UNISYS A Series
COBOL ANSI-74

Programming
Reference Manual
‘Volume 1:

Basic Implementation

Release 3.9.0 September 1991

Printed in U S America
Priced Item 8600 0296-000

UNISYS

A Series

COBOL ANSI-74

Programming
Reference Manual
Volume 1:

Basic Implementation

Copyright © 1991 Unisys Corporation.
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0 September 1991

Printed in U S America
Priced ltem » 8600 0296-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be farwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 19 Morgan,
Irvine, CA 92718.

Page Status

Page ' Issue
iii through xi -000
Xii Blank
xiii through xxvii . -000
Xxviii Blank
XXiX -000
XXX Blank
xxxi through xxxii -000
1-1 through 1-13 -000
1-14 Blank
2-1 through 2-19 -000
2-20 Blank
3-1 through 3-9 -000
3-10 Blank
4-1 through 4-3 -000
4-4 Blank
5-1 through 5-33 -000
5-34 ‘ "Blank
6-1 through 6-25 -000
6-26 Blank
7-1 through 7-55 : -000
7-56 Blank
8-1 through 8-39 ' -000
8-40 Blank
9-1 through 9-169 -000
9-170 Blank
10-1 through 10-2 -000
11-1 through 11-11 -000
11-12 Blank
12-1 through 12-38 -000
13-1 through 13-7 -000
13-8 Blank
14-1 through 14-29 -000
14-30 Blank
15-1 through 15-17 -000
15-18 - Blank
16-1 through 16-120 -000
17-1 through 17-47 -000
17-48 Blank
continued

8600 0296-000

Page Status

continued
Page Issue
A-1 through A-4 ' -000
B-1 through B-7 -000
B-8 Blank
C-1 through C-16 -000
D-1 through D-13 -000
D-14 Blank
Glossary-1 through 29 -000
Glossary-30 Blank
Bibliography-1 through 2 -000
Index—1 through 42 -000

Unisys uses an 11-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has a suffix of -000. A suffix of —130 designates the
third update to revision 1. The third digit (z) is used to indicate an errata for a particular
level and is not reflected in the page status summary. ,

8600 0296-000

About This Manual

Purpose

This manual describes the various features of Common Business Oriented Language
(COBOL) ANSI-74 as implemented on Unisys A Series systems and provides reference
material about the COBOL language

Acknowledgment

Any organization wishing to reproduce this COBOL manual in whole or in part as the
basis for an instruction manual or for any other purpose is free to do so. However, all
such organizations are requested to reproduce this section as part of the introduction
to the manual. Those using a short passage, as in a book, need not quote this entire
preface.

COBOL is an industry language and is not the property of any company or group of
companies or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the COBOL
Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contractor or by the committee in
connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should be directed to the Executive Committee of
the Conference on Data Systems Language. .

The authors and copyright holders of the copyrighted material used herein have
specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. These authors or copyright holders are the following:

e FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the
Univac R I and 11, Data Automation Systems, copyrighted 1958, 1959 by Sperry
Rand Corporation

o IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by International
Business Machines Corporation

o FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

8600 0296-000 - ' v

<

About This Manual

Scope

This two-volume set provides a complete description of COBOL74 as implemented
for use on A Series systems. This volume provides the syntax and rules specific to
COBOL74. Volume 2 contains the syntax for using COBOL74 to write application
programs that interface with the following products:

e Advanced Data Dictionary System (ADDS)

e Data Management System II (DMSII)

¢ Communications Management System (COMS)

e DMSII Transaction Processing System (TPS)

¢ Semantic Information Manager (SIM)

o Screen Design Facility (SDF)

e Screen Design Facility Plus (SDF Plus)

Audience

The primary audience for this manual includes programmers and system analysts
who are experienced in developing, maintaining, and reading COBOL programs. The
secondary audience consists of technical support personnel and information systems
management. A possible tertiary audience includes programmers who are learning
COBOL, but the manual is not designed for this audience.

Prerequisites

To use this manual, you should be familiar with the general concepts of COBOL
programming.

How to Use This Manual

vi

Throughout this manual, Volume 2 refers to the A Series COBOL ANSI-74
Programming Reference Manual, Volume 2: Product Interfaces, unless a different
manual title is specified.

Unisys standard COBOL74 is based on, and is fully compatible with, the American
National Standard programming language COBOL, X3.23-1974. Throughout this
manual, extensions to the American National Standard Programming Language COBOL,
X3.23-1974 are identified as such with the phrase Unisys extension.

The elements of the language are described in the order in which they are coded in a
program. The IDENTIFICATION DIVISION is described first; the PROCEDURE
DIVISION is described last. For a statement or a clause, individual elements are
described in the order in which they are listed in the format.

8600 0296000

About This Manual

COBOL modules including the Report Writer, Debugging, Communication,
Segmentation, and Inter-Program Communication modules are described in separate
sections. :

The GENERALSUPPORT system Hbréry must be installed before you can use the
features of the COBOL74 compiler described in this manual.

Organization

This manual has 17 sections and 4 appendixes. In addition; a glossary, a bibliography, and
an index appear at the end of the manual.

Section 1. Program Structure

This section includes a brief introduction to the COBOL language and to source
programs.

Section 2. Language Elements

This section describes the elemental constructs of COBOL (including words, names,
literals, and character strings) and the rules governing their association into sentences,
clauses, and paragraphs.

Section 3. File and Task Concepts

This section describes a number of concepts pertaining to files and tasks. These concepts
include the physical and logical aspects of a file, file organization, file attributes, task
attributes, and related concepts.

Section 4. IDENTIFICATION DIVISION

This section specifies the function, format, and elements of the IDENTIFICATION
DIVISION of a COBOL source program.

Section 5. ENVIRONMENT DIVISION

This section specifies the function, format, and elements of the ENVIRONMENT
DIVISION of a COBOL source program.

Section 6. Data Concepts

This section describes a number of concepts pertaining to records and data. The record
concept encompasses structure, record level, and data items in the record. The data
concept includes data type, data alignment, and data referencing. The table concept for
handling sets of data includes subscripting and indexing.

Section 7. DATA DIVISION

This section specifies the function, format, and elements of the DATA DIVISION of a
COBOL source program.

8600 0296-000 ; vii

About This Manual

viii

Section 8. PROCEDURE DIVISION Concepts

This section includes a general description of the PROCEDURE DIVISION structure,
statements and sentences, functions, arithmetic expressions, conditions, and the
functions of the verbs.

Section 9. PROCEDURE DIVISION Statements

This section specifies the function, format, and elements of the PROCEDURE
DIVISION of a COBOL source program.

Section 10. Segmentation

This section describes the standard COBOL segmentation module. This module is used
to divide a very large program into segments.

Section 11. Debugging

This section describes the COBOL debug module. This module is used to monitor data
item values and program-control status during program execution. A programming
example is provided at the end of the section.

Section 12. Report Writer

This section describes the Report Writer module of COBOL. A programming example is
provided at the end of the section. :

Section 13. ANSI Inter-Program Communication (IPC)
This section describes the COBOL Intér-Progra.m Communication (IPC) module.

Section 14. COMMUNICATION SECTION

This section describes the COBOL communications module and COBOL message control
system (MCS).

Section 15. Libraries

This section describes the A Series library feature, which is a separate feature from the
COBOL library feature and the COBOL IPC module.

Section 16. Internationalization

This section includes a general introduction to internationalization concepts and a
summary of CENTRALSUPPORT library procedures. Each library procedure, with its
parameters and result, is presented in alphabetical order. A list of error messages and
values ends the section. :

8600 0296000

About This Manual

Section 17. Control of the Compilation Process

This section describes the input and output files used by the COBOL compiler and the
compiler control options that direct compiler processing of COBOL source input.

Appendix A. General Format Notation
This appendix explains the notation aids for interpreting COBOL syntax.

Appendix B. Reserved Words and Keywords
This appendix lists the reserved words in alphabetical order.

Appendix C. EBCDIC and ASCII Character Sets
This appendix lists the values for the EBCDIC and ASCII characters sets.

Appendix D. Examples
This appendix displays examples that show various constructs.

Related Product Information

A Series CANDE Configuration Reference Manual (form 8600 1344)

This manual describes the commands used to perform CANDE control functions and
data communications network control functions. It also describes how to configure
CANDE to meet the resource requirements of the installation. This manual is written
for system administrators and operators.

A Series COBOL ANSI-74 Programming Reference Manual, Volume 2: Product
Interfaces (form 8600 0130)

This manual describes the extensions to the standard COBOL ANSI-74 language.
These extensions are designed to allow application programs to interface with the
Advanced Data Dictionary System (ADDS), the Communications Management System
(COMS), the Data Management System II (DMSII), the DMSII Transaction Processing
System (TPS), the Screen Design Facility (SDF), the Screen Design Facility Plus (SDF
Plus), and Semantic Information Manager (SIM) products. This manual is written for
programmers who are familiar with COBOL74 programming language concepts and
terms. :

A Series COBOL ANSI-74 Test and Debug System (TADS) Programming Guide
(form 1169901)

This guide documents COBOL74 TADS, an interactive tool for testing and debugging
COBOL74 programs and libraries. This guide is written for programmers familiar with
COBOL.74 programming language concepts and terms.

8600 0296-000 ix

About This Manual

vA Series Distributed Systems Service (DSS) Operations Guide
(form 8600 0122)

This guide describes the capabilities and features of DSS Services. It is intended for
system operators, system administrators, and general computer users.

A Series Editor Operations Guide (form 8600 0551)

This guide describes the operation of the Editor, an interactive tool for creating

and modifying text and program files. This guide is written for experienced and
inexperienced users who are responsible for creating and maintaining text and program
files. '

A Series File Attributes Programming Reference Manual (form 8600 0064).
Formerly A Series I/O Subsystem Programming Reference Manual

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need
to understand the functionality of a given attribute. The A Series I/O Subsystem
Programming Guide is a companion manual.

A Series I/O Subsystem Programming Guide (form 8600 0056). Formerly
A Series I/0 Subsystem Programming Reference Manual

This guide contains information about how to program for various types of peripheral
files and how to program for interprocess communication, using port files. This guide is
written for programmers who need to understand how to describe the characteristics of
afile in a program. The A Series File Attributes Programming Reference Manual is a
companion manual. '

A Series MultiLingual System (MLS) Administration, Operations, and
Programming Guide (form 8600 0288)

This guide describes how to use the MLS environment, which encompasses many Unisys
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in

a multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and

user interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers who
wish to create customized application systems.

A Series System Commands Operations Reference Manual (form 8600 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and
. administrators.

A Series System Software Support Reference Manual (form 8600 0478)

This manual describes a number of facilities used for system monitoring and debugging,
including BARS, DUMPANALYZER, LOGANALYZER, and LOGGER. It also describes

X » ' : ’ 8600 0296-000

About This Manual

the format of the SUMLOG file. This manual is written for system support personnel
and operators.

A Series System Software Utilities Operations Reference Manual
(form 8600 0460)

This manual provides information on the system utilities, such as DCSTATUS,
FILECOPY, and DUMPALL. This manual is written for applications programmers and
operators.

A Series Task Atiributes Programming Reference Manual (form 8600 0502).
Formerly the A Series Work Flow Administration and Programming Guide

This manual describes all the task attributes available on A Series systems. It also gives
examples of statements for reading and assigning task attributes in various programming
languages. The A Series Task Management Programming Guide is a companion
manual.

A Series Transmission Control Protocol/Internet Protocol (TCP/IP)
Implementation Guide (form 1221328)

This guide explains how to install the TCP/IP software in an A Series BNA Version 2
network. It also describes related features and dependencies, such as Distributed
Systems Services (DSS) features supported by TCP/IP and the interfaces to the
Ethernet™ local area network (LAN) and X.25 wide area network (WAN) provided by
the Unisys CP 2000 communications processor.

A Series Work Flow Language (WFL) Programming Reference Manual (form
8600 1047) -

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

Ethernet is a trademark of Xerox Corporation.

8600 0296-000 J Xi

Xii 8600 0296000

Contents

Section 1.

Section 2.

8600 0296-000

About This Manual

Program Structure

.............................

Source Program Components.
Program Divisions e

Sections

Paragraphs . ..

Sentences ..
Statements. .

.............................

Clauses, Phrases, and Options

Words

LinelLayout

Columns 1-6:

.............................

Sequence Area.c.uiu...

Column7:IndicatorArea
Columns 8-11: AreaA
Columns 12-72: AreaB
Columns 73-80: Identification Area
Special-Purpose Lines. .
Commentlings. . ..oivii i ittt i
Continuation Linesccviiiiniinnon.
DebugginglLinesc i,
Compiler Control Options

Blank Lines .

Language Elements

CharacterSet........
Separators
Character Strings '
Word Types
ReservedWords et e
Connectivesc ity
FigurativeConstants
‘Keywords and Optional Words
Special Registers.o

Literals

Special-Character Words [P ‘

..............................

..............................

Context-Sensitive Keywordsc.couvunn
Application-Specific Keywords

System-Name

User-DefinedWordscciiiiivinnnn

.............................

|
OWONNOOOOOTOI P WN -

I—‘)—‘I—‘l—'!—‘l—'l—-‘tl—‘l—‘l—'b—‘i—‘l—‘i—‘ R

2-1
2-2
2-3
2-4
2-4
2-5
2-5
2-8
2-9
2-10
2-11
2-11 -
2-12
2-12
2-14
2-14
2-15
2-16

xiii

Contents

Undigit (Unisys EXENSION) . .. oo v vvveneennn. 2-17
Kanji (Unisys Extension) 2-18

Section 3. File and Task Concepts

Physical AspectsofaFile 3-1
Logical AspectsofaFile 3-1
Assigning a FiletoaDevice................ ..., 3-2
RemoteFiles i, 3-2

PortFiles ... it i i i e 3-2
FileAttributes i, 3-2
File-Attribute Identifiers 3-3
File-Attribute Categories vive e, 3-4
Alphanumeric File-Attribute Identifier. 3-4

Numeric File-Attribute Identifier 3-4

Mnemonic File-Attribute Identifier 3-4

Boolean File-Attribute Identifier. 3-5

Event File-Attribute Identifier 3-5

File Organization and Access Methods 3-5
Sequential Organization 3-5

Relative Organization.ouu 3-5

Indexed Organizationcovuvevnn 3-6
Current-Record Pointer it - 3-6
Task Attributes e 3-6
Task-Attribute Identifiers (Unisys Extension) 3-6
Task-Attribute Types it ii . 3-8
Interrogating Task Attributes 3-8

Section 4. IDENTIFICATION DIVISION

PROGRAM-ID Paragraph 4-2
DATE-COMPILED Paragraph 4-3

Section 5. ENVIRONMENT DIVISION

CONFIGURATION SECTION e 5-2
SOURCE-COMPUTERt 5-2
OBJECT-COMPUTER. e 5-3
SPECIAL-NAMES i i e e 5-5

INPUT-OUTPUTSECTION, 5-11
FILE-CONTROL Paragraph 5-12

Sequential I/O............ 5-13
Relative /O it - 5-17
Indexed /O . ..o vi v . 5-20
Sort-Merge e 5-24
IFO-CONTROL ...ttt ittt e i e i e eeens 5-25

POStatuscciiiiiivir ittt e 5-27
Sequential /OStatus e 5-27
Relative /OStatus v, 5-30

Xiv 8600 0296-000

Contents

Section 6.

Section 7.

8600 0296-000

Indexed /O StatUS .« « o v oo e e veeeeennnn . 5-31

. ENVIRONMENT DIVISION Program Sample 5-33

Data Concepts

Records i e e e 6-1
Levels 6-2
Understanding Elementary and Group ltems 6-2
Organizing Data with Level-Numbers. 6-3
ConstructingaRecord 6-4
Data e 6-5
Classifying Data into Categories and Classes. 6-5
Qualifying Data to Ensure Uniqueness 6-7
AligningData 6-9
Tables e e 6-10
DefiningTables it i i 6-11
Accessing Tables i, 6-12
Subscripting e 6-12
Indexing. o i 6-14
Editing P 6-15
Describing Elementary ltems with Symbols. 6-16
Insertion Editing i 6-19
Simple Insertion Editing 6-19
Special Insertion Editing. e 6-20
Fixed Insertion Editing 6-20
Floating Insertion Editing e 6-21
Zero-Suppression and Replacement Editing 6-22
Editing Methods and Data Categories P 6-23
" Editing Application of the PICTURE Clause. PR 6-24

DATA DIVISION
Sections of the DATADIVISION 7-1
FILESECTION i 7-3
File-Description (FD) Entry o oot s 7-3
BLOCK CONTAINS Clausec.ovuvn.. 7-6
RECORD CONTAINS Clause 7-7
LABEL RECORDS Clause 7-8
VALUEOFClause v i, 7-10
DATARECORDS Clauseccovun.. 7-13
LINAGEClauseo ivvi it it e 7-14
CODE-SETClauseo v i, 7-16
Record Description 7-17
Data-Description Entry for Record Structure 7-17
Data-Name or FILLERClause 7-19
BLANK WHEN ZEROClause 7-20
GLOBAL Clause (Unisys Extension) 7-21
JUSTIFIEDClause vieiii i 7-22
LOCAL Clause (Unisys Extension) 7-23

LOWER-BOUNDS Clause (Unisys Extension) . .. 7-23

XV

Contents

OCCURSClauseoovviniinnnnn.. 5

OWN Clause (Unisys Extension)
PICTUREClauseciiiinnnnn

Defining Data Categories

Determining the Size of the Elementary Item

Using Symbols to Describe Data

Understanding Precedence Rules

RECEIVED Clause (Unisys Extension)

REDEFINES Clause e

SIGNClausecv i e,
SYNCHRONIZED Clause

TYPE Clause (Unisys Extension)

USAGEClausec.ovvvrnnnennnnen..

VALUEClausecvceiinnnnnnnnn.
Data-Description Entry for Renaming Entries
Data-Description Entry for Condition-Names.
WORKING-STORAGESECTION
Noncontiguous WORKING-STORAGE Items
WORKING-STORAGE Records
LOCAL-STORAGE SECTION (Unisys Extension)

Section 8. PROCEDURE DIVISION Concepts

PROCEDURE DIVISION Header

PROCEDUREDIVISIONBodycouv...

Categories of Statements and Sentences

Conditional Statements and Sentences.
Compiler-Directing Imperative Statements and

Sentences
Program-Directing Imperative Statements and

Sentences e

Arithmetic Expressions

ArithmeticOperators,

Formation and EvaluationRules

Numeric Functions

DIV e

MOD .t e e
OFFSET . .ot e
REM .. e e
Multiple Function Calls in an Expression.
Conditional Expressionsc0iiiiiiienann
SimpleConditions
Relation Condition. v
Comparing Numeric Operands
Comparing Nonnumeric Operands
Comparing Kanji Operands
Comparing Index-Names and Index Data
tems. it e e
ClassCondition...............coovvnn.
Condition-Name Condition

7-24
7-28
7-29
7-29
7-31
7-31
7-32
7-34
7-35
7-37
7-38
7-39
7-41
7-46
7-49
7-51
7-53
7-53
7-53
7-54

8-1
8-2
8-4
84

8-5

8-5
8-6
8-6
8-7
8-8
8-8
8-9

8-10

8-12

8-12

8-13

8-13

8-14

8-14

8-16

8-16

8-17

8-17
8-18
8-19

xvi 8600 0296-000

Contents

Section 9.

8600 0296-000

Sign Condition,
Event-ldentifier Condition
Complex Conditions.vvvv ...
Negated Simple Conditions.
Combined and Negated Combined Conditions . . .
Abbreviated Combined Relation Conditions.

Condition EvaluationRules. '

Common Phrases in Statements. e
ROUNDED Phrasecciivvivnnnn
SIZEERRORPhrase oo S
CORRESPONDINGPhrasecivvnenn..

Common Rules for Arithmetic Statements
Calculating Multiple Results with One Arithmetic

Statement
Handling IncompatibleData
Functional Grouping of COBOL74 Verbs

PROCEDURE DIVISION Statements

ACCEPT, e
ADD e e e
ALLOW (Unisys Extension)
ALTER i e
ATTACH (Unisys Extension),

AWAIT-OPEN (Unisys Extension) :

CALL. i et
CAUSE (Unisys Extension)
CHANGE (Unisys Extension) SRR
CIOSE e e
Format 1: Sequential I/O

Devices OtherThanTape

Single-Reel Tape

Multiple-Reel Tape I

Close File Dispositions

Format 2: Relative and Indexed /O

Format 3: Port Files (Unisys Extension)

I/OStatus Value
COMPUTE.................t e
CONTINUE (Unisys Extension)
COPY . e e e e e e
DELETE. ... e e e e
DETACH (Unisys Extension) P
DISALLOW i i i e e
DISPLAY et n e et e

EXIT . e e

8-19
8-20
8-20
8-21
8-21
8-23
8-24
8-25
8-25
8-25
8-26
8-27

8-27
8-28
8-28

9-1
9-3
9-5
9-7
9-7
9-9
9-12
9-19
9-20
9-22
9-23

. 9-23

9-24
9-26
9-27
9-30
9-31
9-34
9-34
9-35
9-36
9-40
9-41
9-42
9-43
9-44
9-48
9-48
9-51
9-52
9-53
9-58

Contents

ComparisonCycle o-58
Tallying and Replacing e 9-59

Establishing Boundaries for the BEFORE or
AFTERPhrasecoiviiiiinvenn, 9-60
Examples of the INSPECT Statement............. 9-60
LOCK (Unisys Extension)ccuvunrurnnninnns 9-62
MERGE e e e o-64
MOVE e 9-68
MULTIPLY i ettt e e 9-73
OPEN e e e 9-75
Format 1: Sequential, Relative, and Indexed I/O 9-75
OpenModescivv it o-78
Format 2: Opening Port Files (Unisys Extension) 9-79
/OStatusValue, 9-83
PERFORM i it i 9-83
PROCESS (Unisys Extension)cccvvunnnnn. 9-92
READ ... e e e e 9-93
Format 1: Sequential Access. 9-94

Format 2: Random Access of Relative or Indexed Files. 9-96
Format 3: Dynamic Access of Relative or Indexed I/O

Files o v 9-98

- Format 4: Random Access of Indexed Files. 9-99

RELEASE i ittt 9-101

RESET (Unisys Extension)ccoviiuiunenennn.. 9-102

RESPOND (Unisys Extension) 9-102

RETURN i i et e e e i e 9-106

REWRITE i i e e 9-108

Sequential /O. i 9-109

Refative /O i 9-109

Indexed /O. i e e 9-109

RUN (Unisys Extension), 9-110

SEARCH e e 9-111

SEEK (Unisys Extension) ivunnn. 9-116

SET . . e 9-116

SORT ... e e e 9-121

START ... e e 9-130

Relative /O Comparison.covinnn. 9-131

indexed I/O Comparisono v v ii i i e ne e 9-131

ReferenceKey Use 9-132

STOP .. e 9-132

STRING e 9-133

SUBTRACT i ittt i it e it et 9-136

UNLOCK (Unisys Extension)cuuu.... 9-139

UNSTRING i it einiinnnns 9-139

USE .. e e e i e 9-151

WAIT (Unisys Extension) uunn, 9-157

WRITE R e 9-160
: Format 1: Sequential I/O and Vertical Positioning of

IR =T 9-161

Format 2: Sequential, Relative, and Indexed /O 9-163

Sequential /O, 9-165

Relative I/O, 9-165

xviii : 8600 0296-000

Contents

Section 10.

Section 11.

Section 12.

8600 0296-000

Indexed /O.,
Port Files (Unisys Extension)
Formats 3 and 4: Kanji Delimiters

Segmentation

Actual COBOL74 Segmentation
Standard COBOL74 Segmentation

Debugging

Compile-Time Switch
Object-TimeSwitch
ENVIRONMENT DIVISION in the Debug Moduie
PROCEDURE DIVISION in the Debug Module
DEBUG-ITEM Special Register
Debugging Lines,
Debug Module Program Sample.

Report Writer

FILE SECTION REPORTClause
REPORT SECTION Report-Description Entry.

CODE Clause (Unisys Extension) ’

CONTROLClause i viii it e i i i nn
PAGECIaUSEo iiiiiii it e

Special Registers0iiiiirivnnnnnnn.
PAGE-COUNTERo,
LINE-COUNTER oo e i

REPORT SECTION Report-Group Descriptions
Format 1 Report-Group Descriptions

LINE NUMBERClause

NEXTGROUP Clause

TYPEClause.cciiiviiiniennn,

USAGE Clause (Report Writer)

Processing Report Groups. . . v« v vv v v e v e v e e

Processing a CONTROL FOOTING Report Group .

Processing a DETAIL Report Group

Processing After Printing a Body Group

Format 2 Report-Group Descriptions

Format 3 Report-Group Descriptions (Unisys Extension)

BLANKWHEN ZEROClause
COLUMN NUMBERClause
GROUP INDICATE Clause
JUSTIFIED Clause e
LINE NUMBERClausecovu...
PICTURECIausecovvinnnn,
SOURCECIauUseiivii it iiinennn
SUMCIaUse . v v et e it

10-1
10-1

11-1
11-1
11-2
11-2
11-5
11-9
11-9

12-1
12-2
12-3
12-5
12-7

12-11
12-11
12-12
12-12
12-13
12-14
12-15
12-16
12-18
12-19
12-19
12-19
12-20
12-20
12-22
12-23
12-23
12-24
12-24
12-24.
12-24
12-25
12-25

Xix

Contents

Section 13.

Section 14.

VALUEClause coiivinnny 12-26

USAGE Clause (Report Writer) 12-26

Summaryof RDEntries 12-27

Understanding Sum Counters 12-27
IncrementingSumCounters 12-28
PROCEDURE DIVISION Statements. 12-29
INITIATE Statement.t i it 12-29
GENERATE Statement 12-30
GENERATE Statement Actions 12-31

Producing Report Groups 12-31

TERMINATE Statemento, 12-32

USE BEFORE REPORTING Statement 12-32

Report Writer Program Example 12-33

ANSI Inter-Program Communication (IPC)

LINKAGE SECTION inthe IPC Module. 13-1
Noncontiguous Linkage Storage 13-2
Linkage Recordso vv it iiiii i e e 13-3
PROCEDURE DIVISION inthe IPC Module 13-3
PROCEDURE DIVISION Header 13-3
CALLStatement i riiinan .. 13-4
CANCEL Statement 13-5
EXIT PROGRAM Statement 13-6
STOPRUNStatement nn... 13-7

COMMUNICATION SECTION

DCILIBRARY Libraryc¢0iuiiiiiiiiinnennn. 14-1
DCIENTRYPOINT ..ot i e i i i e 14-1

Parameter 1 of DCIENTRYPOINT 14-1

Parameter 2 of DCIENTRYPOINT 14-2

Parameter 3 of DCIENTRYPOINT 14-3

Parameter 4 of DCIENTRYPOINT 14-3

Parameter 5 of DCIENTRYPOINT 14-3

Parameter 6 of DCIENTRYPOINT 14-3

Parameter 7 of DCIENTRYPOINT 14-3

Parameter 8 of DCIENTRYPOINT 14-4

Program Sample: CDArayvvviivi v, 14-4

DATA DIVISION in the Communication Module 14-6
PROCEDURE DIVISION in the Communication Module 14-19
ACCEPT MESSAGE COUNT Statement 14-19

DISABLE Statementcciiiiiien. 14-20

ENABLE Statement i vi ittt e 14-21

RECEIVE Statement, 14-22

SEND Statement. i, 14-25

8600 0296-000

Contents

Section 15. Libraries

CreatingalLibrary.......... 15-1

PROCEDURE DIVISION Header in Library Program . . . 15-2

Rules forParameters 15-3

Exitingalibrary. i 15-4

Securingalibrary o oo, 15-5

Referring to a Library e e e 15-5

CALL Statement for Libraries 15-6

. Effect of Library State on a CALL Statement 15-8

CANCEL Statement for Libraries 15-10

Effect of Library Initial State on a CANCEL Statement . 15-11

Library Attributes, 15-12
Types of Library Attributes 15-12~

CHANGE ATTRIBUTE Statement for Libraries 15-13

Library Compiler Control Options 15-14

LIBRARYLOCK oo i et 15-14

SHARING. i e 15-14

TEMPORARY ... i e 15-15

Program Samples of Referringtoa Library 15-16

- Section 16. Internationalization

Accessing the Internationalization Features. 16-2
Using the Ccsversion, Language, and Convention S
Default Settings, 16-2
Understanding the Hierarchy for Default Settings 16-3
Understanding the Components of the MLS Environment. 16-4
Understanding Coded Character Sets and Ccsversions . 16-4
Understanding Mapping Tables - 16-6
Understanding DataClasses 16-6
Understanding Text Comparisons 16-7
Sorting and Merging "~ 16-9
Creating Indexed Files 16-9
Providing Support for Natural Languages 16-10
Creating Messages for an Application Program .. 16-10
Creating Multilingual Messages for Translation .. 16-11
Providing Support for Business and Cultural
Conventions iiiinennnn 16-11
Using the Date and Time Features. 16-12
Formatting Date and Time with Syntax
Elementso i, 16-12
Formatting Date and Time with Library Calls 16-13
Using the Numeric and Currency Features 16-14
Formatting Numerics and Currencies with
Syntax Elements 16-14
Formatting Numerics and Currencies with
LibraryCallsovvii it 16-14
Using the Page Size Formatting Features 16-15

Formatting Page Size with Syntax Elements 16-15
Formatting Page Size with Library Calls ... 16-15

8600 0296-000 v XXi

Contents

Summary of Language Syntax by Division. 16-15
IDENTIFICATION DIVISIONt 16-15
ENVIRONMENTDIVISIONcovut 16-16
DATADIVISION ittt i ii e 16-16
PROCEDUREDIVISIONo i e © o 16-17

Summary of CENTRALSUPPORT Library Procedures. 16-20
LibraryCalls oo i e e e 16-27
Parameter Categories............... e . 16-27

Input Parameters.c.eonn. 16-28
input Parameters with Type Values 16-28
Output Parameters 16-30
Result Parameter 16-30

Procedure Descriptions 16-30
CCSTOCCS_TRANS TEXT .. vvvviin i, 16-31
CCSVSN_NAMES NUMS........... 16-34
CENTRALSTATUSo it 16-37
CNV_CURRENCYEDITTMP_ COB 16-41
CNV_CURRENCYEDIT COB................... 16-44
CNV_DISPLAYMODEL COBcvv v 16-47
CNV_FORMATDATETMP COB 16-50
CNV_FORMATDATE COBcvvieivinnn. 16-53
CNV_FORMATTIMETMP COB-. 16-56
CNV_FORMATTIME COB 16-58
CNV FORMSIZE i 16-61

CCNVONAMES .. 16-64
CNV.SYMBOLS i 16-67
CNV_SYSTEMDATETIMETMP COB 16-75
CNV_SYSTEMDATETIME COB................. 16-78
CNV_TEMPLATE COB S 16-81
CNV_VALIDATENAME 16-84
GET CS MSG.oi ittt 16-86
MCP_BOUND LANGUAGES 16-20
VALIDATE_NAME RETURN NUM 16-93
VALIDATE_NUM_RETURN NAME 16-95
VSNCOMPARE TEXT iiiiininn s 16-98
VSNESCAPEMENT ..., . e 16-102
VSNGETORDERINGFOR_ONE TEXT............. 16-105
VSNINSPECT TEXT ..o iiii i e 16-109
VSNTRANS TEXTot 16-113

Errors e e 16-116
Declarations i i i 16-116
Explanation of ErrorValues 16-117

Section 17. Control of the Compilation Process

Starting a Compilation 17-1
Using Cross-Reference Files 17-1
Performing a Separate Compilation 17-4
Providing the Changed Records. 17-6
Observing Compilation Restrictions 17-6
Compiler Control OptionConcepts 17-7

i ' » 8600 0296-000

Contents

8600 0296-000

Types of Compiler Control Records (CCRs)
Types of Compiler Control Options
Boolean e e e

Compiler Control Option Formats
Option Action Indicators v,
COBOL74 Source and Object Files
InputFiles ... e
OutputFileso i e
Compiler Control Options
BINARYCOMP ... i e e
BINDINFO . ..o e e

CODE ... i e

DEBUG ... o
DELETE . .\t e
DOUBLE ... e
ERRORLIMIT ..o
ERRORLISTo

INFO & v e ettt e
LEVEL © oot e et e
LIBS ORLIBDOLLAR ... oveeeieeaeaeenns
LIBRARYLOCK . v e voee e eee e e
LINEINFO ..., e
1
LISTS of LISTDOLLAR .+« e v eeeeeeeeeeen s

LISTDELETED ... i ‘

LISTOMITTED ..o
LISTP o e
LISTL o e

SEQCHECK ... i
SEQUENCEOrSEQ vt i it i i e eaeas
SequenceBaseiiiiii iy

Xxiii

Contents

Sequence increment 17-37
SHARING. .. .t et e 17-38
SPEC. .t e e e 17-39
STATISTICS . . i i e e i e 17-39
SUMMARY . .. i et 17-40
SymbolicID i 17-40
TADS . i e e e e - 17-40
TARGET........ e e e e e 17-42
TEMPORARY . ..ttt e e e 17-43
USER ... 17-44
VOID . e e e 17-44

COWARNFATAL ittt e e 17-45
WARNSUPR. . .. o e 17-45
XDECS. .. 17-45
XREF . o 17-46
XREFFILES. . . .o i et 17-46
XREFS . .. e 17-47

Appendix A. General Format Notation

Appendix B. Reserved Words and Keywords

Reserved Words it i, B-1
Context-Sensitive Keywords B-6
Application-Specific Keywords B-6

Appendix C. EBCDIC and ASCIl Character Sets

Appendix D. Examples

GlOSSaNY . ..t 1
Bibliography 1
IndeX e 1

XXiv - 8600 0296-000

Examples

8-1.

8-3.
8-4.
8-5.
8-6.
8-7.
8-8.

9-1.
9-2.
9-3.
o4,
9-5,
9-6.
9-7.
- 9-8.

