
Bolt Beranek and Newman Inc.

Technical Information Report No. 99

The ARPANET Pluribus IMP Program
Volume II: DDT, Program Descriptions, Data Formats

May 1978

Prepared for:
Defense Communications Agency

Bolt Beranek and Newman Inc.

Technical Information Report No. 99

THE ARPANET PLURIBUS IMP PROGRAM

Volume II

DDT, Program Descriptions, Data Formats

May 1978

5 /7 8 Bolt Beranek and Newman Inc.

Foreword
Chapter 4

4.1 DDT
4. 1. 1
4. 1. 2
4. 1. 3
4. 1. 4
4. 1. 5

Volume II

Table of Contents

The Debugging System DDT
Command Summaries
Addresses, Opening and Closing
Type Out Modes
Other Type Out Commands
Type In
Address Spaces

4. 1. 6 Control
4.1.7 IMP Version Features
4.1.8 Miscellaneous Commands

4.2 Control Structure of DDT
4.3 Protection, Override
4.4 Debugging Environment of DDT
4.5 Debugging Mode

Chapter 5 Detailed Program Descriptions
5.1 Stage System

5.1.1 Stage LK Local Kernel Checks
5.1.2 Stage MD Common Memory Discovery
5.1.3 Stage RK Reliability Page Kernel Check
5.1.4 Stage BD Common Bus Discovery
5.1.5 Stage CD Bus Coupler Discovery
5.1.6 Stage RC Reliability Page Check
5.1.7 Stage LC Local Page Checksum
5.1.8 Stage MC Common Memory Checksums
5.1.9 Stage MM Common Memory Management
5.1.10 Stage ID - I/O Interfaces Discovery
5.1.11 Stage AR - Application-dependent Checks
5.1.12 Block Transfer
5.1.13 Quit Handler
5.1.14 Illegal Instruction Interrupt Handler
5.1.15 Level 1 Interrupt Handler
5.1.16 Level 4 Interrupt Handler

5.2 IMP System Central Dispatch
5.3 Modem to IMP
5.4 IMP
5. 5
5. 6

Host
IMP

to Modem
to IMP

to Host

i

vii

1
2
2
3
4
5
6
7
8
9
9

10
1 1
13

15
16
19
20
22
24
26
28
29
30
32
34
35
37
39
41
43
44
46
48
51
53
56

5 /7 8 Bolt Beranek and Newman Inc.

5.7 Task
5.7.1 Task For Us
5.7.2 Back Hosts

5.7.2.1 Back Host 5
5.7.2.2 Back Host 6
5.7.2.3 Back Host 7
5.7.2.4 Back Host 9

,5.8 Routing
5.9 Fake Hosts

5.9.1 TTY Fake Host to IMP
5.9.2 TTY Fake IMP to Host
5.9.3 DDT Fake Host to IMP
5.9.4 DDT Fake IMP to Host
5.9.5 Packet Core Fake Host to IMP
5.9.6 Packet Core Fake IMP to
5.9.7 Statistics Fake Host to
5.9.8 Discard Fake IMP to Host

Host
IMP

5.10 Very Distant Host (VDH) Interface
5.10.1 VDH Line Initialization Subroutine
5.10.2 VDH Exit Routines
5.10.3 Modem to VDH Coroutine
5.10.4 VDH to Host-code Coroutine
5.10.5 Host-code to VDH Coroutine
5.10.6 VDH to Modem Coroutine

5.11 Timeout
5.11.1
5.11.2

Host
Back

5.11. 3 Slow
5.11.3.1
5.11.3.2
5.11.3.3
5.11.3.4
5.11.3.5
5.11.3.6
5.11.3.7
5.11.3.8
5.11.3.9
5.11.3.10
5.11.3.11
5.11.3.12
5.11.3.13
5.11.3.14
5.11.3.15
5.11.3.16
5.11.3.17

Timeout
Host Timeout
Timeout

Teletype Buffer Check
Reassembly Block Check
Host Access Checksum
Line State Timeout
IMP to Host Software Check
Central Dispatch Check
Transaction Block Timeout
Real Host Ready Line Check
Routing Timeout

Incomplete Message Timeout
Routing Software Check
Buffer Counters Check
Allocate Count Check
Modem Queue Check
Buffer Timeout
Trace Buffer Check
Age Message Blocks

ii

59
61
66
67
69
71
73
75
77
78
79
80
81
82
84
86
88
89
91
92
94
96
97
98

100
102
103
104
105
106
107
108
110
111
112
114
115
117
118
119
121
122
124
126
127

5 /7 8 Bolt Beranek and Newman Inc.

