCH, 9-5 
Complex exponentiation, 8-15 
CONFLICT option, "in PATCH, 9-8 
CONTINUE command, in DUMP ALL, 3-56 
<control information>, patch delimiter 

record, in PATCH, 9-6 
COPY command 

copying files from a remote host in 
DUMP ALL, 3-17, 3-24 

determining KIND attribute for 
DUMP ALL, 3-17, 3-24 

in DUMPALL, 3-12, 3-21 
copy from tape, examples in DUMPALL 

labeled tapes, 3-28 
nonstandard labeled tapes, 3-28 
unlabeled tapes, 3-28 

COPYDECK request, in FILEDATA, 5-30 
COS mathematical function, 8-3 
COSH mathematical function, 8-4 
COTAN mathematical function, 8-4 
<count option>, in value option, in PATCH, 

9~9 

<count> 
record range list, in DUMPALL, 3-80 
skip specification, in DUMPALL, 3-82 

CREATED/ACCESSED/UPDATED request, 
in FILECOPY, 4-5 

CREATIONDATE modifier, in FILEDATA, 
5-48 

CRUNCHED modifier, in FILEDATA, 5-48 

8600 0460-100 

CSIN mathematical function, 8-14 
CSQRT mathematical function, 8-14 
CYCLE modifier, in FILEDATA, 5-48 
< cycle number> 

$.CYCLE, in PATCH, 9-28 
$.FLAG, in PATCH, 9-18 

Index 

< cycle option>, in value option in PATCH, 
9-9 

o 
DARCOS mathematical function, 8-7 
DARSIN mathematical function, 8-8 
<data deck> 

CARD LINE printing, 1-1 
CARDLINE punching, 1-2 

data translation, in DUMP ALL, 3-9 
DATABASE modifier, in FILEDATA, 5-48 
databases, in FILEDATA 

creating a reusable database, 5-52 
generation and use of, 5-7 
including raw disk file headers, 5-53 
using database from previous run, 5-48 

DATAN mathematical function, 8-8 
DATAN2 mathematical function, 8-8 
<date>, basic constructs, in FILECOPY, 4-4 
DCOS mathematical function, 8-8 
DCOSH mathematical function, 8-8 
<debug immediate option>, in PATCH, 

9-29 
<debug value option>, in PATCH, 9-29 
< declaration specification> 

DECLARATIONS command, in 
INTERACTIVEXREF, 6-10 

DECLARATIONS command, in 
INTERACTIVEXREF, 6-10 

DEFINE command, in DUMPALL, 3-12, 
3-38 

DEFINE OUTPUT request, in FILEDATA, 
5-31 

DELETE option, in PATCH, 9-8 
DELIMOPToption, in PATCH, 9-8 
<density value> modifier, in FILECOPY, 

4-10 
DEPENDENTSPECS attribute, effects on 

file attributes, 3-4 
DERF mathematical function, 8-9 
DERFC mathematical function, 8-9 
<dest>, COpy command, in DUMP ALL, 

3-21 

Index-3 



Index 

< destination> modifier, in FILECOPY, 4-9, 
4-11 

DEXP mathematical function, 8-9 
DGAMMA mathematical function, 8-9 
<digit> 

basic constructs, in DUMP ALL, 3-70 
basic constructs, in FILEDATA, 5-2 
identifier specification, in 

INTERACTIVEXREF, 6-3 
release level, in FILEDATA, 5-3 
serial number, in DUMPALL, 3-73 

DIR command, in FILEDATA, 5-58 
DIRECTORY modifier, in FILEDATA, 5-48 
< directory name> 

basic constructs, in DUMPALL, 3-70 
source from group, in FILECOPY, 4-9 

<directory title> 
ATTRIBUTES command, in DUMPALL, 

3-13 
basic constructs, in DUMPALL, 3-70 
FILE command, in DUMPALL, 3-13 

<discard option>, in PATCH, 9-29 
<DISK $ option>, immediate option, in 

PATCH, 9-8 
<DISK option>, immediate option, in 

PATCH, 9-8 
DLGAMMA mathematical function, 8-9 
DLOG mathematical function, 8-10 
DLOG 10 mathematical function, 8-10 
DOCUMENTTYPE modifier, in FILEDATA, 

5-49 
double-precision 

exponentiation, 8-11 
mathematical functions, 8-7 

DSIN mathematical function, 8-10 
DSINH mathematical function, 8-10 
DSQRT mathematical function, 8-10 
DTAN mathematical function, 8-10 
DTANH mathematical function, 8-11 
DUMP option, in PATCH, 9-8 
DUMPALL utility, 3-1 

commands, 3-12 
ATTRIBUTES, 3-13 
CAT, 3-14 
COPY, 3-21 
DEFINE, 3-38 
DMPMT, 3-39 
FILE, 3-13 
HEXDSK, 3-43 
LIBMT, 3-45 
LIST, 3-46 
list of, 3-12 

Index-4 

TEST, 3-52 
error detection, 3-64 
I/O exceptions, 3-67 
interactive commands, 3-55 

AGAIN, 3-56 
ATTRIBUTE, 3-56 
CONTINUE, 3-56 
FILE, 3-56 
LIST, 3-57 
MODE, 3-59 
NEXT, 3-60 
OPEN, 3-60 
PREVIOUS, 3-61 
PRINT, 3-61 
QUIT, 3-62 
RECORD, 3-62 
SKIp, 3-63 

modes 
card,3-65 
interactive, 3-66 
parameter, 3-64 

TASKVALUE attribute, 3-64 
DUMPMT command, in DUMPALL, 3-12, 

3-39 

E 

<EBCDIC string character> 
basic constructs, in FILECOPY, 4-3 
basic constructs, in FILEDATA, 5-2 
in DUMP ALL, 3-70 
string, in FILECOPY, 4-9 

<end option>, in PATCH, 9-29 
<EOF option>, immediate option, in 

PATCH, 9-8 
<equate option>, in PATCH, 9-29 
ERF mathematical function, 8-4 
ERFC mathematical function, 8-5 
ERRLIST option, in PATCH, 9-8 
error detection, for DUMPALL tasks, 3-64 
EXECUTE option, in PATCH, 9-8 
EXP mathematical function, 8-5 
EXPAND command, in 

INTERACTIVEXREF, 6-17 
<expand>, DECLARATIONS command, in 

INTERACTIVEXREF, 6-11 
EXPIRED request, in FILECOPY, 4-7 
EXTMODE 

attribute, effects on translation in 
DUMP ALL, 3-11 

modifier, in FILEDATA, 5-49 

8600 0460-100 



F 

<family name> 
ARCHIVEINFO request, in FILEDATA, 

5-11 
AREASUMMARY request, in FILEDATA, 

5-13 
ATTRIBUTES request, in FILEDATA, 

5-14 
BACKUP request, in FILEDATA, 5-17 
basic constructs, in DUMPALL, 3-71 
basic constructs, in FILECOPY, 4-4 
basic constructs, in FILEDATA, 5-2 
CATALOGINFO request, in FILEDATA, 

