Bolt Beranek and Newman Inc.

Technical Information Report No. 99

The ARPANET Pluribus IMP Program

Volume II: DDT, Program Descriptions, Data Formats

May 1978

Prepared for:
Defense Communications Agency

Bolt Beranek and Newman Inc.

Technical Information Report No. 99

THE ARPANET PLURIBUS IMP PROGRAM

Volume II

DDT, Program Descriptions, Data Formats

May 1978

5/78 Bolt Beranek and Newman Inc.

Volume II

Table of Contents

Foreword e T R v
Chapter 4 The Debugging System DDT « ¢ ¢ o o o o o o o o o o 1
4.1 DDT Command Summaries « e « ¢ o o o o o o o o o o o o o 2
4.1.1 Addresses, Opening and Closing e o o s e o e o o 2
4.1.2 Type Out Modes « « ¢ o o o o o o o o o o o o o o« o 3
4.1.3 Other Type Out Commands . « o« o « s o s o o o o o o 4
b4eled Type IN o o o o o o o o o o o o o o o s o o o o o & 5
4.1.5 Address Spaces =« « o o o o o o o o o o o o o s o o b
beleb CONETXOLl o 71
4.1.7 1IMP Version Features =« « s+ o o o o o o o o o o« o« « 8
4.1.8 Miscellaneous Commands =« « ¢ o o o« o o o o o o« « o« 9

4.2 Control Structure of DDT =« o ¢ ¢ o o o o o o o o o o« « 9
4.3 Protection, Override « o ¢ o ¢ o o o o« o o o 2 o o o« o 10
4.4 Debugging Environment of DDT . « ¢ ¢ ¢ o « o o« o o« « o 11
4.5 Debugging Mode « « o o o o o o o o o o o o o o o o o « 13

Chapter 5 Detailed Program Descriptions « « ¢« « « ¢ o« o« o« o« o 15
5.1 Stage SYStem « ¢ o o o o o o o o s o o o o o o o o o o 16

5.1.1 Stage LK - Local Kernel Checks =« « « ¢ o o o « o« o 19
5.1.2 Stage MD - Common Memory Discovery . « « ¢« o« « « o 20
5.1.3 Stage RK - Reliability Page Kernel Check 22
51.4 Stage BD - Common Bus Discovery « « o« o o o o o o« o 24
5.1.5 Stage CD - Bus Coupler Discovery =« « « o+ o o o o« o« 26
5.1.6 Stage RC - Reliability Page Check « « « « « « o o« o 28
5.1.7 Stage LC - Local Page Checksum =« « ¢« « o o o o o o 29
5.1.8 Stage MC - Common Memory Checksums . « « ¢« « « « o+ 30
5.1.9 Stage MM - Common Memory Management « « « o« o o« « o« 32
51.10 Stage ID - I/0 Interfaces Discovery =« « « « « « « 34
5.1.11 Stage AR - Application-dependent Checks . « « « .« 35
5112 Block Transfer « o« o« o o o o o o o o o o o o o o« o 37
501413 Quit Handler « « o ¢ o o o o o o o o o o o o o o o 39
5.1.14 1Illegal Instruction Interrupt Handler . « « « . . 41
5.1.15 Level 1 Interrupt Handler =« « o« ¢ o ¢ o « o« o o« o 43
5.1.16 Level 4 Interrupt Handler =« « ¢ o o ¢ o o o o o« o« 44
5.2 1IMP System Central Dispatch « « o« ¢ o« o o ¢ o « o« o o« o 46
53 Modem to IMP ¢« o« o o o o o o s o o o o o o o o o o o« o 48
54 IMP to Modem =+ o ¢ o o ¢ o o o o o o o o o s o o o o o 51
55 Host to IMP « o« 53
506 IMP to HOSL o o o o o o s s s o s o o s o o o o o o o o 56

[
e

5/78

[, NV, }

w
L]
U UULLULLLUL UL Lttt Lo

w
.

o pu o o o ¢ o] O e . e o o o o o

.

Task o o o o o o o o o o
«71 Task For Us . . o o
e7¢2 Back HoStS =« « o o

572.1 Back Host 5 . . .
57.2.2 Back Host 6 « + o
5¢7.2.3 Back Host 7 « .« =
5¢7¢2+4 Back Host 9 « . .

Routing « ¢ o o ¢ o o o &

Fake Hosts e o s & o o o

. TTY Fake Host to IMP

. TTY Fake IMP to Host

DDT Fake Host to IMP
DDT Fake IMP to Host
Packet Core Fake Host
Packet Core Fake IMP
Statistics Fake Host

O O WO WO W WYY
e e e e o
coO~N UL WN D

3

Very Distant Host (VDH)

Bolt Beranek and Newman

to IMP .

to Host .
to IMP . .

Discard Fake IMP to Host o« o o

Interface

ne . o . .

10.1 - VDH Line Initialization Subroutine
10.2 VDH Exit Routines .
10.3 Modem to VDH Coroutine « « .« &
10.4 VDH to Host-code Coroutine . .
10.5 Host-code to VDH Coroutine . .
10.6 VDH to Modem Corouti

Timeout e o o o o o o e

11.1 Host Timeout e« « o« o o o o o
11.2 Back Host Timeout « o o o o
11.3 Slow Timeout ¢ o o o o o o o &
511.3.1 Teletype Buffer Check . .
511.3.2 Reassembly Block Check . .
511.3.3 Host Access Checksum . . .
511.3.4 Line State Timeout . « « .
511.3.5 1IMP to Host Software Check
511.3.6 Central Dispatch Check . .
5.11.3.7 Transaction Block Timeout
5.11.3.8 Real Host Ready Line Check
5.113.9 Routing Timeout =« « « « =
511.3.10 Incomplete Message Timeout
511.3.11 Routing Software Check .
5.11.3.12 Buffer Counters Check . .
5.11.3.13 Allocate Count Check . .
5.11.3.14 Modem Queue Check
5.1143.15 Buffer Timeout =« « o « =
5.11.3.16 Trace Buffer Check . . .
5.11.3.17 Age Message Blocks . . .

ii

Inc.

. 59
.« 61

. 67
. 69
. 71
. 73
. 75
. 77
. 78
. 79
. 80
. 81
. 82
. 84
. 86
. 88
. 89
. 91
. 92
. 94
. 96
.« 97
. 98
100
102
103
104
105
106
107
108
110
111
112
114
115
117
118
119
121
122
124
126
127

5/78

Bolt Beranek and Newman

5.11.3.18 1IMP-going-down Message Check =« « « ¢ o« o+ =
511.3.19 Statistics Check =« « ¢ o o o o o o o o o o
5.11.3.20 Restart Buffer Check .« « ¢« ¢ ¢ o« ¢ & o o &
5.11.3.21 Fake Host Software Check ¢ ¢ o ¢ o o o o o
5.11.3.22 Back Host Software Check « o ¢ o o o o o o
5.11.3.23 Trouble Report Checks « . =
5.11.3.24 Light Display Check
5.11.3.25 Nice Stop Check « « o« o o &
512 1Initialization « « ¢ ¢ o o o o o o &
512.1 Buffer Initialization e o o o o
5.12.2 DDT Page Initialization
5.13 Configuration =« « « o ¢ ¢ o o o o o

5.14 Miscellaneous Routines . « « + « .« & o o e e e
5.14.1 Packet Core Reload « o o« o« o« o & o o o e e
5.14.2 Block Transfer Polling Process . o o e o
514.3 Restart Process =« o« o o o o o o e o e e e
5.14.4 DDT Polling Process =« o« « o o o o s e e e
5.14.5 Teletype Handler Polling Process e o o o o
5.14.6 Display Process =« « o o o o o o o o e e e

Chapter 6 Data Formats =« « « ¢ ¢ o o o o & o e e o .

6.1 Old-style Leader Format « « « « « o e e e e s

6.2 New-style Leader Format « o« ¢ o o o & o e o e .

6.3 Buffer Format . « o o o o o o o o o o« o e e

6.4 Basic Packet Structure =« « o o o o o e e e e
6.4.1 Packet Type 0O Formats . « « o o+ e e o o

6.4.1.1 Packet format for Type 0, Codes 0-3 . .
6.4.1.2 Type 0, codes 4=7 ¢ o o ¢ o o o o o o o o o &
6.4.1.3 Type 0, subtype 3: Uncontrolled packet . . .
6.4.2 Type 1 Packet Formats « « o o o o o o o o o o o o
6.4.2.1 Packet type 1, codes 8, A, C, D, E and F . .
6.4.2.2 Packet type l, code 9 « ¢ ¢ ¢ o ¢ ¢ o o o o
6.4.3 Packet type 2: Routing and null « « ¢« ¢ ¢« o« o o .
6e4.4 Packet Type 3 o o o o o o o o o o o o o o o o o
6.4.4.1 Demand reload « « o o ¢ o o o o o o o o o o
6.4.4.2 Reload requeSt « « o o o o o o o o o o o o
6.4c4.3 Packet COFe « o o o o o o o o o o o o o o o o
6.4.4.3.1 Data for SETUP message « « o o o o o o
6.4.4.3.2 Data for CORE message « « o« o o o o o o o

6.5 Modem Parameter BlocksS =« « o o o o o o o o o o o o

6.6 Host Parameter BlockS o« o+ ¢ o o o o o o o o o o o o o

6.7 Back Host Parameter Blocks =« « o o o o o o o o o o o

6.8 Fake Host Parameter Blocks « o« o ¢ o o o o o o o o o

6.9 Very Distant Host (VDH) Parameter Blocks e o o o e

6.10 Transmit Message Block Table « « ¢ o o« o o o o o« o &

iii

Inc.

129
130
131
132
133
134
135
136
138
142
143
145
147
147
149
150
151
152
153

155
155
156
158
159
161
162
163
164
165
166
167
168
170
170
170
171
172
173
174
177
180
181
183
185

5/78 Bolt Beranek and Newman Inc.

6.11 Receive Message Block Table =« « o o o o o o o o o o 187
6.12 Transaction Block Table =« ¢ ¢ o o o ¢ o o o o o o o 189
6.12.1 Reserved Transaction Block Format =« « « o o o 189
6.12.2 Outstanding Message Transaction Block Format . . 190
6.12.3 Control Message Transaction Block Format 191
6.13 Reassembly Block Table o« ¢ o o ¢ o o o o o o o o o o« 192
6.14 Routing Tables « o o o o o o o o o o o o o o o o o o 194

iv

5/78

Table 1)
Table 2)
Table 3)

Bolt Beranek and Newman

Volume II
Table of Tables
DDT Error Type—OutS. . . . e o o . e o « o

Simulated Processor Registers. « « « ¢ o o o o o o
Debugging Mode Halt Type-0utSe o o o o o o o o o o

Inc.
. 10
. 12
. 14

5/78 : Bolt Beranek and Newman Inc.

Foreword

This document forms Volume II of a two-volume set which
describes the Pluribus IMP program. The first volume contains

descriptions of the major routines in the IMP system.
Discussions in Volume I are high-level and that volume 1is
intended to be self-contained. Volume II contains detailed

descriptions of the programs that comprise the IMP system.
Chapter 4 describes the DDT debugging system, Chapter 5 discusses
the various program modules of the IMP system in detail, and
Chapter 6 contains pictoral descriptions of the data structures
used. Volume II is intended for system implementors, and should
be read only with a thorough understanding of all the discussions
of Volume I and with the IMP program listing handy.

vi

5/78 Page 1

Chapter 4
The Debugging System DDT

The Pluribus IMP provides within itself the diagnostic
debugging system DDT to facilitate dealing with problems that
might arise. The implementation makes it possible to debug the
Pluribus IMP either from the terminal attached to the IMP or from
a remote location. Both the local terminal handler process and
the DDT process are implemented as fake Hosts within the IMP.
These Hosts are "cross-patched" when the system is initialized,
so that characters typed at the terminal are sent to DDT, and DDT
responses print on the terminal. DDT commands are provided to
.reconnect DDT to another Host anywhere in the network to permit
remote debugging. Further details about these fake Hosts are 1in
sections 2.2.6.1, 2.2.6.2, and in 5.9.1-5.9.4.