8600 0296-000

Coding Paragraphs ittt ittt i
Coding Area AENtries ... ov ittt it it i e et
Coding Area B Entries for Readability.
CodingCommentLinesttt nnennnn
Coding Continuation Lines e
Coding Debugging Lines. . ..o v i ittt i i ittt e i e

Settingthe BDBASE Option oo,
Coding the IDENTIFICATION DIVISION e
Coding the ENVIRONMENTDIVISIONo oo e e e i

Coding Elementary and Group ltems
Level-Number ConstructionforaRecord
Defining a One-Dimensional Table
Defining a Three-Dimensional Table.o i i i it i ie vt

Coding the LABEL RECORDS Clause. v vt i iii e viane e
Codingthe VALUE OF Clause oottt i e i e e e e e e e e e
Coding the DATARECORDS Clause . . . oo v v vt it vt e e e e i eie e
Effect of the BLANK WHEN ZEROClausec.covunn.
Codingthe GLOBAL Clauseviitiin ittt enannn
Using the GLOBAL CompilerOption i,
Codingthe OWN Clausettt ittt i et e i
Codingthe TYPEClause.o ittt et et e e ns
Coding Condition-Namesttt i
Coding the WORKING-STORAGE SECTIONt

Useof Declaratives ittt e i
Coding the DIV Functionttt
Results of FORMATTED-SIZE Function
Codingthe MOD Function i i ieinn
Coding the OFFSET Function e e
Coding the REM Function............. e e e
Coding Multiple Function Calls in an Expression
Parentheses Restrictions in Simple Conditions

'Coding an AWAIT-OPEN WITH WAIT Statement

Coding an AWAIT-OPEN WITH NO WAIT Statement
Coding an AWAIT-OPEN AVAILABLE Statement
Coding an AWAIT-OPEN...PARTICIPATE Statement
Coding an AWAIT-OPEN...CONNECT-TIME-LIMIT Statement
Coding a CLOSE WITH WAIT Statement,
Coding a CLOSE WITH NOWAIT Statementoovvvvnn.

Coding a CLOSE....ASSOCIATED-DATA Statement

4-2

5-33

6-3
6-5
6-11
6-12

7-10
7-12
7-13
7-20

7-21

7-22
7-28
7-41
7-52
7-54

8-3
8-9
8-9
8-11
8-12
8-13
8-13
8-14

9-11
9-11
9-11
9-12
9-12
9-33
9-33
9-33

Examples

XXVi

9-9.

9-10.
9-11.
9-12.
9-13.
9-14.

9-15.

9-16.
9-17.
9-18.
9-19.
9-20.
9-21.
9-22.
9-23.
9-24.
9-25.
9-26.
9-27.
9-28.

9-29.
9-30.
9-31.
9-32.
9-33.
9-34.
9-35.
9-36.
9-37.

11-1.
11-2.

12-1.

14-1.
14-2.

15-1.
15-2.
15-3.

16-1.
16-2.
16-3.
16-4.
16-5.
16-6.

Coding a CLOSE...ASSOCIATED-DATA-LENGTH Statement 9-33
Closing Multiple Port Files it 9-33
Coding an INSPECT TALLYING Statement with LEADING Option 9-60

Coding an INSPECT TALLYING Statement with BEFORE INITIAL Option . 9-61
Coding an INSPECT TALLYING Statement with LEADING BEFORE Option 9-61
Coding an INSPECT TALLYING Statement with FOR ALL REPLACING

Option .. v e 9-61
Coding an INSPECT REPLACING ALL Statement with BEFORE INITIAL
Option e e e e 9-61
Coding an INSPECT TALLYING REPLACING Statement 9-62
Coding an INSPECT...REPLACING Statement with Literals 9-62
Coding an INSPECT...REPLACING CHARACTERS Statement 9-62
Coding an OPEN Statement e 9-78
Coding an OPEN WAIT Statement. i, 9-82
Coding an OPEN OFFER Statement oo, 9-82
Coding an OPEN NOWAIT Statement 9-82
Coding a RESPOND Statement for an Orderly Close Operation 9-105
Coding a RESPOND Statement That Requests a Dialogue 9-105
Coding a RESPOND Statement That Rejects an Open Request ©-105
Coding a RESPOND Statement That Uses Associated Data 5-105
Coding a RESPOND Statement with Multiple Filtes 9-106
Sort Program Using INPUT PROCEDURE IS and OUTPUT PROCEDURE IS
COPHONS L e e e e 9-128
Coding a Simple UNSTRING Statement 9-146
Coding an UNSTRING Statement Using the DELIMITED BY Option 9-147
Coding an UNSTRING Statement Using the DELIMITED BY ALL Option . 9-147
Coding an UNSTRING Statement Using'the WITH POINTER Option 9-147
Coding an UNSTRING Statement Using Many Options. O-148
Coding an UNSTRING Statement Using the FOR Option 0-148
Coding an UNSTRING Statement Using FOR, WITH POINTER Options .. 9-149
Sample Program Using Format 1 and 2 Examples 9-149
Display from UNSTRING Programo v i i i e e s 9-151
Implicit Description of DEBUG-ITEM Special Register 11-6
Debug Module Sample Programt 11-9
Sample Report Writer Programottt .. 12-33
Example Program for DCI Library Entry Point 14-5
Program Sample: Maintaining Associations of Physical Terminals with
QUEBUES . ittt e e e e 14-17
Callingalibrary e e 15-16 .
Calling a Library by Function. o i 15-17
Substituting a Family Specification 15-17
Coding the Format 3 ACCEPT Statementccovurnn... 16-18
Coding the MOVE Statement for Internationalization 16-19
Sample Data Declarations for Type Value Data ftems 16-29
Calling the CCSTOCCS_TRANS_TEXT Procedure. 16-31
Calling the CCSVSN_NAMES_NUMS Procedurecovvvvn, 16-34
Calling the CENTRALSTATUS Procedureovvivvnnennn. 16-38

8600 0296000

Examples

16-7.
16-8.
16-9.

16-10.
16-11.
le-12.
16-13.
16-14.
16-15.
16-16.
16-17.
16-18.
16-19.
16-20.
16-21.
16-22.
16-23.
16-24.
16-25.
16-26.
16-27.
16-28.
16-29.
16-30.

17-1.
17-2.
17-3.

D-1.
D-2.
D-3.
D-4.
D-5.
D-6.
D-7.
D-8.

8600 0296-000

Calling the CNV_CURRENCYEDITTMP_COB Procedure 16-42
Calling the CNV_CURRENCYEDIT_COB Procedure P 16-45
Calling the CNV_DISPLAYMODEL_COB Procedure 16-47
Calling the CNV_FORMATDATETMP_COB Procedure 16-51
Calling the CNV_ FORMATDATE COB Procedure e 16-53

Calling the CNV_| FORMATTIMETMP COBProcedure. 16-56 -
Calling the CNV_FORMATTIME_COB Procedure 16-59
Calling the CNV_FORMSIZE Proceduret 16-61
Calling the CNV_NAMES Procedure. oot iiii i i e 16-64
Calling the CNV_SYMBOLS Procedureovvvvvvnnn.. T 16-67
Calling the CNV_SYSTEMDATETIMETMP_COB Procedure 16-76
Calling the CNV_SYSTEMDATETIME_COB Procedure 16-79
Calling the CNV_TEMPLATE_COB Procedure 16-81
Calling the CNV_VALIDATENAME Procedure0vuvuunn 16-84
Calling the GET_CS_MSG Procedure e 16-87
Calling the MCP_ BOUND LANGUAGES Procedure 16-20
~Calling the VALlDATE NAME RETURN_NUM Procedure. 16-93
Calling the VALIDATE NUM_ RETURN NAME Procedure. 16-96
Calling the VSNCOMPARE_TEXT Procedureovi e 16-98

Calling the VSNESCAPEMENT Procedure.ovvviin v, l6-102
Calling the VSNGETORDERINGFOR_ONE_TEXT Procedure 16-105
Calling the VSNINSPECT _TEXT ProcedUrE & . . vt e 16-109
Calling the VSNTRANS _ TEXT Procedureooeeeeunnenenn... 16-113
Declaring Message Valuesi i irniiiinenenn.. 16-116
~ Separate Compilation with the Host Title Given asa String. 17-5
Separate Compilation with the Host Title File-Equated ve... 17-5
Understanding the GROUPMOVEWARN Option 17-25
Coding READ and WRITE Statements oo, D-1
Coding Indexed Files with Alternate Keys D-2
Coding OCCURS DEPENDING.ON Phrase in WRITE FROM Statement . . D-4
Coding the SORT Program with the USING and GIVING Options D-6
Coding MERGE Program with the USING and GIVING Options D-7
Coding Remote Files with Variable-Record Lengths D-9
Coding PERFORM Program with the VARYING UNTIL Option. D-11
CodingRemoteFiles it it D-12
XXVii

Xxviii 8600 0296-000

Figures

9-2.
9-3.
11-1.
12-1.
12-2.
12-3.

14-1.
14-2,

17-1.

8600 0296000

LN FOrmat . oo ottt e e e
PICTURE Character PrecedenceChart v v,

Flowchart for the VARYING Phrase of a PERFORM Statement with One
Condition i e e e e e

Flowchart for the VARYING Phrase of a PERFORM Statement with Two
0707 1o 1 (o] 1 -

Flowchart for the SEARCH Statement Containing Two WHEN Phrases. . .

Debugging Output from Debug Module Sample Program
Page Format Control,
input Data File to Sample Report Writer Program
Sample Report Writer Report i

Communication Status Condition inthe Ol-level
Communication Status Key Condition inthe O2-level

Compiler Data Flow P

XXiX

8600 0296-000

Tables

8600 0296-000

Purpose of COBOL74 Divisions

Abbreviated Combined Relation
Equivalents e
Categories of COBOL74 Verbs

Purpose of SeCtionso oottt e e e
Placement of Source Program Component within Areas
Character Set o i i i e
Meaningsof Separatorst e
Figurative Constants ittt i i e et i i
Special-Register Definitions i
Special-CharacterWords i
User-DefinedWordso,
Range of Values Permitted for Fioating-Point Literals
Meaning of Status Code Values for Sequentiat /O
Meaning of Status Code Values for Relative /O
Meaning of Status Code Values for Indexed /Ot
Usage and Maximum Size of a Record Description
Assigning Level-Numbersttt i i e
Level-Numbers Associated with Data-Description Entries
Classes and Categories of Dataltems v,
Alignment Rules for Move Qperation by Data Categories
Describing Elementary items Using Symbols.
Simple Insertion Editing Exampleso oo
Special Insertion Editing Example
Data ltem Values and Results of Editing Sign Control Symbols
Floating Insertion Editing Examples,
Zero-Suppression and Replacement Editing Examples
Data Categories and Editing Methods Allowed
Editing Application of the PICTURE Clause..
COBOL74 and ALGOL Parameter Matchingc..oun..
Defining ltems with the PICTURE Clause PP
Using Symbols to Describe Elementary ftems
VALUE Clause Rulesby DataCategory.o i,
VALUE Clause Rules by Sectiono ininnnnn..
Binary Arithmetic Operators i it
- Unary Arithmetic Operators i,
Combination of Symbols in Arithmetic Expressions
Meanings of Relational Operators e e
Logical Operators and TheirMeaningo i,
Combinations of Conditions, Logical Operators, and Parentheses.......

Conditions and Their Expanded
?

1-2
1-3
1-6

2-1
2-2
2-6
2-9
2-11
2-13
2-17

5-28
5-30
5-32

6-1
6-4
6-4
6-6
6-10
6-16
6-20
6-20
6-21
6-22
6-23
6-24
6-24

7-24
7-30
7-32
7-48
7-49

8-6
8-6
8-7
8-15
8-21
8-22

8-24
8-28

XXXi

Tables

XXXii

9-1.
9-2.
9-3.

- 9-4,

9-5.
9-6.
9-7.
9-8.
9-9.

9-10.
9-11.

9-12.
9-13.
9-14.
9-15.
9-16.

12-1.
12-2.

14-1.

15-1.
15-2.

15-3.

15-4.
15-5.
15-6.

16-1.
16-2.

17-1.
17-2.
17-3.
17-4.
17-5.
17-6.
17-7.
17-8.

C-1.
c-2.

Designating Subfiles for the AWAIT-OPEN Statement............... o-10

I/O Status Values for the AWAIT-OPEN Statement 9-11
Parameter Mapping for Tasking Calls 9-14
WFL and COBOL74 Parametersc..ovuun. e e e 9-16
Parameters for Bound and Host Programs e e e 9-17
Close-File Dispositions for Sequential ¥O 9-28
Designating SubfilestoClose, 9-32
I/O Status Values for CLOSE Statement Completion. 9-34
Comparison of Sending and Receiving Items in MOVE Statements. 9-71

I/O Statements Allowed for Open Files with Sequential Organization 9-79
I/O Statements Allowed for Open Files with Relative or Indexed

Organizationo, e 9-79
Designating SubfilestoOpen e 9-82
I/O Status Values for OPEN Statement 9-83
Designating SubfilestoRespond e e 9-104
Values for RESPOND Statement Completion. e 9-105
Validity of Operands for the SET Statement o-118
Page Regions Established by the PAGE Clause 12-10
Permissible Clause Combinations in Format 3 Report-Group Description

Entrieso e Vel 12-27
Transmission IndicatorSchedule 14-28
Parameter Matching for Data Items Requiring Special Rules 15-3
Effect of SHARING Option Value and Library Initial State on CALL

Statement e e 15-9
Effect of SHARING Option Value and Library Initial State on CANCEL

Statement e 15-11

. Effects of Setting the LIBACCESS Attribute 15-12
Meanings of SHARING Option Values 15-14
SHARING and TEMPORARY Compiler Control Option Combinations 15-15
Functional Grouping of CENTRALSUPPORT Library Procedures 16-21
Specific Descriptions for Internationalization Error Values 16-118
Effects of the XDECS and XREFS Compiler Control Options e 17-2
Effects of the NOXREFLIST Optionot 17-3
Effects of the XREF and XREFFILES Options. 17-4
Attribute Values for the Compiler input File. e 17-13
Compilerlnput Files i i i e 17-14
CompilerOutput Filesttt iinennann 17-15
Attribute Assignments for Compiler Qutput Files 17-17
Effects of the SHARING Optionot i i i 17-38
General Format NotationComponentscciiivotn A-2
EBCDIC-to-ASCll TranslationChart, C-1
ASCII-to-EBCDIC Translation Chartcciciiiieeannn C-11

8600 0296-000

Section 1
Program Structure

COBOL74 is a programming language based on the English language and, as such is
composed of paragraphs, sentences, clauses, and words. The language is designed so
that your source program is self-explanatory to someone who does not understand
COBOL74. This section describes the following:

e The components of a source program

e The rules for entering the components iri the source program

Source Program Components

A source program is code written in COBOL74 that the compiler accepts as input. When
you compile the source program, the compiler verifies that your code follows the rules
presented in this manual and translates the source program into an object program. The
object program directs the computer to operate on the data. If the compiler indicates
that your source program needs corrections, you can make the appropriate changes and
then recompile it. The object program always reflects the source program you create.

Program Divisions

A COBOL74 source program is divided into four parts called divisions. The divisions
must appear in the following order:

1. IDENTIFICATION DIVISION
2. ENVIRONMENT DIVISION
3. DATA DIVISION

4. PROCEDURE DIVISION

A division header consists of the name of a division, the word DIVISION, and a period.

8600 0296-000 ‘ 1-1

Program Structure

Table 1-1 describes the purpose of each division.

- Table 1-1. Purpose of COBOL74 Divisions

Division Name Purpose of Division

IDENTIFICATION Identifies and provides documentation about the source program.
ENVIRONMENT Specifies the computer system and associates files with /O devices.
DATA Describes the structure of the data, the constants to be used, the

intermediate storage areas, and any external data.

PROCEDURE Instructs the computer to perform the steps necessary to solve the
problem addressed by the source program. This division uses the
data described in the DATA DIVISION.

Sections

The ENVIRONMENT, DATA, and PROCEDURE DIVISIONS can be subdivided into
sections. A section further identifies the purpose of a division.

A section begins with a name that identifies the section. COBOL74 specifies the names
of sections in the ENVIRONMENT and DATA DIVISIONs. You specify names of
sections in the PROCEDURE DIVISION.

A section header consists of the name of the section, the word SECTION and a period.
A section continues with one or more successive paragraphs that follow the period.

A section ends immediately before the next section, at the end of the division, or at
the keywords END DECLARATIVES in the DECLARATIVES SECTION of the
PROCEDURE DIVISION.

1-2 8600 0296-000

Program Structure

Table 1-2 describes the sections associated with each division.

Table 1-2. Purpose of Sections

Division Name Section Name Purpose of Section
IDENTIFICATION None Not applicable
ENVIRONMENT CONFIGURATION Specifies computer equipment
INPUT-OUTPUT Associates files with specific devices
DATA FILE Describes the record structure of files
DATA-BASE} Describes one or more data-bases that can -
be used by the COBOL program
WORKING-STORAGE Describes intermediate data items
LOCAL-STORAGE{ Describes data to be either passed or
received as parameters to an external
procedure
LINKAGE Describes data items to be referenced by the
calling program and the called program
COMMUNICATION Describes the data items in the source
program that serve as the interface between
the data communications interface (DCI)
library and the program
REPORT Describes the contents and format of
generated reports for the Report Writer
PROCEDURE User defined Groups paragraphs into sections that you
‘ define

t Unisys extension

Paragraphs

In the IDENTIFICATION and ENVIRONMENT DIVISIONS, a paragraph begins with a
header that identifies the paragraph. A paragraph header consists of a reserved word
followed by a period. The paragraph continues with one or more successive clauses or
entries.

In the PROCEDURE DIVISION, a paragraph begins with a user-defined word called a
paragraph-name. It is followed by a period and optionally one or more entries.

A paragraph ends immediately before the next paragraph header or section name, at the

end of the division, or at the keywords END DECLARATIVES in the DECLARATIVES
SECTION of the PROCEDURE DIVISION.

8600 0296-000 1-3

Program Structure

Example

Example 1-1 shows examples of paragraphs in the IDEN' TIFICATION,
ENVIRONMENT, and PROCEDURE DIVISIONS.

@10009 IDENTIFICATION DIVISION.

010058*The PROGRAM-ID paragraph header is a réserved word.
910106 PROGRAM-ID. GUEST-CREDIT-AUTHORIZATION.

100006 ENVIRONMENT DIVISION.

100959 CONFIGURATION SECTION.

100150*The SOURCE-COMPUTER paragraph header is a reserved word.
100208 SOURCE-COMPUTER. MICROA.

108250 INPUT-OUTPUT SECTION.

190309*The FILE-CONTROL paragraph header is a reserved word.
100358 FILE-CONTROL. :

200099 PROCEDURE DIVISION.
200850* You define paragraph-names in the PROCEDURE DIVISION.

- 200199 MAIN-PARAGRAPH.

.
.

Example 1-1. Coding Paragraphs

Sentences

A sentence consists of one or more statements. You must end a sentence with a period.

A sentence can be one of the following three types:

e A compiler-directing sentence that directs the compiler to take a specific action

during the compilation process.

e A conditional sentence that tests a truth value and specifies an action depending on

the result of the test.

¢ An imperative sentence that specifies an unconditional action to be taken.

Example
The following is an example of a conditional sentence:

IF BALANCE LESS THAN ZERO
PERFORM PROCESS-DEBIT
ELSE
NEXT SENTENCE.

See Also

For more information about types of sentences, refer to Section 8, “PROCEDURE

DIVISION Concepts.”

8600 0296-000

Program Structure

Statements
A statement is a syntactically valid combination of words and symbols beginning with
a COBOL74 verb. A statement ends whenever the compiler detects a new verb or a
period.

Clauses, Phrases, and Options
A clause is a set of consecutive COBOL74 words that represents a valid portion of a
statement or entry. A phrase is a set of consecutive COBOL74 words that represents a

valid portion of a statement, entry, or clause. In this manual, optional phrase and clauses
are often referred to as options.

Words

A word is a string of characters that form a valid COBOL74 word for creating valid
phrases, clauses, statement, sentences, paragraphs, sections, and divisions.

See Also

For a complete description of the rules for forming words, refer to Section 2, “Language
Elements.” ,

Line Laydut

The compiler expects the components of your source program to appear in specific areas
along a line of code. Each line has 80 positions, which are grouped into five areas that
make up the line format (also called the reference format), as shown in Figure 1-1.

COLUMN
1-6 8 - 11 12 - 72 73 - 808
— 7 A A v~
| L] |
S S < | | =9
5. = o . AREA B =
S5 51 2 | | [
o2 W= =
(YY) (=] I
o IE |
L |

Figure 1-1. Line Format

8600 0296-000 1-5

Program Structure

Table 1-3 shows the columns associated with each area, the name of the area, and the
program components that can begin in that area.

‘Table 1-3. Placement of Source Program Component within Areas

Columns Name ' Acceptable Entries
1-6 Sequence area Sequence number
7 Indicator area Asterisk (*), slash (/), D, hyphen (=), or
doliar sign ($)
8-11 Area A e Division header
e Section header
e Paragraph header
e File descriptiori (FD) entry
e Sort merge description (SD) entry
‘e Level numbers
e DECLARATIVES keyword
o END DECLARATIVES keyword
12-72 Area B e Sentences
e Level numbers other than 01 or 77
73-80 Identification area Comment entries
See Also

For information about using the FREE compiler option to remove the margin restrictions
required by COBOL74, refer to “FREE” in Section 17, “Control of the Compilation
Process.”

Columns 1-6: Sequence Area

The sequence area contains a 6-digit sequence number that is incremented with each
successive line. These numbers are generated automatically when you use CANDE or
the Editor. :

1-6 ' 8600 0296-000

Program Structure

Column 7: Indicator Area

The indicator area contains one of the following five characters. Each character indicates
the specified special purpose for the line.

o An asterisk (*) indicates the line is a comment line.

e Aslash (/) indicates the line is a comment line and causes the printer to eject a page
and print the comment at the top of the source listing.

e The letter D indicates the line is a debugging line.
¢ Ahyphen (-) indicates the line is a continuation line.
e A dollar sign ($) indicates the line is a compiler control record.

See Also

For more information about these types of lines, refer to “Special Purpose Lines” later in
this section. » :

Columns 8-11: Area A

Division, section, and paragraph headers, level indicators, the level numbers 01 and
77 , and the keywords for declaratives must begin in area A. You can begin your entry
anywhere within area A. It is acceptable for your entry to extend into area B.

The rules for forming division and section headers are as follows:

¢ Enter the division or section name in area A.

e Follow the name by at least one space.

¢ Enter DIVISION or SECTION, whichever is appropriate.
e End the entry with a period.

The rules for forming paragraph headers are as follows:

e Enter the name of the paragraph.

e Follow the name with a period. .

The rules for forming the indicators of a file description (FD) or sort-merge description
(SD) entry or a level-number 01 or 77 entry are as follows: '

e Enter FD, SD, 01, or 77, whichever isi appropriate.

¢ Follow the entry with the appropriate associated name and descriptive information.

8600 0296-000 1-7

Program Structure

1-8

The rules for forming declarative keywords are as follows:

o Enter DECLARATIVES. on aline by itself at the beginnihg of the DECLARATTVES

SECTION of the PROCEDURE division.

e Enter END DECLARATIVES. on a line by itself at the end of the DECLARATIVES
SECTION.

Example

Example 1-2 shows coding of area A entries.

900100
000200
200308
000400
000500
000608

001000
201102
201200
201400

001809
0019008

003000
003100

203300
203400

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. MICROA.
INPUT-OUTPUT SECTION.
FILE~CONTROL.

DATA DIVISION.
FILE SECTION.
FD GUEST-FILE

@1 NAME-RECORD.

WORKING-STORAGE SECTION.
77 EOF-FLAG.

PROCEDURE DIVISION.
DECLARATIVES.

END DECLARATIVES.
MAIN SECTION.

.
. -

Example 1-2. Coding Area A Entries

See Also

e For information about level numbers, refer to Section 7, “DATA DIVISION.”

e For information about declaratives, refer to Section 8, “PROCEDURE DIVISION
Concepts.”

8600 0296-000

Program Structure

Columns 12-72: Area B

The bulk of your code, including sentences, statements, clauses, and many level-number
entries, begin in area B. Your entry can begin anywhere within area B.

In the DATA DIVISION, all level numbers other than 01 and 77 can begin anywhere in
area A or B.

The first sentence or entry in a paragraph begins either on the same line as the
paragraph name or in area B of the next nonblank line that is not a comment line.
Additional sentences begin after the previous sentence in area B of the same line or in
area B of the next nonblank line that is not a comment line.

For readability, Unisys recommends that you begin all level numbers other than 01 or

77 in area B and that you indent each successively higher level number two to four
positions. In addition, Unisys suggests that you define level numbers with an increment
value greater than one so that it is possible to insert new levels between two levels, if the
need arises. :

Example

Example 1-3 shows the use of indentation to make your coding more readable.
Subordinate entries are indented four spaces. For example, MONTH, DAY, and YEAR
are all elements of DATER.

910000* Indentation improves the readability of your program.
010050*

919109 @1 INPUT-RECORD.

100359 #3 DATER .

190409 25 MONTH PIC 99.

100450 @5 DAY PIC 99.
100500 @5 YEAR PIC 99.
100550 @3 FILLER PIC X(33).

100608 66 IN-DATE RENAMES MONTH THRU YEAR.
Example 1-3. Coding Area B Entries for Readability

Columns 73-80: Identification Area

This area is an optional area. You can use it for documentation purposes.

8600 0296-000 1-9

Program Structure

Special-Purpose Lines

Special purpose lines are lines that have a special character in the indicator area
(column 7) or are blank. These include comment lines, continuation lines, debugging
lines, compiler control options, and blank lines.

Comment Lines

A comment line is any line with either an asterisk (*) or a slash (/) in the indicator area
(column 7) of the line. A comment line can appear anywhere in a source program and
can use any combination of characters from the character set of the computer, not just
the characters in the COBOL74 character set. You can use successive comment lines.

If you use the slash character to indicate a comment, the printer ejects a page before
printing the comment on the output listing of the compiler.

Example

Example 1-4 shows the use of comment lines.

190109 IDENTIFICATION DIVISION.

100200* The purpose of this program is to ...

100390* Notice that comments can use lowercase letters.
10@409 PROGRAM-ID. GUEST-CREDIT-~AUTHORIZATION.

109500/ This comment is printed at the top of a new page.
100699 ENVIRONMENT DIVISION.

Example 1—4. Coding Comment Lines

Continuation Lines

1-10

A continuation line is a line that is continued from a previous line. You indicate a
continuation line with a hyphen (-) in the indicator area (column 7). The hyphen means
that the first nonblank character in area B (columns 12-72) of the continuation line
follows the last nonblank character of the preceding line, with no spaces inserted. Area
A (columns 8-11) of a continuation line must be blank. If no hyphen is present in the
indicator area of a line, the compiler assumes that the last character in the preceding line
is followed by a space. You can use successive continuation lines.

8600 0296-000

Program Structure

The rules for using a continuation line with a nonnumeric literal (which must begin with
a quotation mark) or an undigit literal (which must begin with a commercial at sign) are
as follows:

e Use all 72 positions on the line to be continued. All spaces at the end of the line are
considered to be part of the literal.

e Do not close the literal in column 72 with a quotation mark for the nonnumeric
literal or a commerecial at sign (@) for the undigit literal because doing so will delimit
the literal and prevent it from being continued.

e Enter as the first nonblank character in area B a quotation mark for the nonnumeric
literal or a commercial at sign for the undigit literal. The literal continues with the
character immediately after the quotation mark or a commercial at sign.

Example

Example 1-5 shows coding of continuation lines.

10015@*Line 190208 continues the clause begun on the preceding line.
109100 SELECT GUEST-FILE ASSIGN TO DISK OR
100200- GANIZATION IS SEQUENTIAL.

.

108700* Line 100990 continues a nonnumeric literal.

100800 77 HEADER-LINE PIC X(60) VALUE IS " JANUARY FEBRUARY
100960~ " MARCH APRIL MAY JUNE ",
101000

19150@*Line 102000 continues an undigit literal.

101000 77 HEX-LITERAL PIC X(39) VALUE IS GAAAAAAAAAABBBBBBBBBBCCC
102009~ ecccccce.

192309

192500* The first quote continues the nonnumeric literal; the second
192550* quote ends the literal.

102600 91 WARNING MESSAGE PIC X(24) VALUE IS "WRONG ENTRY FOR THIS KEY
192700- ",

Example 1-5. Coding Continuation Lines

Debugging Lines

A debugging line is any line with a D in the indicator area (column 7) of the line. A
debugging line with spaces in columns 8 through 72 is considered to be the same as a
blank line. You can enter a debugging line anywhere after the OBJECT-COMPUTER
paragraph.

The debugging module is activated when you specify the WITH DEBUGGING MODE
clause in the SOURCE-COMPUTER paragraph. If you do not activate the debugging
module, the compiler treats a debugging line like a comment line. Therefore, you should
make sure that your program is syntactically correct when the debugging lines are
considered to be comment lines.

8600 0296-000 | 1-11

Program Structure

1-12

You can use successive debugging lines and can continue debugging lines; however, each
continuation line must contain a D in the indicator area, and character strings cannot be

continued across multiple lines.

Example

Example 1-6 shows the use of debugging lines.

910000 IDENTIFICATION DIVISION.
100000 ENVIRONMENT DIVISION.
1091060 SOURCE~COMPUTER. MICROA WITH DEBUGGING MODE

100600 WORKING STORAGE SECTION.

100700077 PERFORMANCE-COUNT PIC 9(4).
100890D77 BAD-RECORDS PIC 9(4).
100990077 RATIO PIC 9(4).99.

101600 PROCEDURE DIVISION.

192009 OPEN-IT.

102100 OPEN INPUT GUEST-FILE.

103002D MOVE ZEROS TO PERFORMANCE-COUNT, BAD-RECORDS, RATIO.
104908 READ-IT.

104100 READ GUEST-FILE AT END GO TO FINISH-IT.

195000D ADD 1 TO PERFORMANCE-COUNT.

1862000 IF IN-KEY NOT NUMERIC ADD 1 TO BAD-RECORDS.

1079099 GO TO READ-IT.

108000 FINISH-IT.

108109 CLOSE GUEST-FILE.

1099900 DIVIDE PERFORMANCE-COUNT BY BAD-RECORDS GIVING RATIO

Example 1-6. Coding Debugging Lines

See Also

¢ For information about the WITH DEBUGGING MODE clause, refer to Section 4,

“IDENTIFICATION DIVISION.”

o For information about the debug module, refer to Section 11, “Debugging.”

8600 0296-000

Program Structure

Compiler Control Options

A compiler control option is any line with a dollar sign ($) in the indicator area (column 7)
of the line. This line specifies compiler control options to use during the compilation
process.

See Also

For a discussion of the available compiler control options and their uses, refer to
Section 17, “Control of the Compilation Process.”

Blank Lines

A blank line is a line that has no entries in the indicator area, area A, or area B. You
can use a blank line anywhere in the source program except immediately preceding a
continuation line.

8600 0296-000 | 1-13

1-14 | | 8600 0296-000

Section 2
Language Elements

This section describes the following elements used to form the components of a source
program:

e Character set

e Separators

e Character strings

Character Set

The most basic and indivisible unit of the COBOL74 language is the character. The set
of characters you use to write COBOL74 programs includes the letters of the alphabet,
digits, and special characters. The character set consists of 52 characters, including the
51 characters specified in the ANSI-74 standard plus the commercial at sign (@), which
is a Unisys extension. You link these individual characters together to form character
strings and separators and you link character strings and separators to form a source
program. :

Table 2-1 shows the COBOL74 character set.

Table 2-1. Character Set

Character Meaning Character Meaning
0 through 9 Digit A through Z Letter
Space or blank + Plus sign
- Minus sign or hyphen * Asterisk
/ : Virgule, or slash = Equal sign
'$ Dollar sign ,‘ Comma or decimal point
; Semicolon . Period or decimal point
h Quotation mark { v " Left parenthesis
) Right parenthesis > ~ Greater than sign
< ‘ Less than sign @t Commercial at sign

t Unisys extension

8600 0296-000 ' 2-1

Language Elements

Separators

A separator is a string of one or more punctuation characters. You can link a separator
with another separator or with a character string. A character-string must be linked to a
separator. Table 2-2 lists all the separators and the rules governing them.

Table 2-2. Meanings of Separators

Separator Explanation

(space) Spaces can precede or follow all other separators. Special rules for spaces are as
follows:

e Aspace is required before the opening pseudotext delimiter.

e A space that precedes the ending quotation mark of a nonnumeric literal is
considered to be part of the literal.

e A space that follows the opening quotation mark of a nonnumeric literal is
considered to be part of the literal.

Periods mark the end of a COBOL74 entry. A period is always treated as a
separator when it is followed by a space. In-a Unisys extension, a period does not
need to be followed by a space in most cases.tHowever, Unisys recommends that
the period always be followed by a space when it is used as a separator character.
This practice prevents problems in those environments in which the space is
required but not encountered.

s Commas and semicolons delimit clauses. A comma or a semicolon is always
treated as a separator when it is followed by a space. In a Unisys extension, they
do not need to be followed by a space in most cases.t However, Unisys
recommends that the comma and semicolon always be followed by a space when
they are used as a separator character. This practice prevents problems in those
environments in which the space is required but not encountered.

() Left and right parentheses delimit subscripts, indexes, arithmetic expressions, or
conditions. They must appear in balanced pairs.

" Quotation marks delimit nonnumeric literals. They must appear in balanced pairs.
If the literal is continued on another line, you need to enter another quotation
mark as the first nonblank character in area B. An opening quotation mark must
be preceded immediately by a space, left parenthesis, (comma, or semicolont).
A closing quotation mark must be followed immediately by a space, comma,
semicolon, period, or right parenthesis.

Pseudotext delimiters set off pseudotext. They must appear in balanced pairs. An
opening pseudotext delimiter must be preceded by a space. A closing pseudotext
delimiter must be followed by a space, comma, semicolon, or period.

@t Commercial at signs delimit undigit literals. An opening @ character must be
preceded immediately by a space, comma, semicolon, or left parenthesis; a
closing @ character must be followed immediately by a space, comma,
semicolon, period, or right parenthesis.

NC"{ NC" characters precede a Kaniji literal. A quotation mark follows the Kaniji literal.

t Unisys extension

2-2 ‘ 8600 0296-000

Language Elements

Any punctuation character that you use in a PICTURE character string or numeric
literal is considered to be part of the PICTURE character string or numeric literal
rather than a punctuation character. You delimit PICTURE character strings by spaces,
commas, semicolons, or periods.

The rules established for the formation of separators do not apply to the characters
in nonnumeric literals, comment-entries, or comment iines. When you are coding

nonnumeric literals, comment-entries, or comment lines, you can use the complete
character set of the computer, not just the COBOL74 character set.