5-20 
CHECKERBOARD request, in 

FILEDATA, 5-22 
CODEFILEINFO request, in FILEDATA, 

5-24 
COMPATIBILITY request, in FILEDATA, 

5-28 
COPYDECK request, in FILEDATA, 5-30 
FILENAMES request, in FILEDATA, 

5-32 
HEADERCONTENTS request, in 

FILEDATA, 5-35 
INCOMPATIBILITY request, in 

FILEDATA, 5-37 
NOREPORTS request, in FILEDATA, 

5-39 
old packdir syntax, in FILEDATA, 5-56 
STRUCTUREMAP request, in 

FILEDATA, 5-41 
<family option>, CHECKERBOARD 

request, in FILEDATA, 5-22 
FAMILYNAME modifier, in FILEDATA, 

5-49 
FIELD command, in RLTABLEGEN, 11-6 
< field definition> 

basic constructs, in DUMPALL, 3-73 
DEFINE command, in DUMP ALL, 3-38 
format definition, in DUMPALL, 3-77 

< field length> 
field definition, in DUMP ALL, 3-73 
in COMPARE, 2-2 

<field mnemonic>, format definition, in 
DUMP ALL, 3-77 

< field offset>, field definition, in 
DUMPALL, 3-73 

<field type>, field definition, in DUMP ALL, 
3-73 

8600 0460-100 

Index 

<file attribute assignment>, in DUMPALL, 
3-71 

<file attribute> 
DMPMT command, in DUMPALL, 3-39 
LIST command, in DUMPALL, 3-46 
OPEN command, in DUMPALL, 3-60 
TEST command, in DUMPALL, 3-52 

file attributes 
BLOCKSIZE, in DUMPALL, 3-6 
CCSVERSION, copying in DUMPALL, 

3-11 
determining, "in DUMPALL/inx>, 3-4 
MAXRECSIZE, in DUMPALL, 3-6 
specifying values, in DUMPALL, 3-5 
structural, in DUMPALL, 3-5 
using with DUMPALL, 3-3 

<file attributes> 
ATTRIBUTES request, inFILEDATA, 

5-14 
CAT command, in DUMPALL, 3-14 
CODEFILEINFO request, in FILEDATA, 

5-24 
COpy command, in DUMP ALL, 3-21 
definition, in FILEDATA, 5-15 

FILE command, in DUMPALL, 3-12, 3-13, 
3-56 

<file equation> 
CANDE command, in PATCH, 9-2 
for WFLjob, in PATCH, 9-1 

<file ID>,$.lNSERToption, in PATCH, 
9-19 

file modifiers 
ABBREVIATED, 5-44 
ALL, 5-44 
ALTERDATE, 5-44 
ARCHIVE, 5-44 
ARCHIVE BACKUp, 5-45 
AREALENGTH<inx>,5-45 
AREAS, 5-45 
AREASIZE, 5-45 
BACKUPSN, 5-45 
BLOCKSIZE, 5-46 
BLOCKSTRUCTURE,5-46 
CATALOGUE, 5-46 
CCSVERSION, 5-46 
CODEVERSION,5-47 
CREATIONDATE, 5-48 
CRUNCHED, 5-48 
CYCLE, 5-48 
DATABASE, 5-48 
DIRECTORY, 5-48 
DOCUMENTTYPE, 5-49 

Index-5 



Index 

EXTMODE, 5-49 
FAMILYNAME, 5-49 
FILEKIND, 5-49 
FILELENGTH, 5-49 
FILEORGANIZATION, 5-49 
FILESTRUCTURE, 5-49 
FILETYPE, 5-50 
FRAMESIZE, in FILEDATA, 5-50 
GUARDFILE, 5-50 
IDENTITY, 5-50 
INTMODE, 5-50 
LASTACCESSDATE, 4-7, 4-16, 5-51 
LASTRECORD, 5-51 
LEVEL, 5-51 
LICENSEKEY, 5-51 
LINEWIDTH, 5-51 
LOCKEDFILE, 5-51 
MAXRECSIZE, 5-52 
MINRECSIZE, 5-52 
NAMESONLY, 5-52 
NEWDATABASE, 5-52 
NONRESIDENTONLY, 5-52 
NOTE, 5-52 
PACKNAME, 5-52 
PAGESIZE modifier, 5-53 
PERMITTEDACTIONS, 5-53 
RAWHEADERS, 5-53 
RELEASEID, 5-53 
RESIDENTONLY, 5-53 
SAVEFACTOR, 5-53 
SECURITY, 5-53 
SUMMARY, 5-22 
TAPE, 5-32 
TIMESTAMp, 5-54 
TITLE, 5-54 
TOTALSECTORS, 5-54 
UNITS, 5-54 
USERINFO, 5-54 
VERSION, 5-54 
WARNINGS, 5-54 

<file name 1>, in COMPARE, 2-2 
<file name 2>, in COMPARE, 2-2 
<filename> 

basic constructs, in FILECOPY, 4-3 
basic constructs, in FILEDATA, 5-2 
COINCIDENCE command, in 

INTERACTIVEXREF, 6-24 
DECLARATIONS command, in 

INTERACTIVEXREF, 6-11 
HEXDSK command, in DUMPALL, 3-43 
LIST command 

in DUMPALL, 3-46 

Index-6 

LIST command, in INTERACTIVEXREF, 
6-21 

LOAD command, in 
INTERACTIVEXREF, 6-22 

MERGE command, in 
INTERACTIVEXREF, 6-24 

old packdir syntax, in FILEDATA, 5-56 
output option, in FILEDATA, 5-5 
REFERENCE command, in 

INTERACTIVEXREF, 6-29 
source file name, in FILECOPY, 4-9 
source from group, in FILECOPY, 4-9 
SYMBOL command, in 

INTERACTIVEXREF, 6-34 
$.EQUATE, in PATCH, 9-32 

<FILE option>, immediate option, in 
PATCH, 9-8 

<file specification> 
CAT command, in DUMP ALL, 3-14 
in FILECOPY, 4-8 
modifier, in FILECOPY, 4-8,4-10 

<file title> 
ADDED/ALLFILES request, in 

FILECOPY, 4-6 
ARCHIVEINFO request, in FILEDATA, 

5-11 
ATTRIBUTES command, in DUMPALL, 

3-13 
ATTRIBUTES request, in FILEDATA, 

5-14 
BACKUP request, in FILEDATA, 5-17 
basic constructs 

in DUMP ALL, 3-71 
in FILECOPY, 4-4 
in FILEDATA, 5-2 

CAT command, in DUMPALL, 3-14 
CATALOGINFO request, in FILEDATA, 

5-20 
CHECKERBOARD request, in 

FILEDATA, 5-22 
CODEFILEINFO request, in FILEDATA, 

5-24 
COMPATIBILITY request, in FILEDATA, 

5-28 
COPY command, in DUMP ALL, 3-21 
COPYDECK request, in FILEDATA, 5-30 
FILE command, in DUMPALL, 3-13 
FILENAMES request, in FILEDATA, 