DDT is a program which provides a mechanism for inspecting
and changing registers of the machine. In a broader sense,
however, it <can be viewed as a simple operating system which
controls the starting and stopping of processors and handles
extraordinary conditions (QUIT and ILLOP). This section is not
intended as a tutorial; some knowledge of how other DDTs work
(see, for example, "DDT-10 Programmer’s Reference Manual,"
Digital Equipment Corporation, Maynard, Massachusetts, copyright
1968, 1969, 1970) may be helpful.

Pluribus DDT versions have been developed for different
configurations and applications; only the IMP version is
discussed here. Regardless of the internal structure, all
versions appear basically the same to the user. DDT requires a
controlling device, such as a Teletype or VISTAR. Pluribus IMP
DDT runs in conjunction with the STAGE subsystem. As such, it
may run only when at least the STAGE Kernel is in operation (i.e.
Stages LK through RC are running). DDT makes use of the Block
Transfer routine to examine and deposit words in memory.
Modifying locations within checksummed code automatically updates
the proper checksum to permit patching of the program from DDT.

Following are descriptions of the various commands the wuser

may type. A number is represented by "nn'", and <altmode> (or
<escape>) is represented by "§". A dollar-sign character is
indicated by '"<dollar>". A caret or uparrow """ followed by a
letter indicates a control character. The character caret (or
uparrow) 1is indicated '<uparr>". The underscore or backarrow
character is indicated by '"<backarr>". The carriage return
character is denoted '"<cr>", and linefeed "<1f>". The word

"register" generally means a location in address space; a

5/78 Page 2

"processor register" is just that. Numbers are followed by "!"
to indicate that they are hexadecimal (base 16).

4.1 DDT Command Summaries
4.1.1 Addresses, Opening and Closing

Whenever a register is "opened", its contents are typed out
in the current mode (except as noted for certain commands). When

a register 1is '"closed", the last value typed in while open, if

any, is written to that register. If nothing or <delete> 1is

typed in, nothing is written.

nn/ Opens register nn. The ©processor in whose address
space the reference was made types out as "Pnn"
immediately following the /. The contents of the

requested register then are typed in the current type
out mode.

nn,nn,nn/ The first two arguments specify a processor or
processors to do the reference, and a map setting if
needed. The processor(s) may be specified as for the
":" command (see below). A single processor or any set
of processors 1is permissible, and the command has the
same effect as if "nn:" or "Pnn:" were typed prior to
opening the location. If the address requested is a
mapped reference (i.e., the address is in the range
4000-BFFF!), the middle argument is used to set the
appropriate DDT pseudo-map. The effect is identical to
explicit map-setting using the proper "nn,nn”"F" command
(see below). Either of the first two arguments may be
omitted; the default is to leave the processor

selection and map settings as they were prior to the
command .

Rnn/ Opens processor register nn. For processors running
STAGE, simulated processor registers are used, which
contain the actual processor register values at the
last occurence of a snapshot-triggering trap. Refer to
the discussion of the DDT debugging environment below.
For processors not running STAGE, the actual processor

register 1is referenced. If the processor is running
another program, all references to its processor
registers result in QUITs, except for R15. The latter
is the ©processor control register and 1is always

visible, although references to it may cause the
processor to halt.

5/78

<cr>

<1lf>

$<1f>
<uparr>

$<uparr>

$/

Page 3

Closes current register, if any open.

Closes current register, if any open, and opens next
"instruction"; that 1is, if type out mode is symbolic

(see below) and the current register is a double-word
instruction, skip one register.

Same as <1f> but always opens the next register; that
is, a register is never skipped.

Closes current register, if any open, and opens the
previous one.

Like <uparr> but goes up two registers, not one.

By itself, is the value of the address of the current
register, 1if any open; if none, then the last current
register.

Types out the contents of the register addressed by the
current register but does not open it or change ".".
The address used is the "effective" address of the
symbolic instruction, 1if the current type-out was
symbolic. For instructions that have no effective
address (HLT for example), or for type out in constant
or ASCII mode, the actual memory contents are used for
the "effective" address.

Closes the current register and opens the register
addressed by the current register, as in "/".

4.1.2 Type Out Modes

There

are two orthogonal type out modes. One controls the

radix of type out:

“H

$70
The other

=8

Numbers are typed out in hexadecimal (base 16) - the
default.

Numbers are typed out in octal (base 8).
controls how register contents are interpreted:
Type out symbolically, that is, try to interpret as an

instruction, including next word 1if a two-word
instruction code.

5/78 Page 4

“K (Konstant) type out as a number.

~A Type out as two ASCII characters.

4.1.3 Other Type Out Commands

= Retypes out the current register in the alternate mode
as follows:

current alternate
symbolic constant
constant symbolic
ASCII constant

$= Retypes out the current register in the alternate mode,

as in "=", and changes the current mode to the
alternate mode.

nn= When preceded by a number or an expression, types out
the value of that expression. The result of such
expression arithmetic is not considered a value to be
written to an open register when closed.

nn" opens location nn, but does not type out contents;
remains in this mode until / or \ is typed.

$" analogous to $/

analogous to /

nn)\ opens location nn, but the address type out is
suppressed on succeeding lines until / or " is typed.

$\ analogous to $/

\ analogous to /

nn|[opens location nn, but types out contents in the
alternate mode (see =, above); does not change current
mode.

S[analogous to $/

[analogous to /

5/78

Page 5

4e1.4 Type In

symbols

nn

nn.
nn”’

nn!

<delete>

<space>

<tab>

DDT <contains symbols with predefined values to
facilitate type in of symbolic data. All of the op
codes and other instruction components of the Pluribus
assembler are appropriately defined. By using <space>
and/or <tab>, instructions may be entered in virtually
the same format as the assembler expects. Type in
routines correctly interpret displacements in branch

instructions. Malformed instructions result in the
type out "#", and all current type in is cancelled.
There is presently no facility for wuser defined
symbols.

NOTE: The characters <comma>, '"='", "#", "4" "=t mwm,

and ")" have special meaning within an instruction type
in, as do the symbols RO, Rl, ... R7. Refer to BBN
Report No. 3001, Pluribus Document 4, Basic Software,
Part 2, for a description of the Pluribus assembler
format.

Typed in numbers are generally interpreted according to
the current type out radix, except that numbers
containing letters A-F are always hexadecimal. Note
that some numbers look just like symbols; e.g., ADD,
ADDB, BC, BE, BFl, BF2, and BF3. These are treated as
symbols unless they are explicitly denoted as numbers
by a leading zero or by an "!" after the number. It is
a good habit to precede all hexadecimal numbers
beginning with the letters A-F by a leading O.

a decimal number
an octal number
a hexadecimal number

echoes as "#" and cancels current input, that is, it is
as if whatever is being typed in was never typed.

addition
addition

addition

5/78

<backarr>

<comma>

Page 6

subtraction

has the value of the 1last quantity typed out as a
result of examining a register. This would be the
value of second word of a two-word instruction when in
symbolic mode. If the value of the first word is
desired, use "=" followed by <backarr>.

is used to input two words at a time. Typing <comma>
after the first value saves that value wuntil the
terminator is typed after the second value, then both
values are written to memory. The value of "." is not
changed. A <delete> typed after the <comma> aborts the

entire input. If nothing is typed before the <comma>,
only the second word is changed.

4.1.5 Address Spaces

Pnn:

nn:

nn,nn"F

sets the number of the current processor address space.
The processor number 1is specified according to the
Pluribus convention that assigns coupler addresses to
indicate the physical processor position in the
machine. If the processor doesn’t exist, or is
inaccessible, subsequent references to 1its address
space produce the "WHO?" diagnostic. No checking 1is
done at the time the ":" is typed.

selects a set of processors, according to the mask

given in nn. Bits correspond to processors in the
system, assigned right-to-left in increasing order by
processor number. If nn is 0 or the character "-" or

not specified at all, the mask 1is set to be all
processors currently running STAGE. Read references go
to the first processor that runs the Block Transfer
subroutine; 1if no processor running STAGE is 1in the
mask, then some processor in the mask is accessed by
its buddy (if the buddy is running STAGE), or the
lowest-numbered processor 1in the mask is accessed by
backwards bus coupling. The identity of the processor
in whose address space the location was examined types
after the "/" (see above). Write references are
performed by all processors in the mask, allowing
simultaneous patching of all processor local memories.

sets the map value of the memory page to be referenced
when examining addresses in the mappable segments

5/78

4.1.6

nn"G

Page 7

(4000!-BFFF!) to the second argument. The map setting
is maintained intermnally to DDT, but is used for all
subsequent references through the corresponding address

window until changed by another “F or / command. One
of the four segments 1is specified by the first
argument, which must be "MO", "M1", "M2" or "M3" to
select .a particular 4K map window. If the first

argument is missing, map 0 is assumed. The map setting
is interpreted as follows: (1) even numbers less than
200! select a logical page type, as maintained by Stage
MM. (2) even numbers 200! or greater select the
physical page with that map setting. (3) 0 selects
logical page 0 (the "reliability" page). (4) Any odd
number selects a physical page; 1in particular, 1
selects physical page 0. An argument of -1 causes all
four maps to be set to their default values, which are
0,10,12,10 for the reliability, wvariables, second
variables, and variables (logical) pages. The current
map settings may be examined by opening locations M0-M3
(i.e., type "MO/" to see the current setting for
references to locations 4000-5FFF).

Control

starts the selected processor at nne. If the selected
processor is running STAGE, nn 1is copied to its
simulated RO and its R15 is set to 2.

starts the selected processor at the address 1last
specified by a G command. If no argument is given and
no address has been specified previously, a "#" prints
and nothing else happens.

stops the selected processor if running and types out
the contents of the program counter. If not running,
types out "HALTED". For processors running in the

STAGE system, sets their simulated R15 to a 1, and
prints the contents of simulated RO.

Causes the selected processor to proceed from its
current state. If a processor running STAGE 1is
selected, its R15 is set to 2.

steps the selected processor one instruction and types
that instruction. Prcoessors running STAGE set their
R15 to 3. In this case, single-stepping is meaningless
and should not be tried.

5/78

Page 8

like ~Z but does not type the instruction.

like ~Z but first sets the program counter to nn.

IMP Version Features

sets up a leader for a "semicolon message". Format 1is
"<leaderl>, <leader2>, <leader3>, <leaderé4>,
<leader5>"L". Any field not specified is assumed to be
zero except for <leaderl>, which is set to O0F00. Thus,
the command 3,6,"L sets up a normal message leader for
semicolon messages to Host 3 on IMP 6, with no special
leader flags and a message-id of 0.

clears the screen and repaints the display in the
bottom portion of the screen.

"crosspatches" all subsequent type in. The second
argument is the IMP to send to; the first is which Host
on that IMP. Host OFD (i.e., the DDT fake Host) 1is
assumed if the first argument is omitted.

undoes “C and directs type in to the local DDT - echoes
a <cr>, <1f> pair.

returns as a value in the current radix the number of

the 1last IMP Teletype to '"crosspatch" to the local
Teletype.

complements value of the override switch and echoes
"“ON" or "“OF" as appropriate.

same as "0 for "sense switch" nn (l1-4). The Pluribus
has no physical sense switches; software sense switches
are maintained in this fashion, but currently have no
function.

nn<dollar> activates the operator help (OPHELP) command nn.

These commands are various maintenance and debugging
aids which enable day-to-day operation of the IMP
system without detailed knowledge of the program. For
ex

ample, OPHELP commands can loop and wunloop modem

lines, or look wup the address of a Host parameter
block.

5/78 Page 9

4.1.8 Miscellaneous Commands

nn,nn,nn"B copies contents of some processor’s private memory to
the <corresponding locations of the private memory of
the currently selected processor(s) . The first
argument selects which processor(s) should be the
source of the transfer, where nn is interpreted as in
the nn: command (see above). Pnn: may be used to copy
from one specific processor. The latter two arguments
give the inclusive bounds on the addresses to be
copied. Omitting arguments causes the 1last value
previously specified for that field to be used; if none
exists, a "#" is echoed and no copy takes place.

4.2 Control Structure of DDT

The Teletype handler process and the DDT process are polled
from the operational IMP program when they have work to do (i.e.,
characters to process). The Teletype ©process 1is also called
periodically to check for new input characters from the Teletype
interface. Since crosspatching allows the local Teletype to send
its characters to another IMP, and other IMPs or Hosts may send
characters to the DDT process, the two processes must be
independent. The “C and @ commands provide <control over the
crosspatching of the local IMP Teletype.

