
OPERATOR GUIDE TO THE PLURIBUS IMP

<<Version = 1200 Patch 7>>

This is a general guide to running the IMP for people who are not IMP

programmers. Familiarity with Pluribus hardware and general systems

concepts is assumed.

Some of the commands described in this document require that

the site have the override capabilities enabled on their Node. The

site operator must call the NOC to obtain this capability before they

can use these commands.

10. 1 I N'TRODUCTI ON

Because the new version of software (PSE 1200 Patch 7) does

not support DDT, without NOC intervention, a diagnostic operating

system was created to help diagnose IMP problems. This diagnostic

must be run with the IMP off-line to the network. Before loading

in the diagnostic operating system, the modem connections to the

IMP must be uncoupled. The diagnostic software is not compatable

with the operational version of IMPSYS. If the modem connections

are not uncoupled, and the diagnostic system is loaded, the IMP

w111 not come up.

The commands for the diagnostic software are the same as

those for the operational version of IMPSYS. These can be found

in the preceding pages of this manual. Some commands need the

OVERRIDE capability set, this is true with the diagnostic software

also, but it is not required that NOC intervention is needed to

obtain the OVERRIDE capability. With this diagnostic software,

all functions of IMP DDT can be accomplished without NOC intervention.

10.2 BUILDING VHA BY HAND

A. Turn OVERRIDE ON <cntrol-o>.

B. VHA Locations

2,4A20/ SERIAL NUMBER OF VHA

2,4A22/ LENGTH OF VHA TABLE

2,4A24/ ALWAYS ZERO (0)

2,4A26/ VHA ALWAYS ONE (1)

2,4A28/ VHA 2

2,4A2A/ VHA 3

ETC. ETC.

Starting with location 2,4A28 the VHA would be entered as:

Host Port = 0 IMP = 5

<2,4A28/> 0 <005> would be VHA 2

or

Host port = 6 IMP 21

<2,4A2A/> 0 <616> would be VHA 3

All locations must be entered as hexadecimal numbers.

INDEX

LOCAL DISPLAYED INFORMATION

1.1 CRT

1.2 CONTROL PANEL

1.3 RLD CARD LIGHTS

1.4 PIO CARD LIGHTS

2 RUNNING IMP DDT

2. 1 IMP PAGE TYPES

2.2 DDT COMMANDS

3 THE OPHELP COMMANDS

4 STARTING, STOPPING, AND RELOADING

4.1 RELOADING BY CASSETTE

4.2 Reloading from the RLD board

5 MANUAL RESOURCE CONTROL

5.1 PROCESSOR CONTROL

5.2 MEMORY CONTROL

5.3 BUS CONTROL

5.4 DEVICE CONTROL

6 HOST AND MODEM CONTROL

6. 1 LOOPING ANO UNLOOPING

6.2 SWAPPING DOUBLED INTERFACES

6.3 HOST PARAMETER BLOCKS

6.4 MODEM PARAMETER BLOCKS

6.5 HOST TESTING

6.6 MODEM TESTING

7 RUNNING MESSAGE GENERATOR

8 UNDERSTANDING THE STAGE SYSTEM

8.1 A BRIEF DESCRIPTION

8.2 USEFUL STAGE VARIABLES

8.3 STAGE DIAGNOSTICS - what a processor is complaining about

9 TRAPS

9.1 TRAPS - GENERAL

9.2 A GUIDE TO THE TRAPS - interpretation and diagnosis

9.3 TRAP LOCATIONS FOR <<IMP-1200>>

10 DIAGNOSTIC SOFTWARE

10.1 INTRODCUTION

10.2 BUILDING VHA BY HAND

LOCAL DISPLAYED INFORMATION

1.1 CRT DISPLAY

The top part of the terminal screen displays hosts and modems

status and traps that have been sent to the NMC.

Format (al 1 in hex):

Bxxx Bxxx Bxxx Bxxx Bxxx Bxxx Bxxx Bxxx Bxxx Bxxx Bxxx

Dxxx Dxxx Dxxx Dxxx Dxxx Dxxx Dxxx Dxxx

TRAP# PROC# COUNT REG1 REG2 REG3 REG4 REGS REG6 REG7

Each status word for hosts/modems consists of 4 digits of

coded information as explained below:

MODEMS STATUS

Digit

I leftmost I
I I

I 2

3

4

Description

I/D Bus Currently Being Used
C = Modem Interface on E-bus
D = Modem Interface on F-bus

Modem interface number

Interface LOOP Status
0 = NOT LOOPED
4 = INTERNALLY LOOPED
8 = EXTERNALLY LOOPED

Interface (line) Status
0 = UP
1 = DOWN
F = NEVER EXISTED

Normal Value

D (F bus)

I O thru 7

0 (NOT LOOPED) I
I

0 (UP)

HOSTS STATUS

I Digit Description Normal Value

!~~~~~~~~~~~~~~~~~~~~~~~-
! 1

I 1 eftmost I
I I

I 2

I/O Bus Currently Being Used
A

B

Host Interface on E-bus
Host Interface on F-bus

Host interface number

I 3 I -----NOT USED

I I Interface (host) Status

I 4 I 0 = UP

I I 1 DOWN

I I 2 = TARDY

I I 3 NON EXISTENT

I I 4 IMP SOFTWARE NOT INITIALIZED

I I or HOST RECEIVED QUIT

I I F NEVER EXISTED

B (F bus)

I O thru 12

Always O

0 (UP)

1.2: CONTROL PANEL

OPERATOR PANEL: The standard display on the operator panel of a

running IMP is:

REGISTER LIGHTS - not relevant

ADDRESS LIGHTS a multiplexed display, which usually displays

which processors are running the system by blinking the bit

corresponding to a given processor. The lowest numbered

processor is bit #0, so for a system with processors 12, 13, 32, &

33, the assignment would be bit#O=P12, bit#1=P13,

bit#3=P33. Processors which are discovered (bus couplers exist) but

which are not running the system fully are represented by a

non-blinking bit position. If either processor on the bus with the

operator panel is running STAGE, the number of the stage being

run is displayed by the bit number of the left-most bit which is

off. Thus, if a processor is running stage 5, bit 5 and all bits to

the right of it would be off. If one processor is running stage

and the other is running the system, the blinking processor display

would be overlayed on the stage running display. Lines are

displayed in address lights 15-8. Line 1 = bit 15, and a bit off

indicates a line declared up by the IMP. A line displayed as up in

the lights will typically not be declared up by the network for

another minute or so.

DATA LIGHTS - usually display what hosts are up and in a running

system. Hosts are displayed by bits 15-0 in the same manner as lines

are. A bit off indicates that a host is declared up by the IMP.

Thus, a display of 3F1F in the data lights indicates that hosts 0, 1,

8, 9 and 10 are up. When the reloader/dumper is running, the

current address is displayed in the data lights. this will count if

a reload or dump is in progress. The Stage running will be

displayed in the address lights.

1.3: RLD CARD LIGHTS

The RLD card has three lights arranged vertically on the front edge

of the card. The top light flashes each time the special reload

header is detected coming into any of the modems connected to the RLD.

The middle light indicates that at least one such header has been

detected since the last time the bus was reset. The bottom light

flashes each time a reload packet with correct checksum is

detected and used to cause an appropriate bus transaction (store

to memory, write a register, etc). When a reload using the RLD card

is in progress (and being successful), the top and bottom lights

will flash together, and the middle light will stay on. If only the

top light flashes, it indicates that the checksums are bad on the

received reload packets (due possibly to a flakey line or interface).

1.4 PIO CARD LIGHTS

The lights on the edge of the PIO card indicate the highest pid

value which has been written to the card and read yet. Its main

value in a running system is to provide an indication of I/O bus

activity. Thus, if the processors connected to the console are both

halted for some reason (and therefore not driving the control

panel), some indication of life in the system can be gotten by

looking at the PIO cards.

2 RUNNING IMP DDT

2.1 IMP PAGE TYPES

The IMP thinks of parts of itself as having type numbers. These

parts are called pages (logical pages, as opposed to the physical page

numbers for chunks of core). These are assigned as follows:

Type (Hex): Page Name

0 Reliablility Code

2 DDT Code

4 Warm Code

6 Fake Host Code

10 Spare Reliability Code

12 Spare DDT Code

14 Spare Warm Code

16 Spare Fake Code

20 IMP Variables

22 IMP 2nd Variables

30 IMP Buffers page

32 IMP Buffers page 2

2.2 DDT COMMANDS

Numbers

The new DDT works solely in hexadecimal. The radix commands

<esc> 0, H, D and the radix specifiers"'" , II} II have all

been removed or applied to other purposes. Another character ($) is

now used to specify decimal input rather than hexadecimal and is the

only exception to the hexadecimal rule.

Commands

x,y/ This is the basic examine command of DDT to return the

contents of a memory location. There are two cases of this

command depending on the value of Y. If Y is a local address

(ie Y is less than 4000) then X is the mask of processors

whose memory is to be examined (this means that the answer

returned will be from one of the processors specified by the

mask X). A special case is a ne9ative mask value and sets

the processor mask to be all those that are known to exist

to stage BD. In the other case, when Y is greater than 4000

and therefore a reference to common memory, iyt then specifies

the map setting to use in the reference. In this case X can be

either a logical page (x < 200) or a physical page (x is odd

or x > 200).

x/ This is a simplified case of the above and does an examine

of the address X using the last processor mask specified if

X is a local address or the last map specified if X is a

common memory address address.

(The following command requires the OVERRIDE CAPABILITY)

x,y<cr> Carriage return is used to insert new values into memory and

close the location currently examined. X and Y will be inserted

into the current location and the next location respectively

if the current location is still open and then the location is

closed. A location is open when it has been examined but not

closed with a carriage return or linefeed.