5-32 
HEADERCONTENTS request, in 

FILEDATA, 5-35 

8600 0460-100 



INCOMPATIBILITY request, in 
FILEDATA, 5-37 

NOREPORTS request, in FILEDATA, 
5-39 

OPEN command, in DUMPALL, 3-60 
output option, in FILEDATA, 5-5 
STRUCTUREMAP request, in 

FILEDATA, ~1 
TEST command, in DUMPALL, 3-52 
$.FILE, in PATCH, 9-18 

< filecopy modifier> 
ADDED/ALLFILES request, in 

FILECOPY, 4-6 
CREATED/ACCESSED/UPDATED 

request, in FILECOPY, 4-5 
description of, in FILECOPY, 4-8 
EXPIRED request, in FILECOPY, 4-7 
input to FILECOPY, 4-3 

<filecopy task request>, input to 
FILECOPY, 4-3 

FILECOPY utility 
description of, 4-1 
index files, 4-18 
input to, 4-2 
options, 4-12 
task requests, 4-5, 4-8 

ADDED/ALLFILES, 4-6 
CREATED/ACCESSED/UPDATED, 

4-5 
EXPIRED, 4-7 

FILEDATA utility 
databases 

creating a reusable database, 5-52 
generation and use of, 5-7 
including raw disk file headers, 5-53 
using database from previous run, 5-48 

description of, 5-1 
error reporting, 5-6 
input to, 5-5 
methods of running, 5-5 
modifier meanings, 5-44 
numeric report requests, 5-55 
old packdir syntax, 5-56 
reports, COMPATIBILITY request, 5-28 
reports, INCOMPATIBILITY request, 

5-37 
system commands 

DIR command, 5-58 
TDIR command, 5-59 

task requests, 5-10 
ARCHIVEINFO, 5-11 
AREASUMMARY, 5-13 

8600 0460-100 

ATTRIBUTES, 5-14 
BACKUp, 5-17 
CATALOG INFO, 5-20 
CHECKERBOARD, 5-22 
CODEFILEINFO, 5-24 
COPYDECK, 5-30 
DEFINE OUTPUT, 5-31 
FILENAMES, 5-32 
HEADERCONTENTS, 5-35 
NOREPORTS, 5-39 
STRUCTUREMAP, 5-41 
TAPEDIR, 5-43 

Index 

FILEKIND modifier, in FILEDATA, 5-49 
<filekind>, option, in FILECOPY, 4-12 
FILELENGTH modifier, in FILEDATA, 

5-49 
FILENAMES request, in FILEDATA, 5-32 
FILEORGANIZATION 

attributes 
INDEXED, 7-1 
INDEXEDNOTRESTRICTED, 7-1 
KEYEDIOII, 7-1 
KEYEDIOIISET, 7-1 
PLIISAM, 10-1 

modifier, in FILEDATA, 5-49 
FILESTRUCTURE 

modifier, in FILEDATA, 5-49 
value used, in DUMPALL, 3-5 

FILETYPE modifier, in FILEDATA, 5-50 
fine tables 

in ISAM files, 10-3 
size of, 10-5 

in KEYEDIO files, 7-2 
<first> 

$.INSERT option, in PATCH, 9-19 
$.MOVE option, in PATCH, 9-25 

<:flag option>, in value option, in PATCH, 
9-9 

< format definition> 
basic constructs, in DUMPALL, 3-77 
DEFINE command, in DUMP ALL, 3-38 
DMPMT command, in DUMP ALL, 3-39 
LIST command, in DUMP ALL, 3-46,3-57 
MODE command, 3-59 
PRINT command, 3-61 
TEST command, in DUMP ALL, 3-52 

<format mnemonic>, format definition, in 
DUMP ALL, 3-77 

format of tapes in DUMPALL 
labeled, 3-85 
unlabeled, 3-84 

Index-7 



Index 

FORTRAN, using with 
INTERACTIVEXREF, 6-38 

FORTRAN77, using with 
INTERACTIVEXREF, 6-38 

FRAME SIZE 

file attribute, in DUMPALL, 3-6 

modifier, in FILEDATA, 5-50 
<from clause> modifier, in FILECOPY, 4-9, 

4-11 

G 

GAMMA mathematical function, 8-5 
<GUARD option>, patch control record, in 

PATCH, 9-8 

GUARDFILE DOES NOT EXIST message, 
in FILEDATA, 5-50 

GUARDFILE IS NOT VISIBLE message, in 
FILEDATA, 5-50 

GUARD FILE modifier, in FILEDATA, 5-50 

H 

HEADERCONTENTS request, in 
FILEDATA, 5-35 

HELP command, in INTERACTIVEXREF, 
6-20 

<hex digit>, basic constructs, in 
FILEDATA, 5-2 

<hex int>, DECLARATIONS command, in 
INTERACTIVEXREF, 6-11 

<hex string>, basic constructs, in 
FILEDATA, 5-2 

HEXDSKcommand, in DUMPALL, 3-12, 
3-43 

<host name>, basic constructs, in 
DUMPALL, 3-71 

HOSTNAME attribute 
COPY command, in DUMPALL, 3-17, 

3-24 
LIST command, inDUMPALL, 3-47, 3-53 

<hyphen> 
basic constructs, in DUMP ALL, 3-71 

option, in FILECOPY, 4-12 

Index-8 

I/O exceptions, controlling, in DUMP ALL, 
3-67 

ID command, in RLTABLEGEN, 11-3 
<identifier qualification> 

basic constructs, in INTERACTIVEXREF, 
6-3 

QUALIFY command, in 
INTERACTIVEXREF, 6-28 

< identifier specification> 
basic constructs, in INTERACTIVEXREF, 

6-3 
COINCIDENCE command, in 

INTERACTIVEXREF, 6-24 
EXPAND command, in 

INTERACTIVEXREF, 6-17 
LOCATE command, in 

INTERACTIVEXREF, 6-23 
MERGE command, in 

INTERACTIVEXREF, 6-24 
REFERENCE command, in 

INTERACTIVEXREF, 6-29 
SUMMARY command, in 

INTERACTIVEXREF, 6-33 
<identifier> 

basic constructs, in DUMP ALL, 3-72 
basic constructs, in FILECOPY, 4-3 
basic constructs, in FILEDATA, 5-2 
basic constructs, in INTERACTIVEXREF, 

6-3 
DECLARATIONS command, in 

INTERACTIVEXREF, 6-10 
from clause, in FILECOPY, 4-9 

IDENTITY modifier, in FILEDATA, 5-50 
<immediate option>, in PATCH, 9-8 
INCOMPATIBILITY request, in FILEDATA, 