Character Strings

A character string is a set of one or more characters delimited by separators that form

one of the following:
e Word
e Literal

e PICTURE character string

e Comment-entries

See Also
e For information about the various types of COBOL words, refer to “Word Types”
later in this section.

e For definitions and examples of the various types of literals you can use in a COBOL
program, refer to “Literals” later in this section.

e For information about PICTURE character strings in the PICTURE clause, refer to
Section 7, “DATA DIVISION.”

o Refer to Section 1, “Program Structure,” for information about comment-entries.

8600 0296-000 ' 2-3

Language Elements

Word Types

A COBOL word is a character string that forms one of the following:

e Reserved word

e Context-sensitive keyword

e Application-specific keyword

¢ System-name

e User-defined word

You can use a given COBOL word in your program as both a system-name and a

user-defined word, or as both a system-name and a reserved word. You cannot use a
‘reserved word as a user-defined word.

Reserved Words

A reserved word is a COBOL74 word that has a specific meaning to the conipiler.
For example, MOVE is a reserved word that directs the compiler to perform a move
operation.

A reserved word is a word that is reserved by the compiler and that you cannot use as
a user-defined word anywhere in the source program. No exceptions exist for specific
divisions, sections, or statements. Reserved words are used in the following six ways:

e As connectives that qualify data, link two or more operands in a series, or link logical
operators to form conditions

e As figurative constants that associate names to values that you commonly use in a
source program

e Askeywords that are verbs or other required pieces of a syntax
e As optional words that increase the readability of your program

o As speciai registers that are compiler-generated, read-only storage areas that
: provide you with access to specific COBOL74 features

e As special-character words that indicate arithmetic or relational operations

See also

For a complete list of reserved words in Unisys COBOL74, refer to Appendix B,
“Reserved Words and Keywords.”

2-4 8600 0296-000

Language Elements

Connectives
Connectives are reserved words that you can use in any of the following two ways:

e As a qualifier to associate a data-name, a condition-name, a text-name, or a
paragraph-name with its qualifier. Examples of qualifier connectives are OF or IN.

e Aslogical connectives to form conditions. Examples of logical connectives are AND
and OR.

Figurative Constants

Figurative constants are reserved words that act as literals for values you might
commonly use in a source program. These reserved words make your programming task
easier by relieving you of the burden of assigning names to specified constant values.
You can use a figurative constant wherever a literal can be used. For example, a MOVE
SPACES TO data-name statement fills the data-name with spaces. The only figurative
constant that acts as a numeric literal is the ZERO (ZEROS, ZEROES) figurative
constant, and then only when you use it in a context that requires a numeric literal.

You can use figurative constants in the following types of statements:

e In MOVE and IF statements for moving and comparing data items

e In DISPLAY and STOP statements for displaying one character

e In STRING and UNSTRING statements for manipulating one character
Figurative constants increase the readability of your program. The singular and plural
forms of figurative constants are equivalent and interchangeable. Each figurative

constant is a distinct word, except for the ALL literal constant, which is two distinct
words.

8600 0296-000 : 2-5

Language Elements

The individual figurative constants are described in Table 2-3.

Table 2-3. Figurative Constants

Figurative Constant

Explanation

ZERO, ZEROS,
ZEROES
SPACE, SPACES

HIGH-VALUE,
HIGH-VALUES

LOW-VALUE,
LOW-VALUES

QUOTE, QUOTES

ALL literal

Represents numeric O or one or more of the alphanumeric character
0, depending on context. '

Represents one or more of the alphabetic character space from the
character set of the computer. '

Represents the alphanumeric character or characters that occupy
the last position in your program’s collating sequence. If you specify
a collating sequence in the SPECIAL-NAMES paragraph, the
HIGH-VALUE figurative constant represents the character or
characters that occupy the last position in the collating sequence
that you specify. This figurative constant may produce unexpected
results when used with the system default ccsversion in the
SPECIAL-NAMES paragraph. For more information, see
“SPECIAL-NAMES” in Section 5, “ENVIRONMENT DIVISION.”

Represents the alphanumeric character or characters that occupy
the first position in your program’s collating sequence. If you specify
a collating sequence in the SPECIAL-NAMES paragraph, the
LOW-VALUE figurative constant represents the character or
characters that occupy the first position in the collating sequence
that you specify. This figurative constant may produce unexpected
results when used with the system default ccsversion in the
SPECIAL-NAMES paragraph. For more information, see
“SPECIAL-NAMES" in Section 5, “ENVIRONMENT DIVISION.”

Represents one or more alphanumeric quotation mark characters.
You can use this figurative constant to avoid using a quotation mark
within a literal. For example, MOVE QUOTE TO OUT-LINE
causes a quotation mark to be printed. You cannot use QUOTE or
QUOTES to bound a nonnumeric literal. For example, QUOTE XYZ
QUOTE is incorrect as a way of stating the nonnumeric literal "XYZ".

Represents a continuous sequence of any alphanumeric literal. The
literal part of the figurative constant must be a nonnumeric literal or
a figurative constants other than ALL. When you use a figurative
constant other than ALL as the literal, the word ALL is redundant.
For example, MOVE ALL SPACES is equivalent to MOVE SPACES.
You might want to retain the word ALL to improve the readability of
your program.

8600 0296-000

Language Elements

When a figurative constant represents a string of one or more characters, the compiler
determines the length of the string from context according to the following rules.

¢ When a figurative constant is moved to or compared with another data item, the
compiler repeats the string of characters specified by the figurative constant,
character by character, until the receiving string has as many characters as the
associated data item. The compiler independently completes the character repetition
before it applies any JUSTIFIED clause that is associated with the data item.

¢ When you compare the alphanumeric figurative constant HIGH-VALUE,
LOW-VALUE, or QUOTE with a numeric data item in a relation condition, the
compiler uses the rules for nonnumeric comparison.

e When you move an alphanumeric figurative constant HIGH-VALUE, LOW-VALUE,
or QUOTE to a numeric or numeric-edited data item, the compiler uses the rules
for moving an alphanumeric item to a numeric or numeric-edited item; that is,
the results are the same as if an alphanumeric data item contained the figurative
constant value in all its character positions. The compiler moves the data as if
the figurative constant was an unsigned numeric integer; therefore, it converts
nonnumeric characters into numeric characters. For example, it converts the
LOW-VALUE EBCDIC character to EBCDIC 0, the HIGH-VALUE EBCDIC
character to EBCDIC 9, and the EBCDIC QUOTE character to EBCDIC 9.

e When the figurative constants ZERO, SPACE, HIGH-VALUE, or LOW-VALUE are
move to or compared with a Kanji data item, the compiler represents the actual
character associated with each figurative constant as one or more of the Kanji
characters.

Examples

The following example initializes a value in the WORKING-STORAGE SECTION to
three zeros.

77 NUMBER-OF-GUESTS PIC 9(3) VALUE ZEROS

The next example uses LOW-VALUE and HIGH-VALUE to process an End-Of-File
condition.

77 EOF-FLAG PIC X VALUE LOW-VALUE

READ GUEST-FILE AT END
MOVE HIGH-VALUE TO EOF-FLAG.
IF EOF-FLAG EQUAL TO HIGH-VALUE ..

v

The next example uses ZERO and SPACES for compare and move operations.

IF NUMBER-OF-GUESTS EQUAL TO ZERO
MOVE SPACES TO GUEST-LAST-NAME.

8600 0296-000 g 2-7

Language Elements

The next example uses the ALL literal figurative constant in a MOVE ALL literal TO
data-item statement. The first column shows the value of the literal, the second column
shows the size of the data item designated as the receiving field, and the third column
shows the value of that data item after the MOVE statement completes.

Contents of

Receiving Field Receiving Field
ALL Literal - Size in Characters after MOVE
ALL "ABC’ 7 ~ ABCABCA
ALL"3" 5 ' 33333
ALL "HI-LO" 12 HI-LOHI-LOHI
ALL "LIMIT® 4 LimI

The next example shows that the figurative constant ALL is redundant when used with
a figurative constant.

Contents of

Figurative Receiving Field Receiving Field
Constant Size in Characters after MOVE
QUOTES 3
ALL QUOTES 3 i

See Also

e For information about specifying a collating sequence, refer to “OBJECT-
COMPUTER?” and “SPECIAL-NAMES” in Section 5, “ENVIRONMENT
DIVISION.”

o Refer to “MOVE” in Section 9, “PROCEDURE DIVISION Statements,” for
information about rules for moving data.

Keywords and Optional Woids

2-8

A keyword is a word that is required by the context in which it appears. In the format
notation, keywords are uppercased and underlined. There are the followmg three kinds
of keywords:

e Verbs, such as ADD, READ, and MOVE

¢ Functional words, such as NEGATIVE and SECTION

e Other words that appear in statement and entry formats

Optional words are reserved words that increase the readability of your program. They

do not afféct the execution of your program. In the format notation, they appear as
uppercase words that are not underlined.

8600 0296-000

Language Elements

Example

In the following example, RECORD is a keyword, CONTAINS and CHARACTERS

are optional words, TO is a keyword required when the integer-1 option is used, and

DEPENDING and ON are keywords required when the DEPENDING ON option is
‘used. Data-name is a user-defined word rather than a keyword, but if the DEPENDING

ON option is present, the data-name user-defined word must appear too. Likewise, if .

data-name is present, DEPENDING ON must appear too.

RECORD CONTAINS [integer-1 TO | integer-2 CHARACTERS

[DEPENDING ON data-name |

See Also
Refer to Appendix A, “General Format Notation,” for a full explanation of the format
notation.

Special Registers

Special registers are compiler-generated, read-only storage areas that primarily give
access to information produced with the use of specific COBOL74 features.

Table 24 explains each of the special registers.

Table 2-4. Special-Register Definitions

Register Explanation

DATE . Contains the system date formatted as year of century, month of
year, and day of month. DATE is an an unsigned, 6-digit, elementary
numeric integer. For example, July 1, 1990, is expressed as
900701.

DAY Contains the system date formatted as the year of century followed
by the number of days since the beginning of the year. DAY is an
unsigned, 5-digit, elementary numeric integer. For example, July 1,
1990, is expressed as 90183.

DEBUG-ITEM _ Provides information about the conditions that caused execution of a
debugging section. Each execution of a debugging section has the
special register DEBUG-ITEM associated with it.

continued

8600 0296-000 , 2-9

Language Elements

Table 2-4. Special-Register Definitions (cont.)

Register

Explanation

TIME

TIMER?

TODAYS-DATEY

TODAYS-NAMET

LINAGE-COUNTER

LINE-COUNTER

PAGE-COUNTER

Contains the elapsed time after midnight based on a 24-hour clock
in hours, minutes, seconds, and hundredths of a second. TIME is an
unsigned, 8-digit, elementary numeric integer. For example, 2:41
p.m. is expressed as 14410000. The maximum value of TIME is
23595999.

Represents the number of 2.4-microsecond intervals since midnight.
TIMER is a single, unsigned 11-digit, numeric integer. It is
composed of the current value of the computer's interval timer.

Represents the date as the month of the year, followed by the day of
the month, followed by the year of the century. TODAYS-DATE is a
6-digit, unsigned, elementary numeric integer. For example, July 1,
1990, is expressed as 070190.

Provides the current day of the week. TODAYS-NAME is an
elementary, 9-character, alphanumeric item. If the day of the week.
is less than nine characters long, it is left-justified in the 9-character
area provided, with space-fill on the right.

Contains at any time the number of lines advanced within a printed
page. LINAGE-COUNTER is a fixed data-name for a line counter
suitable for computation. It is generated by the presence of a
LINAGE clause in a file description (FD). The implicit class of a
LINAGE-COUNTER is numeric. No data item is referenced; it is
treated as a LINENUMBER attribute for purposes of retrieval. The
compiler automatically supplies one LINAGE-COUNTER for each file
in the FILE SECTION that has a LINAGE clause in its FD entry.

Provides the vertical position in a report. LINE-COUNTER is a fixed
data-name for a line counter suitable for computation. It is
generated for each report description (RD) in the REPORT SECTION.
The compiler automatically provides one LINE-COUNTER register for
each report in the RD entry.

Provides page numbers within a report group. PAGE-COUNTER is a
fixed data-name for a page counter suitable for computation. It is

. 'generated for each report-description (RD) entry in the REPORT

SECTION. The compiler automatically supplies one PAGE-COUNTER
for each report that has the word PAGE-COUNTER as a source data
item in a RD entry.

1 Unisys extension

Special-Character Words

Special characters are reserved words used to indicate the arithmetic operations of
addition, subtraction, multiplication, division, and exponentiation and the relational
operations of comparing less than, greater than, and equal to conditions.

2-10

8600 0296-000

Language Elements.

Table 2~5 shows the meaning of each special-character word.

Table 2-5. Special-Character Words

Character Meaning
Arithmetic Operator | + Plus sign

- Minus sign

* Multiplication

/ Division

** Exponentiation
Relation Character < Less than sign

.> Greater than sign

= Equals sign

Context-Sensitive Keywords

A context-sensitive keyword is a word that the compiler recognizes as reserved when it is
used in a compiler-defined syntax. If you want to use that word as a user-defined word
in another place, the compiler recognizes it as a user-defined word in that context.

See Also

For a list of context-sensitive keywords, refer to Appendix B, “Reserved Words and
Keywords.”

Application-Specific Keywords

An application-specific keyword is a word that is reserved by the compiler for the
extent of the program. Application-specific keywords are used for applications

such as internationalization and port files. You must specify that you are using
application-specific keywords by using the RESERVE clause of the SPECIAL-NAMES
paragraph in the ENVIRONMENT DIVISION.

See Also

e For information about using the RESERVE clause (a Unisys extension) to indicate
that the compiler should treat certain keywords as application-specific, refer to
“SPECIAL-NAMES?” in Section 5, “ENVIRONMENT DIVISION.”

e For the list of application-specific keywords, refer to Appéndix B, “Reserved Words
and Keywords.”

8600 0296-000 2-11

Language Elements

System-Name

A system-name is a word that you use to communicate with the operating environment.
A system-name can be one of the following two types:

e A computer-name, such as MICROA and A17, that identifies the computer on
which the program is to be compiled or run. Computer-name is treated as a
comment-entry.

e An implementor-name, such as ODT and SW1, that refers to a particular feature
available with your system.

The rules for forming a system-name are as follows:

¢ Make the system-name no more than 30 characters long.

e Select each character from the set of characters A through Z, 0 through 9, and the
hyphen (-).

e Do not use the hyphen as the first or last character of a system-name.

User-Defined Words

A user-defined word is a word that you define to complete the format of a clause or
statement. The rules for forming a user-defined word are as follows:

e Make the user-defined word up to 30 characters long.

e Select each character from the set of characters A through Z, 0 through 9, and the
hyphen (-). :

¢ Do not use the hyphen as the first or last character of a word.
¢ Do not use areserved word.

e Make sure that all user-defined words, except for level-numbers and
segment-numbers, are unique. You can use qualification to ensure that a word
is unique. Level-numbers and segment-numbers do not need to be unique. A
given level-number or segment-number can be identical to a paragraph-name or a
section-name.

o Include at least one alphabetic character in all user-defined words except
paragraph-names, section-names, level-numbers, text-names, library-names,
family-names, and segment-numbers.

2-12 8600 0296-000

Languagé Elements

Table 2-6 shows some of the user-defined words and explains how they are used in your
program.

Table 2-6. User-Defined Words

User-Defined Word

Explanation

Alphabet-name

CD-name

Condition-name

Data-name
Family-namet

File-name

Index-name

Level-number

Libr_ary-ﬁame

Mnemonic-name

Paragraph-name

Program-name

Assigns a name to a specific character set and collating sequence in
the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.

Assigns a name to a communication description (CD).

Assigns a name to a specific value, set of vaiues, or range of values
within a complete set of values that a conditional variable can have.
A conditional variable is a data item that can assume more than one
value. The values that it can assume have condition-names
assigned to them. A condition-name can also assign a name to a
switch or device.

Condition-names can be defined in the DATA DIVISION or in the
SPECIAL-NAMES paragraph within the ENVIRONMENT DIVISION.

You can use a condition-name as an abbreviation for a relation
condition. A relation condition states that the associated conditional
variable is equal to one of the set of values to which that
condition-name is assigned. '

Names a data item described in a data-description entry.
Identifies a family of disks on which a file resides.

Names a file described in a file-description- entry or a sort-merge file
description (FD) entry in the FILE SECTION of the DATA DIVISION.

Names an index associated with a specific table.

Assigns a one- or two-digit number that shows the hierarchical
position of a data item or a special property of a data-description
entry.

Names a COBOL l‘ibrary that is to be used in conjunction with the
COPY statement by the compiler for a given source program
compilation.

Assigns a user-defined word to an implementor-name. These
associations are established in the SPECIAL-NAMES paragraph of
the ENVIRONMENT DIVISION.

Identifies and begins a paragraph in the PROCEDURE DIVISION.
Paragraph-names are equivalent only if composed of the same
sequence and number of digits and/or characters.

Identifies a source program in the IDENTIFICATION DIVISION.

Record-name Names a record described in a record-description (RD) entry in the
DATA DIVISION. :
T Unisys extension continued
2-13

8600 0296-000

Language Elements

Table 2-6. User-Defined Words (cont.)

User-Defined Word

Explanation

Report-name
Routine-namet
Section-name
Segment-number

Text-name

Names a Report Writer report described in a report-description (RD)
entry in the DATA DIVISION.

Identifies a procedure written in a language other than COBOL74.

Nam'es a section in the PROCEDURE DIVISION. Section-names are
equivalent only if composed of the same sequence and number of
digits and/or characters.

Groups sections in the PROCEDURE DIVISION for the purposes of
segmentation. :

Specifies the external identification of a file in the COBOL library.

This manual also uses user-defined words that are not identified in Table 2-6 in order
to clarify the meaning of a format notation. For example, an identifier for an event is

" called an event-identifier. You can determine that a word is user defined if it appears in
lowercase letters in the format notation. Some of the user-defined words described in
Volume 2 are form-name, formlibrary-name, and group-list-name.

See Also

For information about qualification, refer to Section 6, “DATA Concepts.”

Literals

A literal is a string of characters whose value is either the ordered set of characters of
which the literal is composed or a reserved word that refers to a figurative constant.

Every literal is one of the following five types:

¢ Nonnumeric

e Numeric

¢ Floating point

¢ Undigit

¢ Kanji
Nonnumeric

A nonnumeric literal is a string of characters delimited on both sides by quotation marks.
An example is "Month Year". You can use any allowable character in the character set of

2-14

8600 0296-000

Language Elements

the computer to form a nonnumeric literal. Nonnumeric literals are in the alphanumeric
category.

The rules for the formation of nonnumeric literals are as follows:

¢ Nonnumeric literals can be between 1 and 160 characters long.

e A single quotation mark is delimited by two contiguous quotation marks within a
nonnumeric literal. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

e Delimiting quotation marks are excluded from the value of the nonnumeric literal.

e Except delimitihg quotation marks, all other punctuation characters within the
literal are considered to be part of the nonnumeric literal.

e Any literals used for arithmetic computation must not be enclosed in quotes as
nonnumeric literals. The literal "7.7" is a nonnumeric literal and is stored differently
from the numeric literal 7.7 (not enclosed in quotes).

Examples

The following are examples of nonnumeric literals. The string on the left shows the
literal as it appears in your source program. The string on the right shows the literal as
it is stored by the compiler.

Literal in Source Program Literal Stored by Compiler
"ANNUAL DUES" ANNUAL DUES

. "(MILES/GALLON)" {MILES/GALLON)
"-123.456" -123.456
"A"B" A'B
" IMITATIONS™ "LIMITATIONS"

Numeric

A numeric literal is a character string selected from the digits 0 through 9, the plus sign
(+), the minus sign (-), and the decimal point.

The rules for the formation of numeric literals are as follows:

e Aliteral can be between 1 and 23 digits long.
e Aliteral must contain at least one digit.

e Aliteral must not contain more than one sign character. If a sign is used, it must
appear as the leftmost character of the literal. If the literal is unsigned, it is positive.

8600 0296-000 : 2-15

Language Elements

e Aliteral must not contain more than one decimal point. The decimal point is treated
as an assumed decimal point and can appear anywhere within the literal except as
the rightmost character. If the literal contains no decimal point, the literal is an
integer. A literal that conforms to the rules for the formation of numeric literals, but
is also enclosed in quotation marks, is a nonnumeric literal and is treated as such by
the compiler.

e The value of a numeric literal is the algebraic quantity represented by the characters
in the numeric literal. Every numeric literal is in the numeric category. The size ofa
numeric literal in standard data-format characters is equal to the number of digits
that you specify.

Examples

The following are examples of numeric literals:

12345
.265
+1.008
-.0965
7842.1

- Floating Point
A floating-point literal is a string of characters that uses two numbers to represent one
original number. The first number is called the mantissa. It has a value between 0 (zero)
-and nine. The second number is called the exponent. It represents the power of ten
by which the first number is multiplied to obtain the original number. The format of a
floating-point literal is as follows:

mantissa E exponent

For example, 8,765,432.1 is 8.7654321E6 in floating-point notation.
The advantage of floating-point notation is that you can handle very small and very large
numbers easily. You can use floating-point literals as alternatives to coding numeric
literals. You should consider using floating-point literals with REAL and DOUBLE data
items.

The rules for the formation of floating-point literals are as follows:

e The mantissa can be signed and must have one decimal point.

¢ The exponent can be signed and must be an integer.

2-16 8600 0296-000

Language Elements

Table 2-7 shows the smallest and largest permitted values for single-precision and
double-precision data items using floating-point literals.

‘Table 2-7. Range of Values Permitted for Floating-Point Literals

Type Smallest Permitted Value _ Largest Permitted Value

Single 8.75811540203E-47 , 4.31359146674E68

Double 1.93854585713758583355640E-29581 1.94882938205028079124469E29603
Examples

The following are examples of floating-point literals.

1.E-40

-.0023E29
+.0012345E~5
+1.2E9500

2.E40
+123.45678901234E20

Undigit (Unisys Extension)

An undigit literal is a string of characters that represents the hexadecimal equivalent
of an EBCDIC character. Each EBCDIC character is represented by two hexadecimal
digits. This means there are always an even number of digits in an undigit literal. You
might want to use an undigit literal to send control sequence messages to a remote
terminal.

The rules for the formation of undigit literals are as follows:

e Delimit both ends of the literal with the commercial at sign (@) characters.

e Select the characters from the hexadecimal digits 0 (zero) through 9 and the
characters A through F. :

The compiler interprets the undigit literal as either a 4-bit numeric literal or an 8-bit
alphanumeric literal. You determine the interpretation of the undigit literal by specifying
the type of the data item to which the undigit literal is associated. An undigit literal

is numeric if it appears in the VALUE clause associated with a COMPUTATIONAL

item. An undigit literal is alphanumeric when the category of the associated data item is
alphanumeric.

8600 0296-000 -2-17

Language Eléments

An undigit literal is interpreted as alphanumeric in the following cases:

[]

In the VALUE clause associated with an alphanumeric, alphabetic, or group data
item, or in the VALUE clause of condition-names associated With such items

In the MOVE statement, where the category of the recelvmg field is either
alphanumeric or alphabetic

In the conditional expression of an IF, PERFORM, or SEARCH statement, where
the category of the other relational operand is either alphanumeric or alphabetic

In an INSPECT, STRING, UNSTRING, DISPLAY, STOP, DISABLE, or ENABLE
statement

In the ALL ﬁgurative constant

You can use undigit literals for numeric destinations in the MOVE statement when your
program meets all of the following criteria:

The usage of the destination is COMP,
The picture string for the destination does not contain the symbols S, V, or P

There is neither a SIGN clause nor a BLANK WHEN ZERO clause associated with
the data item associated with the undigit literal.

" You can only use an undigit literal as described in the preceding paragraphs. No other
uses are allowed.

VExamples

The following are examples of undigit literals and their EBCDIC equivalents.

Undigit literal EBCDIC Equivalent
@0D@ CR (carriage return)
@25@ LF (line feed)

Kanji (Unisys Extension)

A Kanji (National Character) literal is intended to be used with KANJI data items as an
alternative to using standard nonnumeric literals. The general format for a Kanjx literal
is the following:

NC" character-string "

2-18

8600 0296-000

Language Elements

The rules for the formation of a Kanji literal are as follows:
e A Kanji literal is bounded on the left by the separator NC" and on the right by a
quotation mark (*).

e The character string contains a string of Kanji characters between the blank space
after the first quotation mark and the blank space preceding the end quotation
mark. The compiler recognizes the start and the end of a Kanji character string by
means of the two blank spaces within the quotation marks.

e Spaces are not allowed within the character string of Kanji characters.
¢ A Kanji literal can be from 1 to 80 characters long.

A Kanyji literal occupies twice as much storage space as a literal that is not Kanji.

8600 0296-000 2-19

2-20 8600 0296-000

Section 3
File and Task Concepts

To develop successful COBOL74 programs, you need to understand some concepts that
underlie files and tasks. For example, to use files efficiently you need a knowledge of file
attributes, file organization, and access mode. An understanding of the tasking concept
includes knowledge of task attributes.

Physical Aspects of a File

File information describes both the physical aspects of the ﬁle and the loglcal
characteristics of the data in the file.

The physical characteristics of a file describe the data as it appears on the input or
output medium. This description refers to the grouping of the logical records within the
physical limitations of the file medium.

A physical record is a physical unit of data with a size and recording mode convenient
for storing data on an input or output device of a particular computer. The size of a
physical record is hardware dependent and has no direct relationship to the size of the
information file contained on a device.

The distinction between a physxcal record and a logical record, which is described next, is
important.

Logical Aspects of a File

The conceptual characteristics of a file are the explicit definitions of each logical entity
in the file. In a COBOL74 program, the input or output statements refer to one logical
record.

A COBOL logical record is related information that is uniquely ideﬁtiﬁable and treated |
as a unit.

One or more logical records can be contained in a single physical record. In a mass
storage file, however, one logical record could require more than one physical record. In
this manual, references to records mean logical records unless the term physical record
is specified.

The concept of a logical record is not restricted to file data. A logical record can also

apply to the definition of working-storage. Thus, working-storage can be grouped into
logical records and defined by a series of record-description entries.

See Also

Refer to “Levels” in Section 6, “Data Concepts,” for more information about records.

8600 0296-000 , ' 3-1

File and Task Concepts

Assigning a File to a Device

On A Series systems, the logical file mechanism supports access to remote and port files
as well as to other devices. The devices to which a file can be assigned are specified in
the SELECT clause of the ENVIRONMENT DIVISION.

Remote Files

Assignment of a file to a remote device enables the use of the logical file mechanism
to access a family of terminal or station devices. This mechanism uses traditional
file-handling methods rather than the specialized, data-communications handling
methods of the communication module.

Port Files

User processes communicate across a network through the standard I/O file mechanism
using a special kind of file called a port file. The program opens and closes port files

just like other files. A user can communicate with a process by performing read and
write operations to a port file. A port file is composed of one or more port subfiles, each
of which can be connected to a different process. Communication between processes

on the same host or system is effected by using port files without going through a
network. In addition, there is a service associated with each port file. This service can
be assigned with the SERVICE file attribute. For example, a user can set the SERVICE
file attribute to BNANATIVESERVICE.

A subfile provides a two-way, point-to-point, logical communication path between two
programs. To establish this path, each program must describe the desired connection.
This process is called matching. Each program describes its matching properties by using
file attributes. ' :

In the SELECT clause of the ENVIRONMENT DIVISION, the ACTUAL KEY clause
specifies the subfile index of a port file. If the ACTUAL KEY value is 0 (zero), the
OPEN statement opens all subfiles, the READ statement performs a nonselective read
operation, the WRITE statement performs a broadcast write operation, and the CLOSE
statement closes all opened subfiles associated with the port file.

If no ACTUAL KEY clause is specified, the file must contain a single subfile, which is
assumed to be the subfile in associated I/O statements.

See Also

The A Series I/0 Subsj'stem Programming Guide provides more information about and
an example of coding a port file application.

File Attributes

TFile attributes provide the capability for deﬁning,. monitoring, or changing file properties
or attributes.

3-2 L 8600 0296-000

File and Task Concepts

Note: File attributes provide you with access to functionality not otherwise
available within the language. File attributes can also be used to
declare and access files. When both a file attribute and standard
COBOL74 syntax are available to accomplish a desired function, it is
always preferable to use the standard COBOL74 syntax. Changing
the attribute can lead to unexpected results in cases when the attribute
is also used or altered by the compiler.

See Also

e Refer to the I/O Subsystem Programming Guide for information about how to use
file attributes.)

e Refer to the A Series File Attributes Programming Reference Manual for the details
about a specific attribute.

File-Attribute ldentifiers

File-attribute identifiers provide the ability to monitor, manipulate, define, or
dynamically change any specific file attribute.

The general format of the file-attribute identifier follows:

ATTRIBUTE attribute-name {;_)NE} file-name [(arithmetic-expression) |

Explanation of Format

The attribute-name is defined by the system. Examples of attribute names include
FILETYPE, TITLE, and MAXRECSIZE. For more information on attribute names, see
the I/O Subsystem Programming Guide.

Port Files

A subfile index is required for accessing or changing attributes of a subfile of a port file.
A subfile index must be an arithmetic expression.

The arithmetic-expression option can be used only with a port file. The value of the
expression specifies the subfile of the file that is affected. If the arithmetic-expression
is not specified, the attribute of the port is accessed. If the arithmetic-expression is
specified and its value is not 0 (zero), it specifies a subfile index and causes the attribute
subfile to be accessed. If the arithmetic-expression is specified and its value is 0 (zero),
then the arithmetic-expression causes causes the attribute of all subfiles to be accessed.

8600 0296-000 33

File and Task Concepts

File-Attribute Categories

A file attribute belongs to one of five categories, depending on the type of attribute-name
specified in the file-attribute identifier. The five file-attribute categories are described in
the following paragraphs.

Alphanumeric File-Attribute Identifier

Where allowed in syntax, an alphanumeric file-attribute identifier is similar to an
elementary alphanumeric DISPLAY data item that has a size equal to the maximum
size allowed for the specified attribute. The contents of the alphanumeric file-attribute
identifier are left-justified with space-fill. Alphanumeric file-attribute identifiers are
allowed as operands in relation conditions and as sending operands in Format 1 MOVE
statements.

Numeric File-Attribute ldentifier

Where allowed in syntax, a numeric file-attribute identifier is similar to an elementary
numeric DISPLAY data item that represents a signed integer with eight decimal digits.
Numeric file-attribute identifiers are allowed as operands in arithmetic expressions and
as sending operands in Format 1 MOVE statements. Some numeric file attributes
represent information about the number of areas, blocks, records, and so forth in the file.
These attributes are “one relative” in that their value specifies the exact number of
areas, blocks, records, and so forth in the file.

Mnemonic File-Attribute Identifier

Certain file attributes are associated with values that are best expressed as
mnemonic-names because the magnitude of the actual value is unrelated to its meaning.
Mnemonic file-attribute identifiers can appear as the subject of a mnemonic-attribute
relation condition, with the name for one of the values associated with the specified
attribute used as the object. The name for the attribute value must follow the reserved
word VALUE as shown in the next example.

Mnemonic-attribute relation conditions are allowed in any conditional expression. The
general format of a mnemonic-attribute relation condition follows:

mnemonic-attribute-identifier IS [NOT] {]iQUAL TO}

{VALUE

VA } mnemonic-attribute-value

34 8600 0296-000

File and Task Concepts

Mnemonic-attribute relation conditions cannot be abbreviated. The names for the
mnemonic-attribute values are system-names and are not necessarily reserved words.
Boolean file attributes are considered mnemonic attributes in COBOL and are associated
with the mnemonic-attribute values TRUE and FALSE. :

Boolean File-Attribute Identifier

These attributes are referenced in the same manner as numeric file-attribute identifiers.
These attributes return the value 1 for TRUE and 0 for FALSE.

Event File-Attribute ldentifier

The file attributes of the type EVENT are the same as the variables of the USAGE
EVENT identifier. They can be used whenever an event-identifier is allowed.

File Organization and Access Methods

The organization of a file determines the access mode of that file. The organization can
be sequential, relative, or indexed.

Sequential Organization

Sequential files are organized so that each record in the file except the first has a unique
predecessor record, and each record except the last has a unique successor record.
These predecessor/successor relationships are established by the order of the WRITE
statements when the file is created. Once established, the predecessor/successor
relationships do not change except when records are added to the end of the file.

Records in a file with sequential organization can be accessed in the sequence established
when the records were written to the file. A sequential mass storage file can be used for
input and output at the same time. This feature enables a record to be read, updated,
and returned with modifications to its original position for purposes of file maintenance.

A file with sequential organization enables you to specify records in rerun points and
share memory areas among files.

Relative Organization

Relative I/O enables you to access file records in either a random or a sequential manner.
Each record in a relative file is uniquely identified by an integer value greater than 0
(zero). The value is called the relative record number. It specifies the logical, ordinal
position of the file record.

Records are read from, and written to, the file based on the relative record number.
For example, the tenth record is the record addressed by relative record number 10
and occupies the tenth record area, whether or not record areas 1 through 9 have been
written. ,

8600 0296-000 ‘ 3-5

File and Task Concepts

Indexed Organization

Indexed I/O enables you to access file records in either a random or a sequential manner.
Each record in an indexed file is umquely identified by the value of one or more keys
within that record.

The record description of an indexed file includes one or more key data items, each

associated with an index. The index provides a logical path to the data records, based on
the contents of the record keys in each record.

Current-Record Pointer

The current-record pointer is a conceptual entity. It indicates to the program the next
record to be accessed within a given file.

For a file opened in the output mode, the current-record pointer concept has no meaning.

For sequential files, the current-record pointer indicates the next record for OPEN and
READ statements.

For relative and indexed files, the current-record pointer indicates the next record for
OPEN, READ, SEEK, and START statements.

Task Attributes

A task attribute is any one of a number of items that describe and control various
aspects of the execution of a process. The program can access a task attribute by using a
task identifier. The task identifier is a data item declared with task usage in the USAGE
clause.

A program can assign or change the value of a task attribute by using the CHANGE
statement or the MOVE statement.

éee Also

e The syntax for setting task attributes is documented under the CHANGE statement
~ in Section 9, “PROCEDURE DIVISION Statements.”

e More information about tasking with COBOL74 is provided in the A Series Task
Management Programming Guide.

Task-Attribute Identifiers (Unisys Extension)

Task-attribute identifiers are used to change or interrogate the task attributes of related
processes in a synchronous or asynchronous processing environment. You should be
familiar with the concepts of tasking, the task attributes, and their possible variations.