(The following command requires the OVERRIDE CAPABILITY)

x<cr> This is just the one argument form of the above and stores just

one number into memory

<er> This is the no argument form of the above and stores nothing

but closes the location.

<lf> Linefeed closes the current location and examine the next location

x y Space adds two arguments together and the result becomes one

argument. eg "x y/" will open the location at x+y.

 Delete (=rubout) will zero all current input and will restore DDT

to the state it was at the last typeout.

of typing the current address. It can no longer be used to specify

a decimal number.

$ Dollar sign is now used to say that the number just typed in is

a decimal number.

Typeout

All typeout from DDT are four digit hexadecimal.

Examine Formats

a,b/x y

This is the usual format of an examine. If a,b is a

local memory reference, then only x will be printed. Note that

tne pr~essor that did the reference is no longer specified.

If a,b is a common memory address then x and y are the

contents of the main and spare pages if they differ. If some

kind of error occurs in the reference then the x and y are

replaced by the appropriate error messages for the corresponding

pages.

Error Messages

There are two formats of error messages for the two situations

where an error can occur. A system wide error can occur causing

Stage to put the system into the stand-alone DDT mode (if enabled

by DEBUGM). In this situation the bit of the processor reporting

the error is printed first followed by the error followed by the

location of the error. The second type of error is a store or

read error as a result of a DDT reference. In these cases the

error is typed first followed by a number specifying the mask

of processors that failed the reference.

Errors

QUIT The location referenced by DDT resulted in a QUIT or an unexpected

QUIT occurred in the running of the system. In tfie system QUIT

the address returned by DDT is not the address of the instruction

producing the QUIT but the address of the 001 Trap specifying

the quit. The location of the QUIT can be found in the snapshot area

in the Stage variables area.

NX Blt returned, a non-existent memory code, as a result of some DDT

reference.

FRMT BLT returned a format error in response to some DDT reference.

This usually means that DDT had set up parameters improperly for BLT

or that a reference to a nonexistent processor was made.

TO Timeout- BLT took too long to complete a reference and aborted

IL An attempt was made to execute a non-instruction

FADE The halt all processors trap was encountered in the running of the

system

SPECIAL FEATURES:

FC,X ·c "Crosspatch to a Node x1 s tty.

"D "CNTL-D - COMPLEMENT VALUE OF THE ON/OFF SWITCH

TO EITHER ALLOW OR DISALLOW TRAPS ON THE terminal.

"L "CNTL-L" - ECHOS A "L (FORM FEED) TO THE TTY.

"CNTL SHIFT P" UNDOES CROSSPATCHS AND RESUMES TALKING TO DDT.

(This feature will be useful when users are using the

crosspatch to talk to another Node in the Network)

~*************

The site user must notify the NOC before they can use the

following command. This capability is required to perform

some of the privileged commands in this document.

"o "CNTL-0 - COMPLEMENT VALUE OF THE ON/OFF SWITCH

TO EITHER enable or disable the override capability.

3. THE OPHELP COMMANDS

#NH nice stop and halt forever

#NS nice stop and restart

#NR nice stop and reload

The "nice stops" cause the IMP to observe all network

protocols before going down (send IMP going down

message, turn off hosts before modems, etc.). Nice

stops shouTd be used whenever possible if the IMP is on

an operational net to avoid perturbing the rest of the

net. After a 'halt forever' stop, DDT may be started

by pressing RESET and AiTN, or by 308 (R0=308, RS=FCOO,

RUN, from the console), provided the system is in DEBUG

mode.

#PH panic stop and halt forever

#PS panic stop and restart

#PR panic stop and reload

<ESC> C

Panic stops do exactly that, and are a good way to

quickly cause the machine to halt or reconfigure (or

reload) either when there is no network to worry about,

or when things have to happen in a hurry.

clear illopr tables: zeroes all trap information saved

in common memory

(The following commands in this section require OVERRIDE CAPABILITY)

#HU unloop host #

#HL loop host # at interface

Host looping and unlooping changes will be visible

immediately in the console lights (in contrast to

modems), unless the host is broken.

#MU unloop modem #

#ML loop modem # at interface

Looping or unlooping a modem Wi 11 result in some

combination of 5C1, or 5C4 traps being generated.

Looped state wi 11 not be visible in the 1 ights unti 1

tl1e line is declared up by the IMP (1-2 minutes).

Modems are numbered from 0 to 7 and correspond to

switch settings from 15 to 8 on the interface.

#HB return address for param block of host# (0,1, ...)

#MB return address for param block of modem# (0,1, ...)

The address is typed out and DDT is left in the same

condition it would be in if you had typed the address

in. Therefore, to open loc +20 in the parameter block

for host 2, type "2,HB" and then " 20/". (see

description of parameter blocks.)

KI return address of iokill

useio and iokill are tables which describe what I/O

to ignore and not ever try to discover under any

circumstances (iokill).

Both tables are structured in the same way:

Each table consists of 4 words, each of which controls

16 possible device addresses (one per bit) starting

from a corresponding base address in a table called

iobase.

iobase E100

E200

F100

F200

The least significant bit (=bit O or the "1 bit")

selects the base address; since each device occupies

10H locations, the device at the "2 bit" (or bit 1)

selects the device at <base+10H>.

Therefore, to tokill a device at E220, turn on the "4

bit" (bit 3) in the second word in iokill (base= E200)

by loading an 0004 into it. To iokill F1CO, turn on

the 1000 bit of word 3 in iokill (by entering 1000).

To select F100,F120,F1CO,F1EO, add all the bits

together (0001+0004+1000+4000+8000) and load a 0005 in

word 3.

Use of the features: useio is useful both as

information about what the system has discovered. and

as a means of forcing the system to switch to the Other

interface of a doubled pair. This is accomplished by

removing the bit for the member of the pair currently

being used. The removed interface will be rediscovered

by the system and reentered in the tabel in about 1

minute. Adding bits to useio may cause the system to

go through stage (since if the device doesn't exist we

will get quits) and is NOT recommended in general, but

can speed discovery of devices that do exist. Removing

F devices in doubled M/1 machines may cause the system

to stage because of the asymmetry of the m/i-m/i path.

iokill provides the mechanism for permanently removing

devices from the system. Setting a bit in iokill kills

the device and causes the corresponding bit to be taken

out of useio. Turning off the bit causes the system to

be able to discover the device again.

•

4. RELOADING

4.1 RELOADING USING CASSETTE

All cassette tapes are set up to load and start the Imps without

operators' intervention. To load from cassette, place the cassette

tape in the reader and depress the RESET and LOAD buttons on the

operators' panel. The Imp will automatically startup after the

cassette tape is read in and rewind to load point.

4.2 RELOADING USING THE RELOAD CARD

Since this operation is only initiated by the NMC using a NMC NU

system, there is nothing to do at the site. The RLD card was

meant to be used when it is not possible to get help in reloading

a dead IMP. It is generally more reliable and faster to use

IMPSYS cassette tapes.

•

5. MANUAL RESOURCE SWITCHING

5.1 PROCESSOR CONTROL

*** This section requires the OVERRIDE capability. ***

Turning processors on and off

There are several ways to change a processor's interactions with

the system. All involve setting the processor mask bit (the bit

which the processor would blink on the control panel) in one of

four words in common memory. These words and their effects are

described below.

prokil 0,40C6 This causes the specified processor not to be

restarted if he stops. Furthermore, the system

will not try to discover whether his control

register (R15) is there. This allows machines to

run in split mode without interference (reading

R15 can halt a running processor).

prohng 0,40C8 This will hang the specified processor at a late

stage. He will participate in checksumming,

etc., but not in running the IMP (or blinking his

bit).

ampman 0,40CA Ampman is a block of three words allowing various

kinds of manual amputation. Prohlt and preamp

are the second and third words in the block. The

first word (ampman) is copied by each processor

into its buskil word (see below. This is the

preferred method of removing common buses.

prohlt 0,40CC Setting a processor's bit in prohlt also causes

it not to be started. Also, if it is already

running, it will halt itself cleanly (may take

1-2 minutes).

proamp 0,40CE Proamp causes the whole processor bus to be

amputated by disabling forward transfers in its

bus couplers. This is the positive way to turn

off a processor who may be causing damage to the

system. (but both processors on . the bus get

turned off when you do this.)

5.2 MEMORY CONTROL

There are two ways to turn off memories in the IMP. The first is

by setting bits in a block called memkil to turn off individual

4K pages, and the second is by amputation of a whole memory bus

using a word called buskil. [[MEMORY KILLING USING buskil NOT

IMPLEMENTED YET]]

memkil 032A (4 word block) Setting a bit causes the

corresponding 4K memory segment to not be used.

Correspondence is as follows:

memkil - 0 (bit 0) to 1EOO (bit 8000)

memkil+2 - 2000 - 3EOO

memkil+4 - 4000 -5EOO

memki1+6 - 6000 - 7EOO

(so to turn off the 4200 and 4400 pages, set memkil+4 to 0006)

buskil 0328

5.3 BUS CONTROL

word for removing busses (type -: to DDT first to

change all locals) I/O busses (NOT memory busses

yet) may also be turned off by setting the

appropriate bits in a word in local memory called

buskil. The procedure is described below. Since

ampman (see above) is copied into buskil, set the

bits into ampman first (see above).

Bit assignment: The bit assignments for buskil are:

0 - 1bit - EOOO bus

- 2bit - FOOO bus

2 - 4bit - O memory bus

3 - 8bit - 4000 memory bus

buskil 0328 word for removing busses. (Type to DDT

first.)

5.4 DEVICE CONTROL

useio and iokil Turning devices on or off is usually done by

setting or clearing bits in the useio or iokill

blocks. The KI ophelp command returns

the starting addresses of the useio and iokill

blocks.