5-37 
< incompatibility specification>, in 

FILEDATA, 5-37 
< increment> 

$.INSERT option, in PATCH, 9-19 
$.MOVE option, in PATCH, 9-25 

index file~, in FILECOPY, 4-18 
indexed sequential-access method, 10-1 

data record links, 10-4 
files, copying, 3-37 
I/O result information, 10-17 

using primitive ISAM, 10-18 
invocation of 

primitive method, 10-1 
standard method, 10-2 

8600 0460-100 



limitations on use, 10-8 
management of overflow areas, 10-4 
planning files, 10-5, 10-6, 10-7 

BLOCKSIZE attribute, 10-7 
coarse table size, 10-5 
EXCLUSIVE attribute, 10-7 
fine table ratio, 10-7 
fine table size, 10-5 
INFO record size, 10-6 
key length, 10-8 
key offset, 10-8 
maximum number of records, 10-5 
practical considerations, 10-8 

procedures, 10-9 
ISCLOSE, 10-12 
ISDELETE, 10-17 
ISKEYWRITE, 10-16 
ISOPEN, 10-9 
ISREAD, 10-13 
ISREADNEXT, 10-15 
ISREWRITE, 10-15 
ISWRITE, 10-14 

structure of files 
data overflow area, 10-3 
prime data area, 10-3 

tables for locating data 
coarse tables, 10-3 
fine tables, 10-3 

<input record>, for WFL job, in PATCH, 
9-1 

<input to filecopy>, in FILECOPY WFL job, 
4-1 

<INSERT option>, immediate option, in 
PATCH,9-8 

<integer-valued attribute> 
basic constructs, in DUMP ALL, 3-72 

<integer> 
ARCHIVEINFO request, in FILEDATA, 

5-11 
AREASUMMARY request, in FILEDATA, 

5-13 
ATTRIBUTES request, in FILEDATA, 

5-14 
BACKUP request, in FILEDATA, 5-17 
basic constructs, in DUMP ALL, 3-72 
basic constructs, in FILECOPY, 4-4 
basic constructs, in FILEDATA, 5-2 
CARDLINE printing, 1-1 
CAT command, in DUMP ALL, 3-14 
CATALOGINFO request, in FILEDATA, 

5-20 

8600 0460-100 

CHECKERBOARD request, in 
FILEDATA, 5-22 

Index 

COINCIDENCE command, in 
INTERACTIVEXREF, 6-24 

COMPATIBILITY request, in FILEDATA, 
5-28 

COPY command, in DUMPALL, 3-21 
COPYDECK request, in FILEDATA, 5-30 
DECLARATIONS command, in 

INTERACTIVEXREF, 6-11 
DEFINEOUTPUT request, in 

FILEDATA, 5-31 
destination, in FILECOPY, 4-9 
DMPMT command, in DUMPALL, 3-39 
EXPAND command, in 

INTERACTIVEXREF, 6-11 
EXPIRED request, in FILECOPY, 4-7 
FILENAMES request, in FILEDATA, 

5-32 
HEADERCONTENTS request, in 

FILEDATA, 5-35 
INCOMPATIBILITY request, in 

FILEDATA, 5-37 
LIST command, in DUMPALL, 3-46, 3-57 
LIST command, in INTERACTIVEXREF, 

6-21 
MERGE command, in 

INTERACTIVEXREF, 6-24 
numeric report requests, in FILEDATA, 

5-55 
REFERENCE command, in 

INTERACTIVEXREF, 6-29 
serial number list, in FILECOPY, 4-9 
STRUCTUREMAP request, in 

FILEDATA, 5-41 
TERMINAL command, in 

INTERACTIVEXREF, 6-35 
TEST command, in DUMP ALL, 3-52 
unit number, in FILEDATA, 5-3 
$.BUG, in PATCH, 9-30 
$.GUARD, in PATCH, 9-19 
$.LISTN, in PATCH, 9-23 

INTERACTIVEXREF utility 
commands 

COINCIDENCE, 6-24 
DECLARATIONS, 6-10 
EXPAND, 6-17 
HELP, 6-20 
LIST, 6-21 
list of, 6-9 
LOAD, 6-22 
LOCATE, 6-23 

Index-9 



Index 

MERGE, 6-24 
QUALIFY, 6-28 
RANGE, 6-28 
REFERENCE, 6-29 
RESET, 6-32 
SET, 6-32 
STOp, 6-33 
SUMMARY, 6-33 
SYMBOL, 6-34 
TERMINAL, 6-35 
WHAT, 6-36 
WHATFILES, 6-36 

description of, 6-1 
identifier specification, 6-3 
producing XREFFILES, 6-1 
range specification, 6-7 
using with FORTRAN, 6-38 
using with FORTRAN77, 6-38 
using with improperly sequenced source, 

6-37 
using with Pascal, 6-38 

< interface identifier> 
LIST command, in INTERACTIVEXREF, 

6-21 
Interprogram Communication, in ISAM, 

10-9 
INTMODE 

attribute 
effects on translation in DUMP ALL, 

3-10 
modifier, in FILEDATA, 5-50 

<intname> 
$.DISK, in PATCH, 9-18 
$.INSERToption, in PATCH, 9-19 
$.PATCHDECK, in PATCH, 9-18 

ISAM, (See indexed sequential-access 
method) 

ISOPEN procedure, 10-9 
types of files, 10-2 

ISAMKEYS attribute, in KEYEDIO, 7-12 
ISCLOSE procedure, in ISAM, 10-12 
ISDELETE procedure, in ISAM, 10-17 
ISKEYWRITE procedure, in ISAM, 10-16 
ISMCLOSE procedure, in KEYEDIO, 7-16 
ISMDELETE procedure, in KEYEDIO, 7-22 
ISMGETKEYSTRUCTURE procedure, in 

KEYEDIO, 7-14 
ISMOPEN procedure, in KEYEDIO, 7-15 
ISMRANDOMREAD procedure, in 

KEYEDIO, 7-20 
ISMRANDOMWRITE procedure, in 

KEYEDIO, 7-20 

Index-10 

ISMREWRITE procedure, in KEYEDIO, 
7-21 

ISMSEQUENTIALREAD procedure, in 
KEYEDIO, 7-19 

ISMSEQUENTIALWRITE procedure, in 
KEYEDIO, 7-18 

ISMSETUPLIMIT procedure, in KEYEDIO, 
7-23 

ISMSTART procedure, in KEYEDIO, 7-17 
ISREAD procedure, in ISAM, 10-13 
ISREADNEXT procedure, in ISAM, 10-15 
ISREWRITE procedure, in ISAM, 10-15 
ISWRITE procedure, in ISAM, 10-14 