5.11.3.18 IMP-going-down Message Check
5. 11 • 3. 19 St at is tics Check • • • • • • • • • • •
5.11.3.20 Restart Buffer Check •••••••••
5.11.3.21 Fake Host Software Check •••••••••
5.11.3.22 Back Host Software Check •••
5.11.3.23 Trouble Report Checks •••••••••
5.11.3.24 Light Display Check • • ••••••••
5.11.3.25 Nice Stop Check • • •••

5.12 Initialization • • • • • • • • • • ••
5.12.1 Buffer Initializatio~ ••••••
5.12.2 DDT Page Initialization •••

5.13 Configuration • • • • • ••••••••
5.14 Miscellaneous Routines • • • • •••

5.14.1 Packet Core Reload • • • • •••••••
5.14.2 Block Transfer Polling Process ••••
5.14.3 Restart Process •••••••
5.14.4 DDT Polling Process •••••
5.14.5 Teletype Handler Polling Process •
5.14.6 Display Process •••••••••

Chapter 6 Data Formats • • • • ••••••
6.1 Old-style Leader Format • • •••••••
6.2 New-style Leader Format • • ••
6.3 Buffer Format • • • • • • • •••••••••
6.4 Basic Packet Structure • • • • •••••

6.4.1 Packet Type 0 Formats • • • • • • ••••
6.4.1.1 Packet format for Type 0, Codes 0-3 •
6.4.1.2 Type O, codes 4-7 •••••••
6.4.1.3 Type 0, subtype 3: Uncontrolled packet •••

6.4.2 Type 1 Packet Formats ••••••••••••••
6.4.2.1 Packet type 1, codes 8, A, C, D, E and F
6.4.2.2 Packet type 1, code 9 ••••••••••

6.4.3 Packet type 2: Routing and null. • •••
6.4.4 Packet Type 3 •••

6.4.4.1 Demand reload • • ••
6.4.4.2 Reload request ••••
6.4.4.3 Packet core ••••••

6.4.4.3.1 Data for SETUP message •••

. . .

6.4.4.3.2 Data for CORE message ••••••••••
6.5 Modem Parameter Blocks
6.6 Host Parameter Blocks
6. 7 Back Host Parameter Blocks
6.8 Fake Host Parameter Blocks
6.9 Very Distant Host (VDH) Par am e te r Blocks
6.10 Transmit Message Block Table . . . "

iii

129
130
131
132
133
134
135
136
138
142
143
145
147
147
149
150
151
152
153

155
155
156
158
159
161
162
163
164
165
166
167
168
170
1 70
170
171
172
173
174
177
180
181
183
185

5/78 Bolt Beranek and Newman Inc.

6.11 Receive Message Block Table • • • • • • • • 187
6.12 Transaction Block Table • • • 189

6.12.1 Reserved ~ransaction Block Format ••••••• 189
6.12.2 Outstanding Message Transaction Block Format •• 190
6.12.3 Control Message Transaction Block Format •••• 191

6.13 Reassembly Block Table • • • • • • • 192
6.14 Routing Tables • • • • • • • • • • • 194

iv

5/7 8

Table 1)
Table 2)
Table 3)

Bolt Beranek and Newman Inc.

Volume II

Table of Tables

DDT Error Type-Outs. • • •••
Simulated Processor Registers.
Debugging Mode Halt Type-Outs.

v

• 10
• 12

14

5/78 Bolt Beranek and Newman Inc.

Foreword

This document forms Volume II of a two-volume set which
describes the Pluribus IMP program. The first volume contains
descriptions of the major routines in the IMP system.
Discussions in Volume I are high-level and that volume is
intended to be self-contained. Volume II contains detailed
descriptions of the programs that comprise the IMP system.
Chapter 4 describes the DDT debugging system, Chapter 5 discusses
the various program modules of the IMP system in detail, and
Chapter 6 contains pictoral descriptions of the data structures
used. Volume II is intended for system implementors, and should
be read only with a thorough understanding of all the discussions
of Volume I and with the IMP program listing handy.

vi

5/7 8 Page 1

Chapter 4
The Debugging System DDT

The Pluribus IMP provides within itself the diagnostic
debugging system DDT to facilitate dealing with problems that
might arise. The implementation makes it possible to debug the
Pluribus IMP either from the terminal attached to the IMP or from
a remote location. Both the local terminal handler process and
the DDT process are implemented as fake Hosts within the IMP.
These Hosts are "cross-patched" when the system is initialized,
so that characters typed at the terminal are sent to DDT, and DDT
responses print on the terminal. DDT commands are provided to
reconnect DDT to another Host anywhere in the network to permit
remote debugging. Further details about these fake Hosts are in
sections 2.2.6.l, 2.2.6.2, and in s.9.1-s.9.4.