6. HOST AND MODEM CONTROL

6.1 LOOPING AND UNLDDPING

*** This section requires the OVERRIDE capability. ***

Changing the looped state of modems or hosts is done by use of

the appropriate OPHELP command:

#HU - unloop host #

#HL - loop host # at interface

#MU - unloop modem #

#ML - loop modem # at interface

6.2 SWAPPING DOUBLED INTERFACES

There are two ways to swap to a spare interface for machines with

separate Mand I busses, but only the first of these will work with

M/I machines: The first way (works for all types of machines

with double interfaces) is by setting the mask bit of the device to be

killed into the appropriate word in the i ok i 11 block. The

starting address of the iokill block is gotten by use of the "KI"

OPHELP command (see section 3). Note that this is the ONLY way to

swap on M/I machines, since the program tries very hard to swap back

to an F bus interface if one exists. The second way is to delete

the mask bit of the device to become the spare from the appropriate

word in the useio block (get the starting address of useio by

the "KI" OPHELP command, as explained in Section 3.)

6.3 HOST PARAMETER BLOCKS

Parameter blocks are where the state of each logical interface

(doubled is one logical interface) is maintained by the program. The

#HB OPHELP command is used to find the starting address of the

parameter block # (see Section 3). Interesting entries: (see the

listing for a complete description)

001F - (low byte of 001E) Host State.

0 - up

- ready line down

2 - tardy

3 - nonexistent

4 - IMP software not initialized

OOOE - Transmit pid (hardware switch settings)

OOOF - Receive pid

0020 - Interface address (on I/O bus) (if this address doesn't

look anything like an I/O address, you may have gotten

into the parameter block of one of the fake hosts or a

VDH) This is the address of the interface currently being

used, if it is doubled.

0022 - Spare interface address (on I/O bus). Or O if there isn't

an acceptable spare. [NOTE SUCCESSFULLY SWAPPING

INTERFACES CAUSES THE PREVIOUS SPARE TO APPEAR AT 0020,

AND THE PREVIOUS MAIN TO BE AT 0022]

003C - Host throughput counters. These are a block of B

throughput counters which are sent to the NMC and then zeroed

host every minute. They are:

3C - internode messages host-to-IMP

3E - internode messages IMP-to-host

40 - internode packets host-toIMP

42 - internode packets IMP-to-host

44 - internode messages host-to-IMP

46 - intranode messages IMP-to-host

48 - intranode packets host-to-IMP

4A - intranode packets IMP-to-host

002C - Host dead subcodes. This has the reason why a host went

down. Or 0 if the host is up. see 1822 manual.

002E - IMP number for this host. This is of interest if the IMP

uses multiple IMP numbers.

6.5 MODEM PARAMETER BLOCKS

The start of the modem parameter block for a given modem is

gotten by the #MB ophelp command. Remember that modem numbers start

with 0, and the IMP adds to the device number set into the

switches of the modem to ensure that this is so. Interesting

locations (displacements into the block):

0002 - line state word. This word contains the line state in the

left byte and -a count- in the right byte. The bits in the

left byte have the following meanings:

100 master bit: on if we are higher# imp on this line or

this line is hard down

200 ---line is down and in software reset

400 1 i ne up bit

800 heard a hello

1000 heard a hello-up

2000 take 1 ine down if this is set

4000 send a hello

8000 send routing

If on a normal line that is up, bits 800, 1000, 4000, 8000

should be flashing, perhaps imperceptibly. Bits 100 (if

our imp number is higher than our neighbors) and 400

should be solidly on.

The right byte is a counter whose use varies and whose

value is useful mostly to the guys.

0004 - neighbor on logical line in upper half and old neighbor

in lower half

0006 - checksum error count This is the count of

hardware-detected errors which are presumed to be checksum

errors. These errors do not directly trigger any kind of

trap, and may result from any kind of problem between the

front end of the transmitting modem interface and the

front end of the receiving interface. These errors are

seen anytime the modem is reset, such as a line going down

and then up.

OOOC - logical modem number (right byte of OOOC)

OOOE - transmit pid (switch setting) (left byte)

OOOF - receive pid (switch) (the low byte of OOOE)

0020 - interface address (on I/O bus). This is the address of

the interface currently being used if it's a double.

0022 - spare interface address (on I/O bus). Or 0 if there isn't

any acceptable spare. [NOTE SUCCESSFULLY SWAPPING

INTERFACES CAUSES THE PREVIOUS SPARE TO APPEAR AT 0020,

AND THE PREVIOUS MAIN TO BE AT 0022)

6.6 HOST TESTING

At the moment, the only ways to test a host consists of looping the

host at various places using either internal software loops or

external looping plugs. The NMC can then run their host testing

procedure via NMC NU and return results. This of course requires

the imp to be up and running on the network.

6.7 MODEM TESTING

Modem testing done at the site is limited to variously looping

interfaces cables or modems and seeing if the imp considers them good

enough to declare up. For lines that are intermittently bad,

patches can be installed by software guys to count packets or errors

over periods of time so a performance evaluation can be made.

7. RUNNING MESSAGE GENERATOR

*** This section requires the OVERRIDE capability. ***

Message generator is a routine which runs as a fake host on the

local IMP and sends data in selectable length messages at

selectable rates to a selected host(s) on a selected IMP. The

starting address of the parameter block is obtained by using location

6,5e66 Entries in the block are as follows: (adresses are

displacements into the block)

00 - length in words. Initialized to be 8. Set to max of 1F7,

or negative for torture test (see below)
•

02 - first leader word - don't change unless you know what you

are doing. Initialized to be OFOO.

04 - second leader word - don't change. Initialized to be O

06 - third leader word - destination host #. (Or set to OFF to

send to discard. Initialized to be OFF.)

08 - fourth leader word - destination IMP#. Initialized to be

ourself.

OA - fifth leader word - Initialized to be o. Set to 3 for raw

packets.

OC - sixth leader word - don't touch. Initialized to be O.

OE - control word. O = off, 1 on. Initialized off. Set to

to run it.

10 - frequency. Set to 0 to go as fast as possible. Set to 1 to

send a message every 25 msec. Shift 1 left one place to

half rep rate. (So setting a 2 in gives 50 msec rep rate,

4 = 100 msec, 8

(see Section 11.C.)

200 msec ... etc.) Initialized to be 1.

If the IMP # is set to be us, no traffic goes out over modem

1 ines.

"Torture test" The torture test is a special case of message

generator and sends messages of standard lengths to four

specified Host-IMP pairs. The four Host-IMP pairs are stored in

table STATDT (6,5E48) and have simply the format Host, IMP, HOST, IMP

The torture test is specified by setting the first word in the

message generator block (length) negative (8000 or greater) .

The lengths used are 8,72, 496 and 504 words for Host-IMP pairs 1

through 4 respectively. The frequency at which a message is sent is

the same as in other message generator stuff.

8. UNDERSTANDING THE STAGE SYSTEM

8.1 A BRIEF DESCRIPTION

The stage system is a basic chunk of software upon which the

Pluribus IMP system is built. The stage system can be thought of as

fulfilling two purposes: in one sense it is an initialization module

that passes configuration data to the imp, eliminating the need for

configuration data to be loaded into each machine; In addition,

stage maintains a watch on the hardware and software in use, thus

acting as a reliability module for the imp. Tn the initialization

sense, STAGE is the first module to run when an IMP is (re)started.

The STAGE software is broken into nine sequential modules, or

stages, each responsible for determining the useability of some set

of hardware or software. The stages are run on a round-robin

basis, with the requirement that no stage can run unless all the

preceding stages are also running. Each stage runs and if

successful, it enables the next stage. If any stage fails to come an

acceptable conclusion, it disables all the stages following it and

reruns until it is happy with the system. When all the stages have

been enabled, the IMP system is started and uses the configuration

information provided by stage to build machine dependent tables,

parameter blocks etc. While the IMP system is running, the

stage system is also running all its stages at background level.

Changes in the system, such as the loss/gain of memory or I/O

devices are detected and subsequently can be fixed by this mechanism.

In fixing something, a processor does not just change

configuration information arbitrarily. One processor may see

things differently from others on the machine, and so in order to have

a coherent system, the processors in the system must decide in unison

before making a significant change. The implementation of this

consensus mechanism is simple; each stage has a consensus word on a

common communication page, and each processor wanting to change

something adds (IORs) its bit to that word. The consensus concept

then allows a processor to change something if, by adding its bit.

the consensus word matches the word containing bits for all the

processors known to exist. In this way, any adjustments are done

only by the last processor to join the consensus and therefore with

the approval of the other processors.

B.2 USEFUL STAGE VARIABLES

Local STAGE variables of interest:

clokrt - 50 - number of bad RTC reads (answers differ by >300

micro sec) (zeroed by 20 trap) see lclock below.

quitrt - 56 -number of successful quit-retries (got a quit the

first time, but ok the second) (zeroed by 2C trap)

uillop - 7B - last F-illop

ujiffy - BE - location of last program-in-a-loop

uquitd - 90 - got unexpected quit trying to look here

uquitp - 94 - address of place that did reference

stime - AO - local copy of system time (sytime)

stim2 - A2 - high order time, 27, 96min/tick, 51, 50tick/day

oldp - A4 - last pid dispatch

myproc - AG - processor name, this proc (coupler address and odd

bit)

procbt - AB - processor bit (the bit he would blink)

procno - AA - processor number, this proc

maprel - BO - map for RELY page

mapddt - 82 - map for DDT page

mapcod - 84 - map for WARM page

mapfak - BG - map for FAKE page

mapvar - DO - map for VARS page

mapv2 - D2 - map for V2 page

wstage - 188 - what stage running

wdis - 18C - stage control word bits on disable stages.

(same as address lights). A way to tell where a proc is

hung in stage.

1clock - 1A4 - address of the RTC this processor is using for

timing various STAGE things.