K 

KEYEDIO, 7-1 
file structure, 7-24 

block information layout, 7-28 
course table layout, 7-29 
fine table layout, 7-29 
inserting keys, 7-32 
key info table layout, 7-30 
logicallayou t, 7-30 
segment 0 (zero), 7-24 

files 
management, 7-2 

GENERALSUPPORT attributes, 7-10 
indexed attributes, 7-4 

BLOCKSIZE, 7-7 
BUFFERS, 7-5 
FILEORGANIZATION, 7-5 

internal attributes 
ACCESSMODE, 7-13 
I SAMKEYS , 7-12 

library management, 7-2 
installing, 7-3 
removing, 7-3 

physical file structure, 7-1 
coarse tables, 7-1 
data area, 7-2 
fine tables, 7-2 
locating data, 7-2 

procedures 
ISMCLOSE, 7-16 
ISMDELETE, 7-22 
ISMGETKEYSTRUCTURE, 7-14 
ISMOPEN, 7-15 
I SMRANDOMREAD, 7-20 
ISMRANDOMWRITE, 7-20 
ISMREWRITE, 7-21 

8600 0460-100 



ISMSEQUENTIALREAD, 7-19 
ISMSEQUENTIALWRITE, 7-18 
ISMSETUPLIMIT, 7-23 
ISMSTART, 7-17 

prograrninterface, 7-3 
recovery, 7-35 

messages, 7-35 
warnings, 7-35 

KEYEDIOII files, copying, 3-37 
KIND attribute, determining for COPY 

command in DUMPALL, 3-17, 3-24 

L 

LABEL option, in PATCH, 9-8 
<last> 

$.INSERT option, in PATCH, 9-19 
$.MOVE option, in PATCH, 9-25 

LASTACCESSDATE modifiet; 4-7,4-16 
LASTACCESSDATE modifiet; in 

FILEDATA, 5-51 
LASTRECORD IS UNKNOWN message 

FILEDATA, 5-51 
LASTRECORD modifiet; in FILEDATA, 

5-51 
<length>, RECORD command, in 

RLTABLEGEN, 11-6 
<letter> 

basic constructs, in INTERACTIVEXREF, 
6-3 

option, in FILECOPY, 4-12 
serial number, in DUMP ALL, 3-73 

LEVEL modifiet; in FILEDATA, 5-51 
LffiMT command, in DUMP ALL, 3-12, 3-45 
library maintenance tape restrictions 

copying, 3-45 
listing, 3-45 

LICENSEKEY modifiet; in FILEDATA, 5-51 
LINEWIDTH modifier, in FILEDATA, 5-51 
LIST command 

in INTERACTIVEXREF, 6-21 
listing files from a remote host in 

DUMP ALL, 3-47, 3-53 
LIST command, in DUMP ALL, 3-12, 3-46, 

3-57 
LISTD option, in PATCH, 9-8 
LISTIoption, in PATCH, 9-8 
listing files from a remote host in 

DUMP ALL, 3-47, 3-53 
LIS TN option, in PATCH, 9-8 
LISTP option, in PATCH, 9-8 

8600 0460-100 

Index 

<literal compiler record>, in PATCH, 9-5 
LOAD command, in INTERACTlVEXREF, 

6-22 
LOCATE command, in 

INTERACTlVEXREF, 6-23 
LOCKEDFILE modifier, in FILEDATA, 5-51 

M 

MARK option, in PATCH, 9-8 
MARKBLANK option, in PATCH, 9-8 
master control program 

in SORT, 12-1 
LABEL recognition routine, 11-1 

mathematical functions 
ALGAMA, 8-1 
ALOG, 8-2 
ALOG10,8-2 
ARCOS, 8-2 
ARSIN,8-2 
ATAN, 8-3 
ATAN2,8-3 
CABS, 8-12 
CCOS, 8-12 
CEXp, 8-13 
CLOG, 8-13 
common constants, 8-15 
complex functions, 8-11 
COS, 8-3 
COSH, 8-4 
COTAN, 8-4 
CSIN,8-14 
CSQRT, 8-14 
DARCOS,8-7 
DARSIN,8-8 
DATAN,8-8 
DATAN2, 8-8 
DCOS,8-8 
DCOSH,8-8 
DERF, 8-9 
DERFC,8-9 
description of; 8-1 
DEXP, 8-9 
DGAMMA, 8-9 
DLGAMMA, 8-9 
DLOG, 8-10 
DLOG 10, 8-10 
DSIN, 8-10 
DSINH, 8-10 
DSQRT, 8-10 
DTAN, 8-10 

Index-II 



Index 

DTANH, 8-11 
ERF, 8-4 
ERFC, 8-5 
EXP, 8-5 
function names equation table, 8-17 
GAMM1\8-5 
permissible argument range, 8-16 
RANDOM, 8-5 
SIN, 8-6 
single-precision functions, 8-1 
SINH, 8-6 
SQRT, 8-7 
TAN,8-7 
TANH,8-7 

<maximum errors>, in COMPARE, 2-2 
MAXRECSIZE 

attribute 
in DUMPALL, 3-4, 3-6,3-78 
in ISAM, 10-7 

modifier, in FILEDAT1\ 5-52 
<maxrecsize>, old specs, in DUMPALL, 

3-78 
MCp, (See master control program) 
MERGE command, in INTERACTIVEXREF, 

6-24 
MINRECSIZE 

attribute, in ISAM, 10-7 
modifier, in FILEDAT1\ 5-52 

<mnemonic> 
field definition, in DUMPALL, 3-73 
format definition, in DUMP ALL, 3-77 

MODE command, in DUMPALL, 3-59 
<mode>, RECORD command, 11-7 
modes, DUMPALL 

card,3-65 
interactive, 3-65 
parameter, 3-64 

<MOVE option>, immediate option, in 
PATCH, 9-8 

N 

<name> 
basic constructs, in DUMP ALL, 3-72 
directory name, in DUMPALL, 3-70 
file title, in DUMPALL, 3-71 
host name, in DUMP ALL, 3-71 
usercode, in DUMP ALL, 3-73 

NAMESONLY modifier, in FILEDATA, 5-52 
NDLII option, in PATCH, 9-8 
NEW option, in PATCH, 9-8 

Index-12 

NEWDATABASE modifier, in FILEDAT1\ 
5-52 

NEXT command, in DUMPALL, 3-60 
< non quote EBCDIC character>, 5-3 
NONRESIDENTONLY modifier, in 

FILEDAT1\ 5-52 
NOREPORTS request, in FILEDAT1\ 5-39 
NOTE modifier, in FILEDATA, 5-52 
<number> 

COINCIDENCE command, in 
INTERACTIVEXREF, 6-24 

DECLARATIONS command, in 
INTERACTlVEXREF, 6-11 

field definition, in DUMPALL, 3-73 
MERGE command, in 

INTERACTlVEXREF, 6-24 
RECORD command, in DUMPALL, 3-62 
REFERENCE command, in 

INTERACTIVEXREF, 6-29 
SKIP command, 3-63 
$.LABEL, in PATCH, 9-21 
$.TOTAL, in PATCH, 9-28 

