
VERSION

5

c++ User's Guide

Borland ® C++
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Refer to the file REDIST.TXT in the \BCS\DOC directory for a list of files that you can redistribute in accordance with
the No-Nonsense License Statement.

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. \
COPYRIGHT © 1996 Borland International. All rights reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of
their respective holders.

Printed in the U.S.A.

lEOR0196 WBC1350WW21770
97989900-9 8 7 6 5 4

D2
ISBN 0-672-30922-X

Contents
Introduction 1
How this book is organized. 1
Typefaces and icons used in this book 1

Part I
The integrated development 3

Chapter 1
Getting started 5
Starting the Borland C++ IDE. 5

The IDE menu system 6
The IDE SpeedBar. 7

Using SpeedMenus in the IDE 7
Using the Edit window 7

Creating a new file.. 8
Working with simple projects 8

Creating a DOS program using EasyWin. . . 9
Creating a Windows program 10

Modifying the program target 11
Single file programs. .-. 12

Customizing the IDE.12
Configuring the IDE editor 13
Syntax highlighting. 14
Customizing the SpeedBars. 14
Setting IDE preferences 16
Saving your IDE settings. 16

Running other programs from the IDE16
Using online Help in Borland C++ 16

Online Help Organization. 17
Getting Help in Borland C++ 17·

Getting context-sensitive Help 18
Accessing and using contents screens. . . . 18

Using the index 18
Searching for keywords 18
Help SpeedMenus 19

Using Windows Help19

Chapter 2
Managing projects 21
What is project management?21
Using the Project Manager22

Project Manager reference. '. 23

Creating a project.24
Setting target options with the New

Target dialog box 24
. Specifying the source node types 27
Opening existing projects. 27

Adding source nodes to your project27
Deleting source nodes. 28

Adding files without relative path
information28

Editing source node attributes28
Adding target nodes to your project.29

Deleting target nodes.. 29
Editing target attributes using

TargetExpert.30
Moving nodes within a project.30
Copying nodes in a project30
Converting project files into makefiles31
Customizing the Project window31

Grouping sets of files with Source Pools. . . . 32
Creating a Source Pool.33

Translators, viewers, and tools 33
Adding translators, viewers, and

tools to the IDE 34

Chapter 3
Specifying project options

and compiling 37
Setting project options 37

Using Style Sheets 38
Predefined Style Sheets 38
The default project options 38
Managing Style Sheets. 38
Attaching Style Sheets to a node. 39
Sharing Style Sheets between projects . . . 40
Project Description Language files. 40
Setting local overrides. 41

Viewing project options.42
Compiling projects43

Compiling part of a project. 44
Fixing compile-time errors. 44

Viewing errors45
Fixing errors.45

Project options reference 45
16-bit compiler options. 45

Calling Conventions.45
C 46
Pascal46
Register .46

Entry/Exit code 46
Windows all functions exportable46
Windows explicit functions exported.47
Windows smart callbacks, all functions

exportable.47
Windows smart callbacks, explicit

functions exportable48
Windows DLL, all functions

exportable48
Windows DLL, explicit functions

exported. .48
Memory model.48

Assume SS equals DS49
Always (DOS only)49
Default for memory model.49
Never 49

. Automatic far data.49
Far data threshold50
Far virtual tables50
Fast huge pointers50
Model51

Compact 51
Huge 51
Large 51
Medium 51
Small. " 52
Tiny 52

Put considlli ::;irlllg,::; III cuue ::;eg,UlellL::;J2
Processor. .52

16-bit instruction set.52
80186 52
80286 53
80386 53
8086 53
i486 53

Data alignment.53
Byte alignment53
Double word (4-byte) 53
Quad word (8-byte) 54
Word alignment (2-byte) 54

Segment names code.54
Code 54

Code class.54
Code group 54
Code segment 54

Segment names data.55
Initialized Data55

Initialized data class55
Initialized data group 55
Initialized data segment. 55

Uninitialized data55

ii

Uninitialized data (BSS class) 56
Uninitialized data (BSS group) 56
Uninitialized data (BSS segment) 56

Segment names far data. "56
Far data 56

Far data class . . ; 56
Far data group. 56
Far data segment 56

Far virtual tables 57
Virtual table class. 57
Virtual table segment. 57

32-bit compiler options 57
Use Borland optimizing compiler57
Use Intel optimizing compiler 57
32-bit compiler options57

Calling conventions 58
C 58
Pascal 58
Register. 58
Standard Call (32-bit compiler onlyf .. 58

Processor. 59
32-bit instruction set 59

Build Attributes options 60
Always build60
Build when out of date. .60
Can't build.60
Exclude from parent. . .60
Never build .60

C++ options 60
C++ compatibility 61

'deep'virtualbases 61
Calling convention mangling

compatibility 61
Disable constructor displacements 61
Do not treat 'char' as distinct type 61
Don't restrict scope of 'for'loop

expression variables. 62
Pass class values via reference to

temporary 62
Push 'this' first for Pascal member

functions. 62
Treat 'far' classes as 'huge' 63
Virtual base pointers. 63

Always near. 63
Same size as 'this' pointer 63

Vtable pointer follows data members. . . . 64
Exception handling / RTTI.64

Enable exceptions 64
Enable run-time type information. 64

Enable compatible exceptions 64
Enable destructor cleanup. 65
Enable exception location information . 65
Enable fast exception prologs. 65

General 65
Zero-length empty base classes 65

Member pointers , 66
Honor precision of member pointers 66
Member pointer representation 66

Smallest for class 66
Support all cases 66
Support multiple inheritance 66
Support single inheritance 66

Templates . 67
Templates instance generation 67

External. 67
Global. 67
Smart 67

Virtual Tables 68
Virtual tables linkage 68

External. 68
Local 68
Public 68
Smart 68

Compiler options.69
Defines 69

Defining macros from the IDE 69
Defining macros on the command line . . . 69

Code generation. 69
Allocate enums as ints. 70
Duplicate strings merged 70
fastthis . 70
Register variables. 71

Automatic 71
None 71
Register keyword. 71

Unsigned characters 72
Floating point 72

Correct Pentium FDN flaw. 72
Fast floating point 73
No floating point. 73

Compiler output. 73
Autodependency information 73
Generate COMDEFs. 74
Generate underscores 74

Source 74
Identifierlength 74
Language compliance 75

ANSI ... , 75
Borland extensions 75
Kernighan and Ritchie. 75
UNIX V' 75

MFC compatibility. 75
Nested comments 76

Debugging 76
Browser reference information in OBJs . . . 76
Debug information in OBJs. 77

iii

Line numbers. 77
Out-of-line inline functions. 77
Standard stack frame 78
Test Stack Overflow 78

Precompiled headers.78
Cache precompiled header. 79
Precompiled header name 79
Precompiled headers 79

Do not generate or use. 79
Generate and use 79
Use but do not generate 79

Stop precompiling after header file 80
Directories options. 80

Source directories.80
Include 80
Library 80
Source 80
Specifying multiple directories 81

File search algorithms81
#include-file search algorithms 81
Library file search algorithms 81

Output Directories82
Intermediate 82
Final 82
Guidelines for entering directory

names 82
Librarian options. 83

Case-sensitive library 83
Create extended dictionary . . .83
Generate list file. 83
Library page size83
Purge comment records.84

Linker options 84
16-bit linker 84

Discard nonresident name table. 84
Enable 32-bit processing 84
Inhibit optimizing far call to near 84
Initialize segments 85
Linker goodies 85
Segment alignment. 85
Transfer resident names to nonresident

names table 85
16-bit optimizations86

Chain fixups. 86
Iterate data 87
Minimize resource alignment 87
Minimize segment alignment 87

32-bit linker 87
Allow import by ordinal 88
Committed stack size (in hexadecimal). . . 88
Committed stack size (in hexadecimal). . . 88

File alignment (in hexadecimal) 88
Image base address (in hexadecimal) 89
Image is based 89
Maximum linker errors 89
Object alignment (in hexadecimal) 89
Reserved heap size (in hexadecimal) . . . : 90
Reserved stack size (in hexadecimal) 90
Verbose. ~ 90

General 91
Case-sensitive exports and imports 91
Case-sensitive link 91
Code pack size 91
Default libraries. 91
Include debug information 92
Pack code segments 92
Subsystem version (major.minor) 92

Command-line usage 93
Map file 93

Include source line numbers 93
Map file 93

Off 93
Publics 94
Segments. 94

Print mangled names in map file. 95
Warnings. 95

"No stack" warning. 95
32-bit warnings. 95
Warn duplicate symbol in .LIB 95

Make options .96
Autodependencies 96

Cache 96
Cache and display 96
None 96
Use 96

Break make on. : 96
Errors 96
Fatal errors. 96
Warnings . 97

New node path 97
Messages options.97

ANSI Violations. 97
Display warnings. 98

All 98
None 98
Selected . 98

General 98
User-defined warnings 99

Inefficient C++ coding . . . 99
Inefficient coding 99
Obsolete C++ . . .100
Portability100

iv

Potential C++ Errors. 100
Potential errors. 101
Stop after ... errors 101
Stop after ... warnings 102

Optimization options 102
General settings. 102
16 and 32-bit. 102

Common subexpression.102
No optimization.102
Optimize Globally103
Optimize locally 103

Induction variables 103
Inline intrinsic functions.104

16-bit 104
Assume no pointer aliasing.104
Copy propagation105
Dead code elimination.105
Global register allocation 105
Invariant code motion.105
Jump optimization 106
Loop optimization 106
Suppress redundant loads 107
Windows prolog/ epilog107

32-bit 107
Cache hit optimizations

(Intel compiler only) 107
Optimize across function boundaries

(Intel compiler only) 107
Pentium instruction scheduling 108

General optimization settings 109
Disable all optimizations 109
Optimize for size. 109
.Optimize for speed 109
Use selected optimizations 110

Resources options 110
16-bit Resources. 110

Target windows version 110
Windows 3.1. 110
Windows 95 110

Pack fastload area 111
Librarian. 111

Case-sensitive library 111
Create extended dictionary.111
Generate list file 111
Library page size.111
Purge comment records.112

32-bit Resources 112
Language .112

Major 112
Minor 112
Target Windows version 112

Command-line only options. 113

Object search paths113
16 and 32-bit command-line switches113

C++ compile.113
Compile .OBJ to filename 114
Compile to .ASM, then assemble 114
Compile to .OBJ, no link 114
Compile to assembler 114
Create a map file 114
Pass option to linker114
Specify assembler.114
Specify assembler option115
Specify executable file name115
Undefine symbol.115

16-bit command-line switches.115
Compile to DOS .COM115
Compile to DOS .EXE 115
Compile to DPMI .EXE115
Enable backward compatibility options .. 115
Expanded memory swapping116
Extended memory swapping.116
Generate 8087 instructions116
Generate overlay code.116
Link DOS .COM116
Link OOS .EXE116
Link DPMI.EXE117
Link Windows .DLL ' 117
Link Windows .EXE117
Overlay the compiled files117
Overlay the compiled files J,J7
Specify option to RLINK117

32-bit command-line switches.117
Generate a multi-threaded target118
Link 32-bit.DLL file 118
Link 32-bit.EXE file 118
Link for 32-bit console application.118
Link using 32-bit Windows API118

Command-line options by function 118
Command-line options quick reference. . . 124

Chapter 4
Building Applications with

AppExpert 127
Steps for Creating an Application

with AppExpert. 128
Application options. 128

Application I Window Model129
MDI (Multiple Document Interface) 129
SDI (Single Document Interface).129
Dialog Client129
Document/View.129

v

Application I Basic Options 129
Target Name129
Base Directory130

Application I Basic Options I Features
to Include 130

Dockable Toolbar. 130
Status Line. 130
Recently Used Files List 130
Registry Support. 130
Drag/Drop130
Printing . 130
Mail Support130
Help File Support 131
Help File Name. 131

Application I Advanced Options 131
Application Startup State. 131
Control Style131

Application I Advanced Options I
Application Startup State 131

Normal (sizeable). ; 131
Minimized (iconic).131
Maximized (entire screen) 132

Application I Advanced
Options I Control Style 132

Standard Windows132
Borland BWCC. 132
MS Control 3D132

Application I OLE 2 Options. 132
OLE 2 Container Options.132
OLE 2 Server Options.132
Enable Automation in the Application . . .132
Server ill. .132

Application I Code Generation Control . . 133
Target Name133
Base Directory133
Source Directory133
Header Directory.133
Main Source File ~.133
Main Header File. 133
Application Class.133
About Dialog Class134
Use Long File Names 134
Comments. 134

Terse 134
Verbose.134

Application I Administrative Options . . . 134
Version Number134
Copyright •134
Description 134
Author 134
Company 135

Main Window options. 135
Window Title 135
Main Window I Background Color135

Use Default Color 135
Use System Color Constant.135
Use Specified Color135

Main Window I Basic Options.135
Window Styles136

Caption.136
Border 136
Max Box 136
MinBox 136
Vertical Scroll 136
Horizontal Scroll136
System Menu136
Visible .136
Disabled 136
Thick Frame.136
Clip Siblings:137
Clip Children137

Main Window I SDI Client Window137
Client/View Class137
Document Class137
Description137
Filters. .137
Default Extension.137
Class Name137
Source File.138
Header File138

Client/View Class138
Main Window I MDI Client Window. . . .138

Client Class138
Source File.138
Header File139

Main Window I Dialog Client Window . .139
Client Class139
Source File.139
Header File139
Dialog ID. .139
Include a Menu Bar139

MDI Child/View Options. 139
MDI Child Class 140
Source File . 140
Header File. 140
MDI Child/View I Basic Options 140

MDI Client/View Class 140
Document Class140
Description 141
Filters. .141
Default Extension 141
Class Name 141
Source File 141
Header File141

vi

ChapterS
Managing classes with ClassExpert 143
Starting ClassExpert. 143

ClassExpert Classes pane 144
Classes pane SpeedMenu. 144

Add New Class. 144
Automate Class.144
Delete Automation 144
View Document Templates 144
View Class Info144
Edit Source 145
Edit Header 145
Edit Dialog 145
Edit Menu145

ClassExpert Events pane 145
Events pane SpeedMenu145

Add Handler146
Delete Handler146
Add Instance Variable146
Delete Instance Variable 147
Add Data 147
Delete Data 147
View Data147
Add Method. 147
Delete Method.148
View Method148
Add Property148
Delete Property 148
View Property.148

Events I Automation149
Events I Command Notifications. 149
Events I Control Notifications 149
Events I Virtual Functions149
Events I Windows Messages 149

ClassExpert Edit pane 150
Edit pane SpeedMenu.150

Use Class.150
Using Rescan. 150

Deleting a class 150
Moving a class 151
Renaming an AppExpert element. 151
Importing a class 151
Rebuilding the .APX database file. 152

Chapter 6
Browsing through your code 153
Using the Browser. 153

Starting the Browser 154
Browser views154

Browsing objects (class overview) 154

Browsing global symbols 154
Search 155
Browser SpeedMenu.155

Browsing symbols in your code 155
Symbol declaration window155
Browsing references156
Class inspection window156

Browser filters and letter symbols 156
To view all instances of a particular type

of symbol. 157
To hide all instances of a particular type

of symbol. 157
To change several filter settings at once ... 157

Customizing the Browser 157

Chapter 7
USing the integrated debugger 159
Types of bugs " .,. 159

Run-time errors159
Logic errors 160

Planning a debugging strategy. 160
Starting a debugging session 160

Compiling with debug information161
Running your program in the IDE161

Specifying program arguments162
Controlling program execution. 162

Running to the cursor location 163
The execution point.163

Finding the execution point.163
Stepping through code. 164

Statement Step Into 164
Statement Step Over.166
Debugging member functions and

external code166
Running to a breakpoint. 166
Pausing the program. 166
Terminating the program 167

Using breakpoints 167
Debugging with breakpoints 167
Setting breakpoints.168

Setting an unconditional breakpoint168
Setting a conditional breakpoint.168
Setting other breakpoints168
Setting breakpoints after program

execution begins169
Creating conditional breakpoints. 169
Removing breakpoints.170

From an Edit window.170
From an Edit window or the Disassembly

pane of the CPU window. 170
From the Breakpoints window.170

Disabling and enabling breakpoints.171

vii

Viewing and editing code at a breakpoint . 171
Viewing code at a breakpoint 171
Editing code at a breakpoint171

Resetting invalid breakpoints. 172
Using breakpoint groups 172

Creating a breakpoint group.172
Disabling or enabling a breakpoint

group 172
Using breakpoint option sets 172

Creating a breakpoint option set.173
Associating a breakpoint with an

option set 173
Changing breakpoint options. 173
Changing the color of breakpoint lines . . . 173
Using the Breakpoints window 174

Aboutthe Breakpoints window 174
Integrated debugger features 175

Add breakpoint.175
Qualifiers . 175
Other 175
Source breakpoint 175
Address breakpoint176
Data watch breakpoint 176
C++ exception breakpoint 176
as exception breakpoint 177
Thread breakpoint.177
Module breakpoint. 177
Breakpoint Conditions/ Action Options .. 177
Names 178
Conditions178
Expr. True. 178
Thread ID .179
Pass Count 179
Actions179
Break 180
Stop Log. .180
Start Log 180
Log Expr180
Eval Expr180
Log Message180
Disable Group181
Enable Group181
Add Breakpoint Conditions

/ Action Option Set....181
Edit Breakpoint dialog box181

Examining program data values 181
ModifYing program data values. 182
Understanding watch expressions. 182

Using the Watches window 182
Formatting watch expressions 183

Adding a watch. 183
Add Watch dialog box.183

Changing watch properties 184
Edit Watch dialog box.185

Disabling and enabling watches 185
Deleting a watch. 185
Evaluating and modifying expressions . . . 185

Evaluating expressions186
Modifyjng the values of variables187

Inspecting data elements 188
Displaying low-level information about

a running program 189
Resizing the CPU window panes.189
Listing addresses of disassembled

instructions. 189
The Disassembly pane SpeedMenu 190
Run to 190
Toggle Breakpoint 190
Goto address 190
Goto current Pc. 190
Goto source191
Change thread 191

Displaying raw values in addressable
areas .
of your program. 191

The Dump pane SpeedMenu. 191
Displayas 192

Displaying raw values in your program
stack ... " 192

The Stack pane SpeedMenu. 192
Goto top frame193
Goto top of stack193

Displaying CPU registers 193
The Registers pane SpeedMenu 193
Change Thread193
Increment register 193
Decrement register. 193
Zero register.193
Change register.194
Show old registers/Show current registers. 194

Displaying flags and current information. .194
The Flags pane SpeedMenu. 194
Toggle flag 195

Viewing function calls. 195
Navigating to function calls.195

Debugging dynamic-link libraries. 196

Chapter 8
Compiling and linking from the

command line 197
Using the command-line compilers : 197

viii

Command-line compiler syntax 198
Default settings 198

Command-line options 198
Option precedence rules 199

Using compiler configuration files. 199
Using response files 199
Entering directories for command-line

options . 200
Using TLINK and TLINK32. 201

!LINK command-line syntax. 201
Linker configuration files 203
Linker response files. 203
Using the linkers with the command-line

compilers. 204
Linking libraries 204

Module definition file reference. 205
Module definition file defaults . '. 206
CODE statement 206
DATA statement 207
DESCRIPTION statement. 207
EXETYPE statement 207
EXPORTS statement. 208
HEAPSIZE statement 209
IMPORTS statement. 209
LIBRARY statement 210
NAME statement. 210
SECTIONS statement 211
SEGMENTS statement. 211
STACKSIZE statement. 212
STUB statement. 213

, SUBSYSTEM statement . .'. 213
Example module definition file. 214

Part II
Resource Workshop user's guide 217

Chapter 9

Getting started with Resource
Workshop 219

What is a resource? 219
Why you should link resources to your

applications. 220
What is a resource script(.RC) file? 220
What is a binary resource (.RES) file? 221
Setting preferences. _. 221
Undoing mistakes. 221

Edit I Undo 222
Edit I Redo 222

Starting Resource WorkShop. 222

Chapter 10
Working with resource p,rojects 223

Creating a new resource project223
Opening an existing resource project224
Saving a resource project.224
Embedding a resource in a resource project 225
Linking a resource to a resource project. . .225
Using the Resource Project window.226

Embedded and linked resources.226
Status line .226

Chapter 11
Creating bitmaps, cursors, and

icons 229
Working with bitmaps. 229
Creating a new bitmap. 229
Creating a new bitmap in a standalone file. . 230
Editing an existing bitmap 230
Changing the attributes of a bitmap. 231
Deleting a bitmap resource 231
Testing a bitmap 231
Programming a bitmap with OWL 231
Progra:rnmmg a bitmap with the

Windows API 232
Working with cursors 232
Creating a new cursor 233
Creating a new cursor in a standalone file. . 233
Editing an existing cursor. 233

Design issues.234
Setting the hot spot for a cursor. 234
Deleting a cursor 234

Deleting a cursor resource.235
Deleting a cursor image235

Testing a cursor. 235
Adding an image to a cursor resource. 235
Changing the attributes of a cursor 236
Copying a cursor image to a new color

format 236
Progra:rnmmg a cursor with OWL. 236
Progra:rnmmg a cursor with the

Windows API 237

Working with icons. 237
Creating a new icon. 237
Creating a new icon in a standalone file. . . 238
Editing an existing icon. 238

Design issues 238
Drop shading.239

Adding an image to an icon resource 239
Changing the attributes of an icon 239
Copying an icon image to a new

color format. 239
Deleting an icon resource or image. 240

Deleting an icon resource 240
Deleting an icon image 240

Testing an icon 241
Progra:rnmmg an icon with ObjectWindows 241

J Progra:rnmmg an icon with the

ix

Windows API. 241

Chapter 12
Using the Graphics editor 243
Using the Color palette. 244
Selecting a foreground color. 244
Selecting a background color 244

, Transparent and inverted areas. 245
Hiding and showing the Color palette. . . . 246
Choosing the number of colors for

a resource . 246
Customizing colors 246

Modifying the Color palette 246
Selecting a pen style. 247
Selecting a brush shape. 247
Selecting a paint pattern 248
Drawing and painting 248
Drawing a line. 248

Drawing a shape. 249
Filling an area with color 249
Adding text. 249
Erasing an area 250
Selecting an area. .,. : 250
Aligning an area.. 251
Moving or resizing an area. 251
Copying an area 251
Removing an area. 252
Zooming in or out. 252

Moving a graphic around in the
drawing area. 253

Tool palette. 253
Hiding and showing the Tool palette. 254
Pick Rectangle tool 254
Scissors tool . 254
Zoom tool ; 255
Eraser tool . 255
Pen tool. 255
Paintbrush tool 256
Airbrush tool 256
Paint Can tool 256
Line tool . 257
Text tool '.' 257
Empty frame tools 258

Ellipse tool .258
Rectangle tool258
Rounded Rectangle tool258

Filled-in frame tools 258
Filled Rectangle tool259
Filled Rounded Rectangle tool259
Filled Ellipse tool259

Eye Dropper tool 259
Arc tool. 260
Hand tool. 260
Pattern style tool . . ~ 261
Pen style tool. 261
Airbrush shape tool. 261
Paintbrush shape tool 262

Chapter 13
Working with resources 263
Resource file types 264
Executable and dynamic-link library files . . 264

Working with binary files264
Opening and saving .EXE, .DLL, and

.RES files265
Using a resource editor 265

Renaming a resource. ; 265
Deleting a resource266
Specifying resource memory options266
Moving a resource266
16-bit vs. 32-bit resources 266
Saving a resource267
Saving a resource in a resource script file . .267

x

Saving a bitmapped resource as a file. . . . 268
Editing a resource as text 268

Chapter 14
Working with dialog boxes 271
Using DLGINIT resources. 271
Creating a new dialog box. 272
Creating a new dialog box in a resource

script file. 272
Editing an existing dialog box. 272
Adding a caption to a dialog box. 273
Including a menu in a dialog box. 273
Choosing a window type, frame style, and

dialog box style. 273
Specifying dialog box fonts 274
Assigning a custom class to a dialog box . . 274
Setting the position of a dialog box. 275
Testing a dialog box. 275
Programming a dialog box with OWL. . . . 275
Programming a dialog box with the

Windows API. 276
Working with controls 276
Adding controls to a dialog box. 276
Working with custom controls 277
Duplicating a control 278
Moving and resizing a single control. 278
Selecting multiple controls. 279
Aligning multiple controls. 279
Resizing multiple controls 280
Reordering controls. 281
Grouping controls. 281
Specifying which controls are tab stops . . . 282
Editing control properties 282

Chapter 15
Using the Dialog editor 283
Using the Property Inspector 283

The modal Property Inspector 283
. The modeless Property Inspector 284
Displaying the Property Inspector 284
About the Control palette 285

Moving the Control palette. 285
Hiding and showing the Control palette . . 285
To place a control. 285

Standard page of the Control palette. 286

Selector tool . 286
Push Button tool 286
Radio Button tool. 287
Check Box tool. 287
Static Text tool 287
Text Edit tool 288
List Box tool . 288
Combo Box tool. 288
Horizontal Scroll Bar tool 288
Vertical Scroll Bar tool 289
Group Box tool 289
Static Frame tool 289
Static Rectangle tool 289
Horizontal Static Line tool. 289
Vertical Static Line tool. 289
Static Picture tool 290
Common page of the Control palette 290
Animation tool 290
Tab Controltool. 290
Tree View tool. 291
List View tool 291
Hot Key tool. 291
Progress Bar tool 291
Up-Down tool. 291
Track Bar tool 292
Header tool . 292
Rich Text Edit tool 292
Status Window tool. 292
Tool Bar tool. 292
BWCC page of the Control palette. 293
BWCC Push Button tool. 293

Adding a bitmap to a BWCC pushbutton. .293
BWCC Check Box tool. 294
BWCC Group Box tool. 294
BWCC Horizontal Line tool. 294
BWCC Radio Button tool. 295
BWCC Vertical Line tool. 295
BWCC Static Text tool 295
Custom page of the Control palette 295
Data Access page of the Control palette. . . . 295
Data Aware page of the Control palette. . . . 295
Tool palette. 296
Left Sides tool 296
Horizontal Centers tool 296

xi

Right Sides tool. '. 296
Horizontal Center in Dialog tool 297
Tops tool 297
Vertical Centers tool. 297
Bottoms tool 297
Vertical Centers in Dialog tool. 297
Space Horizontally Equal tool. 297
Space Vertically Equal tool. 297

Chapter 16
About menus 299
Terminology 299
Working with menus. 299
Using the menu editor 300
Edit window 300
Creating a new menu. 300
Editing an existing menu. 300
Moving and copying menu statements . . . 301
Undoing errors. 301
Adding menu items and separators 301
Editing a menu item. 302
Deleting a menU item. 302
Creating a pop-up menu 302
Adding accelerator text to menus. 303
Adding accelerator resources to menus . . . 303
Testing a menu. 303
Testing for duplicate menu items 303
Programming menus and accelerators

with OWL. 304
Programming menus and accelerators

with the Windows API 304

Chapter 17
Working with identifiers 305
Identifiers. 305
Identifier files. 306
Creating an identifier file. 306
Adding identifiers. 306
Editing identifiers 306
Moving identifiers from one file to another. 307
Deleting identifiers 307
Listing identifiers 308
Managing identifiers 308

Chapter 18
Using the Text editor 309
Saving your changes. 309
Compiling a text version of a resource 309
Creating resources with the Text editor 310
Writing resource scripts 310

Chapter 19
Working with user-defined

resources 313
Creating a resource type. 313
Adding a user-defined resource 314
Using the RCDATA resource type 314
Editing a user-defined resource 315
Embedding resource data in a project file. . . 315
Entering data in the resource script 315
Testing a user-defined resource 316

Part III
Borland C++ tools and utilities 317

Using a macro ' 329
String substitutions in macros 330
Default MAKE macros. 330
Modifying default macros. 331

Using MAKE directives 331
.autodepend. 332
!error 332
Summing up error-checking controls. . . . 332
!if and other conditional directives. 333
!include. 334
!message . 334
.path.ext 334
.precious . 335
. suffixes. 335
!undef .. ' 335
Using macros in directives 336
Null macros 336

Chapter 21 ,
Using command-line

resource tools 337
Resource compiler (BRCC32) 337
Resource linkers (RLINK and RL1NK32) . . 339 Chapter 20

Using MAKE 319 Resource shell (BRC32). 340
MAKE basics 319

BUlL TINS.MAK 320
Using TOUCH.EXE.321
MAKE options.321

Setting options on as defaults 322
Compatibility with Microsoft's NMAKE. .323

Using makefiles. 323
Symbolic targets.324

Rules for symbolic targets.324
Explicit and implicit rules. 324

Explicit rule syntax 324
Single targets with multiple rules325

Implicit rule syntax.326
Explicit rules with implicit commands . . .326

Commands syntax326
Command prefixes.327
Using@ 327
Using -num and -327
Using& 327
Command operators.328
Debugging with temporary files.328

Using MAKE macros. 328
Defining macros.329

xii

Chapter 22
WinSight 343
Starting and stopping screen updates 343

Turning off message tracing 344
Choosing a view. 344
Class List view. 344

Using the Class List view 345
Spying on classes. 345

Window Tree view 345
Finding a window 346

Leaving Find Window mode.346
Spying on windows 347

Choosing messages to trace 347
Using the Message Trace view. 347

. Other tracing options347

Chapter 23
WinSpector 353
Configuring WINSPCTR.LOG 354
WINSPCTR.LOG reference 355

Disassembly section 356

Stack Trace section356
Register section357
Message Queue section357
Tasks section.357
Modules section.358
USER and GDI heap section.358
System Information section358

Processing WinSpector data. 359
DFA output359
UsingDFA with WINSPCTR.LOG 359
Using DFA with WINSPCTR.BIN 360

Other WinSpector tools 360
Using'EXEMAP.EXE 361
Using TMAPSYM.EXE 361
Using BUILDSYM.EXE.361

Part IV
Turbo Prof Her user's guide 363

Chapter 24
A sample profiling session 367
About the sample programs 368
Profiling a program (PRIMEO) 368

Setting up the profile options369
Collecting data 370
Displaying statistics.370

. Printing modules and statistics. 372
Time and counts profile listing372
Profile statistics report373

Saving and restoring statistics 374
Analyzing the statistics 374

Viewing both source code and statistics. . .375
Saving the window configuration.376

Measuring an area's efficiency376
A modularized primes test (PRIME1). 377
Modifying the program and reprofiling . . . 378

Loading another program (PRIME2).378
Reducing calls to a routine (PRIME3)378
Still more efficiency (PRIME4)379
Eliminating CR/LF pairs (PRIMES)380
Where to now? 380

Chapter 25
The Turbo Prof Her environment 381
Part 1: The environment components. 381

The menu bar and menus381

xiii

Choosing menu commands from the
keyboard.382

SpeedMenus.382
Choosing menu commands with the

mouse 382
Shortcuts. 382
Turbo Profiler windows. 383

Window management. 383
The status line. 384
Dialog boxes. 385

Part 2: The menu reference. 385
== menu (System) 385

Repaint Desktop385
Restore Standard.385
About 386

File menu . 386
Open ' 386

Session Saving. 387
Get Info .388
DOS Shell .388
Quit 389

View menu 389
SpeedMenus 389
Module 390

Line ' 391
Search 391
Next. 391
Goto 391
Add Areas.392
Remove Areas.392
Operation392

Callers .393
Module 394
File 394
Edit command.395

Execution Profile.395
Display.396
Filter 397
Module 397
Position.398
Remove 398

Callers .398
Inspect (left pane).401
Inspect (right pane)401
Sort (right pane).401

Overlays 401
Display 402
Inspect .402

Interrupts'.402
Collection (top pane).403
Subfunctions (top pane)403
Add (top pane) . . . :403
Pick (top pane)403
Remove (top pane)403

Delete All (top pane)403
Display (bottom pane)404

Files404
Collection (top pane)405
Detail (top pane)405
When Full (top pane).405
Display (bottom pane)405

Areas405
Add Areas406

~ Remove Areas.407
Inspect .407
Options.407
Sort408

Routines408
Local Module (right pane)409
Areas (both panes)409
Callers (both panes)409
Module (both panes)409
Profile (both panes).409

Disassembly (CPU).409
Goto410
Origin410
Follow411
Previous411
View Source411
Mixed411

Text File412
Goto412
Search412
Next412
File413
Edit413

Coverage.413
Add All Modules (left pane)414
Remove All Modules (left pane)414
Add Module (left pane)414
Remove Module (left pane)414
Delete This Item (left pane)414
Display (right pane)414
Position (right pane)415
Module (right pane)415

Run menu .416
Run 416
Program Reset416
Arguments.416

Statistics menu417
Callers .417
Files418
Interrupts .418
Overlays418
Profiling Options.418
Accumulation.420

Disabling accumulation420
Delete All .422

xiv

Save 422
Saving Files422

Restore. .422
Print menu. 423

Statistics .423
Module423
Options424

Options menu. 424
Macros 425

Create 425
Stop Recording425
Remove 425
Delete All425
Recording macros.425

Display Options,426
Display Swapping426
Screen Lines427
Tab Size427
Width of Names427

Path for Source427
Save Options427
Restore Options.428

Window menu 429
Zoom 429
Next429
Next Pane .429
Size/Move : .. 429
Iconize /Restore.429
Close 430
Undo Close430
User Screen430
The open window list430

Help menu. 430
Index 430
Previous Topic . . '.431
Help on Help 431

Chapter 26
Profiling strategies 433
Preparing to profile 434

Adjusting your program 434
Compiling your program. 435
Setting profile areas 435

What level of detail do you need?436
Adding areas437
What type of data do you need?437
When should data collection start? ; 438
How do you want time data grouped? .. .438
Which data do you want to view? 438

Profiling your program 439
Focusing the profile session.439

Testing algorithms 440
Verifying and testing programs440
Timing execution and monitoring

performance.440
Studying unfamiliar code ... ' 441

Which analysis mode to use.441
Active analysis 442
Passive analysis.442

Passive versus active analysis.443
Coverage analysis 443

Speeding up profiling443
Improving statistical accuracy.443

Insufficient data. 444
Resonance444

Some tips for profiling overlays.444
Profiling object-oriented programs.445

Interpreting and applying the
profile results 445

Analyzing profile data445
Execution Profile window.446
Callers window.446
Overlays window 446
Interrupts window.446
Files window 446
Coverage window446

Filtering collected data.447

Revising your program.448
Modifying data structures 448
Storing precomputed results449
Caching frequently accessed data449
Evaluating data as needed 449
Optimizing existing code449

Wrapping it up 450

Chapter 27
Inside the profiler 451
Area boundaries 452

Time and count collection452
Showing routine call overhead453
Who pays forloops?453
Multiple return statements455
Disabling often-called functions455

Logging callers 456
Sampling vs. counting. 457
Profilermemory use 458

xv

Chapter 28
Turbo Profiler's command-line

options 459
The command-line options. 459

Batch mode (-b)460
Configuration file (-c)461
Display update (-d)461
Help (-h and -?)461
Session-state saving (-jn).462
Mouse support (-p).462
Remote profiling (-r)462
Source code and symbols (-s).462
Video hardware (-v)463

Chapter 29
Customizing Turbo Profiler 465
Rmming TFINST 465
Setting the screen colors. 466

Customizing screen colors.466
Windows. 466
Dialog boxes and menus. 466
Screen 467

The default colors.467
Setting Turbo Profiler display

parameters. 467
Display Swapping.467
Screen Lines468
Fast Screen Update468
Permit 43/50 Lines468
Full Graphics Saving468
Tab Size. .468
User Screen Updating469

Turbo Profiler options. 469
The Directories dialog box.469
The User Input and Prompting

dialog box.469
History List Length. 470
Interrupt Key 470
Mouse Enabled 470
Beep on Error 470
Control Key Shortcuts 470

The Miscellaneous Options dialog box . . .470
Printer Output. 471
NMI Intercept. 471
Ignore Case of Symbols 471

International support471
DOS Shell Swap Size (Kb).'. . . .472
Remote type. ~472
Remote Link Port.472
Link Speed.472
Network local name472
Network remote name.472

Setting the mode for display. . . . '.'472
Default .472
Color473
Black and White.473
Monochrome 473
LCD 473

When you're through... 473
Saving changes473

Save Configuration File473
Modify TPROF.EXE473

Exiting TFINST474
Command-line options and TFINST

equivalents. 474

Chapter 30
Remote profiling 477
Hardware and software requirements 478
Profiling remote DOS applications. 478

Setting up the remote system478
Configuring TFREMOTE479

Customizing TFREMOTE.479
The remote DOS driver480

Starting the remote s~rial driver480
Starting the remote LAN driver480

Establishing the remote DOS link481
Serial connection481
LAN connection481

Profiling remote Windows applications . . . 482
Setting up the remote system482
Configuring WREMOTE.482

Serial configuration483
LAN configuration.483
WREMOTE command-line options.484

Starting the remote Windows driver.484
Establishing the remote Windows link . . .484

LAN connection485
Loading programs onto the remote

system ... ',' 485
Remote profiling sessions. 485
Troubleshooting ; 486
TFREMOTE messages. 486 .
WREMOTE messages 487

xvi

Chapter 31
Turbo Profiler for Windows 489
Installing TPROFW 490

Jnstalling TDDEBUG.386490
Configuring TPROFW. 490

Using TPROFW command-line options. . .491
Using TFINST with TPROFW.491

UsingTPROFW 492
Profiling window procedures.492

The Window Procedure Messages
dialog box' 493

Profiling dynamic-link libraries (DLLs) .. .494
TPROFW error messages. 495

Chapter 32
Prompts and error messages 497
Turbo Prdfiler prompts 497
Turbo Profiler error messages 499

Appendix A
Borland C++ error messages

and warnings 507
Message categories. 507

Fatal errors 507
Errors'507
Warnings. .508
Informational messages508 .

Message generators 508
Compiler errors and warnings508
Run-time errors and warnings509
Linker errors and warnings509
Librarian errors and warnings 510
IDE debugger messages510
ObjectScripting error messages.510
Help compiler messages 510

Message formats 510
Symbols in messages511

Alphabetical list of messages. 512

Index 615

Introduction

Borland C++ is a powerful, professional programming tool for creating and maintaining
DOS, Win16, and Win32 applications. Borland C++ supports both the C and C++
languages with its integrated development environment and command-line tools.

How this book is organized
This book is divided into the following parts:

Part I, "The integrated development environment," introduces you to the integrated
development environment (commonly known as the IDE).

Part II, "Resource Workshop user's guide," teaches you how to use Resource
Workshop to build resources for your Windows applications.

Part III, "Borland C++ tools and utilities," describes additional tools you can use to
build and debug your applications.

Part IV, "Turbo Profiler user's guide," explains how to use Turbo Profiler to analyze
the performance of your program as well as to monitor critical computer resources.

Appendix A, "Borland C++ error messages and warnings," lists and describes the
error messages that can be generated by the Borland C++ programming tools.

Typefaces and icons used in this book
This book uses the following special fonts:

Monospace

Italics

Bold

Keycap

This type represents text that you type or text as it appears onscreen.

These are used to emphasize and introduce words, and to indicate
variable names (identifiers), function names, class names, and structure
names.

This type indicates reserved keywords words, format specifiers, and
command -line options.

This type represents a particular key you should press on your
keyboard. For example, "Press Del to erase the character."

Introduction 1

Key1+Key2

ALL CAPS

This indicates a command that requires you to press Key1 with Key2.
For example, Shift+a (although not a command) indicates the uppercase
letter" A."

This type represents disk directories, file names, and application
names. (However, header file names are presented in lowercase to be
consistent with how these files are usually written in source code.)

Menu I Choice This represents menu commands. Rather than use the phrase" choose
the Save co:tnmand from the File menu," Borland manuals use the
convention "choose File I Save."

Note This icon indicates material that you should take special notice of.

2 c++ User's Guide

Using the integrated development
environment

Part I of this manual describes how to use the components of the Borland C++
integrated development environment (IDE).

The IDE integrates development of DOS, Win16, and Win32 applications. Using the
Project Manager, you can easily build several application types from a single project file.
AppExpert and ClassExpert let you take advantage of ObjectWindows 5.0. The
integrated debugger and browser let you debug your source code and browse class
objects and hierarchies without leaving the IDE.

The following chapters cover the tools available through the IDE:

• Chapter 1, "Getting started," introduces you to the Borland C++ IDE and takes you
through the creation of simple DOS, Windows, and 32-bit Windows programs.

• Chapter 2, "Managing projects," describes the Project Manager and shows you how
to use the TargetExpert and Source Pools to create the projects for your applications.

• Chapter 3, "Specifying project options and compiling," shows you how to use Style
Sheets and local overrides to set your project options and how to compile from the
IDE. It also contains a complete reference to the options available for both the IDE
and the command-line tools.

• Chapter 4, "Building applications with AppExpert," describes AppExpert and
shows you how to create the source-code foundation for your ObjectWindows
applications.

• Chapter 5, "Modifying applications with Class Expert," describes how to use
ClassExpert to modify the applications you create.

Part I, Using the integrated development environment 3

• Chapter 6, uBrowsing classes and objects," shows you how to use the browser to
examine your C++ classes.

• Chapter 7, UUsing the integrated debugger," describes the integrated debugger and
how to use it to step and trace through your program code.

• Chapter 8, UUsing the command-line tools," provides an overview of using
command-line tools rather than the IDE as you program.

4 C++ User's Guide

Getting started
Borland C++ is a development package that contains the compilers, tools, and utilities
you need for developing Win16, Win32, and DOS applications. While the tools included
with Borland C++ can be run from either Windows or the DOS command-line, you'll
find that you can accomplish most of your application development using the
Integrated Development Environment (IDE).

To help you get familiar with the IDE, this chapter offers an overview of the following
IDE features:

• Starting the Borland C++ IDE
• Using SpeedMenus in the IDE
• Using the Edit window
• Working with simple projects
• Customizing the IDE
• Running other programs from the IDE

Starting the Borland C++ IDE
After installing Borland C++, the Program Manager contains a program group titled
Borland C++ 5.0. Open this group to reveal the icons for the C++ IDE (labeled Borland
C++) and the other programming tools that ship with Borland C++.

When you double-click the Borland C++ icon, the IDE opens. Inside the IDE, you'll find
all the tools you'll need to create C++ programs. Along with windows for the editor,
browser, and debugger, the IDE contains windows for project files and compiler and
programming tool messages. Figure 1.1 shows how the IDE might look after compiling
a simple Windows project.

Chapter 1, Getting started 5

Figure 1.1 The Borland C++ IDE

Menu Bar

SpeedBar

H---------it-- Edit
window

-----fl-- Message
window

--------ft-- Project
window

Status Bar

The IDE menu system
Table 1.1 describes the menus on the IDE menu bar.

Table 1.1

File

Edit

Search

View

Project

Script

Tool

Debug

Options

Window

Help

6 c++ User's Guide

The IDE menus

Commands to open, save, and print files. Also includes the IDE exit command.

Clipboard commands and commands for undoing and redoing program edits.

Commands for searching and replacing strings, browsing symbols, locating functions,
and reviewing error messages generated by the programming tools.

Commands to open the ClassExpert, Project Manager, Message window, and Browser.
Also contains commands to open the various integrated debugger windows.

Commands to open, close, and compile projects. Also contains the AppExpert
command.

Provides commands to run and compile scripts to automate IDE functionality.

Commands to launch programming tools from the IDE, including Turbo Debugger.

Commands to run your project under control of the integrated debugger.

IDE customization and project configuration commands.

IDE window management commands.

Commands to access the Borland C++ online Help system.

The IDE SpeedBar
The SpeedBar (located under the main menu) has buttons that give quick access to
menu commands which relate to the area of the IDE you're working in. For example, if
you're editing code, the SpeedBar contains cut and paste commands, file save
commands, and so on. When the Project window has focus, the SpeedBar has buttons
that pertain to projects, such as commands for adding project nodes and browsing
option settings.

The Status Bar at the bottom of the IDE contains "flyby" help hints; when the cursor is
over a button, the Status Bar describes the button command. You can configure the flyby
hints and other SpeedBar options as described in "Customizing the SpeedBars" on
page 14.

Using Speed Menus in the IDE
Right-clicking (clicking the right mouse button) accesses the Borland C++ SpeedMenus.
SpeedMenus contain commands that are context-sensitive to the area of the program
you're working in. For example, the SpeedMenu for the Edit window contains
commands that are related to the editor. In the Project Manager, the SpeedMenus
contain commands to help you with managing your projects.

To get a feeling for SpeedMenus, try the following:

1 From the IDE, choose Project I Open, then open the project file MULTITRG.IDE in the
\ BCS\ EXAMPLES\IDE \ MULTITRG directory.

2 Double-click the MULTITRG [.CPP] node to open the file in an Edit window.

3 Move the cursor to the string.h header file reference by clicking on the file name in
the source code.

4 Right click to open the Edit window SpeedMenu, then choose Open Source to open
an Edit window that contains this header file.

Note In addition to right-clicking, the IDE speedmenus can be accessed at any time by
pressing Alt+F10.

Using the Edit window
Edit windows contain the Borland C++ editor, which you can use to create and edit
your program code. When you're editing a file, the IDE status bar displays the following
information about the file you're editing:

• The line number and character position of the cursor. For example, if the cursor is on
the first line and first character of an Edit window, you'll see 1:1 in the status bar; if the
cursor is on line 68 and character 23, you'll see 68:23.

• The edit mode: insert or overwrite. Press Insertto toggle whether your text additions
overwrite existing characters or insert new ones into the file.

Chapter 1, Getting started 7

• The file's save status. The word Modified appears if you've made changes to the file
in the active Edit window, and you have not yet saved your edits or changes.

Note The Borland C++ editor contains many powerful features to help you enter and modify
your program code. For example, you can undo multiple edits by choosing Edit I Undo
or pressing Alt+Backspace. You can also open multiple Edit windows; tile the windows
as you wish; subdivide the window into different Edit panes; and cut, copy, and paste
text between any open files.

Although this chapter provides a brief introduction to the editor, complete details on
how to use and customize the editor can be found in the online Help that accompanies
the IDE. Choose Help I Contents, then' click Integrated Development Environment for a
list of topics that relate to the IDE. From here, view the Editor topic, and the Menu

- Commands topics Edit Menu and Search Menu.

Creating a new file
To introduce you to the editor, step through the following instructions to create a DOS
program that's used as an example later in this chapter.

Create the directory \MYSOURCE using the File Manager or DOS (you'll use this
directory to hold the project files you create later in this chapter).

2 From the IDE, choose File I New to open a new Edit window with an empty file.

By default, Borland C++ names new files NONAMExx.CPP, where xx is a number
that's incremented with each new file opened. .

3 In the Edit window, type the following C++ code to create a DOS program:

#include <iostream.h>

int main (void)

cout « "Welcome to the World of DOS! \n" ;
return(O);

//print text

4 Choose File I Save As, and save your new file in the \MYSOURCE directory with the
file name DOS_TEST.CPP (this file is used later in this chapter).

Working with simple projects
After you first install Borland C++, you'll want to make sure the program is correctly set
up; the details of the compiler and the IDE can wait until later. The best way to test your
setup is to compile a few sample programs.

In this section, you'll learn how to create and run several simple programs. The first
program is a DOS program. After creating the DOS program, you'll be taken through
the steps to create a 16-bit Windows program. Then, using the TargetExpert, you'll be
shown how to change the 16-bit program into a 32-bit program.

8 c++ User's Guide

Creating a DOS program using EasyWin
You can become familiar with the Project Manager and the c++ compiler by following
these steps to create a simple DOS program:

1 From the IDE, choose Project I New Project, then set the following options in the New
Target dialog box:

1 Type the path and name for your new project in the Project Path And Name input
box. In this case, type:

\mysource\dos_test.ide

Note If the directory doesn't exist, the IDE creates the directory for you.

2 In the Target Type list box, click EasyWin [.EXE]. This selection creates a Windows
program from a program that uses character-mode input and output.

The New Target dialog box should now resemble the one shown in Figure 1.2.

Figure 1.2 The New Target dialog box

2 Choose OK to close the New Target dialog box. The Project window opens and
displays the target and dependencies of the project you just created.

Notice that one of the nodes in the project points to the file DOS_TEST.CPP, the file
you created earlier in the chapter (if you haven't already done so, create this file by
following the instructions listed in the previous section, uCreating a new file").

3 Because the)JEFand .RD files are unnecessary for this project, you must delete the
.DEF and .RC nodes created by the Project Manager:

1 Select the DOS_TEST [.DEF], then press etr! and select DOS_TEST [.RC].

Chapter 1, Getting started 9

2 From the Project Manager SpeedMenu (press the right mouse button), choose
Delete Node, then choose Yes to confirm your request to delete 2 project nodes.

4 Compile and run the program by double-clicking the DOS_TEST [.EXE] project node.

If you correctly followed all the steps in this section, the program builds without errors
and then runs in a window. If the compiler reports errors or warnings during the
compile, retrace the steps in this section to ensure you correctly followed the steps.
When the program compiles without errors, the Project Manager creates an executable
program called DOS_TEST.EXE and places it in the \MYSOURCE directory.

Note You can also create DOS programs that run from the DOS command line, and not in a
window as the EasyWin program does. To do so, make the following selections in the
New Target dialog box instead of the ones listed in the previous steps:

1 Under Target Type, choose Application [.EXE] (this is the default Target Type).

2 In the Platform combo box, choose DOS (Standard) as the target platform (to reveal
the full range of platform options, click the arrow on the right side of the combo box).

3 Choose OK to confirm your settings.

Note that when you make these selections, the Project Manager doesn't create the
.DEF and .RC nodes, as it does for Windows target programs.

Creating a Windows program
This section demons~ates how to compile a simple Windows program. First you'll
create a 16-bit Windows program, then you'll use the TargetExpert to modify the output
to create a 32-bit Windows program.

If you followed the steps in the preceding section to create a DOS program, you'll find
that most of the steps for creating this Windows program are identical to those listed for
the DOS program. When you're finished with this example, the tasks involved with
creating and compiling simple programs with the IDE should be familiar:

1 Create a new project.

2 Set the target options using the New Target dialog box.

3 Add code to the appropriate nodes in the project.

4 Compile and run the project.

Indeed, most projects will require more involved steps, but the basic steps for creating
and compiling projects remains the same. With this in mind, follow these steps to create
a simple Windows program:

1 Choose Project I New Project to open the New Target dialog box, then make the
following ~ettings:

1 Type the following path and name for your new project in the Project Path And
Name input box:

\mysource\win_test.ide

Note If the directory doesn't exist, the IDE creates the directory for you.

10 c++ User's Guide

2 In the Target Type list box, click Application [.EXE] to set the type of program you
plan to create (this is the default setting).

3 In the Platform combo box, set the Target Type to Windows 3.x (16).

2 Click the Advanced button, then uncheck both the .RC and .DEF options in the dialog
box that appears. Unchecking these settings tells the Project Manager that this project
doesn't use definition and resource files, as most Windows programs do.

3 Choose OK to accept the settings, then choose OK again to close the New Target
dialog box. The Project window opens with your new project.

4 In the Project window, double-click the win_test [.cpp] node to open an empty file in
the Edit window.

S In the Edit window, type the following code to create a Windows program, then save
the program by choosing File I Save:

#include <windows.h>
int PASCAL WinMain(HINSTANCE hCurlnstance, HINSTANCE hPrevlnstance,

LPSTR lpCmdLine, int nCmdShow)

MessageBox(NULL, "Welcome to the World of Windows!", "A Windows Program",
ME_OK I ME_ICONEXCLAMATION) i

return (0) i

6 Choose Project I Build All to compile this program, then choose OK after the
compilation is finished. If you followed the steps correctly, you can arrange the
windows so the IDE resembles the screen shown in Figure LIon page 6.

When you build this project, the compiler produces several warnings, but it still
creates an .EXE file in the \MYSOURCE directory. Even though a program that
compiles with warnings can still be executed, it's not a good idea to ignore the
warnings without first understanding why the compiler complained.

The first warnings that appear indicate that the parameters in WinMain are never
used in the program. In this small program, it is safe to ignore these warnings. The
last warning indicates that the default module-definition settings are being used; this
is expected since we didn't create a module-definition (.DEF) file.

7 To run the program from the IDE, choose Debug I Run.

When you run this program, a small dialog box with the text "Welcome to the World of
Windows!" appears. To terminate the program and return to the IDE, choose OK.

Modifying the program target
The last exercise in this chapter modifies the previous Windows example so that it
creates a 32-bit Windows program that can take advantage of a Win32 operating system,
such as Win32s or Windows NT. Before you can complete this exercise, you must be
running a 32-bit operating system (such ~s Windows NT) or you must have Win32s
installed on your system (you can choose to install Win32s when you install Borland
C++).

1 If it is not already open, open the WIN_TEST.IDE project file through the Project I
Open menu command.

Chapter 1, Getting started 11

2 In the Project window, right-click the target node (WIN_TEST [.EXED to display the
SpeedMenu, then choose TargetExpert.

\

3 Change the platform to Win32 in the Platform combo box, then choose OK to close
the TargetExpert.

4 Recompile the program by choosing Project I Build All, then choose OK when the
compilation finishes.

Note It is important to choose Build All (and not Make) whenever you change the target
type in your project. This ensures that the new target is rebuilt correctly.

5 ~ Run the program by double-clicking the WIN_TEST [.EXE] node in the Project
Manager.

Single file programs
Usually when you begin to write a new program, you start by creating a new project for
that program. Although it's possible to compile a single-source file program without
using a project, it's usually easier to maintain the program settings through a project file.
However, if you want to set target options for a single-source file program without
creating a project,

Choose Project I Close Project to make sure you don't have a project file open.

2 Choose File I Open, then open the source file containing your program.

3 Open the TargetExpert by right-clicking in the Edit window and choosing
TargetExpert from the SpeedMenu.

4 Adjust the target settings for your smgle-source file program using the TargetExpert
dialog box, as described in "Editing target attributes using TargetExpert" on page 27.

5 Choose Options I Project from the menu, and set the project options, as described in
Chapter 3, "Specifying project options and compiling."

6 Choose Project I Compile (this command compiles the code in the current Edit
window if no project is loaded).

Customizing the IDE
You can configure the IDE in many ways -to create a customized environment that meets
your programming needs. For example, you can have the IDE do tasks automatically
(such as saving backups of your files in the Editor windows) or handle special events.

The Environment Options dialog box (accessed with the Options I Environment
command) lets you configure the different elements and windows of the IDE. Once
you've customized the IDE to your liking, choose Options I Save, check the options you
want to save, then choose OK; the IDE saves your environment settings to aBle called
BCCONFIG.BCW. By default, the file is saved to the BIN directory in your Borland C++
directory tree. This default directory is specified by the DefaultDesktopDir field of your
BCWS.INI file, which is located in your Windows directory.

12 C++ Use r 's G u ide

The Environment Options dialog box displays a list of customizable topics on the left
and each topic's configurable options on the right. Some topics contain SUbtopics,
indicated by a + next to the topic. For example, the Editor topic has subtopics called
Options, File, and Display. To view a topic's subtopics, click the + sign next to the topic;
its subtopics appear under it and the + turns to a - (you can then click the - to collapse
the list of subtopics). Topics without subtopics appear with a dot next to their name.

Figure 1.3 The Environment Options dialog box

This chapter discusses the following Environment Options topics:

• Configuring the IDE editor
• Syntaxhighlighting
• Customizing the SpeedBars
• Setting IDE preferences
• Saving your IDE settings

Note Although this chapter doesn't offer a complete reference to the Environment Options
dialog box, a complete reference is available by clicking the Help button in the
Environment Options dialog box.

Configuring the IDE editor
You can configure the editor so that it looks and behaves like other editors such as Brief
and Epsilon. The IDE editor uses keyboard mapping files (.KBD files) that set the
keyboard shortcuts for the editor and the other windows in the IDE. You can modify
this behavior using ObjectScripting. For more information see the online Help.

C hap t e r 1, Get tin 9 s tar ted 13

Syntax highlighting
Syntax highlighting lets you define a color and font attribute (such as bold) for certain
elements of code. For example, you could display comments in blue and strings in red.
Syntax highlighting is on by default.

Syntax highlighting works on files whose extensions are listed in the Syntax Extensions
list (by default, these files are .CPP, .C, .H, .HPP,.RH and .RC). You can add or delete
any extension from this list, but be sure to separate extensions with semicolons.

The Syntax Highlighting section displays the default color scheme and four predefined
color settings. To use a predefined color scheme,

1 Choose Options I Environment I Syntax Highlighting.

,2 Choose one of the four color predefined schemes (Defaults, Classic, Twilight, or
Ocean) by choosing the Color SpeedSetting; the sample code changes to the color
scheme you select.

To customize the syntax highlighting colors,

1 Choose Options I Environment, then select the Syntax Highlighting topic.

2 Select a predefined color scheme to use as a base for your customized colors.

3 Choose the Customize topic listed under the Syntax Highlighting topic. Elements
and sample code appear on the right of the Environment Options dialog box.

4 Select an element you want to modify from the list of elements (for example, choose
Comment), or click the element in the sample code (this selects the name in the
Element list). You might need to scroll the sample code to view more elements.

5 Select a color for the element. The element color in the sample code reflects your
selection. Use the left mouse button to select a foreground color for the element (FG
appears in the color). Use the right mouse button to select a background color (BG
appears in the color). If FB appears in the color, the color is used as both a
background and a foreground color.

6 If you want, choose an Attribute (for example, bold).

7 You can check Default FG (foreground) or BG (background) to use the Windows
default colors for an element.

8 Repeat steps 2-4 for the elements you want to modify.

To turn off syntax highlighting, Choose Options I Environment I Syntax Highlighting,
then uncheck Use Syntax Highlighting.

Customizing the SpeedBars
The IDE has context-sensitive SpeedBars for all its windows, including the Edit,
Browser, Debugger, Project Manager, Message, Desktop, and ClassExpert windows.
When a window has focus, the corresponding SpeedBar appears. Using the
Environment Options dialog box, you can customize each of the SpeedBars so that
they include only the buttons you want.

14 C++ User's Guide

To add or delete buttons from the SpeedBars,

1 Choose Options I Environment from the IDE's main menu.

2 Choose the SpeedBar topic on the left. The right side of the dialog box displays
general options for all SpeedBars.

The options here let you specify if you want to hide or view the SpeedBar, where you
want the SpeedBar to appear (on the top or bottom of the IDE), and if you want to use
the Flyby Help Hints. If you check Use Flyby Help Hints, the IDE displays
descriptions of the SpeedButtons on the status line when you pass. the mouse pointer
over a button. If you leave this box unchecked, the hints show on the status line only
when you click a SpeedButton.

3 Choose the Customize topic listed under the SpeedBar topic to customize the
SpeedBar for a particular window.

4 In the Window combo box, choose the specific window (Editor, Browser, Debugger,
Project, Message, IDE Desktop, or ClassExpert) whose SpeedBar you want to
customize.

The Available Buttons list box displays all the available (unused) buttons that you
can add to a particular window's SpeedBar. (Each button has a name next to it that
describes the button's function.) The Active Buttons list box displays the buttons that
are currently contained in the selected window's SpeedBar.

@ To add a button to a SpeedBar, double-click the button icon in the Available Buttons
list, or select it and click the right-pointing arrow. The IDE places the button in
front of the selected button in the Active Buttons list.

@ To remove a button from a SpeedBar, double-click the button icon in the Active
Buttons list, or select it and click the left-pointing arrow. The button moves to the
Available Buttons list.

.. To reorder the button positions for a SpeedBar, select a button in the Active Buttons
list, and use the up and down arrows to move the button within the list (the top
button in the list appears on the left side of the SpeedBar; the last button in the list
appears on the right side of the SpeedBar) .

.. To put separator spaces between buttons on the SpeedBar, select a button from the
Active Buttons list, then click the Separator button. The separator is added before
the selected button.

You can also make all SpeedBars identical by selecting a SpeedBar in the Window list,
then pressing the Copy Layout button. A dialog box appears in which you check all the
SpeedBars you want to make identical to the selected SpeedBar. For example, if you first
choose the Editor SpeedBar and then click Copy Layout, the dialog box appears with
Editor dimmed. If you then check Project and Message, those SpeedBars will be exactly
the same as the Editor SpeedBar.

You can restore any SpeedBar to its original defaults by selecting the SpeedBar in the
Window list, then clicking the Restore Layout button.

C hap t e r 1, Get tin 9 s tar ted 15

Setting IDE preferences
The Preferences command lets you customize what IDE settings you want
automatically saved and how you want some IDE windows to work.

To set preferences,

1 Choose Options I Environment I Preferences.

2 Check and uncheck the options you want, then choose OK. For an explanation of
each option, see the online Help (press the Help button).

Saving your IDE settings
The IDE automatically saves information when you exit the IDE, use a transfer tool,
build or make a project, run the integrated debugger, or close or open a project. You can
control which areas of the IDE get saved from the Preferences topic in the Environment
Options dialog box (choose Options I Environment from the main menu).

If you want to save your settings manually, you can do so as follows:

1 Choose Options I Save.

2 Check Environment to save the settings from the Editor, Syntax Highlighting,
SpeedBar, Browser, and Preferences sections of the Environment Options dialog box.
These settings are saved in a file called BCCONFIG.BCW.

3 Check Desktop to save information about open windows and their positions. This
information is saved to a file called <prjname>.DSW. If you don't have a project open,
the information is saved to a file called BCWDEF.DSW.

4 Check Project to save changes to your project (.IDE) file, including build options and
node attributes.

Running other programs from the IDE
By default, the IDE lists Turbo Debugger, Resource Workshop, GREP, WinSight,
WinSpector, and Key Map Compiler on the Tool menu. To run any of these tools from
the IDE, choose Tool I ProgramName, where ProgramName is the name of the program
you want to run (for example, Tool I GREP runs the GREP utility).

You can run any executable program or utility without leaving the IDE by adding it to
the Tool menu. For a complete discussion on adding items to the Tool menu, see
n Adding translators, viewers, and tools to the IDE" on page 32.

Using online Help in Borland C++
Borland C++ provides complete online documentation through the Help system. Using
Help is a convenient way to get information about extensive language features,

, compiler options, and any tasks you need to perform while developing applications in
Borland C++.

16 C++ Us e r' s G u ide

Online Help Organization
The Help system is organized into Help files that reflect the structure of the
documentation set as follows:

Table 1.2 Borland C++ Help files

How to Use Help (OPENHELP.HLP) Features of Borland C++ Help

Borland C++ Programmer's Reference (BCPP.HLP) Programming tips, language details, and library
reference

Borland C++ User's Guide (BCW.HLP)

Borland Windows Customer Controls Reference
(BWCC.HLP)

Class Libraries Guide (CLASSLIB.HLP)

DOS Reference (BCOOC.HLP)

Error Messages and Wamings (BCERRMSG.HLP)

ObjectComponents Programmer's Reference
(OCF.HLP)

ObjectScripting Programmer's Guide
(SCRIPT.HLP)

ObjectWindows 5.0 Programmer's Reference
(OWL.HLP)

Resqurce Script Language Reference (RSL.HLP)

Resource Workshop User's Guide
(WORKSHOP. HLP)

Standard C++ Library Programmer's Reference
(STL.HLP)

Tools and Utilities (BCTOOLS.HLP)

Visual Database Tools Programmer's Reference
(BCVDTREF.HLP)

Windows System Classes Guide (WINSYS.HLP)

WinSight User's Guide (WINSIGill.HLP)

WinSpector User's Guide (WINSPECTR.HLP)

IDE tasks, projects, tools

BWCC reference

Programming and reference material

Reference material for DOS

Error message descriptions

OCF programming and reference

Script programming and reference

OWL programming and reference

Resource scripting language reference

Resource Workshop user's guide and
reference

Rogue Wave STL user's guide and reference

Command-line tools

Database reference and developer's guide

WinSys classes reference

WinSight debugging tool

WinSpector post mortem debugging

These Help files are all located in the .. \BC5 \ HELP directory. If you want to display one
of the specific Help files shown in Table 1.1, you can click on its name whether or not
you have opened BC5.

Getting Help in Borland C++
In Borland C++, you can get Help in the following ways:

• Context-Sensitive Help (F1)

• Contents Screens

• Index

• Keyword Search (F1 or Ctrl+F1 in the Edit Window)

Chapter 1, Getting started 17

• SpeedMenus (in the Help window)

• Help files

Getting context-sensitive Help
You can get context-sensitive Help for items in the Borland C++ Integrated
Development Environment (IDE). To access context-sensitive Help:

1 Select the element you want help on (menu, menu command, an item in a dialog box.

2 Press F1 or Ctrl+F1.

Help buttons are available on many dialog boxes and for most error messages.

Click Help to view information about:

• The entire dialog box

• An error message

• The current group of topics in an Options settings dialog box

Accessing and using contents screens
Each Help Contents offers an entry into a Help system installed with Borland C++.
From the Contents, select the category of information that best suits your needs, then
click on it.

• To display the Master Contents, choose Contents on the Help menu in the Borland
C++ IDE. From the Master Contents, you can access all of the Help files.

• To access the Help Contents from within a topic in the active Help file, click the
Contents tab.

• To access the Help Contents of a different Help file installed with Borland C++, right-
click and select the name of the Help file you want to view.

To return to a previous topic or Help file, click the Back button.

You can expand books that appear on the Contents, or jump directly to a topic. To view
a topic, click on it.

Using the index
In Help, click the Index tab to view a list of index entries. Either type the word you're
looking for or scroll through the list.

Searching for keywords
Keyword Search gives you direct access to Help about a term in your program. To get
help on a term:

1 In the Edit window, place the insertion point on the term you want help on.

18 C++ Use r' s G u ide

2 Use one of the following methods:

• Press F1 or Ctrl+F1.

• Choose Keyword Search on the Help menu.

• Choose Go To Help Topic on the Edit Window SpeedMenu.

3 One of these events occurs:

• The topic associated with the term you selected is displayed.

• If more than one topic is available on the term for which you requested Help, the
Topics Found dialog box is displayed listing topics associated with the term.
Double-click the topic you want to view.

• If no Help is available for the term nearest the insertion point, the index is
displayed. You can then select a different searching method to locate a topic
associated with that term. The term for which you requested Help appears
highlighted in the top box. Click the Display button or double-click the term to
view the list of topics associated with the term.

To return to a previous topic or Help file, click the Back button.

Help SpeedMenus
All the Borland c++ Help files have SpeedMenus that you access by right-clicking on
the mouse. These menus provide quick access to commands for copying or printing a
Help topic, or exiting Windows Help.

The SpeedMenu also lists additional Help files containing information related to the
current Help file. Right-click and select a Help file from the SpeedMenu. The Contents
screen for that Help file is displayed.

Using Windows Help
More information about using standard Windows Help features is available if you need
it. To learn more about the features of Help in Windows 95 and Windows NT, see the
following instructions.

If you're already in a Help topic, press F1 to display Windows Help.

Otherwise, for details about using Help in Windows 95,

1 Choose Start in the lower left comer of the Windows Desktop, then choose Help.

Windows Help is displayed.

2 In the Help Contents, open the How To book, then open Use Help.

3 To choose a book in the Help Contents, double-click it or move to it with the arrow
keys and press Enter.

For details about using Help in Windows NT, choose Help I How To Use Help in the
Program Manager.

Chapter 1, Getting started 19

20 'C++ User's Guide

Managing projects
The Borland C++ IDE contains a Project Manager that gives you a visual representation
of the files contained in your project. With the Project Manager, you can see exactly
what files you're building, the files you're using in the builds, and the options that
you've set for the builds.

This chapter covers the following topics, which describe how to use the Project Manager
to organize the files in your project:

• Project management
• Using the Project Manager
• Grouping sets of files with Source Pools
• Translators, viewers, and tools

What is project management?,
As your applications grow in size and complexity, you'll discover that your programs
become more and more dependent on different intermediate files. In addition, you'll
find that some of the modules in your project must be compiled with different compilers
or different compiler options. A Windows program, for example, can be composed of
resource scripts, import libraries, and source code, with each different file type requiring
a different compiler and compiler settings.

As the complexity of your projects increase, the need increases for a Way to manage the
different components of your projects. By studying the files that make up a project, you
can see how a project combines different source files to produce different target files.
Target files, for example, can be .DLL or .EXE files. The source files that these targets are
dependent upon can consist of files like .C, .CPP, and .H files. Project management is the
organization and management of the sources and targets that make up your project.

C hap t e r 2, Man a gin 9 Pro j e c t s 21

Using the Project Manager
The Project Manager visually organizes all the files in your project using a Project Tree.
The Project Tree displays files in a hierarchy diagram. Each level of the hierarchy
contains a single target and all the target's dependencies. To show their relationship to
the target, dependencies are indented below the target listing. Figure 2.1 shows how the
Project window displays a Project Tree. To expand and collapse the hierarchy tree, click
nodes containing the + and - symbols.

Figure 2.1 The Project window displaying a Project Tree

• tEl "repool (.idel------------~ Project node
I!!III I- Cl "repool (.lxl]
• I-EI "repool [.axe1 Windows 3.1 version Target node

[

EI My Source [SourooPool]

~
~ Stcpool[.cppJ codetize=35 line$=17 datasize=33 Source node

.

[f11l .. \ .. \ .. \inelude\window".h (AuloDepend) Autodependency nodes
tl'! •. \ .. \ •. \inelude\axept.h [AuloDependj

~ Slcpooi [.Ie]
Cl .. \ .. \ .• \Iib\defaultl.defJ

K'J cOwl [.obi!
Ilfl imporl(.lib) f--------------tl-Run-time nodes
tNl e.tldll (.lib]

• f-[!J ".epool [.axe) . Win32 version
)('--EI My Sou.ee (SoureePool]

~D ".epool r.epp)
tC! ...

C! .. \ .. \ .. \Iib\delault [.del)

The Project Manager uses the following types of nodes to distinguish the different types
of files in your project:

• The project node, located at the top of the Project Tree, represents the entire project. All
the files used to build that project appear under the project node (a project node is
similar to a symbolic target in a makefile). By default, the project node is not
displayed in the Project Tree. To display the project node, choose Options I
Environment and select Project View from the list of Topics, then check Show Project
Node.

• A target node represents a file that is created when its dependent nodes are built (a
target is usually an .EXE, .DLL, or .LIB file that you're creating from source code). A
project can contain many target nodes. For example, in a single project, you might
build an executable file and two separate DLL files, making three targets in all.

• Source nodes refer to the files that are used to build a target. Files such as .C, .CPP, and
.RC are typical source nodes.

• A run-time node refers to files that the Project Manager uses during the linking stage
of your project, such as startup code and .LIB files. The Project Manager adds
different run-time nodes, depending on the options you specify in TargetExpert. By
default, run-time nodes are not displayed by the Project Manager. To view run-time
nodes, choose Options I Environment I Project View, then check Show Runtime
Nodes.

• Autodependency nodes are the files that your program automatically references, such as
included header files. By viewing autodependency nodes, you can see the files that
source nodes are dependent upon, and you can easily navigate to these files from the
Project Manager. By default, autodependency nodes are not displayed in the Project

22 C++ User's Guide

Manager. To view autodependency nodes, choose Options I Project I Make, then
check Autodependencies: Cache & Display. Note that you must build the project
before the Project Manager can display auto dependency information.

The Project Manager uses the following color scheme for its nodes:

• Blue nodes are those that were added by the programmer.

• White nodes indicate project targets.

• Yellow nodes are those that were added programmatically by the compiler (when it
posts dependencies and Autodependencies), by AppExpert or ClassExpert (when
they add .CPP nodes), or by TargetExpert (when it adds nodes based on the target
type).

The Project Manager uses special glyphs in the left margin to indicate the build attributes
of project nodes. To apply build attributes'to a node (and for a reference on the different
Project Manager glyphs), choose Edit Local Options from the Project Manager
.SpeedMenu, then select the Build Attributes topic.

In addition to helping you organize your project files, you can use the Project Manager
to access source files and build targets.

• To bring a source file into an Edit window, double-click the node in the Project Tree,
or highlight the node and either press Enter or choose View I Text Edit from the Project
ManagerSpeedMenu.

• Using the Project Manager to make a project is very effective because you can use the
Project Manager to translate only the files that have changed since the last project
build; computer resources are not wasted on unnecessary file updates. (The term
"translate" refers to using one file type to create another. For example, the C++
compiler is a translator because it generates .OBJ files from .CPP files.)

There are several ways to customize the build options of the nodes in your project.
Maintaining project options and compiling project targets is described in detail in the
following chapter.

Project Manager reference
The project tree can be traversed with the mouse or the keyboard.

Note You can also select a node by typing the node name.

Add Node Insert

Collapse Hierarchy - (hyphen)

Collapse node Minus Left Click

Collapse /EXpand
node

Spacebar

Copy Node Ctrl+Left Click
Drag

Default action for Enter Double Click
node

Chapter 2, Managing Projects 23

Delete Node Delete

Demote a node Alt+RightArrow Left Click Drag

End node search Esc

Expand Hierarchy * (asterisk)

Expand node Plus Left Click

Find anode Incremental search
(start typing)

Move down in DownArrow Scroll Bar
project

Move node down Alt+DownArrow Left Click Drag

Move node up Alt+UpArrow Left Click Drag

Move to bottom of End Scroll Bar
hierarchy

Move to 'top of
hierarchy

Home Scroll Bar

Move up in project UpArrow Scroll Bar

Open SpeedMenu Alt+FlO Right Click

Page down PgDn Scroll Bar

Page up PgUp Scroll Bar

Promote a node Alt+LeftArrow

Reference Copy Alt+Left Click
Node Drag

Scroll left LeftArrow Scroll Bar

Scroll right RightArrow Scroll Bar

Select a node Up /DownArrow Left Click

Select Contiguous Shift+UpArrow Shift+Left Click
nodes

Select Non- Ctrl+Left Click
Contiguous nodes

Creating a project
When you begin to write a new application, the first step is to create a new project to
organize your application's files. The command Project I New Project opens the New
Target dialog box.

Setting target options with the New Target dialog box
When you create a new project, the IDE automatically assigns default file names to the
nodes in your project. The following steps show how to change these default settings
and how to complete the initial project setup.

1 Type the path and name for the new project into the Project Path And Name input
box (the project name must contain eight characters or less). Note that you don't have
to type a file extension because the IDE automatically assigns the extension .IDE to all
project files.

24 C++ Use r' s G u ide

2 In the Target Name input box, type the name for the first target in your project. This
is usually the name of the .EXE or .DLL file that you want to create.

Note The remaining fields in the New Target dialog box set the options for the first target
in the project. These fields are commonly referred to as the TargetExpert, since these
are the fields contained in the TargetExpert dialog box.

3 Choose the type of target you want to build using the Target Type list. For
information on the target types, see the online Help for the IDE. Information on using
the Help compiler can be found in the online Help file CWH.HLP.

4 Choose a platform for your target using the Platform drop-down list. Information for
the individual platform types can be found in online Help.

S Select the memory model of the target from the Target Model options:

• Tiny, available for only 16-bit DOS applications, sets four segment registers (CS,
DS, SS, and ES) to the same starting address, giving you a total of 64K for all your
code, data, and stack.

• Small uses different code and data segments, giving you near code and near data.

.. Medium gives you near data and far code.

.. Compact is the inverse of the Medium model, giving you near code and far data.

.. Large gives you far code and far data.

.. Huge, used with only 16-bit DOS applications, is the same as Large model, but
allows more than 64K of static data.

.. GUI is used with Win32 CUI applications.

.. Console is used with Win32 console applications.

Note Windows and DOS programs have different uses for the DS and SS segments. In
Windows, they're always the same; however, in DOS these segments are different for
Compact, Large, and Huge memory models.

The entries in the Target Modelllst adjust according to the Platform type you've
selected.

6 Using the Frameworks group, choose the framework to use with your application
(the available choices depend on your Platform and Target choices). Frameworks are
the class libraries upon which you build your application. Choose any combination
of the following libraries for your application:

.. Class library isa template-based container class library that uses encapsulation so
you can maximize container storage with a minimal amount of reprogramming.
When you select this option, TargetExpert links the appropriate BIDSxxx.LIB or
BIDSxxx.DLL libraries to your program .

.. OWL (Object Windows Library) is an object-oriented class library that encapsulates
the behaviors (application-level and window-level) that Windows applications
commonly perform.

.. OCF consists of Borland ObjectComponents classes for simplifying the creation of
OLE applications in C++. ObjectComponents implements a set of high-level
interfaces on top of OLE.

.. MFC supports Microsoft Foundation Class libraries. Choose 3.0 or 4.0 depending
on the version of MFC you are using.

Chapter 2, Managing Projects 25

7 Using the Controls options, choose what type of controls your application uses.
Borland C++ supports the following types of controls:

@ BWCC (Borland Windows Custom Control Library) is a collection of classes,
functions, and bitmap buttons that you can link into your program for an
alternative graphical look to standard Windows controls.

• VBX allows you to use Visual Basic controls in your applications. This option is
available for both 16- and 32-bit Windows applications.

• CTL3D lets you use the standard Windows 3-dimensional controls contained in
CTL3DV32.DLL.

8 TargetExpert displays different library options, depending upon the Target Type and
Platform you select. Choose which libraries to add to your project or which standard
definitions to use if you are building a static library.

.. OLE is an operating system extension that lets applications achieve a high degree
of integration. OLE provides a set of standard interfaces so that one OLE program
can interact fully with another OLE program.

• No exceptions specifies which RTL to link with 16-bit applications. Enable this
option if you are building a 16-bit target that you plan to use in a non-C++
environment (such as a .DLL target that will be linked to a Paradox application).

• BGI (DOS only) uses the BGI graphics library file for BGI graphics.

9 Compile your program using the following different types of framework libraries:

• Dynamic links the dynamic (.DLL) form of the selected libraries. This option
allows your application to bind to the standard libraries at run time. The functions
in the standard libraries are located in .DLL files rather than directly attached to
your application. This greatly reduces the size of an application, but the target is
then dependent on the presence of the .DLL libraries at run time. This option
forces the large model for 16-bit targets.

• Static links the static (.LIB) form of the selected libraries. This option causes the
standard library functions to be bound directly to your executable file, creating a
larger, standalone executable. If you're building many .DLLs with statically bound
RTLs, each .DLL gets its own copy of the routines it uses.

@ Diagnostic links the diagnostic ObjectWindows or Class Libraries. Diagnostic
libraries add debug information to the files. A diagnostic version·of these libraries
is supplied on the CD version of Borland C++. If you are using the disk version of
the product and you select Diagnostic, you must build these libraries. Both OWL
and Class Library sources are provided.

To build a diagnostic version of the libraries, use the following make line:

MAKE -DDIAGS

Note See the makefile for other options.

@ Multithreaded links the 32-bit, multithreaded, flat model run-time library.
Multithread is available·only if your platform is Win32.

@ Alternate Startup (DOS applications only) links the alternate startup library
module COFx.OBJ, which makes SS=DS for all memory models.

26 C++ Use r 's G u ide

10 If needed, click the Advanced button to specify the types of source nodes created
with your new target (this procedure is described in the following section).

11 Click OK to accept the settings and close the New Target dialog box. The Project
Manager creates the project file, which is denoted with an .IDE extension.

When you close the New Target dialog box, the Project Manager draws a graphical
representation of your project in the Project window. The Project Manager creates a
target node with one or more source nodes below with the project node. After creating
the initial target for a project, you can add, delete, or modify the nodes in your project,
as described in the following sections.

Specifying the source node types
The Advanced button in the New Target dialog box opens the Advanced Options
dialog box. Use this dialog box to set the types of source nodes that the IDE creates with
a new target node.

• .CPP Node creates a C+ source node.

• .C Node creates a C language source node.

• No Source Node creates a target node that doesn't use a source node. Use this option
when you do not want to create a source node that uses the same file name as the
name of the project. When you create a new target with this option, you must
specifically add the source node.

If your program is a Windows program, check the following boxes according to the files
your target uses:

• .RC creates a source node that is associated with a resource script.

• .DEF creates a source node that's associated with a Windows definition file.

Opening existing projects
To open an existing project, choose Project I Open Project, then use the file browser to
select an existing .IDE or .PRJ project file (.PRJ files are converted to .IDE files when you
save the project). If the project opens, but the Project window is not visible, choose
View I Project to access the Project window.

Adding source nodes to your project
To add a source node to a project:

Select any node in the Project Tree under which you want the new node to appear.
For example, if you want the new node to appear under the target, select the target
node.

2 Press Ins, click the button on the SpeedBar, or right-click the node to open
the Project window SpeedMenu, then choose Add Node.

3 Using the file browser, choose the file or files you want associated with the new node.
Alternatively, you can type the name of the file you want to add.

4 Choose OK to confirm your settings.

C hap t e r 2, Man a gin 9 Pro j e c t s 27

You can use the Windows File Manager to add one or more source hodes.

1 Open the File Manager and arrange the windows so you can still view the Project
window in the IDE.

2 In the File Manager, press Gtrl and select the files you want to add as source nodes.

3 Drag the files from the File Manager and drop them on a node in the Project window.
The Project Manager automatically adds the source files under the selected node.

Deleting source nodes
To delete a node in a project, select the node and press Del, or choose Delete Node from
the SpeedMenu. To delete many nodes, select the ones you want to delete (press Gtrl or
Shift and click the left mouse button to select Il)lultiple nodes), then press Del. The Project
Manager asks if you want to delete the nodes before it:proceeds.

Adding files without relative path information
Because the project tree supports drag and drop, you can copy files right from a desktop
file manager. Relative path information is included when files are copied. If you move
sources or the IDE, the relative path information will be incorrect. Here is how to add
files to your project without the presence of relative path information:

• Make sure that Absolute (Options I Project I Make I New Node Path) is turned off (this
is the default setting).

• Right click on the node under which the added files will become children once they
are dropped.

• Choose Add Node from the Project Tree SpeedMenu.

• Browse and highlight the file(s) you want to add. (Hold down the Gtrlkey to select
non-contiguous files.)

• After highlighting the desired files, shift focus to the input box and capture to the
Clipboard (Gtrl+G).

• Browse back to the project file location.

• Shift focus to the input box, paste from the Clipboard (Gtrl+ V or Shift +Insert) and choose
OK.

Files added to the project by this method do not have relative path information.

Editing source node attributes
Node attributes describe the node and define the tool that translates it (if applicable). To
edit the attributes of a source node:

1 Right-click the source node (or select the node and press Alt+F10), then choose Edit
Node Attributes from the SpeedMenu. The Node Attributes dialog box appears.

2 Update the node attributes, then choose OK to confirm your settings.

28 c++ User's Guide

Node attributes are defined as follows:

• N arne is the file name of the node, without a file extension.

• Description is an optional text description of the node.

• Style Sheet is the name of the Style Sheet the Project Manager uses when it
translates that node. If «None» is specified, the Project Manager uses the option
settings in the parent's Style Sheet.

• Translator names the translator used on that node. The IDE assigns a default
translator for the node type (for example, CppCompile for a .CPP node), which
can be overridden using this field.

• Node type defines the node extension, which in tum defines the available
translators for that node.

Adding target nodes to your project
To add a target to a project with the New Target dialog box:

1 Choose Project I New Target, or click the button on the SpeedBar.

2 Type the name for the new target, then choose one of the following target types:

.. Standard (default) can be an executable, DLL, or other file.

• AppExpert is an automatically generated ObjectWindows-based application.

• Source Pool is a collection of files that can be referenced in other targets.

3 Choose OK. If the target type is Standard, the TargetExpert dialog box appears so
you can further define your target. If the target type is SourcePool, the target is added

. to the project and you can add nodes to it immediately. If you choose AppExpert as
the target, AppExpert appears.

When you add a new target, it is always appended to the end of the Project Tree.

To view a sample project with two targets, open the MULTITRG.IDE project in the
\BCS\EXAMPLES\IDE\MULTITRG directory. This project file builds a 16-bit and a
32-bit version of the WHELLO program. The project file contains a text file that
describes how to use two or more targets in a project.

With more than one target in a project, you can choose to build a single target, multiple
targets, or the whole project.

Deleting target nodes
To delete a target node:

1 Right-click the target node you want to delete (or highlight it and press Alt+F10).

2 Choose Delete Node from the SpeedMenu.

3 The Project Manager asks if you're sure you want to delete the target. Choose OK to
delete the target and all its dependencies from the project.

You can also delete several nodes by pressing Gtrl and clicking the nodes you want to
delete, then pres~ Del.

C hap t e r 2, Man a gin 9 Pro j e c t s 29

Warning! Use care when deleting target nodes-you cannot undo the deletion.

Editing target attributes using TargetExpert
Target attributes describe the target. For example, target attributes can describe either
a 32-bit Windows DLL or a 16-bit DOS executable. Using TargetExpert, you can modify
the attributes for Standard and AppExpert target types. However, you can't change
target attributes for Source Pools.

To change a target's attributes:

1 In the Project window, right-click the target node (or select it and press Alt+F10), then
choose TargetExpert from the SpeedMenu to open the TargetExpert dialog box.

Note The TargetExpert fields are a subset of the fields in the New Target dialog box.

2 Update the target attributes, then choose OK to confirm your new settings.

Moving nodes within a project
You can move nodes within a project in the following ways:

• By dragging the node to its new location.

• By selecting the node and press Alt and the arrow keys. This moves the selected node
up or down through the visible nodes. You can also use Alt and the right and left arrow
keys to promote and demote nodes through levels of dependencies. For example, if
you have a .CPP file dependent that's on a header file (the .H file appears under and
right of the .CPP in the project window), you can move the header file to the same
level as the .CPP file by selecting the header file and pressing Alt~.

Copying nodes in a project
You can copy nodes in your project file either by value or Py reference. When you copy
a node by value, the Project Manager places an identical, but separate, copy of the node
in the location you specify. The nodes you copy inherit all the attributes from the
original node and you have the ability to modify any of the copied node's attributes.

When you copy by reference, you simply point to one node from a different location in
the project; a reference copy isn't distinct from the original node. If you modify the
structure of the original node, the reference copy is also modified. However, a reference
copy does not inherit the options of the original node; you're free to attach Style Sheets
and override options in the copied node without affecting the original node.

To copy a node by vallie:

Select the node or nodes you want to copy (press Shift or Ctrl and click to select
multiple nodes). You don't need to select the node's dependents because they are
copied automatically.

2 Hold down the Ctr! key and drag the selected nodes to where you want to place the
complete copies.

30 c++ User's Guide

3 When you release the mouse button, the copied nodes appear. At this point, you can
edit either the original or the copied nodes without changing other nodes in the
project.

To copy a node by reference:

Select the node you want to copy by reference. You don't need to select the node's
dependents because they are automatically copied by reference.

2 Hold down the Alt key and drag the selected node to where you want to place the
reference copy.

3 When you release the mouse button, the reference-copied node appears and is
displayed in a lighter font. This helps you remember that the node is copied by
reference rather than by value. If you edit the original node (such as adding or
deleting dependents), all referenced copies are updated.

Warning! You cannot add to, delete, or modify nodes that have been copied by reference; to
modify nodes copied by reference, you must edit the master copy. If you delete an
original node, all reference copies to that node are also deleted. You cannot undo this
deletion.

Converting project files into makefiles
Using the IDE, you can convert project files (.IDE files) into makefiles, (.MAl< files). To
convert a project file to a makefile:

1 Open the project file you want to convert.

2 Choose Project I Generate Makefile. The IDE generates a makefile with the same
name as the project file, but with the extension .MAK, and places it in the edit buffer.
The IDE displays the new makefile in an Edit window.

3 Choose File I Save to save your new makefile.

Customizing the Project window
By default, the Project window displays target nodes and source nodes. To'control the
display of nodes and options:

Choose Options I Environment to open the Environment Options dialog box, then
choose Project View. The right side of the dialog box displays the Project View
options.

2 Check or uncheck the options you want. A sample node called WHELLO changes as
you select or deselect options. This sample shows you how all nodes appear in the
Project window.

@ Build translator displays the translator used on the node.

o Code size displays the total size of code segments in bytes. This infqgnation
appears only after the node has been compiled. .

;& Data size displays the size of the data segment in bytes. This information appears
only after the node has been compiled.

Chapter 2, Managing Projects 31

• Description displays an optional description of the node in the Project Tree. Type
the description using the Edit Node Attributes dialog box available from the
Pr~ect~anagerSpeed~enu.

• Location lists the path to the source file associated with the node.

• Name displays the name of the node.

• Number of lines displays the number of lines of code in the file associated with
the node (note that this appears only after you compile the code).

• Node type describes the type of node (for example, .cpp or .c).

• Style Sheet names the Style Sheet attached with the node.

• Output names the path and file name that's created when the node is translated.
For example, a .CPP node creates an .OB} file.

e Show runtime nodes displays the nodes the Project ~anager uses when the
project is built. For example, it lists startup code and libraries.

.. Show project node displays the project node, of which all targets are dependents.

3 Click OK to close the Environment Options dialog box.

4 To save your project customizations, choose Options I Save, then check Project. Note
that you can save different option sets with the different projects you work on.

Grouping sets of files with Source Pools
A Source Pool is a collection of source nodes that can be referenced by multiple target
nodes. When a Source Pool is referenced by a target node, the nodes in the Source Pool
take on the options and target attributes of the target. Because Source Pools let you
create different targets using a common set of source nodes, it's easy to maintain the
files that the targets use. For example, with Source Pools, you can create both 16-bit and
32-bit applications using a single set of source nodes. Then, when you add or delete a
file from the Source Pool, you don't have to worry about updating all your target nodes;
they're updated automatically through the reference to the Source Pool.

You can also use Source 1:'ools when you have several header files that you need to
include throughout your project. If you place the header files in a Source Pool, you can
reference them wherever you need them in your project. Then, you only have to update
the original Source Pool when you need to make changes to the group of header files; if
you add a new header file to the Source Pool, all the referenced copies are automatically
updated.

Source Pools are also useful when you want to assign a single Style Sheet to multiple
nodes. For example, if three targets in a project need to use the same Style Sheet, you can
reference a Source Pool that contains the Style Sheet instead of attaching the same Style
Sheet to each individual node. Then, if you need to update the Style Sheet (for example,
if you want change from compiling with debug information to compiling without it),
you can update all the targets by modifying the single Style Sheet. You can also use
Source Pools to apply custom tools to project nodes. For more information, see the
example project \BC5\EXA~PLES\IDE\DELIVER.

32 0.+ + Use r' s G u ide

Creating a Source Pool
When you create a Source Pool, you create a target node with a group of nodes under it.
However, the target node of the Source Pool cannot be compiled-to compile the nodes
in a Source Pool, you must copy the Source Pool to another target node. Source Pools
work to your best advantage when you copy them by reference.

1 In your project, create a new target node by choosing Project I New Target.

2 Type the name of the Source Pool in Target Name.

3 Select SourcePool from the Type list, then press OK to create a Source Pool target
node in your project.

4 Select the Source Pool node in the Project Tree, and press Ins to open the Add To
Project List dialog box. '

5 Select the source files you want, then press OK to add them to the Source Pool.

6 Copy the Source Pool by reference by holding down Alt and dragging the Source Pool
to the target nodes you want.

Note To see a working example of Source Pools, open the sample project called
SRCPOOL.IDE in the \BCS\EXAMPLES\IDE\SRCPOOL directory. The project file
includes a text file that describes how the Source Pool is used in the example.

Translators, viewers, and tools
Translators, viewers, and tools are internal and external programs that are available to
you through the IDE. '

• Translators are programs that create one file type from another. For example, the C++
compiler is a translator that creates .OBJ files from .CPP files; the linker is a translator
that creates .EXE files from .OBJ, .LIB, .DEF, and .RES files.

• Viewers are programs that let you examine the contents of a selected node. For
example, an editor is a viewer that lets you examine the source code of a .CPP file.
Resource Workshop is a viewer for Windows resource files.

• Tools are programs that help you create and test your applications. Turbo Debugger
and GREP are examples of programming tools.

The IDE associates each node in a project with different translators or viewers,
depending on the file extension of the node. Although each node can be associated with
several different translators or viewers, each node is associated with a single default
translator or viewer. This is how the IDE knows to open the Edit window when you
double-click a .CPP node (double-clicking a node invokes the default viewer on the
node). To see the default node type (determined by file extension) for a specific
translator or viewer:

1 Choose Options I Tools to open the Tools dialog box.

2 Select the item you want to inspect from the Tools list.

Chapter 2, Managing Projects 33

3 Choose Edit to access the Tools Options dialog box.

4 Choose Advanced to access the Tool Advanced Options dialog box, then inspect the
Default For text box .

. When you right-click a node, you'll find that some source nodes have a Special
command on the SpeedMenu. This command lists the alternative translators that are
available for the node type selected. For example, the commands C To Assembler, C++
To Assembler, and Preprocess appear on the Special menu of a .CPP node. The
command Implib appears if you selected a .DLL node. Using the Special command, you
can invoke any translator that is available for a selected node type. Also, by selecting a
source node in the Project Tree and choosing Edit Node Attributes from the
SpeedMenu, you can reassign the default translator for the selected node.

Adding translators, viewers, and tools to the IDE
The Tools dialog box displays the default set of translators, tools, and viewers. The
following steps show how to add an item to this list of programs:

Choose Options I Tools to access the Tools dialog box. This dialog box displays the
default list of translators, tools, and viewers.

2 Choose New to add a new program to the Tools list (to modify a program that's
already listed, select the tool, then choose Edit).

3 Set the following options in the Tools Options dialog box:

• Name is a description of the item you're adding. This is placed on the Tools list.

It Path is the path and executable program name. You can use the Browse button to
complete this selection.

• Command-line holds any command-line options, transfer macros, and IDE filters
you want to pass to the program. For information on transfer macros, refer to
online Help. (Try using $prompt if you want to experiment with transfer macros.)
IDE filters are .DLL files that let tools interface with the IDE.(for example, the
GrepFile tool uses a filter to output text to the Message window). See the
FILTER.IDE project in \BCS\EXAMPLES\IDE\FILTER for more information on
filters. To see transfer macros and filters in use, choose Options I Tools, then select
GrepFiles and choose Edit.

• Menu Text appears on SpeedMenus and on the Tools menu. If you want to assign
a shortcut key to your menu text, precede the shortcut letter with an ampersand­
this letter appears underlined in the menu. For example, &Fi1e assigns F as the
shortcut key for File .. If you want an ampersand to appear in your menu text, use
two ampersands (&&Up&date appears as &Upgate in the menu).

Note You must supply Menu Text if you want the program item to appear on the
SpeedMenu or Tools menu.

III Help Hint is descriptive text that appears in the status line of the Tools dialog box
when you select the program item.

4 Open the Advanced Options dialog box (choose Advanced) to set the options for
your new program. Depending on the Tool Type you choose (Simple Transfer,

34 c++ User's Guide

Translator, or Viewer), different fields become available. If you create a Translator,
the program becomes available for make and build processes.

II Place On Tools Menu adds the item to the Tools menu.

II Place On SpeedMenu adds a viewer or translator to the associated SpeedMenu.

411 Target Translator, available for translators and viewers. For translators, this field
specifies whether the program produces a final target (such as an .EXE file) or an
intermediate file (such as an .OBJ or.I file). If you check this box, the translator
produces a final target that's saved to the directory you specify in the Final text
box (choose Project I Options I Directories). If you don't check Target Translator,
the translated file is saved in the directory you specify in the Intermediate text box.

For viewers, Target Translator specifies that the viewer works only on nodes that
have been translated (such as .OBJ or .EXE files); the node has to be translated
before you can view it.

III Translate From defines the node types (determined by file extension) that a
translator can translate. To specify multiple node types, use a semicolon to
separate file extensions.

When you enter a file extension in this field, the Project Manager adds the
translator to the Special menu of the project nodes that have that file extension.
When you choose Special from the Project Manager SpeedMenu, the Project
Manager displays all the available translators for that node type. However, it's
important that each node type can have only a single, default translator (see the
description for Default For).

To see how this works, look at the tool CppCompile (choose Options I Tools,
double-click CppCompile, then click Advanced). The Tool Advanced Options
dialog box shows that the C++ compiler is a translator for .CPP, .C, .CAS, and.H
files. If you have a source node with a .C extension, CppCompile appears on the
Special menu when you right-click the node and choose Special.

III Translate To defines the extension of the file that the translator generates. For
example, HC31.EXE converts .HPJ files to .HLP, so HC31.EXE holds . hlp in this
field.

e Applies To is similar to the Translate From field, except that it's used for viewers
instead of translators.

e Default For changes the IDE's default translator or viewer for the file types you
specify. Type the file extensions (separating each with a semicolon) for the file
types whose default you want to override. .

5 Choose OK twice to confirm your settings, then close the Tools dialog box.
/

Your new tool has now been added to the Tools list of the associated project, and to the
Tools menu or SpeedMenu, depending on where you chose to add the item. If you

. added the item to the Tools menu, you can check the addition by choosing Tools from
the main menu; the new program name appears on the Tools list.

Note Although the Project Manager lets you define your own Tools items, these items apply
only to the project that you add them to; they aren't added as permanent parts of the
IDE. However, translators, viewers, and tools can be passed to new and existing projects.

Chapter 2, Managing Projects 35

36 c++ User's Guide

Specifying project options and
compiling

After you create a project file and write the code for the source nodes in your project,
you need to set the options for the different project nodes before you can compile the
project. This chapter describes how to set options in a project, how to view the options
you set, how to compile a projeCt, and how to use the Message window to view and fix
compile-time errors. In addition, this chapter contains a complete reference to the
compiler and linker options that can be set from the IDE.

Setting project options
This section explains how to set, view, and manage project options.

Project options tell the IDE how to compile and link the nodes in your project to form
the targets you need. The settings of the project options can indicate whether or not to
generate debugging information, where to look for source code, what types of compiler
optimizations you want to use, and so on.

The Project Manager lets you set project options in two different ways:

• You can attach Style Sheets to your project nodes.

• You can override the settings in a Style Sheet using local overrides.

Style Sheets group a collection of option settings into a single unit. Once a Style Sheet is
created, you can attach it to a node, a group of nodes, or an entire project. Local
overrides are settings that take precedence over Style Sheet settings at the node level.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion 5 and com p iii n 9 37

Using Style Sheets
Often, different project nodes require different option settings. For example, you might
want to compile .C files with one set of options and .CPP files with another, or you
might want to build one target with debugging information, and another one without it.
By applying different Style Sheets to different nodes in your projects, you can easily
control how the different nodes get built. In addition, Style Sheets make it easy to view
and maintain the settings of your project options.

To view the options that can be incorporated into a Style Sheet, open the Project Options
dialog box by choosing Options I Project. This dialog box contains a hierarchical list of
topics on the left, with the options that relate to each topic listed on the right. To expand
and collapse the Topic list, click the + and - icons to the left of the topic listings.

To see an example of how Style Sheets are used in a project, open the STYLESHT.lDE
project file located in the EXAMPLES \ IDE \ STYLESHT directory of your Borland C++
directory tree. This file uses a different Style Sheet for each of its two versions of
WHELLO. The project also contains a text file that explains the use of Style Sheets.

Predefined Style Sheets
The Project Manager contains several predefined Style Sheets that you can attach to any
node in your project. You can also customize a predefined Style Sheet to meet the
special needs of your projects.

To inspect the predefined Style Sheets, choose Options I Style Sheets. This opens the
Style Sheets dialog box, which lists the predefined Style Sheets on the left and a
description of the selected Style Sheet on the right.

The default project options
When you initially create a project, the project inherits the Style Sheet known as the
Default Project Options. If you can build all the components in your project with the
same options, you can edit this Style Sheet using the Project Options dialog box.
However, if different nodes in your project require different option settings, you should
override the default option settings by attaching different Style Sheets to the nodes in
your project.

Warning! Be careful when you use the Options I Project command to modify option settings; if
your project contains more than a single target node, the changes you make always
modify the project's Default Project Options (regardless of the node you have selected
when you choose the command). Because of this, all targets in your project inherit the
changes you make when you use the Options I Project command. In addition, if you
modify project options when you don't have a project loaded, your modifications
update the DefaultProject Options Style Sheet; the projects you later create will inherit
these new default settings. If you need to revert to the IDE's factory default settings,
delete the file BCWDEF.BCW (located in the \BC5\BINdirectory), then open and close
the IDE to create a new file.

Managing Style Sheets
The buttons at the bottom of the Style Sheets dialog box let you create, compose, copy,
edit, rename, and delete user-defined Style Sheets.

38 c++ User's Guide

• Create lets you design a new Style Sheet for the currently loaded project. To create a
Style Sheet:

1 Choose the Create button, then enter a name for your new Style Sheet into the
Create Style Sheet dialog box. Choose OK to add the new Style Sheet to the
Available Style Sheets list.

2 Select the new Style Sheet from the Available Style Sheets list, then use the
Compose, Copy, or Edit buttons to create your custom Style Sheet.

• Compose lets you create a Style Sheet that contains the combined options from one or
more Style Sheets. To compose a Style Sheet:

1 Create a new Style Sheet using the Create button.

2 Select the new Style Sheet in the Available Style Sheets list, then click Compose.

3 Select the Style Sheet you want included in your new Style Sheet from the
Available Style Sheets list, then move the Style Sheet to the Composite Style Sheets
list by double-clicking it or by clicking the ~ button. (You can also remove Style
Sheets from the Composite Style Sheet list by selecting a Style Sheet there and
clicking ~.)

4 Continue modifying the composed Style Sheet, then choose OK when you're
finished.

Note You cannot edit the option settings in a composed Style Sheet. However, you can edit
the option settings in the Style Sheets contained in the composed Style Sheet, which
affects the settings in the composed Style Sheet.

• Copy lets you create a new Style Sheet from an existing one. When you choose Copy,
you're prompted for the new Style Sheet's name. Enter the new name, then choose
OK to make an exact copy of the selected Style Sheet. Copying is a fast way to create a
Style Sheet that closely resembles another-you only have to change the options you
want.

• Edit lets you modify the option settings of an existing Style Sheet, including any
predefined Style Sheet.

• Rename lets you rename a selected Style Sheet.

• Delete lets you remove an unwanted Style Sheet. (This action cannot be reversed.)

Attaching Style Sheets to a node
To attach a Style Sheet to a project node:

1 Right-click the node in the Project Tree (or select it and press AIt+F10).

2 Choose Edit Node Attributes from the SpeedMenu. The Node Attributes dialog box
appears.

3 Select a Style Sheet from the drop-down box, then choose OK.

When you attach a Style Sheet to a node, all the child nodes of that node inherit the
settings of the selected Style Sheet. To change the settings of a child node, attach a
different Style Sheet, or override an option setting using a local override.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 39

Note Although you can attach only a single Style Sheet to a project node, one Style Sheet can
be composed of several different Style Sheets.

Sharing Style Sheets between projects
When you create a custom Style Sheet, that Style Sheet remains with the project for
which it was created; it doesn't get added to the list of predefined Style Sheets.
However, if you want a new project to use one of your custom Style Sheets or user­
defined tools, you can do so by letting a project inherit the settings of another project ..

Before a project can inherit the settings of another project, you must modify the
BCW.INI file that resides in your Windows directory. If the file doesn't contain an
inherit setting, then you must add tl1.e settings to the file as follows:

[Project]
iTo have new projects inherit settings from the Default Project Settings
(default) :
inherit=O

iTo have new projects inherit settings from currently open project:
inherit=l

iTo have new projects inherit factory default settings:
inherit=2

To pass Style Sheets or user-defined tools from one project to a new project:

Modify BCW.INI so that inherit=l.

2 Open the project that contains the Style Sheet or tools you want to share.

3 Choose Project I New Project.

When the new project is created, it inherits the Style Sheets and user-defined tools of the
project that was open when you choose Project I New Project.

Project Description Language files .
You can also use Project Description Language (.PDL) files to share Style Sheets and
tools between projects. When you save a project, you can instruct the IDE to create a
.PDL file that has the same file name as the project's .IDE file. Likewise, when you open
a project, you can instruct the IDE to read the project's .PDL file. Because a .PDL file
contains information about the Style Sheets and tools used in a project, you can edit a
project's .PDL file so that it uses the Style Sheets and tools of your choosing. However,
care must be taken whenever you edit a .PDL file-it's easy to corrupt the file to the
point where the Project Manager can't read it.

If you plan to use .PDL files to share Style Sheets and tools, you must first ensure that
the IDE creates and reads the files. To do so, open the BCW.INI file (found in your
Windows directory) and add the following settings to the [Project] section of the .INI
file:

[Project]­
saveastext=l
readastext=l

40 c++ User's Guide

The saveastext setting tells the IDE to save a .PDL file whenever a project is saved. The
readastext setting tells the IDE to update an .IDE file if its associated .PDL file is newer
than the .IDE file.

To share Style Sheets or user-defined tools between projects:

1 Modify your BCW.INI file as just described.

2 Open the project that you need to transfer Style Sheets or tools to, then close the
project (choose Project I Close Project). This creates a .PDL file for the project.

3 Open the project that contains the Style Sheets or tools you want to share, then close
the project to save the current settings in the .PDL file.

4 Using a text editor, open the .PDL file containing the Style Sheet or tools you want to
share (the .PDL file name matches the file name of the .IDE file).

5 Search for the Style Sheet's name. For example, if you created a Style Sheet cailed
MYSTYLE, you'll see a section in the .PDL file that starts { StyleSheet = "MYSTYLE".

6 Copy all the text from the beginning brace to the ending brace. If needed, you can
copy more than a single Style Sheet.

Note To share a user-defined tool, copy the section that reads Subsystem=<tool>.

7 Open the .PDL file that is to receive the Style Sheet.

S Find the section for Style Sheets, then paste the copied text to the end of the existing
Style Sheet list.

9 Save the .PDL file that received the copied Style Sheet.

10 Open the project that received the copied Style Sheet to update the project's Style
Sheets and tools from the .PDL file.

After transferring Style Sheets, it's a good idea to reset the saveastext and the readastext
flags in the BCW.IN! file to o. This tells the IDE to not save to or update from .PDL files.

Setting local overrides
Option settings can be overridden at the node level using local overrides. Local
overrides are useful when anode's option settings must differ from its associated Style
Sheet by one or two settings.

Note Although local overrides make it easy to set options for individual nodes, they have the
disadvantage of being difficult to track. While the Options Hierarchy dialog box
displays the Style Sheet and local override settings for a selected node, you must
examine each individual node to see which ones have been overridden. Because of this,
it's recommended that you use separate Style Sheets for nodes that require different
option settings, and use local overrides only in special cases.

To override an option setting:

1 Choose the node whose settings you want to override.

2 Right-click the node (or press Alt+F10) and choose Edit Local Options from the
SpeedMenu. The Options dialog box (which is similar to the Project Options dialog
box) appears and displays the settings for that node .

. C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 41

3 Select the option you want to override. The IDE automatically checks the Local
Override box whenever you modify a Style Sheet setting.

4 Choose OK to confirm your new settings.

Warning! The Local Override check box is enabled only when an option within a topic is selected;
otherwise, the check box is grayed. When you select an option (using Tab, or by
clicking and dragging the mouse off the option), the Local Override check box shows
the status of the selected option. Because of this, you must individually select each
option in a topic to see which ones have been overridden locally. If you choose an
option (by clicking it, or by selecting it and pressing Enter), you change its setting, which
always causes the Local Override check box to be checked.

To undo an override:

1 Right-click the node whose setting you want to modify, then choose Edit Local
Options from the SpeedMenu.

2 In the Options dialog box,' select the topic that contains the overridden setting.

When you select a topic page that has a locally overridden option, the Project
Manager enables the Undo Page button.

3 Select the option (using Tab, or by clicking and dragging the mouse off the option)
whose local override you want to undo; the Local Override check box will be
checked.

4 Click the-Local Override check box to undo the override; the option will revert to its
default Style Sheet setting. To revert the entire topic to the settings contained in the
associated Style Sheet, choose the Undo Page button.

S Choose OK to confirm your modifications.

Viewing project options
Because each node can have its own Style Sheet and you can override the options in the
Style Sheet, you need a quick way to view the option settings for each node.

To view option settings for the nodes in your project:

1 Right-click any node in the Project window and choose View Options Hierarchy, or
click the button on the SpeedBar.

The Options Hierarchy dialog box appears, listing the nodes in the project on the left
and the options that each node uses on the right. You can expand and collapse the list
of nodes in the dialog box just like you can in the Project window, however,
Autodependency nodes don't appear.

An option that's surrounded by double-asterisks (**) in the Options listing indicates
that the option is overridden (by either a Style Sheet or local override) by a dependent
node located farther down in the Options listing. (The asterisks display only when
you select the node where the option is overridden.)

2 When you select a node in the Project Options At list, its settings appear to the right
in the Options list.

42 c++ User's Guide

The Options list displays components of the project in square brackets. At the top of
the list, you'll see the name of the project followed by its Default Project Options.
Below this is the name of the target associated with the node you've selected. If the
node has a Style Sheet associated with it, it's displayed beneath the node (also in
brackets), along with the settings of the Style Sheet. If you've overridden any settings,
these are displayed beneath the [Node overrides] listing. The Options list displays the
settings for all the,ancestors of the node selected in the Project Tree.

3 If you want to edit an option, double-click the option in the Option list, or select it and
click Edit.Whenever you edit options in this manner, the modifications become local
overrides.

4 When you finish viewing your project's option settings, choose Close.

Compiling projects
There are two basic ways to compile projects: build and make. Build compiles and links
all the nodes in a project, regardless of file dates. Make compares the time stamp of the
target with the time stamps of all the files used to build the target. Make then compiles
and links only those nodes necessary to bring the target up to date.

To compile a project, open the project using the Project I Open command, then choose
one Compile, Make All, or Build All from the Project menu (note that the SpeedBar has
three similar looking buttons that correspond to these Project Menu commands).

• Compile (Alt+F9) builds the code in the currently active Edit window. If a Project
window is selected, all the selected nodes in the project are translated; child nodes
aren't translated unless they're selected.

• Make All (F9) translates all the out-of-date nodes in a project. If a project is not
open, the file contained in the active Edit window buffer is built.

When you choose Make All, the Project Manager moves down the Project Tree until
it finds a node with no dependents. The Project Manager then compares that node's
date and time against the date and time of the node's parent. The Project Manager
translates the node only if the child node is newer than the parent node. The Project
Manager then moves up the Project Tree and checks the next node's date and time. In
this way, the Project Manager recurses through the Project Tree, translating only
those nodes that have been updated since the last compile.

• Build All translates all nodes in a project-even if they are up-to-date. Build All
always starts at the project node and builds each successive target down the project.
Choose Cancel to stop a build.

When you choose Build All, the Project Manager starts at the first target and works
down the Project Tree until it comes to a node with no dependents. The Project
Manager compiles that node first (and other nodes on the same level), then works
back up the Project Tree, compiling and linking all the nodes needed to create the
target. This process is then repeated down the Project Tree, until all the targets have
been updated;

For example, if you have a project with an .EXE target that is dependent on two
separate .OBI files, the Project Manager creates the first .OBI file by compiling all its
dependents. It then creates the next .OBI file. Once a target node's dependents are

Chapter 3, Specifying project options and compiling 43

created, it can compile or link the target node. In this case, the Project Manager will
link the two .OBJ files (and any run-time nodes) to create the final .EXE.

Compiling part of a project
There are several ways to compile specific parts of a project. You can

• Translate an individual node
• Build a node and its dependents
• Make a node and its dependents
• Select several nodes and compile

To translate an individual node:

1 Select the node you want to translate.

2 Choose Project I Compile from the main-menu or choose the default translation
command from the SpeedMenu. For example, if you've selected a .CPP file, the node
SpeedMenu contains the command C++ Compile, which compiles only the selected
node.

To build a node and its dependents:

1 Select the node you want to build.

2 Right-click the node (or press Alt+F10) and choose Build Node from the SpeedMenu.
All the dependent nodes are built regardless of whether they're out-of-date.

To make a node and its dependents:

1 Select the node you want to build.

2 Right-click the node (or press Alt+F10) and choose Make Node from the SpeedMenu.
This command compiles only the dependent nodes whose source files are newer than
their associated target files.

To compile several selected nodes:

1 Select the project nodes you want to compile by pressing etrl and clicking the desired
project nodes. (The nodes must be of the same file type, such as .CPP).

2 Choose Make Node or Build Node from the Project Manager SpeedMenu to compile
the selected nodes.

Fixing compile-time errors
Compile-time errors, or syntax errors, occur when your code violates a syntax rule of the
language you're programming in; the C++ compiler cannot compile your program
unless it contains valid language statements. If the compiler encounters a syntax error
while compiling your code, the Message window opens and displays the type of error
or warning it encountered. By choosing Options I Environment I Preferences, you can
specify if old messages should be preserved or deleted between calls to different

44 e++ User's Guide

programming tools (such as a compiler, GREP, or the resource compiler). Check Save
Old Messages if you want the Message window to retain its current listing of messages
when you run a tool.

To clear the Message window, choose Remove All Messages from the Message window
SpeedMenu.

Viewing errors
To view the code that caused a compiler error or warning, select the message in the
Message window; the IDE updates the Edit window so that it displays the location in
your code where the error or warning occurred (this is called Automatic Error
Tracking). If the file containing the error isn't loaded in an Edit window, press Spacebar
to load the file (you can also load the file by pressing Alt+F10, then choosing View Source
from the SpeedMenu). When you view errors in this manner, the Message window
remains selected so you can navigate from message to message.To open or view the
Message window, click the button on the SpeedMenu, or choose View I Message.

Fixing errors
To edit the code associated with an error or warning, do one of the following:

• Double-click the messagein the Message window.
• Select the message in the Message window and press Enter.
• Press Alt+F10 and choose Edit Source from the SpeedMenu.

The Edit window gains focus with the insertion point placed on the line and column in
your source code where the compiler detected the error. From here, edit your code to fix
the error. After fixing the error, press Alt+F7to move to the next error message in the list
or press Alt+FB to go back to the previous message.

Project options reference
You set compiler, linker, librarian, and make options from two different places in the
IDE: the Project Options multiple-page dialog box and TargetExpert. The remainder of
this chapter describes the options available in the Project Options dialog box. They are
described in alphabetical order.

i6-bit compiler options
The 16-bit Compiler options affect the compilation of all 16-bit source modules. It is
usually best to keep· the default setting for most options in this section.

Calling Conventions
Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

Chapter 3, Specifying project options and compiling 45

You can use the __ cdecl, __ pascal, or __ fastcall keywords to override the default
'calling convention on specific functions.

Note These options should be used by experts only.

C
Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parameters right to left). This is the same as
declaring all subroutines and functions with the __ cdecl keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

Pascal
Command-line equivalent:-p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
__ pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

Register
Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutines
and functions with the __ fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

Default = C (-pc)

Entry/Exit code
These options specify which type of prolog and epilog code the compiler generates for
each module's functions.

Note Although these options are listed in the 16-bit compiler section, they also apply to 32-bit
programs.

Windows all functions exportable
Command-line equivalent: -tW

This option creates a Windows object function prolog/ epilog for all __ far functions,
then sets up those functions to be called from another module. This option assumes that
all functions can be called by the Windows kernel or by other modules and generates

46 c++ User's Guide

the necessary overhead mformation for every __ far function (whether the function
needs it or not).

To export the function address from the .EXE to a .DLL, the code includes a call to
MakeProcInstanceO, passing the resulting pointer to the .DLL that requested the address
of the function. For the function to be exportable, the function must be declared as
_export or the function name must be included in the .DEF file of the executable.

This option creates the most general Windows executable, but not necessarily the most
efficient.

Note The -W command-line option is supported for backward compatibility, and is
equivalent to -tWo

Default = ON

Windows explicit functions exported
Command-line equivalent: -tWE

This option creates a Windows object module in which only __ far functions dedared as
_export functions are exportable. Use this option if you have functions that will not be
called by the Windows kernel. Windows Explicit Functions Exported operates the same
as Windows All Functions Exportable except that only those functions marked with the
_export keyword (and methods of classes marked as _export) are given the extra
prolog/ epilog.

This option is far more efficient than Windows All Functions Exportable, since only
those functions called from outside the module get the prolog overhead. This option
requires that you determine in advance which functions or classes need to be exported.
MakeProcInstanceO is still used, but no .DEF file manipulation is needed (if you use this
option along with _export, you don't need to define exports in your .DEF files).

Note The -WE command-line option is supported for backward compatibility, and is
equivalent to -tWE.

Default = OFF

Windows smart callbacks, all functions exportable
Command-line equivalent: -tWS

This option creates an object module with smart callbacks for all __ far functions
exported. Use this option only if the compiler can assume that D5 == 55 for all functions
in the module (which is true for the vast majority of Windows programs and the default
for Borland tools).

Tllis option creates a Windows .EXE function prolog/ epilog for all __ far functions and
sets them up to be called from another module. MakeProcInstanceO does not need to be
called and you do not need to edit the .DEF file.

Note The -WS command-line option is supported for backward compatibility, and is
equivalent to -tWS. "

Default = OFF

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 47

Windows smart callbacks,explicit functions exportable
Command-line equivalent: -tWSE

This option is the same as Windows Smart Callbacks except that only those functions
marked with the _export keyword (and methods of classes marked as _export) are
given the extra prolog/ epilog. This is efficient since only those functions called from
outside the module get the prolog overhead. This option requires determining in
advance which functions / classes need to be exported.

Note The -WSE command-line option is supported for backward compatibility, and is
equivalent to -tWSE.

Oefault = OFF

Windows DLL, all functions exportable
Command-line equivalent: -tWD

This option creates a Windows .OLL function prolog/ epilog for all __ far functions,
then sets up those functions to be called from another module. To actually export
function addresses from the .OLL, the functions must be marked with the _export
keyword or the function names need to be included in the .OEF file of the executable.

Note The -WD command-line option is supported for backward compatibility, and is
equivalent to -tWD.

Oefault = OFF

Windows DLL, explicit functions exported
Command-line equivalent: -tWDE

This option is the same as Windows OLL, All Functions Exportable except that only
__ far functions marked with the _export keyword (and methods of classes marked as
_export) are given the extra prolog/ epilog. This is far more efficient than the Windows
OLL, All Functions Exportable option since only those functions called from outside the
module get the prolog overhead. This option requires determining which functions or
classes need to be exported in advance. No .DEF file manipulation is needed.

Note The -WDE command-line option is supported for backward compatibility, and is
equivalent to -tWDE.

Oefault = OFF

Memory model
The Memory Model section lets you specify the organization of segments for code and
data in your 16-bit programs. (32-bit programs always use the flat memory model.)
Large is the most common memory model used for Windows programs. All .OBJ and
.LIB files in your program should be compiled in the same memory model.

48 c++ User's Guide

Assume SS equals DS
The Assume SS Equals DS options specify how the compiler considers the stack
segment (SS) and the data segment (DS).

Always (DOS only)
Command-line equivalent: -Fs

The compiler always assumes that SS is equal to DS in all memory models. This option
causes the compiler to use the alternate COFx.OBJ startup module (which places the
stack in the data segment) instead ofCOx.OBJ. You can use this option when porting
code originally written for an implementation that makes the stack part of the data
segment.

Default = Default for Memory Model

Default for memory model
The memory model you use determines whether the stack segment (SS) is equal to the
data segment (DS). Usually, the compiler assumes that SS is equal to DS in the small and
medium memory models (except for DLLs).

Never
Command-line equivalent: -Fs-

The compiler assumes that the SS is never equal to DS. This is always the case in the
compact and large memory models and when building a Windows DLL.

Automatic far data
Command-line equivalent: -Ff

When the Automatic Far Data option is enabled, the compiler automatically places data
objects larger than or equal to the threshold size into far data segments. The threshold
size defaults to 32,767. This option is useful for code that doesn't use the huge memory
model, but declares enough large global variables that their total size is close to or
exceeds 64K. This option has no effect for programs that use tiny, small, and medium
memory models. .

When thIs option is disabled, the size value is ignored

This option and the Far Data Threshold input box work together. The Far Data
Threshold specifies the minimum size above which data objects will be automatically
made far.

If you use this option with the Generate COMDEFs option (-Fe), the COMDEFs become
far in the compact, large, and huge models.

Default = OFF

The command-line option -Fm enables all the other -F options (-Fe, -Ff, and -Fs). You
can use -Fm as a handy shortcut when porting code from other compilers. To do this in
the IDE, check the Automatic Far Data and Always options on this Project Options page,
and the Generate COMDEFs option on the Compiler I Floating Point page.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 49

Far data threshold
Command-line equivalent: -Ff=size, where size = threshold size

Use Far Data Threshold to specify the size portion needed to complete the Automatic
Far Data option.

Default = 32767 (if Automatic Far Data is disabled, this option value is ignored)

Far virtual tables
Command-line equivalent: -Vf

When you tum this option on, the compiler creates virtual tables in the code segment
instead of the data segment, unless you override this option using the Far Virtual Tables
Segment (-zV) or Far Virtual Tables Class (-zW) options. Virtual table pointers are made
into full 32-bit pointers (which is done automatically if you are using the huge memory
model).

You can use Far Virtual Tables to remove the virtual tables from the data segment
(which might be getting full). You might also use this option to share objects (of classes
with virtual functions) between modules that use different data segments (for example,
a DLL and an executable that uses that DLL).

You must compile all modules that might share objects entirely with or entirely without
this option. Note that you can get the same effect by using the huge or _export modifiers
on a class-by-class basis.

This option changes the mangled names of C++ objects.

Default = OFF

Fast huge painters
Cokmand-line equivalent: -h

This option offers an alternative method of calculating huge pointer expressions. This
option behaves differently for DOS and Windows programs.

For Windows programs, huge pointers are normalized by the value of the variable
_ALTINCR, which is initialized by Windows at the startup time of the application.

For DOS programs, this option offers a faster method of "normalizing" than the
standard method. (Normalizing is resolving a memory address so that the offset is
always less than 16.) When you use this option, huge pOinters are normalized only
when a segment wraparound occurs in the offset part, which causes problems with
huge arrays if an array element crosses a segment boundary.

Usually, Borland C++ normalizes a huge pointer whenever adding or subtracting from
it. This ensures, for example, that if you have an array of structs that's larger than 64K,
indexing into the array and selecting a struct field always works with structs of any size.
Borland C++ accomplishes this by always normalizing the results of huge pointer
operations-the address offset contains a number that is no higher than 15 and a
segment wraparound never occurs with huge pointers. The disadvantage of this
approach is that it tends to be quite expensive in terms of execution speed.

50 c++ User's Guide

Default = OFF

Model
The Model options specify the memory model you want to use. The memory model you
choose determines the default method of memory addressing.

Compact
Command-line equivalent: -me

Use the compact model if your code is small but you need to address a lot of data. The
Compact model is the opposite of the medium model: far pointers are used for data but
not for code; code is limited to 64K; pointers can point almost anywhere. All functions
are near by default and all data pointers are far by default.

Huge
Command-line equivalent: -mh, DOS only

Use the huge model for very large applications only. Far pointers are used for both code
and data. Borland C++ normally limits the size of all static data to 64K; the huge
memory model sets aside that limit, allowing data to occupy more than 64K.

Default = Large in IDE; Small in BCC.EXE

Large
Command-line equivalent: -ml

Use the large model for very large applications only. Far pointers are used for both code
and data. Data is limited to 1MB. Far pointers can point almost anywhere. All functions
and data pointers are far by default.

Medium
Command-line equivalent: -mm

Use the medium model for large programs that do not keep much data in memory. Far
pointers are used.for code but not for data. Data and stack together are limited to 64K,
but code can occupy up to 1MB. .

The -mm! command-line option compiles using the medium model and assumes DS !=
SS. To achieve this in the IDE, you need to check both the Medium and Never options.

Note The net effect of the -ms! and -mm! options is actually very small. If you take the address
of a stack variable (parameter or auto), the default (DS == SS) is to make the resulting
pointer a near (DS relative) pointer. This way, you can assign the address to a default­
sized pointer in those models without problems. When DS != SS, the pointer type
created when you take the address of a stack variable is an _ss pointer. This means that
the pointer can be freely assigned or passed to a far pointer or to an _ss pointer. But for
the memory models affected, assigning the address to a near or default-sized pointer
produces a "Suspicious pointer conversion" warning. Such warnings are usually errors.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 51

Small
Command-line equivalent: -ms

Use the small model for average size applications. The code and data segments are
different and don't overlap, so you have 64K of code and 64K of data and stack. Near
pointers are always used.

The -ms! command-line option compiles using the small model and assumes DS != SS.
To achieve this in the IDE, you need to check both the Small and Never options.

Tiny
Command-line equivalent: -mt ,DOS only

This is the smallest of the memory models. Use this model when memory is at an
absolute premium. All four segment registers (CS, DS, SS, ES) are set to the same
address. You have a total of 64K for all of your code, data, and stack. Near pointers are
always used. Tiny model programs can be converted to .COM format by linking with
the It option.

Put constant strings in code segments
Command-line equivalent: -de

This option moves all string literals from the data segment to the code segment of the
generated object file, making the data type eonst.

Note Use this option only with compact or large memory models. In addition, this option
does not work with overlays.

Using this option saves data segment space. In large programs, especially those with a
large number of literal strings, this option shifts the burden from the data segment to the
code segment.

Default = OFF

Processor
The Processor options let you specify the minimum CPU type compatible with your
program. These options introduce instructions specific to the CPU type you select to
increase performance.

16-bit instruction set
The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

80186
Command-line equivalent: -1

Choose the 80186 option if you want the compiler to generate extended 16-bit code for
the 80186 instruction set. Also supports the 80286 running in Real mode.

52 C++ Use r f s G u ide

80286
Command-line equivalent: -2

Choose the 80286 option if you want the compiler to generate 16-bit code for the 80286
protected-mode-compatible instruction set.

80386
Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 16-bit code for the 80386
protected-mode-compatible instruction set.

8086
Command-line equivalent: -1-

Choose the 8086 option if you want the compiler to generate 16-bit code for the 8086-
compatible instruction set. (To generate 8086 code, you must not turn on the options
-2, -3, -4, or -5.)

i486
Command-line equivalent: -4

Choose the i486 option if you want the compiler to generate 80386/i486 instructions
running in enhanced-mode Windows.

Default = 8086 (-1-)

Data alignment
The Data Alignment options let you choose how the compiler aligns data in stored
memory. Word, double-word, and quad-word alignment force integer-size and larger
items to be aligned on memory addresses that are a multiple of the type chosen. Extra
bytes are inserted in structures to ensure that members align correctly.

Byte alignment
Command-line equivalent: -a1 or -a-

When Byte Alignment is turned on, the compiler does not force alignment of variables
or data fields to any specific memory boundaries; the compiler aligns data at either even
or odd addresses, depending on which is the next available address.

While byte-wise alignment produces more compact programs, the programs tend to run
a bit slower. The other data alignment options increase the speed that 80x86 processors
fetch and store data.

Double word (4-byte)
Command-line equivalent: -a4, 32-bit only

Double Word alignment aligns non-character data at 32-bit word (4-byte) boundaries.

Chapter 3, Specifying project options and compiling 53

Quad word (a-byte)
Command-line equivalent: -as, 32-bit only

Quad Word alignment aligns non-character data at 64-bit word (8-byte) boundaries.

Default = Byte Alignment (-a-)

Word alignment (2-byte)
Command-line equivalent: -a2

When Word Alignment is on, the compiler aligns non-character data at even addresses.
Automatic and global variables are aligned properly. char and unsigned char variables
and fields can be placed at any address; all others are placed at an even-numbered
address.

Segment names code
Segment Names Code options let you specify a new code segment name and reassign
the group and class.

Code
Use Code to change the name of the code segment as well as the code group and class.

In all options, use an asterisk (*) for name to select the default segment names.

Note Do not change the settings in this dialog box unless you are an expert.

Code class
Command-line equivalent = -zAname

Changes the name of the code segment class to name. By default, the code segment is
assigned to class CODE.

Default = * (default segment name) for all options

Code group
Command-line equivalent = -zPname

Causes any output files to be generated with a code group for the code segment named
name.

Code segment
Command-line equivalent = -zCname

Sets the name of the code segment to name. By default, the code segment is named
_CODE for near code and modulename_TEXT for far code, except for the medium and
large models where the name is filename_CODE (filename is the source file name).

54 c++ User's Guide

Segment names data
Use Segment Names Data to change the default segment, group, and class names for
initialized and uninitialized data.

Note Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Initialized Data
Use Initialized Data to change the default segment, group, and class names for
initialized data.

In all options, use an asterisk (*) for name to select the default segment names.

Note Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Initialized data class
Command-line equivalent = -zTname

Sets the name of the initialized data segment to name. By default, the initialized data
segment class is named DATA.

Default = * (default segment name) for all options

Initialized data group
Command-line equivalent = -zSname

Sets the name of the initialized data segment group to name. By default, the data group
is named DGROUP.

Initialized data segment
Command-line equivalent = -zRname

Sets the name of the initialized data segment to name. By default, the initialized data
segment is named _DATA for near data and modulename_DATA for far data.

Uninitialized data
Use Uninitialized Data to change the default segment, group, and class names for code
uninitialized data.

In all options, use an asterisk (*) for name to select the default segment names.

Note Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Chapter 3, Specifying project options and compiling 55

Un initialized data (BSS class)
Command-line equivalent = -zBname

Sets the name of the uninitialized data segment class to name. By default, the
uninitialized data segments are assigned to class BSS.

Default = * (default segment name) for all options

Uninitialized data (BSS group)
Command-line equivalent = -zGname

Sets the name of the uninitialized data segment group to name. By default, the data
group is named DGROUP.

Uninitialized data (BSS segment)
Command-line equivalent = -zDname

Sets the name of the uninitialized data segment. By default, the uninitialized data
segment is named _BSS for near uninitialized data and modulename_BSS for far
uninitialized data.

Segment names far data
16-bit Compiler I Segment Names Far Data options set the far data segment name,
group, class name, and the far virtual tables segment name and class.

Far data
Use Far Data to change the default segment, group, and class names for far data.

In all options, use an asterisk (*) for name to select the default segment names.

Note Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Far data class
Command-line equivalent = -zFname

Sets the name of the class for __ far objects to name. By default, the name is FAR_DATA.

Default = * (default segment name) for all options

Far data group
Command-line equivalent = -zHname

Causes __ far objects to be placed into the group name. By default, far objects are not
placed into a group.

Far data segment
Command-line equivalent = -zEname

56 c++ User's Guide

Sets the name of the segment where __ far objects are placed to name. By default, the
segment name is the name of the far object followed by _DATA.

Far virtual tables
Use Far Virtual Tables to change the default segment and class names virtual tables.

In all options, use an asterisk (*) for name to select the default segment names.

Note Do not change the settings in this dialog box unless you have a good understanding of
segmentation on the 80x86 processor. Under normal circumstances, you do not need to
specify segment names.

Virtual table class
Command-line equivalent = -zWname

Sets the name of the far virtual table class segment to name. By default, far virtual table
classes are generated in the CODE segment.

Default = * (default segment name) for all options

Virtual table segment
Command-line equivalent = -zVname

Sets the name of the __ far virtual table segment to name. By default, far virtual tables are
generated in the CODE segment.

32·bit compiler options
The 32-bit Compiler page contains two radio buttons that allow you to select which
32-bit compiler you want to use when compiling 32-bit applications.

Use Borland optimizing compiler
The Borland optimizing compiler is a faster compiler than the Intel compiler and it
produces smaller executable files.

Use Intel optimizing compiler
The Intel optimizing compiler produces faster executable files than does the Borland
compiler at the expense of slower cpmpilation times and slightly larger executable file
sizes.

32·bit compiler options
32-bit Compiler options listed on the Processor and Calling Convention pages affect the
compilation of all 32-bit Windows applications for Windows NT and Windows 95.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 57

Because 32-bit programs use a flat memory model (they are not segmented), there are
fewer options to configure than for 16-bit programs.

Calling conventions
Calling Convention options tell the compiler which calling sequences to generate for
function calls. The C, Pascal, and Register calling conventions differ in the way each
handles stack cleanup, order of parameters, case, and prefix of global identifiers.