8.3 STAGE DIAGNOSTICS - what a processor is complaining about

If a processor is stuck in STAGE, the address lights (for the

processors connected to that bus) or wdis will tell what stage the

processor is stuck in. The last bit number off to the left is the

highest stage number which has been entered (and is the one we are

stuck in).

Currently the stages are:

O - LK - Local memory Kernel checksum

- MD - common Memory Discovery

2 - RK - Reliability page Kernel checksum

3 - BD - common Bus Discovery

4 - CD - processor Coupler Discovery

5 - RC - Reliability page Code checksum

6 - LC - Local memory Code checksum

7 - MM - common Memory Map management

8 - ID - I/D device Discovery

9 - AR - Application Reliability and initialization

The operational system

Possible causes of being stuck in various stages:

O - LK - a bad local kernel checksum here will cause a halt. we

may also not be able to see any RTC (or maybe no I/O busses)

1 - MD - We will hang here if we see less memory that the system

(but not if we see more). We may also have a bad common

memory pointer.

2 - RK - We were not able to find a common Kernel, or had a

different idea about it in that the system.

3 - BO - We could hang here by getting a quit from the VARS page

(for instance because of a memory coupler failure, or actual

memory failure). It could also be that the bus discovery

answer is changing, or that we have an I/O coupler failure of

some sort.

4 - CO - We could hang here if our coupler tables are bad

(compared to the system, of course), or because BBC is broken

to one processor. If the prohlt bit for us is set, we will

come to this stage and halt.

5 - RC - Hanging here says we need a reload because the RELY page

checksum is smashed. (RELY is in common, and usually on the

lower numbered memory bus, if we have both busses and have

had time to stabilize.)

6 - LC - this says local is smashed, and we need to reload

(reload the system, if no other processors have good locals)

hangs in both stages 5 and 6 are characterized by a number

displayed in the data lights (for the console processors)

which cannot be cleared.

7 - MM - We hang here because of a broken common memory code

checksum, waiting for a reload or we can hange here if the

cmap table is bad, or if the typeword of a page changed, or

if we want to reload common. Previous comment about data

lights applies here also.

8 - ID - we can hang here because our useio table is bad (we can

see less I/O than others). We will also hang here if our

mask bit is set in prohng.

9 - AR - We are here because we want to initialize and are

waiting for enough processors to run the system (currently

two for IMPs).

9. TRAPS

9.1 TRAPS - GENERAL

Traps report unexpected and expected error conditions to the NMC and

the local terminal. Each trap consists of a trap

identification number, a word containing the bit(s) of the

processor(s) reporting the trap, a count of how many were

reported, then registers 1-7 at the occurance of the first trap of

this kind. The trap reporting mechanism in the imp saves up to

eight different traps in a table on the first variables page.

The terminal display is taken from these tables and is displayed at

the top of the screen. There are two modes to the screen

display: if the location of the screen cursor is at the top left

(very beginning) of the screen, then up to 8 traps wil1 be

displayed. If the cursor is anywhere else, then only 3 traps are

displayed. allowing more room for data printout while debugging.

Generally a site terminal should be left in the first state, to

al low maximum information to be on the screen. In case of IMP

failure, site personnel can report the traps to the NMC. To

leave the cursor at the top left, either use CR to get to the

beginning or more simply type a control-L to DDT which wi 11

re-write the screen and leave the cursor in the proper place.) The

processor mask is the logical OR Of al 1 processors reporting the

trap, With each processor encoded as a bit post ion, lowest numbered

processor = bit O. The actual mechanism for implementing traps in

the program is through the i l lop (i 11 egal operation)

self-interrupt in the processor. Normal traps are caused by

executing an illop in the code of the form Exxx, and Fxxx,

Traps sent to the NMC are in the format:

TRAP# PROC MASK COUNT REG1 REG2 REG3 REG4 REGS

traps sent to the terminal screen are in the format:

TRAP# PROC# COUNT REG1 REG2 REG3 REG4 REGS REG6 REG7

TRAP# PROC# COUNT REG1 REG2 REG3 REG4 REG5 REG6 REG7

TRAP# PROC# COUNT REG1 REG2 REG3 REG4 REG5 REG6 REG7

REGG

The seven register reported to the NMC and the terminal screen

give lots of information about the cause of the trap; e.g. device

number, or line#. The trap description tells which registers are

useful.

REG7

9.2 A GUIDE TO THE TRAPS

The following are descriptions of some of the more serious

(expecially from a hardware point of view) of the Pluribus traps. A

complete list of the traps, together with their hex locations, is

given in section 9.3.

HEX DESCRIPTION TRAP OF TRAP #

unexpected quit

Any quit trap represents a quit which was retried once and

was solid. To find where the quit came from, use DDT to look

at the snapshot area (see above).

STAGE RESTART

2 program in a loop

Means that the processor didn't get through LOOP by the time

it was timed out (some strip ran too long). We checked to

see if were hung on a lock and weren't. This trap will work

in STAGE too.

Timeout varies depending on what strip was running (range is

20msec to 150msec for timeout) Saves: (UvIFFY) E4 - p.c. at

the time strip was timed out (at jiffy time)

--CAUSES STAGE RESTART

3 Completed Memory Management

This trap occurs in Stage MM if any page swapping occurred.

This is expected on startup or restart but if it persists it

implies that the IMP is constantly changing memory useage for

some reason.

--NO STAGE RESTART

4 local clock stopped

This says we got two successive jiffies and the reading on

the RTC hasn't changed. The response is to pick a new RTC.

For snapshot traps: R2 - has the clock we are now using lthe

one we just switched to)

--FULL STATE RESTART

5 Local Kernel Checksum Broken

This says the most sacred part of local STAGE is busted.

Since the desease is quite fatal, a processor with this

trouble may not be able to report it before halting. If the

checksum breaks while the processor is running he should be

able to trap and then halt. To tell what the trouble is, put

the proc bit in PRDKIL (so as not to restart him), turn off

his bus reset timer and verify his local memory (by comparing

with some other processor).

--PROC WILL TRAP AND HALT, OR MAYBE JUST HALT

6 unexpected interrupt

This says we wether got a level 2 or level 3 interrupt, or a

level which wasn't a remote power fail. This can happen

because of a •reset-attn"

7 BBC MAP FAILURE

This means that a processor can't agree with the rest of the

system about what common memory exists, and also can't get

the right to fix it (because the consensus doesn't agree with

him.) If a memory bus goes down in an n-processor system,

(n-1) processors will report this trap. The nth processor

makes the consensus ck and the memory table gets fixed, since

the algorithm is that the processor who sees the most memory

is right. This trap will also occur for things like bad bus

couplers.

The bus in question will almost always be the 4000 bus. If

only the O mem bus is on, the trap will not occur except

under strange circumstances. This is because the memory

table is kept in the lowest numbered memory (communications

page), and if that page breaks, different traps occur.

--NO STAGE RESET

8 No PIOs in system

Means no PIO cards answering (either really gone, or

configured out.) The trap happens late enough that we have

already found an RTC somewhere. (only one PIO gone will

result in the devices on that bus being configured out. If

this is suspected, use OPHELP commands to see what devices

are thought to be present.)

--FULL STAGE RESTART

9 adjusted comrel

This says we moved a page of common on which we were running

the higher numbered stages, and is likely when we get a

broken checksum in either Kernel or the page which was moved.

This will happen continuously when the Rely kernel is broken.

--USUALLY CAUSES IMP RESTART

A Jiffy clock stopped

This should only be reported by even processors and says that

at least sec. has elapsed without the jiffy interrupt

having updated its copy of the RTC reading. It could also be

due to the RTC or something in between, since the trap will

be sent if the current RTC reading is more than 10000 (1

second) decimal different from the jiffy reading. (The jiffy

reads the RTC every 1/60 sec)

-- [NO ACTION]

B system missed a tick

This says that the system failed to update the SYTIME word in

common since the last time the reporting processor ran stage

(128 msec).

The cause is not immediately obvious. Could be that we

stopped getting pids from the RTC, or have a broken memory.

--ACTION COUNTS SYTIME BY 1

C Quit in checksum parameters

Interrupt recevied from the system during checksum rouitne.

D Quit during checksumming

D traps may accompany 3 traps, but a D trap will not always

cause a 3 trap, since the quit might be in some other code

during checksumming. If snapshots are turned on:

R1 - map if quit in common memory

RG - loc+2 of the quit

All references in common mem will be through map 1.

-- ND STAGE RESTART

E Local code checksum broken

This is similar to a 5 trap but for the code page in local.

Since it happens later in stage, it implies that the Kernel

checksum is ok. (Local checksumming covers covers all

constants in local except for the Kernel.) If other

processors think their local is ok, they will start a block

transfer (software) to the unhappy one, and he will

participate in it.

If all processors are unhappy with themselves, they will ask

for a reload from the net.

(D traps may also occur with this one)

--TOTAL RELOAD OF LOCAL

F Not enough memory to run system

This can happen as a transient if MEMKIL is used and the new

usable memory is too small·. There is a remote possibility of

processor not seeing enough memory but still being able to

run a late enough stage to produce the trap. The picture in

local of what the processor sees in common:

[MYSEGS] 1st word 0-1EOO

(block) 2nd word 2000-3EOO

3rd word 4000-5EOO

4th word 6000-7EOO

(This table is bit coded by page recognized within the

specified range. Thus for the first word, bit 1 on means the

200 page on O memory. If bit 1 of the 3rd word were on, it

would correspond to the 4200 page on the 4000 memory. Bits

are.cleared periodically and then reappear as the processor

discovers memory pages.)

10 Stage variables area quit

This trap results from the next procedure after finding the

Kernel variables area, which is to scan the whole area for

quits and clear the whole area if we get one. The procedure

assumes it is parity quit. Consensus is necessary, so a

number of these traps will occur for multiprocessor

operation. The program attempts to use the same area again,

and a quit, while clearing the area, will cause the processor

getting the quit to voluntarily stop using the page via

MEMKIL.