< numeric report request> 
definition, in FILEDATA, 5-55 

o 

DIR command, in FILEDATA, 5-58 
parameter list, in FILEDATA, 5-5 

<old packdir syntax> 
DIR command, in FILEDATA, 5-58 
in FILEDAT1\ 5-56 
parameter list, in FILEDATA, 5-5 

<old specs> 
basic constructs, in DUMP ALL, 3-78 
CAT command, in DUMP ALL, 3-14 
COpy command, in DUMP ALL, 3-21 
LIST command, in DUMP ALL, 3-46 
OPEN command, in DUMP ALL, 3-60 
TEST command,in DUMPALL, 3-52 

OPEN command, in DUMP ALL, 3-60 
options in FILECOPY, 4-12 
OUT option, in PATCH, 9-8 
<output medium> modifier, in FILECOPY, 

4-9 
<output option> 

ARCHIVEINFO request, in FILEDAT1\ 
5-11 

AREASUMMARY request, in FILEDAT1\ 
5-13 

8600 0460-100 



p 

ATTRIBUTES request, in FILEDATA, 
5-14 

CATALOGINFO request, in FILEDATA, 
5-20 

CODEFILEINFO request, in FILEDATA, 
5-24 

COMPATIBILITY request, in FILEDATA, 
5-28 

COPYDECK request, in FILEDATA, 5-30 
FILENAMES request, in FILEDATA, 

5-32 
HEADERCONTENTS request, in 

FILEDATA, 5-35 
INCOMPATIBILITY request, in 

FILEDATA, 5-37 
STRUCTUREMAP request, in 

FILEDATA, 5-41 

PACKNAME modifiet; in FILEDATA, 5-52 
PAGESIZE modifiet; in FILEDATA, 5-53 
< parameter list> 

DIR command, in FILEDATA, 5-58 
in FILEDATA, 5-5 

PASCAL option, in PATCH, 9-8 
Pascal, using with INTERACTIVEXREF, 

6-38 
<patch comment record>, in PATCH, 9-6 
<patch control record>, in PATCH, 9-8 
<patch delimiter record>, in PATCH, 9-6 
<patch patch record>, in PATCH, 9-6 
<patch records to the moved material> 

$.MOVE option, in PATCH, 9-25 
PATCH utility 

compiler control options, 9-4 
control record categories, 9-3 
control records, 9-4 

$. RECORDS, 9-8 
$* RECORDS, 9-7 
$- RECORDS, 9-6 
$: RECORDS, 9-6 
$& RECORDS, 9-5 
$# RECORDS, 9-6 

debug options, 9-29 
$.BUG, 9-30 
$.CANDE, 9-30 
$.DISCARD, 9-31 
$.END, 9-31 
$.EQUATE, 9-32 
$.PDUMp, 9-32 

8600 0460-100 

examples of input, 9-33 
explanation of, 9-1 
files used by, 9-3 
required conditions, 9-3 
running, 9-1 
$. OPTIONS, 9-10 

$.BRIEF, 9-10 
$.COBOL, 9-11 
$.COBOL74, 9-11 
$.COMPARE, 9-11 
$.COMPILE, 9-12 
$.CONFLICT, 9-12 
$.COUNT, 9-13 
$.CYCLE, 9-13, 9-28 
$.DELETE, 9-13 
$.DELIMOPT, 9-14 
$.DISK, 9-15 
$.DISK $, 9-18 
$.DUMp, 9-16 
$.EOF, 9-17 
$.ERRLIST, 9-17 
$.EXECUTE, 9-17 
$.FILE, 9-18 
$.FLAG, 9-18 
$.GUARD, 9-19 
$.INSERT, 9-19 
$.LABEL, 9-21 
$.LIST, 9-22 
$.LISTD, 9-22 
$.LISTI, 9-22 
$.LISTN, 9-23 
$.LISTp, 9-23 
$.MARK, 9-23 
$.MARKBLANK, 9-24 
$.MOVE, 9-25 
$.NDLII, 9-26 
$.NEW, 9-26 
$.OUT, 9-26 
$.PASCAL, 9-27 
$.PATCHDECK, 9-18 
$.RPG, 9-27 
$.SINGLE, 9-27 
$.8QUASH, 9-28 
$.TOTAL, 9-28 
$.VERSION, 9-28 

<patch WFL record>, in PATCH, 9-7 
< patch>, 9-6 

Index 

<PATCHDECKoption>, immediate option, 
in PATCH, 9-8 

<pdump option>, in PATCH, 9-30 
permissible argument range, mathematical 

functions, 8-16 

Index-13 



Index 

PERMITTEDACTIONS modifier, in 
FILEDATA, 5-53 

PLIISAM files 
copying, 3-37 

<pointer-valued attribute> 
basic constructs, in DUMPALL, 3-72 

PREVIOUS command, in DUMPALL, 3-61 
PRINT command, in DUMPALL, 3-61 
<print option> 

basic construct, in DUMPALL, 3-79 
DMPMT command, in DUMPALL, 3-39 
LIST command, in DUMPALL, 3-46, 3-57 
TEST command, in DUMPALL, 3-52 

print options, in DUMPALL, 3-79 
<procedure identifier> 

LIST command, in INTERACTIVEXREF, 
6-21 

procedure specification, in 
INTERACTIVEXREF, 6-4 

<procedure specification> 
basic constructs, in INTERACTIVEXREF, 

6-4 
<procedure specification>, in 

INTERACTIVEXREF, 6-7 

Q 

QUALIFY command, in 
INTERACTIVEXREF, 6-28 

QUIT command, in DUMP ALL, 3-62 

R 

railroad diagrams, explanation o( A-I 
RANDOM mathematical function, 8-5 
RANGE command, in INTERACTIVEXREF, 