3-6 8600 0296-000

File and Task Coneepts

The general format of the task-attribute identifier follows:

task-identifier [(subscript)]
ATTRIBUTE attribute-name OF { MYSELF
MYJOB

Explanation of Format

task-identifier
A task-identifier can be attached to a program. For example,

CHANGE ATTRIBUTE NAME OF PROG2 TO "OBJECT/TASK.".

subscript

The optional subscript is used when the task item is declared with an OCCURS clause.
A maximum of one subscript is permitted. For example,

CHANGE ATTRIBUTE DECLAREDPRIORITY OF PROG1 (1) TO 1.

MYSELF

The reserved word MYSELF is a compiler-Supplied task item that enables a program to
access its own task attributes. Thus, any attribute of a given task can be referenced
within that task as ATTRIBUTE attribute-name OF MYSELF For example,

CHANGE ATTRIBUTE DECLAREDPRIORITY OF MYSELF TO 94.

CHANGE ATTRIBUTE DECLAREDPRIORITY OF ATTRIBUTE PARTNER
OF MYSELF TO 65.

The second example illustrates another task running with a task that you are running.

The PARTNER attribute refers to the other task and the example changes the
DECLAREDPRIORITY of the other task.

MyJoB

The reserved word MYJOB is a compiler-supplied task item that enables a program to
access the task attributes of its job. Thus, any attribute of a job can be referenced in any
task of that job as ATTRIBUTE attribute-name OF MYJOB. For example,

CHANGE ATTRIBUTE RESTART OF MYJOB TO 5.

8600 0296-000 3-7

File and Task Concepts

Task-Attribute Types

Task attributes of type EVENT can be used in place of any valid event-identifier
(USAGE EVENT).

Task attributes of type TASK are themselves task-identifiers of some other associated
task. This type of attribute can be employed to access or mampulate the task attributes
of the associated task.

Task attributes of type POINTER accept or return an alphanumeric DISPLAY item.

All other task attributes accept or return a numeric identifier, literal, arithmetic
expression, or the value associated with a mnemonic. If the value is not in the
permissible range for the attribute specified, an error occurs at compile time or at
execution time.

A task-attribute-mnemonic is a name associated with a constant value for an attribute
that has a set number of predetermined possible values.

The attribute names and their mnemonics are not treated as COBOL reserved words.
They are reserved only within the context in which they are used and can be also used as
data-names or procedure-names if they are not regular reserved words. Therefore, if a
data-name has the same name as the system attribute mnemonic, the value assigned to
the attribute by a CHANGE statement is determined by the use of the optional word
VALUE. If the word VALUE is present, the attribute is set to the value of the system
mnemonic. If the word VALUE is omitted, the attribute is set to the current value of
data-name.

Interrogating Task Attributes
You can interrogate a task attribute in ény of the following ways:

e By specifying a task attribute in the sending field of a MOVE statement. The
following is an example: ‘

MOVE ATTRIBUTE PROCESSTIME OF PROG3 TO PRINT-P-TIME.

When an attribute is moved into an area by a MOVE statement, the use of the
receiving field must be consistent with the type of the attribute. Boolean attributes
(those attributes having mnemonic values of TRUE or FALSE) return the number 0
if FALSE or the number 1 if TRUE. Boolean or INTEGER attributes should be
moved to a numeric receiving field. Type POINTER attrlbutes should be moved to a
nonnumeric receiving field.

3-8 ‘ 8600 0296-000

File and Task Concepts

¢ By making the task attribute the subject or object of a condition. The following is an
example:

IF ATTRIBUTE LOCKED OF PROG1 (1) = TRUE
CHANGE ATTRIBUTE TASKVALUE OF PROG1 (1) TO -1.

IF ATTRIBUTE NAME OF PROG2 = "X/Y/Z."
PERFORM PRINT-ROUTINE
UNTIL ATTRIBUTE STATUS OF PROG1 (2) = VALUE SUSPENDED.

e By usmg attributes with an implicit numeric class in DISPLAY statements. The
following is an example:

DISPLAY ATTRIBUTE STATUS OF PRdGZ
ATTRIBUTE PROCESSTIME OF PROG2.

e By using attributes with an implicit numeric class in place of any identifier in an
arithmetic statement, except the receiving-field identifier.

Task attributes can be tested against their associated attribute mnemonics.

The program fragment of Example 3-1 sets the BDBASE option of the OPTION task
attribute. Accessing specific options of the type OPTION task attribute requires use of
mnemonic-attribute identifiers. The mnemonic-attribute identifiers represent specific
bits in the type OPTION task attribute word. One way to access these bits is to use the
Format 3 MOVE statement. .

11000 WORKING-STORAGE SECTION.

11109 21 OPTION-WORD PIC 9(11) BINARY.

11206 @1 VALUE-ONE PIC 9(11) BINARY VALUE 1.

11300 PROCEDURE DIVISION.

11490 P-1.

11500 MOVE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.
116090 MOVE VALUE-ONE TO OPTION-WORD [@:VALUE BDBASE:1].
11700 CHANGE ATTRIBUTE OPTION OF MYSELF TO OPTION-WORD.

Example 3-1. Setting the BDBASE Option

See Also

For a description of the rules that govern move operations, refer to “MOVE” in
Section 9, “PROCEDURE DIVISION Statements.” :

8600 0296-000 ; 39

3-10 ' 8600 0296-000

Section 4
IDENTIFICATION DIVISION

The first division of the source program, the IDENTIFICATION DIVISION, provides
identifying information about the source program such as the name of the program, the
creation date, the compilation date, and other documentation information.

With the exception of the DATE-COMPILED paragraph, the entire IDENTIFICATION
DIVISION is copied from the input source program and listed on the output listing.

The general format of the IDENTIFICA_TION DIVISION is as follows:

{IDENTIFICATION
ID

} DIVISION.

[PROGRAM-ID. program-name. |

[AUTHOR. [comment-entry]...]

[INSTALLATION. [comment-entry]...]
[DATE-COMPILED. [comment-entry]...]
[DATE-WRITTEN.' [comment-entry] .. J

[SECURITY. [comment-entry]...]

Note: Because the AUTHOR, INSTALLATION, DATE-WRITTEN, and
SECURITY paragraph headers have associated text consisting only
of comment-entries, they are not further documented.

Explanation of Format

The IDENTIFICATION DIVISION must begin with the reserved words
IDENTIFICATION DIVISION or ID DIVISION followed by a period and a space.

8600 0296-000 4-1

IDENTIFICATION DIVISION

ID DIVISION is a synonym for IDENTIFICATION DIVISION. (The reserved word ID is
a Unisys extension.) ’

The comment-entry can be any combination of characters from the character set of the
computer. The continuation of the comment-entry by the use of the hyphen in the
indicator area is not permitted; however, the comment-entry can be contained in one or
more lines. :

Example 4-1 shows coding of the IDENTIFICATION DIVISION.

IDENTIFICATION DIVISION.

PROGRAM-ID. GENERAL UPDATE.
AUTHOR. JOHN SMITH.
INSTALLATION. MISSION VIEJO.

DATE WRITTEN. ° SEPTEMBER 18, 1984.
DATE COMPILED. SEPTEMBER 15, 1984,
SECURITY. FOREVER.

Example 4-1. Coding the IDENTIFICATION DIVISION

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is identified. The
general format is as follows:

PROGRAM-ID. program-name.

Explanation of Format

The program-name identifies the source program and all listings pertaining to a
particular program. The program-name must conform to the rules for formation of a
user-defined word.

The following describes the different uses of the program-name:

Value of FEDLEVEL

Compiler Option Use of Program-name

<5 The program-name is treated as a comment.

=5 . The program-name is the entry-point name when the program is

‘ used as a library. If a library program does not use the
PROGRAM-ID paragraph to designate an entry-point name, the
entry-point name is PROCEDUREDIVISION.
See Also

Refer to Section 15, “Libraries,” for more information about creatirxg a library.

4-2 ’ 8600 0296-000

IDENTIFICATION DIVISION

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date in the
IDENTIFICATION DIVISION source program listing.

The general format of this paragraph is as follows:

DATE-COMPILED. [comment-entry] ...

Explanation of Format

The DATE-COMPILED paragraph causes the current date to be inserted during
compilation. If a DATE-COMPILED paragraph is present, it is replaced during
compilation with a paragraph of the following form:

DATE-COMPILED. current-date.

The current-date represents the date and time at which the compilation of the source
program started.

The comment-entry can be any combination of characters from the character set of the
computer. The continuation of the comment-entry by use of the hyphen in the indicator
area is not permitted; however, the comment-entry can be contained in one or more
lines.

8600 0296-000 4-3

8600 0296-000

Section 5
ENVIRONMENT DIVISION

The second division of a source program, the ENVIRONMENT DIVISION, specifies a
standard method of expressing aspects that depend on the physical characteristics of a
specific computer. This division enhables you to specify the compiling computer, the object
computer, the files handled by the object program, and the I/O procedures to be used.

The ENVIRONMENT DIVISION must be included in every COBOL source program
and must begin with the reserved words ENVIRONMENT DIVISION followed by a
period and a space.

The ENVIRONMENT DIVISION consists of two sections: the CONFIGURATION
SECTION and the INPUT-OUTPUT SECTION.

The CONFIGURATION SECTION explains the characteristics of the source computer
and the object computer.

The INPUT-OUTPUT SECTION provides the information needed to control
transmission and handling of data between external media and the object program.

The following general format shows the overall syntax for the ENVIRONMENT
DIVISION. The individual sections and paragraphs are further defined later in this
section.

The general format of the ENVIRONMENT DIVISION is as follows:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
[SOURCE-COMPUTER. source-computer-entry]
[OBJECT-COMPUTER. object-computer-entry]
[SPECIAL-NAMES. special-names-entry|

UT-OUTPUT SECTION.
FILE-CONTROL. {file-control-entry} ..

[1-O-CONTROL. mput-output-control-entxy]

8600 0296-000 5-1

ENVIRONMENT DIVISION .

CONFIGURATION SECTION

The CONFIGURATION SECTION lists the characteristics of the source computer and
the object computer. This section is divided into the following three paragraphs:

. o The SOURCE-COMPUTER paragraph, which describes the computer configuration
on which the source program is compiled

e The OBJECT-COMPUTER paragraph, which describes the computer configuration
on which the object program produced by the compiler is to be run

e The SPECIAL-NAMES paragraph, which relates hardware names used by the
COBOL compiler to the mnemonic-names in the source program

SOURCE-COMPUTER

The SOURCE-COMPUTER paragraph identifies the computer on which the program is
to be compiled.

The general format of this paragraph is as follows:

SOURCE-COMPUTER. computer-name | WITH DEBUGGING MODE |.

Explanation of Format

The computer-name can be any single COBOL word. It is handled as a comment entry
that describes the computer on which the source program is to be compiled. The
computer-name is for documentation only.

See Also

For information on the effects of specifying DEBUGGING MODE, refer to Section 11,
“Debugging.”

5.2 8600 0296-000

ENVIRONMENT DIVISION

OBJECT-COMPUTER

The OBJECT-COMPUTER paragraph identifies the computer on which the program is
to be executed.

The general format of this paragraph is as follows:

OBJECT-COMPUTER. computer-name

' WORDS
, MEMORY SIZE IS integer-1 {CHARACTERS]
MODULES

WORDS
MODULES

, DISK SIZE IS integer-2 {

[, STACK SIZE IS integer-3 |

[, CODE SEGMENT-LIMIT IS integer-4 | WORDS | |

[, SEGMENT-LIMIT IS segment-number |

[, PROGRAM COLLATING SEQUENCE IS alphabet-name |.

Explanationlof Format

: compuier-name

The computer-name is a system-name that identifies the hardware for which object
code is to be generated. A valid OBJECT-COMPUTER system-name can be any single
COBOL74 word. It is treated as a comment.

MEMORY SIZE

The MEMORY SIZE clause is used only in conjunction with the SORT statement.

The SORT statement can also specify MEMORY SIZE and takes precedence over the
OBJECT-COMPUTER paragraph. When MEMORY SIZE is not specified in either the
SORT statement or the OBJECT-COMPUTER paragraph, a default memory size of
12,000 words is assumed. If this option is used and a SORT statement does not appear

8600 0296-000 ' 5-3

ENVIRONMENT DIVISION

in the program, the option is ignored. One module of memory is equivalent to 16,384
words of memory. ’

DISK SIZE (Unisys Extension)

The DISK SIZE clause is used only in conjunction with the SORT statement. If this
option is omitted in a sort program, DISK SIZE is assumed to be 900,000 words. If this
option is used and a SORT statement does not appear in the program, the option is
ignored. One module of disk is equivalent to 1.8 million words of disk.

STACK SIZE (Unisys Extension)

The STACK SIZE clause is for documentation purposes only.

CODE SEGMENT-LIMIT (Unisys Extension)

The CODE SEGMENT-LIMIT clause specifies the value for the size of an object-code
segment in words. During the code-generation process, when the compiler completes the
code for a paragraph or section, it ends the current segment and starts a new segment if
the size of the current segment exceeds the target value.

Integer-4 must be in the range 256 through 7000. If the CODE SEGMENT-LIMIT
clause is not specified, the defauit segment size is 1500 words.

For information about the SEGMENT-LIMIT clause, refer to Section 10,
“Segmentation.”

PROGRAM COLLATING SEQUENCE

If the PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence
associated with alphabet-name is used to determine the truth value of any nonnumeric
comparisons that are explicitly specified in relation or condition-name conditions or

implicitly specified by the presence of a CONTROL clause in a report-description entry.

For localization purposes, the program can specify the PROGRAM COLLATING
SEQUENCE clause and a CCSVERICN collating sequence associated with an
alphabet-name. In this case, the truth value of the alphabetic characters that are
explicitly specified in the class condition do not always consist entirely of the characters
A through Z and the space. The class of alphabetic characters is determined based on
the system collating sequence when the CCSVERSION collating sequence is specified.

If the PROGRAM COLLATING SEQUENCE clause is not specified, the EBCDIC
collating sequence is used. If the PROGRAM COLLATING SEQUENCE clause is .
specified, the program-collating sequence is the collating sequence associated with the
alphabet-name specified in that clause.

The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric

merge or sort keys, unless the COLLATING SEQUENCE phrase of the respective
MERGE or SORT statement is specified.

5.4 - 8600 0296-000

ENVIRONMENT DIVISION

See Also

For information about specifying a collating sequence using the internationalization
features, refer to Section 16, “Internationalization.”

SPECIAL-NAMES

The SPECIAL-NAMES paragraph enables you to do the following:

Supply a name for a channel number, a switch, or the Operator Display Terminal
(ODT)

Supply a name for a character code set or collating sequence
Specify a default sign position (Unisys extension)

Designate a set of words to be recognized as reserved words for a specified kind of
application (Unisys extension)

Define a currency sign in edited numeric data
Specify the role of the comma and period in edited numeric data

Rename a file title for binding purposes

Volume 2 of this manual describes the SPECIAL-NAMES paragraph extensions for
specific product interfaces.

The general format for the SPECIAL-NAMES paragraph is as follows:

8600 0296-000 5-5

ENVIRONMENT DIVISION

SPECIAL-NAMES.

[CHANNEL nn IS mnemonic-name-1]
ODT IS mnemonic-name-2
switch-name [IS mnemonic-name-3 |
ON STATUS IS condition-name-1
[, OFF STATUS IS condition-name-2]
OFF STATUS IS condition-name-2

i [, ON STATUS IS condition-name-1]
[(‘EBCDIC
ASCII
STANDARD-1
, alphabet-name IS 4 NATIVE

CCSVERSION [literal-1]

[CURRENCY SIGN IS literal-5 |

[DECIMAL-POINT IS COMMA |

[, literal-6 IS mnemonic-name-4 |

LEADING
[, DEFAULT DISPLAY [SIGN IS] {TRAEIN G}
[SEPARATE CHARACTER |
COMPUTATIONAL
, DEFAULT COMP } [SIGNIS] {
CMP ,
[[SEPARATE CHARACTER |

[RESERVE WORD LIST IS NETWORK CAPABLE]

THROUGH)
{literal-2 [{THRU }hteral'?’

{ALSO literal-4} ...

LEADING
TRAILING

}

8600 0296-000

ENVIRONMENT DIVISION

Explanation of Format

CHANNEL nn IS mnemonic-name

The CHANNEL nn IS mnemonic-name clause relates a mnemonic-name to a channel
. number, where nn is an integer from 01 to 11. You can use the mnemonic-name in a
WRITE or SEND statement.

ODT IS mnemonic-name

The ODT IS mnemonic-name clause associates a user-defined word with the operator
display terminal (ODT). You can use the mnemonic name in an ACCEPT or DISPLAY
statement. .

switch-name

The switch-name can be SW1, SW2, SW3, SW4, SW5, SW6, SW7, or SW8. The program
uses switches to communicate with the external environment. A switch has a value of
either ON or OFF. You can define a condition-name for each value of the switch. You

can then check the status of the switch by testing the condition-name. You can set the
switch at program initiation time or through Work Flow Language (WFL) using the task
attributes SW1, SW2, SW3, SW4, SW5, SW6, SW7, and SWS.

The IS mnemonic-name-3 clause associates a user-defined word with a switch-name.

The ON STATUS IS phrase associates a condition-name with the ON status of a switch.
The condition-name is TRUE when the switch is set and FALSE when the switch is not
set.

" The OFF STATUS IS phrase associates a condition-name with the OFF status of a
switch. The condition-name is TRUE when the switch is not set, and FALSE when the
switch is set.

A condition-name designates a value for either the ON or OFF value of a switch. You can
associate one condition-name value with the ON status and another with the OFF status.
You define the condition-name as a level-number 88 data item in the DATA DIVISION.

alphabet-name IS

The alphabet-name IS clause relates an alphabet-name to a collating sequence or

character set. ‘The alphabet-name refers to a collating sequence when you use it

in the PROGRAM COLLATING clause of the OBJECT-COMPUTER paragraph

or the COLLATING SEQUENCE phrase of a MERGE or a SORT statement. The

alphabet-name refers to a character code set when you use it in a CODE-SET clause of a
. file-description entry.

The ASCII or STANDARD-1 phrase identifies alphabet-name as the collating sequence

or the character code set defined in the American National Standard Code for
Information Interchange, X3.4-1968.

8600 0296-000 | 57

ENVIRONMENT DIVISION

5-8

The NATIVE phrase or EBCDIC phrase identifies alphabet-name as the native character
code set or native collating sequence. The native character code set is the character code
set associated with USAGE IS DISPLAY, EBCDIC.

The Unisys standard translation tables for EBCDIC-to-ASCII and ASCII-to-EBCDIC
translation determine the correspondence between characters of the ASCII character
code set and characters of the EBCDIC character code set.

If the CCSVERSION option is specified, then the character code set and the collating
sequence identified with the alphabet-name is the system collating sequence. If the
CCSVERSION phrase is specified without literal-1, the collating sequence identified
with the alphabet-name is the internationalized system default collating sequence. If
the CCSVERSION phrase is specified with literal-1, the collating sequence is the one
identified by literal-1, provided that literal-1 is valid. The alphabet-name cannot be
referred to in a CODE-SET clause.

The CCSVERSION phrase can only be specified once. Only one CCSVERSION can be
specified in a program.

Literal-2 specifies the positional value of the character in the program collating sequence.
A given character can be specified only once as a literal in an alphabet-name clause. The
value of each literal specifies both of the following characteristics: '

e The ordinal number of a character within the native character set, if the literal is
numeric. Numeric literals must be unsigned integers and must have values in the
range 1 through 256.

e The actual character within the native character set, if the literal is nonnumeric. If
the value of the nonnumeric literal contains multiple characters, each character in
the literal, starting with the leftmost character, is assigned a successive ascending
position in the collating sequence being specified. :

The order in which the literals appear in the alphabet-ﬁame clause specifies, in ascending
sequence, the ordinal number of the character within the collating sequence being
specified.

Any characters in the native collating sequence that you do not specify in the literal
phrase assume a position greater than any of the characters that you do specify in the
collating sequence being specified. The relative order within the set of these unspecified
characters is unchanged from the native collating sequence.

The character that has the highest ordinal position in the program-collating sequence
specified is associated with the figurative constant HIGH-VALUE. If more than one
character has the highest position in the program-collating sequence, the last character
specified is associated with the figurative constant HIGH-VALUE.

The character that has the lowest ordinal position in the program-collating sequence
specified is associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position in the program-collating sequence, the first character
specified is associated with the figurative constant LOW-VALUE.

8600 0296-000

ENVIRONMENT DIVISION

Note: Using the internationalized system default ccsversion can produce
unexpected results for the HIGH-VALUE and LOW-VALUE
figurative constants. These unexpected results can occur when the
program is run on a host with a system default ccsversion that differs
from the ccsversion compiled into the program. In this case, the
HIGH-VALUE and LOW-VALUE figurative constants will contain
the values that are correct for the ccsversion compiled into the
program.

For example, if the program was compiled on a host with a system
default ccsversion of SPANISH, but the program is run on a host
with a default ccsversion of FRANCE, the HIGH-VALUE and
LOW-VALUE constants define their values from the SPANISH
ccsversion at compile-time, rather than from the FRANCE ccsversion.

The THROUGH literal-3 phrase assigns successive ascending positions to the set of
contiguous characters in the native character set, beginning with the character specified
by the value of literal-1 and ending with the character specified by the value of literal-3.
The set of contiguous characters can specify characters of the native character set in
either ascending or descending sequence. The words THROUGH and THRU are
equivalent. Each literal must be one character in length.

The ALSO literal-4 phrase assigns literal-4 to the same position in the collating sequence
as literal-1.

CURRENCY SIGN IS literal-5

The CURRENCY SIGN IS literal-5 clause assigns the symbol used to represent the
currency symbol in the PICTURE clause. If your program does not specify a currency
symbol, the program uses the dollar sign (§) as the currency symbol in the PICTURE
clause. The literal must be a single character. The currency symbol cannot be any of the
following characters:

¢ Digits 0 through 9
e Alphabetic characters A, B,C, D, L, B R, S, V; X, Z, and the space
e The following special characters:

* (asterisk) + (plus sign)
— (minus sign) . (period)
; {(semicolon) ((left parenthesis)

) (right parenthesis) * (quotation mark)
, (comma) / (stroke)

= (equal sign)

8600 0296-000 . 5.9

ENVIRONMENT DIVISION

5-10

DECIMAL-POINT IS COMMA

The DECIMAL-POINT IS COMMA clause causes the comma to act as the decimal point
and the period to represent the separator for thousands in the character string of the
PICTURE clause and in numeric literals. For example, 1,000.00 changes to 1.000,00 with
this option specified.

literal-6 IS mnemonic-name-4 (Unisys Extension)

. The literal-6 IS mnemonic-name-4 clause associates a mnemonic-name with a valid

program name. Literal-6 can be of the form AAA/BBB/CCC..., where each group of
characters between two slashes is one directory of the program-name. A directory can
have a maximum of 17 characters, and a file title can have a maximum of 14 directories.
This clause is used for binding or tasking.

DEFAULT DISPLAY SIGN (Unisys Extension)

The DEFAULT DISPLAY SIGN clause, a Unisys extension, specifies a default sign
position for all signed DISPLAY data items. If you declare a signed data item in the
DATA DIVISION and do not use the optional SIGN clause, the program uses the

‘default sign for that type of data item. The use of the optional SIGN clause in the DATA

DIVISION overrides the default sign specification in the SPECIAL-NAMES paragraph.

DEFAULT COMPUTATIONAL SIGN (Unisys Extension)

The DEFAULT COMPUTATIONAL SIGN clause, a Unisys extension, specifies a
default sign position for all signed COMPUTATIONAL data items. If you declare a
signed data item in the DATA DIVISION and do not use the optional SIGN clause, the
program uses the default sign for that type of data item. The use of the the optional
SIGN clause in the DATA DIVISION overrides the default sign specification in the
SPECIAL-NAMES paragraph.

RESERVE NETWORK (Unisys Extension)

The RESERVE NETWORK clause tells the compiler to handle the network class of
application-specific keywords as reserved words for the extent of the program. If the
program does not include the RESERVE NETWORK option, then the program can

use the network keywords as normal identifiers. If you need to use port files with
OSINATIVE service, then you should include the RESERVE NETWORK option in your
program in order for the compiler to recognize keywords like the RESPOND verb as
reserved words.

See Also

e For information about identifying a collating sequence, refer to
“OBJECT-COMPUTER?” earlier in this section.

¢ For more information about specifying a sign position, refer to “SIGN Clause” and
“PICTURE Clause” in Section 7, “DATA DIVISION” and explanations of the
LEADING and TRAILING options. '

8600 0296-000

ENVIRONMENT DIVISION

o For more information on binding, refer to the A Series Binder Programming
Reference Manual.

e For definition of port files, refer to “Port Files” in Section 3, “File and Task
-Concepts”.

e For information on localizing a COBOL74 application, refer to Section 16,
“Internationalization.”

e For information on the RESERVE SEMANTIC clause and the DICTIONARY clause
of the SPECIAL-NAMES paragraph, refer to Volume 2 of this manual.

INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION contains the information needed to control
transmission and handling of data between external media and the object program. If
included, this section must begin with the reserved words INPUT-OUTPUT SECTION,
followed by a period and a space. The INPUT-OUTPUT SECTION is divided into two
paragraphs:

e The FILE-CONTROL paragraph, which names and associates the file with external
_media

e The I-O-CONTROL paragraph, which defines special control techniques to be used
in the object program

8600 0296-000 ' 5-11

ENVIRONMENT DIVISION

FILE-CONTROL Paragraph
The FILE-CONTROL paragraph enables you to do the following.

e Name each file.

e Identify the file medium.

e Specify hardware.

e Specify alternate I/O areas.

e Specify the organization of the file.

The FILE-CONTROL paragraph is required in the INPUT-OUTPUT SECTION. You

must include the reserved words FILE-CONTROL, followed by a period, a space, and the
~ file-control entries.

There are five formats for the file-control entries. These formats are used in the

following ways:
Format Explanation

1 This format is used for sequential files.
2 This format is used for relative files.

3 " This format is used for indexed files.

4 This format is used for sort and merge

files.
5 . Refer to Volume 2 for information about

the DICTIONARY-REFERENCE clause.

5-12- ' 8600 0296-000

ENVIRONMENT DIVISION

Sequential 1/0

Your program must use Format 1 of the FILE-CONTROL paragraph if it is doing
sequential I/O.

Format 1: Sequential 1/O

LOCAL

SELECT | - OBAL

] [RECEIVED BY {—'——REFERENCE}]

REF
[OPTIONAL] file-name

r DISK)
TAPE
READER

ASSIGN TO { PUNCH
PRINTER
REMOTE
\PORT)

. AREA
; RESERVE integer-1
[S integer []]
[s ORGANIZATION IS SEQUENTIAL]

[. ACCESS MODE IS {§§Q—UE———I YTIAL }]

RANDOM
- [; ACTUAL KEY IS data-name-1 |

[; FILE STATUS IS data-name-2] .

8600 0296-000 5-13

ENVIRONMENT DIVISION

5-14

Explanation of Format 1

SELECT

The SELECT clause declares each file described in the DATA DIVISION. Each file
described in the DATA DIVISION must be named once as a file-name in the SELECT
clause. Each file specified in the SELECT clause must have a file-description (FD)
entry in the DATA DIVISION. The SELECT clause must be the first clause in the
FILE-CONTROL paragraph. The clauses that follow the SELECT clause can appear in
any order.

LOCAL (Unisys Extension)

The LOCAL option is meaningful only for programs being compiled as procedures. The
LOCAL option specifies that the file is a formal parameter for a procedure and can be
named only in WITH and USING clauses in the declarative USE statement associated
with the procedure.

The LEVEL compiler option must be greater than 2 to use the LOCAL option.

GLOBAL (Unisys Extension)

The GLOBAL optionvis meaningful only for programs being compiled as procedures. The
GLOBAL option specifies that the first record description must match, by name and
array type, a similar record description for the file in the host. For example,

SELECT GLOBAL GFILE ASSIGN TO DISK.

The GLOBAL compiler option has no effect on ENVIRONMENT DIVISION or FILE
SECTION entries. The LEVEL compiler option must be greater than 2 to use the
GLOBAL option.

RECEIVED BY REFERENCE or RECEIVED BY REF (Unisys Extension)

The RECEIVED BY REFERENCE option enables two or more programs to use the file
with which this option appears. Either program can perform I/O to the file. The default
is RECEIVED BY REFERENCE.

This option is meaningful only if the file-name appears in the USING clause of the
PROCEDURE DIVISION header. If the program does not have a RECEIVED BY
REFERENCE clause, the compiler issues a warning when it encounters the file-name in
the USING clause.

The compiler issues a syntax error if the LOCAL and the RECEIVED BY REFERENCE
clauses appear in the same file.

RECEIVED BY REF is a synonym for RECEIVED BY REFERENCE.

8600 0296-000

ENVIRONMENT DIVISION

OPTIONAL

The OPTIONAL phrase specifies an input file that is optional. Specification is required
for input files but not necessarily each time the object program is executed.

ASSIGN

The ASSIGN clause associates the named file with a storage medium. (ASSIGN TO

REMOTE and ASSIGN TO PORT are Unisys extensions.) DISK specifies that mass
storage is the storage medium of the file. You can more precisely specify the storage
medium by using the file attribute mechanism (that is, the VALUE OF clause in the

file-description entry) or by using a file equation.

RESERVE

The RESERVE clause enables you to specify the number of I/O areas to be allocated.
If the RESERVE clause is specified, the number of I/O areas allocated is equal to the
value of integer-1. Two areas are automatically supplied when the RESERVE clause is
omitted.

ORGANIZATION

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established when a file is created and cannot subsequently be changed.
The default organization for a file is SEQUENTIAL.

ACCESS MODE

The ACCESS MODE clause specifies whether records in a sequentially organized file are
to be accessed sequentially or randomly. You can specify random access for mass-storage
files only. (RANDOM access is a Unisys extension.)

The default mode of access is sequential.

ACTUAL KEY (Unisys Extension)

The ACTUAL KEY clause can be specified only for mass-storage, port, and remote files.
Data-name-1 must be defined in the DATA DIVISION as an elementary numeric item
that describes an unsigned integer. If the ACTUAL KEY clause is specified, the following
rules apply: ‘

e For mass-storage files specifying an ACTUAL KEY, the value of the ACTUAL KEY
data item specifies the logical ordinal position of the record in the file.

e For port files, the value of the ACTUAL KEY data item specifies the subfile index of
the port file.

e For remote files, the value of the ACTUAL KEY data item specifies the ordinal
number of the station within the station list of the remote file. A zero value specifies
all stations within the station list of the remote file.

8600 0296-000 5-15

ENVIRONMENT DIVISION

5-16

The ACTUAL KEY clause must be specified for a port file that contains more than one
subfile.

FILE STATUS

When the FILE STATUS clause is specified, the system moves a value into the data item
specified by data-name-2 after execution of every statement that explicitly or implicitly
references that file. This value indicates the status of execution of the statement.
Data-name-2 must be defined in the DATA DIVISION as a two-character, alphanumeric
data item and must not be defined in the FILE SECTION, the REPORT SECTION, or
the COMMUNICATION SECTION. Data-name-2 can be qualified.

See Also

¢ For information about status values, refer to “I/O Status” later in this section.

e For more information about sequential I/O, refer to “File Organization and Access
Methods” in Section 3, “File and Task Concepts.”

8600 0296-000

ENVIRONMENT DIVISION

Relative 1/O

Your program must use Format 2 when it is performing relative I/O.

Format 2: Relative I/O

LOCAL REFERENCE
SELECT [GLOB AL] [RECEIVED BY {REF }] file-name
ASSIGN TO DISK
[. RESERVE integer-1 [AREA]]
AREAS
. ORGANIZATION IS RELATIVE

SEQUENTIAL [,RELATIVE KEY IS data-name-1]
; ACCESS MODE IS {RANDOM '

DYNAMI C} , RELATIVE KEY IS data-name-1

[; FILE STATUS IS data-name-2 |.

Explanation of Format 2

SELECT

The SELECT clause declares each file described in the DATA DIVISION. Each file
described in the DATA DIVISION must be named once as a file-name in the SELECT
clause. Each file specified in the SELECT clause must have a file-description (FD)
entry in the DATA DIVISION. The SELECT clause must be the first clause in the
FILE-CONTROL paragraph. The clauses that follow the SELECT clause can appear in
any order, except that the RELATIVE KEY clause must follow the ACCESS MODE
clause.

8600 0296-000 5-17

' ENVIRONMENT DIVISION

5-18

LOCAL (Unisys Extension)

The LOCAL clause is meaningful only for programs being compiled as procedures. The
LOCAL clause specifies that the file is as a formal parameter for a procedure and can be
named only in WITH and USING clauses in the declarative USE statement associated
with this procedure.

The LEVEL compiler option must be greater than 2 to use the LOCAL clause.

GLOBAL (Unisys Extension)

The GLOBAL clause is meaningful only for programs being compiled as procedures. The
GLOBAL clause specifies that the first record description must match, by name and
array type, a similar record description for the file in the host. For example,

SELECT GLOBAL GFILE ASSIGN TO DISK.

The GLOBAL éompiler option has not effect on ENVIRONMENT DIVISION or FILE
SECTION entries. The LEVEL compiler option must be greater than 2 to use the
GLOBAL option.

RECEIVED BY REFERENCE or RECEIVED BY REF (Unisys Extension)

The RECEIVED BY REFERENCE phrése enables two or more programs to use the file
with which this option appears. Either program can perform I/O to the file. The default
is RECEIVED BY REFERENCE.

This option is meaningful only if the file-name appears in the USIN G clause of the
PROCEDURE DIVISION header. If the program does not have a RECEIVED BY
REFERENCE clause, the compiler issues a warmng when it encounters the file-name in
the USING clause.

The compiler issues a syntax error if the LOCAL and the RECEIVED BY REFERENCE
clauses appear in the same file.

RECEIVED BY REF is a synonym for RECEIVED BY REFEREN! CE.

ASSIGN

The ASSIGN clause associates the named file with a storage medium. DISK specifies
that mass storage is the storage medium of the file. You can more precisely specify the
storage medium by using the file attribute mechanism (the VALUE OF clause in the
file-description entry) or through file equation.

RESERVE
The RESERVE clause enables specification of the number of I/O areas allocated. If the

RESERVE clause is specified, the number of I/O areas allocated is equal to the value of
integer-1. Two areas are allocated when the RESERVE clause is omitted.

8600 0296-000

ENVIRONMENT DIVISION

ORGANIZATION

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established when a file is created and cannot subsequently be changed.

The default file organization is sequential.