You can use the __ cded, __ pascal, __ fastcall, or __ stdcall keywords to override the
default calling convention on specific functions.

Note These options should be used by experts only.

C
Command-line equivalent: -pc, -p-

This option tells the compiler to generate a C calling sequence for function calls
(generate underbars, case sensitive, push parameters right to left). This is the same as
declaring all subroutines and functions with the __ cded keyword. Functions declared
using the C calling convention can take a variable parameter list (the number of
parameters does not need to be fixed).

You can use the __ pascal, __ fastcall, or __ stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Pascal
Command-line equivalent: -p

This option tells the compiler to generate a Pascal calling sequence for function calls (do
not generate underbars, all uppercase, calling function cleans stack, pushes parameters
left to right). This is the same as declaring all subroutines and functions with the
__ pascal keyword. The resulting function calls are usually smaller and faster than those
made with the C (-pc) calling convention. Functions must pass the correct number and
type of arguments.

You can use the __ cded, __ fastcall, or __ stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Register
Command-line equivalent: -pr

This option forces the compiler to generate all subroutines and all functions using the
Register parameter-passing convention, which is equivalent to declaring all subroutines
and functions with the __ fastcall keyword. With this option enabled, functions or
routines expect parameters to be passed in registers.

You can use the __ pascal, __ cded, or __ stdcall keywords to specifically declare a
function or subroutine using another calling convention.

Standard Call (32-bit compiler only)
Command-line equivalent: -ps

58 c++ User's Guide

This option tells the compiler to generate a Stdcall calling sequence for function calls
(does not generate underscores, preserve case, called function pops the stack, and
pushes parameters right to left). This is the same as declaring all subroutines and
functions with the __ stdcall keyword. Functions must pass the correct number and
type of arguments.

You can use the __ cdecl, __ pascal, __ fastcall keywords to specifically declare a
function or subroutine using another calling convention.

Default = C (-pc)

Processor
32-bit Compiler Processor options specify which CPU instruction set to use and how to
handle floating-point code for 32-bit programs.

32·bit instruction set

The Instruction Set options specify for which CPU instruction set the compiler should
generate code.

80386
Command-line equivalent: -3

Choose the 80386 option if you want the compiler to generate 80386 protected-mode­
compatible instructions running on Windows 95 or Windows NT.

i486
Command-line equivalent: -4

Choose the i486 option if you want the compiler to generate i486 protected-mode­
compatible instructions running on Windows 95 or Windows NT.

Pentium
Command-line equivalent: -5

Choose the Pentium option if you want the compiler to generate Pentium instructions
on Windows 95 or Windows NT.

While this option increases the speed at which the application runs on Pentium
machines, expect the program to be a bit larger than when compiled with the 80386 or
i486 options. In addition, Pentium-compiled code will sustain a performance hit on
non-Pentium systems.

Pentium Pro
Command-line equivalent: -6

Choose the Pentium Pro option if you want the compiler to generate Pentium Pro
instructions running on Windows 95 or Windows NT.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 59

Note This option is valid only if you are using the 32-bit Intel compiler (choose 32-bit
Compiler I Intel Optimizing Compiler in the Project Options dialog box or use the
BCC32i.EXE command-line compiler).

Default = 80386 (-3)

Build Attributes options
Build attributes affect whether or not a node is built during compilation. The icons
associated with each of these options are displayed next to the nodes in the Project
hierarchy diagram.

Note This set of options is not available for an AppExpert project.

Always build
Check Always Build and the node is always built, even if it has not changed.

Build when out of date
Check Build When Out of Date and the node is built only if it has changed.

Can't build
Check Can't Build to be notified when a node cannot be built.

Exclude from parent
Check Exclude from Parent and the system indicates when a node should be excluded
from parent (such as with source pools).

Never build
Check Never Build and the node is not built.

c++ options
C++ Options affect compilation of all C and C++ programs. For most options in this
section, you usually want to keep the default settings.

60 c++ User's Guide

c++ compatibility
Use the C++ Compatibility options to handle C++ compatibility issues, such as handling
'char' types, specifying options about hidden pointers, passing class arguments, adding
hidden members and code to a derived class, passing the 'this' pointer to 'Pascal'
member functions, changing the layout of classes, or insuring compatibility when class
instances are shared with non-C++ code or code compiled with previous versions of
Borland C++.

'deep' virtual bases
Command-line equivalent: -Vv

When a derived class overrides a virtual function which it inherits from a virtual base
class, and a constructor or destructor for the derived class calls that virtual function
using a pointer to the virtual base class, the compiler can sometimes add hidden
members to the derived class. These "hidden members" add code to the constructors
and destructors.

This option directs the compiler not to add the hidden members and code so that the
class instance layout is the same as with previous version of Borland C++; the compiler
does not change the layout of any classes to relax the restrictions on pointers.

Default = OFF

Calling convention mangling compatibility
Command-line equivalent: -VC

When this option is enabled, the compiler disables the distinction of function names
where the only possible difference is incompatible code generation options. For
example, with this option enabled, the linker will not detect if a call is made to a
_ _ fastcall member function with the cdecl calling convention.

This option is provided for backward compatibility only; it lets you link old library files
that you cannot recompile.

Default = OFF

Disable constructor displacements
Command-line equivalent: -V c

When the Disable Constructor Displacements option is enabled, the compiler does not
add hidden members and code to a derived class (the default).

This option insures compatibility with previous versions of the compiler.

Default = OFF

Do not treat 'char' as distinct type
Command-line equivalent: -K2, 16-bit

Allow only signed and unsigned char types. The Borland C++ compiler allows for
signed char, unsigned char, and char data types. This option treats char as signed.

Chapter 3, Specifying project options and compiling 61

This option is provided for compatibility with previous versions of Borland C++ (3.1
and earlier) and supports only 16-bit programs.

Default = OFF

Don't restrict scope of 'for' loop expression variables
Command-line equivalent: -Vd

This option lets you specify the scope of variables declared in for loop expressions. The
output of the following code segment changes, depending on the setting of this option.

int main (void)

for(int i=O; i<10; iff)

cout « "Inside for loop, i = " « i « endl;
Ilend of for-loop block

cout « "Outside for loop, i = " « i «endl; Ilerror without -Vd

Ilend of block containing for loop

If this option is disabled (the default), the variable i goes out of scope when processing
reaches the end of the for loop. Because of this, you'll get an Undefined Symbol
compilation error if you compile this code with this option disabled.

If this option is enabled (-Vd), the variable i goes out of scope when processing reaches
the end of the block containing the for loop. In this case, the code output would be:

Inside for loop, i = 0

Outside for loop, i = 10

Default = OFF

Pass class values via reference totemporary
Command-line equivalent: -Va

When this option is enabled, the compiler passes class arguments using the "reference
to temporary" approach. When an argument of type class with constructors is passed by
value to a function, this option instructs the compiler to create a temporary variable at
the calling site, initialize this temporary variable with the argument value, and pass a
reference from this temporary to the function.

This option insures compatibility with previous versions of the compiler.

Default = OFF

Push 'this" first for Pascal member functions
Command-line equivalent: -Vp

62 C++ Use r 's G u ide

When this option is enabled, the compiler passes the this pointer to Pascal member
functions as the first parameter on the stack.

By default, the compiler passes the this parameter as the last parameter on the stack,
which permits smaller and faster member function calls.

Default = OFF

Treat 'far' classes as 'huge'
Command-line equivalent -Vb

When this option is enabled, the compiler treats all classes declared __ far as if they were
declared as __ huge. For example, the following code normally fails to compile.
Checking this option allows the following code fragment to compile:

struct _huge A

virtual void f(); II A vtable is required to see the error.
} ;

struct _far B public A

} ;

II Error: Attempting to derive a far class from the huge base 'A'.

Default = OFF

Virtual base pOinters
When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.

The Virtual Base Pointers options specify options about the hidden pointer.

Always near
Command-line equivalent: -Vb-

When the Always Near option is on, the hidden pointer will always be a near pointer.
(When a class inherits virtually from a base class, the compiler stores a hidden pointer in
the class object to access the virtual base class subobject.)

This option allows for the smallest and most efficient code.

Same size as 'this' pointer
Command-line equivalent: -Vb

When the Same Size as 'this' Pointer option is on, the compiler matches the size of the
hidden pointer to the size of the this pointer in the instance class.

This allows for compatibility with previous versions of the compiler.

Default = Always Near (-Vb-)

Chapter 3, Specifying project options and compiling 63

Vtable pointer follows data members
Command-line equivalent -Vt

When this option is enabled, the compiler places the virtual table pointer after any
nonstatic data members of the specified class.

This option insures compatibility when class instances are shared with non-C++ code
. and when sharing classes with code compiled with previous versions of Borland C++.

Default = OFF

Exception handling I RTII
Use the Exceptions Handling options to enable or disable exception handling and to tell
the compiler how to handle the generation of run-time type information.

If you use exception handling constructs in your code and compile with exceptions
disabled, you'll get an error.

Enable exceptions
Command-line equivalent: -x

When this option is enabled, C++ exception handling is enabled. If this option is
disabled (-x-) and you attempt to use exception handling routines in your code, the
compiler generates error messages during compilation.

Disabling this option makes it easier for you to remove exception handling information
from programs; this might be useful if you are porting your code to other platforms or
compilers.

Note Disabling this option turns off only the compilation of exception handling code; your
application can still include exception code if you link .OB] and library files that were
built with exceptions enabled (such as the Borland standard libraries).

Default=ON

Enable run-time type information
Command-line equivalent: -RT

This option causes the compiler to generate code that allows run-time type
identification.

In general, if you set Enable Destructor Cleanup (-xd), you will need to set this option as
well.

Default=ON

Enable compatible exceptions
Command-line equivalent: -xc, 16-bit only

64 c++ User's Guide

This option allows .EXEs and .DLLs built with Borland C++ to be compatible with
executables built with other products. When Enable Compatible Exceptions is disabled,
some exception handling information is included in the .EXE, which could cause
compatibility issues.

Note Libraries that can be linked into .DLLs need to be built with this option enabled.

Default = OFF

Enable destructor cleanup
Command-line equivalent: -xd

When this option is enabled and an exception is thrown, destructors are called for all
automatically declared objects between the scope of the catch and throw statements.

In general, when you enable this option, you should also set Enable Runtime Type
Information (-RT) as well.

Note Destructors are not automatically called for dynamic objects allocated with new, and
dynamic objects are not automatically freed.

Default = ON

Enable exception location information
Command-line equivalent: -xp

When this option is enabled, run-time identification of exceptions is available because
the compiler provides the file name and source-code line number where the exception
occurred. This enables the program to query file and line number from where a C++
exception was thrown.

Default = OFF

Enable fast exception pro logs
Command-line equivalent: -xf

When this option is enabled, inline code is expanded for every exception handling
function. This option improves performance at the cost of larger executable file sizes.

Note If you select both Fast Exception Prologs and Enable Compatible Exceptions (-xc), fast
prologs will be generated but Enable Compatible Exceptions will be disabled (the two
options are not compatible).

Default = OFF

General

Zero-length empty base classes
Command-line equivalent: -Ve

Usually the size of a class is at least one byte, even if the class does not define any data
members. When this option is enabled, the compiler ignores this unused byte for the
memory layout and the total size of any derived classes.

Chapter 3, Specifying project options and compiling 65

Default = OFF

Member pOinters
Use c++ Member Pointers options to direct member pointers and affect how the
compiler treats explicit casts.

Honor precision of member pOinters
Command-line equivalent: -Vmp

When this option is enabled, the compiler uses the declared precision for member
pointer types. Use this option when a pointer to a derived class is explicitly cast as a
pointer-to-member of a simpler base class (when the pointer is actually pointing to a
derived class member).

Default = OFF

Member pointer representation
The c++ Member Pointers options specify what member pointers can point to.

Smallest for class
Command-line equivalent: -Vmd

When this option is enabled, member pointers use the smallest possible representation
that allows member pointers to point to all members of their particular class. If the class
is not fully defined at the point where the member pointer type is declared, the most
general representation is chosen by the compiler and a warning is issued.

Default = OFF

Support all cases
Command-line equivalent: -Vmv

When this option is enabled, the compiler places no restrictions on where member
pointers can point. Member pointers use the most general (but not always the most
efficient) representation.

Default = ON

Support multiple inheritance
Command-line equivalent: -Vmm

When this option is enabled, member pointers can point to members of multiple
inheritance classes (with the exception of virtual base classes).

Default = OFF

Support single inheritance
Command-line equivalent: -Vms

66 c++ User's Guide

When this option is enabled, member pointers can point only to members of base classes
that use single inheritance.

Default = OFF

Templates
Use the options under C++ Options I Templates to tell the compiler how to generate
template instances in C++.

Templates instance generation
The Template Instance Generation options specify how the compiler generates template
instances in C++. -

External
Command-line equivalent: -Jgx

When the External option is on, the compiler generates external references to all
template instances.

When you use this option, all template instances in your code must be publicly defined
in another module with the external option (-Jgd) so that external references are
properly resolved.

Default = OFF

Global
Command-line equivalent: -Jgd

When the Global option is on, the compiler generates public (global) definitions for all
template instances.

The Global option does not merge duplicates. If the same template instance is generated
more than once, the linker reports public symbol re-definition errors.

Default = OFF

Smart
Command-line equivalent: -Jg

When the Smart option is enabled, the compiler generates public (global) definitions for
all template instances. If more than one module generates the same template instance,
the linker automatically merges duplicates to produce a single copy of the instance.

To generate the instances, the compiler must have available the function body (in the
case of a template function) or the bodies of member functions and definitions for static
data members (in the case of a template class), typically in a header file.

This is a convenient way of generating template instances.

Default = ON

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 67

Virtual Tables
C++ Options I Virtual Tables options control C++ virtual tables and the expansion of
inline functions when debugging.

Virtual tables linkage
The c++ Virtual Tables options control C++ virtual tables and the expansion of inline
functions when debugging.

External
Command-line equivalent: -VO

You use the External option to generate external references to virtual tables. If you don't
want to use the Smart or Local options, use the External and Public options to produce
and reference global virtual tables.

Note When you use this option, one or more of the modules comprising the program must be
compiled with the Public option to supply the definitions for the virtual tables.

Default = OFF

Local
Command-line equivalent: -V s

You use the Local option to generate local virtual tables (and out..;of-line inline functions)
so that each module gets its own private copy of each virtual table or inline function it
uses.

The Local option uses only standard .OBI and .ASM constructs, but produces larger
executables.

Default = OFF

Public
Command-line equivalent: -V1

Public produces public definitions for virtual tables. When using the External option
(-VO), at least one of the modules in the program must be compiled with the Public
option to supply the definitions for the virtual tables. All other modules should be
compiled with the External option to refer to that Public copy of the virtual tables.

Default = OFF

Smart
Command-line equivalent: -V

This option generates common C++ virtual tables and out-of-line inline functions across
the modules in your application. As a result, only one instance of a given virtual table or
out-of-line inline function is included in the program.

The Smart option generates the smallest and most efficient executables, but produces
.OBI and .ASM files compatible only with TLINK and TASM. .

68 c++ User's Guide

Default=ON

Compiler options
Compiler options are common to all C and C++ programs. They directly affect how the
compiler generates code.

Defines
Command-line equivalent: -Dname and -Dname=string

The macro definition capability of Borland C++ lets you define and undefine macros
(also called manifest or symbolic constants) in the IDE or on the command line. The
macros you define override those defined in your source files.

Defining macros from the IDE
Preprocessor definitions (such as those used in #if statements and macro definitions)
can be entered on the Compiler Defines page. The following rules apply when using the
Defines input box:

Separate multiple definitions with semicolons (;), and assign values with an equal sign
(=). For example:

SwitchliSwitch2iSwitch3=OFF

• Leading and trailing spaces are stripped, but embedded spaces are left intact.
• If you want to include a semicolon in a macro, precede the semicolon witha

backslash (\).

Defining macros on the command line
On the command line, the -Dname option defines the identifier name to the null string.
-Dname=string defines name to string. In this assignment, string cannot contain spaces or
tabs. You can also define multiple #define options on the command line using either of
the following methods:

Include multiple definitions after a single -D option by separating each define with a
semicolon (;) and assigning values with an equal sign (=). For example:

BCC.EXE -Dxxxiyyy=lizzz=NO MYFILE.C

Include multiple -D options, separating each with a space. For example:

BCC.EXE -Dxxx -Dyyy=l -Dzzz=NO MYFILE.C

Code generation
Compiler Code Generation options affect how code is generated.

C hap t e r 3, S pee i t. yin 9 pro j e c top t ion san d com p iii n 9 69

Allocate enums as ints
Command-line equivalent: -b

When the Allocate Enums As !nts option is on, the compiler always allocates a whole
word (a two-byte int for 16-bits or a four-byte int for 32-bits) for enumeration types
(variables of type enum).

When this option is off (-b-), the compiler allocates the smallest integer that can hold the
enum~ration values: the compiler allocates an unsigned or signed char if the values of
the enumeration are within the range of 0 to 255 (minimum) or -128 to 127 (maximum),
or an unsigned or signed short if the values of the enumeration are within the following
ranges:

o to 65,535 (minimum) or -32,768 to 32,767 (maximum) (16-bit)

The compiler allocates a a two-byte int (16-bit) or a four-byte int (32-bit) to represent the
enumeration values if any value is out of range.

Default=ON

Duplicate strings merged
Command-line equivalent: -d

When you check the Duplicate Strings Merged option, the compiler merges two literal
strings when one matches another. This produces smaller programs (at the expense of a
slightly longer compile time), but can introduce errors if you modify one string.

Default = OFF (-d-)

fastthis
Command-line equivalent: -po, 16-bit only

This option causes the compiler to use the __ fastthis calling convention when passing
the this pointer to member functions. The this pointer is passed in a register (or a
register pair in 16-bit large data models). Likewise, calls to member functions load the
register (or register pair) with this. Note that you can use __ fastthis to compile specific
functions in this manner.

When this is a 'near' (16-bit) pointer, it is supplied in the SI register; for 'far' this
pointers, DS:S1 is used. If necessary, the compiler saves and restores DS. All references
in the member function to member data are done via the SI register.

The names of member functions compiled with __ fastthis are mangled differently from
non-fastthis member functions, to prevent mixing the two. It is easiest to compile all
classes with __ fastthis, but you can compile some classes with __ fastthis and some
without, as in the following example:

II no -po on the command-line
class X;
#pragrna option -po
class Y IIY will use fastthis

70 C++ Use r 's G u ide

} ;

class X IIX will not use fastthis,
Iisince its class declaration
Ilappeared before fastthis was turned on

} ;

#pragma option -po-

Note If you use a makefile to build a version of the class library that has __ fastthis enabled,
you must define _CLASSLIB_ALLOW _po and use the -po option. The
_CLASSLIB_ALLOW _po macro can be defined in BORLANDC\INCLUDE\
SERVICES\borlandc.h.

If you use a makefile to build a __ fastthis version of the runtime library, you must
define _RTL_ALLOW _po and use the -po option.

If you rebuild the libraries and use -po without defining the appropriate macro, the
linker emits undefined symbol errors.

Default = OFF

Register variables
These options suppress or enable the use of register variables.

Automatic
Command-line equivalent: -r

Choose Automatic to tell the compiler to automatically assign register variables if
possible, even when you do not specify a register variable by using the register type
specifier.

Generally, you can keep this option set to Automatic unless you are interfacing with
preexisting assembly code that does not support register variables.

Default = Automatic (-r)

None
Command-line equivalent: -r-

Choose None to tell the compiler not to use register variables even if you have used the
register keyword.

Register keyword
Command-line equivalent: -rd

Choose Register Keyword to tell the compiler to use register variables only if you use
the register keyword and a register is available. Use this option or the Automatic option
(-r) to optimize the use of registers.

Note You can use -rd in #pragma options.

Chapter 3, Specifying project options and compiling 71

Unsigned characters
Command-line equivalent: -K

When the Unsigned Characters option is on, the compiler treats all char declarations as
if they were unsigned char type, which provides compatibility with other compilers.

Default = OFF (char declarations default to signed; -K-)

Floating point
The Floating Point options specify how the compiler handles floating-point numbers in
your code.

Correct Pentium FDIV flaw
Command-line equivalent: -fp

Some early Pentium chips do not perform specific floating-point division calculations
with full precision. Although your chances of encountering this problem are slim, this
switch inserts code that emulates floating-point division so that you are assured of the
correct result. This option decreases your program's FDIV instruction performance.

Note Use of this option only corrects FDIV instructions in modules that you compile. The run­
time library also contains FDIV instructions which are not modified by the use of this
switch. To correct the run-time libraries, you must recompile them using this switch.

The following functions use FDIV instructions in assembly language which are not
corrected if you use this option

acos cosh powlOl

acos coshi owl

asin cosi sin

asini exp sinh

atan expl sinhl

atan2 fmod sin!

atan21 [pow tahn

cos powlO tanh

tanl

In addition, this switch does not correct functions that convert a floating-point number
to or from a string (such as printf or scan£).

Default = OFF

72 c++ User's Guide

Fast floating point
Command-line equivalent: -ff

When Fast Floating Point is on, floating-point operations are optimized without regard
to explicit or implicit type conversions. Calculations can be faster than under ANSI
operating mode.

When this option is unchecked (-ff-), the compiler follows strict ANSI rules regarding
floating-point conversions.

Default = OFF

No floating point
Command-line equivalent: -f-

Choose No Floating Point if you are not using floating point. No floating-point libraries
are linked when this option is enabled (-f-). If you enable this option and use floating­
point calculations in your program, you will get link errors. When unchecked (-f), the
compiler emulates 80x87 calls at runtime.

Default = OFF (-f)

Compiler output
Set control of object file contents on the Compiler Output page.

Autodependency information
Command-line equivalent: -X-

When the Autodependency option is checked (-X-), the compiler generates
auto dependency information for all project files with a .C or .CPP extension.

The Project Manager can use autodependency information to speed up compilation
times. The Project Manager opens the .OBJ file and looks for information about files
included in the source code. This information is always placed in the .OBJ file when the
source module is compiled. After that, the time and date of every file that was used to
build the .OBJ file is checked against the time and date information in the .OBJ file. The
source file is recompiled if the dates are different. This is called an autodependency
check. .

If the project file contains valid dependency information, the Project Manager does the
autodependency check using that information. This is much faster than reading each
.OBJ file.

When this option is unchecked (-X), the compiler does not generate the autodependency
information.

Modules compiled with autodependency information can use Make's autodependency
feature.

Default = ON (-X-)

Chapter 3, Specifying project options and compiling 73

Generate COMDEFs
Command-line equivalent: -Fc, 16-bit only

Generate COMDEFs generates communal variables (COMDEFs) for global C variables
that are not initialized and not declared as static or extern. Use this option when header
files included in several source files contain global variables.

For example, a definition such as

int SomeArray[256];

could appear in a header file that is then included in many modules. When this option is
on, the compiler generates SomeArray as a communal variable rather than a public
definition (a COMDEF record rather than a PUBDEF record). You can use this option
when porting code that uses a similar feature with another implementation.

The linker generates only one instance of the variable, so it will not be a duplicate
definition linker error. As long as a given variable does not need to be initialized to a
nonzero value, you do not need to include a definition for it in any of the source files.

Default = OFF

Generate underscores
Command-line equivalent: -u

When the Generate Underscores option is on, the compiler automatically adds an
underscore character C) in front of every global identifier (functions and global
variables) before saving them in the object module. Pascal identifiers (those modified by
the _ _ pascal keyword) are converted to uppercase and are not prefixed with an
underscore.

Underscores for C and C++ are optional, but you should tum this option on to avoid
errors if you are linking with the standard Borland C++ libraries.

Default = ON

Source
Compiler I Source options set source code interpretation.

Identifier length
Command-line equivalent: -in, where n = significant characters

Use the Identifier Length input box to specify the number of significant characters (those
which will be recognized by the compiler) in an identifier.

Except in C++, which recognizes identifiers of unlimited length, all identifiers are
treated as distinct only if their significant characters are distinct. This includes variables,
preprocessor macro names, and structure member names.

Valid numbers for n are 0, and 8 to 250, where 0 means use the maximum identifier
length of 250.

74 c++ User's Guide

By default, Borland C++ uses 250 characters per identifier. Other systems (including
some UNIX compilers) ignore characters beyond the first eight. If you are porting to
other environments, you might want to compile your code with a smaller number of
significant characters, which helps you locate name conflicts in long identifiers that have
been truncated.

Default = 250

Language compliance
The Language Compliance options tell the compiler how to recognize keywords in your
programs.

ANSI
Command-line equivalent: -A

The ANSI option compiles C and C++ ANSI-compatible code, allowing for maximum
portability. Non-ANSI keywords are ignored as keywords.

Borland extensions
Command-line equivalents: -A-, -AT

The Borland Extensions option tells the compiler~to recognize Borland's extensions to
the C language keywords, including near, far, huge, asm, cded, pascal, interrupt,
_export, _ds, _cs, _ss, _es, and the register pseudovariables LAX, _BX, and so on). For a
complete list of keywords, see the keyword index.

Kernighan and Ritchie
Command-line equivalent: -AK

The Kernighan and Ritchie option tells the compiler to recognize only the K&R
extension keywords and treat any of Borland's C++ extension keywords as normal
identifiers.

If you get declaration syntax errors from your source code, check that this option is set
to Borland Extensions.

Default = Borland Extensions (-A-)

UNIX V
Command-line equivalent: -AU

The UNIX V option tells the compiler to recognize only UNIX V keywords and treat any
of Borland's C++ extension keywords as normal identifiers.

MFC compatibility
Command-line equivalents: -VF

Tum this option on to compile code that is compatible with the Microsoft Foundation
Classes (MFC). Among other things, the compiler makes the following adjustments to
be compatible with MFC:

Chapter 3, Specifying project options and compiling 75

• Accepts spurious semicolons in a class scope.

• Allows anonymous structs.

• Uses the old-style scoping resolution in for loops.

• Allows methods to be declared with a calling convention, but leaves off the calling
convention in the definition.

• Tries the operator new if it cannot resolve a call to the operator new[].

• Lets you omit the operator & on member functions.

• Allows a const class that is passed by value to be treated as a trivial conversion, not as
a user conversion.

• Allows you to use a cast to a member pointer as a selector for overload resolution,
even if the qualifying type of the member pointer is not derived from the class in
which the member function is declared.

• Accepts declarations with duplicate storage in a class, as in
extern "e" typedef

• Accepts and ignores #pragma comment(linker, " ... ") directives.

Default = OFF

Nested comments
Command-line equivalent: -c
When the Nested Comments option is on, you can nest comments in your C and C++
source files.

Nested comments are not allowed in standard C implementations, and they are not
portable.

Default = OFF

Debugging
Compiler Debugging options affect the generation of debug information during
compilation. When linking larger .OBJ files, you may need to tum these options off to
increase the available system resources.

Browser reference information in OBJs
Command-line equivalent: -R

When the Browser Reference Info In OBJs option is on, the compiler generates
additional browser-specific information such as location and reference information. This
information is then included in your .OBJ files. In addition to this option, you need
debugging information (-v) to use the Browser.

When this option is off, you can link and create larger object files. While this option does
not affect execution speed, it does affect compilation time and program size.

76 C++ Use r '5 G U ide

Default = ON

Debug information in OBJs
Command-line equivalent: -v

When the Debug Info In OBJs option is on, debugging information is included in your
.OBJ files. The compiler passes this option to the linker so it can include the debugging
information in the .EXE file. For debugging, this option treats C++ inline functions as
normal functions.

You need debugging information to use either the integrated debugger or the
standalone Turbo Debugger.

When this option is off (-v-), you can link and create larger object files. While this option
does not affect execution speed, it does affect compilation and link time.

Note When Line Numbers is on, make sure you turn off Jump Optimization in the 16-bit
specific optimizations and Pentium scheduling in the 32-bit Compiler options. When
these options are enabled, the source code will not exactly match the generated machine
instructions, which can make stepping through code confusing.

Default=ON

Line numbers
Command-line equivalent: -y

When the Line Numbers option is on, the compiler automatically includes line numbers
in the object and object map files. Line, numbers are used by both the integrated
debugger and Turbo Debugger.

Although the Debug Info in OBJs option (-v) automatically generates line number
information, you can turn that option off (-v-) and turn on Line Numbers (-y) to reduce
the size of the debug information generated. With this setup, you can still step and trace,
but you will not be able to watch or inspect data items.

Including line numbers increases the size of the object and map files but does not ,affect
the speed of the executable program.

Note When Line Numbers is on, make sure you tum off Jump Optimization in the 16-bit
specific optimizations and Pentium scheduling in the 32-bit Compiler options. When
these options are enabled, the source code will not exactly match the generated machine
instructions, which can make stepping through code confusing.

Default = OFF

Out-of-line inline functions
Command-line equivalent: -vi

When the Out-of-Line Inline Functions option IS on, the compiler expands C++ inline
functions inline.

Chapter 3, Specifying project options and compiling 77

To control the expansion of inline functions, the Debug Information In OBJs option (-v)
acts slightly differently for C++ code: when inline function expansion is disabled, inline
functions are generated and called like any other functiort.

Because debugging withinline expansion can be difficult, the command-line compilers
provide the following options:

• -v turns debugging on and inline expansion off
• -v- turns debugging offand inline expansion on
• -vi turns inline expansion off (no inline substitution will occur)
• -vi- turns inline expansion on

For example, if you want to tum both debugging and inline expansion on, use the -v
and -vi- options.

Default = OFF

Standard stack frame
Command-line equivalent: -k

When the Standard Stack Frame option is on, the compiler generates a standard stack
frame (standard function entry and exit code). This is helpful when debugging, since it
simplifies the process of tracing through the stack of called subroutines.

When this option is off, any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code. This makes the code
smaller and faster.

The Standard Stack Frame option should always be on when you compile a source file
for debugging.

Default=ON

Test Stack Overflow
Command-line equivalent: -N, 16-bit only

When the this option is on, the compiler generates stack overflow logic at the entry of
each function.

Even though this is costly in terms of both program size and speed, it can be a real help
when trying to track down difficult stack overflow bugs. If an overflow is detected, the
run-time error message Stack overflow! is generated, and the program exits with an
exit code of l.

Note Stack overflow testing is always enabled in the 32.,.bit compilers (this adds a minimal
overhead to 32-bit programs).

Default = OFF

Precompiled headers
Using precompiled header files can dramatically increase compilation speed by storing
an image of the symbol table on disk in a file, then later reloading that file from disk

78 C++ Use r 's G u id e

instead of parsing all the header files again. Directly loading the symbol table from disk
is much faster than parsing the text of header files, especially if several source files
include the same header file.

Cache precompiled header
Command-line equivalent: -He

Whenyouenable this option, the compiler caches the precompiled headers it generates.
This is useful when you are precompiling more than one header file.

Note To use this option, you must also enable the Generate and Use (-H) precompiled header
option.

Default = OFF

Precompiled header name
Command-line equivalent: -H=filename

This option lets you specify the name of your precompiled header file. The compilers set
the name of the precompiled header to filename. .

When this option is enabled, the compilers generate and use the precompiled header file
that you specify.

Precompiled headers
Using precompiled headers can dramatically increase compilation speeds, though they
require a considerable amount of disk space.

Do not generate or use
Command-line equivalent: -H-

When the Do Not Generate Or Use option is on, the compilers do not generate or use
precompiled headers.

Default = Do not generate or use (-H-)

Generate and use
Command-line equivalent: -H

When this option is enabled, the IDE generates and uses precompiled headers. The
default file name is <projectname>.CSM for IDE projects and BCDEF.CSM (16-bit) or
BC32DEF.CSM (32-bit) for the command-line compilers.

Use but do not generate
Command-line equivalent: -Hu

When the Use But Do Not Generate option ison, the compilers use preexisting
precompiled header files; new precompiled header files are not generated.

Chapter 3 , Specifying pro j e c to p t ion s and compiling 79

· Stop precompiling after header file
Command-line equivalent: -H"xxx"; for example -H"owllowlpch.h"

This option terminates compiling the precompiled header after the compiler compiles
the file specified as xxx. You can use this option to reduce the amount of disk space used
by precompiled headers ..

When you use this option, the file you specify must be included' from a source file for
the compiler to generate a .CSM file.

Note You cannot specify a header file that is included from another header file. For example,
you cannot list a header included by windows.h because this would cause the
precompiled header file to be closed before the compilation of windows.h was
competed.

Directories options
The Directories options tell the Borland C++ compiler where to find or where to put
header files, library files, source code, output files, and other program elements.

Source directories
The Source Directories options let you specify the directories that contain your standard
include files, library and .OB} files, and program source files.

Include
Command-line equivalent: -Ipath, where path = directory path

Use the Include list box to specify the drive and/ or directories that contain program
include files. Standard include files are those given in angle brackets «» in an #include
statement (for example, #include <myfile».

Note The Borland compilers and linkers use specific file search algorithms to locate the files
needed to complete the compilation and link cycles.

Library
Command-line equivalent: -Lpath, where path = directory path

Use the Library list box to specify the directories that contain the Borland C++ IDE
startup object files (COx.OB}), run-time library files (.LIB files), and all other .LIB files. By
default, the linker looks for them in the directory containing the project file (or in the
current directory if you're using the command-line compiler).

Note You can also use the linker option ILpath to specify the library search directories when
you link files from the command line.

Source
The Source list box specifies the directories where the compiler and the integrated
debugger should look .for your project source files.

80 c++ User's Guide

Specifying multiple directories
Multiple directory names are allowed in each of the list boxes; use a semicolon (;) to
separate the specified drives and directories. To display a history list of previously
entered directory names, click the down-arrow icon or press Alt+Down arrow.

From the command line, you can enter multiple include and library directories in the
following ways:

• You can stack multiple entries with a single -L or -I option by separating directories
with a semicolon:

BCC.EXE -Ldirnamel;dirname2;dirname3 -lincl;inc2;inc3 myfile.c

• You can place more than one of each option on the command line, like this:

BCC.EXE -Ldirnamel -Ldirname2 -linc1 -linc2 -linc3 myfile.c

• You can mix listings:
BCC.EXE -Ldirnamel;dirname2 -lincl -Ld:dirname3 -linc2;inc3 myfile.c

If you list multiple -L or -I options on the command line, the result is cumulative; the
compiler searches all the directories listed in order from left to right~

File search algorithms

#include-file search algorithms
Borland c++ searches for files included in your source code with the #include directive
in the following ways:

If you specify a path and/ or directory with your include statement, Borland C++
searches only the location specified. For example, if you have the following statement in
your code:

#include "c:\bc\include\owl\owl.h"

the header file owl.h must reside in the directory C: \BC\INCLUDE\OWL. In addition,
if you use the statement:

#include <owl\owl:h>

and you set the Include option (-I) to specify the path c:\bc\include, the file owl.h must
reside in C: \BC \ INCLUDE \ OWL, and not in C: \BC\INCLUDE or C: \ OWL.

• If you put an #include <somefile> statement in your source code, Borland C++
searches for "somefile" only in the directories specified with the Include (-I) option.

• If you put an #include "somefile" statement in your code, Borland C++ first searches
for "somefile" in the current directory; if it does not find the file there, it then searches
in the directories specified with the Include (-I) option.

Library file search algorithms
• The library file search algorithms are similar to those for include files:

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 81

• Implicit libraries: Borland C++ searches for implicit libraries only in the specified
library directories; this is similar to the search algorithm for #include <somefile>.

Implicit library files are the ones Borland C++ automatically links in and the start-up
object file (COx.OBJ). To see these files in the Project Manager, tum on run-time nodes
(choose Options I Environment I Project View, then check Show Runtime Nodes).

• Explicit libraries: Where Borland C++ searches for explicit (user-specified) libraries
depends in part on how you list the library file name. Explicit library files are ones
you list on the command line or in a project file; these are file names with a .LIB
extension.

• If you list an explicit library file name with no drive or directory (like this:
mylib.lib), Borland C++ first searches for that library in the current directory. If the
first search is unsuccessful, Borland C++ looks in the directories specified with the
Library (-L) option. This is similar to the search algorithm for #include
"somefile".

• If you, list a user-specified library with drive and/ or directory information (like
this: c:\mystuf£\mylibl.lib), Borland C++ searches only in the location you
explicitly listed as part of the library path name and not in any specified library
directories. .

Output Directories
The Output Directories options sp~cify the directories where your .OB], .EXE, .DLL, and
.MAP files are placed. The Borland C++ IDE looks for those directories when
performing a make or run and to check dates and times of .OB]s, .EXEs, and .DLLs. If
the entry is blank, the files are stored in the current directory.

Click the down-arrow icon or press Alt+Down arrow to display the history list of
previously entered directory names.

Intermediate
Use the Intermediate list box to specify where Borland C++ places object (.OBJ) and map
(.MAP) files when it builds your project. This is also the directory where a tool (such as
Resource Workshop) places any temporary files that it might create.

Final
Command-line equivalent: -npath, where path = directory path

The Final list box specifies the location where the IDE places the generated target files
(for example, .EXE and .DLL files).

Guidelines for entering directory names
Use the following guidelines when entering directories in the Directories options pages.

• You must separate multiple directory path names (if allowed) with a semicolon (;).

• You can use up to a maximum of 127 characters (including white space).

• White space before and after the semicolon is allowed but not required.

82 C++ Use r 's G u ide

• Relative and absolute path names are allowed, including path names relative to the
logged position in drives other than the current one.

For example:

C:\;C: .. \BORLAND\BC;D:\myprog\source

Librarian options
Librarian options affect the behavior of the built-in librarian. The built-in librarian
combines the .OBJ files in your project into .LIB files. Options in this section control that
process. In addition, you can cause the librarian to generate a list (.LST) file containing
the .OBJs in a generated .LIB and the functions those .OBJs contain.

TLIB.EXE is the command-line librarian.

Case-sensitive library
Command-line equivalent = Ie

When the Case-Sensitive Library option is on, the librarian treats case as significant in all
symbols in the library. For example, if Case-Sensitive Library is checked, "CASE",
"Case", and "case" are all treated as different symbols.

Create extended dictionary
Command-line equivalent = IE

When the Create Extended Dictionary option is on, the librarian includes, in compact
form, additional information that helps the linker process library files faster.

Generate list file
When the Generate List File option is on, the librarian automatically produces a list file
(.LST) that lists the contents of your library when it is created.

Library page size
Command-line equivalent = IPsize, where size is number of pages

The Library Page Size input box is where you set the number of bytes in each library
"page" (dictionary entry).

The page size determines the maximum size of the library. Page size must be a power of
2 between 16 and 32,768 inclusive. The default page size of 16 allows a library of about 1
MBinsize.

To create a larger library, change the page size to the next higher value (32).

Chapter 3, Specifying project options a.nd compiling 83

Purge comment records
Command-line equivalent = 10

When the Purge Comment Records option is on, the librarian removes all comment
records from modules added to the library.

Linker options
Linker options affect how an application is linked.

Linker options let you control how intermediate files (.OBI, .LIB, and .RES) are
combined into executables (.EXE) and dynamic-link libraries (.DLL). For most options in
this section, you will usually want to keep the default settings.

16·bit linker
16-bit Linker options tell the linker how to link 16-bit programs.

Discard nonresident name table
Command-line equivalent = IGn, 16-bit only

When the Discard Nonresident Name Table option is enabled, the linker does not emit
the nonresident name table. The resultant image will contain only the module
description in the nonresident names table.

See Transfer resident names to nonresident names table for usage details.

Default = OFF

Enable 32·bit processing
Command .. Jine equivalent = 13, 16-bit only

The Enable 32-bit processing option lets you link 32-bit DOS object modules produced
by TASM or a compatible assembler. This option increases the memory requirements
for TLINK and slows down linking.

Default = OFF

Inhibit optimizing far call to near
Command-line equivalent = If, 16-bit only

When the linker patches two code segments together, and far calls are made from one to
the other, the linker will optimize the code by converting the far calls to near calls. When
Inhibit Optimizing Far Call To Near is enabled, this optimization does not occur.

You might want to enable this option when you experience run-time crashes that
appear to be related to corrupt virtual tables. Because virtual tables reside in the code
segment, their contents can sometimes be interpreted by the linker as one of these far
calls.

84 c++ User's Guide

Default = OFF

Initialize segments
Command-line equivalent = Ii, 16-bit only

When the Initialize Segments option is on, the linker initializes uninitialized trailing
segments to be output into the executable file even if the segments do not contain data
records. This is normally not needed and will increase the size of your .EXE files!"

Default = OFF

Linker goodies
• Discard nonresident name table
• Transfer resident names to nonresident names table

Segment alignment
Command-line equivalent = IA:dd, 16-bit only

Use the Segment Alignment input box to change the current byte value on which to
align segments. The operating system seeks pages for loading based on this alignment
value. You can enter numbers in the range of 2 to 65,535.

Note The alignment factor is automatically rounded up to the nearest power of two. For
example, if you enter 650, it is rounded up to 1,024 (this is different from the 32-bit
Segment Alignment option).

For efficiency, you should use the smallest value that still allows for correct segment
offsets in the segment table.

Default = 512

. Transfer resident names to nonresident names table
Command-line equivalent = IGr, 16-bit only

This option causes the linker to copy all names in the resident names table which have
not been specified as RESIDENTNAME in the .DEF file to the nonresident names table ..
The resultant image contains only the module name and the symbol names of the
exported symbols that were specified as RESIDENTNAME in the .DEF fil~.

When you use this option, you must also specify the WEP entry point as a
RESIDENTNAME in the EXPORTS section of the .DEF file (Windows obtains the WEP
entry point for this symbol by looking it up in the resident names table).

Note When building .DLLs that contain many exports, it's possible to exceed the 64K header
file limitation. Because the .DLL contains the resident names table in its header, moving
the exports out of the header using the IGr option usually remedies this problem. The
IGr option causes the linker to transfer the names in the resident names table to the
nonresident names table. Names in the nonresident names table are then assigned
ordinal numbers, which your .EXE file uses when referencing the entry points in the
.DLL.

Chapter 3, Specifying project options and compiling 85

There are two ways to create input files for the linker:

• Run IMPLIB on the .DLL to create an import library for linking purposes.
• Run IMPDEF in the .DLL to create a .DEF file for linking purposes.

Once the import library or .DEF file has been created, there is no need to keep the names
in either the resident or the nonresident names tables. Relinking the .DLL and specifying
both the Transfer Resident Names to Nonresident Names Table (/Gr) and Discard
Nonresident Name Table (/Gn) options causes the linker to build a '.DLL with an
"empty" names table. Not only does this post-processing avoid the problem of
exceeding the header limitation, but it also creates a .DLL that loads faster (because it's
smaller) and runs faster (because references to entry points are by ordinal number
instead of by name).

To summarize this process, you must

Enable the IGr switch to transfer the names in the resident names table to the
nonresident names table. This also assigns ordinal numbers to the names. However;
before doing so, make sure you have included a .DEF file with the following export
definition in the EXPORTS section:

EXPORTS

WEP @1 RESIDENTNAME

2 Build the .DLL.

3 Run IMPLIB or IMPDEF on the new .DLL file.

4 Enable the IGn switch (along with the already enabled IGr switch).

5 Relink the .DLL.

To see an example of this process, refer to the makefile that builds the ObjectWindows
example programs.

Default = OFF

16·bit optimizations
The 16-bit Optimizations control how the linker optimizes 16-bit .EXE programs. In
most cases the final executable file size is reduced, which results in a faster load time.

Whenever you use one or more of these options, the linker reorders the .EXE segments
as follows:

• PRELOAD segments
• PRELOAD resources
• LOAD ON CALL segments
• LOAD ON CALL resources

Note These options work only with 16-bit Windows and DPMI programs.

Chain fixups
Command-line equivalent = 10c, 16-bit only

86 c++ User's Guide

Chain fixups removes duplicate and/ or unnecessary fixup data from the .EXE file. This
is done by emitting only one fixup record for each unique internal fixup and
"remembering" the duplicate fixups by creating a linked list of the internal fixup
locations within the .EXE data segment. When the loader loads the .EXE, it applies the
fixup specified in the fixup record to each of the locations specified in the linked list.
Specifying this optimization also causes trailing zeros in data segments to be eliminated.
This usually results in a significantly smaller .EXE file, which loads faster.

Default = OFF

Iterate data
Command-line equivalent = fOi, 16-bit only

This option scans data segments for patterns of data (for example, a block with 128 bytes
filled with "0"). Instead of emitting the data, TLINK emits a "description" of the block of
data which matches the pattern (for example, a 5-byte descriptor specifying a 128 bytes
of 0). Specifying this optimization also causes trailing zeros in data segments to be
eliminated. This usually results in a significantly smaller .EXE file, which loads faster.

Default = OFF

Minimize resource alignment
Command-line equivalent = fOr, 16-bit only

This optimization switch is the same as the Minimize segment alignment switch (fDa),
except that it applies to resource alignment values instead of segment alignment values.

Default = OFF

Minimize segment alignment
Command-line equivalent = fDa, 16-bit only

This optimization switch determines the minimum segment alignment value by
examining the size of the .EXE file. An .EXE that has a size of 1 byte to 64K bytes results
in an alignment value of 1; if the .EXE file size is 64K+ 1 bytes to 128K bytes, the
alignment value is 2; and so on.

While this optimization results in a smaller .EXE file, the .EXE might load slower
because the newly calculated alignment value may cause the segments to cross physical
disk sector boundaries more often. Unless you have also specified the Segment
Alignment (fA) linker option, the linker initially generates an .EXE using the default
alignment value of 512. Note that this option overrides whatever alignment value the
linker might have used to initially generate the .EXE file.

Default = OFF

32·bit linker
32-bit Linker options tell the linker how to link 32-bit programs.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion 5 and com p iii n 9 87

, Allow import by ordinal
Command-line equivalent = 10, 32-bit only

This option lets you import by ordinal value instead of by the import name. When you
specify this option, the linker emits only the ordinal numbers (and not the import
names) to the resident or nonresident name table for those imports that have an ordinal
number specified. If you do not specify this option, the linker ignores all ordinal
numbers contained in import libraries or the .DEF file, and emits the import names to
the resident and nonresident tables.

Note This option is different than the 16-bit 10 (overlays) option.

Committed stack size (in hexadecimal)
Command-line equivalent = ISc:xxxx, 32-bit only

Specifies the size of the committed stack in hexadecimal. The minimum allowable value
for this field is 4K (Ox1000) and any value specified must be equal to or less than the
Reserved Stack Size setting (IS).

Note Specifying the committed stack size here overrides any STACKSIZE setting in a module
definition file.

The command-line version of this option (/Sc:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 8K (0x2000)

Committed stack size (in hexadecimal)
Command-line equivalent = IHc:xxxx, 32-bit only

Specifies the size of the committed heap in hexadecimal. The minimum allowable value
for this field is 0 and any value specified must be equal to or less than the Reserved
Heap Size setting (/H).

Note Specifying the committed heap size here overrides any HEAPSIZE setting in a module
definition file.

The command-line version of this option (/Hc:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 4K (Ox1000)

File alignment (in hexadecimal)
Command-line equivalent = IAf:xxxx, 32-bit only

The File Alignment option specifies page alignment for code and data within the
executable file. The linker uses the file alignment value when it writes the various,
objects and sections (such as code and data) to the file. For example, if you use the
default value of Ox200, the linker stores the section of the image on 512-byte boundaries
within the executable file.

When using this option, you must specify a file alignment value that is a power of 2,
with the smallest value being 16.

88 c++ User's Guide

Note The old style of this option (I A:dd) is still supported for backward compatibility. With
this option, the decimal number dd is multiplied by the power of 2 to calculate the file
alignment value.

The command-line version of this option (/Af:xxxx) accepts either decimal or
hexadecimal numbers as the file alignment value.

Default = 512 (0x200)

Image base address (in hexadecimal)
Command-line eqUivalent = IB:xxxx, 32-bit only

The Image Base Address option specifies an image base address for an application, and
is used in conjunction with the Image is Based option. If this setting is turned on,
internal fixups are removed from the image and the requested load address of the first
object in the application is set to the hexadecimal number specified. All successive
objects are aligned on 64K linear address boundaries. This option makes applications
smaller on disk and improves both load-time and run-time performance (the operating
system no longer has to apply internal fixups).

The command-line version of this option (/B:xxxx) accepts either decimal or
hexadecimal numbers as the image base address.

Note It is not recommended that you enable this option when producing a DLL. In addition,
do not use the default setting of Ox400000 if you intend to run your application on
Wiri32s systems.

Default = Ox400000 (recommended for true Win32 system applications)

Image is based
The Image is Based option affects whether an application has an image base address. If
this setting is turned on, internal fixups are removed from the image and the requested
load address of the first object in the application is set to the number specified in the
Image Base Address input box. Using this option can greatly reduce the size of your
final application module; however, it is not recommended for use when producing a
DLL.

Default = OFF

Maximum linker errors
Command-line equivalent = IEnn

Specifies maximum errors the linker reports before terminating. lEO (default) reports an
infinite number of errors (that is, as many as possible).

Object alignment (in hexadecimal)
Command-line equivCilent = IAo:xxxx, 32-bit only

The linker uses the object alignment value to determine the virtual addresses of the
various objects and sections (such as code and data) in your application. For example, if

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p il i n 9 89

you specify an object alignment value of 8192, the linker aligns the virtual addresses of
the sections in the image on 8192-byte (0x2000) boundaries.

When using this option, you must specify an object alignment value that is a power of 2,
with the smallest value being 4096 (the default).

The command-line version of this option (/Ao:xxxx) accepts either decimal or
hexadecimal numbers as the object alignment value.

Default = 4096 (Ox1000)

Reserved heap size (in hexadecimal)
Command-line equivalent = IH:xxxx, 32-bit only

Specifies the size of the reserved heap in hexadecimal. The minimum allowable value
for this field is O.

Note Specifying the reserved heap size here overrides any HEAPSIZE setting in a module
definition file.

The command-line version of this option (/H:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (Ox1000000)

Reserved stack size (in hexadecimal)
Command-line equivalent = IS:xxxx, 32-bit only

Specifies the size of the reserved stack in hexadecimal. The minimum allowable value
for this field is 4K (Ox1000).

Note Specifying the reserved stack size here overrides any STACKSIZE setting in a module
definition file.

The command-line version of this option (/S:xxxx) accepts hexadecimal numbers as the
stack reserve value.

Default = 1Mb (Ox1000000)

Verbose
Command-line equivalent = Ir, 32-bit only

This option causes the linker to emit messages that indicate what part of the link cycle is
currently being executed by the linker. With this option turned on, the linker emits some
or all of the following messages:

• Starting pass 1
• Generating map file
• Starting pass 2
• Reading resource files
• Linking resources

90 c++ User's Guide

General
Use the Linker I General options to include or exclude debugging information from your
.EXE or .DLL. Debug information must be included in your program if you want to use
the debugger (you can tum it off for production versions).

Case-sensitive exports and imports
Command-line equivalent = Ie, 16-bit only

When the Case-Sensitive Exports option is on, the linker is case sensitive when it
processes the names in the IMPORTS and EXPORTS sections of the module definition
file.

Use this option when you are trying to export non-callback functions from DLLs, as in
exported C++ member functions or dynamic versions of ObjectWindows Library and
BIDS.

Do not use this option for normal Windows callback functions (declared FAR PASCAL).

Default = OFF

Case-sensitive link
Command-line equivalent = Ie

When the Case-Sensitive Link option is enabled, the linker differentiates between upper
and lower-case characters in public and external symbols. Normally, this option should
be checked, since C and C++ are both case-sensitive languages.

Default = ON

Code pack size
Command-line equivalent = IP=n, 16-bit only

Use Code Pack Size to change the default code-packing size to any value between 1 and
65,536. (On the command line, set n to a value between 1 and 65,536.)

You would probably want the limit to be a multiple of 4K under 386 enhanced mode
because of the paging granularity of the system. Although the optimum segment size in
386 enhanced mode is 4K, the default code segment packing size is 8K because typical
code segments are from 4K to 8K in size, and the default of 8K might pack more
efficiently.

Code segment packing typically increases performance because each maintained
segment requires system overhead. On the command-line, IP- tums code segment
packing off, which can be useful if you've turned it on in the configuration file, but want
to turn it off for a particular link.

Default = 8192 bytes (8K)

Default libraries
Command-line equivalent = In

C hap t e r 3, S pee i f yin 9 pro j e c top t ion 5 and com p iii n 9 91

When you are linking with modules created by a compiler other than the Borland C++
compiler, the other compiler might have placed a list of default libraries in the object file.

When the Default Libraries option is unchecked (of£), the linker tries to find any
undefined routines in these libraries and in the default libraries supplied by the C++
IDE.

When this option is checked (on), the linker searches only the default libraries supplied
by the C++ IDE and ignores any defaults in .OBJ files. You might want to check this
option when linking modules written in another language.

Default = ON

Include debug information
Command-line equivalent = Iv

When the Include Debug Information option is on, the linker includes information in
the output file needed to debug your application with the Borland C++ Integrated
Debugger or Turbo Debugger.

On the command line, this option causes the linker to include debugging information in
the executable file for all object modules that contain debugging information. You can
use the Iv+ and Iv- options to selectively enable or disable debugging information on a
module-by-module basis (but not on the same command-line where you use Iv). For
example, the following command includes debugging information for modules mod2
and mod3, but not for modI and mod4:

TLINK modl /v+ mod2 mod3 /v- mod4

Default = ON in IDE; OFF on the command line

Pack code segments
Command-line equivalent = IP

Pack Code Segments has different meanings for I6-bit and 32-bit applications. In
addition, Code Segment Packing applies only to Windows applications and DLLs.

For I6-bit links, Code Segment Packing causes the linker to minimize the number of
code segments by packing as many code segments as possible into one physical
segment up to (and never greater than) the code-segment packing limit, which is set to
8,192 (8K) by default. TLINK starts a new segment if needed.

Because there is a certain amount of system overhead for every segment maintained,
code segment packing typically increases performance by reducing the number of
segments.

For 32-bit links, Code Packing Segments means the linker packs all code into one
"segment." On the command line, IP- turns this option off.

Default=ON

Subsystem version (major.minor)
Command-line equivalent = N d.d

92 c++ User's Guide

This option lets you specify the Windows version ID on which you expect your
application will be run. The linker sets the Subsystem version field in the .EXE header to
number you specify in the input box.

You can also set the Windows version ID in the SUBSYSTEM portion of the module
definition file (.DEF file). However, any version setting you specify in the IDE or on the
command line overrides the setting in the .DEF file.

Command-line usage
When you use the N d.d command-line option, the linker sets the Windows version ID
to the number specified by d.d. For example, if you specify N4.0, the linker sets the
Subsystem version field in the .EXE header to 4.0.

Default = 4.0

Map file
Linker 1 Map File options tell what type of map file to produce. You can configure your
map file output using the Map File options, which gives you information on segment
ordering, segment sizes, and public symbols.

Include source line numbers
Command-line equivalent: 11, 16-bit only

When the Include Source Line Numbers option is on, the linker includes source line
numbers in the object map files.

For this option to work, linked .OBJ files must be compiled with debug information
using-v.

When Include Source Line Numbers is on, make sure you turn Jump Optimizations off
in the Optimization 116 bit Specific options page, otherwise the compiler might group
together common code from multiple lines of source text during jump optimization, or
it might reorder lines (which makes line-number tracking difficult).

Default = OFF

Map file
You use the Map File options to choose the type of map file to be produced at link time.

For settings other than Off, the map file is placed in the output directory defined in the
Directories 1 Output page.

Off
Command-line equivalent = Ix

The Off option tells the linker not to create a map file.

Default = OFF

C hap t e r 3, S pee i f yin 9 pro j e c top t ion 5 and com pili n 9 93

Publics
Command-line equivalent = 1m

This option causes the linker to produce a map file that contains an overview of the
application segments and two listings of the public symbols. The segments listing has a
line for each segment, showing the segment starting address, segment length, segment
name, and the segment class. The public symbols are broken down into tw.o lists, the
first showing the symbols in sorted alphabetically, and the second showing the symbols
in increasing address order. Symbols with absolute addresses are tagged Abs.

A list of public symbols is useful when debugging: many debuggers use public symbols,
which lets you refer to symbolic addresses while debugging.

Segments
Command-line equivalent = Is

The Segments option adds a "Detailed map of segments" to the map file created with
the Publics option (1m). The detailed list of segments contains the segment class, the
segment name, the segment group, the segment module, and the segment ACBP
information. If the same segment appears in more than one module, each module
appears as a separate line.

The ACBP field encodes the A (alignment), C (combination), and B (big) attributes into a
set of four bit fields, as defined by Intel. TLINK uses only three of the fields: A, C, and B.
The ACBP value in the iTLap is printed in hexadecilnal. The follow Ing field values must
be ORed together to arrive at the ACBP value printed.

A (alignment) 00 An absolute segment
20 A byte-aligned segment

40 C (combination)OOCannot be combined

60 A paragraph-aligned segment

80 A page-aligned segmentr

AO An unnamed absolute portion of storage

C(combination) 00 Cannot be combined

08 A public combining segment

B(big) 00 Segment less than 64K

02 Segment exactly 64K

With the Segments options enabled, public symbols with no references are flagged idle.
An idle symbol is a publicly defined symbol in a module that was not referenced by an
EXTDEF record or by any other module included in the link. For example, this fragment
from the public symbol section of a map file indicates that symbols Symboll and
Symbol3 are not referenced by the image being linked:

0002:00000874
0002:00000CE4
0002:000000E7

94 c++ User's Guide

Idle

Idle

Symboll

Symbol 2

Symbo13

Print mangled names in map file
Command-line equivalent = 1M

Prints the mangled C++ identifiers in the map file, not the full name. This can help you
identify how names are mangled (mangled names are needed as input by some
utilities).

Default = OFF

Warnings
Warnings options enable or disable the display of Linker warnings.

"No stack" warning
Command-line equivalent = Ik 16-bit, Iwstk 32-bit

This option lets you control whether or not the linker emits the "No stack" warning. The
warning is generated if no stack segment is defined in any of the object files or in any of
the libraries included in the link. Except for .DLLs, this indicates an error. If a Borland
C++ program produces this error, make sure you are using the correct COx startup
object file.

Use the TLINK32 command-line option Iw-stk to tum this warning off.

Default = OFF

32·bit warnings
• No entry point
• Duplicate symbol
• No deffile
• Import does not match previous definition
• Extern not qualified with _import
• Using based linking in DLL
• Self-relative fixup overflowed
• .EXE module built with a .DLL extension

Warn duplicate symbol in .L1B
Command-line equivalent = Id 16-bit, Iwdpl32-bit

When the Warn Duplicate Symbols option is on, the linker warns you if a symbol
appears in more than one object or library files.

If the symbol must be included in the program, the linker uses the symbol definition
from the first file it encounters with the symbol definition.

Use the TLINK32 command-line option Iw-dpl to tum this warning off.

Default = OFF

Chapter 3, Specifying project options and compiling 95

Make options
Make options control the conditions under which the building of a project stops and
how the project manager uses autodependency information.

Autodependencies
When the Make I Autodependencies option is selected, the Project Manager
automatically checks dependencies for every target that has a corresponding source file
in the project list.

Cache
When Cache is selected, autodependency information is stored in memory to make
dependency checking faster. This option speeds up compilation, but autodependency
information will not display in the project tree.

Cache and display
When Cache and Display is selected, the Project Manager stores the autodependency
information in the project file. Once the autodependency information is generated (after
a compile) the information is displayed in the project tree. This makes dependency
checking faster, but makes project files larger.

None
When None is selected, no autodependency checking is performed.

Use
When Use is selected, autodependency checking is performed by reading the
autodependency information out of the .OBJ files.

Break make on
The Make I Break Make On options specify the error condition that stops the making of a
project.

Errors
This option stops a make when the compiler encounters errors.

Fatal errors
This option tells the Project Manager to generate a list of errors and warnings for all files
and all targets in the project. The Project Manager will go on to link if no errors occur.

Default = Errors

96 c++ User's Guide

Warnings
Command-line equivalent == -w!

This option stops a make if the compiler encounters warnings.

When this compiler option is enabled, the compiler terminates the compile and returns a
non-zero error code if a warning is encountered; an .OBJ file is not created.

New node path
Tum on the Absolute option if you want new nodes to have an absolute, instead of a
relative, path.

Messages options
Messages options let you control the messages generated by the compiler. Compiler
messages are indicators of potential trouble spots in your program. These messages can
warn you of many kinds of problems that may be waiting to happen, such as variables
and parameters that are declared but never used, type mismatches, and many others.

Setting a message option causes the compiler to generate the associated message or
warning the specific condition arises. Note that some of the messages are on by default.

ANSI Violations
Compiler Messages I ANSI Violations options enable or disable individual warning
messages about statements that violate the ANSI standard for the C language.

The options are:

• Void functions may not return a value
Command-line equivalent: -wvoi, Default = ON

• Both return and return of a value used
Command-line equivalent: -wret, Default = ON

• Suspicious pointer conversion
Command-line equivalent: -wsus, Default = ON

• Undefined structure 'ident'
Command-line equivalent: -wstu, Default = ON

• Redefinition of 'ident' is not identical
Command-line equivalent: -wdup, Default = ON

• Hexadecimal value more than three digits
Command-line equivalent: -wbig, Default = ON

• Bit, fields must be signed or unsigned int
Command-line equivalent: -wbbf, Default = OFF

• 'ident' declared as both external and static
Command-line equivalent: -wext, Default = ON

• Declare 'ident' prior to use in prototype
Command-line equivalent: -wdpu, Default = ON

• Division by zero "
Command-line equivalent: -wzdi, Default = ON

Chapter 3, Specifying project options and compiling 97

• Initializing 'ident' with 'ident'
Command-line equivalent: -wbei, Default = ON

• Initialization is only partially bracketed
Command-line equivalent: -wpin, Default = OFF

• Non-ANSI keyword used
Command-line equivalent: -wnak, Default = OFF

Display warnings
Use the Display Warnings options to choose which warnings are displayed.

All
Command-line equivalent: -w

Display all warning and error messages.

Default = OFF

None
Suppresses the display of warning messages. Errors are still displayed.

Default = OFF

Selected
Command-line equivalent: -waaa

Choose which warnings are displayed. Using pragma warn in your source code
overrides messages options set either at the command line or in the IDE.

To disable a message from the command line, use the command-line option -w-aaa,
where aaa is the 3-letter message identifier used by the command-line option.

Default = ON

General
Compiler Messages I General options enable or disable a few general warning messages.

The options are

• Unknown assembler instruction
Command-line equivalent: -wasm, Default = OFF

• Ill-formed pragma
Command-line equivalent: -will, Default = ON

• Array variable 'ident' is near
Command-line equivalent: -wias, Default = ON

• Superfluous & with function
Command-line equivalent: -wamp, Default = OFF

• 'ident' is obsolete
Command-line equivalent: -wobs, Default = OFF

98 C++ Use r 's G u ide

• Cannot create precompiled header
Command-line equivalent: -wpeh, Default::;: OFF

• User-defined warnings
Command-line equivalent: -wmsg, Default ::;: ON

User-defined warnings
Command-line equivalent: -wmsg

The User-defined warnings option allows user-defined messages to appear in the IDE's
Message window. User-defined messages are introduced with the #pragma message
compiler syntax.

Note In addition to messages that you introduce with the #pragma message compiler syntax,
user-defined warnings allows warnings introduced by third-party libraries to be
displayed. Remember, if you need help on a third-party warning, please contact the
vendor of the header file that issued the warning.

Default::;: ON

Inefficient C++ coding
Compiler Messages I Inefficient C++ Coding options enable or disable individual
warning messages about inefficient C++ coding.

The options are:

• Functions containing 'ident' not expanded inline
Command-line equivalent: -winI, Default ::;: ON

• Temporary used to initialize 'ident'
Command-line equivalent: -wlin, Default ::;: ON

• Temporary used for parameter 'ident'
Command-line equivalent: -wIve, Default ::;: ON

Inefficient coding
Compiler Messages I Inefficient Coding options are used to enable or disable individual
warning messages about inefficient coding.

The options are:

• 'ident' assigned a value which is never used
Command-line equivalent: -waus, Default::;: ON

• Parameter 'ident' is never used
Command-line equivalent: -wpar, Default ::;: ON

• 'ident' declared but never used
Command-line equivalent: -wuse, Default::;: OFF

• Structure passed by value
Command-line equivalent: -wstv, Default ::;: OFF

• Umeachable code
Command-line equivalent: -wreh, Default::;: ON

• Code has no effect .
Command-line equivalent: -weff, Default::;: ON

Chapter 3, Specifying project options and compiling 99

Note The warnings Unreachable Code and Code Has No Effect can be indicators of serious
coding problems. If the compiler generates these warnings, be sure to examine the lines
of code which cause the errors to be generated.

Obsolete C++
Compiler Messages I Obsolete C++ options choose which specific obsolete items or
incorrect syntax C++ warnings to display.

The options are:

• Base initialization without class name is obsolete
Command-line equivalent: -wobi, Default = ON

• This style of function definition is obsolete
Command-line equivalent: -wofp, Default = ON

• Overloaded prefix operator used as a postfix operator
Command-line equivalent: -wpre, Default = OFF

Portability
Compiler Messages I Portability options enable or disable individual warning messages
about statements that might not operate correctly in all computer environments.

The options are:

• Non-portable pointer conversion
Command-line equivalent: -wrpt, Default = ON

• Non-portable pointer comparison
Command-line equivalent: -wept, Default = ON

• Constant out of range in comparison
Command-line equivalent: -wmg, Default = ON

• Constant is long
Command-lirte equivalent: -wcln, Default = OFF

• Conversion may lose significant digits
Command-line equivalent: -wsig, Default = OFF

• Mixing pointers to signed and unsigned char
Command-line equivalent: -wuep, Default = OFF

Potential C++ Errors
Compiler Messages I Potential C++ Errors options enable or disable individual warning
messages about statements that violate C++ language implementation.

The options are:

• Constant member 'ident' is not initialized
Command-1..iJ.i.e equivalent: -wnci, Default = ON

• Assigning 'type' to 'enumeration'
Command-line equivalent: -weas, Default = OFF

• 'function' hides virtual function 'function2'
Command-line equivalent: -whid, Default = ON

100 C++ Use r 's G u ide

• Non-const function 'ident' called for const object
Command-line equivalent: -wnd, Default = ON

• Base class 'ident' inaccessible because also in 'ident'
Command-line equivalent: -wibc, Default = OFF

• Array size for' delete' ignored
Command-line equivalent: -wdsz, Default = OFF

• Use qualified name to access nested type 'ident'
Command-line equivalent: -wnst, Default = OFF

• Handler for '<type1>' Hidden by Previous Handler for '<type2>'
Command-line equivalent: -whch, Default == ON

• Conversion to 'type' will fail for virtual base members
Command-line equivalent: -wmpc, Default = ON

• Maximum precision used for member pointer type
Command-line equivalent: -wmpd, Default = ON

• Use '> >' for nested templ~tes instead of I»~'
Command-line equivalent: -wntd, Default = ON

• Non-volatile function called for volatile object
Command-line equivalent: -wnd, Default = ON

Potential errors
Compiler Messages I Potential Errors options enable or disable individual warning
messages about potential coding errors.

The options are:

• Possibly incorrect assignment
Command-line equivalent: -wpia, Default = ON

• Possible use of 'ident' before definition
Command-line equivalent: -wdef, Default = ON

• No declaration for function 'ident'
Command-line equivalent: -wnod, Default = OFF

• Call to function with no prototype
Command-line equivalent:-wpro, Default = ON

• Function should return a value
Command-line equivalent: -wrvl, Default = ON

• Ambiguous operators need parentheses
Command-line equivalent: -wamb, Default = OFF

• . Condition is always (true/false)
Command-line equivalent: -wccc, Default = OFF

Stop after ... errors
Command-line equivalent: -jn

Errors: Stop After causes compilation to stop after the specified number of errors has
been detected. You can enter any number from 0 to 255.

Entering 0 causes compilation to continue until the end of the file.

Default = 25

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d co m pi lin 9 101

Stop after ... warnings
Command-line equivalent: -gn

Warnings: Stop After causes compilation to stop after the specified number of warnings
has been detected. You can enter any number from a to 255.

Entering a causes compilation to continue until either the end of the file or the error limit
set in Errors: Stop After has been reached, whichever comes first.

Default = 100

Optimization options
Optimization options are the software equivalent of performance tuning. There are two
general types of compiler optimizations:

• Those that make your code smaller
• Those that make your code faster

Although you can compile with optimizations at any point in your product
development cycle, be aware when debugging that some assembly instructions might
be 1/ optimized away" by certain compiler optimizations.

General settings
The main Optimizations page in the Project Options dialog box contains four radio
buttons that let you select the overall type of optimizations you want to use. Because of
the complexities of setting compiler optimizations, it is recommended that you use
either the Optimize for Size or the Optimize for Speed radio buttons.

The general optimization settings are:

• Disable all optimizations
• Use selected optimizations
• Optimize for size
• Optimize for speed

16 and 32·bit
The 16- and 32-bit compiler options specify optimization settings for all compilations.

Common subexpression
The Common Subexpressions options tell the compiler how to find and eliminate
duplicate expressions in your code.

No optimization
When the No Optimization option is on, the compiler does not eliminate common
subexpressions. This is the default behavior of the command-line. compilers.

102 C++ Use r 's G u ide

Optimize Globally
Command-line equivalent: -Og

When you set this option, the compiler eliminates common subexpressions within an
entire function. This option globally eliminates duplicate expressions within the target
scope and stores the calculated value of those expressions once (instead of recalculating
the expression).

Although this optimization could theoretically reduce code size, it optimizes for speed
and rarely results in size reductions. Use this option if you prefer to reuse expressions
rather than create explicit stack locations for them.

Optimize locally
Command-line equivalent: -Oc

When the Optimize Locally option is on, the compiler eliminates common
subexpressions within groups of statements unbroken by jumps (basic blocks).

Induction variables
Command-line equivalent: -Ov

When this option is enabled, the compiler creates induction variables and it performs
strength reduction, which optimizes for loops speed.

Use this option when you're compiling for speed and your code contains loops. The
optimizer uses induction to create new variables (induction variables) from expressions
used in loops. The optimizer assures that the operations performed on these new
variables are computationally less expensive (reduced in strength) than those used by
the original variables.

Optimizations are common if you use array indexing inside loops, because a
multiplication operation is required to calculate the position in the array that is
indicated by the index. For example, the optimizer creates an induction variable out of
the operation v[i] in the following code because the v[i] operation requires
multiplication. This optimization .also eliminates the need to preserve the value of i:

int v[10] i

void f(int X, int Y, int z)

int ii
for (i = Oi i < 10i i++)

v[i] = X * Y * Zi

With Induction variables enabled, the code changes:

int V[10]i
voidf(int x, int Y, int z)
{

int i , *Pi

for (p = Vi P < &V[10]i P++)

*p = X * Y * Zi

Chapter 3, Specifying project options and compiling 103

Inline intrinsic functions
, Command-line equivalent: -Oi

When the Inline Intrinsic Functions option is on, the compiler generates the code for
common memory functions like strcpyO within your function's scope. This eliminates
the need for a function call. The resulting code executes faster, but it is larger.

The following functions are inlined with this option:

alloea fabs memchr mememp

rnemcpy memset rot! rotr

stpcpy streat strchr strcmp

strcpy strlen strneat strnemp

strncpy strnset strrehr

You can control the inlining of these functions with the pragma intrinsic. For example,
#pragma intrinsic strepy causes the compiler to generate inline code for all subsequent
calls to strepy in your function, and #pragma intrinsic -strcpy prevents the compiler
from inlining strepy. Using these pragmas in a file overrides any compiler option
settings.

When inlining any intrinsic function, you must include a prototype for that function
before you use it; the compiler creates a macro that renames the inlined function to a
function that the compiler recognizes internally. In the previous example, the compiler
would create a macro #define strepy __ strepy __ .

The compiler recognizes calls to functions with two leading and two trailing
underscores and tries to match the prototype of that function against its own internally
stored prototype. If you don't supply a prototype, or if the prototype you supply
doesn't match the compiler'S prototype, the compiler rejects the attempt to inline that
function and generates an error.

16·bit
The Optimizations I 16-bit options pertain to 16-bit applications only.

Assume no pOinter aliasing
Command-line equivalent: -Oa

When the Assume No Pointer Aliasing option is on, the compiler assumes that pointer
expressions are not aliased in common subexpression evaluation.

Assume No Pointer Aliasing affects the way the optimizer performs common
subexpression elimination and copy propagation by letting the optimizer maintain copy
propagation information across function calls and by letting the optimizer maintain
common sub expression information across some stores. Without this option the
optimizer must discard information about copies and subexpressions. Pointer aliasing
might create bugs that are hard to spot, so it is only applied when you enable this
option.

Assume No Pointer Aliasing controls how the optimizer treats expressions that contain
pointers. When compiling with global or local common subexpressions and Assume No

104 c++ User's Guide

Pointer Aliasing is enabled, the optimizer recognizes *p * x as a common subexpression
in function func1.

int g, Yi

int funcl(int *p)

{

int X=5i
Y = *p * Xi

, g = 3i

return (*p * X) i

void func2(void)

g=2i
funcl(&g)i II This is incorrect--the assignment g = 3

II invalidates the expression *p * X

Copy propagation
Command-line equivalent: -Op

When this option is enabled, copies of constants, variables, and expressions are
propagated whenever possible.

Copy propagation is primarily speed optimization, but it never increases the size of
your code. Like loop-invariant code motion, copy propagation relies on the analysis
performed during common subexpression elimination. Copy propagation means that
the optimizer remembers the values assigned to expressions and uses those values
instead of loading the value of the assigned expressions. With this, copies of constants,
expressions, and variables can be propagated.

Dead code elimination
Command-line equivalent: -Ob

When the Dead Code Elimination option is on, the compiler reveals variables that might
not be needed. Because the optimizer must determine where variables are no longer
used (live range analysis), you might also want to set Global Register Allocation (-Oe)
when you use this option.

Global register allocation
Command-line equivalent: -Oe

When this option is enabled, global register allocation and variable live range analysis
are enabled. This option should always be used when optimizing code because it
increases the speed and decreases the size of your application.

Invariant code motion
Command-line equivalent: -Om

Chapter 3, Specifying project options and compiling 105

When this option is enabled, invariant code is moved out of loops and your code is
optimized for speed. The optimizer uses information about all the expressions in the
function (gathered during common subexpression elimination) to find expressions
whose values do not change inside a loop.

To prevent the calculation from beifig done many times inside the loop, the optimizer
moves the code outside the loop so that it is calculated only once. The optimizer then
reuses the calculated value inside the loop. .

You should use loop-invariant code motion whenever you are compiling for speed and
have used global common subexpressions, because moving code out of loops can result
in enormous speed gains. For example, in the following code, x * y * z is evaluated in
every iteration of the loop:

int v[10];
void f(int x, int y, int z)

int i;
for (i = 0; i < 10; itt)

v[i] = x * y * z;

The optimizer rewrites the code:

int v[10];
void f(int x, int y, int z)

int i,t1;
t1 = x * y * z;
for (i = 0; i < 10; itt)

v[i] = t1;

Jump optimization
Command-line equivalent: -0

When Jump Optimization option is on, the compiler reduces the code size by
eliminating redundant jumps and reorganizing loops and switch statements.

When this option is enabled, the sequences of tracing and stepping in the debugger can
be confusing because of the reordering and elimination of instructions. If you are
debugging at the assembly level, you might want to disable this option.

Default=ON

Loop optimization
Command-line equivalent: -01

When this option is enabled, loops are compacted into REP /STOSx instructions.

Loop optimization takes advantage of the string move instructions on the 80x86
processors by replacing the code for a loop with a string move instruction, making the
code faster.

106 c++ User's Guide

Depending on the complexity of the operands, the compacted loop code can also be
smaller than the corresponding non-compacted loop.

Suppress redundant loads
Command-line equivalent: -z
When this option is enabled, the compiler suppresses the reloading of registers by
remembering the contents of registers and reusing them as often as possible.

Exercise caution when using this option; the compiler cannot detect if a value has been
modified indirectly by a pointer.

Windows prolog/epilog
Command-line equivalent: -OW

Use the Windows Prolog/Epilog option to suppress the inc bp / dec bp of an exported
Windows far function prolog and epilog code.

If Debug Information in .OBJ Files (-v) is enabled, this option is disabled because some
debugging tools (such as WinSpector and Turbo Debugger) need the inc bp / dec bp
instructions to display stack-frame information.

32·bit
Use the Optimizations I 32-bit options to specify options specific to the Pentium
processor and the Intel optimizing compiler. The options are:

Cache hit optimizations (Intel compiler only)
Command-line equivalent: -OM

Specifies a set of memory accessing optimizations that improves cache hits and reduces
the number of memory accesses. These optimizations include:

• Loop interchange
• Loop distribution
• Strip mining and preloading
• Loop blocking
• Alternate loops
• Loop unrolling

Optimize across function boundaries (Intel compiler only)
Command-line equivalent: -01

Specifies a set of interprocedural optimizations. These optimizations eliminate call
overhead and can create opportunities for further optimizations. They are applied
across procedure boundaries but are restricted to routines within the same file,
including routines in files combined by the #include preprocessor directive. These
optimizations include:

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 107

• Monitoring module-level static variables
• Inline function expansion
• Cloning
• Passing arguments in registers
• Constant argument propagation

Note Currently, these optimizations are disabled if your source code contains embedded
assembly code.

Pentium instruction scheduling
Command-line equivalent: -os
When enabled, this switch rearranges instructions to minimize delays that can be
caused by Address Generation Interlocks (AGI) that occur on the i486 and Pentium
processors. This option also optimizes the code so that it takes advantage of the Pentium
parallel pipelines. Best results for Pentium systems are obtained when you use this
switch in conjunction with the 32-bit Compiler I Pentium option in the Project Options
dialog box (-5).

Note that scheduled code is more difficult to debug at the source level because
instructions from a particular source line may be mixed with instructions from other
source lines. Stepping through the source code is still possible, although the execution
point might make unexpected jumps between source lines as you step. Also, setting a
breakpoint on a source line may result in several breakpoints being set in the code. This
is especially important to note when inspecting variables, since a variable may be
undefined even though the execution point is positioned after the variable assignment.

Stepping through the following function when this switch is enabled demonstrates the
stepping behavior:

int v[lO];
void f(int i, int j)

int a,b;

a = v[i+j];
b = v[i-j] ;
v[i] = a + b;
v[j] = a - b;

Execution starts by computing the index i-j in the assignment to b (note that a is still
undefined although the execution point is positioned after the assignment to a). The
index i+j is computed, v[i-j] is assigned to b, and v[i+j] is assigned to a. If a breakpoint is
set on the assignment to b, execution will stop twice: once when computing the index
and again when performing the assignment.

Default = OFF (-O-S)

108 c++ User's Guide

General optimization settings

Disable all optimizations
Command-line equivalent: -Od

Disables all optimization settings, including ones which you may have specifically set
and those which would normally be performed as part of the speed/size tradeoff.

Because this disables code compaction (tail merging) and cross-jump optimizations,
using this option can keep the debugger from jumping around or returning from a
function without warning, which makes stepping through code easier to follow.

Note You can override this setting using the predefined Style Sheets in the Project Manager.

Optimize for size
Command-line equivalents: -01

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for size. For example, the compiler scans the generated code for
duplicate sequences. When such sequences warrant, the optimizer replaces one
sequence of code with a jump to the other and eliminates the first piece of code. This
occurs most often with switch statements. The compiler optimizes for size by choosing
the smallest code sequence possible.

This option (-01) sets the following optimizations:

• Jump optimizations (-0)
• Dead code elimination (-Ob)
• Duplicate expressions (-Oc)
• Register allocation and live range analysis (-Oe)
• Loop optimizations (-01)
• Instruction scheduling (-OS)
• Register load suppression (-Z)

Note The compiler options -Ot and -G are supported for ba!2kward compatibility only, and
are equivalent to the -01 compiler option.

Optimize for speed
Command-line equivalent: -02

This radio button sets an aggregate of optimization options that tells the compiler to
optimize your code for speed. This switch (-02) sets the following optimizations:

• Dead code elimination (-Ob)
• Register allocation and live range analysis (-Oe)
• Duplicate expression within functions (-Og)
• Intrinsic functions (-Oi)
• Loop optimizations (-01)
• Code motion (-Om)
• Copy propagation (-Op)
• Instruction scheduling (-OS)
• Induction variables (-Ov)

Chapter 3, Specifying project options and compiling 109

• Register load suppression (__ Z)

If you are creating Windows applications, you'll probably want to optimize for speed.

Note The compiler options -Os and -G- are supported for backward compatibility only, and
are equivalent to the -02 compiler option. The -Ox option is also supported for
backward compatibility and for compatibility with Microsoft make files.

Use selected optimizations
Does not set any optimization by default, but lets you set the specific optimization
options you need through the settings contained in the Optimization subtopics. The
subtopic pages are:

• 16 and 32-bit
• 16-bit specific
• 32-bit specific

Note Configuring your own optimization settings should be reserved for expert users only.

Resources options
The Resources options let you set several options for how resources are compiled and
bound to your application by the integrated resource compiler and resource linker.

16·bit Resources
The 16-bit Resource options let you choose options for resources targeted for 16-bit
applications.

Target Windows version
Use the Target Windows Version options to choose the Windows version with which
you are working. These options specify which version of Windows your resources are
marked with when you create 16-bit resources.

You cannot mixJ6-bit and 32-bit files in a resource project. To add resources from
existing 32-bit .RES or .EXE files to a 16-bit resource project, save the files as .RC files and
add the .RC files to your project; .RC files are not version specific.

Windows 3.1
Command-line equivalent: (Rlink.EXE) -V31

Creates 16-bit resources for a Windows 3.1 application.

Windows 95
Command-line equivalent: (Rlink.EXE) -V40

Creates 16-bit resources for a Windows 95 application.

110 C++ Use r' s G u ide

Pack fastload area
The Pack Fastload Area option optimizes the executable file by packing all PRELOAD
segments and resources in a contiguous area in the.EXE file.

When Pack Fastload Area is enabled, the resource linker writes all data segments, all
nondiscardable code segments, and the entry-point code segment to a contiguous area
in the executable file. This makes your executable files load faster at runtime.

If you uncheck Pack Fastload Area, no such optimizations will be done.

Default = OFF

Librarian
Librarian options affect the behavior of the built-in librarian. The built-in librarian
combines the .OBJ files in your project into .LIB files. Options in this section control that
process. In addition, you can cause the librarian to generate a list (.LST) file containing
the .OBJs in a generated .LIB and the functions those .OBJs contain.

TLIB.EXE is the command-line librarian.

Case-sensitive library
Command-line equivalent = Ie

When the Case-Sensitive Library option is on, the librarian treats case as significant in all
symbols in the library. For example, if Case-Sensitive Library is checked, "CASE",
"Case", and "case" are all treated as different symbols.

Create extended dictionary
Command-line equivalent = IE

When the Create Extended Dictionary option is on, the librarian includes, in compact
form, additional information that helps the linker process library files faster.

Generate list file
When the Generate List File option is on, the librarian automatically produces a list file
(.LST) that lists the contents of your library when it is created.

Library page size
Command-line equivalent = IPsize, where size is number of pages

The Library Page Size input box is where you set the number of bytes in each library
"page" (dictionary entry).

The page size determines the maximum size of the library. Page size must be a power of
2 between 16 and 32,768 inclusive. The default page size of 16 allows a library of about 1
Mbinsize.

To create a larger library, change the page size to the next higher value (32).

Chapter 3, Specifying project options and compiling 111

Purge comment records
Command-line equivalent = /0

When the Purge Comment Records option is on, the librarian removes all comment
records from modules added to the library.

32·bit Resources
The 32-bit resource options let you choose options for resources targeted for 32-bit
applications.

Language
Use the Language list boxes to select the base and sub-languages to be used for the
resources in the your project.

Multiple resources with the same ID may be bound to a single .EXE or .DLL if they each .
have different major and/ or minor languages specified. The language currently
specified by Windows will determine which resource identified by the ID will actually
be loaded.

The language you choose must match the language that Windows NT systems are set
to. If not, your resources might not be correctly displayed (this is especially true for
menu resources).

Major
Use the Major list box to select the base (or primary) language to be used for the
resources.

Minor
Use the Minor list box to select the sub-language (or dialect) to be used for the resources.

For example, you might define your resource to have English as the base language and
U.S. as the sub-language.

Note These options set the default languages for the Resource compiler. You can override
these default settings by embedding language statements in your .RC file.

Default = Neutral

Target Windows version
Use the Target Windows Version options to choose the Windows version with which
you are working. These options specify which version of Windows your resources are
marked with when you create 32-bit resources.

You cannot mix 16-bit and 32-bit files in a resource project. To add resources from
existing 16-bit .RES or .EXE files to a 32-bit resource project, save the files as .RC files and
add ·the .RC files to your project; .RC files are not version specific.

112 C++ Use r 's G u ide

Win32sIWindows NT 3.1

This options links your resources so that your 32-bit applications can be run on Win32s,
Windows NT 3.1, and Windows NT 3.5 systems (this is not compatible with Windows
NT 3.51 systems).

Windows 95IWindows NT 3.51

This options links your resources so that your 32-bit applications can be run on
Windows 95 and Windows NT 3.51 systems.

Command-line only options
The options are available only from the command line.

Object search paths
Command-line equivalent = Ij

This option lets you specify the directories the linker will search if there is no explicit
path given for an .OBJ module in the compile/link statement. This option works with
both TLINK and TLINK32.

The Specify Object Search Path uses the following command-line syntax:

/j<PathSpec> [;<PathSpec>] [...]

The linker uses the specified object search path(s) if there is no explicit path given for the
.OBJ file and the linker cannot find the object file in the current directory. For example,
the command

TLINK32 /jc:\myobjs;.\objs splash . \ common \ logo , "utils logolib

directs the linker to first search the current directory for SPLASH. OBI. If it is not found
in the current directory, the linker then searches for the file in the C: \MYOBJS directory,
and then in the. \OBJS directory. However, notice that the linker does not use the object
search paths to find the file LOGO.OBJ because an explicit path was given for this file.

16 and 32-bit command-line switches
The following command-line switches are supported by the command-line compilers
BCC.EXE, BCC32.EXE, and BCC32i.EXE.

c++ compile
Command-line equivalent = -P

The -P command-line option causes the compiler to compile all source files as C++ files,
regardless of their extension. Use -P- to compile all.CPP files as C++ source files and all
other files as C source files.

The command-line option -Pext causes the compiler to compile all source files as C++
files and it changes the default extension to whatever you specify with ext. This option is
provided because some programmers use different extensions as their default extension
for C++ code.

C hap t e r 3, S pee if yin 9 pro j e c top t ion san d com p iii n 9 113

The option -P-ext compiles files based on their extension (.CPP compiles to C++, all
other extensions compile to C) and sets the default extension (other than .CPP).

Compile .OBJ to filename
Command-line equivalent = -ofilename

Use this option to compile the specified source file to filename.OBJ.

Compile to .ASM, then assemble
Command-line equivalent = -B

This command-line option causes the compiler to first generate an'.ASM file from your
C++ (or C) source code (same as the -5 command-line option). The compiler then calls
TASM (or the assembler specified with the -E option) to create an .OBJ file from the
.ASM file. The .ASM file is then deleted. To use this 32-bit compiler option, you must
install a 32-bit assembler, such as TASM32.EXE, and then specify this assembler with the
-E option. In the IDE, right-click the source node in the Project Manager, then choose
Special I C++ to Assembler.

Compile to .OBJ, no link
Command-line equivalent = -c

Compiles and assembles the names .C, .CPP, and .ASM files, but does not execute a link
on the resulting .OBJ files. In the IDE, choose Project I Compile.

Compile to assembler
Command-line equivalent =-5

This option causes the compiler to generate an .ASM file from your C++ (or C) source
code. The generated .ASM file includes the original C or C++ source lines as comments
in the file.

Create a map file
Command-line equivalent = -M

Use this command-line option tells the linker to create a map file.

Pass option to linker
Command-line equivalent = -Ix

Use this command-line option to pass option(s) x to the linker from a compile
command. Use the command-line option -l-x to disable a specific linker option.

Specify assembler
Command-line equivalent = -Efilename

Assemble instructions using filename as the assembler. The 16-bit compiler uses TASM
as the default assembler. In the IDE, you can configure a different assembler using the
Tool menu.

114 c++ User's Guide

Specify assembler option
Command-line equivalent = -Tx

Use this command-line option to pass the option(s) x to the assembler you specify with
the -E option. To disable all previously enabled assembler options, use the -T­
command-line option.

Specify executable file name
Command-line equivalent = -efilename

Link file using filename as the name of the executable file. If you do not specify an
executable name with this option, the linker creates an executable file based on the name
of the first source file or object file listed in the command.

Undefine symbol
Command-line equivalent = -Uname

This command-line option undefine the previous definition of the identifier name.

16-bit command-line switches
The following switches are supported by the 16-bit command-line compiler (BCC.EXE)
and linker (TLINK.EXE).

Compile to DOS .COM
Command-line equivalent = -tDc

The compiler creates a DOS tiny-model .COM file. DOS . COM, applications cannot
exceed 64K in size, have segment-relative fixups, or define a stack segment. In addition,
.COM files must have a starting address of 0:100H. If you change the file extension (to
.BIN, for example), the starting address can be either 0:0 or 0:100H. The linker can't
generate debugging information for .COM files, so you'll need to debug it as an .EXE
file, then recompile and link the application as a .COM file.

Compile to DOS .EXE
Command-line equivalent =-tD

The compiler creates a DOS .EXE file (same as -tDe).

Compile to DPMI .EXE
Command-line equivalent = -wx
The compiler creates a DOS Protected Mode Interface (DPMI) .EXE file.

Enable backward compatibility options
Command-line equivalent = -Vo

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com pi lin 9 115

This compiler option enables the following 16-bit backward compatibility options: -Va,
-Vb, -Ve, -Vp, -Vt, -Vv. Use this option as a handy shortcut when linking libraries built
with older versions of Borland C++.

Expanded memory swapping
Command-line equivalent = lye

This 16-bit linker option controls how TLINK uses expanded memory for I/O buffering.
If the linker needs more memory for active data structures (while reading object files or
writing the executable file), it either clears buffers or swaps them to expanded memory.

When reading files, the linker clears the input buffer so that its space can be used for
other data structures. When creating an executable, it writes the buffer to its correct
place in the executable file. In both cases, you can substantially increase the link speed
by swapping to expanded memory. By default, swapping to expanded memory is
enabled and swapping to extended memory is disabled. If swapping is enabled and no
appropriate memory exists in which to swap, then swapping doesn't occur.

Default = ON

Extended memory swapping
Command-line equivalent = Iyx

This TLINK option controls the linker's use of extended memory for I/O buffering. By
default, the linker can use up to 8Mb of extended memory. You can control the linker's
use of extended memory with one of the following forms of this switch:

• Iyx or Iyx+ uses all available extended memory, up to 8Mb
• Iyxn uses only up to n Kb of extended memory

Default = OFF

Generate 8087 instructions
Command-line equivalent = -f87

Use this 16-bit compiler option to create DOS 8087 floating point code.

Generate overlay code
Command-line equivalent = -y

The compiler generates the DOS code needed to create overlay files.

Link DOS .COM
Command-line equivalent = fIde

TLINK generates a real-mode DOS .COM file. (The command-line option It is supported
for backward compatibility only; it has the same functionality as fIde.)

Link DOS .EXE
Command-line equivalent = fIde

116 c++ User's Guide

TLINK generates a real-mode OOS .EXE file.

Link OPMI .EXE
Command-line equivalent = (fxe

TLINK generates a DOS Protected Mode Interface (DPMI) .EXE file.

Link Windows .OLL
Command-line equivalent = (fwd

TLINK generates a Windows .DLL file.

Link Windows .EXE
Command-line equivalent = (fwe

TLINK generates a Windows .EXE file.

Overlay the compiled files
Command-line equivalent = -Yo

The compiler overlays the compiled overlay files which you've specified with the -Y
option.

Overlay the compiled files
Command-line equivalent = 10

This DOS -only option causes TLINK to overlay all the modules or libraries that follow
the option on the command line. Use 10- on the command line to turn of overlays. If you
list a class name after this option, TLINK overlays all the segments in that class (this also
works for multiple classes). If you don't list any name after this option, TLINK overlays
all segments of classes ending with CODE. This option uses the default overlay
interrupt number 3FH. To specify a different interrupt number, use loxx, whrere xx is a
two-digit hexademimal number.

Specify option to RLiNK
Command-line equivalent = IRx

TLINK passes the option x to RLINK.EXE (x can be either e, k, m, p, or v).

32-bit command-line switches
The following switches are supported by the 32-bit command-line compilers
(BCC32.EXE and BCC32i.EXE) and linker (TLINK32.EXE).

Note The followmg 32-bit command-line options are not needed if you include a module
definition file in your compile and link commands which specifies the type of 32 -bit
application you intend to build.

Chapter 3, Specifying project options and compiling 117

Link 32·bit .DLL file
Command-line equivalent = ffpd

TLINK32 generates a 32-bit protected-mode Windows .DLL file.

Link 32·bit .EXE file
Command-line equivalent = ffpe

TLINK32 generates a 32-bit protected-mode Windows .EXE file.

Link for 32·bit console application
Command-line equivalent = lap .

TLINK32 generates a protected-mode executable file that runs in console mode.

Link using 32·bit Windows API
Command-line equivalent = laa

TLINK32 generates a protected-mode executible that runs using the 32-bit Windows
API.

Command-line options quick reference
This section presents two quick reference tables for command-line options. The first
table lists command -line options available from the Options I Project menus and dialog
boxes, and they're organized function. The second table lists options that are available
only from the command line.

Table 3.1 Command-line options by function

16-bit Compiler I Calling Convention
-p Use Pascal calling convention.

-pc Use C calling convention. (Default: -pc, -p-.)

-po Use fastthis calling convention for passing this parameter in registers.

-pr Use fastcall calling convention for passing parameters in registers.

16-bit Compiler I EntrylExit Code
-tW

-tWD

-tWDE

-tWE

-tWS

-tWSE

-W

-WD

-WDE

118 C++ Use r 's G u ide

Make the target a Windows .EXE with all functions exportable. (Default)

Make the target a Windows DLL with all functions exportable.

Make the target a Windows .DLL with explicit functions exportable.

Make the target a Windows .EXE with explicit functions exportable.

Make the target a Windows .EXE that uses smart callbacks (16-bit compiler only).

Make the target a Windows .EXE that uses smart callbacks, with explicit functions
exportable (16-bit compiler only).

Make the target a Windows .EXE with all functions exportable. (Default) (Note there
is no space between the -Wand the !.)

Make the target a Windows DLL with all functions exportable.

Make the target a Windows DLL with explicit functions exportable.

Table 3.1 Command-line options by function

-WE Make the target a Windows .EXE with explicit functions exportable.

-WS Make the target a Windows .EXE that uses smart callbacks (16-bit compiler only).

-WSE Make the target a Windows .EXE that uses smart callbacks, with explicit functions
exportable (16-bit compiler only).

16-bit Compiler I Memory Model

-de

-F

-Ff

-Ff=size

-Fs

-me

-mh

-ml

-mm

-mm!

-ms

-ms!

-Vf

Move string literals from data segment to code segment (16-bit compiler only).

Uses fast huge pointers.

Create far variables automatically.

Create far variables automatically; set the threshold to "size" (16-bit compiler only).

Assume DS=SS in all memory models (16-bit compiler only).

Compile using compact memory model (16-bit compiler only).

Compile using huge memory model.

Compile using large memory model (16-bit compiler only).

Compile using medium memory model (16-bit compiler only).

Compile using medium memory model; assume DS!=SS (16-bit compiler only). (Note:
there is no space between the -mm and the !.)

Compile using small memory model (16-bit compiler only). (Default)

Compile using small memory model; assume DS! = SS (16-bit compiler only). (Note:
there is no space between the -ms and the !.)

Far C++ virtual tables (16-bit compiler only).

16-bit Compiler I Processor

-1- Generate 8086 compatible instructions.

-1 Generate the 80186/286 compatible instructions (16-bit only).

-2

-3

-4

-a

-an

Generate 80286 protected-mode compatible instructions (16-bit compiler only).
(Default for 16- bit)

Generate 80386 protected-mode compatible instructions. (Default for 32-bit)

Generate 80386/80486 protected-mode compatible instructions.

Align byte. (Default: -a- use byte-aligning.)

Align to "n". l=byte, 2=word (l6-bit = 2 bytes), 4=Double word (32-bit compiler only,
4 bytes)

16-bit Compiler I Segment Names Code

-zAname Code class set to "name".

-zCname Code segment class set to "name".

-zPname Code group set to "name".

16-bit Compiler I Segment Names Data

-zBname

-zDname

-zGname

-zRname

-zSname

-zTname

BSS class set to "name".

BSS segment set to "name".

BSS group set to "name".

Data segment set to "name".

Data group set to "name".

Data class set to "name".

16-bit Compiler I Segment Names Far Data

Chapter 3, Specifying project options and compiling 119

Table 3.1 Command-line options by function

-zEname

-zFname

-zHname

-zVname

Far segment set to "name".

Far class set to "name".

Far group set to "name".

Far virtual segment set to "name" (16-bit compiler only).

-zWname Far virtual class set to "name" (l6-bit compiler only).

32-bit Compiler I Calling Convention
-p Use Pascal calling convention.

-pc Use C calling convention. (Default: -pc, -p-.)

-pr Use fastcall calling convention for passing parameters in registers.

-ps Use stdcall calling convention (32-bit compiler only).

32-bit Compiler I Processor
-3 Generate 80386 protected-mode compatible instructions. (Default for 32-bit)

-4 Generate 80386/80486 protected-mode compatible instructions.

-5 Generate Pentium protected-mode compatible instructions.

C++ Options I C++ Compatibility
-K2 Allow only two character types (signed and unsigned). Char is treated as signed.

Compatibility with Borland C++ 3.1 and earlier.

-Va

-Vb

-Vc

-Vp

Pass class arguments by reference to a temporary variable (16-bit compiler only).

Make virtual base class pointer same size as 'this' pointer of the class (l6-bit compiler
only). (Default)

Do not add the hidden members and code to classes with pointers to virtual base class
members (16-bit compiler only).

Pass the 'this' parameter to 'pascal' member functions as the first.

-Vt Place the virtual table pointer after nonstatic data members (16-bit compiler only).

C++ Options I Exception Handling
-RT Enable runtime type information, (Default)

-x Enable exception handling. (Default)

-xc
-xd

-xf

Enable compatible exception handling.

Enable destructor cleanup. (Default)

Enable fast exception prologs.

-xp Enable exception location information.

C++ Options I Member Pointer
-Vmd Use the smallest representation for member pointers.

-Vmm Member pointers support multiple inheritance.

-Vmp Honor the declared precision}or all member pointer types.

-Vms Member pointers support single inheritance.

-Vmv Member pointers have no restrictions (most general representation). (Default)

C++ Options I Templates
-Jg Generate definitions for all template instances and merge duplicates. (Default)

-Jgd Generate public definitions for all template instances; duplicates result in redefinition
errors.

-Jgx Generate external references for all template instances.

120 C++ Use r 's G u ide

Table 3.1 Command-line options by function

c++ Options I Virtual Tables
-v Use smart c++ virtual tables. (Default)

-vo
-VI

-Vs

External C++ virtual tables.

Public C++ virtual tables.

Local C++ virtual tab~es.

Compiler I Code Generation
-b Make enums always integer-sized. (Default: -b- make enums byte-sized when

possible.)

-d Merge duplicate strings. (Default)

-K

-po

-r

Default character type unsigned. (Default: -K- default character type signed.)

Use fastthis calling convention for passing this parameter in registers (l6-bit compiler
only).

Use register variables. (Default)

-rd Allow only declared register variables to be kept in registers.

-y Generate overlay-compatible code.

-Yo Overlay compiled files.

Compiler I Compiler Output
-Fc

-u

Generate COMDEFs (16-bit compiler only).

Generate underscores. (Default)

-x Disable compiler autodependency output. (Default: -X- use compiler autodependency
output.)

Compiler I Debugging
-k Tum on standard stack frame. (Default)

-v

-vi

-y

Check for stack overflow.

Include browser information in generated .OBJ files.

Tum on source debugging.

Control expansion of inline functions.

Line numbers on.

Compiler I Defines
-Dname Define "name" to the null "string".

-Dname=string Define"name" to "string".

-Uname Undefine any previous definitions of "name".

Compiler I Floating Point
-f Emulate floating point. (Default)

off Fast floating point. (Default)

Compiler I Precompiled Headers
-H Generate and use precompiled headers. (Default)

-Hfilename

-H=filename
Sets the name of the file for precompiled headers.

Set the name of the file for precompiled headers.

-Hu Use but do not generate precompiled headers.

Compiler I Source
-A Use only ANSI keywords.

-AK Use only Kernigham and Ritchie keywords.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion 5 and com pi lin 9 121

Table 3.1 Command-line options by function

-AT

-AU

-c
-in

Use Borland C++ keywords (also -A-).

Use only UNIX V keywords.

Turn nested comments on. (Default: -C- turn nested comments off.)

Make significant identifier length to be "n". (Default)

Configuration Files

@filename

Messages

-gn

-jn

-w

-wxxx

Read compiler options from the response file "filename"

Warnings: stop after "n" messages. (Default: 255.)

Errors: stop after lin" messages. (Default)

Display warnings on.

Enable "xxx" warning message. (Default)

Messages I ANSI Violations

-wbbf Bit fields must be signed or unsigned int.

-wbig

-wdpu

-wdup

-wext

-wnak

-wpin

-wret

-wstu

-wsus

-wvoi

Hexadecimal value contains more than three digits. (Default)

Declare type 'type' prior to use in prototype (Default)

Redefinition of 'macro' is not identical. (Default)

'identifier' is declared as both external and static (Default)

Non-ANSI Keyword Used: '<keyword>' (Note: Use of this option is a requirement for
ANSI conformance.)

Initialization is only partially bracketed.

Both return and return of a value used. (Default)

Undefined structure 'structure'

Suspicious pointer conversion. (Default)

Void functions may not return a value. (Default)

-wzdi Division by zero (Default)

Messages I General

-Ff=l Array variable 'identifier' is near. (Default)

-wamp

-wasm

Superfluous & with function.

Unknown assembler instruction.

-will ill-formed pragma. (Default)

-wpch Cannot create precompiled header: header. (Default)

Messages I Inefficient C++ Coding

-winI

-wlin

Functions containing reserved words are not expanded inline. (Default)

Temporary used to initialize 'identifier'. (Default)

-wIve Temporary used for parameter 'parameter' in call to 'function' (Default)

Messages. I Inefficient Coding

-waus

-weff

-wpar

122 C++ Use r '5 G U ide

'identifier' is assigned a value that is never used. (Default)

Code has no effect. (Default)

Parameter 'parameter' is never used. (Default)

Table 3;1 Command-line options by function

-wrch

-wstv

-wuse

Umeachable code. (Default)

Structure passed by value.

'identifier' declared but never used.

Messages I Obsolete c++
-wobi

-wofp

-wovl

Base initialization without a class name is now obsolete. (Default)

Style of function definition is now obsolete. (Default)

Overload is now unnecessary and obsolete. (Default)

-wpre Overloaded prefix operator 'operator' used as a postfix operator.

Messages I Portability

-wc1n

-wept

-wmg

-wrpt

Constant is long.

Nonportable pointer comparison. (Default)

Constant out of range in comparison. (Default)

Nonportable pointer conversion. (Default)

-wsig Conversion may lose significant digits.

-wuep Mixing pointers to different' char' types.

Messages I Potential c++ Errors
-wbei Initializing 'identifier' with 'identifier'. (Default)

-wdsz

-wheh

-whid

-wibe

-wmpe

-wmpd

-wncf

-wnci

-wnst

-wntd

Array size for 'delete' ignored. (Default)

Handler for' <typel>' hidden by Previous Handler for' <type2>'.

'functionl' hides virtual function 'function2'. (Default)

Base class 'basel' is inaccessible because also in 'base2'. (Default)

Conversion to type fails for members of virtual base class base. (Default)

Maximum precision used for member pointer type type. (Default)

Non-const function 'function' called for const object. (Default)

The constant member 'identifier' is not initialized. (Default)

Use qualified name to access nested type 'type'. (Default)

Use '> >' for nested templates instead of I»~'. (Default)

-wnvf Non-volatile function function called for volatile object. (Default)

Messages I Potential Errors
-wamb

-wece

-wdef

-wnod

-wpia
-wpro

-wrvl

Optimizations
-Od

Ambiguous operators need parentheses.

Condition is always true OR Condition is always false. (Default)

Possible use of 'identifier' before definition.

No declaration for function 'function'.

Possibly incorrect assignment. (Default)

Call to function with no prototype. (Default)

Function should return a value. (Default)

Disable all optimizations.

Optimizations I Size
-0 Optimize jumps.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 123

Table 3.1

-Ob

-Oe

-01

-ow

Command-line options by function

Eliminate dead code.

Allocate global registers and analyze variable live ranges.

Compact loops.

Suppress the inc bp / dec bp on windows far functions (16-bit compiler only).

-z Enable register load suppression optimization.

Optimizations I Specific
-01 Generate smallest possible code (same as using -0, -Db, -Oe, -Og, -Oi, -01, -Om, -Op,

-02

-Oa

-Oe

-Og

-Ot, -Ov, -k-, -Oe, and -Z)

Generate fastest possible code.

Optimize assuming pointer expressions are not aliased on common subexpression
evaluation.

Eliminate duplicate expressions within basic blocks.

Eliminate duplicate expressions within functions.

-Ox Generate fastest code; Microsoft compatible.

Optimizations I Speed
-Oi

-Om

-Op

-Ov

Expand common intrinsic functions.

Move invariant code out of loops.

Propagate copies.

Enable loop induction variable and strength reduction.

Response Files
+filename Use alternate configuration file "filename"

Command-line options
The following table lists all options that are available only from the command-line.

Table 3.2

-B

-e

-efilename

-Efilename

-Fm

-h

Command-line options only

Compiles assembly and calls TASM or TASM32. IfTASM isn't in your path, checking this
option generates an error. Also, old versions of T ASM might have problems with 32-bit
code.

Compiles and assembles the named .c, .CPP, and .ASM files, but does not execute a link
command.

Derives the executable program's name from filename by adding the file extension .EXE
(the program name is then filename.EXE). filename must immediately follow the -e, with
no intervening whitespace.Without this option, the linker derives the .EXE file's name
from the name of the first source or object file in the file name list.

Use "filename" as the name of the assembler to use. By default, TASM is used.

Enables all the other -F options (-Fe, -Ff, and -Fs). You can use it as a handy shortcut when
porting code from other compilers.

This option offers an alternative method of calculating huge pointer expressions; this
method is much faster than the standard method, but must be used with caution. When
you use this option, huge pointers are normalized only when a segment wraparound
occurs in the offset part. This causes problems with huge arrays if any array elements cross
a segment boundary.

124 C++ Use r' s G u ide

Table 3.2

-B

-He

-Ix

-ofilename
-p

-Pext

-5

-T-

-Tstring

-tWM

-Uname

-Vo

-Vv

-W

-WC

-WCD

--WD

-WDE

-weas

-WM

-zX*

Command-line options only

Compiles assembly and calls TASM or TASM32. If TASM isn't in your path, checking this
option generates an error. Also, old versions of TASM might have problems with 32-bit
code.

Cache precompiled headers. Use with -H, -Hxxx, -Hu, or -Hfilename. This option is useful
when compiling more than one precompiled header. (32-bit compiler only)

Pass option "x" to the linker (TLINK for BCC and TLINK32 for BCC32). More than one
option can appear after the -1 (which is a lowercase L).

Compile source file to "filename".oBJ.

Perform a C++ compile regardless of source file extension. (Default)

Perform a C++ compile regardless of source file extension and set the default extension to
"ext". This option is available because some programmers use .C or another extension as
their default extension forC ++ code.

Generate assembler source compiles the named source files and produces assembly
language output files (.ASM), but does not assemble. When you use this option, Borland
C++ includes the C or C++ source lines as comments in the produced .ASM file.

Remove all previous assembler options.

Pass "string" as an option to TASM, TASM32, or assembler specified with -E.

Make a multithreaded application or DLL.

Undefines any previous definitions of the named identifier "name".

This option is a "master switch" that sets on all of the backward-compatibility options
listed in this section. It can be used as a handy shortcut when linking with libraries built
with older versions of Borland C++.

This option directs the compiler not to change the layout of any classes (which it needs to
do to allow pointers to virtual base class members, which were not supported in previous
versions of Borland C++). If this option is used, the compiler will not be able to create a
pointer to a member of a base class that can be reached only from the derived class through
two or more levels of virtual inheritance (16-bit compiler only).

Creates a Windows GUI application.

Creates a 32-bit console mode application.

Creates q 32-bit console mode DLL with all functions exportable and exported.

Creates a GUI DLL with all functions exportable.

Creates a GUI DLL with explicit functions exportable and exported.

'type' assigned to 'enumeration'. (Default)

Make a multithreaded application or DLL.

Use default name for X. For example, -zA assigns the default class name CODE to the code
segment class.

C hap t e r 3, S pee i f yin 9 pro j e c top t ion san d com p iii n 9 125

126 C++ Use r 's G u ide

Building Applications with AppExpert
AppExpert lets you create ObjectWindows-based Windows applications with features
such as a tool bar, a status bar, a menu structure, online Help, and MDI windows. You
can also select options to support printing, print preview, aJ;ld document/view.
AppExpert works with Resource Workshop, ObjectWindows classes, and the IDE's
project manager to form a visual approach to application generation.

Creating applications with AppExpert consists of four steps:

Use AppExpert to define the user interface and application features and to generate
the code.

2 Use ClassExpert to add classes and event handlers, to implement virtual functions, to
navigate to existing class source code, and automate classes. ClassExpert can also
associate Resource Workshop objects (such as menus and dialog boxes) with classes
or handlers.

3 Use Resource Workshop to edit or add resources.

4 Use the project tree to build your application.

AppExpert always creates the following files for each application:

• A database file for the AppExpert source (.APX) that ClassExpert uses
• A main header file (.H)
• A main source file (.CPP)
• A project file (.IDE)
• A resource header file (.RR)
• A resource script file (.RC)

Depending on which options you choose, AppExpert can create the following files:

C hap t e r 4, B u i I din gAp P lie a ti 0 n s wit hAp P E x per t 127

• Help source files (.RTF)
• A Help project file (.HPJ)
• Icon and bitmap files (.lCO and .BMP)

Steps for Creating an Application with AppExpert
To create an AppExpert application:

1 Start the IDE and choose File I New I AppExpert. A dialog box appears.

2 Type a name for your project file. By default, most generated files (including the
.EXE) are derived from the target name (for example, <targetnarne>. cpp). Select a
path where you want the AppExpert project and source files to be stored. AppExpert
will create the directory if it does not already exist. Click OK. The AppExpert .
Application Generation Options dialog box appears.

3 The Application Generation Options dialog box contains a list of topics on the left
and a brief description of the topic on the right. You can change options in the dialog
box to customize the type of application you want generated.

4 Click the Generate button at the bottom of the Options dialog box.

5 The Generate dialog box appears, asking you to confirm that you want the code
generation for your application to begin. Click Yes to generate the code for your
application. While AppExpert is generating your application, a message box displays
the current status.

6 The project window appears, listing some of the files required for your application
(files for bitmaps, icons, and help text are not displayed). You can use ClassExpert to
modify your application or you can build it first. To build your application, choose
either Project I Make All or Project I Build All.

Hint The application generates and builds faster, if you uncheck unneeded options.

Note With AppExpert, you choose your application options once, then generate the code.
After you generate the code and resources, you can edit and add to them, but you
cannot go back to AppExpert and change options. For example, if you use AppExpert to
generate an application that does not contain a status line and then decide to add one.
You will need to write code to add that functionality.

Application options
• Use the AppExpert I Application options to define the specific characteristics of the

application you want to generate.

• Use the Customize Application button to open the group (if necessary) and go to the
first option in the first subtopic available for the Application section of the AppExpert
options.

• If you simply want to use the default options, you can generate your application now
by pressing the Generate button.

128 c++ User's Guide

Application I Window Model
The Application I Window Model options determine which model to use for your
application and how application objects will be handled.

MOl (Multiple Document Interface)
The MOl option sets the style of your application to follow the Multiple Document
Interface (MOl) model. This model causes child windows to be constrained within the
boundaries of the application window.

SOl (Single Document Interface)
The SOl option sets the style of your application to follow the Single Document Interface
(SOl) model. This model supports child windows that can exist outside of the
constraints of the application window without being clipped.

Dialog Client
The Dialog Client option sets the style of your application so that the main (and only)
window of your application is a dialog window, making the client area of the
application a dialog box.

Document/View
The Document/View option determines whether your application supports the
Document/View model for handling application objects. The Document/View model
breaks data handling into two discrete parts: data storage and control, in the document
class (derived from TDocument), and data display and manipulation, in the view class
(derived from TView).

You can use the Document/View option with either SOl, MOl, or Dialog Client
applications.

Application I Basic Options
The Application I Basic Options options define the general characteristics of the
application you are going to generate, such as the initial state of the application's main
window, and the generation of help files, as well as the directories where files will be
stored.

If you simply want to use the default options, you can generate your application now by
pressing the Generate button.

Target Name
Use Application I Basic Options I Target Name to name the AppExpert target that will be
. used to build your application. This name is the basis for the default names of other
elements in your project (e.g., header files, class database, application class, and source
files).

The default name is the same as the IDE project. You can use this name or enter your
own. . ,

C hap t e r 4, B u i I din gAp P lie a t ion 5 wit hAp P E x per t 129

Base -Directory
Use Application I Basic Options I Base Directory to define the main project directory. All
other directories associated with the project are placed relatively to this directory.

You can enter a directory by entering it yourself or press the Browse button to select one
from the Select Directory dialog box.

The default base directory is the one you choose in the New AppExpert Project dialog
box. The name of this directory is passed to the Project Manager for the new AppExpert
target.

Application I Basic Options I Features to Include
Use the Application I Basic Options I Features to Include options to specify which
additional user interface elements your application supports.

Dockable Toolbar
Turn on the Dockable Toolbar option to include a dockable toolbar in your application.

Status Line
Tum on the Status Line option to place a status line at the bottom of your application's
main window. The code generated will display help hints in the status line when menu
items are highlighted.

Recently Used Files List
Tum on the Recently Used Files List option to include a list of the four most recently
accessed files under the File menu of your application.

Registry Support
Tum on the Registry Support option to register your application's icons and document
types with the system registry when the application is run.

Drag/Drop
Tum on the Drag/Drop option to have code generated so that your application will
support drag-and-drop actions from File Manager and Explorer.

Printing
Tum on the Printing option if you want your application to support printing-related
activities. The code generated will handle the Print Setup, Print Preview, and Print
commands.

Mail Support
Tum on the Mail Support option to include support for Common Message Call (CMC)
mail in your application.

130 C++ Use r 's G u ide

Help File Support
If you select the Application I Basic Options I Include Help File Support option,
AppExpert will generate RTF source files and a Help project file when it generates your
application. The Help project file will be added to the Project Manager project and
automatically built with the target application.

This Help file contains placeholder text for the menus and menu options present in the
generated application.

Help File Name
Use Application I Basic Options I Help File Name to specify the name of the help file
associated with your application. This file name identifies the source and Help project
files.

The default value for the file name is the same as the application project. You can also
enter your own file name.

Application I Advanced Options
The Application I Advanced Options options define some specific characteristics of the
application you are going to generate, such as the initial state of the application's main
window, and the type of controls the application will use.

Application Startup State
Use the Application Startup State options to set the initial state of the application's main
window.

Control Style
Use the Control Style options to determine which type of controls the application will
use.

Application I Advanced Options I Application Startup State
Use the Application I Advanced Options I Application Startup State options to set the
initial state of the application's main window.

Normal (sizeable)
Turn on the Normal option to set the application window to start in a default size. This
is the default setting.

Minimized (iconic)
Turn on the Minimized option to set the application window to start in a minimized
state (as an icon on the Windows desktop).

C hap t e r 4, B u i I din gAp P lie at ion s wit hAp P Ex per t 131

, '

Maximized (entire screen)
Tum on the Maximized option to set the application window to fill the entire Windows
desktop when it starts running.

Application I Advanced Options I Control Style
Use the Application I Advanced Options. I Control Style options to determine which
type of controls the application will use.

Standard Windows
Tum on the Standard Windows option to specify that the application will use standard
Windows controls. This is the default setting.

Borland BWCC
Tum on the Borland BWCC option to specify that the application will use the Borland
custom control style.

MS Control 30
Tum on the MS Control 3D option to specify that the application will use the three­
dimensional Windows controls provided by CTL3DV2.DLL and CTL3D32.DLL.

Application I OLE 2 Options
Use the Application I OLE 2 Options options to set the behavior of your OLE 2
application.

OLE 2 Container Options
Choose whether or not you want your application to be an OLE 2 and OCX container
application. AppExpert only allows MDI and SDI applications which use the DocView
model to be containers.

OLE 2 Server Options
Choose whether you want your application to be an OLE 2 Server EXE, DLL, or not a
server at all. AppExpert only allows MDI and SDI applications which use the DocView
model to be servers.

Enable Automation in the Application
Select the Enable Automation in the Application option if you want your application to
be an OLE 2 automation server.

Server 10
If you set your application to be an OLE 2 Server, use the Server ID field to specify the
identifier for your application.

132 C++ Use r 's G u ide

Application I Code Generation Control
Use the Application I Code Generation Control options to control various aspects of the
code generation process.

Target Name
Displays the name of the project as defined in Basic Options I Target Name.

Base Directory
Displays the base directory for the project as defined in Basic Options I Base Directory.

Source Directory
Use Application I Code Generation Control I Source Directory to specify the directory
where the source files for the application will be placed during code generation. This
path is relative to the directory specified as the Base Directory. If an absolute path is
specifed, it is converted to a path relative to the Base Directory.

You can enter a directory or press the Browse button to select one from the Select
Directory dialog box. The default value for the Source Path is the current directory,
which is the directory specified in Base Directory.

Header Directory
Use Application I Code Generation Control I Header Directory to specify the directory
where the header files for the application will be placed during code generation. This
path is relative to the directory specified as the Base Directory. If an absolute path is
specifed, it is converted to a path relative to the Base Directory.

You can enter a directory or press the Browse button to select qne from the Select
Directory dialog box. The default value for the Header Path is " . \ II , whjch causes
source files to be placed in the current directory.

Main Source File
Use Main Source File to name the main application source file. The default filename is
the name of the project: <TargetName>App. CPP. AppExpert will parse and shorten the
project name if it is longer than eight characters, unless the Use Long File Names option
is enabled.

Main Header File
Use Main Header File to name the main application header file. The default filename is
the name of the project: <TargetName>App. H. AppExpert will parse and shorten the
project name if it is longer than eight characters, unless the Use Long File Names option
is enabled.

Application Class
Use Application Class to name the class that AppExpert will derive from T Application.
The default class name is T<TargetName>App.

C hap t e r 4, B u i I din gAp P lie at ion s wit hAp P E x per t 133

About Dialog Class
Use About Dialog Class to name the class that AppExpert will derive from TDialog. The
default class name is T<TargetName>AboutDlg.

Use Long File Names
The Use Long File Names option determines whether or not the source files of your
application are generated using long file names.

Note Some installations of Novell Netware do not support long file names.

Comments
Use the Comments options to specify how the generated code is documented.

Terse
Turn on the Terse option to sparsely comment the generated code.

Verbose
Tum on the Verbose option to heavily comment the generated code.

Application I Administrative Options
Use the Application I Administrative Options to specify identifying information that
will be placed in a comment block at the beginning of all of the generated project files.
Some of the information is also displayed in the About... dialog box of the application.

Version Number
Use Version Number to provide the version number for the project. This value will be
displayed in the application's 1/ About ... " dialog box. The default version number is
1/1.0."

Copyright
Use Copyright to provide the copyright information for your application. This value
will be displayed in the application's 1/ About ... " dialog box and will be placed in all of
the comment blocks generated by AppExpert.

Description
Use Description to provide a description of your application. This value will be
displayed in the application's 1/ About ... " dialog box. The default value is the name of
the project.

Author
Use Author to provide the name of the programmer who generated the source code.
This will be placed in all of the comment blocks generated by AppExpert.

134 C++ Use r 's G u ide

Company
Use Company to provide the name of the programmer's company. This will be placed
in all of the comment blocks generated by AppExpert.

Main Window options
• Use the AppExpert I Main Window options to control the appearance and operation

of the main window of the generated application.

• Use the Customize Main Window button to open the group (if necessary) and go to
the first option in the first subtopic available for the Main Window section of the
AppExpert options.

• If you want to simply use the default options, you can generate your application now
by pressing the Generate button.

Window Title
Use Window Title to specify the name that will be displayed as the caption for the
application's main window.

Main Window I Background Color
The Main Window I Background Color options determine the background color of the
application's main window.

Use Default Color
The Use Default Color options causes no code to be generated to set the main window
background color. In this way, the color used will be the current default for the system.

Use System Color Constant
The Use System Color Constant option sets the background color of the main window
to a specified constant. Choose the constant from the list box provided.

Use Specified Color
The Use Specified Color option sets the background color of the main window to a
specified color. Choose the color from the Color dialog.

Main Window I Basic Options
Use the Main Window I Basic Options to control the general appearance of the main
window of your application.

C hap t e r 4, B u i I din gAp P lie a t ion 5 wit hAp P E x per t 135

Window Styles
Use the Window Styles options to control the appearance of the application's main
window, specifying its border style and whether it contains system and control menus.

Caption
Turn on the Caption radio button to create a single, thin border and a title bar where a
caption can be displayed.

Border
Turn on the Border option to get a single, thin border without a caption for the
application's main window.

Max Box
Turn on the Max Box option to add a maximize button to the right side of the
application's main window caption.

Min Box
Tum on the Min Box option to add a minimize button to the right side of the
application's main window caption.

Vertical Scroll
Turn on the Vertical Scroll option to add a vertical scroll bar to the right side of the
application's main window.

Horizontal Scroll
Turn on the Horizontal Scroll option to add a horizontal scroll bar to the bottom of the
application's main window.

System Menu
Turn on the System Menu option to add a system menu button on the left side of the
application's main window caption.

Visible
Turn on the Visible option to make the application's main window visible. This is the
default setting. When this option is off, the WS_ VISIBLE style is changed to NOT
WS_ VISIBLE.

Disabled
Turn on the Disabled option to disable the application's main window.

Thick Frame
Turn on the Thick Frame option to place a double border around the application's main
window. If this option if off, users cannot resize the main window.

136 C++ Use r 's G u ide

Clip Siblings
Turn on the Clip Siblings option to protect the siblings of the application's main
window. Painting is restricted to that window.

Clip Children
Turn on the Clip Children option to protect child windows from being repainted by the
application's main window.

Main Window I SOl Client Window
Use the Main Window I SDI Client Window options to define the class that represents
the client area of the Single Document Interface main window. These options are only
applicable if you select the Single Document Interface option from Application I
Window Model options.

ClientNiew Class
Use Client/View Class to name the class of the SDI client area window or view.

Document Class
Use Document Class to name the class of the default document. If the Doc/View option
in the Application I Window Model options is selected, the default value is
TFileDocument; otherwise, Document Class is blank.

Description
Use Description to describe the class of files associated with the Files of Type List in
Windows common file dialog boxes. The default value is All Files (*. *). This value
serves as the description for the value entered in Filters.

Filters
Use Filters to list wildcard file specifications (separated by semicolons) for the file names
you want the application to recognize. This value is passed to Windows common file
dialog boxes to filter files displayed in the list box of those dialog boxes. The default
value is * . *. The values entered in Description serves as the explanation of this value.

Default Extension
Use Default Extension to specify the default filename extension. This value is passed to
Windows common file dialog boxes and added to filenames without extensions. The
default value is TXT.

Class Name
Use Class Name to specify the name AppExpert uses for the class derived from Client/
View Class that represents the client area of the SDI frame window. The default value is
T<ProjectName><Client/ViewClass> (without the leading "Til).

C hap t e r 4, 8 u i I din gAp P lie a t ion s wit hAp P E x per t 137

Source File
Use Source File to name the source file that will store the implementation of the class
named in Client/View Class. The default value is <ClassName> . CPP. AppExpert will
parse and shorten the class name if it is larger than eight characters, unless the Use Long
File Names option is enabled.

Header File
Use Header File to name the header file that will store the definition of the class named
in Client/View Class. The default value is <ClassName>. H. AppExpert will parse and
shorten the class name if it is larger than eight characters, unless the Use Long File
Names option is enabled.

Client/View Class
Use Main Window I SDI Client I Client/View Class to name the class of the SDI client
area or view. The interpretation of this value depends on whether you select the
Doc/View option in the Application I Window Model options.

If the Doc/View option is not selected, Client/View Class selects the class of the client
window; otherwise, Client/View Class selects the class of the view of the default
document/view.

TEditView (default)

TListView

TWindowView

TEditFile (default)

TListBox

TWindow

This value is automatically mapped to the Doc/View options. For example, if you turn
off the Doc/View option, TListView is switched to TListBox. Conversely, if you select
the Doc/View option, TListBox changes to TListView.

Main Window I MOl Client Window
Use the Main Window I MDI Client Window options to describe the class that defines
the client window of the Multiple Document Interface main window. These options are
only applica~le if you select the Multiple Document Interface option from Application I
Window Model options.

Client Class
Use Client Class to specify the name AppExpert uses for the class derived from
TMDIClient that represents the client area of the MDI frame window. The default value
is T<TargetName><ClientClass>.

Source File
Use Source File to name the source file that will store the implementation of the class
named in Client Class. The default value is <ClientClass>. CPP. AppExpert will parse

138 C++ Use r '5 G U ide

and shorten the client class name if it is larger than eight characters, unless the Use Long
File Names option is enabled.

Header File
Use Header File to name the header file that will store the definition of the class named
in Client Class. The default value is <ClientClass> . H. AppExpert will parse and shorten
the client class name if it is larger than eight characters, unless the Use Long File Names
option is enabled.

Main Window I Dialog Client Window
Use the Main Window I Dialog Client Window options to describe the characteristics of
an application where the main window is a dialog window.

Client Class
Use Client Class to specify the name AppExpert uses for the class derived from TDialog
that represents the main window of the application. The default value is
T<TargetName><ClientClass>.

Source File
Use Source File to name the source file that will store the implementation of the class
named in Client Class. The default value is <ClientClass>. CPP. AppExpert will parse
and shorten the project name if it is larger than eight characters, unless the Use Long File
Names option is enabled.

Header File
Use Header File to name the header file that will store the definition of the class named
in Client Class. The default value is <ClientClass> . H. AppExpert will parse and shorten
the class name if it is larger than eight characters, unless the Use Long File Names option
is enabled.

Dialog ID
Use Dialog ID to specify the identifier associated with the dialog that functions as the
main window of your application.

Include a Menu Bar
Select Include a Menu Bar if you want a menu bar on your main window.

MOl ChiidNiew Options
Use the AppExpert I MDI Child/View options to define the class that will define a
default child window or document/view of the Multiple Document Interface
application: These options are only applicable if you select the Multiple Document
Interface option from Application I Window Model options.

C hap t e r 4, B u i I din gAp P lie a t ion s wit hAp P E x per t 139

MOl Child Class
Use MDI Child Class to name the class derived from TMDIChild that represents the
frame of the default MDI child windows. The default value is T<TargetName>MDIChild.

Source File
Use Source File to name the source file that will store the implementation of the class
named in MDI Child. The default value is <MDIChildClass> . CPP. AppExpert will parse
and shorten the child class name if it is larger than eight characters, unless the Use Long
File Names option is enabled.

Header File
Use Header File to name the header file that will store the definition of the class named
in Client Class. The default value is <MDIChildClass> . H. AppExpert will parse and
shorten the child class name if it is larger than eight characters, unless the Use Long File
Names option is enabled.

MOl ChiidNiew I Basic Options
Use the MDI Child/View I Basic Options to define the default child window of an MDI
application.

MOl Client/View Class
Use MDI Child/View I Basic Options I MDI Client/View Class to name the class of the
MDI client area or view. The interpretation of this value depends on whether you
selected the Doc/View option in the Application I Window Model options.

If the Doc/View option is not selected, MDI Client/View Class selects the class of the
client window; otherwise, MDI Client/View Class selects the class of the view of the
default document/view.

TEditView (default) TEditFile (default)

TListView TListBox

TWindowView TWindow

This value is automatically mapped to the Doc/View options. For example, if you tum
off the Doc/View option, TListView is switched to TListBox. Conversely, if you select
the Doc/View option, TListBox changes to TListView.

Document Class
Use Document Class to name the class of the default document. If the Doc/View option
in the Application I Window Model options is selected, the default value is
TFileDocument; otherwise, Document Class is blank.

140 c++ User's Guide

Description
Use Description to describe the class of files associated with the Files of Type List in
Windows common file dialog boxes. The default value is All Files (*. *) . This value
serves as the description for the value entered in Filters.

Filters
Use Filters to list wildcard file specifications (separated by semicolons) for the file names
you want the application to recognize. This value is passed to Windows common file
dialog boxes to filter files displayed in the list box of those dialog boxes. The default
value is * . *. The values entered in Description serves as the explanation of this value.

Default Extension
Use Default Extension to specify the default filename extension. This value is passed to
Windows common file dialog boxes and added to filenames without extensions. The
default value is TXT.

Class Name
Use Class Name to specify the name AppExpert uses for the class derived from the MDI
Client/View Class that represents the client area of the MDI frame window. The default
value is <Proj ectName><ClientViewClass> (without the leading "T").

Source File
Use Source File to name the source file that will store the implementation of the class
entered in Class Name. The default value is <ClassName>. CPP. AppExpert will parse and
shorten the project name if it is larger than eight characters, unless the Use Long File
Names option is enabled.

Header File
Use Header File to name of the header file that will store the definition of the class
entered in Class Name. The default value is <ClassName> . H. AppExpert will parse and
shorten the class name if it is larger than eight characters, unless the Use Long File
Names option is enabled.

C hap t e r 4, B u i I din gAp P lie a t ion s wit hAp P Ex per t 141

142 C++ User's Guide

Managing your classes with
Class Expert

ClassExpert lets you create new classes, edit and refine the implementation of classes,
and navigate through the source code for existing classes in your AppExpert
applications. You cart use ClassExpert with Resource Workshop to associate classes to
resources (for example, associating a TDialog class to a dialog resource). ClassExpert
displays virtual functions and events for existing classes and checks the ones
implemented in your application. You can also use ClassExpert to instantiate and
automate classes in your AppExpert project.

Starting ClassExpert
To start ClassExpert:

1 Open an AppExperCIDE project file by choosing File I Open.

2 Double-click the AppExpert target node (ClassExpert is the default viewer for
AppExpert targets), or choose View I ClassExpert. ClassExpert appears, listing the
classes and their implementation for your application.

The ClassExpert window contains three panes, each with a specific function:

• Classes displays the classes used in the application.

• Events displays the events handled by the selected class.

• Edit lets you view and edit the source associated with the selected class.

Chapter 5, Managing your classes with ClassExpert 143

Class Expert Classes pane
The Classes pane lists the set of classes known to ClassExpert that are used in the
current project. This includes all classes created during code generation and any classes
you might have added afterward using ClassExpert.

Selecting a class from this list changes the contents displayed in the Events and Edit
panes to show the events and source file associated with the selected class.

Classes pane SpeedMenu
Use the Classes pane SpeedMenu to access frequently used Edit commands.

Add New Class
Use the Add New Class command from the Classes pane SpeedMenu to create a new
class in your application. Choosing this option displays the Add New Class dialog box
which you can use to define the new class you are creating.