6-28 
< range specification> 

basic constructs, in INTERACTIVEXREF, 
6-7 

COINCIDENCE command, in 
INTERACTIVEXREF, 6-24 

DECLARATIONS command, in 
INTERACTIVEXREF, 6-11 

MERGE command, in 
INTERACTIVEXREF, 6-24 

RANGE command, in 
INTERACTIVEXREF, 6-28 

Index-14 

REFERENCE command, in 
INTERACTIVEXREF, 6-29 

<range> 
CHECKERBOARD request, in 

FILEDATA, 5-22 
RAWHEADERS modifier, in FILEDATA, 

5-53 
RECOGNITION command, in 

RLTABLEGEN utility, 11-5 
RECORD command, in DUMPALL, 3-62 
RECORD command, in RLTABLEGEN 

utility, 11-6 
<record number> 

RECORD command, in RLTABLEGEN, 
11-6 

record range list, in DUMPALL, 3-80 
skip specification, in DUMPALL, 3-82 

< record range list> 
basic constructs, in DUMP ALL, 3-80 
CAT command, in DUMPALL, 3-14 
COpy command, in DUMPALL, 3-21 
DMPMT command, in DUMPALL, 3-39 
HEXDSK command, in DUMPALL, 3-43 
LIST command, in DUMPALL, 3-46, 3-57 
TEST command, in DUMP ALL, 3--52 

record size, in DUMP ALL, 3-6 
REFERENCE command, in 

INTERACTIVEXREF, 6-29 
<reference>, DECLARATIONS command, 

in INTERACTIVEXREF, 6-11 
<relation> 

basic constructs, in FILEDATA, 5-3 
CODEFILEINFO request, in FILEDATA, 

5-24 
< release level> 

basic constructs, in FILEDATA, 5-3 
CODEFILEINFO request, in FILEDATA, 

5-24 
RELEASEID modifier, in FILEDATA, 5-53 
reports, in FILEDATA, 5-1 
REQUESTED FILE OR DIRECTORY NOT 

FOUND message, 5-6 
RESET command, in INTERACTIVEXREF, 

6-32 
RESIDENTONLY modifier, in FILEDATA, 

5-53 
RLTABLEGEN utility 

commands 
FIELD, 11-6 
ID,11-3 
RECOGNITION, 11-5 
RECORD, 11-6 

8600 0460-100 



definition, 11-1 
procedures, 11-1 
running, 11-2 

RPG option, in PATCH, 9-8 
RTOR intrinsic, 8-5 

s 
SAVEFACTOR modifier, in FILEDATA, 5-53 
SECURITY modifier, in FILEDATA, 5-53 
<seq number> 

LIST command, in INTERACTIVEXREF, 
6-21 

<sequence number column>, in COMPARE 
utility, 2-2 

<sequence number> 
EXPAND command, in 

INTERACTIVEXREF, 6-17 
procedure specification, in 

INTERACTIVEXREF, 6-4 
range specification, in 

INTERACTIVEXREF, 6-7 
<sequence range>, LIST command, in 

INTERACTIVEXREF, 6-21 
<serial number list> 

destination, in ,FILECOPY, 4-9 
modifier, in FILECOPY, 4-9 

<serial number> 
basic constructs, in DUMPALL, 3-73 
file attribute assignment, in DUMPALL, 

3-71 
SET command, in INTERACTIVEXREF, 

6-32 
SIN mathematical function, 8-6 
SINGLE option, in PATCH, 9-8, 9-27 
single-precision functions, 8-1 

exponentiation, 8-5 
SINH mathematical function, 8-6 
SKIP command, in DUMPALL, 3-63 
< skip specification> 

basic constructs, in DUMP ALL, 3-82 
CAT command, in DUMPALL, 3-14 
COpy command, in DUMP ALL, 3-21 
DMPMT command, in DUMPALL, 3-39 
HEXDSK command, in DUMP ALL, 3-43 
LIST command, in DUMPALL, 3-46, 3-57 
TEST command, in DUMPALL, 3-52 

SL (Support Library) command 
in ISAM, 10-1 
in KEYEDIO, 7-3 

SORT utility 

8600 0460-100 

characteristics of sort modes, 12-7 
collating sequences, 12-51 
determining sort mode, 12-7 
explanation of, 12-1 
input file, 12-2 
input procedure, 12-2 
output file, 12-3 
output procedure, 12-3 
parameters 

compare procedure, 12-3 
disk size, 12-6 
input, 12-2 
memory size, 12-4 
number of tapes, 12-4 
output, 12-3 
record size, 12-4 

Index 

<source file name> modifier, in FILECOPY, 
4-9 

<source file name> modifier, in FILEDATA, 
4-11 

<source from group> file modifier, in 
FILECOPY, 4-9 

<source from group> modifier, in 
FILEDATA, 4-10 

<source> 
file specification, in FILECOPY, 4-8 
modifier, in FILECOPY, 4-9 

SQRT mathematical function, 8-7 
SQUASH option, in PATCH, 9-8 
STOP command, in INTERACTIVEXREF, 

6-33 
<string> modifier, in FILE COPY, 4-9 
structural file attributes, in DUMPALL, 3-5 
STRUCTUREMAP request, in FILEDATA, 

5-41 
<subrange specification>, in 

INTERACTIVEXREF, 6-7 
SUMMARY 

command, in INTERACTIVEXREF, 6-33 
modifier in FILEDATA, 5-22 

SYMBOL command, in 
INTERACTIVEXREF, 6-34 

T 

TAN mathematical function, 8-7 
TANH mathematical function, 8-7 
tape labels 

installation-defined 
restrictions, 11-1 

Tape labels 

Index-15 



Index 

installation -defined 
LABEL description format, 11-2 
RLTABLEGEN commands, 11-3 

TAPE modifier, 5-32 
<tape name> 

basic constructs, in FILEDATA, 5-3 
FILENAMES request, in FILEDATA, 

5-32 
NOREPORTS request, in FILEDATA, 

5-39 
<tape serial number> 

ARCHIVEINFO request, in FILEDATA, 
5-11 

ATTRIBUTES request, in FILEDATA, 
5-14 

BACKUP request, in FILEDATA, 5-17 
basic constructs, in FILEDATA, 5-3 
CATALOGINFO request, in FILEDATA, 

5-20 
FILENAMES request, in FILEDATA, 

5-32 
TAPEDffi request, in FILEDATA, 5-43 
tapes 

format of, in DUMPALL 
labeled, 3-85 
unlabeled, 3-84 

labels, restrictions on installation-defined, 
11-1 

library maintenance, in DUMPALL 
copying, 3-45 
listing, 3-45 

nonstandard names, copying, 3-25 
unloading, suppressing in DUMPALL, 

3-19, 3-26 
<task request>, in FILEDATA, 5-10 
TDIR command, in FILEDATA, 5-59 
TERMINAL command, in 

INTERACTIVEXREF, 6-35 
TEST command, in DUMPALL, 3-12, 3-52 
TIMESTAMP modifier, in FILEDATA, 5-54 
<timestamp> 

basic constructs, in FILECOPY, 4-4 
CREATED/ACCESSEDAJPDATED 

request, 4-5 
EXPIRED request, in FILECOPY, 4-7 

TITLE modifier, in FILEDATA, 5-54 
<title>, $.INSERToption, in PATCH, 9-19 
<total option>, in value option, in PATCH, 