ACCESS MODE

When the ACCESS MODE is SEQUENTIAL, records in the file are accessed in the
sequence dictated by the file organization. This sequence is the order of ascending
relative record numbers of existing records in the file. All records stored in a relative

file are uniquely identified by relative record numbers. The relative record number of a
given record specifies the logical ordinal position of the record in the file. The first logical
record has a relative nuimber of 1, and subsequent logical records have relative record
numbers of 2, 3, 4, and so forth.

The default mode of access is sequential.

The RELATIVE KEY phrase is required when the access mode is dynamic or random.
When the access mode is dynamic, records in the file can be accessed sequentially,
randomly, or both, depending on the verbs used in the PROCEDURE DIVISION.
Dynamic access is random by relative key except in the case of the READ NEXT
statement, in which case the system updates the value of the relative key.

If the access mode is random, the value of the RELATIVE KEY data item indicates the
record to be accessed. '

If a relative file is referenced by a START statement, the RELATIVE KEY phrase must
be specified for that file. Data-name-1 must not be defined in a record-description (RD)
entry associated with that file-name. Data-name-1 can be qualified.

If the access mode is sequential, the system maintains the value of the relative key on all
1/0 operations.

FILE STATUS

When the FILE STATUS clause is specified, the system moves a value into the data item
specified by data-name-2 after execution of every statement that explicitly or implicitly
references that file. This value indicates the status of execution of the statement.
Data-name-2 must be defined in the DATA DIVISION as a two-character, alphanumeric
data item and must not be defined in the FILE SECTION, the REPORT SECTION, or
the COMMUNICATION SECTION. Data-name-2 can be qualified.

See Also

For information about status values, refer to “I/O Status” later in this section.

8600 0296-000 ; - 5-19

ENVIRONMENT DIVISION

Indexed I/0

Your program must use Format 3 ifit is performing indexed I/O.

Format 3: Indexed I/O

LOCAL | REFERENCE
SELECT [CLemeL] [RECEIVED BY {————————REF }] file-name
ASSIGN TO DISK

[- RESERVE integer-1 [AREA]]
TERRAES " | AREAS

; ORGANIZATION IS INDEXED

SEQUENTIAL
; ACCESS MODE IS {RANDOM }]
DYNAMIC

; RECORD KEY IS data-name-1

BINARY
; COMPARISON IS { LOGICAL
EQUIVALENT

[; KEY-LENGTH IS integer-2]
[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES |] ...

[; FILE STATUS IS data-name-3 |

5-20 ' 8600 0296-000

ENVIRONMENT DIVISION

Explanation of Format 3

SELECT

The SELECT clause declares each file described in the DATA DIVISION. Each file
described in the DATA DIVISION must be named once as a file-name in the SELECT
clause. Each file specified in the SELECT clause must have a file-description (D)
entry in the DATA DIVISION. The SELECT clause must be the first clause in the
FILE-CONTROL paragraph. The clauses that follow the SELECT clause can appear in
any order.

LOCAL (Unisys Extension)

The LOCAL clause is meaningful only for programs being compiled as procedures. The
LOCAL clause indicates that the file is a formal parameter for a procedure and can be
named only in WITH and USING clauses in the declarative USE statement associated
with this procedure.

The LEVEL compiler option must be greater than 2 to use the LOCAL option.

GLOBAL (Unisys extension)

The GLOBAL clause is meaningful only for program being compiled as procedures. The
GLOBAL clause specifies that the first record description must match, by name and
array type, a similar record description for the file in the host. For example,

SELECT GLOBAL GFILE ASSIGN TO DISK.

The GLOBAL compiler option has no effect on ENVIRONMENT DIVISION or FILE
SECTION entries. The LEVEL compiler option must be greater than 2 to use the
GLOBAL option.

RECEIVED BY REFERENCE or RECEIVED BY REF

The RECEIVED BY REFERENCE or RECEIVED BY REF phrase, a Unisys extension,
enables two or more programs to use the file with which this option appears. Either
program can perform I/O to the file. The default is RECEIVED BY REFERENCE.

This option is meaningful only if the file-name appears in the USING clause of the
PROCEDURE DIVISION header. If the program does not have a RECEIVED BY

REFERENCE clause, the compiler issues a warning when it encounters the file-name in
the USING clause.

The compiler issues a syntax error if the LOCAL and the RECEIVED BY REFERENCE
clauses appear in the same file.

RECEIVED BY REF is a synonym for RECEIVED BY REFERENCE.

8600 0296-000 5-21

ENVIRONMENT DIVISION

5-22

ASSIGN
The ASSIGN clause associates the named file with a storage medium. DISK specifies
that mass storage is the storage medium of the file. You can more precisely specify the

storage medium by using the file attribute mechanism (the VALUE OF clause in the
file-description entry) or through file equation.

RESERVE
The RESERVE clause enables you to specify the number of I/O areas allocated. If the

RESERVE clause is specified, the number of I/O areas allocated equals the value of
integer-1. Two areas are allocated when the RESERVE clause is omitted.

ORGANIZATION

The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established when a file is created and cannot be changed later.

The default file organization is sequential.

ACCESS MODE

When the access mode is sequential, records in the file are accessed in the sequence
dictated by the file organization. For indexed files, this sequence is the ascending order
of record values within a given key of reference.

If the access mode is random, the value of the record key data item indicates the record

to be accessed.

When the access mode is dynamic, records in the file can be accessed sequentially,
randomly, or both.

The default mode of access is sequential.

RECORD KEY

The RECORD KEY clause specifies the prime record key for the file. The values of the
prime record key must be unique among the file records. This prime record key provides
an access path to records in an indexed file. This clause is required for indexed files.

COMPARISON (Unisys Extension)

The COMPARISON clause specifies the type of comparison to be performed when
searching for the key. This clause is used only for internationalization purposes. A
binary comparison uses the binary value of the key. If the program does not specify the
type of comparison, it performs a binary comparison.

A logical comparison uses the collating sequence value of the key. The collating sequence

is the arrangement of members of a character set according to the ordering sequence
values (OSVs) and the priority sequence values (PSVs). Elements occupy different code

8600 0296-000

ENVIRONMENT DIVISION

positions, with elements having the same OSV differentiated by the PSV assigned to the
code position.

An equivalent comparison uses the ordering value of the key. The ordering sequence is
the arrangement of members of a character set according to a predetermined scheme.
Different elements can have the same ordering attribute. For example, you might want
the equivalent uppercase and lowercase characters (a and A, b and B, and so on) to have
the same ordering values. '

KEY-LENGTH (Unisys Extension)

The KEY-LENGTH option specifies the number of 8-bit characters the system uses
when it stores a translated key value. The clause is used for internationalization only.
Translated display data can require a larger storage area when including ordering and
collating information. The KEY-LENGTH clause can be used with the prime record key
or the alternate record key when the internationalization features are used. '

If a key length is provided, the number of 8-bit characters used to store a translated key
equals the value of integer-2. Otherwise, the length of the key item is used. Truncation
of the stored key occurs if the key length value is too small. If the program specifies a
system default ccsversion by coding the alphabet-name IS CCSVERSION clause without
the literal-1 option in the SPECIAL-NAMES paragraph, that same ccsversion must be
the system default ccsversion at run time. A run-time error occurs when opening the
indexed file for output if the run-time ccsversion does not match the compiled ccsversion.

ALTERNATE RECORD KEY

An ALTERNATE RECORD KEY clause specifies an alternate record key for the file.
This alternate record key provides an alternate access path to records in an indexed file.

The data items referenced by data-name-1 and data-name-2 must each be defined as
data items of the category alphanumeric or numeric within a record-description entry
associated with that file-name. Neither data-name-1 nor data-name-2 can describe a
variable-size item. Data-name-1 and data-name-2 can be qualified.

Data-name-2 cannot reference an item with the leftmost character position
corresponding to the leftmost character position of an item referenced by data-name-1 or
by any other data-name-2 associated with this file.

The data descriptions of data-name-1 and data-name-2 and their relative locations within
a record must be the same as those used when the file was created. The number of
alternate keys for the file must also be the same as the number used when the file was
created. '

The DUPLICATES phrase specifies that the value of the associated alternate record key
can be duplicated within any of the records in the file. If the DUPLICATES phrase is
not specified, the value of the associated alternate record key must not be duplicated
among any of the records in the file.

8600 0296-000 5-23

ENVIRONMENT DIVISION

FILE STATUS

When the FILE STATUS clause is specified, a value is moved by the operating system
into the data item specified by data-name-3 after execution of every statement that
explicitly or implicitly references that file. This value indicates the status of execution of
the statement.

Data-name-3 must be defined in the DATA DIVISION as a two-character, alphanumeric

data item and must not be defined in the FILE SECTION, the REPORT SECTION, or
the COMMUNICATION SECTION. Data-name-3 can be qualified.

See Also

For information about status values, refer to “I/O Status” later in this section.

Sort-Merge

Your program must use Format 4 for files that are to be sorted or merged.

Format 4: Sort-Merge

SELECT file-name
f . .1 JTAPE)
somm {F OR } [DISK [AND integer-1] {T ADES
- | \WHE [integer-2 | TAPE
ASSIGN TO ¢ B TAPES |

DISK
MERGE [{%} {TAPE }]
TAPES

524

Explanation of Format 4

Each sort or merge file described in the DATA DIVISION must be named once, and only
once, as a file-name in the FILE-CONTROL paragraph. Each sort or merge file specified

in the file-control entry must have a sort-merge file-description entry in the DATA
DIVISION.

Because the file-name represents a sort or merge file, only the ASSIGN clause is
permitted to follow the file-name in the SELECT statement. The ASSIGN clause
associates the named sort or merge file to a storage medium.

The options following the SORT and MERGE clauses in Format 4 are Unisys extensions.

8600 0296-000

ENVIRONMENT DIVISION

If TAPE or TAPES is specified, the primary work medium is still DISK. TAPE or TAPES
can be specified to contain any overflow. If integer-2 is not specified, the default number
of tapes is three. Integer-1 and integer-2 must have values in the range 3 through 8.

When DISK is specified, mass storage is the primary work medium. TAPE or TAPES

can be specified to contain any overflow. If integer-1 is not specified, three tapes are
assumed.

1-O-CONTROL
The I-O-CONTROL paragraph specifies the following:

e The points at which rerun is to be established
e The memory area to be shared by different files

e The location of files on a multiple-file reel

The general format of this paragraph is as follows:

1-O-CONTROL.

[; RERUN [ON DISK | EVERY integer-1 RECORDS OF file-name-2] ...

[; SAME [RECORD | AREA FOR file-name-3 { , filename-4}..] ...

; MULTIPLE FILE TAPE CONTAINS file-name-5 | POSITION integer-3 |
[, file-name-6 | POSITION integer-4]] ... o

Explanation of Format

The I-O-CONTROL paragraph is optional.

RERUN clause

The RERUN clause causes rerun information to be recorded whenever integer-1
RECORDS of file-name-2 have been processed. The ON DISK phrase is optional and is
the default case.

File-name-2 can be an input file or an output file, with any organization or access.
File-name-2 cannot be specified in more than one RERUN clause.

8600 0296-000 ' 525

ENVIRONMENT DIVISION

5-26

SAME

The two forms of the SAME clause (SAME AREA and SAME RECORD AREA) are used
as follows: '

¢ More than one SAME clause can be included in a program; however, the following
rules apply:

— Afile-name must not appear in more than one SAME AREA clause. A file-name
must not appear in more than one SAME RECORD AREA clause.

-~ If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all of the file-names in that SAME AREA clause must appear in
the SAME RECORD AREA clause. However, additional file-names that do not
appear in the SAME AREA clause can also appear in the SAME RECORD AREA
clause. The rule that only one of the files mentioned in a SAME AREA clause
can be open at any time takes precedence over the rule that all files mentioned
in a SAME RECORD AREA clause can be open at any time.

o The files referenced in the SAME AREA or SAME RECORD AREA clause need not
all have the same organization or access.

The SAME AREA clause specifies that two or more files that do not represent SORT
or MERGE files are to use the same memory area during processing. The area being
shared includes all storage area assigned to the files specified; thus, only one file can be
open at a time.

The SAME RECORD AREA clause specifies that two or more files are to use the same
memory area for processing of the current logical record. All the files can be open at the
same time. A logical record in the SAME RECORD AREA is considered a logical record
of each opened output file and the most recently read input file, which all have file-names
appearing in this SAME RECORD AREA clause. This is equivalent to an implicit
redefinition of the area; that is, records are aligned at the leftmost character position.

MULTIPLE FILE

The MULTIPLE FILE clause, which can be used only with sequential I/O, specifies the
locations of files on a multiple-file reel. This clause is required when more than one file
shares the same physical reel of tape. Regardless of the number of files on a single reel,
only those files used in the object program need to be specified.

The POSITION phrase is ignored by the compiler. You must specify the files in
consecutive order. No more than one file on the same tape reel can be open at one time.

One MULTIPLE FILE clause is used for each multiple-file tape. The titles of all the
files listed in a given clause must have a common volume-identifier: otherwise, the
files appear on different tapes. The volume-identifier is a nonnumeric literal, 1 to 17
characters in length, that cannot contain any special characters or spaces.

After each file is read or written to, the file is closed without being rewound (CLOSE

file-name WITH NO REWIND) and the next file is opened without being rewound. If
the volume-id is correct, the files are written to or read from the same reel.

8600 0296-000

ENVIRONMENT DIVISION

See Also

For more information about multiple-file tapes and device dependencies, refer to the I/O
Subsystem Programming Guide.

1/O Status

The system can indicate to the COBOL74 program the status of I/O operations during
their execution if the program specifies a FILE STATUS clause in the file-control entry.
The FILE STATUS clause designates a two-character data item into which the system
places a value that indicates the status of the I/O operation. For example, a value of 00
means that the operation completed successfully.

The type of file organization determines the I/O statements for which the system can
give status values.

The data item specified in the FILE STATUS clause is comprised of two numbers called
status key 1 and status key 2. The leftmost character position of the FILE STATUS
data item, called status key 1, indicates one of the following conditions on completion of

the I/O operation:
Status
Value Meaning
0 Successful Completion condition
1 At End condition
2 Invalid Key condition
3 Permanent Error condition
8 Condition defined by Unisys
9 Condition defined by Unisys

The rightmost character position of the FILE STATUS data item, called status key 2,
further describes the results of the I/O operation. If no further information is available,
status key 2 has a value of 0 (zero). On the following pages, this section provides tables
of I/O status values and their meanings for each type of file organization.

See Also

For information about status values for the communication module, refer to Section 14,
“COMMUNICATION SECTION.”

Sequential I/0 Status

The execution of an OPEN, CLOSE, READ, SEEK, WRITE, or REWRITE statement
causes the system to update the status of the I/O operation. The status value is updated
before the program executes any applicable USE procedure.

8600 0296-000 5-27

ENVIRONMENT DIVISION

Table 5-1 lists each status code value for sequential I/O operations and explains the
meaning of the value reported. '

Table 5-1. Meaning of Status Code Values for Sequential I/O

Value Meaning' of Status Value

00 The execution of the I/O statement was successful.

09 A network warning or indication was returned by the system. You can get
more information about the message by examining the values of the file
attributes. v

10 An At End condition occurred during the execution of a sequential READ
statement. The read operation was unsuccessful for one of the following
reasons:

e The program aﬁempted to read a nonport file when no next logical
record was present in the file.

e The program executed a READ statement on an optional file that
was unavailable when the associated OPEN statement was
executed.

e The program attempted to read a port file when no next logical
record was present and the communication path with the
correspondent endpoint was no longer established. (This is a Unisys
extension.)

20 ~ An Invalid Key condition, (a Unisys extension for sequential I/O) occurred
for one of the following reasons:

e The program executed a format 2 READ statement on a nonport file
with the contents of the ACTUAL KEY data item less than 1 or
greater than the ordinal number of the last record written to the file.

e The program executed a format 2 WRITE statement for a record in a
nonport file with the contents of the ACTUAL KEY data item less
than 1 or greater than the last record allowed to be written because

. of a maximum file size specification.

e The program executed a format 2 READ or WRITE statement on a
port file with the contents of the ACTUAL KEY data item less than 0
or greater than the number of subfiles in the file (a boundary
violation). ’

30 The execution of the I/O statement was unsuccessful because of an /O
error (such as a data-check parity error, a transmission error, a security
error, a control card error, a host service abort error, or a
space-on-medium exhausted error).

34 Permanent Error. This condition exists because of a boundary violation.
This condition indicates that an attempt was made to write beyond the
externally defined boundaries of a sequential file.

81 File Not Open. The OFFER or AVAILABLE phrase was specified in an
OPEN statement, and the file was not opened before control was
returned to the next statement.

continued

5-28 ' ‘ 8600 0296-000

ENVIRONMENT DIVISION

Table 5-1. Meaning of Status Code Values for Sequential /O (cont.)

Value Meaning of Status Value

82 This value indicates a Form Not Found, a File Not Closed, or an
Await-Open Failure condition.

e Form Not Found. A READ FORM or WRITE FORM statement was
performed on either a specific form that does not reside in the
formlibrary or a form for which the compile-time version does not
equal the run-time version.

e File Not Closed. An error occurred during the execution of the
CLOSE statement and the file was not closed before control was
returned to the next statement.

e Await-Open Failure. An error occurred during the execution of the
AWAIT-OPEN statement.

91 Short Block. Because of the limitation of the physical recording medium,
the system is unable to determine whether or not the logical record
returned was written to the file. Determination of the validity of the data
record is the responsibility of the programmer.

92 Data Error. When logical records are declared variable in length and the
logical record length is supplied by the programmer (with the RECORD
CONTAINS clause), a data error occurs on a READ, WRITE, or REWRITE
statement if the logical record length supplied is less than the minimum
record size or greater than the maximum record size declared for the file.
This condition initiates no I/O operation and does fot cause data to be
transferred to or from the record area.

93 Broadcast Write error. The WITH NO WAIT clause was used with the

WRITE statement and an error occurred with the broadcast write
operation.

94 No data. The WITH NO WAIT clause was used with the READ
statement, and no data was available.

95 No buffer. The WITH NO WAIT clause was used with the WRITE
statement, and no buffer was available.

96 Timeout. A time limit elapsed before the transfer of data to or from the
hardware device.

97 - Break on OQutput. For an output or I-O file, this condition occurs if the

physical hardware device is equipped with a break so that the transfer of
data in process can be halted.

99 Unexpected IO error. An error may have occurred in the /O operation,
but its nature cannot be determined.

8600 0296-000 ‘ 5-29

ENVIRONMENT DIVISION

Relative I/0 Status

The execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START
statement causes the system to update the status of the I/O operation. The status value
is updated before the program executes any applicable USE procedure.

Table 5-2 lists each status code value for relative I/O and explains its meaning.

Table 5-2. Meaning of Status Code Values for Relative I/O

Value

Meaning of Status Value

00
10

20

22

23

24

30

91

92

' Data Error. When logical records are declared variable in length and the

The execution of the I/O statement was successful.

An At End condition occurred during the execution of a Format 1 READ
statement. The program tried to read a record when there was no next
logical record in the file.

An Invalid Key condition occurred and there is no more information
available. ,

Duplicate key. An attempt was made to write a record to create a
duplicate key in a relative file. T

No Record Found. An attempt was made to access a record identified by
a key, but the record did not exist in the file.

Boundary Violation. An attempt was made to write beyond the externally
defined boundaries of a relative file.

Permanent Error. The execution of the I/O statement was unsuccessful
because of an |/O error (such as a data-check parity error, a transmission
error, a security error, a control card error, a host service abort error, or a
space-on-medium exhausted error).

Short Block. Because of the limitation of the physical recording medium,
the system cannot determine whether or not the logical record returned
was written to the file. Determination of the validity of the data record is
the responsibility of the programmer.

logical record length is supplied by the programmer (by the RECORD
CONTAINS clause), a data error occurs on a READ, WRITE, or REWRITE
statement if the logical record length supplied is less than the minimum
record size or greater than the maximum record size declared for the file.
This condition initiates no IO operation and does not cause data to be
transferred to or from the record area.

5-30

continued

8600 0296-000

ENVIRONMENT DIVISION

Table 5-2. Meaning of Status Code Values for Relative I/0 (cont.)

Value Meaning of Status Value

96 Timeout. A time limit elapsed before the transfer of data to or from the
hardware device.

97 Break on Output. For an output or 1-O file, this condition occurs if the
physical hardware device is equipped with a break so that the transfer of
data in process can be halted.

99 Unexpected I/O error. An error may have occurred in the /O operation,
but its nature cannot be determined.

Indexed I/O Status
The execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START
statement causes the system to update the status of the I/O operation. The status value
is updated before the program executes any applicable USE procedure.

Table 5-3 lists each status code value and explains its meaning.

8600 0296-000 , 531

ENVIRONMENT DIVISION

5-32

Table 5-3. Meaning of Status Code Values for indexed I/O

Value Meaning of Status Value
00 The execution of the I/O statement was successful.
10 An At End condition occurred during the execution of a Format 1 READ

statement. The program tried to read a record when there was no next
logical record in the file.

20 An Invalid Key condition occurred and there is no more information
available.
21 Sequence error. The ascending sequence requirements of successive

record key values have been violated, or the prime record key value has
been changed between the successful execution of a READ statement
and the execution of the next REWRITE statement for that file.

22 Duplicate Key. An attempt was made to write a record to create a
duplicate key in a relative file.

23 No Record Found. An attempt was made to access a record identified by
a key, but the record did not exist in the file.

24 Boundary Violation. An attempt was made to write beyond the externally
defined boundaries of a relative file. '

30 ‘ Permanent Error. The execution of the I/O statement was unsuccessful
because of an /O error (such as a data-check parity error, a transmission
error, a security error, a control card error, a host service abort error, or a
space-on-medium exhausted error).

91 Short Block. Because of the limitations of the physical recording
medium, the system cannot determine whether the logical record
returned was written to the file. Determination of the validity of the data
record is the responsibility of the programmer.

92 Data Error. When logical records are declared variable in length and the
logical record length is supplied by the programmer (by the RECORD
CONTAINS clause), a data error occurs on a READ, WRITE, or REWRITE
statement if the logical record length supplied is less than the minimum
record size or greater than the maximum record size declared for the file.
This condition initiates no I/O operation and does not cause data to be
transferred to or from the record area. .

96 Timeout. A time limit elapsed before the transfer of data to or from the
hardware device. '
97 Break On Output. For an output or I-O file, this condition occurs if the

physical hardware device is equipped with a break so that the transfer of
data in process can be halted.

Q9 Unexpected I/O error. An error may have occurred in the I/O operation,
but its nature cannot be determined.

8600 0296-000

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION Program Sample

Example 5~1 shows coding of the ENVIRONMENT DIVISION. The program PAYROL
includes both a CONFIGURATION SECTION and INPUT-OUTPUT SECTION in its
ENVIRONMENT DIVISION. The SELECT clause in the FILE-CONTROL paragraph
assigns two sequential files, INFIL and OUTFIL, to the storage medium TAPE. The
SAME clause in the I-O-CONTROL paragraph (Format 1) specifies that INFIL and
OUTFIL share the same memory area during processing. However, only one of these
files can be open at a time.

002000
2804000
006000
008000
210000
212000
914000
216000
218000
020000
0822000
224000
226000
0928000
0930000
0932000
234000

8600 0296-000

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. Al7.
OBJECT-COMPUTER. Al7.
SPECIAL-NAMES.

SW5 ON STATUS IS SW5-ON

OFF STATUS IS SW5-OFF;

CURRENCY SIGN IS "E";

DECIMAL-POINT IS COMMA.
INPUT-OQUTPUT SECTION.
FILE-CONTROL.

SELECT INFIL ASSIGN TO TAPE.

SELECT OUTFIL ASSIGN TO TAPE.
I-0-CONTROL.

SAME AREA FOR INFIL OUTFIL.

Example 5-1. Coding the ENVIRONMENT DIVISION

5-33

5-34 o ' 8600 0296-000

Section 6
Data Concepts

To understand the DATA DIVISION, you need to understand some of the concepts that
pertain to the data in your program. The record concept encompasses structure, record
level, and data items within the record. The data concept includes categorizing of data,
aligning data, and referring to data. The table concept for handling sets of data includes
subscripting and indexing. The edit concept for formatting data includes using symbols
to format data, insertion editing, and zero-suppression and replacement editing.

Records

The most inclusive data item is the logical record. The record is identified by a 01-level
entry. One or more related data items are defined in the record.

A data-description entry is an entry in the DATA DIVISION that describes a data item.
Each data-description entry consists of a level-number followed by a data-name, if
required, followed by a series of independent clauses, as required.

A record description is a set of data-description entries that describe the characteristics
of the particular record. You can specify the following in a record description:

e The items that are included in the record

e The order in which the items appear in the record

e The way the items are related to each other in the record

The size of a record description is the sum of the maximum sizes of all items subordinate

to a 01-level item. The maximum size of a record description is restricted by the explicit
or implicit usage of the 01-level item as shown in Table 6-1.

Table 6-1. Usage and Maximum Size of a Record Description

Usage ‘ Maximum Size
BINARY or DISPLAY 65,535 characters
comp 65,535 digits

- TASK, EVENT, INDEX, or LOCK 65,535 words

8600 0296-000 6-1

Data Concepts

Levels

Logical records have subdivisions for data reference. The items in these subdivisions
are organized with a system of levels. Once a subdivision has been specified, it can be
further subdivided to permit more detailed data referral.

Understanding Elementary and Group Items

6-2

The smallest element of a data description is called an elementary item. Notice that
elementary items cannot have subordinate levels. A record consists of a sequence of
elementary items or of one elementary item.

To refer to elementary items as a set, you can combine the elementary items into groups.
Each group consists of a named sequence elementary items of one or more elementary
items. You can combine groups, in turn, into groups of two or more groups. Thus, an
elementary item can belong to more than one group. of one or more elementary items.
You can combine groups, in turn, only of a level-number and a data-name, optionally
followed by a VALUE, USAGE, or REDEFINES clause, followed by a period.

A group includes all group and elementary items following it until a level-number occurs
that is less than or equal to the level-number of that group. You must describe all items
immediately subordinate to a given group item by using identical level-numbers greater
than the level-number used to describe that group item.

COBOL74 defines all group items to be alphanumeric. The compiler aligns each group
item on a byte boundary. The “FILLER ADDED” message appears where such
alignment has taken place.

Note: No elementary data item can start more than 65,535 bytes (131,070
COMPUTATIONAL digits) from the beginning of the 01-level record
in which the data item is contained. In addition, no elementary data
item whose USAGE IS COMPUTATIONAL can start more than
32,767 bytes (more precisely, 65,535 COMPUTATIONAL digits)
from the beginning of the 01-level record in which the data item is
contained.

Example

Example 6-1 shows the coding of elementary and group items. A group is composed
of all group and elementary items described under it. A group item ends when

a level-number less than or equal to the numeric value of the group item itself is
encountered.

8600 0296-000

Data Concepts

928000*

93¢0@80* The name of the record is PRODUCTION-RECORD.
0432000*

934000 @1 PRODUCTION-RECORD.

236000*

938000* ITEM-NO and LOT-NO are elementary items.
240000*

942000 @3 ITEM-NO PIC 9(5).

944909 -+ 93 LOT-NO PIC 9(6).

246000*

248000* The first group item is ITEM-DATE. The elementary items MONTH,
248900* DAYS, and YEAR are subordinate to ITEM-DATE. STANDARD-COST
948950* is an elementary item.

250000*

0852000 @3 ITEM-DATE.

060000 @5 MONTH PIC 99.
262000 @5 DAYS PIC 99.
264000 85 YEAR PIC 99.
072000 @3 STANDARD-COST PIC 9(5)Vv99.
266000*

268000* Both PRODUCTION-CODE and MACHINE-SHOP are group items. -
268920* The items MILLING and FINISHING are elementary items

@68916* subordinate to the MACHINE-SHOP group item. The items
968920* ASSEMBLY, INSPECTION, and WARRANTY-CODE are elementary items.
968930* The group item PRODUCTION-CODE ends with the INSPECTION data
268940* item.

9700900* .

874000 #3 PRODUCTION-CODE.

076000 @5 MACHINE-SHOP.

284000 @87 MILLING PIC 999.
286000 : @7 FINISHING PIC 99.
088009 @5 ASSEMBLY PIC 9(a).
999000 @5 INSPECTION PIC X(5).
992000 @3 WARRANTY-CODE PIC XX.

Example 6-1. Coding Elementary and Group Items

Organizing Data with Level-Numbers

A system of level-numbers shows the organization of elementary items and group items.
Because records are the most inclusive data items, level-numbers of records start at

01. You should assign less inclusive data items higher (but not necessarily successive)
level-numbers that are not greater in value than 49. The program writes separate
entries for each level-number used.

The special level-numbers 66, 77, and 88 represent entries for which no true concept of
level exists.

8600 0296-000 - 6-3

Data Concepts

Constructing a Record

Table 6-2 shows the type of entry that can be assigned to each type of level-number.

Table 6-2. Assigning Level-Numbers

Level-Number ' Related Entry

01 The first entry in each record description. Multiple 01-level
entries subordinate to a level indicator other than RD
represent implicit redefinitions of the same area.

02 through 49 The hierarchy of data in a logical record.
66 RENAMES clause entries for regrouping data items.
77 WORKING-STORAGE or LINKAGE SECTION items that are

not organized into a hierarchy.

88 Condition-names that specify values of conditional variables.

A level-number is required as the first element in each data-description entry. Table 6-3
shows the level-numbers that can be used with each type of data-description entry:

file description (FD), sort merge description (SD), communications description (CD),
report description (RD) and the data-description entries in WORKING STORAGE and
LINKAGE SECTIONSs.

Table 6-3. Level-Numbers Associated with Data-Description Entries

Data-Description Entry ‘Level-Numbers Aliowed ;
FD, SD, or CD Level-numbers 01 through 49, 66, or 88
RD Level-numbers 01 through 49
Data-description entries in Level-numbers 01 through 49, 66, 77, or 88
WORKING-STORAGE and LINKAGE
SECTIONs

Example

Example 6-2 illustrates a record description in COBOL74 for a record called
EMPLOYEE-INFO. The PICTURE clause is associated with each elementary item.

In the example, the following information applies:

"o The EMP-PAY-DATA group includes all items until the EMP-LAST-REVIEW group,
which has an equal level-number.

¢ The EMP-DEDUCTIONS group includes all items until the EMP-LAST-REVIEW
group, which has a lower level-number than EMP-DEDUCTIONS.

6-4 ’ , 8600 0296-000

Data Concepts

e The EMP-DEDUCTIONS group is a part of the EMP-PAY-DATA group.
o The EMP-INSURANCE group is a part of the EMP-DEDUCTIONS group.
e EMP-HOSPITAL is a part of the EMP-INSURANCE group.

@1 EMPLOYEE-INFO.

03 EMP-NO PIC 9(5).
23 EMP-COST-CNTR PIC 99.
23 EMP-NAME.
@5 EMP-LAST-NAME PIC X(13).
a5 EMP-FIRST-INITIAL PIC X.
@5 EMP-M-INITIAL PIC X.
g3 EMP-ANNUAL-SALARY PIC 9(6)V99.
23 EMP-DT-HIRED.
25 EMP~H-MONTH PIC 99.
a5 EMP-H-DAY PIC 99.
g5 EMP-H-YEAR PIC 99.
23 EMP-PAY-DATA.
25 EMP--GROSS PIC 9(6)V99.
@5 EMP-DEDUCTIONS.
87 EMP-INSURANCE.
@9 EMP-HOSPITAL PIC 9(4)V99:
89 EMP-LIFE PIC 9(4)V99.
@7 EMP-TAXES. :
g9 EMP-FICA ~ PIC 9(4)V99.
@9 EMP-STATE-TAX PIC 9(4)V99.
@9 EMP-WITHHOLDING PIC 9(4)V99.
23 EMP-LAST-REVIEW.
@5 EMP-R-MONTH PIC 99.
25 EMP-R-DAY PIC 99.

Example 6—2. Level-Number Construction for a Record

Data

Data hand]ing in COBOL includes classifying data into categories and classes, quahfylng
data to ensure uniqueness, and positioning data in a receiving field.

Classifying Data into Categories and Classes
COBOL74 supports the following seven categories of data items:

e Alphabetic
e Numeric

o Numeric-edited

8600 0296-000 ' : ‘ ‘ 6-5

Data Concepts

6-6

e Alphanumeric

e Alphanumeric-edited

e Kanji

e Kanji-edited

These seven categories of data items are grouped into the following three classes:

e Alphabetic

e Numeric

e Alphanumeric

For alphabetic and numeric data items, the classes and categories are synonymous. The
alphanumeric class includes the categories of alphanumeric-edited, numeric-edited,
alphanumeric (without editing), Kanji, and Kanji-edited. Every elementary item, except
an index data item, belongs to one of the classes and also to one of the categories. The

class of a group item is treated at execution time as alphanumeric regardless of the class
of the elementary items subordinate to that group item.

Table 6—4 depicts the relationship of the classes and categories of data items.

Table 6-4. Classes and Categories of Data Items

Level of Item ' Class Category

Elementary Alphabetic Alphabetic -
Numeric Numeric

Alphanumeric Numeric-edited
- Alphanumeric
Alphanumeric-edited
Kaniji

Kaniji-edited

Group Alphanumeric Alphabetic
Numeric
Numeric-edited
Alphanumeric
Alphanumeric-edited
Kaniji

Kanji-edited

8600 0296-000

Data Concepts

Qualifying Data to Ensure Uniqueness

Every user-specified identifier that defines an element in a COBOL source program must
be unique. The user-specified identifier can be unique if it meets one of the following
two conditions:

e No other name has the identical spelling and hyphenation.

e The name exists within a hierarchy of names. You can make a name unique by
mentioning one or more of the higher levels of the hierarchy when you refer to the
name.

The higher-level names in the hierarchy are called qualifiers. The process that ensures
uniqueness is called qualification. You must provide enough qualification to make the
name unique. Unless it is necessary to make the name unique, you do not need to
specify all the levels of the hierarchy.

In the DATA DIVISION, you must associate all data-names used for qualification with
a level indicator or a level-number. Therefore, two identical data-names must not
appear as entries subordinate to a group item unless they can be made unique through
qualification.

In the hierarchy of qualification, names associated with a level indicator, such as a file
description (FD), are the most significant. The next most significant names are those
associated with level-number 01, then level-number 02, and so on through 49.

The most significant name in the hierarchy must be unique and cannot be qualified. .
You can make subscripted or indexed data-names, conditional variables,
procedure-names, and data-names unique by qualification. Regardless of the available
qualification, no name can be both a data-name and a procedure-name.

You can qualify a data-name, a condition-name, a paragraph-name, or a text-name by
specifying one or more phrases composed of an IN or an OF keyword followed by a
qualifier. The keywords IN and OF are logically equivalent.