Automate Class
Use the Automate Class command from the Classes pane SpeedMenu to expose existing
classes in your application to OLE 2 automation. This will cause additional code to be
added to your source files to support the automation of the class currently selected in
the Classes pane. If the T Application class is not already exposed, automating a class will
automatically automate it.

Delete Automation
Use the Delete Automation command from the Classes pane SpeedMenu to remove the
OLE 2 automation code from the class currently selected in the Classes pane.

Choosing this command displays a dialog box warning you that the class will be
removed from automation. Click Yes to remove the automation code, or No to cancel
the operation.

Note This command is only available if the class has already been automated.

View Document Templates
Use the View Document Templates command from the Classes pane SpeedMenu to
create, delete, and view document and view pairings. Choosing this option displays the
Document Templates dialog box in which you can define the document templates.

This option is only applicable if you selected the Document/View option from the
Application I Window Model settings in AppExpert when you set the options for your
application.

View Class Info
Use the View Class Info command from the Classes pane SpeedMenu to view a
summary of the properties of the class currently selected in the Classes pane. Choosing
this command displays the Class Info dialog box.

144 c++ User's Guide

If the selectedclass is derived from TFrameWindow, you can also use this option to
change the client class.

Edit Source
Use the Edit Source command from the Classes pane SpeedMenu to edit the source file
associated with the class currently selected in the Classes pane.

Choosing this option opens the source file in an IDE editor window (not in the
ClassExpert Edit pane) and positions the cursor on the class constructor.

Edit Header
Use the Edit Header command from the Classes pane SpeedMenu to edit the header file
associated with the class currently selected in the Classes pane.

Choosing this option opens the header file in an IDE editor window (not in the
ClassExpert Edit pane) and positions the cursor on the class definition.

Edit Dialog
Use the Edit Dialog command to edit the dialog template associated with the class
currently selected in the Classes pane. Choosing this command starts Resource
Workshop and loads the associated dialog resource into the Dialog Editor.

Note This option is only applicable if the currently selected class is derived from TDialog.

Edit Menu
Use the Edit Menu command to edit the menu resource associated with the class
currently selected in the Classes pane. Choosing this command starts Resource
Workshop and loads the associated menu resource into the Menu Editor. Typically, an
application has only one menu.

ClassExpert Events pane
The Events pane contains an outliner list with several categories. The available
categories depend on the derivation of the class currently selected in the Classes pane.

These are the categories that can be displayed:

• Automation (automated classes only)

• Command Notifications

• Control Notifications (dialog classes only)

• Virtual Functions

• Windows Messages

Events pane SpeedMenu
Use the Events pane SpeedMenu to access frequently used ClassExpert commands.

Chapter 5, Managing your classes with ClassExpert 145

Add Handler
Use the Add Handler option from the Events pane SpeedMenu to create a default
member function skeleton in the, source file for the class currently selected in the Classes
pane. The source file will appear in the Edit pane.

• If you add a handler for a Windows message, ClassExpert adds an entry to the
response table whose name is defined by default. The function associated with the
handler appears in the edit window with the appropriate default handling.

• If you add a handler for a Virtual Function, the function associated with the handler
appears in the edit window with the appropriate default handling.

• If you add a handler for either Commands or Control Notifications, ClassExpert will
prompt you for the function name before adding the entry to the response table.

This option is only applicable if the event currently selected in the Events pane is not
already handled by a member function of the selected class. Unhandled events and non­
overriden virtual functions will not have a check mark next to them.

Delete Handler
Use the Delete Handler option from the Events pane SpeedMenu to delete a member
function from the event currently selected in the Edit pane.

Note The member function is removed, but the code that implements the function is not
deleted. You will be warned of this and will need to remove the code. For events,
commands, and control notifications, the response table entries are removed.

This option is only applicable if the currently selected event has a member function
associated with it; the handled event will have a check mark next to it.

For dialog classes (those derived from TDialog), you will get these additional
commands: .

Add Instance Variable
Use the Add Instance Variable option from the Events pane SpeedMenu to add an
instance variable for the item currently selected in the Events pane.

Choosing this option prompts you for the name of the variable. The type of the variable
is fixed and determined by the associated controL ClassExpert then adds the following
to your application code:

• In the header file, a structure declaration is added with an entry for the instance
variable.

• In the source file,

1 The instance variable is allocated in the class constructor (this associates the
ObjectWindows class with the resource object).

2 A static instance of the transfer structure is declared.

Note This command is only available if the class currently selected in the Classes pane is
derived from TDialog.

146 ett User's Guide

Delete Instance Variable
Use the Delete Instance Variable option from the Events pane SpeedMenu to delete the
instance variable associated with the item currently selected in the Events pane.

ClassExpert deletes the following from your code:

• The entry from the structure

• The pointer variable in the class declaration

• The allocation of the class variable associated with the resource control in the
constructor

If you delete all instance variables from your code, you will have an empty structure
and the set transfer buffer call. This information does not affect the rest of your code, so
you do not need to delete it manually.

Note This command is only available if the class currently selected in the Classes pane is
derived from TDialog.

For Automation events, you will get these additional commands:

Add Data
Use the Add Data command to add automation data to the class currently selected in
the Classes pane. Choosing this command displays the Automate Data dialog box
where you can enter information about the automation data.

Note This command is only available for classes that you have exposed to OLE 2 automation
using the Automate Class command.

Delete Data
Use the Delete Data command to remove automation data from the class currently
selected in the Classes pane.

Note The automation data is removed from the OLE 2 automation symbol table, but the code
that implements the data is not deleted. You will be warned of this and will need to
remove the code.

This option is only applicable if the currently selected class has automation data
associated with it and you have selected a data member in the Events pane.

View Data
Use the View Data command to view the automation data for the class currently
selected in the Classes pane. Choosing this command displays the Automate Data
dialog box where you can view (but not change) the information about the selected
automation data.

This option ~s only applicable if the currently selected class has automation data
associated with it and you have selected a data variable in the Events pane.

Add Method
Use the Add Method command to expose an automation method to OLE 2 automation
in the class currently selected in the Classes pane. Choosing this command displays the

Chapter 5, Managing your classes with ClassExpert 147

Automate Method dialog box where you can enter information about the automation
method.

Note This command is only available for classes that you have exposed to OLE 2 automation
using the Automate Class command.

Delete Method
Use the Delete Method. command to remove an exposed method selected in the Classes
pane from the OLE 2 automation symbol table.

Note The automation method is removed from the OLE 2 automation symbol table, but the
code that implements the method is not deleted. You will be warned of this and will
need to remove the code.

This option is only applicable if the currently selected class has an automation method
associated with it and you have selected a method in the Events pane.

View Method
Use the View Method command to view the automation method for the class currently
selected in the Classes pane. Choosing this command displays the Automate Method
dialog box where you can view the information (but not change it) about the selected
automation method. .

This option is only applicable if the currently selected class has an automation method
associated with it and you have selected a method in the Events pane.

Add Property
Use the Add Property command to expose a property to OLE 2 automation of the class
currently selected in the Classes pane. Choosing this command displays the Automate
Property dialog box where you can enter information about the automation property.

Delete Property
Use the Delete Property command to remove an exposed automation property from the
class currently selected in the Classes pane.

Note The automation property is removed from the OLE 2 automation symbol table, but the
code that implements the property is not deleted. You will be warned of this and will
need to remove the code.

This option is only applicable if the currently selected class has an automation property
associated with it and you have selected a property in the Events pane.

View Property
Use the View Property command to view the automation property for the class
currently selected in the Classes pane. Choosing this comrriand displays the Automate
Property dialog box where you can view information about the selected automation
property.

This option is only applicable if the currently selected class has an automation property
associated with it and you have selected a property in the Events pane.

148 c++ User's Guide

Events I Automation
The Events I Automation category lists all of the automation data, methods, and
properties for the automated ~lass currently selected in the Classes pane.

Events I Command Notifications
The Events I Command Notifications category lists all of the commands inherited from
the base class of the class currently selected in the Classes pane, as well as command
events that can be generated by other objects in the application, such as menus. This list
is dynamically updated to reflect any changes you might make to objects that generate
commands in your application.

Each item in the Command Notifications category expands to two items: Command and
Command Enabled. The Command handler causes the associated class to handle the
command event, while the Command Enabled handler allows the associated class to
control whether the command event is enabled or disabled (grayed).

A check mark next to an event indicates that it is handled by the class currently selected
in the Classes pane.

Events I Control Notifications
The Events I Control Notifications category appears only for classes derived from
TDialog. This category lists the identifiers for all of the controls in the dialog associated
with the class. Each control identifier expands to a list of messages it can send to or
receive from the dialog class.

A check mark next to an event indicates that it is handled by the class currently selected
in the Classes pane. A light gray check mark indicates that one or more of the child
events are handled.

Events I Virtual Functions
The Events I Virtual Functions category lists all of the virtual functions inherited from
the base class of the class currently selected in the Classes pane. The contents of this list
is fixed for a given class.

A check mark next to an event indicates that it is handled by the class currently selected
in the Classes pane.

Events I Windows Messages
The Events I Windows Messages category lists the set of Windows messages. This set
includes:

• Basic Messages

• Other Messages

• Win32 Messages

• OLE 2 Messages

A check mark next to a message indicates that it is handled by the event currently
selected in the Events pane.

C hap t e r 5, Man a gin 9 you rei ass e s wit h C I ass E x per t 149

ClassExpert Edit pane
The Edit pane is an Edit window that supports most of the features of the editor in the
IDE. It contains the c++ source file associated with the class currently selected in the
Classes pane.

You can freely edit the file displayed in the Edit pane, adding, deleting, and modifying
code as needed.

Edit pane SpeedMenu
Use the Edit pane SpeedMenu to access frequently used ClassExpert commands.

Use Class
Use the Use Class command to generate the code to instantiate a class in your
application. Choosing this commands displays the Use Class dialog box that allows you
to choose which class you want to instantiate.

Using Resean
Rescan is a special project tool that examines all the source code listed in your
AppExpert project (.IDE file) and updates or rebuilds the project's database (the .APX
file) according to what it finds in the source code. Rescan looks for special markers in the
source code to reconstruct the AppExpert database file and then starts Resource
Workshop to reconstruct information about project resources. IfRescan is successful, the
original project database file is renamed to *.~AP and a new database file is created;
otherwise, the original database is left as *.APX.

You can use Rescan to:

• Delete a class

• Move a class from one source file to another

• Rename a class, handler, instance variable, or dialog ID

• Import a class from another AppExpert project

• Rebuild a lost or damaged project database (*.APX) file

Deleting a class
To delete a class:

1 Remove the class source file from the IDE project by selecting the source node, right­
clicking the node, and choosing Delete Node. If the class shares a source file with
other classes, delete the code related to the class from the source file and delete
references to the class from other source files; otherwise, you will get errors during
compilation.

2 Select the AppExpert target in the project, right-click it, then choose Special I Rescan.
Rescan scans the source files listed as dependencies for the AppExpert target.

150 C++ Use r 's G u ide

Resource Workshop scans and updates the resource files. When Rescan is complete,
you will return to the updated project file where you can either build your
application or use ClassExpert.

You can add the deleted class back to the project by adding the class source file (and
its associated header file as a dependent node under the class source file) as a
dependent of the AppExpert target (use Add Node from the SpeedMenu), then
rescanning.

3 Look at the Classes pane in ClassExpert to see that the class is now omitted from the
list.

Moving a class
To move a class from one source file to another:

Move (cut and paste) the code or definition of the class to the new source or header
file. Be certain to also copy the comments generated by AppExpert or else
ClassExpert will be unable to locate the correct location in the new source or header
files where the class is referenced or defined.

2 Add the new source file if it is not in the project (and its associated header file as a
dependent node under the class source file) as a dependent node of the AppExpert
target (use Add Node from the SpeedMenu). If the moved class was in its own source
file, you can delete the now-empty source file from the project.

3 Select the AppExpert target in the project, right-click it to view the SpeedMenu, then
select Special I Rescan. When Rescan is finished, it returns you to the project window
in the IDE.

Renaming an AppExpert element
To rename a class, event handler function, instance variable, or dialog IO:

1 Use the IDE editor to search and replace all occurrences of the original name with the
new name. Be sure to check all source files associated with the project (.CPP, .H, .RC,
and.RH files).

2 In the project window, select the AppExpert target, right-click it, then choose
Special I Rescan. When Rescan is finished, it returns you to the project window in the
IDE.

Note After following this procedure, check your #include statements, as well as the #ifdef
and #define statements that AppExpert created. Verify that none of these have changed
as a result of searching and replacing the name of your class within the source files.

Importing a class
To import a class from one AppExpert project to another:

Move or copy the source and header file that defines the class to the source and
header directory of the other project. All source files for a project must be in the

C hap t e r 5, Man a gin 9 you rei ass e s wit h C I ass E x per t 151

project's source directory (.CPP file~) or header directory (.H files). These directories
were created when you first generated the AppExpert project. (Unless you specified a
different source or header directory, your source and header files will be in the same
directory as your project [.IDE] file.)

2 Add the class source file as a dependent node under the AppExpert target in the IDE
project (use Add Node from the SpeedMenu).

3 Add the header file that contains the class definition as a dependent node under class
source file in the AppExpert project (use Add Node from the SpeedMenu).

4 In the project window, select.the AppExpert target, right-click, then choose Special I
Rescan.

Rebuilding the .APX database file
To rebuild a lost or damaged database file (the .APX file):

1 Open the project (.IDE) file that contains the AppExpert target and dependent nodes.

2 Select the AppExpert target, right-click it, then choose Special I Rescan from the
SpeedMenu. Rescan automatically creates a new database file using markers and the
source code from the AppExpert application.

152 C++ Use r 's G u ide

Browsing through your code
The Browser lets you search through your object hierarchies, classes, functions,
variables, types, constants, and labels that your program uses. The Browser also lets
you:

• Graphically view the hierarchies in your application, then select the object of your
choice and view the functions and symbols it contains.

• List the variables your program uses, then select one and view its declaration, list all
references to it in your program, or go to where it is declared in your source code.

• List all the classes your program uses, then select one and list all the symbols in its
interface part. From this list, you can select a symbol and browse as you would with
any other symbol in your program.

Using the Browser
If the program in the current Edit window or the first file in your project has not yet
been compiled, the IDE must first compile your program before invoking the Browser.

If you try to browse a variable or class definition (or any symbol that does not have
symbolic debug information), the IDE displays an error message.

If you changed the following default settings on the Project Options dialog box, before
you use the Browser, be sure to:

1 . Choose Options I Project.

2 Choose Compiler I Debugging and check

• Debug information in OBJs.

• Browser reference information in OBJs.

3 Choose Linker I General and check Include Debug Information.

4 Compile your application.

C hap t e r 6, B row sin 9 t h r 0 ugh you reo d e 153

Starting the Browser
You can start browsing through your code the following ways:

• Place your cursor on a symbol in your code and choose Browse Symbol from the Edit
window SpeedMenu.

• From the main menu or the SpeedBar, and choose one of the following commands:

• Search I Browse Symbol

• View I Classes

• View I Globals

Browser views
The Browser provides the following types of views:

• Global Symbols

• Objects (Class Overview)

• Symbol Declaration

• Class Inspection

• References

Browsing objects (class overview)
Choose View I Classes to see an overall view of the object hierarchies in your
application, as well as the small details.

The Browser draws your objects and shows their ancestor-descendant relationships in a
horizontal tree. The red lines in the hierarchy help you see the immediate ancestor­
descendant relationships of the currently selected object more clearly.

To see more detail about a particular object, double-click it. The Browser lists the
symbols (the procedures, functions, variables, and so on) used in the object.

One or more letters appear to the left of each symbol in the object that describe what
kind of symbol it is. See "Browser filters and letter symbols."

Browsing global symbols
Choose View I Globals to open a window that lists every global symbol in your
application in alphabetical order.

To see the declaration of a particular symbol listed in the Browser, use one of the
following methods:

• Double-click the symbol.

• Select the symbol and press Enter.

154 C++ Use r 's G u ide

• Select the symbol and choose Browse Symbol from the SpeedMenu.

Search
The Search input box at the bottom of the window lets you quickly search through the
list of global symbols by typing the first few letters of the symbol name. As you type, the
highlight bar in the list box moves to a symbol that matches the typed characters.

Browser SpeedMenu
Once you select the global symbol you are interested in, you can use the following
commands on the Browser SpeedMenu:

• Edit Source

• Browse Symbol

• Browse References

• Return to Previous View

• Toggle Window Mode

• Set Options

Browsing symbols in your code
You can browse any symbol in your code without viewing object hierarchies or lists of
symbols first.

To do so, highlight or place your cursor on the symbol in your code and choose either

• Search I Browse Symbol from the main menu

• Browse Symbol from the Edit window SpeedMenu

If the symbol you select to browse is a structured type, the Browser shows you all the
symbols in the scope of that type. You can then choose to inspect any of these further.
For example, if you choose an object type, you will see all the symbols listed that are
within the scope of the object.

Symbol declaration window
This Browser window shows the declaration of the selected symbol.

You can use the following commands on the Browser SpeedMenu:

• Edit Source

• Browse References

• Browse Class Hierarchy

• Return to Previous View

• Toggle Window Mode

C hap t e r 6, B row sin 9 t h r 0 ugh you reo d e 155

Browsing references
This Browser window shows the references to the selected symbol.

You can use the following commands on the Browser SpeedMenu:

• Edit Source

• Browse Class Hierarchy

• Return to Previous View

• Toggle Window Mode

• Set Options

Class inspection window
This Browser window shows the symbols (functions and variables) used in the selected
class.

Once you select the symbol you are interested in, you can use the following commands
on the Browser SpeedMenu:

• Edit Source

• / Browse Symbol

• Browse References

• Browse Class Hierarchy

• Return to Previous View

• Toggle Window Mode

• Set Options

Browser filters and letter symbols
When you browse a particular symbol, the same letters that appear on the left that
identify the symbol appear in a Filters matrix at the bottom of the Browser window. The
Filters matrix has a column for each letter which can appear in the top or bottom row of
the column.

Use the filters to select the type of symbols you want to see listed. (You can also use the
Browser Options settings to specify the types of symbols you want to see listed.)

F Function

T Type

V Variable

C Integral constants

? Debuggable

156 C++ Use r 's G u ide

Inherited from an
ancestor

v Virtual method

Note In some cases, more than one letter appears next to a symbol. Additional letters appear
to the right of the letter identifying the type of symbol and further describe the symbol:

To view all instances of a particular type of symbol
Click the top cell of the column.

For example, to view all the variables in the currently selected object, click the top cell in
the V column. All the variables used in the object appear.

To hide all/instances of a particular type of symbol
Click the bottom cell of the letter column.

For example, to view only the functions and procedures in an object, you need to hide
all the variables. Click the bottom cell in the V column, and click the top cells in the F
and P columns.

To change several filter settings at once
Drag your mouse over the cells you want to select in the Filters matrix.

Customizing th~ Browser
Use the Environment Options dialog box to select the Browser options you want to use.

1 Choose Options I Environment.

2 Choose Browser.

3 Specify the types of symbols you want to have visible in the Browser using the
Visible Symbols option.

4 Specify how many Browser views you can have open at one time. See single or
multiple Browser window mode in the Browser Window Behavior option.

C hap t e r 6, B row sin 9 t h r 0 ugh you reo d e 157

158 C++ Use r 's G u ide

Using the integrated debugger
No matter how careful you are when you write code, a newly completed program is
likely to contain errors, or bugs, that prevent it from running the way you intended it to.
Debugging is the process of locating and fixing the errors in your programs.

The Borland C++ IDE contains an integrated debugger that lets you debug 32-bit
Windows programs from within the IDE. Among other things, the integrated debugger
lets you control the execution of your program, inspect the values of variables and items
in data structures, modify the values of data items while debugging. You can access the
functionality of the integrated debugger through two menus: Debug and View along
with Ideal menus and keystrokes. This chapter introduces you to the functionality of the
integrated debugger and gives a brief overview of the debugging process.

Note The integrated debugger does not support 16-bit Windows or DOS debugging. This
functionality is supported by Turbo Debugger.

Types of bugs
The integrated debugger can help find two basic types of programming errors: run-time
errors and logic errors.

Run-time errors
If your program successfully compiles, but fails when you run it, you've encountered a
run-time error. Your program contains valid statements, but the statements cause errors
when they're executed. For example, your program might be trying to open a
nonexistent file, or it might be trying to divide a number by zero. The operating system
detects run-time errors and stops your program execution if such an error is
encountered.

C hap t e r 7, U sin 9 the i n t e 9 rat e d deb u 9 9 e r 159

Without a debugger, run-time errors can be difficult to locate because the compiler
doesn't tell you where the error is located in your source code. Often, the only clue you
have to work with is where your program failed and the error message generated by the
run-time error.

Although you can find run-time errors by searching through your program source code,
the integrated debugger can help you quickly track down these types of errors. Using
the integrated debugger, you can run to a specific program location. From there, you
can begin executing your program one statement at a time, watching the behavior of
your program with each step. When you execute the statement that causes your
program to fail, you have pinpointed the error. From there, you can fix the source code,
recompile the program, and resume testing your program.

Logic errors
Logic errors are errors in design and implementation of your program. Your program
statements are valid (they do something), but the actions they perform are not the actions
you had in mind when you wrote the code. For instance, logic errors can occur when
variables contain incorrect values, when graphic images don't look right, or when the
output of your program is incorrect.

Logic errors are often the most difficult type of errors to find because they can show up
in places you might not expect. To be sure your program works as designed, you must
thoroughly test all of its aspects. Only by scrutinizing each portion of the user interface
and output of your program can you be sure that its behavior corresponds to its design.
As with run-time errors, the integrated debugger helps you locate logic errors by letting
you monitor the values of your program variables and data objects as your program
executes.

Planning a debugging strategy
After program design, program development consists of a continuous cycle of program
coding and debugging. Only after you thoroughly test your program should you
distribute it to your end users. To ensure that you test all aspects of your program, it's
best to have a thorough plan for your debugging cycles.

One good debugging method involves breaking your program down into different
sections that you can systematically debug. By closely monitoring the statements in each
program section, you can verify that each area is performing as designed. If you do find
a programming error, you can correct the problem in your source code, recompile the
program, and then resume testing.

Starting a debugging session
To start a debugging session:

1 Build your program with debug information.
2 Run your program from within the IDE.

160 C++ Use r 's G u ide

When debugging, you have complete control of your program's execution. You can
pause the program at any point to examine the values of program variables and data
structures, to view the sequence of function calls, and to modify the values of program
variables to see how different values affect the behavior of your program.

Compiling with debug information
Before you can begin a debugging session, you must compile your project with symbolic
debug information. Symbolic debug information, contained in a symbol table, enables the
debugger to make connections between your program's source code and the machine
code that's generated by the compiler. This lets you view the actual source code of your
program while running the program through the debugger.

To generate symbolic debug information for your project:

1 In the Project window, select the project node.

2 Choose Options I Project to open the Project Options dialog box.

3 From the Compiler I Debugging topic, check Debug Information In OBJs to include
debug information in your project .OBJ files. (This option is checked by default.)

4 From the Linker I General topic, check Include Debug Information. This option
transfers the symbolic debug information contained in your .OBJ files to the final
.EXE file (this option is checked by default).,

Adding debug information to your files increases their file size. Because of this, you'll
want to include debug information in your files only during the development stage of
your project. Once your program is fully debugged, compile your program without
debug information to reduce the final.EXE file size. Or you can also use TDSTRIP.

Note Not all of the .OBJ files in your project need symbolic debug information-only those
modules you need to debug must contain a symbol table. However, since you can't
statement step into a module that doesn't contain debug information, it's best to compile
all your modules with a minimum of line number debug information during the
development stages of your project.

Running your program in the IDE
Once you've compiled your program with debug information, you can begin a
debugging session by running your program in the IDE. By running your program in
the IDE, you have control of when the program runs and when it pauses. Whenever the
program is paused in the IDE, the debugger takes control.

When your program is running under the IDE, it behaves as it normally would: your
program creates windows, accepts user input, calculates values, and displays output.
During the time that your program is not running, the debugger has control, and you
can use its features to examine the current state of the program. By viewing the values of
variables, the functions on the call stack, and the program output, you can ensure that
the area of code you're examining is performing as it was designed.

C hap t e r 7, U 5 i n 9 the i n t e 9 rat e d deb u 9 9 e r 161

As you run your program through the debugger, you can watch the behavior of your
application in the windows it creates. For best results during your debugging sessions,
arrange your screen so you can see both the IDE Edit window and your application
window as you debug. To keep windows from flickering as the focus alternates
between the debugger windows and those of your application, arrange the windows so
they don't overlap (tile the windows). With this setup, your program's execution will be
quicker and smoother during the debugging session.

Specifying program arguments
If the program you want to debug uses command-line arguments, you can specify those
arguments in the IDE in two ways:

First:

1 Choose Options I Environment, then select the Debugger topic.

2 In the Arguments text box, type the arguments you want to use when you run your
program under the control of the integrated debugger.

Second:

Choose Debug I Load.

2 Type your program name and arguments in the Load dialog box.

Controlling program execution
An important advantage of a debugger is that it lets you control the execution of your
program; you can control whether your program will execute a single machine
instruction, a single line of code, an entire function, or an entire program block. By
dictating when the program should run and when it should pause, you can quickly
move over the sections that you know work correctly and concentrate on the sections
that are causing problems.

The integrated debugger lets you control the execution of your program in the following
ways:

• Running to the cursor location
• Stepping through code
• Running to a breakpoint
• Pausing your program

When running code through the debugger, program execution can be based on lines of
source code or on machine instructions. When debugging at the source level, the
integrated debugger lets you control the rate of debugging to the level of a single line of
code. However, the debugger considers multiple program statements on one line of text
to be a single line of code; you cannot individually debug multiple statements contained
on a single line of text. In addition, the debugger regards a single statement that's spread
over several lines of text as a single line of code.

162 C++ Use r' 5 G u i d e-

Running to the cursor location
Often when you start a debugging session, you'll want to run your program to a spot
just before the suspected location of the problem. At that point, use the debugger to
ensure that all data values are as they should be. If everything is OK, you can run your
program to another location, and again check to ensure that your program is behaving
as it should.

To run to a specific source line:

1 In the Edit window, position the cursor on the line of code where you want to begin
(or resume) debugging.

2 Run to the cursor location in one of the following ways:

• Click the Run To Here button on the SpeedBar.
• Choose Run To Current from the Edit window SpeedMenu.

To run to a specific machine instruction:

1 After your process is loaded, open a CPU view and position the disassembly pane so
that the highlight is on the address to which you want to run.

2 Choose Run To Current from the disassembly pane SpeedMenu.

or

Click the Run To Here button on the SpeedMenu.

When you run to the cursor, your program executes at full speed until the execution
reaches the location marked by the cursor in the Edit window, or highlight in the CPU
window. When the execution encounters the code marked by the text cursor or
highlighted, the debugger regains control and places the execution point on that line of
code.

The execution point
The execution point marks the next line of source code to be executed by the debugger.
Whenever you pause your program execution within the debugger (for example,
whenever you run to the cursor or step to a program location), the debugger highlights
a line of code using a green arrow and colored background (depending on your color
setup), marking the location of the execution point.

The execution point always shows the next line of code to be executed, whether you are
going to step through, step into, or run your program at full speed. If there is no source
associated with the code at the current execution point, a CPU window is opened
showing the instruction with the instruction at the current execution point.

Finding the execution point
While debugging, you're free to open, close, and navigate through any file in an Edit
window. Because of this, it's easy to lose track of the next program statement to execute,
or the location of the current program scope. To quickly return to the execution point,
choose Debug I Source At Execution Point or click the SpeedBar button. Even if you've

C hap t e r 7, Us in 9 the in t e 9 rat e d deb u 9 9 e r 163

closed the Edit window containing the execution point, Find Execution Point opens an
Edit window, and highlights the source code containing the execution point.

If there is no source associated with the code at the current execution point, you will get
an error stating that no line corresponds to the address. If this happens, you can see the
current execution point by opening the CPU window.

Stepping through code
Stepping is a simple way to move throu.gh your code a little bit at a time. Stepping lets
you run your program one line at a time; the next line will not execute until you tell the
debugger to continue. You can step until you reach the line in your code that contains
the error and then examine the state of the program and its data, view the program
output and the value of its variables, or modify or evaluate expressions in your program
before you tell the debugger to execute the next line.

Using the Statement Step Over and Statement Step Into commands available on the
Speedmenu in the Edit window (and the corresponding commands for instruction
skipping in the CPU window) or using F7 and FB offer the simplest ways of moving
through your program code. While the two commands are very similar, they offer
different ways to step through code. When you step, you watch your program execute
statements or instructions one at a time. After stepping, the program execution pauses
and you can use the debugger to investigate different aspects of your program.

The integrated debugger allows you to step through both statements and machine
instructions. Most programming errors can be identified by stepping through source,
although there will be times when you need th~_greater granularity provided by
stepping through machine instructions. Your program need not be compiled with
debugging information to step through modules which do not have debugging
information. Although statement stepping is usually done in an edit window, you can
statement step while in the CPU window. Likewise, it is also possible to instruction step
while in an edit window.

Statement Step Into
The Statement Step Into commands execute a single program statement or instruction at
a time. If the execution point is located on a call to a function that was compiled with
debugging information, Statement Step Into causes the debugger to step into that
function by placing the execution point on the function's first statement or instruction.
However, if the execution point is located on a function call that doesn't contain
debugging information (a library function, for example), then Statement Step Into runs
that function at full speed, (however, Instruction Step Into will actually step into the
function) after which the execution point is positioned on the statement following the
function call.

If the execution point is located on the last statement of a function, Statement Step Into
(or a ret instruction) causes the debugger to return from the function, placing the
execution point on the line of code that follows the function calL

The term single stepping refers to using Statement Step Into to successively run though
the statements or instructions in your program code.

164 C++ Use r 's G u ide

To choose Statement Step Into, you can:

• Click the Step Into SpeedBar button.
• Choose Statement Step Into on the Speedbar in the Edit window.
• Press F7 under default keyboard mapping.

The following example helps explain how single stepping through statements works.
Suppose you want to follow the sequence of events through the following two functions
contained in a bubble sort program:

void bubble(int *ptr, int n)
{

int i, ji

for (i=Oi i<n-li i++)
for (j=i+li j<ni j++)

order (ptr+i, ptr+j);

void order (int *nl, int *n2)

if (*nl > *n2)
{

int temp = *nli

*nl = *n2i

*n2 = tempi

If you load the program into the Edit window and place the cursor on the first for
statement in the bubble function, pressing F4 runs the program to that location. Right­
clicking and choosing Statement Step Into executes that line of code, and moves the
execution point to the next line of code in the program (the second for statement).
Choosing Statement Step Into again causes the debugger to execute the second for
statement, this time placing the execution point on the line containing the call to the
function order:

order (ptr+i, ptr+j)i

Choosing Statement Step Into a third time calls the function order, causing the debugger
to step through that function by placing the execution point on the first line of the
function definition:

void order (int *nl, int *n2)

From here, successive Statement Step Into commands execute the lines of code in that
function one at a time. When the execution point is located on the last line in the
function, stepping (with either the Step Into or Step Over commands) causes the
function to return, which places the execution point on the statement following the
function call. In this case, the debugger returns the execution point to the call to order
bubble.

C hap t e r 7, Us in 9 the in t e 9 rat e d deb u 9 9 e r 165

Statement Step Over
The Statement Step Over command, like Statement Step Into, lets you execute program
statements or instructions one at a time. However, if you issue the Statement Step Over
command when the execution point is located on a function call, the debugger runs that
function at full speed (instead of stepping into it), then positions the execution point on
the statement following the function call.

You can choose Statement Step Over:

• Click the Step Over button on the SpeedBar.
• Choose Statement Step Into on the Speedbar in the Edit window.

For example, in the previous bubble sort code, choosing Statement Step Over while the
execution point highlights the function call order causes the debugger run order at full
speed. The debugger then places the execution point on the statement following the
function call, which in this case is the call to order bubble.

As you debug, you can choose to step through some functions and step over others. If
you know a function performs as it was designed, you can step over calls to that
function with confidence that the function call will not cause an error. If, on the other
hand, you aren't sure that a function is well behaved, you can choose to step through the
function to verify that it works as designed.

Debugging member functions and external code
If you implement classes in your C++ programs, you can still use the integrated
debugger to step through code. The debugger handles member functions the same way
it would step through functions in a program that is not object-oriented.

You can also step through or step over external code written in any language (including
C and C++) as long as the code meets all the requirements for extemallinking and the
linked object file contains full Borland symbol debugging contains full Borland symbolic
debugging information.

Running to a breakpoint
You set breakpoints on lines of source code where you want the program execution to
pause during a run. Running to a breakpoint is similar to running to a cursor position, in
that the program runs at full speed until it reaches a certain source-code location.
However, unlike Run To Cursor, you can have multiple breakpoints in your code and
you can customize each one so it pauses the program's execution only when a specified
condition is met. For more information on breakpoints, see "Examining program data
values" on page 181.

Pausing the program
In addition to stepping over or through code, you can also pause your program while
it's running. Choosing Debug I Pause Process causes the debugger to pause your
program. You can then use the debugger to examine the state of your program with
respect to this program location. When you're done examining the program, continue
debugging by running as usual.

166 C++ Use r 's G u ide

Terminating the program
Sometimes while debugging, you'll find it necessary to restart or reset the program from
the beginning. For example, you might need to restart the program if you step past the
location of a bug, or if variables or data structures become corrupted with unwanted
values.

Choose Debug I Terminate Process (or press Ctrl+F2) to end the current program run.
Terminating a program closes all open program files, releases all memory allocated
by the program, and clears all variable settings. However, terminating a program
does not delete any breakpoints or watches that you might have set. This makes it
easy to resume a debugging session.

Using breakpoints
You use breakpoints to pause your program execution at designated source code
locations during a debugging session or to perform other actions. By setting breakpoints
in potential problem areas of your source code, you can run your program at full speed,
knowing that its execution will pause at a location you want to debug.

When your program execution encounters a breakpoint, the program pauses (before
executing the line containing the breakpoint) and the debugger displays the breakpoint
line in the Edit window. You can then use the debugger to view the state of your
program.

Breakpoint behavior falls into two categories:

• Unconditional (or simple). The breakpoint is activated whenever the debugger
reaches the line in your source or the machine instruction where you set the
breakpoint.

• Conditional. The breakpoint is activated only when it satisfies the conditions
specified on the Breakpoint Conditions/Action Options dialog box and saved in a
breakpoint options set.

A source breakpoint has to be set on a line or program location that contains executable
code. For example, you cannot set a breakpoint on a blank line, comment, or declaration.

The IDE keeps track of all your breakpoints during a debugging session and associates
them with your current project. You can maintain all your breakpoints from a single
Breakpoints window and not have to search through your source code files to look for
them.

Debugging with breakpoints
When you run your program from the IDE, it will stop whenever the debugger reaches
the location in your program where the breakpoint is set, but before it executes the line
or instruction. The line that contains the breakpoint (or the line that most closely
corresponds to the program location where the breakpoint is set) appears in the Edit
window highlighted by the execution point. At this point, you can perform any other
debugging actions.

C hap t e r 7, Us i n 9 the in t e 9 rat e d deb u 9 9 e r 167

Setting breakpoints
You can set a breakpoint the following ways:

To set an unconditional breakpoint on a line in your source code, use one of the
following methods:

• Place the insertion point on a line in an Edit window and choose Toggle I Breakpoint
from the Edit window SpeedMenu or press F5 (default keyboard setting).

• Click the gutter in an Edit window next to the line where you want to set a
breakpoint.

Setting an unconditional breakpoint
To set an unconditional breakpoint on a machine instruction:

Highlight a machine instruction in the Disassembly pane in the CPU window.

2 Choose Toggle Breakpoint on the SpeedMenu or press F5 (default keyboard setting).

Setting a conditional breakpoint
To set a conditional breakpoint on a line or machine instruction:

Place the insertion point on a line in an Edit window or highlight a line in the
Disassembly pane of the CPU window.

2 Choose Debug I Add breakpoint or choose Add Breakpoint from the SpeedMenu.

3 Complete the information on the Add Breakpoint dialog box.

4 Do one of the following:

• Click the Advanced button to display the Breakpoint Conditions/Action Options
dialog box.

• Supply the conditions and action settings you want. See "Creating conditional
breakpoints."

• Specify option set in the Options input box.

Setting other breakpoints
To set other types of breakpoints:

1 Choose Debug I Add breakpoint from anywhere in the IDE or choose Add
Breakpoint from the SpeedMenu in an active Edit or· Breakpoint window, or the
Disassembly pane of the CPU window.

2 Select a breakpoint type on the Add Breakpoint dialog box and supply any additional
information associated with the type of breakpoint selected.

3 Either

• Click OK to set an unconditional breakpoint.

• Click the Advanced button to display the Breakpoint Conditions/Action Options
dialog box. See "Creating conditional breakpoints."

168 C++ Use r' s G u ide

Setting breakpoints after program execution begins
. While your program is running, you can switch to the debugger (just like you switch to

any Windows application) and set a breakpoint. When you return to your application,
the new breakpoint is set, and your application will pause or perform a specified action
when it reaches the breakpoint.

Creating conditional breakpoints
Use a conditional breakpoint when you want the debugger to activate a breakpoint only
under certain conditions. For example, you may not want a breakpoint to activate every
time it is encountered, especially if the line containing the breakpoint is executed many
times before the actual occurrence in which you are interested. Likewise, you may not
always want a breakpoint to pause program execution. In these cases, use a conditional
breakpoint.

To set a conditional breakpoint:

Choose Debug I Add breakpoint to open the Add Breakpoint dialog box (Figure 7.1).

Figure 7.1 Add Breakpoint dialog box

2 Select a breakpoint type and supply the applicable information.

3 Click Advanced to display the Breakpoint Conditions / Action Options dialog box.

4 Click Expr. True and enter an expression that tells the debugger when to trigger the
breakpoint. If the condition is not met, the debugger ignores the breakpoint along
with any of its actions.

5 If you want the breakpoint to activate only while a specific thread is in process, click
Thread ID and enter a Thread ID. Otherwise leave Thread ID unchecked.

6 If you want the debugger to activate a breakpoint only after it has been reached a
certain number of times, click Pass count and enter the number of passes. Otherwise,
your program will pause every time the brea,kpoint is activated.

7 If you want program execution to pause when the breakpoint is activated, click Break
(the default). Otherwise, your program will not pause when the debugger activates
the breakpoint.

S If you want the debugger to perform various actions when the breakpoint activates,
use the Actions. settings. Otherwise, click OK.

C hap t e r 7, Us i n 9 the i nt e 9 rat e d deb u 9 9 e r 169

Figure 7.2 Breakpoint Conditions/Actions Options dialog box

Removing breakpoints
You can remove a breakpoint in the following ways:

• From an Edit window
• From an Edit window or the Disassembly pane of the CPU window
• From the Breakpoints window

From an Edit window
To remove a breakpoint from an Edit window:

• Click the gutter in an Edit window next to the line that contains the breakpoint you
want to remove.

From an Edit window or the Disassembly pane of the CPU window
To remove a breakpoint from an Edit window or the Disassembly pane of the CPU
window:

1 Place the insertion point on the line or highlight the instruction where the breakpoint
is set.

2 Choose Toggle Breakpoint from the SpeedMenu.

From the Breakpoints window
To remove a breakpoint from the Breakpoints window:

1 Choose View I Breakpoint to display the Breakpoints window.

2 Select one or more breakpoints.

3 Choose Remove Breakpoint(s) from the SpeedMenu.

To select multiple breakpoints in the Breakpoints window, hold down the Shift or etr/key
as you select each breakpoint.

170 C++ Use r' 5 G u ide

Disabling and enabling breakpoints
Disable a breakpoint when you prefer not to activate it the next time you run your
program, but want to save it for later use. The breakpoint remains listed in the
Breakpoints window and available for you to enable when you want.

To enable or disable a breakpoint:

Choose View I Breakpoint to open the Breakpoints window.

2 Click the checkbox next to the breakpoint to enable it or clear the checkbox to dis­
able it.

To disable or enable selected breakpoints:

1 In the Breakpoints window, hold down the Shift or etr/key as you select each
breakpoint.

2 Choose Enable/Disable Breakpoints from the SpeedMenu~

To use a breakpoint to disable or enable a group of breakpoints:

Choose Debug I Add Breakpoint to open the Add Breakpoint dialog box.

2 Click Options to open the Breakpoint Conditions / Action Options dialog box.

3 Click Enable Group or Disable Group and enter a group name.

Viewing and editing code at a breakpoint
Even if a breakpoint is not in your current Edit window, you can quickly locate it in
your source code.

Viewing code at a breakpoint
To view the code where a breakpoint is set:

1 Choose View I Breakpoint to display the Breakpoints window.

2 Select a breakpoint.

3 Choose View Source on the Breakpoints window SpeedMenu.

The source code displays in an Edit window at the breakpoint line and the Breakpoints
window remains active. If the source code is not currently open in an Edit window, the
IDE opens a new Edit window.

Editing code at a breakpoint
To edit the code where a 1;>reakpoint is set:

1 Choose View I Breakpoint to display the Breakpoints window.

2 Select a breakpoint.

3 Choose Edit Source from the Breakpoints window SpeedMenu.

Chapter 7, Using the integrated debugger 171

The source code displays in an active Edit window with your cursor positioned on the
breakpoint line, ready for you to edit. If the source code is not currently open in an Edit
window, the IDE opens a new Edit window. .

Resetting invalid breakpoints
A breakpoint must be set on executable code, otherwise it is invalid. For example, a
breakpoint set on a comment, a blank line, or a declaration is invalid. A common error is
to set a breakpoint on code that is conditionalized out using #if or #ifdef.

If you set an invalid breakpoint and run your program, the debugger displays an
Invalid Breakpoint dialog box.

To reset an invalid breakpoint:

1 Close the I Invalid Breakpoint dialog box.

2 Find the invalid breakpoint in the Breakpoints window and delete it.

3 Set the breakpoint in a proper location and continue to run your program.

If you ignore the Invalid Breakpoint (by dismissing the dialog box) and then choose
Run, the IDE executes your program, but does not enable the invalid breakpoint.

Using breakpoint groups
The integrated debugger lets you group breakpoints together so you can enable or
disable several breakpoints with a single action.

Creating a breakpoint group
To create a breakpoint group:

1 Choose Debug I Add Breakpoint to open the Add Breakpoint dialog box.

2 Enter a name in the Group input box.

Disabling or enabling a breakpoint group
To disable or enable a group of breakpoints by using another breakpoint's option:

1 Choose Debug I Add Breakpoint to open the Add Breakpoint dialog box.

2 Click Options to open the Breakpoint Conditions/ Action Options dialog box.

3 Click Enable Group or Disable Group and enter a group name.

To remove a breakpoint from a group, select the group name and press Delete.

Using breakpoint option sets
To quickly specify the behavior of one more breakpoints as you create or modify them,
store breakpoint settings in an option set.

172 C++ Use r 's G u ide

Creating a breakpoint option set
To create an option set:

1 Choose Debug I Breakpoint options to open the Breakpoint Conditions/Action
Options dialog box.

2 Enter the conditions and actions. See uCreating conditional breakpoints."

3 Click Add.

4 Enter a name the dialog box that displays and click OK.

You can also create an option set when you create or edit a breakpoint.

Associating a breakpoint with an option set
To associate a breakpoint with an option set:

• Enter the Option name in the Add or Edit Breakpoints dialog box.

Changing breakpoint options
To change the conditions and actions of a breakpoint:

1 Choose View I Breakpoint to open the Breakpoints window.

2 Double-click on a breakpoint or choose Edit Breakpoint from the SpeedMenu.

3 Change the option set in the Options input box on the Edit Breakpoint dialog box.

or

Supply new information as described in uCreating conditional breakpoints."

Changing the color of breakpoint lines
To use colors to indicate if a breakpoint is enabled, disabled, or invalid:

1 Choose Options I Environment.

2 Select Syntax Highlighting and choose Customize.

3 From the Element list, select the following breakpoint options you want to change:

• Enabled Break
• Disabled Break
• Invalid Break

4 Select the background (BG) and foreground (FG) colors you want.

S If you want highlighting, choose DefaUlt Color.

C hap t e r 7, Us i n 9 the in t e 9 ra ted deb u 9 9 e r 173

Using the Breakpoints window
The Breakpoints window lists all breakpoints currently set in the loaded project (or the
file in the active Edit window if a project is not loaded) and contains a tab for each of the
following types of breakpoints:

• To display the Breakpoints window, choose View I Breakpoint (Figure 7.3).

Figure 7.3 Breakpoints window

The Breakpoints window lets you perform the following actions:

• Click the checkbox beside a breakpoint to enable it or clear the checkbox to disable
the breakpoint.

• Double-click or press Enter on a breakpoint to open the Edit Breakpoint dialog box to
change breakpoint settings.

• Choose a command from the Breakpoint Window SpeedMenu.

About the Breakpoints window
The Breakpoints window provides the following information about each breakpoint:

• Name of the source code file in which the breakpoint is set (for source breakpoints).

• Location (such as line number, file name, module, thread ID, or address number)
where the breakpoint is set.

• Current state of the breakpoint:

Verified

Unverified

Invalid

The breakpoint is legal and validated when the process was loaded.

The process has not been loaded since you added the breakpoint.

The breakpoint is illegal. The line on which you set the breakpoint does not
contain executable coae (such as a blank line, comment, or declaration) and the
debugger will ignore it.

• Number of times the debugger must reach the breakpoint before activating the
breakpoint. This information appears after a breakpoint has been activated.

174 C++ User's Guide

• Associated option set and group name as well as the conditions/ action options
specified. See "Creating conditional breakpoints."

• Last Event Hit shows the last breakpoint that was encountered.

Integrated debugger features

Add breakpoint
Use the Add Breakpoint dialog box to create a breakpoint. The options that appear in
the middle of the dialog box change according to the breakpoint type selected:

• Source
• Address
• Data Watch
• C++ Exception
• as Exception
• Thread
• Module

The following options always display on the right side of the dialog box:

• Qualifiers
• Other

If you want to set conditions and actions that control breakpoint behavior, click
Advanced to open the Breakpoint Conditions / Action Options dialog box.

Qualifiers
Contains the following options:.

Program

Module

Other

Causes a breakpoint to activate only in a specific executable (.EXE) program. Leave it
blank if you want a breakpoint to activate in all loaded processes.

Causes a breakpoint to activate only when conditions are satisfied within a specific
dynamic-link library (DLL). Leave this setting blank if you clicked Module under
Breakpoint type.

Contains the following options:

Options

Group

Indicates the name of the option set that defines breakpoint behavior.

Indicates the name of group to which the breakpoint belongs.

Source breakpoint
Sets a breakpoint on a line in your source code.

File
Indicates the file that contains the source code where the breakpoint is set.

C hap t e r 7, Us in 9 the in t e 9 rat e d deb u 9 9 e r 175

Line #
Indicates the line in the source file on which the breakpoint is set.

H you select a line of code in an Edit window and choose Add Breakpoint from the
SpeedMenu, the debugger completes these settings for you.

Address breakpoint
Sets a breakpoint on a a machine instruction.

Offset
Indicates the address of the machine instruction on which the breakpoint is set.

Data watch breakpoint
Use a Data Watch breakpoint to pause your program when a specific location in
memory changes value. Data Watch breakpoints (also called watchpoints.or changed
memory breakpoints) let you monitor expressions that evaluate to a specific data object
or memory location. Data watch breakpoints are monitored continuously during your
program's execution.

Because the debugger checks the breakpoint conditions after the execution of every
machine instruction, data watch breakpoints are excellent tools for pinpointing code
that is corrupting data.

Address
Enter a specific starting address or any symbol (such as a variable or a class data
member) that evaluates to an address.

Length
When entering an expression symbol, you can also enter a count of the number of bytes
you want monitored.

For example, coding in C, suppose you have declared the following array:

int string [81] i

You can watch for a change in the first ten elements of this array by entering the
following item into the Condition Expression input box:

&string[O] , 40

The area monitored is 40 bytes long which equals ten elements in the array (an int is 4
bytes).

c++ exception breakpoint
Sets a breakpoint that pauses you program when it throws or catches a C++ exception.

Type
Specifies the data type (such as int,long, char, or a class name) used with the exception.

176 C++ Use r' s G u ide

Stop on Throw
Pauses program execution when an exception is thrown.

Stop on Catch
Pauses program execution when an exception is caught.

OS exception breakpoint
Sets a breakpoint that pauses you program when it throws or catches an operating
system defined exception.

Exception #
Specifies the integer value assigned to the exception. Pick from the list that provides the
most common as exceptions or enter one defined in your application.

Thread breakpoint
Sets a breakpoint on a specified thread. Programs will pause on thread creation and
thread destruction.

Thread
Specifies the thread ID on which the breakpoint is set. Program execution pauses
whenever the thread is created.

• To obtain a thread ID, choose View I Process.

Module breakpoint
Sets a breakpoint in a specified DLL.

Module Name
Specifies the name of a DLL in which the breakpoint is set. The debugger activates the
breakpoint each time the DLL startup code (as defined in DllEntryPoint) is executed.
For example, if the Break action is on (the default), program execution will pause
whenever your program attaches or detaches the DLL.

Breakpoint Conditions/Action Options
Use this dialog box to

• Specify settings that control the behavior of one or more breakpoints, such as the
conditions under which a breakpoint is activated and the type of actions that take
place when it does.

C hap t e r 7, Us i n 9 the in t e 9 rat e d deb u 9 9 e r 177

• Enable and disable breakpoint groups

To display this dialog box, use any of the following methods:

• Choose Debug I Breakpoint Options.

• Choose Debug I Add Breakpoint and click the Advanced button on the Add
Breakpoint window.

• Choose View I Breakpoint and double-click a breakpoint listed in the Breakpoints
window. Then click the Advanced button on the Edit Breakpoint window.

The Breakpoint Conditions / Action Options dialog box contains the following options:

Names

Conditions

Actions

Lists the names of Option Sets that have been created.

Provides settings that determine when and where a breakpoint is activated.

Provides settings that determine what actions take place when a breakpoint is
activated.

Names (Breakpoint Conditions/Action Options)
Lists the names of existing option sets. Use the checkbox next to each option set to
enable or disable it.

For example, if you clear the checkbox next to an option set called MyOptionSet, the
debugger ignores its settings and all breakpoints that use this option set behave like
unconditional breakpoints. To reactivate the breakpoint settings in MyOptionSet so that
they will used by the debugger, click its checkbox.

Conditions (Breakpoint Conditions/Action Options)
This group of settings determines when and where a breakpoint. is activated:

Expr. True

ThreadID

Pass Count

Each time the debugger encounters the breakpoint, it evaluates an expression to
determine if the breakpoint should activate.

Activates a breakpoint only while a specific thread is in progress.

Indicates the number of times the debugger encounters the breakpoint line before it
activates.

• Click Add or Delete to create or remove an option set.

Expr. True (Breakpoint Conditions/Action Options)
Enter the expression you want to evaluate each time the debugger reaches the
breakpoint. If the expression becomes true (nonzero) when the breakpoint is
encountered, the debugger activates the breakpoint and carries out any actions specified
for it. You can enter a Boolean expression that, for instance, tests if a value falls within a
certain range or if a flag has been set.

For example:

If you enter the expression

x == 1

178 c++ Use r' s G u ide

the debugger activates the breakpoint only if x has been assigned the value 1 ~t the time
the breakpoint is encountered.

If you enter the expression

x > 3

and select Break, when the debugger reaches the breakpoint, your program pauses if the
current value of x is greater than 3. Otherwise, the breakpoint is ignored.

Thread 10 (Breakpoint Conditions/Action Options)
Programs written for 32-bit operating systems consist of one or more executable threads.
You can set a breakpoint on a specific thread, even though the code at the breakpoint
location is shared by multiple threads. Unless specified, a breakpoint is set for all
program threads.

Use this option to prevent a breakpoint from activating unless a specified thread is
running. When the debugger reaches the breakpoint, it will not be activated unless the
thread is in progress. If you leave this option blank, the breakpoint may activate while
any thread is in progress.

Pass Count (Breakpoint Conditions/Action Options)
This option includes the following settings:

Vpto

Current

Specifies the number of times you want debugger to reach the breakpoint before it is
activated.

Shows the actual number of times the debugger has reached the breakpoint so far.
You can change this setting if you want to.

Conditional breakpoint example
If Break is checked and you enter the expression x>3 and you enter 2 in the Pass Count
box, your program will not stop until the second time the debugger reaches the
breakpoint (that is, when the value of x is greater than 3).

Actions (Breakpoint Conditions/Action Options)
This group of options lets you specify the actions you want carried out each time the
breakpoint is activated:

Break
Stop Log
Start Log
Log Expr
EvalExpr
Log Message
Enable Group
Disable Group

Pauses program execution
Stops posting debugger generated messages
Starts posting debugger generated messages
Displays the value of an expression in the message window
Evaluates an expression
Displays a message in the message window
Reactivates a group of breakpoints
Disables a group of breakpoints

C hap t e r 7, Us i n 9 the in t e 9 rat e d deb u 9 9 e r 179

Break (Breakpoint Conditions/Action Options)
Click Break (the default) to pause program execution when the debugger activates the
breakpoint. Clear this checkbox if you do not want your program to pause at the
breakpoint.

Stop Log (Breakpoint Conditions/Action Options)
Stops displaying debugger messages in the Runtime Tab of the Message window when
the breakpoint is activated.

Start Log (Breakpoint Conditions/Action Options)
Starts displaying debugger messages in the Runtime Tab of the Message window when
the breakpoint is activated.

Log Expr (Breakpoint Conditions/Action Options)
Click Log Expr if you want to display the value of an expression in the Runtime tab of
the Message window. Then, enter the expression in the input box next to it. The
debugger logs the value each time the breakpoint activates. Use this option when you
want to output a value each time you reach a specific place in your program- this
technique is known as instrumentation.

For example, you can place a breakpoint at the beginning of a routine and set it to log
the values of the routine arguments. Then, after running the program, you can
determine from where the routine was called, and if it was called with erroneous
arguments. This will give you no idea where it was called from, but will tell you what
the arguments are.

When you log expressions, be careful of expressions that unexpectedly change the
values of variables or data objects (side effects).

Eval Expr (Breakpoint Conditions/Action Options)
Click Eval Expr if you want the breakpoint to evaluate an expression. Then, enter an
expression in the input box next to it. Use an expression that changes the value of a
variable or data object (side effects), or this is a waste of time.

By "splicing in" a piece of code before a given source line, you can effectively test a
simple bug fix; you do not have to go through the trouble of compiling and linking your
program just to test a minor change to a routine.

You cannot use this technique to directly modify your compiled program.

Log Message (Breakpoint Conditions/Action Options)
Click Log Message if you want the breakpoint to display a message in the Runtime tab
of the Message window when the breakpoint is activated. Then, enter the text of the
message in the input box next to it.

180 c++ Use r' s G u ide

Disable Group (Breakpoint Conditions/Action Options)
Click Disable Group if you want the breakpoint to disable a group of breakpoints. Then,
enter a group name in the input box next to it.

When a group of breakpoints is disabled, the breakpoints are not erased, they are
simply hidden from th:e debugger until you enable them.

Enable Group (Breakpoint Conditions/Action Options)
Click Enable Group if you want the breakpoint to reactivate a group of breakpoints that
have been previously disabled. Then, enter a group name in the input box next to it.

Add Breakpoint Conditions/Action Option Set. ..
Enter a name for the option set and click OK to create a new set of options based on the
current settings in the Breakpoint Conditions/Action Options dialog box.

Edit Breakpoint dialog box
Use this dialog box to modify an existing breakpoint. The options that appear on left
side of the dialog box change according to the breakpoint type selected.

The integrated debugger provides the following types of breakpoints:

• Source
• Address
• Data Watch
• C++ Exception
• as Exception
• Thread
• Module

The following options always display on the right side of the dialog box:

• Qualifiers
• Other

If you want to set conditions and actions that control breakpoint behavior, click
Advanced to open the Breakpoint Conditions/Action Options dialog box.

Examining program data values
Even though you can discover many interesting things about your program by running
and stepping through it, you'll usually need to examine the values of program variables
to uncover bugs. For example, it's helpful to know the value of the index variable as you
step though a for loop, or the values of the parameters passed to a function call.

After you have paused your application within the integrated debugger, you can
examine the different symbols and data structures with regard to the location of the
current execution point.

C hap t e r 7, U sin 9 the i n t e 9 rat e d deb u 9 9 e r 181

You can view the state of your program by:

• Watchlngprogram values
• Inspecting data elements
• Evaluating expressions
• Viewing the low-level state of your program
• Viewing the functions in the Call Stack window

You can also use the Browser to view the global variables and classes contained in your
program.

MQdifying program data values
Sometimes you will find that a programming error is caused by an incorrect data value.
Using the integrated debugger, you can test a "fix" by modifying the data value while
your program is running. You can modify program data values using:

• The Evaluate dialog box
• The Inspector window's Change SpeedMenu command
• A breakpoint's Evaluate action
• The CPU window's Dump pane
• The Register & Stack window

Understanding watch expressions
You use watches to monitor the changing values of variables or expressions during your
program run. After you enter a watch expression, the Watch window displays the
current value of the expression. Each time your program pauses (such as when it
encounters a breakpoint), the value of the watch changes to reflect the current value of
the expression according to the values of the variables in your program.

Using the Watches window
To display the Watches window, choose View I Watch.

Figure 7.4 Watches window

The Watches window lists the watches you are currently monitoring. Check the
checkbox beside a watch to enable it. Clear the checkbox beside a watch to disable it.

182 C++ Use r 's G u ide

Note The Watches window will be blank if you have not added any watches.

The left side of the Watches window lists the expressions you enter as watches and their
corresponding data types and values appear on the right. The values of compound data
objects (such as arrays and structures) appear between braces ({ }).

Note If the execution point steps out of the scope of a watch expression, the watch expression
is undefined. When the execution point re-enters the scope of the expression, the
Watches window again displays the current value of the expression.

Formatting watch expressions
You can format the display of a watch expression using the Watch Properties dialog
box. By default, the debugger displays integer values in decimal form. However, by
checking the Hexadecimal button in the Watch Properties dialog box, you can specify
that an integer watch be displayed as hexadecimal. You can also vary the display of the
watches using the Display As buttons in the Watch Properties dialog box. For more on
these buttons, refer to the online Help.

To format a floating-point expression, click the Floating Point button, then indicate the
number of significant digits you want displayed in the Watch window by typing this
number in the Significant Digits text box.

If you're setting up a watch on an element in a data structure (such as an array), you can
display the values of consecutive data elements. For example, suppose you have an
array of five integers named xarray. Type the number 5 in the Repeat Count text box of
the Watch Properties dialog box to see all five values of the array.

You can also format watch expressions using the expression format specifiers shown in
Table 7.1 on page 186. Format specifier settings override any settings specified in the
Watch Properties dialog box. Format specifiers use the following syntax:

expression [,format_specifier]

Adding a watch
You can add a watch using either of the following methods:

• Place the insertion point on a word in an Edit window and choose Watch from the
Edit window SpeedMenu. The debugger adds a watch on the expression at the
insertion point and opens the Watches window.

• Use the Add Watch dialog box to create a watch expression on any variable or
expression available to the program you are debugging.

Add Watch dialog box
The Add Watch dialog box lets you monitor the value of both simple variables (such as
integers) and compound data objects (such as arrays). In addition, you can watch the
values of calculated expressions that do not refer directly to memory locations. For
example, you could watch the expression x * y + 4.

C hap t e r 7, U sin 9 the i n t e 9 rat e d deb u 9 9 e r 183

To create a watch expression using the Add watch dialog box:

Choose Debug I Add watch or choose Add watch from the Watches window
SpeedMenu ..

Figure 7.5 Add watch dialog box

2 Enter an expression into the Expression input box.

3 Click OK to add the watch or choose any of the following optional settip.gs:

• Program
• ThreadID
• Advanced

Note After you add the watch expression, the IDE automatically opens the Watches window
if it is not already open.

Changing watch properties
To change the properties of a watch:

1 Choose Vie~ I Watch, to open the Watches window.

2 Double-click a watch to open the Edit Watch dialog box.

Figure 7.6 Edit Watch dialog box

184 C++ Use r 's G u ide

Edit Watch dialog box
Use this dialog box to change the settings for a watch expression:

1 Either accept or change the information in either of the following options:

• Program
• ThreadID

2 Either

• Choose OK to save your changes and close the dialog box.

.. Click Advanced to open the Watch Properties if you want to change how a watch
expression displays in the Watches window.

Disabling and enabling watches
Evaluating many watch expressions can slow down the process of debugging. Disable a
watch expression when you prefer not to view it in the Watches window, but want to
save it for later use.

To enable or disable a watch:

1 Choose View I Watch to open the Watch window.

2 Either

• Click the checkbox next to a watch to enable it.
• Clear the checkbox next to a watch to disable it.

To disable or enable selected watches:

Hold down the Shift or Ctfl key and click on one or more watches in the Watch
window.

2 Choose Enable or Disable watches from the Watch window SpeedMenu.

Deleting a watch
You can delete a watch the following ways:

1 Choose View I W~tch to display the Watches window.

2 Select one or more watch expressions. (To make multiple selections, hold down the
Shift or Ctrl key and click.)

. 3 Choose Remove Watch(es) on the SpeedMenu.

Evaluating and modifying expressions
You can evaluate expressions using the ExpI'ession Evaluator dialog box. The
Expression Evaluator dialog box has the advantage that it lets you change the values of
variables and items in data structures during the course of your debugging session. This

C hap t e r 7, Us i n 9 the in t e 9 rat e d deb u 9 9 e r 185

can be useful if you think you've found the solution to a bug, and you want to try it out
before exiting the debugger, changing the source code, and recompiling the program.

Evaluating expressions
Choose Debug I Evaluate to open the Expression Evaluator dialog box. By default, the
token at the cursor position in the current Edit window is placed in the Expression text
box. You can accept or modify this expression, enter another one, or choose an
expression from the history list of expressions you've previously evaluated.

Figure 7.7 Evaluator dialog box

To evaluate the expression, click the Evaluate button. Using this dialog box, you can
evaluate any valid language expression, except ones that contain

• Local or static variables that are not accessible from the current execution point
• Symbols or macros defined with #define

When you evaluate an expression, the current value of the expression is displayed in the
Result field of the dialog box. If you need to, you can format the result by adding a
comma and one or more format specifiers to the end of the expression entered in the
Expression text box. Table 7.1 details the legal format specifiers.

Table 7.1 Expression format specifiers

HorX Integers

C Char, strings

D Integers

Fn Floating point

nM All

186 C++ Use r '5 G U ide

Hexadecimal. Shows integer values in hexadecimal with the Ox
prefix, including those in data structures.

Character. Shows special display characters for ASCn 0-31. By
default, such characters are shown using the appropriate C
escape sequences (In, It, and so on).

Decimal. Shows integer values in decimal form, including those
in data structures.

Floating point. Shows n significant digits (where n is in the range
of 2-18, and 7 is the default).

Memory dump. Shows n bytes starting at the address of the
indicated expression. If n is not specified, it defaults to the size in
bytes of the type of the variable.
By default, each byte shows as two hex digits. The C, D, H, 5, and
X specifiers can be used with M to change the byte formatting.

Table 7.1 Expression format specifiers (continued)

P Pointers

R Structures, unions

S Char, strings

Pointer. Shows pointers as seg:ofs instead of the default
Ptr(seg:ofs). It tells you the region of memory in which the
segment is located, and the name of the variable at the offset
address, if appropriate.

StructurelUnion. Shows both field names and values such as
(X:1;Y:10;Z:5) instead of (1,10,5).

String. Shows ASCn ~31 as C escape sequences. Use only to
modify memory dumps (see nM above).

For example, to display a result in hexadecimal, type , H after the expression. To see a
floating-point number to 3 decimal places, type , F3 after the expression.

You can also use a repeat count to reference a specific number of data items in arrays and
structures. To specify a repeat count, follow the expression with a comma and the
number of data items you want to reference. For example, suppose you declared the
following array in your program:

int my_array[lO]i

The following expression evaluates the first 5 elements of this array and displays the
result in hexadecimal:

my_array, 5h

Modifying the values of variables
Once you've evaluated a variable or data structure item, you can modify its value.
Modifying the value of data items during a debugging session lets you test different bug
hypotheses and see how a section of code behaves under different circumstances.

To modify the value of a data item:

1 Open the Expression Evaluator dialog box and enter the name of the variable you
want to modify into the Expression input box.

2 Click Evaluate to evaluate the data item.

3 Type a value into the New Value text box (or choose a value from the drop down
list), then click Modify to update the data item.

Note When you modify the value of a data item through the debugger, the modification is
effective for that specific program run only; the changes you make through the
Expression Evaluator dialog box do not affect your program source code or the
compiled program. To make your change permanent, you must modify your program
source code in the Edit window, then recompile your program.

Keep these points in mind when you modify program data values:

• You can change individual variables or elements of arrays and data structures, but
you cannot change the entire contents of an array or data structure.

• The expression in the New Value text box must evaluate to a result that is
assignment-compatible with the variable to which you want to assign it. A good
guideline is that if the assignment would cause a compile-time error, it's not a legal
modification value.

C hap t e r 7, Us in 9 the in t e 9 rat e d deb u 9 9 e r 187

Warning! Modifying values (especially pointer values and array indexes), can have undesirable
effects because you can overwrite other variables and data structures. Use caution
whenever you modify program values from the debugger.

Inspecting data elements
You can use inspect windows to examine and modify data values. Inspect windows are
extremely useful because they format the data according to the type of data being
viewed; there are different types of Inspect windows for scalars, arrays; structures,
functions, and classes with and without member functions.

The easiest way to inspect a data item is to highlight the expression you want to inspect
(or just position the text cursor on the token) in the Edit window, and choose Inspect
Object from the SpeedMenu (or press Alt+F5). If you inspect expressions using this
method, the expression is always evaluated within the scope of the line on which the
expression appears.

You can also inspect data expressions using the following method,

1 Choose Debug I Inspect to display the Inspect Expression window.

2 Type in the expression you want to inspect, or choose a previously entered
expression from the drop down list.

3 Choose OK to display an Inspector window.

If the execution point is in the scope of the expression you're inspecting, the value
appears in the Inspect window. If the execution point is outside the scope of the
expression, the value is undefined.

If you're inspecting a compound data item, such as an array or a structure, you can view
the details of the data item by opening another Inspect window on the element you
want to inspect.

To inspect an element of a compound data item:

1 In the Inspect window, select the item you want to inspect.

2 Choose Inspect on the Inspect window SpeedMenu, or press Enter.

You can also use Inspector windows to change the value of a single data item:

1 Select the data item whose value you want to modify.

2 Choose Change on the Inspect window SpeedMenu.

3 Type the new value into the Change Value dialog box and click OK.

If you're inspecting a data structure, it's possible the number of items displayed might
be so great that you'll have to scroll in the Inspector window to see data in which you're
interested. For easier viewing, you can narrow the display to a range of data items:

1 Left-click in the Inspect window and choose Set Range from the SpeedMenu.

2 In the Starting'Index text box, enter the index of the first item you want to view.

3 In the Count text box, enter the number of items you want to see in the Inspect
window.

188 C++ Use r 's G u ide

Displaying low-level information about a running program
The CPU window consists of five separate panes. Each pane gives you a view into a
specific low-level aspect of your running application:

• The Disassembly pane displays the assembly instructions that have been
disassembled from your application's machine code. In addition, the Disassembly
pane displays the original program source code above the associated assembly
instructions.

• The Dump pane displays a memory dump of any memory accessible to the currently
loaded executable module. By default, memory is displayed as hexadecimal bytes.

• The Stack pane displays the current contents of the program stack. By default, the
stack is displayed as hexadecimal bytes.

• The Registers pane displays the current values of the CPU registers.

• The Flags pane displays the current values of the CPU flags.

Each pane has an individual SpeedMenu that provides commands specific to the
contents of that pane.

Figure 7.8 CPU window

; 00401231 ret Olt0010 E1Ut 00400000
:WinUain{HINSTANCE.,....... *,HINSTANCE,- *, EEl 8l559F74,
: l1bello,cpp. 256: int PASCAL iinHain(ECX8155671S

., : 004.01234 push ebp EDX 81559D48
: 00401235 mav eb as ESI 004.02020
, EDl 00000000
: whel.la,app, 259: Main; :hln51tance '" hI EBP 00e8FE30
: 0040123. mav e.u;. [ebp+OxOS] ESP 00eSE'E04
;004.0123D mov Main;:hlnstanae.eax EIP 00401234
;whello.cpp. 26·0 ; Me.ln::hPxeY'Instance EFL 00000293
: 00401242 mav edlt. [ebp+OltOc] CS 0137
: 00401245 mav. (Ma~n: ;hPreV'ln51tance] o 68FE30
: whel.lo.cpp, 261: Mal,n: :nCllldShaw = nC 06BFE2C 00425810
,0040124B maY' eclt,{ebp+Ox14]
; 0040124E mov tMain" nClltdShow] eclt OeSFE28 0068FF6B
: whe110. cPP. 268: if· (. i Main::h:i-evI og~~~~~6~~~:R~b~
,004.01254 ~mp dword ptr [Mal,Xl,;hPr 006BFE1C S1559EF4

Resizing the CPU window panes

00&SFElSS155A038
0068FE14 OOOOOOOA
00G8FEIO 81559F74

. , 0068FEOC 00000000

. ,X,

.. U,
e.u,
t.U .

You can customize the layout of the CPU window by resizing the panes within the
window. Drag the pane borders within the window enlarge or shrink the windows to
your liking.

Listing addresses of disassembled instructions
The left side of the Disassembly pane lists the address of each disassembled instruction.
An arrow to the right of the memory address indicates the location of the current
execution point. To the right of the memory addresses, the Disassembly pane displays

C hap t e r 7, U sin 9 the i n t e 9 rat e d deb u 9 9 e r 189

the assembly instructions that have been disassembled from the machine code
produced by the compiler. If you are viewing code that has been linked with a symbol
table, the debugger displays the source code that is associated with the disassembled
instructions.

The Disassembly pane SpeedMenu
The Disassembly pane has the following SpeedMenu commands: .

• Run To
• Toggle Breakpoint
• Goto Address
• Goto Current PC
• Goto source
• Change Thread

Run to
The Run To command lets you run your program at full speed to the instruction that
you have selected in the Disassembly pane. This is a quick way to continue debugging
at a specific program location.

Toggle Breakpoint
When you choose Toggle Breakpoint, the debugger sets an unconditional breakpoint at
the instruction which you have selected in the Disassembly pane. A unconditional
breakpoint has no conditions, and the only action is that it will pause the program's
execution.

If is a simple breakpoint exists on the selected instruction, then Toggle Breakpoint will
delete the breakpoint at that code location. .

Goto address
The GotoAddress command prompts you for a new area of memory to display in the
Code, Dump, and Stack panes of the CPU window. Enter any expression that evaluates
to a memory location that your program can access such as main. Be sure to precede
hexadecimal values with Ox.

The debugger displays dashes if you try to access an address that is not within the scope
of the application you are debugging.

Goto current PC
Goto Current PC places positions the Disassembly pane at the location of the current
program counter (the location indicated ,by the EIP register). This location indicates the
next instruction to be executed by your program.

This command is useful when you have navigated through the Disassembly pane, and
you want to return to the next instruction to be executed.

190 C++ Use r 's G u ide

Goto source
The Goto Source command activates the Edit window and positions the insertion point
at the source code that corresponds to the disassembled instruction selected in the
Disassembly pane. If there is no corresponding source code (for example, if you're
examining Windows kernel code), this command has no effect.

Change thread
Opens the Change Thread dialog box. Select the thread you want to debug from the
thread listed on the process hierarchy.

If you choose a new thread from the CPU window, all panes in the window reflect the
state of the CPU for that thread. Open multiple instances of the CPU window for low­
level debugging of different threads.

Displaying raw values in addressable areas of your program
The Dump pane displays the raw values contained in addressable areas of your
program. The display is broken down into three sections: the memory addresses, the
current values in memory, and an ASCII representation of the values in memory.

By default, the Dump pane displays the memory values in hexadecimal notation. The
leftmost part of each line shows the starting address of the line. Following the address
listing is an 8-byte hexadecimal listing of the values contained at that location in
memory. Each byte in memory is represented by two hexadecimal digits. Following the
hexadecimal display is an ASCII display of the memory. Non-printable values are
represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMerm command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 8 bytes per line, Words displays 4 words per line, and Longs displays 2 long
words per line.

The Dump pane SpeedMenu
The Dump pane has the f<?llowing SpeedMenu commands:

• Goto Address
• Display As
• Change Thread

Note You can change the values of memory displayed in the Dump pane by pressing the h3
key and typing into the display (when you press ~ the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing
program memory values; even small changes in program values can have disastrous
effects on your running program.

C hap t e r 7, Us i n 9 the in t e 9 rat e d deb u 9 9 e r 191

Display as
Use the Display As command to format the data that's listed in the Dump or Stack pane
of the CPU window. You can choose any of the data formats listed in the following
table:

Table 7.2 Data formats

Bytes

Words

Longs

Floats

Doubles

Displays data in hexadecimal bytes

Displays data in 2-byte hexadecimal numbers

Displays data in 4-byte hexadecimal munbers

Displays data in 4-byte floating-point numbers using scientific notation

Displays data in 8-byte floating-point numbers using scientific notation

Displaying raw values in your program stack
The Stack pane displays the raw values contained in the your program stack. The
display is divided into three sections:

• Memory addresses
• Current values on the stack
• ASCII representation of the stack values

By default, the Stack pane displays the memory values in hexadecimal notation. The
leftmost part of each line shows the starting address of the line. Following the address
listing is a 4-byte listing of the values contained at that memory location. Each byte is
represented by two hexadecimal digits. Following the hexadecimal display is an ASCII
display of the memory; non-printable values are represented with a period.

The format of the memory display depends on the format selected with the Display As
SpeedMenu command. If you choose one of the floating-point display formats (Floats or
Doubles), a single floating-point number is displayed on each line. The Bytes format
displays 4 bytes per line, Words displays 2 words per line, and Longs displays 1 long
word per line.

The Stack pane SpeedMenu
'The Stack pane has the following SpeedMenu commands:

• Goto Address
• Goto Top Frame
• Goto Top of Stack
• Display As
• Change Thread

Note You can change the values of memory displayed in the Stack pane by pressing the Ins
key and typing into the display (when you press Ins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing
program memory values; even small changes in program values can have disastrous
effects on your running program.

192 C++ Use r' s G u ide

Goto top frame
Positions the insertion point in the Stack pane at the address of the frame pointer (the
address held in the EBP register).

Goto top of stack
Positions the insertion point in the Stack pane at the address of the stack pointer (the
address held in the ESP register).

Displaying CPU registers
The Registers pane displays the contents of the CPU registers of the 80386 and greater
processors. These registers consist of eight 32-bit general purpose registers, six 16-bit
segment registers, the 32-bit program counter (ElP), and the 32-bit flags register (EFL).

The Registers pane Speed Menu
The Registers pane has the following SpeedMenu commands:

• Increment Register
• Decrement Register
• Zero Register
• Change Register
• Show Old Registers/Show Current Registers

Change Thread
Note You can change the values of memory displayed in the Registers pane by pressing the

Ins key and typing into the display (when you press Ins, the insertion point in the pane
shrinks to highlight a single nibble in memory). Be extremely careful when changing
register values; even small changes can have disastrous effects on your running
program.

Increment register
Increment Register adds 1 to the value in the currently highlighted register. This lets you
test "off-by-one" bugs by making small adjustments to the register values.

Decrement register
Decrement Register subtracts 1 from the value in the currently highlighted register. This
lets you test" off-by-one" bugs by making small adjustments to the register values.

Zero register
The Zero Register command sets the value of the currently highlighted register to O.

C hap t e r 7, Us in 9 the i n t e 9 rat e d deb u 9 9 e r 193

Change register
Change Register lets you change the value of the currently highlighted register. When
you chose this command, the Change Register dialog box prompts you for a new value.
You can make full use of the expression evaluator to enter new values. Be sure to
precede hexadecimal values with Ox.

Show old registers/Show current registers
This command toggles between Show Old Registers and Show Current Registers. When
you select Show Old Registers, the Registers pane displays the values which the
registers had the last time the program was paused. The menu command then changes
to Show Current Registers, which changes the display back to the current register
values.

Displaying flags and current information
The Flags pane shows the current state of the flags and information bits contained in the
32-bit register EFL. The processor uses the following 14 bits in this register to control
certain operations and indicate the state of the processor after it executes certain
instructions:

Table 7.3 Flags pane indicators

CF Carry flag

PF Parity flag

AF Auxiliary carry

ZF Zero flag

SF Sign flag

TF Trap flag

IF Interrupt flag

DF Direction flag

OF Overflow flag

10 1/ 0 privilege level

NF Nested task flag

RF Resume flag

VM Virtual mode

AC Alignment check

The Flags pane SpeedMenu
The Flags pane has the following SpeedMenu commands:

• Toggle Flag
• Change Thread

Note You can change the values of memory displayed in the Flags pane by pressing the
Ins key and typing into the display (when you press Ins, the insertion point in the

194 c++ User's Guide

pane shrinks to highlight a single binary value in memory). Be extremely careful
when changing flag values; changes here can have disastrous effects on your
running program.

Toggle flag
The flag and information bits in the Flags pane can each hold a binary value of a or 1.
This command toggles the selected flag or bit between these two binary values.

Viewing function calls
While debugging, it can be useful to know the order of function calls that brought you to
your current program location. Using the Call Stack window, you can view the current
sequence of function calls. The Call Stack window is also helpful when you want to
view the arguments passed to a function call; each function listing in the window is
followed by a listing that details the arguments with which the call was made. Use
View I Call Stack to display the Call St~ck window.

Figure 7.9 Call Stack window

In the Call Stack window, the function that's curreJ;1tly executing is listed on top, with all
previously called functions listed in sequence below. The bottom of the list always
shows the first function in the calling sequence.

The Call Stack window is particularly useful if you accidentally step through code you
wanted to step over. Using the Call Stack window, you can return to the point where the
current function was called from, and then resume debugging from there:

In the Call Stack window, double-click the function that called the function you
accidently stepped into (it will be the second function listed in the Call Stack
window). The Edit window becomes active with the cursor positioned at the location
of the function calL

2 In the Edit window, move the cursor to the statement following the function call.

3 Choose Run to Cursor on the Edit window SpeedMenu (or press F4).

Navigating to function calls
Using the Call Stack window, you can view or edit the source code located at a
particular function call. Right-clicking a function in the Call Stack window displays the
SpeedMenu, from where you can choose either View Source or Edit Source. Each of
these commands cause the Edit window to display the selected function; however, Edit

C hap t e r 7, Us i n 9 the in t e 9 rat e d deb u 9 9 e r 195

Source gives focus to the Edit window so you can modify the source code at that
function location.

If you select the top function m the Call Stack window, these commands cause the Edit
window to display the location of the execution point in the current function. Selecting
any other function call causes the debugger to display the actual function call in the Edit
window.

Debugging dynamic-link libraries
When a DLL is loaded by the program you are debugging, its symbol table is
automatically loaded by the debugger. (The DLL must have been compiled with
Borland symbolic debug information for you to be able to statement step through it.)

196 C++ Use rJ s G u ide

Compiling and linking from the
command line

If you prefer to develop your applications outside of the Borland C++ IDE, you can
compile and link your programs from the DOS command line using the Borland
command-line tools. When you develop applications using this method, you must first
write your program source code using a text editor, then compile the code into an object
(.OBJ) file using the appropriate command-line compiler. After the .OBI file is
generated, you must link all the necessary files to create the final executabJe program.

Using the command-line compilers
Borland C++ includes the following command-line compilers that generate either 16-bit
or 32-bit object files:

• BCC.EXE is the 16-bit compiler.

• BCC32.EXE is the 32-bit compiler.

• BCC32i.EXE is a highly optimized 32-bit compiler.

When optimizations are turned on, BCC32i.EXE often produces faster executables than
does BCC32.EXE. Notable speed increases can be found with programs that perform
floating point calculations. However, the cost is slightly larger executable file sizes and
slower compilation times than you will get with BCC32.EXE.

In general, these compilers all work the same, but have different defaults and generate
different code.

C hap t e r 8, Com p iii n 9 and lin kin 9 fro m the com man d lin e 197

Command-line compiler syntax
The general syntax for Borland C++ command-line compilers is:

BCC I BCC32 I BCC321 [option [option ...]] filename [filename ...]

Items enclosed in brackets are optional. The option items refer to command-line options
provided in "Command-Line Options" in online Help and in the Quick Tour and Quick
Reference, and filename is one or more source-code files you want to compile.

To list the commonly used compiler options, type BCC, BCC32, or BCC32i at the command
line (without any options or file names), then press Enter. This list shows the options that
are enabled by default.

The command-line compiler name and each option and file name must be separated by
at least one space. Precede each option with either a hyphen (-) or a forward slash (I);
for example:

BCC -Ic:\code\hfiles

Options and file names entered on the command line override settings in configuration
files. .

You can use BCC to send files to TLINK (.OBJ files) or TASM (.ASM files if you have
TASM installed on your machine). BCC32 and BCC32i send .OBJ files to TLINK32.

Default settings
BCC.EXE, BCC32.EXE, and BCC32i each have options that are on by default. To tum off
a default option or to override options in a configuration file, follow the option with a
minus (-) sign.

Files without extensions and files with the .CPP extension compile as C++ files. Files
with a .C extension or with extensions other than .CPP, .OBJ, .LIB, or .ASM compile as C
files.

The compilers try to link with a module-definition file with the same name as the
executable. To link with a module-definition file with a different name, specify the name
on the compiler command line. You must include the .DEF extension and you cannot
link with more than one module-definition file.

Command-line options
You use command-line options to control the behavior of the command-line compilers.
For example, you can specify where the compiler searches for source files, what type of
object files the compiler should produce, what types of optimizations you want the
compiler to use, and so on.

A complete, alphabetical list of the command-line options is included in the Quick Tour
and Quick Reference provided with your Borland C++ package. For a list of the
commonly used compiler options, type BCC or BCC32 (without any options or file names)
on the command line, then press Enter. You can also refer to "Command-Line Options"
in online Help for details on all of the options.

198 C++ Use r' s G u ide

When entering command-line options, you must precede each option by either a dash
(-) or a forward slash (/). For example, you might specify an include path for BCC.EXE
with the following command:

BCC -Ic:\code\hfiles

Each of the compilers uses a different set of default options. To turn off a default option,
follow the option setting with a dash (-). For example, type BCC -w- to tum off warning
messages when compiling with BCC.EXE (note that warning messages are on by default
in all command-line compilers).

When linking Windows programs, Borland compilers, by default, try to link with a
module-definition file that has the same name as the object file. Use TLINK (or
TLINK32) to link with a module-definition file that has a different name. You can't link
with more than one module-definition file.

Option precedence rules
The command-line compilers evaluate options from left to right, and follows these rules:

• If you duplicate any option except -D, -U, -I, or -L, the last option typed overrides any
earlier one. (-D, -U, -I, and -L are cumulative.)

• Options typed at the command line override configuration and response file options.

Using compiler configuration files
If you repeatedly use a certain set of options, you can list them in a configuration file
instead of continually typing them on the command line. A configuration file is a
standard ASCII text file that contains one or more command-line options. Each option
must be separated by one or more spaces or a new line.

Whenever you issue a compile command, BCC.EXE searches for a configuration file
called TURBOC.CFG and BCC32.EXE and BCC32i.EXE search for the file BCC32.CFG.
The compilers look for the .CFG files first in the directory where you issue the compile
command, then in the directory where the compilers are located.

You can create and use multiple configuration files in addition to using the default .CFG
file. To use a configuration file, use the following syntax where you would place the
compiler options:

+ [path] filename

For example, you could use the following command line to use a configuration file
called MYCONFIG.CFG:

BCC +C:\MYPROJ\MYCONFIG.CFG mycode.cpp

Options typed on the command line override settings stored in configuration files.

Using response files
Response files let you list both compiler options and file names in a single file (unlike
configuration files, which accept only compiler options). A response file is a standard

C hap t e r 8, Com pi lin 9 and lin kin 9 fr 0 m the com man d lin e 199

ASCII text file that contains one or more command-line options and/ or file names, with
each entry in the file separated by a space or a new line. In addition to simplifying your
compile commands, responSe files let you issue a longer command line than most
operating systems allow.

The syntax for using a single response file is:

Bee @[path]respfile.txt

The syntax for using multiple response files is:

Bee @[path]respfile.txt @[path]otheresp.txt

Response files shipped with Borland C++ have an .RSP extension.

Options typed at the command line override any option or file name in a response file.

Entering directories for command-line options
Borland C++ can search multiple directories for include and library files. This means
that the syntax for the library directories (-L) and include directories (-I) command-line
options, like that of the #define option (-D), allows multiple listings of a given option.
Here is the syntax for these options:

-Ldirname[;dirname; ...]

-ldirname[; dirname; ...]

The parameter dirname used with -L and -I can be any directory or directory path. You
can enter these multiple directories on the command line in the following ways:

• You can stack multiple entries with a single -L or -I option by using a semicolon:

Bee.EXE -Ldirnamel;dirname2;dirname3 -lincl;inc2;inc3 myfile.c

• You can place more than one of each option on the command line, like this:

Bee.EXE -Ldirnamel;dirname2;dirname3 -lincl;inc2;inc3 myfile.~

• You can mix listings:
Bee.EXE -Ldirnamel;dirname2;dirname3 -lincl;inc2 -line3 myfile.c

If you list multiple -L or -I options on the command line, the result is cumulative: The
compiler searches all the directories listed, in order from left to right.

Note The IDE also supports multiple library directories.

TLINK uses a configuration file called TLINK.CFG (TLINK32 uses TLINK32.CFG), a
response file (optional), and command-line options to link object modules, libraries, and
resources into an executable file (.EXE or .DLL).

200 C++ Use r 's G u ide

Using TLINK and TLINK32
TLINK and TLINK32 are command-line tools that combine object modules (.OBJ files),
library modules (.LIB files), and resources to produce executable (.EXE and .DLL) files.
Because the compiler automatically calls TLINK, you don't need to use TLINK unless
you suppress the linking stage of compiling (see the -c compiler option).

Note In the following discussions, instructions and options for TLINK also apply to TLINK32
(unless otherwise specified).

TLINK is invoked from the command line to link a configuration file called TLINK.CFG
(TLINK32 uses TLINK32.CFG), an optional response file, and command-line options to
link object modules, libraries, and resources into an executable me.
TLINK links 16-bit (Windows) code and uses RLINK.EXE. TLINK32links 32-bit
Windows code and uses RLINK32.DLL.

TLINK command-line syntax
The linker syntax controls how the linkers work. Linker command-line options are case­
sensitive. Unless specified, instructions and options for TLINK also apply to TLINK32.

The linkers cart also use a configuration file called TLINK.CFGTLINKCFG (or
TLINK32.CFG) for options that you'd normally type at the command-line.

Syntax
TLINK ITLINK32 [@respfile] [options] startup ~objs, [exe] , [mapfile] ,

[libraries], [deffile] , [resfile]

Where items enclosed in brackets are optional.

• @respfile is an ASCn file that lists linker options and file names that you would
normally type at the command line (see "Linker response files" later in this chapter).
By placing options and files names in a response file, you can save the amount of
keystrokes you need to type to link your application.

• options are options that control how the linker works. For example, options specify
whether to produce an .EXE or a DLL file. Linker options must be preceded by either
a slash (I) or a hyphen (-).

A complete, alphabetical list of the TLINK and TLINK32 options is included in the
Quick Tour and Quick Reference provided with your Borland C++ package.

• startup is a Borland initialization module for executables or DLLs that arranges the
order of the various segments of the program. Failure to link in the correct
initialization module usually re$ults in a long list of error messages telling you that
certain identifiers are unresolved, or that no stack has been created.

• myobjs are the .OBJ files you want linked. Specify the path if the files are not in the
current directory. (The linker appends an .OBJ extension if no extension is present.)

• exe is the name you want given to the executable file (.COM, .EXE, or .DLL). If you
don't specify an executable file name, TLINK derives the name by appending .EXE or

C hap t e r 8, Com p iii n 9 and lin kin 9 fr 0 m the com man d lin e 201

.DLL to the first object file name listed. (The linker assumes or appends .EXE
extensions for executable files if no extension is present. It also assumes or appends
.DLL extensions for dynamic link libraries if no extension is present.)

• map file is the name you want given to the map file. If you don't specify a name, the
map file name is given the same as the exe file (but with the .MAP extension). (The
linker appends a .MAP extension if no extension is present.)

• libraries specify the library files you want included at link time. Do not use commas to
separate the libraries listed. If a file is not in the current directory or the search path
(see the IL option) then you must include the path in the link statement. (The linker
appends a .LIB extension if no extension is present.)

The order in which you list the libraries is very important; be sure to use the order
defined in this list:

• CodeGuard libraries (if needed)

• List any of your own user libraries, noting that if a function is defined more than
once, the linker uses the first definition encountered

• If you're creating a DOS overlay, link the DOS overlay module OVERLA Y.LIB

• DPMI libraries (DOS DPMI applications only)

• IMPORT.LIB (if you're creating an executable that uses the Windows API)

• Math libraries (if needed)

• Runtime libraries associated with your memory model and platform

[deffile]
The module definition file for a Windows executable. If you don't specify a module
definition (.DEF) file and you have used the {fwe or {fwd option, the linker creates an
application bctsed on default settings. (The linker appends a .DEF extension if no
extension is present.) .

[resfile]
A list of .RES files (compiled resource files) to bind to the executable. (The linker
appends an .RES extension if no extension is present.)

File n'ame extensions
TLINK assumes or appends these extensions to file names that have none:

• .OBJ for object files
• .EXE for executable files
• .DLL for dynamic-link libraries
• .MAP for map files
• .LIB for library files
• .DEF for module definition files
• .RES for resource files

202 C++ Use r 's G u ide

Linker configuration files
TLINK uses a configuration file called TLINK.CFG (or TLINK32.CFG for TLINK32) for
options that you would normally type at the command line (note that configuration files
can contain only options, not file names). Configuration files let you save optiOI)S you
use frequently, so you do not have to continually retype them. TLINK looks for
TLINK.CFG in the current directory, then in the directory from which it was loaded.

The following configuration files tell the linkers to

• Look for libraries first in the directory C:\BORLANDC\LIB then in
C:\ WINAPPS\LIB

• Include debug information in the executables it creates

• Create a detailed segment map

• Produce a Windows executable (.EXE not .DLL)

ILc:\bc45\libiC\:winapps\lib
Iv Is
1'IWe

ILc:\bc45\libiC:\winapps\lib
Iv Is

1'IPe

Note If you specify command-line options in addition to those recorded in a configuration
file, the command-line options override any conflicting configuration options. For
example, if you type Iv in the .CFG file, but you use Iv- at the command line, TLINK
uses the command-line option Iv-.

Linker response files
You can use response files with the command-line linkers to specify linker options.

Response files are ASCII files that list linker options and file names that you would
normally type at the command line. Response files allow you longer command lines
than most operating systems support, plus you don't have to continually type the same
information. Response files can include the same information as configuration files, but
they also support the inclusion of file names.

Unlike the command line, a response file can be several lines long. To specify an added
line, end a line with a plus character (+) and continue the command on the next line.
Note that if a line ends with an option that uses the plus to tum it on (such as /v+), the +
is not treated as a line continuation character (to continue the line, use /v+ +).

If you separate command-line components (such as .OBJ files from .LIB files) by lines in
a response file, you must leave out the comma used to separate them on the command
line. For example,

Ic cOws+
myprog,myexe +

mymap +

mylib cws

C hap t e r 8, Com p iii n 9 and lin kin 9 fro m the com man d lin e 203

leaves out the commas you'd have to type if you put the information all on a command
line:

TLINK Ie cOws myprog,myexe,mymap,mylib cws

To use linker response files,

1 Type the command-line options and file names into an ASCII text file and save the
file. Response files shipped with Borland C++ have the .RSP extension.

2 Type

TLINK @[path]RESFILE.RSP

where RESFILE.RSP is the name of your response file.

You can specify more than one response file as follows:

tlink Ie @listobjs.rsp,myexe,mymap,@listlibs.rsp

Note You can add comments to response files using semicolons; the linker ignores any text on
a line that follpws a semicolon.

Using the linkers with the command-line compilers
You can pass options and files to the linkers through the command~line compilers by
typing file names on the command line with explicit .OBJ and .LIB extensions. For
example,

BCC mainfile.obj subl.obj mylib.lib

links MAINFILE.OBJ, SVBl.OBJ, and MYLIB.LIB to produce the executable
MAINFILE.EXE.

Note By default, BCC starts TLINK with the files COWS.OBJ, CWS.LIB, and IMPORT.LIB
(initialization module, run-tittLe library, and Windows import library). BCC32 starts
TLINK32 with the files COW32.0BJ, CW32.LIB, and IMPORT32.LIB. In addition, the
compilers always pass the linkers the Ie (case-sensitive link) option.

Linking libraries
You must always link the Borland C++ run-time library that contains the standard C
and C++ library functions for the type of application you are linking. The following
tables show the different .OBJ and .LIB files you need to use when linking 16-bit .EXEs
and .DLLs. In addition to the files listed, you'll also need to link:

• IMPORT.LIB for all applications that use the Windows API.

• FP87.LIB or EMU.LIB for DOS applications that use floating-point math.

Table 8.1 Library and startup files for DOS applications

MATHS.LIB CS.LIB

204 C++ Use r 's G u ide

Table 8.1

Medium
Large
Huge

Library and startup files for DOS applications (continued)

COM.OB]
COL.OB]
COH.OB]

COFM.OB]
COFL.OB]
COFH.OB]

MATHM.OB]
MATHL.LIB
MATHH.LIB

Table 8.2 Library and startup files for statically linked 16-bit Windows .EXEs

Compact
Medium
Large

COWC.OB]
COWM.OB]
COWL.OB]

MA:
MATHWC.LIB
MATHWM.LIB
MATHWL.LIB

Table 8.3 Library and startup files for statically linked 16-bit Windows .DLLs

Compact
Medium
Large

CODC.OB] .
CODM.OB]
CODL.OB]

MATHWC.LIB
MATHWM.LIB
MATHWL.LIB

CWC.LIB
CWL.LIB
CWL.LIB

CM.LIB
CL.LIB
CH.LIB

Table 8.4 Library and startup files for dynamically linked 16-bit Windows. EXEs and. DLLs

Module definition file reference
A module definition file is an ASCII text file that provides information to TLINK about the
contents and system requirements of a Windows application. More specifically, a
module definition file

• Names the .EXE or .DLL

• Identifies the application type

• Lists imported and exported functions

• Describes the code and data segment attributes, and lets you specify attributes for
additional code and data segments

• Specifies the size of the stack

• Provides for the inclusion of a stub program

You can create a module definition file using IMPDEFIMPDEF, and you can create
import libraries from module definition files using IMPLIBIMPLIB.

C hap t e r 8, Com p iii n 9 and lin kin 9 fr 0 m the com man d lin e 205

This section describes module definition files and the statements that appear in them.
An example module definition file is provided at the end of the chapter.

Module definition file defaults
If no module definition file is specified, the following defaults are assumed:

CODE PRELOAD MOVEABLE DISCARDABLE

DATAPREIDAD MOVEABLE MULTIPLE (for applications)

PREIDAD MOVEABLE SllGLE (for DILs)

HEAPSIZE 4096

STACKSIZE 5120 (1048576 for TLINK32) .

To change an application's attributes from these defaults, you need to create a module
definition file.

To replace the EXETYPE statement, the Borland C++ linker can discover what kind of
executable you want to produce by checking settings in the IDE or options on the
command line.

You can include an import library to substitute for the IMPORTS section of the module
definition.

You can use the _export keyword in the definitions of export functions in your C and
C++ source code to remove the need for an EXPORTS section.

Note If _export is used to export a function, that function is exported by name rather than by
ordinal (ordinal is usually more efficient).

CODE statement
CODE defines the default attributes of code segments. Code segments can have any
name, but must belong to segment classes whose name ends in CODE (such as CODE or
MYCODE). The 32-bit syntax is:

CODE [PRELOAD I LOADONCALL]

[EXEOJ'I'EDNLY I EXEillI'EREAD]

The 16-bit syntax is:

CODE [FIXED I MOVEABLE]

[DISCARDABLE I NONDISCARDABLE]

[PREI.DAD I LOAOONCALL]

• PRELOAD means code is loaded when the calling program is loaded.

• LOADONCALL (the default) means the code is loaded when Gllled by the program.

• EXECUTEONL Y means a code segment can only be executed.

• EXECUTEREAD (the default) means the code segment can be read and executed.

• FIXED (the default) means the segment remains at a fixed memory location.

• MOVEABLE means the segment can be moved.

206 C++ Use r 's G u ide

• DISCARDABLE means the segment can be discarded if it is no longer needed (this
implies MOVEABLE).

• NONDISCARDABLE (the default) means the segment can not be discarded.

DATA statement
DATA defines attributes of data segments. The syntax is:

DATA [NONE I SINGLE I MULTIPLE]
[REALDNLY I REAIWRITE]

[PREWAD I LDAIDNCALL]

[SHARED I NONSHARED]

• NONE means that there is no data segment created. This option is available only for
libraries.

• SINGLE (the default for .DLLs) means a single data segment is created and shared by
all processes.

• MULTIPLE (the default for .EXEs) means that a data segment is created for each
process.

• READONL Y means the data segment can be read only.

• READWRITE (the default) means the data segment can be read and written to.

• PRELOAD means the data segment is loaded when a module that uses it is first
loaded.

• LOADONCALL (the default) means the data segment is loaded when it is first
accessed (this is ignored for 32-bit applications).

• SHARED (the default for 16-bit .DLLs) means one copy of the data segment is shared
among all processes.

• NONSHARED (the default for programs and 32-bit .DLLs) means a copy of the data
segment is loaded for each process needing to use the data segment.

, DESCRIPTION statement
DESCRIPTION (optional) inserts text into the application module and is typically used
to embed author, date, or copyright information. The syntax is:

DESCRIPTION 'Text'

Text is an ASCII string delimited with single quotes.

EXETVPE statement
EXETYPE defines the default executable file (.EXE) header type for 16-bit applications.
You can leave this section in for 32-bit applications for backward compatibility, but if
you need to change the EXETYPE, see the NAME statement. The syntax for EXETYPE
is:

C hap t e r 8, Com p iii n 9 and lin kin 9 fro m the com man d lin e 207

EXETYPE [WINDOWAPI] I [WINDOWCOMPAT] I [NOTWINDOWCOMPAT]

• WINDOW API is a Windows executable, and is equivalent to the TLINK option laa.

• WINDOWCOMP AT is a Windows-compatible character-mode executable, and is
equivalent to the TLINK option lap.

• NOTWINDOWCOMP AT is a character-mode application which won't run under
Windows. It is equivalent to the TLINK option lai.

EXPORTS statement
EXPORTS defines the names and attributes of functions to be exported. The EXPORTS
keyword marks the beginning of the definitions. It can be followed by any number of
export definitions, each on a separate line. The syntax is:

EXPORTS
ExportName [Ordinal]

[RESIDENINAME] [Parameter]

• ExportName specifies an ASCII string that defines the symbol to be exported as
follows:

EntryName [=Inte.rnalName]

InternalName is the name used within the application to refer to this entry.

EntryName is the name listed in the executable file's entry table and is externally
visible.

• Ordinal defines the function's ordinal value as follows:
@ordinal

where ordinal is an integer value that specifies the function's ordinal value.

When an application or DLL module calls a function exported from a DLL, the
calling module can refer to the function by name or by ordinal value. It's faster to
refer to the function by ordinal because string comparisons aren't required to locate
the function. To use less memory, export a function by ordinal (from the point of
view of that function's DLL) and import/ call a function by ordinal (from the point of
view of the calling module).

When a function is exported by ordinal, the name resides in the nomesident name
table. When a function is exported by name, the name resides in the resident name
table. The resident name table for a module is in memory wh~never the module is
loaded; the nonresident name table isn't. .

• RESIDENTNAME specifies that the function's name must be resident at all times.
This is useful only when exporting by ordinal (when the name wouldn't be resident
by default).

• Parameter is an optional integer value that specifies the number of words the function
expects to be passed as parameters.

208 C++ Use r '5 G U ide

HEAPSIZE statement
HEAPSIZE defines the number of bytes the application needs for its local heap. An
application uses the local heap whenever it allocates local memory. The support for
HEAPSIZE is slightly different for 16-bit or 32-bit applications.

The 16-bit syntax for HEAPSIZE is:

HEAPSIZE Allocate

• Allocate is an integer value which specifies the amount of heap allocated at program
startup. For 16-bit applications, this size cannot exceed the physical segment size of
65,535 bytes (64K). .

The 32-bit syntax for HEAPSIZE is:

HEAPSIZE Reserve[, Commit]

• Reserve can be a decimal or hex value, the default of which is 1MB. To help with
backward (16-bit) compatibility, the linker uses the default value of 1MB if you
specify in the .DEF file a reserve value less than 64K.

• Commit is a decimal or hex value. The commit size is optional, and if not specified
defaults to 4K. The minimum commit size you can specify is O. In addition, the
specified or default commit size must always be smaller or equal to the reserve size.

Reserved memory refers to the maximum amount of memory that can be allocated either
in physical memory or in the paging file. In other words, reserved memory specifies the
maximum possible heap size. The operating system guarantees that the specified
amount of memory will be reserved and, if necessary, allocated.

The meaning of committed memory varies among operating systems. In Windows NT,
committed memory refers to the amount of physical memory allocated for the heap at
application load or initialization time. Committed memory causes space to be allocated
either in physical memory or in the paging file. A higher commit value saves time when
the application needs more heap space, but increases memory requirements and
possible startup time.

You can override any heap reserve or commit size specified in the .DEF file with the IH
or IHc command-line options. IH lets you specify a heap reserve size less than the 64K
minimum allowed in the .DEF file.

IMPORTS statement
IMPORTS defines the names and attributes of functions to be imported from DLLs.
Instead of listing imported DLL functions in the IMPORTS statement, you can do either
of the following:

• Specify an import library for the DLL in the TLINK command line

• Include the import library for the DLL in the project manager in the IDE

If you are programming for 32 bits, you must use _ _ import to import any function,
class, or data you want imported. For 16 bits, you must use _ _ import with the classes
you want imported.

C ha pte r 8, Com p iii n 9 and lin kin 9 fro m the com man d lin e 209

The IMPORTS keyword marks the beginning of the definitions followed by any number
of import definitions, each on a separate line. The syntax is:

IMPORTS
[InternalName=] ModuleName. Entry

• InternalName is an ASCII string that specifies the unique name the application uses to
call the function.

• ModuleName specifies one or more uppercase ASCII characters that define the name
of the executable module containing the function. The module name must match the
name of the executable file. For example, the file SAMPLE.DLL has the module name
SAMPLE.

• Entry specifies the function to be imported-either an ASCII string that names the
function or an integer that gives the function's ordinal value.

LIBRARY statement
LIBRARY defines the name of a DLL module. A module definition file can contain
either a LIBRARY statement to indicate a .DLL or a NAME statement to indicate an
.EXE.

A library's module name must match the name of the executable file. For example, the
library MYLIB.DLL has the module name MYLIB. The syntax is:

LIBRARY LibraryName [INITGLOBAL 1 INITINSTANCE]

• LibraryName (optional) is an ASCII string that defines the name of the library module.
If you don't include a LibraryName, TLINK uses the file name with the extension
removed. If the module definition file includes neither a NAME nor a LIBRARY
statement, TLINK assumes a NAME statement without a ModuleName parameter.

• INITGLOBAL means the library-initialization routine is called only when'the library
module is first loaded into memory.

• INITINSTANCE means the library-initialization routine is called each time a new
process uses the library.

NAME statement
NAME is the name of the application's executable module. The module name identifies
the module when exporting functions. For 32-bit applications, NAME must appear
before EXETYPE. If NAME and EXETYPE don't specify the same target type, the linker
uses the type listed with NAME. The syntax is:

NAME ModuleName [WINDOWSAPI] I· [WINDOWCOMPAT]

• ModuleName (optional) specifies one or more uppercase ASCII characters that name
the executable module. The name must match the name of the executable file. For
example, an application with the executable file SAMPLE.EXE has the module name
SAMPLE.

210 C++ Use r 's G u ide

If ModuleName is missing, TLINK assumes that the module name matches the file
name of the executable file. For example, if you do not specify a module name and
the executable file is named MYAPP.EXE, TLINK assumes that the module name is
MYAPP.

If the module definition me includes neither a NAME nor a LIBRARY statement, TLINK
assumes a NAME statement without a ModuleName parameter.

• WINDOWSAPI specifies a Windows executable, and is equivalent to the TLINK32
option/aa.

• WINDOWCOMPAT specifies a Windows-compatible character-mode executable,
and is equivalent to the t1ink32 option/ap.

SECTIONS statement
The SECTIONS statement lets you set attributes for one or more section in the image file.
You can use this statement to override the default attributes for each different type of
section. The syntax for SECTIONS is:

SECTIONS
section_name (CLASS 'classname'] attributes

• SECTIONS marks the beginning of a list of section definitions.

• After the SECTIONS keyword, each section definition must be listed on a separate
line. Note that the SECTIONS keyword can be on the same line as the first definition
or on a preceding line. In addition, the .DEF file can contain one or more SECTIONS
statements. The SEGMENTS keyword is supported as a synonym for SECTIONS.
The syntax for the individual section listings is as follows:

• In this syntax, section_name is case sensitive.

• The CLASS keyword is supported for compatibility but is ignored.

.. The attributes argument can be one or more of the following: EXECUTE, READ,
SHARED, and WRITE.

SEGMENTS statement
SEGMENTS defines the segment attributes of additional code and data segments. The
syntaxis:

SEGMENTS
SegmentName [CLASS 'ClassName']

[MinAlloc]

[SHARED I NONSHARED]

[PRELOAD I WAJX)NCALL]

[MIXED1632]

• SegmentName is a character string that names the new segment. It can be any name,
including the standard segment names _TEXT and _DATA, which represent the
standard code and data segments.

C hap t e r 8, Com p iii n 9 and I in kin 9 fro m the com man d lin e 211

• ClassName (optional) is the class name of the specified segment. If no class name is
specified, TLINK uses the class name CODE.

• MinAlloc (optional) is an integer that specifies the minimum allocation size for the
segment. TLINK and TLINK32 ignore this value.

• SHARED (the default for 16-bit .DLLs) means one copy of the segment is shared
among all processes.

• NONSHARED (the default for .EXEs and 32-bit .DLLs) means a copy of the segment
is loaded for each process needing to use the data segment.

• PRELOAD means that the segment is loaded immediately.

• LOADONCALL means that the segment is loaded when it is accessed or called (this
is ignored by TLINK32). The Resource Compiler may override the LOADONCALL
option and preload segments instead.

• MIXED1632 (optional) is supported by the 16-bit linker only, and lets you link 32-bit
modules with your 16-bit Windows 95 applications. The Windows 95 16-bit loader
supports 32-bit segments when the 2000H bit is set in the segment table of the
application.

STACKSIZE statement
STACKSIZE defines the number of bytes the application needs for its local stack. An
application uses the local stack whenever it makes function calls. The support for
STACKSIZE is slightly different for 16-bit or 32-bit applications.

The 16-:bit syntax for STACKSIZE is:

STACrSIZE Allocate

• Allocate is an integer value which specifies the amount of stack allocated at program
startup. For 16-bit applications, this size cannot exceed the physical segment size of
65,535 bytes (64K).

The 32-bit syntax for STACKSIZE is:

STACKSIZE Reserve[, Commit]

• Reserve can be a decimal or hex value, the default of which is 1MB. To help with
backward (16-bit) compatibility, the linker uses the default value of 1MB if you
specify in the .DEF file a reserve value less than 64K.

• Commit is a decimal or hex value. The commit size is optional, and if not specified
defaults to SK. The minimum commit size you can specify is 4K. In addition, the
specified or default commit size must always be smaller or equal to the reserve size.

Reserved memory refers to the maximum amount of memory that can be allocated either
in physical memory or in the paging file. In other words, reserved memory specifies the
maximum possible stack size. The operating system guarantees that the specified
amount of memory will be reserved and, if necessary, allocated.

The meaning of committed memory varies among operating systems. In Windows NT,
committed memory refers to the amount of physical memory allocated for the stack at

212 C++ Use r 's G u ide

application load or initialization time. Committed memory causes space to be allocated
either in physical memory or in the paging file. A higher commit value saves time when
the application needs more stack space, but increases memory requirements and
possible startup time.

You can override any stack reserve or commit size specified in the .DEF file with the IS
or ISc command-line options. IS lets you specify a stack reserve size less than the 64K
minimum allowed in the .DEF file.

Note Do not use the STACKSIZE statement when compiling .DLLs.

STUB statement
STUB appends a DOS executable file specified by FileName to the beginning of the
module. The executable stub displays a warning message and terminates if the user
attempts to run the executable stub in the wrong environment (running a Windows
application under DOS, for example).

Borland C++ adds a built-in stub to the beginning of a Windows application unless a
different stub is specified with the STUB statement. You should not use the STUB
statement to include WINSTUB.EXE because the linker does this automatically.

The syntax is:

, STUB "FileName"

FileName is the name of the DOS executable file to be appended to the module. The
name must have the DOS file name format.

If the file named by FileName is not in the current directory, TLINK searches for the file
in the directories specified by the PATH environment variable.

SUBSYSTEM statement
SUBSYSTEM lets you specify the Windows subsystem and subsystem version number
for the application being linked. The syntax for SUBSYSTEM is:

SUBSYSTEM [subsystem, 1 subsystemID

• The optional parameter subsystem can be anyone of the following values:
WINDOWS, WINDOW API, WINDOWCOMP AT, NOTWINDOWCOMPAT. If you
do not specify a subsystem, the linker defaults to a WINDOWS subsystem.

• You must specify the subsystemID parameter using the format d.d where d is a
decimal number. For example, if you want to specify Windows 4.0, you could use
either of the following SUBSYSTEM statements:

SUBSYSTEM 4.0

SUBSYSTEM WINDOWS, 4.0

You can override any SUBSYSTEM statement in a .DEF file using the la and N
command-line options.

C hap t e r 8, Com p iii n 9 and lin kin 9 fr 0 m the com man d lin e 213

Example module definition file
Following is an example module definition file.

NAME WHELLO
DESCRIPTION 'C++ Windows Hello World'
EXETYPE WINDOWS
CODE MOVEABLE
DATA MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120
EXPORTS MainWindowProc

Let's describe this file statement by statement:

• NAME specifies a name for an application. If you want to build a .DLL instead of an
application, you would use LIBRARY instead of NAME. Every module definition file
should have either a NAME or a LIBRARY statement, but never both. The name
specified must be the same name as the executable file.

• DESCRIPTION lets you specify a string that describes your application or library.

• EXETYPE can' be either WINDOWS or OS2. Only WINDOWS is supported in this
version of Borland C++.

• CODE defines the default attributes of code segments. The MOVEABLE option
means that the code segment can be moved in memory at run time.

• DATA defines the default attributes of data segments. MOVEABLE means that it can
be moved in memory at run time. Windows lets you run more than one instance of
an application at the same time. In support of that, the MULTIPLE options ensures
that each instance of the application has its own data segment.

• HEAPSIZE specifies the size of the application's local heap.

• STACKSIZE specifies the size of the application's local stack. You can't use the
STACKSIZE statement to create a stack for a .DLL.

• EXPORTS lists those functions in the WHELLO application that can be called by
other applications or by Windows. Functions that are intended to be called by other
modules are called callbacks, callback functions, or export functions.

• To help you avoid the necessity of creating and maintaining long EXPORTS sections,
Borland C++ provides the _export keyword. Functions flagged with_export are
identified by the linker and entered into an export table for the module.

If the Smart Callbacks option is used at compile time (IWS on the BCC command­
line, or Options I Compiler I Entry/Exit Code I Windows Smart Callbacks), then
callback functions do not need to be listed either in the EXPORTS statement or
flagged with the _export keyword. Borland C++ compiles them in such a way so that
they can be callback functions.

• This application doesn't have an IMPORTS statement, because the only functions it
calls from other modules are those from the Windows API; those functions are
imported via the automatic inclusion of the IMPORT. LIB import library. When an

214 C++ Use r' s G u ide

application needs to call other external functions, these functions must be listed in the
IMPORTS statement, or included via an import library.

• This application doesn't include a STUB statement. Borland C++ uses a built-in stub
for Windows applications. The built-in stub simply checks to see if the application
was loaded under Windows, and, if not, terminates the application with a message
that Windows is required. If you want to write and include a custom stub, specify the
name of that stub with the STUB statement.

C hap t e r 8, Com p iii n 9 and lin kin 9 fro m the com man d lin e 215

216 C++ Use r' s G u ide

Resource Workshop user's guide
Part II explains how to create, compile, and link resources to applications running under
Microsoft Windows 3.1 and higher. You willieam to:

• Work with resources in either text or binary format.
• Manage hundreds of resources stored in dozens of files. .
• Use multilevel Undo and Redo to step back through changes you've made.
• Compile your resources only when you need to.
• Change a program's resources even if you don't have access to the source code.
• Automatically check for errors, such as incorrect syntax and duplicate resource IDs.

This part is organized into the following chapters:

• Chapter 9, "Getting started," defines what resources are and explains the basic
concepts involved in working with them. .

• Chapter 10, "Working with resource projects," explains how to create a new
resource project. You use the Resource Project window to open a project, save it,
embed a resource in it, and link a resource to it.

• Chapter 11, "Working with bitmaps, cursors, and icons," explains how to use
graphics images in your programs in forms of bitmaps, cursors, and icons.

• Chapter 12, "Using the Graphics editor," explains how to create and edit any
bitmapped resource, including bitmaps, cursors, and icons, using the Graphics
editor.

• Chapter 13, ''Working with resources," shows how to create, load, edit,' and manage
resources by working with resource script, binary, and graphics files.

• Chapter 14, "Working with dialog boxes," explains how to build, edit, and program
dialog boxes for your programs.

Par t II, Res 0 U r c e W 0 r k s hop use r 's 9 u ide 217

• Chapter 15, "Using the Dialog editor," explains how to use the Dialog editor and its
Control palette, Tool palette, and Property Inspector.

• Chapter 16, "Working with menus," explains how to use the Menu editor to create
and edit menus.

• Chapter 17, "Working with identifiers," explains how to create, edit, and manage
resource identifiers that uniquely refer to specific resources.

• Chapter 18, "Using the Text editor," explains how to use the Text editor to edit the
text version of any resource.

• Chapter 19, "Working with user-defined resources," explains how to define your
own resource types when the standard types do not meet your needs.

218 C++ Use r 's G u ide

Getting started with Resource
Workshop

This chapter answers the following questions:

• What is a resource?

• Why you should link resources to your applications

• What is a resource script (.Re) file?

• What is a binary resource (.RES) file?

• What file types does Resource Workshop generate?

What is a resource?
A resource is binary data that is linked to an application executable (.EXE), dynamic-link
library (.DLL), or other binary file. Usually a resource defines one or more of the
following user interface components:

• A dialog box, which is a pop-up window that uses labels, text boxes, buttons, check
boxes, scroll bars and other controls to give information to and receive information
from a user.

• A menu, which is a list of commands from which a user can choose. Types of menus
include menus that appear on a application's menu bar, pop-up menus, which can
appear anywhere on the workspace, and cascading menus, which can appear when
you choose a menu command.

• An accelerator table, which is one or more key combinations that a user can press to
perform an action.

• A string table, which is one or more text strings that can contain descriptions,
prompts, and error messages.

Chapter 9, Getting started with Resource Workshop 219

• A bitmap, which is a graphic image, such as a picture, logo, or other drawing.

• A cursor, which is a graphic image that shows the position of the mouse on the screen
and indicates the types of actions a user can perform.

• An icon, which is a graphic image that represents a minimized window.

A resource can also define:

• Version information, which is a block of data that can be used in several Windows
API functions. The version information resource specifies the version number, file
type, and operating system of a application.

• A custom data type, which is any data that you want to link to an application.

You create or edit resources using Resource Workshop, then you compile the resource,
creating a binary (.RES) file that is linked into your application.

Why you should link resources to your applications
By linking resources to an application, you can keep data separate from code. This
separation lets you easily:

• Find and change parts of the application.

• Change an application without changing source files.

• Share data among your applications.

• Create and edit resources in a graphical environment.

Using Resource Workshop, you can extract, modify, and save resources directly into a
binary file.

You can include the same resources in any application. You do not need to recreate a
resource each time you want to use it.

As you create or edit a resource, you can see just how the resource will appear in your
application. You do not have to compile and rUn your application to see user interface
changes.

What is a resource script (.RC) file?
A resource script (.RC) file contains one or more sets of ASCII data, called resource
scripts, from which binary resources can be generated.

When you create and edit resources with Resource Workshop editors, you are creating
and editing a resource script automatically. Each resource type has a different resource
script format, but you do not need to know these formats unless you plan to edit a
resource script in a text editor.

The resource script file for a resource project appears in the Resource Project window.
Valid resource projects are .RC, RES, .rCO, .CUR, and .BMP files.

When a resource script file is compiled, it becomes a binary resource (.RES) file.

220 C++ Use r 's G u ide

What is a binary resource (.RES) file?
A binary resource file is a compiled resource script file. You can compile a resource
script file into one or more binary resource files, then link the resources to an
application.

Usually when creating a Windows program, you compile all resources for an
application into a single .RES file, and then you bind the .RES file to the executable file as
part of the linking process.

Once the resources are linked, the application's source code can refer to the resources
using the identifiers used in resource script file.

If you want to change the resources in a compiled binary file, Resource Workshop
decompiles the file and let you make the changes, then save the resources back to the
original file.

Setting preferences
When you first use Resource Workshop, you may want to set preferences for how it
works.

Choose Options I Project I Resources or Options I Environment I Resource Editors to
bring up the Options dialog box where you set configuration options.

You can: -

• Choose the target for your resources

• Create backup files each time you save a project

• Choose how identifiers are generated and the identifier prefix

• Set the number of changes you want to trace when you undo or redo actions

• Add or remove control libraries

• Choose options for the Dialog, Menu, and Graphics editors

Undoing mistakes
Resource Workshop lets you undo or redo any action with the Edit I Undo or the Edit I
Redo commands. Edit I Undo "undoes" your most recent action. Edit I Redo reverses the
effect of the most recent Undo command.

Chapter 9, Getting started with Resource Workshop 221

Edit I Undo
The Edit I Undo command inserts any characters you deleted, deletes any characters
you inserted, replaces any characters you overwrote, and moves your cursor back to its
prior position. It also undoes operations in the Dialog, Menu, and the Graphics editors.

If you undo a block operation on a resource, the resource will appear as it was before
you executed the block operation. The Undo command will not change an option
setting that affects more than one window.

If you continue to press Undo, it continues to undo changes until it reaches the number
specified in the Undo Levels box (one of the Options I Environment I Resource Editors
SpeedSettings.) Depending on the amount of memory in your computer, you can undo
or redo up to 99 actions. The default number is 10.

Edit I Redo
The Edit I Redo command is effective only immediately after you use Edit I Undo or
Edit I Redo. A series of Redo commands reverses the effects of a series of Undo
commands.

Starting Resource WorkShop
To start Resource Workshop, do one of the following

• Double-click an existing .RC node in the IDE Project Window

• Choose File I Open and open an existing .RC file

• Choose File I New I Resource Project

• Right-click an .EXE or .DLL node and select Edit Resources

Note Clicking on a .RES, .BMP, .lCO, or .CUR node also invokes the editor on that project.

222 C++ Use r' s G u ide

Working with resource projects
A resource project is a collection of one or more resources. A resource project is stored in
a file that contains one or more resources, or refers to files containing resources, or both.
This file is usually a resource script (.RC) file.

When you first use Resource Workshop, you need to create a new resource project or
open an existing one. Once the resource project is open, it is displayed in the Resource
Project window.

You need to save the resource project when you exit. If you try to exit or close the
Resource Project window without saving, Resource Workshop will ask you if you want
to save it.

Creating a new resource project
To create a new resource project,

1 Choose File I New I Resource Project. The New Resource Project dialog box is
displayed.

2 Select the type of resource on which you want to base your project.

Usually this will be a resource script file (.RC).

If the Options button is available, choose it to select resource options.

3 When you are done, click OK; then OK again to close the New Resource Project
dialog box.

Resource Workshop displays your new project in the Resource Project window. You
name your project when you save it.

Chapter 10, Working with resource projects 223

Opening an existing resource project
Anexisting resource project is usually one that you created with Resource Workshop. It
can also be an .RC file you created with other resource development software.

You can also work with the resources in any application developed for Windows 3.1 or
higher, even if you do not have access to the source code. If you have access only to an
executable file, Resource Workshop can decompile the file to let you make changes to
the resources.

To open an existing project,

1 Choose File I Open (or double-click the .RC node in an open project in the IDE).

2 In the Open a File dialog box, select the file containing the resource project you want
to open.

Note If you want to open a binary file (.EXEor .DLL), select Edit Resources in the Viewer
. field.

What Resource Workshop does next depends on whether the resource project is a
binary file or a file containing resource data.

• If the resource project is a binary file (an executable file, a .RES file, or a dynamic-link
library file), Resource Workshop decompiles the resources and shows you its
progress on the status line.

• If the resource project consists of a main .RC file and other files containing resource
data, Resource Workshop reads the resource project file and then compiles each
resource, showing you its progress. .

• If Resource Workshop carmot compile the resource project file, an error is displayed
that shows you the error and where it occurred. Double-click the error message in a
message window to view the script as text.

Note If a compiler error occurs in an .RC file, you can open the .RC file in text edit mode by
viewing the message window and double-clicking the error message.

Once the resource project is compiled or decompiled, Resource Workshop displays the
Resource Project window with the resources listed in it.

When the resource project is open, you can add resources to it. You can also modify or
remove resources. Save the resource project when you finish.

Saving a resource project
It is a good idea to save your work often. Resource Workshop provides you with a
variety of save commands so you can choose exactly what you want to save and how to
save it.

Choose. the File menu and select one of these options:

• File I Save saves everything in your current resource project. This is the option you
usually choose. When you save a new resource project that has not been named yet,

224 C++ Use r '5 G U ide

Resource Workshop displays the Save File As dialog box, where you can specify a
name and directory.

Resource Workshop always saves the resource project file and any files it refers to.
Resource Workshop can also save to a.RES file or bind the resources to an executable
or dynamic-link library file. .

• File I Save File As lets you rename the current resource project when you save it.
Resource Workshop displays the Save File As dialog box, where you can enter the
new file name.

Embedding a resource in a resource project
To embed a resource in your project (to create a new resource in script form), open the
resource project you want to work with and follow these steps:

1 Choose Resource I New to display the New Resource dialog box.

2 Choose the type of resource you want to create.

3 Click the Options button to set options for the resource type and to select the header
files you want the resource and its identifier to appear in.

You can only select from header files currently attached to your project. (Use Add To
Project on the local menu to add a new header file to your project.)

The next steps depend on the type of resource you are creating:

• If you are creating an accelerator, menu, dialog box, string table, RCDATA, or
VERSIONINFO resource, Resource Workshop puts an entry for the resource in the
Resource Project window and opens the appropriate resource editor.

• If you are creating an image resource (an icon, cursor, or bitmap), Resource
Workshop click Options to display the New Resource Options dialog box. To embed
the image, check the Source Form box. (If Source Form is clear, enter a file name.)

Linking a resource to a resource project
You can link a resource stored in an external file to the current resource project by using
the Add to Project command on the SpeedMenu. You use this command to add an
existing resource file or to create a new file for a new resource.

To link a resource in a separate file to your project,

1 Open the resource project.

The Resource Project window is displayed.

2 Right-click and choose Add to Project. Resource Workshop displays the Add to
Project dialog box.

3 Specify the name of the file containing the resource.

If the resource you specify is not an existing resource, Resource Workshop asks you if
you want to create a new resource file. If you choose OK, Resource Workshop creates

Chapter 10, Working with resource projects 225

a file of the appropriate type based on the file extension, and inserts a reference to the
file in the resource project window.

4 In the RCINCLUDE Will Be Placed In box you see the current project file listed,
which is most likely where you will put the reference to the new file. If your project
contains more than one .RC file and you want to put the reference elsewhere, scroll
down the list to find the name of the file in which you want to place the reference.

S Choose OK to add the file to the resource project.

Resource Workshop puts an entry that points to this file in the Resource Project
window.

If you choose Show I List By File on the SpeedMenu you see the file name and the
resource name. Any changes you make in the resource project to this resource are
reflected in the original resource file.

Using the Resource Project window
The Resource Project window lists the resources in your project. It acts as an effective file
management tool, making it easy to look at an overall view of a resource project. Even if
your project contains a large number of resources, you can quickly scan the resource
project by scrolling through the Resource Project window.

Once you open a new or existing resource project, Resource Workshop displays the
Resource Project window. For a new project, the window is empty. You have to put
resources into it by creating them or adding them as files.

For an existing project, you can see these items:

• A complete list of files in the resource project
• The types of resources contained in each file
• The identifiers associated with resources

Embedded and linked resources
The resources in your project file can be embedded in the file or linked to it.

• An embedded resource is stored in resource script form in the resource project file. It
exists only as part of the resource project in which it is stored, and it cannot be used in
other projects.

• A linked resource is a sepa\ate file that is referred to in the resource project file.
Linked resources can be used in other projects.

Use the Resource menu and SpeedMenu to determine how the resource project window
displays information. You can group resources by file or type; display the identifiers in
the resource project; list the names of resources; display items in resources; and display
all possible types of resources.

226 c++ User's Guide

Status line
The status line at the bottom of the Resource Workshop displays information about
commands and tools.

The status line displays information about the currently highlighted menu command.
For example, if you choose the Resource I New command, the status line displays
"Create new resource."

When you are in a resource editor such as the Dialog editor or the Graphics editor, the
status line displays details about the editor and tool you are working with.

C hap t e r 1 0, W 0 r kin 9 wit h res 0 u r c e pro j e c t s 227

228 c++ User's Guide

Creating bitmaps, cursors, and icons
This chapter explains how to do the following:

• Work with bitmaps

• Work with cursors

• Workwithicons

Working with bitmaps
Bitmap resources display graphic images in your Windows program. Windows
programs use bitmaps to represent scroll bar arrows, the Minimize and Maximize
buttons, and so on.

To create bitmaps, you use the Resource Workshop Graphics editor.

Working with bitmaps involves four basic tasks:

1 Start the Bitmap editor.

2 Create or edit a bitmap.

3 Test the bitmap.

4 Save the bitmap.

Creating a new bitmap
You can add a new bitmap to a new or existing resource project file, or create the bitmap
in a standalone file. To add a new bitmap to a new or existing .RC file:

1 Open the resource project you want to add the bitmap to, or create a new one by
choosing File I New I Resource Project. The New Resource Project dialog box is
displayed. Base your project on the .RC file type.

C hap t e r 1 1, ere at i n 9 bit map 5, cur 5 0 r 5, and i con 5 229

2 Choose Resource I New to create a new resource for that project. Resource Workshop
displays the New Resource dialog box.

3 In the Resource Type list, select BITMAP.

4 Click Options to specify attributes for the bitmap resource.

Resource Workshop opens the Graphics editor where you customize the new bitmap
resource.

Creating a new bitmap in a standalone file
To create a standalone bitmap file with the extension .BMP:

Choose File I New I Resource Project. The New Resource Project dialog box is
displayed.

2 Click Bitmap in the New Project dialog box.

3 Click Options to display the New Bitmap Project Options dialog box. Choose the
colors and size of the bitmap image.

4 Click OK.

Resource Workshop opens the Graphics editor where you customize the new bitmap
resource. To link the standalone bitmap file to a resource project file, you need to save
the .BMP file first. Then: .

1 Open a resource project file, or click in a .RC project window.

2 Choose Add to Project.

3 Select the .BMP file you created.

Editing an existing bitmap
To edit an existing bitmap:

1 Choose File I Open and open an existing project (.RC or .BMP).

2 If you opened a .RC file, double-click the BITMAP resource you want to edit, or select
it and choose Resource I Edit.

After you open the bitmap in the Graphics editor, you can customize it. You may find
the bitmap easier to work with if you zoom it first.

In addition to creating and modifying bitmaps directly with the Graphics editor, you
can also change the bitmap's resource script. It is unlikely that you'll want to do this
because the script is almost entirely a series of hexadecimal values.

You can choose the bitmap's foreground and background colors, and change its
attributes. You can also delete bitmap resources.

You cannot, however, add transparent and inverted areas to your bitmap.

230 c++ User's Guide

Changing the attributes of a bitmap
You can change a bitmap's attributes with the Bitmap I Size and Attributes command.

This command displays the Set Bitmap Attributes dialog box, where you choose:

• The bitmap image size

• Whether the image will shrink or stretch if you change the overall image size

• The number of colors used in the image

• How the bitmap is stored

Deleting a bitmap resource
To delete a bitmap resource, select it in the Resource Project window, then:

1 Press the Del key or right-click and choose Remove from Project to completely delete
it.

2 Choose Edit I Cut to cut the resource into the Windows Clipboard so you can paste it
elsewhere.

Testing a bitmap
To test your bitmap, you need to compile the bitmap resource and bind it to an
executable file. Then you can run the executable file to see what the bitmap looks like.

Programming a bitmap with OWL
To program a bitmap with OWL, use the TBitmap, TDip, TDibDC, and TClientDC classes.

For example, this code displays a bitmap in the center of the main window:

TBitmap bitmapl(IDB_BITMAP1)i
*GetMode()i
TMemoryDC memDC i
memDC.SelectorObject (bitmapl)i
TClientDC mainWindowDC *GetMainWindow()i
int centerX = GetMainWindow()->GetClientRect(), Width()/2i
int centerY = GetMainWindow()->GetClientRect(), Height()/2i
int bitmapX = bitmapl.Width()i
int bitmapY = bitmapl.Height()i
mainWindowDC.BitBlt(centerX-bitmapX/2, centerY-bitmapY/2, bitmapX,

bitmapY, memDC, 0, 0, SRCCOPY)i

In the code, IDB_BITMAPI is the identifier for the bitmap.

Chapter 11, Creating bitmaps, cursors, and icons 231

,

Programming a bitmap with the Windows API
To program a bitmap the Windows API, use the LoadBitmap, GetObject, GetDC,
CreateCompatibleDC, BitBlt, DeleteDC, and ReleaseDC functions.

For example, the following code displays a bitmap in the window represented by the
HWnd variable:

HINSTANCE hInst;
HWND hWnd;
HDC hOC, hDCMemory;
HBITMAP hBitmap, hOldBitmap;
BITMAP bitmap;
II Get the bitmap resource and its handle.
hBitmap = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAP1);
II Get the bitmap data.
GetObject(hBitmap, sizeof(BITMAP), &bitmap);
II Get the device context of the target window.
hOC = GetDC (hWnd) ;
II Create a compatible memory device context.
hDCMemory = CreateCompatibleDC(hDC);
II Select the bitmap into the memory DC.
II hOldBitmap = SelectObject (hDCMemory, hBitmap)i
II Copy the bitmap onto the windows device context.
BitBlt(hOC, 0, 0, bitmap.bmWidth, bitmap.bmHeight, mDCMemory, 0, 0, SRCCOPY);
II Clean up and exit.
SelectObject(hDCMemory, hOldBitmap);
DeleteDC(hDCMemory);
ReleaseDC(hWnd, hOC);

In the code, IDB_BITMAPI is the identifier for the bitmap.

Working with cursors
Cursors are bitmapped images 32 x 32 pixels in size that represent the mouse pointer's
current location on the screen. A Windows application often has a number of different
cursors that represent different program functions.