ACTION: WHEN CONSENSUS IS ACHIEVED, STAGE VARIABLES ARE

REINITIALIZED, PRODUCING A 12 TRAP

11 lost our communications page

This means that the page we were previously using for

communications gave a quit on a write. The sequence

preceding the trap is that we got a quit on a read of SYTIME

during checking of the page, and then tried a write into the

same location which also got a quit. (The assumption being

that it was a parity quit the first time.) If the quit was

fixed on a rewrite, stage proceeds normally and doesn't give

any indication.

The normal cause of this trap is O Memory disappearing (but

not if configured out)

--FULL STAGE RESTART

12 Stage Common Reinitialization

This says that the timer which says whether stage variables

are current got too old (a watchdog timer), and can happen as

a result of a 10 trap. Timout time 10-15 sec. Usually

only triggered by a cold start. timer is:

STGIM - 0,5D56

--ACTION: PARTIAL STAGE RESET (already done by the time this

trap produced)

13 Memory coupler quit

Coupler discovery got a quit referencing a memory bus coupler

(BCM). The most likely cause is an old-style BCM on a parity

memory bus.

--THE COUPLER IGNORED

14 HUNG ON BAD LOCK

This happens if: the jiffy code sees that

it's time to do a 2 trap, but first it checks for a lock

pattern in the code, and if it finds one, it calculates the

address of the lock and checks for validity. To be valid, a

lock must have either a map 1 or a map 3 address range. An

invalid address range causes a 14 trap.

--FULL STAGE RESTART

14 CAN'T FIND A CLOCK

System is unable to find the real time clock.

R3 - address of real time clock

R7 - bus used

--FULL STAGE RESTART

16 remote power fail interrupt

Getting one of these causes us (even proc) to first try to

stop our buddy, then wait 1 sec and try to restart him at the

beginning of stage, then restart us at the beginning of

stage.

--FULL STAGE RESTART

17 Can't find an RTC

This happens in the routine which looks for an RTC and is

started if the main RTC stops, or if our previous idea of

where an RTC might be was wrong (for instance if we are told

not to use an RTC on start-up).

--FULL STAGE RESTART

18 BBC processor started

This is reported by the processor doing the restarting. To

find out who was restarted, check the snapshot: R2 - address

of the coupler of the restarted processor. If R2 is odd,

then the odd processor was the one who was restarted.

--RESTART OF THE TARGET PROCESSOR

19 Buddy Processor started

This reports that this processor was successful in restarting

the other processor bus.

1A Bad processor identity

This says that we found our own coupler address and had the

wrong idea about who we were before. The algorithm for

finding ourselves is to see if a given coupler address

answers '2100' on all busses. We then try writing the same

password as we last wrote to that coupler in I/O space, and

if it quits, it's us. This trap would also happen if we

never discovered our couplers.

--FULL STAGE RESTART

1B Block Transfer Timout

This says that the job of BLT is not progressing fast enough.

One possible cause is the system believing a processor is ok

enough to participate in his own BLT of local (to him) when

he really isn't running.

--FREES BLT FOR NEW USE

1C BLT proc not in table

This says that we can't find the BLT target processor in the

table of coupler addresses cleaned in an earlier stage. Not

finding it stops the BLT and causes the trap. No normal IMP

activity is likely to trigger this currently, but things like

DDT or reloading might.

--STOPS BLT PROCESS (NO STAGE RESET)

1D Non-existent proc in BLT??

This can't really happen for hardware reasons. Getting it

implies a program bug.

--STOPS BLT PROCESS

1E No I/D bus for BBC

Before doing BBC, we test the path a little by doing a store

through the BBC window. If we get a quit (20 trap), we retry

through the other I/O bus, and if that doesn't work either,

we give a 1E trap. This trap implies that we can at least

read the processor's control register (since we had already

discovered him.) We try to halt the processor before BBC,

and quit from the write to his control register will also

cause this trap in the same manner.

--STOPS BLT IN PROGRESS (may change this later)

1F One of my couplers is broken

This occurs in the processor discovery code and says that we

got a quit trying to read a coupler whose name matches our

name. We can probably run okay, though the trap will

continue to happen from time to time.

Snapshot:

R2 - Pree # we were looking for.

R7 - address of coupler.

--KEEPS TRYING, BUT PROBABLY WON'T JOIN SYSTEM

20 BBC transfer failure

This is caused by a quit during either a read or a write

through a BBC window.

Snaps:

R1 - BBC map

R3 - value stored

R6 - I/O bus plus index into BBC window (0-6)

R7 - I/O bus BBC was done through

--TRY TO USE OTHER I?O BUS. IF ALL FAIL, GIVE A 1E TRAP.

21 Power restore interrupt

We (the even guy) got a level 4 dev 2 interrupt.

--HALT (US AND OUR BUDDY)

22 Local power fail interrupt

The processor detected that it was restarted after power

was off.

--FULL STAGE RESTART--

23 Illegal level 4 interrupt

We got a level 4 interrupt which wasn't dev1, 2 or 4.

--IGNORE

24 Stage variables memory failure

Interrupt received from system while clearing common memory

variables.

--CAUSES STAGE RESTART

25 Spare code page's checksum disagrees

This is not a hardware trap. Primarily it is a reminder to

someone patching the code page that maybe he hasn't patched

both copies. (trap will occur about once every 1.4x (# of

pages in use) sec. in each processor.

--NO ACTION

26 Fixed bad memory parity

The stage (stage MC) which checksums common memory also does

a loop to read the rest of common (outside the checksummed

area). A quit during this test causes us to try to write 0

to the location, and if successful, will cause this trap and

also zero the cell on the page which may tell the system to

reinitialize if appropriate. The trap may trigger various

kinds of restarts.

For snapshot:

R1 - page (map setting)

R6 - location of quit (always through map1)

--MAY REINITIALIZE. MAY TRIGGER VARIOUS RESTARTS

27 Solid memory parity error

This results from the same loop as the 26 trap above, but

says that we got a quit and couldn't fix the location (either

we got a quit on write, or got a quit when we read the loc

again, or failed to reread the Owe wrote there.)

Snapshot: (same as above)

R1 - page (map setting)

R6 - location of quit (always through map1)

The processor getting the trap stops using the page and does

a full stage restart (and may drop out of consensus if he is

the only one seeing the problems.) This process is intended

to help remove processors writing bad parity from the system,

but may have trouble doing that unless the bad parity writes

are relatively frequent or solid. If all processors see the
•

failure, then all will stop using the bad memory.

--STAGE RESTART

28 No useable common memory

This says we haven't found the communication page (the lowest

numbered page) on any memory bus. It could happen with 2 bad

BCMs, or as a result of some error in switching cables,

cards, etc., or if the memory went away.

--HANGS IN STAGE 1 (if no other proc is running and holding

off a timer, we will reinitialize and retry about every 1-3

minutes if we see any memory at all.

2A Quit in quit handler

Entering the quit handler for the first time sets a flag. If

the flag is already set, we make a 2A trap. This trap can

happen as the result of a software bug if the entry flag is

initialized the wrong way when a processor is restarted after

being stopped.

--CAUSES STAGE RESTART

2B Quit on instruction fetch

This happens in the same 1oop as the 2A trap. If the quit

target is within 4 bytes of the saved quit P.C., we cal1 it

2B trap.

--CAUSES STAGE RESTART

2C Quit retry(ies) succeeded

This trap occurs if we got a quit which succeeded on a second

try at the instruction. This seems to happen a lot, and is

indicat1ve of some sort of design problem. Unfortunately, we

can't notice where we retried in genera1, though a special

patch might be able to do it.

Snaps:

R1 - number of retries

--Since retry worked, program continued normally

20 RTC read retry(ies) succeeded

This trap occurs if we got inconsistent readings on two

successive reads of the real-time clock. The readings are

allowed to differ by 3 (300 microseconds). If they differ by

more, we count a counter, which is then reported later by

this trap. This trap probably indicates some sort of design

bug in the hardware.

Snaps:

R1 - number of retries

--Just retries until it succeeds

2F Copy/Cleared Failed

Unable to copy/clear address located in register 4 of TRAP.

40 Start pointer write failed

Bad start pointer given to routine to start the I/O input

routine.

R1 - address in error

R3 - Length of message/packet

R5 - Device page used

41 4 start pointer failures

System software made more than 4 attempts to write the I/O

buffer to the address specified in R1.

R1 - address failing

R3 - length of the message/packet

R5 - device

42 got illegal pid value

indicates that the routine all ready exists ot that that area

in the BASE table is inuse.

R1 - pid level

R2 - address in BASE table

43 map error

system software received error while verifying the maps for the

software.

44 LSTACK overflow

Pointer to addresses in maps exceeded limits.

45 INBASE failed

Error received while attempting to initialize the BASE table.

50 software watchdog timer expired

Timer exceeded limit. Generates an interrupt to keep software

from looping.

CO tty changed psb

TTY initialize routine wither restarted or didi a reset due

to quits received by the systems software.

R4 - psb

100 IMP reinitialization

This means what it says. Nothing much about the previous

state of the machine remains after the reinitialization, but

some clues may be gotten from previous traps, if they are

still around.

--FULL REINITIALIZATION

101 smashed a buffer pointer

The table of buffer pointers (starting address and number of

bytes, etc.) has had an entry smashed .. The buffer (or packet

is lost).

102 Changing buffer page allocation

•

Reported as a result of the Node reconfiguring after a device

failure in a M/I bus machine. System is now using spare device.

Notify maintenance.

108 Main clock has stopped

This says that the main RTC didn't tick for three ticks (25

msec ticks) of the backup clock. It also says that the other

clock became the main clock. The F clock is always preferred

for the main clock if it exists CLOCK - 6238 address of

current main clock.