DDT makes use of the Stage Block Transfer process to perform
operations that involve moving data in memory. The various
Examine and Deposit functions are such operations, as are the X,
~“G, “"P, “Z, and °B commands. Failures within the Block Transfer
process set error codes, which DDT attempts to interpret. Table
1 shows the DDT error type outs and their meanings.

The Teletype and DDT processes communicate only by passing
characters through buffers. The Fake Host processes responsible
for communicating these characters to and from the network manage
the other side of these buffers. When the system is in debugging
mode, and the IMP processes stop passing these characters for
several seconds, a special mode 1is entered which permits the
characters to be passed directly from Teletype to DDT and back.
In this mode, the IMP Fake Host processes are bypassed (since
they may have stopped running anyway). Refer to the discussion
of debugging mode below.

5/78 Page 10

Type-out Meaning

QUIT Block Transfer got a QUIT trying to complete the 1last
request. If the request was performed by several
processors, the mask specifying which processors got
the QUIT will print in parentheses. A mask of FFFF
indicates that the single processor which was selected
could not complete the transfer.

FAILED Block Transfer couldn’t complete the transfer in the
requested processor’s address space. Again, a mask
saying which processor(s) had trouble will be printed.

WHO? Some non-existant processor was specified to Block
Transfer. The mask which prints says which processor;
if a single processor is selected, a mask of FFFF will
print and that processor doesn’t exist.

TIMEOUT Block Transfer timed out before the requested transfer
could complete. This shouldn’t happen; if it does, it
indicates a program bug or perhaps a very busy machine.

2?72 A Block Transfer error has happened which DDT can’t
decode. This should never occur; it would indicate a
program bug in DDT.

Table 1
DDT Error Type-Outs.

4.3 Protection, Override

DDT has the power to change any location in memory in such a
way that it cannot be detected (by a failing checksum, for
example). As such, it could completely disable the continued
operation of the operational IMP system. For this reason, all
potentially dangerous actions of DDT are protected by the
override mechanism. Normally, the override condition is disabled
in a running IMP system. Only certain Hosts (the NCC 1IMP
Teletype Fake Host, for example) may turn on override. Override
is always disabled following a system restart. Once override is
enabled, all of DDT’s features are permitted, so extreme care
must be used that incorrect actions are not requested. As soon
as the necessary requests to DDT have been completed, override
should be immediately disabled. Override is controlled by the ~O0
command . — ’

5/78 Page 11

Commands that can modify memory include a direct request to
change an open memory location with <1f> or <cr> (although memory
may be examined with override off), the <dollar> commands, the
processor-control commands (X, “P, “G, and "Z), the local memory
copy command "B, and the crosspatch command “C. Examining memory
and typing <1f> to progress to the next location is permissible
with override off (since nothing was typed in to be deposited).

4.4 Debugging Environment of DDT

DDT attempts to maintain a "logical" debugging environment
similar to the environment the programmer is coding in when
he/she is writing the ©program. In particular, DDT assigns
special meanings to such hardware features as the memory map
registers (and their effects) and the processor registers. The
debugger can thus simulate step-by-step the action of a
particular routine by changing the contents of these hardware
registers in DDT. DDT, of course, does not change the actual
registers, since it is using the registers for its own purposes.
Instead, the registers and (in the <case of the maps) their
side-effects are simulated by DDT.

The simulated or pseudo-map registers can be accessed in
DDT, - either explicitly by opening locations MO, M1, M2, or M3
(or, -equivalently, OFCO0O0!, OFCO2!, OFCO04! or OFCO06!), or
implicilty in the nn,nn/ and “F commands. The current settings
in DDT’s simulated registers may be examined by opening locations
M0O-M3. (The hardware map settings cannot be read directly!)

The processor registers can also be examined for processors
running in the system. Of course, since the processor is running
at the time, these have no meaning. Instead, DDT displays the
registers at the time of the last '"snapshot". A snapshot is
triggered by a extraordinary occurence in the IMP program. An
unexpected QUIT is such an occurence. In many places, traps that
are not supposed to happen ever, and in particular traps that may
indicate some hardware malfunction, are transformed into snapshot
traps (see description of illegal instruction interrupt handler,
section 5.1.14). The snapshot consists of a complete picture of
the processor registers at the time of the snapshot, plus other
interesting information that may have some bearing on the problem
at hand. Snapshots are sent periodically to TENEX by the PLOG
process when debugging mode is disabled, so that a permanent
record of them may be kept and the snapshot area may be reused.
Table 2 1lists the simulated registers and their meanings.

5/78

Register

Page 12

Contents

RO

R1-R7

R8

R9

R10

R11
R12
R13

R14

R15

170

172-6

The illegal instruction (ILLOPR) that triggered this

snapshot. Refer to the trap listing for the IMP for
its meaning. ‘

The contents of processor registers 1-7 at the time the
snapshot trap was executed. Refer to the program

listing to discover their meaning at the time of this
particular trap.

The processor status register at the time of the trap.

The contents of the program counter at the time of the

trap. (i.e., the memory location containing the trap
instruction)

The last call to the Stage restart WST, WSTCOM, or WS.
Encodes the reason for the last restart of this
processor.

The contents of the program counter the last time a
"program in a loop" condition was detected.

The address being referenced tha last time an
unexpected QUIT occured.

The contents of the status register at the 1last
unexpected QUIT.

The program counter at the last unexpected QUIT.

The simulated processor control register. For more
discussion, see the section on debugging mode.

(This 1location is right after R15; a <1f> after
examining R15 will examine this location). The mapO
setting at the last snapshot.

Maps 1-3 at the last snapshot. The map settings will
always have the 2-bit or“ed in.

Table 2
Simulated Processor Registers.

5/78 Page 13

4.5 Debugging Mode

Debugging mode is a special IMP program feature which should
never be required during normal operation. It allows processors
to "hang" in the early portions of STAGE under various drastic
error conditions, so that the state of a computation can be
examined in DDT after the occurence of the error. This facility
is much 1like the notion of a "breakpoint" in many other DDT's.
In the Pluribus, however, we have modified the notion somewhat
because of the demands of the multiprocessor environment. In
particular, DDT may only run when enough of STAGE is running to
guarantee proper communication between the ©processors in the
system. In other words, enough of STAGE must be running to
"ensure proper operation of the Block Transfer process. This
comprises the "kernel" of STAGE, or Stages LK through RC.

Once these Stages are enabled, the Stage dispatcher checks
the debugging mode flag. This is a flag within the local kernel
checksum bit-coded by processor - if the bit corresponding to a
processor 1is set, it is in debugging mode. Processors in
debugging mode will hang at Stage RC if their simulated "halt"
bit (bit 1 in R15) is set. They continue to poll Block Transfer
and the Teletype and DDT processes, however, so that the state of
the system may be examined by the programmer. There are known
dead states 1in debugging mode! The DDT code page, for example,
is not checked before the Teletype and DDT routines are called,
so° a problem in those routines could cause processors to execute
a halt or worse. Use of debugging mode is dangerous, and is only
intended for checkout of new systems on machines not performing
an operational function. 1In a redundant system, debugging mode
could possibly be used selectively to diagnose a failure in only
one processor or processor bus, but extreme caution is advised.

In debugging mode, Stage interprets the processor "Halt" bit
(i.e., the 1-bit in snapshot register R15) to mean "stop running
the system and all stages later than stage RC". When all is
normal, the "run" bit (the 2-bit) will be set. An occurence of a
snapshot trap will turn off the rum bit, but not set the halt bit
(this is the "half-halted" state). A serious condition (an
unexpected QUIT, or the special halt traps OFFFF and OFADE) will
set the halt bit, and this processor will <cease running the
operational system. In addition, extra bits are set to indicate
which condition caused the processor to hang in STAGE, and the
reason will print out as "Pnn xxxx@yyyy", where xxxx is the error
condition and yyyy 1is the 1location of the snapshot trap that
caused the halt. The conditions and their meanings are listed in
Table 3.

5/78 Page 14

Type=Out Meaning

QUIT The processor got an unexpected QUIT at the instruction
whose address is typed in the error print out.

ILOPR The processor executed a OFFFF instruction at the
specified location.

FADE The processor executed the special illegal instruction
OFADE at the specified location. This causes a flag to
be set in common variables which in turn forces all the
other processors also to hang in STAGE. This is useful
when debugging a problem requires looking at the global
environment of the system. Each processor checks the
flag as it completes the strip it was running.

Table 3 _
Debugging Mode Halt Type-Outs.

NOTE: In the "halted" state, Stages LK-RC continue to run.
This means that debugging those Stages is very touchy with the
use of the OFFFF or OFADE traps. Programmers are advised to try
to wuse snapshot traps wherever possible for debugging, and to
resort to the halt traps only rarely. In most cases, enough
useful data <can be loaded into the registers at the time of the
snapshot to permit effective debugging of bad conditions.

The snapshot area, once it contains a valid snapshot, will
only be overwritten by the serious condition type of snapshot.
The serious snapshot will never be overwritten, but the processor
must have its "halt" bit turned off before it reenters the
system. The overwriting is controlled by looking at the stets of
the simulated RI15 run and halt bits. Snapshots are permissable
which progress from "run" state to '"half-

halted" or "halted"
state, and from "half-halted" state to "halted" state. Causing

processors to leave either "half-halted" or "halted" state 1is
achieved by typing “P with the appropriate processor(s) selected.
This sets their R15 back into "run" state to permit more

snapshots. When not in debugging mode, the TLOG process, as it
sends off snapshot messages, turns the "run" bit (bit 2) back on
to allow more snapshots to take place.

5/78 ‘ Page 15

Chapter 5
Detailed Program Descriptions

A concise, systematic approach has been taken in presenting
details of the IMP programs in the following pages. The approach
is reflected by the headings of the outline used in describing
the programs:

1. Function - for complex routines, each function is numbered
for reference in subsequent sections. The list of functions
contains those which are fundamental to major IMP
operations.

2. Control Structure - A general description of the coding
structure and its control flow.
a. Entry points - locations and modes by which the program
is entered.
b. External calls - the names of subroutine or coroutine
calls which the program makes.
c. Initialization - important settings made during the
initialization process.
d. Cleanup - actions taken before exiting or during unusual

situationse.

3. Data Structures.

a. Local data - variables and constants which are used only
by the program.
b. Shared - tables, variables and locks which are wused by

other programs as well. Care must be taken to use software
locks wisely so as to insure consistency in shared data.

4. I1/0 Performed - Any actions taken which affect the state of
any hardware interface in the IMP. Included are resets as
well as input and output operations.

e I

L B |

5/78

Page 16

5.1 Stage System

Function

The Stage =system 1is a series of processes which
progressively build wup a picture of the Pluribus
machine configuration. The output 1is typically in
tables which may be used by operational systems (such
as the IMP program) to initiate and perform their
tasks. Each of the processes 'is described in a
subsection of this section. Dispatch control for
initiating these processes 1is described in this
section. Other basic system functions performed by the

Stage routines are described in subsections following
the individual Stages.

Control Structure

The Stage dispatcher polls individual Stages which have
been enabled, under control of the WDIS word. In
addition, the Block Transfer process is polled and, if
in debugging mode, the Teletype and DDT processes. The
dispatcher also maintains the Stage timing functions
and consensus arrays for each Stage.

Entry Points

Stage 1is the first system entered on start-up or after
a drastic system failure. Following are various
entries to Stage, and their uses:

SETUP: a halt, so pushing RUN on the operator console
proceeds at WS.

WS: restart entry, to force total system
reinitialization; normal entry following a fresh
paper-tape reload.

WSTINI: entry for processor that 1is restarted by
another processor; sets up PROCNO and enters WST.

SJ7: entry if this processor believes the communication
page has failed.

WSTCOM: entry to force finding of a (possibly new)
communication page.

WST: entry following certain drastic 1local failures,
such as unexpected QUITs or program loops.

External Calls

SBAD: routine to disable later Stages; called on
initial entry to disable all but the first Stage (Stage
LK) .

STPOLL: entry to poll DDT and Teletype from Stage, for
debugging only.