Windows provides a set of standard cursors you can use in your programs. In addition,
you can create your own customized cursors to represent different functions of the
program.

To design cursors, you use the Graphics editor.

Working with cursors involves four basic steps:

Start the Graphics editor.

2 Create or edit a cursor.

3 Test the cursor.

4 Save the cursor.

232 C++ Use r 's G u ide

Creating a new cursor
You can add a new cursor to a resource project file, or create the cursor in a standalone
file. To add a new cursor to a new or existing .RC file,

1 Open the resource project you want to add the cursor to, or create a new one by
choosing File I New I Resource Project. The New Resource Project dialog box is
displayed. Base your project on the .RC file type.

2 Choose Resource I New to create a new resource for that project. Resource Workshop
displays the New Resource dialog box.

3 In the Resource Type list, select CURSOR.

4 Click Options to specify attributes for the cursor resource.

5 Click OK to create the new cursor.

Resource Workshop opens the Graphics editor where you customize the new cursor
resource.

Creating a new cursor in a standalone file
To create a standalone cursor file with the extension .CUR:

1 Open a resource project or create a new one.

2 Choose Resource I New. Resource Workshop displays the New Resource dialog box.

3 In the Resource Type list box, select CURSOR.

4 Click Options to display the New Cursor Resource Options dialog box.

5 In the Storage Format section, uncheck the Source Form check box.

6 In the Cursor Filename (.CUR) field, enter the path and name of the cursor file. Click
OK.

7 Click OK again to create the new cursor.

Resource Workshop opens the Graphics editor where you customize the new cursor
resource. The standalone cursor file is linked to the current to a resource project file.

If you choose File I New I Resource Project. and select CURSOR in the New Resource
Project dialog box, you automatically create a standalone cursor file. Resource
Workshop immediately starts the Graphics editor. You can then link the .CUR file to
any resource project with the Add to Project command.

Editing an existing cursor
To edit an existing cursor:

1 Open an existing resource project.

Chapter 11, Creating bitmaps, cursors, and icons 233

2 Double-click the CURSOR resource you want to edit or select it and choose
Resource I Edit.

After you have the cursor open in the Graphics editor, you can customize it. Before you
begin working on your cursor, you may want to zoom it. You can change the cursor's
transparent and inverted areas and the number of colors it uses. You can also delete
cursors.

In addition to creating and modifying cursors directly with the Graphics editor, you can
also change the cursor's resource script. It's unlikely that you'll want to do this because
the script is almost entirely a series of hexadecimal values.

Design issues
Before you start, you should have an idea of what your cursor is intended to represent.
A typical use of a custom cursor is to represent the task the user is performing.

The hot spot is the cursor's active area where the user clicks to activate the task
represented by the cursor. You need to make the hot spot obvious.

Do not make the cursor complicated. It should be simple enough to fit into a 32 x 32
pixel area. Think about where the user is most likely to display your cursor. Background
colors and patterns can affect the cursor's transparent and inverted areas.

Setting the hot spot for a cursor
An important consideration when you customize a cursor is where to put the hot spot
(the cursor's active area). The hot spot is the single pixel in the cursor that fixes the
location when the user places the cursor and clicks to make a selection.

To set a hot spot:

1 Right-click and choose Zoom In to zoom the cursor image until it is big enough to let
you precisely choose the pixel coordinates for the hot spot.

2 Display a grid on the zoomed image.

3 Select the Line tool.

4 Point to the location on the zoomed image where you want the hot spot and look at
the coordinates displayed on the status line. Make a note of these coordinates.

5 Choose Cursor I Set Hot Spot.

6 Enter the hot spot's pixel coordinates in the Set Hot Spot dialog box. Press OK to
accept the values.

Deleting a cursor
You can delete a cursor resource or a cursor image. Deleting a cursor resource deletes all
the images in that resource. Deleting a cursor image removes that single image in the
cursor resource.

234 c++ User's Guide

Deleting a cursor resource
To delete a cursor resource, select it in the Resource Project window then:

Press the Del key or right-click and choose Remove from Project to completely delete
it.

2 Choose Edit I Cut to cut the resource into the Windows Clipboard so you can paste it
elsewhere.

Deleting a cursor image
To remove an image from a cursor resourc~:

Open the cursor resource in the Resource Project window by double-clicking it or
selecting it and choosing Resource I Edit.

2 In the Cursor Project window select the image entry you want to delete, then:

3 Press the Del key or right-click and choose Remove from Project to completely delete
it.

4 Choose Edit I Cut to cut the resource into the Windows Clipboard so you can paste it
elsewhere.

Testing a cursor
Anytime you want, you can test your cursor by choosing Cursor I Test Cursor.

Resource Workshop turns the current cursor into a test version of your cursor. You can
move it around to see how it looks on different color backgrounds. When you finish
testing, just click the mouse to continue customizing your cursor.

Adding an image to a cursor resource
You may want to put different color formats of the same cursor in one cursor resource
project. These color variations on the same cursor are called images.

The reason the cursor resource supports different color formats is that Windows picks a
color format based on the ability of the display hardware to support the format.
Windows picks a 16-color format for the standard Windows VGA driver.

Windows 3.x does not fully support the 256-color version of an cursor, even if your
display hardware supports it. Your program must supply its own support for 256
colors.

To add a new image with different color formats to an existing cursor resource:

1 Open a resource project.

2 Double-click the CURSOR entry you want to edit or select it and choose Resource I
Edit.

Chapter 11, Creating bitmaps, cursors, and icons 235

3 Choose Cursor I New Image.

4 Resource Workshop displays the New Cursor Resource dialog box, where you
choose the color format of the new image.

S Choose a new color format and click OK.

6 Double-click the new cursor, or select it and choose Images I Edit Image. You see the
Graphics editor where you customize the cursor as needed.

Typically, what you do next is open one of the existing cursor images and copy it into
the new (still blank) image. You might also have to customize the image if the colors are
translated in a way that changes the form of the cursor.

Changing the attributes of a cursor
You can change an cursor's attributes--color or size--with the Cursor I Size and
Attributes command.

This command displays the Cursor Image Attributes dialog box, where you change an
cursor's size and color format.

Copying a cursor image to a new color format
You might want to have different color formats of the same image for different displays.
To create another version, without starting over, you can copy and paste the image.

To copy and paste the image:

·1 Create a new image for your cursor.

2 Open the image you want to copy in the Graphics editor.

3 Choose Edit I Select All to select the entire image.

4 Choose Edit I Copy to copy the cursor image to the Clipboard.

S Use File I Close to close the window.

6 Choose Cursor I New Image to create a new Cursor image. In the New Cursor Image
dialog box, choose the color format of the new image.

7 Double-click the new CURSOR entry in the Cursor Project window.

S Choose Edit I Paste to paste the cursor into the new image. It is displayed in the new
color format.

Programming a cursor with OWL
To program a cursor with OWL, use the TWindow::SetCursor function.

For example, the following application code assigns a cursor to the main window:

GetMainWindow()->SetCursor(this, IDC_CURSOR1)i

236 c++ User's Guide

IDC_CURSOR1 is the identifier for the cursor.

Programming a cursor with the Windows API
To program a cursor with the Windows API, use the LoadCursor and SetCursor
functions.

For example, the following code changes the active cursor: ,

HCURSOR hCursori
hCursor = LoadCursor(hlnst, MAKEINTRESOURCE(IDD_CURSOR1»i
SetCursor(hCursor)i

IOO _ CURSOR1 is the identifier for the cursor.

Working with icons
Icons are small bitmapped images, normally 16 x 16, 32 x 32, 48 x 48, or 64 x 64 pixels in
size. Windows programs typically use customized icons to represent minimized
windows.

To design icons, use the Resource Workshop Graphics editor.

Working with icons involves four basic steps:

Start the Graphics editor.

2 Create or edit an icon.

3 Test the icon.

4 Save the icon.

Creating a new icon
You can add a new icon to a resource project file, or create the icon in a standalone file.
To add a new icon to a new or existing .RC file:

1 Open the resource project you want to add the icon to, or create a new one by
choosing File I New I Resource Project. The New Resource Project dialog box is
displayed. Base your project on the .RC file type.

2 Choose Resource I New to create a new resource for that project. Resource Workshop
displays the New Resource dialog box.

3 In the Resource Type list, select ICON.

4 Click Options to specify attributes for the icon resource.

5 Click OK to create the new icon.

Resource Workshop opens the Graphics editor where you customize the new icon
resource.

C hap t e r 1 1, ere at i n 9 bit map s, cur s 0 r s, and i con S 237

Creating a new icon in a standalone·file
To create a standalone icon file with the extension .CUR:

Open a resource project or create a new one.

2 Choose Resource I New. Resource Workshop displays the New Resource dialog box.

3 In the Resource Type list box, select ICON.

4 Click Options to display the New Icon Resource Options dialog box.

5 In the Storage Format section, uncheck the Source Form checkbox.

6 In the Icon Filename (.CUR) field, enter the path and name of thejcon file. Click OK.

7 Click OK again to create the new icon.

Resource Workshop opens the Graphics editor where you customize the new icon
resource. The standalone icon file is linked to the current to a resource project file.

If you choose File I New I Resource Project. and select ICON in the New Resource Project
dialog box, you automatically create a standalone icon file. Resource Workshop
immediately starts the Graphics editor. You can then link the .CUR file to any resource
project with the Add to Project command.

Editing an existing icon
To edit an existing icon:

1 Open an existing resource project.

2 Double-click the icon resource you want to edit, or select it and choose Resource I
Edit.

After the icon is opened in the Graphics Editor, you can customize it. Before you begin
working on your icon, you may want to zoom it. You can change the icon's transparent
and inverted areas and its attributes. You can also delete icon resources and images.

In addition to creating and modifying icons directly with the Graphics editor, you can
also change the icon's resource script. It is unlikely that you'll want to do this because
the script is almost entirely a series of hexadecimal values.

Design issues
Before you start, you should have an idea of what the icon represents to the user. The
icon should be simple enough to fit into a 64 x 64, 48 x 48,32 x 32, or 16 x 16 pixel area.

Think about where the user is most likely to display your icon. Background colors and
patterns can affect the icon's transparent and inverted areas.

238 C++ Use r 's G u ide

Drop shading
Drop shading is a technique you can use to make your icon look three dimensional. For
example, to make a black box look three dimensional, draw a gray border on the right
side and bottom of the box.

Adding an image to an icon resource
You may want to put different color formats of the same icon in one icon resource
project. These color variations on the same icon are called images.

The reason the icon resource supports different color formats is that Windows picks a
color format based on the ability of the display hardware to support the format.
Windows picks a 16-color format for the standard Windows VGA driver.

Windows 3.x does not fully support the 256-color version of an icon, even if your
display hardware supports it. Your program must supply its own support for 256
colors. However, Windows 95 does and typically uses 256 colors for 48 x 48 or large
icons.

To add a new image with different color formats to an existing icon resource:

1 Open a resource project.

2 Double-click the ICON entry you want to edit or select it and choose Resource I Edit.

3 Choose Icon I New Image.

4 Resource Workshop displays the New Icon Image dialog box, where you choose the
size and color format of the new image.

5 Choose the same size as the existing image and a new color format and click OK.

6 Double-click the new icon, or select it and choose Images I Edit Image. You see the
Graphics editor where you customize the icon as needed.

Typically, what you do next is open one of the existing icon images and copy it into the
new (still blank) image. You might also have to customize the image if the colors are
translated in a way that changes the form of the icon.

Changing the attributes of an icon
You can change an icon's attributes---color or size-with the Icon I Size and Attributes
command.

This command displays the Icon Image Attributes dialog box, where you change an
icon's size and color format.

Copying an icon image to a new color format
You might want to have different color formats of the same image for different displays.
To create another version, without starting over, you can copy and paste the image.

C hap t e r 1 1, ere a tin 9 bit map s, cur S 0 r s, and i con s 239

To copy and paste the image:

1 Create a new image for your icon.

2 Open the image you want to copy in the Graphics editor.

3 Choose Edit I Select All to select the entire image.

4 Choose Edit I Copy to copy the icon image to the Clipboard.

S Use File I Close to close the window.

6 Choose Icon I New Image to create a new icon image. In the New Icon Image dialog
box, choose the size . and color format of the new image.

7 Double-click the new ICON entry in the Icon Project window.

S Choose Edit I Paste to paste the icon into the new image. It is displayed in the new
color format.

Deleting an icon resource or image
You can delete an icon resource or an icon image. Deleting an icon resource deletes all
the images in that resource. Deleting an icon image removes that single image in the
icon resource.

Deleting an icon resource
To delete an icon resource, select it in the Resource Project window then:

Press the Del key or right-click and choose Remove from Project to completely delete
it.

2 Choose Edit I Cut to cut the resource into the Windows Clipboard so you can paste it
elsewhere.

Deleting an icon image
To remove an image from an icon resource:

1 Open the icon resource in the Resource Project window by double-clicking it or
selecting it and choosing Resource I Edit.

2 In the Icon Project window select the image entry you want to delete, then:

3 Press the Del key or right-click and choose Remove from Project to completely delete
it.

4 Choose Edit I Cut to cut the resource into the Windows Clipboard so you can paste it
elsewhere.

240 C++ Use r 's G u ide

Testing an icon
The easiest way to test an icon is to use the Icon I Test Icon command. You can also bind
the icon resource to an. executable file and then run the file to see what the icon looks
like.

Two primary reasons for testing an icon are:

1 To see how a color icon looks in black and white when you move it around.

2 To see how transparent and inverted areas look against various backgrounds.

The first test is easy to perform: just move the icon around.

The second test takes a little more work. Here's how:

1 Make sure the icon is visible and is in a spot where the application workspace is its
background.

2 Change tasks using Windows NT or Windows 95.

3 Use the Control Panel to change the color of the active window's workspace.

4 Leave the Control Panel Settings window open so you can change the colors again.

5 Change tasks back to Resource Workshop and check the icon against the new
background color.

At this point, you should be able to see both Resource Workshop and the Color dialog
box (NT) or Display Properties (Windows 95) at the same time. You can select another
color for the workspace background and check the icon again.

When you change the color of the application workspace, the operating system changes
the color in the application window, where you can check the icon against the new
oo~ .

Programming an icon with ObjectWindows
To program an icon with ObjectWindows, use the TFrameWindow::SetIcon function.

For example, the following code assigns an icon to the main window:

GetMainWindow()->SetIeon(this, IDC_ICON1)i

IDC_ICONI is the identifier for the icon.

Programming an icon with the Windows API
To program an icon with the Windows API, use the LoadIcon function.

For example, this code loads an icon resource into a variable:

HICON hIeoni
hIeon = LoadIeon(hInst, MAKEINTRESOURCE(IDD_ICON1))i

IDD_ICONI is the identifer for the icon.

Chapter 11, Creating bitmaps, cursors, and icons 241

242 C++ Use r 's G u ide

Using the Graphics editor
You use the Graphics editor to create and edit any bitmapped resource, including
bitmaps, cursors, and icons.

Although most of the Graphics editor's features are the same for the bitmapped
resource types, there are some features that are unique to each resource type. For
example, the name of the Graphics editor menu is the same as the resource type: Icon for
. an icon resource, Bitmap for a bitmap resource, and Cursor for a cursor resource.

The Graphics editor features whose functionality is generally the same for all types of
bitmapped resources are the Color palette, the status line and bar, the Tool palette, and
the window panes.

This chapter covers the following topics:

• Using the Color palette
• Selecting a pen style
• Selecting a brush shape
• Selecting a paint pattern
• Drawing and painting
• Adding text
• Selecting an area
• Erasing an area
• Aligning an area
• Moving or resizing an area
• Copying an area
• Removing an area
• Zooming in or out
• Moving a graphic around in the drawing area

C hap t e r 1 2, Us in 9 the G rap hie sed ito r 243

Using the Color palette
Bitmapped images drawn with the Graphics editor are created on a grid of pixels. You
create the imageby setting each pixel to a foreground or background color. Strictly
speaking, there's no difference between the foreground and background color. There is,
however, a difference in how you choose foreground and background colors and in
how they are created when you edit the bitmapped image.

The Graphics editor's Color palette makes it easy to choose foreground and background
colors. You can work with a Color palette even if your image is black and white.

You use the Color palette to choose:

• A foreground color

• A background color

• Transparent and inverted areas (for icons and cursors only)

You can move the palette anywhere you want it. You can also hide it and show it by:

• Right-clicking and choosing the Show I Color Palette command.

• Clicking the palette's Close box.

Selecting a foreground color
The foreground color is the color you select and draw with the left mouse button. It is
typically one of the colors you use to create the features of your resource, such as lines,
boxes, shading, and so on. The current foreground color is indicated on the Tool palette.

To select a foreground color:

1 Select the color you want onthe Color palette (using the left mouse button).

2 The color is displayed at the bottom of the Tool palette.

3 Select a tool that draws or paints.

4 Click or drag with the left mouse button to draw or paint with the foreground color.

The Eraser tool operates in the opposite fashion from the drawing tools. Dragging it
with the left mouse button produces the background color, and dragging it with the
right mouse button produces the foreground color.

Selecting a background color
The background color is the color you select and draw with the right mouse button and
is usually the color that appears to underlie your drawing. It is also the color that's left
behind when you select an area and delete or move it. The background color is indicated
on the Tool pallette.

244 C++ Use r 's G u ide

To select a background color,

Right-click the color you want in the Color palette. '

• The color is displayed on the Tool Palette next to the foreground color

2 Select a tool that draws or paints.

3 Click or drag with the right mouse button to draw or paint with the background
color.

The Eraser tool operates in the opposite fashion from the drawing tools. Dragging it
with the left mouse button produces the background color, and dragging it with the
right mouse button produces the foreground color.

Transparent and inverted areas
Transparent and inverted color areas are unique to icon and cursor resources.

• A transparent area allows the desktop color behind the icon or cursor to show
through.

• An inverted area reverses the desktop color at run time.

The designated transparent and inverted colors do not appear in your icon or cursor at
run time. Instead, they are replaced by the desktop color or its inverse. The colors that
you set as Transparent and Inverted should be colors that you will not use in your icon
or cursor.

The default transparent color is the current desktop color set in th~ Windows Control
Panel's color palette. If the desktop uses a dithered color, the default transparent color is
the nearest solid color that Resource Workshop can provide. (If you have a 256-color
device, this restriction does not apply; the default transparent color will always match
the desktop color.)

You can change the transparent color to something other than the desktop color, but it
will always revert to the desktop color each time you start Resource Workshop.
Nevertheless, regions that you designate as transparent-using the default color or a
color you assign-remain transparent and take on the current transparent color.

Note You can change colors so that you have transparent and non-transparent regions that
use the same color.

To change the colors the Graphics editor displays for transparent and inverted areas,

1 Double-click the button for Transparent or Inverted in the Color palette.

2 Select either Transparent or Inverted as the foreground or background color.

e If you're working with icons, right-click and choose Edit Foreground Color or Edit
Background Color.

e If you're working with cursors, right-click and choose Set Transparent Color.

Resource Workshop displays the Color dialog box, where you can change the color.

C hap t e r 1 2, U sin 9 the G rap hie sed ito r 245

Hiding and showing the Color palette
If you want to hide the Color palette you can close it by clicking the Close button in the
upper-right comer of the palette.

You can also right-click and uncheck the Show I Color Palette command. Or you can
select Show I Color Palette from the Bitmap, Cursor, or Icon menus.

Choosing the number of colors for a resource
When you create a bitmap, cursor, or icon, you choose how many colors you want in
your resource.

For bitmaps, this dialog box is the New Bitmap Resource Options dialog box.

For cursors, this dialog box is the New Cursor Resource Options dialog box.

For icons, it is the New Icon Resource Options dialog box.

To display these dialog boxes, press the Options button while in the New Resource
Project or New Resource dialog boxes.

While you are editing a bitmap, cursor, or icon, you can change the number of colors in
the image using the Size and Attributes command. Depending on the type of resource
you edit, you find this command on the Bitmap, Cursor, or Icon menu.

You can include up to 256 colors in your bitmap, cursor, or icon. The number of colors
you can use (and see in the Color palette) depends on the type of display driver you're
using with Windows. The standard Windows VGA driver supports a fixed set of only
16 colors.

Customizing colors
When you are editing a color image you can modify the Color palette to include any
colors supported by your display driver.

It does not make sense to do this if the Color palette already includes all the colors
supported by your computer. But if your display driver is capable of displaying 256
colors and you're working with a 16-color image, you can include any of the 256 colors
in the 16-color Color palette.

When you're editing a cursor or icon, you can change the color used to display
transparent or inverted areas of the image.

Modifying the Color palette
To edit a color, double-click it.

Resource Workshop displays the Edit Color dialog box, where you can specify a new
color.

246 C++ Use r 's G u ide

Note You can't change the first or last color in the palette. By default, the first and last entries
are always black and white, respectively.

Selecting a pen style
The pen style affects the width of a line or shape border and whether a line or shape is
solid, dashed, or dotted. The pen style applies to the following tools:

• Line

• Ellipse

• Pen

• Rectangle

• Rounded Rectangle

To select a pen style,

1 Choose the Pen Style tool on the Tool Palette. You can also select the Pen Style
command from the Bitmap, Cursor, or Icon menu.

• The Set Pen Style dialog box is displayed.

2 Choose the line style you want.

3 Choose OK. The new pen style displays in the Tool palette.

You can select one of the tools mentioned above and draw with the new pen style.

Selecting a brush shape
You can select a brush shape for the Paintbrush or Airbrush tool.

To select a brush shape,

1 Select the Paintbrush Shape or Airbrush Shape tool on the Tool palette. You can also
select the Paintbrush Shape or Airbrush Shape command from the Bitmap, Cursor, or
Icon menu.

• If you choose the Paintbrush Shape tool, you see the Brush Shape dialog box.

• If you choose the Airbrush Shape tool, you see the Airbrush Shape dialog box.

2 Select a brush shape.

3 ChQose OK. The new shape displays in the Tool palette.

You can select one of the tools mentioned above and draw with the new brush shape
style.

C hap t e r 1 2, U sin 9 the G rap hie sed ito r 247

Selecting a paint pattern
The paint pattern affects the interior of a filled shape and the painting styles of the brush
tools. The paint patJern applies to the following tools:

• Airbrush

• Filled Ellipse

• Filled Rectangle

• Filled Rounded Rectangle

• Paintbrush

To select a paint pattern,

1 Choose the Pattern tool on the Tool palette. You can also choose Pattern from the
Bitmap, Cursor, or Icon menu.

• The Set Pattern Type dialog box is displayed.

2 Select a paint pattern.

3 Choose OK. The new pattern displays on the Tool palette.

You can select one of the tools mentioned above and draw with the new paint pattern.

Drawing and painting
You can draw and paint with the Pen, Paintbrush, and Airbrush tools. .

The size of the area covered by these tools is proportionate to the size of the drawing
area. You can zoom out to paint a larger area, and zoom in to paint a smaller area.

To draw or paint,

1 Choose the Pen, Paintbrush, or Airbrush tool on the Tool palette.

2 In the drawing area, move the cursor to where you want to start drawing, and then
click and hold down the left mouse button (for foreground color) or the right mouse
button (for background color).

3 Drag the cursor around the drawing area.

4 When you are done, release the mouse button.

Drawing a line
To draw a line,

1 Choose the Line tool on the Tool palette.

2 In the drawing area, move the cursor to where you want to the line to start, and click
and hold down the left mouse button (for foreground color) or the right mouse
button (for background color).

248 C++ Use r 's G u ide

3 Move the cursor to where you want the line 'to end, and release the mouse button.

4 To draw a line at a 0-, 45-, or 90-degree angle, hold down the Shift key while you are
drawing.

Drawing a shape
You can draw a filled or unfilled rectangle, rounded rectangle, or ellipse.

To draw a shape,

Choose one of the following tools on the Tool palette:

• Rectangle

• Rounded Rectangle

.. Filled Rectangle

... Filled Rounded Rectangle

• Ellipse

• Filled Ellipse

2 In the drawing area, move the cursor to where you want a comer of the shape to be,
and hold down the left button (for the foreground color) or the right mouse button
(for the background color).

3 Move the cursor to the opposite comer of the shape, and release the mouse button.

The interior of a filled shape depends on the current paint pattern, and the shape border
depends on the current pen style.

To draw a shape without a border, select Null for the pen style.

Filling an area with color
You can fill any area that is bounded by one or more different colors.

To fill an area with color,

1 Choose the Paint Can tool from the Tool Palette.

2 In the drawing area, move the crosshairs into the area that you want to fill, and hold
down the left mouse button (for the foreground color) or the right mouse button (for
the background color).

Adding text
To add text to a graphic,

1 Choose the Text tool on the Tool palette.

2 In the drawing area, click where you want to add text.

C hap t e r 1 2, U sin 9 the G rap hie sed ito r 249

3 Type the text.

To change the font and alignment of the text,

1 Choose Bitmap, Cursor, or Icon I Text Attributes. The Font dialog box is displayed.

2 Choose the font name, size, style, and text alignment.

3 Choose OK.

To change the color of text,

• Choose a new color from the Color palette.

After you click to make another selection, you cannot change the attributes of the text
you have just typed.

Erasing an area
To erase an area,

1 Select the Eraser tool on the Tool palette.

2 Drag the eraser over the area you want erased.

To erase the entire drawing area, double-click the Eraser tool on the Tool palette.

An erased area is colored the selected background color. This means that you can:

• Erase an area by drawing or painting using the background color.

For example, you can use the Line tool to erase a line if the selected color for the line is
the background color.

• Use the Eraser tool to paint an area with the background color while you hold down
the left mouse button, and paint an area with the foreground color while you hold
down the right mouse button.

Selecting an area
You can align, copy, move, and remove any area that you select.

To select a rectangular area,

Choose the Pick Rectangle tool on the Tool palette.

2 In the drawing area, move the cursor to a comer of the area you want to select and
hold down the mouse button.

3 Move the cursor to the opposite comer of the area you want to select and release the
mouse button.

To select a non-rectangular area,

1 Choose the Scissors tool on the Tool palette.

250 c++ User's Guide

2 In the drawing area, move the cursor to a boundary of the area you want to select and
hold down the mouse button.

3 Draw a closed shape around the area you want to select and release the mouse
button.

You can now align, copy, move, or delete the selected area.

Aligning an area
You can align an area with the top, bottom, sides, or center of a graphic.

To align an area,

Choose the area with the Pick Rectangle or Scissors tooL

2 Choose Bitmap, Cursor, or Icon I Align. The Align Selection dialog box is displayed.

3 Select a horizontal alignment option.

4 Select a vertical alignment option.

S Choose OK.

Any area that is left open is filled with the current background color.

Moving or resizing an area
To move an area,

1 Choose the area with the Pick Rectangle or Scissors tooL

2 Drag the area to a new location.

To resize an area,

Choose the area with the Pick Rectangle or Scissors tooL

2 Choose Bitmap, Cursor, or Icon I Size. The Stretch Selection dialog box is displayed.

3 To move the area, specify new pixel coordinates for the Top and Left sides.

4 To resize the area, specify a new height and width.

S Choose OK.

Any area left open is filled with the current background color.

Copying an area
To copy an area,

1 Choose the area with the Pick Rectangle or Scissors tooL

2 Choose Edit I Copy to place a copy of the area in the Windows Clipboard.

C hap t e r 1 2, U sin 9 the G rap hie sed ito r 251

3 Choose Edit I Paste to insert the area into the image.

4 A copy of the selected area appears in the upper-left comer of the drawing area. It
remains selected.

5 Drag the selected area to where ever you want to place it.

You can also use this method to copy an area:

1 Select the area.

2 Choose Edit I Copy.

3 Select an area where you want the copied image to appear.

4 Choose Edit I Paste.

5 The copied image fits within the selected area as best it can and remains selected. You
can move the selected area if you want.

Any area left open is filled with the current background color.

Removing an area
To remove or delete an area,

1 Choose the area with the Pick Rectangle or Scissors tool.

2 Choose Edit I Cut.

3 You can then paste the removed area somewhere else using the Edit I Paste
command.

Any area left open is filled with the current background color.

You can also use Edit I Clear to delete an area. The area is not copied to the Clipboard for
pasting.

Zooming in or out
To zoom in on a graphic,

• Double-click the Zoom tool on the Tool palette. You can also right-click and choose
Zoom In, or press Control+Z.

To zoom in on a particular area of a graphic,

1 Select the Zoom tool.

2 In the drawing area, move the cursor to a comer of the area and hold down the
mouse button.

3 Drag the cursor to the opposite comer of the area and release the mouse button.

252 C++ Use r 's G u ide

To zoom out from a graphic,

• Hold down the shift key and double-click the Zoom tool on the Tool palette. You can
also press Ctrl+O or right-click and choose Zoom Out.

To view the actual size of a graphic,

• Press Ctrl+A or right-click and choose Actual Size.

To help you control images on a pixel-by-pixel basis, you can display a grid on any
zoomed image by choosing Bitmap, Cursor, or Icon I Editor Options. Check the Grid on
Zoomed Windows check box. Each square of the grid represents a single pixel.

If you zoom an image to a size that is too large to fit in the pane, and the image is
displayed at its true size in the other window pane, Resource Workshop places a dotted
rectangle over the unzoomed image. This dotted rectangle indicates the portion of the
image currently displayed in the zoomed window pane.

Moving a graphic around in the drawing area
If a graphic is too large to display in the drawing area, you can move it around to see
other parts of it.

To move a graphic in the drawing area,

1 Hold down the Ctrl key.

• The cursor becomes the Hand tool.

2 Drag the graphic to a new position.

You can also move a graphic around with the scroll bars on the right and bottom sides
of the drawing area.

Tool palette
When you open a resource in the Graphics editor, the Tool palette is displayed in the
edit window. You use the Tool palette to choose the Graphics editor tool you want to
work witp. or to change settings for the various tools.

You can move the Tool palette around, dock it, and you can hide it or show it.

Here are tools on the Tool palette:

Rounded Eye
Pen Airbrush Line Rectangle Ellipse Dropper

Ellipse

Chapter 12, Using the Graphics editor 253

These four buttons, displayed at the bottom of the Tool palette, allow you to customize
settings:

. Pen Brush

Shape

There are also color setting buttons for the foreground color and background color. The
current settings are displayed on these buttons.

In addition, there is a Hand tool that you can use to move a zoomed image. It is not
displayed in the Tool palette.

Hiding and showing the Tool palette
To hide or show the Tool palette,

1 Right-click and choose Show I Tool Palette.

2 Toggle the Show I Tool Palette command. This command is located on the menu bar
selection that corresponds to the type of resource you are working with (Bitmap,
Cursor, or Icon).

The check mark next to the' command indicates that it is displayed. No check mark
indicates that it is hidden.

Pick Rectangle tool
You use the Pick Rectangle tool to select a rectangular area of your image for copying,
moving, or deleting. To select an area, click the left mouse button and drag the mouse
until the flashing outline surrounds the area you want. Release the mouse button.
Clicking either mouse button outside the outline turns the area selection off.

When you select an area, you can use the Edit menu commands to cut, copy, clear,
duplicate, or paste into the selected area. You can also use the mouse to move (click) or
duplicate the area (shift-click). In addition, you can align or resize the selected area.

Scissors tool
The Scissors tool performs basically the same function as the Pick Rectangle Tool: it
selects an area of an image. However, with the scissors you can select and move areas of
any shape, not just rectangles. To select an area, click the left mouse button and drag the
scissors until the flashing outline surrounds the area you want, then release the mouse
button.

254 c++ User's Guide

When you select an area, you can use the Edit menu commands to cut, copy, clear,
duplicate, or paste into the selected area. You can also use the mouse to move (click) or
duplicate the area (shift-click). In addition, you can align or resize the selected area.

Zoom tool
You use the Zoom tool to zoom the entire image, or you can outline an area of an image
that you'd like to zoom, and have Resource Workshop zoom that area. Double-click the
Zoom tool to zoom in on the entire image. The image is zoomed based on the center of
the image.

Images are zoomed one magnification increment per zoom action, until the maximum
or minimum magnification is reached.

To zoom out, press Shift and double-click the Zoom tool.

To zoom in on a selected area,

1 Select the Zoom tool.

2 Click and drag to select the area you want to zoom in on.

The magnification depends on the size of the area you select. The smaller the selected
area, the greater the magnification.

Eraser tool
The Eraser tool works like a square paintbrush-you drag the tool over the area you
want to erase. To erase an entire image, double-click the Eraser tool.

Use the left mouse button to reveal the current background color. Use the right mouse
button to reveal the current foreground color.

Since you use the eraser to reveal colors, the buttons on the mouse are the opposite of
other tools you use to paint. For example, when you use the Paintbrush tool, you use the
left mouse button to paint the foreground color. But with the eraser, the left mouse
button reveals the background color.

Before you use the eraser, you may want to select the foreground and background
colors you want to use in the Color palette.

Pen tool
Use the Pen tool to paint free-form lines and shapes using the current pen style. To
sketch with the Pen tool, click a mouse button and drag the pen across your image.
Release the mouse button when you finish sketching.

• Use the left mouse button to sketch with the current foreground color.

• Use the right mouse button to sketch with the current background color.

Chapter 12, Using the Graphics editor 255

Before you use the Pen tool, you might want to select the pen style and the foreground
and background colors.

You can also use the Pen tool to fill individual pixels with a color. Left-click to use the
foreground color or right-click to use the background color. You may want to zoom in
on the image before making changes to make it easier to color individual pixels.

Paintbrush tool
Use the Paintbrush tool to paint free-form patterns using the current brush pattern and
shape. To paint, click a mouse button and drag the paintbrush across your image.
Release the mouse button when you finish painting.

When you choose the Paintbrush tool, you see a cursor that represents the current brush
shape. The area painted by the paintbrush is always proportionally the same relative to
the size of the image frame.

• Use the left mouse button to paint with the current foreground color.

• Use the right mouse button to paint with the current background color.

Before you use the paintbrush, you might want to select the foreground and
background colors and the paintbrush shape and pattern.

Airbrush tool
The Airbrush tool paints free-form patterns similar to a real airbrush on your image
using the current airbrush pattern and shape.

To use the airbrush, you can either click a mouse button once and drag the airbrush, or
you can click it repeatedly, as if you were repeatedly pressing the nozzle of a spray can.
If you drag it slowly, it paints a thick pattern. If you drag it quickly, it paints a scattered,
thinner pattern.

When you choose the Airbrush tool, you see a cursor that represents the Airbrush tool.
The area painted by the airbrush is always proportionally the same relative to the size of
the image frame.

• Use the left mouse button to paint with the current foreground color.

• Use the right mouse button to paint with the current background color.

Before you use the airbrush, you might want to select the foreground and background
colors and specify the airbrush shape and pattern.

Paint Can tool
Use the Paint Can tool to fill an area of your image with the currently selected color. It
fills in any area of your image that is a single colo~.

256 c++ User's Guide

• If you use this tool on an area that is not entirely surrounded by other colors, the color
leaks out into other parts of the image that are the same color as the original area.

• If you hold down the Shift key when you use the Paint Can, you replace all instances
of the color you click on, contiguous ot not.

To use the Paint Can tool, point the paint can's cross hairs in the portion of the image
you want to fill, then click a mouse button.

• Use the left mouse button to sketch with the current foreground color.

• Use the right mouse button to sketch with the current background color.

Before you use the paint can, you might want to specify the foreground and background
colors.

Line tool
Use the Line tool to paint straight lines. Press the mouse button and drag the Line tool
across your image. Release the mouse button when you've finished drawing the line.

If you want the lines you paint to be limited to 45-degree increments, hold down Shift as
you draw the line. With Shift down, you can paint only a horizontal or vertical line or a
line on a 45-degree angle.

• Use the left mouse button to sketch with the current foreground color.

• Use the right mouse button to sketch with the current background color.

Before you paint a line, you might want to specify the pen style and choose the
foreground and background colors.

Text tool
To add text to your image, choose the Text tool and click where you want the text to
begin. A flashing cursor appears and you can begin typing text.

Before you use the Text tool, you might want to specify how and where you want the
text displayed: Use the Bitmap, Cursor, or Icon I Text Attributes command to display the
Font dialog box, where you specify the typeface, size, style of the text, and how text is
aligned.

Text is always displayed in the current foreground color. Before you type text, you
might want to specify the foreground color by clicking the left mouse button on the
color you want in the Color palette.

C hap t e r 1 2, U sin 9 the G rap hie sed ito r 257

Empty frame tools
You use one of these tools to paint an empty frame in your image:

• Ellipse

• Rectangle

• Rounded Rectangle

To paint an empty frame,

1 Choose the tool you want.

2 Point the tool's cross hair where you want to start a comer of the frame.

3 Click a mouse button and drag the frame tool until the frame outline surrounds the
area you want.

4 Release the mouse button.

Use the left mouse button to sketch with the current foreground color. Use the right
mouse button to sketch with the current background color.

Before you paint a frame, you might want to specify the pen style, as the frame is
affected by the pen style and width. You may also want to choose the foreground and
background colors before painting the frame.

Ellipse tool
Use the Ellipse tool to paint an ellipse-shaped empty frame in your image.

Rectangle tool
Use the Rectangle tool to paint a rectangular empty frame in your image.

Rounded Rectangle tool
Use the Rounded Rectangle tool to paint an empty frame shaped like a rounded
rectangle in your image.

Filled-in frame tools
Use one of these tools to paint filled-in frames in your image:

• Filled Ellipse

• Filled Rectangle

• Filled Rounded Rectangle

258 c++ User's Guide

These tools paint a frame using the current pen style. The frame is filled using the
current pattern and color. Specify a null pen style in the Set Pen Style and Width dialog
box if you don't want Resource Workshop to put an outline around the filled-in pattern.

To paint a filled-in frame,

1 Choose the tool you want.

2 Point the tool's cross hairs where you want to start a comer of the frame.

3 Click a mouse button and drag the frame tool until the frame outline surrounds the
area you want.

4 Release the mouse button.

Use the left mouse button to sketch with the current foreground color. Use the right
mouse button to sketch with the current background color.

Before you paint a filled-in frame, you might want to specify the pen style and pattern
and choose the foreground and background colors.

Filled Rectangle tool
Use the Filled Rectangle tool to paint a rectangular filled-in frame in your image.

Filled Rounded Rectangle tool
Use the Filled Rounded Rectangle tool to paint a filled-in frame, in the shape of a
rounded rectangle, in your image.

Filled Ellipse tool
Use the Filled Ellipse tool to paint an ellipse-shaped filled-in frame in your image.

Eye Dropper tool
Use the Eye Dropper tool to copy a color from the current image. This is useful when
you have a color in an image that isn't displayed in your color palette.

To select a color for use with any tool,

1 Select the Eye Dropper from the Tool palette.

2 Click to copy the color as a foreground color, or right-click to copy the color as a
background color.

3 Select the tool you wish to use with the new color.

C hap t e r 1 2, U sin 9 the G rap hie sed ito r 259

Arc tool
Use the Arc tool to create a Bezier arc, curve, or closed loop usihg the current pen style
and color.

To create an arc,

1 Select the Arc tool from the Tool Palette.

2 Click and drag to draw a line of the appropriate length.

3 Click the lihe you just created and drag it to create the arc you want. The poiht you
select on the lihe determihes the shape of the arc. To create a symmetrical arc, click
the center of the lihe.

4 Without movihg the cursor, click agaih to "set" the arc.

To create a curve,

1 Select the Arc tool from the Tool Palette.

2 Click and drag to draw a line of the appropriate length.

3 Click the line you just created and drag it to create the arc you want. The poiht you
select on the line determihes the shape of the arc.

4 Click another part of the line and drag it to create another arc ih the lihe. You can click
many poihts on the line to create the desired curve.

To create a closed loop,

1 Select the Arc tool from the Tool Palette.

2 Click where you want the closed end of the loop to be. This end is stationary and will
not move as you create the loop.

3 Click where you want the top of the loop to be. This creates a line. This end may
move as you create the loop.

4 Click the line and drag it to adjust the arc. The arc is mirrored, resulting ih a closed
loop.

To constraih the lihes to 45-degree angles, press Shift as you draw the lihe. You will only
be able to draw horizontal, vertical or 45-degree lihes.

• Use the left mouse button to draw with the current foreground color.

• Use the right mouse button to draw with the current background color.

Hand tool
Unlike other tools, the Hand tool isn't ihcluded ih the Tool palette. But you can change
any tool (except the Text tool) ihto a hand by holdihg down CtrL

The Hand tool is a grabbihg tooL You just click the hand on the image and drag it ih the
direction you want it to move.

260 C++ Use r '5 G U ide

The Hand tool is automatically displayed when you select an area using the Pick
Rectangle or Scissors tool. Sometimes when you display a zoomed image, not all of it
fits in the display. You can use the Hand tool to move the image around to see other
parts of it.

Pattern style tool
The Pattern style tool shows the current pattern style. Some of the tools in the Tool
palette use this style when they paint a pattern on your image. These tools are:

• Airbrush

• Filled Ellipse

• Filled Rectangle

• Filled Rounded Rectangle

• Paintbrush

Click the Pattern tool to display the Set Pattern Type dialog box, where you choose the
pattern that is painted when you use these tools.

Pen style tool
The Pen style tool shows the current pen style and width. Some of the tools in the Tool
palette use this style when they draw a line on your image. These tools are:

• Line

• Ellipse

• Pen

• Arc

• Rectangle

• Rounded Rectangle

Click the Pen style tool to display the Set Pen Style and Width dialog box, where you
choose the pen style and width for these tools. The pen style is drawn relative to the size
of the image.

Airbrush shape tool
The Airbrush shape shows the current shape used fQr the Airbrush tool. Click the
Airbrush shape tool to display the Airbrush Tip Shape dialog box, where you choose the
airbrush tip shape.

C hap t e r 1 2, Us i n 9 the G rap hie 5 e d ito r 261

Paintbrush shape tool
The Brush shape tool shows the current shape of the Paintbrush tool. Click the Brush
shape tool to display the Brush Tip Shape dialog box, where you choose the brush
shape.

262 C++ Use r 's G u ide

Working with resources
Resources are data that define the visible portions of your Windows program.
Resources provide a consistent user interface that makes it easy for users to switch from
one Windows program to another.

In general, a Windows application's resources are separate from the program code,
letting you make significant changes to the interface without even opening the file that
contains your program code. This also lets different applications share the same set of
resources, so that you do not have to reinvent all your favorite resources. Instead, you
can use them over and over.

When you display resources in the Resource Project window, you see them listed by
type, with the names of the resource listed under their type.

To create a new resource, you can do one of the following:

• Double-click the resource type in the Resource Project window. The Options dialog
box for that type displays. Click OK to create the new resource. Resource Workshop
automatically starts the appropriate editor, if one is available. If an editor is not
available (for example, for a user-defined resource), Resource Workshop starts the
Text editor.

• Select Resource I New and choose the type of resource you want to create. Resource
Workshop automatically starts the appropriate editor, if one is available. If an editor
is not available, Resource Workshop starts the Text editor.

To load a resource, you can do one of the following:

• Double-click the resource name in the Resource Project window. Resource Workshop
automatically starts the appropriate editor, if one is available. If an editor is not
available (for example, for a user-defined resource), Resource Workshop starts the
Text editor.

• Select the resource name in the Resource Project window and choose either
Resource I Edit or Resource I Edit as Text. Resource I Edit loads a resource editor, if

C hap t e r 1 3, W 0 r kin 9 wit h res 0 U r c e s 263

one is available for the selected resource type. Resource I Edit as Text always starts
the Text editor. ..

Resource file types
A file you create and edit with Resource Workshop can be in either binary or text
format. Resource Workshop generates standard Windows file formats, which means
you can use Resource Workshop files with programs that generate binary code from
resource script files.

Here are the types of resource files you can create with Resource Workshop:

• 16-bit device driver (.DRV)
• Bitmap (.BMP)
• Control Panel applets (.CPL)
• Cursor (.CUR)
• Dialog (.DLG)
• Executable (.EXE)
• Dynamic link library (.DLL)
• Icon (.ICO)
• Resource script (.RC)
• Resource (.RES)
• VBX control libraries (.VBX)

Executable and dynamic-link library files
An executable (.EXE) or dynamic-link library (.DLL) file is the ultimate destination for
all resources you define with Resource Workshop. It is the file that users execute to. run
your program. In general, you compile the resource script file (.RC file) into the resource
file (.RES file), then use your compiler to bind the .RES file to the executable or .DLL file.

If you want to change the resources in a compiled binary file (an executable file, a .DLL
file, or a .RES file), Resource Workshop decompiles the file and lets you make the
changes, then saves the resources back to the original file.

Working with binary files
Resource Workshop lets you open executable (.EXE), dynamic-link library (.DLL), and
resource (.RES) files as resource projects so you can customize their resources.

When you load one of these files, Resource Workshop decompiles the resources in the
file and shows them to you as though they were part of a regular .RC file. When you
finish, Resource Workshop compiles the resources again into binary code and stores
them in the original file.

Because the resources you work with in this type of resource project are never stored as
resource scripts, you cannot assign any Jdentifier~ to the resource IDs. However, you
can save the resource project as an .RC file. Then the resources can be saved as resource
scripts, and you can assign identifiers to them.

264 e+t User's Guide

Note Once you save the resource project as an .RC file, Resource Workshop will not save the
resources back to the original file.

Opening and saving .EXE, .Dll, and .RES files
To open an .EXE, .DLL, or .RES file and save it as a resource script file,

1 Choose File I Open and choose Resource Project in the Viewer field.

2 Select the .EXE, .RES, or .DLL file from the Open a File dialog box. Click OK.

3 Choose File I Save File As. In the Save File As dialog box, select Resource Script (.RC)
from the List Files of Type box. In the Filename box, enter the name of the new .RC
file.

4 Press OK to save the file.

Using a resource editor
You can edit any resource in a resource project by double-clicking the resource in the
Resource Project window, or by selecting it and choosing Resource I Edit.

Here are the available editors:

• For a dialog resource, Resource Workshop loads the Dialog editor.

• For a menu resource, Resource Workshop loads the Menu editor.

• For an icon, bitmap, or cursor resource, Resource Workshop loads the Graphics
editor.

• For all other resources, Resource Workshop loads the Text editor.

Renaming a resource
To rename a resource in your resource project,

Select the resource in the Resource Project window.

2 Choose Resource I Resource Attributes.

Resource Workshop displays the Resource Attributes dialog box, where you rename
your resource.

3 Enter the new resource name in the Name box.

If you want to create a new identifier, or change the one you already have, enter the,
new value in the Identifier Value box.

4 Choose OK.

C hap t e r 1 3, W 0 r kin 9 wit h res 0 U r c e s 265

Deleting a resource
To delete a resource from a resource project, select it in the Resource Project window,
and then do one of the following:

• To delete the resource, press the Del key or right-click and choose Remove from
Project.

• To reuse the resource, right-click and choose Cut to remove the resource and place it
in the Windows Clipboard so you can paste it elsewhere.

Specifying resource memory options
Resource Workshop makes it easy to specify how each resource in your resource project
should be managed in memory. It is better to leave the memory settings at their defaults
unless you are an experienced Windows programmer-you might not be able to foresee
the implications of changing the way a resource is handled in memory.

To specify memory options,

1 Select the name of the resource in the Resource Project window.

2 Choose Resource I Resource Attributes to open the Resource Attributes dialog box.

3 Check one or more of the Memory Options check boxes.

Moving a resource
You can move resources from one file in a resource project to another file in the resource
project by using the Resource I Resource Attributes command. Both files must be part of
the current resource project.

Select a resource in the resource project file by either editing it or highlighting it in the
Resource Project window.

2 Choose Resource I Resource Attributes to open the Resource Attributes dialog box.

The resource name and the file it currently resides in are displayed in the Resource
Attributes dialog box.

3 Click the File drop-down list to choose the file you want to move the resource to.
Click OK.

16·bit Vs. 32·bit resources
By default, new resource projects created with File I New I Resource Project are created
as 32-bit resources. This makes two resource types available that are not available for
16-bit resources:

• MENUEX
• DIALOGEX

266 C++ Use r 's G u ide

When resource script files are compiled, they are compiled based on the current IDE
project settings. Resource script files originally targeted for 32-bit platforms can easily be
recompiled for a 16-bit program without changing the script file as long as they do not
contain a MENUEX or DIALOGEX resource type.

Compiled resources (.RES) files are only compatible with the platform they originally
targeted. For example, you cannot link a 16-bit compiled resource to a 32-bit compiled
executable. If you want to change the target, you have to reload the .Re file with the IDE
project and retarget the platform.

Saving a resource
It is a good idea to save your work often. Resource Workshop provides you with a
variety of save commands so you can choose exactly what you want to save and how to
save it. You can:

• Rename the current resource file using File I Save As.
• Save the entire resource project and all of the resources it contains.
• Save the resource in a separate file by:

til . Saving the resource in a resource script file.
o Saving a bitmapped resource as a separate file.

Resource Workshop saves the resource project file and any files it references.

Saving a resource in a resource script file
To save an individual resource as a resource script file,

1 If the resource is not already open, select the resource nam.e in the Resource Project
window.

2 Choose Resource I Save Resource As. This command displays the Save Resource As
dialog box.

3 Select Resource Script (.RC) as the resource type.

4 Enter the file name of the new resource script.

If you want to replace the resource in the current project with a reference to this new
file, check the Replace Resource With Reference To This File option.

If this box is cleared, the current resource project remains unchanged, and the new
file is created. By default, this box is cleared for non-bitmapped resources.

5 Click OK.

Usually, you save a resource with a resource project. You would probably only save it in
its own file if you create a separate resource project that contains just related types of.
resources (such as menus and accelerators). You can then link this resource file to a
resource project that uses the same resources.

C hap t e r 1 3, W 0 r kin 9 wit h res 0 U r c e s 267

Saving a bitmapped resource as a file
You can save a bitmapped resource as a f~e. You will probably do this step only if you
want to put the bitmapped resource in binary format in a separate file for the first time.

To save a bitmapped resource as a file,

1 If the resource is not already open, select the bitmapped resource in the Resource
Project window.

2 Choose Resource I Save Resource As. This command displays the Save Resource As
dialog box.

3 Select the appropriate resource type.

4 Enter the file name of the resource.

If you want to replace the bitmapped resource in the current project with a reference
to this new file, leave the Replace Resource With Reference To This File option
checked.

To leave the current resource project unchanged, clear this option. By default, this
option is checked for bitmapped resources.

5 Click OK.

Editing a resource as text
In addition to creating and modifying a resource directly with a resource editor, you can
work directly with its resource script.

To work with the resource script for a resource, select the resource from the Resource
Project window. Then choose Resource I Edit As Text. Resource Workshop brings up the
source script for the resource in the Text editor. Here is an example of the resource script
for a menu:

POPUP "&Edit"

MENUITEM "&Undo\tCtr1+Z", CM_EDITUNDO

MENUITEM "&Cut\tCtr1+X", CM_EDITCUT

MENUITEM "&Copy\tCtr1+C", CM_EDITCOPY

MENUITEM "&Paste\tCtr1+V", CM_EDITPASTE

The only readily comprehensible parts of a script for a bitmapped resource are the first
and second lines (the resource name and BEGIN) and the last line (END).

ABi tmap BITMAP

BEGIN

'42 4D 66 00 00 00 00 00 00 00 3E 00 00 00 28 00'
'00 00 14 00 00 00 OA 00 00 00 01 00 01 00 00 00'
'00 00 28 00 00 '00 00 00 00 00 00 00 00 00 00 00'

268 C++ Use r '5 G U ide

'00 00 02 00 00 00 00 00 00 00 FF FF FF 00 EO 00'
'00 00 EF FF EO 00 EC 08 20 00 EF FF EO 00 EC 41'
'20 00 EF FF EO 00 E1 01 20 00 F5 FF EO 00 F9 FF'
'EO 00 FC 00 00 00'

END

Everything between the second line and the last line is hexadecimal code. If you like,
you can edit this code to see the effect on the bitmap, but do so at your own risk.

Note Do not spend any time inserting comments in your resource script or formatting the
text, because the Resource Workshop incremental compiler does its own formatting and
di~cards all comments.

C hap t e r 1 3, W 0 r kin 9 wit h res 0 U r c e s 269

270 C++ Use r 's G u ide

Working with dialog boxes
Dialog boxes give the user a way to interact with your application. A dialog box is
usually a pop-up window that lets the user specify information (files to open, colors to
display, text to search for, and so on).

When a dialog box is displayed in an application, it is shown as a window. The dialog
box usually contains a number of controls, such as buttons, text boxes, and scroll bars.
Controls usually let the user specify information, but can also be used to display static
text and graphics in a dialog box.

From the perspective of the programmer, the dialog box is the parent window and each
control is a child window acting as an input or output device. To create a dialog box,
you fill an empty dialog box with the controls you want.

Resource Workshop's Dialog editor makes it easy to create and edit dialog boxes.
Working with dialog boxes involves four steps:

• Open an existing resource project or create a new one.

• Create a new dialog box or edit an existing one.

• Test the dialog box.

• Save the dialog box.

Using DLGINIT resources
A DLGINIT resource is created automatically when a dialog box contains VBX controls.
It holds information needed to initialize the controls. Creating or editing a DLGINIT
resourCe explicitly by hand is rarely necessary.

There is no available editor to create an explicit DLGINIT resource.

C hap t e r 1 4, W 0 r kin 9 wit h d i a log box e s 271

Creating a new dialog box
To create a new dialog box:

Choose File I New I Resource Project to start a new resource project or File I Open to
load an existing resource project.

2 Choose Resource I New. Resource Workshop displays the New Resource dialog box.

3 In the Resource Type list box, select DIALOG or DIALOGEX. Choose DIALOGEX to
specify ExStyle information for dialogs whose target is Windows 95 or NT.

4 Choose the Options button to specify the dialog box name and type, and to set other
options for the new dialog, including the dialog template.

5 Select OK in the Options dialog to accept the options values. Select OK again in the
New Resource dialog to create the new dialog.

You are now in the Dialog editor where you can customize your dialog box.

Creating a new dialog box in a resource script file
To create a new dialog box as an independent resource script file:

In the Resource Project window, right-click to display the SpeedMenu. Choose Add
to Project. The Add File to Project dialog box appears.

2 In the List Files of Type box, choose Resource Script (*.dlg).

3 Enter a new name in the File Name box.

4 Choose OK.

5 Choose Yes when Resource Workshop asks you if you want to create the file.

You have created an empty dialog file.

To create a new dialog box and add it to the empty .DLG file:

1 Choose Resource I New to display the New Resource dialog box.

2 For the resource type, choose DIALOG or DIALOGEX. Choose DIALOGEX to
specify ExStyle information for dialogs whose target is Windows 95 or NT.

3 Click the Options button.

4 In the New Resource to be Placed In box, choose the name of the dialog script file you
just created. Select other options as required.

5 Click OK twice to create the new dialog.

Editing an existing dialog box
To edit a dialog box that already exists in a project file:

272 C++ Use r' s G u ide

1 Use File I Open to open the project that contains the dialog box you want to edit.

2 Double-click the dialog resource name you want to edit, or select it and choose
Resource I Edit.

You are now in the Dialog editor.

Adding a caption to a dialog box
To add a caption to a new diak>g box:

Right-click in an empty area of the dialog box and choose Properties to display the
Property Inspector.

2 If not already selected, select the General page.

3 In the Caption box, type the caption you want to appear at the top of your dialog box.

4 Choose OK.·

Including a menu in a dialog box
Because it is really a window, a dialog box could include a menu. For example, some
applications use a dialog box for the main window, in which case the dialog box would
need a menu.

To include a menu in your dialog box:

Define the menu as a separate resource and add it to the project. Remember the menu
resource name.

2 Open the dialog box you want to add the menu to.

3 Right-click in an empty area of the dialog box and choose Properties to open the
Property Inspector.

4 Click the Window page. Enter the menu resource name in the Menu field.

The Dialog editor will not display the menu until you put the Dialog editor into text
mode.

Choosing a window type, frame style, and dialog box style
You choose a window type, frame style, and dialog box style in the Property Inspector.

To open the Property Inspector, right-click in an empty area of the dialog and choose
Properties.

Choose a window type for your dialog box by selecting the Window· page. Choose
oile of the Window Type options.

C hap t e r 1 4, W 0 r kin 9 wit h d i a log box e s 273

2 Choose a frame type for your dialog box by selecting the Frame page. Choose one of
the Frame Type options. The frame type determines the appearance of the dialog box
frame and whether the dialog box displays a title bar at the top.

3 Choose frame styles for your dialog box by selecting the Frame page. Choose one of
the Frame Attributes options. The attributes determine what the dialog box looks like
and how the user works with it.

For 32-bit applications using DIALOGEX, use the Extended page to determine how the
dialog box is positioned, its alignment, reading order, and its behavior.

Specifying dialog box fonts
To choose how text is displayed in your dialog box:

Right-click in an empty area of the dialog box and choose Properties to display the
Property Inspector.

2 Choose the Fonts page.

3 Select a typeface, size, and style for text in your dialog box. The characters displayed
at the bottom of the Font page show the current typeface, size, and styles you've
selected.

4 Choose OK.

Note Changing the font for a dialog box will cause the size and position of the dialog box and
any contained controls to change. This is because the coordinate system for dialog boxes
(dialog units) is based on the average character width of the font. As the average
character width changes, the coordinate system changes.

Assigning a custom class to a dialog box
If you're an experienced Windows programmer, you might want to assign a custom
class to your dialog box. Then you can process dialog box messages with your own
Windows procedures instead of using the standard Windows windowing procedure.

Another reason for assigning a custom class is to make the dialog box a Borland-style
dialog box.

To assign a custom class to a dialog box:

Right-click in an empty area of the dialog box and choose Properties to display the
Property Inspector.

2 Click the Window page. Enter the class name in the Class box. If you are creating a
Borland-style dialog box, enter bordlg or BorDlg_Gray.

3 Choose OK to save the changes and close the Property Inspector.

274 C++ Use r 's G u ide

Setting the position of a dialog box
To set the size of the dialog:

Right-click in an empty area of the dialog box and choose Properties to display the
Property Inspector.

2 Modify the Width and Height values on the General page.

3 Click OK to save the changes.

To set the initial location of a dialog:

Right-click in an empty area of the dialog box and choose Properties to display the
Property Inspector.

2 Modify the Top and Left values on the General page.

3 Click OK to save the changes.

Note When the dialog box has a title bar (the default), you can drag it with the mouse to
position the dialog box. When the dialog box has a resizable border (the default), you
can size it with the mouse.

Testing a dialog box
Choose Dialog I Test Dialog to test your dialog box. To verify that your controls are in
the order you want them, press Tab and the arrow. Enter text to see how text is scrolled
in an edit text control.

To leave test mode and return to edit mode, do any of the following:

• Click the dialog box's OK or Cancel button.

• Choose Dialog I Test Dialog again.

• Press Enter.

• Press the system close button on the text dialog.

Note Some controls, such as the Tab, ListView, and TreeView common controls, will not
display in test mode as they do in design mode or as they will appear in your program.
This is because they are dependent on your program to display the correct information.

Programming a dialog box with OWL
To program a dialog box with OWL, use the TDialog class.

For example, this shows how to create and display a modal dialog box:

TDialog dialogl(GetApplication()->GetMainWindow(), IDD_DIALOG1);
dialogl.Execute();

C hap t e r 1 4, W 0 r kin 9 wit h d i a log box e s 275

dialogl is the name of the dialog box class, and IDD_IDENTIFIERI is the identifier for
the dialog box resource. '

Programming a dialog box with the Windows API
To program a dialog box with the Windows API, use the DialogBox function.

For example, the following code shows how to create and display a dialog box:

HINSTANCE hInst;

HWND hwndParent;
DLGPROC dlgProc;
dlgProc = (DLGPROC) MakeProc Ins tance (ResModeDlgProc, hInst);
DialogBox(hInst, MAKEINTRESOURCE(IDD_RESDEMODIALOG), hwndParent, dlgProc);
FreeProcInstance((FARPROC) dlgProc);

where:

ResModeDlgProc

hlnst

IDD _RESDEMODIALOG

hwndParent

Working with controls

The dialog procedure function that handles
messages from controls

The HINSTANCE handler of the Windows
module (.EXE or .DLL) which controls the
dialog resource

Replaced with the resource ID of the dialog

The parent window of the dialog

Once you have defined a dialog box, you can create and manipulate its controls. In the
Dialog editor, the Dialog menu, Dialog local menu, the Control palette, and the Tool
palette make it easy to work with controls.

Adding controls to a dialog box
To add a new control to a dialog box:

1 Click the page and control you want in the Control palette.

2 Your cursor changes to a cross hair when you move the cursor over the dialog box
you are designing.

3 To place the control with the default size, click in the dialog box where you want to
place the top left comer of the control.

4 To place the control and size it at the same time, click in the dialog where you want to
place the top left comer of the control. Drag the mouse to the lower right until the
control is the desired size.

276 C++ Use r 's G u ide

If you select a control from one of the palette pages and change your mind about placing
it, choose the Selector tool on any page of the Control palette. Your cursor returns to the
arrow shape and you can choose another control or work with existing ones.

You can also use the Dialog menu to add controls to your dialog box:

1 Choose Dialog I Insert New.

2 Choose the control you want, then click OK.

3 Click the spot in the dialog box where you want to add the control.

To add multiple copies of the same control, hold the Shift key down while clicking in the
dialog. When you are finished with the control type, click the Selector tool.

Working with custom controls
In addition to standarc;l controls, common controls, and Borland controls, you can add
custom controls to a dialog box. A custom control is any other window class that you
want to add to your dialog box, including Visual Basic controls.

Custom controls are stored in .DLL or Visual Basic custom control (.VBX) files. Before
you can use custom controls, you must install them. .

To install custom controls:

1 Choose Options I Environment I Control Libraries.

2 Click Add.

3 In the File Open dialog box, select the name of the .DLL file you want to open.

4 If you are installing VBX controls, choose the Windows system directory and the
name of the .VBX file you want to open. (.VBX files are automatically installed in this
directory.)

«I The file name and list of the controls in that file are displayed in the Installed
Controls list.

S Click Add to a.of the Control palette.

For information on adding the control to the dialog box, see Adding controls to a dialog
box.

To remove custom controls:

1 Choose Options I Environment I Control Libraries.

2 Choose the name of the control library you want to remove.

3 Click Remove, then OK.

The library and its controls are no longer accessible from Resource Workshop.

Note When you use VBX controls in a dialog box, a DLGINIT resource is produced. In
addition, the Property Inspector displayed for a VBX control is always modeless, so the
changes take effect immediately. It is always in list format.

C hap t e r 1 4, W 0 r kin 9 wit h d i a log box e s 277

Duplicating a control
To place multiple, identical copies of a control in rows and columns:

1 Select the control you want to duplicate.

2 Right-click the control and choose Duplicate. The Duplicate Control dialog box is
displayed.

3 Enter the number of rows and columns into which you want to arrange the
duplicated controls. For example, if you are placing push buttons, and want one row
of three buttons across, enter 1 in Rowand 3 in Column.

4 Enter the spacing you want between rows and columns in the Spacing fields. It is
recommended that you enter 6 for row spacing and 8 for column spacing. Units are in
dialog units.

5 Click OK.

Your control is now duplicated. The caption is the same as the original, but the ID is
automatically incremented.

Moving and resizing a single control
To move a control with the mouse:

1 Select the control.

2 Hold the left mouse button down and drag the control to a new location.

To resize a control with the mouse:

Select the control.

2 Move the mouse cursor to one of the black nibs at the control's edge or comer. When
it turns into a double arrow, hold the left mouse button down and drag to the desired
size.

To move a control with the keyboard:

1 Press Tab until the control you want is selected.

2 Press the Up arrow key to move the control up; press the Down arrow key to move it
down. Press the Right arrow key to move the control to the right; press the Left arrow
key to move it to the left.

3 Press Enter when the control is in a satisfactory location.

To size a control with the keyboard:

Press Tab until the control you want is selected.

2 Choose Dialog I Size or right-click and choose Size. The Size dialog box is displayed.

3 Choose the Width option and enter the control's width.

278 C++ Use r 's G u ide

4 Choose the Height option and enter the control's height.

S Press OK to change the control's size. Its top left comer stays in the same place.

You can also use arrow keys to size a control:

Ctrl + left arrow

Ctrl + right arrow

Ctrl + up arrow

Crtl + down arrow

Decreases width one dialog unit

Increases width one dialog unit

Decreases height one dialog unit

Increases height one unit

You can also move and resize a control with the General page of the Property Inspector.
Select the control, double-click, and change the appropriate Top, Left, Width, and
Height values.

If you change your mind about moving or resizing a control, select Edit I Undo.

Selecting multiple controls
To select multiple controls:

1 Choose the Selector tool.

2 Place the cursor where you want the selection frame to start. It must be outside of any
controls.

3 Click the left mouse button and hold it down.

4 Drag your mouse so that the selection frame surrounds or intersects all the controls
you want to select.

S Release the mouse button.

Note You can also select multiple controls by pressing the Shift key while clicking on controls.
The selection becomes cumulative. Clicking a second time while holding the Shift key
will unselect the control, while keeping other selections.

Depending on the setting of the Selection Rectangle Must Surround Controls option in
Options I Environment I Resource Editors I Dialog, the selection rectangle must either
entirely surround the controls, or just intersect them.

You can select all controls in a dialog box by right-clicking and choosing Select All.

Aligning multiple controls
To display and adjust the alignment grid:

1 Choose Dialog I Show I Grid to display the alignment grid.

2 To adjust the grid's granularity, choose Dialog I Grid Spacing. In the Grid Spacing
dialog box enter the desired width and height of each grid cell.

C hap t e r 1 4, W 0 r kin 9 wit h d i a log box e s 279

Note You may have already set grid spacing defaults with Options I Environment I
Resource Editors I Dialog. .

3 If you want the controls to U snap to" the grid, select the Snap to Grid option in the
Grid Attributes section of Options I Environment I Resource Editors I Dialog. You can
also toggle Dialog I Snap to Grid.

To align multiple controls:

1 Select the controls you want to align.

2 Choose Dialog I Align I Controls or right-click one of the selected controls and choose
Align. In the Alignment dialog box, choose how you want to align the controls
horizontally and vertically. Controls can be aligned to the left, center, or right. They
can also be spaced equally or centered in the window.

3 When controls are selected, you can use the arrow keys to fine-tune their positions on
the grid. The arrow keys move the selected controls one dialog unit.

To align multiple controls into an array:

1 Select the controls you want to align.

2 Choose Dialog I Align I Array or right-click one of the selected controls and choose
Array. In the Array dialog box, choose the format of the array by specifying the
number of rows and columns. Order the controls from left to right or top to bottom.

To evenly space multiple controls: .

Select the controls you want to arrange.

2 To space the selected controls horizontally equidistant from each other in the dialog
box, choose Dialog I Space I Horizontally EquaL

3 To space the selected controls vertically equidistant from each other in the dialog box,
choose Dialog I Space I Vertically EquaL

You can also use the Tool palette to align and space controls.

To undo alignment options, choose Edit I Undo or press Alt+Backspace. You may have to
choose Undo more than once.

Resizing multiple controls
To resize multiple controls:

1 Select the controls you want to resize.

2 Choose Dialog I Size. The Size Controls dialog box is displayed. You use this dialog
box to resize controls.

3 Choose the Width option and enter the width for all controls.

4 Choose the Height option and enter the height for all controls.

The size of all selected controls change. Their top left comers stay in the same place.

280 C++ Us e r 's G u ide

Note You can undo any sizing options by choosing Edit I Undo or by pressing Alt+Backspace.
You may have to choose Undo more than once.

You can also move and resize controls with the General page of the Property Inspector.
Select the controls, double-click one of them, and change the appropriate Top, Left,
Width, and Height values.

Reordering controls
You can specify the order in which users access the controls in your dialog box. The
order is especially important when you have defined groups of related controls.

To specify the order of controls:

1 Choose Dialog I Set Creation Order or Set Creation Order from the SpeedMenu. A
special mode is invoked.

2 Each control is numbered to show its current place in the overall order. Initially, this
is the order in which you created the controls.

3 Click the items you want to assign new order numbers to, beginning with 1. The
Dialog editor displays a blue box around all the controls you have already picked.
Once you have clicked a control to assign it an order number, you cannot pick any
previously selected controls again.

If you make a mistake and want to go back to the original order, just click on all the
controls in the order in which you assigned them. You can also press Escape to cancel.

When you finish assigning new order numbers, press Enter to return to design mode.
You can also right-click and choose End Mode to exit and save changes, or Cancel Mode
to exit without saving changes.

Grouping controls
You can group controls to let the user move among them using the arrow keys. For
example, if you add three radio buttons, you may want them to function as a group.

To group controls:

1 If necessary, move the controls so that they are together.

2 Choose Dialog I Set Group Flags or Set Group Flags from the SpeedMenu.

3 For each group you want to define, click the first member so it is surrounded by a
blue box.

You do not have to identify the last member of a group. By clicking the first member of
each group, you also identify the last member of the previous group.

To ungroup controls:

1 Choose Dialog I Set Group Flags or Set Group Flags from the SpeedMenu.

2 Click the control that is surrounded by a blue outline. This turns off the group flag ..

Chapter 14, Working with dialog boxes 281

You mark only the first control in each group with the Group attribute. Controls are
included in the group according to the order in which they are added to the dialog box.

For example, if you add seven controls to your dialog box and then turn on the Group
property of the first and fifth controls, the first four controls are included in the first
group, and the remaining controls are included in the second group.

When you finish grouping controls, press Enter to return to design mode. You can also
right-click and choose End Mode to exit and save changes, or Cancel Mode to exit
without saving changes.

Specifying which controls are tab stops
When you add a control that can accept user input to a dialog box, it is automatically
defined as a tab stop. You can change this so that only some controls are tab stops, and
users can use Tab to move only to the controls you want.

To set a tab stop:

1 Choose Dialog I Set Tabstops or Set Tabstops from the SpeedMenu. A special mode is
invoked. Any controls currently set as tab stops are outlined with a blue box.

2 To set a tab stop, click any control that is not already outlined in blue.

3 To remove a tab stop, click any control that is already a tab stop (outlined in blue).

4 When you finish changing tab stops, press the Enterkey.

You can also tum on the Tab Stop property using the General page in the Property
Inspector.

When you finish assigning tab stops, press Enter to return to design mode. You can also
right-click and choose End Mode to exit and save changes, or Cancel Mode to exit
without saving changes.

Editing control properties
Once you have added a control to your dialog box, you can easily modify it by right­
clicking it and choosing Properties. The Property Inspector is displayed, with options
that can modify the appearance and behavior of your control. The property settings
vary according to the type of control you are working with.

Note You can also double-click a control to display the Property Inspector.

282C + + Use r 's G u ide

Using the Dialog editor
You use the Dialog editor to create and edit dialog boxes. The Dialog editor displays:

• The dialog you are designing

• The Control palette that contains pages for standard Windows controls, Windows
common controls, BWCC controls, Visual Database controls, and custom controls,
including VBX controls

• The Tool palette that contains tools such as alignment tools

• The Property Inspector that lets you set properties for controls and dialog boxes

Using the Property Inspector
You use the Property Inspector to view and set properties for controls and dialogs. The
Property Inspector can be modal or modeless. The Dialog editor uses a WYSIWYG
method of displaying properties when it can.

The modal Property Inspector
The modal Property Inspector only displays property pages. Changes you make in the
modal Property Inspector do not take effect until you click the OK or Apply button, or
select another property page tab. You can also cancel changes to the current page by
clicking Cancel.

The modal Property Inspector lets you set properties for:

• One control

• A group of selected controls with properties in common

• The dialog box

Chapter 15, Using the Dialog editor 283

The modeless Property Inspector
The modeless Property Inspector displays different view of properties:

• Property pages

• The sorted property list box

• The unsorted property list box

• The generic, or summary, property page

Changes you make in the modeless Property Inspector take effect immediately. There
are no buttons to click to apply or cancel changes.

The modeless Property Inspector lets you switch between properties for different
controls or dialog boxes. To switch between objects, use the drop-down list at the top of
the Inspector. The sorted list displays properties in sorted alphabetically; the unsorted
list displays properties in the order they are displayed on the Property Page.

To set properties in the sorted or unsorted list,

1 Click the property you want to change.

2 Enter a value or choose it from the drop down list.

• If an ellipse is displayed in the right column, click it to display a dialog box where
you set multiple properties.

Note If a VBX control is among the selected controls, the Property Inspector is always
modeless (changes take effect immediately) and is in list format only.

Displaying the Property Inspector
To display the modal Property Inspector, do one of the following:

• Right-click the control and choose Properties.

• Right-click in an empty area of the dialog box and choose Properties.

• Double-click the control you want to set properties for.

• Double-click in an empty area of the dialog box.

• Select multiple controls, right-click one of them, and choose Properties.

• Select multiple controls and double-click one of them.

To display the modeless Property Inspector:

• Choose Dialog I Show I Property Inspector. Grice the Property Inspector is displayed,
right-click the Inspector to choose the view you want.

284 c++ User's Guide

About the Control palette
The Control palette consists of the following pages:

• The Standard page contains tools that let you place standard Windows controls.

• The Common page contains tools that let you place common Windows controls.

• The BWCC page contains tools that let you place Borland-style controls.

• The Custom page contains tools that let you place any custom controls you may have
installed, including VBX controls.

• The Data Access page contains tools that let you place the Visual Database Tools Data
Access controls.

• The Data Aware page contains tools that let you place the Visual Database Tools Data
Access controls.

Moving the Control palette
To move the Control palette, click and drag the title bar of the palette to a new location.

Hiding and showing the Control palette
To hide and show the Control palette:

• Choose Dialog I Show I Control Palette.

• Right-click outside the dialog box you are designing, and choose Control Palette.

To place a control
• Click the page of the Control palette you want.

• Select a control tool with your mouse by clicking it.

• To place the control with the default size, click the mouse button on the dialog.

• To place the control and size it at the same time, click and drag the mouse in the
dialog to the desired size.

Chapter 15, Using the Dialog editor 285

Standard page of the Control palette
The Standard page of the Control palette contains tools for placing standard Windows
controls in your dialog box. Click one of the following tools for more information:

Radio Horizontal Group Vertical Static
Selector Button Static Text List Box Scroll Bar Box Static Line Rectangle

Selector tool
You use the Selector tool to select one or more controls in your dialog box. To select a
single control, click the Selector inside the controL To select more than one control, click
and drag your mouse around the controls you want to select.

Note You can also select multiple controls by pressing the Shift key while clicking on controls.
The selection becomes cumulative. Clicking a second time while holding the Shift key
will unselect the control, while keeping other selections.

When you use the Selector tool, your pointer is the shape of an arrow. Choose the
Selector tool to exit another mode and return your pointer to the arrow shape.

The Selector tool is available on all pages of the Control palette.

Push Button tool
The Push Button tool puts a push button control in your dialog box. A push button
control sends a message to its parent when a user selects it. The push button is a
rectangle with rounded comers. It can contain text, an icon, or a bitmap.

Windows defines a set of control ID values and names for the standard push buttons
used to exit dialog boxes. To use these buttons, you need to enter the predefined value
or name in the General page of the Property Inspector.

• Enter the ID name (IDOK, etc.) in the ID box.

• Enter the text you want to display on the button in the Caption box.

286 c++ User's Guide

The predefined ID values are:

1 IDOK OK

2 IDCANCEL Cancel

3 IDABORT Abort

4 IDRETRY Retry

5 IDIGNORE Ignore

6 IDYES Yes

7 IDNO No

Note The ID name must be entered in uppercase letters.

Radio Button tool
The Radio Button tool puts a radio button control in your dialog box. A radio button
control is a circular button with text, an icon, or a bitmap. The control sends a message
to its parent when the user selects it. Radio buttons are used in groups to represent
related but mutually exclusive options.

Check Box tool
The Check Box tool puts a check box control in your dialog box. A check box control is a
small button that sends a message to its parent when a user selects it.

When a check box is selected, an X appears on the button. When a check box is not
selected, the X disappears. Check boxes are often used to represent Boolean (ani off)
states for individual options. Check boxes can also have a third state, represented by a
light gray shading. This state is usually interpreted as "indeterminate."

Static Text tool
The Static Text tool puts a static text control in your dialog box. A static text control is
text in a rectangle. The text is displayed as:

• Left-aligned, without word wrap

• Left-aligned, with word wrap

• Centered

• Right-aligned

• Simple

Chapter 1 5 ,U sin 9 the Dialog editor 287

Text Edit tool
The Text Edit tool puts an edit control in your dialog box. An edit control allows a
user to:

• Enter text

• Edit text

• Move the insertion point

• Delete text

• Move text

An edit control receives focus when the user clicks it or presses the Tab key to move to
it. Once selected, the edit control displays text and a flashing cursor to indicate the in­
sertion point. The edit control can send a message to its parent when the user selects it.

List Box tool
The List Box tool puts a list box control in your dialog box. The list box control displays
a list of items. The user can browse the list and choose one or more items. List box items
can be represented by text strings, bitmaps, or both.

Combo Box tool
The Combo Box tool puts a combo box control in your dialog box. A combo box control
is a combination of a list box control and a static text or edit control.

• The list box control can drop down; it does not have to display all the time.

• The static text control forces an item (if one exists) to be displayed in the list box
portion of the combo box control.

• The edit control allows the user to enter a selection. The list box will then higlight the
first item that matches the selection. Then, the user can select the highlighted item.

Horizontal Scroll Bar tool
The Horizontal Scroll Bar tool puts a horizontal scroll bar control in your dialog box. A
horizontal scroll bar control consists of a horizontal rectangle with a direction arrow at
both ends.

A horizontal scroll bar control lets the user scroll the contents of the window to the left
or right. The control sends a message to its parent when a user selects it.

288 c++ User's Guide

Vertical Scroll Bar tool
The Vertical Scroll Bar tool puts a vertical scroll bar control in your dialog box. A vertical
scroll bar control consists of a vertical rectangle with a direction arrow at both ends.

A vertical scroll bar control lets the user scroll the contents of the window to the up or
down. The control sends a message to its parent when a user selects it.

Group Box tool
The Group Box tool puts a group box control in your dialog box. A group box control is
rectangular box around a group of controls. It is used to visually group controls
together. You can include a caption in the upper left comer of the group box. An
application cannot.send messages to a group box.

Static Frame tool
The Static Frame tool puts a static frame control in your dialog box. A static frame is an
empty border that can be black, gray, or white. It can also appear etched.

A Static Frame control is used for visual effect.

Static Rectangle tool
The Static Rectangle tool puts a static rectangle control in your dialog box. A static
rectangle control is a rectangle that can be black, gray, or white.

A static rectangle control is used for visual effect.

Horizontal Static Line tool
The horizontal static line tool puts a horizontal static line control in your dialog box. A
horizontal static line control is used for visual effect.

Note Static lines are only displayed when using Windows 95 or Windows NT with the shell.

Vertical Static Line tool
The vertical static line tool puts a vertical static line control in your dialog box. A vertical
static line control is used for visual effect.

Note Static lines are only displayed when using the Windows 95 or Windows NT with the
shell.

C hap t e r 1 5, U sin 9 the 0 i a log e d ito r 289

Static Picture tool
The Static Picture tool puts a static picture control in your dialog box. A static picture
control can display an icon, bitmap, or enhanced metafile. A static picture control is
used for visual effect.

The Caption property identifies the resource ID of the icon, bitmap, or enhanced
metafile. The actual picture can be viewed by putting the Dialog editor into test mode
with the Dialog I Test Dialog command.

Common page of the Control palette
The Common page of the Control palette contains tools for placing Windows common
controls in your dialog box. Click one of the following tools for more information:

Tab
Control

Animation Tree Hot Key Up-Down Header Status
View Window

Animation tool
The Animation tool puts an animation control in your dialog box. An animation control
is a window that displays an Audio Video Interleaved (A VI) clip, a series of bitmap
frames. The clip is displayed without sound. Set the Caption property to the A VI
filename of the clip.

Note You can set up the A VI file to display when the animation control is created. However,
you cannot play the clip in design mode. To play the clip, check the Auto Play property
on the Animation page and put the Dialog editor into test mode (Dialog I Test Dialog).

Tab Control tool
The Tab Control tool puts a tab control, like a set of notebook dividers, in your dialog.
Tabs contain identifying text. Tabs are used to define multiple pages in a dialog box. A
user clicks a tab to switch between dialog box pages.

Note You cannot add the actual tabs using the Dialog editor because the tabs are not encoded
in the .RC files. They can only be created through programming. You can use the

290 C++ Use r 's G u ide

Sample Item Count property (one of the properties on the TabControl page) to test what
the tabs would look like.

Tree View tool
The Tree View tool places a tree view control in your dialog. A tree view control
displays a group of items in a hierarchy, with icons to expand and collapse the
hierarchy. Each item consists of a label and an optional bitmapped image.

List View tool
The List View tool places a list view control in your dialog. A list view control displays a
group of items. You can display the items in the group:

• With their standard icons. Each item is represented by an icon and a text label. Items
can be moved.

• With their small icons. Each item is represented by a small icon and a text label to the
right of the icon. Items can be moved.

• As a list. Each item is represented by a small icon and a text label. Items are arranged
in columns and cannot be moved.

• As a report. Each item is represented by a small icons and text label, and additional
information about each item.

A header control is usually associated with a list view control.

Hot Key tool
The Hot Key tool places a hot key control in a dialog. A hot key control lets the user
enter a combination of keystrokes to be used as a shortcut key. The hot key control
displays the current choices and makes sure that the key combination selected is valid.

Progress Bar tool
The Progress Bar tool places a progress bar control in your dialog. A progress bar
control, using a range and current position, shows an op'eration's percentage of
completion. It can include text. You usually use a progress bar for an installation
program.

Up-Down tool
The Up-Down tool places an up-down control in your dialog. An up-down control
consists of an up and down arrow. The up-down control increments and decrements
values in the companion control.

C hap t e r 1 5, U sin 9 the D i a log e d ito r 291

Usually, you use an up-down control in conjunction with a companion control, also
referred to as a buddy window.

Track Bar tool
The Track Bar tool places a track bar control in your dialog box. A track bar control lets
the user change a value within a set range. The track bar displays ticks that represent the
current value. The user adjusts a slider to change the value.

Header tool
The Header tool places a header control in a window, usually in a list view window.
Headers can contain a string, a bitmapped image, and an application-defined 32-bit
value. If a header contains both a string and an image, the image is displayed above the
string. If they overlap, the string overwrites the image.

Headers are usually used for column headings. By default, headers appear as text on a
gray background. Headers do not have input focus.

Rich Text Edit tool
The Rich Text Edit tool places a rich text edit control in your dialog box. A user can enter
and edit text in this control. The user can assign character and paragraph formatting
attributes (font, colors, etc.) to the text, and can include embedded OLE objects.

Status Window tool
The Status Window tool places a status window control in your dialog box. A status
window control is a horizontal window at the bottom of a parent window. The
application can display different kinds of status information in the control. The control
can be divided into parts to display different kinds of information.

Tool Bar tool
The Tool Bar tool places a tool bar control in your dialog. A tool bar control contains one
or more buttons, that are visual representations of commands. When a button is
selected, it sends a command message to the parent window.

292 C++ Use r 's G u ide

BWCC page of the Control palette
The BWCC page of the Control palette contains tools for placing Borland-style controls
in your dialog box. Click one of the following tools for more information:

Push Check Horizontal Static
Button Box Line Text

Note When you use one of more BWCC controls, you must link the BWCC library to your
program or load it as a DLL.

BWCC Push Button tool
The BWCC Push Button tool puts a Borland-style push button control in your dialog
box. A Borland-style push button control can contain symbols with high visual impact,
as well as an owner draw option. A Borland push button is larger than most standard
Windows push buttons. Its class is BarBtn.

These are the values for the predefined Borland-style bitmap buttons:

lOOK 1·

IDCANCEL 2

IDABORT 3

IDRETRY ·4

IDIGNORE 5

IDYES 6

IDNO 7

IDHELP 998

To add your own bitmap to the button, see" Adding a bitmap to a BWCC push button."

Adding a bitmap to a BWCC push button
To add your own bitmap to a BWCC push button:

1 Use the BWCC Push Button tool to add the generic BWCC button to your dialog box.
Note its control ID.

C hap t e r 1 5, U sin 9 the 0 i a log e d ito r 293

2 Switch to the Graphics editor and create a bitmap image.

3 In the Graphics editor, choose Resource I Resource Attributes to display the Resource
Attributes dialog box. Then, do either of the following:

• In the Resource Name box, enter an integer value that equals the control ID of the
button plus the appropriate offset from the following table.

41 Rename the bitmap and assign it an identifier whose value equals the control ID of
the button plus the appropriate offset from the following table.

standard

pressed

keyboard focus

id + 1000

id + 3000

id + 5000

4 Close the Graphics editor.

id + 2000

id +4000

id + 6000

S Return to the Dialog editor. The bitmap displays on the BWCC button.

BWCC Check Box tool
The BWCC Check Box tool puts a Borland-style check box control in your dialog box. A
Borland-style check box control is raised and displays a check mark, rather than an "X."
Its class is BorCheck.

A BWCC check box can also have a third state, represented by a light gray shading. This
state is usually interpreted as "indeterminate."

BWCC Group Box tool
The BWCC Group Box tool puts a Borland-style group box control in your dialog box. A
Borland-style group box control is a shaded rectangular box. The box groups other
controls visually. It can appear recessed into the dialog box or raised above its surface.
Its class is BorShade.

BWCC Horizontal Line tool
The BWCC Horizontal Line tool puts a Borland-style horizontal line control in your
dialog box. The horizontal line control gives the impression of being etched into the
surface of the dialog box. Its class is BorShade.

You can convert lines to bumps, which appear to be raised above the surface of the
dialog box. .

294 C++ Use r 's G u ide

BWCC Radio Button tool
The BWCC Radio Button tool puts a Borland-style radio button control in your dialog
box. The radio button control is diamond-shaped and appears raised from the surface of
the dialog box.

When the user clicks the button, a black diamond appears in its center and the button
shading reverses, giving the impression that it has been pushed down. Its class is
BorRadio.

BWCC Vertical Line tool
The BWCC Vertical Line tool puts a Borland-style vertical line control in your dialog
box. The vertical line control gives the impression of being etched into the surface of the
dialog box. Its class is BorShade.

You can convert lines to bumps, which appear to be raised above the surface of the
dialog box.

BWCC Static Text tool
The BWCC Static Text tool places a Borland-style static text control in your dialog box.
The static text control is a fixed text string in your dialog box. You use the string
principally for labeling parts of the dialog box. Its class is BorStatic.

Custom page of the Control palette
The Custom page of the Control palette contains all installed custom controls, including
VBX controls. For information on installing custom controls, see Working with custom
controls.

Data Access page of the Control palette
The Data Access page of the Control palette contains the installed Visual Database Tools
Data Access components.

Data Aware page of the Control palette
The Data Aware page of the Control palette contains the installed Visual Database Tools
Data Aware components.

C hap t e r 1 5, U sin 9 the D i a log e d ito r 295

Tool palette
The Tool palette provides access to some of the most common Dialog editor tools, such
as the alignment and spacing tools.

Here are the tools you can choose from:

Left Sides

Horizontal Center

Horizontal Center in Dialog

Space Horizontally Equal

Right Sides

Vertical Center

Vertical Center in Dialog

Space Vertically Equal

Tops

Bottoms

You can also use the Alignment dialog box to align controls and the Dialog I Space
command to space controls.

Left Sides tool
The Left Sides tool aligns selected controls so their left sides are aligned along the left
side of the selection frame. The control that is leftmost determines the left edge of the
selection frame.

Horizontal Centers tool
The Horizontal Centers tool aligns controls so their horizontal centers are in the center
of the selection frame. The leftmost and rightmost controls determine the size and
location of the selection frame.

Right Sides tool
The Right Sides tool aligns controls so their right sides are aligned along the right side of
the selection frame. The control that is rightmost determines the right side of the
selection frame.

296 C++ Use r 's G u ide

Horizontal Center in Dialog tool
The Horizontal Center in Dialog tool moves the selection frame horizontally so it is
centered in the dialog box. The relative position of the individual controls within the
selection frame is unchanged.

Tops tool
The Tops tool aligns controls so their tops are aligned along the top of the selection
frame. The topmost control determines where the top of the selection frame is located.

Vertical Centers tool
The Vertical Centers tool aligns controls so their vertical centers are in the center of the
selection frame.

Bottoms tool
The Bottoms tool aligns controls so their bottoms are aligned along the bottom of the
selection frame. The bottom most control determines where the bottom of the selectiop
frame is located.

Vertical Centers in Dialog tool
The Vertical Center in Dialog tool moves the selection frame vertically so it is centered in
the dialog box. The relative position of the individual controls within the selection frame
is unchanged.

Space Horizontally Equal tool
The Space Horizontally Equal tool moves the selected controls so that they are
horizontally equidistant from one another.

Space Vertically Equal tool
The Space Vertically Equal tool moves the selected controls so that they are vertically
equidistant from one another.

C hap t e r 1 5, U sin 9 the 0 i a log e d ito r 297

298 C++ Use r '5 G U ide

About menus
Menus are lists of commands the user chooses from. Most Windows applications have a
menu bar across the top of the screen that contains the names of the application's
menus. Each menu contains a set of commands.

Terminology
These terms describe the elements of a menu resource: pop-up command, pop-up
menu, menu item, and menu separator.

• Pop-up commands cause menus to be displayed. Pop-up commands can appear in
the menu bar and can also appear inside pop-up menus, where they cause another
menu (called a cascading menu) to be displayed.

• Pop-up menus are the rectangular boxes containing lists of commands from which a
user can choose. They come in two forms:

@ Drop-down menus are displayed from the menu bar or from within a menu. They
are tied to a pop-up command and are always displayed from that command's
name.

@ SpeedMenus (also referred to as floating menus or contextual popup menus) can
appear anywhere in the application window.

• Menu items are the commands that appear in the menus, such as Open, Save, or
Print.

• Menu separators are the lines that divide the menu items into logical groups.
Separators do not do anything other than make the menu easier to read and use.

Working with menus
The Menu editor makes it easy to create and edit menus. Working with menus involves
four basic steps:

C hap t e r 1 6, Abo u t men u s 299

1 Create a new menu or edit an existing menu. The Menu Editor opens automatically.

2 Make changes to the menu.

3 Test the menu.

4 Save the menu.

Using the menu editor
You use the Menu editor to create and edit menus. It provides different views of the
menu you are editing:

• The Edit window shows the structure of the menu you are editing. It also has a test
mode where you can view the menu as it will appear in your application.

• The Property Inspector is where you customize the currently selected item in the
menu.

Edit window
The Edit window shows you the structure of the men,:! you are editing. It looks very
similar to a real menu. You can modify item text, add or remove items, and move items.
To change other properties of the menu, use the Property Inspector. You can also view
the menu in Test Mode.
Test Mode allows you to view the menu as it will appear in your applicaiton. You can
navigate the menu items as you would in your application.

Creating a new menu
To create a new menu,

1 Open the resource project you want to add the menu to, or create a new one by
choosing File I New I Resource Project. The New Resource Project dialog box is
displayed. Base your project on the .RC file type.

2 Choose Resource I New to create a new resource for that project. Resource Workshop
displays the New Resource dialog box.

3 In the Resource Type list, select MENU (or MENUEX for 32-bit projects).

4 Click Options to specify a type of menu other than the default.

S Click OK to place the new menu in the current resource project file.

Resource Workshop displays the Menu editor with a simple application menu you can
begin customizing.

Editing an existing menu
To edit an existing menu, open the resource project in which the menu is stored and do
one of the following:

300 c++ User's Guide

• Double-click the menu resource name in the Resource Project window.

• Highlight the menu resource name and choose Resource I Edit.

Resource Workshop displays the Menu editor with the menu you have chosen
already loaded.

• Once a menu is loaded into the Menu editor, you are ready to add new menu
commands, pop-up menus, or separators. You can also move, copy, or delete any
part of the menu.

You can customize your menus by adding accelerators and help messages for menu
items using the Menu editor Property Inspector.

Moving and copying menu statements
You can drag and drop single menu items or entire menus. You can also use Cut, Copy,
and Paste on the Menu SpeedMenu to move and copy the items in the menu's Edit
window.

To move a item, click and drag it into the desired location. (You can also use Shift+
drag.) If you move a pop-up menu, the entire menu is moved. A blue line with inverted
arrows indicates where the top of the box will be placed. If you highlight some or all of
the text, cut, copy, and paste actions effect only the highlighted text.

To copy a item, use Control+ left mouse to click and drag it. You can also highlight it,
right-click, and choose Copy. A copy is placed in the Windows Clipboard.

To insert the cut or copied item into your menu, select the item immediately after the
point at which you want the item to appear, right-click, and Paste.

Undoing errors
The Menu editor lets you undo and redo changes. Choose Edit I Undo or Edit I Redo.

Adding menu items and separators
You customize a menu by adding new menu items to it. You can customize your menu
by adding new menu items, pop-up menus, and menu separators.

Items are always added before the selected item. To add items to the end, select the
empty area at the end and insert the new item.

To add a new menu item, pop-up, or separator to a menu,

Decide where you want the new menu item, pop-up, or separator to appear. Click
the item in the menu's Edit window above where you want the statement added.

2 Select the new item you want to insert before the selected item.

.. To insert a new menu item, right-click and choose New Menuitem or choose
Menu I New Menuitem.

C hap t e r 1 6, Abo u t men u s 301

• To insert a pop-up menu, right-click and choose New Popup or choose Menu I
New Popup

• To insert a new menu separator, right-click and choose New Separator or choose
Menu I New Separator.

You can now edit the text string, menu ID, help message, and accelerators, if any.

Editing a menu item
A newly added menu item has the generic designation "Item." To make it useful, you
need to edit it. You can edit the text that displays in the menu directly, or with the
Property Inspector. With the Property Inspector, you can also change the menu's
numeric ID and put a check mark next to the menu if it is a toggle.

Deleting a menu item
To delete a menu item, click the item you want to delete, then:

1 Right-click and choose Cut to delete the statement and copy it to the Windows
Clipboard.

2 Choose Edit I Clear to remove it completely.

Note that if you delete a POPUP statement, you delete the pop-up command it defines
and all the items contained in the pop-up menu.

Creating a pop-up menu
A pop-up menu is one that can be displayed anywhere in the application's workspace. It
is not tied to the menu bar. Pop-up menus display when the right mouse button is .
clicked. The menu items displayed correspond to the selected object in the application.

Each pop-up menu must be saved as a separate menu resource within the resource
project file.

To create a pop-up menu,

1 Choose Resource I New. Resource Workshop displays the New Resource dialog box.

2 In the Resource Type list, select MENU (or MENUEX for 32-bit projects).

When you view the menu in the Test Menu pane, it will still appear tied to the menu
bar, but as long as your code uses the TrackPopupMenu function correctly, the
menu will float at run time.

3 Click the Options button to display the New Resource Options dialog box. Choose a
popup menu style.

4 Click OK to create the new pop-up menu. The menu displays as it will appear on the
screen at runtime.

5 Add any additional menu items you want.

302 c++ User's Guide

6 Edit the menu items using the Property Inspector if needed. .

7 Save your project.

Adding accelerator text to menus
To let users know what accelerators they can use, you can add accelerator text to your
menu items.

For example, if your application includes a Ctrl+X accelerator that duplicates the Cut
command on the Edit menu, you can add the text "Ctrl+X" next to that command.

• Use the tab character (\ t) to separate the menu title from the accelerator text. For
example, Cut\tCtrl+X means that the accelerator Ctrl+X is assigned to the menu
command Cut.

• Use the right-align character (\a) to right-align accelerator text.

Note Pop-up commands do not have accelerator keys.

When you add accelerator text to menu items, you use the Text and the ID input boxes
on the General page of the Menu editor Property Inspector. The items on the General
page specify the text that is displayed as part of a menu item.

Use the Accelerator page of the menu editor Property Inspector to create the actual
accelerator.

Adding accelerator resources to menus
The items on the Accelerator page of the Menu editor Property Inspector create an
association between a MENU resource and an ACCELERATOR resource.

An ACCELERATOR resource is considered /I associated" with a MENU resource if they
have the same resource name (either string or numeric value). An individual accelerator
is associated with a menuitem if both have the same ID.

Testing a menu
The Menu editor gives you immediate testing capability. The test menu is updated as
you make changes to your menu, so you can test changes whenever you want.

To view the menu in Test Mode, select Menu I Test Menu.

You can navigate the menu structure as you would while running your application.

Testing for duplicate menu items
The Menu editor also has a built-in debugging tool that you carl use to test for duplicate
menu item IDs. Choose Menu I Check Duplicates to search for duplicate values. If the
Menu editor finds duplicates, it displays a dialog box with the message "Duplicate
command value found."

Chapter 16, About menus 303

When you close this message box, the Menu editor selects the item with the duplicate
value. Determine whether the menu ID is an identifier or a numeric value by looking at
the ID input box on the General page of the Menu editor Property Inspector.

• If the menu ID is a number, enter a new number that does not conflict with the other
menu IDs.

• If the menu ID is a conflicting identifier, change the identifier text so that it does not
conflict, or choose Resource I Identifiers to display the Identifiers dialog box where
you can change the identifier.

Programming menus and accelerators with OWL
To program menus and accelerators with OWL, use the TMenu class and the
LoadAccelerators function.

For example, this 'code shows how to associate a menu and accelerators with the main
window:

GetMainWindow()->AssignMenu(IDM_MENU1)i
GETMAINWINDOW()->ATTR.ACCELTABLE = IDA_ACCELERATORSli

IDM_MENUI and IDD _ACCELERA TORSI are the identifiers for the menu
and accelerator table, respectively.

Programming menus and accelerators with the Windows API
To program and menus and accelerators with the Windows API, use the LoadMenu and
LoadAccelerators functions.

For example, this code shows how to associate a menu and accelerators with the main
window:

HMENU hMenu i
hMenu = LoadMenu(hlnst, MAKEINTRESOURCE(IDD_MENU1))i
LoadAccelerators(hlnst, MAKEINTRESOURCE(IDD(ACCELERATORS1)))i

IDM_MENUI and IDD _ACCELERA TORSI are the identifiers for the menu
and accelerator table, respectively.

304 c++ User's Guide

Working with identifiers
Windows requires that every resource and user defined resource type be associated
with a unique name or a unique integer (called a resource ID). By default, Resource
Workshop assigns a name to each new resource.

The default name is not very descriptive, and referring to a resource by name alone
decreases the efficiency of the application at run-time. To overcome these shortcomings,
you can rename the resource and assign it an identifier (a C #define).

Identifiers
An identifier consists of two parts: a text literal (the identifier name) and a value
(typically an integer). Identifiers must be unique within a resource type. Only the first 31
characters are significant; Resource Workshop ignores any characters past the 31st
character.

Assigning an integer value to an identifier speeds up calls to the resource at run time,
but you will not be able to use the short integer value directly as a parameter. You must
either typecast the integer into a long pointer to char or use a macro to do the
typecasting for you.

• If you write your program in C or C++, use the MAKEINTRESOURCE macro.

• If you are using ObjectWindows, see the class TResld.

If you are working with a .RES file, an executable file, or a DLL file, Resource Workshop
decompiles all resource IDs in the files into integer values. You cannot add identifiers to
this type of file, but you can save the file as an .RC file and assign identifiers to its
resources.

Chapter 17, Working with identifiers 305

Identifier files
When you create a new project, the first thing you should do is specify a file in which to
store your identifiers. Store identifiers in one or more resource header (.RH) files that
use #defines to assign values to identifier names.

Creating an identifier file
To add an identifer after you create a new project,

1 Right-click and choose Add to Project. You see the Add to Project dialog box.

2 Click the down-arrow in List Files of Type. Choose:

C/C++ header (*.h, *.rh)

3 Enter a name for the identifier file in the File Name box.

4 Click OK. Resource Workshop creates the identifier file.

Adding identifiers
You can add an identifier to your identifier file before you create the resource it will be
associated with. To add an identifier,

1 Choose Resource I Identifiers to display the Identifiers dialog box.

2 Right-click and choose Insert. The New I Change Identifiers dialog box is displayed.

3 In the Name box, enter the identifier name.

4 "In the Value box, enter the identifier's value.

5 In the File box, enter the name of the file in which the identifier is to be stored.

6 Click the OK button.

Note The new name now appears in the Name lis~ in the Identifers dialog box. The Usage
columns says (unused).

Editing identifiers
To change an identifier name or value,

1 Choose Resource I Identifiers to display the Identifiers dialog box.

2 Double-click the name or value you want to change. The New I Change Identifiers
dialog box is displayed.

3 Change the name in the Name box.

4 Change the value in the Value box.

5 Click OK.

306 c++ User's Guide

The new identifier value will be written to the header file the next time you choose
File I Save.

Moving identifiers from one file to another
To change the file an identifier is placed in,

1 Choose Resource I Identifiers to display the Identifiers dialog box.

2 Double-click the name or value of the identifier you want to change. The
New /Change Identifiers dialog box is displayed.

3 Enter a new filename in the File box.

4 Click OK.

Deleting identifiers
If an identifier is not used in your project, you should delete it from the header file.
There are three reasons you might have an unused identifier:

• You assign an identifier to a resource and then delete the resource.

• You add an identifier to the project and then never use it.

• You rename a resource that already has an integer identifier value.

To delete an identifier:

1 Choose Resource I Identifiers to display the Identifiers dialog box.

2 Select the identifier you want to delete. You can delete an identifier that is still in use.

• If the selected identifier is not associated with a resource (either because the
resource was deleted or the identifier was never used), the Used By box says
(unused) .

• If, however, the identifier is still associated with a resource, the Used By box
automatically highlights the type and name of the associated resource.

3 Press the Delete key.

• If the identifier is unused, it is deleted immediately. No warning dialog box is
displayed.

• If the identifier is still in use, Resource Workshop displays a warning dialog box
that says udefine is used. Delete anyway?" To delete the identifier, click the Yes
button. If you do not want to delete the identifier, click the No button.

The next time you choose File I Save, Resource Workshop updates the identifier file,
removing the deleted identifier.

C hap t e r 1 7, W 0 r kin 9 wit hid e n t i fie r s 307

Listing identifiers
To list the identifiers in your project"

1 Choose Resource I Identifiers to display the Identifiers dialog box.

2 Choose the name of the file for which you want to view identifiers.

3 The name, value, and usage of all identifiers in that file are displayed.

Managing identifiers
Resource Workshop can automatically create and delete identifiers for you. To turn on
automatic identifier management, choose Options I Environment I Resource Editors.
Check the Generate Identifiers Automatically option (one of the Resource Editor
SpeedSettings).

Note If you are using AppExpert from the Borland C++ IDE, Generate Identifiers
Automatically will be checked and unselectable; you will not be able to tum this option
off because AppExpert relies on the automatic identifiers syntax. I

With automatic identifiers on, every time you create a resource item that uses an
identifier (menu items, for example), Resource Workshop creates a unique identifier for
that item and places it in the header file for that resource (.RH or .H). Also, if you delete
any items, the identifier is deleted.

Resource Workshop uses an identifier prefix, which you can change. The list of default
prefixes can be viewed by choosing Options I Environment I Resource Editors I
Identifiers. This options page also allows you to change the default prefix.

308 C++ Use r 's G u ide

Using the Text editor
The text version of a resource is also called source code or script.You can edit the text
version of any resource.

To edit the text version of a resource,

1 Click the resource in the Resource Project window.

2 Choose Resource I Edit As Text.

Resource Workshop opens the Text editor and displays the script for the resource.

Saving your changes
To save your changes to a script,

1 Close the Text editor window.

2 Choose Yes in response to the prompt "Resource has changed. Compile?"

Resource Workshop compiles your resource script and saves the changes. If it
encounters a syntax error, you are returned to the Text editor so you can correct the
error.

Compiling a text version of a resource
After editing a text version of a resource, you must compile the resource in order to save
it. To compile and save a resource script in the Text editor, right-click and choose
Compile.

If you do not compile the resource, Resource Workshop prompts you to compile it when
you exit the Text editor. .

Chapter 18, Using the Text editor 309

Creating resources with the Text editor
Resource Workshop always edits some kinds of resources as scripts. These resources are
referred to as scripted resources:

Accelerator
DLGINIT
RCDATA
User-Defined Resources
StringTable
VERSIONINFO

Note DLGINIT resources are created whenever dialogs contain VBX controls. This resource
type should never be modified.

You can also define bitmapped and dialog template resources with scripts, but you will
usually find it easier to use the visual editors in Resource Workshop, especially for
creating those resources. You will probably edit bitmap or dialog template scripts only
to make changes to existing resources.

Writing resource scripts
A resource script is a text file that consists of three kinds of items:

• Resource definition statements
• Resource compiler directives
• Comments

The majority of a resource script is made up of resource definition statements. Each
resource in the resource script is defined by a definition statement, which has the
following general syntax:

keyword resource_id [options]
BEGIN

items

END

In this syntax:

keyword

resource _id

options

items

Comments

is one of the resource keywords.

is either a numeric constant or an identifier.

is optional information specific to the type of resource being defined.

is one or more items within the resource, such as menu items in a menu
resource or strings in a string table.

A comment can be placed in the script surrounded by a C-style comment string
(1* ... */). Do not place a comment within a resource definition block, as the resource
compiler will strip it out.

310 C++ Use r 's G u ide

Here as an example of a valid coment:

/* This is a valid comment */

keyword resource_id [options]
BEGIN

END

Here is an invalid comment:

keyword resource_id [options]
/* Do not put comments here */

BEGIN
/* And don't put them here */

END

Note A comment is valid only if it was added before the resource project was opened by ,
Resource Workshop. Comments added to the text of a resource, edited with the
Resource I Edit As Text command, will be stripped out by the resource compiler.

C hap t e r 18, Us i n 9 the T ext e d ito r 311

312 C++ Use r' s G u ide

Working with user-defined resources
In addition to defining standard resource types, you can also define your own resource
types. After you create a new resource type, you can add any number of user-defined
resources of this type to your project.

User-defined resources contain data that do not fit into one of the standard resource
types. For example, if you want to create a character string resource that is longer than
the STRINGTABLE limit of 255 characters, you can define your own resource type and
store your character strings there.

You can also include metafiles in your project as user-defined resources. A metafile is a
type of bitmap (in source form, it is a collection of Graphics Device Interface (GDI) calls)
that's not only easier to scale and more device-independent than the standard bitmap
resource, but also often takes up less storage space than a bitmap resource.

When you define a new resource, you can store data as part of the resource definition in
a project file or as a separate file. You can also use the RCDATA resource type to add
data to your application.

Working with user-defined resources involves five basic tasks:

• Create a resource type.
• Add a user-defined resource to your project.
• Edit it, if necessary.
• Test it.
• Save it.

Creating a resource type
Before you can add user-defined resource data to your project, you must first create a
type for it. Here1s how:

1 Open an existing project or create a new one.

2 Choose Resource I New. You see the New Resource dialog box.

Chapter 19, Working with user-defined resources 313

3 Choose <Custom Resource Type>.

4 Click the Options button.

S In the Resource Type name box, enter a unique name for the resource type you are
creating. For example, if you are creating a resource to contain a large block of text,
you could name your new resource type TEXT.

6 If your project is an .RC file, you may want to create an identifier for the new resource
type.

7 Enter a value for the identifier. This value is the ID that Windows and your program·
will associate with this identifier type. If you use a resource ID, it must be greater
than 255, because Windows reserves the values 1 through 255 for standard resources.

8 Click OK to create the new resource type.

From now on, whenever you create a new resource, you see that resource type listed in
the New Resource dialog box with all the standard resource types. To give the resource
a name, click the Options button. You can also click OK to use the default name.

Adding a user-defined resource
After you have created a resource type, you can add a resource of that type to your
project. To add a use-defined resource,

1 Open a resource project or create a new one.

2 Choose Resource I New. You see the New Resource dialog box.

3 In the Resource Type list, select your user-defined resource.

4 Click OK to place the resource in the current project file or click the Options button to
add it to another resource project file.

S Resource Workshop opens the Text editor with a blank definition for your user­
defined resource.

Using the RCDATA resource type
You can use the predefined RCDATA resource type to add a data resource to your
application. It works the same way as a user-defined resource type.

The primary difference between the two is addressability: you might prefer to have
many different types of user-defined resources rather than just one type, RCDATA.

To add an RCDATA resource to your project,

1 Choose Resource I New. You see the New Resource dialog box.

2 Select RCDATA and click the Options button. You can also change the name in the
source script.

3 Press OK. You see a blank RCDATA definition in the Text editor.

4 Add resource data.

314 C++ User's Guide

Editing a user-defined resource
When you edit a user-defined resource, you work with its resource script.

To edit a user-defined resource,

Open a resource project. You can either create a resource type or open an existing
one.

2 Select the user-defined resource type to which you want to add a resource.

3 Open the Text editor by:

• Double-clicking the name of the resource you want to edit.

1& Selecting the resource name and choosing Resource I Edit or Resource I Edit as
Text.

Once you have brought the resource script up in the script editor, you can add or change
data. To add data to your resource, do one of the following:

• Use the Text editor to enter data between the BEGIN and END statements.

• Store the data in a separate file and add the file name to the end of the user-defined
resource statement. Delete the BEGIN and END statements.

After you make any changes, you must recompile the resource to save your changes. If
you exit without recompiling, you lose all your changes.

Embedding resource data in a project file
You can add data to your resource by storing data in a separate file. The disadvantage to
this approach is that if something happens to the file, the data is lost. Another option is
to embed the external data into the project file script. Here's how:

Right-click and choose Add To Project.

2 Choose User Resource Data in the File Type list.

3 Enter the file name in the File Name input box. (The file must use a non-standard file
extension.)

The Custom Resource dialog box is displayed.

4 Double-click the resource type. The resource appears in the Resource Project
window.

If you select the new resource and choose Resource I Edit, you see that the resource data
is in hexadecimal format. For that reason, you should keep the external data file
available in case you want to edit the resource script later.

Entering data in the resource script
Use the Text editor to change data that is between the BEGIN and END statements. Do
not use this editor to do much formatting, since Resource Workshop rearranges the text
when it compiles or decompiles the resource.

C hap t e r 19, W 0 r kin 9 wit h use r -de fin e d res 0 u r c e s 315

Here are some guidelines:

• The data can include any mix of numeric values and strings.

• You can use hexadecimal, octal, or decimal notation to represent numeric values. Use
either Ox (a zero followed by the letter x) or $ (a dollar sign) as the leading characters
for hexadecimal notation. This notation supports only 16-bit values. If you want to
use an odd number of hexadecimal values, use a hexstring.

A hexstring is a string of hexadecimal values enclosed in single quotation marks. The
compiler ignores any spaces you insert to make the hex codes more readable.

• If you include text strings in your resource, enclose the strings in quotation marks,
like this: "string". Strings are not automatically null-terminated. To terminate a string
with a null character, type \ 0 (backslash zero) at the end of the string.

Testing a user-defined resource
You cannot test user-defined resources within Resource Workshop. You need to use
Resource Workshop to compile the project file that contains the resource and bind it to
your executable file. You can then run your program and test the resource.

316 c++ User's Guide

Borland C++ tools and utilities
Part III covers the additional tools and utilities provided with Borland C++. These tools
include compilers, linkers, a resource compiler, a librarian, a project builder (called
MAKE), and other utilities. Although most of these tools are documented in this Part,
some tools and utilities are documented in the online Help.

While programming, you can use either the IDE or the command-line tools. Although
both sets of tools produce the same results, you might choose to use the command-line
tools because you prefer to use your own programming editor (such as Brief). Here's

This part is organized into the following chapters:

• Chapter 20, UUsing MAKE," describes the Borland C++ make utilities MAKE.EXE
and MAKEREXE. These are tools that help you manage projects by building only the
files that have changed since the last build.

• Chapter 21, UUsing resource tools," describes the Borland C++ resource tools that
compile and link application resources.

• Chapter 22, UUsing WinSight," explains how to use the WinSight utility to track
Windows system messages in your application.

• Chapter 23, UUsing WinSpector," explains how to use the WinSpector utility to track
fatal system errors.

Par till, B 0 r I and C++ too I 5 and uti lit i e s 317

Running the command-line tools
The command-line compiler uses DPMI (DOS Protected Mode Interface) to run in
protected mode on 386, i486, and Pentium machines with at least 640K conventional
RAM and at least 4MB extended memory.

Although the compilers run in protected mode, they generate applications that run in
real mode. Protected-mode tools have the advantage that they can access more memory
than real-mode tools. This helps to compile large projects at faster speeds, without the
cost of extensive disk-swapping.

Memory and MAKESWAP.EXE
If you get Out of Memory errors from DOS when running the 32-bit command-line tools,
create a swap file with the MAKESW AP utility. You describe the size of the file to create
in kilobytes. MAKE SWAP supports the following syntax:

MAKESWAP 12M

This command creates a 12MB swap file called EDPMI.SWP in the current directory,
which the command-line tools use when they need additional memory. To set up a
swap file, use the DPMIMEM environment variable at the DOS prompt, or add this line
to your AUTOEXEC.BAT file:

set DPMI32=SWAPFILE <location of swap file>EDPMI.SWP

Note MAKESW AP applies to DOS only, not to DOS text boxes opened under Windows. See
the online file INSTALL.TXT for information on running these tools from DOS boxes.

The run-time manager and tools
The Borland C++ protected-mode applications (such as BCC and BCC32) use the run­
time manager tools, RTM.EXE and 32RTM.EXE. The tools that use the run-time '
manager first load the run-time manager, do their work, and then unload the run-time
manager. If you're accessing 32-bit command-line tools that use the run-time manager
many times over a short period (perhaps from a makefile), you could speed up the
process by loading the run-time manager once, then calling the tools. To load the run­
time manager, type 32RTM at the command line. To unload the run-time manager, type
32RTM -u.

By default, the run-time manager consumes all available memory when it loads. It then
allocates memory to its clients when they request it through the memory manager API
routines.

When running in a DOS box under Windows 3.x, the amount of memory that RTM
reserves is also limited by the XMS Memory KB I;..imit setting in the corresponding PIF
file. Your PIF file setting for the DOS box should set XMS Memory KB Limit to at least
1024. TlUs value sets the limit on the amount of memory that RTM takes for the 16-bit
DOS extended-memory application.

318 c++ User's Guide

Using MAKE
MAKE.EXE is a command-line project-manager utility that helps you quickly compile
only those files in a project that have changed since the last compilation. (MAKER is a
real-mode version of MAKE.) If you work in the IDE, you should use the IDE's Project
Manager (see Chapter 2, "Managing projects").

This chapter covers the following topics:

• MAKE basics • Makefile contents
• Using explicit and implicit rules • Using MAKE macros
• Using MAKE directives

MAKE basics
MAKE uses rules from a text file (MAKEFILE or MAKEFILE.MAK by default) to
determine which files to build and how to build them. For example, you can get MAKE
to compile an .EXE file if the date/time stamps for the .CPP files that contain the code
for the .EXE are more recent than the .EXE itself. MAKE is very useful when you build a
program from more than one file because MAKE will recompile only the files that you
modified since the last compile.

Two types of rules (explicit and implicit) tell MAKE what files depend on each other.
MAKE then compares the date/time stamp of the files in a rule and determines if it
should execute a command (the commands usually tell MAKE which tiles to recompile
or link, but the commands can be nearly any operating system command).

The general syntax for MAKE is

MAKE [options ...] [targets[s]]

where options are MAKE options that control how MAKE works, and targets are the
names of the files in a makefile that you want MAKE to build. Options are separated
from MAKE by a single space. Options and targets are also separated by spaces. Targets
may contain wildcard characters such as * and ?

Chapter 20, Using MAKE 319

To get command-line help for MAKE, type MAKE -? or MAKE -h.

If you type MAKE at the command prompt, MAKE performs the following default tasks:

MAKE looks in the current directory for a file called BUILTINS.MAK (this file contains
rules MAKE always follows unless you use the -r option). If it can't find the file in the
current directory, it looks in the directory where MAKE.EXE is stored. After loading
BUlL TINS.MAK, MAKE looks for a file called MAKEFILE or MAKEFILE.MAK. If
MAKE can't find any of these files, it gives you an error message.

1 When MAKE finds a makefile, it tries to build only the first target file in the makefile
(although the first target can force other targets to be built). MAKE checks the time
and date of the dependent files for the first target. If the dependent files are more
recent than the target file, MAKE executes the target commands, which update the
target. See the section called au sing makefiles" for more information on instructions
in makefiles.

2 If a dependent file for the first target appears as a target elsewhere in the makefile,
MAKE checks its dependencies and builds it before building the first target. This
chain reaction is called linked dependency. '

3 If the MAKE build process fails, MAKE deletes the target file it was building. To get
MAKE to keep a target when a build fails, see the .precious directive on page 335.

You can stop MAKE by using Ctrl+Break or Ctr/+C.

To place MAKE instructions in a file other than MAKEFILE, see the section titled
"MAKE options."

BUILTINS.MAK
BUILTINS.MAK contains standard rules and macros that MAKE uses before it uses a
makefile (you can use the -r option to tell MAKE to ignore BUILTINS.MAK). Use
BUILTINS.MAK for instructions or macros you want executed each time you use
MAKE. Here's the default text of BUILTINS.MAK:

Borland C++ - (C) Copyright 1993 by Borland International

default is to target 16BIT
pass -DWIN32 to make to target 32BIT

! if ! $d (WIN32)
cc = bee
RC = bree
AS = tasm
!else
CC = bee32
RC = bree32
AS = tasm32
!endif
.asm.obj:

320 C++ Use r 's G u ide

$(AS) $ (AFLAGS) $&.asm
.c.exe:

$(CC) $ (CFLAGS) $&.c
.c.obj:

$(CC) $ (CFLAGS) Ic $&.c
.cpp.exe:

$(CC) $ (CFLAGS) $&.cpp
.cpp.obj:

$(CC) $ (CPPFLAGS) Ic $&.cpp
.rc.res:

$(RC) $ (RFLAGS) Ir $&

. SUFFIXES: .exe .obj .asm .c .res .rc

!if !$d(BCEXAMPLEDIR)
BCEXAMPLEDIR = $(MAKEDIR)\ .. \EXAMPLES
!endif

Using TOUCH.EXE
Sometimes you'll want to force a target file to be recompiled or rebuilt even though you
haven't changed it. One way to do this is to use the TOUCH utility. TOUCH changes the
date and time of one or more files to the current date and time, making it "newer" than
the files that depend on it.

You can force MAKE to rebuild a target file by touching one of the files that target
depends on. To touch a file (or files), type the following at the command prompt:

touch filename [filename ... J

TOUCH updates the file's creation date and time. It accepts file names that contain the
wildcard characters * and ?

Note Before you use TOUCH, make sure your system's internal clock is set correctly. If it isn't,
TOUCH and MAKE won't work properly.

MAKE options
Command-line options control MAKE behavior. Options are case-sensitive. Type
options with either a preceding - or /. For example, to use a file called PROJECTA.MAK
as the makefile, type MAKE - fPROJECTA. MAK (a space after -£ is optional). Many of the
command-line options have equivalent directives that are used in the makefile (see
page 331 for more inforr~l.ation on directives).

Table 20.1 MAKE options

-a Checks dependencies of include files and nested include files associated with .OBJ
files and updates the .OBJ if the .h file changed. See also -c.

-B Builds all targets regardless of file dates.

C hap t e r 2 0, U sin 9 M A K E 321

Table 20.1 MAKE options (continued)

-c Caches autodependency information, which can improve MAKE's speed. Use with
-a; don't use if MAKE changes include files (such as using TOUCH from a makefile
or creating header or include files during the MAKE process).

-Omacro Defines macro as a single character, causing an expression !ifdef macro written in the
makefile to return true.

[-O]macro=[string]

-ddirectory

-e

-ffilename

-hor-?

-Idirectory

-i

-K

-m
-N

-n

-p
-q
-r

-8

-s

-Umacro

-w

Defines macro as string. If string contains any spaces or tabs, enclose string in
quotation marks. The -0 is optional.

Used with -8 to specify the drive and directory MAKER uses when it swaps out of
memory. MAKE ignores this option. '

Ignores a macro if its name is the same as an environment variable (MAKE uses the
environment variable instead of the macro).

Uses filename or filename.MAK instead of MAKEFILE (space after -f is optional).

Displays MAKE options and shows defaults with a trailing plus sign.

Searches for include files in the current directory first, then in directory.

Ignores the exit status of all programs run from MAKE and continues the build
process.

Keeps temporary files that MAKE creates (MAKE usually deletes them). See also
KEEP on page 323.

Displays the date and time stamp of each file as MAKE processes it.

Executes MAKE like Microsoft's NMAKE (see the section following this table for
more information).

Prints the commands but doesn't actually perform them, which is helpful for
debugging a makefile.

Displays all macro definitions and implicit rules before executing the makefile.

Returns a if the target is up-to-date and nOI\Zero if it is not (for use with batch files).

Ignores any rules defined in BUIL TINS.MAK.

Swaps MAKER out of memory while commands are executed, reducing memory
overhead and allowing compilation of large modules. MAKE ignores this option.

Suppresses onscreen command display.

Undefines previous definitions of macro.

Writes the current specified non-string options to MAKE.EXE making them
defaults.

Setting options on as defaults
The -W option lets you set some MAKE options on as defaults so that each time you use
MAKE, those options are used. To set MAKE options, type

make -option [-] [-option] [-] ...-w

For example, you could type MAKE -m -w to always view file dates and times. Type
MAKE -m- -W to tum off the default option. When MAKE asks you to write changes to
MAKE.EXE, type Y.

/

322 C++ Use r '5 G U ide

Caution! The -W option doesn't work when the DOS SHARE program is running. The message
Fatal: unable to open file MAKE. EXE is displayed. The -W option doesn't work
with the following MAKE options:

-Dmacro -Dmacro=string
-ddirectory -Usymbol
-ffilename -? or-h
-Idirectory

Compatibility with Microsoft's NMAKE
Use the -N option if you want to use makefiles that were originally created for
Microsoft's NMAKE. The following changes occur when you use -N:

• MAKE interprets the « operator like the && operator: temporary files are used as
response files, then deleted. To keep a file, either use the -K command-line option or
use KEEP in the makefile.

MAKE usually deletes temporary files it creates.

«FileName. Ext

text
?

«KEEP

If you don't want to keep a temporary file, type NOKEEP or type only the temporary
(optional) file name. If you don't type a file name, MAKE creates a name for you. If
you use NOKEEP with a temporary file, then use the -K option with MAKE, MAKE
deletes the temporary file. '

• The $d macro is treated differently. Use !ifdef or !ifndef instead.

• Macros that return paths won't return the last \. For example, if $ (<D) normally
returns C: \CPP\, the -N option makes it return c: \CPP.

• Unless there's a matching .suffixes directive, MAKE searches rules from bottom to
top of the makefile.

• The $* macro always expands to the target name instead of the dependent in an
implicit rule.

Using makefiles
A makefile is an ASCII file of instructions for MAKE.EXE. MAKE assumes your
makefile is called MAKEFILE or MAKEFILE.MAK unless you use the -f option (see
page 321).

MAKE either builds targets you specify at the MAKE command line or it builds only the
first target it finds in the makefile (to build more than one target, see the section
"Symbolic targets"). Makefiles can contain

• Comments • Explicit rules
• Implicit rules • Macros
• Directives

C hap t e r 2 0, U sin 9 M A K E 323

Symbolic targets
A symbolic target forces MAKE to build multiple targets in a makefile (you don't need
to rely on linked dependencies). The dependency line lists all the targets you want to
build. You don't type any commands for a symbolic target.

In the following makefile, the symbolic target allFiles builds both FILEl.EXE and
FILE2.EXE.

allFiles: filel.exe file2.exe
filel.exe: filel.obj

bee filel. obj
file2.exe: file2.obj

bee file2. obj

Rules for symbolic targets

#Note this target has no commands.

Observe the following rules with symbolic targets:

• Symbolic targets don't need a command line.

• Give your symbolic target a unique name; it can't be the name of a file in your current
directory.

• Name symbolic targets according to the operating system rules for naming files.

Explicit and implicit rules
The explicit and implicit rules that instruct MAKE are generally defined as follows:

• Explicit rules give MAKE instructions for specific files.

• Implicit rules give general instructions that MAKE follows when it can't find an
explicit rule.

Rules follow this general format:

Dependency line
Commands
?

The dependency line is different for explicit and implicit rules, but the commands are
the same (for information on linked dependencies see page 320).

MAKE supports multiple rules for one target. You can add dependent files after the first
explicit rule, but only one should contain a command line. For example,

Targetl: dependentl dep2 dep3 dep4 dep5
Targetl: dep6 dep7 dep8

bee -c $**

Explicit rule syntax
Explicit rules are instructions to MAKE that specify exact file names. The explicit rule
names one or more targets followed by one or two colons. One colon means one rule is
written for the target; two colons mean that two or more rules are written for the target.

324 C++ Use r' s G u ide

Explicit rules follow this syntax:

target [target ...]: [:] [{path}] [dependent[s] ...]
[commands]
?

Braces must be included if you use the path parameter.

• target The name and extensi9n of the file to be updated (target must be at
the start of the line--no spaces or tabs are allowed). One or more
targets must be separated by spaces or tabs. Don't use a target's name
more than once in the target position of an explicit rule in a makefile.

• path A list of directories, separated by semicolons and enclosed in braces,
that points to the dependent files.

• dependent The file (or files) whose date and time MAKE checks to see if it is
newer than target (dependent must be preceded by a space). If a
dependent file also appears in the makefile as a target, MAKE
updates or creates the target file before using it as a dependent for
another target.

• commands Any operating system command. Multiple commands are allowed in
a rule. Commands must be indented by at least one space or tab (see
the section on commands on page 326).

If the dependency or command continues on to the next line, use the backslash (\) at the
end of the line after a target or a dependent file name. For example,

MYSOURCE.EXE: FILE1.OBJ'

FILE3.0BJ

bcc filel.obj file2.obj file3.obj

Single targets with multiple rules
A single target can have more than one explicit rule. You must use the double colon ::
after the target name to tell MAKE to expect multiple explicit ruYes. The following
example shows how one target can have multiple rules and commands .

. cpp.obj:
bcc -c -ncobj $<

.asm.obj:
tasm /rnx $<, asmobj\

mylib.lib :: fl.obj f2.obj
echo Adding C files
tlib mylib -+cobjfl -+cobjf2

mylib.lib :: f3.obj f4.obj
echo Adding ASM files
tlib mylib -+asmobjf3 -+asmobjf4

C hap t e r 2 0, U sin 9 M A K E 325

Implicit rule syntax
An implicit rule starts with either a path or a period and implies a target-dep~ndent file
relationship. Its main components are file extensions separated by periods. The first
extension belongs to the dependent, the second to the target.

If implicit dependents are out-of-date with respect to the target or if they don't exist,
MAKE executes the commands associated with the rule. MAKE updates explicit
dependents before it updates implicit dependents.

Implicit rules follow this basic syntax:

[source_dirsl.source_ext[target_dirsl.target_ext:
[corrunands 1

• {source_dirs} The directory of the dependent files. Separate multiple directories
with a semicolon.

• . source_ext The dependent file-name extension.

• {target_dirs} The directory of the target (executable) files. Separate multiple
directories with a semicolon.

• commands

The target file-name extension. Macros are allowed here.

Marks the end of the dependency line.

Any operating system command. Multiple commands are allowed.
Commands must be indented by one space or tab (see the section on
commands on page 326).

If two implicit rules match a target extensionbut no dependent exists, MAKE uses the
implicit rule whose dependent's extension appears first in the .sUFFIXES list. See the
".suffixes" section on page 335.

Explicit rules with implicit commands
A target in an explicit rule can get its command line from an implicit rule. The following
example shows an implicit rule and an explicit rule without a command line .

. c.obj:
bcc -c $< #This corrunand uses a macro $< described later.

myprog.obj: #This explicit rule uses the command: bcc -c myprog.c

The implicit rule command tells MAKE to compile MYPROG.C (the macro $< replaces
the name myprog . obj with myprog . c).

Seel?age 330 for information on default macros.

Commands syntax
Commands can be any operating system command, but they can also include MAKE
qlacros, directives, and special operators that operating systems can't recognize (note
that I can't be used in commands). Here are some sample commands:

326 C++ Use r 's G u ide

cd ..

bcc -c mysource.c

COpy *.OBJ C:PROJECTA

bcc -c $(SOURCE) #Macros are explained later in the chapter.

Commands follow this general syntax:

[prefix ...] commands

Command prefixes
Commands in both implicit and explicit rules can have prefixes that modify how MAKE
treats the commands. Table 20.2 lists the prefixes you can use in makefiles; each prefix is
explained in more detail following the table.

Table 20.2 COf\lmand prefixes

@ Don't display command while it's being executed .

..,..num Stop processing commands in the makefile when the exit code returned from command
exceeds num. Normally, MAKE aborts if the exit code is nonzero. No white space is
allowed between - and num.

&

Continue processing commands in the makefile, regardless of the exit code returned by
them.

Expand either the macro $**, which represents all dependent files, or the macro $?, which
represents all dependent files stamped later than the target. Execute the command once for
each dependent file in the expanded macro.

Using@
The following command uses the modifier @, which prevents the command from
displaying onscreen when MAKE executes it.

diff.exe : diff.obj
@bcc diff.obj

Using -num and -
The -num and - modifiers control MAKE processing under error conditions. You can
choose to continue with the MAKE process if an error occurs or only if the errors exceed
a given number.

In the following example, MAKE continues processing if BCC isn't run successfully:

target.exe : target.obj
target.obj : target.cpp

bcc -c target.cpp

Using &
The & modifier issues a command once for each dependent file. It is especially useful for
commands that don't take a list of files as parameters. For example, .

copyall : filel. cpp file2.cpp
© $** c:\temp

C hap t e r 2 0, U sin 9 M A K.E 327

results in COpy being invoked twice as follows:

copy filel.cpp c:\temp
copy file2.cpp c:\temp

Without the & modifier, COPY would be called only once.

Command operators
You can use any operating system command in a MAKE commands section. MAKE
uses the normal operators (such as +, -, and so on), but it also has other operators you
can use.

Table 20.3 Command operators

< Take the input for use by command from file rather than from standard input.

> Send the output from command to file.

» Append the output from command to file.

« Create a temporary, inline file and use its contents as standard input to command.

&& Create a temporary file and insert its name in the makefile.

delimiter Any character other than # and used with « and && as a starting and ending delimiter
for a temporary file. Any characters on the same line and immediately following the
starting delimiter are ignored. The closing delimiter must be written on a line by itself.

Debugging with temporary files
Temporary files can help you debug a command set by placing the actual commands
MAKE executes into the temporary file. Temporary file names start at MAKEOOOO.@@@,
where the 0000 increments for each temporary file you keep. You must place delimiters
after && and at the end of what you want sent to the temporary file (! is a good
delimiter).

The following example shows && instructing MAKE to create a file of the input to
TLINK.

prog.exe: A.obj B.obj
TLINK Ie &&!
cOs.obj $**
prog.exe
prog.map
maths.lib cs.lib

The response file created by && contains these instructions:

cOs.obj a.obj b.obj
prog.exe
prog.map
maths.lib cs.lib

Using MAKE macros
A MAKE macro is a variable that gets expanded into a string whenever the macro is
called in a makefile. For example, to d,efine a macro called LIBNAME that represents the

328 C++ Use r 's G u ide

string "mylib.lib," type LIBNAME = mylib.lib. When MAKE encounters the macro
$ (LIBNAME), it uses the stringmylib .lib. Macros let you create template makefiles that
you can change to suit different projects.

If MAKE finds an undefined macro in a makefile, it looks for an operating-~ystem
environment variable of that name (usually defined with SET) and uses its definition as
the expansion text. For example, if you wrote $ (PATH) in a makefile and never defined
PATH, MAKE would use the text you defined for PATH in your AUTOEXEC.BAT. (See
your operating system manuals for information on defining environment variables.)