9-9 
TOTALSECTORS modifier, in FILEDATA, 

5-54 
<trainID> 

Index-16 

DMPMT command, in DUMPALL, 3-39 
LIST command, in DUMPALL, 3-46, 3-57 
TEST command, in DUMPALL, 3-52 

translation, data or character set, in 
DUMPALL, 3-9 

u 
<underscore>, basic constructs, in 

DUMPALL, 3-73 
<unit number> 

basic constructs, in FILEDATA, 5-3 
FILENAMES request, in FILEDATA, 

5-32 
NOREPORTS request, in FILEDATA, 

5-39 
TAPEDIR request, in FILEDATA, 5-43 
TDIR command, in FILEDATA, 5-59 

UNITS modifier, in FILEDATA, 5-54 
unloading tapes, suppression of, 3-19,3-26 
<usercode> 

basic constructs, in DUMP ALL, 3-73 
basic constructs, in FILEDATA, 5-3 
file name, in FILE COPY, 4-3 

USERINFO modifier, in FILEDATA, 5-54 

v 
<value option>, patch control record, in 

PATCH, 9-8 
variable length records, 3-7 
VERSION modifier, in FILEDATA, 5-54 
<version number> 

$.FLAG, in PATCH, 9-18 
$.VERSION, in PATCH, 9-28 

<version option>, in value option, in 
PATCH, 9-9 

<volume name> 
basic constructs, in FILEDATA, 5-3 
TAPEDIR request, in FILEDATA, 5-43 
TDIR command, in FILEDATA, 5-59 

w 
WARNINGS modifier, in FILEDATA, 5-54 
<WFL statement>, patch WFL record, in 

PATCH, 9-7 

8600 0460-100 



WHAT command, in INTERACTIVEXREF, 
6-36 

WHATFILES command, in 
INTERACTIVEXREF, 6-36 

x 
XREFANALYZER 

explanation of, 13-1 
use by INTERACTIVEXREF, 6-1 

.XREFFILES 
producing for INTERACTIVEXREF, 6-1 

$. FLAG option, in PATCH, 9-18 
$. OPTIONS, (See PATCH utility) 
$.BRIEF option, in PATCH, 9-10 
$.BUG option, in PATCH, 9-30 
$.CANDE option, in PATCH, 9-30 
$.COBOL option, in PATCH, 9-11 
$.COMPARE option, in PATCH, 9-11 
$.COMPILE option, in PATCH, 9-12 
$.CONFLICToption, in PATCH, 9-12 
$.COUNT option, in PATCH, 9-13 
$.CYCLE option, in PATCH, 9-13, 9-28 
$.DELETE option, in PATCH, 9-13 
$.DELIMOPT option, in PATCH, 9-14 
$.DISCARD option, in PATCH, 9-31 
$.DISK $ option, in PATCH, 9-18 
$.DISK option, in PATCH, 9-15 
$.DVMP option, in PATCH, 9-16 
$.END option, in PATCH, 9-31 
$.EOF option, in PATCH, 9-17 
$.EQUATE option, in PATCH, 9-32 
$.ERRLISToption, in PATCH, 9-17 
$.EXECUTE option, in PATCH, 9-17 
$.FILE option, in PATCH, 9-18 
$.GUARD option, in PATCH, 9-19 
$.INSERT option, in PATCH, 9-19 
$.LABEL option, in PATCH, 9-21 
$.LIST option, in PATCH, 9-22 
$.LISTD option, in PATCH, 9-22 
$.LISTloption, in PATCH, 9-22 
$.LISTN option, in PATCH, 9-23 
$.LISTP option, in PATCH, 9-23 
$.MARK option, in PATCH, 9-23 
$.MARKBLANK option, in PATCH, 9-24 
$.MOVE option, in PATCH, 9-25 

8600 0460-100 

Index 

$.NDLII option, in PATCH, 9-26 
$.NEW option, in PATCH, 9-26 
$.OUT option, in PATCH, 9-26 
$.PASCAL option, in PATCH, 9-27 
$.PATCHDECKoptions, in PATCH, 9-18 
$.PDUMP option, in PATCH, 9-32 
$.RPG option, in PATCH, 9-27 
$.8QUASH option, in PATCH, 9-28 
$.TOTAL option, in PATCH, 9-28 
$.VERSION option, in PATCH, 9-28 

Index-17 



Index-I8 8600 0460-100 



I 
I 
I Help Us To Help You 
I Publication Title 

I Document Number Date 

I 
I 
I 
I 

Unisys Corporation is interested in your comments and suggestions regarding this manual. We 
will use them to improve the quality of your Product Information. Please check type of 
suggestion: 

I 0 Addition o Deletion 

I I Recommended Change (Please identify affected pages) 

I 
I 
I 
I 
: Name 

I Title 

I Address (Street, City, State, Zip) 

I 

Telephone Number 

Company 

o Revision 

,-----------------------------
I 
I Help Us To Help You 
I Publication Title 

I Document Number Date 

I 
I Unisys Corporation is interested in your comments and suggestions regarding this manual. We 

will use them to improve the quality of your Product Information. Please check type of 
suggestion: 

o Addition o Deletion 

Recommended Change (Please identify affected pages) 

I 
I 
I 
I I Name 

I Title 

I Address (Street, City, State, Zip) 

I 

Telephone Number 

Company 

o Revision 

,----------------------------
I 
I Help Us To Help You 
I Publication Title 

I Document Number 
I 

Date 

I 
I 
I 

Unisys Corporation is interested in your comments and suggestions regarding this manual. We 
will use them to improve the quality of your Product Information. Please check type of 
suggestion: 

I 0 Addition o Deletion 

I 
I Recommended Change (Please identify affected pages) 

I 
I 
I 
I 
I 
I Name 

I Title 

I Address (Street, City, State. "Zip) 

I 

Telephone Number 

Company 

o Revision 



BUSINESS REPLY MAIL 
First Class Permit No. 817 

Postage Will Be Paid By Addressee 

Unisys Corporation 
ATTN: Publications 
25725 Jeronimo Road 
Mission Viejo, CA 92691-9826 USA 

Detroit. MI 48232 

11.1,".1.1.11 .. 1.111 ... 111.1,,1111,"1.1.11 .. 1111.1 

No Postage 
necessary 
if mailed in the 
United States 

I 
I 
I 
I 
I 
I 

------------lnl[-------~~;--l 
II if m.ikld in 1he I 

BUSINESS REPLY MAIL 
First Class Permit No. 817 

Postage Will Be Paid By Addressee 

Unisys Corporation 
ATTN: Publications 
25725 Jeronimo Road 
Mission Viejo, CA 92691-9826 USA 

Detroit. MI 48232 

United States I 
I 
I 
1 

------------lnlrr-------~~--l, 
II II . m.~d .1he 

BUSINESS REPLY MAIL 
First Class Permit No. 817 

Postage Will Be Paid By Addressee 

Unisys Corporation 
ATTN: Publications 
25725 Jeronimo Road 
Mission Viejo, CA 92691-9826 USA 

Detroit. MI 48232 

11.111111.1.11111.1'"11111.1,,11111,,1.1.11111111.1 

United States I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

I 
I 
1 

-I 
I 





III~III~IIIIIII M 111I1111111~lllIi 1111 ~IIIIIIIIIIIII~III 
86000460-100 