--STARTS USING OTHER RTC lhas already started by trap time)

109 Backup clock working again

This trap says that we had one clock (either one) and now

have two. If the F clock was the one that came back, the

system starts using it as main clock instantly.

10A No working backup RTC

This trap happens when the backup RTC goes away for any

reason. The trap will reoccur every 27 minutes until the

backup reappears.

10B IMP number invalid

This says that the IMP number set into the switch register on

either or both RTCs is zero or too big (>67). The most

likely cause is that somebody forgot to set it when the RTCs

were last installed, but it could also be a flakey switch or

associated logic on the RTC. We don't currently check for

different IMP numbers in the two RTCs (unless one is zero)

and will always use the IMP number on the E006 RTC when two

are present. ((this aspect will be changed))

--THE IMP WILL COME UP (NOT TO THE NET) BUT WON'T RUN WELL

(DDT WILL BE INACESSIBLE FROM THE terminal) AND WE WILL KEEP

TRAPPING.

10C RTC gone away

This says that we ran through the bus discovery code in stage

and removed the dispatch for one RTC from the table (as a

result of no~ finding it). This trap will not occur if both

RTCs have the same pid settings (having them be the same is

now ok, but not such a hot idea). This trap may occur along

with a 10A or 108 trap.

--NO ACTION (will cause KI trap)

110 Modem hardware gone away

(FOR 110, 111, 112, 113, 114, 115 TRAPS:) These traps are all

the result of the IMP reconfiguring (the table changes in

STAGE, but doesn't trap then, and this is the result of the

IMP noticing the change.) (We will only give one of the

three types of traps for each interface unless two halves of

an interface disappear at the same time.)

Snapshots for trap 110:

R1 - address of device gone away

--STOPS TRYING TO USE INTERFACE (may also cause 204 trap)

111 Host HARDWARE gone away

SEE ALSO TRAP 110

Snaps:

R1 - address of device gone away

--STOPS TRYING TO USE INTERFACE (may also cause 204 trap)

112 Spare modem interface disappeared

SEE ALSO TRAP 110

Snap:

R1 - address of device gone away

--NO ACTION

114 Swapping modem interfaces

SEE ALSO TRAP 110

R1 - new interface we are using

--SWAP

115 Swapping host interface

SEE ALSO TRAP 110

Snaps:

R1 - address of guy who went away

R3 - address of new guy we are using

--SWAP

203 Over 2 interfaces, one device

This happens if we find at least three devices with the same

device type and device number.

Snaps:

R5 - device we're trying to put in the dispatch

R3 - 2nd of the 2 devices we've already found with the same

type and number.

--USE THE FIRST TWO INTERFACES FOUND

204 Removed bad base dispatch

This results from a 10C, 110, or 111 trap, generally.

--CLEARS ENTRY IN BASE DISPATCH

205 Pid for doubled interface differs

This says we found two devices with the same type and device

numbers but differing pid settings. This could happen for a

variety of hardware reasons (flakey pid and device no

switches or operator error are the most common).

Snaps:

R5 - address of second device to be found

R4 - parameter block for first device

R3 - receive pid for second device

R6 - transmit pid for second device

--USE THE FIRST OF THE TWO INTERFACES DISCOVERED

207 Dynamic blocks area full

This says there are too many devices for us to handle. The

maximum number varies from assy to assy, and is currently 40

devices (single or doubled)

--SOME DEVICES WON'T GET USED (the trap will keep occurring)

301 Detected VHA table error.

The system has detected that either a virtual host

entry is not assigned to a physical host, or that

more than one virtual host number is assigned to the

same p~1ys i ca 1 host address.

Snaps:

R3 - Contains VHA (in HEX) which is being
complained about.

- - HOST TRAFFIC MAY BE LOST - TABLE MUST BE CORRECTED

302 INVHA: No Virtual address found.

The system has detected that no physical address exists

in the VHA table for a virtual host being referenced.

Snaps:

R3 - should contain the VHA number.

Note: Can also be caused by PLULOG ON with no dest. host toge to.

303 TSKVHA: No Virtual Address this source.

The system has detected that it has received host traffic

from a physical host port that has no virtual address assigned

to it.

Snaps:

R3 - Contains the physical IMP number.

RS - Contains the physical host port number.

304 Too many VHA numbers.

The system has detected a virtual host address that exceeds

the table length. It is treated as being invalid.

--EXAMINE VHA TABLE AND MAKE APPROPRIATE CHANGES--

305 VHA IMP Number too big.

The system has detected a virtual host physical address

that has an IMP number greater than current maximum.

~EXAMINE VHA TABLE AND MAKE APPROPRIATE CHANGES--

3CO IMP going down

This trap occurs when we enter the nice-stop sequence after

either a #NS or #NR command.

3C1 Got setup for no dest

This trap says one of our neighbors is asking to be reloaded.

3C2 Flushing reload packet - No room

This trap says we lost a reload packet we were trying to send.

to a dead neighbor.

401 Modem bad end pointer

This applies to the receive end pointer only (so far). It

says that we checked the receive end pointer after we got a

receive pid and it was either less than the beginning of the

buffer we were using, or past where we told it to stop.

Check after evey modem input.

Snap:

R4 - address of parameter block

R6 - address of the buffer (through MAP2)

(map in MAPSAV area)

R1 - length that the hardware said it gave us.

--FLUSH THE INPUT AND RETRY. RESETS THE INTERFACE

402 Modem got a quit

This applies to receive only. (we don't currently get much

information out of this one)

Snaps:

R4 - address of parameter block.

R5 - device address

R1 - end of input that the hardware told us.

(receive end pointer)

R2 - contents of status register

--FLUSH INPUT AND RETRY. RESETS INTERFACE.

403 Modem input too short

This says the packet was less than the minimum size that the

net should ever give us (OA bytes).

A2EA (VARS/Vars) clklok: Lock on RTC counters

A386 (VARS/Vars) ltq: task queue lock

A3C4 (VARS/Vars) free: free buffer list

A3C6 (VARS/Vars) freend: end of free buff er 1 i st

A3C8 (VARS/Vars) nf: size of shared buffer pool plus minf

A4A4 (VARS/Vars) lockro: routing send buffers lock

A4A6 (VARS/Vars) cycle: timeout clock counters

A4A8 (VARS/Vars) trnlok: free transaction blocks lock

A4AA (VARS/Vars)
..

messt: message number timeout non-lock

A482 (VARS/Vars) ringlk: restarter ring lock

A4D4 (VARS/Vars) tcgo: host wakeup lock

A4D8 (VARS/Vars) tbkgo: back host wakeup 1 ock

A506 (VARS/Vars) stolok: slow timeout lock

A550 (VARS/Vars) conlok: configuration lock

A580 (VARS/Vars) rmlock: (and every 020) rev mes block locks

A930 (VARS/Vars) tmlock: (and every 020) xmit mes block locks

AC80 (VARS/Vars) re as blk lock (and every H10)

AE44 (VARS/Vars) Fake 0 DOZE lock

AE46 (VARS/Vars) Fake 0 WAIT lock

AEC6 (VARS/Vars) Fake DOZE lock

AEC8 (VARS/Vars) Fake WAIT lock

AF48 (VARS/Vars) Fake 2 DOZE lock

AF4A (VARS/Vars) Fake 2 WAIT lock

AFCA (VARS/Vars) Fake 3 DOZE lock

AFCC (VARS/Vars) Fake 3 WAIT lock

8038 (VARS/Vars) back host 0 (back5) lock

8058 (VARS/Vars) back host (back7) lock

8078 (VARS/Vars)

B098 (VARS/Vars)

BOCO (VARS/Vars)

B10E (VARS/Vars)

B11C (VARS/Vars)

B130 (VARS/Vars)

B17E (VARS/Vars)

B18C (VARS/Vars)

B1AO (VARS/Vars)

B1EE (VARS/Vars)

B1FC (VARS/Vars)

B210 (VARS/Vars)

B25E (VARS/Vars)

B26C (VARS/Vars)

B2A4 (DISPLY/Vars)

B2C6 (ROUTE/Vars)

B2C8 (ROUTE/Vars)

back host 2 (back9) lock

back host 3 (back6) lock

hi host lock fake o

ih hardware lock fake O

ih software lock fake o

hi host lock fake 1

ih hardware lock fake

ih software lock fake

hi host lock fake 2

ih hardware lock fake 2

ih software lock fake 2

hi host lock fake 3

ih hardware lock fake 3

ih software lock fake 3

dsplok: display variables lock

spfrtl: Lock on common SPF tables

rutlok: Lock on routing processing

63C6 (VHA/Va~s) vhalok: Lock on VHA inverse translation tabie

BD52 (STAGEK/RelVars)

BOSE (STAGEK/RelVars)

BD68 (STAGEK/RelVars)

BDBA (STAGEK/RelVars)

BE2A (STAGEK/RelVars)

BE30 (STAGEK/RelVars)

BE38 (STAGEK/RelVars)

BE92 (STAGEK/RelVars)

BEA6 (STAGEK/RelVars)

Common Bus Discovery Consensus

processor and bus coupler discovery consensus

bbclok: lock on bus coupler states

bltlok: Block transfer lock

Consensus for Rely page Checksum

Consensus for Local Checksum

memory configuration consensus

consensus for I/O discovery

initialization consensus lock

BEAE (PKCORE/RelVars) pkclok: lock on packet core parameters

10 DIAGNOSTIC SOFTWARE

645 (WARM/LCode)

646 (WARM/LCode)

647 (WARM/OOTCode)

650 (WARM/LCode)

658 (FAKREL/FakCode)

681 (FAKREL/OOTCode)

682 (WARM/OOTCode)

683 (FAKREL/OOTCode)

684 (FAKREL/ODTCode)

68A (WARM/LCode)