Defining macros
The general syntax for defining a macro in a makefile is MacroName
expansion_text.

• MacroName is case-sensitive. MACR01 is different from Macrol.

• MacroName is limited to 512 characters.

• expansion_text is limited to 4096 characters. Expansion characters may be
alphanumeric, punctuation, or whitespace.

Each macro must be on a separate line in a makefile. Macros are usually put at the top of
the makefile. If MAKE finds more than one definition for a macroName, the new
definition replaces the old one.

Macros can also be defined using the command-line option -D (see page 322). More
than one macro can be defined by separating them with spaces. The following examples
show macros defined at the command line:

make -Dsoureedir=e:projeeta
make eommand="bee -e"
make eommand=bee option=-e

The following differences in syntax exist between macros entered on the command line
and macros written in a makefile.

Table 20.4 Command line vs. makefile macros

Spaces allowed before and after =
Space allowed before macroName

Using a macro

Yes

No

No

Yes

To use a macro in a makefile, type $ (MacroName) where MacroName is the name of a
defined macro. You can use braces {} and parentheses 0 to enclose the MacroName.

MAKE expands macros at various times depending on where they appear in the
makefile:

• Nested macros are expanded when the outer macro is invoked.
• Macros in rules and directives are expanded when MAKE first looks at the makefile.
• Macros in commands are expanded when the command is executed.

C hap t e r 2 0, U sin 9 M A K E 329

String substitutions in macros
MAKE lets you temporarily substitute characters in a previously defined macro. For
example, if you defined a macro called SOURCE as SOURCE = fl.cpp f2. cpp f3. cpp,
you could substitute the characters .obj for the characters .cpp by using
$ (SOURCE: . cpp= . obj) . The substitution doesn't redefine the macro.

Rules for macro substitution:

• Syntax: $ (MacroName:original_text=new_text).

• No whitespace before or after the colon.

• Characters in originaCtext must exactly match the characters in the macro definition;
this text is case-sensitive.

MAKE now lets you use macros within substitution macros. For example,

MYEXT=.C
SOURCE=fl.cpp f2.cpp f3.cpp
$(SOURCE:.cpp=$(MYEXT)) #Changes fl.cpp to fl.C, etc.

Default MAKE macros
MAKE contains several default macros you can use in your makefiles. Table 20.5 lists
the macro definition and what it expands to in explicit and implicit rules.

Table 20.5 Default macros

$* path \ dependent file

$< path \ dependent file+ext

$: path for dependents

$. dependentfile+ext

$& dependent file

$@ path\targetfile+ext

$** path \ dependent file+ext

$? path \ dependent file+ext

Table 20.6 Other default macros

__ MSooS __ 1
__ MAKE __ Ox0370

MAKE make

MAKEFLAGS options

MAKEDIR directory

330 c++ User's Guide

path \ target file C: \PROJECTA \MYTARGET

path\targetfile+ext C:\PROJECTA \MYTARGET.oBJ

path for target C:\PROJECTA

target file + ext MYSOURCE.C

target file MYSOURCE

path \ target file+ext C: \PROJECTA \MYSOURCE.C

all dependents file+ext FILEl.CPP FILE2.CPP FILE3.CPP

old dependents FILE1.CPP

If running under DOS.

MAKE's hex version number.

MAKE's executable file name.

The options typed at the command line.

Directory where MAKE.EXE is located.

Modifying default macros
When the default macros listed in Table 20.5 don't give you the exact string you want,
macro modifiers let you extract parts of the string to suit your purpose.

To modify a default macro, use this syntax:

$(MacroName [modifier])

Table 20.7 lists macro modifiers and provides examples of their use.

Table 20.7 File-name macro modifiers

D Drive and directory $«D) C:\PROJECTA \

F Base and extension $«F) MYSOURCE.C

B Base only $«B) MYSOURCE

R Drive, directory, and base $«R) C: \PROJECTA \MYSOURCE

Using MAKE directives
MAKE directives resemble directives in languages such as C and Pascal, and perform
various control functions, such as displaying commands onscreen before executing
them. MAKE directives begin either with an exclamation point or a period. Table 20.8
lists MAKE directives and their corresponding command-line options (directives
override command-line options). Each directive is described in more detail following
the table.

Table 20.8 MAKE directives

. autodepend

. cacheautodepend

!elif

!else

!endif

!error

!if

!ifdef

!ifndef

.ignore

!include

!message

. noautodepend

. nocacheautodepend

-a
-c

-i

-a-
-c-

Turns on autodependency checking .

Turns on autodependency caching .

Acts like a Celse if.

Acts like a C else.

Ends an !if, !ifdef, or !ifndef statement.

Stops MAKE and prints an error message.

Begins a conditional statement.

Acts like a C #ifdef, testing whether a given macro has been
defined.

Acts like a C #ifndef, testing whether a given macro is
undefined.

MAKE ignores the return value of a command.

Acts like a C #include, specifying a file to include in the
makefile.

Prints a message to stdout while MAKE runs the makefile.

Turns off autodependency checking .

Turns off autodependency caching .

C hap t e r 20, Us i n 9 M A K E 331

Table 20.8 MAKE directives (continued)

. noIgnore

. nosilent

.noswap

.path.ext.

;precious

.silent

.suffixes

.swap

!undef

. autodepend

-i-

-s-

-s-

-s

-s

Turns off .Ignore .

Displays commands before MAKE executes them .

Tells MAKE not to swap itself out of memory before executing
a command.

Tells MAKE to search for files with the extension .ext in path
directories.

Saves the target or targets even if the build fails.

MAKE executes commands without printing them first.

Determines the implicit rule for ambiguous dependencies.

Tells MAKE to swap itself out of memory before executing a
command.

Clears the definition of a macro. After this, the macro is
undefined .

Autodependencies occur in .OB} files that have corresponding .CPP, .C, or .ASM files.
With .autodepend on, MAKE compares the dates and times of all the files used to build
the .OB}. If the dates and times of the files used to build the .OB} are different from the
date/time stamp of the .OB} file, the .OB} file is recompiled. You can use .autodepend or
-a in place of linked dependencies (see page 320 for information on linked
dependencies).

!error
This is the syntax of the !error directive:

!error message

MAKE stops processing and prints the following string when it encounters this
directive:

Fatal makefile exit code: Error directive: message

Embed !error in conditional statements to abort processing and print an error message,
as shown in the following example:

! if ! $d(MYMACRO)
#if MYMACRO isn't defined
!error MYMACRO isn't defined
!endif

If MYMACRO in the example isn't defined, MAKE prints the following message:

Fatal makefile 4: Error directive: MYMACRO isn't defined

Summing up error-checking controls
Four different controls tum off error checking:

• The .ignore directive turns off error checking for a selected portion of the makefile.

332 C++ Use r 's G u ide

• The -i command-line option turns off error checking for the entire makefile.

• The -num command operator, which is entered as part of a rule, turns off error
checking for the related command if the exit code exceeds the specified number.

• The - command operator turns off error checking for the related command
regardless of the exit code.

!if and other conditional directives
The !if directive works like C if statements. As shown here, the syntax of !if and the
other conditional directives resembles compiler conditionals:

!if condition !if condition !if condition !ifdef macro

!endif !else ! elif condition !endif

!endif

The following expressions are equivalent:

!ifdef macro and !if $d(macro)

i fndef macro and ! if! $d (macro)

These rules apply to conditional directives:

!endif

• One !else directive is allowed between !if, !ifdef, or !ifndef and !endif directives.
• Multiple !elif directives are allowed between !if, !ifdef, or !ifndef, !else and !endif.
• You can't split rules across condItional directives.
• You can nest conditional directives.
• !if, !ifdef, and !ifndef must have matching !endif directives within the same file.

The following information can be included between !if and !endif directives:

• Macro definition • !include directive
• Explicit rule • !error directive
• Implicit rule • !undef directive

Condition in if statements represents a conditional expression consisting of decimal,
octal, or hexadecimal constants and the operators shown in Table 20.9.

Table 20.9 Conditional operators

Negation ?: Conditional expression

Bit complement Logical NOT

+ Addition » Right shift

Subtraction « Left shift

* Multiplication & Bitwise AND

/ Division Bitwise OR

% Remainder /\ BitwiseXOR

&& Logical AND >= Greater than or equal*

Chapter 20, Using MAKE 333

Table 20.9 Conditional operators (continued)

II

>
<

Logical OR

Greater than

Less than

*Operator also works with string expressions.

<=

!=

Less than or equal*

Equality*

Inequality*

MAKE evaluates a conditional expression as either a simple 32-bit signed integer or as a
character string.

!include
This directive is like the #include preprocessor directive for the C or c++ language-it
lets you include the text of another file in the makefile:

!include filename

You can enclose filename in quotation marks ("") or angle brackets (< » and nest
directives to unlimited depth, but writing duplicate !include directives in a makefile
isn't permitted-you'll get the error message cycle in the include file.

Rules, commands, or directives must be complete within a single source file; you can't
start a command in an !include file, then finish it in the makefile.

MAKE searches for !include files in the current directory unless you've specified
another directory with the -I option.

!message
The !message directive lets you send messages to the screen from a makefile. You can
use these messages to help debug a makefile that isn't working the way you'd like it to.
For example, if you're having trouble with a macro definition, you could put this line in
your makefile:

!message The macro is defined here as: $ (MacroName)

When MAKE interprets this line, it will print onscreen The macro is defined here
as: . CPP, if the macro expands to .CPP at that line. Using a series of !message
directives, you can debug your makefiles .

. path.ext
The .path.ext directive tells MAKE where to look for files with a certain extension. The
following example tells MAKE to look for files with the .c extension in C:SOURCE or
C:CFILES and to look for files with the .obj extension in C:OBJS .

. path.c = C:CSOURCE;C:CFILES

.path.obj = C:OBJS

334 c++ User's Guide

.precious
If a MAKE build fails, MAKE deletes the target file. The .precious directive prevents the
file deletion, which is desired for certain kinds of targets such as libraries. When a build
fails to add a module to a library, you don't w~t the library to b~ deleted.

The syntax for .precious is

.precious: target [target] ... [target]

.suffixes
The .suffixes directive tells MAKE the order (by file extensions) for building implicit
rules.

The syntax of the .suffixes directive is

.suffixes: .ext [.ext] [.ext] ... [.ext]

.ext represents the dependent file extension in implicit rules. For example, you could
include the line . suf fixes: . asm . c . cpp to tell MAKE to interpret implicit rules
beginning with the ones dependent on .ASM files, then .C files, then .CPP files,
regardless of what order they appear in the makefile.

The following example shows a makefile containing a .suffixes directive that tells
MAKE to look for a source file (MYPROG.EXE) first with an .ASM extension, next with
a .C extension, and finally with a .CPP extension. If MAKE finds MYPROG.ASM, it
builds MYPROG.OBJ from the assembler file by calling TASM. MAKE then calls
TLINK; otherwise, MAKE searches for MYPROG.C to build the .OBJ file, and so on .

. suffixes: .asm .c .cpp

myprog.exe: myprog.obj

tlink myprog.obj

.cpp.obj:

bcc -P $<

.asm.obj:

tasm /mx $<

.c.obj:

bcc -P- $<

!undef
The syntax of the !undef directive is

!undef MacroName

!undef (undefine) clears the given macro, causing an !ifdef MacroName test to faiL

Chapter 20, Using MAKE 335

Using macros in directives
The macro $d is used with the !if conditional directive to perform some processing if a
specific macro is defined. The $d is followed by a macro name, enclosed in parentheses
or braces, as shown in the following example.

!if $d(DEBUG)
bee -v fl.epp f2.epp
!else
bee -v- fl.epp f2.epp
!endif

Null macros

#If DEBUG is defined,
#eompile with debug informationi
#otherwise (else)
#don't include debug information.

An undefined macro causes an !ifdef MacroName test to return false; a null macro
returns true. A null macro is a macro defined with either spaces to the right of the equal
sign (=) or no characters to the right of the equal sign. For example, the following line
defines a null macro in a makefile:

NULLMACRO =

Either of the following lines can define a null macro on the MAKE command line:

NULLMACRO=""

-DNULLMACRO

336 c++ User's Guide

Using command~line resource tools
There are several Borland command-line resource tools:

• Resource compiler

'BRCC32.EXE is the Borland resource compiler. It compiles resource script files (.RC
files) and produces the binary .RES file.

• Resource linkers
RLINK.EXE and RLINK32.DLL are the Borland resource linkers that bind re­
sources, in .RES file form, to an .EXE file, and mark the resulting .EXE file as a
Windows executable. RLINK32.DLL is accessed through TLINK32.EXE.
RLINK.EXE is for 16-bit resources only.

• Resource shells

BRC32.EXE is a shell through which BRCC32 and RLINK or RLINK32 (through
TLINK32) can be started in a single step.

Note BRC and BRCC are no longer compliers. These files are shells that call BRC32 or BRCC32
with 16-bit options. All resources are compiled with BRCC32. The command line
options are supported for downward compatability.

Resource compiler (BRCC32)
BRCC32 is the c'ommand-line version of the Resource Workshop resource compiler. It
accepts a resource script file (.RC) as input and produces a resource object file (.RES) as
output. BRCC32 is used for both 16-bit and 32-bit resources.

Syntax
BRCC32 [options] <filename>.RC

C hap t e r 2 1, U sin 9 com man d - lin ere sou r c e too I s 337

Command-line options
BRCC32 accepts these options:

@responsefile

-d<name>[=<string>]

- fo<filename>

-i<path>

-r

-v

-x

-? or -h

-16

-32

Takes instructions from the specified command
file.

Defines a preprocessor symbol.

Renames the output .RES file. (By default, BRCC32
creates the output .RES file with the same name as
the input .RC file.)

Adds one or more directories (separated by
semicolons) to the include search path.

This switch is ignored. It is included for
compatibility with other resource compilers.

Prints progress messages (verbose).

Deletes the current include path.

Displays help.

Builds a 16-bit resource.

Builds a 32-bit resource.

BRCC32 predefines common resource-related Windows constants such as WS_ VISIBLE
and BS_PUSHBUTTON. Also, two special compiler-related symbols are defined:
RC_INVOKED and WORKSHOP_INVOKED. These symbols can be used in the source
text in conjunction with conditional preprocessor statements to control compilation. For
example, the following construct can greatly speed up compilation:

#ifndef WORKSHOP_INVOKED

#include "windows.h"
#endif

Downward compatability
The following syntax and options are supported for downward compatabliity.

Syntax
BRCC [options] <filename>.RC

Command-line options
BRCC accept these options:

-31

-w32

338 c++ User's Guide

Builds Windows 3.1-compatible .RES files.

Builds Win32-compatible .RES files.

Resource compiler examples
The following example adds two directories to the include path and produces a .RES file
with the same name as the input .RC file.

brcc32 -i<dirl>;<dir2> <filename>.RC

This example produces an output .RES file with a name different from the input .RC file
name:

brcc32 -fo<filename>.RES <filename>.RC

This example builds a 16-bit .RES file:

brcc32 -16 -fo<filename>.RES <filename>.RC

Resource linkers (RLINK and RLINK32)
RLINK (and RLINK32) co~bines a .RES file with an .EXE file to produce a new
Windows executable. RLINK accepts as input one or more object files (.RES) and a
single Windows executable file. RLINK links the resources by fixing up string tables and
message tables and then binding these linked resources to the executable. RLINK32 is
called by TLINK32, and is used for 32-bit resources.

Syntax
rlink [options] <filename>.RES <filename>.EXE

Command-line options
RLINK accepts these options:

@<filename>

-d

- fe<filename>

- f i <filename>

-k

-v

-vx

-7 or -h

-vd.d

Takes instructions from the specified command
file.

Removes resources from the .EXE file (default if no
.RES file is specified).

Renames the output .EXE file.

Specifies additional input files.

Does not reorder segments for fastload. (This
option only applies to 16-bit resources.)

Prints progress messages (verbose listing).

Lists resources but does not bind to EXE file.

Displays help.

Makes the .EXE . file with Windows version
provided (v3.1 is the default). Version options are
listed in the following table.

C hap t e r 2 1, U sin 9 com man d - lin ere sou r c e too I s 339

3.1 16 Gives white background with a non 3-D
look for Windows 3.1x, Windows 32s, or
WinNT3.1.

4.0 16 Gives gray 3-D look for Windows 95 and
WinNT 3.51.

3.1 32 Gives white background with a non 3-D
look for Windows 32s or WinNT 3.1.

4.0 32 Gives gray 3-D look for Windows 95 and
WinNT 3.51.

Resource linker examples
The following example binds the resources in the .RES file into the .EXE file:

rlink <filename>.RES <filename>.EXE

This example links the resources in the two .RES files and binds them to the .EXE file:

rlink -fi<filename>.RES <filename>.RES <filename>.EXE

This example combines the program code in the input .EXE file with the resources in the
input .RES file and produces an output .EXE file with a new name:

rlink -fe<filename>.EXE <filename>.RES <filename>.EXE

This example takes input from an .RLK command file. It then links the resources in three
.RES files and binds them to the .EXE file:

rlink @<filename>.RLK

The command file «filename>.RLK) contains:

-fi<filename>.RES
-fi<filename>.RES
<filename>.RES
<filename>.EXE

Resource shell (BRC32)
The Borland resource compiler (BRC32) is a resource compiler shelL It invokes BRCC32
and RLINK or RLINK32, depending on the command-line syntax.

Syntax
brc32 [options] <filename>.RC [<filename>.EXE]

340 c++ User's Guide

Command-line options
BRC32 accepts these options:

-d<name>=string

- fo<filename>

- fe<filename>

-i<path>

-r

-v
-x

-16

-32

-vd.d

3.1

4.0

3.1

4.0

The following switches are
invalid when the -r switch is
specified:

-k

-t

Defines a symbol you can test with the #IFDEF
preprocessor directive.

Renames the .RES file.

Renames the .EXE file.

Adds one or more directories (separated by
semicolons) to the include search path.

Creates a .RES file only. The compiled .RES file is
not added to the .EXE.

Prints progress messages (verbose listing).

Directs the compiler to ignore the INCLUDE
environment variable when it searches for include
or resource files.

Builds 16-bit .RES files.

Builds 32-bit .RES files.

Makes the .EXE file with Windows version
provided (v3.1 is the default for 16-bit resources;
-v4.0 is the default for 32-bit resources). Version
options are listed in the following table.

16

16

32

32

Disables the contiguous preload
of segments and resources in the
.EXE file. Segments are kept in
the order in which they appear in
the DEF file. (This option only
applies to 16-bit resources.)

Creates an application that runs
only in protected mode
(Windows Standard or 386
Enhanced mode).

Gives white background with a
non 3-D look for Windows 3.1x,
Windows 32s, or WinNT 3.1.

Gives gray 3-D look for Windows
95 and WinNT 3.51.

Gives white background with a
non 3-D look for Windows 32s or
WinNT3.1.

Gives gray 3-D look for Windows
95 and WinNT 3.51.

C hap t e r 2 1, U sin 9 com man d - lin ere sou r c e too I S 341

Downward compatability
The following sytax and options are supported for downward compatability.

Syntax
brc [switches] <filename>.RC [<filename>.EXE]

Command-line options
BRC accept these options:

-31

-w32

Builds Windows 3.1-compatible .RES files.

Builds Win32-compatible .RES files.

Resource shell examples
The following statement compiles the .RC file, creates a .RES file, and adds the .RES file
to the executable file:

brc32 <filename>.RC [<filename>.EXE]

BRC32 automatically seeks an .EXE file with the same name as the .RC file. You need to
specify the .EXE file only if its name is different from that of the .RC file.

The following statement creates a .RES file, but not an .EXE file. If you name an .EXE file
in the command line, BRC ignores it:

brc32 -r <filename>.RC

The following statement adds an existing .RES file to an executable file. The .EXE file
name is required only if it differs from the .RES file name:

brc32 <filename>.RES [<filename>.EXE]

This example uses BRC32 to build a 16-bit Windows 3.1 compatible .RES file:

brc32 -16 -v3.1 -fo<filename>.RES <filename>.RC

342 c++ User's Guide

WinSight
WinSight is a debugging tool that gives you information about windows, window
classes, and window messages. You can use it to study a Windows application, to see
how windows and window classes are created and used, and to see what messages the
windows receive.

You can configure WinSight to trace and display messages by

• Window
• Message type
• Window class
• A combination of these

WinSight is a passive observer: it intercepts and displays information about messages,
but it doesn't prevent messages from getting to applications.

To start WinSight, double-click the WinSight icon located in the Borland C++ program
group. The WinSight window appears in its default configuration; it displays the
Window Tree view that lists all the windows currently active on the desktop. WinSight
saves your configuration, so if you open all three views and exit WinSight, the next time
you start it, all three views will display.

WinSight has three views: Class List, Window Tree, and Message Trace. You can
display these views from left to right or top to bottom by choosing View I Split
Horizontal or View I Split Vertical.

You can control the messages traced by WinSight (see page 347) and you can control
when messages start and stop tracing as described in the following sections.

Starting and stopping screen updates
To turn on tracing, choose Start! from the menu (Start! then becomes Stop! on the menu).
Normally, all three views are kept current as classes are registered, windows are created
and destroyed, and messages are received. However, you can use Messages I Trace Off

Chapter 22, WinSight 343

· to suspend tracing of messages only (Class List and Window Tree will continue to
update).

Use Stop! and Start! to

• Study a particular situation.
• Control (minimize) the machine time WinSight uses when it updates itself

constantly.

Turning off message tracing
To tum off tracing of message types, choose Messages I Trace Off. The Message Trace
view remains visible, and tracing resumes when you choose Messages I Selected
Classes, Selected Windows, or All Windows (provided tracing is on).

The following sections describe how to use the three views to get the information you
need to debug an ~pplication. Choose Spy I Exit to leave WinSight.

Choosing a view
WinSight has three views that can appear within its main window: Class List, Window
Tree, and Message Trace. You can choose to look at any or all of the views. WinSight
automatically tiles the views within the main window.

You can hide or display views at any time, using the View menu. Information and
selections are not lost when a view is hidden.

• The Class List view shows all the currently registered window classes.

• The Window Tree view displays the hierarchy of all the windows on the desktop.
Window Tree displays by default when you start WinSight.

• The Message Trace view displays information about messages received by selected
windows or window classes.

To get more detail about an item in Window Tree or Class List,

• Select a window or a class, then choose Spy I Open Detail.
• Double-click the window or class.

The Detail window displays the class name, executable module, and other information
about the class or window.

Class List view
A class is the name with which the window class was registered with Windows.
Sometimes, instead of choosing specific windows to trace, you might want to look at
messages for entire classes of windows. WinSight lets you do this with the Class List
view.

344 c++ User's Guide

Using the Class List view
The Class List view shows all the currently registered window classes. To get details
about a class, double-click it or select it and press Enter.

The diamonds next to the classes tum black momentarily whenever the window
receives any messages. This gives you an overview of which windows are currently
receiving messages. If a hidden child window receives a message, the diamond for the
parent changes color. Use the following format:

Class (Module) Function Styles

Class is the name of the class. Some predefined Windows classes have numeric names.
For example, the Popup menu class uses the number 32768 as its name. These
predefined classes are shown with both the number and a name, such as
#32768:PopupMenu. The actual class name is only the number (using the
MAKEINTRESOURCE format, which is also used for resource IDs).

Module is the name of the executable module (.EXE or .DLL) that registered the class.

Function is the address of the class window function.

Styles is a list of the cs_ styles for the class. The names are the same as the cs_ definitions
in WinTypes, except the cs_ is removed and the name is in m.ixed case (uppercase and
lowercase).

Spying on classes
To trace messages for one or more classes, select the classes in Class List (Shift+Click or
Ctr/+Click), then choose Messages I Selected Classes. If the Message Trace view is hidden,
it becomes visible when you choose Messages I Selected Classes.

Note that tracing messages to a class lets you see all messages to windows of that class,
including creation messages, which would otherwise not be accessible.

To change which classes are traced, change the selection in the Class List. Choose
Messages I Trace Off to tum off all message tracing to the Message view.

Window Tree view
The Window Tree view displays a hierarchical outline of all existing windows on the
desktop. This display lets you

• Determine what windows are present on the desktop.
• View the status of windows, including hidden windows.
• See which windows are receiving messages.
• Select windows for message tracing.

The lines on the left of the Window Tree view show the tree structure. Each window is
connected to its parent, siblings, and children with these lines. When a window receives
a message, the diamond next to it (or its parent window if the tree is collapsed) turns
black.

Chapter 22, WinSight 345

The diamond next to each window shows whether the window has any children. If the
diamond is blank, the window has no children. If the diamond contains a +, the window
has children that are not displayed. To show the next level of children, click the
diamond next to the window. To show all the levels of child windows (children of
children, and so on), right-click the diamond. If the diamond contains a -, the children
are displayed. To hide all of a window's child windows, click the diamond next to the
window. .

The format of the window details is as follows:

Handle {Class} Module (Position) "Title"

Handle is the window handle as returned by Create Window.

Class is the window class name, as described in the Class List view.

Module is the name of the executable module (.EXE or .DLL) that created the window.
Module is the name of the module owning the data segment passed as the hlnstance
parameter to Create Window.

Position is "hidden" if the window is hidden. If the window is visible, Position is
indicated by using screen coordinates (for parent windows) or coordinates in the
parent's client area (for child windows). Position uses the following format:

xBegin,yBegin - xEnd,yEnd

Title is the window title or text, as returned by GetWindowText or a wm_GETTEXT
message. If the title is the null string, the quotation marks are omitted.

Finding a window
WinSight has a special mode for locating windows. It can work in two ways: either
identifying the line in the Window Tree that corresponds to a window you point at with
the mouse, or highlighting a window you select in the Window Tree.

Important All other applications are suspended while you're in Find Window mode. Enter Find
Window mode by choosing Spy I Find Window. In this mode, whenever the mouse
passes into the boundaries of a window, a thick border appears around that window,
and the window is selected in the Window Tree view.

Alternatively, once in Find Window mode, you can select windows in the Window Tree
with the mouse or cursor keys, and WinSight will put a thick border around the selected
window or windows. If you press Enter, you will see the Window Detail window for the
selected window.

Leaving Find Window mode
Once you have located the window you want, you can leave Find Window mode by
clicking the mouse button or by pressing the Esc key. This removes the border from the
screen, leaving the current window's description selected in the Window Tree view.

346 c++ User's Guide

Spying on windows
To spy on one or more windows, select the windows (using the mouse and the Shift or
Gtrl key), then choose Messages I Selected Windows. To change which windows are
traced, change the selected window in Window Tree.

To spy on all windows, regardless of what is selected in the Class List or the Window
Tree, choose Messages I All Windows.

Message Trace becomes visible when you choose Messages I Selected Windows or
Windows I All Windows.

Choose Messages I Trace Off to disable message tracing without hiding Message Trace.

Choosing messages to trace
Message Trace displays messages received by selected window classes or windows.
Messages received via SendMessage are shown twice, once when they are sent and again
when they return to show the return value. Dispatched messages are shown once only,
since their return value is meaningless. The message display is indented to show how
messages are nested within other messages.

USing the Message Trace view
By default, WinSight traces all messages and displays them in the Message Trace view.
WinSight gives you several ways to narrow down the tracing of messages:

• Choose Messages I Selected Classes or Messages I Selected Windows, then select the
classes (in the Class List view) or windows (in the Window Tree view) by using the
mouse and Shift or Gtrl.

• Choose Message I All Windows.

• Choose Message I Options, then select any or all of fourteen groups of messages.
Check All Messages in the Options dialog box to return to tracing all messages.

Other tracing options
The Message Trace Options dialog box lets you change the format of the messages in
Message Trace. It also lets you trace messages to a file, printer, or an auxiliary monitor or
window.

• Normally, the Message Trace view interprets each message's parameters and
displays them in a readable format (Interpret Values is checked). Check Hex Values
to view message parameters as hex values of wParam and lParam.

• Information on traced messages usually displays in the Message Trace view.
However, you can send messages to a file, printer, or auxiliary monitor by checking
Log File in the Message Trace Options dialog box and doing one of the following:

@ Type a file name to trace to a log file. If the file already exists, messages are
appended to the file.

C hap t e r 2 2, Win S i 9 h t 347

48 Type the name of the device (for example, type PRN) for the log file to send outpuf
to the printer port.

• Type AUX to output trace messages to an auxiliary monitor or window. To do
this, you must have WINOX.5YS or OX.5YS installed as a device in your
CONFIC.5YS file. To stop logging message traces to a file, printer, or auxiliary
monitor, uncheck Log File. Use the following format:

Handle ["Title" or {Class}] Message Status

Handle is the window handle receiving the message.

Title is the window's title. If the title is the null string, the class name is displayed
instead, in curly braces.

Message is the message name as defined by Windows. They are displayed in WinSight in
all uppercase letters. Known undocumented Windows messages are shown in
lowercase. Unknown message numbers (user-defined) are shown as wm_User+OxXXXX
if they are greater-than or equal to wm_User or as wm_OxXXXX if they are less than
wm_User. Registered message numbers (from RegisterWindowsMessage) are shown with
their registered name in single quotes.

Status is one or more of the following:

• Dispatched indicates the message was received via DispatchMessage.

• Sent [from XXXX] indicates the message was received via SendMessage. If it was sent
from another window, from xxxx gives that window's handle. If it was sent from the
same window receiving it, this is shown with "from self." If it was sent from
Windows itself, the "from" phrase is omitted.

• Returns indicates the message was received via SendMessage and is now returning.

• Additional messages might include a numeric return value or text message such as
wm_GetText. For sent and dispatched messages, WinSight interprets the parameters
and gives a readable display. For messages that have associated data structures
(wm_Create, for example) it takes those structures and includes them in the display.

Table 22.1 Mouse messages
WM_HSCROLL

WM_LBUITONDBLCLK

WM_LBUITONDOWN

WM_LBUITONUP

WM_MBUTIONDBLCLK

WM_MBUTIONDOWN

Table 22.2 Window messages
WM_ACTNATE

WM_ACTN ATEAPP

348 c++ User's Guide

WM_MBUITONUP

WM_MOUSEACTN ATE

WM_MOUSEFIRST

WM_MOUSELAST

WM_MOUSEMOVE

WM_RBUTTONDBLCLK

WM_GETDLGCODE

WM_GETFONT

WM_RBUITONDOWN

WM_RBUTTONUP

WM_SETCURSOR

WM_VSCROLL

WM_QUERYNEWPALETTE

WM_QUERYOPEN

Table 22.2 Window messages
WM_CANCELMODE

WM_CHILDACTIV ATE

WM_CLOSE

WM_CREATE

WM_CTLCOLOR

WM_DDE_FIRST

WM_DESTROY

WM_ENABLE

WM_ENDSESSION

WM_ERASEBKGND

Table 22.3 Input messages
WM_CHAR

WM_CHARTOITEM

WM_COMMAND

WM_DEADCHAR

WM_KEYDOWN

WM_KEYLAST

Table 22.4 System messages
WM_COMPACTING

WM_DE~ODECHANGE

WM_ENTERIDLE

WM_FONTCHANGE

WIn_null

Table 22.5 Pen messages
WIN_USER

WM_GLOBALRCCHANGE

WM_HEDITCTL

Table 22.6 Initialization messages

WM_GETMINMAXINFO

WM_GETTEXT

WM_GETTEXTLENGTH

WM_ICONERASEBKGND

WM_KILLFOCUS

WM_MOVE

WM_PAINT

WIn_painticon

WM_QUERYDRAGICON

WM_QUERYENDSESSION

WM_KEYUP

WM_MENUCHAR

WM_MENUSELECT

WM_PARENTNOTIFY

WM_SYSCHAR

WM_SYSDEADCHAR

WM_PALETTEC~GED

WM_PALETTEISCHANGING

WM_POWER

WM_QUEUESYNCH

WM_SPOOLERSTATUS

WM_HOOKRCRESULT

WM_PENWINFIRST

WM_PENWINLAST

WM_QUIT

WM_SETFOCUS

WM_SETFONT

WM_SETREDRAW

WM_SETIEXT

WM_SHOWWINDOW

WM_SIZE

WM_ WINDOWPOSCHANGED

WM_ WINDOWPOSCHANGING

WM_SYSKEYDOWN

WM_SYSKEYUP

WM_TIMER

WM_ VKEYTOITEM

WIn_yomichar

WM_SYSCOLORCHANGE

WM_SYSCOMMAND

WM_TIMECHANGE

WM_WININICHANGE

C hap t e r 2 2, Win S i 9 h t 349

Table 22.7 Clipboard messages
WM_ASKCBFORMATNAME

WM_CHANGECBCHAIN

WM_CLEAR

WM_COPY

WM_CUT

Table 22.8 DDE messages
WM_DDE_ACK

WM_DDE_ADVISE

WM_DDE_DATA"

Table 22.9 Nonclient messages
WM_NCACTIV ATE

WM_NCCALCSIZE

WM_NCCREATE

WM_NCDES1ROY

WM_NCIDITEST

WM_NCLBUTIO~BLCLK

Table 22.10 Control messages
BM_GETCHECK

BM_GETSTATE

BM_SETCHECK

BM_SETSTATE

BM_SETSTYLE

BN_CLICKED

BN_DISABLE

BN_DOUBLECLICKED

BN_HILITE

BN_PAINT

BN_UNHILITE

CB_ADDS1RING

CB_DELETESTRING

CB_DIR

CB_FINDS1RING

CB_FINDS1RINGEXACT

350 c++ User's Guide

WM_DES1ROYCLIPBOARD

WM_DRAWCLIPBOARD

WM_HSCROLLCLIPBOARD

WM_P AINTCLIPBOARD

WM_PASTE

WM_DDE_EXECUTE

WM_DDE_INITIATE .

WM_DDE_POKE

WM_NCLBUTIONDOWN

WM_NCLBUTIONUP

WM_NCMBUTIO~BLCLK

WM_NCMBUTIO~OWN

WM_NCMBUTIONUP

WM_NCMOUSEMOVE

CBN_SELCHANGE

CBN_SELENDCANCEL

CBN_SETFOCUS

DM_GETDEFID

DM_SETDEFID

EM_CANUNDO

EM_EMPTYUNDOBUFFER

EM_FMTLINES

EM_GETFIRSTVISIBLELINE

EM_GETHANDLE

EM_GETLINE

EM_GETLINECOUNT

EM_GETMODIFY

EM_GETP ASSWORDCHAR

EM_GETRECT

EM_GETSEL

WM_RE~ERALLFORMATS

WM_RE~ERFORMAT

, WM_SIZECLIPBOARD

WM_UNDO

WM_ VSCROLLCLIPBOARD

WM_DDE_REQVEST

WM_DDE_TERMINATE

WM_DDE_UNADVISE

WM_NCPAINT

WM_NCRBUTIONDBLCLK

WM_NCRBUTIONDOWN

WM_NCRBUTIONUP

EN_VSCROLL

LB_ADDSTRING

LB_DELETESTRING

LB_DIR

LB_FINDSTRING

LB_FINDSTRINGEXACT

LB_GETCARE~EX

LB_GETCOUNT

LB_GETCURSEL

LB_GETHORIZONTALEXTENT

! LB_GETITEMDATA

LB_GETITEMHEIGHT

LB_GETITEMRECT

LB_GETSEL

LB_GETSELCOUNT

LB_GETSELITEMS

Table 22.10 Control messages

CB_GETCOUNT em-setthumb LB_GETTEXT
CB_GETCURSEL EM_GETWORDBREAKPROC LB_GETTEXTLEN

CB_GETDROPPEDCONTROLRECT EM_LIMITTEXT LB_GETTOPINDEX

CB_GETDROPPED6TATE EM_LINEFROMCHAR LB_INSERTSTRING

CB_GETEDITSEL EM_LINEINDEX LB_MSGMAX

CB_GETEXTENDEDlIT EM_LINELENGTH LB_RESETCONTENT
CB_GETITEMDATA EM_LINESCROLL LB_SELECTSTRING

CB_GETITEMHEIGHT EM_MSGMAX LB_SELITEMRANGE

CB_GETLBTEXT EM_REPLACESEL LB_SETCARETINDEX

CB_GETLBTEXTLEN em_~croll LB_SETCOLUMNWIDTH

CB_INSERTSTRING EM_SETFONT LB_SETCURSEL
CB_LIMITTEXT EM_SETHANDLE LB_SETHORIZONTALEXTENT

CB_MSGMAX EM_SETMODIFY LB_SETITEMDATA

CB_RESETCONTENT EM_SETP ASSWORDCHAR LB_SETITENniEIGHT

CB_SELECTSTRING EM_SETRECT LB_SETSEL
CB_SETCURSEL EM_SETRECTNP LB_SETTABSTOPS
CB_SETEDITSEL EM_SETSEL LB_SETTOPINDEX

CB_SETITEMDATA EM_SETTABSTOPS LBN_DBLCLK

CB_SETITEMHEIGHT EM_SETWORDBREAK LBN_ERRSPACE

CB_SHOWDROPDOWN EM_UNDO LBN_KILLFOCUS
CBN_CLOSEUP EN_CHANGE LBN_SELCANCEL
CBN_DBLCLK EN_ERRSPACE LBN_SELCHANGE
CBN_DROPDOWN EN_HSCROLL LBN_SETFOCUS
CBN_EDITCHANGE EN_KILLFOCUS STM_GETICON
CBN_EDITUPDATE EN_MAXTEXT STM_SETICON
CBN_ERRSPACE EN_SETFOCUS

CBN_KILLFOCUS EN_UPDATE

Table 22.11 Multimedia messages

MM~DLIB MM_MIM_CLOSE MM_SNDBLST_MIDIIN

MMJOYIBUTTONDOWN MM_MIM_DATA MM_SNDBLST_MIDIOUT

MMJOYlBUTTONUP MM_MIM_ERROR MM_SNDBLST_SYNTH

MMJOYIMOVE MM_MIM_LONGDATA MM_SNDBLST_WA VEIN

MMJOYIZMOVE MM_MIM_LONGERROR MM_SNDBLST_ WA VEOUT

MMJOY2BUTTONDOWN MM_MIM_OPEN MM_WA VE_MAPPER

MMJOY2BUTTONUP MM_MOM_CLOSE MM_WIM_CLOSE

MMJOY2MOVE MM_MOM_DONE MM_WIM~DATA

MMJOY2ZMOVE MM_MOM_OPEN MM_WIM_OPEN

MM_MCINOTIFY MM_MPU40LMIDIIN MM_WOM_CLOSE

MM_MICROSOFT MM_MPU40LMIDIOUT MM_WOM_DONE

MM_MIDCMAPPER MM_PCJOYSTICK MM_WOM_OPEN

Chapter 22, WinSight 351

Table 22.12 Other messages and messages not documented by Microsoft
WIn_alttabactive

WIn_begindrag

WM_COALESCE_FIRST

WM_COALESCE_LAST

WM_COMMNOTIFY

WM_COMPAREITEM

WIn_convertrequest

WIn_convertresult

WM_DELETEITEM

WIn_dragloop

WIn_dragmove

WIn_dragselect

WM_DRAWITEM

WM_DROPFILES

WIn_dropobject

wm_entermenuloop

352 C++ Use r' 5 G u ide

WIn_entersizemove WM_MDIRESTORE

WIn_exitmenuloop

WIn_exitsizemove

WIn_filesyschange

WIn~ethotkey

WIn_isactiveicon

WM_KEYFIRST

WIn_Ibtrackpoint

WM_MDIACTIV ATE

WM_MDICASCADE

WM_MDICREATE

WM_MDIDESTROY

WM_MDIGETACTIVE

WM_MDllCONARRANGE

WM_MDIMAXIMIZE

WM_MDINEXT

WM_MDISETMENU

WM_MDmLE

WM_MEASVREITEM

WM_NEXTDLGCTL

WIn_nextmenu

WIn_querydropobject

WIn_queryparkicon

WIn_sethotkey

WIn_setvisible

wm_sizewait

WIn_syncpaint

WIn_synctask

WM_SYSTEMERROR

WIn_systimer

WID_testing

WinSpector
WinSpector is a tool that helps you perform postmortem debugging (debugging after your
program has ungracefully terminated) of Unrecoverable Application Errors (UAEs) and
General Protection Faults (GPFs). When a UAE or GPF occurs, WinSpector writes a log
file to your disk that shows you helpful information about the cause of the exception,
including

• The call stack that was active when an exception occurred
• Function and procedure names in the call stack
• CPU registers
• A disassembly of the machine instructions where the exception occurred
• Windows information about the program environment

Before using WinSpector, be sure that TOOLHELP.DLL (from Windows 3.1 or later) is
in your search path (TOOLHELP.DLL ships with Windows). TOOLHELP.DLL is a
Windows DLL that lets utilities access low-level system information. WinSpector uses
TOOLHELP.DLL to log exceptions and to obtain the system information it writes to the
log file. Don't use other exception debugging tools, except for Turbo Debugger, while
running with WinSpector.

There are three ways to start WinSpector (it loads minimized):

• Include it in the "load=" section of your WIN.INI file.
• Include it in the Startup folder in Windows.
• Double-click the WinSpector icon to run WinSpector after you load Windows.

When an exception (UAE or GPF) occurs, WinSpector creates a report in a file called
WINSPCTR.LOG (a text file) with information to help you determine what caused the
error. WinSpector also creates a file called WINSPCTR.BIN, a binary file that the DFA
utility translates into a text file called DFA.OUT (see page 17 for more information on
DFA.EXE).

After the exception, WinSpector displays a dialog box with a brief exception report.
Click OK to remove the box and read the log file to find the cause of the exception. You
can control the output to WINSPCTR.LOG as described in the following section.

Chapter 23, WinSpector 353

Configuring WINSPCTR.LOG
There are two ways you can set the WinSpector options that control the output to
WINSPCTRLOG:

• To use the WinSpector Preferences dialog box, start WinSpector, click the WinSpector
icon and choose Preferences from the pop-up menu.

• To edit commands in WINSPCTRINI, load the file into any text editor, edit or add
commands, then save the file and restart WinSpector.

The following paragraphs describe each option in the Preferences dialog box.
WINSPCTRINI options are listed in bold.

LogDir=[directory]: Directory is the location of WINSPCTR.LOG. Type the path where
you want the file (C:WINDOWS is the default).

LogViewer=[viewemame]: Viewer is the program WinSpector uses to display the log
file. Type the path and file name of the viewer you want to use (NOTEP AD.EXE is the
default). For example, type C :WIN31WRITE. EXE. If WinSpector can't find the editor, it
displays the message Error: Unable to execute: [option], where option is the
editor file name. Check to make sure the editor you indicated exists in the specified
directory.

CreateNewLog= 0 (append) or 1 (overwrite): Append New Reports and Overwrite
Previous Reports lets you control whether WinSpector appends reports to the existing
log file or overwrites the old log file when a new report is generated.

ShowSystemlnfo= 0 (omit) or 1 (show): Check System Information to add the Task
List, the Module List, and information about the USER and GDI heaps to the log file.

LogToStdAux=O (on) or 1 (off): Check AUX Summary to view an abbreviated form of
the information sent to the log file on the AUX device. To use this option, you need a
terminal connected to AUX or a device driver, such as OX.sYS, that redirects the AUX
device to a second monitor.

PostMortemDump= 1 (show) or 0 (omit): Check PostMortem Dump to generate a
WINSPCTRBIN file. Use DFA.EXE to translate the BIN file into a text file you can read.

ShowStacklnfo= 1 (show) or 0 (omit): Check Stack Frame Data to add a verbose stack
trace display to the log file. For each stack frame that doesn't exceed 256 bytes,
WinSpector performs a hex dump, starting at the SS:BP for that frame. If there are more
than 256 bytes between two successive stack frames, the memory display is omitted for
that frame. You can use this data to get the values of the parameters that were passed to
the function.

It's usually easier to let DF A do the hard work of figuring out what your parameters are.
However, for those cases where Turbo Debugger information is not available, you
might find that a verbose trace supplies helpful information.

ShowUserInfo= 1 (show) or 0 (omit): Check User Comments if you want to add
information to the log file about what was happening when the exception occurred.
With User Comments checked, WinSpector displays a dialog box immediately after the
exception. The comments you type are appended to the log file.

354 c++ User's Guide

WINSPCTR.LOG reference
Each report in WINSPCTRLOG has several sections that help you determine what
caused the exception in your program. The first line of a report in WINSPCTR.LOG
gives the date and time when the exception occurred; for example,

WinSpector failure report - 6/18/1992 11:04:25

The second line lists

• What type of exception occurred (lists frequent exceptions)
• The module name
• The logical address
• The physical address
• The currently active task at the time of the exception.

A second line might look like this:

Exception 13 at USER 002A:0429 (079F:0429) (TASK=BAD)

Table 23.1 Exception types

o Division by zero Occurs during a DIV or an IDIV interaction if the divisor is O.

12 Stack fault Usually occurs when there is not enough room on the stack to proceed.

13 General protection All protection errors that don't cause another exception cause an
fault (GPF) exception 13.

Exception 13 errors include, but are not limited to, the following errors:

• Invalid selector loaded into a segment register.

• Segment limit exceeded. Although the selector is valid, the offset value is greater than
the segment limit (for example, an array index out of bounds error in DS, ES, or other
segments).

• Execution is transferred to a nonexecutable segment, such as a bad function pointer.

• Accessing DS, ES, FS, or GS registers containing a null selector. (This error can cause a
o to appear in the segment register of the log file.)

A log file lists both the physical and logical addresses where the exception occurred.
These two types of addresses are important to Windows programs for the following
reasons:

• When a program is loaded, Windows allocates space for each logical segment and
assigns each segment a unique selector. The selector and its offset are combined to
form a physical address.

• When a Windows .EXE file is linked, each segment is placed in a different section of
the file, and a segment table is created.

• A logical address, which is actually a segment's position in the Windows segment
table, consists of a module name, a logical segment, and an offset. You can run

Chapter 23, WinSpector 355

TDUMP on the file to find out segment size and other information, or you can
generate a .MAP file that contains the same kind of information.

If the stack pointer is too small at the time of exception, TOOLHELP.DLL automatically
switches the stack and appends the message Stack Swi tched to the end of the second
line of the log.

Disassembly section
The Disassembly section in WINSPCTR.LOG begins with the assembly language
instruction that caused the exception that is followed by the next few instructions in the
program, which provide a point of reference for finding the task that caused the
exception.

For example, given the following code, where ES is the segment register that contains a
selector and BX is the offset into the segment, an exception 13 occurred because the
value in BX was greater than the segment limit referenced by ES:

079F:0429 CMP

079F:042D JNE
079F:042F CMP
079F:0435 MOV

Stack Trace section

BYTE PTR ES: [BX],FF
043A

WORD PTR [BP+06],03
DI, 0001

The first line of the Stack Trace section in WINSPCTR.LOG identifies the function or
procedure that was executing at the time of the exception. Stack Trace information
includes the

• Frame number.

• Module name.

• Name of the closest function before the address of the one that caused the exception,
plus a number indicating how far away you were from that function. (This
information is present only if a .5YM file is present.)

• Logical and physical address for the stack frame.

• Location where your program returns after the call.

When WinSpector lists function names, it looks in the .SYM file for the closest symbol
name that appears before the address in the call stack. Since some .SYM files do not
contain information for all functions, the function name in the log file is the closest
function in the .5YM file with an address preceding the frame address. If the offset field
appears to be too high, function names might not be reliable.

The following stack trace information shows some of the functions that were executing
at the time BAD, a sample task, caused an exception:

·Stack Trace:

o User <no info>

CS:IP 002A:0429 (079F:0429) SS:BP 10FF:18CA
C':WIN31SYSTEMUSER. EXE

356 c++ User's Guide

3 BAD function5(unsigned long, unsigned long, unsigned long) + 0014
CS:1P 0001:0184 (1107:0184) SS:BP 10FF:1952
C:B1NBAD.EXE

Register section
The Register section in WINSPCTR.LOG lists the values stored in the standard registers
when the exception occurred, as the following example shows:

Registers:
AX 0037
EX 0000
CX 0008
DX 10EE
81 0037
DI 0028

Limits and access rights are given for the CS, OS, ES, and SS registers.

Message Queue section
The Message Queue section in WINSPCTR.LOG gives the last message received in the
middle of processing. This section also lists any messages that were waiting in the queue
at the time of exception. For each message, WinSpector lists the following informatibn:

• The Window handle that identifies the destination window
• The Message 10 number that identifies the message
• Two parameters that contain additional message information

Note The Message Queue section might not list the last message the program received:
Windows could bypass the message queue by using a SendMessage or similar function.

The following Message Queue example shows one message received and one waiting in
the queue:

Message Queue:
Last message received:

hWnd: 0000 msg: 0001 wParam: 0002 lParam: 00000003
Waiting in queue:

hWnd: 0000 msg: 0001 wParam: 0002 lParam: 00000003

Tasks section
The Tasks section in WINSPCTR.LOG lists the programs running when the exception
occurred, including the

• Complete path to the executable file
• Module name
• Windows module handle
• Task handle
• Data segment value for the task (the instance handle)

Some of the tasks running when the BAD application caused an exception include

C:W1N318Y8TEMNWPOPUP.EXE
Module: NWPOPUP hModule: 142F hTask: 141F h1nstance: 13F6

C hap t e r 2 3, Win S pee tor 357

C:BINWINSPCTR.EXE
Module: WINSPCTR hModule: 1397 hTask: 1387 hlnstance.: 135E

C:BINBAD.EXE
Module: BAD hModule: 1467 hTask: 1127 hlnstance: 10FE

Modules section
The Modules section in WINSPCTR.LOG lists the modules that were running at the
time of the exception, including the

• Path to the executable file
• Date stamp of the executable file
• File size
• Module name
• Module handle
• Reference count indicating how many times the module is in use

Three of the modules running when the BAD application caused an exception include

C:WIN31SYSTEMKRNL386.EXE Date: 03/02/1992 Size: 116132
Module: KERNEL hModule: 010F reference count: 21

C:WIN31SYSTEMSYSTEM.DRV Date: 03/01/1992 Size: 2304
Module: SYSTEM hModule: 013F reference count: 13

C:CBINWINSPCTR.EXE Date: 06/02/1992 Size: 46256
Module: WINSPCTR hModule: 1397 reference count: 1

USER and GDI heap section
The USER and GDI (graphics device interface) heap information section in
WINSPCTR.LOG shows what percentage of the USER and GDI heaps was available at
the time of exception. For example,

USER Free 91%
GDI Free 83%

Because Windows has only 64K of internal heap space for applications to share, it's
often helpful to keep track of how the space is used. If you find that USER and GDI are
taking up a lot of heap space, check to see if you have deallocated resources you are not
using. The Help I About box for Program Manager lists the lower of these values as the
amount of free System Resources.

System Information section
The System Information section in WINSPCTR.LOG shows the Windows version and
mode you're running, including

• CPUtype
• Largest free block of contiguous linear memory in the system
• Total linear address space in pages
• Amount of free memory pages in the linear address space
• Number of pages in the system swap file

358 c++ User's Guide

'The System Information section for a 486 system might look like this:

System info: Running in enhanced mode under Windows 3.1 debug version
CPU: 80486
Largest free memory block: 3457024 bytes
Total linear memory space: 19696 K
Free linear memory space 18212 K
Swap file Pages: 0 (0 K)

Processing WinSpector data
DFA is a utility that takes a WINSPCTRBIN file· and Turbo Debugger information
(either in the .EXE, .DLL or .TDS files) and translates the binary data into a useful form
by generating a file that contains not only stack trace information similar to the log file
but also function names, line numbers, and local and global variables.

DFA post-processes Turbo Debugger information that WinSpector gathered at the time
of the exception. If you check the PostMortem dump option (see page 12), WinSpector
creates a WINSPCTRBIN file at the time of the exception. You can use DFA.EXE to
translate the binary data in WINSPCTR.BIN into usable information stored in a text file
called DFA.OUT.

Because only one WINSPCTRBIN file is written per Windows session, make sure you
run DFA promptly. For example, if you get three UAEs in succession, WinSpector will
write three reports to the log file, but binary data will exist for only the first report. It's
best to run DFA immediately after receiving the first UAE. You might then want to
rename the DFA.OUT file and delete the WINSPCTRBIN and WINSPCTR.LOG files
before continuing.

DFAoutput
DFA writes a file only if Turbo Debugger information exists for the file in the stack
frame. 'The DFA output file (DFA.OUT) has a stack trace similar to the one in the
WinSpector log file, except that it contains

• Function names
• Line numbers
• Local and global variables
• Data segments and their values (including the stack segment)

Using DFA with WINSPCTR.LOG
When DFA is used with the WINSPCTRLOG file alone, it gives minimal stack trace
information, such as addresses. If Turbo Debugger information (contained in a .EXE,
.DLL, or .IDS file) is present, source file names and line numbers are added to the
report.

C hap t e r 2 3, Win S pee tor 359

Using DFA with WINSPCTR.BIN
When used with the WINSPCTR.BIN file, DFA

• Adds stack-based variables to the log, including local variables, parameters passed to
the function, structures, and arrays.

• Lists variable types, values, and addresses by function.

If Turbo Debugger information is present, for each stack frame, DF A reports

• In section one, the

• Source file
• Line number
• Local variables
• Parameters

• In section two, the

• Module name for the task with the fault
• Filenames
• Logical segments
• The segments' selectors
• Whether the segments are data or code segments

• In section three, the

• Global variables
• Static variables
• The va~'iables' values at the time of the exception

The format is

DFA [option] WINSPCTR.LOG [WINSPCTR.BIN]

When WINSPCTR.LOG (required) is present, you get source file and line numbers.
When WINSPCTR.BIN (optional) is present, you get additional variable information.

Table 23.2 DFA options

IOloutputfile1 Renames the output file from the DFA.OUT default

ID Forces DFA to write a hex dump of the saved data segments

Other WinSpector" tools
WinSpector has three utilities you can use to enhance the information about an
exception:

• EXEMAP.EXE creates a .MAP file from a Windows .EXE file. The .MAP file is needed
to create a .SYM file, which expands error reporting for the original .EXE.

• TMAPSYM.EXE, used in conjunction with EXEMAP.EXE, creates a .5YM file from a
.MAPfile.

360 c++ User's Guide

• BUILDSYM.EXE uses EXEMAP.EXE and TMAPSYM.EXE to create a .5YM file from
a Windows .EXE file.

Using EXEMAP.EXE
EXEMAP creates .MAP files for Windows executables. A .MAP file can be used to create
a .SYM file, which can then be used by WinSpector to expand its error reporting. If you
are using .DLLs or other programs for which you don't have the source code, this
information can be especially useful.

To create a .MAP file from an .EXE, type EXEMAP filename. EXE newname. MAP. If you
don't type a new name, EXEMAP creates a .MAP file with the same name as the .EXE.

Although the resulting .MAP file isn't as complete as one generated by the link phase of
the compile process, it does include addresses for exported public functions.

Using TMAPSYM.EXE
TMAPSYM creates .5YM files from existing .MAPfiles (created either by the compiler or
by the EXEMAP utility). The resulting .5YM files make available to WinSpector the
public functions, variable names, and functions in the entry table of the executable.
Constants and line-number information, however, are not included in a TMAPSYM­
generated.5YM file.

To create a .SYM file from a .MAP file, type TMAPSYM filename . MAP (you must type the
.MAP extension).

Using BUILDSYM.EXE
BUILDSYM creates .5YM files from .EXE files. It has the same output as using both
EXEMAP and TMAPSYM, since it automatically runs them, but it deletes the .MAP files
from your directory. BUILDSYM supports wildcards, so you can create .SYM files for
part or all of a directory by entering a single command.

To run BUILDSYM, both EXEMAP and TMAPSYM must be in the same directory as
BUILDSYM or in your search path. BUILDSYM places the .5YM files it creates in the
current directory. For WinSpector to find a .SYM file, the file must be in the same
directory as the executable that caused the exception.

BUILDSYM performs the following tasks:

• Verifies that the files are Windows files, and if not, leaves them alone.

• Calls EXEMAP to create .MAP files.

• Verifies that .MAP files were created.

• Calls TMAPSYM and passes the names of the new .MAP files so TMAPSYM can
create.5YM files.

• Deletes the .MAP files because they are no longer needed.

To create a .SYM file from an .EXE, type BUILDSYM filename. EXE.

C hap t e r 23, Win S pee tor 361

362 C++ Use r 's G u ide

Turbo Profiler user's guide
Borland's Turbo Profiler is the missing link in your software development cycle. Once

. you have your code doing what you want, Turbo Profiler helps you do it faster and
more efficiently. It is a performance analyzer and a resource monitor.

Turbo Profiler is a performance analyzer, a software tool that measures your program's
performance by finding

• Where your program spends its time
• How many times a line executes
• What lines have been executed
• How many times a routine is called, and by which routines
• What files your program accesses most and for how long

Turbo Profiler also monitors critical computer resources, such as
• Processor time
• Disk access
• Keyboard input
• Printer output
• Interrupt activity

By monitoring vital activities and providing detailed statistical reports on every part
of your program's performance, Turbo Profiler enables you to fine-tune your pro­
grams. By opening up the inside of your program and exposing its most intricate
operations-from execution times to statement counts, from interrupt calls to file access
activities-Turbo Profiler helps you polish your code and speed up your programs.

Turbo Profiler surpasses other profilers on the market both in power and ease of use by
providing the following features:

Part IV, Turbo Profiler user's guide 363

• Interactive profiling quickly reveals inefficient code in a program.

• Lets you read and edit any text file during profiling sessions.

• Profiles any size program that runs under DOS or Windows.

• Handles programs written using Borland's C++ compilers and Turbo Assembler.

• Provides an easy-to-use interface with multiple overlapping windows, mouse
support, and context-sensitive help.

• Reports execution time and execution count for routines and program lines.

• Tracks which blocks of code have and haven't been executed.

• Tracks complete call path history for all routines. Analyzes frequency of calls with
complete call stack tracing.

• Monitors DOS file activi~es from the Files window by file handle and time of open,
close, read, or write. Uses an event list to log the number of bytes read or written.

• Supports co~plete tracking of overlays.

• Allows re~ote serial and network profiling.

By picking up where code optimizers leave off, Turbo Profiler directs you immediately
to slow code, pointing out where to open up bottlenecks and when to rework
algorithms.

The difference between optimizing and profiling
An optimizer makes your program run a little faster by replacing time-consuming
instructions with less-expensive ones. But optimizing can't fix inefficient code.

Turbo Profiler helps you detect the least efficient part of your code and helps point to
algorithms that can be modified or rewritten. Studies show that the largest performance
improvements in programs come from changing algorithms and data structures, rather
than from optimizing small segments of compiled code. Trying to find program
bottlenecks without a profiler is like trying to find bugs without a debugger; Turbo
Profiler reduces both the time and effort it takes to improve your program's
performance.

How this part is organized
Part IV is divided into the following chapters:

Chapter 24, 1/ A sample profiling session," is a tutorial that takes you through a simple
profiling session. The tutorial-starts with a "let's see what's going on" profile, then takes
you through interpreting the profile data collected, modifying and refining the program
based on insight gained from the profile, and running additional profiles to gauge the
effect of each successive modification. .

364 c++ User's Guide

Chapter 25, "The Turbo Profiler environment," explains in detail each menu item and
dialog box option in the Turbo Profiler environment.

Chapter 26, "Profiling strategies," provides general guidelines and tips for conducting
a fruitful profiling session.

Chapter 27, "Inside the profiler," uses analogy to explain how Turbo Profiler gathers
execution-time and execution-count data while your program runs.

Chapter 28, "Turbo Profiler's command-line options," lists each Turbo Profiler
command-line option and explains what the option accomplishes.

Chapter 29, "Customizing Turbo Pro filer," explains how to use TFINST to change the
configuration defaults of TPROF and TPROFW.

Chapter 30, "Remote profiling," describes how to profile with two systems; you run
your program on one and Turbo Profiler on the other.

Chapter 31, "Turbo Profiler for Windows," describes how to run Turbo Profiler for
Windows and how to use its special features.

Chapter 32, "Prompts and error messages," lists all prompts and error messages that
can occur, with suggestions on how to respond to them.

Part IV, Turbo Profiler user's guide 365

366 c++ User's Guide

A sample profiling session
Profiling is one of the least-understood yet most useful and vital areas of good software
development. Surveys indicate that only a small fraction of professional programmers
actually use profilers to improve their code. Other studies show that, most of the time,
even the best programmers guess wrong about where the bottlenecks are in their
programs.

What is the advantage to using this widely overlooked tool? For one, profiling your
program can increase its overall performance. Second, profiling can augment your
ability to produce efficient code. The bottom line is that profiling, like debugging, can be
a cog in the wheel of the program development cycle.

We've based the examples in this chapter on John Bentley's "Programming Pearls"
column (July 1987) in Communications of the ACM.

In this chapter we show you an example of profiling put to good use, and how-in the
long run-profiling can save you hours of hunting for that expensive line of code. You
use Turbo Profiler to:

• See where your program spends its time.
• Create an annotated source listing and a profile statistics report.
• Save profile statistics, then start up again with saved statistics.
• Analyze profile statistics and source code in side-by-side windows.

All the tutorial examples were run on a 486 machine with an SVGA video adapter.

The examples in this chapter are based on finding and printing all prime numbers
between 1 and 1,000. Recall that a number is prime if it is an integer and is divisible by
only the integer 1 and itself; it must also be odd, since any even number is divisible by 2
and therefore is not prime (actually, 2 is the only even prime number). You can tell
whether a particular number is prime by checking to see if it is divisible by other,
smaller primes, or by any integer larger than the first two primes, 2 and 3.

C hap t e r 24, A sam pie pro f iii n 9 s e s s ion 367

The object of profiling the example programs is to speed up the process of finding and
printing the prime numbers. As you work through the examples, you'll learn how to
use Turbo Profiler to test the efficiency of each example's structure.

The first program you'll look at is PRIMED. Once you've profiled it and seen where to
modify the code, all you need to do is load and profile PRIMEl. With the exception of
PRIMEl, each of the programs covered in this chapter (PRIME2, PRIME3, PRIME4, and
PRIMES) is a variation on its predecessor.

About the sample programs
The Turbo Profiler package comes complete with the sample programs used in this
chapter. Both the source code and the executable code are provided; Turbo Profiler
requires both to analyze a program. Each of the sample programs was compiled with
full symbolic information, since the profiler also requires this information.

To ensure that your own programs contain full symbolic information, you must compile
them with the appropriate compiler options turned on, as shown in the following list:

• Borland's line of c++ compilers: If you are compiling in the IDE,

1 Choose Options I Project.

2 Choose the Compiler I Debugging topic, then check Include Debug Information.

:3 Choose the Linker I General topic, then check Include Debug Information.

If you are compiling from the command line, use the -v command-line option.

• Turbo Assembler: Use the Izi command-line option, then link the program with
TLINK, using the Iv option.

Profiling a program (PRIMEO)
You profile and improve a program in four steps:

1 Set up the program before profiling it.

2 Collect data while the program runs.

3 Analyze the collected data.

4 Modify the program and recompile it.

After modifying your program, repeat steps 1 through 3 to see if the modifications have
improved your program's performance.

PRIMED uses Euclid's method of testing for prime numbers, a straightforward integer
test for a remainder after division. As each prime number is found, it is stored in the
array primes, and each successive number is tested for "primeness" by being divided by
each of the numbers already stored in primes.

Leaving Turbo Profiler at any time is a simple, one-step procedure: just choose
File I Quit or press Alt+X.

368 c++ User's Guide

Load PRIMEO into Turbo Profiler by typing

TPROF PRIMEO

and pressing Enter.

The profiler comes up with two windows open: the Module window (which displays
PRIMEO's source code) and the Execution Profile window (which will display profile
statistics after you run PRIMEO).

Figure 24.1 Turbo Profiler with PRIMEO loaded

For a more detailed description of the profiler's environment, see Chapter 25, "The
Turbo Profiler environment."

The Module and Execution Profile windows are concerned with steps 1 and 3 in the
profiling process. You use the Module window to determine what parts of the program
to profile. Once you run a program, the Execution Profile window displays the
information you need to analyze your program's behavior.

Setting up the profile options
Before you begin to profile your program, you might want to specify the areas you want
to profile. An area is a location in your program where you want to collect statistics: an
area can be a single line, a construct such as a loop, or an entire routine.

To analyze a small number of short routines (like prime and main in this program), you
have to know how often each line executes and how much time each line takes. To get
this information, every line in the program must be marked as an area.

By default, Turbo Profiler marks every line in a small program. To verify that this is
true, you can check the Module window to see that all executable lines are tagged with a
marker symbol (=».

1 Press Alt+F10 to open the Module window SpeedMenu.

2 Choose Add Areas from the SpeedMenu. This menu lists area boundaries for you to
choose from.

3 Choose Every Line in Module. This sets area markers for all lines in the module, then
returns the cursor to the Module window.

C hap t e r 2 4, A sam pie pro f iii n 9 s e s s ion 369

Collecting data
Now you're ready for the second step in the profiling process. Press F9 to run PRIMEO
under Turbo Profiler. The program prints the prime numbers between 1 and 1,000 on
your screen. When the program finishes, look at the information in the Execution Profile
window. These are your program statistics.

Zoom the Execution Profile window: Press F5 or choose Zoom from the Window menu.
The Execution Profile window should now look similar to this:

Figure 24.2 Program statistics, PRIMED

The upper pane of the Execution Profile window displays the program's total execution
time, along with information about the data in the lower pane. The lower pane has four
fields for each line:

• An area name
• The number of seconds spent in that area
• The percentage of total execution time spent in that area
• A magnitude bar displaying a proportional graph of the execution time spent in that

area

The line

#PRlMEO#31 3.3038 sec 81% [======================================

tells you that the thirty-first line of code in module PRIMEO executed for about 3.3
seconds-which was 81 percent of the total execution time for all marked areas. The
magnitude bar automatically shows line 31's time full-scale because line 31 is the most
time-consuming of the marked areas.

Actual time and percentage statistics will vary from system to system.

Displaying statistics
You can also display this program's collected data as execution counts.

370 C++ Use r 's G u ide

Press Alt+F10 to bring up the SpeedMenu for the Execution Profile window.

Figure 24.3 The Speed Menu

Display ...
Filter All ~

Module
Remove

2 Choose Display on the SpeedMenu.

3 The Display Options dialog box lists six possible ways to display data in the
Execution Profile window.

Figure 24.4 The Display Options dialog box

• Time (the default setting) shows the total time spent in each marked area.
@ Counts displays the number of times program control entered each area.
• Both shows time and counts data on the same screen.
• Per Call displays the average amount of time per call.
liB Longest shows the longest time spent in each area.
@ Modules (used with passive analysis) displays the time spent in each program

module.

4 Choose Counts under Display in this dialog box. (Click Counts with the mouse, or
use the arrow keys to move to it and press Enter, or press C, the hot key for this
option.) \

5 Choose OK (or press Enter).

The Execution Profile window now displays PRIMEO's statistics as execution counts
instead of execution times, as shown in this figure:

Figure 24.5 Counts display in the Execution Profile window

This display of PRIMEO's statistics shows that line 22 is the most frequently called line in
PRIMEO.

C hap t e r 24, A sam pie pro f iii n 9 s e s s ion 371

You can also see counts and times together. Bring up the Display Options dialog box
again (either press Alt+F10 and choose Display, or press Ctrl+D).

Choose Both under Display, then choose OK or press Enter. (To choose Both, either click
it, or press Down to get to it, then press Enter, or press B, the hot key for this option.)

When the Execution Profile window displays time and counts together, the first entry
for each area is execution counts, and the second is execution time.

Printing modules and statistics
In this section, you print two things:

1 A profile source listing of the code that's in the Module window, with time and
counts data attached to each marked area.

2 The profile statistics displayed in the Execution Profile window.

Time and counts profile listing
Before you print the time-and-counts statistics to a file, you must first set the
appropriate printing options:

1 Choose Print I Options.

2 In the Printing OptiOl1S dialog box, choose the File radio button (press Tab until the
radio buttons become active, then press Down to tum the setting to File).

3 Tab to the Destination File input box and type
PRIMEOSC.LST

4 Choose ASCII to use the standard ASCII character set (rather than the IBM extended
character set).

5 Choose OK (or press Enter).

The cursor returns to the active Execution Profile window.

Now, to print the listing file, choose Print I Module. In the Pick a Module dialog box,
press Down to highlight the module name PRIMEO, then press Enter (or choose OK).

To inspect the file PRIMEOSC.LST, choose View I Text File, and at the File Name prompt,
type

PRIMEOSC.LST

This is what you see if you're profiling the C program PRIMEO.C. The times in your file
will probably vary from the ones shown here because of the differences in computer
systems.

Turbo Profiler Version 4.5 Tue Aug 20 15:16:47 1995

Program: D:TPROFPRIMEO.EXE File primeO.c

Time Counts

372 C++ Use r' s G u ide

0.0000 1

0.0000 1
0.0000 1
0.0000 1
0.0000 1

0.0359 1
0.0354 1
0.0059 500

0.0071 499
0.3069 15122

0.0038 333

0.0034 333

0.0060 499
0.0037 333
0.0017 166
6.2655 166
0.0019 166
0.0018 166

0.0000 1

/* Copyright (c) 1990, Borland International */

/* Program for generating prime numbers using
Euclid's method */

int primes[1000];
#define MAXPRIMES 1000

main()
{

int j;
int lastprime, curprime;

primes [0] 2;
primes [1] 3;
lastprime 1;
curprime 3;

printf ("prime %d = %d \n", 0, primes [0]) ;
printf ("prime %d = %d \n", 1, primes [1]);
while(curprime < MAXPRIMES)
{

}

for(j = 0; j <= lastprime; j++)
if ((curprime % primes [j]) 0)

curprime += 2;

break;

if(j <= lastprime)
continue;

lastprime++;
printf ("prime %d = %d \n", last prime, curprime);
primes [lastprime] = curprime;
curprime += 2;

This profile source listing is useful because it's a permanent record that shows, for each
area in your program, the execution time and execution counts.

When you have finished examining the listing, press AIt+F3, or click the close box, to
close the File window.

Profile statistics report
You can also print a replica. of the open Execution Profile window's contents to your
printer or to a disk file.

1 Choose Print I Options again.

2 Choose the Printer radio button.

C hap t e r 24, A sam pie pro f iii n 9 s e s s ion 373

3 Choose Graphics to include extended ASCII characters in th~ print~d report. (If your
printer does not support extended ASCII characters such as E and E, skip this step .
and proceed to step 4.)

4 Press Enter (or choose OK).

5 Choose Print I Statistics.

The resulting printout, like the profile source listing, is a permanent record of your
progress as you go through the steps of profiling, modifying, recompiling, and
reprofiling in your quest for the sleekest and most efficient code possible (and practical)
for your program.

Saving and restoring statistics
Before you go on, here's how to save PRIMEO's profile statistics to a file, so you can quit
Turbo Profiler at any time without losing the data. We also show you how to restore
those statistics the next time you start Turbo Profiler.

Choose Statistics I Save to save your program's profile statistics to a .TFS (Turbo Profiler
Statistics) file. Because PRIMEO is in the Module window, the File Name input box lists
PRIMEO.TFS as the default. Choose OK to create this file. All the statistical data from the
current profile run of PRIMEO is now saved in the file PRIMEO. TFS in the current
directory, so you can quit the profiler at any time without losing any of that information.

To restore the statistics you saved for PRIMEO, open PRIMEO in Turbo Profiler and
choose Statistics I Restore. The File Name input box lists *.TFS as the default. Press Enter
to go to the Files list box, then highlight PRIMEO.TFS and choose OK to recover the data
from this file.

The File Name input box lists*.TFS as the default. Press Enter to go to the Files list box,
then highli9ht PRIMEO.TFS and choose OK to recover the data from this file.

Analyzing the statistics
In this section you willieam how to analyze the statistics in the Execution Profile
window so you can use what they reveal to streamline your program.

First, though, take another look at the time and count statistics in the Execution Profile
window. Unzoom the Execution Profile window (choose Zoom from the Window menu
or press F5) and look at the statistics for lines 22 and 31 (the if and printf statements). ,

We cover modifications to the printf statement in program PRIMES.

A time and count profile like this tells a lot about a program. For instance, you can see
that line 22 in PRIMEO executes far more frequently than any other statement. It makes
sense that line 22 executes 15,122 times, since it tests every number between 4 and 1,000
against every number in the array primes, until there is even division or the array is
exhausted. That means a lot of numbers to be tested. You can also see that line 31, the
printf statement, accounts for most of the program's total execution time.

374 c++ User's Guide

Viewing both source code and statistics
The data in the Execution Profile window shows that the test in line 22 is doing more
work than it should. But you can't really get the entire picture until you look at
execution time and count data and source code together.

What you need to do is compare time and count data in the Execution Profile window
and the corresponding source code in the Module window.

Here's one way to display source code and profile statistics simultaneously:

Resize and move the Execution Profile window s~ it occupies the right half of your
screen: Choose Window I Size I Move, or press Ctrl+F5.

2 Follow the directions on the status line to:

1 Resize the window to full-screen height and half-screen width.

2 Move the resized window to the right.

When you've done steps 1 and 2, press Enter.

3 Activate the Module window by pressing F6, then resize and move it so it occupies
the left half of the screen.

4 Go back to the Execution Profile window (press F6 again).

To resize a window with the mouse, drag the Resize box in the lower right comer; to
move the window, drag the title bar or any double-line left or top border character
(llor=).

There is an automatic link between the Execution Profile window and the Module
window, so that when you move through the source code, the execution profile display
tracks the cursor's current line position. To see this tracking feature in action,

Activate the Execution Profile window (press F6), and move the highlight bar to the
first line.

2 Open the SpeedMenu (press Alt+F10) and choose Module (or just press Ctrl+M).

The profiler positions the cursor on line 31 in the Module window.

3 Use the arrow keys to move through the source code to line 22.

This line is the second-largest time consumer in PRIMEO. The top two statistics lines
in the Execution Profile window now display the profile data for this if statement.

4 Move the cursor in the Module window to line 21 and note how the display in the
Execution Profile window tracks with it. The top lines in the Execution Profile
window are now the profile statistics for line 21.

5 Move the cursor to line 30 and note the display in the Execution Profile window.

Having the two windows synchronized this way makes it easy to find the greatest
resource hogs in your program. Once you get a better feel for interpreting the data
onscreen, you won't need to rely as much on profile listings like the one on page 372.

C hap t e r 2 4, A sam pie pro f iii n 9 s e s s ion 375

Saving the window configuration
This is a good !ime to save your customized version of Turbo Profiler. If you don't save
your customized window arrangement, the windows will revert to their default size
and placement the next time you load a program into Turbo Profiler.

1 Choose Options I Save Options. This brings up the Save Configuration dialog box.

2 By default, the Options check box is already checked. This records settings (such as
the Execution Profile window's display options) in the configuration file.

3 In the Save Configuration dialog box, tab to Layout and press Spacebar. This causes
your side-by-side window layout to be saved in the configuration file.

4 By default, the configuration file to be saved is TFCONFIG.TF, listed in the Save To
input box. Choose OK, or press Enter, to save your options to this file in the current
directory.

Wherever you start up Turbo Profiler, it looks for TFCONFIG.TF, the default
configuration file. When the profiler finds that file, the options and layout you've set
will come up automatically.

Measuring an area's efficiency
The ratio of execution time to execution counts is a good measure of aline's or routine's
overall efficiency. To see this ratio for the areas in PRIMEO, change the display option in
the Execution Profile window. Here's how:

1 From the Execution Profile window's SpeedMenu (press Alt+F10), choose Display.

2 Under Display in the dialog box, choose Per Call.

3 Choose OK (or press Enter).

Now you can see that line 22 is much more efficient than line 31. It uses up a lot of
execution time because it executes so many times, but each individual call averages
much less than a millisecond. Line 31, on the other hand, averages nearly 20
milliseconds per call.

Note The output from the profiler points the way to improving the execution time of PRIMEO
and making it structurally simple. The task of improving the program can be divided
into two strategies:

1 Reduce the amount of time spent in input/ output.

2 Rewrite the looping structure to be more streamlined and efficient.

The input/ output problem can be partially resolved by reducing the printf statement
from its present form

printf ("prime %d = %d \n", last prime, curprime);

to simply

printf ("%d\n", curprime);

Just this simple modification results in a considerable savings in the execution time.
However, you can't reduce the number of times you call the output statement; for the
given problem, there will always be 168 primes to print out. And apart from this minor

376 C++ Use r 's G u ide

improvement, there is not a great deal you can do to speed up the execution of PRIMED.
Its algorithm, which requires saving all the previous results in an array and then using
them to divide, is thorough but virtually impossible to streamline. (It's also not very
memory-efficient, because the array requires an allocation of memory equal to the
number of primes being tested. Eventually this imposes a limit on the number of primes
that could be tested without running out of memory.)

Fortunately, there is a better way to test for prime numbers: You can change the
algorithm itself. That's what happens in the next example program, PRIME1.

A modularized primes test (PRIME1)
You're finished with PRIMED now, so load PRIME 1 (the next version of the prime
number program) into the Module window and look at the code:

1 Choose File I Open.

2 By default, the File Name input box is activated and contains the file-name mask
* .EXE. Press Enter.

3 In the Files list box, use the Up and Down keys to highlight PRIMEl.EXE.

4 Press Enter. Turbo Profiler loads PRIME1 into the Module window.

5 Zoom the Module window (press F5). Note the added prime (Prime) routine on line 4.

You can see right away that two major changes have occurred:

• The array primes is gone. This program does not test by dividing each number by all
smaller primes; it simply uses a loop to divide by all the odd numbers up to but not
including the suspected prime. Initially this algorithm results in more iterations, but
we will see that it eventually can be refined into a more streamlined and readable
program.

• The prime number test itself has been placed in a separate routine that is called from
the main program.

Run PRIME1 in Turbo Profiler (press F9) and look at the statistics. Then choose Display
from the Execution Profile window SpeedMenu to open the Display Options dialog box
and tum on the Both radio button. Press Enter, then zoom the Execution Profile window
(F5).

The execution time has improved somewhat (this is due in part to the fact that PRIME1
prints out less information than PRIMEO).The main bottleneck is still the printf
statement (now line 21).

Notice in particular that the test for prime numbers (line 9 in PRIMED) now executes
78,022 times instead of 15,122. This may be surprising at first, but notice that it only
increases execution time for this line by about 1 second; we have already seen that this
statement is time-efficient.

One obvious way to improve efficiency, now that we have isolated the test loop in a
separate routine, is to cut down on the number of calls to the routine. There are ways of
limiting the number of integers that have to be passed to the routine for testing; the
more you can eliminate at the main program level, the fewer calls you have to make and

C hap t e r 24, A sam pie pro f iii n 9 s e s s ion 377

the faster your program executes. That is the strategy we employ in the next sample
programs.

Modifying the program and reprofiling
Earlier, we pointed out that instead of testing for all factors between 1 and n in the
modulus statement, you can set the upper limit of the test to the square root of the
number you're testing. That's what we've done in program PRIME2 (PRIME.2PA).

Loading another program (PRIME2)
Go ahead and load PRIME2, the next version of the sample program, into the Module
window. In program PRIME2, we've added a root (Root) routine that calls a square root
library routine and returns an integer result.

You need to set areas for all lines in the module, so bring up the SpeedMenu in the
Module window, choose Add Areas I Every Line, then press Enter.

Press F9 to start profiling. Once again, you'll see the primes between 1 and 1,000 print to
the user screen.

When the program finishes running, open the Display Options dialog box (choose
Display from the Execution Profile SpeedMenu) and set Display to Both. Choose OK.
Despite decreasing the number of calls to line 15 (from 78,022 to 5,288) and reducing the
time spent in the same statement, there's still a substantial increase in overall execution
time.

The problem with PRIME2 is the expense of the new root routine. Line 7 inside the
routine executes 5,456 times, consuming the most time of any routine.

When the Execution Profile window shows both time and count information, certain
patterns are worth looking for. In inefficient routines, the second line (time data) is
much longer than the first line (count data), which means the ratio of time to counts is
high. This is the case for line 27, the printf statement.

When a routine's time:count ratio is high, the best thing to do is substitute another
routine.

However, the return statement in the root routine (line 7) presents a different problem.
It accounts for the largest number of calls and the largest amount of time. Two other
lines (line 5 and line 8) have 5,456 calls, but the magnitude bar for each of these cases
shows small execution times. This is good: It means the statements are fast. So the
biggest problem right now is the number of calls made to the root routine.

Reducing calls to a routine (PRIME3)
The problem now is to reduce the number of calls to the root routine. Load PRIME3 into
the Module window, then zoom the Module window and take a look at the source code.

In PRIME3, the only routine modified is prime. We've added a new integer variable,
limit, and set limit equal to root(n) before entering the for loop. The test in the for loop is
based on limit.

378 C++ Use r' s G u ide

In the Module window SpeedMenu, set areas to Every Line in Module. When you
profile the program this time (choose Run I Run or press F9), the program runs quite a
bit faster. PRIME3 shows an almost 25 percent decrease in total execution time.

The printf routine is now the major resource consumer, eating up over half the
execution time. By reducing the number of calls to the square root routine in root (from
5,456 to 999), we've decreased computational time substantially.

Still more efficiency (PRIME4)
There are still more ways to increase the efficiency of the prime routine. Load PRIME4
into the Module window now, then examine lines 8 through 17 of the source code.

/****** PRlME4.C ******/

if (n % 2 == 0)
return (n==2)i

if (n % 3 == 0)

return (n==3);

if (n % 5 == 0)
return (n==5);

for (i=7; i*i <= n; i+=2)
if (n % i == 0)

return 0;

return 1;

There are a number of improvements here.

• The three if statements in the prime routine weed out factors that are multiples of 2,
3, and 5, respectively. If you can't throw out a number n based on one of these tests,
you must test the remaining numbers, up to the root of n. You can start at the value
7-the if statements have eliminated all possibilities below this number.

• The for loop now increments by two on each iteration, because there's no point in
testing even numbers.

• The test i * i <= n has replaced the more expensive test involving the root routine.

The net result is that we've shaved nearly half a second off the execution time.

Eliminating CR/LF pairs (PRIMES)
Here's one last change. Instead of printing a carriage retum/linefeed pair after each
prime number, try printing just a space. This is the only change made in program
PRIMES.

Load PRIMES, set areas for every line, then run it.

C hap t e r 24, A sam pie pro f iii n 9 s e s s ion 379

Surprise! Eliminating the carriage retum/linefeed pair cuts execution time by a factor of
almost 7. Apparently, printing newline characters is expensive. The distribution of
profiles is fairly even for execution times and counts. We'd be hard-pressed to squeeze
more out of this program without substantially changing the algorithm.

Where to now?
We've taken you through the basics of profiling in this tutorial. By now, you should be
familiar with using Turbo Profiler: loading and profiling programs, printing the
contents of various windows, saving and restoring profile statistics, and rearranging the
windows so you can analyze the statistics.

Go ahead and quit Turbo Profiler now (choose File I Quit, or press Alt+X).

For more information about Turbo Profiler's environment, as well as details about parts
of the profiler not mentioned here, refer to Chapter 25.

If you want more challenges than we've given in this tutorial, try these:

• Profile for primes less than

• 2,500
• 5,000
• 7,500
• 10,000

• Set the profile mode (choose Statistics I Profiling Options to bring up the Profiling
Options dialog box) to Passive analysis. What does this do to profiler overhead?
What kinds of information do you lose in passive analysis? (See Chapter 26,
"Profiling strategies," for information on passive profiling.)

• Find out what kind of performance improvement you get by implementing the Sieve
of Eratosthenes to compute primes up to 10,000.

• Compare the cost of printing newline characters with calls to position the cursor.

Note There are a number of articles on the subject of profiling, but not many books. John
, Bentley's book, Writing Efficient Programs, provides a summary of rules for designing
efficient code, suggests a comprehensive methodology for profiling, and contains an
extensive bibliography.

380 C++ Use r J s G u ide

The Turbo Profiler environment
Turbo Profiler makes it as easy and efficient as possible for you to profile your
programs. When you start Turbo Profiler, everything you need is literally at your
fingertips. That's what an environment is all about.

The Turbo Profiler environment also boasts these extras to make program profiling
smooth:

• Multiple, movable, resizable windows

• Mouse support for any mouse compatible with the Microsoft mouse version 6.1
or later

• Dialog boxes to replace multilevel menus

Part 1 : The environment components
There are three visible components to the integrated environment: the menu bar at the
top, the window area in the middle, and the status line at the bottom. Many menu items
also offer dialog boxes. Before we discuss each menu item in the environment, we'll
describe these more generic components.

The menu bar and menus
Turbo Profiler has both global and SpeedMenus. Global menus are ones you access via
the menu bar, and SpeedMenus are ones you access from within a window.

The menu bar is your primary access to all the global menu commands. In addition, it
displays a program activity indicator on the right side that tells, for example, whether
the profiler is READY for you to do something, RUNNING your program, or WAITing
while it processes a processor-intensive task. The only time the menu bar is not visible is
when you're viewing your program's output in the user screen.

C hap t e r 25, The T u r boP r 0 f i I ere n vir 0 n men t 381

Choosing menu commands from the keyboard
Here's how to execute global menu commands using just the keyboard:

Press F10. This makes the menu bar active, which means the next thing you type
pertains to it, and not to any other component of the environment

You see a highlighted menu title when the menu bar is active. The menu title that's
highlighted is the currently selected menu.

2 Once the global menu is active, use the arrow keys to select the menu you want to
display. Then press Enter.

Note To cancel an action, press Esc.

As a shortcut for this step, just press the initial letter of the menu title. (For example,
press F to display the Files menu.)

If an ellipsis (...) follows a menu command, the command displays a dialog box when
you choose it. If an arrow (~) follows the command, the command leads to another
menu.

3 If the command opens another menu, use the arrow keys again to select the
command you want. Then press Enter.

Again, as a shortcut, you can just press the highlighted letter of a command to choose
it, once the menu is displayed.

At this point, Turbo Profiler either carries out the command, displays a dialog box, or
displays another menu.

SpeedMenus
In addition to the global menus that you access through the menu bar, each of Turbo
Profiler's windows has its own unique SpeedMenu. When you're in a window, press
Alt+F10 to bring up the SpeedMenu. For more information on accessing SpeedMenus,
refer to the discussion on page 389.

Choosing menu commands with the mouse
To use the mouse to choose commands from global menus, click the desired title on the
menu bar to display the menu, then click the desired menu command. You can also
drag straight from the menu title down to the menu command. Release the mouse
button on the command you want. (If you change your mind, just drag off the menu; no
command will be chosen.)

Shortcuts
Turbo Profiler offers many quick ways to choose menu commands. For example, with "a
mouse you can combine the two-step process into one: Drag from the menu title down
to the menu commands, then release the mouse button when the command you want is
selected.

382 C++ Use r 's G u ide

From the keyboard, you can use keyboard shortcuts (or hot keys) to access the menu bar
and choose commands.

Table 25.1 Menu hot keys

etrl and the highlighted letter of the
. SpeedMenu command

Alt plus the highlighted letter of the menu
command

The highlighted letter of the dialog box
component

The hot key combination listed next to a
menu command

Turbo Profiler windows

Carry out the SpeedMenu command

Display a menu from the menu bar

Execute that menu command or
select that dialog box component

Carry out the menu command

Most of what you see and do in the Turbo Prof Her environment happens in a window. A
window is an area of the screen that you can move, resize, ZOOID, layer, close, and open.

You can have many windows open in Turbo Prof Her (memory allowing), but only one
window can be active at any time. Any command you choose or text you type applies
only to the active window.

Note The active window is the one that you're currently working in.

Turbo Pro filer makes it easy to spot the active window by placing a double-lined border
around it. The active window always has a close box. If your windows are overlapping,
the active window is the one on top of all the others (the frontmost one).

There are several types of windows. Most of them have these things: a title bar, a close
box, two scroll bars, a resize corner, a zoom box, an iconize box, and a window number
(1 to 9).

Window management
Some windows are divided into two or more panes for displaying different kinds of
information. Individual panes often have their own SpeedMenu.

The following table provides a qUick rundown of how to handle windows in Turbo
Prof Her. You can perform these actions with a mouse or the keyboard.

Table 25.2 Manipulating windows

Open a window

Close a window

Choose View to open aprofiler window that's not already open.

Choose Close from the Window menu or press AIt+F3 or, if active, click
the window's close box.

Chapter 25, The Turbo Profiler environment 383

Table 25.2 Manipulating windows (continued)

Activate a window

View the windows contents

Move the active window

Resize the active window

Zoom the active window

Iconize the active window

Move from pane to pane

The status line

Click anywhere in the window, or
Press Alt plus the window number (1 to 9, in the upper right border of
the window), or
Choose Window and select the window from the list at the bottom of
the menu, or
Choose Next from the Window menu (or press F6) to make the next
window active (next in the order you first opened them).

Use cursor keys to scroll the window up and down or left and right, or
Use the mouse to operate the scroll bars:
• Click the direction arrows at the ends of the bar to move one line or

one character in the indicated direction.
• Click the area in the middle of the bar to move one window size in the

indicated direction.
• Drag the scroll box to move as much as you want in the direction you

want.

Drag its title bar or any left border character that isn't a scroll bar, close
box, or zoom or iconize box, or
Choose Size/Move from the Window menu (or press Ctr/+F5), use the
arrow keys to place the window where you want it, then press Enter.

Drag the resize comer, or
Choose Size/Move from the Window menu (or press Ctrl+F5), press
Shift+Arrowto change the size of the window, then press Enter, or
Drag any part of the right or bottom border that isn't a scroll bar to
resize the window.

Click the zoom box, or
Double-click the window's title bar, or
Choose Zoom from the Window menu, or press F5.

Click the iconize box, or
Choose Iconize/Restore from the Window menu.
When a window is fully zoomed, it has only an unzoom box.([t]) When
it is iconized, it has only a zoom box (t). In its restored state, it has both
an up and a down arrow.

Press Tab, Shift+ Tab, or Shift+Arrow, or
Choose Window I Next Pane.

The status line at the bottom of the Turbo Profiler screen provides the following
information:

• It reminds you of basic keystrokes and shortcuts applicable at that moment in the
active window. (You will see that the status bar changes if you hold down Alt or Ctrl.)

• It provides onscreen shortcuts you can click to carry out the action (instead of
choosing the command from the menu or pressing the hot key on the keyboard).

• It offers one-line information on any selected menu command or dialog box item.

The status line changes as you switch windows or activities. You can click any of the
shortcuts to carry out the command.

384 c++ User's Guide

The only time the status line is unavailable is when a dialog box or menu is open. You
must close the dialog box or menu before doing anything else.

When you've selected a menu command, the status line changes to display a one-line
summary of the routine of the selected item. For example, if the Options menu title is
selected (highlighted), the status line displays the currently selected item in the Options
menu.

Dialog boxes
If a menu command has an ellipsis after it (...), the command opens a dialog box. A
dialog box is a convenient way to view and set multiple options.

When you're making settings in dialog boxes, you work with six basic types of controls:
radio buttons, check boxes, action buttons, text boxes, list boxes, and standard buttons.

If you have a color monitor, Turbo Profiler uses different colors for various elements of
the dialog box. .

Part 2: The menu reference
This section gives you an item-by-item description of each menu command and dialog
box option in the Turbo Profiler environment.

== menu (System)
The == menu (called the System menu) appears on the far left of the menu bar. To activate
the == menu, either press Alt+Spacebar, or press F10, then use Right or Left to go to the ==
symbol and press Enter.

With the commands in the == menu, you can

• Repaint the screen
• Restore your original window configuration
• Activate the Turbo Profiler information box

Repaint Desktop
Choose Repaint Desktop when you want Turbo Profiler to redraw the screen. You
might need to do this, for example, if a memory-resident program has left stray
characters on the screen, or possibly if you have display swapping turned off.

Restore Standard
When you start up Turbo Profiler, it sets the environment windows' size, window status
(open or closed), and placement according to information stored in the configuration file
TFCONFIG.TF. Once Turbo Profiler is onscreen, you can move and resize the windows,
close some and open others, and generally make a real mess of your screen. The Restore
Standard command provides a quick way to rectify such a situation.

Chapter 25, The Turbo Profiler environment 385

When you choose Restore Standard, Turbo Profiler puts all the windows back the way
they were when you first started the profiler.

About
When you choose About from the == menu, the About box pops up. This box lists the
Turbo Profiler version number. Press Enter or choose OK to close the box.

File menu
The File menu contains commands for

• Opening and loading a program to be profiled
• Changing the current directory
• Obtaining information about your program and system memory allocation
• Opening up a DOS shell
• Quitting the profiler

Open
The File I Open command, used to load an explicit file into the Module window, opens a
two-tiered set of dialog boxes. The first is the Load a New Program to Profile dialog box.

Figure 25.1 The Load A New Program to Profile dialog box

TRPOF.EXE's Load a New Program to Debug dialog box contains an additional button,
Session, to support its remote profiling feature. For more information on remote
profiling, and the Session button, see Chapter 30, "Remote profiling."

If you know the name of the program you want to load, enter the executable name into
the Program Name input box and press Enter.

To search through directories for your program, click the Browse button to open the
second dialog box (the Enter Program Name to Load dialog box):

Figure 25.2 The Enter Program Name to Load dialog box

386 c++ User's Guide

The Files list box displays the files in the currently selected directory. By entering a file
mask into the File Name input box (such as *.EXE), you can specify which files should be
listed. You can also use the File Name input box to change disk drives.

To "walk" through disk directories,double-click the entries listed in the Directories list
box (the .. entry steps you back one directory level). Once you've selected a directory,
choose a file to load from the Files list box. To quickly search for a file, type a file name
into the Files list box. Turbo Profiler's incremental matching feature moves the highlight
bar to the file that begins with the letters you type. Once you've selected a file, press OK.
This action returns you to the Load a New Program to Profile dialog box.

To support remote debugging, TPROF.EXE contains buttons in the Load a New
Program to Profile dialog box. The Session radio buttons specify whether or not the
program you're debugging is on a local or remote system. If it's located on a remote
system, select the Remote Windows radio button; if it's not on a remote system, select
Local. See Chapter 29, "Customizing the Turbo Profiler," for complete instructions on
remote debugging.

Note Before loading a program into the profiler, be sure to compile your source code into an
executable file (.EXE or .DLL) with full debugging information. Although you can load
programs that don't have debug information, you will not be able to use the Module
window to view the program's source code. (The profiler cannot reference the source
code of executable modules that lack debug information. If you load a module that
doesn't contain debug information, Turbo Profiler opens the Disassembly window to
show the disassembled machine instructions of that module.)

When you run a program under the control of Turbo Profiler, the program's executable
files (including all.DLL files) and original source files must be available. In addition, all
.EXE and .DLL files for the application must be located in the same directory.

Session Saving
When you exit Turbo Profiler, it saves to the current directory a session-state file that
contains information about the profiling session you're leaving. When you reload your
program from that directory, Turbo Profiler restores the history lists from the last
profiling session.

By default, all history lists are saved to the session-state file. Session-state files are
named XXXX.TP and XXXX.TPW by TPROF.EXE and TPROFW.EXE, respectively,
where XXXX is the name of the program you're profiling. If no program is loaded when
you exit Turbo Profiler, then XXXX is named either TPROF or TPROFW.

The Options I Set Restart Options command opens the Restart Options dialog box, from
where you can set how Turbo Profiler handles the session-state files. In this dialog box,
the Restore at Restart check box specifies whether you want to save the profiler's history
lists. The Use Restart Info radio buttons specify how you want to handle the file:

Table 25.3

Alway~

Ignore if old

Turbo Profile session-state saving options

Always use the session-state file.

Don't use the session-state file if you've recompiled your program.

C hap t e r 25, The T u r boP r 0 f i I ere n vir 0 n men t 387

Table 25.3 Turbo Profile session-state saving options (continued)

Prompt if old Prompts if you want to use the session-state file if you've recompiled your program.

Never Do not use the session-state file.

Get Info
The File I Get Info command displays a text box with information about the program
being profiled and your system's current memory configuration.

Information in the Get Info box is for display only; you can't change any settings from
this box. Here's what the categories in this information box represent:

• Program is the program being profiled; you determine which file to profile with the
File I Open command.

• Status describes how Turbo Profiler gained control: it can be anyone of the following
messages:

Loaded
Control-Break
Terminated, exit code XX
Stopped by area
NMI Interrupt
Exception XX
Divide by zero
No program loaded

• Mode is the profiling mode (active, passive, or coverage); you specify the profiling
mode with the Profile Mode radio button in the Profiling Options dialog box·
(accessed by choosing Statistics I Profiling Options).

• Collection tells whether automatic data collection is enabled or disabled; you specify
the data-collection setting with the Statistics I Accumulation command.

• Memory shows the use of memory:

• DOS: Memory occupied by DOS and/ or various device drivers
• Profiler: Total memory used by the profiler
• Symbols: Memory allocated for the program's symbol table
1& Program: Memory allocated to the current program being profiled
• Available: Amount of remaining available memory

1& DOS version shows the current DOS version on your system.

1& Current date and time is taken from the system clock.

After reviewing the information in the Get Info box, click OK or press Enter to return to
the current window.

DOS Shell
The File I DOS Shell command steps you out of Turbo Profiler and into a DOS shell. To
return to Turbo Profiler, type EXIT at the DOS prompt.

388 C++ User's Guide

Note In remote profiling mode, the DOS command line appears on the Turbo Profiler screen
rather than on the user screen; this allows you to switch to DOS without disturbing your
program's output. Because your program's output is always available on one screen in
the system, Window I User Screen and Alt+FS are disabled during remote profiling. (See
Chapter 30 for details about remote profiling.)

Quit
@D@ The File I Quit command exits Turbo Profiler, removes it from memory, and returns to

the DOS command line.

If you have any profile data or setup parameters that you want to keep (such as the
profile statistics, profiling and display options, and screen layout options), save them
with the Statistics I Save and Options I Save commands before exiting. If you don't,
you'll lose the options you've set.

Note Each time you exit Turbo Profiler, it remembers the areas you set up for the current
program by saving the settings in a .TFA file. Then, the next time the program is loaded,
the area settings are automatically put into effect.

. View menu
The View menu lets you open several kinds of windows in which you can examine
information about your program's performance.

Table 25.4 Summary of Turbo Protiler windows

Module Source code for the program being profiled

Execution Profile

Callers

Overlays

Interrupts

Files

Areas

Routines

Disassembly

Text File

Coverage

SpeedMenus

Statistical information about a program after the program has run

Information about how often a routine is called and which routines call it

Information about overlays for Borland's line of Pascal compilers, Borland's C
and C++ compilers, and Turbo Assembler

Information about interrupt calls made by the program

Information about file activity

Detailed information about data-collection activities at the places marked in
your source code'

All routines that can be used as profile area markers

The current profile area in the Module window, as disassembled source code

Contents of any text file you specify

In its default setting, lists the code blocks which havef\'t yet been executed

Each Profiler window has its own SpeedMenu (actually, some windows have more than
one SpeedMenu, depending on the number of panes in the window). A SpeedMenu
contains commands and settings specific to the window pane.

To activate a SpeedMenu, press Alt+F10 (if there is more than one window pane, press
Tab to alternate between the panes). When the SpeedMenu pops up, use the arrow keys
to select the command you want and press Enter, or press the highlighted letter. Once

Chapter 25, The Turbo Profiler environment 389

you choose a SpeedMenu command, Turbo Profiler either carries it out, displays a
dialog box, or displays another menu.

To activate a SpeedMenu item directly from the window (without bringing up the
SpeedMenu), press the Ctrl+{letter) hot key, where letter is the menu item's highlighted
letter. .

To pop up the active menu's SpeedMenu using a mouse, click the mouse's right button.
Then, select the command you want by clicking on the menu item.

Module
The Module window displays source code for the program being profiled. In the
Module window, you can examine code and set areas to be profiled. Special hot keys
and window links connect the code in this window to data and statistics in other
windows.

When you choose View I Module, a list box appears that lists all the source modules
linked with the program currently loaded into the Module window. Highlight the new
module you want to display, and press OK to load it into the Module window.

If the Modified appears in the title bar of the Module window, it indicates that the source
code to the file you're viewing has changes since the program was last compiled.

Figure 25.3 The Module window (zoomed)

When you run the profiler, both the .EXE file and the original source file must be
available. Turbo Profiler looks for your program's source code in these places, in this
order:

In the directory where the program was originally compiled. The name of the
directory where the program was originally compiled is contained in .EXE and .OBJ
files if you compiled your program with symbolic debugging information.

2 In the directories (if any) you've listed under Options I Path for Source (or stated in
the command-line option using the -sd switch).

3 In the current directory.

4 In the directory that contains the .EXE file of the program you're profiling.

390 C++ Use r 's G u ide

Press Alt+F10 or click the right mouse button to bring up the Module window's
SpeedMenu. With the SpeedMenu commands, you can perform these actions:

• Move the cursor to a specific line or code label.

• Search for text in the source code.

• Add and remove profile areas.

• Set the profiling acti~n that will occur for a given area.

• Specify the level of call-path recording for a given routine.

• Load another module or another source file of the current module into the Module
window.

• Invoke the editor specified when you run TFINST.

Line
I9illUJ To move swiftly to a particular line of code in the Module window, choose Line from

the SpeedMenu. The dialog box that pops up requests the line number you seek; type in
the new line number, then choose OK (or press Enter). If you enter a line number after
the last line in the file, you will be positioned at the last line in the file.

Search
I9illlID To search for a character string in the current module, choose Search. The prompt box

that pops up requests the string to search for; type in the string, then choose OK (or
press Enter).

If the cursor is positioned over text that looks like a variable name, the prompt box
comes up initialized to that name. If you mark a block in the file, the profiler uses that
block to initialize the search prompt. This saves you from extraneous typing if the text
you want to search for is a string already in the Module window.

You can use the standard DOS wildcards (? and *): The ? indicates a match on any single
character, and the * matches 0 or more characters.

The search begins from the current cursor position and does not wrap around from the
end of the file to the beginning. To search the entire file, start at the first line.

Next
19i1l@ Once you've defined a search string with the Module window's local Search command,

you can search for successive occurrences of that string with the Next command.
Choose Next from the SpeedMenu, or press the shortcut, Ctrl+N. You can use Next only
after issuing a Search command.

Gata
19i1l@ To position the Module window's cursor on a particular routine or other code label in

your program's source code, choose Goto. The prompt box that pops up requests the
address you want to examine. Type in a line number, a routine name, or a hex address,
then choose OK (or press Enter).

Note Use the hex format of your program language.

C hap t e r 2 5, The T u r boP r 0 f i I ere n vir 0 n men t 391

Add Areas
19i1l@ Add Areas on the Module window's SpeedMenu leads to·another menu.

• All Routines adds area markers for all routines in the program being profiled,
including routines for which source code is unavailable (such as library routines
linked in as object modules).

• Modules with Source adds area markers for all routines in modules whose source
code is available.

• Routines in Module adds area markers for all routines in the current module (the one
in the Module window).

• Every Line in Module adds area markers for all lines inthe current module.

• Lines in Routine adds area markers for all lines in the current routine (whichever
routine the cursor is on in the Module window).

• Current Routine adds an area marker for whichever routine the cursor is on in the
Module window.

• This Line adds an area marker for the line the cursor is on in the Module window.

Remove Areas
19i1llB) Choosing Remove Areas on the Module window's SpeedMenu displays another menu.

This menu is almost identical to the Add Areas menu just described. Except for the All
Areas command, which removes all markers, each command on the Remove Areas
menu erases area markers the same way as the respective Add Areas command adds
area markers.

Operation
19i1l(Q) The Operation command opens the Area Options dialog box, which contains settings

for the area marker on the current line in the Module window.

Figure 25.4 The Area Options dialog box

You can specify two options with the radio buttons in this dialog box: Operation and
Timing. In addition, the Window Procedure check box enables message tracking for
Windows programs. '

• Operation specifies what profiling action will occur for the current area. Window
Procedure, when checked, specifies that the current area marks a procedure specific to
Windows.

When you mark an area, a marker symbol signifying the chosen operation appears to
the left of that area in the Module window. A different symbol is used to refer to each
type of area marker: A Normal area is marked with =~, a Stop area is marked with
s~, an Enable area is marked with e~, and a Disable area is marked with d~.

392 C++ Use r 's G u ide

.. Normal collects profile statistics for this area as specified in the Statistics menu
(callers, file activity, interrupts, overlays, and so on) and Area Options dialog box,
which you reach through the SpeedMenus of the Module and Areas windows .

.. Stop stops program execution at this marker.

.. Enable turns on the collection of statistics at this point in the program.

CIt Disable temporarily turns off the collection of statistics at this point in the program.
Data collection resumes once program control passes an Enable marker.

Note Coverage mode provides only one type of area marker, denoted by a single> character.
The marker indicates that the block has not been executed.

• Messages becomes active when the Window Procedure check box is checked.
Choosing Messages displays the Window Procedure Messages dialog box.

• Timing specifies whether the profiler will add the current area's execution time to a
higher-level area or keep it separate.

.. Separate adds any timer ticks in the current routine to that routine's statistics. .

.. Combined sums the timer ticks of the marked routine with the timer ticks of all the
children of that routine. You can specify combined time for an area only if that
area's Callers setting is Immediate or All.

VVhen you set a routine's Timing to Combined, Turbo Profiler does not display
timing statistics for the children of that routine-their times are reported as part of
the routine whose timing is set to Combined.

The following illustration shows how Combined timing works:

In this illustration, the routine FI has its Timing set to Combined. Turbo Profiler collects
the timing information for all the routines (FI, F2, F3, and F4), and sums them into the
timing information collected for the routine Fl.

Callers
©!ill© The Callers command on the SpeedMenu leads to the Stack Trace dialog box.

Figure 25.5 The Stack Trace dialog box

C hap t e r 2 5, The T u r boP r 0 f i I ere n vir 0 n men t 393

You specify how callers are handled with two sets of radio buttons, Areas and Stack.

• Areas specifies which areas you want call paths recorded for.

• This Routine sets only the current routine (the one the cursor is on in the Module
window) to the setting specified in Stack.

• This Module sets all routines in the current module to the setting specified in
Stack.

• All Routines sets all routines in all program modules to the option specified in
Stack.

• Stack specifies how extensive ("deep") the recorded call stack should be.

e All Callers records all available call stack information for the routine(s) you've
specified with the Areas option.

• Immediate Caller records only "parent" information for the routine(s) you've
specified with the Areas option.

• None turns off call stack information for the routine(s) you've specified with the
Areas option.

When OK is selected from the Stack Trace dialog box, the areas specified by the Areas
options are set according to the selected Stack option. Changes made in this dialog box
are reflected in the Areas window.

Module
r£0)(M) The Module command on the SpeedMenu leads to the Pick a. Module dialog box that

lists all your program's modules for which source code is available.

Most modules have only a single source code file; other files included in a module (such
as C header files) usually define only constants and data structures. Use this command
to open a different module in the Module window.

This option displays only the file names for the source code modules that are associated
with the program being profiled. It allows you to move rapidly from one module to
another without having to search your source directory explicitly.

The Module command searches for the source code in the following places, in the order
listed:

In the directory where the program was originally compiled.

2 In the directories (if any) you've listed under Options I Path for Source (or stated in
the command-line option using the -sd switch).

3 In the current directory.

4 In the directory that contains the .EXE file of the program you're profiling.

File
r£0)[£) The File command on the Module SpeedMenu leads to a dialog box that lists all the

source files used to compile the current module. Use this command if your module has
source code in more than one file and the file you want is not displayed in the module
window.

394 C++ Use r 's G u ide

The File command searches for the source code in the same order as the Module
command in the previous section.

Edit command
rQ!ill~ Although Turbo Profiler does not have a built-in editor, you can specify your own

favorite editor as an option when you customize the profiler with the Turbo Profiler
installation program, TFINST. See Chapter 29 for information about TFINST.

Once you've installed an editor using TFINST, whenever you choose Edit from the
Module window's SpeedMenu, Turbo Profiler automatically shells out to DOS and
invokes your editor. To return to the profiler from your editor, simply quit the editor.

Execution Profile
The Execution Profile window is where Turbo Profiler displays your program's profile
statistics (after you've set areas and run the program under control of the profiler).

The Execution Profile window consists of one pane, divided into two display areas (top
and bottom). The top display area lists

• Total Time: your program's total execution time.

• % of Total: how much of that total (a percentage) is represented by the statistics for
the areas you've chosen.

• Runs: the current profile run (if you're collecting and averaging statistics from more
than one run).

• The options you've chosen from the SpeedMenu (display format, filter status, and
sort order).

• Total Ticks: the total number of timer ticks which occurred during the program run.
Timer Ticks displays only during passive mode profiling.

The·bottom display area lists one or two lines of profile data for each area you've
marked. The information shown in this display area can include each area's name or
line number, the execution counts for each marked area, the time spent in each marked
area, the average time per pass for each marked area, and the most time spent in a
marked area on a single pass.

If you have a Module window and an Execution Profile window onscreen at the same
time, the Execution Profile window is positioned automatically to show the statistics for
the area the cursor is on in the Module window.

To specify how the Execution Profile window displays your program's statistics,
activate the SpeedMenu (press Alt+F10). Through this SpeedMenu, you can

• Select what type of modules will be profiled: Window procedures or normal areas.

• Choose anyone of six different ways to display profile statistics in the Execution
Profile window.

• Sort the displayed statistics.

• Temporarily remove one or more areas' statistics from the display.

C hap t e r 2 5, The T u r boP r 0 f i I ere n vir 0 n men t 395

• Examine the source code for an area.

• Delete an area's statistics from memory and erase the associated area marker.

Display
r9ill@ When you choose Display from the Execution Profile window's SpeedMenu, the

Display Options dialog box comes up.

Figure 25.6 The Display Options dialog box

You can specify three options with the radio buttons in this dialog box: Profile, Display,
and Sort.

• Profile specifies which areas are displayed in the Execution Profile window.

• Normal Areas displays all marked areas, including any Window procedures that
are marked.

• Window Procs filters the displayed areas to show only the classes and Windows
messages that are specified in the Windows Procedure Messages dialog box.

See Chapter 31 for a complete description of the Windows Procedure Messages
dialog box.

• Display specifies what form the data will be displayed in.

• Time displays the profile statistics for each area as the time (in milliseconds)
program control was in that area.

• Counts displays profile statistics for each area as pass counts: how many times
program control entered that area.

• Both displays the statistics for each area as both time (the top line) and counts. This
provides a graphic measure of a routine's efficiency.

• Per Call displays each area's statistics as the Time:Counts ratio. This provides the
average time spent in each call to the routine.

• Longest displays, for each area, the longest single time program control was in
that area.

• Module displays, for each module in the program, the time program control was
in that module. This setting is useful only if Turbo Profiler is in passive mode,
which means it's recording with every clock tick which module the program is in.
This option is helpful as a first cut at profiling a large program.

• Sort specifies what order the data will be sorted in.

• Name sorts the profile statistics by area name, in alphanumeric order.

• Address sorts profile statistics by memory location, starting with the lowest
address. '

• Frequency sorts the statistics numerically, with the highest frequency at the top.

396 C++ Use r 's G u ide

The top display area of the Execution Profile window lists the current display and sort
options.

Filter
(Q0)(E) The Filter command on the SpeedMenu leads to the three-item menu shown here.

• All restores all collected statistics for the current program to the Execution Profile
window.

After you've filtered out certain statistics from the Execution Profile window (with
Filter I Module or Filter I Current), choose Filter I All to restore all profile statistics to
the window.

• Module filters out all but one module's statistics.

This command leads to the Pick a Module dialog box, which lists all modules for the
current program. Use the Up and Down arrow keys to highlight one module in the list,
then press Enter. Only the areas in the chosen module show up in the Execution
Profile window.

• Current temporarily removes the highlighted area's statistics from the Execution
Profile window.

Choose Filter I Current if you want to throw out one area's statistics and see what
happens to the remaining percentages. The Current command is a temporary filter
that hides report information from sight without deleting any information; it does the
following:

Removes the current area's statistics from the Execution Profile window.

2 Calculates original total execution time minus the time of the removed area.

S Recalculates the remaining areas' percentages as fractions of the newly calculated
total execution time.

When you filter one or more areas' statistics from the Execution Profile window, the
profiler calculates a new total execution time based on the statistics displayed in the
window, but the Total Time value shown in the top of the window does not change.

When you use Filter I Current, the original total execution time for the entire program
remains displayed in the Execution Profile window's top display area.

Filter I Current is a temporary filter that hides report information from sight; Remove
actually affects area marker settings by removing them in both the Module and Areas
windows.

Note Don't confuse Filter I Current with the Remove command on the Execution Profile
window's SpeedMenu.

Module
(Q0)(M) The Module command on the SpeedMenu takes you to the line of source code in the

Module window for which the statistics are highlighted in the Execution Profile
Window. Note that in addition to the Ctrl+Mhot key, you can press Enter from the
Execution Profile window to execute the same command.

C hap t e r 2 5, The T u r boP r 0 f i I ere n vir 0 n men t 397

Suppose you highlight the statistics for routine frank in the Execution Profile window,
then choose Module from the SpeedMenu to activate the link. Turbo Profiler activates
the Module window and places the cursor on the first line of frank in the source code.
After that, you move the cursor to line 25 in the Module window (line 25 has an area
marker). Automatically, the Execution Profile window's contents scroll so that the
statistics for line 25 show at the top of the statistics display area.

The link is unidirectional: If you go back to the Execution Profile window (after going to
the Module window) and move the highlight bar, the source code in the Module
window does not scroll or track the highlight bar's position. (If it did, you could get very
frustrated.)

If, when you choose the Module command, source code for the highlighted line is
unavailable, the link goes to the corresponding line of code in the Disassembly (CPU)
window. This happens, for example, if you've marked areas for All Routines and the
highlighted line is a library routine. (See page 409 for details about the Disassembly
window.)

Position
@ill(£) The Position command is identical to the Module command, with the exception that the

Position command does not activate the Module window; the Execution Profile window
remains active. Another shortcut for this command is the. Spacebar.

Remove
@ill® The Remove command removes area marker settings from the currently highlighted

line in the Execution Profile window.

Warning The Remove command erases statistical data. Use it with discretion.

Once you remove the line's area markers with the Remove command, the statistics you
had gathered for that line are erased and no more statistics are gathered for that line of
code. To undo a Remove action, you must

1 Activate the Module window and bring up its SpeedMenu.

2 Place the cursor on the line whose marker you removed.

3 Choose Add Areas I This Line.

4 Run the program again (collecting a new set of statistics).

Callers
The Callers window is where Turbo Profiler displays the call paths for each marked
routine in your program. A call path is a list of all the routines that were called to
execute the currently selected routine. The call path starts with the original calling
routine. You must set the Statistics I Callers menu item to Enabled before the profiler will
record any call-path information.

398 G + + Use r 's G u ide

Figure 25.7 The Callers window, showing calls in CALLTEST

The left pane in the Callers window lists each marked routine by name. When you
highlight a routine name in the left pane, the right pane displays each unique call path
for that routine. If a call path is wider than the right pane, you can zoom the window or
switch to the right pane and scroll left and right through the path.

Note An underscore precedes the identifier names in this Callers window because Borland's
C and C++ compilers add the underscore to all symbol names appearing in .OBI files
and symbolic debugging information.

Although the Callers window displays the call-path information, you must specify what
type of call path recording you want. This is done through either the Module window or
the Areas window.

In the Module window, you can set callers options for whole groups of routines.

With the cursor on a marked routine in the Module window, press Alt+F10 to bring up
the SpeedMenu.

2 Choose Callers to see the Stack Trace dialog box.

3 Set the Areas option. You can choose to record call paths for the current routine, all
routines in the current module, or all routines in the program (including library
routines).

4 Set the Stack option. You can choose to record all callers for the chosen routine(s),
immediate callers (the routines' parents only), or no callers at all.

5 Press Enter or choose OK to go back to the Module window.

In the Areas window, you can set callers options for individual marked routines. (See
page 405 for more information about the Areas window.)

In the Areas window, place the highlight bar on the routine you want to set call-path
options for, then press Alt+F10 to bring up the SpeedMenu.

2 Choose Options to see the Area Options dialog box.

3 Set the Callers option. You can choose to record all callers for the chosen routine(s),
immediate callers (the routines' parents only), or no callers at all.

4 Press Enter or choose OK to go back to the Areas window.

Figure 25.7 shows routine c highlighted in the left pane of the Callers window, after a
profile run of this program, CALLTEST:

/* Program CALLTEST */

/* Copyright (c) 1990, Borland International */

#include <stdio.h>

main()

C hap t e r 2 5, The T u r boP r 0 f i I ere n vir 0 n men t 399

a()
{

c();
b2() ;

bl() ;

a();

int i;

for (i = 0; i < 100; i++)
b2 ();

bl() ;

bl ()

{

int i;

for (i 0; i < 33; i++)
c();

b2 ()

{

. c()

{

int i;

for (i = 0; i < 77; i++)
c();

int i;

for (i = 0; i < 3; i++)

The Callers window's right pane lists each unique call path for routine c:

• 1 call from main to c
• 77 calls from main to b2 to c
• 33 calls from main to bi to c
• 7,700 calls from main to a to b2 to c
• 33 calls from main to a to b I to c

You'll find the Callers window useful when you must make decisions about
restructuring code, especially when it's possible to reach a routine through several
different call paths.

400 c++ User's Guide

Both panes of the Callers window have SpeedMenus. In the Callers window's right
pane, the Inspect SpeedMenu item brings up a subsequent menu containing the
commands areas, module, and profile.

Inspect (left pane)
©.liDOJ When the highlight bar is on a routine name in the left pane, choose Inspect (or press its

shortcut, Ctrl+O to view the source code for that routine in the Module window.

Inspect (right pane)
©.liDOJ When the highlight bar is on a call path in the right pane of the Callers window, you can

"inspect" (view information about) elements in that call path in one of three other
windows.

Choose Inspect to bring up a list of those other windows.

2 Choose the window you're interested in (Areas, Module, or Profile) from the list. This
brings up the Pick a Caller dialog box, which lists all callers on the current call path.

3 In the dialog box, highlight the caller in question (use the arrow keys or a mouse
click), then choose OK or press Enter. If the window you choose to inspect isn't
already open, the profiler opens it automatically, then goes to the caller's location in
that window.

Sort (right pane)
©.liD® With the local Sort command in the Callers window's right pane, you can sort the list of

call paths in two ways:

• Called sorts the call paths in the same order that program control traversed them at
run time.

• Frequency sorts the call paths by how often program control traversed each path,
with the most-used path at the top of the list.

Overlays
The Overlays window is where Turbo Profiler displays information about overlay
activity for Borland/s Pascal compilers, Borland's C and C++ compilers, and Turbo
Assembler programs. You must set the Statistics I Overlays menu item to Enabled before
the profiler will record any overlay information (if your program has overlays, Turbo
Profiler automatically enables the Overlay option).

Figure 25.8 The Overlays window

The information listed in this window can include:

• How many times your program loads each overlay into memory.
• When each overlay was loade0-.

Chapter 25, The Turbo Profiler environment 401

• The sequence in which your program loads the overlays.
• The size of the overlay

Like the ' Execution Profile window, the Overlays window is divided into two display
areas, top and bottom. The top display area lists total execution time for your program
and the current display option for overlay statistics. The bottom display area lists the
overlay statistics as either a histogram or a list of events.

Note Press any key to halt the execution of the program OVRDEMO.

If you have one qf Borland's Pascal compilers, there's a program, OVRDEMO, that gives
a live demonstration of how the Overlays window works~ Load this program into the
profiler. Then set area markers for every line in the module OVRDEMO, enable
Statistics I Overlays, and run the program. (You'll need the files OVRDEMO.P AS,
OVRDEMOl.PAS, OVRDEM02.PAS, and OVRDEMO.EXE to profile this program.)

The Overlays window's SpeedMenu provides two commands, shown here.

Display
rQ!ill[Q) Display specifies how the data will appear; you toggle between Count and History by

pressing Enter.

Count produces a histogram that shows, for each overlay, how much memory that
overlay consumes and how many times your program loaded the overlay into memory.

History lists your program's overlay activity as a sequence of events; each line names
the overlay and specifies when, in the course of program events, that overlay was
loaded.

Inspect
rQ!illOJ Inspect goes automatically to the Module window (opening it, if necessary) and places

the cursor on the source code for the highlighted overlay.

Interrupts
The Interrupts window is where Turbo Profiler displays information about the video,
disk, keyboard, DOS, and mouse interrupt events in your program. The Statistics I
Interrupts menu item must be Enabled before the profiler will record any interrupt-call
information.

Figure 25.9 The Interrupts window

The Interrupts window is divided into three panes: top left, top right, and bottom.

402 c++ User's Guide

• The top left pane displays the list of specific interrupts to be profiled (by INT number
and name).

• The top right pane lists information about the display mode and the current interrupt
(the one highlighted in the top left pane), number of calls, and execution time. You
cannot tab to the top right pane; it only displays information.

• In the bottom pane, you see a profile of data for each interrupt, shown as a histogram
or as start time and duration.

Each entry in the bottom pane of the Interrupt window can list

• The interrupt by name or !NT number (or both)

• The number of calls to that interrupt (as an absolute number and as a percentage)

• The total amount of execution time spent in that interrupt (as an absolute number
and as a percentage)

Both active panes of the Interrupts window have SpeedMenus.

Collection (top pane)
rQli])@ The Collection, command enables or disables collection of statistics for the current

interrupt (the one highlighted in the left display area of the top pane).

Subfunctions (top pane)
rQli])(§) The Sub functions command enables or disables collection of statistics for sub functions

of the current interrupt (this is particularly useful for DOS INT 21H calls). Subfunction
numbers are determined from the value in the AH register when the interrupt is called.

Add (top pane)
rQli])@ The Add command adds an interrupt, by number, to the list in the pane's left display

area. Type the interrupt number in hexadecimal notation. For example, type 21 for INT
21H (if you type 33, Turbo Profiler adds INT 33H to the list).

Pick (top pane)
rQli])CE) The Pick command displays a predetermined list of interrupts, so you can pick one to

add to the list in the left display area.

Remove (top pane)
rQli])(ffi The Remove command removes the current highlighted interrupt from the list in the

pane's left display area.

Delete All (top pane)
rQli])@ The Delete All command removes all the listed interrupts in the pane's left display area.

Chapter 25, The Turbo Profiler environment 403

Display (bottom pane)
19i1l@ The Interrupt window's bottom pane has a one-item SpeedMenu; its command,

Display, leads to a subsequent menu. From this second menu, you can choose to display
interrupt statistics in one of four different formats, as shown in Table 25.5:

Table 25.5 Summary of interrupt statistic formats

Time Displays the amount of time spent in each interrupt and its subfunctions.

Calls Displays the number of tiffies each interrupt and its subfunctions were
called.

Both Time and Calls

Events

Files

Displays both the amount of time and the number of times that each
interrupt and its subfunctions were called.

Displays a time-ordered list of interrupt calls.

The Files window is where Turbo Profiler displays information about file activity that
occurred during your program's run. For Turbo Profiler to record any file-activity
information (such as read, write, open, or close), Statistics I Files must be set to Enabled.

Figure 25.10 The Files window

The Files window is divided into three panes: top left, top right, and bottom.

The top left pane lists files by name, including STDIN and STDOUT. As you move the
highlight bar over the file name you're interested in, the top right pane shows, for that
file,

• The handle number
• The time the file was opened
• How long the file was open
• The time required to open the file
• The number of reads and writes from and to the file
• The total number of bytes read and written
• The time for all reads from and writes to the file
• The time required to close the file

The top right pane only displays information. You can't tab to it, and it does not have a
SpeedMenu.

The lower pane displays file activity statistics (reads, writes, opens, and closes) as
individual entries, rather than as statistical totals associated with a single file-name
entry. Each entry provides information about a given file activity.

404 c++ User's Guide

Both active panes of the Files window have SpeedMenus.

Collection (top pane)
19.ill© The Collection command enables or disables the collection of file activity statistics for

the current file (the one highlighted in the left display area of the top pane).

Each entry in the bottom pane of the Files window provides information about a given
file activity.

Detail (top pane)
19.ill@ The Detail command enables or disables the collection of a detailed listing of file-activity

statistics. A detailed listing logs each file read and write separately, the time it occurred
(calculated from the from the program start), and the number of bytes transferred.
When Detail is disabled, only file open and close activities are logged; reads and writes
are summarized.

When Full (top pane)
19.ill&YJ The When Full command specifies what happens when the memory set aside for file­

activity statistics fills up.

Wrap means that the newest file-activity statistics will overwrite the oldest ones when
the memory area fills up.

Stop means that file-activity statistics gathering will stop when the memory area fills up.

Display (bottom pane)
19.ill@ In the Files window's bottom pane, you can choose one menu item, Display, which

leads to the Display Options dialog box.

You can specify two options with the radio buttons in this dialog box: Display and Sort.

• Display specifies how you want file-activity statistics to appear in the bottom pane.

e Graph displays each activity's total time as a bar graph.
III Detail displays each activity's exact time in seconds.

Both options display the execution time in seconds; however, Graph also graphs the
display and Details tells when, in the course of program execution, the .file activity
took place.

• Sort specifies the order in which Turbo Profiler sorts the displayed statistics.

• Start Time sorts the files' statistics by sequential order of occurrence.
• Duration sorts the files' statistics by how long the open, read, write, or close

operation took.

Areas
The Areas window is where Turbo Profiler displays detailed information about your
program's marked profile areas. The Areas window is used to inspect areas that have
been set arid to adjust the behavior of individual areas.

Chapter 25, The Turbo Profiler environment 405

Figure 25.11 The Areas window

By default, the Areas window lists each area in alphabetical order. For typical programs,
these areas are designated by the names of the routines to which they correspond.
However, if you mark each line in a routine, the area name is (generically)

ModName#Fi1 eName#NN

where ModName is the module name, FileName is the file name, and NN is the line
number. If you mark a line associated with a label (for example, a routine name), the
profiler uses the label as the area name.

Note The file name appears only if the module is made up of more than one file.

The Areas window shows the following information associated with each marked area:

• Start: starting address in hexadecimal.

• Length: length in bytes, as a hexadecimal number.

• Clock: whether the area uses a separate or combined clock in timing descendent
areas.

: • Action: the area operation (what Turbo Profiler should do when it passes the
marker).

• Callers: whether the profiler tracks the area's immediate caller only, all callers, or no
callers.

• Winproc: "Yes"· if the area is a Windows procedure, otherwise it is blank. This
column is pertinent only if a Windows program is being profiled with TPROFW, or
with TPROF acting a~ a remote Windows profiler.

The Areas window is more than a source window for static display of information. With
the SpeedMenu, you can

• Add or remove areas
• Inspect areas
• Change options for individual areas
• Sort the displayed information

Add Areas
©lill@ Choose Add Areas to add area markers. When selected, this command leads to another

menu that contains the commands All Routines, Module, and Routine.

• All Routines places markers at each routine in the current module.

• Module leads to the Pick a Module dialog box. This command lets you place markers
in a program module other than the one present in the Module window.

406 c++ User's Guide

For more information on the Pick a Module dialog box, refer to the "Module" section
on page 394.

• Routine, when selected, leads to the Enter Routine Name to Add text box. Type the
name of the routine that you want to select, and choose OK.

Remove Areas
1Q!ill(B) Remove Areas is used to erase markers that have been set.

.• All Areas removes the markers from all areas in the program, including the modules
not currently displayed in the Module window.

• Module leads to the Pick a Module dialog box. From this dialog box, choose a
module whose area markers you want to delete.

• This Area removes the area marker currently highlighted in the Areas window.

Inspect
IQ!illOJ When you choose Inspect, the profiler switches to the Module window and places the

cursor on the first line of source code corresponding to the current area highlighted in
the Areas window. If the area highlighted does not correspond to a program source line,
the CPU window is opened instead.

Options
IQ!ill (Q) When you choose Options from the Areas window's SpeedMenu, the Area Options

dialog box comes up.

Figure 25.12 The Area Options dialog box

You can specify three options with the radio buttons in this dialog box: Operation,
Callers, and Timing.

• Operation specifies what profiling action will occur for the current area.

See page 392 for a complete discussion on the Operation option.

• Callers specifies the depth of call-path information.

• All Callers records all available call-path information for the current routine.
• Immediate Callers records only "parent" information for the current routine.
• None turns off call-path information for the current routine.

• Timing specifies whether the profiler will add the execution time of the current area's
child routines to a higher-level area or keep it separate.

The timing option is described in detail on page 393.

C hap t e r 25, The T u r boP r 0 f il ere n vir 0 n men t 407

• Window Procedure, when checked, specifies that the current area marks a procedure
used by Windows.

• The Messages box becomes active when the Window Procedure check box is
checked. When Messages is chosen, the Window Procedure Messages dialog box is
displayed.

For a complete discussion of the Window Procedure Messages dialog box, refer to
Chapter 31.

Sort
rillilllm The Sort command rearranges the information displayed in the Areas window. You can

sort alphabetically (by Name) or numerically (by Address). Sorting by Address lists the
areas in an order more consistent with the order in which they appear in your source
code.

Routines
The Routines window is where Turbo Profiler displays a list of all routines that you can
use as area markers. Use it when you can't remember the name of a routine, or when
you want to see which routines have markers set on them. You can use the Inspect
command on the Areas SpeedMenu to go to other modules by "inspecting" a routine in
a particular module.

The information displayed is basically a list of all global symbols available from debug
information included in the executable file. These symbols include all routine and
procedure names in standard libraries for Borland's line of C++ or Pascal compilers, as
well as the names of routines in any third-party libraries you might be using (provided
you link to those libraries with symbolic debug information turned on).

Note The Routines menu gives you easy access to information related to symbols.

Figure 25.13 The Routines window

The Routines window is divided into two panes. The left pane lists routines global to
your whole profiled program, and the right pane lists routines that are local to the
current module of the program you're profiling.

Local routines include nested routines and procedures in Pascal, and static routines in
C. Global routines with area markers appear highlighted in the right pane. (By default,
an underscore (_) precedes all global variables in Borland C and C++ programs.)

Both panes of the Routines window have SpeedMenus.

408 c++ User's Guide

Local Module (right pane)
19i1lCb) When you choose Local Module in the Local Routines pane, the Pick a Module dialog

box pops up, listing all modules in your program.

After you highlight a module and choose OK, the profiler displays that module's local
symbols in the right pane of the Routines window.

Areas (both panes)
19i1l@ The Areas command opens an Areas window and positions that window's highlight

bar on the current routine (the one that's highlighted in the Routines window).

Callers (both panes)
19i1l© The Callers command opens a Callers wi1}dow and shows the current routine's callers.

Module (both panes)
19i1l(M) The Module command opens a Module window and positions the cursor on the source

code for the current routine. .

Profile (both panes)
19i1l® The Profile command opens the Execution Profile window and shows the profile

statistics for the current routine.

Disassembly (CPU)
The Disassembly window (labeled "CPU" when it's on the screen) displays the current
area in the Module window as disassembled source code. The title bar of the
Disassembly window indicates your system processor type and the word Protected
appears if your program is a protected-mode program. You use the Disassembly (CPU)
window to help determine if you want to rewrite parts of your program in assembly
language.

Figure 25.14 The Disassembly (CPU) window

The left part of each disassembled line shows the instruction's address, either as a
hexadecimal Segment:Offset value or, if the segment value is the same as the current CS
register, as a CS:Offset value. If the window is wide enough (zoomed or resized), it also
displays the bytes that make up the instruction. The disassembled instruction appears to
the right of each line.

Chapter 25, The Turbo Profiler environment 409

In the Disassembly (CPU) window, global symbols appear simply as the symbol name.
Static symbols appear (generically) as

THAT#ModName#SymbolName /* Borland c++ * /

ModName.SymbolName Borland Pascal }

where ModName is the module name and SymbolName is the static symbol name. Line
numbers appear (also generically) as

#ModName#LineNumber /* Borland C++ */

ModName.LineNumber { Borland Pascal }

where ModName is the module name and LineNumber is the decimal line number.