5/78 Page 17

BLT: Block Transfer process; provides mechanism for

processor reloads and restarts, DDT examine and
deposit, and packet core transfers.

Initialization
Each Stage, as it succeeds, initializaes the dispatch
(WSLA7) for the succeeding Stage.

Cleanup
All hardware configuration data is periodically checked

and kept correct by the Stage processes.

Data Structures

Local Data
UWST: saved address of last caller to initial entry to
Stage.
WSTAGE: currently running Stage index.
WTEMP: temporary register save word.
WSLA1-WSLA7: tables (by Stage) of saved register
settings.
SVTIME: most recent time - read from real time <clock
Stage is using (LCLOCK).

Shared Data
LCLOCK: address of current real-time clock for Stage to
use.
UTIME: time next to run Stage LK (so all Stages run
occasionally).
WDIS: Stage dispatch control; bit-coded by Stage.
CONSOL: address of operator console light registers, if
any.
LTIME: time (from LCLOCK RTC) before which the Stage
dispatcher should next be entered.
DEBUGM: debugging mode flag.
PROCBT: bit for this processor.
SNAP: snapshot save area.
MAPREL, MAPCOM, MAPVAR: map settings for reliability,
communication, and variables pages.
STIME: local copy of Stage system time (SYTIME).
COMPTR: pointer from each common memory page to the
communication page.
SYT IME, SYTIM2: time (25.6 ms ticks if IMP system
running), controls many Stage timeout functions.
COMREL: communication page pointer to reliability
(rely) page.
SEGCON, STGCON, BUSCON, COUCON, RCKCON, LOCCON, CKSCON,
MEMCON, IOCON, INICON: consensus arrays for Stages MD,
Rk, BD, CD, RC, LC, MC, MM, ID, AR.

5/78 Page 18

I/0 Performed .

While Stage 1is running, WDIS is displayed in the
console address 1lights. If an external reload is in
progress, the packet core address (PKCADD) is displayed
in the console data lights by BLT.

5/78

Page 19

5.1.1 Stage LK - Local Kernel Checks

Function

This Stage operates on configuration data local to each
processor. Upon successful completion, the processor
has initialized 1its interrupt dispatches (for QUITS,
power fails and restores, and the 60-hertz ("jiffy")
clock interrupts), discovered its operator console (if
any), checksummed the local kernel code, and found a
system real time clock (RTC) to use for timing Stage.

Control Structure

Entered on any Stage restart, and then runs forever as
a coroutine with the Stage dispatcher.

Entry Points

Restarts enter at SLKOO.

External Calls

CKSUBI, CKSUBR to checksum the local kernel code.
SLKSLE to dismiss coroutine (special entry to WSLEEP).
FNDCLK to search for a real time clock.

SOKAY to signal successful completion of this Stage.

Initialization

None.

Cleanup

None.

Data Structures

Local Data\ -
NOne>)

Shared Data

UQUIT: pointer to unexpected QUIT handler.
CONSOL: address of operator console, if any.
PROCNO: processor number for thie processor.
PROCBT: bit assigned to this processore.
LCLOCK: address of RTC for Stage to use.

I/0 Performed

Processor interrupt vectors are initialized and level 1
and 4 interrupts are enabled.

5/78

Page 20

5.1.2 Stage MD - Common Memory Discovery

Function

This Stage searches the common memory space to find
usable common memories. In addition, it must maintain
the identity of the communication page, which must be
the lowest numbered page the processor can see.

Control Structure

Searches through all possible memory from map 0 to map
7E00!. Each memory is tested for proper operation with
a brief memory test. The lowest page found is used as
a communication page.

Entry Points

Coroutine, entered from Stage Dispatcher via WSLA7.

External Calls

WSLEEP to dismiss coroutine.

SFIXIT to reach consensus for modifying MEMSEG.
SCLEAR to remove this processor’s FIXIT bit.
SOKAY to allow next Stage to run.

SBAD to disable later Stages.

Initialization

WSLA7 is initialized to dispatch to SMDOO.

Cleanup

None.

Data Structures

Local Data

MYSEGS: this processor’s version of common memory
table.

WMLOCK: lock on memory test area.

SMDFLG: flag for timing COMTST.

SMDTIM: timer for COMTST counters.

SMDBUC: junk word (bit bucket) to store into to find
Memory.

SMDBLK: memory test area.

COMTST: bit-coded (by processor) timers to fix a COMPTR
word.

Shared Data

MAPCOM: map setting for communication page.
MEMSEG: common memory table (bit-coded).
MEMTOT: total number of 4K memory pages found.

5/78 Page 21

STIME: Stage time (local copy).
SLFPTR: page self-pointer (copy of map setting).
COMPTR: pointer from each page to the communication

page.
PROCBT: processor bit for this processor.

I/0 Performed
None.

5/78

Page 22

5.1.3 Stage RK - Reliability Page Kermel Check

Function

This Stage searches through common memory for a viable
common memory kernel. The kernel, and the whole page,
are checksummed. The result is recorded (via
consensus) in COMREL on the communication page.

Control Structure

Searches through memory pages discovered by Stage MD.
Existence of a kernel is denoted by the password OACE!
being stored at location RKEPAS. Checksums of the
kernel, and the whole (reliability) page are verified.

Entry Point

Coroutine, dispatch from Stage dispatcher via WSLA7.

External Calls

SCLROK to pass the Stage and remove fix-it bit.

WSLEEP to dismiss the coroutine.

MEMTS2 to check for existence of a memory page.

CKSUBI, CKSUBR to compute checksums.

SFXBAD to hang this Stage and await consensus for
modifying COMREL.

Initialization

WSLA7 is initialized to dispatch to SRKO0O.

Cleanup

None.

Data Structures

Local Data

SRKKER: kernel that has been found by this stage, 1if
anye.

RKEPAS: 1location of password constant identifying the
kernel.

RKERCK: checksum and limit words for kernel checksum.
SRKREL: copy of COMREL, used to limit search loop.

Shared Data

COMREL: pointer from communication page to reliability
page. ‘

CKSUM: checksum and limit words for common code page.
TYPE4K: core type word for common code page.

5/78 Page 23

I/0 Performed

None.

5/78

Page 24

5.1.4 Stage BD - Common Bus Discovery

Function

Check variables area in common memory for this and
later Stages for bad parity and currency; reinitialize
it 1if there 1is bad parity or if the variables are no
longer current. Find which common busses exist (for
I/0 or memmory). Note which I/0 busses have real time
clocks. Results are recorded in USEBUS.

Control Structure

Scans the common variables area for bad parity, which
is indicated by the occurrence of a QUIT. Checks for
existence of common busses. I/0 busses are checked to
see 1if they have a PID and real time clock. Memory

busses exist 1if their 1lowest-numbered page is in
MEMSEG.

Entry Points

Coroutine, called from Stage dispatcher via WSLA7.

External Calls

SCLROK to pass the Stage and remove fix-it bit.

WSLEEP to dismiss the coroutine.

SFXBAD to hang this Stage and await fix-it consensus.
WST to restart Stage.

WSTMEM to remove a failing memory page from wusage and
restart Stage.

Initialization

WSLA7 is initialized to dispatch to SBDOO.

Cleanup

None.

Data Structures

Local Data

STGTIM: timeout on the Stage common variables area.

Shared Data

COMAR: Stage common variables area..

BBCLOK: lock on backwards bus coupling privelege.
BLTLOK: lock on Block Transfer parameters.

BUSCON, COUCON, RCKCON, LOCCON, CKSCON, MEMCON, IOCON,
INICON: Consensus arrays for Stages BD, CDh, RC, LC,
MC, MM, ID, AR.

STIME: local copy of system time.

5/78

Page 25

MEMSEG: table of existing memory pages from Stage MD.
PIDGET: local table of PID read addresses.

USEBUS: bit-coded table of existing common busses and
real time clocks.

LKERCK: local kernel code checksum.

MAPREL: map for reliability code page.

I/0 Performed

None.

5/78 Page 26

5.1.5 Stage CD - Bus Coupler Discovery

Function
Search for all couplers in the system (processor to
memory, processor to I/0, and I/0 to memory). Search
for all processors in the system.

Control Structure

Scans all of coupler addresses on I/0 and memory
busses. Couplers appearing on I/0 busses must be from
processor busses; 1if memory busses have couplers that
correspond, they are assumed to be . from processor
busses also. Couplers appearing only on memory busses
are assumed to be from I/O0 busses, and are remembered
separately. Processors are assigned numbers based on
their coupler addresses (which generally correspond to
their physical location in the Pluribus machine).

Entry Points
Coroutine, <called from Stage dispatcher through WSLA7.

External Calls

SFIXIT to achieve consensus for modifying results of
this Stage.

SCLROK to pass this Stage and remove this processor’s
fix-it bit.

WSLEEP to dismiss coroutine.

SFXBAD to hang this Stage and await consensus to fix
results.

WST to restart Stage if this processor discovers its
own number was wrong.

initialization
WSLA7 is initialized to SCDOO.

Cleanup
None.

Data Structures
Local Data

PROCD: accumulates set of existing processors.
SCDIOI: current index to non-processor coupler table.
SCDBUS: accumulates bits by bus for which common busses
this coupler exists on.
AMPCOM: table of common bus amputation states.
COUBUS: which busses each processor has couplers on.

5/78 Page 27

IOCTBL: table of non-processor couplers and which
(memory) busses they exist on.

Shared Data

PROCEX: bit-coded table of existing processors.
PROCNO: my own processor index in COUTAB.
COUTAB: table of processor coupler addresses.
MYPROC: my processor number = —coupler index (bus
address) plus odd bit if I°m the odd processor.

> PROIOR: bit table of processors that should be removed
from system.
AMPROC: amputate words by processor coupler.
SEGCON: Stage MD consensus.
USEBUS: bit-coded table of existing busses.
BBCLOK: lock on backwards bus coupling privelege.
QUITV: pointer to most recent QUIT vector used.

I/0 Performed

None.

5/78

Page 28

5.1.6 Stage RC - Reliability Page Check

Function

Decides (based on result of Stage RK) whether the
checksum on all of the reliability page code is good.
If it isn’t, trigger a reload. If okay, see whether

debugging and this processor is in the simulated halt
state; if it is, hang in this Stage.

Control Structure

Examines COMREL to determine whether reliability page

has a good checksum. DEBUGM and BLTMYC (simulated

processor control register) control the halted
debugging state.

Entry Points

Coroutine, called by Stage dispatcher via WSLA7.

Externél Calls

WSLEEP to dismiss the coroutine.

SBAD to hang the Stage pending a reload.

STEST to conditionally pass this Stage.

RELTRY to initiate a Block Transfer for a reload.

Initialization

WSLA7 is initialized to SRCO0O.

Cleanup

None.

Data Structures

Local Data

None.

Shared Data

PROCBT: my assigned proessor bit.

SNAP: snapshot save area.

COMREL: pointer from communication page to reliability
code page.

TLIMIT: limit of checksummed area on each code page.
CKSUM: checksum on a code page.

RCKCON: consensus array for this Stage.

I/0 Performed

None.

5/78 Page 29

5.1.7 Stage LC - Local Page Checksum

Function
Verifies the checksum on all the local memory code for

this processor. If checksum fails in every processor
(i.e., .consensus is reached), trigger an external
reload.

Contorl Structure
Computes additive checksum on all constant words of
local memory, which should be zero. External reload is
initiated by setting appropriate Block Transfer
parameters.

Entry Points
Coroutine, called from Stage dispatcher via WSLA7.

External Calls
SCLROK to pass this Stage and remove fix-it bit for
this processor.
WSLEEP to dismiss coroutine.
CKSUBI, CKSUBR to compute local code checksum.
SFXBAD to hang this Stage and reach consensus to
reload.
RELTRY to initiate an extermal reload of local memory.

Initialization
WSLA7 is initialized to dispatch to SLCOO.

Cleanup

None.

Data Structures
Local Data
None.

Shared Data
BLTST: Block Transfer state.
LOCALC, HOTLIM: local code checksum and limit.
LOCCON: consensus for this Stage.

I/0 Performed
None.

5/78

Page 30

5.1.8 Stage MC - Common Memory Checksums

Function

For each common page in the system except the
reliability page, compute its checksum. Force page
with invalid checksum to be -empty (signalled by an
improper page type) but with a good checksum.