Each qualifier must be of a successively higher level and must be within the same
hierarchy as the name it qualifies.

The same name must not appear at two levels in a hierarchy.

Qualification has three formats. These formats are used as follows:

Format Explanation
1 Qualifies a data-name or a condition-name.
2 Qualifies a paragraph-name.
3 Qualifies a COPY library-name.

8600 0296-000 67

Data Concepts

Format 1

The Format 1 qualification is as follows:

{

data-name-1 } [{OF} d]
—— 5 data-name-2{ ...
condition-name IN

Explanation of Format 1

The rules for qualifying a data-name or condition-name are as follows:

You can use the name of a conditional variable as a qualifier for any of the
condition-names of the variable.

If a data-name or a condition-name is assigned to more than one data item in a
source program, you must qualify the data-name or a condition-name each time it is
referenced in the PROCEDURE, ENVIRONMENT, and DATA DIVISIONS (except
in the REDEFINES clause where qualification is unnecessary and must not be used).

A data-name cannot be subscripted when it is being used as a qualifier.

A name can be qualified even if it does not require qualification. If more than one
combination of qualifiers ensures uniqueness, any partial set of qualifiers for another
set of qualifiers for a data-name must not be the same as any partial set of qualifiers
for another data-name. Qualified data-names can have up to 49 qualifiers, inclusive.

The following example illustrates qualified names:

21 EMP-FULL-NAME
@3- LAST-NAME
@3 FIRST-NAME
@3 MIDDLE-NAME
@1 EMP-NAME
P3 LAST-NAME
@3 FIRST-NAME
@3 MIDDLE-INITIAL

In this example, because LAST-NAME is not unique, it must be used with a
qualifier to specify either LAST-NAME OF EMP-FULL-NAME or LAST-NAME
OF EMP-NAME. Because MIDDLE-INITIAL is unique, it can be used without
qualification. However, qualifying MIDDLE-INITIAL as MIDDLE-INITIAL OF

EMP-NAME is also correct.

8600 0296-000

Data Concepts

Format 2

The Format 2 qualification is as follows:

[} ssieneme]
paragraph-name IN section-name

Explanation of Format 2
A section-name is the highest and only qualifier available for a paragraph-name.
You must not duplicate a paragraph-name in a section. When you qualify a

paragraph-name with a section-name, do not include the word SECTION. You do not
have to qualify a paragraph-name if you refer to it within the same section.

Format 3

The Format 3 qualification is as follows:

text-name [{%} library-name]

Explanation of Format 3
If text-name is unique, it defaults to the library it is in. Otherwise, you must qualify the

text-name each time you refer to it. You must also qualify the text-name if more than
one COBOL library is available to the compiler during compilation. ‘

Aligning Data
‘The positioning of data within an elementary item by using a move operation depends

on the data category of the receiving item. Table 6-5 describes the alignment rules that
apply for each category of data item.

8600 0296-000 6-9

Data Concepts

Table 6-5. Alignment Rules for Move Operation by Data Categories

Data Category

Alignment Rules

Numeric

Numeric-edited

Alphanumeric (other than a
numeric-edited data item),
alphanumeric-edited, or
alphabetic

Kaniji or Kanji-edited

Aligns the data by decimal point and moves it to the
receiving character positions with zero-fill or truncation on
either end, as required. If you do not specify an assumed
decimal point, the compiler treats the data item as if it had
an assumed decimal point immediately following its
rightmost character and aligns it as previously described.

Aligns the data that was moved to the edited data item; the
data is aligned by decimal point with zero-fill or truncation at
either end, as required, within the receiving character
positions of the data item, except where editing requirements
cause replacement of the leading zeros.

Moves the sending data to the receiving character positions
and aligns it at the leftmost character position in the data
item with space-fill or truncation to the right, as required.

Moves the sending data to the receiving character positions
and aligns it at the leftmost character position in the data
item. Fills the receiving data item on the right with Kanji
space characters or truncates it from the right to fully occupy
the field.

See Also

For information on aligning data in the receiving field of an alphanumeric move
operation, refer to “JUSTIFIED Clause” in Section 7, “DATA DIVISION.”

Tables

A table is a set of logically consecutive data items that you specify in the DATA
DIVISION with an OCCURS clause. By using a table, you can do the following with your

6-10

Define contiguous data items.

Access an item by its position in the table.

Specify the number of repetitions for an item.

Identify each item with a subscript or an index.

Access items in multidimensional, variable-length tables.

Specify ascending or descending keys.

Search a dimension of a table for an item that satisfies a specified condition.

8600 0296-000

Data Concepts

You can define a table composed of contiguous data items by including the OCCURS
clause in a data-description entry. The OCCURS clause specifies that the item is to be
repeated the number of times you designate.

The item is considered a table element, and the name and description of the item apply
to each repetition or occurrence. Because each table element does not have a unique
data-name, you must refer to a desired occurrence by specifying the table element
data-name and the desired occurrence number. You can specify an occurrence number
with subscripting or indexing.

See Also

For information about how to define the number of items in a table, refer to “OCCURS
Clause” in Section 7, “DATA DIVISION.”

Defining Tables

To define a one-dimensional table, you must use an OCCURS clause as part of the
data description of the table element. The OCCURS clause must not appear in the
description of group items that contain the table element.

Example 6-3 shows a one-dimensional table definition.

@1 TABLE-1.
@3 TABLE-ELEMENT OCCURS 20 TIMES
25 NAME PIC X(38)
@5 SSAN PIC 3(6).

Example 6-3. Defining a One-Dimensional Table

To create a two-dimensional table, you need to define a one-dimensional table within
each occurrence of an element of another one-dimensional table. To accomplish this,
include an OCCURS clause in the data description of the element of the table and in
the description of only one group item that contains that table element. To define a »
three-dimensional table, you must include the OCCURS clause in the data description of
the element of the table and in the description of two group items that contain that table
element. In COBOL, you can define tables of up to 48 dimensions.

Example
Example 64 is a table with the following dimensions:
¢ One dimension for CONTINENT-NAME. The CONTINENT-NAME occurs eight

times within the table.

e Two dimensions for COUNTRY-NAME. The COUNTRY-NAME occurs 15 times
within each CONTINENT-NAME. '

e Three dimensions for CITY-NAME and CITY-POPULATION. The CITY-NAME and
the CITY-POPULATION occur 20 times within each COUNTRY-NAME.

8600 0296-000 ' 6-11

Data Concepts

The table includes 4,928 data items grouped as follows:

Number of Data ltems Dimension

8 CONTINENT-NAME
120 COUNTRY-NAME
2,400 CITY-NAME

2,400 CITY-POPULATION

Example 64 shows the data-description entries for a three-dimensional table definition.

@1 CENSUS-TABLE.

@5 CONTINENT-TABLE OCCURS 8 TIMES.
10 CONTINENT-NAME PIC X(16).
16 COUNTRY-TABLE OCCURS 15 TIMES.
15 COUNTRY-NAME PIC X(18).
15 CITY-TABLE OCCURS 20 TIMES.
20 CITY-NAME PIC X(19)

20 CITY-POPULATION PIC X (12)

Example 6-4. Defining a Three-Dimensional Table

In this example, CITY-NAME(8,7,19) refers to the nineteenth city of the seventh
country of the third continent.

Accessing Tables

Whenever a program refers to a table element, the reference must indicate the intended
occurrence of the element. For access to a one-dimensional table, the occurrence
number of the desired element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for each dimension of
the table accessed. ‘

In Example 64, shown earlier in this section, a reference to the fourth CONTINENT-
NAME is complete, but a reference to the fourth COUNTRY-NAME is not. To refer to
the dimension COUNTRY-NAME, which is an element of a two-dimensional table, the
fourth COUNTRY-NAME within a particular CONTINENT-NAME must be referenced.

Subscripting

6-12

A subscript is an integer or a data-name whose value refers to an individual element in a
list or table of like elements that have not been assigned individual data-names.

To use a subscript, you must first provide an OCCURS clause to define multiple

occurrences of a data item. The data items to be repeated must all have the same
format.

8600 0296-000

Data Concepts

The format for subscripting follows:

{ data-name

o } (subscript-1 [, subseript-2 [, subscript-31...])
condition-name) ~ -

Explanation of Format
The subscript identifies the table element that is to be accessed.

After the table element data-name, you must delimit the subscript or the set of
subscripts that identifies the table element by enclosing the subscripts in parentheses.
The table element data-name with its appended subscript is called a subscripted
data-name or an identifier.

When more than one subscript is required, write the subscripts in descending order of
inclusive dimensions of the data organization. '

You can use a subscript in a PERFORM statement. If you use the VARYING option,
the compiler initializes, increments, and tests the subscript during execution of the
procedure. If you use the UNTIL or TIMES option, you must provide additional code to
initialize and increment the subscript.

- You can represent the subscript either by a numeric literal that is an integer or by
a data-name that is a numeric elementary item representing an integer. When you
represent the subscript with a data-name, you can qualify the data-name but not
subscript it.

In the REPORT SECTION of Report Writer, you cannot use a sum counter or the special
registers LINE-COUNTER and PAGE-COUNTER as subscripts.

The subscript can be signed; if signed, it must be positive. The lowest possible subscript
value is 1, which points to the first element of the table. Subscripts whose values are

2, 8, and so on point to subsequent sequential elements of the table. The highest
permissible subscript value is the maximum number of occurrences of the item, as
specified in the OCCURS clause.

When a program executes a statement that refers to subscripted table elements, the
compiler tests each subscript specified (except a numeric literal) to ensure that its value
is not less than 1 or greater than the maximum number of occurrences specified by the
corresponding OCCURS clause (as modified by the DEPENDING ON clause, if one
exists.) If the subscript value is not in this range, the program ends abnormally.

At compilation time, if a subscript isa numeric literal and its value is not in the range,

the compiler issues the proper warning. An invalid index occurs at run time if the
program attempts to access an item beyond the end of the 01-level record.

8600 0296-000 , v 6-13

Data Concepts

See Also

For information on defining the number of items in a table, refer to “OCCURS Clause”
in Section 7, “DATA DIVISION.”

Indexing

An index, like a subscript, also identifies the individual elements in a table of like
elements. The compiler assigns an index to the level of the table when the program
defines the table with an INDEXED BY phrase in the OCCURS clause. The name

given in the INDEXED BY phrase is called an index-name and refers to the assigned
index. The value of an index corresponds to the occurrence number of an element in the
associated table.

To assign a value to an index-name, the program must execute a SET statement, a
SEARCH ALL statement, or a Format 4 PERFORM statement.

The general format for indexing follows:

{data-.n.ame } ({lfxdex-name-l} [{ + } liter a1-2]
condition-name) ~ (literal-1 -

,{E:::game-z} [{ j} 1iteral-4]

[{imtemmamea) [+ o] .|

Explanation of Format

An index-name has the same internal representation as an index data item. If a value
to be stored in an index-name or an index data-name exceeds the largest value that can
be held in that index-name or index data-name, the value is truncated. The truncation
is executed according to the rules for size error conditions in an arithmetic statement
without a SIZE ERROR phrase. (This is a Unisys extension.)

An index-name assigned fo one table cannot be used to index another table. (Thisisa
Unisys extension.)

You can specify direct indexing by using an index-name in the form of a subscript. You
can specify relative indexing by following the index-name with the operator plus sign

- (+) or minus sign (<), followed by an unsigned integer numeric literal, all of which
are delimited by parentheses following the table element data-name. The compiler
determines the occurrence number resulting from relative indexing by incrementing
(when the operator + is used) or decrementing (when the operator - is used) the
occurrence number by the value of the literal. The occurrence number is represented

6-14 | - 8600 0296-000

Data Concepts

by the value of the index. When more than one index-name is required, the names are
written in descending order of inclusive dimensions of the data organization.

When the program executes a statement that refers to an indexed table element, the
value of each direct or relative index should not be as follows:

¢ Less than a value that corresponds to the beginning of the first occurrence of the
table element

e Greater than a value that corresponds to the beginning of the last occurrence of the
table element (as determined by the OCCURS clause)

The index value need not precisely address the beginning of a table element to pass

the range check. For example, you can set an index-name to the value of an index data

item that has been set to the value of another index-name (such assignments are made

without conversion). A program ends if an attempt is made to access beyond the end of
the 01-level record. ‘

An indexed table reference can contain either an index or a subscript. (This is a Unisys
extension.) Object code is generated to verify the validity of subscripts on each table
reference (unless the OPTIMIZE compiler control option is set.)

In contrast, the contents of an index-name are not verified by the generated object code,
either during the execution of the SET statement that modifies the index-name or
during references to the table.

Thus, you must ensure that the contents of an index-name are valid for the table that

“it refers to at execution time. This applies to subscripts as well. Failing to observe
the table limits can produce unexpected results in those cases where the values of the
index-name are incorrect but do not cause access outside the bounds of the 01-level
record. These same values can terminate a program abnormally.

Unisys strongly discourages the use of inappropriate index values to access parts of an
01-level record outside the bounds of the table.

See Also

o For information about specifying indexes, refer to “OCCURS Clause” in Section 7,
“DATA DIVISION.”

e For information about specifying the format of a data item in storage, refer to
“USAGE Clause” in Section 7, “DATA DIVISION.”

Editing

Editing is the process of using symbols in the PICTURE clause to specify the format of
data for output reports. The editing operation occurs as the data item is moved from the
sending field to the receiving field.

8600 0296-000 : 6-15

Data Concépts

Some of the applications for which you might want to use editing include the following:

e Separating fields with delimiters such as zeros or spaces

e Adding asterisks for protection of amounts on checks

e Adding credit or debit symbols for accounting purposes

e Formatting monetary values with commas (,) and dollar signs ($)

e Indicating positive or negative values with plus (+) and minus (-) signs
e Preceding the fractional part of an amount with a decimal point (.)

Describing Elementary Items with Symbols

Elementary items are described in the PICTURE clause with the symbols shown in

Table 6-6.
Table 6-6. Describing Elementary ltems Using Symbols
‘ Symbol Explanation

A Each A in the character string represents a character position that can contain
only a letter of the alphabet or a space.

B Each B in the character string represents a character position into which the
space character is inserted,

P Each P indicates an assumed decimal scaling position and specifies the location

of an assumed decimal point when the point is not within the number that
appears in the data item. The scaling position character P is not counted in the
size of the data item, but scaling position characters are counted in determining
the maximum number of 23 digit positions in numeric-edited items or numeric
items.

The scaling position character P can appear only to the left or right as a
continuous string of Ps in a PICTURE description. Because the scaling position
character P implies an assumed decimal point to the left of the P characters if
these characters are the leftmost PICTURE characters, and to the right if the P
characters are the rightmost PICTURE characters, the assumed decimal point
symbol V is redundant as either the leftmost or the rightmost character in such
a PICTURE description. The character P and the insertion character period (.)
cannot both occur in the same PICTURE character string. '

If, in any operation involving conversion of data from one form of internal
representation to another, the data item being converted is described with the
PICTURE character P, each digit position described by a P is considered to
contain the value O and the size of the data item is considered to include the
digit positions so described.

continued

6-16 : 8600 0296-000

Data Concepts

Table 6-6. Describing Elementary Items Using Symbols (cont.)

Symbol

Explanation

The letter S in a character string indicates the presence of an operational sign in
the internal representation of a numeric data item. The S must be the first
(leftmost) character in the character string. .

The symbol S can be used in the PICTURE character string of any data item
with the USAGE clause equal to DISPLAY, COMPUTATIONAL, or BINARY. The
SIGN clause can be used to specify the exact representation and position of the
operational sign.

When an operational sign is specified for a DISPLAY data item and a SIGN
clause is not specified, the sign is maintained and expected in the zone of the
least significant (rightmost) character. When the data item is in the receiving
field in an arithmetic statement and when the native character set is EBCDIC,
the four zone bits are set to binary 1101 for negative values and to binary 1100
or 1111 for positive values.

When the data item is used in an algebraic comparison or operation to supply
an algebraic value, specification of the least significant zone as binary 1101
causes the value to be considered negative. -

Only the zone values 1100, 1101, and 1111 qualify the data item as
NUMERIC if it is tested by the numeric class condition. For DISPLAY data
items, the presence or absence of an operational sign has no effect on the
amount of storage required to contain the data item, unless the SIGN
SEPARATE clause is specified.

When an operational sign is spécified for a COMPUTATIONAL data item and a
SIGN clause is not specified, the sign is maintained and expected as a leading,
separate 4-bit character to the left of the most significant digit position.

When the native character set is EBCDIC, the binary pattern of the sign
character is 1101 for negative values and 1100 for positive values. Like
DISPLAY data items, only these values allow the item to be considered
NUMERIC in the ciass condition test. Unlike DISPLAY data items, the
specification of an operational sign for COMPUTATIONAL data items increases
by one the number of 4-bit character positions occupied by the data item in
storage.

The letter V in a character string indicates the location of the assumed decimal
point and can appear only once in a character string. The symbol V does not -
represent a character position and, therefore, is not counted in the size of the
elementary item. When the assumed decimal point is to the right of the
rightmost character in the string, the V is redundant.

Each letter X in the character string represents a character position that
contains any allowable character from the character set.

8600 0296-000

continued

6-17

Data Concepts

Table 6-6. Describing Elehentaw Items Using Symbols (cont.)

Symbol

Explanation

/ (slash)

, (comma)

. (period)

4+, -, CR,
DB

Each letter Z in a character string can represent only the leftmost leading
numeric character positions that are replaced by space characters when the
contents of the character positions are 0. Each symbol Z is counted in the size
of the item.

Each numeral 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

Each numeral zero (0) in the character string represents a character position in
which the numeral 0 is inserted. The numeral O is counted in the size of the
item.

Each slash (/) in the character string represents a character position into which
the slash character is inserted. The slash is counted in the size of the item.

Each comma (/) in the character string represents a character position into
which the comma character is inserted. This character position is counted in
the size of the item. The comma must not be the last character in the PICTURE
character string.

When the period (.) appears in the character string, it represents the decimal
point for alignment purposes and also represents a character position into
which the period character is inserted. The period is counted in the size of the
item. :)

For a given program, the functions of the period and comma are exchanged if
the clause DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES
paragraph. In such an exchange, the rules for the period apply to the comma,
and the rules for the comma apply to the period wherever these characters
appear in a PICTURE clause.

A period immediately followed by a nonblank character is considered to be an
insertion character, even if the nonblank character is not part of the PICTURE
character string. For a period in the last character position of the PICTURE
character string to be treated as an insertion character, it must be immediately
followed by another period. The second period ends the data-description entry.
Thus, a PICTURE clause must be the last clause in the data-description entry if
it has a period as an insertion character in the last character position of the
PICTURE character string. ‘

These symbols are editing sign-control symbols. When used, these symbols
represent the character position into which the editing sign-control symbol is
placed. The symbols are mutually exclusive in any character string, and each
character used in the symbol is counted in determining the size of the data
item.

- 6-18

continued

8600 0296-000

Data Concepts

Table 6-6. Describing Elementary Items Using Symbols (cont.)

Symbol Explanation

* (asterisk) Each asterisk (*) in the character string represents a leading numeric character
position into which an asterisk is placed when the content of that position is O
(zero). Each asterisk is counted in the size of the item. Try to avoid the use of
an asterisk in a PICTURE character string for purposes other than as a
leading-zero-replacement mechanism. Although this use of an asterisk may
produce expected results under certain circumstances, it is not a supported

feature. i
$ (dollar The dollar sign ($) in the character string represents a character position into
sign) which a currency symbol is to be placed. The currency symbol in a character

string is represented by either the dollar sign or the single character specified in
the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph. The currency
symbol is counted in the size of the item.

Insertion Editing
You can use the following four types of insertion editing:
e Simple insertion editing
¢ Special insertion editing
¢ Fixed insertion editing
¢ Floating insertion editing

You can also use another method, zero-suppression and replacement edltmg, which is
described later in this section.

Simple Insertion Editing

Simple insertion editing uses the space character (B), slash (/), and comma (,) as
insertion characters. Also, simple insertion editing uses any characters that are not
defined symbols as insertion characters. These characters include the right parenthesis,
left parenthesis, and any digits (other than 9) that are not used in the strict syntax to
indicate consecutive occurrences of a preceding symbol. Precedence rules for these
characters and rules for determining data categories are the same as those for the simple
insertion character 0 (zero). (This is a Unisys extension.) '

You might want to use simple insertion editing for formatting telephone numbers, dates,
Social Security numbers, and so on.

The insertion characters are counted in the size of the item and represent the position

in the item into which the character is inserted. Table 6-7 shows examples of valid
PICTURE clauses using simple insertion editing.

8600 0296-000 : 6-19

Data Concepts

Table 6-7. Simple Insertion Editing Examples

Picture ‘ Data. Actual Representation
9RQ09 47 4RQO7
(900) 5 (500)
9)03) 8 8)03)

Special Insertion Editing

Special insertion editing uses the period (.) as the insertion character. Besides being an
insertion character, the period represents the decimal point for alignment purposes. The
insertion character used for the actual decimal point is counted in the size of the item.
You cannot use both the assumed decimal point symbol (V) and the actual decimal point
symbol () in the same PICTURE character string. Special insertion editing results in
the insertion character appearing in the item in the same position as is shown in the
character string.

Table 6-8 illustrates the use of special insertion editing.

Table 6-8. Special Insertion Editing Example

Picture Data Actual Representation

9.9 470 ‘ 4.70

99.9 1257 12.57
9.9 38 3.8

Fixed Insertion Editing

6-20

Fixed insertion editing uses the dollar sign ($) and the editing sign-control symbols, the
plus sign (+), the minus sign (-), the credit symbol (CR), and the debit symbol (DB) as
the insertion characters. Only one dollar sign and only one of the editing sign-control
symbols can be used in any PICTURE character string.

When the symbol CR or DB is used, it represents two character positions in determining
the size of the item, and it the symbol must represent the rightmost character position
that is counted in the size of the item. The plus and minus sign symbols, when used,
must be in either the leftmost or the rightmost character position to be counted in the
size of the item. The dollar sign must be the leftmost character position to be counted in
the size of the item, except that it can be preceded by either a plus or minus sign.

Fixed insertion editing results in the insertion character occupying the same character
position in the edited item as it occupied in the PICTURE character string. The results

8600 0296-000

Data Concepts |

produced by editing sign-control symbols depend on the value of the data item, as shown
in Table 6-9. For example, if the edit symbol is the minus sign and the data item is
negative, the data item has a minus sign. However, if the edit symbol is the minus sign
and the data item is positive or 0 (zero), the data item has a space.

Table 6-9. Data Item Values and Results of Editing Sign Control Symbols

Editing Symbol in Results If Data Item Is Results If Data Iiem Is
PICTURE Character String Positive or Zero Negative

+ + -

- Space | -

CR 2 spaces CR

DB 2 spaces DB

Floating Insertion Editing

Floating insertion editing uses the dollar éign ($) and the two editing sign-control
symbols, the plus sign (+) and the minus sign (-) as insertion characters. These
insertion characters are mutually exclusive in the same PICTURE character string.

Floating insertion editing is indicated in a PICTURE character string by using a string of
at least two of the same floating insertion characters. This string of floating insertion
characters can contain any of the fixed insertion symbols or have fixed insertion
characters immediately to the right of the string. These insertion characters are part of
the floating string.

The leftmost character of the floating insertion string represents the leftmost symbol in
the data item. The rightmost character of the floating string represents the rightmost
limit of the floating symbols in the data item.

The second floating character from the left represents the leftmost limit of the numeric
data that can be stored in the data item. Nonzero numeric data can replace all
characters at, or to the right of, this limit.

In a PICTURE character string, floating insertion editing can be represented in two
ways: '

e Any or all of the leading numeric character positions to the left of the decimal point
can be represented by insertion characters.

¢ All numeric character positions in the PICTURE character string can be represented
by insertion characters.

If the insertion characters are present only to the left of the decimal point in the
PICTURE character string, a single floating insertion character is placed in the character
position immediately preceding either the decimal point or the first nonzero digit in the
data represented by the insertion symbol string, whichever is farther to the left in the

8600 0296-000 6-21

Data Concepts

PICTURE character string. The character positions preceding the insertion character
are replaced with spaces.

If all numeric character positions in the PICTURE character string are represented by
the insertion character, the result depends on the value of the data. If the value is 0
(zero) the entire data item contains spaces. If the value is not 0, the result is the same as
when the insertion character is present only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character string for the
receiving data item must be the number of characters in the sending data item plus the
number of nonfloating insertion characters being edited into the receiving data item plus
one for the floating insertion character.

Table 6-10 illustrates floating insertion editing.

Table 6-10. Floating Insertion Editing Examples

Editing Symbol in
PICTURE Character String * Data I;em Actual Representation
$$,$$$ ‘ 1234 $1,234
—(5) | 0012 -12
—(5) 0123 -123
+++99 1234 +1234
+++99 _ 001 +01

Zero-Suppression and Replacement Editing
Zero-suppression editing can replace zeros either with spaces or with asterisks.

The suppression of leading zeros in numeric character positions is indicated by the use
of the symbol Z or the asterisk (*) as the suppression symbol in a PICTURE character
string.' These symbols are mutually exclusive in any PICTURE character string. Each -
suppression symbol is counted in determining the size of the item. If the letter Z is used,
the replacement character is the space; if the asterisk is used, the replacement character
is the asterisk.

Zero-suppression and replacement is indicated in a PICTURE character string by using a
string of one or more allowable symbols to represent leading numeric character positions
that are replaced when each associated character position in the data contains a zero.
Any simple insertion characters embedded in the string of symbols or to the immediate
right of this string are part of the string.

6-22 : 8600 0296-000

- Data Concepts

In a PICTURE character string, zero-suppression can be represented in two ways:

e Any or all leading numeric character positions to the left of the decimal point can be
represented by suppression symbols.

¢ All numeric character positions in the PICTURE character string can be represented
by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero
in the data is replaced by the replacement character. Suppression ends at the first
nonzero digit in the data represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

If all numeric character positions in the PICTURE character string are represented by
suppression symbols and the value of the data is not 0 (zero), the result is the same as if
the suppression characters were located only to the left of the decimal point. ‘If the value
of the data is the number 0 (zero) and the suppression symbol is Z, the entire data item
consists of spaces. If the value of the data is 0 (zero) and the suppression symbol is an
asterisk, then the data item consists of all asterisks except for the actual decimal point.

The asterisk, when used as the zero-suppression symbol, cannot appear in the same
entry as a BLANK WHEN ZERO statement.

Table 6-11 illustrates zero-suppression and replacement editing.

Table 6-11. Zero-Suppression and"Replacement Editing Examples

Picture ' Data Actual Representation
777 123 123
723 001 ' ‘ 1
I~ 001]
799 012 - 12

Editing Methods and Data Categories
The type of editing that can be performed on an item depends on the category to which

the item belongs. Table 6-12 specifies the type of editing that can be performed on a
given item category.

8600 0296-000 : ‘ 6-23

Data Concepts

Table 6-12. Data Categories and Editing Methods Allowed

Alphanumeric-edited

Numeric-edited
Kanji ‘
Kaniji-edited

Category Type of Editing Allowed

AIp‘habetic Simple insertion using the space character
(B '

Numeric None

Alphanumeric None

Simple insertion using the space character
(B), the number O (zero) and the slash (/)

All (subject to the following note)
None

Simple insertion using the space character
(B), the number O (zero), and the slash (/)

- Note: Floating insertion editing and zero-suppression and replacement
editing are mutually exclusive in a PICTURE clause. Only one type
of replacement can be used with zero-suppression in a PICTURE

“clause.

Editing Application of the PICTURE Clause

Table 6-13 provides various examples of the editing function of the PICTURE clause.

Table 6-13. Editing Application of the PICTURE Clause

Sending Area Receiving Area

Editing PICTURE
PICTURE Clause Data Clause Edited Data
9(5) 12345 $22,279.99 $12,345.00
Vvo(5) 12345 $$%,$$9.99 $0.12
Vva(5) 12345 $22,229.99 $ 0.12
9(5) 00000 $$%$,$$9.99 $0.00
9(3)V99 12345 $22,279.99 $ 123.45
9(5) 00000 5,$55.9%
9(5) 01234 $$$,59.9 $1,234.00

6-24

continued

8600 0296-000

Data Concepts

Table 6-13. Editing Application of the PICTURE Clause (cont.)

Sending Area Receiving Area
Editing PICTURE
PICTURE Clause Data Clause Edited Data
a(5) 00000 Grw wxx wx FREEKHE Kk
9(5) 00123 Gk pkk kk $***123.00
9(3)vo9 00012 $22,779.99 $ 0.12
9A3V9 12345 $33,$$9.99 $123.45
9(3)vo9 00001 $22,722.99 $.01
9(5) 12345 $$%$,$$9.99 $12,345.00
9(5) 00000 $22,722.7
9(3)vVo9 00001 $$$,95.5 $.01
S9(5) (+) 12345 27779.99+ 12345.00+
. S9(5) (-) 00123 -99999.99 -00123.00
9(3)v99 12345 999.00 123.00
$9(5) (-) 12345 ' 27779.99- 12345.00-
S9(5) (+) 12345 27779.99- 12345.00
)] 12345 BBB99.99 45.00
S9(5)V (-) 12345 -27779.99 -12345.00
S9(5) (-) 12345 $$$$$$.99CR $12345.00CR
$S99V9(3) (-) 12345 -.99 -12.34
S9(5) (+) 12345 $$$$$3$.99CR $12345.00
9(3)V99 12345 999.BB 123.
9(5) 12345 00999.00 00345.00
8600 0296-000 6-25

6-26 8600 0296-000

Section 7
DATA DIVISION

The third division of a source program, the DATA DIVISION, describes the data that the
object program accepts as input to manipulate, create, or produce as output. Data to be
processed falls into one of three categories:

Data that is contained in files and that enters or leaves the internal memory of the
computer from a specified area or areas

Data developed internally and placed in intermediate or working storage or in a
specific format for output-reporting purposes

Constants that you define

Sectlons of the DATA DIVISION

The DATA DIVISION, one of the required divisions in a program, is subdivided into
seven sections:

[]

The FILE SECTION defines the structure of data files.

The DATA-BASE SECTION, a Unisys extension, describes one or more databases
that can be used by the COBOL program.

The WORKING-STORAGE SECTION describes records and noncontiguous data
items that are not part of external data files but are developed and processed
internally.

The LOCAL-STORAGE SECTION, a Unisys extension, describes parameters to be
received by separate tasks or by procedures to be bound from another program.

The LINKAGE SECTION appears in the called program and describes data items to
be referenced by the calling program and the called program.

The COMMUNICATION SECTION describes the data items in the source program
that serve as the interface between the data communications interface (DCI) library
and the program.

The REPORT SECTION describes the contents and format of generated formats.

See Also

For information about the REPORT SECTION, refer to Section 12, “Report Writer.”

For information about the LINKAGE SECTION, refer to Section 13, “ANSI
Inter-Program Communication (IPC).”

For details about the COMMUNICATION SECTION refer to Section 14,
“COMMUNICATION SECTION.”

8600 0296-000 7-1

DATA DIVISION

e For information about the DATA-BASE SECTION and the INVOKE clause, refer to
Volume 2 of this manual.

e For information about the SAME RECORD AREA clause, refer to Volume 2 of this
manual.

The general structure of the DATA DIVISION is as follows. The sections i“ILE,
WORKING-STORAGE, and LOCAL-STORAGE are explained on the following pages.

DATA DIVISION.

FILE SECTION.
[ﬁle—description—entry [record-description-entry | ...
sort-merge-file-description-entry {record-description-entry} ...]

[DATA-BASE SECTION.]
[01 [internal-set-name] INVOKE set-name] ...

[WORKING-STORAGE SECTION.
[77-level-description-entry |
[record-description-entry | ...

[LINKAGE SECTION.
[77-level-description-entry |
[record-description-entry | ...

" COMMUNICATION SECTION.
communication-description-entry
[[record-description-entry | ..] |

 LOCAL-STORAGE SECTION.
local-storage-description-entry
[[record-description-entry | .]

- REPORT SECTION.
report-description-entry]]
[{report-group-description-entry} ...

7-2

8600 0296-000

DATA DIVISION

J

FILE SECTION

The FILE SECTION defines the structure of data files used in the program. These files
have been previously named and assigned to a device in the SELECT clause. Typically,
each file is defined by a file-description (FD) entry and one or more record descriptions.
Record descriptions are written immediately following the FD entry.

When the file description (FD) specifies a file to be used asa Report Writer output

file, this file is defined by a FD entry, but no record-description entries are permitted.
Report-description entries appear in the REPORT SECTION.

File-Description (FD) Entry
The file-description (FD) entry identifies a file previously declared in the SELECT clause
and provides information about its physical structure. Record descriptions for the file

immediately follow its file description.

There are two formats for describing files. These formats are used as follows:

Format Explanation
1 ~ This format describes input and output files.
2 This format describes sort and merge files.

8600 0296-000 7-3

DATA DIVISION

Format 1: File Description (FD) Entry

FD file-name

RECORDS }]

; BLOCK CONTAINS | int -1 TO | integer-2
[CKCO S [integer-1 TO | integer: {C CTERS

-

[RECORD CONTAINS [integer-3 TQ] integer-4 CHARACTERS
[DEPENDING ON data-name-1] -

e

[_ (RECORDIS {__‘STAND | } -
. LABEL {———— } OMITTED
D P
] RECORDS ARE data-name-2 [, data-name-3] ...) |
- (VALUE
’ {KA } oF

mnemonic-file-attribute-name IS mnemonic-attribute-value
{{alphanwneric-ﬁle-attribute-name } IS { data-name-2} }
numeric-file-attribute-name literal-1
mnemonic-file-attribute-name IS mnemonic-attribute-value
[, {{alphanumeric—ﬁle-attribute-name} IS {data—name-3}

numeric-file-attribute-name literal-2

RECORD IS

Dala {RECORDS ARE

} data-name-4 [, data-name-51] ..]

data-name-6

[. LINAGE IS {
= integer-5

} LINES

, WITH FOOTING AT {data'“ame'7} |

integer-6
data-name-8
integer-7 }]

data-name-9)
integer-8 }

-

, LINES AT TOP {

, LINES AT BOTTOM {

[; CODE-SET IS alphabet-name |.

B

7-4

8600 0296-000

DATA DIVISION

Explanation of Format 1

In a COBOL74 program, the file-description (FD) entry represents the highest level
of organization in the FILE SECTION. The FILE SECTION header is followed by a
file-description (FD) entry consisting of a level indicator (FD), a file-name, and a series
of independent clauses. An FD identifies the beginning of a file description and must
provide the file-name.