68C (WARM/LCode)

680 (WARM/LCode)

68E (WARM/LCode)

68F (WARM/LCode)

690 (WARM/Warm)

691 (WARM/LCode)

692 (WARM/LCode)

698 (WARM/Warm)

699 (WARM/LCode)

69A (WARM/LCode)

GAO (WARM/LCode)

6C2 (WARM/Warm)

6C6 (WARM/LCode)

6C7 (WARM/LCode)

6C8 (WARM/LCode)

6CA (WARM/LCode)

600 (WARM/LCode)

3178:

308C:

4E74:

305E:

55AO:

5480:

521A:

54AO:

54CE:

2854:

2018:

2884:

2A04:

289C:

5A1A:

2952:

29A2:

5082:

2A80:

2AOO:

296C:

5C08:

28A2:

2888:

29B2:

305A:

3524:

Got msg with illegal pkt code 13

No trnblk for inc RFNM

no trnblk for inc query

Got a duplicate Allocate 1

Bad local Host in message block

Flushing an old trnblk

recovered an old reas block

requeueing trnblk for IH

trnblk/tmblk mismatch

host blocked awaiting free buffer

host blocked awaiting mes num or blk

host blocked awaiting all8

host blocked awaiting task

host blocked requesting all8

host blocked awaiting trnblk

host blocked middle of 8-pkt

Task blocked incomplete message

Bad rm blk for mes on host q

gvtsk: lost buffer in hi2tsk

back blocked awaiting task

error during host input data

bad buffer on host queue

clobbered hisp requesting all8

hisp clobbered in packet

bad hisp for bad message

bad trnblk buffer

bad buffer in t2h

6D8 (WARM/LCode)

6E8 (WARM/Warm)

6FO (WARM/LCode)

7CO (WARM/LCode)

7C1 (WARM/LCode)

7C2 (WARM/LCode)

7C4 (WARM/LCode)

7C5 (WARM/LCode)

7C6 (WARM/LCode)

7C7 (WARM/DDTCode)

7C8 (WARM/LCode)

7CA (WARM/LCode)

FC8 (WARM/LCode)

FDO (WARM/LCode)

FD8 (WARM/LCode)

FEO (WARM/LCode)

FE1 (WARM/LCode)

Lock (Source/Page)

A082 (STAGEK/Vars)

A08E (STAGEK/Vars)

A098 (STAGEK/Vars)

AOAA (STAGEK/Vars)

A25E (DDT/Vars) d2f 1:

A260 (DDT/Vars) f2dl ;

A262 (DDT/Vars) ttylok:

A264 (DDT/Vars) ddt1ok:

2E40: ih lost a trnblk

5CD4: bad ih queue structure

2CA2: HI bad packet length

3066: Got an Out-of-range

2FBE: sending out-of-range

3102: no free rm blk

2986: dest died in hi

2F8A: sending duplicate reply

31E6: received duplicate Get-a-block

4EB4: sending incomplete query

2F62: Sending incomplete reply

3340: no allocate for 1-pkt msg

29E8: host sent error with id

36AE: nal gone negative

3494: Illegal rstate/type

398C: Back bypassing allocate

3988: Back can't back up

Label: Description

wmlock: memory test lock

slflk: locked copy (+2) of slfptr

memory discovery consensus

Common Kernel Discovery Consensus

406 (MODEM/Warm)

407 (ROUTE/Warm)

409 (CONFIG/RelCode)

40A (MODEM/LCode)

408 (MODEM/LCode)

40C (UPDWN/Warm)

400 (MODEM/Warm)

40E (UPDWN/Warm)

410 (MODEM/LCode)

411 (MDDEM/LCode)

412 (MDDEM/LCode)

413 (MODEM/LCode)

414 (MODEM/LCode)

415 (UPDWN/Warm)

420 (TASK/LCode)

421 (TASK/LCode)

4C1 (MODEM/LCode)

4C8 (FAKREL/DDTCode)

500 (ROUTE/Warm)

503 (ROUTE/LCode)

504 (ROUTE/Warm)

505 (ROUTE/Warm)

506 (ROUTE/Warm)

507 (ROUTE/Warm)

508 (ROUTE/Warm)
~

509 (ROUTE/Warm)

50A (ROUTE/Warm)

47FO:

4C92:

5AD2:

21CC:

1C76:

4670:

49C4:

460C:

206C:

106E:

1DA2:

1DAA:

2202:

44F4:

236C:

2344:

1FF8:

538E:

5348:

22FC:

5532:

5544:

5562:

5702:

5804:

58F6:

541A:

12MFLD: Bad checksum in routing update

RUTSPF: bad update checksum

MTEST: scrambled modem parameter block

bad sentq

12M: lost SNDING buffer

KNMISS: master line died

M2IHIHY: Slave obeys master down

PHDEDL: Slave missed k in a row

modem software checksum failure

broken cksum on retransmission

64 retransmissions: killed line

32 retransmissions: discard packet

DOAK: unexpected ack

PHDEDL: Excessive Hardware Checksum Errors

TASK: no route for packet

TASK: flushing pkt with discard bit

filling buffer error

modem state mismatch

SPFERR: SPF error forced restart

RUPWHC: routing queue broken

RUPFLS: buffer no longer owned by routing

RUPFLS: caller's bit not on

RUPFLS: rupq buffer missing

RTRGEN: retransmission with bad length or IMP

RUPQCK: rupqct wrong

RUPQCK: recovered unused buffer

RUPENQ: queuing packet for no one

555 (ROUTE/Warm)

557 (ROUTE/Warm)

5C2 (MODEM/LCode)

5C3 (TASK/LCode)

5C5 (MODEM/Warm)

5C6 (MODEM/Warm)

5C8 (MODEM/LCode)

500 (UPDWN/Warm)

600 (WARM/LCode")

602 (WARM/LCode)

603 (WARM/LCode)

604 (LOCAL/LCode)

605 (WARM/LCode)

606 (WARM/LCode)

607 (WARM/LCode)

608 (WARM/LCode)

60A (WARM/LCode)

608 (WARM/Warm)

611 (WARM/LCode)

619 (FAKREL/FakCode)

61A (CONFIG/RelCode)

628 (CONFIG/RelCode)

640 (WARM/LCode)

641 (WARM/LCode)

642 (WARM/LCode)

643 (WARM/LCode)

644 (WARM/Warm)

545A:

545A:

20E2:

2396:

49A2:

493A:

20EE:

4762:

3278:

2968:

2AE6:

1800:

338C:

3252:

326A:

332E:

3174:

5CFC:

2D24:

5662:

5986:

5856:

2FDA:

2FE4:

2FFO:

3096:

5884:

CHKRQ: queue count too large

SPF accounting information

M2IREG: suddenly looped line

TASK: flushing packet for dead IMP

M2IHIHY: master/slave mismatch

M2IHIHY: Neighbor IMP number changed

M2IREG: accepting pkt on dead line

LINEUP: 1 ine up, r7=neighbor

No message for incm or incq

host input got a quit

host input quit in leader

IH: host output got a quit

no reas block for allocated 8-pkt msg

no allocate to give back

incq or incm with gvb, but no alloc to gb

rstate violation

reply lost-no space

HSIOUT: Start pointer write failed

illegal message blk in hi

ihwq is a mess

8LDHST: BASE/MBLKS wrong for HI/IH

scrambled host parameter block

Block error, no recovery

Block error, trying recovery

No trnblk for allocate

no trnblk for RFNM or dead RFNM

res rep when not resetting

10A (FASTTO/Warm)

108 (FAKREL/FakCode)

10C (CONFIG/RelCode)

100 (FAKREL/KakCode)

110 (CONFIG/RelCode)

111 (CONFIG/RelCode)

112 (CONFIG/RelCode)

114 (CONFIG/RelCode)

115 (CONFIG/RelCode)

203 (CONFIG/RelCode)

204 (CONFIG/RelCode)

205 (CONFIG/RelCode)

206 (CONFIG/RelCode)

207 (CONFIG/RelCode)

208 (FAKREL/LCode)

209 (FAKREL/LCode)

20A (IMPSUB/LCode)

263 (IMPSUB/LCode)

264 (IMPSUB/LCode)

266 (IMPSUB/LCode)

267 (IMPSUB/LCode)

281 (FAKREL/FakCode)

2A2 (IMPSUB/LCode)

2C2 (FAKREL/LCode)

2C8 (LOCAL/LCode)

2C9 (FAKREL/DDTCode)

2E1 (IMPSUB/LCode)

43A6:

56F2:

5846:

6E1D:

5A98:

5AE2:

5B8C:

5AA2:

5AEA:

5AOA:

574A:

5A02:

593E:

5A68:

3COE:

3C1E:

1458:

1354:

14A4:

156C:

1530:

527E:

158C:

3BF6:

1678:

550C:

1448:

no working backup RTC

CONCLK: IMP number invalid

RTCCHK: RTC gone away

Node heat prob/or lost bus

MTEST: modem hardware gone away

HOTEST: host hardware gone away

TST2DEV: spare interface disappeared

MTEST: swapping modem interfaces

HOTEST: swapping host interfaces

DEVINUSE: over 2 interfaces, one device

RELCON: removed bad BASE dispatch

DEVINUSE: PIO for doubled interface differs

CMDDEM: BASE/MBLKS wrong for M2I/I2M

BLDBLK: dynamic blocks area full

free list in loop

lost the free list

FREGET: threw away free list tail

map error in flush

map error in nwheom

* map error in deque

* map error in unpack

BUFT: Recovered a timed-out buffer

DEQUE: buffer ownership error

free list buffer error--WHERE nonzero

ringc overflow in rstart

ring structure broken in timeout

FREGET: free list error, non-zero where

2E3 (IMPSUB/LCode)

2E5 (IMPSUB/LCode)

2FO (IMPSUB/LCode)