In the Disassembly (CPU) window, you can use the F2 function key to set area markers
for each machine instruction you want to monitor. Any marked instructions that have
no symbol name appear in the Areas window as hex addresses in Segment:Offset form.
(Note that F2 can also be used to remove a marker from an area.)

With the Disassembly (CPU) window's SpeedMenu commands, you can go
immediately to any of these locations:

• A specified address
• The current program location (CS:IP)
• The destination address of the current instruction
• The previous instruction pointer address
• The address in the source code

You can also choose a SpeedMenu item to activate the Module window and move its
cursor to the source for the current instruction, or to display disassembled instructions
and source code three different ways. '

Gata
~(Q) When you choose Goto, a dialog box pops up and requests the address you want to go

to. Enter a hexadecimal address, using the hex format for your programming language.

You can enter addresses outside of your program to examine code in the BIOS ROM,
inside DOS, and in resident utilities.

The Previous command restores the Disassembly (CPU) window to the position it had
before you chose Goto.

Origin
~(Q) You choose Origin to position the window's highlight bar at the current program

location as indicated by the CS:IP register pair. This command is useful when you have
. been looking at your code and want to get back to the address of the current instruction

pointer (CS:IP), where your program is stopped.

The Previous command restores the Disassembly (CPU) window to the position it had
before you chose Origin.

410 C++ Use r' s G u ide

Follow
1Qli))CE) The Follow command positions the Disassembly (CPU) window's highlight bar at the

destination address of the currently highlighted instruction. The window scrolls to
display the code at the address where the currently highlighted instruction will transfer
controL For conditional jumps, the window shows the address as if the jump occurred.

You can use this command with CALL, JMP, and conditional jump aZ,]NE, LOOP,
JCXZ, and so on) instructions.

The Previous command restores the Disassembly (CPU) window to the position it had
before you chose Follow.

Previous
1Qli))(f) When you issue a command that changes the instruction pointer address (such as Goto,

Origin, or Follow), the Previous command goes back to the address displayed before
you issued that address-changing command. If you move around with the arrow keys
and the PgUp and PgDn keys, the profiler does not remember the window's position, but
you can always return to the origin, which is the current CS:IP.

Repeated use of the Previous command switches the Disassembly (CPU) window back
and forth between two addresses.

View Source
1Qli))(Y) The View Source command opens a Module window and shows the source code for the

current routine.

Mixed
1Qli))lM) There are three ways to display disassembled instructions and source code in the

Disassembly (CPU) window. You choose the window's display format with the
SpeedMenu's Mixed command, which toggles between three choices: No, Yes, and
Both.

• No means that no source code is displayed, only disassembled instructions.

In No mode, global label names are still used in place of addresses for calls, jumps,
and references to data items.

• Yes means that source code lines appear before the first disassembled instruction for
that source line.

The profiler automatically sets the window to Yes if your current module is a high­
level language source module.

• Both means that source code lines replace disassembled lines for those lines that have
corresponding source code; otherwise, the disassembled instruction appears.

The profiler sets the window to Both if your current module is an assembler source
module.

Use Both if you're profiling an assembler module and want to see the original source
code line, instead of the corresponding disassembled instruction.

C hap t e r 25, The T u r boP r 0 f i I ere n vir 0 n men t 411

Text File
You can examme or modify any file on your system by using a Text File window. You
can view the file only as ASCII text, so files containing binary data may display
characters from the extended ASCII character set.

Before you can open a File window, you must choose the View I Text File command
from the menu bar. This command brings up a dialog box in which you can use DOS­
style wildcards to get a list of file choices, or you can type a specific file name to load.

Once you've chosen your file, Turbo Profiler displays it in the File window.

The File window shows the contents of the file you've selected. The name of the file
you're viewing is displayed at the top of the window, along with the line number the
cursor is on.

The File window SpeedMenu has a number of commands for moving around in a disk
file, changing the way the contents of the file are displayed, and making changes to the
file.

Goto
rQ!ill@ Positions you at a new line number in the file when you enter the new line number to go

to. If you enter a line number after the last line in the file, you will be positioned at the
end of the file.

Search
rQ!ill® Searches for a character string, starting at the current cursor position. You are prompted

to enter the string to search for. If you have marked a block in the file using the Ins key,
that block will be used to initialize the Search dialog box. This saves you from typing if
you want to search for a string that is already in the file you are viewing. The search
string can include simple wildcards, with? indicating a match on any single character,
and * matching a or more characters.

The search begins from the current cursor position and does not wrap around from the
end of the file to the beginning. To search the entire file, start at the first line (press
Ctrl+PgUp to move to the top of the file).

You can also invoke this command by simply starting to type the string you want to
search for. This brings up a dialog box exactly as if you had specified the Search
command.

Next
rQ!ill(ffi Searches for the next instance of the character string you specified with the Search

command; you can use this command only after first issuing a Search command.

This command is useful when your Search command didn't find the instance of the
string you wanted. You can keep issuing this command until you find what you want.

412 c++ User's Guide

File
rn® Displays the same Program Load dialog box as the View I Text File command, enabling

you to load a different file.

Edit
rnlIl Lets you make changes to the file you're viewing by invoking the editor you specified

with the TFINST installation program. This is done through the Editor Program Name
field (located under the Options I Directories dialog box in TFINST). This option is not
available when profiling Windows applications with TPROFW.

Coverage
The Coverage window has two panes: the left pane displays a list of selected modules,
and the right pane shows the blocks contained in those modules. A block is a section of
code that has only one entry point and one exit point; there are no jumps into or out of a
block.

Figure 25.15 The Coverage window

Selecting coverage mode (Statistics I Profiling Options) opens the Coverage window,
replacing the Execution Profile window. By default, Turbo Profiler selects as many
program modules as possible in the left pane and all blocks within those modules are
listed in the right pane.

Note The Coverage window and the Execution Profile window are mutually exclusive; only
one can be open at any given time.

In its default setting, the Coverage window lists only unexecuted blocks in the right
pane. Blocks that have been executed (hit) during a program run will be deleted from
the listing.

Before a program run, all program blocks are marked in the Module window with a ~
character. In the default Coverage mode, Turbo Profiler removes the ~ character from
each block as it is hit. Successive program runs continue to remove block markers,
allowing you to attempt different actions in order to hit the remaining marked blocks.

Note Turbo Profiler automatically marks all progr(;lm blocks with a single marker.

To restore all program blocks to an unhit status, choose Delete All from the Statistics
menu.

Each pane of the Coverage window has its own SpeedMenu.

The left pane's SpeedMenu provides commands for selecting which modules are to be
included in the profiling session. The right pane's SpeedMenu provides commands
pertaining to how blocks are displayed.

C hap t e r 2 5, The T u r boP r 0 f i I ere n vir 0 n men t 413

Add All Modules (left pane)
@ill@ When you choose Add All Modules, the blocks from all program modules contained in

the executable program are marked for the profile session. The keyword All indicates
this selection.

Remove All Modules (left pane)
@ill® Remove All Modules removes all modules from the module list, leaving both panes in

the Coverage window empty.

Add Module (left pane)
@illlM) The Add Module command opens the Pick a Module dialog box, allowing you to select

from the list of modules in the current program.

For more information on the Pick a Module dialog box and its use, refer to page 394.

Remove Module (left pane) _
@ill(Y) Choosing Remove Module opens the Pick a Module dialog box. Using this dialog box,

you can remove a module from subsequent profile runs.

Delete This Item (left pane)
@ill(Q) The Delete This Item command either deletes or adds the currently highlighted item for

the remaining profile runs. If the item has no dash (-) in front of it, the item is deleted.
If the item does have a dash in front of it, it's added.

Display (right pane)
@ill(Q) When you choose Display from the right pane's SpeedMenu, the Coverage Display

dialog box appears.

Figure 25.16 The Coverage Display dialog box

• The Display buttons define what gets displayed in the right pane of the Coverage
window.

• When you choose All, all blocks (both hit and unhit) are displayed in the right
pane. Blocks that have been hit show how many times they've been hit, and blocks
that haven't been hit display a zero (0) next to their entries. You can set the number
of hit counts that the Profiler tracks from the Profiling Options dialog box's
Maximum Coverage Count option.

See Figure 25.18 on page 418 for more information on setting Turbo Profiler's
coverage hit count.

414 C++ User's Guide

.. Not Hit (the default setting) means that only blocks that haven't been hit are
displayed.

• The Sort buttons define the order of block display. This menu item is available only if
All is selected from the Display option and Max Coverage Count in the Profiling
Options dialog box is greater than 1.

.. A sort by Address lists blocks in alphabetical order.

\1l A sort by Count lists the blocks in order of number of hits, starting with those
blocks that have not been hit.

• The Group radio buttons allow you to group blocks individually, or by routine or
module.

Note The Group buttons are available only if Display is set to All.

@ Selecting Block (the default setting) causes all blocks to be listed in the window
pane.

@ Selecting Routine causes blocks to be grouped together by routine. With this
selection, only routine names from the modules displayed in the left pane are
listed in the right pane. However, in addition to each routine name, a count of
blocks contained in the routine and the total number of blocks that have been hit is
displayed.

Figure 25.17 The Coverage window, listing blocks by routine

$ The Module radio button applies only to programs with multiple modules. It
works similarly to the Routine button, except that it groups blocks by module
instead of by routine name.

Position (right pane)
rQ!ill[f) Use the Position command to inspect source code for a particular block of code. When in

the right pane, select a block by moving the highlight bar with the arrow keys. After you
select a block, choose Position to bring the source code into view in the Module window
or the CPU window while keeping the Coverage window active.

Pressing Spacebar also executes the Position command.

Module (right pane)
rQ!illlMJ The Module command is much like Position, except that Module activates the Module

or CPU window and positions the cursor at the top of the block selected.

Pressing Enter also executes the Module command.

Note When Coverage mode is in effect, certain Turbo Profiler functions are no longer .
pertinent, and respective menu items will be dimmed. Specifically, the following

C hap t e r 25, The T u r boP r 0 f i I ere n vir 0 n men t 415

windows are unavailable from the View menu: Execution Profile, Callers, Files, Areas,
and Routines. The Statistics menu dims both the Callers and Files functions. Also, the
Accumulation toggle switch in the Statistics menu is automatically set to Enabled.
Lastly, the SpeedMenu of the Module window dims the functions Add areas, Remove
Areas, Operation, and Callers.

Run menu
The Run menu provides three commands for running your program: Run, Program
Reset, and Arguments. Control returns to the profiler when one of the following events
occurs:

• Your program finishes running
• Your program encounters an area marker whose operation is Stop
• You interrupt execution with the interrupt key
• Your program causes an exception

(Usually, the interrupt key is the Ctrl+Break key combination; you can change this to
another key with TFINST, the profiler installation program. When profiling a Windows
application using TPROFW, use the keystroke sequence Ctrl+Alt+SysRq to interrupt the
program. See Chapter 31 for details.)

You can run your program even if the Module window is closed (as long as there's a
program loaded into Turbo Profiler).

Note When you choose Run I Run or Run I Program Reset after reaching the run count limit,
any statistics collected for a previous execution are reset. If you want to save a set of
statistics, use Statistics I Save before you select Run or Program Reset, or use Statistics I
Profiling Options to set the run count greater than 1.

Run
The Run command runs your program and collects performance statistics.

If you set the Display Swapping option in the Display Options dialog box to Always,
your program's output replaces the Turbo Profiler environment screen until the
program finishes or you interrupt it.

Program Reset
The Run I Program Reset command reloads your program from disk. Use this command
if you've run your program too far during a profiling session and need to restart
execution at the start of the program.

If you select Run I Program Reset when the Module or Disassembly (CPU) window is
active, the display in that window won't return to the start of the program. Instead, the
cursor stays exactly where it was when you chose Program Reset.

Arguments
The program you're profiling might expect command-line arguments. With Run I
Arguments, you can store your program's command-line arguments within Turbo
Profiler. Then, when you choose Run I Run or Run I Program Reset, the profiler passes

416 C++ Use r 's G u ide

the arguments to your program just as if you had typed them in at the command line.
You can change these arguments from within Turbo Profiler and rerun your program.

Enter the arguments exactly as you would at the DOS command line. (Do not enter the
program name.)

Statistics menu
The Statistics menu contains commands to

• Specify the type of data the profiler will collect (callers, files, interrupts, overlays)
• Set the profile mode to active, passive, or coverage
• Determine the number of program runs and areas
• Tum automatic data collection on and off
• Erase profile statistics
• Save profile statistics to a file
• Restore previously saved statistics

The default extension is .TFS, but you can use any extension you want.

You can save all statistical information from the current profile to a ~TFS file. Then,
whenever you want to study the profile results, you can load that .TFS file-recovering
all the saved statistics without having to rerun the profile.

This feature is most useful if your programs take a long time to run or profile. You can
save multiple versions of profiles under different conditions, then restore each of the
resulting profiles for quick comparison at a later date. To automate this process, you can
create a macro or DOS batch file to automatically run several profiles with different
options or area markers, saving the results to individual.TFS files. Then, using the
macro or batch file, you can run the profiles and view your results later.

Note The first four items on the Statistics menu are toggle switches. When selected, the
Callers, Files, Interrupts, and Overlay options will toggle between the Enabled and
Disabled modes.

Callers
When you set the Callers option to Enabled, the profiler gathers statistics about which
routines call other routines. To specify which routines you want call histories for, you
choose the Callers command on the Module window's SpeedMenu or the Options
command on the Areas window's SpeedMenu, then select the appropriate radio buttons
under Callers and Areas.

Note You must run your program and accumulate some statistics before these windows
show any information.

After running your program and gathering the profile information, use the Callers
window to look at the call-history statistics.

Gathering caller information consumes memory and slows down your program's run
speed. If you don't need caller information, set Callers to Disabled.

Chapter 25, The Turbo Profiler environment 417

Files
When you enable the Files option, the profiler gathers statistics about which files your
program opens, and which read and write operations take place.

After running your program and gathering the profile information, use the Files
window to look at your program's file activity.

Gathering file-activity information consumes memory and slows down your program's
run speed. If you don't need file-activity information, set Files to Disabled.

Interrupts
When the Interrupts option is set to Enabled, the profilercollects statistics about which
interrupts your program calls. The profiler keeps separate statistics for DOS, video, disk
BIOS, mouse, and keyboard interrupts.

After running your program and gathering the profile information, use the Interrupts
window to look at which interrupts your program called.

Gathering interrupt information consumes memory and slows down your program's
run speed. If you don't need interrupt information, set Interrupts to Disabled.

Overlays
The Overlays option toggles whether statistics are collected for the overlays your
program loads. If your program does not contain overlays, an error message is
displayed if you try to enable this menu item, and the option remains disabled.

Gathering overlay information consumes memory and slows down the speed at which
your program runs. If you don't need overlay information, set this option to Disabled.

Profiling Options
The Statistics I Profiling Options command opens the Profiling Options dialog box,
shown here:

Figure 25.18 The Profiling Options dialog box

With the Profi~ing Options dialog box, you can set any of the following options:

• Profile Mode specifies the analysis mode. The default mode is Active.

• Active analysis means full statistical information is collected for each marked area.
This includes basic clock timing information, and for routines, how many times
the routine was called and where it was called from.

418 C++ Use r 's G u ide

«I Passive analysis means only basic clock timing information for each marked area is
collected. Passive mode is not available in TPROFW when running Windows in
386 enhanced mode.

e Coverage analysis, in its default setting, means that Turbo Profiler tracks the blocks
of code that haven't been hit during a succession of program runs.

Note If you change analysis mode from Active or Passive to Coverage (or vice versa),
you'll be prompted with Reload program and change profiling mode? If you select
the YES button in answer to this prompt, the current set of statistics is deleted, and
the new analysis mode becomes effective. Be sure to save any vital profile statistics
before changing analysis modes, or they'll be lost.

e Run Count sets how many times your program will run while the profiler collects
statistics. The default is l.

Note If Run Count is set to a number higher than I, Turbo Profiler will reset statistics only
after the specified number of runs.

e Clock Speed defines the speed of the timing clock, in ticks per second. The default is
100 ticks per second. Clock speed is available only in passive mode.

e Maximum Areas specifies the maximum number of areas you can divide the current
program into. Turbo Profiler sets default areas based on the density of the symbols it
finds appended to the executable file. Increasing this setting will decrease the amount
of memory left for the profiled program.

e Maximum Windows Messages sets the maximum number of Windows messages
that can be marked. The default setting is 20. Increasing this setting will decrease the
amount of memory left for the profiled program.

e Maximum Coverage Count sets the maximum number of hit counts that the Profiler
will keep track of while in coverage mode. The default for this setting is 1 (a block has
either been hit, or it has not). Increasing this setting will decrease the amount of
memory left for the profiled program and will increase the time it takes to run.

With the options in this dialog box, you can tailor the profiling session to meet your
unique programming needs.

Active analysis mode provides the most detailed analysis of your program at the cost of
slowing program execution speed. On the other hand, passive mode allows your
program to run at almost full speed, but does not provide any information about how
many times a routine was called or which routines called it.

If there are not many clock ticks during the time your profiled program runs, the data
collected might not accurately reflect the time spent in various parts of the program.
Running the program several times helps improve the accuracy by increasing the total
number of data points collected. Speeding up the clock is another way to increase the
total number of data points; this increases the accuracy of the timing statistics for each
region at the expense of slowing down program execution speed.

Note The profiler doesn't actually time each area, but uses the interrupt timer to increment a
timer count. When the program terminates, the profiler converts the values in the timer
counts to execution times, based on the current setting of the Clock Speed option in the
Profiling Options dialog box.

Chapter 25, The Turbo Profiler environment 419

Accumulation
The Statistics I-Accumulation option turns automatic data collection on and off. This
means you can collect data for a subset of all marked areas without removing any area
markers, and manually tum data collection on after your program begins running.

To collect data for a subset of all marked areas, do this:

In the Areas window's SpeedMenu, choose Options to open the Area Options dialog
box.

2 For those areas whose statistics you want, change the area marker from Normal to
Enable (to start data collection) or to Disable (to stop data collection).

3 Set Statistics I Accumulation to Disabled.

4 Run your program. The profiler will not start collecting data until it trips an area
marker that's set to Enable.

To tum on data collection manually after your program has started running, do this:

1 Set area markers.

2 Set Statistics I Accumulation to Disabled.

3 Run your program from the profiler (press F9).

4 When the program is in the appropriate run-time state, interrupt it.

S Enable the collection of profile data (set Statistics I Accumulation to Enabled).

6 Resume program execution (press F9 again).

Turbo Profiler starts accumulating statistics immediately for the marked areas.

Disabling accumulation
Sometimes when many different places in your program call a routine or family of
routines, you want to know only

• The time spent in the routine
• When a specific part of your code calls the routine
• The time spent in the routine after a specific event

To monitor only certain calls to a routine, use Statistics I Accumulation to disable data
collection at the start. Mark an area that enables collection just before the call to the
routine that you want to collect statistics for (set the area marker to Enabled). Mark
another area that disables collection after the routine returns. You can also enable and
disable areas in unrelated parts of the code; do this when you want to collect statistics
only after a certain event.

Example #1: Collecting only for a specific call to a routine
Suppose you're interested in calls to abc only when it is called from xyz, but not at any
other time.

=> main() /* normal area marker at routine */

{

420 C++ Use r 's G u ide

abc (); /* don't want to collect stats for this call */

xyz ();

}

=> xyz() /* normal area marker at routine */

{

e> abc (); /* want to collect statistics for this call */

d>

=> abc() /* normal area marker at routine */

{

Notice the ~ that enables collection and the ~ that disables collection. You must
disable Statistics I Accumulation before running your program, or the profiler will
erroneously collect statistics for the first call to abc in main.

Example #2: Collecting after a certain event has occurred
Suppose that routine xyz behaves differently depending on some global state
information controlled by the two routines bufferon and bufferoff. You are interested
only in the time spent in xyz when bufferflag equals 1.

=> main()
{

xyz ();

bufferon () ;

xyz ();

bufferoff () ;

xyz ();

=> bufferon()
{

bufferflag = 1·
e> }

d> bufferoff ()
{

bufferflag = 0;

/* normal area marker at routine */

/* no statistics collected here */

/* will collect statistics for this call */

/* no statistics collected here */

/* normal area marker at routine */

/* normal area marker at routine */

Chap t e r 25 J The T u r boP r 0 f i I ere n vir 0 n men t 421

=> xyz()

{

/* normal area marker at routine */

Notice that the use of e~ to enable collection and the. to disable collection are not
near the calls to xyz. Once again, you must disable data collection at the start (by setting
Statistics I Accumulation to Disabled), or the first call to xyz will erroneously contribute to
the collected statistics.

Delete All
The Statistics I Delete All command erases all statistics collected for the current profiling
session---essentially wiping the data slate clean so you can start afresh. Delete All
removes all profile data from the open profile report windows (Execution Profile,
Callers, Interrupts, Files, Overlays, and Coverage), but it does not delete the profiling
options you've set.

Save
The Statistics I Save command saves the following data, settings, and options:

• All statistics for which collection was enabled when you ran the current profile
(execution times and counts, ~allers, file activity, interrupts, overlays, coverage
counts).

• All area information (area names, operations, callers, separate versus combined
timing) displayed in the Execution Profile window.

Once you've saved statistics to a file, you can recover them at any time with the
Statistics I Restore command.

When you choose Statistics I Save, the Enter File ~ame to Save dialog box appears.

The Name input box lists a default .TFS file name (progname.TFS, where progname is the
current program's name).

Saving Files
To save the current profile statistics to the default file, choose OK.

To save them to a different file,

1 Activate the File I Name input box.

2 Type in the desired file name (including disk drive and path, if you so choose).

3 Choose OK (or press Enter) .

. If the statistics file already exists, a message box asks if it's all right to overwrite the file.

Restore
When you choose Statistics I Restore, the Enter File Name to Restore dialog box appears.

The Restore dialog box works just like the profiler's other file-loading dialog boxes.
You can

422 C++ User's Guide

• Enter a file name or a specification (with DOS wildcards) in the File Name input box.

• Choose a different disk drive or directory from the directory tree.

• Choose a file name from the Files list box.

• Choose OK to complete the transaction (or choose Cancel to leave the dialog box
without loading a file).

• Choose Help to open a window of information about how to use the dialog box.

After you load a statistics file, Turbo Profiler restores all the saved options, settings, and
resulting statistical information to the environment screen.

Print menu
Turbo Profiler's Print menu enables you to print the contents of any open profiler
window to a new or existing disk file, or directly to the printer.

Statistics
The Print I Statistics command prints the contents of all open profiler windows (except

. for the Module, Routines, Text File, and Disassembly windows) to the printer, or to the
destination file named in the Printing Options dialog box.

Before you choose Print I Statistics, open the Printing Options dialog box (choose Print I
Options) and verify that the current printing options (dimensions, output location,
character set used, and-,-if you're printing to a file-destination file name) are what you
want.

If you choose to print statistics to an existing disk file, a menu pops up so you can
choose whether to append the existing file, overwrite it, or cancel the printing operation .

.i'

Module
From the Pick a Module dialog box accessed by choosing Print I Module, you specify
which of your program's modules you want printed to the printer or to the disk file
named in the Printing Options dialog box.

You can choose a specific module by name, or choose All Modules to print all your
program's available source code. When the profiler prints a module, it produces an
annotated source listing that lists execution time and counts data next to each source line
or routine you've marked as an area, as shown in the following listing:

Chapter 25, The Turbo Profiler environment 423

Program: C:TPROFILEPRIME1.EXE File PRIME1.C

Options

Time Counts

0.0090 999

0.0117 999
1.1456 78022
0.0080 831
0.0017 168
0.0101 999

0.0000 1

0.0000 1
0.0000 1
0.0255 999
4.1670 168
0.0000 1

#include <stdio.h>

prime(int n)
{

main()
{

int i;

for (i=2; i<n; i++)
if (n % i == 0)

return 0;
return 1;

int i, ni

n = 1000;
for (i=2; i<=n; i++)

if (prime(i))
printf ("%d

When you choose Options from the Print menu, the Printing Options dialog box
appears.

• Width is the number of characters printed per line (default = 80).

• Height is the total number of lines per page (default = 66).

• The Printer /File radio buttons let you choose between sending the printed statistics
to the current printer or to a file. The default is Printer.

• The Graphics/ASCII radio buttons let you toggle between printing characters from
the IBM extended character set (including semigraphic characters) and printing only
ASCII characters. The default is ASCII.

• Destination File is the disk drive (optional), path name (optional), and file name
(required) of the printed disk file.

Options menu
With the Options menu, you can

• Record a keystroke macro.

• Remove one or all macros.

• Set display options that control Turbo Profiler's overall appearance and operation.

• Specify directories (other than the current one) where Turbo Profiler will search for
source code.

424 C++ Use r '5 G u ide

• Save your window layout, macros, options set in other menus, and some other
miscellaneous options to a configuration file.

• Restore the settings and options previously saved in a configuration file.

Macros
The Options I Macro command leads to a menu that lets you define new keystroke
macros or delete ones that have already been assigned.

The profiler's macro facility gives you the ability to record frequently used keystroke
sequences and place the recording into a single macro keystroke. For example, during
profiling, you may often repeat the same sequence of commands. With macros, you can
define a single keystroke that "plays" this sequence of keystrokes. Once defined, you
can simply press the macro key to perform the tedious task.

@DE) Create
When issued, the Create command starts recording keystrokes into an assigned macro
key. As an alternative, press the Aft= hot key for Create.

When you choose Create to start recording, a prompt asks for a key to assign the macro
to. Respond by typing in a keystroke or combination of keys (for example, Aft+M). The
message RECORDING will be displayed in the upper right comer of the screen while
you record the macro.

@D8 Stop Recording
The Stop Recording command terminates the macro recording session. Use the Aft+­
(Aft+Hyphen) hot key to.issue this command, or press themacro keystroke that you are
defining to stop recording.

Important Do not use the Options I Macro I Stop Recording menu selection to stop recording your
macro, because these keystrokes will then be added to your macro! (The menu item is
added to remind you of the hot key.)

Remove
The Remove command removes a macro assigned. to a keystroke. When you choose this
menu item, a list box pops up, displaying a list of the currently defined macros. Select
the macro that you want to delete, and press Enter.

Delete All
The Delete All command removes all macro keystroke definitions and restores all keys
to their original (default) meanings.

Recording macros
To record a macro,

Choose Options I Macros I Create (or press Aft=) to begin the macro definition. A
prompt appears, asking which key you want the macro assigned to.

2 Enter a key that isn't already assigned, for example, Shift+F10.

Chapter 25, The Turbo Profiler environment 425

3 Once you begin recording the macro, all keystrokes entered become part of the macro
definition. However, keystrokes e:ntered as program input and mouse actions will not
be included in the macro definition.

4 Stop recording the macro: Press Alt- or press the keystroke of the macro you are
defining (Shift+F10 in this example).

5 Save the macro to a configuration file: Choose Macros from the Save Configuration
dialog box (Options I Save Options). Type the name of the configuration file you want
(or use one listed in the dialog box), and press OK.

6 Continue profiling.

Display Options
The Options I Display Options command opens the Display Options dialog box, shown
here.

Figure 25.19 The Display Options dialog box

WIth the Display Options dialog box, you can do any of the following:

• Specify whether Turbo Profiler will swap screens while your program runs
• Set how many columns each tab stop occupies in the Module window
• Set the Turbo Profiler screen to 25-line or 43/50-line mode
• Specify how wide your program's routine names display in the Execution Profile and

Areas windows

Display Swapping
The Display Swapping radio buttons None and Always specify whether Turbo Pro filer
swaps the user screen back and forth with the Turbo Profiler environment.

• None means don't swap between the two screens.

Use this option if you're profiling a program that does not send any output to the
user screen.

• Always means swap to the user screen every time your program runs.

Use this option if your program does writing to the screen.

When profiling a Windows application, display swapping is automatically set to
Always, and it cannot be changed.

426 C++ Use r 's G u ide

Screen Lines
You use Screen Lines to specify whether Turbo Profiler's screen uses the normal 25-line
display or the 43-line or 50-line display available on EGA and VGA display adapters.

One or both of these buttons will be available, depending on the type of video adapter in
your pc. The 25-line mode is the only screen size available to systems with a
monochrome display or Color Graphics Adapter (CGA).

Tab Size
With the Tab Size input box, you set how many columns each tab stop occupies, from 1
to 32 columns. You can reduce the tab column width to see more text in source files with
a lot of tab-indented code.

Width of Names
The Width of Names input box is where you specify how wide routine names display in
the Execution Profile, Callers, and Areas windows.

Path for Source
By default, Turbo Profiler looks for your program's source code in these places, in this
order:

1 In the directory where the program was originally compiled

2 In the directories (if any) you've listed under Options I Path for Source (or stated in
the command-line option using the -sd switch)

3 In the current directory

4 In the directory that contains the .EXE file of the program you're profiling

With the Options I Path for Source command, you can add a list of directories that Turbo
Profiler searches before it searches in the current directory.

Enter the new to-be-searched directories in this format:

Directory; Directory; Directory

For example,

C:BorlandTC; C:Borland'TASM

Save Options
With Options I Save Options, you can save all your current profiler options to a
configuration file on disk. Then, whenever you want to reset the profiler options to
those saved settings, you can load that configuration file with Options I Restore Options.

When you choose Options I Save Options, the Save Configuration dialog box appears:

C hap t e r 2 5, The T u r be Pro f i I ere n vir e n men t 427

Figure 25.20 The Save Configuration dialog box

With this dialog box, you can save your current profiler setup's options, layout, and
macros. Options, Layout, and Macros are check boxes; you can save one, two, or all
three types of information to a configuration file.

• Options are menu options not saved in a .TFA or .TFS file (such as Options I Path for
Source, command-line options, and settings in the Display Options dialog box).

• Layout includes which windows are currently open, plus their order, position, and
size.

• Macros are all keystroke macros currently defined.

• Save To lists the default configuration file. To save your options there, choose OK (or
press Enter).

To save your options to a different file, type in the different file's name (including
disk drive and path, if you want), then choose OK (or press Enter).

Once you've saved options to a configuration file, you can recover them at any time
with Options I Restore Options.

Restore Options
Options I Restore Options restores your p:t;ofiling options from a disk file. You can have
multiple configuration files, containing different macros, window layouts, and so on.

When you choose Options I Restore Options, the Restore Options dialog box appears.

The Restore Options dialog box works just like the profiler's other file-loading dialog
boxes. You can

• Enter a file name or a specification (with DOS wildcards) in the File name input box

• Choose a different disk drive or directory from the directory tree

• Choose a file name from the Files list box

• Choose OK to complete the transaction (or choose Cancel to leave the dialog box
without loading a file)

• Choose Help to open a window of information about how to use the dialog box

After you type in or choose a configuration file name and load that file,Turbo Profiler
restores all the saved options, settings, layout, and macros to the current Turbo Profiler
environment. (You can restore only a configuration file that was created by the
Options I Save Options command.)

428 c++ User's Guide

Window menu
The Window menu contains commands to

• Manipulate Turbo Profiler's windows
• Navigate within and through the windows
• Toggle windows to icons, and vice versa
• Close and reopen windows
• Go to your program's output screen
• Make an open window active

The commands in the top portion of the Window menu are for moving about within the
profiler's windowed environment and for rearranging the windows to your satisfaction.
Most Turbo Profiler windows have all the standard window elements (scroll bars, a
close box, zoom icons, and so on). Refer to the section "Turbo Profiler windows" earlier
in this chapter for information on these elements and how to use them.

Zoom
The Zoom command zooms the active window (the one with a double-line border) to
full-screen, or returns the active window to the pre-zoomed size.

Next
The Next command activates the window whose number succeeds the number of the
current window.

Next Pane
In windows with multiple panes, the Next Pane command moves the cursor to the next
pane.

Size/Move
The Size/Move command activates Turbo Profiler's window-arranging mode. You
move the current window with the Left, Right, Up and Down keys. Shifted arrow keys
expand or contract the window. The legend in the status line explains which key
combinations do which action. The hot key for this command is Ctrl+F5.

Iconize/Restore
The Iconize/Restore command shrinks the active window to an icon or restores the
active icon to a window.

Turbo Profiler's iconize feature is a handy tool for keeping several windows open
without cluttering up the screen. A window icon is a small representation of an open
window.

To make a window into its icon, choose Iconize/Restore from the Window menu, or
click the iconize box in the window's top frame. To restore an icon to its previous size,
choose Iconize/Restore again, or click in the icon's zoom box.

C hap t e r 2 5, The T u r boP r 0 f i I ere n vir 0 n men t 429

Close
The Close command temporarily removes the current window from the Turbo Profiler
screen. To redisplay the window just as it was, choose Undo Close.

Undo Close
The Undo Close command reopens the most recently closed window and makes it the
active window.

User Screen
Choose Window I User Screen (or press Alt+F5) to view your program's full-screen
output. Press any key to return to the windowed environment.

The open window list
At the bottom of the Window menu is a numbered list of open windows. Press the
number corresponding to one of these windows to make it the active window. For a full
explanation of how to manage windows, see page 383.

Help menu
The Help menu gives you access to online help in a special window. There is help
information on virtually all aspects of the environment and Turbo Profiler. (Also, one­
line menu and dialog hints appear on the status line whenever you select a command.)

To open the Help window, you can either

• Press F10r Alt+F1 at any time (including from any dialog box or when any menu
command is selected), or .

• Click Help whenever it appears on the status line or in a dialog box.

To close the Help window, press Esc, click the close box, or choose Window I Close.

Help screens often contain keywords (highlighted text) you can choose to get more
information. Press the arrow keys to move to any keyword; then press Enter to get more
detailed help on the chosen keyword. You can press Home and End to go to the first and
last keywords on the screen, respectively. With a mouse, you can click any keyword to
open the help text for it.

Index
The Help I Index command opens a dialog box displaying a full list of help keywords
(the special highlighted text in help screens that let you quickly move to a related
screen).

You can page down through the list. When you find a keyword that interests you,
choose it by using the arrow keys to move to it and pressing Enter, (You can also use the
mouse to click it.)

430 c++ User's Guide

Previous Topic
The Help I Previous Topic command opens the Help window and redisplays the text
you last viewed.

Turbo Profiler lets you back up through 20 previous help screens. You can also click the
PgUp command in the status line to view the last help screen displayed.

Help on Help
The Help I Help on Help command opens up a text screen that explains how to use the
Turbo Profiler help system.

C hap t e r 25, The T u r boP ~ 0 f i I ere n vir 0 n men t 431

432 C++ Use r 's G u ide

Profiling strategies
Improving your program's performance through profiling is not a simple linear process;
you don't just profile the program, modify the source code, and call it a day. Profiling
for improved performance with Turbo Profiler is dynamic and interactive. You collect
statistics, analyze the results in a variety of windows, perhaps change the profiling
parameters so you'll get different statistics, profile again, analyze again, modify the
source code and recompile, profile again, analyze again, and so on.

If you're not sure at first where the bottlenecks in your program are, go ahead and
profile using Turbo Profiler's default settings. When you look at the results in the
Execution Profile window, you get an idea of which routines in your program consume
the most overall time. By looking at time and count data together, you find out which
parts of the program are most expensive in terms of time per call. Armed with that
knowledge, you can start zeroing in on your program's problem areas.

Turbo Profiler provides several different report windows for analyzing the collected
data; you can also print report window contents to paper or your screen for a running
account of performance improvements. In the report windows, you can look at your
program's execution times and counts, file-access activity, DOS interrupts, and overlay
activity, along with call histories for routines.

What do you do with all this power and flexibility? How do you use Turbo Profiler for
efficient and effective profiling? And what are the tricks of the profiling trade?
Obviously, we can't answer all these questions in this chapter. We do, however, provide
some general guidelines, techniques, and strategies to get you moving.

The first time you load a program into Turbo Profiler, it

• Sets the profile mode to Active.
• Automatically scans through your .EXE file to find the main program module.
• Loads the main source module into the Module window.
• Sets area markers for the program.
• Positions the cursor at the main module's starting point.

Chapter 26, Profiling strategies 433

The main module is the one that contains the first source line to be executed in your
program. Area markers are "trip points" that mark the locations where you want to
gather statistics; the number of markers set depends on the number of lines in the .EXE
file that have debug information associated with them.

Note Whenever you exit Turbo Profiler, it saves information about the areas you set up for
the currently loaded program in an area file named filename.TFA, where filename is the
name of your program. Each time you load a program to profile, Turbo Profiler looks
for a corresponding .TFA file. If it finds one, it automatically uses the area ~ettings in
that file.

It's a good idea to save the results of a profile that takes a long time to run, in case you
want to study the results later,

You can also save the results of a profile to a .TFS file with the Statistics I Save command.
By default, the file name assigned to a statistics file is filename.TFS. You can use the
default or change the name (in case you want to save more than one set of statistics for a
single program).

Preparing to profile
The examples in Chapter 24, "A sample profiling session," are small and simple; we
designed them to show the general process of profiling. The problem presented in that
chapter was to optimize the routine prime, rather than to identify specific program
bottlenecks.

However, you actually need a'profiler more when you're writing very large programs,
rather than small ones, because you must identify which program fragments are
bottlenecks before you can figure out how to optimize any given fragment. In many
ways, ,it's easier to find the bottlenecks than it is to figure out what to do about them.

Adjusting your program
The first adjustment to your program is to set it up so you can find out what you need to
know from the profile. For example, if you're writing an interactive program that gets a
lot of input from the keyboard, you don't need to find out that most of your time is
spent waiting for the user to press a key.

Carefully think through how you would like to gather profile statistics, and adjust your
source code so the statistics gathered are useful and sufficient. Once the source code is
modified (if it needs to be), compile the program with debug information turned on.
Then, set area markers that tell the profiler where to collect statistics and what kind of
statistics to collect.

Here are some basic techniques for finding bottlenecks in large programs:

• Select data sets large enough to give you a useful profile.

Selecting pertinent input data is important. A string search program evoked on a
three-line file won't tell you very much. Likewise, searching for a short string found
in nearly every line of a 10,000-line file will give a different kind of profile than
searching for a long string found only once in 10,000 lines.

434 c++ User's Guide

• If you know your program runs quickly, set the profiler to collect statistics over
several runs. (The Rut;l tount setting in the Profiling Options dialog box allows
statistics to be accumulated for the number of runs specified.)

• Modify the program to work independently of keyboard input, or disable
accumulation of statistics in any areas that require keyboard input.

If your program requires keyboard input, read data from a file or use a random
number generator to stuff numbers into an array. The main idea is to select data that's
typical of the real-world data the module operates on.'

• Isolate the modules of the program that you know need improvement.

Compiling your program
After you've adjusted your program so that the profiling session won't become a wild
goose chase, compile it again with debug information turned on. Files that you've
compiled for debugging with Turbo Debugger can be handled by Turbo Profiler
without recompilation.

Turbo Profiler works with 16-bit Turbo C++, Borland C++, and Turbo Assembler
programs. You must compile your source code with full symbolic debugging
information turned on, as follows:

• Borland C++: In the Project Options dialog box, check the following two options:
• Compiler I Debugging I Debug Information in OBJs.
• Linker I General I Include Debug Information.

• Turbo Assembler: Source code must be assembled with the Izi command-line option
and linked with TLINK, using the Iv option. -

To run Turbo Profiler, you need both the .EXE file and the original source files. Turbo
Profiler searches for the source files in these directories, in this order:

1 In the directory in which they were found at compile time (this information is
included in the e:xecutable file).

2 In the directories specified with the Options I Path for Source command (or in the
directories specified with the -sd command-line option).

3 In the current directory.

4 In the directory containing the executable program being profiled.

Setting profile areas
Once you've adjusted your program so you can concentrate on the troublesome areas
and have compiled it with debug information turned on, you're ready to run it through
the profiler and collect statistics for individual areas. You can start out by profiling your
whole program in general, then focus in on more and more detail as you find the trouble
spots. Start by accepting the default area settings-Turbo Profiler sets default areas
based on the density of the symbols it finds appended to the executable file.

Chapter 26, Profiling strategies 435

An area is a location in your program where you want to collect statistics: It can be a
single line, a construct such as a loop, or an entire routine. An area marker sets an internal
breakpoint. Whenever the profiler encounters one of these breakpoints, it executes a
certain set of code-depending on the options you've set for the area in question. This
profiling code could be a bookkeeping routine o;r a simple command to stop program
execution.

These are the actions the profiler can perform when execution encounters an area
marker:

Nonnal

Enable

Disable

Stop

Activates the default counting behavior (collects execution time and counts
for all marked areas).

Turns on the collection of statistics (if they'v~ been previously disabled).

Turns off the collection of statistics, but lets your program keep running.
When your program enters an area where the action is set to Enable, the
profiler resumes data collection.

Stops the program, and returns control to the Turbo Profiler environment (or
to DOS, if you are using batch mode execution). At that point, you can
examine the collected statistics, then resume execution.

By default, Turbo Profiler counts the number of times execution enters an area and how
long it stays there. You can change what the profiler does when an area executes by
setting the Operation option in the Area Options dialog box-accessed through the
Module or Areas window SpeedMenus.

When you're setting areas in your program before running a profile, you should
consider these questions:

• How many areas should statistics be collected for?
• Which parts of the program should be profiled?
• What should happen at each marked area?

What level of detail do you need?
You must first decide how much information you want. Keep in mind how large your
program is and how long it takes to run.

• For a small program, you probably want statistics for every executable line-the
maximum level of detail.

• For large programs, you need less detail; just profiling the amount of time spent in
each routine is probably enough.

"Large" is a bit vague. You need to take into account the number of modules of source
code, the number of routines, and the number of lines.

If your source consists of 10,000 lines in ten modules, you should probably analyze only
one module at a time in active analysis. (Your program is factored into discrete
functional modules, right?)

On the other hand, if your program is less than 100 lines and you need detailed analysis,
you probably want to collect statistics for all the lines.

436 c++ User's Guide

If your program runs in less than five seconds, you'll get more accurate profile results if
you set up multiple runs with averaged results. (Set the number of runs with the
Statistics I Profiling command.) If the program takes an hour to run (not counting
profiler overhead), be careful not to set so many areas that you slow down execution to
an unacceptable crawl.

Adding areas
Divide your program into a number of areas by selecting Add Areas from the Module
window's SpeedMenu. After this, run your program to accumulate statistics for each
area.

If you don't tell Turbo Profiler how to divide your program, it uses a default scheme to
intelligently select appropriate areas in your program. Based on information it finds in a
program's symbol tables, Turbo Profiler selects one of several default options for setting
areas in a program.

• If there are few symbols in the table, and there is a single module, Turbo Profiler
selects Every Line in Module as the default area setting.

• If there are many symbols and several modules, Turbo Profiler selects All Routines as
the default area setting.

Note If your program is very large, profile it first in passive mode to get the big picture, then
select areas for more detailed analysis.

What type of data do you need?
For each area in your program, Turbo Profiler accumulates the following default
information for Active and Passive modes:

• The number of calls to the area
• How much time was spent in the area (active mode)
• How many clock ticks occurred while the area executed (passive mode)

You can also collect more extensive information during the profiling session.

• By enabling Statistics I Callers and setting Call Stack options in the Area Options
dialog box, you can track which routines call a marked routine-how often and
through what pathway.

• With the Statistics I Files option enabled, you can monitor your program's file-access
activity.

• The Statistics I Interrupts option, when it is enabled, records your program's
interrupts.

• You can monitor your program' s overlay file activity by enabling the Statistics I
Overlays option.

Once you've enabled the appropriate Statistics menu options, you can open the
corresponding profile report windows (through the View menu), then call up each
window's SpeedMenu to specify details about how you want the data collected.

Remember, to get the Turbo Profiler reports you want, set all options before you run the
program.

C hap t e r 26, Pro f iii n 9 s t rat e 9 i e s 437

When should data collection start?
Often, you want to collect timing information only when a certain portion of a program
is running. To do this, start the program executing without collecting any information;
set the Statistics I Accumulation option to Disabled. You can determine the Accumulation
option's setting at any time by bringing up the File I Get Info box and checking the status
of Collection.

With Accumulation disabled, you must set an area marker to Enable for the area where
you want data collection to start, then set another marker to Disable for the area where
you want data collection to stop. The actual number of start and stop points you set is
determined by the amount of available memory; generally, you can set as many as you
need.

How do you want time data grouped?
The profiler can keep each routine's execution-time statistics separate from others, or it
can combine each routine's times with those of the routines calling them.

By default, as soon as an active routine calls a routine that has an area marker, the
profiler puts the calling routine on the call stack and makes it inactive. The profiler
associates any timer counts made while program control is in the routine with that
rouQne only, not with the caller.

However, if you specify that the caller should use a combined clock (rather than a
separate clock), the profiler associates timer ticks that occur while control is in the
routine with the caller.

Turbo Profiler's default analysis mode uses a separate timer for each marked routine. So
normally, the time spent in a routine is measured exclusive of calls to other routines. If
you want a routine's time data to include time spent in child routines, choose Combined
under Timing from the Areas window local Option command.

Which data do you want to view?
It's important to know how to control the amount of information Turbo Profiler collects
and subsequently displays, particularly if you want detailed information about just part
of a large program. Turbo Profiler provides two ways to control how much information
you view about your program:

• Before you profile, you can limit the collection to specific areas and types of data by
setting options and parameters.

• After the profile, you can filter the collected statistics (without erasing any) and
display only the data you're currently interested in.

In the Module, Areas, and Interrupt windows, you can specify which parts' of your
program you want Turbo Profiler to collect information about, and how much
information to collect. You can choose to make data collection as coarse as all routines in
a module or as fine as a single statement. You can choose to collect time-related data
only (by setting the analysis mode to Passive), or you can choose to collect the full
gamut of data, including complete call-stack histories, all file-access and overlay
activities, and all DOS interrupt calls. You can slow down or speed up the profiler's
timer, thus decreasing or increasing the resolution of data collected (passive mode only).

438 C++ Use r 's G u ide

Note There's a basic tradeoff in how much data you choose to collect: The more information
Turbo Profiler collects, the slower your program runs and the more memory it needs to
store the collected statistics.

See page 447 for more information about filtering displayed statistics.

Once you've collected the data, you can use commands in the profile report windows to
temporarily exclude the data you don't want to look at from the displayed statistics.

Profiling your program
Once you've selected appropriate areas to monitor, run the profile. You can save the
resulting profile with the Statistics I Save command. This command saves the statistics
to a .TFS (Turbo Profiler Statistics) file. If you plan to save several different profile
results, use a file-naming convention that uniquely identifies each of the runs (for
example, RUNl.TFS, RUN2.TFS, and so on). This simplifies your task of comparing
them later.

You might not know if a profile is worth saving until you look at several sets of
statistics.

After you save the .TFS file, you can study the profile'S results in the profile report
windows, sorting and filtering the displayed data as you explore their meanings. You
won't lose any area markers or statistical reports, because all this information can be
reproduced (simply restore the profile from the .TFS file). In general, if a profile took a
long time to create, save it unless you're absolutely sure you won't need it.

Focusing the profile session
Normally, programmers use a profiler to get answers to one or more of these questions:

• How efficient is this algorithm? (Algorithm testing)

• Is this program doing what I think it is? Is all of it running? (Program testing and
verification)

• How long does each routine run? How much time does the program spend using
various resources? (Execution timing and resource monitoring)

• What's the structure of this code? (Program structure analysis)

The following table relates your profiling session to the type of information you'd like to
gather:

Table 26.1 Ways of using a profiler

Algorithm testing

Program testing and verification

Line-count information
Dynamic call history

Coverage analysis
Dynamic call history

C hap t e r 2 6, Pro f iii n 9 s t rat e 9 i e s 439

Table 26.1 Ways of using a profiler (continued)

Execution timing and resource monitoring Execution time
Execution counts
Interrupt activity File-access activity
Overlay activity

Program structure analysis Dynamic call history
File-access activity

Testing algorithms

Execution profile (time and counts)
Interrupt activity
Overlay activity

If you're analyzing an algorithm, you'll probably concentrate on a small number of
routines, so it's more important to gather information about line count than execution
times. You need to do the following:

1 Isolate the algorithm and its supporting routines by marking them as areas.

2 Make sure you've set area markers for all lines in all routines that implement the
algorithm in question.

The examples in Chapter 24 demonstrate algorithm analysis, especially as it relates to
execution time statistics.

Verifying and testing programs
In program verification and testing, block execution information is more pertinent than
execution times. Since the verification and testing process looks at the program as a
whole, you want to see how everything works together in an integrated system.
Profiling a program while you run it through standard tests can point out areas of the
program that execute very little or not at all. Coverage analysis mode is most useful for
this type of verification testing.

If you deal with large pieces of code when you test and verify programs, you won't
need as much detail as you would for algorithm analysis. However, it's still useful to
know how many times a routine has been called. Organize a program test into groups of
routines that create a call hierarchy. With this type of test, coverage analysis can help
prove that every path in a switch statement or conditional branch has executed at least
once.

By studying call paths in the Callers window and printing out a source code listing
(annotated with execution counts) from the Module window, you can verify that
routines are called at the right time. And, if a block of code does not get hit at the
appropriate time, you can investigate why the piece of code does not get executed.

Timing execution and monitoring performance
When timing a large program to see where it's slow, you rarely need information at the
line-count level. In execution timing, you need to know two things:_

How much time is spent in individual routines.

2 What times propagate from low-level routines to higher-level routines.

440 C++ Use r' s G u ide

Before timing a program's execution, you need to set areas for all routines with source
code. In very large programs, limit your selection of area markers to a single module per
profile run.

Once you've set the area markers in a single module, profiling becomes a matter of
successive grouping and refinement. These are the techniques you use to refine the
profiling process:

• Use filters to temporarily mask out unwanted information (with the Execution Profile
window's local Filter command).

• Unmark routines whose statistics you don't want (with the local Remove command
in the Module, Execution Profile, and Areas windows).

• Combine the timer counts for specified routines (with the Timer option, which you
set from either the Statistics I Profiling Options command or the Areas window's
local Options command).

If you're not completely familiar with the program you're profiling, you can use
execution timing and performance monitoring in conjunction with studying the
unfamiliar code.

Studying unfamiliar code
One of the best ways to study code you don't know is to analyze the dynamic call
history that Turbo Profiler generates in the Callers window. This history shows the
program's structural hierarchy. Although you can see only one routine's call paths at a
time, you can print all recorded call paths by chbosing Print I Statistics with the Callers
window open.

By noting a program's called routines, their callers, and the number of times the
program traverses each call path, you can see which routines are most important. You
can also predict which higher-level routines will be affected by changes you make to
lower-level routines.

Execution times and counts give you a sense of the program's important routines. File
and overlay monitoring reveal any temporary files opened and closed during program
execution as well as any overlays swapped into memory. This information is harder to
find through lexical program analysis.

The profiler's link between the Execution Profile, Module, and Areas windows enables
you to move back and forth quickly to specified symbols, thus revealing the connections
between functionally related but physically separated pieces of source code.

Which analysis mode to use
One important consideration when you're profiling is whether to use active, passive, or
coverage analysis. You set the profiling mode from the Profiling Options dialog box
(choose Statistics I Profiling Options).

Once you know your program works correctly, active and passive analysis are
important tools for helping to improve the overall performance of your program.
Coverage analysis, on the other hand, is a useful t,?ol to use while developing your code.

C hap t e r 2 6, Pro f iii n 9 s t rat e 9 i e s 441

Does the program call all routines at the appropriate time? Are there any sections of
code that do not get executed? These are important questions that can be answered by
profiling in coverage mode.

Active analysis
Turbo Profiler's default mode is active analysis; it collects execution times and execution
counts automatically, as well as any other data (such as call histories or DOS interrupts)
that you've enabled in the Statistics menu.

When you profile in active mode, keep in mind how frequently the program execution
trips area markers. For instance, you can mark every line in a program except a loop
statement, but if the program spends 95 percent of its time inside that loop, the number
of marked areas won't slow the profile much.

See the section "Speeding up profiling" for other ways to make your profiling sessions
go faster.

The profiler slows down program execution if it must perform a lot of bookkeeping
every time it executes a source statement. If that happens, you can always switch to
passive analysis, which turns off all automatic calls to the expensive bookkeeping
routines that the profiler performs under active analysis mode.

Passive analysis
If your program runs very slowly and you can do without execution counts and call
histories, use passive analysis; in passive mode, the profiler collects only time-related
statistics for marked areas (such as execution times, interrupt calls, and file activity).
Your profile runs will go much faster in passive analysis mode.

In passive analysis, Turbo Profiler interrupts your program's execution at regular
intervals to sample the value of the program counter, CS:IP. If the sampled value points
to an address inside an area that you're monitoring (a marked area), the profiler
increments the ticks in that area's timer compartment. If the value in the CS:IP does not
point to an address inside a marked area (for example, it points to an address within a
DOS interrupt or BIOS call), the profiler throws out that timer tick.

It's hard to interpret the results of passive analysis unless your program runs a long
time, or unless you accumulate timing statistics over many runs. Some areas of your
code might never show up even though they execute, because they're never being
executed at the time the profiler interrupts the program's execution. To obtain greater
statistical accuracy, collect statistics over several program runs (be sure to set the Run
Count in the Profiling Options dialog box to coincide with the number of runs you plan
to monitor).

Passive analysis doesn't add noticeable overhead to program run time, but it does
sacrifice some detail in the resulting reports. When you set passive analysis, there is no
noticeable slowdown in program execution. However, you might not be able to get all
the information you require. You can't get count information or callers information, but
you can monitor interrupt calls and file activity.

442 c++ User's Guide

Passive versus active analysis
Some of the data you collect under passive analysis might be misleading if you don't
take these points into consideration when you analyze the results:

• If your program does disk I/O, the profiler gives file-access time to the calling routine
under active mode, but not under passive mode.

• If your program calls an interrupt that's not marked as an area, the profiler gives the
interrupt's time to the calling routine in active mode, but excludes the interrupt's
time in passive mode.

Coverage analysis
Coverage analysis lets you verify program structure and execution sequence. Because
coverage analysis doesn't slow down program execution (unless Max Coverage count is
set to a high number), you can perform two tasks with one profiling pass. Coverage
allows you to count how many times a block has been executed (set the Maximum
Coverage Count using Statistics I Profiling Options). With this, you can verify that a
block of code does get called and, at the same time, determine if it is getting called too
many or too few times.

Speeding up profiling
Each time your program enters a routine that you have defined as a data-collection area,
Turbo Profiler must perform certain processing ("bookkeeping" code). The execution
speed of a program under the control of Turbo Profiler depends on how frequently area
markers are tripped and on the kind of information being collected for the most
frequently tripped areas. The greater the level of information being collected
(particularly call-stack history), the longer it takes to execute bookkeeping code
associated with an area. Even if your program runs slower, Turbo Profiler still keeps
track of timing information properly.

Sometimes your program speed might be unacceptably slow under Turbo Profiler. That
might be because your program is frequently calling a deeply nested routine with call­
stack tracing set to All Callers for All Areas. If you've defined this deeply nested routine
as an area, Turbo Profiler will spend a lot of time keeping track of the calls to it.

To determine if your program is frequently calling a low-level routine, switch to the
Execution Profile window and display the areas by execution counts. (Set the
SpeedMenu Display option to Counts.) This displays an execution.:count histogram
sorted by the number of times each area is executed.

If the program calls one or more routines much more frequently than the rest, you can
exclude them from the list of displayed areas with the Execution Profile window's local
Filter I Current command. You can also unmark areas with the local Remove command
in the Module, Areas, and Execution Profile windows.

Improving statistical accuracy
If you don't collect enough data (because your program runs too fast for the profiler to
gather a statistically significant number of data points) or if you collect a skewed data set

Chapter 26, Profiling strategies 443

(because of resonance), you won't be able to make informed decisions about the changes
needed in your source code. Here's what to do if either of these problems should occur.

Insufficient data
, To improve the accuracy of timing statistics and to get a statistically significant average,

run your program more than once. Be sure to set the Run Count option in the Profiling
Options dialog box. When your program terminates and you run it again, the profiler
adds the times for the new run to times accumulated for previous runs. This continues
until you've executed your program the number of times specified in the Run Count
option.

Caution! Running your program after the specified number of runs will reset all statistical
P1formation in preparation for a new set of runs. Be sure to save (or analyze) the
statistics before embarking on a new set of runs.

Resonance
Resonance occurs, for example, if a loop cycles at the same frequency as the timer tick. If
resonance is causing the profiler to return inaccurate data, use the Clock Speed setting in
the Profiling Options dialog box to set the profiler's clock to anywhere between 18 and
1,000 ticks per second. Choose a speed that is not an integral multiple or fraction of the
speed that is causing the resonance. For example, if your program exhibits resonance at
100 ticks per second, try 70 or 130 ticks per second.

If you suspect that resonance is causing biased statistics, try different clock speeds that
are not integral multiples, and compare the collected statistics. If resonance is the
problem, the various sets of statistics will vary considerably.

Changing the clock speed can be done only in passive mode; active mode doesn't use
clock ticks.

The faster the clock speed, the more accurately Turbo Profiler can determine where your
program spends its time. So, will setting the clock speed to 1000 ticks per second
produce incredibly accurate timing information? Not necessarily. The faster you set the
clock speed, the slower your program will run (because Turbo Profiler must perform
certain lookup operations each time a clock tick occurs). So if you want greater accuracy
than the default 100 ticks per second, increase the clock speed until you reach an
acceptable compromise between accuracy and execution speed.

Also note that if a section of your program disables interrupts, only the first clock tick
during execution of that section will be counted, and your system's internal clock will
run slower. Avoid setting the clock speed so fast that it causes multiple ticks while
interrupts are disabled.

Some tips for profiling overlays
Overlays allow large programs to run in limited memory by storing portions of the code
on disk and loading that code only as needed. If you use overlays, the program's
modules share the same memory-thereby reducing total RAM requirements.

Unfortunately, swapping code in and out of memory can lead to slow program
execution because it wastes time accessing disk drives. Because even a fast disk drive is

444 c++ User's Guide

still the slowest storage device in most PCs, improper overlay management can
dramatically reduce performance. To make a difficult situation worse, the overlay
manager code in the compiled program is normally hidden. Turbo Profiler brings
overlay management code out in the open so you can adjust your program's overlay
behavior.

To fine-tune overlay performance, you need to choose the right overlay buffer size,
select algorithms for managing overlays in the buffer, and set other parameters that can
help keep the most frequently used overlay modules in memory for longer periods of
time. You can reduce "thrashing," which results from too many disk accesses as the
program reads overlay, by keeping frequently used overlays in memory longer.

Statistics displayed in the profiler's Overlay window include

• The number of times your program loads each overlay from disk.
• The time-ordered event sequence in which your program loads overlays.

The load-count and execution-time information is useful for determining which
overlays should stay in RAM longer. By comparing this data with a profile of non­
overlay routines, you can decide which modules should be overlays and which
shouldn't.

With the overlay event history, you can choose optimal algorithms for overlay buffer
management. By examining a list of overlays and seeing when and how often each was
loaded, you can decide which main program modules might work better as overlays,
and which overlays might benefit from being made part of your main program.

Profiling object-oriented programs
In general, profiling object-oriented programs is not much different from conventional
profiling; treat object-oriented programs just like ordinary programs and consider each
method to be just like a call to a routine.

Interpreting and applying the profile results
OK, so you've decided what profile statistics you want to collect, adjusted your
program accordingly, and run it enough times to gather a statistically significant (if not
downright daunting) set of data. Now what?

Now comes the fun part. First you ancUyze the data to figure out what the profiler is
telling you, then you apply that newfound knowledge to your source code to make your
program faster and more efficient than ever.

Analyzing profile data
The Turbo Profiler windows you'll use to study the collected statistics fall into two
categories: program source windows and profile report windows.

Turbo Profiler's program source windows are the Module, Areas, Routines, and
Disassembly (CPU) windows. Before running the profile, you mainly use source

Chapter 26, Profiling strategies 445

windows to set areas and to specify profiling actions at the marked areas. After you
examine the profile statistics (in one or more report windows), you use source windows
again to analyze your program's source code.

Turbo Profiler's report windows are the Execution Profile, Callers, Overlays, Interrupts,
Files, and Coverage windows. You use report windows to display profile statistics
gathered from your running program, so you can evaluate the collected data and
determine where changes in the source code might improve your program's
performance.

Execution Profile window
This window is your primary focus for improving the performance of your program. In
general you will want to examine those lines of source code that account for most of the
prograpl execution time. Next, look for lines (or routines) with a high ratio of execution
time to execution count. And finally, it is always good form to check on the routines that
account for the most "per call" execution time.

Callers window
Once you have isolated a routine you want to improve, use the Callers window to locate
all of the areas in your program that call the selected routine. The Callers window
displays the number of times the routine was called, and the source of those calls (the
caller).

Overlays window
The Overlays window lets you detect excessive overlay calls, which will then become
candidates for placement in a non-overlaid module (unit).

Interrupts window
The Interrupts .window reveals all the (selected) interrupts made by your program. This
revelation may prompt you to combine video output for some lines of code, or for file­
intensive programs, suggest that disk I/O be buffered.

Files window
The Files window quickly discloses the number of reads and writes performed to the
files manipulated by your program. In I/O-intensive applications, this window will
point out which files deserve your attention.

Coverage window
The Coverage window, in its default setting, displays blocks of code that have not been
hit during the profiling session runs. This window helps to isolate sections of code that
do not get called (dead code) and areas that need to be called. In addition, the Coverage
window can be adjusted so that it displays the number of times each block of code has
been hit during the program runs.

446 c++ User's Guide

Filtering collected data
Turbo Profiler's windows provide SpeedMenu commands for temporarily or
permanently filtering data out of the current display. Here's a table summarizing the
profiler's filtering options:

Table 26.2 SpeedMenu commands for filtering collected statistics

Execution profile Filter Temporarily removes the current area's statistics, or
shows only the current module's statistics, or restores all
collected statistics to the window. (You choose Current,
Module, or All from the Filter menu.)

Remove

~ ~ .. - ~ "-"-"-"._ .. " .. - '"

Permanently erases the current area's statistics from the
collected data. Use with caution!

~ _ .. ' "'-"-"-"-"-"-"'~"-"-"-"~"'-"""-"-"-' ~

Files Collection (top pane) When disabled, no file statistics are collected.

Detail (top pane)

Display (bottom pane)

When disabled, displays only file open and close
activities. When enabled, also displays file read and
write activities.

Displays each event either as a bar graph element, or as

'" ~ .-.... ~. ~ ~ .. -.. -.. ~ -.-.. -.. - ".-.. -.. -... -.. , ...• ".-.-... -.-... ~ .. -.. -.. -.. -... text~~~~~~~~~: ex~~!~:~~_~~~?~n_ of ~e eve~t~_ ...
Interrupts Remove (top pane) Removes the currently selected interrupt from the top

pane.

Overlays

Coverage

Display (bottom pane) Displays an interrupt's statistics as either (1) summary
histograms of time, calls, or both, or (2) a detailed
sequence of events .

• " •• ~ .~ •• "._ •• _ •• _ •• _ •• _ •• _ •• _ ~ '" ._ ... _ •• _ ••• ~ •• _ •• _ •• _ •• _ '" .~ ._." ._ •• _ ••• ~ •• _ •• _ •• _ •• _ ••• _ •••••• _._ A ._. _ ._ ._ •• _ .. , _ ,_,,_,,_,,_,,_,,_ ,._" _ ~._ ._ •• _ •• _ •• " ••••••• _ •• _ •• _ •• _ •• _ •• _ •• _ •• _ ••••••• _ ••• ",,_

Display Displays each overlay's profile statistics as either (1)
Count, a summary of memory consumed and times
loaded, or (2) History, a detailed sequence of events, with
a line of data for every time the overlay loaded.

"~ ._ •. _ •. _ •. _.~ .. ~ ..• _ .• _ ••. _ •. _ .•• _ .. __ .. _ •• _ •• ~ .. _ .•.• "._.', • ~ _ •• _ •• _ .. ".'_"",,_,,_,,_ .v _._ ., '" •• _ •. _ ..• _ •. _.~ .. _ " ••• ,. ___ .'_ •• _ •.•..• _. _____ " ",

Display Specifies blocks to display: (1) display all blocks or
(2) display only blocks not hit.

Sort

Group

Determines the order of display for the blocks (either by
address or by nUmber of times hit).

Sets the method of block display as either (1) display all
blocks, (2) group blocks by routine, or (3) group blocks
by module.

When you choose Remove from the Execution Profile's SpeedMenu to permanently
filter out an area's statistics, the profiler

• adjusts the report by discounting time spent in that area.

• adjusts the percentages of remaining areas by calculating them as percentages of the
revised total time:

(revised total time = total profile time - time for the removed area)

• unmarks that area in the Module window.

• removes the area from the areas list in the Areas window.

Note When you remove an area from the Execution Profile window, the remaining area's
statistics will be recalculated for the current run only. A subsequent run of the program
will most likely show the time for the removed area shifted into one or more other areas.

C hap t e r 2 6, Pro f iii n 9 5 t rat e 9 i e 5 447

To permanently remove an area (and the time spent in that area) from the statistics, you
must set the area to Disable. Be sure you don't forget to set a following area to Enable.

Revising your program
Here's a general plan of attack for finding routines where simple changes can improve
your program's performance.

Look for large routines with a disproportionate share of execution time, or for
routines with a large number of calls. Working from the highest level of your
program, follow flow of control through successive levels of calls, looking for places
to optimize by reducing or eliminating excessive calls and operations.

2 Look for statements and routines that have a high ratio of time to count. From the
Execution Profile window's Speed Menu, set Display to Both or Per Call. Then look
for those areas that show a long time magnitude bar and a short count magnitude
bar. Statements and routines of this sort usually represent an inefficient segment of
code. Recode them to produce the same result in a more efficient way.

3 As a last resort, you can optimize the program's innermost loops; here are some
techniques:

@ Unroll loops
@ Cache temporary results calculated on each iteration
@ Put calculations for which results don't change outside loops
@ Code routines in assembly language

Usually you'll see less improvement with inner-loop optimization than you'll see if you
modify control constructs, algorithms, or data structures.

Besides the general guidelines just listed, here are some specific things you can do to
improve your program's performance:

• Modify data structures and algorithms
• Store precomputed results
• Cache frequently accessed data
• Evaluate data only as needed
• Optimize loops, procedures, and expressions

Modifying data structures
Try using more sophisticated data structures or algorithms. For example, a QuickSort
routine will generally operate faster than a bubble sort for a random distribution of key
values. Consult a book on data structures and algorithms for other examples.

Switch from real numbers to integers for fast calculations, such as window and string
management for screen I/O and graphics routines. Use long integers for data
manipulation or any other value that does not require floating-point precision.

Instead of sorting an array of lines of text, add art array of pointers into the text array. All
text access occurs via the pointers. To sort or insert a new line of text, you need to
reorder only the pointers, rather than entire lines of text.

448 C++ User's Guide

Storing precomputed results
If a set of computed numbers is referenced more than once in a program, it is best to do
the computations once, and store the results in a table that can then be accessed. For
example, build a sine table, then look up sine as a function of degrees based on an
integer index.

Caching frequently accessed data
C buffers low-level character input from files. The getc routine reads a whole sector of
bytes from the disk into a buffer, but returns only the first character read. The next call to
getc returns the next character in the buffer, and so on, until the buffer is empty, in
which case getc reads another sector'in from disk.

In an interactive editor or file-dump utility, you can keep a number of buffers that are
updated while the program waits for user input. You might have two buffers that
always contain screenfuls of information read from the beginning and the end of the file.
Another two buffers can keep the previous and next screenful of bytes in the disk file
relative to the position currently onscreen. This way, for those file-navigation
commands the user is most likely to select, your interactive program can update the
screen without disk access.

Evaluating data as needed
Structure the order of conditional tests and switches so that those most likely to yield
results are evaluated first. This will reduce the number of times that low-incident
switches will be tested.

For a large table of lookup information, evaluate entries only as you need them, and use
a supplemental array to track entries that have already been computed.

You might need to calculate the length of a line only when you need to reformat
output-not each time a new line is read from a file.

Optimizing existing code
Loops, procedures, and expressions all offer potential for improvement.

For loops:

• Whenever possible, move calculations outside of loops. Repeatedly calculating the
same value inside a loop is both time-consuming and unnecessary.

Store the results of expensive calculations.

For example, an insertion sort routine doesn't need to swap every pair of numbers as
it works up an array. If you save the value of the starting element, the inner loop
needs to move the successive element down only as long as that element is less than
the starting one. When this test fails, you insert the stored value at the current
position. This process replaces the expensive swap operation for each element called
for in the traditional insertion sort algorithm.

• If two loops perform similar operations over the same set of data, combine them into
a single loop.

• Reduce two or more conditional tests in a loop to a single test, if possible.

C hap t e r 2 6, Pro f iii n 9 s t rat e 9 i e s 449

For example, add an extra element to an array and initialize it to some sentinel value
that will cause the loop test to fail. (This is how C handles text strings.)

• Unroll loops.

For example, replace this

for (x = 0; x < 4; x++)

Y += i terns [x] ;

with this

Y += iterns[O] + iterns[l] + iterns[2] + items[3];

For routines:

• Rewrite frequently called routines as inline routines, or replace their definitions with
inline macros.

• Use co-routines for multipass algorithms that operate on large data files. (See the
setjmp and longjmp routines in C.)

• Recode recursive routines to use an explicitly managed data stack.

For expressions:

• Use compile-time initialization.

• Combine returned results in a single call.

For example, write routines that return sine/ cosine, quotient and remainder, or x-y
screen coordinates as a pair.

• Replace indexed array access with pointer indirection.

Wrapping it up
In. this chapter, we've covered most of the things you need to consider before, during,
and after a profiling session. We've explained how to prepare your program, and
yourself, for the profile; we've given you some hints and caveats about the process of
profiling; and we've given you some ideas about how to apply the results after you've
run the profile.

In. the next chapter, we show the details of how Turbo Profiler accumulates statistics;
how area markers affect data collection, where time and count information gets
calculated, and how Turbo Profiler keeps track of routine calls.

450 c++ User's Guide

Inside the profiler
If you want to use Turbo Profiler to your best advantage, you need to understand its
inner workings. Knowing what the profiler does when it encounters an area marker or
what happens each time the profiler interrupts program execution allows you to fine­
tune your techniques both for specifying the type of information to collect and for
interpreting the resulting reports.

Consider the source code in PTOLL.C:

#include <stdio.h>
#include <dos.h>

void main()
{

printf ("Entering main \n") ;
route66 ()
priritf ("Back in main\n") ;
delay(lOOO) ;
highway80 ();
printf ("Back in main \n") ;
delay(lOOO);
printf ("Leaving main \n \n") ;

route66 ()
{

printf ("Entering Route 66\n");
delay (2000) ;
printf ("Leaving Route 66\n");

highway80 ()
{

printf ("Entering Highway 80\n");
delay(2000) ;
printf ("Leaving Highway 80\n") ;

C hap t e r 27, Ins ide the pro f i I e r 451

In the previous program, setting areas to Routines in Module effectively sets up four
time-collection compartments and four count-collection compartments. Turbo Profiler
keeps execution times and counts for main, route66, and highway80. In addition, Turbo
Profiler keeps a total for both execution times and for counts.

Area boundaries
In this section, you follow program execution and see what the profiler does as each
area marker is passed. It's best to think of this process as going through a series of
tollbooths. After you pass a tollbooth, you're on a section of road associated with that
tollbooth until you come to another tollbooth.

You're in no tollbooth's territory before you reach the first tollbooth. When you pass the
first tollbooth, time spent on each section of roadway is tracked by the tollbooth in
charge of that section of the road. Note that you can only go one direction down the
road: Loops and jumps are like airlifts that take you back to some previous position on
the road.

Time and count collection
Before you enter the main program block, C startup code is executed, which is
equivalent to no tollbooth's territory. Any timer ticks encountered here are thrown
away, unless you have explicitly set an area in the startup code.

As soon as you pass the area marker (tollbooth) at main, the count associated with main
increments by 1. Any timer tick that occurs between the time you enter main and the
time when route66 is called goes into main's timer compartment.

Next, main calls route66 and you enter a new stretch of highway. The moment execution
passes through the area marker (the tollbooth) at route66, several things happen:

• The current area is set to route66.
• The compartment for the caller (main, in this case) goes on a stack.
• The count-collection compar~ent associated with route66 increments by 1.

Any timer tick that occurs, between now and the time you return from route66
automatically increments route66's time-collection compartment. The global program
time-collector also continues to increment with each timer tick.

As soon as execution passes through a return point for route66, the profiler pops the
caller's compartment from a stack. The caller's count compartment is not incremented
on a return. However, any timer ticks that occur between now and the call to highway80
are added to the time-collection compartment for main as well as to the program's global
compartment.

To verify this, tum off route66's area marker (position the cursor on route66's area
marker and press F2) and compare the result with a profile for which that area marker
was set. You should see essentially the same total execution time. However, main's
execution time should increase by the amount of time it took to execute route66.

452 C++ Use r 's G u ide

Showing routine call overhead
You might want to measure the time consumed by calling a routine (for example,
route66) and ignore the time spent inside the routine. You can also get this kind of
information using passive analysis, discussed in Chapter 26, "Profiling strategies." The
easiest way to get this information is to disable collection at the entry point for route66,
and then to reenable collection upon return from route66.

To disable route66, position the cursor on the function header. Next, choose Operation
from the Module window's SpeedMenu to open the Area Options dialog box, and set
Operation to Disable.

When you disable collection on entry to route66, returning from it doesn't automatically
reenable collection. You must set an area marker at the closing brace for route66, and set
the operation for that area marker to Enable (using the Area Operations dialog box).

Who pays for loops?
The tollbooth analogy helps explain why passing through an area marker and jumping
back to a program statement that precedes that marker (using a loop or goto statement)
doesn't change the current area. Even though you're lexically outside the scope of the
marker, you haven't passed through any new markers. Any timer ticks that occur will
still be associated with the most recently tripped marker.

Knowing this, take a look at the next program:

#include <stdio.h>
#include <dos.h>
lost_in_town() ;

=> void main ()

printf ("Entering main\n")
lost_in~town () ;
delay(1000);
printf ("Leaving main \n\n");
delay(1000);

=> lost_in_town()
{

int i;
printf ("Looking for highway ... \n") ;
delay (100) ;
for (i=O; i<10; i++)
{

printf ("Ask for directions \n");

=> printf ("Wrong turn \n\n");

delay(1000) ;

printf ("On the road again \n");

Chapter 27, Inside the profiler 453

In program plost, we've complicated the routine lost_in_town by using a compound
statement inside a loop. Assume that three area markers have been set: one for main, one
for lost_in_town, and one for the line that prints Wrong turn.

Things get tricky when you get into losCin_town. When you first enter the routine,
lost_in_town becomes the current area. The time as?ociated with printing Looking for
highway is associated with this marker.

Time for executing the loop statement is still associated with the routine marker, and the
first time you Ask for directions, timing information is associated with the routine
marker. However, once you trip the line marker for Wrong turn, the remainder of the
time spent in the routine is associated with that line marker.

Just because you pass into an area that was previously associated with another marker
doesn't mean the current area changes. The current area changes only when you trip an
area marker. This can produce unexpected results.

For instance, if you set the three markers for program pfost as already described (one
each for the main function, the lost_in_town function, and the Wrong Turn statement),
approximately 84 percent of program time will be associated with printing "Wrong
tum," while only 1 percent of execution time will be associated with lost_in_town. This is
because nine out of ten calls to Ask for directions, plus all calls to the subsequent
delay statement, occur after the Wrong Turn marker was tripped.

If you toggle off the area marker for Wrong turn, 84 percent of the remaining execution
time will be logged to the routine lost_in_town.

Now, consider the following ·code:

main

while (!kbhit ()
{

func1 ();

statementl;
statement2;
func2 ();

func1 ()
{

func2 ()
{

Assume that areas are set for All Routines in the module so that routines main, func1,
and func2 each mark the beginning of an area. You enter main, which trips main's area
marker. When this happens, Turbo Profiler internally encounters a breakpoint. This
encounter sets a variable indicating that, until you trip another breakpoint, main is the
current area. This encounter also increments a variable associated with execution counts
for main by 1.

454 C++ User's Guide

The scope of these areas is dynamic rather than lexical. That is, main is the current area
until func1 is called. As soon as you enter func1, you're in a new area until you encounter
another function call or until you return from func1. This means that the profiler puts the
caller (main, in this case) on a stack.

When you exit func1, you trip a return marker that the profiler set up when it entered
func1. The routine main becomes the current area again. Any timer ticks that occur while
the program is executing staternentl or statement2 will update the timer for the area
associated with main.

Two things are going on here:

Every time you encounter an area, the profiler calls an internal routine that adjusts
variables and updates a routine call stack. Two variables are associated with each
area: execution counts and execution time. Each time you enter an area, the execution
count associated with that area increments. .

2 Every time a timer tick occurs, the profiler calls another internal routine that checks to
see what area is current, then increments the timer variable associated with that area
by the appropriate amount of time.

When the .program terminates, Turbo Profiler converts the counts variable for each area
to an actual time (based on the total number of timer ticks that occurred for the entire
program).

Multiple return statements
What do you do about multiple return statements? The answer is related to the implicit
return points at the end of routines.

Note Even though you might have several explicit return points in your function, Borland's C
and C++ compilers actually tum all returns into jumps to a single exit point at the end of
the routine. The line that receives the area marking for a return statement is the line
associated with the closing brace for the routine. This is the actual assembly language
return statement to which all other return statements in the routine are vectored.

Disabling often-called functions
The easiest way to disable collection for a function is to set a Disable marker at the
function header and an Enable marker on the line after the call to the function.
However, if a function is called from more than one place,. it may be difficult to set
Enable markers after each function call. In this case, set the Enable marker at the closing
brace of the function, or (better yet) at the actual return statement in the function code.

For example, if you want to overlook the time spent in func1, set a Disable marker at the
header for func1. Then; enable collection again at the return statement for func1:

1 Go to the Disassembly window (View I Disassembly).

2 Set an area marker at the ret statement of the function.

3 Go to the View I Areas window.

Chapter 27, Inside the profiler 455

4 Set options to Enable (Ctrl+O, E).

Now, whenever func1 is called, collection will be disabled upon entry to the function,
and enabled at the exact point that the function returns.

A simpler yet less accurate way to reenable collection is to set the Enable marker at the
closing curly brace of the function in question. The drawback of this method, however,
is that timing information will be collected for the time it takes to return from the
function.

Logging callers
An active routine is a routine currently on the profiler's routine call stack. In active
analysis, Turbo Profiler maintains its own routine call stack. This stack is similar to the
stack found in any DOS program. However, the profiler's stack is separate from the
user's program stack and is used strictly to retain information about routine calls for
which a return statement has not yet been executed.

In order to maintain an active routine stack, Turbo Profiler recognizes two types of area
markers:

• Routine-entry area markers (routine markers)
• Normal area markers (label markers)

When the profiler encounters a routine-entry area marker, it pushes the currently active
routine (the last encountered routine-entry marker) onto its active routine stack. The
newly encountered routine marker then becomes the active routine marker.

Now, if a normal area marker trips, this encounter will have no effect on the current
routine or on the active routine stack. When a normal area marker trips, it simply
becomes the active area, which means that the profiler forgets the previously active area.
The currently active routine, however, remains on the stack until the profiler encounters
a return statement.

When a return is issued within an active routine, the area marker associated with that
routine becomes inactive. The routine on top of the profiler's active routine stack pops
off the stack and becomes the active routine until a return statement executes within that
routine, or until another routine-entry area marker is tripped.

Thus the profiler can maintain a complete call history for every marked routine. If you
have enabled Statistics I Callers for all marked routines, then each time a routine-entry
area marker is tripped, the profiler saves the entire profiler call stack in a buffer linked
directly to the routine-entry marker.

If that call stack is identical to a call stack that was saved for a prior entry to this routine,
the profiler increments a counter, rather than saving the call stack again. If, however, the
call stack is different, the profiler allocates a new buffer and logs the profiler call stack to
that new buffer. This makes it possible to maintain a record of every call path to a
routine and the number of times each call path is traversed.

The profiler's active routine stack is related to three menu settings:

• Statistics I Callers (set to either Enabled or Disabled)

456 c++ User's Guide

• The Callers option, set from the Areas' local window Option selection
• The Stack option, set from the Module's local window Callers selection

While all selections relate to call~rs, you gain finer control over logging call paths by
using the SpeedMenu of the Module window. From this menu, you can set the Areas
option to log callers for a single routine, for all the routines in a single module, or for all
the routines in the program. As well, the Stack command allows you to specify callers as
All Callers, Immediate Caller, or None.

• All Callers means log the entire routine call stack each time the entry point is tripped.

• Immediate Caller means log only the top entry on the routine call stack when the
entry point is tripped.

• None means don't log any routine stack information when this routine-entry marker
is tripped.

By default, when you first profile a program, the Callers option for all routine-entry area
marks is set to None.

Enabling Statistics I Callers from the main menu is the same as setting the Callers option
to All Callers for each area marker listed in the Areas window. However, once you've
hand-set any of the Callers options in the Areas window, setting Statistics I Callers to
Enable won't change the value of the Callers options for any of the areas.

Disabling the Statistics r Callers option at this point tells the profiler not to log any stack
information, but doesn't change the Caller settings in the Areas window. (Neither does
setting Statistics I Caller.)

Sampling vs. counting
This section relates only to passive mode.

The profiler doesn't actually measure time: It comes up with a very accurate estimate of
time based on information from timer tick counts. This is a form of statistical sampling. By
taking regular periodic samples of the current area, and by keeping a count for each area
(which increments each time that area is active when the timer interrupts), the profiler
can estimate the time spent in a given area.

The profiler knows the total time taken to run the program. It also knows the total
number of times the timer interrupted the program. The time spent in a given area can
be calculated as

timearea = timertotal * countsarea / countstotal

This is not the true time spent in an area. If your program iterates over some routine at a
frequency that is a multiple of the timer frequency (for example, a routine that generates
a steady sound tone), the execution of a particular line (or area) might exactly coincide
with most of the timer interrupts. This resonance could occur even though that line is
not where the program is spending most of its time. This is rare, but possible.

C hap t e r 2 7, Ins ide the pro f i I e r 457

If you suspect this sort of frequency collision, change the value of the clock speed
(Statistics I Profiling Options I Clock Speed) and compare the resulting profile to the
previous one.

Profil~r memory use
The profiler allocates memory for area information on the far heap. If you add areas
while the program is running, the far heap will expand into the user program area to
make room for new area variables and buffers. This is why, if you modify areas during a
run, you should always reset the program with Run I Program Reset. If you don't, the
results of a profile might be unpredictable; you could hang your computer.

458 e++ User's Guide

Turbo Profiler's command·line
options

This is the generic command-line format for running Turbo Profiler:

TPROF [tprof_options] [progname [program_args]]

where tprof_options is a list of one or more command-line options for the profiler (see
Table 28.1), progname is the name of the program you want to profile, and programyrgs
is a list of one or more command-line arguments for the profiled program.

You can type TPROF without a program name or any arguments; if you do, you must then
load the program you want to profile with Turbo Profiler's environment.

Here are some example Turbo Profiler command lines:

tprof -se progl a b

tprof prog2 -x

Starts the profiler with the -sc option and loads program
PROG1 with two command-line arguments, a and b.

Starts the profiler with default options and loads program
PROG2 with one argument, -x.

The command-line options
All of Turbo Profiler's command-line options start with a hyphen (-). At least one space
or tab separates each option from the TPROF command and any other command-line
components.

To tum an option off at the command line, type a hyphen after the option. For example,
-v:~- explicitly turns the graphics save option off. Normally you'll tum an option off only
if it s permanently enabled in the profiler's configuration file, TFCONFIG.TF. (You can
modify the configuration file with the TFINST installation program described in
Chapter 29, "Customizing Turbo Profiler.")

C hap t e r 2 8, T u r boP r 0 f il e r 's com man d - lin e 0 p t ion 5 459

Table 28.1 summarizes Turbo Profiler's command-line options; we cover these options
in greater detail in the following pages.

Table 28.1 Turbo Profiler command-line options

-b Loads Turbo Profiler in batch mode.

-bccount Run in batch mode with run count of count.

-cfile Reads in configuration file file.

-do Runs the profiler on a secondary display.

-dp Shows the profiler on one display page, the output of the profiled program on another.

-ds Maintains separate screen images for the profiler and the program being profiled.

-h Displays a help screen.

-? Also displays a help screen.

-ji Session-state saving: Don't use session-state file if you've recompiled yo~ program.

-jn Session-state saving: Don't use session-state file.

-jn Session-state saving: Prompt for session-state file use if you've recompiled your program.

-jn Session-state saving: Use session-state file, even if you've recompiled your program.

-p Enables mouse support.

-r Enables profiling on a remote system.

-mL;R Remote network profiling, where L is the local machine and R is the remote machine.

-rpN Sets the remote link port to port N.

-rsN Sets the remote link speed.

-sc Ignores case when you enter symbol names.

-sdDIR Sets one or more source directories to scan for source files.

-Sn Don't load symbols.

-vg Saves complete graphics image on program screen.

-Vll Disables 43/50 line display.

-vp Enables EGA palette save for program output screen.

Batch mode (-b)
The -b command-line argument instructs Turbo Profiler to run in batch mode. Turbo
Profiler's environment isn't activated in batch mode; instead, the profiler runs the
program and saves all statistics to a filename. TFS file, where filename is the name of the
executable file.

The -b argument lets you create a DOS batch file of one or more TPROF commands. If
the program you're profiling doesn't require any keyboard input, you can run the batch
process while you're doing something else.

Note Before profiling in batch mode, an area file must be set up to instruct the profiler what
areas to inspect and what profiling mode to use.

To set up the area file, load your program and choose the profiling mode you want to
use (Statistics I Profiling Options). Next, mark areas that you want inspected, setting up
all Enable and Disable markers as needed. Then, exit Turbo Profiler. This creates a .TFA
file that records the selected areas and profiling mode.

460 c++ User's Guide

Once the area file is set, create a DOS batch file with the desired Turbo Profiler
commands. Here's an example:

TPROF -b MYPROG argl arg2
rename MYPROG.TFS MYPROG1.TFS
TPROF -b MYPROG argl arg3
rename MYPROG.TFS MYPROG2.TFS
TPROF -b MYPROG arg2 arg2
rename MYPROG.TFS MYPROG3.TFS
TPROF -b MYPROG arg2 arg3

Alternately, you can set run count >1 to accumulate all statistics into the same file.

Notice that you must rename the .TFS file after each TPROF command. If you fail to do
so, successive runs of the same program will overwrite the statistics file already created.
Once you've written your batch file, run it from the DOS command line.

Configuration file (-c)
This option tells Turbo Profiler to use the indicated configuration file. The default is
TFCONFIG.TF; if you want to load a different one, you must use -c, followed
immediately (no space) by the name of the configuration file you want to use.

Display update (-d)
All-d options affect the way Turbo Profiler updates the display.

-do Runs the profiler on a secondary display. You can view the program's
screen on the primary display while Turbo Profiler runs on the secondary
display.

-dp This is the default option for color displays. It shows the profiler on one
display page, and the output of the program being profiled on another.

Using two display pages minimizes the time it takes to swap between
two screens. You can use this option only on a color display, because only
color displays have multiple display pages. You can't use this option if
the profiled program itself uses multiple display pages.

-ds This is the default option for monochrome displays. It maintains separate
screen images for the profiler and the program being profiled.

Each time you run the program or reenter the profiler, Turbo Profiler
loads an entire screen from memory. This is the most time-consuming
method of displaying the two screen images, but it works on any display
and with programs that do unusual things to the display.

Help (-h and -?)
Both of these options display Turbo Profiler's command-line syntax and options.

C hap t e r 28, T u r boP r 0 f i 1 e r' s com man d -I in e 0 p t ion s 461

Session-state saving (-jn)
The session-state options specify how you want Turbo Profiler to handle the session­
state files. See "Session Saving" on page 25 for more information.

Mouse support (-p)
This option enables mouse support (on by default).

Remote profiling (-r)
All"';'r options affect Turbo Profiler's remote profiling link.

-r

-mL;R

-rpN

-rsN

Enables profiling on a remote system. If no other -r command-line
options are specified, -r uses the default serial port (COM1) and speed
(115Kbaud), unless these have been changed using TFINST.

Enables profiling on a remote system over a local area network link. L
and R are optional arguments, specifying the local and remote system
names respectively.

Sets the remote serial link port to port N. Set N = 1 for COM1; N = 2 for
COM2, N=3 for COM3, and N=4 for COM4.

Sets the remote serial link speed to the value associated with N. Set
N=l for 9,600 baud, N=2 for 19,200 baud, N=3 for 38,400 baud, and
N=4 for 115,000 baud.

Source code and symbols (-s)
All-s options affect the way Turbo Profiler handles source code and program symbols.

-sc Ignores case when you enter symbol names, even if your program has
been linked with case-sensitivity enabled. - ..

Without the -sc option, Turbo Profiler ignores case only if you've
linked your program with the "case ignore" option enabled.

-sdDIR Sets one or more source directories to scan for source files; the syntax is:
Note: There shouldn't be a space between -sd and the directory name.

-sddirname

dirname can be a -relative or absolute path and can include a disk letter.
To set multiple directories, use the -sd option for each separate
directory, or list them together like this:

sddirlidir2idir3

Turbo Profiler searches directories in the order specified.

If the configuration file specifies a directory list, the profiler appends
the ones specified by the -sd option to that list.

462 C++ Use r 's G u ide

Video hardware (-v)
All-v options affect how Turbo Profiler handles the video hardware.

-vg Saves the program screen's complete graphics image. This option
requires extra memory but lets you profile programs that use special
graphics display modes. Try this option if your program's graphics
screen becomes corrupted when running under Turbo Profiler.

-vn Disables the 43/50 line display mode. Specify this option to save some
memory. Use -vn if you're running on an EGA or VGA and know you
won't switch into 43- or 50-line mode once Turbo Profiler is running.

-vp Enables you to save the EGA/VGA palette for the program output
screen. Use this option for programs that output to special EGA/VGA
graphics modes.

Chapter 28, Turbo Profiler's command-line options 463

464 c++ User's Guide

Customizing Turbo Profiler
Turbo Profiler is ready to run as soon as you make working copies of the files on the
distribution disk. However, you can change many of the default settings by running the
customization program called TFINST. You also can change settings using command­
line options when you load Turbo Profiler. If you find yourself frequently specifying the
same command-line options over and over, you can make those options permanent by
running the customization program.

The customization program lets you set the following items:

• Window and screen colors and patterns

• Display parameters: screen-swapping mode, screen lines, tab column width, fast
screen update, 43/50-line mode, full graphics saving, and user-screen updating

• Your editor startup command and directories to search for source files and the Turbo
Profiler help and configuration files

• User input and prompting parameters: history list length, beep on error, interrupt
key, mouse, and control-key shortcuts

• NMI intercept and remote profiling

• Display mode

Running TFINST
To run the customization program, enter TFINST at the DOS prompt. As soon as
TFINST comes up, it displays its main menu. You can either press the highlighted first
letter of a menu option or use the Up and Down arrow keys to move to the item you want
and then press Enter. For instance, press D to change the display settings. Use this same
technique for choosing from the other menus in the installation utility. To return to a
previous menu, press Esc. You may have to press Esc several times to get back to the
main menu.

Choose Quit (or Alt+X) from the menu to exit TFINST.

Chapter 29, Customizing Turbo Profiler 465

Setting the screen colors
Choose Colors from the main menu to bring up the Colors menu. It offers you two
choices: Customize and Default Color Set.

Customizing screen colors
If you choose Customize, a third menu appears, with options for customizing Windows,
Dialogs, Menus, and Screens.

Windows
To customize windows, choose the Windows command. This command opens a fourth
menu, from which you can choose the kind of window you want to customize: Text,
Statistics, or Disassembly (the CPU window). Choosing one of these options brings up
yet another menu listing the window elements, together with a pair of sample windows
(one active, one inactive) in which you can test various color combinations. The screen
looks like this:

Figure 29.1 Customizing colors for windows

When you select an item you want to change, a palette box pops up over the menu. Use
the arrow keys to move around in the palette box. As you move the selection box '
through the various color choices, the window element whose color you are changing is
updated to show the current selection. When you find the color you like, press Enter to
accept it.

Note Turbo Profiler maintains three color tables: one for color, one for black and white, and
one for monochrome. You can change only one set of colors at a time, based on your
current video mode and display hardware. So, if you are running on a color display and
want to adjust the black-and-white table, first set your video mode to black and white
by typing MODE BW8 a at the DOS prompt, and then run TFINST.

Dialog boxes and menus
If you choose Dialogs or Menus from the Customize menu, a screen 'appears with a
menu listing dialog box or menu elements, and a sample dialog box or menu for you to
experiment with.

466 c++ User's Guide

As with the Windows menu, choosing an item from the current menu opens a palette
from which you can choose the color for that item.

Screen
Choosing Screen from the Customize menu opens a menu from which you can access
another menu with screen patterns and palettes for screen elements, as well as a sample
screen background on which to test them.

The default colors
If you choose Default Color Set from the Colors menu, facsimiles of an active text
window and an inactive window appear onscreen. The facsimiles show you the default
colors for their elements. A dialog box lets you select text, statistics, or low-level
windows to view.

~Setting Turbo Profiler display parameters
Choose Display from the main menu to bring up the Display Options dialog box.

Figure 29.2 The Display Options dialog box

Note These display options include some you can set from the DOS command line when you
start up Turbo Profiler, as well as some you can set only with TFINST. See page 474 for a
table of Turbo Profiler command-line options and corresponding TFINST settings.

Display Swapping
You use the Display Swapping radio buttons to control whether Turbo Profiler switches
between its own display and the output of the program you're profiling. You can toggle
between the following settings:

None Don't swap between the two screens. Use this option if you're profiling a
program that does not output to the user screen.

Always Swap to the user screen every time the user program runs. Use this option
if your program writes to the user screen.
This is the default option.

C hap t e r 29, C u s tom i z in 9 T u r boP r 0 f i I e r 467

Screen Lines
Use these radio buttons to toggle whether Turbo Profiler should start up with a display
screen of 25 lines or a display screen of 43 or 50 lines.

Note Only EGA and VGA monitors can display more than 25 lines.

Fast Screen Update
The Fast Screen Update check box lets you toggle whether your displays will be
updated quickly. Toggle this option off if you get "snow" on your display with fast
updating enabled. You need to disable this option only if the "snow" annoys you. (Some
people prefer the snowy screen because it gets updated more quickly.)

Permit 43/50 Lines
Turning this check box on allows big (43/50-line) display modes. If you turn it off, you
save approximately 8K, since the large screen modes need more window buffer space in.
Turbo Profiler. This may be helpful if you are profiling a very large program that needs
as much memory as possible to execute in. When the option is disabled, you will not be
able to switch the display into 43/50-line mode even if your system is capable of
handling it.

Full Graphics Saving
Turning this check box on causes the entire graphics display buffer to be saved
whenever there is a switch between the Turbo Profiler screen and the user screen. If you
tum it off, you can save approxima,tely 12K of memory, which is helpful if you are
profiling a very large program that needs as much memory as possible to execute.
Generally the only drawback to disabling this option is that the user screen might show
a small number of corrupted locations that usually don't interfere with profiling.

Tab Size
In this input box, you can set the number of columns between tab stops in a text or
source file display. You are prompted for the number of columns (a number from 1 to
32); the default is 8.

468 c++ User's Guide

User Screen Updating
The User Screen Updating radio buttons set how the user screen is updated when Turbo
Profiler switches between its screen and your program's user screen. There are three
settings:

Other Display

Flip Pages

Swap

Runs Turbo Profiler on the other display in your system. If you have both a
color and monochrome display adapter, this option lets you view your
program's screen on one display and Turbo Profiler's on the other.

Puts Turbo Profiler's screen on a separate display page. This option works
only if your display adapter has multiple display pages, like a eGA, EGA, or
VGA. You can't use this option on a monochrome display. This option works
for the majority of profiling situations; it's fast and disturbs only the operation
of programs that use multiple display pages-which are few and far between.

Uses a single display adapter and display page, and swaps the contents of the
user and Turbo Profiler screens in software. This is the slowest method of
display swapping, but it is the most protective and least disruptive. If you are
profiling a program that uses multiple display pages, use this option. Also use
the Swap option if you shell to DOS and run other utilities or if you are using a
TSR (such as SideKick) and want to keep the current Turbo Profiler screen as
well.

Turbo Profiler options
The Options command in the main menu opens a menu of options, which in tum open
dialog boxes for you.

The Directories dialog box
This dialog box contains input boxes in which you can enter:

Editor program name

Source directories

Turbo directory

Specifies the DOS command that starts your editor. This lets Turbo
Profiler start up your favorite editor when you are profiling and want to
change something in a file. Turbo Pro filer adds to the end of this
command the name of the file that it wants to edit, separated by a space.

Sets the list of directories Turbo Profiler searches for source files.

Sets the directory that Turbo Profiler searches for its help and
configuration files.

The User Input and Prompting dialog box
This dialog box lets you set options that control how you input information to Turbo
Profiler, and how Turbo Profiler prompts you for information:

C hap t e r 29, C u s tom i z in 9 T u rb 0 Pro f i Ie r 469

Figure 29.3 The User Input and Prompting dialog box

History List Length
This input box lets you specify how many earlier entries are to be saved in the history
list of an input box.

Interrupt Key
The Interrupt Key radio buttons let you change the Turbo Profiler interrupt key from its
default of Break to Escape, NumLock, or another key or key combination. Pushing the
Other radio button displays a prompt asking you to press the key or key combination
you want to use as the interrupt key.

Mouse Enabled
This check box controls whether Turbo Profiler defaults to mouse support.

Beep on Error
Turbo Profiler can give a warning beep when you press an invalid key or do something
that generates an error message. Checking the Beep on Error check box enables the
warning beep.

Control Key Shortcuts
This check box enables or disables the .control-key shortcuts. When control-key
shortcuts are enabled, you can invoke any SpeedMenu command directly by pressing
the Ctrl key in combination with the first letter of the menu item. However, in that case,
you can't use those control keys as WordStar-style cursor-movement commands.

The Miscellaneous Options dialog box
The Miscellaneous Options dialog box contains options controlling interrupts, EMS
memory, DOS shell swapping, and remote profiling.

470 C++ Use r 's G u ide

Figure 29.4 The Miscellaneous Options dialog box

Printer Output
This option lets you toggle whether to print both extended and standard ASCII
characters, or just the straight ASCII character set.

NMllntercept
The nonmaskable interrupt (NMI) is a hardware interrupt that the processor must deal
with immediately. It is typically used to halt processing when there is a memory parity
error: an error message like "Memory Parity Error" is displayed and the system hangs.

Another use for this interrupt is to enable a debugger board to perform a breakout when
you press the breakout button. Because the NMI defaults to OFF with Turbo Profiler,
you will probably want to turn this interrupt on if you use a debugger board.

If your computer is not a Tandy 1000, IBM PC compatible, ACER 1100, or NEC
MultiSpeed, you can run TFINST and try turning on the NMI Intercept check box. Some
computers use the NMI in ways that conflict with Turbo Profiler, so if you have
problems loading in applications under Turbo Profiler after turning this option on, run
TFINST again and disable Turbo Profiler's use of this interrupt.

Ignore Case of Symbols
If this check box is turned on, Turbo Pro filer will ignore the difference between
uppercase and lowercase. If it is not checked, case sensitivity will be in effect.

International support
If this check box is checked, Turbo Profiler will sort all items in list boxes according to
the country setting in your CONFIG.5YS file (when using DOS), or according to the
country checked in the Windows Control Panel (when using Windows). For more
information on setting the country code, refer to your DOS or Windows User's Guide.

If the box is not checked, Turbo Profiler will sort entries in list boxes according to the
ASCII values of the items in the box (when using DOS), or according to the ANSI values
of the items in the box (when using Windows).

C hap t e r 2 9, C u s tom i z i n 9 T u r boP r 0 f i I e r 471

DOS Shell Swap Size (Kb)
In this input box you can set the number of kilobytes of memory to be swapped out for
the DOS shell. Memory swapping allows you to use the File I DOS Shell command even
when a large program is loaded. .

DOS Shell Swap Size is not available in TPROFW.

Remote type
The Remote Type radio buttons let you specify the type of remote profile link. None, the
default mode, specifies that profiling is local; there is no remote link. The Serial button
enables remote serial profiling. The communication port and link speed are defined by
Remote Link Port and Link Speed options. The Network button specifies remote LAN
profiling.

Warning! Usually you won't want to save a configuration file that specifies remote profiling, since
Turbo Profiler will then look for the remote link each time it's loaded.

Remote Link Port
The Remote Link Port radio buttons let you choose either the COM1, COM2, COM3,
and COM4 serial ports for the remote serial link.

Link Speed
The Link Speed radio buttons let you choose one of the four speeds that are available for
the remote serial link: 9,600 baud, 19,200 baud, 38,400 baud, or 115,000 baud.

Network local name
This text box lets you define the default name of the local system when using remote
LAN profiling. By default, the name LOCAL is given to the local system. This name
should be changed if more than one person is using the network for remote profiling.

Network remote name
This text box lets you define the default name of the remote system when using remote
LAN profiling. By default, the name REMOTE is given to the local system. This name
should be changed if more than one person is using the network for remote profiling.

Setting the mode for display
Choosing Mode for Display from the main menu opens a menu from which you can
select the display mode for your system.

Default
Turbo Profiler automatically detects the kind of graphics adapter on your system and
selects the display mode appropriate for it.

472 C++ Use r 's G u ide

Color
If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter and choose this as
your default, the display will be in color.

Black and White
If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter and choose this as
your default, the display will be in black and white.

Monochrome
Choose this only if you are using a color monitor with a Hercules or monochrome text
display adapter.

LCD
Choosing this instead of Black and VVhite if you have an LCD monitor makes your
display much easier to read.

When you're through ...
After configuring and customizing the way Turbo Profiler looks and behaves, you'll
want to save the settings out to disk. You can either modify the Turbo Profiler
executable program directly (TPROF.EXE), or you can create a configuration file that
gets loaded as you load Turbo Profiler.

Saving changes
When you have all your Turbo Profiler options set the way you want, choose Save from
the main menu to determine how you want them saved.

Save Configuration File
If you choose Save Configuration File, a dialog box opens, initialized to the default
configuration file TFCONFIG.TF. You can accept this name by pressing Enter, or you can
type a new configuration file name; If you specify a different file name, you can load
that configuration by using the -c command-line option when you start Turbo Profiler.
For example,

tprof -cmycfg myprog

You can also use the Turbo Profiler Options I Restore Configuration command to load a
configuration once you have started Turbo Profiler.

Modify TPROF.EXE
If you choose Modify TPROF.EXE, any changes you've made to the configuration are
saved directly into the Turbo Profiler executable program file TPROF.EXE. The next
time you enter Turbo Profiler, those settings will be your defaults.

C hap t e r 2 9, C u s tom i z i n 9 T u r boP r 0 f i I e r 473

Note If at any time you want to return to the default configuration that Turbo Profiler is
shipped with, copy TPROF.EXE from yout master disk onto your working system disk,
overwriting the TPROF.EXE file that you modified.

Exiting TFI~ST
To get out of TFINST at any time, choose Quit from the main menu.

Command-line options and TFINST equivalents ,
Some of the options described above can be overridden when you start Turbo Profiler
from DOS. The following table shows the correspondence between Turbo Profiler
command-line options and the TFINST program command that permanently sets that
option.

Table 29.1 Command-line options and TFINST equivalents

Display I Display Options

-do (e) Other Display

-dp (e) Flip Pages

-ds (e) Swap

Options I Input and Prompting I User Input and Prompting

-p [X] Mouse Enabled

-p- [] Mouse Enabled

Options I Miscellaneous I Miscellaneous Options

-r- (e) None

-r (e) Serial

-m (e) Network

Options I Miscellaneous I Miscellaneous Options

-rpl (e) COM1

-rp2 (e) COM2

Options I Miscellaneous I Miscellaneous Options

-~l (e) 9,600 baud

-rs2 (e) 19,200 baud

-~3 (e) 38,400 baud

-rs4 (e) 115,000 baud

Options I Miscellaneous I Miscellaneous Options

-se [X] Ignore Case of Symbol

-se- [] Ignore Case of Symbol

Options I Directories I Directories

-sd Source Directories

474 C++ Use r 's G u ide

Table 29.1 Command-line options and TFINST equivalents (continued)

Display I Display Options
-yo [] Permit 43/50 Lines

-vo- [X] Permit 43/50 Lines

TFINST.EXE uses the following syntax:

TFINST [options] [exefile]

Items enclosed in brackets are optionaL For a list of options, see the following table.

Table 29.2 TFINST.EXE options

-cfile Use configuration file file.
-h, -7 Display help screen.

-p Enable mouse support.

-w .Configure TPROFW.EXE.

C hap t e r 2 9, C u s tom i z i n 9 T u r boP r 0 f i I e r 475

476 C++ Use r 's G u ide

Remote profiling·
Remote profiling is just what it sounds like: You run Turbo Profiler on one computer
and run the program you're profiling on another. The systems can be connected by
either the serial ports of the systems or through a NETBIOS-compatible local area
network (LAN).

Remote profiling is useful in several situations:

• When your program needs a lot of memory, and you can't run both the program and
Turbo Profiler on the same computer. When this happens, you'll get Not enough
memory error messages.

• When your program loads under Turbo Profiler, but there's not enough memory left
for it to operate properly. Here, you'll get memory allocation errors during the
profiling session.

• When you are profiling a Windows program.

If you're profiling a Windows application, you have the choice of running Turbo
Profiler for Windows (TPROFW) and the application on a single machine, or of running
Windows, WREMOTE, and the application on one machine and running Turbo Profiler
(TPROF) on another.

Although there are many reasons why you'll want to profile a program using two
systems, the advantages become even greater when you are developing a Windows
application:

• If you have a single monitor, running Turbo Profiler and the application on the same
machine means that you must switch between Turbo Profiler's character mode
screens and the application's graphics mode screens.

If you use remote profiling, you can see the application's screens and Turbo Profiler's
screens at the same time. (This same result can be achieved if you have two monitors
attached to the same system.)

C hap t e r 3 0, Rem 0 t e pro f iii n 9 477

• TFREMOTE and WREMOTE use far less memory than Turbo Profiler, so the
program you're profiling will behave more like it does when running normally,
without the profiler in the background.

Hardware and software requirements
You choose between a serial or a LAN connection for the remote session. The two setups
do use different hardware; however, both share the following requirements:

• A development system with enough memory to load TPROF (this is the local system).

• Another PC with enough memory and disk space to hold either TFREMOTE and the
DOS program you want to profile or WREMOTE, Windows, and the Windows
program you want to profile (this is the remote system).

If you're going to profile a Windows application, the remote machine must be able to
run in protected mode, which means that the CPU must be at least an 80286. The
amount of memory required depends on the mode in which you're running
Windows, but must be at least 1MB.

For a serial connection, you'll need a null modem cable to connect the serial ports of the
two systems. Make sure the cable connecting the two systems is set up properly: You
can't use a straight-through extension-type cable. At the very least, the cable must swap
the transmit and receive data lines (lines 2 and 3 on a 25-pin cable).

For a LAN connection, you'll need a LAN running Novell Netware-compatible software
(IPX and NETBIOS version 3.0 or later).

Note NETBIOS must be loaded onto both the-local and remote systems before TPROF,
TFREMOTE, TFREMOTE, or WREMOTE can be loaded. This is true for both DOS and
Windows profiling.

Profiling remote DOS applications
To profile a remote DOS application, you must run TFREMOTE and the application on
one machine and Turbo Profiler on another. In this discussion, the machine running
TFREMOTE and the application is called the remot~machine, and the machine running
Turbo Profiler is called the local machine.

Setting up the remote system
Copy the remote profiling driver TFREMOTE.EXE onto the remote system, as well as
any files required by the program you're profiling. These files can be data input files,
configuration files, help files, and so on. If you want, you can also copy your application
program onto the remote system. However, Turbo Profiler automatically sends it over
the remote link if necessary.

To put files on the remote system, you can use floppy disks or the TDRF remote file
transfer utility.

478 C++ Use r 's G u ide

Configuring TFREMOTE
When starting TFREMOTE, you must configure it so it can communicate over the
remote link. You do this by starting the driver with specific command-line options. Start
an option with either a hyphen (-) or a slash (I).

Table 30.1 TFREMOTE command-line options

-?or-h

-m<remotename>

-rpl
-rp2
-rp3
-rp4
-rsl
-rs2
-rs3
-rs4

Displays a help screen

Remote LAN profiling

Port 1, (COMl); default

Port 2, (COM2)

Port 3, (COM3)

Port 4, (COM4)

Slowest speed (9,600 baud)

Slow speed (19,200 baud)

Medium speed (38,400 baud)

High speed (115,000 baud); default

-w Writes options to the executable program file

Note For a list of all available TFREMOTE command-line options, type the following at the
remote DOS prompt:

TFREMOTE -h

Customizing TFREMOTE
If TFREMOTE is started without command-line options, it assumes remote serial
profiling at the default port and speed built into TFREMOTE.EXE (COM1 and 115,000
baud respectively, unless you've changed them with the -w option).

You can make TFREMOTE's command-line options permanent by writing them back to
disk. To do this, specify -won the command-line along with the other options you want
to make permanent. TFREMOTE then prompts for the name of the executable file to
write to; if you enter a nonexistent executable file name, TFREMOTE creates the file. If
you press Enter, the currently running program (usually TFREMOTE.EXE) is
overwritten.

If you are running DOS version 3.0 or later, the prompt indicates the path and file name
from which you executed TFREMOTE. You can accept this name (press Enter), or enter a
new executable file name. (If you're running DOS 2.xx, you must supply the full path
and file name of the executable program.)

For example, on the remote system, type the following command line at the DOS
prompt:

TFREMOTE -w -rs3 -rp2

When prompted, enter the name of the prGgram to modify, for instance, tfremot2.exe.
With this, TFREMOTE creates a new remote driver named TFREMOT2.EXE, where the
defaqlt speed is 38,400 baud (-rs3) and the default port is COM2 (-rp2).

C hap t e r 3 0, Rem 0 t e pro f iii n 9 479

The remote DOS driver
To begin a remote profiling session, you must first start the driver on the remote system
and then load TPROF on the local system.

Before starting TFREMOTE, be sure the directory on the remote system is set to the one
that contains the program files. This is essential because TFREMOTE puts the program
to be profiled into the directory that is current when you start TPROF. You don't give
the program name on the TFREMOTE command line, since TPROF controls the loading
of the program.

When loaded, TFREMOTE signs on with a copyright message, then indicates that it's
waiting for you to start Turbo Profiler at the other end of the link. To stop and return to
DOS, press Ctrl+Break.

Starting the remote serial driver
If you're using a null modem cable to connect the two systems, you must use the
command-line options -rs and -rp to indicate the speed and port of the data
communications.

If the remote system's serial port is set up as COMl, type
TFREMOTE -rpl -rs4

Note that this is the default setting of TFREMOTE, and is the same as issuing the
command

TFREMOTE

if the default settings haven't been changed. If the remote system's serial port is set up as
COM2,type

TFREMOTE -rp2 -rs4

to start TFREMOTE.

If you're using a PS/2, use the command-line option -rsl.

All three of these commands start the link at its maximum speed (115,000 baud). This
speed works with most PCs and cable setups. However, if you experience
communication difficulties, see Table 30.1 on page 479 for how to start the link at a
slower speed.

Note It's possible that the local and remote systems use different serial ports for the null
modem cable connection. In this case, the two systems' serial port settings will not
match. However, the communication speed of the two systems must always be the
same for the connection to work.

Starting the remote LAN driver
If you're using a LAN to connect the two systems, you must use the -m command-line
option to start TFREMOTE. For example, issuing the following command at the DOS
prompt will start TFREMOTE over a LAN connection, naming the remote system
remotelink:

TFREMOTE -rnremotelink

480 ett User's Guide

If a remote name is left out of the command, the default name REMOTE is used.

For more on naming remote systems, see the "LAN connection" section that follows.

Establishing the remote DOS link
Once TFREMOTE has been loaded on the remote system, start Turbo Profiler on the
local system using command-line options that correspond to the established data link
(serial or LAN).

Serial connection
TPROF and TFREMOTE use the same syntax for specifying the speed and port settings
for remote serial communications. For the link to work properly, you must set both
systems to the same speed (with the -rs option).

After loading TFREMOTE on the remote system, run TPROF on the local system to
complete the remote link. The following DOS command will load Turbo Profiler,
establishing a connection through serial port 2, at the default speed of 115,000 baud:

TPROF -rp2 filename

When the link is successful, the message Link established appears on the remote
system, and the activity indicator on the local system displays READY. Turbo Profiler's
display then appears on the local system.

If the program filename is not on the remote system, then Turbo Profiler will send the
program over the remote link. For more about loading programs over the link, refer to
"Loading programs onto the remote system" on page 485.

Instead of using -rs and -rp, you can use the -r command-line option, which starts the
remote serial link using the default speed and serial port. Unless you've changed the
defaults using TFINST, -r specifies COM1 at 115,000 baud.

LAN connection
TPROF uses the -m command-line option to initiate a remote LAN link. However, the
syntax used with Turbo Profiler is slightly different from that used with TFREMOTE.
Following is the Turbo Profiler remote LAN syntax:

TPROF -rn [Local] [;Remote] filename

The -m command-line option takes two optional parameters: the local system name
and the remote system name, separated by a semicolon. Since both parameters are
optional, there are four ways to use the -m command-line option with TPROF. These
DOS commands all load Turbo Profiler, specify a remote LAN connection, and load the
program filename for profiling.

TPROF -rn filename

Uses the default names Local and Remote for both the local and remote systems.

TPROF -rnLOCALl filename

Specifies LOCAL 1 as the local system name, but uses the default (Remote) for the remote
system name.

Chap t e r 30, Rem 0 t e pro f iii n 9 481

TPROF -rn;REMOTEl filename·

Uses the default (LOCAL) for the local system name, but specifies REMOTEl for the
remote system. .

TPROF -rnLOCAL1;REMOTEl filename

Specifies both system names.The handshake should take less than 15 seconds after you
enter the TPROF command.

Local and remote system names can be up to 16 characters long.

Note If only one person on a network is using remote profiling, then it isn't necessary to
define special local and remote system names. However, if more than one person uses
remote profiling on a given network, unique names must be given to all systems.

Profiling remote Windows applications
To profile a remote Windows application, you must run Windows, WREMOTE, and the
application on one machine and Turbo Profiler on another. In this discussion, the
machine running Windows, WREMOTE, and the application is called the remote system,
and the machine running Turbo Profiler is called the local system.

Setting up the remote system
Copy to the remote system the remote profiling driver WREMOTE.EXE, the
configuration program WRSETUP.EXE, and any files required by the program you're
profiling. These files include data input files, configuration files, help files, Windows
OLL files, and so on. If you want, you can also copy your application program onto the
remote system. However, Turbo Profiler automatically sends it over the remote link if
necessary.

To put files on the remote system, you can use floppy disks or the TORF remote file
transfer utility. TORF is described in the online Help.

Configuring WREMOTE
Before running WREMOTE for the first time, you should run the WRSETUP program to
establish the communication settings.

Set up WREMOTE withWRSETUP. When you run WRSETUP, you see a window
displaying the commands File, Settings, and Help. Choosing Settings displays the
following screen:

482 c++ Use r 's G u ide

Figure 30.1 WRSETUP main window and Settings dialog box

Eile §ettings lielp

fZl Q.uit when host quits

Starting J!.irectory:

Remote type

@§erial

o Network

Networkremot!! name:

IHEMOTE

Serial configuration

Baud rate

o ll600

@ 192.!!.0

o 3.!!.400

o l1~OOO

Comm port

@COM!

OCOMZ

OCOMl

OCOM~

If you're using serial communications, select the Serial radio button, and set a baud rate
and communications port that works for your hardware setup. The defaults are 19,200
baud and COMl.

LAN configuration
If you're using LAN communications, select the Network radio button, and specify the
desired remote system name in the Network Remote Name text box. By default, the
remote system name is REMOTE. For more on remote system names, refer to "LAN
connection" on page 481.

In the Starting Directory text entry box, enter the directory path where Turbo Profiler
should look for the program you're profiling. If you want WREMOTE to return control
to Windows when you terminate Turbo Profiler on the local machine, select Quit When
Host Quits. If you are using the higher transmission speeds (38,400 or 115,000 baud)
check the Disable Clock Interrupts box. This will help WREMOTE and Turbo Profiler
establish a connection in the Windows environment.

As with any .IN! file, you can edit the file directly using any word processor that
produces ASCII text.

Once you've set your options and-closed the WRSETUP window, WRSETUP will save
your settings to the file TDW.INI in your Windows directory. The following TDW.INI
file sets WREMOTE at 19,200 baud on COM2 with clock interrupts disabled and the
program returning control to Windows when Turbo Profiler terminates:

[WRemote]
BaudRate=2
Port=2

Chapter 30, Remote profiling 483

Quit=l
Clock=l

WREMOTE command-line options
You can use WREMOTE command-line options to override the default settings or the
settings listed in the WREMOTE.INI file. Start an option with either a hyphen (-) or a
slash (I).

TabJe30.2 WREMOTE command-line options

-c<filename>

-d<dir>

-reO

-rc1

Use <filename> as the configuration (.INI) file

Use <dir> as the startup directory

Clock interrupts enabled

Clock interrupts disabled

-m<remotename> Remote LAN profiling

-rpl Port 1 (COM1); default

-rp2 Port 2 (COM2)

-rp3 Port 3 (COM3)

-rp4 Port 4 (COM4)

-rqO Don't quit when Turbo Profiler quits

-rql Quit when Turbo Profiler quits

-rsl Slowest speed (9,600 baud)

-rs2 Slow speed (19,200 baud)

-rs3 Medium speed (38,400 baud)

-rs4 Fast speed (115,000 baud); default

Starting the remote Windows driver
After you start WREMOTE from Windows, the program displays an hourglass at the
mouse cursor location, indicating that it's ready for you to start Turbo Profiler at the
other end of the link.

To terminate WREMOTE while it is waiting to establish a connection with TPROF, press
Ctrl+Break on the remote machine.

Establishing the remote Windows link
If you're using a null modem cable to connect the two systems, you may use the
command-line options -rs and -rp to indicate the speed and port of the data
communications.

For more on command-line options, see "Serial connection" on page 481.

Both Turbo Profiler and WREMOTE must beset to the same speed to work properly.
You can use the -rs parameter to set the baud rate for Turbo Profiler, or you can use the
-r command-line option, which starts the remote serial link using the default speed and
serial port. Unless you've changed the defaults using TFINST, -r specifies COMl at
115,000 baud.

484 c++ User's Guide

LAN connection
TPROF uses the -rn command-line option to initiate a remote LAN link. For more on
-rn, see "LAN connection" on page 481.

Here's a typical Turbo Profiler command to start the remote Windows link:

TPROF -rs2 myprog

This command begins the link on the default serial port (usually COM1) at the link
speed (19,200 baud), and loads the program myprog into the remote system if it's not
already there.

When Turbo Profiler starts on the local machine, it displays copyright and version
information and the following message:

Waiting for handshake from remote driver (Ctrl+Break to quit)

While waiting for a connection, an hourglass is displayed on the remote system. Turbo
Profiler's normal window display comes up on the local machine. Press Ctrl+Break to exit
WREMOTE if the link is not successful.

Loading programs onto the remote system
If a file name is included as a TPROF command-line argument, or if you load a new file
into the profiler using the File I Open command, Turbo Profiler will automatically check
to see if the program needs to be sent to the remote system.

Windows DLL files are not automatically transferred to the remote system.

Turbo Profiler is smart about loading programs onto the remote system. First, a check is
made to see if the program exists on the remote system. If the program doesn't exist on
the remote system, it's sent over the link right away. If the program does exist on the
remote system, Turbo Profiler looks at the date and time of the program on the local
system and compares this with the copy on the remote system. If the program on the
local system is later (newer) than the remote copy, Turbo Profiler assumes you've
recompiled or relinked the program, and sends it over the link.

At the highest link speed, file transfers move at a rate of about 10K per second. A typical
60K program takes roughly six seconds to transfer. On DOS systems, Turbo Profiler
indicates that the system is working by displaying the number of bytes transferred on
the remote system.

Remote profiling sessions
Once you start TPROF in remote mode (using either TFREMOTE or WREMOTE), the
Turbo Profiler commands work exactly the same as they do on a single system; there is
nothing new to learn.

Because the program you're profiling is actually running on the remote system, any
screen output or keyboard input to that program happens on the remote system. The
Window I User Screen command has no effect when you're running on the remote link.

Chapter 30, Remote profiling 485

The remote system's CPU type appears as part of the CPU window title, with the word
REMOTE before it.

To send files over to the remote system while running Turbo Profiler, go to DOS (choose
File I DOS Shell) and then use TDRF to perform file-maintenance activities on the remote
system. To return to Turbo Profiler, type EXIT at the DOS prompt and continue
profiling your program.

Troubleshooting
Here's a list of troubleshooting techniques you can try if you experience problem~ with
the remote setup:

'. Check your cable hookups.

• Check that you're using the correct serial port settings or that you're properly
connected to the network.

• Try running the link at a slower speed (using the -rs command-line option) until you
find a speed that works.

• Some hardware and cable combinations don't always work properly at the highest
speed, so if you can get the link to work only at a lower speed, you might want to try
a different cable or different computers.

• If you're profiling a Windows program and can't get the connection to work at any I

speed, use WRSETUP to Disable clock interrupts and try running the link at 9,600 baud.
If that works, try successively higher speeds.

TFREMOTE messages
nn bytes downloaded

TFREMOTE is receiving a file from the local system. This message shows the progress of
the file transfer. At the highest link speed (115,000 baud), transfer speed is about 10K per
second.

Can't create file
TFREMOTE can't create a file on the remote system. This can happen if there isn't
enough room on the remote disk to transfer the executable program across the link.

Can't modify .exe file
You specified a file name to modify that is not a valid copy of the TFREMOTE utility.
You can modify a copy of the TFREMOTE utility only with the -w option.

Can't open .exe file to modify
TFREMOTE can't open the file name you specified. You've probably entered an invalid
filename.

Download complete
Your file has been successfully sent to TFREMOTE.

486 c++ User's Guide

Download failed, write error on disk
TFREMOTE can't write part of a received file to disk. This usually happens when the
disk fills up. You must delete some files before TFREMOTE can successfully download
the file. .

Enter program file name to modify
If you are running on DOS version 3.0 or later, the prompt indicates the path and file
name from which you executed TFREMOTE. You can accept this name (press Enter), or
enter a new executable file name.

If you're running DOS version 2.xx, you must supply the full path and file name of the
executable program.

Interrupted
You pressed Ctrl+Breakwhile waiting for communications to be established with the other
system.

Invalid command-line option
You gave an invalid command-line option when you started TDRF from the DOS
command line.

Link broken
The program communicating with TFREMOTE has stopped and returned to DOS.

Link established
A program on the other system has just started to communicate with TFREMOTE.

Loading program name from disk
Turbo Profiler has told TFREMOTE to load a program from disk into memory in
preparation for profiling. .

No network present
TFREMOTE is unable to detect a NETBIOS compatible network. Make sure you have
loaded NETBIOS (version 3.0 or greater) and are connected to the network.

Program load failed, EXEC failure
DOS could not load the program into memory. This can happen if the program has
become corrupted or truncated. Delete the program file from the remote system's disk
to force Turbo Profiler to send a new copy over the link. If this message appears again
after deleting the file, you should relink your program using TLINK on the local system
and try again.

Program load failed; not enough memory
The remote system doesn't have enough free memory to load the program you want to
profile.

Program load failed; program not found
TFREMOTE could not find the program on its disk.

Program load successful
TFREMOTE has finished loading the program Turbo Profiler wants to profile.

Reading file name from Turbo Profiler
This appears on your remote screen so that you know when a remote file is being sent to
Turbo Profiler.

C hap t e r 3 0, Rem 0 t e pro f iii n 9 487

Unknown request: message
TFREMOTE has received an invalid request from the local system (where you're
running Turbo Profiler). If you get this message, check that the link cable is in good
working order. If you keep getting this error, try reducing the link speed (use the -rs
command-line option).

Waiting for handshake (press Ctrl+Breakto quit)
TFREMOTE has started and is waiting for a program on the local system to start talking
to it. To return to DOS before the other system initiates communication, press Ctrl+Break.

WREMOTE messages
Can't find configuration file

You used the -c command-line option to specify a file that doesn't exist.

Can't load WINDEBUG.DLL
The dynamic link library WINDEBUG.DLL isn't in the current directory. WREMOTE
requires this DLL in order to run.

Can't open COMx serial port
WREMOTE is trying to use a COM port that is either in use or doesn't exist.

Invalid switch
You specified an unknown option on the WREMOTE command line.

No network present
WREMOTE is unable to detect a NETBIOS compatible network. Make sure you've
loaded NETBIOS (version 3.0 or greater) and are connected to the network.

488 c++ User's Guide

Turbo Profiler for Windows
Turbo Profiler for Windows (TPROFW) lets you profile applications you've written for
Microsoft Windows, version 3.0 and higher. It runs under Windows on the same
machine as the program you are profiling and switches between its own screens and
your application's screens, just as Turbo Profiler does.

You profile in Windows much as you would in DOS, except that you can also access
information particular to Windows applications, such as

• Messages received and sent by your application's windows
• The complete list of modules loaded by Windows (including dynamic-link libraries)
• Dynamic-link library (DLL) profiling

TPROFW runs in Windows standard mode or 386 enhanced mode, which means that
your computer must have an 80286 processor or higher and at least 1MB of memory.

TPROFW.EXE supports several different video adapters through the use of several
DLLs. After you've installed TPROFW, run TDWINI.EXE to help you select or modify
the driver that's used with your setup.

By default, TPROFW uses the SVGA.DLL video driver, which supports most video
adapters and monitors. For more information on the available video DLLs, refer to the
entries for DUAL8514.DLL, STB.DLL, SVGA.DLL, and TDWGUI.DLL in the online
Help system of TDWINI.EXE.

Like Turbo Profiler, TPROFW can also take advantage of a second monitor attached to
your computer, allowing you to view TPROFW screens on one monitor and your
application's screens on another. You select this display option by starting TPROFW
with the -do command-line switch or by running the TFINST utility and setting User
Screen Updating to Other display.

C hap t e r 3 1, T u r boP r 0 f i I e r for Win dow s 489

Installing TPROFW
When you install Turbo Profiler on your system, the installation program puts the
following two Windows-related files in the same directory as your Turbo Profiler files:

• TPROFW.EXE, the TPROFW program
• TFWHELP.TFH, the TPROFW help files

The installation process creates an icon for TPROFW and installs it in the Windows
Program Manager group for your Borland language. You can run TPROFW by
choosing the icon, just as you can with any other Windows application.

Installing TDDEBUG.386
The TDDEBUG.386 file on your installation disks provides the same functionality as the
Windows SDK file WINDEBUG.386. In addition, it provides better support than
WINDEBUG.386 for the Ctrl+Alt+SysRq key combination (used to break out of a Windows
application and return to TPROFW).

The installation program should copy this file to your hard disk and alter your
Windows SYSTEM.INI file so that Windows loads TDDEBUG.386 instead of
WINDEBUG.386. If, for some reason, the installation program can't complete this task,
you'll have to do it by hand as follows:

1 The installation program will have copied TDDEBUG.386 from the installation disks
to your hard disk. The standard directory for this file is C: \ WINDOWS. If you move
the file to another directory, substitute that directory in the instructions.

2 With an editor, open the Windows SYSTEM.IN! file, search for [386enh}, and add the
following line to the 386enh section:

device=c:\windows\ddebug.386

3 If there's a line in the 386enh section that loads WINDEBUG.386, either comment the
line out with a semicolon or delete it altogether. (You can't have both TDDEBUG.386
and WINDEBUG.386 loaded at the same time.)

For example, if you load WINDEBUG.386 from the C: \ WINDOWS directory, the
commented-out line would be

;device=c:\windows\windebug.386

Configuring TPROFW
Just as with Turbo Profiler, you can configure TPROFW two ways: by entering
command-line options or by using the TFINST utility.

490 C++ Use r 's G u ide

Using TPROFW command-line options
You can set the configuration of TPROFW by using various command-line options
followed by an optional program name with its own command-line options. The
program name can be preceded by a path name.

Because TPROFW is a Windows program, you will probably enter any command-line
options either by using the Program Manager's File I Run command or by using the
Program Manager's File I Properties command to change the command-line property of
the TPROFW icon. You can also start Windows and TPROFW from the DOS command
line. Follow the Windows command with the TPROFW command, optionally followed
by switches or a program name (with or without switches).

The command-line syntax for TPROFW is

TPROFW [options] [program-name [program-args]]

Table 31.1 provides a summary of the command-line options for TPROFW:

Table 31.1

-b
-bcount

-cfilename

-do
-ds
-p

-sc
-sddir[;dir ...]

-tdir

TPROFW command-line options

Uses batch-mode profiling.

Use batch-mode profiling, and run the progrm count number of times.

Uses configuration file filename.

Runs TPROFW on the secondary display.

Updates screens by swapping pages.

Uses a mouse. If the mouse driver is disabled for Windows, it will be disabled for
TPROFW as well, and the -p command-line option will have no effect.

Ignores case for symbol names.

Sets· one or more source file directories.

Sets the starting directory.

See Chapter 28, "Turbo Profiler's command-line options," for a complete description of
the command-line options.

Note The command-line option -t is available only with TPROFW. This option changes
TPROFW's starting directory, which is where TPROFW looks for the configuration file
and for .EXE files not specified with a full path. The syntax is

-tdirname

You can set only one starting directory with this option. If you enter this command more
than once on the same command line, TPROFW uses only the last entry.

Using TFINST with TPROFW
To use TFINST with TPROFW, start TFINST using the -w command-line option.
TFINST for TPROFW works just like TFINST for Turbo Profiler, except that the default

C hap t e r 3 1, T u r boP r 0 f i I e r for Win dow s 491

configuration file is TFCONFIG.TFW and fewer options are available. (See the list of
TPROFW command-line options in the previous section.)

For a description of how to use TFINST, see Chapter 29, "Customizing Turbo Profiler."

Using TPROFW
When you load TPROFW, it comes up in full-screen DOS character mode, not in a DLL
(unless you're using the TDWGULDLL video driver). Unlike other applications that run
under Windows, you can't use the Windows shortcut keys (like Alt+Esc or Ctrl+Esc) to
switch out of TPROFW and run another application. However, if the application you are
profiling is active (the cursor is active in one of its windows), you can use these keys or
the mouse to switch to other programs.

Note If you do use Ctrl+Esc to switch out of an application running under TPROFW, you see
the application name on the list of tasks. You will never see TPROFW on the task list
because TPROFW is not a normal Windows task that you can switch into or out of.

Profiling using TPROFW is pretty much the same as profiling using Turbo Profiler.
However, there are some differences:

• Switching from your application to TPROFW is accomplished by using the
Ctrl+Alt+SysRq key combination. This operation is similar to using Ctrl+Break to switch
out of a DOS application and back to Turbo Profiler, except that the DOS application
terminates, while the Windows application is only suspended.

• If possible, run your application to completion or use the System command to exit it
before exiting TPROFW or loading in another program to be profiled. Failing to exit a
Windows application properly can leave resources allocated that would otherwise
have been deallocated, potentially causing problems with TPROFW or other
applications.

• The DOS Shell command from the File menu is not available.

• The Edit command on the Module and Text File SpeedMenus are not available.

• Interrupts, File I/O, and Overlay windows are not available.

• Display Swapping settings are not available in the Display Options dialog box.