The FD clauses specify the size of the logical and physical records, the presence or
absence of label records, the value of file attributes, the names of the data records that
make up the file, the character code set, the number of lines to be written on a logical.
printer page, and the name or names of the reports pertaining to a given file. The
clauses that follow the name of the file are optional in many cases, and their order of
appearance is immaterial. The FD clauses are described on the following pages.

One or more record description entries must follow the file-description (FD) entry,
except when the REPORT clause in Report Writer is specified.

Format 2: Sort Merge Description (SD) Entry

SD file-name

. . (RECORDS
:B T t -1TO | int -2
[LOCK CONTAINS | integer-1TO | integer {CHARACTERS }]

[; RECORD CONTAINS | integer-1 TO] integer-2 CHARACTERS]

RECORD IS

; DATA {RECORDS ARE

L

} data-name—i [, data-name-21]..]

', VALUE OF]
(mnemonic-file-attribute-name IS mnemonic-attribute-value
{{alphanumeric-ﬁle—attribute—name } IS {data—name—l } }
numeric-file-attribute-name literal-2
mnemonic-file-attribute-name IS mnemonic-attribute-value
[{{alphanumeric-ﬁle-attribute-name} IS {data—nam -1 } } }
literal-2]

numeric-file-attribute-name

Explanation of Fo_rmht 2

A sort merge description (SD) entry gives information about the size and names of the
data records associated with the file to be sorted. No label procedures can be controlled

8600 0296-000 | 7-5

DATA DIVISION

by users, and the rules for blocking and internal storage are peculiar to the SORT
statement.

The level indicator SD identifies the beginning of the sort-merge description entry and
must precede the file-name. Other clauses that follow the name of the file are optional,
and their order of appearance is immaterial. The SD clauses are described on the
following pages.

One or more record-description entries must follow the SD entry; however, no I/O
statements (except RELEASE and RETURN) can be executed for this file.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the size of a physical record, also known as the
blocking factor.

This clause is required when the physical record contains more than one logical record.
If this clause is not specified, the physical record is assumed to contain one logical record
as large as the largest record specified for the file. (This is a Unisys extension.)

This clause is not required in an SD file entry and has no effect on the SD file entry if
specified.

The general format of this clause is as follows:

[BLOCK CONTAINS | integer-1 TO] integer-2 {

RECORDS }]
CHARACTERS

7-6

Explanation of Format

If only integer-2 is shown, it represents the exact number of records or characters in the
physical record. If integer-1 and integer-2 are both shown, they refer to the minimum
and maximum size of the physical record, respectively.

When the word RECORDS is not specified, the value of integer-2 must not be less than
the largest record specified for the file.

‘When RECORDS is specified, the physical record size is considered to be integer-2.
multiplied by the size of the largest record specified for this file.

When the word CHARACTERS is specified, the physical record size is considered to be
integer-2. If integer-2 is not a multiple of the size of the largest record specified for the
file, the physical record size is adjusted to be a multiple of the size of the largest record
specified, not to exceed the value of integer-2. (This is a Unisys extension.)

If logical records of differing sizes are grouped into one physical record, the amount of
data transferred from the record area to the physical record depends on the size of the

8600 0296-000

DATA DIVISION

record named in the WRITE or REWRITE statement. In this case, the logical records
are aligned on maximum record-size boundaries. If the size of the record named does
not equal the maximum record size specified for the file, the data is transferred to the
physical record according to the rules specified for the MOVE statement without the
CORRESPONDING phrase. The sending area is considered to be a group item.

If variable-length records are specified, then the physical record size is determined as
follows:

e Ifthe word RECORDS.is shown and only integer-2 is shown, the physical record size
equals integer-2 multiplied by the maximum record size.

o If the word RECORDS is shown and integer-1 and integer-2 are both shown, the
physical record size equals integer-1 multiplied by the maximum record size or
integer-2 multiplied by the minimum record size, whichever is larger.

e If the word CHARACTERS is shown, the physical record size equals integer-2 or the
maximum record size, whichever is larger. If the maximum record size is larger, a
warning is issued. Integer-1 is'shown for documentation only.

In the case of relative file organization, the physical record size is adjusted by the I/O

subsystem to be integer-2 multiplied by a value that is 6 bytes larger than that which
would be determined by the previously stated methods.

See Also

e For more information about specifying record size, refer to “RECORD CONTAINS
Clause,” in this section.

e For information about record-blocking techniques, refer to the I/O Sdbs:ystem
Programming Guide.

RECORD CONTAINS Clause

' The RECORD CONTAINS clause specifies the size of the data records. It can be used to
specify variable-length records.

The general format of this clause is as follows:

RECORD CONTAINS [integer-3 TO | integer-4 CHARACTERS
[DEPENDING ON data-name-1]

Explanation of Format
The DEPENDING ON clause is valid only if the integer-3 TO clause is present. The

integer-3 TO clause is ignored for indexed or relative files; the DEPENDING ON clause
is not allowed for indexed or relative files.

8600 0296-000 7-7

DATA DIVISION

If the data-name-1 option is in the record of the file, then it must reference an
elementary unsigned numeric item of USAGE IS DISPLAY (4 characters long) which is
the first item in the record. If data-name-1 is not in the record of the file, then it must be
an elementary unsigned numeric item.

The size of each data record is completely defined in the record-description entry;
therefore, the RECORD CONTAINS clause is never required. When this clause is
present, however, the following rules apply:

For fixed-length records, use integer-4 alone when all data records in the file have
the same size. In this case, integer-4 represents the exact number of characters in
the data record. For fixed-length records, do not use the TO clause.

The record size is specified in terms of the number of character positions required
to store the logical record, regardless of the types of characters used to represent
the items in the logical record. The size of a record is determined by the sum of the
number of characters in any variable-length item subordinate to the record. This
sum can be different from the actual size of the record.

For variable-length records, integer-3 and integer-4 are both used. They refer,

respectively, to the minimum number of characters in the smallest data record and

the maximum number of characters in the largest data record. The following rules
apply:

- Ifthe DEPENDING ON clause is not specified, the logical-record length is
supplied by the system and is written to the record as the first four characters of
the record. This length cannot be referenced by the program. The format of the
length depends on the USAGE value of the first 01-level record of the FD. For
DISPLAY, the length is four EBCDIC characters; for COMP, four packed decimal
characters; for BINARY, one binary word. The length is part of the record when
the type of the file is DISK or TAPE, but is not written if the file is REMOTE,
PRINTER, PUNCH, or PORT.

-~ If the DEPENDING ON clause is specified, the logical-record length is supplied
by the program at run time in data-name-1. Data-name-1 must follow the
"previously stated syntax rules. If data-name-1 is in the record, the logical-record
length of data-name-1 must include the four bytes of data-name-1.

— When a READ statement is executed, the contents of the data item referred to
by data-name-1 indicate the maximum record size of the record just read. At
end-of-file (EOF), data-name-1 is set to 0 (zero).

LABEL RECORDS Clause

The LABEL RECORDS clause specifies the presence or absence of label information.

The general format of this clause is as follows:

[—LALE‘L {RECORDS ARE

OMITTED

RECORD IS } {
data-name-1 [, data-name-2] ...

-

8600 0296-000

DATA DIVISION

Explanation of Format

STANDARD

The STANDARD phrase should be used if you wish to take advantage of the automatic
file allocation and handling procedures in the operating system. (Disk devices maintain a
directory instead of a system of labels.) The format of labels is dependent upon the
device containing the file.

If the LABEL RECORDS clause is not used, the STANDARD phrase is assumed.

OMITTED

The OMITTED phrase must be used if an input file does not have standard labels or if
labels are not desired on output files.

data-name-1
All references to data-name-1 also apply to data-name-2 and so on.

You should use the data-name-1 option to include header and trailer records in the
standard tape label. This format can be used only with magnetic tape files. A maximum
of nine label records can be specified.

Data-name-1 identifies the tape label user record descriptions to be used by the label
USE procedures for a given file. The file handling routine of the operating system
performs the USE statement when the file is opened, closed, or when a volume is
switched.

Data-name-1 must be defined in the file-description (FD) entry for which it is defined or
must be in the WORKING-STORAGE SECTION. The subordinate items identify the
fields to be accessed in the label records and must add up to a total record size of 80
characters. The first four characters of every label record are reserved for use by the
operating system. ;

8600 0296-000 7-9

DATA DIVISION

Example

Example 7-1 shows a file-description (FD) entry with a LABEL RECORDS clause using
the data-name-1 option. TAPE-LABEL is a record description in the file TAPE-FILE.
The record description identifies the label to be used in the USE procedures.

FD TAPE-FILE
LABEL RECORD IS TAPE-LABEL
VALUE OF FILENAME "TAPELABEL1"
DATA RECORD IS TAPE-DATA.

@1 TAPE-LABEL.

@3 LABEL-RESERVE PIC X(4).

@3 DATE-OF-CREATION PIC 9(6).

@3 FORMAT-TYPE PIC XX.
@93 REMAINING-DATA PIC X(68).

@1 TAPE-DATA.

Example 7-1. Coding the LABEL RECORDS Clause

See Also

o For information about the format of the USE procedures, refer to Format 2 of the
USE statement in Section 9, “PROCEDURE DIVISION Statements.”

e For information about label formats, refer to the I/O Subsystem Programming
~ Guide. ,

VALUE OF Clause

7-10

The VALUE OF clause defines the initial values for the attributes of a file.

The descriptive clauses and phrases of the INPUT-OUTPUT SECTION and the file
record descriptions (other than the VALUE OF clause) implicitly determine the initial
values for appropriate attributes of a file. These attribute values, however, can be
overridden, or other attributes can be specified, by the VALUE OF clause.

Note: File attributes provide you with access to functionality not otherwise
available within the language. Also, file attributes can be used to
declare and access files. When both a file attribute and the standard
COBOL syntax are available to accomplish a desired function, it
is always preferable to use the standard COBOL syntax because
changing the attribute can lead to unexpected results in cases when
the attribute is also used or altered by the compiler.

" This clause is not required in a sort merge description (SD), and has no effect on the sort

merge description if specified.

8600 0296-000

DATA DIVISION

The general format of this clause is as follows:

- (VALUE
{14 }QE

mnemonic-file-attribute-name IS mnemonic-attribute-value
{ {alphanumeric-ﬁle-attribute—name} IS {data-name-2 } }
numeric-file-attribute-name literal-1
mnemonic-file-attribute-name IS mnemonic-attribute-value
{ , [{{alphanmneric-ﬁle-attribute—name } IS {data—name-3 } }]

numeric-file-attribute-name literal-2

Explanation of Format

A mnemonic file attribute must be assigned a mnemonic-attribute-value. An
alphanumeric or numeric file attribute can be assigned a value that is either a data-name
or a literal.

The mnemonic-attribute-value must be associated with the attribute specified.
(Mnemonic-attribute-value is a Unisys extension.)

If an alphanumeric file attribute is specified, literal-1, literal-2, and so on must be
nonnumeric literals, and the identifier must be a nonnumeric DISPLAY data item. Ifa
numeric file attribute is specified, the literal must be a numeric literal and the identifier
must be a numeric data item that represents an integer.

When an attribute is equated to a literal value, the value becomes a part of the
file description given by the file when the file is first referenced at run time. Any
specification in this file description (FD) can be overridden by a file equation.

When an attribute is equated to a data-name value, the attribute is implicitly changed to
this value just before execution of any explicit OPEN, SORT, or MERGE statement that
references the file.

Data-name-2, data-name-38, and so on can be qualified but cannot be subscripted or
indexed.

If an alphanumeric file attribute is specified, the contents of data-name must be followed
by a period.

File titles must not contain special characters.

8600 0296-000 = 7-11

DATA DIVISION

7-12

Port Files

Using data-name-2 in file descriptions for port files is not recommended for programs
specifying subfiles that are to be opened independently and are to remain open
simultaneously. The compiler explicitly sets all dynamic attributes for the entire file on
each OPEN statement. An OPEN statement for a subfile of a port file is rejected by the
operating system if any other subfile of the port file is open and if the file declaration
contains a dynamic file attribute that can be modified only when the file is closed.

Using the CHANGE statement is recommended for dynamically changing attributes
of port files that have multiple subfiles explicitly opened. Note that the CHANGE
statement must still be executed while the port file is closed.

This restriction does not apply to programs that open the entire port file, to programs
that have only one subfile of a port file open at any given time, or to file attributes that
are not limited as to when they can be modified.

Example
Example 7-2 shows the coding of the VALUE OF clause.

926000 FILE SECTION.

028000 FD INFIL

030000 LABEL RECORDS ARE STANDARD
0932000 VALUE OF FILENAME IS "TAPEIN"

034000 SAVEFACTOR 30
236000 - AREAS IS 10
038000 AREASIZE IS 1000.

240009 @1 TAPE-REC PIC X(80).

942000 FD WORK-FILE

244000 VALUE OF FAMILYNAME IS "PACKo1"
946000 VALUE OF AREAS IS 20

948000 VALUE OF FILENAME IS "TEMPA1".
@50000 B1 WORK-REC.

952000 @5 KEY-REC PIC 9(8) COMP.
954000 @5 REM-WORK PIC X(76).

Example 7-2. Coding the VALUE OF Clause

See Also.

e For general information about files, refer to Section 3, “File and Task Concepts.”

e For more information about the CHANGE statement, a Unisys extension that
enables you to modify a file attribute or a task attribute, refer to the CHANGE
statement in Section 9, “PROCEDURE DIVISION Statements.”

e For a description of available attributes and their values, refer to the File Attributes
Reference Manual.

e For information about using file attributes, refer to the I/O Subsystem Programming
Guide.

8600 0296-000

DATA DIVISION

DATA RECORDS Clause

The DATA RECORDS clause is an optional clause that documents the names of data
records associated with a file.

The general format of this clause is as follows:

[DATA {

RECORD IS
RECORDS ARE

} data-name-4 [, data-name-5] ..] ces

Explanation of Format

Data-nam

record descriptions (with the same names) associated with them.

e-4 and data-name-5 are the names of data records that should have 01-level

The presence of more than one data-name indicates that the file contains more than one
type of data record. These records can be different (for example, in size or in format),
and their listed order is not significant.

Conceptually, all data records in a file share the same area, even if more than one type of
data record is present in the file.

Example

Example 7-3 shows the coding of an FD and the DATA RECORDS clause.

FD

g1

o1

21

8600 0296-000

INPUT-FILE.
DATA RECORDS ARE PRODUCTION, SALES, INVENTORY.
PRODUCTION.

@3 REC-TYPE-1 PIC 99.

@3 REC-PROD PIC X(78).
SALES.

93 REC-TYPE-2 PIC 99.

@3 REC-SALES PIC X(78).
INVENTORY.

@3 REC-TYPE-3 PIC 99.

@3 REC-INVEN PIC X(78).

Example 7-3. Coding the DATA RECORDS Clause

7-13

DATA DIVISION

LINAGE Clause

The LINAGE clause enables you to specify the number of lines per page, the size of the
top and bottom margins on the logical page, and the line number within the page body at
which the footing area begins.

Each logical page is contiguous to the next; no additional spacing is provided.

The general format of this clause is as follows:

data-name-6

| LINAGE IS {
- integer-5

} LINES

. WITH FOOTING AT { data-name-7 }

integer-6

[LINES AT TOP { data-name-8 }]
] — |integer-7

. LINES AT BOTTOM {data'name'g }

integer-8

7-14

Explanation of Format

The LINAGE clause enables you to specify the size (number of lines) of a logical page.
The logical page size is the sum of the values referenced by each phrase except the
FOOTING phrase. If the LINES AT TOP or LINES AT BOTTOM phrase is not
specified, the value for this function is 0. If the FOOTING phrase is not specified, the
assumed value is equal to integer-5 or the contents of the data item referenced by
data-name-6, whichever is specified. '

No particular relationship exists between the size of the logical page and the size of a
physical page.

LINAGE IS

The value of integer-5 or of the data item referenced by data-name-6 specifies the
number of lines that can be written, spaced, or both written and spaced on the logical
page. The value must be greater than 0. The part of the logical page in which these lines
can be written, spaced, or both written and spaced is called the page body. This value is
used for all logical pages written for the file during a given execution of the program. If a
WRITE ... ADVANCING PAGE statement is executed, or if a Page-Overflow condition
occurs, the value specifies the number of lines for the next logical page.

LINES AT TOP
The value of integer-7 or of the data item referenced by data-name-8 specifies the

number of lines desired for the top margin on the logical page. Integer-7 must be in the -
range from 0 through 65,535. If the value of data-name-8 is less than the number 0,

8600 0296-000

DATA DIVISION

the results are unpredictable. Data-name-8 can be in the range from 0 through
549,755,813,887. This value is used for all logical pages written for the file during a given
execution of the program. If a WRITE ... ADVANCING PAGE statement is executed,
or when a Page-Overflow condition occurs, the value specifies the top margin for the next
logical page.

LINES AT BOTTOM

The value of integer-8 or of the data item referenced by data-name-9 specifies the
number of lines desired for the bottom margin on the logical page. Integer-8 must be in
the range from 0 through 65,535. If the value of data-name-9 is less than the number

0, the results are unpredictable. Data-name-9 can be in the range from 0 through
549,755,813,887. This value is used for all logical pages written for the file during a given
execution of the program. If a WRITE ... ADVANCING PAGE statement is executed,
or if a Page-Overflow condition occurs, the value specifies the bottom margin for the next

logical page.

WITH FOOTING AT

The value of integer-6 or of the data item referenced by data-name-7 specifies the line
number in the page body at which the footing area begins. The value must be greater
than 0, and less than or equal to the value of integer-5 or the data item referenced by
data-name-6.

The footing area consists of the area of the logical page between the line represented
by the value of integer-6 or the data item referenced by data-name-7 and the line
represented by the value of integer-5 or the data item referenced by data-name-6,
inclusive. This value is used for all logical pages written for the file during a given
execution of the program. If a WRITE ... ADVANCING PAGE statement is executed,
or if a Page-Overflow condition occurs, the value specifies the footing area for the next

logical page.

LINAGE-COUNTER Special Register

The LINAGE-COUNTER, a special register, is generated by the presence of a LINAGE
clause. The value in the LINAGE-COUNTER register at any time represents the line

number at which the device is positioned in the current page body. The rules governing
the LINAGE-COUNTER register are as follows:

e A separate LINAGE-COUNTRER register is supplied for each file described in the
FILE SECTION that has a LINAGE clause.

e The data-name, LINAGE-COUNTER, can be referenced, but not modified, by
' PROCEDURE DIVISION statements. Because more than one LINAGE-COUNTER
can exist in a program, you must qualify LINAGE-COUNTER by using a file-name
when necessary.

8600 0296-000 7-15

DATA DIVISION

e The LINAGE-COUNTER register is automatically modified according to the
following rules during the execution of a WRITE statement to an associated file:

- If the ADVANCING PAGE phrase of the WRITE statement is specified, the
_ LINAGE-COUNTER register is automatically reset to 1.

— If the ADVANCING identifier-6 or integer phrase of the WRITE statement is
specified, the LINAGE-COUNTER register is incremented by integer or by the
value of the data item referenced by identifier-6.

— Ifthe ADVANCING phrase of the WRITE statement is not specified, the
LINAGE-COUNTER register is incremented by 1.

— The value of the LINAGE-COUNTER register is automatically reset to 1 when
the device is repositioned to the first line on which wrltmg can occur for each of
the succeeding logical pages.

e The value of the LINAGE-COUNTER register is automatically reset to 1 when the
file is opened.

CODE-SET Clause

The CODE-SET clause specifies the character code set used to represent data on the
external media.

The general format of this clause is as follows:

[CODE-SET IS alphabet-name |

Explanation of Format

If the CODE-SET clause is specified, alphabet-name specifies both the character code
set used to represent data on the external media and the algorithm for converting the
character codes on the external media to or from EBCDIC. This code conversion occurs
during execution of an input or output operation.

If the CODE-SET clause is not specified, the native character code set (EBCDIC) is
assumed for data on the external media.

When the CODE-SET clause is specified for a file, all data in that file must be described
(because USAGE IS DISPLAY) and any signed numeric data must be described with the
SIGN IS SEPARATE clause.

The alphabet-name referenced by the CODE-SET clause must not specify the literal
phrase.

The CODE-SET clause can be speclﬁed only for files that are not on a mass-storage
device.

7-16 - ‘ 8600 0296-000

DATA DIVISION

See Also

For information about specifying an alphabet-name, refer to “SPECIAL-NAMES” in
Section 5, “ENVIRONMENT DIVISION.”

Record Description

One or more record descriptions must follow each file description (FD). A record
description consists of a set of data-description entries that describe the characteristics
of a particular record. Each data-description entry consists of a level-number (followed
by a data-name, if required) followed by a series of independent clauses, as required. A
record description has a hierarchic structure; therefore, the clauses used with an entry
can vary considerably, depending on whether or not the entry is followed by subordinate
entries.

A data-description entry specifies the characteristics of a particular data item. The
following four formats are used for the data-description entry:

Format Use
1 Defines a record.
2 Renames entries.
3 Specifies condition-names.
4 Invokes a dictionary. (Refer to Volume 2 for more information).

See Also

¢ For information about the structure of a record description, refer to “Levels” in
Section 6, “Data Concepts.”

e For information about the elements allowed in a record description, refer to “Data”
in Section 6, “Data Concepts.”
Data-Description Entry for Record Structure

The following general format shows the complete syntax for defining a record. The
optional clauses are described on the following pages.

Note: Refer to Volume 2 for information about the USER and VERSION
clauses.

8600 0296-000 . ' 7-17

DATA DIVISION

Format 1: Record Structure

level- number { J2ta-name-1
Umber | pILLER
[; REDEFINES data-name-2 |
" (PICTURE
PIC IS character string

| |BC

- SHORT-DATE _
LONG-DATE CONVENTION OF {teralt

; TYPE IS { NUMERIC-DATE } | USING it dglta;nameﬁ
NUMERIC-TIME LANGUAGE OF{ eral- }

R data-name-4

LOCAL

: USAGE IS ¢

LONG-TIME

sl

(BINARY [TRUNCATED] 1
COMPUTATIONAL
COMP

CMP
CONTROL-POINT
CP >
DISPLAY
EVENT
INDEX
LOCK

;SIGN IS {

’

ocC

K {SYNC

JUST

[[VALUE
|} 1va

LEADING
TRAILING

r . {OCCURS } {integer-l TO integer-2 TIMES DEPENDING ON data-name-5 }

ASCENDING
DESCENDING

[INDEXED BY index-name-1 [, index-name-2]...]
SYNCHRONIZED } [{LEFT }]]

[{JUSTIFIED

\TASK J :
} [SEPARATE CHARACTER |]

integer-2 TIMES

} KEY IS data-name-6 [, data-name-7] ..] e

RIGHT
} RIGHT]

[; BLANK WHEN ZERO |
} IS literal-3]

;WITH{

LOWER-BOUND
LOWER-BOUNDS

; RECEIVED

~ (REFERENCE
BY { REF
CONTENT

7-18

8600 0296-000

DATA DIVISION

Explanation of Format 1

The level-number can be any number from 01 through 49, or 77. Each record of a file
begins with the level-number 01. This number is reserved for the record-name only,
because it is the most inclusive grouping for a record. Less inclusive groupings are given
higher numbers; these numbers are not necessarily successive.

The clauses of the data-description entry can be written in any order, with the following
exceptions:

e The data-name-1 or FILLER clause must immediately follow the level-number.
¢ The REDEFINES clause must immediately follow the data-name-1 clause.

The PICTURE clause must be specified for every elementary item except an index data
item. The PICTURE clause cannot be used for an index data item.

" The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO
must not be specified except for an elementary data item.

Muiltiple 01-level entries in a glven file descrlptlon (FD) of the FILE SECTION represent
redefinition of the same memory area.

If a file is selected using Format 5 of the SELECT statement, only record descriptions
or form libraries invoked from the dictionary are allowed; record descriptions coded

as usual are not permitted. If the file is not selected with Format 5 of the SELECT
statement, then its record descriptions can be either coded as usual or invoked from the
dictionary.

See Also

¢ For more information about defining the hierarchic structure of a record, refer to
“Levels” in Section 6, “Data Concepts.”

e For Format 5 of the SELECT statement and for information about the rules and
syntax for invoking the dictionary in order to use a previously defined data item,
refer to Volume 2.

Data-Name or FILLER Clause

A data-name specifies the name of the data being described. The keyword FILLER
specifies an elementary item of the logical record that cannot be referenced explicitly.

The general format is as follows:

{ data-name }
FILLER

8600 0296-000 » 7-19

DATA DIVISION

Explanation of Format

In the FILE, COMMUNICATION, LINKAGE, and WOL:{ING-STORAGE sections, a
data-name or the keyword FILLER must be the first word following the level-number in
each data-description entry.

The keyword FILLER can be used to name an elementary item in a record. A FILLER
item can never be referenced explicitly However, the keyword FILLER can be used as a
conditional variable because such use does not require explicit reference to the FILLER
item, but instead requires reference to the value of the FILLER item.

BLANK WHEN ZERO Clause

This clause is used with the PICTURE clause to print spaces if the value of the data item
is 0. :

The general format of this clause is as follows:

BLANK WHEN ZERO

7-20-

Explanation of Format

The BLANK WHEN ZERO clause can be used only for an elementary item with the
PICTURE clause specified as numeric or numeric-edited.

When the BLANK WHEN ZERO clause is used, the item contains nothing but spaces if
the value of the item is 0.

When the BLANK WHEN ZERO clause is used for an item that has a numeric picture,
the category of the item is considered to be numeric-edited.

Example

Example 74 illustrates the effect of the BLANK WHEN ZERO clause.

Input File Qutput File
PICTURE Data PICTURE Data
Clause Clause
9v99 000 $.99 $.00
9v99 000 $.99 BLANK

WHEN ZERO

Example 7-4. Effect of the BLANK WHEN ZERO Clause

8600 0296-000

DATA DIVISION

GLOBAL Clause (Unisys Extension)
The GLOBAL clause allows COBOL programs compiled at lexicographic level 8 or higher
to use untyped procedures, files, and certain variables in the outer block of the host

program by declaring these items as global items.

The general format of this clause is as follows:

GLOBAL

Explanation of Format

Level-77 data items with BINARY, REAL, DOUBLE, EVENT, LOCK, or TASK usage,
or 0l-level items that are declared in the WORKING-STORAGE SECTION of a host
program can be passed as parameters. These items can be declared global in a bound
procedure by using the GLOBAL clause in the operand or item data-description entry.
GLOBAL declarations are matched by name and type to the GLOBAL directory of the
host. The GLOBAL clause must not be specified in the host program.

Index-names generated for a global array are not themselves global items, but are
treated as if they had been described with an OWN clause. Index-names for a local array
are treated as local variables. :

If most or all of the variables declared in the WORKING-STORAGE SECTION need to
be declared global, the compiler control option GLOBAL can be used. The compiler
control option can be assigned the value TRUE throughout the compilation, although
this designation affects only variables that are candidates for GLOBAL declaration and
that are in the WORKING-STORAGE SECTION. The LOCAL or OWN clause can be
used to override the compiler control option.

Examples

. .
Example 7-5 shows how to declare data items to be global in the WORKING-STORAGE
SECTION. ‘

77 GLASTATUS GLOBAL BINARY PIC 9(11).
77 BL-EVENT GLOBAL EVENT.
@1 GL-EBCRAY GLOBAL.
@3 CMP-ITM COMP PIC 9(11) OCCURS 108 INDEXED BY I.

Example 7-5. Coding the GLOBAL Clause

In Example 7-6, the GLOBAL compiler option declares G1, G2, and G3 to be global. L1
is declared as local because the LOCAL clause overrides the GLOBAL compller option. J
is declared with an OWN clause because it is an index-name.

8600 0296-000 7-21

DATA DIVISION

$ SET GLOBAL

77 G1 BINARY PIC 9(11).
77 G2 BINARY PIC 9(11).
77 L1 LOCAL COMP PIC 9(11).
g1 G3.
@3 FLD PIC 9(11) COMP OCCURS 10 INDEXED BY J.

Example 7-6. Using the GLOBAL Compiler Option

JUSTIFIED Clause

The JUSTIFIED clause changes the rules for alphanumeric move operations. Normally,
data that is moved is left-justified. The JUSTIFIED clause causes alphanumeric data to
be right-justified in the receiving data item.

When the JUSTIFIED clause is omitted, the standard rules for data alignment in an
elementary item apply.

The general format of this clause is as follows:

{QIBSZIEEEHQ

JUST } RIGHT

7-22

Explanation of Format
The JUSTIFIED clause can be specified only at the elementary item level.
JUST is an abbreviation for JUSTIFIED.

The JUSTIFIED clause cannot be specified for any data item described as numeric or for
any data item for which editing is designated.

When a receiving data item is described with the JUSTIFIED clause and the sending
data item is larger than the receiving data item, the leftmost characters are truncated.
When the receiving data item is described with the JUSTIFIED clause and is larger than

the sending data item, the data is aligned at the rightmost character position in the data
item with space-fill for the leftmost character positions. '

See Also

For information about data alignment, refer to Section 6, “Data Concepts.”

8600 0296-000

DATA DIVISION

LOCAL Clause (Unisys Extension)

A local data-name is referenced in the same procedure in which it is declared. Any value
stored in it is lost upon exit from that procedure.

The general format of this clause is as follows:

LOCAL

In COBOL procedures compiled at level 3 or higher, data-names are implicitly declared
as local unless the GLOBAL or the OWN clause is specified.

LOWER-BOUNDS Clause (Unisys Extension)
The LOWER-BOUNDS clause permits bound or host COBOL74 programs to pass or
receive array parameters compatible with the FORTRAN and ALGOL constructs that

generate a lower-bound stack item.

The general format of this clause is as follows:

WITH {LOWER-BOUND }

LOWER-BOUNDS

Explanation of Format

This clause is used in the data description of a 01-level item in the LINKAGE SECTION
- (if array parameters are received) or the LOCAL-STORAGE SECTION (if array
parameters are to be passed).

The LOWER-BOUNDS clause is not meaningful for 77-level items. A warning is issued
if a 77-level data item is declared with the WITH LOWER-BOUNDS clause.

The LOWER-BOUNDS clause affects only bound procedures. The purpose of this
clause is to declare formal parameters for binding that are compatible with FORTRAN
and ALGOL. The clause must always be used when communicating with FORTRAN
programs and must be used when communicating with ALGOL programs that contain
formal array parameters declared with a variable lower-bound description (that is,
ARRAYNAME [*]). The actual lower-bound parameter passed by a COBOL program to
another program always has a value of 0.

The actual lower-bound parameter received by a COBOL program is not used in
addressing the array.

8600 0296-000 7-23

DATA DIVISION

Table 7-1 shows the matching of parameters between the COBOL74 and ALGOL
programming languages.

Table 7-1. COBOL74 and ALGOL Parameter Matching

COBOL Parameter Corresponding ALGOL Parameter
01 BINARY , REAL array [<integer>]

01 BINARY WITH LOWER-BOUNDS REAL array [*]

.01 COMP , EBCDIC character array [<integer>]
01 COMP WITH LOWER-BOUNDS EBCDIC character array [*]

01 DISPLAY EBCDIC character array [<integer>]
01 DISPLAY WITH LOWER-BOUNDS EBCDIC character array [*]

01 DOUBLE REAL array [<integer>]

01 DOUBLE WITH LOWER-BOUNDS REAL array [*]

01 REAL REAL array [<integer>]

01 REAL WITH LOWER-BOUNDS REAL array [*]

Note: The <integer> variable, in ALGOL, is the specified lower-bound
parameter. -

For library calls and tasking calls, the LOWER-BOUNDS clause is ignored.

For COBOL74 tasks, parameters with or without lower-bounds can be passed to .
COBOL74 programs and received from COBOL74 programs; the operating system
handles the coercion. COBOL74 does not use the value of the lower-bound parameter in
addressing the array.

- When a user program passes an array parameter with a lower-bound to a COBOL74

library, the user program actually sends two parameters: a by-reference array followed
by a by-value integer. The COBOL74 program must declare an extra parameter, a
77-level PIC 9(11) BINARY item, to receive the lower-bound parameter.

OCCURS Clause

7-24

The OCCURS clause defines tables and other homogeneous data items. If the OCCURS
clause is used, the data-name that is the subject of this entry must be either subscripted
or indexed whenever it is referenced in a statement other than the SEARCH or USE
FOR DEBUGGING statement. In addition, if the subject of this entry is the name of a
group item, then all data-names belonging to the group must be subscripted or indexed
whenever they are used as operands, except when the data-names are the objects of a
REDEFINES clause. '

8600 0296-000

DATA DIVISION

The OCCURS clause eliminates the need for separate entries for repeated data items
and supplies information required to apply subscripts or indexes.

Except for the OCCURS clause itself, all data-description clauses associated with an
item that has an OCCURS clause in its description apply to each occurrence of the item
described.

The OCCURS clause has the following two formats:

Format _ Explanation
1 Specifies that an item occurs an exact number of times.
2 Specifies that an item occurs a variable number of times, depending on

the data item referenced by data-name-1.

Format 1

The general format of this clause is as follows:

{ OCCURS

oC } integer-2 TIMES

[{ASCENDING

DESCENDING } KEY IS data-name-2 [, data-name-3]]

[INDEXED BY index-name-1 [, index-name-2] ...]

Explanation of Format 1

Format 1 of the OCCURS clause cannot be specified in a data-description entry that
meets either of the two following conditions:

e The entry has a 01, 66, 77, or 88 level-number.

e The entry describes an item of variable size. The size of an item is considered
variable if the data description of any subordinate item contains Format 2 of the
OCCURS clause.

OCCURS or OC

- OC is an abbreviation for OCCURS. (This is a Unisys extension.)

integer-2

Integer-2 cannot exceed the maximum record size.

8600 0296-000 7-25

DATA DIVISION

KEY IS

The KEY IS phrase indicates that the repeated data is arranged in ascending or
descending order according to the values contained in data-name-2 and data-name-3.
The data-names are listed in descending order of significance.

Data-name-2 and data-name-3 can be qualified.

INDEXED BY

An INDEXED BY phrase is required if the subject of the entry or an entry subordinate
to this entry is referenced by indexing. The index-name identified by this clause is not
defined elsewhere because its allocation and format depend on the hardware, and the
index-name cannot be associated with any data hierarchy because it is not a data item.

Index-name-1 and index-name-2 must be unique words in the program.
Note: When the OCCURS clause is used on a group item, the sum of the
number of index-names in any associated INDEXED BY clause and

the number of data-names declared subordinate to the group item
cannot exceed 511.