Control Checksum

Computes additive checksum for each page, using a limit
provided on each page. A special checksum value
(password) signals that the checksum should be
recomputed, for system initialization after paper tape
loading.

Entry Points

Coroutine, called from Stage dispatcher via WSLA7.

External Calls

MEMTS2 to see whether a page exists in MEMSEG.

CKSUBI, CKSUBR to compute code checksum.

WSLEEP to dismiss subroutine.

SFXBAD to hang this Stage and reach consensus to reset
a page with bad checksume.

SCLEAR to <clear this processor’s bit from a fix-it
arraye.

SOKAY to signal successful completion of verifying all
checksums.

WSTMEM to remove a failing memory page from usage.

Initialization

WSLA7 is initialized to dispatch to SMCO0O.

Cleanup

Pages with bad checksums are set to be unused (invalid
page type). Pages with parity failures that can be
fixed are marked to be reinitialized. Pages with solid
memory parity failures are removed from usage.

Data Structures

Local Data

SMCNEX: next page to checksum.

SMCLAS: page we checksummed last.

CKSMEM: flag to signal a page whose checksum may have
failed.

5/78 Page 31

Shared Data
MAPREL: map setting for reliability page.
CKSUM: page checksum word.
BLTST: Block Transfer state.
INTIME: page initialization flag.

I/0 Performed
None.

5/78

Page 32

5.1.9 Stage MM - Common Memory Management

Function

1)

2)

3)
4)

This stage consists of four subparts, each to deal with
one class of page type:

Find and maintain the active code pages. If can’t find
one with a given type, and haven’t found the minimum
number of code pages needed to run the system, hang in
this stage, awaiting a reload. If a spare of the given
type exists, copy a fresh page from it. The code pages
are allocated starting on the lowest-numbered end of
memory. All other page types will be allocated from
the high end downwards.

Find and maintain the required wvariables pages. If
can‘t find one with a given type, create one and zero
it. If not enough memory for all these pages, hang in
this stage.

Find or construct spares of all the code pages.

Find or construct optional variables pages, up to the
maximum ths system can use.

Pass this stage if we get at least to part 3.

Control Structure

1)

2)

3)

4)

Starting at the bottom of common memory, each map 1is
checked to see if it is a) in the MEMSEG table and b)
its CMAP and LMAP entries agree with its type. This is
repeated for all the required code pages wuntil either
the necessary code pages have been checked or until
memory runs out. If memory runs out, STAGE will hang
here.

Starting at the top of common, the same checks are
repeated for the required variables pages. 1If a page
is missing, another is usually found or made into a
vars page.

The spare code pages are next found and entered into
LMAP and CMAP tables. If no spare page exists, the
original, if it exists, may be copied and saved.

The optional variables are now checked and set wup, 1if
there is room. If there is enough room to allocate all
of the previous pages, then any excess pages are marked
free. :

Entry Points

Coroutine, called from the Stage dispatcher via WSLA7.

5/78

Page 33

External Calls

SMMHTS, SMMLTS to check maps and supply free pages or
spares if map wrong.

MEMTST to check if a page is in the MEMSEG table.
SCLROK to say this stage passed and OK.

SMMCOP to copy a page of memory to a new page.

SMMCP2 to clear and check a variables page.

SFXBAD to set and check the consensus.

FIXJIF to cleanly reenable jiffy interrupts.

WSLEEP to dismiss the coroutine.

WST to restart Stage if too little common memory exists
for the system to run.

Initialization

WSLA7 is initialized to dispatch to SMMOO.

Cleanup

Pages that the system doesn’t need are marked with an
invalid page type to indicate that they are unused. 1If
memory runs out first, the remaining entries in CMAP
and LMAP are marked empty.

Data Structures

Local Data

SMMHI: the high limit of unchecked pages.

SMMLOW: the low limit of unchecked pages.

SMMSPA: a word used to hold the location of the spare
page of desired type.

SMMFRE: remembers any free page that has been found.
SMMTOT: total pages allocated so far, biased by count
of desired variables.

Shared Data

LMAP: local copy of CMAP.

CMAP: system map table by page type.

CKSUM: common page checksum.

TLIMIT: common page checksum limit.

MAPCOM: map setting for communication page.

MEMTOT: total number of memory pages, from Stage MD.
INTIME: page initialization flag.

BLTST: Block Transfer state.

COMREL: communication page pointer to reliability page.
TYPE4K: common page type word.

I/0 Performed

None.

5/78 Page 34

5.1.10 Stage ID - I/O Interfaces Discovery

Function

Search through 1I/0 address space for common I/O
interfaces. Results are built as a bit-coded table.

Control Structure

Devices are checked for whether their device status
register exists. Existing interfaces are tabled by bit
in USEIO. Majority agreement among processors is
required to decide that an interface exists.

Entry Point
Coroutine, called from Stage dispatcher via WSLA7.

External Calls
WSLEEP to dismiss the coroutine. ,
SCLEAR to remove this processor’s fix-it vote.

STEST to conditionally pass this Stage.
SBAD to hang this Stage.

Initialization
WSLA7 is initialized to dispatch to SIDOO.

Cleanup
None.

Data Structures
Local Data

IOFIX: fix-it array for voting to change the USEIO
table.

Shared Data
PIDGET: table of PIDs from Stage BD.
USEIO: bit-coded table of existing devices.
PROCBT: this processor’s bit.
IOCON: this Stage’s consensus.
CONFLG: flag to tell Configuration that USEIO changed.
CONPNT: pointer to current Configuration page.
CONA7: current Configuration dispatch.

I/0 Performed
None.

5/78 Page 35

5.1.11 Stage AR - Application-dependent Checks

Function

1) Check for any processors that have failed local memory
checksums, and initiate Block Transfer to reload them.

2) Check for any processors that should be running and
aren‘t, and initiate Block Transfer to reload and
restart them.

3) Poll initialization checking routines on each code
page, if any.

4) Check for occurences of successful QUIT retries or
unsuccessful real time clock readings, and report them
(via traps). Report if jiffy interrupts have stopped
occuring. .

5) If any traps have been saved in the local buffer, tally
them in the common memory trap tables.

Control Structure
Functions are performed in order given. If an
initialization check routine indicates that
initialization needs to be performed, reach consensus
and call the specified initialization routine.

Entry Points
Coroutine, called from Stage dispatcher via WSLA7.

External Calls
1-2) RELTO to initiate Block Transfers.
3) FIXJIF to cleanly reenable jiffy interrupts following
an initialization.
WSLEEP to dismiss coroutine.
4) SCLROK to pass this stage and remove this processor’s
fix-it bit.
RCLOCK to read the Stage real time clock.
5) ILLCNT to tally a trap in common memory tables.

Initialization
WSLA7 is initialized to dispatch to SARO0O.

Cleanup
4) Counters for QUIT retries and wunsuccessful real time

clock readings are cleared.
5) Local trap table is cleared.

Data Structures
Local Data
2) TEMPl: bit-coded set of processors to start.

5/78

3)

Page 36

TEMP2: index of page being called for initialization
check.

Shared Data

1)

2)

3)

4)

5)

BLTST: Block Transfer state.

LOCFIX: Stage LC fix-it array.

LOCALC: local memory code checksum and limit.

CKSCON: Stage MC consensus. _

PRTIME: time next to check for processors to start up.
STIME: local copy of Stage system time.

PROIOR: processors that shouldn’t be started.

SEGCON: Stage MD consensus.

PROCEX: bit-coded array of processors that exist.

LMAP: local table of page maps by type.

PGINIT: pointer to initialization check for common code
page. _

MAPREL: map setting for reliability code page.

QUITRT: count of successful quit retries.

CLOKRT: count of unsuccessful real time clock reads.
PROCNO: index of this processor name in COUTAB.

JTIME: real time clock reading at last jiffy interrupt.
MAPVAR: variables page map.

LOCIPT: pointer into local trap table.

LOCILL: local trap table.-

I/0 Performed

Jiffy interrupts are disabled while initialization is
performed.

5/78 Page 37

5.1.12 Block Transfer

Function

Performs a variety of functions associated with moving
blocks of memory around in the machine. 1In particular,
this process performs reloads from external sources, as
in packet core, reloads of individual processors from
other processors, dumps of portions of memory for
diagnosis or verification, and examine and deposit
operations for DDT.

Control Structure
Block Transfer is a large subroutine. It checks the
state of the Block Transfer parameters and performs any
indicated actions.

Entry Points
BLT, or BLTLKD if BLTLOK is already locked. Called

from the Stage dispatcher, and from the operational
system if there is a transfer in progress.

External Calls
BLTPRM, BLTPRS to do some checking for transfers to or

from individual processors. BLTRLD is the entry to the
external reload (packet core) process.

Initialization
None.

Cleanup
A variety of error conditions will terminate the
transfer in progress early.

Data Structures
Local Data

TEMP1l: saved subroutine returne.
TEMP2: which processors were done this call
(bit-coded).
TEMP3: index of bus being wused for backwards bus
coupling.
TEMP4: correct bus coupler password to use.
BBCRST: processor last started.

BBCBAD: processor to which backwards bus coupling last
failed.

Shared Data
BLTST: Block Transfer state plus error bits.

5/78

Page 38

BLTLOK: Block transfer lock.

BLTTO: timeout on Block Transfer actvity.

BLTADD: current Block Transfer address.

BLTSIZ: how many bytes to transfer still.

BLTDON: how much was transferred in this piece.

BLTBFM: map setting for buffer for Block Transfer.
BLTBFA: address for buffer. ‘

BLTPRO: number of processor that did the Block
Transfer. i
BLTBMK: bit table of processors that had trouble in
Block Transfer.

BLTDID: number of processor whose address space last
transfer was to or from. '

BLTPOK: PID level for Block Transfer to poke when it’s-
done.

BLTSTY: source core type for transfer.

BLTSPM: source bit table of processors.

BLTDTY: destination core type for transfer.

BLTDPI: destination bit table for processors.

BLTDPM: destination bit table for this piece of
transfer.

BLTBUF: 36 word buffer for doing Block Transfers.
RLDDEV: current device to reload from.

RLDINTI: flag to signal initialization of reload
parameters.

MYPROC: my processor’s coupler number.

STIME: local copy of Stage system time.

LMAP: local table of map settings by type.

PRTIME: time when next to try a processor restart.
BLTMYM: simulated maps for Block Transfer.

COUTAB: table of coupler addresses for processors.
PROCEX: bit table of processors in system.

PROCBT: my processor bit.

PROCNO: my processor number (index to COUTAB).

AMPROC: table of coupler passwords by processor.
USEBUS: bit table of busses in system.

BBCLOK: lock on backwards bus coupling privelege.

I/0 Performed

None.

5/78 ‘ Page 39

5.1.13 Quit Handler

Function

Services Non-existent Memory interrupts, also know as
QUITs. Each QUIT 1is retried once 1in <case it was
intermittent. If it is solid, check for a '"password",
which 1is a special form of the NOP instruction, at the
location following the instruction that got the QUIT,
and transfer control to its target branch address if it
is there. Otherwise, enter the unexpected QUIT
handler, which will restart the system in Stage.

" Control Structure
Obtains control via the processor QUIT wvector in 1low
address of 1local memory. Returns to main program or
enters unexpected QUIT handler if the QUIT is solid and
there is no password. Instruction fetch QUITs and
QUITs within the Quit Handler are always treated as
unexpected.

Entry Points '
Q50 if even processor (key 0); Q70 if odd (key 1l).

External Calls
QSUBR, QSUBO to set wup parameters during wunexpected
QUIT, QUIT on instruction fetch, or QUIT in Quit
Handler.

Initialization
Local memory interrupt vectors are initialized ' to
dispatch to Q50 and Q70.
UQUIT is initialized to dispatch to SYSUQ, the system
unexpected Quit Handler.

Cleanup
Unexpected QUITs, QUITs on instruction fetches, and

QUITS in the Quit Handler all cause system restarts via
the unexpected QUIT routine.

Data Structures
Local Data
QX: register save area.
QUITFL: flag that 1is normally set only while inside
Quit Handler.
QUITAD: address of most recent QUIT.
QUITPC: instruction address at most recent QUIT.
QUITST: program status at most recent QUIT.

5/78 Page 40

QUITTM: real time clock reading at most recent QUIT.