Profiling window procedures
TPROFW keeps track of routines inside window procedures by tracking the message
classes called by the routine and window messages sent to the procedures. Before message
classes and window messages can be tracked, you must first specify that an area marker
represents a window procedure. Specifying a window procedure area marker is done
from either the Module window's SpeedMenu I Operation command, or the Areas
window SpeedMenu I Option command.

492 C++ Use r 's G u ide

The Window Procedure Messages dialog box
After an area marker is specified as a window procedure marker, you must then select
which messages and classes you want to track for that particular procedure. When
Messages is selected from either the Module window's SpeedMenu I Operation
command or the Areas window SpeedMenu I Option command, the Window
Procedure Messages dialog box is displayed.

With the Window Procedure Messages dialog box, you can select the window messages /
and message classes that are tracked for the current area marker. TPROFW, by default,
tracks all message classes.

The Window Procedure Messages dialog box uses check boxes and text boxes for the
following:

• The Window Messages list box displays specially selected window messages.

• Message Name is a text box that accepts a window message name or window
message number. Use the Add command to append the specified message to the
Window Messages list.

Turbo Profiler will recognize only window message names that begin with WM_. If
you wish to track a message other than a WM_ message, you must provide the
window message number (window message numbers are acquired from either your
program source files or from the windows header include files).

Window message names are case sensitive.

• Delete removes the currently highlighted message from the Window Messages list
box.

• Remove All deletes all specially selected messages from the Window Messages list
box. When this command is selected, the Window Messages list box will be cleared of
all entries.

• Add All selects all WM _ messages from all classes. Each message is listed in the
Window Messages list box after this command is chosen. Because so many messages
come through, you'll probably want to narrow the focus by selecting only the classes
of interest from the list of message names.

Note Before selecting Add All, ensure the Max Windows Messages setting (Statistics I
Profiling Options) has been adjusted to accommodate the number of messages you
want to track.

Including all message classes, there are over 140 WM_ messages.

• Add appends the message name specified in the Message Name text box to the
Window Messages list.

• The Message Classes check boxes allow you to choose specific classes of messages to
watch. When a specific Windows message class is selected, all WM _ messages from
that class will be tracked.

C hap t e r 3 1, T u r boP r 0 f i I e r for Win dow s 493

Table 31.2 describes the window message classes:

Table 31.2 Window's message classes

All Messages

Mouse

Window

Input

System

Initialization

Clipboard

DDE

Non-client

Other

All messages starting with WM_.

Messages generated by a mouse event (for example, WM_LBUITONDOWN and
WM_MOUSEMOVE).

Messages from the window manager (for example, WM_PAINT and WM_CREATE).

Messages generated by a keyboard event or by the user's accessing a System menu,
scroll bar, or size box (for example, WM_KEYDOWN).

Messages generated by a system-wide change (for example, WM_FONTCHANGE
and WM_SPOOLERSTATUS).

Messages generated when an application creates a dialog box or a window (for
example, WM_INITDIALOG and WM_INITMENU).

Messages generated when one application tries to access the Clipboard of a window
in another application (for example, WM_DRAWCLIPBOARD and
WM_SIZECLIPBOARD).

Dynamic Data Exchange messages, generated by applications communicating with
one another's windows (for example, WM_DDE_INITIATE and WM_DDE_ACK).

Messages generated by Windows to maintain the non-client area of an application
window (for example, WM_NCHITTEST and WM_NCCREATE).

Any messages starting with.WM_ that don't fall into any of the other categories, such
as owner draw control messages and multiple document interface messages.

For a complete list of all WM_ messages, refer to your Borland compiler's online Help.

Note When you've selected the appropriate window messages, profile your program as
usual. To view window message statistics, choose Window Procedures from the
Display Options dialog box, accessed through the Execution Profile SpeedMenu.

Profiling dynamic-link libraries (OLLs)
A DLL (dynamic-link library) is a Windows library of routines and resources that is
linked to your application at run time instead of at compile time. This run-time linking
allows multiple applications to share a single copy of routines, data, or device drivers,
thus saving on memory usage. When an application that uses a DLL starts up, Windows
loads it in memory so the application can access the DLL's entry points (if the DLL isn't
already loaded into memory).

TPROFW can load a DLL that doesn't have a symbol table, but only into a CPU
window.

When you load an application with DLLs linked to it, TPROFW determines which of
these DLLs, if any, have symbol tables (were compiled with the debugging option
turned on) and tracks them for you.

TPROFW automatically loads in the symbol table and source of every DLL that's linked
to your application, but only if the DLL has a compatible symbol table. A DLL has a
symbol table compatible with TPROFW if it was compiled with debugging information
turned on and the compiler was one of Borland's C++ Windows compilers, or Turbo
Assembler.

494 C++ Use r 's G u ide

Note DLLs that are loaded via the LoadLibrary call will not be automatically tracked by
Turbo Profiler. To track these DLLs, you must set a Stop area marker after the
LoadLibrary call. When the profiler encounters this area marker, you'll be able to access
the DLL through the Module command on the Module window's SpeedMenu, or
through View I Module. You'll need to set up a stop area on the last line of the DLL
function in order to view the DLL's statistics. If you don't set the stop area, you will not
be able to view or analyze the statistics.

Because the symbol table for the DLL is not associated with the symbol table for the
executable program, Turbo Profiler will produce a separate statistics file (.TFS) and a
separate areas file (.TFA) for each DLL profiled.

TPROFW error messages
There is only one error message returned solely by TPROFW. In addition to this error
message, Turbo Profiler error messages can also be returned.

Ctrl+Alt+SysRq interrupt. System crash possible, Continue?
You attempted either to exit TPROFW or to reload your application program while the
program was suspended as a result of your having pressed Ctrl+Alt+SysRq. Because
Windows kernel code was executing at the time you suspended the application, exiting
TPROFW or reloading the application will have unpredictable results (most likely
hanging the system and forcing a reboot).

C hap t e r 3 1, T u r boP r 0 f i I e r for Win dow s 495

496 C++ Use r 's G u ide

Prompts and error messages
Turbo Profiler displays messages and prompts at the current cursor location. This
chapter describes the prompts and error and information messages Turbo Profiler
generates.

We tell you how to respond to both prompts and error messages. All the prompts and
error messages are listed in alphabetical order, with a description provided for each one.

Turbo Profiler prompts
Turbo Profiler displays a prompt in a dialog box when you must supply additional
information to complete a ,command. The prompt describes the information that's
needed. The contents may show a history list of previous responses that you have given.

You can respond to a prompt in one of two ways-:

• Enter a response and accept it by pressing Enter.
• Press Esc to cancel the dialog box and return to the menu command that opened it.

Some prompts only present a choice between two items (like Yes/No). You can use Tab
to select the choice you want and then press Enter, or press Yor N directly. Cancel the
command by pressing Esc.

For a more complete discussion of the keystroke commands to use when a dialog box is
active, refer to Chapter 25, "The Turbo Profiler environment."

Here's an alphabetical list of all the prompts and messages generated by dialog boxes:

Enter code label to position to
Enter the address you wish to examine in the Disassembly pane. The Disassembly pane
shows the disassembled instructions at the specified address.

Enter command line arguments
Enter the command-line arguments for the program you're profiling. You can modify
the current command-line arguments or enter a new set.

C hap t e r 3 2, Pro m p t san d err 0 r m e s sag e s 497

You will then be prompted whether you want to reload your program from disk. Some
languages or programs, such as programs written in C, require you to reload the
program before the arguments take effect.

Enter file name to restore from
Enter the name of the file to restore the statistics from. If you specify an extension to the
file name, it will be used. Otherwise the extension .TFS will be used.

Enter file name to save areas to
Enter the name of the file to save the current areas to. If you specify an extension to the
file name, it will be used. Otherwise the extension .TFS will be used. '

Enter file name to save to
Enter the name of the file to save the current statistics to. If you specify an extension to
the file name, it will be used. Otherwise the extension. TFS will be used.

Enter interrupt number
Enter the number of the interrupt that you wish to track.

Enter name of file to view
Enter the name of a text file that you want to inspect. The file specified will be brought
into the File window.

Enter new directory
Enter the new drive and/ or directory name that you want to become the current drive
and directory.

Enter new line number
Enter a new line number to position the text file to. The first line in the file is line 1. If you
specify a line number that is greater than the last line in the file, the file is positioned to
the last line.

Enter program name to load
Enter the name of the program to load. If the program has the .EXE extension, you don't
have to specify it; if the program has any other extension, you must supply it.

If you supply a wildcard specification or accept the default *.EXE, a list of matching files
is displayed for you to select from.

Enter routine name to add
Enter the name of the function you wish to include, exclude, or set.

Enter search string
Enter a character string to search for. You can use a simple wildcard matching facility to
specify an inexact search string; for example, use * to match zero or more of any
characters, and? to match any single character.

Enter source directory list
Enter the directory or directories to search for source files.

If you want to enter more than one directory, separate the different directory paths with
a space ora semicolon (;). These directories will be searched, in the order that they
appear in this list, for your source files.

498 C++ Use r 's G u ide

Pick a caller
Pick a routine from the list of callers. You will then be positioned to that routine in the
window that you picked from the previous menu.

Pick a method name
You have specified a routine name that can refer to more than one method in an object.
Pick the correct one from the list presented, with the arguments you want.

Pick a module
Select a module name to view in the Module window. You are presented with a list of
all the modules in your program. Either use the cursor keys to move to the desired
module, or start typing the name of the module. As you type the module name, the
highlight bar will move to the first module that matches the letters you typed. When the
highlight bar is on the desired module, press Enter.

Pick a source file .
Pick a new source file to display in the Module window. The list shows all the source
files that make up the module. .

Pick interrupt
Pick an interrupt from the list of interrupts built into Turbo Profiler.

Pick macro to delete
Pick a macro to erase from the list of defined macros.

Reload program and change profiling mode?
When you change the profiling mode from active or passive to coverage, or from
coverage to active or passive, all current profile statistics will be erased. If you wish to
save the statistics before changing modes, answer NO to this prompt and save the
statistics to a .TFS file. Otherwise, answer YES to the prompt.

Turbo Profiler error messages
Turbo Profiler uses error messages to tell you about things you haven't quite expected.
Sometimes the command you have issued cannot be processed. At other times the
message warns that things didn't go exactly as you wanted.

Error messages can be accompanied by a beep. You can tum the beep on or off in the
customization program, TFINST.

Already recording, do you want to abort?
You are already recording a keystroke macro. You can't start recording another
keystroke macro until you finish the current one. Press Y to stop recording the macro, N
to continue recording the macro.

Ambiguous symbol symbol name
You have entered a 'member function or data item name and Turbo Profiler can't tell
which of the multiple instances of this member you mean.

This can happen when a member name is duplicated in two multiply inherited classes.
Use the classname:: override to name explicitly the member you want.

C hap t e r 3 2, Pro m p t san d err 0 r m e s sag e s 499

Bad or missing configuration file name
You have specified a nonexistent file name with the -c command-line option when you
started Turbo Profiler. The built-in default configuration values are used instead.

Bad interrupt number entered
You have entered an invalid interrupt number. Valid interrupt numbers are 9 to FF.

Bad module name module name
The module name that you have entered does not exist.

Can't execute DOS command processor
Either there was not enough memory to execute the DOS command processor, or the
command processor could not be found (the COMSPEC environment variable is either
absent or incorrect). Make sure that the COMSPEC environment variable correctly
specifies where to find the DOS command processor.

Can't find filename.DLL
You attempted to load a program that requires one or more DLLs, but TPROFW can't
find one of them. Make sure your executable file and the DLLs it requires are in the
same directory, then load the program again.

Can't swap user program to disk
The program being profiled could not be swapped to disk. There is probably not
enough room on the disk to swap the program. You will not be able to edit any files or
execute DOS commands until some more room is made available.

Edit program not specified
You tried to use the Edit SpeedMenu command from a Module or Disk File window,
but you cannot edit the file because Turbo Profiler does not know how to start your
editor.

Use the configuration program TFINST to specify an editor.

Error loading program
Your program could not be loaded. The format of the .EXE does not match the operating
system.

Error printing statistics
There was an error sending to the printer. Check that the printer is online and not out of
paper.

Error reading statistics file
An error occurred while you were restoring the collected statistics. Make sure that the
disk is ready.

Error saving configuration
Your configuration could not be saved to disk. The disk might be full, or there might be
no more free directory entries in the root directory.

You can use the File I DOS Shell command to go to DOS and delete a file or two to make
room for the configuration file.

Error swapping in user program, program reloaded
An error occurred while you were reloading your program that was swapped to disk.
This usually means that the swap file was accidentally deleted.

500 c++ User's Guide

You will have to reload your program using the Run I Program Reset command before
you can continue profiling.

Error writing statistics file
An error occurred while you were writing to the statistics file that stores your program
statistics. Your disk is probably full.

Make sure that the disk is ready and that there is enough room on the disk.

Exception N, error code N
Turbo Profiler encountered either an invalid memory reference or an invalid instruction
in your program. You must correct the error before continuing profiling.

Help file TFHELP.TFH not found
You asked for help, but the disk file that contains the help screens could not be found.
Make sure that the help file is in the same directory as Turbo Profiler.

Invalid number entered
The line number you specified is either a negative number, or contains an alphabetic
character. Make sure you specify a positive integer as a line number.

Invalid statistics file
The file you specified to restore statistics from has an invalid format. Make sure the file
name you specified was created using the Statistics I Save command.

Invalid switch
An invalid command-line option was encountered during program loading.

Invalid window message number
The window message that you have specified is not a valid name or number. Make sure
that the message name is correctly spelled (window message names are case sensitive).

Maximum number of areas has been reached
There is no more room to add areas. Use the Options I Number of Areas command to
increase the amount of memory set aside for areas.

Maximum number of interrupts being monitored
You can't watch any more interrupts; you have already told Turbo Profiler to watch as
many interrupts as it is capable of doing. You will have to use the SpeedMenu Remove
command to remove an existing interrupt before you can add any more.

Maximum number of windows messages has been reached
By default, Turbo Profiler sets the maximum number of window messages. If you
attempt to track more than the number of messages specified in the Max Windows
Messages text box (found through the Statistics I Profiling Options command), you'll
receive this error message.

When cited with this error message, no window messages will be added to the list by
Turbo Profiler. Make sure to reset the Max Windows Messages count to reflect the
number of messages that you want to watch, and then add the appropriate messages
through the Window Procedure Messages dialog box.

NMI interrupt
The program you're profiling has generated an NMI (non-maskable interrupt).

C hap t e r 3 2, Pro m p t 5 and err 0 r m e 5 5 age 5 501

No help for this context
You pressed F1 to get help, but Turbo Profiler could not find a relevant help screen.
Please report this to Borland Technical Support.

No file name was given
You have indicated that you wish to output a file, but you have not specified a file name.
You must either specify a file name or switch to another output location before you can
leave the dialog box.

No modules with statistics
There are no modules with any statistics collected, so there is nothing to print.

No network present
You must load NETBIOS (version 3.0 or above) before running TPROF or TFREMOTE
with the -m option.

No previous search expression
You have used the Next command from the SpeedMenu of a text pane, without
previously issuing a Search command. First use Search to specify what to search for,
then use Next to look for subsequent instances.

No program loaded
You tried to issue a command that requires a program to be loaded. There are many
commands that can be issued only when a program is loaded, for example, the
commands in the Run menu. Use the File I Open command to load a program before
issuing these commands.

No source file for module module name
The source file cannot be found for the module that you wish to view. The source file is
searched for first in the current directory, and then in any directories specified in the
configuration file and then in any directories specified by the command line -sd option.

Not a code address
You have entered an address that is not a code address in your program. You can set
profiling areas only on code addresses.

Not available when in coverage mode
This error message appears when you attempt to use a function that can't be used in
coverage mode. Most likely, you're trying to set (or remove) an area marker. Since
Turbo Profiler automatically sets coverage mode markers, you can't set or remove them
manually.

Not enough memory for selected operation
You issued a command that has to create a window, but there is not enough memory
left for the new window. You must first remove or reduce the size of some of your
windows before you can reissue the command. Also seethe -m option in Chapter 28,
"Turbo Profiler's command-line options."

Not enough memory to load program
Your program's symbol table has been successfully loaded into memory, but there is not
enough memory left to load your program. You can hook two systems together and run
Turbo Profiler on one system and the program you're analyzing on the other. See
Chapter 30, "Remote profiling," for more information on how to do this.

502 c++ User's Guide

Not enough memory to load symbol table
There is not enough room to load your program's symbol table into memory. The
symbol table contains the information that Turbo Profiler uses to show you your source
code and program variables. If you have any resident utilities consuming memory, you
may want to remove them and then restart Turbo Profiler. You can also try making the
symbol table smaller by having the compiler generate debug symbol information only
for those modules you are interested in analyzing.

When this message is issued, your program itself has not yet been loaded. This means
you must free enough memory for both the symbol table and your program.

Out of heap space
Turbo Profiler ran out of memory to collect the information you requested. You'll need
to reduce the amount of data that you want to gather in a single run.

Overlay not loaded
You have attempted to examine code in an overlay that is not loaded into memory. You
can examine code only for overlays that are already in memory.

However, you can still look at the source code for a module in a Module window.
Setting an area's operation to stop will let you view the disassembled overlay.

Overwrite existing macro on selected key
You have pressed a key to record a macro, and that key already has a macro assigned to
it. If you want to overwrite the existing macro, press Y; otherwise, press Nto cancel the
command.

Overwrite file name?
You have specified a file name to write to that already exists. You can choose by
entering Y to overwrite the file, replacing its previous contents, or you can cancel the
command by entering N and leave the previous file unchanged.

Path not found
You entered a drive and directory combination that does not exist. Check that you have
specified the correct drive and that the directory path is spelled correctly.

The current drive and directory are left as they were before you issued the command.

Premature end of string in symbol name
The symbol name that you have entered is incomplete. If you specify a module name, it
must be followed by either a line number or local symbol name.

Press key to assign macro to
Press the key that you want to assign the macro to. Then press the keys to do the
command sequence that you want to assign to the macro key. The command sequence
will actually be performed as you type it. To end the macro recording sequence, press
the key you assigned the macro to. This macro will be recorded on disk along with any
other keystroke macros.

Procedure stack overflow
Your program has too many nested procedure or function calls. You must remove some
of the areas that are set on routines in the deepest calling path. Use the Callers window
to find this area.

Chapter 32, Prompts and error messages 503

Program does not have overlays
The program you are profiling does not have any overlays, so you can't open an
Overlay window.

Program has invalid symbol table
The program that you wish to load has a symbol table with an invalid format. Re-create
your .EXE file and reload it.

Program has no symbol table
The program you want to analyze has been successfully loaded, but it does not contain
any debug symbol information. Relink the program so that it has a symbol table.

Program linked with wrong linker version
The program you tried to load was linked with a linker whose version is incompatible
with that of Turbo Profiler. Either the linker was an old one or you're using an old
version of Turbo Profiler.

Program not found
The program you wish to load does not exist. Check that the name you supplied to the
File I Open command is correct and that you supplied a file-name extension if it is
different from .EXE.

Program out of date or missing on remote, send over link?
You have specified a program to analyze on the remote system, but it either does not
exist on the remote, or the file is newer on the local system than on the remote system.

If you press Y, the program is sent across the link. If you press N, the program is not sent,
and the File I Open command is aborted.

You'll usually respond with Y. If you are running the link at the slowest speed (using the
-rsl command-line option), you might want to abort the command with N and transfer
the file to the remote system using a floppy disk.

Reload program so arguments take effect?
With most programs, you must reload after changing their arguments.

-.
When you press Y, a Run I Program Reset command is automatically performed for you.

Reload program so new area count takes effect?
In order for Turbo Profiler to reallocate the memory used for statistics areas, your
program must be unloaded from memory and then reloaded and executed from the
beginning again.

Press Y to make this happen, or press N if you can wait for the next manual program load
for the new area size to take effect.

Run out of space for keystroke macros
There is not enough memory to record all your keystroke macro.

Search expression not found
The specified text string or byte list is not present in the file. Since the search proceeds
forward from the current cursor position, you should return to the top of the file via the
Ctrl+PgUp hot key, then repeat the search.

504 ett User's Guide

Stopped by area
Turbo Profiler encountered an area whose operation you set to "stop." You can continue
profiling by using the Run I Run command.

Symbol not a routine name
The symbol name that you supplied is not a valid name of a routine.

Symbol not found
You have entered an expression containing an invalid symbol name. A valid symbol
name consists of one of the following:

• A global symbol name
• A module name, followed by #, followed by a local symbol name
• A module name, followed by a #, followed by a decimal line number

Syntax error in symbol SymbolName
You have entered an invalid symbol name. A valid symbol name consists of one of the
following:

• A global symbol name
• A module name, followed by #, followed by a local symbol name
• A module name, followed by a #, followed by a decimal line number

Too many areas for a Windows program
You've attempted to profile a program with more areas than the 511 supported by
Windows. Some of the areas you set will not be profiled. You'll have to reduce the
number of areas in order to control which areas are not included.

Too many files match wildcard mask
You specified a wildcard file mask that included more than 100 files. Only the first 100
file names are displayed.

Unknown control point
Turbo Profiler has encountered an 1NT 3 instruction in your program that it doesn't
recognize. Because Turbo Profiler uses !NT 3 instructions to indicate control points, if
you've put any in your program yourself, there will be a conflict. It's also possible that
Turbo Profiler inserted a control point and then lost track of it.

If you inserted the !NT 3 in your program, you'll have to remove it to run Turbo Profiler
on your program.

If you didn't put the !NT 3 in, then it's one of Turbo Profiler's. Removing the area
containing the !NT 3 will allow you to continue profiling the program.

Unable to determine procedure type
Turbo Profiler can't determine whether the current area is a near or far procedure. You'll
have to remove it from the list of areas for Turbo Profiler to proceed.

Value must be between nn and nn
You have entered an invalid numeric value for an editor setting (such as the tab width)
or printer setting (such as the number of lines per page). The error message will tell you
the allowed range of numbers.

C hap t e r 3 2, Pro m p t 5 and err 0 r m e 5 5 age 5 505

Video mode switched while flipping pages
You've started Turbo Profiler with a display updating mode that does not allow display
pages to be saved, and the program that you are profi1ir1g has switched into a graphics
mode.

Turbo Profiler has changed the display mode back to text display, so the screen contents
of the program you are profiling have been lost.

To avoid this situation, start Turbo Profiler with display-swapping enabled (-ds
command-line option).

Waiting for remote driver. Press Esc to stop waiting
You've started a remote profiling session, and Turbo Profiler is waiting to connect to the
remote driver. Press Esc to about the remote session.

506 c++ User's Guide

Error messages and warnings
This appendix describes the error messages that can be generated by Borland C++. It
begins by describing the four types of messages you can receive: fatal errors, errors,
warnings, and informational messages.

Next, it covers the different components that can generate messages: the compiler, the
MAKE utility, the linker (TLINK), the librarian (TLIB), the integrated debugger, and the
Windows Help compiler. This appendix also lists the errors that you can receive when
you run your program (run-time errors).

The remainder of the appendix lists messages ASCII alphabetic order and provides a
description of each message that includes where the message was generated.

Message categories
Messages fall into four categories: fatal errors, errors, warnings, and informational
messages.

Fatal errors
Fatal errors can be generated by the compiler, the linker, and the MAKE utility. Fatal
errors cause the compilation to stop immediately; you must take appropriate action to
fix the error before you can resume compiling.

If the compiler or MAKE utility issues a fatal error, no .EXE file is created. If the linker
issues a fatal error, any .EXE file that might have been created by the linker is deleted
before the linker returns.

Errors
Errors can be generated by the compiler, the linker, the MAKE utility, and the librarian.
In addition, errors can be generated by your program at run time.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 507

Errors generated by the compiler indicate program syntax errors, command-line errors,
and disk or memory access errors. Compiler errors don't cause the compilation to
stop-the compiler completes the current phase of the compilation and then stops and
reports the errors encountered. The compiler attempts to find as many real errors in the
source program as possible during each phase (preprocessing, parsing, optimizing, and
code-generating).

Errors generated by the linker don't cause the linker to delete the .EXE or .MAP files.
However, you shouldn't execute any .EXE file that was linked with errors. Linker errors
are treated like fatal errors if you're compiling from the Integrated Development
Environment (IDE).

The MAKE utility generates errors when there is a syntax or semantic error in the source
makefile. You must edit the makefile to fix these types of errors.

Run-time errors are usually caused by logic errors in your program code. If you receive
a run-time error, you must fix the error in your source code and recompile the program
for the fix to take effect.

Warnings
Warnings can be issued by the compiler, the linker, and the librarian. Warnings do not
prevent the compilation from finishing. However, they do indicate conditions that are
suspicious, even if the condition that caused the warning is legitimate within the
language. The compiler also produces warnings if you use machine-dependent
constructs in your source files.

Informational messages
Informational messages inform you about the progress of tasks such as the status of a
build.

Message generators
The messages in this appendix include messages that can be generated by the compiler,
the MAKE utility, the linker (TLINK), the librarian (TLIB), the integrated debugger
(IDE), and the Windows Help compiler. Run-time errors (errors you can receive when
you run your program) are also included.

Compiler errors and warnings
Compile-time error messages indicate errors in program syntax, command-line errors,
or errors in accessing a disk or memory. When most compile-time errors occurs, the
compiler completes the current phase (preprocessing, parsing, optimizing, and code­
generating) of the compilation and stops. But when fatal compile-time errors happen,
compilation stops completely. If a fatal error occurs, fix the error and recompile.

Note Be aware that the compiler generates messages as they are detected. Because C and C++
don't force any restrictions on placing statements on a line of text, the true cause of the

508 C++ Use r 's G u ide

error might be one or more lines before or after the line number mentioned in the error
message.

Warnings indicate that conditions which are suspicious but legitimate exist or that
machine-dependent constructs exist in your source files. Warnings do not stop
compilation.

Warnings are issued as a result of a variety of conditions, such as:

ANSI violations Warn you of code that is acceptable to Borland C++ (because
of C++ code or Borland C++ extensions), but is not in the
ANSI definition of C.

Frequent warnings Alert you to common programming mistakes. These
warning messages point out conditions that are not in
violation of the Borland C++ language but can yield the
wrong result.

Less frequent warnings Alert you to less common programming mistakes. These
warning messages point out conditions that are not in
violation of the Borland C++ language but can yield the
wrong result.

Portability warnings Alert you to possible problems with porting your code to
other compilers. These usually apply to Borland C++
extensions.

C++ warnings Warn you of errors you've made in your C++ code. They
might be due to obsolete items or incorrect syntax.

Run-time erro,rs and warnings
Run-time errors occur after the program has successfully compiled and is running.
These errors are usuallycaused.by logic errors in your program code. If you receive a
run-time error, you must fix the error in your source code and recompile the program
for the fix to take effect.

Linker errors and warnings
As a rule, linker errors do not stop the linker or cause .EXE or .MAP files to be deleted.
When such errors happens, don't try to execute the .EXE file. Fix the error and relink.

A fatal link error, however, stops the linker immediately. In such a case, the .EXE file is
deleted. All Linker errors are treated as fatal errors if you are compiling from the
Integrated Development Environment (IDE).

Linker warnings point out conditions that you should fix. When warnings occur, .EXE
and .MAP files are still created.

Appendix A, Error messages and warnings 509

Librarian errors and warnings
Librarian errors and warnings occur when there is a problem with files or extended
dictionaries, when memory runs low, or when there are problems as libraries are
accessed.

IDE debugger messages
IDE debugger messages are generated by the integrated debugger and appear under the
Runtime tab of the Message window; Many of these messages relate to options not set
properly in the IDE integrated debugger screens.

ObjectScripting error messages
ObjectScripting error messages are messages that result from running scripts in the IDE.
They appear under the Script tab in the Message window.

Help compiler messages
The Help compiler displays messages when it encounters errors or warnings while
building the Help resource file. Messages generated during the processing of the project
file begin with the letter P and are followed by an error number. Messages that occur
during the processing of the RTF topic file(s) begin with the letter R and are followed by
an error number.

Whenever possible, the Help compiler displays the topic number and/ or the file name
that contains the error. If you've numbered your topics, the topic number is given with
an error message that refers to that topic's sequential position in your RTF file (first,
second, and so on). These numbers might be identical to the page number shown by
your word processor. In your Help source files, topics are separated by hard page
breaks even though there are no "pages" in the Help system.

Messages beginning with the word "Error" are fatal errors. Errors are always reported,
and no usable Help resource file will result from the build. Messages beginning with the
word "Warning" are less serious in nature. A build with warnings produces a valid
Help resource file that loads under Windows, but the file might contain operational
errors.

Message formats
Messages are displayed with the message class first, followed by the source file name
and line number where the error was detected, and finally with the text of the message
itself.

Many of the messages appear in the Message view. For those messages, context­
sensitive help is available. Point to the message and press FI to display the message
description.

510 C++ Use r 's G u ide

If you are working from the command line or want to look up information on an error
message, refer to the alphabetical list of error and warning messages in "Alphabetical
list of messages" later in this chapter. Find the message you're interested in and click on
it to display its description.

Symbols in messages
Some messages include a symbol (such as a variable, file name, or module) that is taken
from your program. In the following example, 'filename' will be replaced by the name of
the file causing the problem:

Error opening 'filename' for output

Table A.I describes what the symbols in error and warning messages stand for.

Table A.1

argument
base
class
constructor

filename
function
group
identifier
language
macroname
member
message
module
name
number
operator
option
parameter
path
reason
segment
size
specifier
symbol
type
variable

Symbols that appear in error messages and warnings

A hexadecimal number indicating the address
where the error occurred
An argument
The name of a base element such as a base class
A class name
The name of a constructor such as a class
constructor
A file name (with or without extension)
A function name
A group name
An identifier (variable name or other)

. The name of a programming language
The name of a macro
The name of a data member or member function
A message string
A module name
Any type of name
An actual number
The symbol for an operator such as ++
An option
A parameter name
A path name
Reason given in message
A segment name
An actual number
A type specifier
A symbol name
A type name
A program variable

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 511

Alphabetical list of messages
Messages are listedin·ASCII alphabetic order. Messages beginning with symbols come
first, then messages beginning with numbers, and then messages beginning with letters
of the alphabet. Messages that begin with symbols are alphabetized by the type of the
symbols. For example, you might receive the following error message if you incorrectly
declared your function my June:

myJunc must be declared with no parameters

To find this error message, look under the alphabetized listing of "function."

')' missing in macro invocation MAKE error
A left parenthesis is required to invoke a macro.

(expected Compiler message
A left parenthesis was expected before a parameter list.

) expected Compiler message
A right parenthesis was expected at the end of a parameter list.

, expected Compiler message
A comma was expected in a list of declarations, initializations, or parameters.

This problem is often caused by a missing syntax element earlier in the file or one of its
included headers.

: expected after private/protected/private Compiler message
When used to begin a private, protected, or public section of a C++ class, the reserved
words "private," "protected," and "public" must be followed by a colon.

< expected Compiler message
The keyword template was not followed by <.

Every template declaration must include the template formal parameters enclosed
within < >, immediately following the template keyword.

> expected Compiler message
A new-style cast (for example, dynamic_cast) was found with a missing closing ">".

@ seen, expected a response·files name Librarian message
The response file name is not given immediately after @.

{ expected Compiler message
A left brace was expected at the start of a block or initialization.

} expected Compiler message
A right brace was expected at the end of a block or initialization.

16·bit segments not supported in module 'module' Linker message
16-bit segments are not supported for Win32 applications. Check to make sure that you
have not compiled the application with the 16-bit compiler.

512 C++ Use r' s G u ide

286/287 instructions not enabled Compiler message
Use the 2 command-line compiler option or the 80286 option in the Options 1 Project 116-
bit Compiler 1 Processor settings to enable 286/287 opcodes. Be aware that the resulting
code cannot be run on 8086- and 8088-based machines.

32-bit format in resource file. Please recompile. Resource Linker message
The compiled resource (.RES) file you are trying to use with your application contains
32-bit resources, but the target type of your application is for 16-bit Windows.

Recompile the resource file for Windows 3.1 or change the target type for your
application to Win32.

32-bit processing not supported in overlays Linker message
An invalid combination of 10 (overlays) and 13 (32-bit processing) was specified in the
link command line.

32-bit record encountered Linker message
An object file that contains 80386 32-bit records was encountered, and the /3 option was
not used.

Abnormal program termination Run-time message
The program called abort because there wasn't enough memory to execute. This
message can be caused by memory overwrites.

Access can only be changed to public or protected Compiler message
A C++ derived class can modify the access rights of a base class member, but only to
public or protected. A base class member can't be made private.

Added file 'filename' does not begin correctly, ignored Librarian message
The librarian has decided that the file being added is not an object module. It will not try
to add it to the library. The library is created anyway.

Address of overloaded function 'function' doesn't match 'type' Compiler message
A variable or parameter is assigned (or initialized with) the address of an overloaded
function.

However, the type of the variable or parameter doesn't match any of the overloaded
functions with the specified name.

Alias 'alias' defined in module 'module' is redefined in module module name Linker message
A second definition to the alias was encountered, so the second alias is being used.

Ambiguity between 'function1' and 'function2' Compiler message
Both of the named overloaded functions could be used with the supplied parameters.
This ambiguity is not allowed.

Ambiguous member name 'name' Compiler message
Whenever a structure member name is used in inline assembly, such a name must be
unique. (If it is defined in more than one structure, all of the definitions must agree as to
its type and offset within the structures). In this case, an ambiguous member name has
been used.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 513

For example:

struct A

} ;

int a;
int b;

asm ax, .a;

Ambiguous operators need parentheses
(Command-line equivalent for displaying this warillng = -wamb)

Compiler message

This warillng is displayed whenever two shift relational, or bitwise-Boolean operators
are used together without parentheses. Also, an addition or subtraction operator that
appears without parentheses with a shift operator will produce this warning.

Default = not displayed

Ambiguous override of virtual base member 'baseJunction': 'derivedJunction' Compiler message
A virtual function in a virtual base class was overridden with two or more different
functions along different paths in the inheritance hierarchy. For example,

struct VB

virtual f();
} ;

struct A:virtual VB

virtual f();
} ;

struct B:virtual VB
virtual f();

Application is running
The application you tried to run is already running.

Run-time message

For Windows, make sure the message loop of the program has properly terminated.

PostQuitMessage(O);

Array allocated using 'new' may not have an initializer Compiler message
When initializing a vector (array) of classes, you must use the constructor that has no
arguments.

This is called the default constructor, which means that you can't supply constructor
arguments when initializing such a vector.

Array must have at least one element Compiler message
ANSI C and C++ require that an array be defined to have at least one element (objects of
zero size are not allowed).

An old programming trick declares an array element of a structure to have zero size,
then allocates the space actually needed with malloc. You can still use this trick, but you

514 c++ User's Guide

must declare the array element to have (at least) one element if you are compiling in
strict ANSI mode.

Declarations (as opposed to definitions) of arrays of unknown size are still allowed.

Example:

char ray[]; /* definition of unknown size -- ILLEGAL */

char ray[O]; /* definition of 0 size -- ILLEGAL .*/

extern char ray[]; /* declaration of unknown size -- OK */

Array of references is not allowed Compiler message
It is illegal to have an array of references, because pointers to references are not allowed
and array names·are coerced into pointers.

Array size for 'delete' ignored Compiler message
(Command-line equivalent for displaying this warning = -wdsz)

The c++ IDE issues this warning when you've specified the array size when deleting an
array.

With the new C++ specification, you don't need to make this specification. the compiler
ignores this construct.

This warning lets older code compile.

Default = displayed

Array size too large Compiler message
The declared array is larger than 64K and the 'huge' keyword was not used.

If you need an array of this size, either use the 'huge' modifier, like this:

int huge array[70000L]; /* Allocate 140000 bytes */

or dynamically allocate it with farmalloc() or farcalloc(),like this:

int huge *array = (int huge *) farmalloc (sizeof (int) * 70000); ?? Allocate 140,000 bytes

Array variable 'identifier' is near Compiler message
(Command-line equivalent for displaying this warning = -wias)

When you use set the Far Data Threshold option, the compiler automatically makes any
global variables that are larger than the threshold size be far.

When the variable is an initialized array with an unspecified size, its total size is not
known when the compiler must decide whether to make it near or far, so the compiler
makes it near.

The compiler issues this warning if the number of initializers given for the array causes
the total variable size to exceed the data size threshold.

If the fact that the compiler made the variable be near causes problems, make the
offending variable explicitly far. To do this, insert the keyword 'far' immediately to the
left of the variable name in its definition.

Default = displayed

A P pen d i x A, Err 0 r me s sag e san d war n i n 9 s 515

Assembler stack overflow Compiler message
The assembler ran out of memory during compilation. Review the portion of code
flagged by the error message to ensure that it uses memory correctly.

Assembler statement too long Compiler message
Inline assembly statements can't be longer than 480 bytes.

Assigning 'type' to 'enumeration' Compiler message
(Command-line equivalent for displaying this warning = -weas)

Assigning an integer value to an enum type.

This is an error in C++, but is reduced to a warning to give existing programs a chance
to work.

Default = displayed

Assignment to 'this' not allowed, use X::operator new instead Compiler message
In early versions of C++, the only way to control allocation of class of objects was by
assigning to the 'this' parameter inside a constructor.

This practice is no longer allowed, because a better, safer, and more general technique is
to define a member function operator new instead.

For example:

this = malloc(n);

Attempt to export non-public symbol 'symbol' Linker message
A symbol name was listed in the EXPORTS section of the module definition file, but no
symbol of this name was found as public in the modules linked.

If compiling in C++ mode, this is usually caused by the name mangling that occurs as a
result of C++'s type safe linkage. Inserting the _export keyword in the function
protoo/,Pe and function definition is required for all C++ Windows callback functions.

Language-independent causes result from a mistake in spelling or case, case-sensitive
exports, or a procedure with this name that was not defined.

If you are using case sensitive exports, the Pascal calling convention used by Windows
requires these symbols to be all upper-case characters.

Attempt to export non::-public symbol 'symbol' Linker message
The EXPORTS section in the .DEF file specified the name of a symbol which has no
public definition.

Attempt to grant or reduce access to 'identifier' Compiler message
A C++ derived class can modify the access rights of a base class member, but only by
restoring it to the rights in the base class. It can't add or reduce access rights.

Attempting to return a reference to a local object Compiler message
You attempted to return a reference to a temporary object in a function that returns a
reference type. This may be the result of a constructor or a function call. This object will
disappear when the function returns, making the reference illegal.

516 C++ Use r' s G u ide

Attempting to return a reference to local variable 'identifier' Compiler message
This C++ function returns a reference type, and you are trying to return a reference to a
local (auto) variable. This is illegal, because the variable referred to disappears when the
function exits.

You can return a reference to any static or global variable, or you can change the
function to return a value instead.

Automatic data segment exceeds 64K Linker message
The sum of the DGROUP physical segment, local heap, and stack exceeded 64K. You
need to either specify smaller values for the HEAPSIZE and STACKSIZE statements in
the module definition file, or decrease the size of your near data in DGROUP.

The map file will show the sizes of the component segments in DGROUP.

Bad character in parameters -> 'char' Linker message
One of the following characters was encountered in the command line or in a response
file:

* < >? [1 I
or any control character other than horizontal tab, line feed, carriage return, or Ctrl+Z.

Bad 'directive' directive syntax Compiler message
A macro definition starts or ends with the ## operator, or contains the # operator that is
not followed by a macro argument name.

An example of this might be:

Bad ifdef directive syntax

Note that an #ifdef directive must contain a single identifier (and nothing else) as the
body of the directive.

Another example is:

Bad undef directive syntax

An #Undef directive must also contain only one identifier as the body of the directive.

Bad call of intrinsic function Compiler message
You have used an intrinsic function without supplying a prototype. You may have
supplied a prototype for an intrinsic function that was not what the compiler expected.

Bad EXE header format in file.
Executable format not recognized in file. Resource Linker message

The executable file contained invalid information in its header. The file might not be a
valid executable or might contain corrupted data.

Bad EXE segment table in file. Resource Linker message
The executable file contained invalid information in its segment table. The file might not
be a valid executable or might contain corrupted data.

Bad field list in debug information in module 'module' Linker message
This is typically caused by bad debug information in the OBJ file. Borland Technical
Support should be informed.

Bad file name 'filename' Linker message
An invalid file name was passed to the linker.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 517

Bad file name format in include directive
Bad file name format in line directive Compiler message

Include and line directive file names must be surrounded by quotes (" f i 1 ename . h") or
angle brackets « f i 1 ename . h>).

The file name was missing the opening quote or angle bracket.

If a macro was used, the resulting expansion text is not surrounded by quote marks.

Bad filename format in include statement MAKE message
Include file names must be surrounded by quotes or angle brackets. The file name was
missing the opening quote or angle bracket.

Bad GRPDEF type encountered, extended dictionary aborted Librarian message
The librarian has encountered an invalid entry in a group definition (GRPDEF) record in
an object module while creating an extended dictionary.

The only type of GRPDEF record that the librarian and the linker support is segment
index type. If any other type of GRPDEF is encountered, the librarian can't create an
extended dictionary. It is possible that an object module created by products other than
Borland tools can create GRPDEF records of other types. A corrupt object module can
also generate this warning.

Bad header in input LIB Librarian message
When adding object modules to an existing library, the librarian found a bad library
header. Rebuild the library.

Bad LF _POINTER in module 'module' Linker message
This is typically caused by bad debug information in the OBJ file. Borland Technical
Support should be informed.

Bad line number 'linenumber' IDE Debugger message
You tried to add a source breakpoint at a specific line number but you typed an invalid
line number. Use the IDE Debugger and correct the line number in the Add Breakpoint
dialog box. Breakpoints must be set on executable lines of code.

Bad loc for fixup in module 'module' near file offset 'offset' Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Bad macro output translator MAKE message
Invalid syntax for substitution within macros.

Bad object file 'filename' near file offset 'offset' Linker message
The linker has found a bad OBJ file. This is usually caused by a translator error.

518 C++ Use r 's G u ide

Bad object file record
Bad object file record in library file 'filename' near module file offset 'Oxxxxxxxxx'
Bad object file record in library file 'filename' in module 'module' near module file offset

'Oxxxxxxxxx' Linker messages
An ill-formed object file was encountered.

This is most COmlnonly caused by specifying a source file, by naming an object file that
was not completely built, or by corrupting the response file so that a non-OBI file is
included in the .OB] file list or library file list.

This can occur if the machine was rebooted during a compile, or if a compiler did not
delete its output object file when Ctrl+Break was pressed.

Recompile. If the error persists, call Borland Technical Support.

Bad OMF record type 'type' encountered in module 'module' Librarian message
The librarian encountered a bad Object Module Format (OMF) record while reading
through the object module.

Because the librarian has already read and verified the header records in 'module', the
object module is probably corrupt. Recreate it.

Bad secondary target for fixup in module 'module' Linker message
The linker encountered an object file with an incompatible .OB] file format.

This error generally occurs due to an incompatible .OB] file format. If you're linking
.OB] files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Bad syntax for pure function definition Compiler message
Pure virtual functions are specified by appending "= 0" to the declaration, like this:

class A { virtual voidf () = OJ}

class B : public A { void f () {}j }

You wrote something similar, but not quite the same.

Bad 'type' debug info in module 'module' Linker message
The linker encountered an object file with an incompatible .OB] file format.

This error generally occurs due to an incompatible .OB] file format. If you're linking
.OB] files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Bad undef statement syntax MAKE message
An !undef statement must contain a single identifier and nothing else as the body of the
statement.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 519

Base class 'class' contains dynamically dispatchable functions Compiler message
This error occurs when a class containing a DDVT function attempts to inherit DDVT
functions from multiple parent classes. Currently, dynamically dispatched virtual tables
do not support the use of multiple inheritance.

Base class 'class' is included more than once Compiler message
A C++ class can be derived from any number of base classes, but can be directly derived
from a given class only once.

Base class 'class' is initialized more than once Compiler message
In a C++ class constructor, the list of initializations following the constructor header
includes base class 'class' more than once.

Base class 'class1' is also a base class of 'class2' Compiler message
(Command-line equivalent for displaying this warning = -wibc)

A class inherits from the same base class both directly and indirectly. It is best to avoid
this non-portable construct in your program code.

Default = displayed

Base initialization without a class name is now obsolete Compiler message
(Command-line equivalent for displaying this warning = -wobi)

Early versions of C++ provided for initialization of a base class by following the
constructor header with just the base class constructor parameter list. It is now
recommended to include the base class name.

This makes the code much clearer, and is required when you have multiple base classes.

Old way:

derived::derived(int i) (i, 10) { ... }

New way:

derived::derived(int i) base(i, 10) { ... }

Default = displayed

'base' is an indirect virtual base class of 'class' Compiler message
You can't create a pointer to a C++ member of a virtual base class.

You have attempted to create such a pointer (either directly, or through a cast) and
access an inaccessible member of one of your base classes.

Bit field cannot be static Compiler message
Only ordinary C++ class data members can be declared static, not bit fields.

Bit field too large Compiler message
This error occurs when you supply a bit field with more than 16 bits.

Bit fields must be signed or unsigned int Compiler message
In ANSI C, bit fields may only be signed or unsigned int (not char or long, for example).

Bit fields must be signed or unsigned int Compiler message
(Command-line equivalent for displaying this warning = -wbbf)

520 C++ Use r 's G u ide

In ANSI C, bit fields may not be of type signed char or unsigned char. When you're not
compiling in strict ANSI mode, the compiler allows these constructs, but flags them
with this warning.

Default = not displayed

Bit fields must contain at least one bit Compiler message
You can't declare a named bit field to have 0 (or less than 0) bits. You can declare an
unnamed bit field to have 0 bits.

This is a convention used to force alignment of the following bit field to a byte boundary
(or to a word boundary, if you choose the or tum on the Word Alignment option in the
Code Generation dialog box.

Bit fields must have integral type Compiler message
In C++, bit fields must have an integral type. This includes enumerations.

Block overflow for block 'block' Linker message
This message results from one of the linker's internal tables overflowing.

The internal linker tables contain information such as linker or debugging data. The
tables are set to a default size which was not sufficient for the data in your application.

When this error occurs, the linker emits an IN! file called TLINK32.INI and includes the
name of the block that overflowed along with its size. Edit the INI file and increase the
size.

The .DEF file is ill formed. You typed an illegal import sequence in the .DEF file.

Body has already been defined for function 'function' Compiler message
A function with this name and type was previously supplied a function body. A
function body can only be supplied once.

One cause of this error is not declaring a default constructor which you implement. For
example:

class A {

public:

virtual myex () i

} i

A: :A() {} / / error

Having not seen you declare the default constructor in the class declaration, the
compiler has had to generate one, thus giving the error message when it sees one. this is
a correct example:

class A {

public:

A()i

virtual myex()i
} i

A::A() {}

Both return and return of a value used Compiler message
(Command-line equivalent for displaying this warning = -wret)

Appendix A, Error messages and warnings 521

The current function has return statements with and without values. This is legal C, but
almost always an error. Possibly a return statement was omitted from the end of the
function.

Default = displayed

Call of nonfunction Compiler message
The name being called is not declared as a function. This is commonly caused by
incorrectly declaring the function or misspelling the function name.

Call to function 'function' with no prototype Compiler message
This message is given if the "Prototypes required" warning is enabled and you call
function 'function' without first giving a prototype for that function.

Call to function with no prototype Compiler message
(Command-line equivalent for displaying this warning = -wpro)

This message is given if the "Prototypes required" warning is enabled and you call a
function without first giving a prototype for that function.

Default = displayed

Call to undefined function 'function' Compiler message
Your source file declared the current function to return some type other than void in C++
(or int in C), but the compiler encountered a return with no value. All int functions are
exempt in C because in old versions of C, there was no void type to indicate functions
that return nothing.

Can't convert 'string' [which evaluates to 'result'] to an address IDE Debugger message
The debugger dialog was expecting a memory address as input and it couldn't interpret
the user input as a valid address.

Can't debug during asynchronous compile IDE Debugger message .
While compiling code with the Environment I Process Control I Asynchronous option
set, you tried to issue a debugger command. Because the compiler is not re-entrant and
the debugger and browser use the compiler code, you cannot debug or browse while an
asynchronous (background) compile is taking place.

Can't evaluate 'expression:' 'reason' IDE Debugger message
The expression you tried to evaluate did not return a valid value. This error will be
given any time invalid input is entered in a debugger dialog and there is no more
information about the error. Every debugger dialog uses the debugger's evaluator to
validate and interpret user input.

Can't grow LEiLIDATA record buffer Librarian message
Command-line error.

The librarian is attempting to read a record of data from the object module, but it cannot
get a large enough block of memory.

If the module being added has a large data segment or segments, try adding this
module before other modules.

522 C++ Use r 's G u ide

Can't inherit non-RITI class from RITI base

Can't inherit RITI class from non-RITI base Compiler messages
When virtual functions are present, the RTTI attribute of all base classes must match that
of the derived class.

Can't inspect 'itemname' IDE Debugger message
You specified an invalid item for inspection.

Can't navigate to address 0 IDE Debugger message
You are trying to bring up a source view on an address that evaluates to O.

Can't run to 'filename', line 'linenumber' IDE Debugger message
You tried to run the specified line of the specified file. Either the file does not exist or
there is no executable code associated with the line.'

Cannot access an inactive scope Compiler message
You have tried to evaluate or inspect a variable local to a function that is currently not
active. (This is an integrated debugger expression evaluation message.)

Cannot add or subtract relocatable symbols Compiler message
The orily arithmetic operation that can be performed on a relocatable symbol in an
assembler operand is addition or subtraction of a constant.

Variables, procedures, functions, and labels are relocatable symbols.

Cannot allocate a reference Compiler message
You have attempted to create a reference using the new operator. This is illegal, because
references are not objects and can't be created through new.

Cannot call 'main' from within the program Compiler message
C++ does not allow recursive calls of main().

Cannot call near class member function with a pointer of type 'type' Compiler message
Member functions of near classes can't be called via a member pointer. This also applies
to calls using pointers to members. (Remember, classes are near by default in the tiny,
small, and medium memory models.)

Either change the pointer to be near, or declare the class as far.

Cannot cast from 'type1' to 'type2' Compiler message
A cast from type 'identl' to type 'ident2' is not allowed. In C++, you cannot cast a
member function pointer to a normal function pointer.

For example:

class A {
public:

int myex();
} ;

typedef int (*fp) ();
test()
{

fp myfp - (fp) &A: :myex; //error

The reason being that a class member function takes a hidden parameter, the this
pointer, thus it behaves very differently than a normal function pointer.

A P pen d i x A, E rr 0 r m e s sag e san d war n i n 9 s 523

A static member function behaves as normal function pointer and can be cast.

For example:
class A {
public:

static int myex();
} ;

typedef int (*fp) ();
test()
{

fp myfp - (fp) &A::myex; Ilok

However, static member functions can only access static data members of the class.

InC:

• A pointer can be cast to an integral type or to another pointer.
• An integral type can be cast to any integral, floating, or pointer type.
• A floating type can be cast to an integral or floating type.

Structures and arrays can't be cast to or from.

You usually can't cast from a void type.

In C++:

• User-defined conversions and constructors are checked for. If one can't be found, the
preceding rules apply (except for pointers to class members).

• Among integral types, only a constant zero can be cast to a member pointer.
• A member pointer can be cast to an integral type or to a similar member pointer.

A similar member pointer points to a data member (or to a function) if the original does.

The qualifying class of the type being cast to must be the same as (or a base class of) the
original.

Cannot convert 'type1' to 'type2' Compiler message
An assignment, initialization, or expression requires the specified type conversion to be
performed, but the conversion is not legal.

In C++, the compiler will convert one function pointer to another only if the signature
for the functions are the same. Signature refers to the arguments and return type of the
function. For example:

myex(int);
typedef int (*ffp) (float);
test ()
{

ffp fp = myex; Ilerror

Seeing that myex takes an int for its argument, and fp is a pointer to a function which
takes a float as argument, the compiler will not convert it for you.

In cases where this is what is intended, performing a typecast is necessary:

myex(int);
typedef int (*ffp) (float);
test()

524 C++ Use r 's G u ide

ffp fp = (ffp)myex; Ilak

Cannot create instance of abstract class 'class' Compiler message
Abstract classes (those with pure virtual functions) can't be used directly, only derived
from.

When you derive an abstract base class, with the intention to instantiate instances of this
derived class, you must override each of the pure virtual functions of the base class
exactly as they are declared.

For example:

class A {
public:

virtual myex(int) = 0;
virtual twa ex (canst int) canst 0;

} ;

class B : public A
public:

myex(int);
twaex(canst int);

} ;

B b; II errar

The error occurs because we have not overridden the virtual function which twoex can
act on canst objects of the class. We have created a new one which acts on non-canst
objects. This would compile:

class A {
public:

virtual myex(int) = 0;
virtual twaex(canst int) canst 0;

} ;

class B : public A
public:

myex(int);
twaex(canst int) canst;

} ;

B b; I I ak

Cannot create pre-compiled header: 'reason' Compiler message
This warning is issued when pre-compiled headers are enabled but the compiler could
not generate one, for one of the following reasons:

write failed

code in header

The compiler could not write to the pre-compiled header file. This
is usually because the disk is full.

One of the headers contained a non-inline function body.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 525

initialized data in header

header incomplete

One of the headers contained a global variable definition (in C, a
global variable with an initializer; in C++ any variable not declared
as 'extern').

The pre-compiled header ended in the middle of a declaration, for
example, inside a class definition (this often happens when there is
a missing "}" in a header file).

Cannot declare or define 'identifier' here Compiler message
You tried to declare a template in an illegal place or a namespace member outside of its
namespace.

Cannot define 'identifier' using a namespace alias Compiler message
You cannot use a namespace alias to define a namespace member outside of its
namespace.

Cannot define a pointer or reference to a reference Compiler message
It is illegal to have a pointer to a reference or a reference to a reference.

Cannot evaluate function call Compiler message
The error message is issued if someone tries to explicitly construct an object or call a
virtual function.

In integrated debugger expression evaluation, calls to certain functions (including
implicit conversion functions, constructors, destructors, overloaded operators, and
inline functions) are not supported.

Cannot find 'class::class' ('class'&) to copy a vector
Cannot find 'class'::operator=('class'&) to copy a vector
Cannot find class::class ... Compiler messages

When a C++ class 'class1' contains a vector (array) of class 'class2', and you want to
construct an object of type 'class1' from another object of type 'class 1', you must use this
constructor:

class2::class2(class2&)

so that the elements of the vector can be constructed.

The constructor, called a copy constructor, takes just one parameter (which is a reference
to its class). Usually, the compiler supplies a copy constructor automatically. However,
if you have defined a constructor for class 'class2' that has a parameter of type 'class2&'
and has additional parameters with default values, the copy constructor can't exist and
can't be created by the compiler.

This is because these two can't be distinguished:

class2::class2(class2&)
class2::class2(class2&, int = 1)

You must redefine this constructor so that not all parameters have default values. You
can then define a reference constructor or let the compiler create one.

Cannot find class::operator= ... Compiler message
Whena C++ class 'class1' contains a vector (array) of class 'class2', and you want to copy
a class of type 'class1', you must use this assignment operator so that the elements of the
vector can be copied:

526 C++ Use r 's G u ide

class2::class2(class2&)

Usually, the compiler automatically supplies thls operator. However, if you have
defined an operator= for class 'class2' that does not take a parameter of type 'class2&,'
the compiler will not supply it automatically--you must supply one.

Cannot find default constructor to initialize array element of type 'class' Compiler message
When declaring an array of a class that has constructors, you must either explicitly
initialize every element of the array, or the class must have a default constructor.

The compiler will define a default constructor for a class unless you have defined any
constructors for the class.

Cannot find default constructor to initialize base class 'class' Compiler message
Whenever a C++ derived class 'class2' is constructed, each base class 'classl' must first
be constructed.

If the constructor for 'class2' does not specify a constructor for 'classl' (as part of 'class2's'
header), there must be a constructor classl: : classl () for the base class.

This constructor without parameters is called the default constructor. The compiler will
supply a default constructor automatically unless you have defined any constructor for
class 'classl'. In that case, the compiler will not supply the default constructor
automatically-you must supply one.

class Base {
public:

Base (int) {}
} ;

class Derived = public Base
Derived() :Base(l) {}

II must explicitly call the Base constructor, or provide a
II default constructor in Base.

Class members with constructors must be initialized in the class' initializer list, for
example:

class A {
public

A(int);
} ;

class B
public:

A a;

B () : a (3) {}; I 10k

} ;

Cannot find default constructor to initialize member 'identifier'
This error is displayed when the following occurs:

• A C++ class 'classl' contains a member of class 'class2.'

Compiler message

• You want to construct an object of type 'class 1 ' (but not from another object of type
'class 1 '). There must be a constructor class2::class20 so that the member can be
constructed.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 527

This constructor without parameters is called the default constructor. The compiler will
supply a default constructor automatically unless you have defined any constructor for
class 'class2'. In that case, the compiler will not supply the default constructor
automatically-you must supply one.

Cannot find MAKE.EXE MAKE message
The MAKE command-line tool cannot be found. Be sure that MAKE.EXE is in either the
current directory or in a directory contained in your directory path.

Cannot generate 'function' from template function 'template' Compiler message
A call to a template function was found, but a matching template function cannot be
generated from the function template.

Cannot generate COM file: data below initial CS:IP defined Linker message
This error results from trying to generate data or code below the starting address
(usually 100) of a .COM file. Be sure that the starting address is set to 100 by using the
(ORC 100H) instruction. This error message should not occur for programs written in a
high-level language. If it does, ensure that the correct startup (COx) object module is
being linked in.

Cannot generate COM file: invalid initial entry point address Linker message
You used the /Tdc or It option, but the program starting address is not equal to 100H,
which is required with .COM files.

Cannot generate COM file: program exceeds 64K Linker message
You used the /Tdc or It option, but the total program size exceeds the .COM file limit.

Cannot generate COM file: segment-relocatable items present Linker message
You used the /Tdc or It option, but the program contains segment-relative fixups, which
are not allowed with .COM files.

Cannot generate COM file: stack segment present Linker message
You used the /Tdc or It option, but the program declares a stack segment, which is not
allowed with .COM files.

Cannot have a non-inline function/static data in a local class Compiler message
All members of classes declared local to a function must be entirely defined in the class
definition.

This means that local classes cannot contain any static data members, and all of their
member functions must have bodies defined within the class definition.

Cannot have multiple paths for implicit rule MAKE message
You can have only one 'path for each of the extensions in an implicit rule; for example,
{path} . c. obj. Multiple path lists are allowed only for dependents in an explicit rule.

Cannot have path list for target MAKE message
You can only specify a path list for dependents of an explicit rule. For example, an
invalid and a valid path list are shown here:

{pathl;path2}prog.exe: prog.obj # Invalid
prog.exe: {pathl;path2}prog.obj # Valid

528 C++ Use r 's G u ide

Cannot initialize 'type1' with 'type2' Compiler message
You are attempting to initialize an object of type 'typel' with a value of type 'type2'
which is not allowed. The rules for initialization are essentially the same as for
assignment.

Cannot initialize a class member here Compiler message
Individual members of structs, unions, and C++ classes can't have initializers. A struct
or union can be initialized as a whole using initializers inside braces. A C++ class can
only be initialized by the use of a constructor.

Cannot modify a const object Compiler message
This indicates an illegal operation on an object declared to be canst, such as an
assignment to the object.

Cannot overload 'main' Compiler message
main is the only function that can't be overloaded.

Cannot take address of 'main' Compiler message
In C++, it is illegal to take the address of the main function.

Cannot take address of member function 'function' Compiler message
An expression takes the address of a class member function, but this member function
was not found in the program being debugged. The evaluator issues this message.

Cannot throw 'type'-ambiguous base class 'base' Compiler message
It is not legal to throw a class that contains more than one copy of a (non-virtual) base
class.

Cannot use local type 'identifier' as template argument Compiler message
A local type was used in an actual template type argument, which is illegal.

Cannot use tiny or huge memory model with Windows Compiler message
This message is self-explanatory. Use small, medium, compact, or large instead ..

Cannot write a string option MAKE message
The -W MAKE option writes a character option to MAKE.EXE. If there's any string
option, this error message is generated. For example, the following string option
generates this message:

-Dxxxx="My_foo" or -Uxxxxx

Cannot write GRPOEF list, extended dictionary aborted Librarian message
The librarian cannot write the extended dictionary to the end of the library file. There
may not be enough space on the disk.

Case bypasses initialization of a local variable Compiler message
In C++ it is illegal to bypass the initialization of a local variable.

This error indicates a case label that can transfer control past this local variable.

Case outside of switch Compiler message
The compiler encountered a case statement outside a switch statement.

This is often caused by mismatched braces.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 529

Case statement missing: Compiler message
A case statement must have a constant expression followed by a colon.

The expression in the case statement either was missing a colon or had an extra symbol
before the colon. .

'catch' expected Compiler message
In a C++ program, a 'try' block must be followed by at least one 'catch' block.

Character constant must be one or two characters long Compiler message
Character constants can only be one or two characters long.

Character constant too long MAKE message
A char constant in an expression is too long.

Circular dependency exists in makefile MAKE message
The makefile indicates that a file needs to be up-to-date before it can be built. Take, for
example, the explicit rules

filea: fileb

fileb: filec

filec: filea

This implies that file a depends on fileb, which depends on filec, and filec depends on
filea. This is illegal because a file cannot depend on itself, indirectly or directly.

Class 'class' may not contain pure functions Compiler message
The class being declared cannot be abstract, and therefore it cannot contain any pure
functions.

Class 'classname' is abstract because of 'member = 0' Compiler message
This message is issued immediately after the "Cannot create instance of abstract class
I classname' error message and is intended to make it easier to figure out why a
particular class is considered abstract by the compiler.

For example, consider the following example of an illegal attempt to instantiate an
abstract class:

struct VB

} ;

virtual void f () 0 ;
virtual void g () 0 ;

virtual void h () 0 ;

struct Dl : virtual VB

void f ();
} ;

struct D2 : virtual VB

void h();

} ;

struct DD Dl, D2

v; II error 'DD' is an abstract class

530 c++ User's Guide

The above code will cause the following two error messages:

Error TEST.CPP 21: Cannot create instance of abstract class 'DD'
Error TEST.CPP 21: Class 'DD' is abstract because of 'VB::g() = 0'

Class member 'member' declared outside its class Compiler message
C++ class member functions can be declared only inside the class declaration.
Unlike nonmember functions, they can't be declared multiple times or at other locations ..

Code has no effect . Compiler message
(Command-line equivalent for displaying this warning = -weff)

This warning is issued when the compiler encounters a statement with some operators
that have no effect.

For example, the statement
a + b;

has no effect on either variable.

The operation is unnecessary and probably indicates a bug.

Default = displayed

CodeGuarded programs must use the large memory
model and be targeted for Windows Compiler message
Only issued by the I6-bit compiler. Programs that have CodeGuard enabled must use
the large memory model and be targeted for Windows.

Colon expected MAKE message
Your implicit rule is missing a colon at the end .

. c.obj:

.c.obj
Correct
Incorrect

Command arguments too long MAKE message
The arguments to a command exceeded the SII-character limit imposed by DOS.

Command syntax error MAKE message
This message occurs if (

• The first rule line of the makefile contains any leading whitespace.
• An implicit rule does not consist of .ext.ext:.
• An explicit rule does not contain a name before the: character.

A macro definition does not contain a name before the = character.

Common segment exceeds 64K Linker message
The program has more than 64K of near uninitialized data. Try declaring some
uninitialized data as far.

Compiler could not generate copy constructor for class 'class'
Compiler could not generate default constructor for class 'class'
Compiler could not generate operator = for class 'class' Compiler messages

Sometimes the compiler is required to generate a member function for the user.

Whenever such a member function can't be generated due to applicable language rules,
the compiler issues one of these error messages.

Appendix A, Error messages and warnings 531

Compiler stack overflow Compiler message
The compiler's stack has overflowed. This can be caused by a number of things, among
them deeply nested statements in a function body (for example, if/else) or expressions
with a large number of operands. You must simplify your code if this message occurs.

Adding more memory to your system will not help.

Compiler table limit exceeded Compiler message
One of the compiler's internal tables overflowed. This usually means that the module
being compiled contains too many function bodies. This limitation will not be solved by
making more memory available to the compiler. You need to simplify the file being
compiled.

Compound statement missing} Compiler message
The compiler reached the end of the source file and found no closing brace. This is most
commonly caused by mismatched braces.

Condition is always true OR Condition is always false Compiler message
(Command-line equivalent for displaying this warning = -wccc)

Whenever the compiler encounters a constant comparison that (due to the nature of the
value being compared) is, always true or false, it issues this warning and evaluates the
condition at compile time.

For example:

void proc(unsigned x){
if (x >= 0) 1* always 'true' *1

}

Default = displayed

Conflicting type modifiers Compiler message
This occurs when a declaration is given that includes more than one addressing
modifier on a pointer or more than one language modifier for a function.

Only one language modifier (cdecl, and pascal) can be given for a function.

One cannot multiply derive from a class declared to use the fast this pointer
optimization, and one that was not.

For example:

class __ fastthis A { II one way to declare a class as using the
myex(); II fast this optimization, note that

}; II #pragma option -po- turns it off.
class B {

twoex() ;
} ;

class c : A , B {}; II error
II note that __ fastthis is only recognized in Be 4.0 or later

532 C++ Use r 's G u ide

Constant expression required Compiler message
Arrays must be declared with constant size. This error is commonly caused by
misspelling a #define constant.

Constant is long Compiler message
(Command-line equivalent for displaying this warning = -wcln)

The compiler encountered one of the following:

• A decimal constant greater than 32,767 or
• An octal, hexadecimal, or decimal constant greater than 65,535 without a letter I or L

following it

The constant is treated as a long.

Default = not displayed

Constant out of range in comparison
(Command-line equivalent for displaying this warning = -wmg)

Compiler message

Your source file includes a comparison involving a constant sub-expression that was
outside the range allowed by the other sub-expression's type.

For example, comparing an unsigned quantity to -1 makes no sense.

To get an unsigned constant greater than 32,767 (in decimal), you should either

• Cast the constant to unsigned-for example, (unsigned) 65535, or
• Append a letter u or U to the constant-for example, 65535u.

Whenever this message is issued, the compiler still generates code to do the comparison.

If this code ends up always giving the same result (such as comparing a char expression
to 4000), the code will still perform the test.

Default = displayed

Constant/Reference member 'member' in class without constructors Compiler message
A class that contains constant or reference members (or both) must have at least one
user-defined constructor. Otherwise, there would be no way to ever initialize such
members.

Constant/Reference variable 'variable' must be initialized Compiler message
This C++ object is declared constant or as a reference, but is not initialized. It must be
initialized at the point of declaration.

Constructor cannot have a return type specification Compiler message
C++ constructors have an implicit return type used by the compiler, but you can't
declare a return type or return a value.

Constructor initializer list ignored Compiler message
An error has occurred while using the command-line utility H2ASH. See the online file

. "tsm_utiLtxt" for further information about this utility.

Constructor/Destructor cannot be declared 'const' or 'volatile' Compiler message
A constructor or destructor has been declared as const or volatile. This is not allowed.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 533

'constructor' is not an unambiguous base class of 'class' Compiler message
A C++ class constructor is trying to call a base class constructor 'constructor.' This error

, can also occur if you try to change the access rights of 'class::constructor.'

Check your declarations.

Continuation character \ found in II comment Compiler message
This warning message is issued when a C++ / / comment is continued onto the next line
with backslash line continuation. The intention is to warn about cases where lines
containing source code unintentionally become part of a comment because that
comment happened to end in a backslash.

If you get this warning, check carefully whether you intend the line after the / /
comment to be part of the comment. If you don't, either remove the backslash or put
some other character after it. If you do, it's probably better coding style to start the next
comment line with / / also.

The warning can be disabled altogether by #pragma warn -com.

Conversion may lose significant digits Compiler message
(Command-line equivalent for displaying this warning = -wsig)

For an assignment operator or some other circumstance, your source file requires a
conversion from long or unsigned long to int or unsigned int type. Because int type and
long type variables don't have the same size, this kind of conversion might alter the
behavior of a program.

Default = not displayed

Conversion of near pointer not allowed Compiler message
A near pointer cannot be converted to a far pointer in the expression evaluation box
when a program is not currently running. This is because the conversion needs the
current value of DS in the user program, which doesn't exist.

Conversion operator cannot have a return type specification Compiler message
This C++ type conversion member function specifies a return type different from the
type itself. A declaration for conversion function operator can't specify any return type.

Conversion to 'type' will fail for members of virtual base 'class' Compiler message
This warning is issued only if the -Vv option or Options I Project I C++ Options I C++
Compatibility I Deep Virtual Bases option is in use.

The warning may be issued when a member pointer to one type is cast to a member
pointer of another type and the class of the converted member pointer has virtual bases.

Encountering this warning means that at run time, if the member pointer conversion
cannot be completed, the result of the cast will be a NULL member pointer.

Conversions of class to itself or base class not allowed Compiler message
You tried to define a conversion operator to the same class or a base class.

Could not allocate memory for per module data Librarian message
The librarian has run out of memory.

534 ett User's Guide

Could not create list file 'filename' Librarian message
The librarian could not create a list file for the library. This could be due to lack of disk
space.

Could not create swapfile Linker message
This error message refers to an UNDOCUMENTED optimization feature.

Could not find a match for argument(s) Compiler message
No C++ function could be found with parameters matching the supplied arguments.

Check parameters passed to function or overload function for parameters that are being
passed.

Could not find file 'filename' Compiler message
The compiler is unable to find the file supplied on the command line.

Could not write output Librarian message
The librarian could not write the output file.

Couldn't build command line to RLlNK.EXE Linker message
The command line that was generated by the command-line linker was linger than 128
bytes. RLINK.EXE was not run on the EXE. Shorten the file names passed in the .RES file
list, put in fewer .RES files, or run RLINK separately.

Couldn't exec RLlNK.EXE Linker message
The command-line linker could not spawn RLINK.EXE to bind resources. Check to
make sure that RLINK.EXE is on your path.

Couldn't get lEiLIDATA record buffer Librarian message
Command-line error.

The librarian is attempting to read a record of data from the object module, but it cannot
get a large enough block of memory.

If the module being added has a large data segment or segments, try adding this
module before other modules.

Couldn't get procedure address from Dll'dll' Linker message
The linker was not able to get a procedure from the specified DLL. Check to make sure
that you have the correct version of the DLL.

Couldn't load Dll'dll' Linker message
The linker was not able to load the specified pLL. Check to make sure that the DLL is on
your path.

Cycle in include files: 'filename' MAKE message
This error message is issued if a makefile includes itself in the make script.

Debug info switch ignored for COM files Linker message
Borland C++ does not include debug information for .COM files. See the description of
the Iv option.

Debug information enabled, but no debug information found in OBJs Linker message
No part of the application was compiled ~ith debug information, but you requested
that debug information be turned on in the link.

Appendix A, Error mess~ges and warnings 535

Debug information in module 'module' will be ignored Linker message
Object files compiled with debug information now have a version record. The version of
this record is inconsistent with what the linker currently supports.

The linker did not generate debug information for the module in question. Recompile
with the current compiler to generate correct debug information.

Debugging information overflow; try fewer modules with debug info Linker message
Too many modules containing debugging information are included in the link.

This message is generated when you have more than 64K of types or symbols in a single
.OBJ file, or if you get more than 64K modules, source files (including.h files), scopes,
logical debug segments, classes, or optimized variables in the link.

Recompile your program with fewer modules marked for debug information.

Declaration does not specify a tag or an identifier Compiler message
This declaration doesn't declare anything. This may be a struct or union without a tag or
a variable in the declaration. C++ requires that something be declared.

For example:

struct

int a
} ;

Iino tag or identifier

Declaration ignored Compiler message
An error has occurred while using the command-:-line utility H2ASH. See the online file
"tsm_utiLtxt" for further information about this utility.

Declaration is not allowed here Compiler message
Declarations can't be used as the control statement for while, for, do, if, or switch
statements.

Declaration missing; Compiler message
Your source file contained a struct or union field declaration that was not followed by a
semicolon.

Check previous lines for a missing semicolon.

Declaration of static function '(...)' ignored Compiler message
An error has occurred while usiRg the command-line utility H2ASH. See the online file
"tsm_utiLtxt" for further information about this utility.

Declaration syntax error Compiler message
Your source file contained a declaration that was missing a symbol or had an extra
symbol added to it.

Check for a missing semicolon or parenthesis on that line or on previous lines.

Declaration terminated incorrectly Compiler message
A declaration has an extra or incorrect termination symbot such as a semicolon, placed
after a function body.

536 c++ User's Guide

A C++ member function declared in a class with a semicolon between the header and
the opening left brace also generates this error.

Declaration was expected Compiler message
A declaration was expected here but not found. This is usually caused by a missing
delimiter such as a comma, semicolon, right parenthesis, or right brace.

Declare operator delete (void*) or (void*, size J)

Declare operator deleteD (void*) or (void*, size_t) Compiler messages
Declare the operator delete with one of the following:

• A single void* parameter, or
• A second parameter of type size_t

If you use the second version, it will be used in preference to the first version. The global
operator delete can only be declared using the single-parameter form.

Declare type 'type' prior to use in prototype Compiler message
(Command-line equivalent for displaying this warning = -wdpu)

When a function prototype refers to a structure type that has not previously been
declared, the declaration inside the prototype is not the same as a declaration outside
the prototype.

For example,

int func(struct s *ps); struct s /* ... */ ;

Because there is no "struct s" in scope at the prototype for func, the type of parameter ps
is pointer to undefined struct s, and is not the same as the "struct s" that is later
declared.

This will result in later warning and error messages about incompatible types, which
would be very mysterious without this warning message.

To fix the problem, you can move the declaration for "struct s" ahead of any prototype
that references it, or add the incomplete type declaration "struct s;" ahead of any
prototype that references "structs".

If the function parameter is a struet, rather than a pointer to struct, the incomplete
declaration is not sufficient.

You must then place the struet declaration ahead of the prototype.

Default = displayed

.DEF file stack/heap reserve size < 64K; 1 MB default will be used Linker message
The reserve size for either the STACK or the HEAP specified in the .DEF file is less than
64K. The linker emits this warning to inform you that it will use the default of 1MB
instead of the value specified.

Default argument value redeclared Compiler message
When a parameter of a C++ function is declared to have a default value, this value can't
be changed, redeclared, or omitted in any other declaration for the same function.

Appendix A, Error messages and warnings 537

Default argument value redeclared for parameter 'parameter' Compiler message
When a parameter of a C++ function is declared to have a default value, this value can't
be changed, redeclared, or omitted in any other declaration for the same function.

Default expression may not use local variables Compiler message
A default argument expression is not allowed to use any local variables or other
parameters.

Default outside of switch Compiler message
The compiler encountered a default statement outside a switch statement. This is most
commonly caused by mismatched braces.

Default value missing Compiler message
When a C++ function declares a parameter with a default value, all of the following
parameters must also have default values. In this declaration, a parameter with a default
value was followed by a parameter without a default value.

Default value missing following parameter 'parameter' Compiler message
All parameters following the first parameter with a default value must also have
defaults specified.

Define directive needs an identifier Compiler message
The first non-whitespace character after a #define must be an identifier. The compiler
found some other character.

Destructor cannot have a return type specification Compiler message
C++ destructors never return a value, and you can't declare a return type or return a
value.

Destructor for 'class' required in conditional expression Compiler message
If the compiler must create a temporary local variable in a conditional expression, it has
no good place to call the destructor because the variable might or might not have been
initialized.

The temporary can be explicitly created, as with classname(val, val), or implicitly
created by some other code. You should recast your code to eliminate this temporary
value.

Destructor for class is not accessible Compiler message
The destructor for this C++ class is protected or private, and can't be accessed here to
destroy the class. If a class destructor is private, the class can't be destroyed, and thus
can never be used. This is probably an error. A protected destructor can be accessed
only from derived classes. This is a useful way to ensure that no instance of a base class
is ever created, but only classes derived from it.

Destructor name must match the class name Compiler message
In a C++ class, the tilde (~) introduces a declaration for the class destructor. The name of
the destructor must be same as the class name. In your source file, the ~ preceded some
other name.

Disable Group checked but no value entered IDE Debugger message
You checked the Disable Group check box, but forgot to specify a group name.

Divide error Run-time message
You tried to divide an integer by zero, which is illegal.

538 c++ User's Guide

Division by zero Compiler message
Your source file contains a divide or remainder in a constant expression with a zero
divisor.

Division by zero Compiler message
(Command-line equivalent for displaying this warning = -wzdi)

A divide or remainder expression had a literal zero as a divisor.

Default = displayed

Division by zero MAKE message
A division or remainder operator in an!if statement has a zero divisor.

do statement must have while Compiler message
Your source file contained a do statement that was missing the closing while keyword.

do-while statement missing OR For statement missing ; Compiler message
In a do or for statement, the compiler found no semicolon after the right parenthesis.

DOS error, ax = 'decimal number' Linker message
This occurs if a DOS call returned an unexpected error. The ax value printed is the
resulting error code. This could indicate a linker internal error or a DOS error. The only
DOS calls the linker makes where this error could occur are read, write, seek, and close.

Make sure that there are no zero length .OBJ files included in the link.

DOSSEG directive ignored Linker message
This warning indicates that the linker no longer supports the DOSSEG directive.

DPMI programs must use the large memory model Compiler message
DPMI programs can only use large memory model. Tiny, Small, Medium, Compact,
and Huge memory models are not allowed.

Duplicate case Compiler message
Each case of a switch statement must have a unique constant expression value.

Duplicate file 'filename' in list, not added! Librarian message
When building a library module, you specified an object file more than once.

Duplicatehandler for 'type1', already had 'type2' Compiler message
It is not legal to specify two handlers for the same type.

Duplicate ordinal 'number' in exports Linker message
The linker encountered two exports with the same ordinal value.

Check the module definition file to ensure that there are no duplicate ordinal values
specified in the EXPORTS section.

If not, you are linking with modules that specify exports by ordinals and one of two
things happened:

• Two export records specify the same ordinal, or
• The exports section in the module definition file duplicates an ordinal in an export

record.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 539

Duplicate ordinal for exports: 'string' ('ordval1 ') and 'string' ('ordvaI2') Linker message
Two exports share the same ordinal. The linker cannot resolve which export should get
which ordinal.

Earlier declaration of 'identifier' Compiler message
This error message only shows up after the messages "Multiple declaration for
'identifier'" and "Type mismatch in redeclaration of 'identifier"'. It tells you where the
previous definition of the identifier in question was found by the compiler, so you, don't
have to search for it. .

Empty LEDATA record in module 'module' Linker message
This warning can happen if the translator emits a data record containing data. If this
should happen, report the occurrence to the translator vendor. There should be no bad
side effects from the record. .

Enable Group checked but no value entered IDE Debugger message
You checked the Enable Group check box, but forgot to specify a group name.

End of system input buffer encountered Linker message
The input line you typed is too long. Instead of typing all you're object and library files
on the command line, put them into a response file.

Ensuring executable is up to date IDE Debugger message
The IDE Debugger is checking to be sure that the executable file is up to date,
recompiling, if necessary.

Enum syntax error Compiler message
An enum declaration did not contain a properly formed list of identifiers.

Error changing file buffer size Librarian message
The librarian is attempting to adjust the size of a buffer used while reading or writing a
file, but there is not enough memory. You'll need to free up a lot of system memory to
resolve this error.

Error creating file. Resource Linker message
An error occurred when the resource linker tried to create a file. This error occurs if the
work disk is full or write-protected. It can also occur if the output directory does not
exist.

Solutions:

• If the disk is full, try deleting unneeded files and restarting the resource link.
• If the disk is write-protected, direct the output to a writeable disk and restart the

resource link.

Error creating temporary file in directory. Resource Linker message
An error occurred when the resource linker tried to create a temporary file. This error
occurs if the work disk is full or write-protected. It can also occur if the output directory
does not exist.

Solutions:

• If the disk is full, try deleting unneeded files and restarting the resource link.
• If the disk is write-protected, direct the output to a writeable disk and restart the

resource link.

540 c++ User's Guide

Error deleting file. Resource Linker message
An error occurred when the resource linker tried to delete a file. This error occurs if the
file is marked as read-only or does not exist.

If the disk is read-only, change its attributes so that it can be deleted.

Error directive: 'message' Compiler message
This message is issued when an #error directive is processed in the source file. 'message'
is the text of the #error directive.

Error directive: 'message' MAKE message
MAKE has processed an #error directive in the source file, and the text of the directive is
displayed in the message.

Error in CURSDIR. Cannot find CURS. Resource Linker message
An entry was found in the cursor directory that had no corresponding cursor resource.

The resource file is probably corrupted.

Error in EXE's resource table format. Resource Linker message
There is invalid information in the executable files resource table. The executable file
might contain invalid resource information or be corrupt.

Error in FONTDIR. Cannot find FONT. Resource Linker message
An entry was found in the font directory that had no corresponding font resource. The
resource file is probably corrupted.

Error in ICONDIR. Cannot find ICON. Resource Linker message
An entry was found in the icon directory that had no corresponding icon resource. The
resource file is probably corrupted.

Error in RES format. Resource Linker message
There is invalid information in the binary resource file. The resource file might contain
invalid resource information or be corrupt. Try recompiling the resources and restart
the resource link.

Error in RES format. Cannot find NAMEDIR resource. Resource Linker message
An entry was found in the name-table that had no corresponding resource. Verify that
you have included the appropriate resource in your resource script. Name-tables are not
used for Windows version 3.1 or greater.

Error in resource binary length (bad format?). Resource Linker message
There is an error in the size of a binary resource. The format of the resource might be
invalid or the resource has been corrupted.

Error in packing preload area. Turn off preload packing. Resource Linker message
An error occurred while the resource linker was trying to optimize how resources and
segments are arranged in the executable file. (This error only occurs for 16-bit
resources.)

To correct this error, tum off the Pack Fastload Area option in the Resources Options.

Error opening file. Resource Linker message
An error occurred when the resource linker tried to open a file. This error occurs if the
file does not exist, another process has denied access to the file, the path or filename is
incorrect, or there are no more available file handles.

Appendix A, Error messages and warnings 541

Error opening 'filename' Librarian message
The librarian cannot open the specified file.

Error opening 'filename' for output Librarian message
The librarian cannot open the specified file for output.

Error positioning file. Resource Linker message
An error occurred trying to seek to a location in a file. This file could be truncated or
corrupted. Try verifying the disk integrity using CHKDSK or recompile the resource
files and restart the resource link.

Error reading file. Resource Linker message
An error occurred when the resource linker tried to read a file. This error typically
occurs when there is a disk error while the file is being read.

Error renaming file. Resource Linker message
An error occurred when the resource linker tried to rename a file. This error occurs if the
file is marked as read-only or does not exist or a file already exists having the name that
the resource linker is trying to use.

Solutions:

• If the disk is read-only, change its attributes so that it can be deleted.
• If a file having the name already exists you can either delete that file or choose

another name.

Error renaming 'filename' to 'filename' Librarian message
This error occurs when the librarian is building a temporary library file and renaming
the temporary file to the target library file name. The error indicates that the target file is
read only.

Error seeking point in file. Resource Linker message
An error occurred trying to seek to a location in a file. This file could be truncated or
corrupted. Try compiling the resource files and restart the resource link.

Error sizing file.

Error getting size of file. Resource Linker messages _
A disk error occurred when trying to determine the file size.

Error trying to change value IDE Debugger message
You tried to change a value of an object being inspected, but the debugger was unable to
change the value.

Error writing file. Resource Linker message
An error occurred when the resource linker tried to write to a file. This error occurs if the
work disk is full or write-protected.

Solutions:

• If the disk is full, try deleting unneeded files and restarting the resource link.
• If the disk is write-protected, direct the output to a writeable disk and restart the

resource link.

Error writing output file Compiler message
A DOS error that prevents the C++ IDE from writing an .OB], .EXE, or temporary file.

542 c++ User's Guide

Solutions:

• Make sure that the Output directory in the Directories dialog box is a valid directory.
• Check that there is enough free disk space.

Error. EXE alignment too small for packing resources too. Resource Linker message
You have pre-packing turned on and the resources will not fit with the current image
alignment. Try increasing the alignment, re-link, and restart the resource link.

Error. Expecting RES file, not EXE. File: <filename> Resource Linker message
The resource linker was expecting a compiled resource (.RES) file, but found an
executable (.EXE) instead. Verify that you have the correct node and file types specified.

Error: File not specified IDE Debugger message
You forgot to specify a filename in the Run To dialog.

Error: Line not specified IDE Debugger message
You forgot to specify a line number in the Run To dialog.

Error. Missing NAME resource. RES not for Windows 3. Resource Linker message
The binary resource file is missing the NAME resource. The resource file is probably not
a Windows 3 resource file.

Eval Expr checked but no value entered IDE Debugger message
You checked the Eval Expr check box, but forgot to specify an expression.

Example for "Temporary used ... " error messages Compiler message
In this example, function f requires a reference to an int, and c is a char:

f (int&) ;

char c;
f(c) ;

Instead of calling f with the address of c, the compiler generates code equivalent to the
C++ source code:

int x = c ,f (X) ;

'_except' or '_finally' expected following '_try' Compiler message
In C, a '_try block' must be followed by a '_except' or '_finally' handler block.

Exception handling not enabled Compiler message
A 'try' block was found with the exception handling disabled.

Excep~ion handling variable may not be used here Compiler message
An attempt has been made to use one of the exception handling values that are
restricted to particular exception handling constructs, such as GetExceptionCode().

Exception specification not allowed here Compiler message
Function pointer type declarations are not allowed to contain exception specifications.

Explicit stacks are ignored for PE images Linker message
Win32 apps are PE format applications, which do not have explicit stacks. The stack
segment will be linked into the image, but it will not be used as the application stack.
Instead, the stack size parameter will be used to set the stack size, and the operating
system will allocate a stack for the application.

Appendix A, Error messages and warnings 543

Export 'symbol' has multiple ordinal values: 'value1' and 'value2' Linker message
The linker encountered one symbol with multiple ordinal values. The linker cannot
resolve which value to export, and will use the first value.

Check the EXPORTS section of the module definition file and make sure that the export
name applies only once.

Export 'symbol' is duplicated Linker message
This warning will occur if two different functions with the same name are exported by
the use of _export. The linker cannot resolve which definition to export, and will use the
first symbol.

Expr True check but no value entered IDE Debugger message
You checked the Expr True check box, but forgot to provide an expression;

Expression expected Compiler message
An expression was expected here, but the current symbol can't begin an expression.

This message might occur where the controlling expression of an if or while clause is
expected or where a variable is being initialized.

This message is often due to a symbol that is missing or has been added.

Expression of scalar type expected Compiler message
The !, ++, and -- operators require an expression of scalar type.

Only these types are allowed:

• char
• short
• int
• long
• enum
• float
• double
• long double
• pointer

Expression syntax Compiler message
This is a catch-all error message when the compiler parses an expression and encounters
a serious error.

Possible Causes:

This is most commonly caused by one of the following:

• Two consecutive operators
• Mismatched or missing parentheses
• A missing semicolon on the previous statement.

Solutions:

• If the line where the error occurred looks syntactically correct, look at the line directly
,above for errors.

• Try moving the line with the error to a different location in the file and recompiling.

544 c++ User's Guide

• If the error still occurs at the moved statement, the syntax error is occurring
somewhere in that statement.

• If the error occurred in another statement, the syntax error is probably in the
surrounding code.

Expression syntax error in !if statement MAKE message
The expression in an !if statement is badly formed-it contains a mismatched
parenthesis, an extra or missing operator, or a missing or extra constant.

Extended dictionary not found in library 'library': extended dictionaries ignored Linker message
When you specify that extended dictionaries be used, all libraries must have extended
dictionaries. In this case, a library was encountered that did not have an extended
dictionary, thus aborting the link. Use the TLIB IE option to generate an extended
dictionary for the library in question.

'reason' . extended dictionary not created Librarian message
Library contains COMDEF records - extended dictionary not created

If the Library contains COMDEF records message is displayed, an object record being
added to a library contains a COMDEF record. This is not compatible with the extended
dictionary option.

Extern 'symbol' was not qualified with _import in module 'module' Linker message
Win32 applications which make reference to imported symbols need to make
indirections to get to the data. For calls, this is handled automatically by the linker. For
references to imported DATA, the compiler must generate an indirection, or the
application will function incorrectly. The compiler knows to generate the indirection
when the symbol is qualified with _import. If the linker sees a segment relative
reference to a symbol which is imported, and if the symbol was not qualified with
_import, you will get this message.

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the Iw-inq command-line option.

Extern variable cannot be initialized Compiler message
The storage class extern applied to a variable means that the variable is being declared
but not defined here--no storage is being allocated for it.

Therefore, you can't initialize the variable as part of the declaration.

Extra argument in template class name 'template' Compiler message
A template class name specified too many actual values for its formal parameters.

Extra parameter in call Compiler message
A call to a function, via a pointer defined with a prototype, had too many arguments.

Extra parameter in call to function. Compiler message
A call to the named function (which was defined with a prototype) had too many
arguments given in the calL

Failed read from 'filename' Linker message
The linker was unable to read from the file.

Appendix A, Error messages and warnings 545

Failed write to 'filename' Linker message
The linker was unable to write to the file.

Far COMDEFs are not supported Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a ~ompile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.
If the error persists, call Borland Technical Support.

FATAL ERROR: GP FAULT MAKE message
Your program caused a general protection fault and exited fatally. This type of error is
caused by various reasons such as attempting to access or write to out of bound
memory. For best results, use CodeGuard to locate the error.

File 'filename' does not exist IDE Debugger message
You tried to bring up a source view on an address, and the associated file does not exist.
This problem can usually be fixed by setting the appropriate source path on the
debugger option page.

File 'filename' does not exist (trying to load it anyway ...) IDE Debugger message
The debugger tried to load an executable that does not exist. Check to make sure that the
executable exists and that the path to the executable was correctly specified.

File must contain at least one external declaration Compiler message
This compilation unit was logically empty, containing no external declarations.
ANSI C and C++ require that something be declared in the compilation unit.

'filename' ('linenum'): Duplicate external name in exports Linker message
Two export functions listed in the EXPORTS section of a module definition file defined
the same external name.

For example:

EXPORTS AnyProc=MyProcl AnyProc=MyProc2

'filename' ('linenum'): Duplicate internal name in exports Linker message
Two export functions listed in the EXPORTS section of the module definition file
defined the same internal name.

'filename' ('linenum'): Duplicate internal name in imports Linker message
Two import functions listed in the IMPORTS section of the module definition file
defined the same internal name.

'filename' ('linenum'): File read error Linker message
A DOS error occurred while attempting to read the specified file.

This usually means that a premature end of file occurred. Check for a length files.

'filename' ('linenum'): Incompatible attribute Linker message
The linker encountered incompatible segment attributes in a CODE or DATA statement.
For instance, both PRELOAD and LOADONCALL can't be attributes for the same
segment.

546 C++ Use r 's Gu ide

'filename' ('linenum'): Missing internal name Linker message
In the IMPORTS section of the module definition file, there was a reference to an entry
specified via module name and ordinal number.

When an entry is specified by ordinal number, an internal name must be assigned to this
import definition.

It is this internal name that your program uses to refer to the imported definition.

The syntax in the module definition file should be:

<internalname>=<modulename>.<ordinal>

'filename' ('linenum'): Syntax error Linker message
The linker found a syntax error in the module definition file.

The file name and line number tell you where the syntax error occurred.

'filename' couldn't be created, original won't be changed Librarian message
You tried to extract an object, but the librarian cannot create the object file into which to
extract the module.

Either the object already exists and is read only, or the disk is full.

'filename' does not exist: don't know how to make it MAKE message
The build sequence includes a nonexistent file name, and no rule exists that would allow
the file name to be built.

'filename' file not found
Command-line error.

Librarian message

The command-line librarian attempted to add a nonexisting object but created the
library anyway.

'filename' file not found Librarian message
The IDE creates the library by removing the existing library and rebuilding it. If any of
the specified objects do not exist, the library is incomplete and this error is generated.
If the IDE reports that an object does not exist, either the source module has not been
compiled or there were errOrs during compilation. Using either the Project I Make All or
Project I Build All commands should resolve the problem or indicate where the errors
occurred.

'filename' is not a valid library Linker message
This error happens when the first record in a library file is not the LIBSTART record.

This can happen when something that is not a library is passed as a library file to the
linker, or if the library file was corrupted. .

'filename' not a MAKE MAKE message
The file you specified with the -f option is not a makefile.

File name not specified IDE Debugger message
You tried to add a source breakpoint using the IDE Debugger but you omitted a file
name. Enter the name of the file into which you want to insert the breakpoint in the Add
Breakpoint dialog box.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 547

File name too long Compiler message
The file name given in an #include directive was too long for the compiler to process.
File names in DOS must be no more than 79 characters long.

Filename too long MAKE message
The path name in an !include directive overflowed MAKE's internal buffer (512 bytes).

Fixup overflow at 'address,' target = 'address'
Fixup overflow at 'address,' target = 'symbol' in module 'module' Linker messages

Either of these messages indicates an incorrect data or code reference in an object file
that the linker must fix up at link time.

These messages are most often caused by a mismatch of memory models. A near call to
a function in a different code segment is the most likely cause. These errors can also
occur if you generate a near call to a data variable or a data reference to a function. In
either case, the symbol named as the target in the error message is the referenced
variable or function.

The reference is in the named module, so look in the source file of that module for the
offending reference.

Rebuild the entire program to ensure that all modules have been compiled with in the
same memory model. Checked that linked libraries were also compiled in the same
memory module.

If this technique does not identify the cause of the failure, or if you are programming in
assembly language or a high-level language besides C or C++, there might be other
possible causes for this message.

Even in C++, this message could be generated if you are using different segment or
group names than the default values for a given memory model.

Fixup to zero length segment in module 'module' Linker message
A reference has been made past the end of an image segment. This reference would end
up accessing an invalid address, and has been flagged as an error.

Fixups found for an LlDATA record Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Floating point error: Divide by 0
Floating point error: Domain
Floating point error: Overflow Run-time messages

These fatal errors result from a floating-point operation for which the result is not finite:

• Divide by 0 means the result is + INF or - INF exactly, such as 1 . 0/0 . o.
• Domain means the result is NAN (not a number), like 0 . 0/0 . o.

548 c++ User's Guide

Overflow means the result is + INF (infinity) or - INF with complete loss of precision,
such as assigning 1e200*le200 to a double.

Floating point error: Partial loss of precision
Floating point error: Underflow Run-time messages

These exceptions are masked by default, because underflows are converted to zero and
losses of precision are ignored.

Floating point error: Stack fault Run-time message
The floating-point stack has been overrun. This error may be due to assembly code
using too many registers or due to a misdeclaration of a floating-point function.

The program prints the error message and calls abort and _exit.

These floating-point errors can be avoided by masking the exception so that it doesn't
occur, or by catching the exception with signaL

FONTDIR resource too big to link.
FONTDIR too large to handle. Resource Linker messages

The directory of fonts table size has been exceeded. Try splitting your fonts into multiple
FON files.

Friends must be functions or classes Compiler message
A friend of a C++ class must be a function or another class.

Function 'function' cannot be static Compiler message
Only ordinary member functions and the operators new and delete can be declared
static. Constructors, destructors and other operators must not be static.

Function body ignored Compiler message
An error has occurred while using the command-line utility H2ASH. See the online file
"tsm_util.txt" for further information about this utility.

Function call missing) Compiler message
The function call argument list had some sort of syntax error, such as a missing or
mismatched right parenthesis.

Function call terminated by unhandled exception IDE Debugger message
This message is emitted when an expression you are evaluating while debugging
includes a function call that terminates with an unhandled exception. For example, if in
the debugger's evaluate dialog, you request an evaluation of the expression foo () +1
and the execution of the function foo () causes a GP fault, this evaluation produces the
above error message.

You may also see this message in the watches window because it also displays the
results of evaluating an expression.

Function defined inline after use as extern Compiler message
Functions can't become inline after they have already been used.

Either move the inline definition forward in the file or delete it entirely.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 549

The compiler encountered something like:

myex() ;
twoex() { myex(); }
inline myex() { return 2; } II error

and already used the function as an extern before it saw that it was specified as inline.

This would be correct:

myex() ;
inline myex() { return 2;

twoex() { myex(); }

or better:

inline myex () ;
inline myex() { re~urn 2; }

twoex() { myex(); }

Function definition cannot be a typedef'ed declaration Compiler message
In ANSI C, a function body cannot be defined using a typedef with a function Type.

Redefine the function body.

'function' must be declared with no parameters Compiler message
This C++ operator function was incorrectly declared with parameters.

'function' must be declared with one parameter Compiler message
This C++ operator function was incorrectly declared with more than one parameter.

'function' must be declared with two parameters Compiler message
This C++ operator function was incorrectly declared with other than two parameters.

Function should return a value Compiler message
(Command-line equivalent for displaying this warning = -wrvl)

Your source me declared the current function to return some type other than int or void,
but the compiler encountered a return with no value. The compiler found a return
statement without a return value, or it reached the end of the function without finding a
return statement.

Either return a value or change the function declaration to return void.

Default = displayed

'function' was previously declared with the language 'language' Compiler message
Only one language modifier (cdecl pascal) can be given for a function.

This function has been declared with different language modifiers in two locations.

Functions are not expanded inline Compiler message
Exception specifications are not expanded inline: Check your inline code for lines
containing exception specification.

Functions taking class-by-value argument(s) are not expanded inline: When exception
handling is enabled, functions that take class arguments by value cannot be expanded
inline.

550 c++ User's Guide

Note: Functions taking class parameters by reference are not subject to this restriction.

Functions cannot return arrays or functions Compiler message
A function was defined to return an array or a function. Check to see if either the
intended return was a pointer to an array or function (and perhaps the * is missing) or if
the function definition contained a request for an incorrect data type.

Functions containing reserved words are not expanded inline
Functions containing local destructors are not expanded inline
in function 'function'

(Command-line equivalent for displaying this warning = -winl)

Reserved words

Compiler messages

Functions containing any of these reserved words can't be expanded inline, even when
specified as inline:

• break
• case
• continue
• do
• for
• goto
• switch
• while

The function is still perfectly legal, but will be treated as an ordinary static (not global)
function.

A copy of the function will appear in each compilation unit where it is called.

Local destructors
You've created an inline function for which the compiler turns off inlining. You can
ignore this warning; the function will be generated out of line.

Default = displayed

Functions 'function1' and 'function2' both use the same dispatch number Compiler message
This error indicates a dynamically dispatched virtual table (DDVT) problem.

Functions may not be part of a struct or union Compiler message
This C struct or union field was declared to be of type function rather than pointer to
function.

Functions as fields are allowed only in C++.

'function1' cannofbe distinguished from 'function2' Compiler message
The parameter type lists in the declarations of these two functions do not differ enough
to tell them apart.

Try changing the order of parameters or the type of a parameter in one declaration.

A P pen d i x A, Err 0 r me s sag e san d war n i n 9 s 551

'function 1 , hides virtual function 'function2' Compiler message
(Command-line equivalent for displaying this warning = -whid)

A virtual function in a base class is usually overridden by a declaration in a derived
class.

In this case, a declaration with the same name but different argument types makes the
virtual functions inaccessible to further derived classes.

Default = displayed

General error
General error in library file 'filename' in module 'module' near module file offset 'Oxyyyyyyyy'
General error in module 'module' near module file offset 'Oxyyyyyyyy' Linker messages

The linker gives as much information as possible about what processing was happening
at the time of the unhandled exception. Call Borland Technical Support with
information about the .OBJ or .LIB files.

General error in module 'module' Linker message
TLink32 emits a General Error and crashes if the user specifies a map file that cannot be
opened. This usually occurs when the directory (or drive) for the command-line
specified map file doesn't exist. This linker is trying to emit the following message to the
map file:

Fatal: cannot open mapfile ...

Make sure that the map file destination drive and directory is correct.

Global anonymous union not static . Compiler message
In C++, a global anonymous union at the file level must be static.

Goto bypasses initialization of a local variable Compiler message
In C++ it is illegal to bypass the initialization of a local variable.

This error indicates a goto statement that can transfer control past this local variable.

Goto into an exception handler is not allowed Compiler message
It is not legal to jump into a try block, or an exception handler that is attached to a try
block.

Goto statement missing label Compiler message
The goto keyword must be followed by an identifier.

Group 'group' exceeds 64K , Linker message
This message occurs when there was too much data to fit in the available data segments.

To resolve the problem, you can try the following:

1 Switch to a memory model with multiple data segments (small, compact, or huge).

2 Put large global variables in far data. This is called Automatic Far Data & Far Data
Threshold in the IDE (Options I Compiler I Advanced CG) and Far Global Variables
(-Ff=size) on the command line.

3 Use the far keyword to force data objects into far data.

552 C++ Use r 's G u ide

4 Allocate variables dynamically (off the heap) instead of statically.

5 If using c++ virtual tables, enable Far Virtual Tables (Options I Compiler I C++
Options in the IDE; -Vf on the command line).

Group 'group1' overlaps group 'group2' Linker message
The linker encountered nested groups. This warning occurs only when overlays are
used.

Group overflowed maximum size: 'name' Compiler message
The total size of the segments in a group (for example, DGROUP) exceeded 64K.

Handler for 'type1' hidden by previous handler for 'type2' Compiler message
This warning is issued when a handler for a type 'D' that is derived from type 'B' is
specified after a handler for B', since the handler for 'D' will never be invoked.

Heap size is less than 1000h. It has been reset to 1000h Linker message
The minimum allowable heap size is 1000h. When the linker detects that the heap size is
less than this value, the linker automatically resets the size to 1000h and issues this
message.

To eliminate this message, you need to change the HEAPSIZE specification in the DEF
file to 1000h or greater.

Hexadecimal value contains more than three digits Compiler message
(Command-line equivalent for displaying this warning = -wbig)

Under older versions of C, a hexadecimal escape sequence could contain no more than
three digits.

The ANSI standard allows any number of digits to appear as long as the value fits in a
byte.

This warning results when you have a long hexadecimal escape sequence with many
leading zero digits (such as \x00045).

Older versions of C would interpret such a string differently.

Default = displayed

Identifier expected Compiler message
An identifier was expected here, but not found.

In C, an identifier is expected in the following situations:

• In a list of parameters in an old-style function header
• After the reserved words struct or union when the braces are not present, and
• As the name of a member in a structure or union (except for bit fields of width 0).

In C++, an identifier is also expected in these situations:

• In a list of base classes from which another class is derived, following a double colon
(::).

• After the reserved word 1/ operator" when no operator symbol is present.

Appendix A, Error messages and warnings 553

'identifier' cannot be declared in an anonymous union Compiler message
The compiler found a declqration for a member function or static member in an
anonymous union. Such unions can only contain data members.

'identifier' cannot start a parameter declaration Compiler message
An undefined 'identifier' was found at the start of an argument in a function declarator.

Often the type name is misspelled or the type declaration is missing. This is usually
caused by not including the appropriate header file.

Identifier 'identifier' cannot have a type qualifier Compiler message
A C++ qualifier class::identifier can't be applied here.

A qualifier is not allowed on the following:

• typedef names
• function declarations (except definitions at the file level)
• on local variables or parameters of functions
• on a class member--except to use its own class as a qualifier (redundant but legal).

'identifier' is assigned a value that is never used Compiler message
(Command-line equivalent for displaying this warning = -waus)

The variable appears in an assignment, but is never used anywhere else in the function
just ending.

The warning is indicated only when the compiler encounters the closing brace.

Default = displayed

'identifier' is declared as both external and static Compiler message
(Command-line equivalent for displaying this warning = -wext)

This identifier appeared in a declaration that implicitly or explicitly marked it as global
or external, and also in a static declaration. The identifier is taken as static.

You should review all declarations for this identifier.

Default = displayed

'identifier' is declared but never used Compiler message
(Command-line equivalent for displaying this warning = -wuse)

This message can occur in the case of either local or static variables. It occurs when the
source file declares the named local or static variable as part of the block just ending, but
the variable was never used.

In the case of local variables, this warning occurs when the compiler encounters the
closing brace of the compound statement or function.

In the case of static variables, this warning occurs when the compiler encounters the end
of the source file.

Default = not displayed

'identifier' is not a member of 'struct' Compiler message
You are trying to reference 'identifier' as a member of 'struct', but it is not a member.

Check your declarations.

554 C++ Use r 's G u ide

'identifier' is not a non-static member and can't be initialized here Compiler message
Only data members can be initialized in the initializers of a constructor.

This message means that the list includes a static member or function member.

Static members must be initialized outside of the class, for example:

class A { static int i; };
int A: : i = -1;

'identifier' is not a parameter Compiler message
In the parameter declaration section of an old-style function definition, 'identifier' is
declared t not listed as a parameter. Either remove the declaration or add 'identifier' as a
parameter.

'identifier' is not a public base class of 'classtype' Compiler message
The right operand of a .*, ->*, or ::operator was not a pointer to a member of a class that
is either identical to (or an unambiguous accessible base class of) the left operand's class
type.

'identifier' is obsolete Compiler message
Issues a warning upon usage for any "C" linkage function that has been specified. This
will warn about functions that are" obsolete".

Here's an example of its usage:

#ifdef __ cplusplus
extern "e" {
#endif
void my_func(void);
#ifdef __ cplusplus
}

#endif

#pragma obsolete my_func

main()

my_func(); II Generates warning about obsolete function

'identifier' must be a member function Compiler message
Most C++ operator functions can be members of classes or ordinary non-member
functions, but these are required to be members of classes:

• operator =
• operator->
• operator ()
• type conversions

This operator function is not a member function but should be.

'identifier' must be a member function or have a parameter of class type Compiler message
Most C++ operator functions must have an implicit or explicit parameter of class type.

This operator function was declared outside a class and does not have an explicit
parameter of class type.

Appendix AI Error messages and warnings 555

'identifier' must be a previously defined class or struct Compiler message
You are attempting to declare 'identifier' to be a base class, but either it is not a class or it
has not yet been fully defined. Correct the name or rearrange the declarations.

'identifier' must be a previously defined enumeration tag Compiler message
This declaration is attempting to reference 'ident' as the tag of an enum type, but it has
not been so declared.

Correct the name, or rearrange the declarations.

'identifier' specifies multiple or duplicate access Compiler message
A base class can be declared public or private, but not both.

This access specifier can appear no more than once for a base class.

If statement too long MAKE message
An If statement has exceeded 4,096 characters.

Ifdef statement too long MAKE message
An Ifdef statement has exceeded 4,096 characters.

Ifndef statement too long MAKE message
An Ifndef statement has exceeded 4,096 characters.

Ignored 'module', path is too long Librarian message
'The path to a specified .OBJ or .LIB file is greater than 64 characters. 'The maximum path
to a file for the librarian is 64 characters.

lII·formed pragma Compiler message
(Command-line equivalent for displaying this warning = -will)

A pragma does not match one of the pragmas expected by the compiler.

Default = displayed

Illegal ACBP byte in SEGDEF in module 'module' Linker message
'This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

'This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Illegal character 'character' (Ox'value') Compiler message
'The compiler encountered some invalid character in the input file. 'The hexadecimal
value of the offending character is printed. 'This can also be caused by extra parameters
passed to a function macro.

Illegal character in constant expression 'expression' MAKE message
MAKE encountered a character not allowed in a constant expression. If the character is a
letter, this probably indicates a misspelled identifier.

556 C++ Use r 's G u ide

Illegal component to GRPDEF in module 'module' Linker message
This error generally occurs due to an incompatible .OBI file format. If you're linking
.OBI files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Illegal group definition: 'group' in module 'module' Linker message
This error results from an invalid GRPDEF record in an .OBJfile.

This could also result from custom-built .OBI files or a bug in the translator used to
generate the .OBI file.

If this occurs in a file created by a Borland compiler, recompile the file. If the error
persists, contact Borland Technical Support.

Illegal initialization Compiler message
Initializations must be one of the following:

• Constant expressions
• Address of a global extern or static variable plus or minus a constant

Illegal local public in 'module' Linker message
This message occurs when the linker sees an LPUBDEF record with an offset of zero for
a VIRDEF that resides in an overlay segment. This can happen if you are trying to use
structured exception support in an application that uses overlays.

Illegal octal digit Compiler message
The compiler found an octal constant containing a non-octal digit (8 or 9).

Illegal octal digit MAKE message
An octal constant containing a digit of 8 or 9 was found.

Illegal parameter to __ emit_ _ Compiler message
There are some restrictions on inserting literal values directly into your code with the
emit function.

For example, you cannot give a local variable as a parameter to _emit_.

Illegal pointer subtraction Compiler message
This is caused by attempting to subtract a pointer from a non-pointer.

Illegal structure operation Compiler message
Structures can only be used with dot (.), address-of (&) or assignment (=) operators, or
be passed to or from a function as parameters.

The compiler encountered a structure being used with some other operator.

Illegal to take address of bit field Compiler message
It is not legal to take the address of a bit field, although you can take the address of other
kinds of fields.

A P pen d i x A, Err 0 r me s sag e san d . war n i n 9 s 557

Illegal type of entry pOint Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Illegal use of floating point Compiler message
Floating-point operands are not allowed in these operators

• Shift (SHL, SHR)
• Bitwise Boolean (AND, OR, XOR, NOT)
• Conditional (? :)
• Indirection (*)
• Certain others

The compiler found a floating-point operand with one of these prohibited operators.

Illegal use of member pointer Compiler message
Pointers to class members can only be passed as arguments to functions, or used with
the following operators:

• assignment
• comparison

• *
• ->*
• ?:
• &&
• I I
• The compiler has encountered a member pointer being used with a different

operator.

To call a member function pointer, one must supply an instance of the class for it to call
upon.

For example:

class A {
public:

myex() i

} i

typedef int (A:: *Amfptr) () i

myex()

{

Amfptr mmyex = &A:: myex i

(*mmyex) (): //error

558 ett Useri·s Guide

This will compile:

class A {
public:

myex() ;
} ;

typedef int (A:: *Amfptr) () ;
foo()
{

A a;

Amfptr nrrnyex - &A: :myex;
(a. *nrrnyex) 90;

Illegal use of pointer
Pointers can only be used with these operators:

• addition (+)
• subtraction (-)
• assignment (=)
• comparison (= =)

• indirection (*)
• arrow (-»

Your source file used a pointer with some other operator.

Example:

int main (void)

char *p;
p /= 7;

return 0;
/* ERROR: Illegal Use of Pointer */

Compiler message

Illegal/invalid option in CMDSWITCHES directive 'option' MAKE message
The !CMDSWITCHES preprocessing directive turns on or off one or more command­
line options. Specify an operator, either a plus sign (+) to tum options on, or a minus
sign (-) to tum options off, followed by one or more letters specifying options. An
invalid or illegal option is specified in the !CMDSWITCHES directive.

Image base address must be a multiple of Ox10000 Linker message
Based images must be aligned on 64K boundaries.

Image linked as EXE, but with DLL extension Linker message
The linker generates this warning when an executable file has been generated and
stored in a file with a .DLL extension.

This usually occurs when you intended to build a .DLL but forgot to specify a .DLL
target with the IT linker option (or you forgot the IT option altogether) on the command
line. If you want to generate a DLL as a target, use the appropriate IT option.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 559

Images fixed at specific addresses typically will not run under Win32s Linker message
Windows 32s loads all applications in a single address space. It's possible to predict
where your application is going to be loaded, because other 32-bit applications might
have been loaded before yours.

Implicit conversion of 'type1' to 'type2' not allowed Compiler message
When a member function of a class is called using a pointer to a derived class, the
pointer value mustbe implicitly converted to point to the appropriate base class.

In this case, such an implicit conversion is illegal.

Import library 'library' encountered in obj list Linker message
Import libraries (import.lib) cannot be listed in a response file as OBJ files. They must
always appear in the LIB file list.

Import record does not match previous definition Linker message
This warning usually occurs if an IMPDEF record appears in an import library when the
import in question is also imported from a .DEF file. If the description of the imports
differ in internal name or ordinal, this warning appears, and the first definition is used.

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the Iw-imt command-line option.

Import 'symbol' in module 'module' clashes with prior module Librarian message
An import symbol can appear only once in a library file. A module that is being added
to the library contains an import that is already in a module of the library and it cannot
be added again.

Improper use of typedef 'identifier' Compiler message
Your source file used a typedef symbol where a variable should appear in an
expression.

Check for the declaration of the symbol and possible misspellings.

Include files nested too deep Compiler message
This message flags (directly or indirectly) recursive #include directives.

Incompatible type conversion Compiler message
The cast requested can't be done.

Incorrect command line argument: 'argument' MAKE message
You've used incorrect command-line arguments. Reenter the command and arguments.

Incorrect number format Compiler message
The compiler encountered a decimal point in a hexadecimal number.

Incorrect option: Compiler message
An error has occurred in either the configuration file or a command-line option. The
compiler may not have recognized the configuration file parameter as legal; check for a
preceding hyphen (-), or the compiler may not have recognized the command-line
parameter as legal.

This error can also occur if you use a #pragma option in your code with an invalid
option.

560 c++ User's Guide

Incorrect use of default Compiler message
The compiler found no colon after the default keyword.

Incorrect version of RLlNK32.DLL Linker message
You don't have a the right version of RLINK32.DLL. Check to make sure that you have
the correct version of the DLL. If not, delete that DLL and reinstall Borland C++.

Initialization is only partially bracketed Compiler message
(Command-line equivalent for displaying this warning = -wpin)

When structures are initialized, braces can be used to mark the initialization of each
member of the structure. If a member itself'is an array or structure, nested pairs of
braces can be used. This ensures that the compiler's idea and your idea of what value
goes with which member are the same. When some of the optional braces are omitted,
the compiler issues this warning.

Default = not displayed

Initializer for object 'x' ignored Compiler message
An error has occurred while using the command-line utility H2ASH. See the online file
"tsm_util.txt" for further information about this utility.

Initializing 'identifier' with 'identifier' Compiler message
(Command-line equivalent for displaying this warning = -wbei)

You're trying to initialize an enum variable to a different type.

For example, the following initialization will result in this warning, because 2 is of type
int, not type enum count:

enum count zero, one, two x = 2;

It is better programming practice to use an enum identifier instead of a literal integer
when assigning to or initializing enum types.

This is an error, but is reduced to a warning to give existing programs a chance to work.

Initializing enumeration with type . Compiler message
You're trying to initialize an enum variable to a different type. For example,

enum count { zero, one, two} x = 2;

will result in this warning, because 2 is of type int, not type enum count. It is better
programming practice to use an enum identifier instead of a literal integer when
assigning to or initializing enum types.

This is an error, but is reduced to a warning to give existing programs a chance to work.

Inline assembly not allowed Compiler message
Your source file contains inline assembly language statements and you are compiling it
from within the integrated environment.

You must use the BCC command to compile this source file from the DOS command
line.

Inline assembly not allowed in inline and template functions Compiler message
The compiler can't handle inline assembly statements in a C++ inline or template
function.

A P pen d i x A, Err 0 r me s sag e san d war n i n 9 s 561

You could eliminate the inline assembly code or, in the case of an inline function, make
this a macro, and remove the inline storage class.

Int and string types compared MAKE message
You tried to compare an integer operand with a string operand in an !if or !eli£
expression.

Internal code generator error Compiler message
An error has occurred in the internal logic of the code generator. Contact Borland
Technical Support.

Internal compiler error Compiler message
An error occurred in the internal logic of the compiler. This error shouldn't occur in
practice, but it could be generated if a more specific error message is not available.

Internal linker error 'errorcode' Linker message
An error occurred in the internal logic of the linker. This error shouldn't occur, but it
could be generated if a more specific error message is not available.

If this error persists, write down the errorcode number and contact Borland Technical
Support.

Internal software error! Resource Linker message
The resource linker encountered unexpected data. Restart the resource link. If the error
persists, contact Borland Technical Support.

Invalid 'expression' in scope override CompHer message
The evaluator issues this message when there is an error in a scope override in an
expression you are watching or inspecting. You can specify a symbol table, a
compilation unit, a source file name, etc. as the scope of the expression, and the message
will appear whenever the compiler cannot access the symbol table, compilation unit, or
whatever.

Invalid combination of opcode and operands Compiler message
The ~uilt-in assembler does not accept this combination of operands.

Possible Causes:

• There are too many or too few operands for this assembler opcode.
• The number of operands is correct, but their types or order do not match theopcode.

Invalid entry at 'segment:xxxxh' Linker message
This error indicates that a necessary entry was missing from the entry table of a
Windows executable file.

The application may not work in real mode unless you fix the code and the data.

Invalid entry point offset Linker message
This message occurs when modules with 32-bit records are linked. It usually means that
the initial program entry point offset exceeds the DOS limit of 64K.

Sample code that could produce this is:

_TEXT segment public 'CODE'
main:

562 C++ Use r' 5 G u ide

_TEXT ends
end main

In this case, the linker is trying to apply the fixup contained in the record for main, but
there is no code.

Invalid exe filename: 'filename' Linker message
The .EXE file name has an incorrect extension such as .OBJ, .MAP,.LIB, .DEF, or .RES.

Invalid extended dictionary in library 'library': extended dictionaries ignored Linker message
An extended dictionary in the library in question was generated with an outdated
version of TLIB. Rebuild the library with a current version of TLIB, specifying that an
extended dictionary be created.

Invalid file/object alignment value 'value' Linker message
You specified an incorrect value for file or object alignment in the 32-bit lillker options.

The value must be a number (either decimal or hex) that is a power of 2. The smallest
allowable file alignment value is 16. The smallest allowable object alignment value is
4096.

Invalid function call Compiler message
A requested function call failed because the function is not available in the program, a
parameter cannot be evaluated, and so on. The eval~ator issues this message.

Invalid indirection Compiler message
The indirection operator (*) requires a non-void pointer as the operand.

Example

int main (void)

}

void *p;

*p = 10;
return 0;

/* ERROR: Invalid Indirection */

Invalid initial stack offset Linker message
This message occurs only when modules with 32-bit records are linked. It means that
the initial stack pointer value exceeds the DOS limit of 64K.

Invalid macro argument separator Compiler message
In a macro definition, arguments must be separated by commas. The compiler
encountered some other character after an argument name.

This is correct:

#define tri_add(a, b, c) ((a) + (b) + (c))

This is incorrect:

#define tri_add(a b. c) ((a) + (b) + (c))

Invalid map filename: 'filename' Linker message
The map file name had an incorrect extension, such as .OBJ, .EXE, .DLL, .LIB, .DEF, or
.RES.

Appendix A, Error messages and warnings 563

Invalid overlay switch specification Linker message
You specified an overlay option but omitted the file name or names. Delete the switches
or add the names of the files containing the overlays.

Invalid page size value ignored Librarian message
The librarian encountered an invalid page size. The page size must be an integer that is a
power of 2.

Invalid Pass Count value entered IDE Debugger message
The Pass Count value you gave was invalid. Valid values for Pass Count are from 0 to
4294967295.

Invalid pathname for executable IDE Debugger message
The debugger was unable to find the executable you tried to load.

Invalid pointer addition Compiler message
Your source file attempted to add two pointers together.

Invalid process id IDE Debugger message
You specified a process ID that does not match the ID of any active process.

Invalid register combination (e.g., [BP+BX]) Compiler message
The built-in assembler detected an illegal combination of registers in an instruction.

These are valid index register combinations:

• [BX]
• [BP]
• [51]
• [DI]
• [BX+SI]
• [BX+DI]
• [BP+SI]
• [BP+DI]

Other index register combinations are not allowed.

Invalid segment definition in module 'module' Linker message
This error results from an invalid GRPDEF record in an .OBJ file.

This could result from custom-built .OBJ files or a bug in the translator used to generate
the .OBJ file.

If this occurs in a file created by a Borland compiler, recompile the file. If the error
persists, contact Borland Technical Support.

Invalid size specified for segment alignment Linker message
This error occurs if an invalid value is specified for the Segment Alignment setting. The
value specified must be an integral multiple of 2 and less than 64K. Common values are
16 and 512. This error only occurs when linking Windows applications.

Invalid size specified for segment packing Linker message
A non-decimal number was provided on the command line for the segment packing
size limit.

564 c++ User's Guide

Invalid stack reserve/commit size 'size' Linker message
The heap or stack commit size specified is not valid. The default and minimum values
for reserve and commit sizes are shown here.

Stack 1Mb 4K

Heap 1Mb OK
Commit Default Millimum

Stack 8K 4K
Heap 4K OK

Change the stack and heap reserve or commit sizes by changing the 32-bit linker values
in the IDE or by changing HEAPSIZE and STACKSIZE in the module definition file.

Invalid target rr 'target' Linker message
The command-line linker found an invalid target. Valid targets are 'w' and 'd.'

Invalid template argument list Compiler message
This error indicates that an illegal template argument list was found.

In a template declaration, the keyword template must be followed by a list of formal
arguments enclosed within < and> delimiters.

Invalid template member definition Compiler message
After the declarator of a template member, either a semicolon, an initialization, or a
body was expected, but some other, illegal token was found. This message appears
when a template member is declared outside of the template, but the syntax was wrong.

Invalid template qualified name 'template::name' CQmpiler message
When defining a template class member, the actual arguments in the template class
name used as the left operand for the :: operator must match the formal arguments of
the template class.

Invalid Thread Id entered . IDE Debugger message
The Thread ID value you gave was invalid. Valid values for Thread Id are from 0 to
4294967295.

Invalid use of dot Compiler message
An identifier must immediately follow a period operator (.).

Example

struct faa
int Xi

int Yi

}p = O,Oi
int main (void)

p.X++i

p. Y++;

return Oi

/* Correct */

/* Error: Invalid use of dot */

Appendix A, Error messages and warnings 565

Invalid use of namespace 'identifier' Compiler message
A namespace identifier was used in an illegal way, for example, in an expression.

Invalid use of template 'template' Compiler message
You can only use a template class name without specifying its actual arguments inside a
template definition.

Using a template class name without specifying its actual arguments outside a template
definition is illegal.

Irreducible expression tree Compiler message
This is a sign of some form of compiler error. An expression on the indicated line of the
source file caused the code generator to be unable to generate code.

The expression should be avoided. Notify Borland if an expression can consistently
reproduce this error. .

Last parameter of 'operator' must have type 'int' Compiler message
When a postfix operator ++ or operator--is overloaded, the last parameter must be

. declared with the type int.

Library too large, restart with library page size 'size' Librarian message
The library being created could not be built with the current library page size.

You can set the library page size with the Library Page Size option.

Limit of 254 segments for new executable file exceeded Linker message
You have reached the limit of segments that can be specified by the executable file
format. Only 254 segments can be represented in Windows EXEs and DLLs.

Usually one of two things causes this problem. If the application is a large model, the
code segment packing size could be so small that there are too many code segments. To
reduce the total number of segments to below 254, tum on the Pack Code Segments
option.

The other possibility is that you have a lot of far data segments with only a few bytes of
data in them. Examine the map file. It should tell you if this is happening. In this case,
reduce the number of far data, segments.

Linkage specification not allowed Compiler message
Linkage specifications such as extern "C" are only allowed at the file level. Move this
function declaration out to the file level.

Linker stack overflow Linker message
The linker uses a recursive procedure for marking modules to be included in an
executable image from libraries. This procedure can cause stack overflows in extreme
circumstances.

If you get this error message, remove some modules from libraries, include them with
the object files in the link, and try again.

Loading: 'programname' IDE Debugger message
The debugger is loading the specified program.

566 c++ User's Guide

Local data exceeds segment size limit Compiler message
The local variables in the currenffunction take up more than 64K. Due to limitations of
the processor, this is illegal in 16-bit programs.

Log Expr checked but no value entered IDE Debugger message
You checked the Log Expr check box, but forgot to specify an expression.

Log Msg checked but no value entered IDE Debugger message
You checked the Log Msg check box, but forgot to specify a message.

Lvalue required Compiler message
The left side of an assignment operator must be an addressable expression.

Addressable expressions include the following:

• Numeric or pointer variables
• Structure field references or indirection through a pointer
• Subscripted array element

Macro argument syntax error Compiler message
An argument in a macro definition must be an identifier.

The compiler encountered some non-identifier character where an argument was
expected. .

Macro definition ignored Compiler message
An error has occurred while using the command-line utility H2ASH. See the online file
"tsm_util.txt" for further information about this utility.

Macro expansion too long Compiler message
A macro can't expand to more than 4,096 characters.

Macro expansion too long MAKE message
A macro cannot expand to more than 4,096 characters. This error often occurs if a macro
recursively expands itself. A macro cannot legally expand to itself.

Macro replace text 'string' is too long MAKE message
The macro replacement text string overflowed MAKE's internal buffer of 512 bytes.

Macro substitute text 'string' is too long MAKE message
The macro substitution text string overflowed MAKE's internal buffer of 512 bytes.

'macroname' . ')' missing in macro invocation MAKE message
The macro you entered is missing a right parenthesis.

Main must have a return type of int Compiler message
In C++, function main has special requirements, one of which is that it cannot be
declared with any return type other than int.

Make failed IDE Debugger message
The make spawned by the debugger to try to bring the current target up to date failed.
Check the Build Time tab in the Message view to see the reason for the failure.

A P pen d i x A, Err 0 r m e 5 5 age 5 and war n i n 9 5 567

Make the modified code? IDE Debugger message
You had a process loaded in the integrated debugger and then you modified the source
code for the process. You should. probably build the new code instead of continuing to
debug the old executable.

Malformed command-line Linker message
You specified an invalid entry on the command line. Check the command you entered.

Matching base class function 'function' has different dispatch number Compiler message
If a DDVT function is declared in a derived class, the matching base class function must
have the same dispatch number as the derived function.

Matching base class function 'function' is not dynamic Compiler message
If a DDVT function is declared in a derived class, the matching base class function must
also be dynamic.

Maximum precision used for member pointer type 'type' Compiler message
When a member pointer type is declared, its class has not been fully defined, and the -
Vmd option has been used, the compiler has to use the most general (and the least
efficient) representation for that member pointer typ~. This can cause less efficient code
to be generated (and make the member pointer type unnecessarily large), and can also
cause problems with separate compilation; see the -Vm compiler switch for details.

Member 'member' cannot be used without an object Compiler message
This means that you have written class::member, where 'member' is an ordinary (non­
static) member, and there is no class to associate with that member.

For example, it is legal to write this:

obj.class::member

but not to write this:

class: : member

Member 'member' has the same name as its class Compiler message
A static data member, enumerator, member of an anonymous union, or nested type
cannot have the same name as its class. Only a member function or a non-static member
can have a name that is identical to its class.

Member 'member' is initialized more than once Compiler message
In a C++ class constructor, the list of initializatioris following the constructor header
includes the same member name more than once.

Member function must be called or its address taken Compiler message
A reference to a member function must be called, or its address must be taken with &
operator. In this case, a member function has been used in an illegal context

For example:

class A

void (A:: * infptr) (void) ;
public;

A();

568 c++ User's Guide

void myex(void) ;
} ;

A: :A()

{

infptr = myex; //illegal - call my ex or take address?
infptr = A::& myex; //correct

Member identifier expected Compiler message
The name of a structure or C++ class member was expected here, but not found. The
right side a dot (.) or arrow (-» operator must be the name of a member in the structure
or class on the left of the operator.

Member is ambiguous: 'member1' and 'member2' Compiler message
You must qualify the member reference with the appropriate base class name.

In C++ class 'Class', member 'member' canbe found in more than one base class, and it
was not qualified to indicate which one you meant.

This applies only in multiple inheritance, where the member name in each base class is
not hidden by the same member name in a derived class on the same path.

The C++ language rules require that this test for ambiguity be made before checking for
access rights (private, protected, public).

It is possible to get this message even though only one (or none) of the members can be
accessed.

'member' is not a valid template type member Compiler message
A member of a template with some actual arguments that depend on the formal

. arguments of an enclosing template was found not to be a member of the specified
template in a particular instance.

'member' is not accessible Compiler message
You are trying to reference C++ class member 'member,' but it is private or protected
and can't be referenced from this function.

This sometimes happens when you attempt to call one accessible overloaded member
function (or constructor), but the arguments match an inaccessible function.

The check for overload resolution is always made before checking for accessibility.

If this is the problem, try an explicit cast of one or more parameters to select the desired
accessible function.

Virtual base class constructors must be accessible within the scope of the most derived
class. This is because C++ always constructs virtual base classes first, no matter how far
down the hierarchy they are. For example:

class A {
public:

A();
} ;

class B private virtual A {};

A P pen d i X A, Err 0 r m e s sag e san d war n i n 9 s 569

class C private B {

public:

C() ;

} ;

C: : C () {} / / error I A:: A () is not accessible

Since A is private to B, which is private to C, it makes A's constructor not accessible to C.
However, the constructor for C must be able to call the constructors for its virtual base
class, A. If B inherits A publicly, the above example would compile.

Member pointer required on right side of.* or ->* Compiler message
The right side of a C++ dot-star (.*) or an arrow star (->*) operator must be declared as a
pointer to a member of the class specified by the left side of the operator.

In this case, the right side is not a member pointer.

Memory full listing truncated! Librarian message
The librarian ran out of memory while creating a library listing file. An incomplete list
file will be created.

Memory reference expected Compiler message
The built-in assembler requires a memory reference.

You probably forgot to put square brackets around an index register operand.

Misplaced break Compiler message
The compiler encountered a break statement outside a switch or looping construct.

You can only use break statements inside of switch statements or loops.

Misplaced continue Compiler message
The compiler encountered a continue statement outside a looping construct.

Misplaced decimal point Compiler message
The compiler encountered a decimal point in a floating-point constant as part of the
exponent.

Misplaced elif directive Compiler message
The compiler encountered an #elif directive without any matching #if, #ifdef, or
#ifndef directive.

Misplaced elif statement MAKE message
An !elif directive is missing a matching !if directive.

Misplaced else Compiler message
The compiler encountered an else statement without a matching if statement.

Possible Causes:

• An extra" else" statement
• An extra semicolon
• Missing braces
• Some syntax error in a previous "if" statement

570 C++ Use r 's G u ide

Misplaced else directive Compiler message
The compiler encountered an #else directive without any matching #if, #ifdef, or
#ifndef directive.

Misplaced else statement MAKE message
An !else directive is missing a matching !if directive.

Misplaced end if directive Compiler message
The compiler encountered an #endif directive without any matching #if, #ifdef, or
#ifndef directive. '

Misplaced endif statement MAKE message
An !endif directive is missing a matching !if directive.

Missing 'identifier' in scope override Compiler message
The syntax of a scope override is somehow incomplete. The evaluator issues this
message.

missing] Compiler message
This error is generated if any of the following occur:

• Your source file declared an array in which the array bounds were not terminated by
a right bracket.

• The array specifier in an operator is missing a right bracket.
• The operator ~] was declared as operator [.
• A right bracket is missing from a subscripting expression.

Add the bracket or fix the declaration.

Check for a missing or extra operator or mismatched parentheses.

Mixed common types in module 'module'. Cannot mix COMDEFs and VIRDEFs. Linker message
You cannot mix both COMDEFs and VIRDEFs. Tum off the -Fc switch to stop
generating COMDEFs, or turn on the -V s switch to stop generating VIRDEFs.

Mixing pointers to different 'char' types Compiler message
(Command-line equivalent for displaying this warning = -wucp)

You converted a signed char pointer to an unsigned char pointer, or vice versa, without
using an explicit cast. (Strictly speaking, this is incorrect, but it is often harmless.)

Default = not displayed

'module' already in LIB, not changed! Librarian message
This warning indicates that you attempted to use the + action on the library, but an
object with the same name already exists in the library. To update the module, the action
should be +-. The library was not modified.

'module' not found in library Librarian message
An attempt to perform either a remove (-) or an extract (*) on a library has occurred and
the indicated object does not exist in the library.