300 (VHA/DDTCode)

301 (VHA/DDTCode)

302 (VHA/LCode)

303 (VHA/LCode)

304 (VHA/DDTCode)

305 (VHA/DDTCode)

3CO (FAKREL/FakCode)

3C1 (FAKES/FakCode)

3C2 (FAKES/FakCode)

~ (FAKSUB/FakCode)

3F1 (FAKSUB/FakCode)

3F8 (FAKSUB/FakCode)

3~9 (FAKSUB/FakCode)

3FA (FAKSUB/FakCode)

3FB (FAKSUB/FakCode)

3FC (FAKSUB/FakCode)

3FD (FAKSUB/FakCode)

3FE (FAKSUB/FakCode)

3FF (FAKSUB/FakCode)

401 (MODEM/LCode)

402 (MDDEM/LCode)

403 (MDDEM/LCode)

404 (MDDEM/LCode)

405 (MODEM/LCode)

1366:

1374:

1598:

5648:

556C:

3040:

3D6C:

55A4:

5594:

58DE:

485C:

4814:

4124:

4328:

4180:

41A6:

43BC:

4466:

4282:

4278:

4474:

448C:

205A:

1F7E:

2056:

1C5A:

1F14:

tried to flush non-buffer

tried to flush non-owned buffer

fixed half-empty queue

VHAREL: finished VHALIS recomputation

VHAREL: Detected VHA table error

IHVHA: No virtual address found

TSKVHA: No virtual address this source

VHAREL: Too many VHA numbers

VHAREL: VHA IMP number too big

imp going down

FH2: got setup for no dest

FH2: Flushing Reload Packet

FDOZEW: Initialized Jam Fake Host

FWAITW: Initialized IMP Fake Host

JAMLEADER: Host wanted a buffer

JAMLEADER: no host block

SUCKLEADER: Host sending a buffer

FSUCBUF: Host sending leader

FJAM1B: Host wanted a leader

FJAM1B: No host block?

FSUCBUF: No host block?

FSUCBUF: Bad buffer from IH

modem bad end pointer

modem input got a quit

modem input too short

modem output got quit

I2MXMIT: Start pointer write failed

B (STAGEK/RelCode)

9 (STAGEK/LCode)

A (STAGEC/RelCode)

B (STAGEK/LCode)

C (STAGEK/LCode)

D (STAGEK/LCode)

E (STAGEC/RelCode)

F (STAGEC/RelCode)

10 (STAGEK/RelCode)

11 (STAGEK/LCode)

12 (STAGEK/RelCode)

13 (STAGEK/RelCode)

14 (STAGEK/LCode)

15 (STAGEK/LCode)

16 (STAGEK/LCode)

17 (STAGEK/LCode)

18 (STAGEK/RelCode)

19 (STAGEK/RelCode)

1A (STAGEK/RelCode)

18 (STAGEK/RelCode)

1C (STAGEK/RelCode)

1D (STAGEK/RelCode)

1E (STAGEK/RelCode)

1F (STAGEK/RelCode)

20 (STAGEK/RelCode)

21 (STAGEK/LCode)

22 (STAGEK/LCode)

41EE:

D1E:

5580:

90B:

EBA:

E60:

503E:

5112:

4264:

BCB:

4250:

444E:

670:

ABE:

4BE:

5BA:

49D4:

45FC:

44FO:

46BO:

4B4A:

4BDC:

4902:

43F2:

49EC:

564:

55C:

No PIDs in system

adjusted comrel

Jiffy clock stopped

WSLEEP: System missed a tick

Quit in cksum parameters

quit during checksumming

Stage LC: Local code checksum broken

Stage MM: Not Enough Memory

Stage variables area quit

WSLEEP: Lost our communications page

Stage Common Reinitialization

Stage CD: Memory Coupler End QUIT

hung on bad lock

Stage LK: can't find a clock

remote power fail interrupt

Can't find an RTC

BBC processor started

Buddy Processor started

Stage CD: Bad Processor Identity

Block Transfer Timeout

BLT proc not in table

Non-existant proc in blt??

No I/O bus for BBC

Stage CD: One of my Couplers is broken

BBC transfer failure

Power restore interrupt

Local Power Fail Interrupt

23 (STAGEK/LCode) 56E:

24 (STAGEK/RelCode) 4228:

25 (STAGEC/RelCode) 51DE:

26 (STAGEC/RelCode) 53E6:

27 (STAGEC/RelCode) 53EE:

28 (STAGEK/LCode) B3C:

2A (STAGEC/RelCode) 5558:

28 (STAGEK/LCode) 478:

2C (STAGEC/RelCode) 5544:

20 (STAGEC/RelCode) 556A:

2F (STAGEC/RelCod~) 537A:

40 (XSIOIN/LCode) FOO:

41 (XSIOIN/LCode) EFG:

42 (OPSYS/LCode) 106C:

43 (OPSYS/LCode) 110A:

44 (OPSYS/LCode) 10C2:

45 (OPSYS/LCode) 1286:

50 (STAGEC/RelCode) 5658:

co (ODT/DDTCode) 416A:

100 (FAKREL/FakCode) SABO:

101 (FAKREL/FakCode) 524E:

102 (CONFIG/RelCode) 57E4:

102 (FAKREL/FakCode) 590A:

103 (CONFIG/RelCode) 587A:

104 (STO/LCode) 1B7A:

108 (FASTTO/Warm) 4384:

109 (FASTTO/Warm) 435E:

illegal level 4 interrupt

Stage variables memory failure

Stage MM: Spare page checksum differs

fixed bad memory parity

solid memory parity error

SMD: no useable common memory

QUIT(s) in QUIT handler

Quit on instruction fetch

Quit retry(ies) succeeded

RTC read retry(ies) succeeded

Stage MM: Copy/clear failed

XSIOIN: Start pointer write failed

XSIOIN: 4 start pointer failures

got illegal pid value

LOOP: map error

LOOP: LSTACK overflow

INBASE failed

SARWDG: software watchdog timer expired

TTYINI: tty changed psbs

IMP reinitialization

smashed a buffer pointer

RELCON: Changing buffer page allocation

FAKINI: stopped pktcore

TST2DEV: Swapping to F device

STO: lock timed out

main clock has stopped

backup clock working again

Snaps:

R4 - address of parameter block

RG - address of the buffer (through MAP2)

(map in UMAP area)

R1 - length that the hardware said it gave us.

--FLUSH INPUT AND RETRY. RESETS INTERFACE

404 Modem output got a quit

The modem output status register reported a quit.

Snaps:

R3 - output status register we read

R4 - modem parameter block address

R5 - device interface address

--CONTINUES WITH NEXT INPUT

405 Start Pointer Write Failed

Snaps:

R4 - start of modem parameter block for the offending

modem (or pair).

--FLUSH INPUT

410 Modem software checksum failure

The systems software detected a checksum error on a packet

(after the packet apparently was accepted by hardware

checksum logic). This could indicate a software problem, but

most likely is the result of a bad OMA card in the modem

interface.

5C5 Master Slave Mismatch.

Usually caused when lower number IMP on other end of line

fails to hear our "HELLO" packets. It could then be our

modem output failing or the other IMP's modem input failing.

Snaps:

R4 - Points to the modem parameter block.

602 Host input got a quit

Host input detected a quit during the input of data.

Snaps:

R1 - receive status

R4 - host parameter block

R5 - host interface address

--RETURNS "ERROR DURING DATA" MESSAGE TO HOST

603 Host input quit in leader

The hardware reported a quit while we were reading in the

leader.

Snaps:

R2 - receive status

R4 - host parameter block

RS - host interface address

--RETURNS "ERROR IN LEADER" MESSAGE TO HOST

604 Host output got a quit

The host output hardware reported that it got a quit. The

host is reset, and host ready line flapped to indicate the

failure.

Snaps:

R3 - transmit status

R4 - host parameter block

R5 - host interface address

--FLAPS HOST READY LINE AND RESETS SOFTWARE

GAO Error during host input data

This says the error bit came on in the host receive end

pointer (bit O). The usual cause is either the host or the

IMP dropping its ready line while active.

Snaps:

R7 - end pointer we got

R4 - parameter block of host

R5 - interface hardware address

--FLUSHES THE MESSAGE AND GIVES HOST AN "ERROR DURING DATA"

MESSAGE.

FCB Host sent error with ID

This says that the host computer thinks his ready line (imp

ready) flapped while he was reading his leader in. Although

this is specified in 1822, it is very unlikely that any real

hosts will do it.

9.3 TRAP LOCATIONS FOR IMP <1200> (NOT NECESSARILY TRUE FOR

PSE)

The following is a list of Pluribus traps. For IMPs on the

PLATFORM the hex trap number is reported to the NMC. For machines

not on the net, the traps are displayed at the bottom of the

terminal. When the Pluribus times out a software lock,

its address is reported as if it were a trap. The locks are

listed following the traps. Note - some locks are contained in

dynamically-allocated parameter blocks; thus, their addresses

depend on the individual machine configurations. If you need to

find out what dynamic lock has timed out, ask for help from a

software person.

The names in parentheses below are the source file name and the

logical page. Tne logical page information is used for obtaining

the correct common memory page if you need to patch a trap for

any reason. (see Section 2. 1.)

Page Trap (Source/Page) Loe: Description

Trap (Source/Page) Loe: Description

(STAGEK/LCode) 426: Unexpected Quit

2 (STAGEK/LCode) 5CE: program in a loop

3 (STAGEC/RelCode) 5340: Stage MM: Completed memory management

4 (STAGEK/LCode) 58E: 1oca1 clock stopped

5 (STAGEK/LCode) A76: Local Kernel Checksum Broken

6 (STAGEK/LCode) 9DC: unexpected interrupt

7 (STAGEK/RelCode) 44B2: Stage CD: BBC map failure