Shared Data
QUITV: address of QUIT vector wused (to distinguish
main, alternate processors on a processor bus).
LCLOCK: pointer to Stage real time clock to use.
QUITRT: count of QUIT retries; counts up each retry and
down each solid QUIT.

UQUIT: pointer to unexpected QUIT routine for system.

I/0 Performed
None.

5/78 Page 41

5.1.14 TIllegal Instruction Interrupt Handler

Function

Processes interrupt caused by executing illegal
instruction codes. Certain 1illegal instructions are
used by the system to signal particular error

conditions; these are called traps. Some traps merely

save their number; others cause production of
snapshot of a portion of local memory with impor
parameters of the machine state at the time of

a
tant
the

trap. The special traps OFFFF! and OFADE! have special

effects when in debugging mode; the former causes
processor to enter the simulated halt state and

the
the

latter does this plus setting the common password to

cause all processors to enter this state.

Control Structure
Decide whether this is a trap, snapshot, or

true

illegal instruction. For traps and snapshots, save the

required data. For true illegal instructions, res
the Stage system.

Entry Points

ILLPO for even (key 0), ILLPl for odd (key 1)
processor.
External Calls
SAVMAP to save maps in the snapshot area.
ILLCNT to save trap number in common memory table.
WST to restart Stage system.
Initialization
The local memory interrupt vectors for illegal
instructions are initialized to dispatch to ILLPO and

ILLP1.

Data Structures
Local Data

ULIIOP: last illegal instruction, ignoring traps.

Shared Data
IX: register save area.
IRET: place to set up return vector from interrupt.
MAPVAR: variables page map.

tart

DHALT: password for halting all processors (if in

debugging mode).
BLTMYC: simulated control register for debugging-.

5/78 Page 42

SNAPBG: beginning of area to copy into snapshot.
SNAP: snapshot buffer in local memory.

TYPE4K: common memory type word.

LOCIPT: current pointer into local trap table.
LOCILL: local trap table.

I/0 Performed
None.

5/78

Page 43

5.1.15 Level 1 Interrupt Handler

Function

Data

Process level 1 external interrupts. If a remote power
failure, stop buddy processor, wait a while for power
to go away, then restart this processor and its buddy
in Stage. If an attention interrupt following a reset,
set the simulated halt state for debugging and .restart
Stage. Otherwise trap and restart Stage.

Control Structure

Started via local interrupt vector for 1level 1
interrupt. Cause of the interrupt is distinguished by
a device code stored in the interrupt vector.

Entry Points

Entered at LEVELIl. Entered from Level 4 Handler at
HALTUS to perform restart function for this processor
and its buddy.

External Calls

WST to restart in Stage system.
DSTAND to restart with simulated halt condition for
debugging.

Structures

Local Data

None.

Shared Data

IX: register save area.

I/0 Performed

None.

5/78

Page 44

51.16 Level 4 Interrupt Handler

Function

Data

1) Process Level 4 interrupts.

2) For local power fail interrupts, call HALTUS (see Level
1 Handler).

3) For local power restore interrupts, restart the system
in Stage. '

4) For sixty-cycle interrupts ("jiffies"), check if the
system real time clock is operating properly; if not,
find a new one and restart Stage. Else, check if the
program 1is hung wup by examining local time; if not,
return to main program. If it is hung on a 1locking
instruction, wunlock the indicated lock. Otherwise the
program is in a loop, and the system 1is restarted in
Stage.

5) Merely trap on other level 4 interrupts and return to
program. '

Entry Points

Entered at SJIF.

External Calls

2) HALTUS to stop this processor and its buddy.
3,4) WST to restart Stage
4) FNDCLK to start using a new real time clock.
RCLOCK to read the system real time clock.

Initialization

Level 4 interrupt vector is initialized to dispatch to
SJIF.

Cleanup
Hung locks are unlocked. Abnormal conditions cause a
restart in Stage.

Structures

Local Data
4) JTIME: reading of real time <clock at previous jiffy
interrupt.
UJIFFY: program counter at latest program in a loop
condition.

Shared Data
1) IX: register save area.
4) LTIME: time to run Stage next.
IRET: place to build return vector.

5/78 Page 45

I/0 Performed

None.

5/78

5.2

IMP System Central Dispatch

Function

Page 46

Dispatch to routines needing service according to their

PID levels.

Control Structure

Data

At entry check maps for their default values. If it is

time to run Stage, transfer control to the

Stage

dispatcher. If running in a processor with an operator
console, maintain the 1light words. If in debugging
mode, check for system halts and return to Stage if
halted. Otherwise, poll the system - PIDs in order,

dispatching through the BASE dispatch table
level.

Entry Points

by PID

LOOP is the nominal entry point (return from most

strips) .

LOOPM to reset map 0 before checking.

LOOPMV to set all maps properly and not check.
BAD is dispatch from BASE for an unexpected PID.

NOPIDS is dispatch from simulated last PID (to end the

polling of real system PIDs).

External Calls
SJ6 is the return point to the Stage dispatcher.

BASE contains dispatches for each PID level in
the system.

Initialization
None.

Cleanup

None.

Structures

Local Data
OLDP: saved copy of last value read from PID.

Shared Data
BASE: the dispatch table.
MAPCOD: proper map setting for map O.
SLFPTR, FMAP2, SLFLK page self-pointers
map-checking.
MAPVAR, MAPV2: proper settings for maps 1-3.
LCLOCK: pointer to clock to time Stage.

use in

for

5/78 Page 47

LTIME: next time Stage should run.

CONSOL: pointer to processor console (operator panel),
if any.

WATM1, WATCH1, WATM2, WATCH2: map settings and 1light
pointers for console lights.

DEBUGM: debugging mode flag.

PROCBT: my processor bit.

SNAP: snapshot save area.

DHALT: 1location to check for halt password to halt all
processorse.

PIDGET: table of PIDs to poll.

WATCHS: light word; each processor complements its bit
as it enters Stage, nominally displayed in ADDRESS
lights in console.

IDLEC: count of number of times all PIDs were empty.

1/0 Performed

Each time a processor references a PID, the highest
level in that PID which is set is returned, and that
level is cleared. PID levels may correspond either to
hardware devices needing service or software processes
that should be run. For processors having an attached
operator console, the ADDRESS and DATA lights are made
to display the values requested via the 1light pointer
words.

5/78 Page 48

5.3 Modem to IMP

Function

1) Process input PIDs and initiate new modem inputs.

2) Verify packet checksums and lengths.

3) Place routing packets on routing input queue and poke
routing. '

4) Pass data packets to Task and poke it.

5) Free acknowledged packets and poke modem output to send
acks.

6) Place packet core buffers on the packet core queue and
poke the packet core fake host JAM side.

Control Structure

All modem inputs are handled by reentrant code.
Variables for each modem are obtained from the proper
parameter block. The hardware is first checked and, if
idle, a new buffer is put up for input. Otherwise, a
queue of input buffers previously completed 1is polled
and processed in order.

Entry Points
Each input PID dispatches to M2I.

External Calls
1) FREGET to get a new buffer for dinput after next
(double-buffered).
FLUSHB to free buffers with hardware input errors.

2) CKQPUT to queue a buffer to send to the NCC diagnostic
terminal.

WHEORB to modify buffer use bits.
DEQUE to get packets off the modem input queue.
SUBCHN the shared software checksumming subtract chain.

4) TSKPUT to enqueue buffers for Task, and poke it.
5) UNPACK to access buffer (if tracing).

TRCDUN to copy trace data to trace buffer.

Initialization
The first input after a reset and initialization is
discarded by reading into the shared bit sink JUNK.

Cleanup '
When a line is declared down by Line State Timeout,

input 1is stopped via a reset and input buffers freed,
if any.

5/78

Page 49

Data Structures

Local Data

4)
5)

TEMP3: input subchannel octet and bit for Task.
TEMP2: bit table of ACKs to do.

Shared Data

)

2)

3)

4)

5)

MBLKS: the table of parameter blocks by PID.

IOBLOC: the hardware interface address for this modem.
M2ILOC: lock on modem input hardware.

NXTBF: pre-allocated buffer to read into.

POINT: high-order buffer address bits.

FILLING: input buffer currently in use.

LMIQ: lock on queue of completed input buffers.

SMIQ, EMIQ: queue of completed input buffers.

JUNK: address of junk buffer.

CHAN: buffer word used for input endpointer.

LOCKM: lock on modem software variables.

BUFE: end of data in buffer.

INCH: which modem this buffer is from.

CKERRS: count of hardware checksum errors.

MLOOP: modem loop state.

MNOBUF: count of missed inputs.

CLOCK: pointer to current system real-time clock.

IT: input time this packet (for trace).

MINE: my IMP number.

LENDR, LENDT: end bit values, for detecting looped
lines.

LSTATE: lint up/down state.

MODEM: index to neighbor table.

M2NGHB: modem neighbor table.

NEIGH: neighbor this modem.

SIHY: flag to send I-heard-you.

LOCKR: lock on routing parameters.

ERUTQ: routing input queue endpointer.

THD: pointer to line to leader for time
synchronization.

SYNC: local copy of network time for statistics.

LAC: line alive count, drives LSTATE in DEDL.

INFREE: input channels for which we have no input (bit
table).

RSEX: state of input subchannels (bit table).

MAXCHN: number of logical subchannels this line.

TSEX: state of output subchannels (bit table).

SSENTQ, ESENTQ: queue of packets awaiting
acknowledgements.

CHNBSY: output channels that are assigned (bit table).
SLOTS: count of busy output channels.

5/78

6)

I/0 Perfor

Page 50

THRUPT: modem output throughput.
ITRACE: trace on/off flag.
SNDING: current output packet.

LATER: flag to flush current output packet when done
sending.

CORIOB, LOCKF: lock on packet core fake host.
EFHCQ: packet core input queue endpointer.
BHPID: PID for packet core fake host process.

med

Input of data packet into a packet buffer; junk buffer
used if first input after a reset or mno free buffer

available. Input buffers are preallocated to achieve
double-buffering.

5/78

Page 51

5.4 IMP to Modem

Function
1)
2)

3)
4)
5)

6)
7)
8)

Process output modem PIDs.

Free the packet last sent if acknowledged while Dbeing
sent.

Send packet core messages, reload demands.

Send routing messages and nulls after routing.
Retransmit packets unacknowledged for MRTIME (* 100
microseconds). Verify their checksums.

Send new priority packet if channel available.

Send new regular packet if channel available.

Send null packet of acknowledgements.

Control Structure

The routine checks the modem output state. If it is
still busy, it ignores the PID and dismisses. If not,
it performs functions 1 and 2. It then attempts to
perform functions 3 through 8 as required, in that
order. If none are required, the output is marked
inactive by clearing SNDING.

Entry Points

The IMP to modem PIDs dispatch to I2M, which loads the
appropriate parameter block address from MBLKS. All
modems share reentrant code. I2M 1is poked by fast
timeout every 25.6 milliseconds.

External Calls

6-7)

FLUSH to free the buffer.

WHEORM to adjust use bits for core packet.

UNPACK to access routing message packet.

DEQUE to get next packet awaiting retransmission.
SUBCHN to checksum retransmitted packet.

WHEORB to adjust buffer use bits if bad checksums.
CKQPUT to send retransmissions with bad checksums to
NCC diagnostic terminal.

DEQUER to get next priority or regular packete.

Initialization

None.

Cleanup

When a line enters its "hold-down" 1line state, no
outputs are initiated for a specified time, while
queues are cleared and pending packets rerouted onto
other lines.

5/78

Page 52

Data Structures

Local Data

None.

Shared Data

1) MBLKS to access proper parameter block.

2)

3)
4)

5)

IOBLOC: address of hardware status registers.

I2MLOC: modem output hardware lock.

LOCKM: modem software lock.

RUTTIM, RUTRAT: line speed timing variables.

CLOCK: pointer to active system real-time clock.
SNDING: packet last sent, if any.

LATER: flag to flush previously sent packet.

ESENTQ: end pointer of queue of packets awaiting
acknowledgement or retransmission.

LOCKRO: lock on routing output buffer queue.

CHAN: buffer word used as routing output use count.
MAXCHN: number of logical subchannels on this line.
SNULL: flag to send nulls by octet (16 octets for 128
channels).