Multiple base classes not supported Compiler message
An error has occurred while using the command-line utility H2ASH. See the online file
"tsm_util.txt" for further information about this utility.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 571

Multiple base classes require explicit class names Compiler message
In Ii C++ class constructor, if there is more than one immediate base class, each base
class constructor call in the constructor header must include the base class name.

Multiple declaration for 'identifier' Compiler message
This identifier was improperly declared more than once.

This might be caused by conflicting declarations such as:

• int a; double a;
• a function declared two different ways, or
• a label repeated in the same function, or
• some declaration repeated other than an extern function or a simple variable

This can also happen by inadvertently including the same header file twice. For
example, given:

//a.h
struct A { int ai }i

/ /b.h
#include "a.h"

//myprog.cpp
#include "a.h"
#include "b.h"

myprog.cpp will get two declarations for the struct A. To protect against this, one would
write the a.h header file as:

//a.h
#ifndef _A_H
#define _A_H

struct A { int ai }i

#endif

This will allow one to safely include a.h several times in the same source code file.

Multiple entry pOints defined Linker message
Multiple entry points were defined for the application. This can happen if you have
specified the startup code twice, or if you are making use of assembler code which
defines a starting address for the application.

Multiple public definitions for symbol 'symbol' in module 'module;' link case sensitively Linker message
The specified symbol was encountered twice in the same module. This is usually caused
by the use of case-sensitive symbols. Try linking case sensitively.

Multiple stack segments found. The most recent one will be used. Linker message
This warning occurs when two stack segments of different names are defined in the
object modules. The startup code defines a stack segment for the application.

You can suppress this warning with the Iw-msk command-line option.

572 C++ Use r' s G u ide

Must take address of a memory location Compiler message
Your source file used the address-of operator (&) with an expression that can't be used
that way; for example, a register variable.

NAMEDIR resource too big to link. Resource Linker message
The name-table maximum size has been exceeded. Name-table entries are not used in
Windows 3.1 or later.

Namespace member 'identifier' declared outside its namespace Compiler message
Namespace members must be declared inside their namespace. You can only use
explicit qualification to define a namespace member (for example, to give a body for a
function declared in a namespace). The declaration itself must be inside the namespace.

Namespace name expected Compiler message
The name of a namespace symbol was expected.

Need an identifier to declare Compiler message
In this context, an identifier was expected to complete the declaration. This might be a
typedef with no name, or an extra semicolor:t at file level.

In C++, it might be a class name improperly used as another kind of identifier.

'new' and 'delete' not supported Compiler message
The integrated debugger does not support the evaluation of the new and delete
operators.

New executable header overflowed 64K Linker message
Industry standards require that headers be no larger than 64K in size. If you encounter
this message, check to see if the resident name table is increasing the size of the header
so that it exceeds this limit.

No : following the? Compiler message
The question mark (?) and colon (:) operators do not match in this expression. The colon
might have been omitted, or parentheses might be improperly nested or missing.

No automatic data segment Linker message
No group named DGROUP was found.

Because the Borland initialization files define DGROUP, you will only see this error if
you don't link with an initialization file and your program doesn't define DGROUP.

Windows uses DGROUP to find the local data segment. The DGROUP is required for
Windows applications (but not DLLs) unless DATA NONE is specified in the module
definition file.

No base class to initialize Compiler message
This C++ class constructor is trying to implicitly call a base class constructor, but this
class was declared with no base classes. Check your declarations.

No closing quote MAKE message
A string expression is missing a closing quote in an !if or !elif expression.

No declaration for function 'function' Compiler message
(Command-line equivalent for displaying this warning = -wnod)

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 573

This message is given if you call a function without first declaring that function.

In C, you can declare a function without presenting a prototype, as in

int funC()i

In C++, every function declaration is also a prototype; this example is equivalent to

int func (void) i

The declaration can be either classic or modem (prototype) style.

Default = not displayed

No expression specified
You forgot to specify an expression in the Add Watch dialog.

IDE Debugger message

No file corresponds to this item IDE Debugger message
You tried to bring up a source view on an address, and there is no source file for the
address.

No file line specified IDE Debugger message
You tried to add a Source breakpoint using the IDE Debugger but did not include the
line number. Specify the line in the file where you want the breakpoint to occur in the
Add Breakpoint dialog box.

No file name ending Compiler message
The file name in an #include statement was missing the correct closing quote or angle
bracket.

No file names given Compiler message
The command line of the Borland C++ command-line compiler (BCC) contained no file
names. You must specify a source file name.

No filename ending MAKE message
The file name in an !include statement is missing the correct closing quote or angle
bracket.

No internal name for IMPORT in .DEF file Linker message
The .DEF file has a semantic error. You typed an illegal import sequence or forgot to put
the internal name for an import before the module name. For example:

IMPORTS
_foo.l

Here, _foo was to be the function to be imported, but the proper syntax is:
IMPORTS

_foo=rnydll.l

No line corresponds to this item IDE Debugger message
You tried to bring up a source view on an address, and there is no line number for the
address.

No macro before = MAKE message
You must name a macro before you can assign it a value;

574 C++ Use r 's G u ide

No match found for wildcard 'expression' MAKE message
No files match the wildcard expression that you want MAKE to expand. For example,
the following causes MAKE to send this error message if there are no files with the
extension .OBI in the current directory:

No module definition file specified: using defaults
This warning occurs when you do not specify a .DEF file for the link.

The following defaults are assumed:

CODE

DATA

DATA

HEAPSIZE

STACKSIZE

PRELOAD MOVEABLE DrSCARDABLE

PRELOAD MOVEABLE MULTIPLE (if an .EXE)

PRELOAD MOVEABLE SINGLE (if a .DLL)

1048576
1048576

Linker message

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the Iw-def command-line option.

No module name specified IDE Debugger message
You tried to add a module breakpoint using the IDE Debugger but you omitted the
module name. Specify the module name where you want to insert the breakpoint in the
Add Breakpoint dialog box.

No module specified IDE Debugger message
You tried to add an Address breakpoint using the IDE Debugger but you omitted the
module. Specify the module where you want to insert the breakpoint in the Add
Breakpoint dialog box.

No object specified IDE Debugger message
You tried to add an Address breakpoint using the IDE Debugger but you omitted the
object. Specify the name of the object into which you want to insert the breakpoint in the
Add Breakpoint dialog box. -

No offset specified IDE Debugger message
You tried to add an Address breakpoint using the IDE Debugger but you omitted the
offset that indicates where you want to insert the breakpoint. Specify the offset in the
Add Breakpoint dialog box.

No output file specified Linker message
You did not specify an output file.

No process selected IDE Debugger m,essage
You pressed the Attach button on the debugger's Attach dialog when there was no
process selected in the process list.

No process to load IDE Debugger message
You left the Program Name field blank on the Load Program dialog.

No process to reset IDE Debugger message
You tried to reset a process but there was no process running.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 575

No process to stop IDE Debugger message
You tried to pause a process but there was no process running.

No process to terminate IDE Debugger message
You tried to terminate processes but there was no process running at the time.

No program entry point Linker message
This message appears if no starting execution point was defined in the application. This
usually happens if you forget to link in the startup code.

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the Iw-ent command-line option.

No program starting address defined Linker message
This warning means that no module defined the initial starting address of the program.

You probably forgot to link in the initialization module COx.OBJ.

This warning should not occur when linking a Windows DLL.

No resources. Resource Linker message
This warning message occurs if the resource linker is given a resource file that contains
no resources.

No stack Linker message
This warning is issued if no stack segment is defined in any of the object files or in any of
the libraries included in the link. Except for DLLs, this indicates an error.

If a Borland C++ program produces this message, make sure you are using the correct
COx startup object files.

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the Ik (16-bit) or Iw-srf (32-bit) command-line option.

No stub for fixup at 'address' in module 'module' Linker message
This error occurs when the target for a fixup is in an overlay segment, but no stub is
found for a target external. This is usually the result of not making public a symbol in an
overlay that is referenced from the same module.

No terminator specified for in-line file operator MAKE message
The makefile contains either the && or« command-line operators to start an inline file,
but the file is not terminated.

No thread 10 specified IDE Debugger message
You tried to add a thread breakpoint using the IDE Debugger but you omitted the
thread ID. Type the ID number of the thread you want to monitor in the Add
Breakpoint dialog box.

No type information Compiler message
The integrated debugger has no type information for this variable. Ensure that you've
compiled the module with debug information. If it has, the module may have been
compiled by another compiler or assembler.

576 C++ Use r' s G u ide

No type specified IDE Debugger message
You tried to add a C++ exception breakpoint using the IDE Debugger. You must specify
a type in the Add Breakpoint dialog box to set this- type of breakpoint.

No watch address specified IDE Debugger message
You specified a data watch breakpoint using the IDE Debugger but you omitted the
watch address. You need to specify both a memory address and the number of bytes to
w~ ,

No watch length specified IDE Debugger message
You specified a data watch breakpoint using the IDE Debugger but you omitted the
watch length. You need to specify both a memory address and the number of bytes to
watch.

Non-ANSI keyword used: 'keyword' Compiler message
A non-ANSI keyword (such as '_fastcall') was used when strict ANSI conformance was
requested via the -A option.

Non-const function 'function' called for const object Compiler message
(Command-line equivalent for displaying this warning = -wncf)

A non-const member function was called for a const object. (This is an error, but was
reduced to a warning to give existing programs a chance to work.)

Default = displayed

Non-existent segment 'segment' in SEGMENTS section of .DEF file Linker message
You specified a segment name in the SEGMENTS section of the .DEF file which doesn't
exist in any of the object files or library files included in the link.

Non-portable pointer comparison Compiler message
(Command-line equivalent for displaying this warning = -wcpt)

Your source file compared a pointer to a non-pointer other than the c~nstant O. You
should use a cast to suppress this warning if the comparison is proper.

Default = displayed

Non-portable pointer conversion Compiler message
(Command-line equivalent for controlling display = -wrpt)

An implicit conversion between a pointer and an integral type is required, but the types
are not the same size. This can't be done without an explicit cast. This conversion might
not make any sense, so be sure this is what you want to do.

Non-virtual function 'function' declared pure Compiler message
Only virtual functions can be declared pure, because derived classes must be able to
override them.

Non-volatile function 'function' called for volatile object Compiler message
In C++, a class member function was called for a volatile object of the class type, but the
function was not declared with volatile following the function header. Only a volatile
member function can be called for a volatile object.

Appendix A ,E r r 0 r messages and warnings 577

For example; if you have

class c

public:

} ;

f () volatile;
g() ;

volatile c vcvar;

it is legal to call vcvar . f () , but not to call vcvar . g () .

Nonportable pointer conversion
(Command-line equivalent for displaying this warning = -wrpt)

Compiler message

A nonzero integral value is used in a context where a pointer is needed or where an
integral value is needed; the sizes of the integral type and pointer are the same. Use an
explicit cast if this is what you really meant to do.

Default = displayed

Nonresident Name Table is greater than 64K Linker message
Industry standards require that nomesident name tables be no larger than 64K in size. If
you encounter this message and do not require the nomesident name table to remain
intact, you can discard it by linking with the IGn linker option.

If you do require that the nomesident name table remain intact, you must restructure
your program, so that names are shorter or explicitly use the resident name table for a
portion of the defines.

Nontype template argument must be of scalar type Compiler message
A nontype formal template argument must have scalar type; it can have an integral,
enumeration, or pointer type.

Not a valid expression format type Compiler message
Invalid format specifier following expression in the debug evaluate or watch window. A
valid format specifier is an optional repeat value followed by a format character (c, d,
f[n], h, x, m, p, r, or s).

Not a Windows format EXE file. Resource Linker message
The executable file you· tried to bind resources to is not a valid Windows or Win32
executable file.

Not all breakpoints were valid IDE Debugger message
You set breakpoints in yO~lr program but they were not all valid. Check the breakpoint
view to see which breakpoints were invalid.

Not an allowed type Compiler message
Your source file declared some sort of forbidden type; for example, a function returning
a function or array.

Not enough memory MAKE message
All of your working storage has been exhausted.

Not enough memory for command-line buffer Librarian message
This error occurs when the librarian runs out of memory.

578 C++ Use r 's G u ide

Not enough memory to run application Linker message
There is not enough memory to run the linker. Try closing one or more applications,
then run the linker again.

Null pointer assignment Run-time message
When a small or medium memory model program exits, a check is made to determine if
the contents of the first few bytes within the program's data segment have changed.

These bytes would never be altered by a working program. If they have been changed,
this message is displayed to inform you that (most likely) a value was stored to an
uninitialized pointer.

The program might appear to work properly in all other respects; however, this is a
serious bug which should be attended to immediately. Failure to correct an uninitialized
pointer can lead to unpredictable behavior (including locking the computer up in the
large, compact, and huge memory models).

You can use the integrated debugger to track down null pointers.

Numeric constant too large Compiler message
String and character escape sequences larger than hexadecimal or octal 77 can't be
generated. Two-byte character constants can be specified by using a second backslash.

For example,

\\

represents a two-byte constant.

A numeric literal following an escape sequence should be broken up like this:

printf(n" "12345");

This prints a carriage return followed by 12345.

Object module 'filename' is invalid Librarian message
The librarian could not understand the header record of the object module being added
to the library.

The librarian assumes that it is an invalid module.

Objects of type 'type' cannot be initialized with {} Compiler message
Ordinary C structures can be initialized with a set of values inside braces.

C++ classes can onlybe initialized with constructors if the class has constructors, private
members, functions, or base classes that are virtual.

Old debug information in module 'module' will be ignored Linker message
Debug information in the OBJ is incompatible with this linker, and will be ignored.

Only «KEEP or «NOKEEP MAKE message
You specified something besides KEEP or NOKEEP when closing a temporary inline
file.

Only member functions may be 'const' or 'volatile' Compiler message
Something other than a class member function has been declared const or volatile.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 579

Only one of a set of overloaded functions can be "e" Compiler message
C++ functions are by default overloaded, and the compiler assigns a new name to each
function.

If you wish to override the compiler's assigning a new name by declaring the function
extern "C", you can do this for only one of a set of functions with the same name.
(Otherwise the linker would find more than one global function with the same name.)

Operand of 'delete' must be non-const pointer Compiler message
It is illegal to delete a variable that is not a pointer. It is also illegal to delete a pointer to a
constant.

For example:

canst int x=10;
canst int * a = &X;
int * canst b = new inti
int &c = *b;
delete a; I/illegal - deleting pointer to constant
delete b; Illegal
delete c; Ilillegal - operand not of pointer type

//should use 'delete&c' instead

operator -> must return a pointer or a class Compiler message
The C++ operator -> function must be declared· to either return a class or a pointer to a
class (or struct or"union). In either case, it must be something to which the -> operator
can be applied.

operator delete must return void Compiler messages
This C++ overloaded operator delete was declared in some other way.

Declare the operator delete with one of the following:

1 A single void* parameter, or

2 A second parameter of type size_t

If you use the second version, it will be used in preference to the first version.

The global operator delete can only be declared using the single-parameter form.

Operator must be declared as function Compiler message
An overloaded operator was declared with something other than function type.

For example:

class A

A& operator +; .. note missing parenthesis
} ;

In the example, the function operator '0' is missing, so the operator does not have
function type and generates this error.

'operator' must be declared with one or no parameters Compiler message
When operator ++ or operator--is declared as a member function, it must be declared to
take either:

580 C++ Use r 's G u ide

• No parameters (for the prefix version of the operator), or
• One parameter of type int (for the postfix version)

'operator' must be declared with one or two parameters Compiler message
When operator ++ or operator--is declared as a non-member function, it must be
declared to take either:

• one parameter (for the prefix version of the operator), or
• two parameters (for the postfix version)

operator new must have an initial parameter of type size J Compiler messages
Operator new can be declared with an arbitrary number of parameters. It must always
have at least one, the amount of space to allocate.

Operator new must return an object of type void *

Operator newD must return an object of type void * Compiler messages
This C++ overloaded operator new was declared in some other way.

Operators may not have default argument values Compiler message
It is illegal for overloaded operators to have default argument values.

Optimizer: Error Reading Input File Linker message
The hardware error "read failed" occurred.

Optimizer: Error Writing Output File Linker message
The disk is either full, or the hardware error "write failed" occurred.

Optimizer: File is not new exe (NE format), optimization request ignored Linker message
The 16-bit lOx linker switches are valid for only 16-bit Windows and DPMI executables.

Optimizer: Out of Memory Linker message
Not enough memory available to perform optimizations.

OS exception number not specified IDE Debugger message
You tried to add an as exception breakpoint using the IDE Debugger. You must include
an as exception number if you want to add a breakpoint when a particular as
exception occurs. Select one of the exceptions in the list box next to the Exception # field
or enter a user-defined exception number.

Out of memory Librarian message
For any number of reasons, the librarian or the C++ IDE ran out of memory while
building the library. For many specific cases, a more detailed message is reported. Close
one or more applications.

Out of memory Compiler message
The total working storage is exhausted.

This error can occur under the following circumstances:

Not enough virtual memory is available for compiling a particular file. In this case, shut
down any other concurrent applications. You may also try to reconfigure your machine
for more available virtual memory, or break up the source file being compiled into
smaller separate components. You can also compile the file on a system with more
available RAM.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 581

The compiler has encountered an exceedingly complex or long expression at the line
indicated and has insufficient reserves to parse it. Break the expression down into
separate statements.

Out of memory Linker message
The linker has run out of dynamically allocated memory needed during the link
process. The total working storage is exhausted.

This error is a catchall for running into a limit on memory usage. This usually means
that too many modules, externals, groups, or segments have been defined by the object
files being linked together.

Solutions:

• You can try reducing size of active RAM disks and/ or disk caches.
• Close one or more applications to free memory.

Out of memory! Resource Linker message
Not enough memory is available for compiling a particular file. In this case, shut down
any other concurrent applications. You may also try to re-configure your machine for
more available memory, or break up the source file being compiled into smaller
separate components. You can also compile the file on a system with more available
RAM.

Out of memory at library 'library': extended dictionaries ignored Linker message
The linker has run out of dynamically allocated memory needed during the link
process. The total working storage is exhausted. This error is a catchall for running into
a limit on memory usage.

Solutions:

• You can try reducing size of active RAM disks and/ or disk caches.
• Close one or more applications to free up memory.

Out of memory creating extended dictionary Librarian message
The librarian ran out of memory while creating an extended dictionary for a library. The
library is created but will not have an extended dictionary.

Out of memory for block 'block' Linker message
The linker ran out of memory. Try reducing the size of disk caches and/or RAM drives.

Out of memory reading LE/LIDATA record from object module Librarian message
The librarian is attempting to read a record of data from the object module, but it cannot
get a large enough block of memory. If the module being added has a large data
segment or segments, try adding this module before other modules.

Out of space allocating per module debug struct Librarian message
The librarian ran out of memory while allocating space for the debug information
associated with a particular object module. Try removing debugging information from
the modules being added to the library to resolve the problem.

Output device is full Librarian message
The output device is full. This error usually means that there is no space left on the disk.

582 C++ Use r '5 G U ide

Overlays generated and no overlay manager included Linker message
This warning is issued if overlays are created but the symbol __ OVRTRAP __ is not
defined in any of the object modules or libraries linked in. The standard overlay library
(OVERLAY. LIB) defines this symbol.

Overlays ignored in new executable image Linker message
This error occurs if you attempt to link a Windows program with the 10 option on.

Windows executables can't be overlaid, although, with discardable code segments, you
should be able to achieve a similar effect.

Overlays only supported in medium, large, and huge memory models Compiler message
Only programs using the medium, large, or huge memory models can be overlaid.

Overload is now unnecessary and obsolete Compiler message
(Command-line equivalent for displaying this warning = -wovl)

Early versions of C++ required the reserved word "overload" to mark overloaded
function names.

C++ now uses a "type-safe linkage" scheme, whereby all functions are assumed
overloaded unless marked otherwise.

The use of "overload" should be discontinued.

Default = displayed

Overloadable operator expected Compiler message
Almost all C++ operators can be overloaded. These are the only ones that can't be
overloaded:

• the field -selection dot (•)
• dot-star (• *)
• double colon (: :)
• conditional expression (? :)

The preprocessor operators (# and ##) are not C or C++ language operators and thus
can't be overloaded.

Other non-operator punctuation, such as semicolon (;), can't be overloaded.

Overloaded 'function name' ambiguous in this context Compiler message
The only time an overloaded function name can be used or assigned without actually
calling the function is when a vClriable or parameter of the correct function pointer type
is initialized or assigned the address of the overload function.

In this case, an overloaded function name has been used in some other context, for
example, the following code will generate this error:

elass A{

} ;

A() {myex;} Ilealling the function
void myex(int) {} Ilor taking its address?
void myex(float) {}

Appendix A, Error messages and warnings 583

Overloaded function resolution not supported Compiler message
In integrated debugger expression evaluation, resolution 'of overloaded functions or
operators is not supported, not even to take an address.

Overloaded prefix operator 'operator' used as a postfix operator Compiler message
(Command-line equivalent for displaying this warning = -wpre)

With the latest C++ specification, it is now possible to overload both the prefix and
postfix versions of the ++ and -- operators.

Whenever the prefix operator is overloaded, but is used in a postfix context, the
compiler uses the prefix operator and issues this warning. This allows older code to
compile.

Default = not displayed

Parameter 'number' missing name Compiler message
In a function definition header, this parameter consisted only of a type specifier
'number' with no parameter name.

This is not legal in C. (It is allowed in C++, but there's no way to refer to the parameter in
the function.)

Parameter 'parameter' is never used Compiler message
(Command-line equivalent for displaying this warning = -wpar)

The named parameter, declared in the function, was never used in the body of the
function. This might or might not be an error and is often caused by misspelling the
parameter. This warning can also occur if the identifier is redeclared as an automatic
(local) variable in the body of the function.

The parameter is masked by the automatic variable and remains unused.

Default = displayed

Parameter names are used only with a function body Compiler message
When declaring a function (not defining it with a function body), you must use either.
e:rp.pty parentheses or a function prototype.

A list of' parameter names only is not allowed.

Example declarations

int func();
int func(int, int);

/* declaration without prototype -- OK */

/* declaration with prototype -- OK */

int func(int i, int j); /* parameter names in Prototype -- OK */

int func(i, j); /* parameter names only -- ILLEGAL */

Pass Count checked but no value entered IDE Debugger message
You checked the Pass Count check box, but forgot to provide a pass count. You need to
specify a valid pass count.

'path' - path is too long Ubrarian message
This error occurs when the length of any of the library file or module file's 'path' is
greater then 64.

584 C++ Use r 's G u ide

Pointer to structure required on left side of -> or ->* Compiler message
Nothing but a pointer is allowed on the left side of the arrow (->) in C or C++.

In C++ a -> operator is allowed.

Possible reference to undefined extern xxxx::i Linker message
Static data member has been declared but not defined in application.

This warning occurs by itself (i.e., without an accompanying 'undefined symbol' error)
whenever code declares a static data member that is not defined anywhere, and then
that symbol is not actually referenced (it is then 'idle' code).

Possible unresolved external 'symbol' referenced from module 'module' Linker message
This warning appears only for static data members of classes that have been declared
but not defined.

Possible use of 'identifier' before definition Compiler message
(Command-line equivalent for displaying this warning = -wdef)

Your source file used the variable 'identifier' in an expression before it was assigned a
value. The compiler uses a simple scan of the program to determine this condition.

If the use of a variable occurs physically before any assignment, this warning will be
generated. Of course, the actual flow of the program can assign the value before the
program uses it.

Default = not displayed

Possibly incorrect assignment Compiler message
(Command-line equivalent for displaying this warning = -wpia)

This warning is generated when the compiler encounters an assignment operator as the
main operator of a conditional expression (part of an if, while, or do-while statement).

This is usually a typographical error for the equality operator.

If you want to suppress this warning, enclose the assignri1ent in parentheses and
compare the whole thing to zero explicitly.

For example, this code

if (a = b) ...

should be rewritten as

if ((a = b) ! = 0)

Default = displayed

Printf/Scanf floating-point formats not linked Run-time message
Floating-point formats contain formatting information that is used to manipulate
floating-point numbers in certain run-time library functions, such as scanfO and atofO.

Typically, you should avoid linking the floating-point formats (which take up about lK)
unless they are required by your application. However, you must explicitly link the
floating-point formats for programs that manipulate fields in a limited and specific way.

Appendix A, Error messages and warnings 585

Refer to the following list of potential causes (listed from most common to least
common) to determine how to resolve this error:

Cause: Floating point set to None. You set the floating-point option to None when it
should be set to either Fast or Normal.

Fix: Set Floating Point to Fast or Normal.

Cause: Either the compiler is over-optimizing or the floating-point formats really do
need to be linked. You need the floating-point formats if your program manipulates
floats in a limited and specific way. Under certain conditions, the compiler will ignore
floating-point usage inscanfO. For example, this may occur when trying to read data
into a float variable that is part of an array contained in a structure.

Fix: Add the following code to one source module:

extern _floatconvert;

#pragma extref _floatconvert

Cause: You forgot to put the address operator & on the scanf variable expression. For
example:

float foo;
scanf ("%f" I foo);

Fix: Change the code so the & operator is used where needed. For example, change
the above code to the following:

float foo;

scanf ("%f" I &foo);

Process Created: 'processname' IDE Debugger message
The process specified in the message has been created.

Process 'processname' (Ox%X) is already being debugged IDE Debugger message
You tried to attach to a process that is already being debugged.

Process 'processname' (Ox%X) is the IDE IDE Debugger message
You tried to attach to the IDE. This is not allowed. Specify another process.

Process Stopped: 'processname' IDE Debugger message
The process specified in the message was stopped.

Process terminated: 'programname' IDE Debugger message
The specified process has been terminated.

Program entry point may not reside in an overlay Linker message
Although almost all of an application can be overlaid, the initial starting address cannot
reside in an overlay. This error usually means that an attempt was made to overlay the
initialization module COx.OBJ, for instance, by specifying the /0 option"before the
startup module.

Public 'symbol' in module 'module1' clashes with prior module 'module2' Librarian message
A public symbol can only appear once in a library file. A module, which is being added
to the library, contains a public 'symbol' that is already in a module of the library and
cannot be added.

The command-line message reports the module2 name.

586 C++ Use r 's G u ide

Public symbol 'symbol' defined in both module 'module1' and 'module2' Linker message
There is a conflict between two public symbols. This usually means that a symbol is
defined in two modules.

• An error occurs if both are encountered in the .OBJ file(s), because TLINK doesn't
know which is valid.

• A warning results if TLINK finds one of the duplicated symbols in a library and finds
the other in an .OBJ file; in this case, TLINK uses the one in the .OBJ file.

Pure virtual function called Run-time message
This is a run-time error. It is generated if the body of a pure virtual function was never
generated and somehow the compiler tried to call it.

Qualifier 'identifier' is not a class or namespace name Compiler message
The C++ qualifier in the construction qual::identifier is not the name of a struct or class.

Record kind 'num' found, expected theadr or Iheadr in module 'filename' Librarian message
The librarian could not understand the header record of the object module being added
to the library and has a~sumed that it is an invalid module.

Record length 'len' exceeds available buffer in module 'module' Librarian message
This error occurs when the record length 'len' exceeds the available buffer to load the
buffer in module 'module'.

This occurs when the librarian runs out of dynamic memory.

Record type 'type' found, expected theadr or Iheadr in 'module' Librarian message
The librarian encountered an unexpected type instead of the expected THEADR or
LHEADER record in the specified module.

Recursive template function: '" instantiated" Compiler message
The compiler has detected a recursive template function instance. For example:

template<class T> void f(T x)
{

f((T*)O); II recursive template function!

void main()

f (0);

The compiler will issue one message per each nesting of the recursive instantiation, so it
is usually quite obvious where the recursion has occurred. To fix a recursive template,
either change the dependencies, or provide a specialized version that will stop the
recursion. For example, adding the following function definition to the above program
will remove the endless recursion:

void f(int **)

Redefinition of 'macro' is not identical Compiler message
(Command-line equivalent for displaying this warning = -wdup)

Appendix A, Error messages and warnings 587

Your source file redefined the macro 'ident' using text that was not exactly the same as
the first definition of the macro. The new text replaces the old.

Default = displayed

Redefinition of target 'filename' MAKE message
The named file occurs on the left side of more than one explicit rule.

Reference initialized with 'type1', needs Ivalue of type 'type2' Compiler message
A reference variable that is not declared constant must be initialized with an lvalue of
the appropriate type. In this case, the initializer either wasn't an lvalue, or its type didn't
match the reference being initialized.

Reference member 'member' initialized with a non-reference parameter Compiler message
An attempt has been made to bind a reference member to a constructor parameter. Since
the paramete:r will cease to exist the moment the constructor returns to its caller, this will
not work correctly.

Reference member 'member' is not initialized Compiler message
References must always be initialized, in the construGtor for the class. A class member of
reference type must have an initializer provided in all constructors for that class.

This means you can't depend on the compiler to generate constructors for such a class,
because it has no way of knowing how to initialize the references.

Reference member 'member' needs a temporary for initialization Compiler message
You provided an initial value for a reference type that was not an lvalue of the
referenced type.

This requires the compiler to create a temporary for the initialization. Because there is no
obvious place to store this temporary, the initialization is illegaL

Register allocation failure . Compiler message
This is a compiler error. An expression on the indicated line of the source file was so
complicated that the code generator could not generate code for it.

Simplify the expression. If this does not solve the problem, avoid the expression. Notify
Borland if an expression can consistently reproduce this error.

Relocation item exceeds 1 Meg DOS limit Linker message
The DOS executable file format doesn't support relocation items for locations exceeding
1 MB. Although DOS could never load an image this big, DOS extenders can, and thus
TLINK supports generating images greater than DOS could load. Even if the image is
loaded with a DOS extender, the DOS executable file format is limited to describing
relocation items in the first 1MB of the image.

Relocation offset overflow Linker message
This error only occurs for 32-bit object modules and indicates a relocation (segment
fixup) offset greater than the DOS limit of 64K.

Relocation table overflow Linker message
This error only occurs for 32-bit object modules. The file being linked contains more
base fixups than the standard DOS relocation table can hold (base fixups are created
mostly by calls to far functions).

588 C++ Use r 's G u ide

Repeat count needs an Ivalue Compiler message
The expression before the comma (,) in the Watch or Evaluate window must be an
accessible region of storage. For example, expressions like this one are not valid:

i++,lOd
x = y, 10m

Reporting error. Resource Linker message
The resource linker encountered a problem while trying to report an error.

Resetting IDE Debugger message
The process is being reset to its initial condition.

Resident Name Table is greater than 64K Linker message
Exports too great for 64K limit. When this error is encountered, break exports up or
make some exported by name and some by ordinal number. Another possible fix is to
have the linker transfer the resident name table to the nonresident name table and
discard the nonresident name table. (TLINK options IGr IGn, IDE options on 16-bit
linker page.)

Resource binding failed Linker message
While you were linking from the command l~e, RLINK.EXE reported an error when
binding resources to your image.

Resource format not recognized in file. Resource Linker message
The format of a .RES file that you are attempting to use contains a resource with an
unknown format. This is normally due to a corrupt resource file. Make sure that you are
binding a legitimate resource file, and rebuild the .RES file, if necessary.

Restarting compile using assembly Compiler message
The compiler encountered anasm with no accompanying or #pragma inline statement.
The compile restarts using assembly language capabilities.

Results are safe in file 'filename' Librarian message
The librarian has successfully built the library into a temporary file, but it cannot rename
the file to the desired library name. The temporary file will not be removed (so that the
library can be preserved).

RTTI not available for expression evaluation Compiler message
Expressions requiring RTTI are not supported by the expression evaluator in the
integrated debugger. This error message is only issued by the expression evaluator (if
you try to Inspect, Watch, or Evaluate), not by the compiler.

Rule line too long MAKE message
An implicit or explicit rule was longer than 4,096 characters.

Running IDE Debugger message
The process is running.

Segment 'segment' exceeds 64K Linker message
Industry standards require that segments be no larger than 64K in size. If you encounter
this message, the segment in question has exceeded this limit.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 589

Segment 'segment' is in two groups: 'group1' and 'group2' Linker message
The linker found conflicting claims by the two named groups. Usually, this happens
only in assembly language programs. It means that two modules assigned the segment
to two different groups.

Segment 'segment' relocation data exceeds 64K Linker message
16-bit Windows programs have a limit of 64K of relocation data per segment. It is
unlikely that this limit will ever be exceeded, but can be if a particular module contains
extremely large jump tables or virtual tables in the code segment itself. If you get this
message, try breaking the associated code module into two pieces, as this may reduce
the total number of relocations per segment to below 64K.

Segment alignment factor too small Linker message
Segment alignment factor is too small to allow access to segments. If you encounter this
error, use the fA linker option and try a larger alignment factor, like 1024. The fA option
defaults to 512.

Segment too large for segment table Linker message
Industry standards require that segments be no larger than 64K in size. If you encounter
this message, the segment in question has exceeded this limit.

Self relative fixup overflowed in module 'module' Linker message
This message appears if a self-relative reference (a call or ajump) is made from one
physical segment to another. This often happens when employing assembler code, but
can occur if you use the segment-naming options in the compiler. If the reference is from
one code segment to another, you are safe. If, however, the reference is from a code
segment to a data segment, you have probably made a mistake in some assembler code.

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the fw-srf command-line option.

Side effects are not allowed Compiler message
Side effects such as assignments, ++, or -- are not allowed in the debugger watch
window. A common error is to use x = y (not allowed) instead of x == Y to test the
equality of x and y.

Size of 'identifier' is unknown or zero Compiler message
This identifier was used in a context where its size was needed.

A struct tag.might only be declared (the struct not defined yet), or an extern array might
be declared without a size. It's illegal then to have some references to such an item (like
sizeD£) or to dereference a pointer to this type. Rearrange your declaration so that the
size of 'identifier' is available.

Size of the type 'identifier' is unknown or zero Compiler message
This type was used in a context where its size was needed. For example, a struct tag
might only be declared (the struct not defined yet).

It's illegal then to have some references to such an item (like sizeo£) or to dereference a
pointer to this type. Rearrange your declarations so that the size of this type is available.

Size of the type is unknown or zero Compiler message
This error message indicates that an array of Unspecified dimension nested within
another structure is initialized and the -A (ANSI) switch is on. For example:

590 C++ Use r 's G u ide

struct

char all; //Size of 'a' is unknown or zero

b = { "hello" }; //Size of the type is
/ /unknown or zero

sizeof may not be applied to a bit field Compiler message
sizeof retums the size of a data object in bytes, which does not apply to a bit field.

sizeof may not be applied to a function Compiler message
sizeof can be applied only to data objects, not functions.

You can request the size of a pointer to a function.

Specialization after first use of template Compiler message
A new ANSI C++ rule requires that a specialization for a function template be declared
before its first use. This error message is only issued when the ANSI conformance
option (-A) is active.

'specifier' has already been included Compiler message
This type specifier occurs more than once in this declaration.

Delete or change one of the occurrences.

Stack overflow Run-time message
This error is reported when you compile a function with the Test Stack Overflow option
on, but there is not enough stack space to allocate the function's local variables.

This error can also be caused by the following:

• Infinite recursion
• An assembly language procedure that does not maintain the stack project
• A large array in a function

Stack size is less than 1400h.lt has been reset to 1400h Linker message
The minimum allowable stack size is 1400h. When the linker detects that the stack size is
less than this value, the linker automatically resets the size to 1400h and issues this
message.

To eliminate this message, you need to change the STACKSIZE specification in the .DEF
file to 1400h or greater.

The size of the stack added to the size of the Automatic Data Segment (ADS) must not
exceed 64K. If it does, you won't get any linker errors regarding stack size or the
message" Automatic data segment exceeds 64K." However, the Windows loader will
not be able to load the .EXE at run time.

STACK/HEAP commit 'size' greater than reserve 'size' Linker message
The heap or stack commit size has to be less than or equal to the stack or heap reserve
size. Change the stack and heap reserve or commit sizes by changing the 32-bit linker
values in the IDE or by changing HEAPSIZE and STACKSIZE in the module definition
file.

statement missing (Compiler message
In a do, for, if, switch, or while statement, the compiler found no left parenthesis after
the while keyword or test expression.

A P P en d i x A, Err 0 r me s sag e san d war n i n 9 s 591

statement missing) Compiler message
In a do, for, if, switch, or while statement, the compiler found no right parenthesis after
the while keyword or test expression.

Statement missing; Compiler message
The compiler encountered an expression statement without a semicolon following it.

Stopping IDE Debugger message
The process is stopping.

Storage class 'storage class' is not allowed here Compiler message
The given storage class is not allowed here.

Probably two storage classes were specified, and only one can be given.

String literal not allowed in this context Compiler message
This error message is issued by the evaluator when a string literal appears in a context
other than a function call.

String type not allowed with this operand MAKE message
You tried to use an operand that is not allowed for comparing string types. Valid
operands are ==, !=, <, >, <=, and >=.

Structure packing size has changed Compiler message
This warning message is issued when the structure alignment is different after
including a file than it was before including that file. The intention is to warn you about
cases where an include file changes structure packing, but by mistake doesn't restore the
original setting at the end. If this is intentional, you can give a #pragma nopackwarning
directive at the end of an include file to disable the warning for this file.

The warning can be disabled altogether by #pragma warn -pck.

Structure passed by value Compiler message
(Command-line equivalent for displaying this warning = -wstv)

This warning is generated any time a structure is passed by value as an argument. It is a
frequent programming mistake to leave an address-of operator (&) off a structure when
passing it as an argument. Because structures can be passed by value, this omission is
acceptable. This warning provides a way for the compiler to warn you of this mistake.

Default = not displayed

Structure required on left side of. or.* Compiler message
The left side of a dot (.) operator (or C++ dot-star operator, .*) must evaluate to a
structure type. In this case it did not.

This error can occur when you create an instance of a class using empty parentheses,
and then try to access a member of that 'object'.

Structure size too large Compiler message
Your source file declared a structure larger than 64K.

Stub program exceeds 64K Linker message
This errors occurs if a DOS stub program written for a Windows application exceeds
64K.

592 C++ Use r ' s G u ide

Stub programs are specified via the STUB module definition file statement.

The linker only supports stub programs of 64K or smaller.

Style of function definition is now obsolete
(Command-line equivalent for displaying this warning = -wofp)

In C++, this old C style of function definition is illegal:
int fune(pI, p2) int pI, p2; { /* ... */ }

This practice might not be allowed by other C++ compilers.

Default = displayed

Superfluous & with function
(Command-line equivalent for displaying this warning = -wamp)

Compiler message

Compiler message

An address-of operator (&) is not needed with function name; any such operators are
discarded.

Default = not displayed

Suspicious pointer conversion Compiler message
(Command-line equivalent for displaying this warning = -wsus)

The compiler encountered some conversion of a pointer that caused the pointer to point
to a different type.

You should use a cast to suppress t~s warning if the conversion is proper.

A common cause of this warning is when the C compiler converts a function pointer of
one type to another (the C++ compiler generates an error when asked to do that). It can
be suppressed by doing a typecast. Here is a common occurrence of it for Window
programmers:

#define STRICT
#inelude <windows.h>

LPARAM _export WridProe (HWND , UINT , WPARAM , LPARAM);

test () {
WNDCLASS we;
we.lpfnWndProe = wndProe; //warning

It is suppressed by making the assignment to lpfn WndProc as follows:

we.lpfnWndProe = (WNDPROC) WndProe;

Default = displayed

Switch selection expression must be of integral type Compiler message
The selection expression in parentheses in a switch statement must evaluate to an
integral type (char, short, int, long, enum). You might be able to use an explicit cast to
satisfy this requirement.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 593

'symbol' conflicts with module 'module' Linker message
This indicates an inconsistency in the definition of 'symboL' It means that either the
linker found one virtual function and one common definition with the same name.

'symbol' defined in module 'module' is duplicated in module 'module' Linker message
This message results from a conflict between two symbols (either public or communal).

It usually means that a symbol is defined in two modules. An error occurs if both are
encountered in the .OBJ file(s), because the linker doesn't know which is valid.

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the /w-dup command-line option.

'symbol' defined in module 'module1' is duplicated in module 'module2' Linker message
There is a conflict between two symbols (either public or communal). This usually
means that a symbol is defined in more than one object or library file.

The linker issues a warning because the symbol exists in more than one object file. The
linker will use the first instance of the symbol that is encountered.

You can suppress this warning from the Linker I Warnings page of the Project options
dialog box or with the /d (16-bit) or /w-dpl (32-bit) command-line option.

T3 and n fixups not allowed (module 'module') Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Table limit exceeded Linker message
This message results from one of the linker's internal tables overflowing. This usually
means that the programs being linked have exceeded the linker's capacity for public
symbols, external symbols, or logical segment definitions.

Each instance of a distinct segment name in an object file counts as a logical segment; if
two object files define this segment, then this results in two logical segments.

When the table limit is exceeded, try linking with extended dictionaries.

Target index of FIXUP is 0 in Module 'module' Linker message
This is a translator error.

Template argument must be a constant expression Compiler message
A non-type template class argument must be a constant expression of the appropriate
type.

This includes constant integral expressions and addresses of objects or functions with
external linkage or members.

594 C++ Use r 's G u ide

Template class nesting too deep: 'class' Compiler message
The compiler imposes a certain limit on the level of template class nesting. This limit is
usually only exceeded through a recursive template class dependency.

When this nesting limit is exceeded, the compiler issues this error message for all of the
nested template classes. This usually makes it easy to spot the recursion.

This error message is always followed by the fatal error "Out of memory".

Template function argument 'argument' not used in argument types Compiler message
The given argument was not used in the argument list of the function.

The argument list of a template function must use all of the template formal arguments;
otherwise, there is no way to generate a template function instance based on actual
argument types.

Template functions may only have 'type-arguments' Compiler message
A function template was declared with a non-type argument. This is not allowed with a
template function, as there is no way to specify the value when calling it.

Templates and overloaded operators cannot have C linkage Compiler message
You tried to use a linkage specification with a template or overloaded operator. The
most common cause for this error message is having the declaration wrapped in an
extern "c" {linkage specification.

Templates can only be declared at file level Compiler message
Templates cannot be declared inside classes or functions. They are only allowed in the
global scope, or file level.

For example:

template <class T', class U>
void foo(Ta,Tb)
{

II error U is not used

Templates must be classes or functions Compiler message
The declaration in a template declaration must specify either a class type or a function.

Templates not supported Compiler message
An error has occurred while using the command-line utility H2ASH. See the online file
"tsm_util.txt" for further information about this utility.

Temporary used for parameter '???' Compiler message
In C++, a variable or parameter of reference type must be assigned a reference to an
object of the same type. If the types do not match, the actual value is assigned to a
temporary of the correct type, and the address of the temporary is assigned to the
reference variable or parameter.

The warning means that the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unus~d.

A P pen d j x A, Err 0 r m e s sag e san d war n'j ng s 595

In the following example, function f requires a reference to an int, and c is a char:

f (int &) i

char Ci

f(c) i .

Instead of calling f with the address of c, the compiler generates code equivalent to the
C++ source code:

int X = c, f (X) i

Temporary used for parameter 'parameter'
Temporary used for parameter 'parameter' in call to 'function'

Temporary used for parameter 'number'

Temporary used for parameter 'number' in call to 'function'
Command-line equivalent for displaying this warning = -wlvc)

Compiler messages

In C++, a variable or parameter of.reference type must be assigned a reference to an
object of the same type.

If the types do not match, the actual value is assigned to a temporary of the correct type,
and the address of the temporary is assigned to the reference variable or parameter.

The warning means that the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

Default = displayed

Temporary used for parameter 2 in call to '???' Compiler message
In C++, a variable or parameter of reference type must be assigned a reference to an
object of the same type. If the types do not match, the actual value is assigned to a
temporary of the correct type, and the address of the temporary is assigned to the
ref~rence variable or parameter.

The warning means that the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

In the following example, function f requires a reference to an int, and c is a char: .

f (int &) i

char Ci

f (c) i

Instead of calling f with the address of c, the compiler generates code equivalent to the
C++ source code:

int X = c, f (X) i

Temporary used to initialize 'identifier' Compiler message
(Command-line equivalent for displaying this warnirig = -wlin)

In C++, a variable or parameter of reference type must be assigned a reference to an
object of the same type.

If the types do not match, the actual value is assigned to a temporary of the correct type,
and the address of the temporary is assigned to the reference variable or parameter.

596 C++ Use r 's G u ide

The warning means that the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

Default = displayed

Terminated by user Linker message
You cancelled the link (that is, a Ctrl+Break was detected).

Terminating IDE Debugger message
The process is terminating.

The ' .. .' handler must be last Compiler message
In a list of catch handlers, if the ' .. .' handler is present, it must be the last handler in the
list (i.e., it can not be followed by any more catch handlers).

The combinations '+*' or '*+' are not allowed Librarian message
It is not legal to add and extract an object module from a library in one action.

The constant member 'identifier' is not initialized Compiler message
(Command-line equivalent for displaying this warning = -wnci)

This C++ class contains a constant member 'member' that doesn't have an initialization.

Note that constant members can be initialized only; they can't be assigned to.

Default = displayed

The constructor 'constructor' is not allowed
Constructors of the form

X:: (X)

are not allowed.

This is the correct way to write a copy constructor:

x:: (canst X&) •

Compiler message

The expression cannot be modified. IDE Debugger message
This is an integrated debugger error. You entered an expression in the Evaluator dialog
box and clicked on Modify but the expression cannot be modified.

The expression you entered could not be evaluated. IDE Debugger message
This is an integrated debugger error. The integrated debugger could not interpret the
expression you entered in the Evaluator dialog box.

The function 'function' is not available Compiler message
You tried to call a function that is known to the evaluator, but which was not present in
the program being debugged-for example, an inline function.

The value for 'identifier' is not within the range of an int Compiler message
All enumerators must have values that can be represented as an integer.

You have attempted to assign a value that is out of the range of an integer.

If you need a constant of this value, use a canst integer.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 597

There is no code for 'file', line 'linenumber' IDE Debugger messag&
You tried to view the disassembly for the given line of source code. The specified line of
the file has no code associated with it.

There is no expression to evaluate IDE Debugger message
This is an integrated debugger error. You forgot to enter an expression in the Evaluator
dialog box and no program is loaded.

There is no expression to evaluate and no process is loaded IDE Debugger message
This is an integrated debugger error. You forgot to enter an expression in the Evaluator
dialog box and no program is loaded.

'this' can only be used within a member function Compiler message
In C++, "this" is a reserved word that can be used only within class member functions.

This operation not supported for 16 bit executables IDE Debugger message
You tried to use a command (such as Reset or Pause) in the integrated debugger while
the project was set to produce a 16-bit executable. The integrated debugger does not
support 16-bit executables except to run or terminate them.

THREAD fixup found in module 'module' Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Thread stopped 'programname' 'reason' IDE Debugger message
A thread in the specified program has stopped running for the reason listed.

Too few arguments in template class name 'template' Compiler message
A template class name was missing actual values for some of its formal parameters.

Too few parameters in call Compiler message
This error message occurs when a call to a function with a prototype (via a function
pointer) had too few arguments. Prototypes require that all parameters be given. Make
certain that your call to a function has the same parameters as the function prototype.

Too few parameters in call to 'function' Compiler message
A call to the named function (declared using a prototype) has too few arguments.

Make certain that the parameters in the call to the function match the parameters of the
function prototype.

Too many commas on command-line Linker message
You specified an invalid entry on the command line. Check the command you entered.

Too many decimal points Compiler message
The compiler encountered a floating-point constant with more than one decimal point.

Too many default cases Compiler message
The compiler encountered more than one default statement in a single switch.

598 C++ Use r 's G u ide

Too many default libraries Linker message
The linker can handle a maximum of 128 default libraries.

Too many error or warning messages Compiler message
There were more errors or warnings than set in the Options I Settings I Compiler
Messages.

Too many error or warning messages Linker message
The limit on the number of error messages or warnings to be displayed has been
reached.

Too many errors Linker message
The linker got more errors than the maxImum number of errors specified by the user.

Too many exponents Compiler message
The compiler encountered more than one exponent in a floating-point constant.

Too many file names Linker message
This error occurs if the linker encounters more than 64K characters in the response file.

The linker only handles response files up to 64K.

You'll need to shorten the response file, shorten the pathnames, or chunk the .OBJs into
a library.

Too many files to open. Resource Linker message
You have exceeded the resource linkers limit on files. Try combining some of your
individual resource files into a single re§ource.

Too many initializers Compiler message
The compiler encountered more initializers than were allowed by the declaration being
initialized.

Too many LNAMEs Linker message
TLINK32 supports up to 255 LNAMEs appearing in an OBJ file.

Too many resources to handle. Resource Linker message
You have too many resources for the resource linker to handle. Try reducing the total
number of resources you are trying to link.

Too many rules for target 'target' MAKE message
MAKE can't determine which rules to follow when building a target because you've
created too many rules for the target. For example, the following makefile generates this
error message:

abe.exe : a.obj
bee -e a.e
abe.exe b.obj

abe.exe e.obj

bee -e b.e e.e

Too many storage classes in declaration Compiler message
A declaration can never have more than one storage class, either Auto, Register, Static,
or Extem.

A P pen d i x A, Err 0 r m e s sag e san d war n i n 9 s 599

Too many STRINGTABLEs to link. Resource Linker message
The resource linker (RLINK) should not generate this message.

You have too many string tables for the resource linker to handle. Try reducing the total
number of string tables in your resource.

Too many suffixes in .SUFFIXES list MAKE message
The suffixes list can include up to 255 suffixes.

Too many types in declaration Compiler message
A declaration can never have more than one of these basic types:

• char
• class
• int
• float
• double
• struct
• union
• enum
• typedef name

Too much global data defined in file Compiler message
The sum of the global data declarations exceeds 64K bytes. This includes any data stored
in the DGROUP (all global variables, literal strings, and static locals).

Solutions:

Check the declarations for any array that might be too large. You can also remove
variables from the DGROUP.

Here's how:

• Declare the variables as automatic. This uses stack space.
• Dynamically allocate memory from the heap using calloc, malloc, or farmalloc for the

variables. This requires the use of pointers.

Literal strings are also put in the DGROUP. Get the file farstr.zip from our BBS to extract
literal strings into their own segment.

Trying to derive a far class from the huge base 'base' Compiler message
If a class is declared (or defaults to) huge, all derived classes must also be huge.

Trying to derive a far class from the near base 'base' Compiler message
If a class is declared (or defaults to) near, all derived classes must also be near.

Trying to derive a huge class from the far base 'base' Compiler message
If a class is declared (or defaults to) far, all derived classes must also be far.

Trying to derive a huge class from the near base 'base' Compiler message
If a class is declared (or defaults to) near, all derived classes must also be near.

Trying to derive a ,near class from the far base 'base' Compiler message
If a class is declared (or defaults to) far, all derived classes must also be far.

600 c++ User's Guide

Trying to derive a near class from the huge base 'base' Compiler message
... If a class is declared (or defaults to) far, all derived classes must also be far.

Two consecutive dots Compiler message
Because an ellipsis contains three dots (...), and a decimal point or member selection
operator uses one dot (.), two consecutive dots cannot legally occur in a C program.

Two operands must evaluate to the same type Compiler message
The types of the expressions on both sides of the colon in the conditional expression
operator (? :) must be the same, except for the usual conversions.

Following are some examples of usual conversions:

char to int
float to double
void* to a particular pointer

In this expression, the two sides evaluate to different types that are not automatically
converted. This might be an error or you might merely need to cast one side to the type
of the other ..

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch. The other message is usually
"Cannot convert 'typer to 'type2'" but the mismatch might be due to many other
reasons.

'type' is not a polymorphic class type Compiler message
This error is generated if the -RT compiler option (for run-time type information) is
disabled and either

• dynamic_cast was used with a pointer to a class, or
• you tried to delete a pointer to an object of a class that has a virtual destructor

Type mismatch in default argument value Compiler message
The default parameter value given could not be converted to the type of the parameter.

The message "Type mismatch in default argument value" is used when the parameter
was not given a name.

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch. The other message is most often
"Cannot convert 'typer- to 'type2'" but the mismatch could be due to another reason.

Type mismatch in default value for parameter 'parameter' Compiler message
The default parameter value given could not be converted to the type of the parameter.

The message "Type mismatch in default argument value" isused when the parameter
was not given a name .

. When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch.

That other message is usually "Cannot convert 'typel' to 'type2'" but the mismatch
might be due to many other reasons. .

Appendix A, Error messages and warnings 601

Type mismatch in parameter 'number' Compiler message
. The function called, via a function pointer, was d~clared with a prototype.

However, the given parameter number (counting left to right from 1) could not be
converted to the declared parameter type.

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch .. The other message is usually
"Cannot convert 'type1' to 'type2'" but the mismatch might be due to many other
reasons.

Type mismatch in parameter 'number' in call to 'function' Compiler message
Your source file declared the named function with a prototype, and the given parameter
number (counting left to right from 1) could not be converted to the declared parameter
type.

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch. .

That other message is usually "Cannot convert 'type1' to 'type2"', but the mismatch
might be due to many other reasons.

Type mismatch in parameter 'number' in template class name 'template' Compiler message
The actual template argument value supplied for the given parameter did not exactly
match the formal template parameter type.

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch. That other message is usually
"Cannot convert 'type 1 , to 'type2'" but the mismatch might be due to many other
reasons.

Type mismatch in parameter 'parameter' Compiler message
Your source file declared the function called via a function pointer with a prototype.

However, the named parameter could not be converted to the declared parameter type.

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch. That other message is usually
"Cannot convert 'type1' to 'type2'" but the mismatch might be due to many other
reasons.

Type mismatch in parameter 'parameter' in call to 'function' Compiler message
. Your source file declared the named function with a prototype~ and the named
parameter could not be converted to the declared parameter type.

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch.

That other message is usuallyilCannot convert 'type1' to 'type2'" but the mismatch
might be due to many other reasons.

Type mismatch in parameter 'parameter' in template class name 'template' Compiler message
The actual template argument value supplied for the given parameter did not exactly
match the formal template parameter type.

When compiling C++ programs, this message is always preceded by another message
that explains the exact reason for the type mismatch.

602 C++ Use r 's G u ide

That other message is usually "Cannot convert 'typel' to 'type2"' but the mismatch
might be due to many other reasons.

Type mismatch in redeclaration of 'identifier' Compiler message
Your source file redeclared a variable with a different type than was originally declared
for the variable.

This can occur if a function is called and subsequently declared to return something
other than an integer.

Solution: If this happens, you must declare the function before the first call to it.

Type name expected Compiler message
One of these errors has occurred:

• In declaring a file-level variable or a struct field, neither a type name nor a storage
class was given.

• In declaring a typedef, no type for the name was supplied.
• In declaring a destructor for a C++ class, the destructor name was not a type name (it

must be the same name as its class).

In supplying a C++ base class name, the name was not the name of a class.

Type 'type' is not a defined class with virtual functions Compiler message
A dynamic_cast was used with a pointer to a class type that is either undefined, or
doesn't have· any virtual member functions.

Type 'typename' may not be defined here Compiler message
Class and enumeration types may not be defined in a function return type, a function
argument type, a conversion operator type, or the type specified in a cast. You must
define the given type before using it in one of these contexts.

Note This error message is often the result of a missing semicolon (;) for a class declaration.

You might want to verify that all the class declarations preceding the line on which the
error occurred end with a semicolon.

Unable to create output file 'filename' Compiler message
This error occurs if the work disk is full or write protected. It also occurs if the output
directory does not exist.

Solutions:

• If the disk is full, try deleting unneeded files and restarting the compilation.
• If the disk is write-protected, move the source files.to a writeable disk and restart the

compilation.

Unable to create turboc.$ln Compiler message
The compiler cannot create the temporary file TURBOC.$LN because it cannot access
the disk or the disk is full.

Unable to execute command 'command' Compiler message
TLINK or TASM cannot be found, or possibly the disk is bad.

Appendix A, Error messages and warnings 603

Unable to execute command: 'command' MAKE message
A command failed to execute. This might be because the command file could not be
found or was misspelled, there was no disk space left in the specified swap directory,
the swap directory does not exist, or (less likely) the command itself exists but has been
corrupted.

Unable to load 16 bit compiler

Unable to load 16 bit linker

Unable to load 32 bit compiler

Unable to load 32 bit linker Compiler messages
For the 16-bit linker and compiler, the file BCWS16.DLL must be either in the directory
where BCW.EXE resides or somewhere in your path. If the DLL is in the correct location
and still will not load, you may not have enough memory for the DLL to load. BCW
operates optimally when you have at least 12 MB of memory in any combination of
physical RAM and virtual memory.

Fqr the 32-bit linker and compiler, the same rules apply for BCWS32.EXE. In addition;
you must have a system running that supplies the Win32 API. Check to make sure that
you have properly installed either NT or Win32s on your Windows system by running
another 32-bit application such as the FreeCell game which accompanies the operating
system.

Unable to open 'filename' Compiler message
This error occurs if the specified file can't be opened.

Make sure the file is on the specified disk or directory. Check Options I Settings I
Directories and verify the proper paths are listed. If multiple paths are required, use a
semicolon to separate them, like this: .

C:\bc\include;c:\bc\include\owl

Unable to open 'filename' for output Librarian message
The librarian cannot open the specified output file. This is usually due to lack of disk
space for the target library, or a listing file.

Unable to open file 'filename' Linker message
The named file can't be found, possibly because it does not exist or is misspelled, or it
resides in a different directory than those being searched.

If you are using the IDE, make sure you have set the appropriate directory paths in the
Options I Directories dialog box.

Unable to open file 'filename' MAKE message
This error occurs if the named file does not exist or is misspelled.

Unable to open include file 'filename' Compiler message
The compiler could not find the named file.

Possible Causes:

• The named file does not exist.
• An #include file included itself.
• You do not have FILES set in CONFIG.SYS on your root directory.

604 c++ User's Guide

Solutions:

• Verify that the named file exists.
• Set FILES = 20 in CONFIC.5YS.

Unable to open include file 'filename' MAKE message
The compiler could not find the named file. This error can also be caused if an !include
file included itself, or if you do not have FILES set in CONFIC.5YS on your root
directory (try FILES=2 0). Check whether the named file exists.

Unable to open input file 'filename' Compiler message
This error occurs if the source file can't be found. Check the spelling of the name. Make
sure the file is on the specified disk or directory. .

Check under Options I Settings I Directories and verify that the proper directory paths
are listed. If multiple paths are required, use a semicolon to separate them, like this:

C:\hc\libiC:\bc\owl\lib

Unable to open makefile MAKE message
The current directory does not contain a file named MAKEFILE or MAKEFILE.MAK, or
it does not contain the file you specified with-f.

Unable to process debug info, disable TASM Izi option Linker message
Debug information is too complex. Disable the TASM Izi option.

If C debug information is required, it should be obtained at the C source level.

Unable to redirect input or output MAKE message
MAKE was unable to open the temporary files necessary to redirect input or output. If
you are on a network, make sure you have access rights to the current directory.

Unable to rename 'filename1' to 'filename2' Librarian message
The librarian builds a library into a temporary file (filenamel) and then renames the
temporary file to the target library file name (filename2). This message appears if an
error occurs during the renaming process, such as insufficient disk space.

#undef directive ignored Compiler message
An .error has occurred while using the command-line utility H2ASH. See the online file
"tsm_util.txt" for further information about this utility.

Undefined alias symbol 'symbol' Linker message
The.symbol being aliased was undefined. This occurred either because of an invalid
function name or the function itself was not included in the link.

Undefined label 'identifier' Compiler message
The named label has a goto in the function, but no label definition.

Undefined structure 'structure' Compiler message
(Command-line equivalent for displaying this warning = -wstu)

The named structure was used in the source file, probably on a pointer to a structure,
but had no definition in the source file. This is probably caused by a misspelled
structure name or a missing declaration.

Default = displayed

Appendix A, Error messages and warnings 605

Undefined structure 'structure' Compiler message
Your source file used the named structure on some line before where the error is
indicated (probably on a pointer to a structure) but had no definition for the structure.
This is probably caused by a misspelled structure name or a missing declaration.

Undefined symbol 'identifier' Compiler message
The named identifier has no declaration.

Possible Causes:

• actual declaration of identifier has been commented out.
• misspelling, either at this point or at the declaration.
• there was an error in the declaration of the identifier.

Tools to help track down the problem:

• CPP
• GREP

Undefined symbol 'symbol' in module 'module' Linker message
The named symbol is referenced in the given module but is not defined anywhere in the
set of object files and libraries included in the link.

Check to make sure the symbol is spelled correctly.

You will usually see this error from the linker for C or C++ symbols if any of the
following occur:

• You did not properly match a symbol's declarations of pascal and cdecl type in
different source files.

• You have omitted the name of an .OBJ file your program needs.
• You did not link in the emulation library.

If you are linking C++ code with C modules, you might have forgotten to wrap C
external declarations in extern "C".

You could also have a case mismatch between two symbols.

Unexpected} Compiler message
An extra right brace was encountered where none was expected. Check for a missing {.

Useful Tip: The IDE has a mechanism for finding a matching curly brace. If you put the
cursor on the '{' or T character, hold down control, hit 'Q' and then '{' or T, it will
position the cursor on the matching brace.

Unexpected char X in command line Librarian message
The librarian encountered a syntactical error while parsing the command line.

Unexpected end of file MAKE message
The end of the makefile was reached before closing a temporary inline file.

Unexpected end of file in comment started on 'line number' Compiler message
The source file ended in the middle of a comment. This is normally caused by a missing
close of comment (* j).

606 c++ User's Guide

Unexpected end of file in conditional started at line 'line number' MAKE message
The source file ended before MAKE encountered an !endif. The !endif was either
missing or misspelled.

Unexpected end of file in conditional started on 'line number' Compiler message
The source file ended before the compiler (or MAKE) encountered an #endif. The
#endif either was missing or misspelled. Every #if statement needs a matching #endif
statement.

Unexpected termination during compilation [Module Seg#:offset]

Unexpected termination during linking [Module Seg#:offset] Compiler messages
If either of these errors occur, it indicates a catastrophic failure of the Borland tools. You
should contact Borland to report the problem and to find a potential work around for
your specific case. By isolating the test case as well as possible, you will increase the
chance for either Borland or yourself to find a work around for the problem.

Commonly, compiler failures can be worked around by moving the source code that is
currently being compiled. Simple cases might be switching the order of variable
declarations, or functions within the source module. Moving the scope and storage of
variables also helps in many cases.

For linker failures, you can reduce the amount of debugging information that the linker
has to work with. Try compiling only one or two modules with debug information
instead of an entire project.

Similarly, switching the order in which object modules are handed to the linker can
work around the problem. The IDE hands objects to the linker in the order that they are
listed in the project tree. Try moving a source up or down in the list.

union cannot be a base type Compiler message
A union can't be used as a base type for another class type.

union cannot have a base type Compiler message
In general, a C++ class can be of union type, but such a class can't be derived from any
other class.

Union member 'member' is of type class with constructor (or destructor, or operator =) Compiler message
A union can't contain members that are of type class with user-defined constructors,
destructors, or operator =.

unions cannot have virtual member functions Compiler message
A union can't have virtual functions as its members.

Unknown assembler instruction Compiler message
(Command-line equivalent for displaying this warning = -wasm)

The compiler encountered an inline assembly statement with a disallowed opcode.

Check the spelling of the opcode.

Default = not displayed

Appendix A, Error messages and warnings 607

Unknown CMDSWITCHES operator 'operator' MAKE message
The !CMDSWITCHES directive is supposed to tum on command-line options using a
plus sign (+) followed by the option and tum them off using a minus sign (-) followed
by the option. An operator other than + or - is specified in the !CMDSWITCHES
directive.

Unknown command line switch 'X' ignored Librarian message
A forward slash character (I) was encountered on the command line or in a response
file without being followed by one of the allowed options.

Unknown Goodie
An unsupported option was supplied to the command-line linker.

Unknown language, must be C or C++
In the C++ construction

extern "name" type func(/* ... */)i

Linker message

Compiler message

the given "name" must be "c" or "C++" (use the quotes); other language names are not
recognized.

You can declare an external Pascal function without the compiler's renaming like this:

extern "e" int pascal func(/* ... */)i

To declare a (possibly overloaded) C++ function as Pascal and allow the usual compiler
renaming (to allow overloading), you can do this:

extern int pascal func(/* ... */) i

Unknown Optimization Linker message
This error message refers to an UNDOCUMENTED optimization feature.

Unknown option 'option' Linker message
A forward slash character (I), hyphen (-), or DOS switch character was encountered on
the command line or in a response file without being followed by one of the allowable
options. You might have used the wrong case to specify an option.

Unknown preprocessor directive: 'identifier' Compiler message
The compiler encountered a # character at the beginning of a line. The directive name
that followed the # was not one of the following:

• define
• else
• endif

• if
• ifdef
• ifndef
• include
• line
• undef

Unknown preprocessor statement MAKE message
A ! character was encountered at the beginning of a line, and the statement name
following it was not error, undef, if; elif, include, else, or endif.

608 c++ User's Guide

Unreachable code Compiler message
(Command-line equivalent for displaying this warning = -wrch)

A break, continue, goto, or return statement was not followed by a label or the end of a
loop or function.

The compiler checks while, do" and for loops with a constant test condition, and
attempts to recognize loops that can't fall through.

Default = not displayed

Unresolved external 'symbol' referenced from module 'module' Linker message
The named symbol is referenced in the given module but is not defined anywhere in the
set of object files and libraries included in the link.

Check to make sure the symbol is spelled correctly.

You will usually see this errol' from the linker for C or C++ symbols if any of the
following occur:

• You did not properly match a symbol's declarations of pascal and cdecl type in
different source files.

• You omitted the name of an .OBJ file your program needs.
• You did not link in the em~lation library.

If you are linking C++ code with C modules, you might have forgotten to wrap C
external declarations in extern "C" { ... } .

You could also have a case mismatch between two symbols.

Unsupported COMENT OMF extension 'extension' Linker message
The linker encountered an object file with an incompatible .OBJ file format.

This error generally occurs due to an incompatible .OBJ file format. If you're linking
.OBJ files compiled using another compiler, these files may be incompatible with
TLINK32. You'll need to recompile all modules using one of the Borland C++ compilers.

This can also occur if the machine was rebooted during a compile, or if a compiler did
not delete its output object file when Ctrl+Break was pressed. Recompile.

If the error persists, call Borland Technical Support.

Unsupported EXE RC version. Resource Linker message
The executable you are attempting to link the resources to already has resources
attached. The version number of these resources is not recognized by this resource
linker. Try removing the resources or relinking.

Unsupported option 'string' Linker message
You specified an unknown option on the command line.

Unterminated string or character constant Compiler message
The compiler found no terminating quote after the beginning of a string or character
constant.

Appendix A, Error messages and warnings 609

Use '> >' for nested templates Instead of '»' Compiler message
Whitespace is required to separate the closing ">" in a nested template name, but since
it is an extremely common mistake to leave out the space, the compiler accepts a"»"

. with this warning.

Use. or -> to call 'member', or & to take its address Compiler message
A reference to a non-static class member without an object was encountered;

Such a member can't be used without an object, or its address must be taken with the &
operator.

Use. or -> to call function Compiler message-
You attempted to call a member function without providing anobject. This is required
to call a member function.

class X {
member func() {}

} ;

X x;

X*xp = new X;

X.memberfunc();
Xp-> memberfunc();

Use Ie with TLiNK to obtain debug information from library Librarian message
The library was built with an extended dictionary and also includes debugging
information. TLINK cannot extract debugging information if it links using an extended
dictionary.

To obtain debugging information in an executable from this library, use the Ie switch to
cause the linker to ignore the extended dictionary.

Note: The IDE linker does not support extended dictionaries; therefore, no settings need
to be altered in the IDE.

Use :: to take the address of a member function Compiler message
If f is a member function of class c, you take its address with the syntax

&c: :f

Note the use of the class type name (not the name of an object) and the:: separating the
class name from the function name.

(Member function pointers are not true pointer types, arid do not refer to any particular
instance of a class.)

Use of: and :: dependents for target 'target' MAKE message
You tried to use the target in both single and multiple description blocks (using both the
: and :: operators). .

Examples:

filea: fileb
filea:: filec

Use qualified name to access member type 'identifier'
(Command-line equivalent for displaying this warning = -wnst)

610 C++ Use r' s G u ide

Compiler message

In previous versions of the C++ specification, typedef and tag names declared inside
classes were directly visible in the global scope. In the latest specification of C++, these
names must be prefixed with class:: qualifier if they are to be used outside of
their class scope.

The compiler issues this warning whenever a name is uniquely defined in a single class.

The compiler permits this usage without c 1 as s : : . This allows older versions of code to
compile.

Default = displayed

User break Compiler message
You typed a Ctrl+Break while compiling in the IDE. (This is not an error, just a
confirmation.)

User break, library aborted Librarian message
, You pressed Cancel while compiling in the IDE. The library was not created. (This is not

an error, just a confirmation.)

User-defined message Compiler l71essage
The error nlessage,on which you have requested Help, is a user-defined warning.

In Borland C++ code, user-defined messages are introduced by using the #pragma
message compiler syntax.

Note: In addition to messages that you introduce with the #pragma message compiler
syntax, user-defined warnings can be introduced by third party libraries. Should you
require Help about a third party warning, please contact the vendor of the header file
that issued the warning.

Using based linking for DLLs may cause the DLL to malfunction Linker message
This warning occurs if you use the IB switch when linking a DLL. In almost every case,
this is an error that will prevent the application from running. You can suppress this
warning from the Linker I Warnings page of the Project options dialog box or with the I
w-bdl command-line option.

Value of type void is not allowed Compiler message
A value of type void is really not a value at all, so it can't appear in any context where an
actual value is required.

Such contexts include the following:

• the right side of an assignment
• an argument of a function
• the controlling expression of an if, for, or while statement.

Variable 'identifier' is once Compiler message
This variable has more than one initialization. It is legal to declare a file level variable
more than once, but it can have only one initialization (even if twoare the same).

'variable' requires run-ti l11e initialization/finalization Compiler message
This message is issued when a global variable that is declared as _thread (a Win32-only
feature) or astatic data member of a template class is initialized with a non-constant
initial value. '

A P pen di x A, Err 0 r me s sag e san d war n i n 9 s 611

This message is also issued when I a global variable that is declared as _thread (a Win32-
only feature) or a static data member of a template class has the type class with
constructor or destructor.

Variable 'variable' has been optimized and is not available Compiler message
You have tried to inspect, watch, or otherwise access a variable which the optimizer
removed.

This variable is never assigned a value and has no stack location.

VIRDEF name conflict for: 'function' Compiler message
The compiler must truncate mangled names to a certain length because of a name length
limit that is imposed by the linker. This truncation may (in very rare cases) cause two
names to mangle to the same linker name. If these names happen to both be VIRDEF
names, the compiler issues this error message. The simplest workaround for this
problem is to change the name of 'function' so that the conflict is avoided.

Virtual base classes not supported Compiler message
An error has occurred while using the command-line utility H2ASH. See the online file
"tsm_util.txt" for further informc;ltion about this utility.

'virtual' can only be used with member functions
A data member has been declared with the virtual specifier.

Only member functions can be declared virtual.

For example:

class myclass
{

public:
virtual int a;

} ;

//error

Compiler message

Virtual function 'function1' conflicts with base class 'base' Compiler message
A virtual function has the same argument types as one in a base class, but a different
return type. This is illegal.

virtual specified more than once Compiler message
The C++ reserved word "virtual" can appear only once in one member function
declaration.

void & is not a valid type Compiler message
A reference always refers to an object, but an object cannot have the type void.

Thus, the type void is not allowed.

Void 'function' cannot return a value Compiler message
A function with a return type void contains a return statement .that returns a value; for
example, an int.

Default = displayed

612 C++ Use r 's G u ide

Void functions may not return a value Compiler message
Your source file declared the current function as returning void, but the compiler
encountered a return statement with a value. The value of the return statement will be
ignored.

Warning. Duplicate resources. Resource Linker message
If multiple resource files are linked in to the image, the user could have duplicate
resources in the resource files. For example, you might have the same ICON in two
different RES files. The resource linker flags this and the second resource is removed.

Note:The resources must have the same type and identifier to be declared duplicates.

Windows version is set to Win32, but target type is Win16. Resource Linker message
The version for your resources is set to Win32, but the target type for your project is for a
16-bit Windows application. 16-bit Windows applications cannot use 32-bit resources.

Either change the version for your resources to Windows 3.1 or change the target type
for your application to Win32.

Write error on file 'filename' MAKE message
MAKE couldn't open or write to the file specified in the makefile. Check to ensure that
there's enough space left on your disk, and that you have write access to the disk.

Write failed, disk full? Linker message
Writing to the specified disk failed. Check to see if the disk is fulL

Wrong number of arguments in call of macro 'macro' Compiler message
Your source file called the named macro with an incorrect number of arguments.

Appendix A, Error messages and warnings 613

614 c++ User's Guide

Symbols
! operator (MAKE) 333
!= operator (MAKE) 334
$& macro 330
$* macro 323, 330
$** macro 330
$: macro 330
$< macro 330
$? macro 330
$@macro 330
% operator (MAKE) 333
& operator (MAKE) 327, 333
&& operator (MAKE) 328, 333
* (search wildcard) 391
* operator (MAKE) 333
+ (plus sign) .

Environment Options dialog
box 13

Project Manager 22
operator (MAKE) 333

.APX Database file 152

. TF A files 389, 434
/ (slash)

command-line options 199
MAKE options 321
operator (MAKE) 333

: (colon), makefiles 324
:: operator (MAKE) 325
< operator (MAKE) 328, 334
«operator (MAKE) 328,333
<= operator (MAKE) 334
== operator (MAKE) 334
> operator (MAKE) 328, 334
>= operator (MAKE) 333
»operator (MAKE) 328,333·
? (search wildcard) 391
-? MAKE option 320,322,461
?: operator (MAKE) 333
@ prefix (MAKE) 327
\ (backslash), makefiles 325
1\ operator (MAKE) 333
I operator (MAKE) 333
I I operator (MAKE) 334
~ operator (MAKE) 333
- (hyphen)

command-line options 199
Environment Options dialog

box 13
makefiles 321, 327
Project Manager 22
operator (MAKE) 333

Index
Numerics
16-bit

command-line switches 113,115
compiler options 45,102
linker options 84
optimizations 86
resource options 110
resources, 110, 266

32-bit
command-line switches 113,117
compiler options 57, 102
linker options 87
processing option 84
resources 112,266

80186 option, 16-bit compilers 52
80286 option, 16-bit compilers 53
80386 option, 16-bit compilers 53
8086 option, 16-bit compilers 53
8514 graphics adapter 473

A
-a MAKE option 321
video adapters

See Enhanced Graphics Adapter;
Video Graphics Array
Adapter

About Turbo Profiler command 386
accelerators 303-304
Accumulation option 438
Acer 1100 and NMI 471
active analysis

See also passive analysis
See also profiling, analysis modes
area markers 442
disk I/O and 443
passive analysis, compared 442
setting 441

active windows See windows, active
adapters, video, See video adapters
Add Areas command 406
Add command 403
Add Node option 27
Address option 396
addresses

exceptions 355
jumping to

Disassembly (CPU)
window 410

Module window 391
Advanced Options dialog box

adding tools 34
specifying source nodes 27

Airbrush tool
Graphics editor 261
Graphics tool 256

algorithms
analyzing 439
multipass 450

All Callers option 394, 407
All command 397
All Routines 392-394
All Windows command (Messages

menu) 347
alternative translators 34
Always Build option 60
Always option, 16-bit compilers 49
Animation tool, Dialog editor 290
ANSI Violations options 97
AppExpert 151
applications 21

creating 33
testing 33,162

Arc tool, Graphics editor 260
area files, automatic saving 389
area markers

See also areas
active analysis and 442
defined 436
function entry 392
lines 392
modules 392
normal 456
operation 393
program execution speed 443
routine-entry 456
routines

add all 392
add current 392
available for profiling 389

single lines, removing 398
symbols 392

Area Options dialog box 407
areas 436, 451

See also area markers
adding 406
current

changing 454
disassembled source code

as 389
settings for 392
specifying profiling action 392
statistics 447

default 435
defined 436
execution counts and times 455
function-entry markers 392
inspecting 407
maximum 419
measuring efficiency 376
names 406
normal markers 456

I nd ex 615

profiler behavior when
entering 455

program size and 436
removing 407
settings 434-437
statistics, default 436

Areas command (Routines
window) 409

Areas radio buttons 394
Areas window 399-408

Callers option and 399
local menu 406

arguments 195,505
arrays

accessing for optimimum
speed 448-450

debugging .183, 187
inspecting 188
sorting 448
viewing 188

ASCII
characters, printing high 374,471
codes, watches 186

assembly language
assessing value of 409
integrated debugger 159, 166

Assume SS equals DS option,
16-bit compilers 49

asterisk (*) search wildcard 391
attributes

project nodes 28-33
syntax highlighting 14

autodependency information
22,96

directives 332
MAKE 322,332
nodes 22
Project Manager 22

Automatic Far Data option,
16-bit compilers 49

automatic file linkage 22

B
-B MAKE option 321, 460
background colors

Graphics editor 244
syntax highlighting 14

backslash (\), makefiles 325
batch files 322
batch mode profiling 460
BCCONFIG.BCW 16
BCWDEF.DSW 16
beep on error, setting 470
Beep on Error check box

(TFINST) 470
Bentley, John 367,380
binary files, Resource

Workshop 264
binary resource (.RES) files 221
bitmaps

616 C++ Use r' 5 G u ide

attributes, changing 231
creating 229
editing 230
programming, OWL 231
resources

deleting 231
saving as files 268

standalone bitmap files,
creating 230

testing 231
Windows API, programming 232

boards, debugger 471
Borland compilers, Turbo

Profiler 435
Both option

Disassembly (CPU) window local
menu 411

Display Options dialog box 396
Both Time and Calls command 404
Bottoms tool, Dialog editor 297
BRC32 resource shell 337,

340-342
BRCC32 resource compiler 337
Break Make On options 96
breakpoints 167-175

conditional breakpoints,
creating 169

debugging with 167
integrated debugger features 175
setting 166, 168

Breakpoints window 174
Browser 153

customizing 157
filters 156
letter symbols 156
objects, browsing 154
starting 154

brush shapes, Graphics editor,
selecting 247

bubble sort, quicksort 448
buffers"data 449
Build Attributes options, project

options 60
Build When Out of Date option,

Build Attributes 60
BUILDSYM.EXE utility 361
BUILTINS.MAK 320-322
buttons, IDE SpeedBars 7,14-15
BWCC Check Box tool, Dialog

editor 294
BWCC Group Box tool, Dialog

editor 294
BWCC Horizontal Line tool, Dialog

editor 294
BWCC page, Control palette,

Dialog editor 293
BWCC Push Button tool, Dialog

editor 293
BWCC Radio Button tool, Dialog

editor 295

BWCC Static Text tool, Dialog
editor 295

BWCC Vertical Line tool, Dialog
editor 295

Byte Alignment option, 16-bit
compilers 53

c
C option, 16-bit compilers 46
-c option (load configuration

file) 322,461
problems 500
TPROFW 491

C++
See also object-oriented programs
compatibility options 61
expressions, problems 500
project options 60

cables, null modem, remote
profiling 478

call history, dynamic 439-440
call paths 398

example 400
recording 394
sorting 401

Call Stack command 195,437
Call Stack window 195
call stacks

active routines 456
setting 437
size of 394

Called option 399,401
Callers command 393,417

Areas window 399
call paths, logging 457
call stacks 437
Routines window local menu 409

Callers radio buttons 407
Callers window 400-401, 446

local menu 401
restructuring programs and 400

Calling Convention options, project
options 45

calls
overhead 453
passive analysis 443

Calls command 404
Can't Build option 60
captions, dialog boxes, adding 273
case and switch statements,

verifying 440
case-sensitivity 462

enabling 471
Library option 83
MAKE 321, 329-330

changes, source code, undoing 8
characters

line continuation, makefiles 325
printing

graphic 374

high versus standard
ASCII 471

strings, searchIDg for 412, 498
Check Box tool, Dialog editor 287
children windows, displaying 346
CKB files 13
Class List view, WinSight

343-345
classes

custom classes, dialog boxes 274
deleting, Rescan 150
importing, AppExpert 151
messages, tracing 345
moving, Rescan 151

ClassExpert 143-145
clocks 393, 438
Clock Speed option 419
close boxes· 383
code 7

defining color and font
attributes 14

editing 7,195
IDE options 25
symbols, browsing 155
undoing changes 8

Code class option, 16-bit
compilers 54

Code group option, 16-bit
compilers 54

Code option, 16-bit compilers 54
Code segment option, 16-bit

compilers 54
CODE statement 206
collapsing lists

dialog boxes 13
Project Manager 22

Collection command 403,405,447
colon (:), makefiles 324
color monitors, customizing 467
Color palette, Graphics editor 244-

246
color tables 466
colors

customizing, Graphics editor 246
filling areas, Graphics editor 249
syntax highlighting and 14

Colors menu (TFINST) 466
Combo Box tool, Dialog editor 288
command line

arguments 505
options

batch mode (b) 460
configuration file (-c) 461
display update (-d) 461
help (-h and -?) 461
mouse support (p) 462
overriding 474
remote profiling (r) 462,481
saving 465
SOlJIce code and symbols

(s) 462

syntax 459
TFINST475
TFREMOTE 479
toggling 459
TPROFW 491
video hardware (v) 463
WREMOTE 484

command-line compilers 197,319
default settings 198
defaults 199
directories 200
linkers 204
syntax 198
TLINK syntax 201

command-line options 113,198
disabling 199
functions 118
integrated debugger and 162
linkers 201
MAKE 319,321-323

overriding 331
setting as defaults 322
suppressing display 322

overriding 199
command-line resource tools 337
commands

See also specific command names
choosing 382
Compiler menu, Debugging 368
Cursor menu, Set Hot Spot 234
Edit menu

Redo 222
Undo 222

File menu
Open 222, 230
Quit 368

Linker menu, General 368
MAKE 326-328
Message menu

All Windows 347
Options 347

Messages menu
Selected Classes 345
Selected Windows 347
Trace Off 343

Options menu
Environment 157
Project 368

prompts 497
Resource menu, New 230
Spy menu

Exit 344
Find Window 346
Open Detail 344

comments
logging 354
placing scripts 310

communications, remote
systems 472, 486

Compact option, 16-bit
compilers 51

compilation 21
debugger and 161-162
fatal errors 507

large modules 322
nodes in Source Pools 33
profiling 435
project options 37, 43
specific files only 319
warnings 508

Compile command (Project) 12
Compiler menu commands,

Debugging command 368
Compiler Output page 73
compilers

command-line compilers 197
configuration files 199
errors 508
error messages 508
Help systems 25,510
project options, 69
warnings, ignoring 11

compile-time errors, fixing 44
COMSPEC environment
variable (DOS) 500

conditional breakpoints 168-169
conditional directives 333-336
conditional expressions 333
conditional statements 440
configuration files

compilers 199
creating 376
default name, changing 473
directory paths, setting 469
loading 461
problems with 500
saving 473,501
TFCONFIG 491
TLINK 203
TPROFW 490-491

configuring
Turbo Profiler 465
WinSight 343

continuation characters,
. makefiles 325
C~mtrol Key check box

(TFINST) 470
Control palette, Dialog editor 285-

286
control points, problems 506
control-key shortcuts, enabling 470
controls, dialog boxes 276

adding 276
aligning multiple 279
custom controls 277
duplicating 278
editing properties 282
grouping 281
moving 278
reordering 281
resizing 278
resizing multiple 280
selecting multiple 279
tab stops 282

conversions, project files to
makefiles 31

I nd ex 617

copying
icon images 239
project nodes 30-31

copyright information 386
Count option 402
Counts option 396
Coverage Display dialog box 414
Coverage mode

blocks selected· 413
coverage count, setting 419

Coverage window 414-416,446
CPP files 8
CPU, WREMOTE 486
CPU window See Disassembly

(CPU) window
Create Extended Dictionary

option 83
creating

program files 8-10
projects 24-27
Source Pools 33

Current command 397
current instruction pointer,

returning to 410
Current Routine command (Add

Areas menu) 392
cursors 232

attributes, changing 236
creating 233
deleting 234
designing 234
editing 233
hot spots, setting 234
moving 391
position, Edit window 7
programming 236-237
resources, adding images 235
testing 235

custom classes, dialog boxes,
assigning 274

Custom page, Control palette,
Dialog editor 295

customizing Turbo Profiler 474
CWH.HLP file 25

o
-D MAKE option 322
$d MAKE macro 323,336
-d MAKE option 322
-d option

Turbo Profiler 461
WREMOTE 484

data
caching 449
evaluation order 449
IDE options 25
inspecting 188
sets, size and profiling 434
structures, optimizing 448
values, changing 187-188

618 C++ Use r 's G u ide

Data Access page, Control palette,
Dialog editor 295

Data Alignment options, 16-bit
compilers 53

Data Aware page, Control palette,
Dialog editor 295

data objects 160
DATA statement 207
date stamps (MAKE) 320-322
Debug command (IDE) 6
Debug menu 159
debugger 159.

accessing 159
compiler options 162
evaluating expressions

186-188
execution point 163, 196
flickering screens, eliminating 162
inspecting data elements 188
multiple statements 162
program execution, controlling

167
restarting programs 167
running programs 161-162, 166
setting breakpoints 166
starting 160
stepping over code 166
stopping programs 166
symbolic debug information 161
tracing into code 165,195
watching expressions

182-186
debugger boards, nonmaskable

interrupts 471
debugging

32-bit executables 159
arrays 183,187
assembly code 159, 166
breakpoints 167
bugs, types 159-160
DF A utility 359
expressions 181-188
external programs 166
hxnctions 164-166,195
global symbols 408
information, adding to

modules 387
makefiles 322, 328, 334
member hxnctions 166
postmortem debugging 353
profiling 435
sessions, beginning 161
statements 162
strategy 160-162
structures 187
UAEs (Umecoverable

Application Errors) 353
variables 185
WinSpector 353

Debugging command (Compiler
menu) 368

Debugging options, compilers 76

debugging tools 343, 353
decimal values, watches and 183,

186
Default Color Set command

(TFINST) 467
default compiler options 199
default file names 8,24,202
Default for memory model option,

16-bit compilers 49
default project options 38
default settings 465

IDE SpeedBars 15
new projects 24
restoring 473

default translators 34
default viewers 34
Delete All command 403
Delete Node option 28-29
deleting

bitmap resources 231
classes, Rescan 150
cursors 234
identifiers 307
menus, items 302
project nodes 28-29
resources 266

delimiters, makefiles 328
DESCRIPTION statement 207
desktop, windows, viewing

345-347
Detail command 405, 447
device drivers, WREMOTE.EXE 482
DFA utility 359-360
dialog boxes 271,385

See also specific dialog box
Accept Color Set (TFINST) 467
captions, adding 273
collapsing lists 13
controls 276

adding 276
aligning multiple 279
custom controls 277
duplicating 278
editing properties 282
grouping 281
moving 278
reordering 281
resizing 278
resizing multiple 280
selecting multiple 279
tab stQps 282

creating 272
custom classes, assigning 274
customizing 466
Directories (TFINST) 469
Display Options (TFINST) 467
DLINIT resources 271
editing 272
escaping out of 497
expanding lists 13
fonts, specifying 274

frame styles, choosing 273
hot keys 383
menus, including 273
Message Trace Options 347
Miscellaneous Options

(TFINST) 470
New Project 230
positions, setting 275
programming 275-276
prompts 499
searches 412
testing 275
windows, choosing 273

Dialog editor 283
Animation tool 290
Bottoms tool 297
BWCC Check Box tool 294
BWCC Group Box tool 294
BWCC Horizontal Line tool 294
BWCC Push Button tool 293
BWCC Radio Button tool 295
BWCC Static Text tool 295
BWCC Vertical Line tool 295
Check Box tool 287
Combo Box editor 288
Control palette 285
Group Box tool 289
Header tool 292
Horizontal Centers tool

296-297
Horizontal Scroll Bar tool 288
Horizontal Static Line tool 289
Hot Key tool 291
Left Sides tool 296
List Box tool 288
List View tool 291
Progress Bar tool 291
Property Inspector 283
Push Button tool 286
Radio Button tool 287
Rich Text Edittool 292
Right Sides tool 296
Selector tool 286
Space Horizontally Equal tool 297
Space Vertically Equal tool 297
Static Frame tool 289
Static Picture tool 290
Static Rectangle tool 289
Static Text tool 287
Status Window tool 292
Tab Control tool 290
Text Edittool 288
Tool Bar tool 292
Tops tool 297
Track Bar tool 292
Tree View tool 291
Up-Down tool 291
Vertical Center in Dialog tool 297
Vertical Centers tool 297
Vertical Scroll Bar tool 289
Vertical Static Line tool 289

Dialogs command (TFINST) 466
directives

conditional 333-336
MAKE 323-336

directories
changing 387
command-line compilers 200
default 469
how searched 435
paths

problems with 504
setting 499
starting TPROFW

directory 491-492
WREMOTE and 484

- source files 390, 394, 462
Directories dialog box (TFINST) 469
Directories options, project

options 80
directory paths, MAKE 320,322,334
disabling

command-line options 199
statistics collections 393
syntax highlighting 14

Disassembly (CPU) 356,410-411
disk drives, changing 387
disks, writing to, problems

500-501
dispatched messages 347
Display command 447

Execution Profile window local
menu 396

Interrupt~ window local
menu 404

Overlays window local menu 402
Display menu (TFINST) 467
display options 469
Display Options dialog box 426, 467
Display radio buttons 396, 405
Display Swapping radio buttons,

TFINST 467
Display Warnings options 98
displaying

Color palette
Dialog editor 285
Graphics editor 246

messages, WinSight 343
project nodes 22
Property Inspector 284
Tool palette, Graphics editor 254

displays
See also screens
buffers, saving 468
colors 466,473
dual 389
modes' 466

defaults, setting 472
problems 506

options 467, 473
pages 469
problems 473
swapping 469
updating 468

DLGINIT resource, dialog
boxes 271

DLLs (Dynamic Link Libraries) 264,
494-495,500

-do option, TPROFW 491
documentation, printing

conventions 1
DOS

applications, creating 9
command processor,

problems 500 .
COMSPEC environment

variable 500
SHARE program 323
shelling to display swapping 469
wildcards

choosing files 412
makefiles 319,321

DOS Shell command 388, 500
DOS Shell Swap Size input box

(TFINST) 472
DOS_TEST.CPP 9
Double word (4-byte) option,

16-bit compilers 53
downward compatibility 338, 342
drawing, Graphics editor 248
drives, changing 387
-ds option (swap screens),

TPROFW 491
DSW files 16
dual monitors 389
duplicate names, macros 329
duplicating controls, dialog

boxes 278
Duration option 405

E
-e MAKE option 322
Edit command 6, 500
Edit menu commands

Redo 222
Undo 222

edit modes (IDE) 7
Edit Node Attributes option 28,34
Edit Source command 195
Edit window, Menu editor 300
Edit window (IDE)

customizing 13
debugging programs 163-167

examining code 196
inspecting data elements 188

loading source files 23
opening 8
overview 7
SpeedMenu, activating 7

editing
bitmaps 230

- code, Call Stack window 195
control properties, dialog

boxes 282
cursors 233
dialog boxes 272, 282
icons 238
identifiers 306
menus 300-302

In d e x 619

node attributes 28-30
resources as text 268 .
user-defined resources 315

editors 8, 197
installing 395
reconfiguring IDE 13

efficiency, measuring 376
!elif directive 333
Ellipse tool, Graphics editor 258
ellipsis mark (...) 385
embedding resources

project files 315
resource projects 225

empty frame tools, Graphics
editor 258

enabling statistics collection 393
Enhanced Graphics Adapter (EGA)

468
Enter Program Name to Load dialog

box 386
environment, saving IDE

settings 16
Environment command (Options

menu) 12, 157
Environment Options dialog

box 12-13
expanding/ contracting lists 13
Project View options 31

environment variables, MAKE
macros 322, 329

Eraser tool, Graphics editor 255
erasing areas, Graphics editor 250
error handling, MAKE 327,

332-333
error messages 507,512-607

beeps, enabling 470
compilers 508
fatal 507-510
Help compiler 510
logical 160
MAKE 332
makefiles 508
memory 477
run-time 159-160, 508
TFREMOTE 487
TLINK508
TPROFW 495
Turbo Profiler 506

Euclid's method, prime numbers,
testing 368

Evaluate/Modify command 186
Events command 404
Ev~nts pane, ClassExpert 145
Every Line in Module command

(Add Areas menu) 392
Exception handling/RTTI

options 64
exceptions

addresses 355
logging 355-359

620 C++ Use r 's G u ide

reports, WinSpector 355
Exclude from Parent option, Build

Attributes 60
excutable files, system files

cre\;lting 161, 264,361
execution counts and times

areas 455
default behavior 436
passive analysis and 443
program structure analysis 440
program testing and

verification 439
resource monitoring and 440

Execution Profile window 398,446
description 370
local menu 395
Module window 395,398

execution timing, statistics for 440
EXEMAP.EXE 360-361
EXETYPE statement 207
Exit command (Spy menu) 344
exit status, MAKE, ignoring 322
exiting

TFINST 474
Turbo Profiler 368,389
WinSight 344

expanding lists
dialog boxes 13
Project Manager 22

EXPORTS statement 208
Expression Evaluator dialog

box 185-186
expressions

changing 185
conditional 333
current value, viewing 182
debugging 181-188
entering problems with 505
evaluating 186-188
inspecting 188
optimizing 450

external programs, debugging 166
Eye Dropper tool, Graphics

editor 259

F
-f MAKE option 322
Far 50
Far data class option 56
Far data group option 56
Far Data option 56
Far data segment option 56
Far Data Threshold option, 16-bit

compilers 50
Far Virtual Tables, option, 16-bit

compilers 50
Far virtual tables option 57
Fast huge pointers option, 16-bit

compilers 50

Fast Screen Update check box
(TFINST) 468

fatal errors 507-510
features 364
File command 6, 394-395
File Manager (Windows), adding

source nodes 28
File menu commands, Open 222,
230
file names 8,24
file search algorithms 81
files

access
monitoring 437
profiling purposes 440
text files 389
tracking 389

activities, displaying 447
adding to projects 27
batch 322
disks, problems with 500-501
information 388
keyboard mapping 13
loading 377
log 354-359
needed for profiling 390
opening 386,412,504-506
Project Description Language

(.PDL) files 40
searching 412
sources

current routine 409
directories 394
inspecting 401
list of 394
loading 499, 502
options 462
searching for 435
setting directory path 469
statistics 375
viewing 396

swap 501
symbol tables 161
TDDEBUG.386 490
temporary, MAKE 322-323,328
text 389, 412
TFWHELP.TFH 490
TPROF.EXE 473
TPROFW program 490
tutorial, copying 217,317
viewing in IDE 22
WREMOTE.EXE 482

Files option 437
Files window 405,446
Filled Rectangle tool, Graphics

editor 259
Filled Rounded Ellipse tool,

Graphics editor 259
Filled Rounded Rectangle tool,

Graphics editor 259
filled-in frame tools, Graphics

editor 258

Filter command 397, 441, 447
filters 34, 156
Find Execution Point command 163
Find Window command (Spy

menu) 346
finding windows, WinSight 346
flickering screens, eliminating 162
floating-point values, watches, 183,

186
Follow command 411
fonts

dialog boxes, specifying 274
syntax highlighting 14

foreground color, Graphics
editor 244

foreground colors, syntax
highlighting 14

format specifiers 183, 186
formats

messages 510
rich-text 510

formatting watches 183, 186
frame styles, dialog boxes,

choosing 273
frequency collisions, solving 458
Frequency option 396, 401
Full Graphics Saving check box

(TFINST) 468
function calls, viewing 195
functions

G

command-line options 118
debugging 162-166, 195
inspecting 188
listing, WinSpector 356

GDI (Graphics Device Interface) 313
General command (Linker

menu) 368
General options 65
Generate List File option 83
Generate Makefile command

(Project) 31
generating symbolic debug

information 161
Get Info command 388
global symbols, listing 408
Goto command

Disassembly (CPU) window local
menu 410

Module window local menu 391
Graph option 405
graphics

color tables 466
display buffer, saving 468
snow, problems 468

graphics adapters 472
display options 473
display pages 469

EGA 468
Hercules 473
monochrome text-only 473
VGA 468

Graphics editor 243
areas

aligning 251
copying 251
erasing 250
filling with color 249
moving 251
removing 252
resizing 251
selecting 250

background color 244
brush shapes, selecting 247
Color palette 244-246
colors, customizing 246
drawing 248-249
empty frame tools 258
filled-in frame tools 258
foreground color 244
graphics 252-253
inverted color area 245
lines, drawing 248
paint patterns, selecting 248
painting 248
pen styles, selecting 247
text, adding to graphics 249
Tool palette 253-254
transparent color area 245

graphs, file activity 405
Group Box tool, Dialog editor 289
grouping, controls, dialog

boxes 281

H
-h MAKE option 320-322
-h option

TFREMOTE 479
Turbo Profiler 461

Hand tool, Graphics editor 260
hardware

adapter display options,
setting 468

profiling, required 490
requirements, TPROFW 489

header files, referencing 32
Header tool, Dialog editor 292
heaps, listing information,

WinSpector 358
HEAPSIZE statement 209
help 461

accessing, problems 501-502
command-line options

TFINST 475
Turbo Profiler 461

status line 385
Help command (IDE) 6
Help compiler 25, 510
Help systems 510
Help window 430

Hercules graphics adapter 473
Hex Values option (WinSight) 347
hexadecimal values, watches 183,

186
hiding

Color palette, Graphics editor 246
Control palette, Dialog editor 285
IDE SpeedBars 15

, Tool palette, Graphics editor 254
History List Length input box

(TFINST) 470
History option 402
Horizontal Center in Dialog tool,

Dialog editor 297
Horizontal Centers tool, Dialog

editor 296
Horizontal Scroll Bar tool, Dialog

editor 288
Horizontal Static Line tool, Dialog

editor 289
Hot Key tool, Dialog editor 291
hot keys 383,470
hot spots, cursors, setting 234
Huge option, 16-bit compilers 51
hyphen(-)

command-line options 199
makefiles 321,327

-I MAKE option 322
-i MAKE option 322, 333
I/O

disk, active and passive
analysis 443

keyboard,profiling 435
makefiles 328
options 469

i486 option, 16-bit compilers 53
IBM graphic characters,

printing 374
IBM PC compatible, NMI 471
icons 237

attributes, changing 239
creating 237-238
editing 238
images, copying to new color

format 239
program 5
programming 241
resources 239-240
testing 241
used in documentation 1

IDE 16
adding tools 34-35
customizing 12-16
debugging 32-bit executables 159
integrated debugger, starting 160
MAKE 319
menu 6
preferences 16

In de x 621

restoring defaults 15
fU1111illg programs 16,

161-162
saving settings 16
SpeedBars 7, 14-15
SpeedMenus 7
starting 5
viewing program status 7
windows 14

IDE debugger messages 510
identical SpeedBars 15
identifiers 305

creating 306
deleting 307
editing 306
listing 308
managing, Reesource

Workshop 308
moving 307
resources, adding 306

Ignore Case of Symbol check box
(TFINST) 471

ignoring warnings 11
Immediate Caller option

Area Options dialog box 407
Stack Trace dialog box 394

IMPORTS statement 209
include files, MAKE 322
Inefficient C++ Coding options 99
Initialize Segments option 85
Initialized data class option 55
Initialized data group option 55
Initialized Data option 55
Initialized data segment option 55
input boxes (TFINST)

DOS Shell Swap Size 472
Tab Size 468

Insert mode (IDE) 7
Inspect command 401-402, 407
Inspect Expression window 188
Inspect Object command 188
inspecting data 188
Inspection window, Browser 156
Inspector windows 188
installation

TDDEBUG.386 490
TFREMOTE (remote profiling

utility) 478
TPROFW 490
WREMOTE 482

instructions
current pointer 410
displaying 411
pointer, address of 411

INT 3 instruction, problems 506
integers, watches 183, 186
integrated environment 431
Interpret Values option

(WinSight) 347

622 C++ Use r 's G u ide

interrupt key, setting 470
interrupts

adding to statistics collection 403
amount of time in 403
display formatting options 404
execution timing and resource

monitoring 440
MAKE 320
monitoring 437
names 403
NMI471
number of calls to 403
passive analysis 443
pick list 403
program, WREMOTE 484
removing

from statistics collection 403
from window 447

statistics 403
subfunctions 403

Interrupts command 437
Interrupts window 403-404, 446
inverted color areas, Graphics

editor 245

K·L
-K MAKE option 322
keyboard

choosing menu commands 382
input, profiling 435

keyboard mapping files 13
keyboard shortcuts, IDE

windows 13
keys, cursor-movement

(TFINST) 465
keystrokes, recording problems 505
labels, moving cursor to 391
Large option, 16-bit compilers 51
LCD screens 473
leaving Turbo Profiler 389
Left Sides tool, Dialog editor 296
letter symbols, Browser 156
librarian errors 510
Librarian options 83,111
libraries

linking 200, 204
MAKE and 335
specifying 25

Library Page Size option 83
LIBRARY statement 210
Line command 391
line continuation characters,

make files 325
line counts

algorithm analysis 439-440
program verification and

testing 440
line numbers, returning in Edit

window 7

Line tool, Graphics editor 257
lines

drawing, Graphics editor 248
jumping to 391
moving cursor to 391
numbers 498

Lines in Routine command (Add
Areas menu) 392

links, remote, speed of 462
Link Speed radio buttons

(TFINST) 472
linkage

automatic 22
run-time libraries 204
Windows applications 199

linker errors 508-509
Linker menu commands,

General 368
Linker options, project options 84
linkers, command-line

compilers 204
linking resources 220, 225
List Box tool, Dialog editor 288
List View tool, Dialog editor 291
listing functions, WinSpector 356

identifiers 308
running modules 358
running programs 357

LoadLibrary, DLLs 495
local menus 389

Areas window 406
Callers window 401
Disassembly (CPU) window 410
Execution Profile window 395
Files window 405
Interrupt window 403
Module window 391
Overlays window 402
Routines window 408

Local Module command 409
local overrides, project options 41
local system, remote profiling 478
log files

adding comments 354
tracking exceptions 355-359

logic errors 160
logical addresses 355
Longest option 396
loops, optimizing 448-449

M
-m MAKE option 322
machine-dependent constructs 508
macro modifiers (MAKE) 331
macro substitution (MAKE) 330
macros

expansion 329
recording,problems 503-505

MAKE 319

building files 319-323
commands 326-328
compatibility with NMAKE 323
date/time stamps 320-322
directives 323,331-336

conditional 333-336
nesting 334
table of 331

error handling 327, 332-333
explicit rules 319-320,

324-326
overriding 320,322
prefixes 327

file dependency 319-321,324,332
caching 322
setting 324,326

implicit rules 319-320,324,326
building 335
overriding 320,322
prefixes 327
viewing 322

macros 323,328-331,336
autoexecuting 320
defining 322,329-330
duplicate names 329
environment variables 322,

329
multiple 329
null 336
predefined 330-331
undefining 322,329,

335-336
viewing 322

multiple rules 325
online help 320
operators 325, 328, 333
options 319,321-323

overriding 331
setting as defaults 322
suppressing display 322
table of 321

problems with 321, 335
rebuilding files 321
search paths 320, 322, 334
starting 319
stopping 320
syntax 319, 321

macros 329-331
rules 324-326

temporary files 322-323, 328
MAKE macro 330
Make options, project options 96
MAKE.EXE 319, 323
MAKEDIR macro 330
MAKEFILE.MAK 319
makefiles 320

adding macros 329-330
adding text 334
building 323-324
converting project files 31
creating templates 329
debugging 322,328,334
dependents 324-327

errors 507-508
KEEP option 323
naming 322
NMAKE and 323
NOKEEP option 323

'targets 319,326
building 321, 323
multiple 324
recompiling 321
saving 335
symbolic 324
updating 325

viewing messages 334
wildcards and 319,321

MAKEFLAGS macro 330
MAKER 319, 322
Map File options 93
map files, creating 361
Maximum Areas option 419
Maximum Coverage Count

option 419
Maximum Windows Messages

option 419
Medium option, 16-bit compilers 51
member functions, debugging 166
Member Pointers options 66
memory 468

allocation, problems with 503
dump 186
error messages 477
location, watching 187
overlays 402
problems 503
resource options, specifying 266
stop and start points 438
swapping, MAKER 322
usage 388

memory addresses, pointers 187
Memory Model section, 16-bit

compilers 48
memory models, specifying 25
Menu editor 300-301
menus 299

accelerators 303-304
accessing 381
arrows 382
bar, activating 382
creating 300
customizing 466
dialog boxes, including 273
editing 300
ellipsis marks (...) 385
global 381
hot keys 383
IDE 6
ite~s, adding and editing 301-302
local 389
menu statements, moving and

copying 301
opening 382
pop-up menus 302, 382

pull-down menus 382
separators, adding 301
shortcuts 382
System 385
testing 303
TFINST 465
View 389

Menus command (TFINST) 466
message classes 494
Message menu commands

All Windows 347
Options 347

Message Queue section,
WINSPCTR.LOG 357

Message Trace Options dialog
box 347

Message Trace view, WinSight
343-344, 347

messages 512-607
dispatched 347
formats 510
Help compiler 510
makefiles 334
run-time errors 509
saving WinSight 347
symbols 511
tracing, WinSight 343-352
undocumented Windows

messages 348
warning messages 509
Windows, logging 492
WinSight, configuring 343

Messages menu commands
Selected Classes 345
Selected Windows 347
Trace Off 343

Messages options, project
options 97

Microsoft Windows
profiling programs 489
remote profiling 482
Windows Messages

command 492
Miscellaneous Options dialog box

(TFINST) 470
mistakes, undoing, Resource

Workshop 221
Mixed command 411
modal Property Inspector 283
Mode for Display menu

(TFINST) 472
Model option, 16-bit compilers 51
modeless Property Inspector 284
Modify command (TFINST) 473
Module (display option) 396
Module command

Execution Profile window local
menu 397

Filter menu 397
Module window local menu 394
Routines window local menu 409

In d ex 623

module definition files 205-206,214
Module window 395

Execution Profile window 395
Execution Profile window

link 398
local menu 391
printing from 372
sourl=e code, inspecting 401

modules
adding debug information 387
compiling large 322
current, statistics 447
debugging information 161
linking 200
listing running, WinSpector 358
loading 499
viewing .

problems 502
source code in 498

Modules section,
WINSPCTR.LOG 358

Modules with Source command
(Add Areas menu) 392

mouse
choosing menu commands 382
compatibility 381
support 381,462,470,491

Mouse Enabled check box
(TFINST) 470

moving
classes, Rescan 151
Control palette, Dialog editor 285
controls, dialog boxes 278
identifiers 307
resources 266

moving through source code 166
single stepping 164

__ MSDOS __ macro 330
MULTITRG.lDE 29

N
-N MAKE option 322-323
Name option 396
NAME statement 210
names

duplicate 329
macros 329
symbolic targets 324

NEC MultiSpeed and NMI 471
NETBIOS, remote profiling 478
Never Build option, Build

Attributes 60
Never option, 16-bit compilers 49
New command (Resource

menu) 230
New Project command (Project) 24
New Project dialog box 230
New Target command (Project) 29
New Target dialog box 24

adding targets 29

624 C++ Use r 's G u ide

setting target options 24-27
Next command

error message generated by 502
Module window local menu 391
Text File window local menu 412

NMAKE vs. MAKE 323
NMI, systems using 471
NMI Intercept check box

(TFINST) 471
Node Attributes dialog box 28
nodes, Stle Sheets, attaching 39
None option

Area Options dialog box 407
Stack Trace dialog box 394

null macros, MAKE 336
null modem cable, remote

profiling 478
-num prefix (MAKE) 327, 333

o
object files 197,332
object search paths 113
object-oriented programs 445,500
objects 154, 160
ObjectScripting error messages 510
obsolete C++ options 100

online help
command-line options 198
compiler messages 510
MAKE 320

Open command (File menu) 222,
230,386

Open Detail command (Spy
menu) 344

Open Project command (Project) 27
opening

files, Resource Workshop 264
resource projects 224
windows

Call Stack 195
Edit 8
Project 27
Watch 182

Operation
Module window command 392
Radio buttons

Area window 407
Module window 392

operators
conditional 333
MAKE 325,328,333

optimization, MAKE 322
Optimization options

project options 102
settings 109

optimizers, profiling 364
options 469

customizing 465

defaults, restoring 473
display 467-469
input 469
projects, changing 31

Options command 6,407
Options command (Message

menu) 347
Options menu

TFINST 469
Turbo Profiler 429

Options menu commands
Environment 157
Project 153,368

Origin command 410
output

makefiles 334
testing 160
watching program 161

Output Directories options 82
output file, DFA utility 359
overhead, calculating 453
Overlay window 445
overlays

buffer management, overlay event
history 445

demonstration 402
execution timing and resource

monitoring 440
history 402
memory and 402
monitoring 437
problems with 503
profiling tips and techniques 444
statistics 401-402

Overlays command 437, 447
Overlays window 402, 446
Overwrite mode (IDE) 7

p

-p MAKE option 322,462, 491
Paint Can tool, Graphics editor 256
paint patterns, Graphics editor,

selecting 248
Paintbrush tool, Graphics

editor 256,262
Pascal, debugging programs 166
Pascal option, 16-bit compiler 46
passive analysis

active analysis, compared 442
caller information 443
disk 1/ 0 and 443
execution counts 443
interrupts 443
program execution time 442
setting 441

paths
calls

logging 457
sorting 401

setting 462

Pattern style tool, Graphics
editor 261

Pause Program command 166
pausing program execution 166
Pen style tool, Graphics editor· 261
pen styles, Graphics editor,

selecting 247
Pen tool, Graphics editor 255
Per Call option 396
performance analyzer See Turbo

Profiler
Permit 43/50 Lines check box

(TFINST) 468
Pick command 403
Pick Rectangle tool, Graphics

editor 254
platforms, setting 24
PLOST.C and PLOSTP AS.PAS 453
pointers

arrays 448-450
current instruction, returning

to 410
instruction addresses of 411
memory addresses 187

pop-up menus, creating 302
Portability options 100
ports

remote,setting 462
serial 472

Position command 398
postmortem debugging 353
precious directive 335
precompiled header files 78
predefined colors

Project Manager 23
syntax highlighting 14

predefined Style Sheets' 38
preferences

Resource Workshop 221
WinSpector, setting 354

preferences (IDE) 16
Preferences dialog box

(WinSpector) 354
prefixes, MAKE commands 327
Previous command 410-411
PRIMED sample program 368
Printer Options radio buttons

(TFINST) 471
printing

high versus standard ASCII 471
Module window contents 372
WinSight messages 347

printing conventions
(documentation) 1

Processor options, 16-bit
compilers 52

Profile command 409
Profile mode radio buttons 418

Profile radio buttons 396
profile report windows See

windows, profile report
profiling 367

analysis modes
active 418
choosing 439,441
coverage 419
current 388
default 418
passive 419

batch mode 460
defined 1,363
dynamic-link libraries

494-495
end results 439
large programs, display

modes 468
object-oriented programs 445
optimizers 364
passes 419
preparing programs for 434
programspeed 443
programs 368·
refining the process 441
remote 462, 487

commands 485
configuring Windows

driver 483
defined 477
DOS applications 478-479
hardware requirements 478
LANlink 481
LAN system names 482
loading programs 485
local system 478
NETBIOS and 478
network compatibility 478
PS/2 and 480
remote DOS driver

(TFREMOTE) 480
remote systems 472, 478
remote Windows driver

(WREMOTE) 482
serial link 481
troubleshooting 486
user screen and 485
Windows link 484
Windows programs 482

saving profiles 439
slow programs 443
speeding up 443
steps 433
Turbo Profiler 368
Windows programs 489

Profiling Options 441
program execution, stopping 393
program files

adding to Tool menu 34
creating new 8-10
default 8
status in Edit window 8

program group 5
Program Reset command 416

program source windows See
windows, program source

programs
compiling for profiling 435
current 388
execution

controlling 161, 166-167
pausing 166
terminating 167

execution speed, profiling 443
execution time, passive

analysis 442
exit status, MAKE, ignoring 322
external 166
failing 159
file access, monitoring 437
implementation, problems 160
keyboard input

profiling ,435
loading

dynamic-link libraries 494-495
problems 502-504

optimizing 448
profiling 368

dynamic-link libraries 494
no debug symbol

information 504
out-of-date debug symbol

information 504
reloading, problems 501
restructuring, Callers

window 400
runrling 11,16,161-162

nonmaskable interrupts 471
to breakpoints 166
to specific locations 163

single-source 12
size, areas 436
slow 443
source location 394
speed, statistics collection 439
stepping through 164-166
stopping during a profiling

session 436
structure analysis, statistics

for 440
swapping to disk, problems 500
testing 8, 160, 187, 439-440
timing, statistics for 440
Turbo Profiler, sample

programs 368
types, setting 9,11
unfamiliar, studying 441
watching 161
Windows profiling 489

Progress Bar tool, Dialog editor 291
Project command (IDE) 6
Project command (Options

menu) 153,368
Project command (View menu) 27
Project Description Language

(.PDL) files 40
project files

Index 625

compiling 319
converting to makefiles 31
including debug information 161
rearranging in IDE 30
targets

adding 29
changing defaults 24
defining multiple 32
deleting 30
dependent files 22
setting options 24-27
updating 32

testing 8
viewing 22

Project Manager (IDE) 21-32
. adding files 27

creating projects 24-27
glyphs 23
setting target options 24-27
SpeedMenus 7
translators, specifying 29,33

project nodes (IDE) 22
project options

16-bit compiler options 45-56
32-bit compiler options 57
Build Attributes options 60
C++ options 60
Command-line only options 113
Compiler options 69·
compile-time errors, fixing 44
compiling 37,42-43
default 38
Directories options 80
Librarian options 83
Linker options 84
local overrides 41
Make options 96
managing 37
Messages options 97
Optimization options 102
reference 45-125
Resources options 110
setting 37
specifying 37
Style Sheets 38
style sheets, sharing 40 .
viewing 42

Project Tree 22-23
expanding/ contracting lists 22
nodes

adding 27, 29
compiling 33
copying 30-31
deleting 28,30-31
editing 28, 30
moving 30
referencing 32
specifying 27
translating 28, 33
types, defined 22
viewing 31

Project View options 31
Project window

customizing 31

626 C++ Use r 's G u ide

generating symbolic debug
information 161

opening 27
SpeedBar buttons 7

projects
adding source files 27
creating new 24-27
managing 21
options, changing 31
sample .

multi-targets 29
Source Pools 33

settingup 8
prompts

commands and 497
dialog boxes 499
responding to 497
setting 469

Property Inspector 283-284
Purge Comment Records option 84
Push Button tool, Dialog editor 286

Q-R
-q MAKE option 322
Quad word (8-byte) option,

16-bit compilers 54
question mark (?) search

wildcard 391
quicksort, bubble sort,

compared 448
Quit command 368,389,474
-r MAKE option 322
-r option (remote profiling) 462, 481
Radio Button topl, Dialog editor 287
-rc WREMOTE option (remote

clock interrupts) 484
RCDATA resource type,

user-defined resources 314
recompiling makefiles 321
reconfiguring the IDE 12-16
Rectangle tool, Graphics editor 258
recursive routines 450
Redo command (Edit menu) 222
references, browsing 156
Refresh Desktop command 385
Register option, 16-bit compiler 46
Register section,

WINSPCTR.LOG 357
Remote Analyzing check box

(TFINST) 472
remote debugging, configuring 387
REMOTE indicator 486
Remote Link Port radio buttons

(TFINST) 472
remote links 472, 504
remote systems, remote

profiling 478
remote Windows link, hardware

requirements 478

Remove Areas command 407
Remove command 398,447

current areas 447
interrupts 447
Interrupts window local

menu 403
renaming resources 265
repeat counts 183, 187
report windows 433
reports, exceptions, WinSpector 355
requirements, Turbo Profiler 435
Rescan 150-151
resizing

controls, dialog boxes 278
multiple controls, dialog

boxes 280
windows 375

resonance 444
resource (.RES) file 264
resource editors 265
Resource menu commands,

New 230
Resource Project window 226,263
resource projects 223,227

creating 223
opening 224
resources 225
saving 224

resource script (.RC) files 264
resource scripts

/ data, entering 315
dialog boxes, creating 272
resources, saving 267
writing 310

Resource Workshop 264
identifiers, managing 308
Menu editor 300
mistakes, undoing 221
preferences, setting 221
starting 222

resources 219,263,269
16-bit resources 266
32-bit resources 266
binary resource (.RES) files 221
bitmapped resources

saving as files 268
creating 263,310
deleting 266
DLGINIT resource, dialog

boxes 271
editing as text 268
embedding 226,315
identifiers, adding 306
linking 200,220,226
memory options, specifying 266
monitored 363
moving 266
renaming 265
resource script (.RC) file 220
saving 267
statistics for monitoring 440
user-defined resources 313,316'

Resources options, project
options 110

response files 199
command-line linkers 203
MAKE 323

restarting programs (integrated
debugger) 167

Restore Standard command 385
restoring defaults, IDE·

SpeedBars 15
Rich Text Edit tool, Dialog

editor 292
rich-text formats 510
Right Sides tool, Dialog editor 296
RLINK resource linker 339
RLINK.EXE resource linker 337
RLINK32 resource linker 339
RLINK32.DLL resource linker 337
Rounded Rectangle tool, Graphics

editor 258
routines

accessing, problems with 499
active, call stack 456
available for profiling 389
calling other routines~

tracking 437
combined clock 438
jumping to 391
optimizing 448,450
overhead 453
recursive 450
reducing calls to 378
timer data 438

Routines in Module command (Add
Areas menu) 392

Routines window 408-409
RTF files 510
Run command 416
Run command (Debug) 11
Run Count option 419
Run To Cursor button 163
Run to Cursor command 163
running, TFINST 474
run-time errors 159-160,508-509
run-time libraries 204
run-time nodes (IDE) 22

s
-S MAKE option 322
-s MAKE option 322
Save Configuration dialog box 376,

428
Save Configuration File command

(TFINST) 473
Save menu (TFINST) 473
saving

IDE settings 16
resource projects 224
resources 267

resource script files 267
window settings 16

-sc option (ignore case)
TPROFW 491
Turbo Profiler 462

scalars, inspecting 188
Scissors tool, Graphics editor 254
Screen command (TFINST) 467
Screen Lines radio buttons,

TFINST 468
screens

background, customizing 467
color, customizing 467
dual 389
flickering, eliminating 162
LCD 473
lines per, setting 468
repainting 468
snow, problems with 468
swapping 467, 469
updating 469

scripts 309-310
scroll bars 383
-sd option (set source directories)

TPROFW 491
Turbo Profiler 462

Search command
Module window local menu 391
Text File window local menu 412

Search command (IDE) 6
searches 391
SECTIONS statement 211
Segment Names Code options, 16-

bit compilers 54
Segment Names Data options, 16-bit

compilers 55
Segment Names Far Data options,

16-bit compilers 56
SEGMENTS statement 211
Selected Classes command

(Messages menu) 345
Selected Windows command

(Messages menu) 347
Selector tools, Dialog editor 286
separate clock, timer data 393
serial links, remote 472
Session button 386
Session radio buttons 387
session saving 387
Set Hot Spot command (Cursor

menu) 234
Set Range command 188
settings

breakpoints 166
project options 37
reconfiguring IDE 13-16
saving IDE 16
window 16

shapes, drawing, Graphics
editor 249

SHARE command (DOS) 323
shortcuts, keyboard, IDE

windows 13
shortcuts See hot keys
Show Project Node option 22
single-source programs 12
slash (/)

command-line options 199
MAKE options 321

Small option, 16-bit compilers 52
snow 468
Sort command

Areas window local menu 408
Callers window local menu 401

Sort radio buttons 396,405
sort types compared 448
source code

debuggbrrg 161-163,167,187,196
editing 195,309
machine-dependent

constructs 508
moving through 164~166
viewing 161, 195

Source Directories options 80
source files 21

accessing 23
adding to projects 27
Edit window 23
rearranging in IDE 30
viewing 23
WinSpector reports 359

source modules
choosing 394
search order 390
viewing 390

source nodes (IDE) 22
adding 27
attributes 28-29
deleting 28
referencing 32
specifying 27
translating 28
viewing 31

Source options 74 .
Source Pools 32-33
Space Horizontally Equal tool,

Dialog editor 297
Space Vertically Equal tool, Dialog

editor 297
Special command (SpeedMenu) 34
SpeedBars (IDE) 7, 14-15
SpeedMenus

ClassExpert 144
IDE 7,34-35

Spy menu commands
Exit 344
Find Window 346
Open Detail 344

spying windows 347
SRCPOOL.IDE 33

In d ex 627

stack
calls, size of 394
IDE options 25
tracing into 354

Stack radio buttons 394
Stack trace dialog box 394
Stack Trace section,

WINSPCTR.LOG 356
STACKSIZE statement 212
standalone bitmap files,

creating 230
standalone cursor files, creating 233
Standard Libraries options (IDE) 25
Start Time option 405
Start! command (WinSight) 344
starting

Browsers 154
ClassExpert 143
MAKE 319
Resource Workshop 222
TOUCH 321
WinSight 343
WinSpector 353

statements
checking 160
debugging 162
execution, verifying 440

Static Frame tool, Dialog editor 289
Static Picture tool, Dialog editor 290·
Static Rectangle tool, Dialog

editor 289
Static Text tool, Dialog editor 287
statistics

accumulation, disabling 420
accuracy 443-444
areas 406
collection 436-437,447

automatic 388
disabling 393, 436
enabling 393
normal 393
options 407
program speed 439
type to collect 439

current
area 447
removing 397
routine 409

default 436
displaying 370-371, 396, 439
erasing 398
file activity 404-405
files, writing to problems 501
filtering 397, 438, 441, 447
limiting 438
module 396
overlays 401-402
partial 438
printing 373
problems 501
program execution speed 443
removing 395-396

628 C. + + Use r 's G u ide

sorting 395-396
start and stop points,

maximum 438,
time 396-397
types of 437
viewing 395

choices 395
number of passes 396
source code with 375
time 396

status bars, IDE 7
status line 384
Status Window tool, Dialog

editor 292
Step Over button 166
Step Over command 166
stepping through programs

164-166
Stop option 405
Stop! command (WinSight) 344
stopping program execution 166
strings

MAKE macros 322
searching for 412, 498
substitutions 330

structure analysis, statistics 440
structures 187":188
STUB statement 213
Style Sheets

managing 38
nodes,attaching 39
project options 38-40

Sub functions command 403
SUBSYSTEM statement 213
suffixes directive 335
swapping memory, MAKER 322
SYM files 356,361
Symbol Declaration window,

Browser 155
symbol names, problems 500
symbol tables 161,504

adding to files 161
dynamic-link libraries 494
invalid 504

symbolic debug information 161
symbols

code, browsing 155 .
disassembled 410
messages 511
problems 505

syntax
command-line compilers 198
format specifiers, watches 183
MAKE 319,321

commands 326-328
explicit rules 324-326
implicit rules 326
macros 329-331

TOUCH 321
Syntax Highlighting option 14

System Information section,
WINSPCTR. LOG 358

T
-t option (starting directory)

491-492
Tab Control tool, Dialog editor 290
'Tab Size input box, TFINST 468
tabs, setting 468,506 .
Tandy 1000 and NMI 471
target files 21
Target Model options (IDE) 25
target nodes (IDE) 22

adding 29
attributes 30
deleting 30
multiple 32
types, defined 29
updating 32
viewing 31

target platforms, setting 24
TargetExpert 25,30
TargetExpert dialog box 30
Tasks section, WINSPCTR.LOG 357
TDDEBUG.386 file 490
TDRF (remote file transfer

utility) 478,486
templates, makefiles 329
Templates options 67
temporary files, MAKE 322-323, 328
Terminate Program command 167
terminating programs 167
testing

applications 33, 162
bitmaps 231
cursors 235
dialog boxes 275
icons 241
menus 303
program setup 8
programs 160, 187
user-defined resources 316

text
adding to graphics, Graphics

editor 249
editors 469, 500
files

searching 412
viewing 389

makefiles 334
resources, editing as 268
searching for 391, 505

Text Edit command (View
menu) 23

Text Edit tool, Dialog editor 288
Text editor 8, 197,309-310
Text File window 413
text files, MAKE 323
Text tool, Graphics editor 257

TFCONFIG.TF 376
TFINST474

command-line options 475
exiting 474
main menu 465
options, saving 473
TPROFW, using with 491

TFREMOTE (remote profiling
utility)

configuring 479
customizing 479
error messages 487
installing 478
LANlink 480
loading 480
problems with 504
serial link 480

This Line command (Add Areas
menu) 392

This Module option 394
This Routine option 394
time and counts profile listing 372
Time option

Execution Profile window 396
Interrupt window 404

time stamps (MAKE) 320-322
timer

combined clock 438
data grouping 438
inaccurate results 457
separate, combined clock,

compared 393
setting 419
sound routines 457

Timer radio buttons 393,407
Tiny option, 16-bit compilers 52
title bars 383
TLINK 201

command-line syntax 201
configuration files 203
errors 508
file-name extensions 202
libraries 204
option~overriding 203

.TLINKCFG 200
TLINK32 201, 203
TLINK32.CFG 200
TMAPSYM.EXE utility 360-361
Tool Bar tool, Dialog editor 292
Tool commandiIDE) 6
Tool menu

adding files 34
customizing 16

Tool palette, Graphics editor
253-254,296

TOOLHELP.DLL 353
tools 33-35
Tools command (Options) 34
Tools dialog box 34
Tops tool, Dialog editor 297

TOUCH utility 321
TPROF

error messages 506
modifying with TFINST 473

TPROFW
command-line options 491
configuring 490
dynamic-link libraries,

profiling 494
error messages 495
installation 489-490
list of files 490
message classes 494
profiling Windows,

programs 489
running 492
switching applications 492

Trace Into command 165
Trace Off command (Messages

menu) 343
tracing messages

WinSight 343-345
WinSign 347

tracing into code 165, 195
tracing messages (WinSight) 347
Track Bar tool, Dialog editor 292
transfer macros 34
translating 359
translating project nodes 28, 33
translators 29,33
transparent color area, Graphics

editor 245
Tree View tool, Dialog editor 291
TSR programs, display

swapping 469
Turbo Assembler 368
Turbo Debugger 159,359
Turbo language products 435
Turbo Profiler 368
tumingoff

command-line options 199
syntax highlighting 14

tutorial 3,217,317,380
typographic conventions

(documentation) 1

u
-U MAKE option 322
UAEs (Unrecoverable Application

Errors) 353
unconditional breakpoints,

setting 168
undefining MAKE macros 322, 329,

335-336
Undo command (Edit menu) 8, 222
undocumented Windows

messages 348
Uninitialized data (BSS class)

option 56

Uninitialized data (BSS group)
option 56

Uninitialized data (BSS segment)
option 56

Uninitialized data option 55
unions, watching 187
updating targets 32
Up-Down tool, Dialog editor 291
Use Borland optimizing compiler

option 57
Use Intel optimizing compiler

option 57
USER and GDI heap section,

WINSPCTRLOG 358
user interfaces, testing 160
user screen

display buffer 468
remote profiling 485
updating 469

User Screen Updating radio buttons
(TFINST) 469

user-defined resources 313-316

v
-v option (video hardware) 463
values

changing 185-188
checking 160-161,181
decimal watches 183, 186
expressions, viewing 182
floating-point, watches 183,186
hexadecimal, watches 183, 186

variables
debugging 185
values

changing 185,187
checking 160-161, 181

verbose stack trace 354
version number information 386
Vertical Center in Dialog tool,

Dialog editor 297
Vertical Centers tool, Dialog

editor 297
Vertical Scroll Bar tool, Dialog

editor 289
Vertical Static Line tool, Dialog

editor 289
video adapters 472

display pages 469
options 463

Video Graphics Array Adapter
(VGA), line display 468

View command (IDE) 6
View menu 159, 389
View Source command 195,411
viewers 33
viewing

arguments 195
compile-time errors 45

In d ex 629

current windows 345-346
expressions 182
function calls 195
project files 22
project nodes 31
project options 42
source code 161,195 .
source files 23
windows, current 347
WinSpector reports 354

views, WinSight 343-344
Virtual table class option 57
Virtual table segment option 57
Virtual Tables options 68

w-z
-W MAKE option 322
-w option (save option settings),

TFREMOTE 479
warning beeps, enabling 470
warnings 508-509,512-607

ignoring 11
run-time errors 509

Warnings options 95-97
Watch command 182
Watch Properties dialog box,

settings, losing 183
Watch window 182
watches 182-186
When Full command 405
whitespace, MAKE macros

329- 330
wildcards

DOS 319,321,412,505-506
searches 391

WIN_TEST.IDE 10
Window command (IDE) 6
window messages

logging to the TPROFW
window 492

setting number tracked 419
Window Procedure Messages

dialog box 493
Window procedures 396, 408
Window Tree view, WinSight 343-

345
Windows

programs, exception
addresses 355

system information, listing 358
windows

activating 384
active, defined 383
Areas 399-408 .
Callers 401
children 346
close box 383
closing 383
customizing 466

630 c++ User's Guide

dialog boxes, choosing 273
Disassembly (CPU) 411
Execution Profile 395-398
files 405
Interrupts 404
linking 375
locating, WinSight 346
Module 390-395
moving 384
multiple 413
opening 383

Call Stack 195
Watch 182

Overlays 402
panes 383
problems 503
profile report 446
program source 445
properties 383
report 433
resizing 375,384
restoring 385
routines 409
saving settings 16, 376
scrolling 383
spying 347
viewing current 345-347
WinSight 343
zooming 383-384

Windows all functions exportable,
16-bit compilers 46

Windows API
bitmaps,programming 232
cursors, programming 237
dialog boxes, programming 276
icons, programming 241

Windows applications
creating 10-12
32-bit executables 159
IDE options 25-27
linking 199

Windows command (TFINST) 466
Windows messages, tracing 352
WinSight 343-353

Class List view 344-345
configuring 343
exiting 344
Message Trace view 347
messages, tracing 343-352
printing messages 347
saving messages 347
starting 343
views 343-344
Window Tree view 345
windows 343

locating 346
spying 347

windows hierarchy lists
345-347

WINSPCTRBIN 353, 360
WINSPCTR.INI, commands,

editing 354

WINSPCTRLOG 353,355-359
DF A utility 359
Disassembly section 356
Message Queue section 357
Modules section 358
Register section 357
Stack Trace section 356
System Information section 358
Tasks section 357
USER and GDI heap section 358

WinSpector 353-361
adding source files to reports 359
appending new reports 354
BUILDSYM.EXE utility 361
exceptions, reports 355
EXEMAP.EXE ·360-361
functions, listing 356
heaps, listing information 358
including line numbers in

reports 359
locating last message

received 357
modules, listing running 358
overwriting previous reports 354
preferences, setting 354
processing data 360
programs, listing running 357
reading log files 355-359
stack pointers 356
starting 353
system information, listing 358
TMAPSYM.EXE utility

360-361
utilities 360-361
viewing reports 354
WINSPECTORLOG,

configuring 354
Word alignment (2-byte) option,

nl6-bit compilers 54
W ordStar-style

cursor-movement commands 470
Wrap option 405
WREMOTE

command-line options 484
configuring 482
error messages 488
hardware requirements 478
software requirements 482

writing resource scripts 310
Yes option 411
zoom icon 383-384
Zoom tool, Graphics editor 255

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431- 1000. Offices in: Australia,
Belgium, Brazil, Canada, Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, Singapore, Spain, Sweden, Taiwan, and United Kingdom . Part # WBC1350WW21770

ISBN: 0-672-30922-X