Format 2

The general format of this clause is as follows:

{ggc } integer-1 TO integer-2 TIMES DEPENDING ON data-name-1
ASCENDING) . ' .
{ {DESCENDING} KEY IS data-name-2 [, data-name-3] .. .]

[INDEXED BY index-name-1 [, index-name-2] ...]

Explanation of Format 2

Format 2 specifies that the subject of this entry has a variable number of occurrences.
The value of integer-2 represents the maximum number of occurrences, and the value of
integer-1 represents the minimum number of occurrences. The length of the subject of
the entry is not variable, but the number of occurrences is variable.

A data-description entry that contains Format 2 of the OCCURS clause can be followed
in that record description only by data-description entries that are subordinate to it.

7-26 8600 0296-000

DATA DIVISION

integer-1 TO integer-2

" The value of integer-1 must be less than the value of integer-2. Integer-1 and integer-2
cannot exceed the maximum record size. A syntax error results if the limit is exceeded.

DEPENDING ON

The value of data-name-1 is used to determine the last table element that can be
referenced. When the value of data-name-1 is less than integer-2, the data items with
occurrence numbers exceeding the value of data-name-1 are inaccessible. Reducing the
value of the data item referenced by data-name-1 has no effect on the contents of data
items with occurrence numbers that exceed the value of the data item referenced by

. data-name-1. (This is a Unisys extension.) ‘

When a table element is referenced, the value of data-name-1 must fall in the range
integer-1 through integer-2, inclusive. If the value of data-name-1 is outside this range,
the program ends abnormally.

Data-name-1 can be qualified.

The data description of data-name-1 must be that of an unsigned integer. Integer-1 can
be 0, which is a relaxation of the ANSI-74 standard rule requiring a minimum of one
occurrence. If data-name-1 takes on a value of 0 at run time, then no occurrences exist
until the value of data-name-1 becomes nonzero. Any attempt to refer to an occurrence
outside the current range produces an error.

The data item defined by data-name-1 must not occupy a character position in the range
between the first character position defined by the data-description entry containing the
OCCURS clause and the last character position defined by the record-description entry
containing that OCCURS clause.

KEY IS
If data-name-2 is not the subject of this entry, then the following three conditions apply:
e All items identified by the data-names in the KEY IS phrase must be in the group

item that is the subject of this entry.

e Items defined by the data-name in the KEY IS phrase must not contain an OCCURS
clause. ,

e No entry can contain an QCCURS clause between the items identified by the
data-names in the KEY IS phrase and the subject of this entry.

When a group item is referenced that has a subordinate entry that uses Format 2 of the
OCCURS clause, only that part of the table area specified by the value of data-name-1 is
used in the operation.

The KEY IS phrase indicates that the repeated data is arranged in ascending or

descending order according to the values contained in data-name-2 and data-name-3.
The data-names are listed in descending order of significance.

8600 0296-000 7-27

DATA DIVISION

Data-name-2 and data-name-3 can be qualified.

INDEXED BY

An INDEXED BY phrase is required if the subject of the entry or an entry subordinate
to this entry is referenced by indexing. The index-name identified by this clause is not
defined elsewhere because its allocation and format depend on the hardware, and the
index-name cannot be associated with any data hierarchy because it is not a data item.

Index-name-1 and index-name-2 must be unique words in the program.

Note: When the OCCURS clause is used on a group item, the sum of the
number of index-names in any associated INDEXED BY clause and
the number of data-names declared subordinate to the group item
cannot exceed 511.

OWN Clause (Unisys Extension)

COBOL procedures compiled at level 3 or higher can declare certain variables to be
OWN. These variables retain their values or states throughout repeated exits and
reentries of the procedure in which they are declared.

The general format of this clause is as follows:

- OWN

7-28

Any item declared in the WORKING-STORAGE SECTION can be made OWN By using
the OWN clause or the compiler control option OWN.

All related index-names and copy descriptors for OWN items are also OWN; redefinitions
of OWN items are implicitly OWN and need not use the OWN clause.

Use of the compiler control option OWN throughout the compilation causes all stack
locations obtained in the WORKING-STORAGE SECTION to be OWN, unless
overridden temporarily by a GLOBAL or LOCAL clause on an individual item.

Example

Example 7-7 shows the declaration of OWN data items in the WORKING-STORAGE
SECTION. 4

77 X PIC X(18) OWN.
77 'Y REDEFINES X PIC 9(18).
@1 A OWN.
@3 CMP-ITEM COMP PIC 9(11) OCCURS 188 INDEXED BY J.

Example 7-7. Coding the OWN Clause

8600 0296-000

DATA DIVISION

PICTURE Clause

The PICTURE clause describes the type of data item, the size of a data item, and the
editing requirements of an elementary data item.

The following two methods exist for performing editing with the PICTURE clause:

e Insertion editing

e Zero-suppression and replacement editing

The general format of the PICTURE clause is as follows:

PICTURE
{LI_C_ } IS character string
PC

Explanation of Format

A PICTURE clause can be specified only at the elementary item level and must be
specified for every elementary data item except an index data item. The PICTURE
clause cannot be specified for an index data item.

A character string consists of certain allowable combinations of characters in the COBOL
character set that are used as symbols. The allowable combinations determine the
category of the elementary item. The maximum number of characters allowed in the
character string is 30.

PIC and PC are abbreviations for PICTURE. (PC is a Unisys extension.)

The asterisk, when used as the zero-suppression symbol, and the clause BLANK WHEN
ZERO cannot appear in the same entry.

See Also
Insertion editing and zero-suppression and replacement editing are described in Section
6, “Data Concepts.” ‘

Defining Data Categories .
The following seven categories of data can be described with a PICTURE clause:
alphabetic, numeric, alphanumeric, alphanumeric-edited, numeric edited, Kanji, and
Kanji-edited.

Table 7-2 shows the rules for defining the seven categories of data.

8600 0296-000 C 729

DATA DIVISION

Table 7-2. Defining ltems with the PICTURE Clause

Data Type Rules for Defining the Data Type

Numeric The character string can contain only the symbols P, S, V, and 9. The
number of digit positions that can be described by the character string
must be from 1 to 23.

If unsigned, the contents of the item (when represented in standard data
format) must be a combination of the numerals O through 9; if signed,
the item can also contain a plus sign (+), a minus sign (=), or any other
representation of an operational sign.

Alphabetic The character string of the item can contain only the symbols A and B.

The contents of the item (when represented in standard data format)
must be a combination of the 26 letters of the alphabet and the space
from the COBOL character set.

Alphanumeric The character string of the item is restricted to certain combinations of
the symbols A, X, and 9; the item is treated as if the character string
contained all Xs. A PICTURE character string that contains all As or 9s
does not define an alphanumeric item.

The contents of the item (when represented in standard data format) are
allowable characters in the character set.

Alphanumeric- ' The character string is restricted to certain combinations of the symbols
edited A, B, X, 9, 0 (zero), and slash (/). In addition, one of two conditions
~must apply as follows:

e The character string must contain at least one B and one X, at least
one O (zero) and one X, or at least one slash (/) and one X.

e The character string must contain at least one O (zero) and one A,
or at least one slash and one A.

The contents of the item (when represented in standard format) are
allowable characters in the character set.

Numeric-edited The character string of the item is restricted to certain combinations of
the symbols B, P, V, Z, 9, O (zero), slash (/), comma (,), pericd {.), plus
sign (+), minus sign (-), CR, DB, asterisk (*) and dollar sign ($). The
allowable combinations are determined from the order of precedence of
symbols and the editing rules. In addition, both of the following
conditions must apply:

e The number of digit positions that can be represented in the
character string must be from 1 through 23.

e The character string must contain at least one B, Z, O (zero), slash
(/), comma (,), period (.), plus sign (+), minus sign (-), CR, DB,
asterisk (*), or dollar sign ($).

The contents of the character positions of symbols that are allowed to
represent a digit in standard data format must be one of the numerals.

continued

7-30 8600 0296-000

DATA DIVISION

Table 7-2. Defining Items with the PICTURE Clause (cont.)

Data Type Rules for Defining the Data Type

Kaniji The character string can contain only the symbol X.

The contents of the item (when represented in standard data format) are
represented in a 2-byte (16-bit) format.

Kanji-edited The character string of the item is restricted to certain combinations of
the symbols X, B, O (zero), and slash (/). In addition, the character string
must contain at least one B and one X, at least one O (zero) and one X,
or at least one slash (/) and one X.

The contents of the item (when-represented in standard format) are
represented in a 2-byte (16-bit) format.

See Also

For information about specifying an operational 51gn for numeric data, refer to “SIGN
Clause” later in this section.

Determining the Size of the Elementary ltem

The size of an elementary item is the number of character positions it occupies in
standard data format. You indicate the size of an elementary item by using the number
of allowable symbols that represent character pos1t10ns For example, 9999 indicates a
field with four digits.

The symbols A, B, B X, Z, 9, 0 (zero), slash (/), plus sign (+), minus sign (), asterisk
(*) or dollar sign ($) can appear more than once in a given PICTURE clause. You can
specify a number of consecutive occurrences of a symbol by using an integer enclosed
in parentheses after the symbol. For example, X(8) indicates eight alphanumenc
characters.

Using Symbols to Describe Data
Table 7-3 provides a brief description of the functions of each symbol used to describe an

elementary item. Refer to Section 6, “Data Concepts,” for a complete description of the
purpose of each symbol.

8600 0296-000 ' 7-31

DATA DIVISION

Table 7-3. Using Symbols to Describe Elementary ltems

Symbol "~ Meaning

X Alphanumeric field

Numeric field
Alphabetic field

Assumed decimal point; used only in numeric fields
Operational sign; used only in numeric fields

. Decimal scaling position; used only in numeric fields

N T 0O < > ©

Zero-suppression symbol

Period
+ Plus sign

- Minus sign

$ Dollar sign or currency symbol
) Comma

CR ~ Credit symbol

DB Debit symbol

*

Check protection symbol
Space insertion character or field separator

Zero insertion character

~ O W

Slash character

The following symbols can appear only once in a given PICTURE clause:

e S

o V

e . (period)
e CR

e DB

Understanding Precedence Rules

7-32

The chart in Figure 7-1 shows the order of precedence when characters are used as
symbols in a character string. An X at an intersection indicates that the symbol or
symbols at the top of the column can precede the symbol or symbols left of the rowina -
character string. Arguments appearing in braces indicate that the symbols are mutually
exclusive.

8600 0296-000

DATA DIVISION

At least one of the symbols A, X, Z, 9, or asterisk (*), or at least two of the symbols, plus
sign (+), minus sign (=), or dollar sign ($), must be present in a PICTURE string.

Nonfloating insertion symbols plus sign (+), minus sign (-), and floating insertion
symbols Z, asterisk (*), plus sign (+), minus sign (-) and dollar sign ($), and another
symbol P appear twice in Figure 7-1. The leftmost column and uppermost row for
each symbol represent the use of the symbol to the left of the decimal point position;
the second appearance of the symbol in the chart represents its use to the right of the

decimal point position.

Nonfloating Insertion Floating Insertion
Symbols Symbols Other Symbols
+ CR Zlz)+]|+ A '
LN A T IO I I o R 0 B I I R IR N B N I L
xtPx | xpxtx]x xPx|I x| x| x| x| x]x]|x X X
ol x{x|x]x|x]|x xEx| x| x| x| x| x|x]|x X X
=
= I xIx]x)] x)x]x xEx] x| x| x| x]xfxj}x X X
-
g LI x P xbx] x| x| x XExpPxpxix] x| x}x X X
g x| x| x| x X x| x X X X
=g
3 B
g t
t +Ix] x| x| x]|x xfx]x x| x| x x| xlx
=
Rl x| x| x| x|x xfx|x x| x| x x| x| x
$ X
z
shxtxxlx X xfx
=
2 -
£ z '
Sao PSIxbxx]x]xix xkEx|x X X
2%
-0
oE ¥l xIx] x| x X X
£
fé PIxbxpx]px] x X x| X X X
[$Px| x| x|x X X
sExix]Ixtx|x|x x| x X X
shx|xix]xix]x X§x X X x1x | x| x X
2 P Rbx|x|x x| x
[=]
€
o S
e
2 vix| x| x| x X x{x X X X X X
S Aelx[x|x|x X x [x X X X X X
P X X x| x X
Figure 7-1. PICTURE Character Precedence Chart
8600 0296-000 7-33

DATA DIVISION

RECEIVED Clause (Unisys Extension)

The RECEIVED clause identifies those items that are received as parameters by name
or by value from another procedure, or items that are to be passed to another procedure
by name.

The general format of this clause is as follows:

RECEIVED BY { REF

REFERENCE }

CONTENT

7-34

Explanation of Format

The RECEIVED clause can appear only on a 77-level data item in the
LOCAL-STORAGE, LINKAGE, or WORKING-STORAGE SECTION.

When you do not specify the RECEIVED BY clause, all items and files are received by
reference to bound procedures except for 77-level parameters with the following usage:
BINARY, DOUBLE, or REAL. For bound procedures, these parameters are received by
content. However, you can declare these parameters to be received by reference to allow
passing by reference. For tasking calls, 77-level parameters with BINARY, DOUBLE, or
REAL usage can be declared as received by content to allow passing by value.

A data-description entry containing the RECEIVED clause must not contain a VALUE
clause.

RECEIVED BY REFERENCE

The RECEIVED BY REFERENCE clause allows two or more procedures to share an
item. Any reference to the identifier in one of the procedures that shares the identifier

specifies the same common data area as the other procedures. REF is synonymous with
REFERENCE.

RECEIVED BY REFERENCE 77-level items with BINARY, DOUBLE, or REAL

usage are a special case of parameter passing. Parameters declared in this way refer
to data declared in the hardware stack on A Series systems. All other RECEIVED

BY REFERENCE parameters address items within an array. This special case of the
RECEIVED BY REFERENCE clause allows COBOL74 programs to communicate with
ALGOL programs and other COBOL programs that pass stack references instead of
array references. '

RECEIVED BY CONTENT

This clause identifies parameters passed by value. The current value of the identifier
is received by procedure. Another procedure can change the value of that data-name,

8600 0296-000

DATA DIVISION

but the change merely affects the copy of the item for that procedure. Likewise, the
receiving procedure can make changes to data-names that do not affect the original item.

The RECEIVED BY CONTENT clause cannot appear with any item that has usage
described as TASK (CONTROL-POINT), EVENT, or LOCK or with any item described
at the 01-level.

If an item declared as RECEIVED BY CONTENT is referred to in a PROCEDURE
DIVISION USING declaration, the program cannot be used as a library and cannot be
the subject of an Inter-Program Communication (IPC) CALL statement. The program
can be used as a bound procedure, or it can be called from the Work Flow Language
(WFL).

REDEFINES Clause
The REDEFINES clause allows the same computer storage area to be described by
different data-description entries. This clause redefines the storage area, not the data

items occupying the area.

The general format of this clause is as follows:

level-number data-name- 1# REDEFINES data-name-2

Note: Level-number, data-name-1, and the semicolon (:) are shown
for clarity. Level-number and data-name-1 are not part of the
REDEFINES clause.

Explanation of Format

The REDEFINES clziuse, when specified, must immediately follow data-name-1. The
level-numbers of data-name-1 and data-name-2 must be identical but must not be 66 or
88.

The clause must not be used in 01-level entries in the FILE SECTION or
COMMUNICATION SECTION. The REDEFINES clause can be used at the 01-level in
the WORKING-STORAGE SECTION.

The data-description entry for data-name-2 cannot contain a REDEFINES clause.
However, data-name-2 can be subordinate to an entry that contains a REDEFINES
clause. In addition, the data-description entry for data-name-2 cannot contain an
OCCURS clause; however, data-name-2 can be subordinate to an item that has an
OCCURS clause in its data-description entry. In this case, the reference to data-name-2
in the REDEFINES clause cannot be subscripted or indexed. Neither the original
definition nor the redefinition can include an item of variable size as defined in the
OCCURS clause.

8600 0296-000 , ; 7-35

DATA DIVISION

No entry with a level-number numerically lower than the level-number of data-name-2
and data-name-1 can occur between the data-description entries of data-name-2 and
data-name-1. :

Redefinition starts at data-name-2 and ends when a level-number less than or equal to
that of data-name-2 is encountered.

Multiple redefinitions of the same character positions are permitted. The entries giving
the new descriptions of the character positions must follow the entries for the area being
redefined, without intervening entries that define new character positions. Multiple
redefinitions of the same character positions must all use the data-name of the entry that
originally defined the area.

The entries that give the new description of the character positions must not contain any
VALUE clauses except in condition-name entries.

Multiple 01-level entries subordinate to any given level indicator represent implicit
redefinitions of the same area.

The following paragraphs refer to Unisys extensions.

The REDEFINES clause specifies the redefinition of a storage area, not the data items
occupying the area. Therefore, the usage of data-name-1 need not be the same as

the usage of data-name-2, except that DISPLAY or group data items cannot redefine
elementary COMPUTATIONAL or INDEX data items that do not begin on a byte
boundary. When redefinition occurs at a level other than the 01-level, the amount of
storage allocated for data-name-2 must be the same as the amount of storage implied by
the declared size and usage of data-name-1, with the following exceptions:

o A DISPLAY or group data iterﬁ can redefine an elementary COMPUTATIONAL
data item that begins, but does not end, on a byte boundary if the difference in size
results from the generation of a 4-bit filler so that the redefining item ends on a byte

boundary.

e A DISPLAY or group item can be redefined by an elementary COMPUTATIONAL
data item, although the actual size (including sign position, if described) is one
4-bit character less than the number of 4-bit characters in the storage area. The
redefining item is aligned to begin on a byte boundary and end at the middle of the
last byte of storage.

See Also

Refer to Volume 2 for information about using the REDEFINES clause with form
libraries.

7-36 8600 0296-000

" DATA DIVISION

SIGN Clause

The SIGN clause specifies the position and mode of representation of the operational
sign when these properties must be described explicitly.

The general format of this clause is as follows:

LEADING

[sI6N 18] {TRAILING

} [SEPARATE CHARACTER |

Explanation of Format

SIGN

The optional SIGN clause specifies the position and mode of representation of the
operational sign for the numeric data-description entry to which the clause applies or for
each numeric data-description entry subordinate to the group to which the group applies.
The SIGN clause applies only to numeric data-description entries with the character S in
the PICTURE clause. The letter S indicates the presence of, but not the representation
or position of, the operational sign.

A numeric data-description entry with an S in the PICTURE clause, but to which no
optional SIGN clause applies, has an operational sign that is positioned and represented
according to the standard default position and representation of operational signs.

Every numeric data-description entry with the character S in the PICTURE clause is
a signed, numeric data-description entry. If a SIGN clause applies to such an entry
and conversion is necessary for computation or comparisons, conversion takes place
automatically.

The SIGN clause can be specified only for a numeric data-description entry with the
character S in the PICTURE clause or for a group item containing at least one such
numeric data-description entry.

The numeric data-description entries to which the SIGN clause applies must be
described as USAGE IS DISPLAY or USAGE IS COMPUTATIONAL. (Use of the SIGN
clause with USAGE IS COMPUTATIONAL is a Unisys extension.)

At most, one SIGN clause can apply to any given numeric data-description entry.

8600 0296-000 | 7-37

DATA DIVISION

If a SIGN clause without a SEPARATE CHARACTER phrase applies to a numeric
data-description entry, then the following rules apply:

When the data-item usage is DISPLAY, the operational sign is maintained and
expected as binary number 1100 or 1101 in the zone of the leading or trailing
character and does not cause additional storage to be allocated for the data item.

If the data-item usage is COMPUTATIONAL, the operational sign is maintained and
expected as binary number 1100 or 1101 leading or trailing 4-bit character. This sign
increases by one 4-bit character the amount of storage allocated for the data item, in
addition to that storage allocated for an unsigned COMPUTATIONAL data item.
The presence or absence of the SEPARATE CHARACTER phrase has no effect on
the position or representation of the operational sign for COMPUTATIONAL data
items.

SEPARATE CHARACTER

If the CODE-SET clause is specified, any signed numeric data-description entries
associated with that file must be described with the SIGN IS SEPARATE clause.

If a SIGN clause with a SEPARATE CHARACTER phrase applies to a numeric
data-description entry, then the following rules apply:

If data-item usage is DISPLAY, the operational sign is maintained and expected as a
leading or trailing character separate from, and in addition to, the numeric character
positions. The operational sign for negative values is the minus sign (-) and for
nonnegative values is the plus sign (+).

When the data item usage is COMPUTATIONAL, the operational sign is maintained
and expected as a binary 1100 for positive values or a binary 1101 for negative values
in the zone of the leading or trailing character. The sign increases by one 4-bit
character the amount of storage allocated for an unsigned COMPUTATIONAL

data item. The binary number 1111 is also allowed as a positive value because

any combination that is neither 1101 nor a digit is interpreted by the hardware as
positive. The operators produce 1100 for a positive sign and 1101 for a negative sign.
The SEPARATE CHARACTER phrase does not affect the position or representation
of the operational sign for COMPUTATIONAL data items.

SYNCHRONIZED Clause

_ The SYNCHRONIZED clause specifies the alignment of an elementary item on the
natural boundaries of the computer memory.

The general format of this clause is as follows:

A

SYNCHRONIZED} [{L_E_F_T }]

SYNC

RIGHT

7-38

8600 0296-000

DATA DIVISION

Explanation of Format

This clause can abpear only with an elementary item.

SYNC is an abbreviation for SYNCHRONIZED.

This clause cannot appear with items of type INDEX, TASK, EVENT, or LOCK.

If the subject data item is of type COMPUTATIONAL, it is aligned on a byte boundary.
If the data item is a BINARY type, it is aligned on a word boundary. If the previous
data item did not end on a byte (or word) boundary, an implicit FILLER keyword is
generated. This unused FILLER keyword is included in the size of any group item or
items to which the elementary item belongs.

The RIGHT or LEFT option following SYNCHRONIZED is treated as a comment entry.

Whenever a SYNCHRONIZED item is referenced in the source program, the original
size of the item, as shown in the PICTURE clause, is used in determining any action that
depends on size, such as justification, truncation, or overflow.

If the data description of an item contains the SYNCHRONIZED clause and an
operational sign, the sign of the item appears in the normal operational sign position,
regardless of whether the SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT clause
is used with the item.

BINARY, DOUBLE, and REAL data items subordinate to a data-description entry
containing an OCCURS clause are not synchronized.

In all other cases, when the SYNCHRONIZED clause is specified in a data-description
entry of a data item that also contains an OCCURS clause, or in a data-description entry
of a data item subordinate to a data-description entry containing an OCCURS clause, the
following rules apply:

e Each occurrence of the data item is synchronized.

e Any implicit FILLER keyword generated for other data items in that same table is
generated for each occurrence of those data items.

TYPE Clause (Unisys Extension)
The TYPE clause provides automatic date and time editing based on the CONVENTION

option, LANGUAGE option, or CONVENTION and LANGUAGE options you specify.
This clause can be used only for internationalization purposes.

8600 0296-000 7-39

DATA DIVISION

The general format of the TYPE clause is as follows:

- SHORT-DATE :
LONG-DATE
. TYPE IS { NUMERIC-DATE
NUMERIC-TIME
LONG-TIME
CONVENTION OF {hte"a“ }
USING . ta-name-3
LANGUAGE OF {hteral'z }
A data-name-4 i

7-40

Explanation of Format

Data items can be declared to be one of the following date or time types:

Type Example

SHORT-DATE Fri, Aug 31, 1990

LONG-DATE Friday, August 31, 1990
NUMERIC-DATE 08/31/90

NUMERIC-TIME 13:37:20

LONG-TIME 14 hours 37 minutes 20 seconds

Data items can also be declared with an associated LANGUAGE or CONVENTION
option.

Each convention defined by Unisys has a specified format for the five date or time

data items. The program formats an item declared to be one of the five date or

time types according to the predefined format of the specified convention. For the
SHORT-DATE, LONG-DATE, and LONG-TIME options, the specified language is also
used in formatting the output. If the convention or language is not specified, the system
determines the language, the convention, or the language and convention to be used
based on system-defined hierarchy.

The only clauses that can be used with the TYPE clause are the PICTURE clause and
the USAGE clause. If the USAGE clause is specified, it can only designate USAGE IS
DISPLAY. If the date or time items are edited in the PICTURE clause, the TYPE clause
overrides the edit and the compiler issues a warning message. '

The total length of the data item must be greater than or equal to the length required by

the format of the specified convention. If the length of a data item is shorter than the
required length, the compiler issues a truncation warning message.

8600 0296-000

DATA DIVISION

Example

Example 7-8 shows coding of the TYPE clause. NUM-DATE-ITEM is declared to be
of type NUMERIC-DATE, and is formatted using the ASERIESNATIVE convention.
LONG-DATE-ITEM has data formatted according to the convention and language
"determined by the system hierarchy. LONG-TIME-ITEM is declared to be of type
LONG-TIME, and is formatted using the UNITEDKINGDOM!1 convention and the

ENGLISH language.

@1 NUM-DATE-ITEM PIC X(8) TYPE IS NUMERIC-DATE .
‘USING CONVENTION OF "ASERIESNATIVE".

g1 LONG-DATE-ITEM PIC X(20) TYPE IS LONG-DATE.

@1 LONG-TIME-ITEM PIC X(20) TYPE IS LONG-TIME
USING CONVENTION OF "UNITEDKINGDOM1"

LANGUAGE OF "ENGLISH".
Example 7-8. Coding the TYPE Clause
USAGE Clause

The USAGE clause specifies the format of a data item. .

If the USAGE clause is specified at a group level, it apphes to each elementary item in
the group.

The USAGE clause can appear in any data-description entry with a level-number other
than 66 or 88. (This is a Unisys extens10n)

If the USAGE clause is written in the data-description entry for a group item, it can also
be written in the data-description entry for any subordinate elementary item of the
group item, but the same USAGE clause must be specified by both entries. Items with
different USAGE clauses can appear in the same record. (This is a Unisys extension.)

8600 0296-000 7-41

DATA DIVISION

The general format of this clause is as follows:

(BINARY [TRUNCATED]) |
COMPUTATIONAL

COMP

CMP

CONTROL-POINT

CP

DISPLAY

DOUBLE

EVENT

INDEX

KANJI

LOCK

REAL

(TASK)

[USAGEIS] |

Explanation of Format

BINARY (Unisys Extension)

The USAGE IS BINARY clause indicates that data is in a binary-coded format. A binary
item is capable of representing a value to be used in computations and therefore is
always numeric.

Binary items occupy memory as follows:

"e When the declared size is less than or equal to 11 decimal digits, the actual size is
equal to 1 computer word; however, the item is not necessarily aligned on a word
boundary. (This size is equivalent to 6 DISPLAY digits or 12 COMPUTATIONAL
digits.)

e When the declared size is greater than 11 digits, the actual size is equal to 2

computer words (the equivalent of 12 DISPLAY digits); however, the item is not
necessarily aligned on a word boundary.

o The size of the record is determined by the actual size of the item (1 or 2 computer
words).

Note: In some cases, the compiler issues a warning because an elementary
item declared at 01-level with USAGE IS BINARY is treated as if the
TRUNCATED phrase had been specified for the item. In a future
release, this inconsistency will be eliminated.

Although BINARY items are not required to start at a word boundary, faster execution
results when these items start at a word boundary.

7-42 4 8600 0296-000

DATA DIVISION

BINARY TRUNCATED (Unisys Extension)

If the TRUNCATED phrase is specified for an item, the contents of the PICTURE clause
are used for high-order digit truncation, and when the item is used as a destination, for
size-error determination.

If the TRUNCATED phrase is not specified for an item, no truncation of high-order
digits occurs, and when the item is used as a destination, size-error determination is
limited to arithmetic faults such as integer-overflow conditions.

COMPUTATIONAL, CMP, or COMP
CMP and COMP are abbreviations for COMPUTATIONAL.

Elementary COMPUTATIONAL data items are represented internally as contiguous
4-bit digits.

A COMPUTATIONAL item can represent a value to be used in computations and must
be numeric. A numeric literal is a character string with characters selected from the
digits "0" through "9", the plus sign (+), the minus sign (-), and the decimal point. Digits
"A" through "F" are NOT numeric. COMPUTATIONAL fields on the A Series system are
packed-decimal numeric items, not hexadecimal strings.

If a group item is described as COMPUTATIONAL, the elementary items in the group
are COMPUTATIONAL. The group itself isnot COMPUTATIONAL and cannot be used
in computations.

CONTROL-POINT, CP, or TASK

The USAGE IS CONTROL-POINT clause is a synonym for USAGE IS TASK. CP is an
abbreviation for CONTROL-POINT.

If a group item is described with the USAGE IS TASK clause, the elementary items in
the group are all task items. The group itself is not a task item and cannot be used in

. any statement except the USING phrase or within a parameter list. Elementary TASK
items are data descriptors and, as such, occupy a single word of memory.

An elementary TASK item can be referred to directly only in an ATTACH, CALL,
DETACH, RUN, EXECUTE, PROCESS, CHANGE, or SET statement, or in the USING
phrase in a task-attribute expression, or in a parameter list. Further explanation of

. TASK items can be found in the descriptions of statements that reference them and in
the task-attribute descriptions. - '

- When a data usage is declared as TASK, the item can be a 77-level or a 01-level item or
can be subordinate to a Ol-level item declared with USAGE IS TASK.

Task items cannot be doubly subscripted. That is, a task item with an OCCURS clause
cannot have a subordinate task item with an OCCURS clause. Task items cannot be
redefined by items of any other usage. No other clauses are allowed on an item with -

USAGE IS TASK.

8600 0296-000 7-43

DATA DIVISION

7-44

DISPLAY

DISPLAY data items are depicted internally as contiguous 8-bit characters represented
in the EBCDIC character set.

The group item is considered to be a group data item that has an alphanumeric class,
USAGE IS DISPLAY, and can be referenced at any place in the syntax acceptable for
such an item. The size of the group item is in terms of DISPLAY characters aligned
according to the rules for the DISPLAY phrase. The rule is that one character exists for
every two 4-bit digits that form a part of the group item. (This is a Unisys extension.)

The USAGE IS DISPLAY clause indicates that data is in a standard data format.

If the USAGE clause is not specified for an elementary item or for any group to which
the item belongs, the usage is implicitly DISPLAY.

Every occurrence of a DISPLAY data item begins and ends on a byte boundary. Ina
record description, the declaration of a DISPLAY data item immediately following a
COMPUTATIONAL or INDEX data item that does not end on a byte boundary causes
automatic generation of a 4-bit filler between the two items. This filler area between the
two data items is not included in the size of either item, but is included in the size of all
group items to which the two items are subordinate. Similarly, if the last item declared
in a group item at the next-lowest hierarchic level is a COMPUTATIONAL or an INDEX
data item that does not end on a byte boundary, automatic generation of a 4-bit filler
occurs. This filler is included in the size of the group item.

The PICTURE and USAGE clauses are the only clauses valid when the TYPE clause is
specified. When the USAGE clause is used with the TYPE clause, the usage must be
DISPLAY. (This paragraph is a Unisys extension.)

DOUBLE or REAL

The USAGE IS REAL and USAGE IS DOUBLE clauses indicate that data is in an
internal floating-point format. A REAL or DOUBLE item is capable of representing a
value to be used in computations and is always numeric. Neither the PICTURE clause
nor the SIGN clause are permitted for REAL or DOUBLE items.

REAL and DOUBLE items occupy memory as follows:

¢ A REAL item is single precision; the actual size is equal to 1 computer word.
e A DOUBLE item is double precision; the actual size is equal to 2 computer words.
¢ Both REAL and DOUBLE items are not necessarily word-aligned.

Although REAL or DOUBLE items are not required to start at a word boundary, faster
execution results when these items do start at a word boundary.

EVENT

Items described with the USAGE IS EVENT clause are used as a common interlock
between two or more processes, thus providing an efficient means of correlating the

8600 0296-000

DATA DIVISION

activities of one process with its related processes. Elementary EVENT items occupy 2
words of memory. For information and syntax for controlling and testing event-names,
refer to the CAUSE, RESET, IF, and WAIT statements.

EVENT usage is allowed only on a 77-level or a 01-level item; if used on a 01-level item,
a subordinate OCCURS clause is allowed. No other entries are permitted with an
event-name. EVENT items cannot be redefined by items of any other type.

INDEX

An INDEX data item (an elementary item described with the USAGE IS INDEX clause)
contains a value that must correspond to the occurrence number of a table element. The
elementary item cannot be a conditional variable. If a group item is described with the
USAGE IS INDEX clause, the elementary items in the group are all index data items.
The group itself is not an index data item and cannot be used in the SEARCH or the
SET statement, or in a relation condition.

An index data item can be referenced explicitly only in a SEARCH or a SET statement, a
relation condition, the USING phrase of a PROCEDURE DIVISION header, or the
USING phrase of a CALL statement.

A group item is also considered to be a group data item if its class is numeric, if it has
index usage, and if it can be referenced at any place in the syntax that is acceptable for
such an item. The size of the group item is considered in terms of DISPLAY characters
(4 characters for each subordinate index data item).

An index data item can be part of a group that is referenced in a MOVE or I/O
statement; in this case, no conversion takes place.

An index data item can contain a signed value. An index data item occupies the same
space and has the same alignment as an item declared PICTURE S9(7) USAGE IS
COMPUTATIONAL.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary items declared with the USAGE
IS INDEX clause.

KANJI (Unisys Extension)

Kanji data items are depicted internally as contiguous 16-bit characters represented in
the Japanese Kanji character set. Each Kanji character consists of 16 bits and occupies 2
bytes of memory.

When the Kanji phrase is specified for a group item, it implies that all subordinate
elementary items are declared as USAGE IS KANJI. Any Kanji group item is regarded
as an alphanumeric item whose frame size is 8 bits (DISPLAY), except when a Kanji
group item is compared with a figurative constant and when a figurative constant is
moved to a Kanji group item. If a usage is specified for a data item that is subordinate to
the group item, the usage for both items must be identical. An item with a KANJI clause
contains Kanji items.

8600 0296-000 7-45

DATA DIVISION

All Kanji data items belong to the class alphanumeric, and the Kanjl category is
subdivided into Kanji and Kanji-edited.

Kanji usage is a type of double-octet usage.

LOCK

The same rules apply to declarmg data usage as LOCK as those declaring data usage as
EVENT.

For information and syntax for controlling and testing LOCK items, refer to the LOCK
and UNLOCK statements in Section 9, “PROCEDURE DIVISION Statements.”

Elementary LOCK items occupy 2 words of memory.

This item does not affect the use of the data item, although the speci<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>