SROUTE: flag to send routing or reload packet.

SBLK: pointer to reload packet to send.

LSTATE: line state for this line.

RUTOBF: present routing output buffer to use.

SSENTQ: head of queue of packets awaiting
acknowledgement or retransimssion.

ST: time this packet was sent.

BUFE: length of packet.

STIMER: retransmission count for this packet.

SPRIQ: head of priority queue.

SREGQ: head of regular queue.

CHNBSY: bit table of busy output channels.

TSEX: output odd/even sex by channel (bit table).
POINT: high-order memory address of packet.

SIHY: flag to send I-heard-you with null.

SYNC: network time locally.

MINE: my IMP number.

NULLHD: buffer for null, one dedicated to each modem.
RSEX: receive odd/even bits, sent as scknowledgements
to other end of line.

LENDT: proper end bit ("I am high IMP").

I/0 Performed

3)
4)
5-7)
8)

Output of packet core message from specified buffer.
Output of routing from buffer from RUTOBF.

Output from specified data buffer.

Output of null from fixed buffer for this modem.

5/78

5.5 Host
Function
1)

2)
3)

4)

5)
6)

7)

Page 53

to IMP

Process Host input PID

For control message, take appropriate action and
initiate input.

For regular message leader, begin processing of message
and initiate first packet input.

For input of first packet, if destination has not
allocated space, 1initiate request and input of second
packet (if any).

For first packet, if destination has allocated space,
process packet and initiate input of second packet.

For second through final packet, process the packet and
initiate input of subsequent packet.

For all packets, check 1length, generate software
checksum, and pass them to Task.

Control Structure

Function 1 1is performed, then one of the remaining
functions is resumed from the last coroutine exit.

Entry Points

All Host input PIDs come to HI, which picks up the
appropriate parameter block address from MBLKS.
Coroutine control returns via the parameter block entry
HILO.

External Calls

1)

3)
4)

4-7)

HILEDI, HILEDM to read the next leader.

HINOPT to check if a NOP.

HIERC to set up IMP to Host error message.

LEDPO to queue error message.

HINBWT to await I/0 completion.

FLUSH to free input buffers.

HIWM, HIWFE to exit coroutine.

HITTGO to initialize wait timer for hardware.

TRNPUT to allocate a transaction block for next 1leader
input.

HINBUF to initiate next packet input.

FNDHAC to get Host access words for raw packets.

MESGET to get a message number on an open end-to-end
connectione.

TALLYG to get an 8-packet allocate.

HIPKTR, HIPKT, HISET, HIPKTE to set wup packet header
and checksum it.

HI2TSV, HI2TSK to give packet to Task.

5/78 Page 54

HOTHRU to count Host input throughput.

Initializationv

HILO is initialized to HIGO. The first input from real
Hosts is always discarded.

Cleanup
The above initial state is entered and all resources

freed whenever a hardware error is detected, when the
Host ready line first comes up, or an input (subsequent
to a message leader) takes more than 15 seconds.

Data Structures
Local Data

TEMP1, TEMP2: wused as arguments and temporary returns
for various subroutinese.
HISAV7, HTEMP7: save returns for routines that can
sleep. '
HILO: main coroutine sleep location.
HISP: current buffer in progress.
HIBF: next buffer to process (double-buffered).
HIPKTH: builds PKTH word for each packet.
HIHAND: remembers handling type for packet.
HIENDI: remembers hardware endpointer for packet in
HISP.
HTEMP: saves certain subroutine parameters.
HIOLDB: points to current transmit message (TM) block.

Shared Data
DEADSC: Host dead subcodes (from Host going down
message) .
TRMIDL: message-id field 1in 1leader in transaction
block.
IOBLOC: pointer to hardware for this Host.
JUNK: shared bit-sink to throw away input.
FAKE: flag for Fake, Back, or VDH Host.
FAKESI: input pointer for Fake "hardware".
BHPID: Fake Host JAM PID.
HIHD: Host Status.
OPHGO: flag for Host state change.
MYIMP: local IMP coming up counter.
HIBITS: Host status bits; communicated to Task.
HITRAN: pointer to current transaction block.
HOMODE: Host new/old leader format flag.
TRNETL: beginning of leader area in transaction block.
TRTYPL: leader type word in transaction block.

5/78

Page 55

TRHSTL: handling type and destination Host in 1leader,
replaced after MESGET by message block (TM) number and
message number.

TRDSTL: destination IMP in leader.

TRNTIM: transaction block timeout byte.

TRSTAT: transaction block status.

HIPAD: shared Host padding bit sink.

RUT: table of best delay routes by IMP.

ISTATE: IMP state from routing.

HACCOM: table of Host access - communicate words.
TRLUSE: transaction block 1local wuse number for TM
block.

TRPACK: transaction block packet pointer.

HTPMTN: Host input throughput counters.

TRDEDS: reason for destination dead in transaction
block.

I/0 Performed

Initiates all inputs from Hosts. Leaders are read into
transaction blocks and data into packet buffers.

5/78 Page 56

5.6 IMP to Host

Function

1) Process Host output PIDs.

2) Reset Host output hardware if error or timed out.

3) If just completed sending a message, mark RM block to
send rfnm or rfnm with allocate.

4) For each packet of a message, trace it if necessary and
flush it.

5) Send next control message if any.

6) Send next priority message unless next regular message
is too old.

7) Send next regular message if any.

Control Structure

Functions 1-4 are performed each time the output PID
occurs if neccssary. Then functions 5-7 are performed
in order as needed.

Entry Points
All IMP to Host PIDs dispatch to IH, which sets up the
appropriate parameter block address and resumes the
coroutine through IHLO. All IMP to Host routines are
performed by shared, reentrant code. In addition to
the hardware (simulated for Fake Hosts), IMP to Host is
poked by Host to IMP, Task, Host timeout, and itself.

External Calls
1) IHDB, IHDBA are the Imp to Host sleep routines, <called
from various points (IMP to Host runs as a coroutine).
2) LEDGET to get the next control message.
IHDUMP to place unprocessed messages on the discard
Host output queue when resetting.
3) HOTHRU to compute IMP to Host throughput.
4) DEQUE to take packets off output queues.
TRCDUN to trace each packet.
FLUSHB to free each buffer.
5) IHLS to send a control message.
6-7) IHLSN to send message leader.
UNPACK, UNPCKC to access buffers.

Injitialization
IHLO is initialized to dispatch to IHIDLE. When a Host
comes up, IMP to Host first sends 4 ©NOPs and a
"Interface was reset'" control message.

5/78

Page 57

Cleanup

If any output takes more than 30 seconds to complete,
all pending control messages are freed, all messages on
the Host’s regular and priority output queues are
discarded and the corresponding RM states marked
"dead", the Host’s ready 1line is flapped, and the
initialization state (above) is entered. The Host is
declared tardy or down, depending on whether its ready
line is asserted or not.

Data Structures

Local Data

3)

TEMPl: local argument to HOTHRU.

Shared Data

1)

2)

3)

4)

5)

MBLKS: table of parameter blocks by PID.
IHLOC: Host output hardware lock.

IOBLOC: Host interface address.

IHGOIN: Host timeout/reset flag.

LOCKIH: Host output software lock.

IHLO: dispatgeh address.

IHWQ: pointer\to current queue to send message from
(regular or priority).

HIHD: Host state.

OPHGO: flag for Host state change.

FAKE: flag for Fake, VDH Hosts.

SPECAL: flag for initialization control messages.
HTPMFN: Host throughput counters.

IHLEDR: IMP to Host leader buffer.

BUFB: pointer to RM block.

RMLOCK: lock on RM block.

RMMESS: RM message number.

RSTATE, RMTYPE: RM message state bits.
HOTPID: IMP to Host PID.

ITRACE: global trace flag.

CLOCK: system real-time clock.

IHLSTP: last~-packet flag.

IHTT: Host output timeout counter.
HOMODE: Host new/old leader mode flag.
HIHOST: Host number.

HIMINE: Host’s IMP number.

CHAN: buffer age word.

SHQ, SHPQ: Host regular, priority queues.
TIME: global time in 25.6 millisecond ticks.
RMCTL: RM block handling type.

RMHOST: RM block remote Host.

POINT: buffer high-order address.

5/78 J Page 58

BUFE: end of buffer.
FAKESO: Fake Host output pointer.
HBPID: Fake IMP to Host PID.

I/0 Performed

2) Host interface output side is reset.

5-8) Initiate output of control and data messages. Control
messages are sent from transaction blocks, message
leaders from a dedicated buffer in the Host parameter
block, and data from packet buffers.

5/78

5.7

Page 59

Task

Function

1) Process Task PIDs and service the Task queue.

2) For input for Host on this IMP, pass packet to Task For
Us, and ACK its source.

3) For store-and-foreward packets, select output line.

4) If space is available and an output modem subchannel is
free, queue the packet on modem priority or regular
queue, poke modem output, and ACK source of packet.

5) If the packet 1is a packet from store/forward,
rerouting, or a reply, and space is available but the
output modem subchannels are full, queue the packet on
the auxilliary Task queue to retry later.

6) If space is not available, NACK its source, and poke
it.

Control Structure

Data

Task 1is entered once for each packet on its input
queue. If its queue is still empty after removing the
first packet, it pokes itself immediately, permitting
multiple processors to work concurrently on separate
packets.

Entry Points
Entered at TSK. Poked by Host to IMP, Modem to IMP,

Back Hosts, and Fast and Slow Timeout, in addition to
itself.

External Calls

1) DEQUE to get packet from Task queue.
FLUSHB to discard packets with discard bit (to clear
input subchannel).

2) FORUS is entered directly (next section).

4) CMOVE to allocate buffer space.
TRYM1 to poke output and input modem routines.
WHEORB to adjust use bits for packet.

Initialization
None.

Cleanup
Flush packets bound for dead IMPs.

Structures

Local Data

5/78

1)

Page 60

TSKCHN: copy of CHAN word for buffer (modem: input
subchannel octet and bit; Host: 0).

Shared Data

1)

2)

4)

LTQ: lock on Task queue.

STQ, ETQ: Task queue.

INCH: address of parameter block for packet source.
ISTATE: table of IMP states from routing.

RUT: table of best-delay paths to each IMP.

DELTIM: delay hold-down routing table.

LSTATE: output line state.

SLOTS: count of available logical channels on output
line. '

LOCKM: lock on output modem software variables.

SREGQ, SPRIQ, EREGQ, EPRIQ: modem regular and priority
output queues.

CLOCK: system real-time clock.

QT: time this buffer was queued for output.

ERQ: auxilliary Task queue endpointer.

INFREE: bit table of free Modem to IMP subchannels.
RSEX: bit table of odd/even state by subchannel.
MITHRU: Modem to IMP throughput (packets).

SNULL: bit-coded (by octet) flag to fsggd null for
acknowledgements.

HINPID: Host to IMP PID to poke.

LOCKHI: lock on Host to IMP parameters.

HIBITS: Host to IMP state bits for communicating with
Task.

HITRAN: pointer to current Host to IMP transaction
block.

TRSTAT: state bits for transaction block.

I/0 Performed

None.

5/78

Page 61

5.7.1 Task For Us

Function
1)
2)
3)
4)
5)

6)

7)
8)

9)

10)

11)

12)
13)

14)

15)

16)

Set up local variables.

Check for raw packets and process them.

Check message block. If it mismatches, check for and
process get—a-block, incomplete query, reset and reset
reply messages. Ignore other block error packets.
Check status of local Host, and set flags if down or
access failure.

Check message number and set flags for out of range,
next to go, in next 8, and in previous 8.

For eight-packet message packets, find the reassembly
block for the message and add this packet if not a
duplicate. Ignore if reply message state indicates
message completed already.

For single-packet messages, find the reassembly block
for this message and mark it complete. .

For eight-packet requests, mark the reply state table
to show the request received.

For single-packet requests that are the next to go,
mark the reply state .and queue them directly on the
output Host queue.

For single-packet requess that are not the next to go,
find a free reassembly block and mark it complete (like
7).

In either 9 or 10, if there is insufficient reassembly
space, mark the reply state table to show a
single-packet request received.

For incomplete message packets, free any associated
reassembly resources and mark reply table.

For givebacks, find and free a reassembly block and
mark the reply table.

For incomplete queries, if message number out of range
send an out-of-range reply; else if in last 8 messages
and reply state is idle, send correct duplicate reply;
else if in last 8 and not idle state, send
out-of-range; else if in current message window
perform cleanup of reassembly resources and mark reply
state for incomplete reply.

In each of functions 6-14, if marking reply state Dbits
or completing a message, search for completed messages
to queue for the IMP to Host routine, and poke it 1if
any.

For rfnm messages, mark the transmit message number
complete.

5/78 Page 62

17) For rfnm with allocate messages, if in reply to a
single-packet request, pick wup the saved copy of the
message and send 1it, else (was 8-packet request)
increment the allocate count in the TM block.

18) For dead replies, set the stop bit.

19) For incomplete replies, adjust the condition codes in
the transaction block.

20) For each of 16-19, if the reply was for a regular
message, queue the transaction block to send a reply to
the originating Host and poke its IMP to Host routine.

21) For out-of-range replies, send a reset message right
awaye. .

22) For got-a-block messages, modify TM block state
appropriately to open conversation or send destination
dead to Host.

23) For reset request message, set age of TM block to
maximum to signal the request.

24) For reset message, mark RM block idle and send reset
reply right away. :

25) For reset reply message, mark the TM block idle.

Control Structure
Task For Us 1is structured as some common Setups
(functions 1-5), followed by a dispatch based on the
message-type for functions 6-25. There are many
subroutines for shared functions after the dispatch.

Entry Points
Entered directly from Task at FORUS.

External Calls
HOSTNM, HOSTNO to set up local Host status and access
control.
RALLYP to modify reply state bits.
REGCHK, REGCH2 to check state of reply bits for
transmissions (5-15).
FIXNRE, FIXNAE to adjust reassembly and allocate

counts.

REPCHK to check transmit message state for replies
(16-21).

RFLEDP to mark a transaction block for a reply to the
Host.

LEDPC to either free or queue a transaction block for a
reply to a Host, depending on whether the Host is up.

REPFIX to mark a transmit message complete in the TM
block.

5/78

Page 63

kEASF to free a reassembly block and any buffers it

‘containse.

REASGT to find a specific reassembly block (by message
number) .

REASF1, REASF8 to find allocated reassembly blocks for
1, 8 packet messages respectively.

FTRNGT to find a transaction block to go with a reply.
CMOVE to allocate buffer space for immediate replies,
raw packets, or one-packet requests.

TSKPUT to requeue immediate replies for Task.

WHEORB to modify use bits for buffers for Hosts.

REASAL to allocate a free reassembly block for out of
order one-packet requests.

UNPACK, UNPCKC to access packets of a message to give
to Host.

FLUSH to free packets in a reassembly block.

Initialization

None.

Cleanup

Reset TM and RM blocks are marked free. Transaction
blocks for outstanding messages from Hosts that have
gone down are freed. Reassembly blocks for incomplete
messages are freed, together with any packets they
contain.

Data Structures

Local Data

TSKBUF: address of buffer in process.

TSKBTS: state bits for Host state, message range, etc.
TSKHST: pointer to local Host parameters for this
message.

RALSHF: amount for RALLYP to shift bits for RSTATE,
RMTYPE.

REPBIT: bit for TM message for replies.

TEMPl, TEMP2: local returns used in various subroutines
and main line.

Shared Data

RMBLKS: reply message (RM) blocks, including:
RMLOCK: lock on the block.
RMIMP: foreign IMP number.
RMHOST: foreign and local Host numbers.
RMCTL: handling type, foreign use number, and foreign
block number (TM).
RMMESS: message number, local use number, and age.

5/78 Page 64

RSTATE: reply state bits for 8 messages in window.
RMTYPE: auxilliary reply state bits (with RSTATE).
RMLHN: index of local Host parameter block in H2PBLK.
TMBLKS: transmit message (TM) blocks, including:
TMLOCK: lock on the block.
TMIMP: foreign IMP number.
TMHOST: foreign and local Host numbers.
TMCTL: handling type, foreign use number, and foreign
block number (RM).
TMMESS: message number, local use number, and age.
TSTATE: reset and init bits, allocate count, and
message state bits.
TMSTP: stop bit and allocate timer for givebacks.
TMLHN: index of local Host parameter block.
MESSTK: pool of reassembly blocks, each containing:
REASLK: lock on the block.
RSF: number of packets so far.
"REASST: reassembly block state.
RID: receive message (RM) block number.
REMESS: receive message number.
RUSE: RM block use number.
RMAX: highest packet number to get.
RAL: number allocated in this block.
REASQ, REASQE: queue of message packets.
RSFBT: count of total words of message so far.
TRNBLK: pool of transaction blocks, each containing:
TRSTAT: transaction block state.
TRTYPL: reply type to Host.
TRHSTL: message number and TM block for this
transaction block.
TRDEDS: dead subcodes for control message to Host.
DEADSC: Host dead status codes.
HIHD: Host state.
HINPID: Host to IMP PID.
INCH: packet source, set to 0 for immediate replies.

CHAN: set to mnon-zero for immediate replies (can’t
refuse).

QT: queue time for trace.

BUFB: pointer from buffer to RM block.

CNTRS: buffer counters for reassembly and background.
WHERE: buffer use bits and count index.

NAL: allocate count.

EHPQ,EHQ: Host priority, regular output queues.

LOCKIH: IMP to Host software lock.

HOTPID: IMP to Host PID.

MYIMP: IMP coming up countere.

RUT: best delay route by IMP.

5/78 Page 65

MINE: my IMP number.

HACSPC, HACCOM, HACMEM: Host access control tables.
H2PBLK: table of Host parameter blocks.

HOMODE: Host new/old leader format mode switch.

I/0 performed
None. .

5/78

57.2 Back Hosts

Function

Page 66
The Back Hosts (named from "background") perform
various functions related to end to end message
processing. When control messages require reserving
resources, or timing out idle resources, Task itself
can‘t perform the function. The Back Hosts were
created for these resource-reserving and freeing

functions.

Control Structure

Each Back Host has a parameter block, which is very
similar to the beginning of a real Host parameter
block. Indeed, the Back Hosts share quite a bit of
code with the Host to IMP process for real Hosts. This
is because Back Hosts can produce packets to give to
Task just as real Hosts can.

Entry Points

All Back Host PIDs dispatch to BACK, which obtains the
proper parameter block from MBLKS and returns to the
proper point in the Back Host. Each Back Host runs as
a coroutine.

External Calls

See individual Back Host descriptions following.

Initalization

Each Back Host dispatch is initialized to the top of
its loop.

Cleanup

See individual descriptions.

Data Structures

Local Data

None.

Shared Data

LOCKHI: lock on each Back Host.

BMESSB: index of current message block.
HITT: Back Host timer.

I/0 Performed

None.

5/78 Page 67

5.7.2.1 Back Host 5

Function
Send RFNMs, allocates, destination deads, and
incomplete replies.

Control Sturcture-

Scans all receive message (RM) ©blocks, starting one
after the 1last block serviced (for fairness). For a
block needing a reply sent, obtain the necessary
resources (allocate, reassembly block, and buffer) and
send the reply. If wunable to obtain allocation
resources after one half second, proceed to the next RM
block (for piggyback attempts, send a RFNM with no
allocate) .

Entry Points
Coroutine, dispatch is through HILO.

External Calls
HIWM to dismiss coroutine.
BSET to set up common fields of message in parameter
block.
BGETA to try to get allocation and a reassembly block.
REASAL to find a free reassembly block.
BSEND to obtain a buffer, construct the message, and
give it to Task.

Initialization
HILO is initialized to dispatch to BACKS5.

Cleanup
None.

Data Structures
Local Data
BMESSB: current RM block being tested.
BPKTH: PKTH word for control message.
BSEQH: SEQH word for control message.

Shared Data
RMLOCK: RM block lock.
RSTATE: RM block state, 2 bits per message.
RMIMP: RM block remote IMP number.
RMTYPE: RM block substate, 2 bits per message.
RMMESS: RM block message number, use number, and age.
CNTRS, NRE: reassembly count.

5/78 Page 68

NAL: -allocate count.

NF: number of free buffers MINF: number of guaranteed
buffers total (lower limit for NF).

RAL: reassembly block allocate count.

RID: reassembly block RM block pointer.

RUSE: reassembly block RM use number.

RSF: reassembly block count of buffers received.
REASST: reassembly block state.

REASLK: reassembly block lock.

I/O Performed
None.

5/78 Page 69

5¢7¢2.2 Back Host 6

Function

Send 1incomplete query messages for transmit message
(TM) blocks whose incomplete timers have reached Zeroe.

Control Structure’

Each time it is entered, Back Host 6 checks all the TM
blocks for any whose incomplete timers have reached

Zero. If one 1is found, Back Host 6 marks the
corresponding transaction block for the oldest
outstanding message, gets a buffer and sends an

incomplete query message for that message.

Entry Points
Coroutine, entered from BACK via HILO.

External Calls
HIPOK to poke itself and dismiss.
HIWM to sleep until the next 25.6 ms wakeup from Back
Host Timeout.
BFIXT to set wup the common message fields in the
parameter block.
BSEND to get a buffer, construct the control message,
and give it to Task.

Initialization
HILO is initialized to dispatch to BACK6.

Cleanup
The message timeout field for idle RM blocks, or blocks

that have no outstanding messages, is set to 1 if it
was O.

Data Structures

Local Data
BMESSB: current TM block to work on.

Shared Data
TMLOCK: lock on TM block.
TSTATE: TM block state bits.
TMIMP: TM block remote IMP number.
TMMESS: TM block message number, use number, and age.
TRNBLK: transaction block pool.
TRSTAT: transaction block state.
TRHSTL: transaction block message number and TM block.
TRMIDL: transaction block message-id and subtype.

Page 70

I/0 Performed

None.

5/78 Page 71

572.3 Back Host 7

Function
1) Compute age "clips" beyond which to reset RM and TM
blocks, based on how many free blocks there are left.
2) Send resets (for TM blocks) or reset requests (for RM
blocks) for any blocks that have reached the
corresponding clip.

Contorl Structure

Each time it is awakened, Back Host 7 recomputes the

two age clips. It then scans all message blocks for
any old enough to reset. If any are found, the reset
or request 1s sent, and <control returns to the

beginning. If no more resets or requests need to be
sent, Back Host 7 waits 640 ms before trying again
(since this is how often the blocks can be aged).

Entry Points
Coroutine, awakened via HILO from BACK.

External Calls
1) B7SUB to maintain the clip values.
HIPOK to poke itself and dismiss.
2) BFIXT, BFIXR to set up common message fields in
parameter block.
BSEND to obtain a buffer, construct the message, and
give it to Task.

Initialization
HILO is initialized to dispatch to BACK7.

Cleanup
None.

Data Structures

Local Data
BSEQH: SEQH for control message.
RCLIP: RM block age clip.

Shared Data
TCLIP: TM block age clip.
TMIMP: TM block remote IMP, or minus if free.
TSTATE: TM block state bitse.
TMLOCK: lock on TM block.
TMMESS: TM block message number, use number, and age.
RMIMP: RM block remote IMP, or minus if idle.

5/78 Page 72

RMLOCK: RM block lock.
RMMESS: RM block message number, use number, and age.
HITT: Back Host software timer. ’

I/0 Performed
' None.

5/78 Page 73

57¢2¢4 Back Host 9

Function
Back Host 9 sends giveback messages for allocates that
haven’t been used for 150 ms, or when more than 2 are
being held in a TM block.

Control Structure
Back Host 9 scans all the TM blocks for any allocates
that should be given back to the remote IMP. If it
finds any, it obtains a transaction block, removes the
allocate from the TM block, reserves a message number,
and constructs and sends the giveback message.

Entry Points
Back Host 9 is a coroutine, awakened from BACK via
HILO.

External Calls
HIWM to dismiss.
BFIXT to set up the common message fields from the TM
block. v
TRNPUT to allocate a transaction block.
BSEND to obtain a buffer, copy in the message, and give
it to Task.

Initialization
HILO is initialized to dispatch to BACKO9.

Cleanup
TSTATE is cleared for idle blocks to speed wup the

search.

Data Structures

Local Data
BMIDH: MIDH word for control messa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>