DDT is a program which provides a mechanism for inspecting
and changing registers of the machine. In a broader sense,
however, it can be viewed as a simple operating system which
controls the starting and stopping of processors and handles
extraordinary conditions (QUIT and ILLOP). This section is not
intended as a tutorial; some knowledge of how other DDTs work
(see, for example, "DDT-10 Programmer's Reference Manual,"
Digital Equipment Corporation, Maynard, Massachusetts, copyright
1968, 1969, 1970) may be helpful.

Pluribus DDT versions have been developed for different
configurations and applications; only the IMP version is
discussed here. Regardless of the internal structure, all
versions appear basically the same to the user. DDT requires a
controlling device, such as a Teletype or VISTAR. Pluribus IMP
DDT runs in conjunction with the STAGE subsystem. As such, it
may run only when at least the STAGE Kernel is in operation (i.e.
Stages LK through RC are running). DDT makes use of the Block
Transfer routine to examine and deposit words in memory.
Modifying locations within checksummed code automatically updates
the ·proper checksum to permit patching of the program from DDT.

Following are descriptions of the various commands the user
may type. A number is represented by "nn", and <altmode> (or
<escape>) is represented by "$". A dollar-sign character is
indicated by "<dollar>". A caret or uparrow""""" followed by a
letter indicates a control character. The character caret (or
uparrow) is indicated "<uparr>". The underscore or backarrow
character is indicated by "<backarr>". The carriage return
character is denoted "<er>", and linefeed "<lf>". The word
"register" generally means a location in address space; a

5/78 Page 2

"processor register" is just that. Numbers are followed by"!"
to indicate that they are hexadecimal (base 16).

4.1 DDT Command Summaries

4.1.1 Addresses, Opening and Closing

Whenever a register is "opened", its contents are typed out
in the current mode (except as noted for certain commands). When
a register is "closed", the last value typed in while open, if
any, is written to that register. If nothing or <delete> is
typed in, nothing is written.

nn/ Opens register nn. The processor in whose address
space the reference was made types out as "Pnn"
immediately following the /. The contents of the
requested register then are typed in the current type
out mode.

nn,nn,nn/ The first two arguments specify a processor or
processors to do the reference, and a map setting if
needed. The processor(s) may be specified as for the
":" command (see below). A single processor or any set
of processors is permissible, and the command has the
same effect as if "nn:" or "Pnn:" were typed prior to
opening the location. If the address requested is a
mapped reference (i.e., the address is in the range
4000-BFFF!), the middle argument is used to set the
appropriate DDT pseudo-map. The effect is identical to
explicit map-setting using the proper "nn,nn~F" command
(see below). Either of the first two arguments may be
omitted; the default is to leave the processor
selection and map settings as they were prior to the
command.

Rnn/ Opens processor register nn. For processors running
STAGE, simulated processor registers are used, which
contain the actual processor register values at the
last occurence of a snapshot-triggering trap. Refer to
the discussion of the 'DDT debugging environment below.
For processors not running STAGE, the actual processor
register is referenced. If the processor is running
another program, all references to its processor
registers result in QUITs, except for Rl5. The latter
is the processor control register and is always
visible, although references to it may cause the
processor to halt.

5/7 8

<er>

<lf>

$<lf>

<uparr>

Closes current register, if any open.

Closes current register, if any open, and
"instruction"; that is, if type out mode
(see below) and the current register is a
instruction, skip one register.

Page 3

opens next
is symbolic
double-word

Same as <lf> but always opens the next
is, a register is never skipped.

register; that

Closes current register, if any open,
previous one.

and opens the

$<uparr> Like <uparr> but goes up two registers, not one.

I

$/

By itself,
register,
register.

is the value of the address of the current
if any open; if none, then the last current

Types out the contents of the register addressed by the
current register but does not open it or change "•"
The address used is the "effective" address of the
symbolic instruction, if the current type-out was
symbolic. For instructions that have no effective
address (HLT for example), or for type out in constant
or ASCII mode, the actual memory contents are used for
the "effective" address.

Closes the current register and opens the
addressed by the current register, as in "/".

register

4.1.2 Type Out Modes

There are two orthogonal type out modes.
radix of type out:

One controls the

.... H Numbers are typed out in hexadecimal (base
default.

Numbers are typed out in octal (base 8).

16) the

The other controls how register contents are interpreted:

Type out symbolically, that is, try to interpret as an
instruction, including next word if a two-word
instruction code.

5/78 Page 4

(Konstant) type out as a number.

-A Type out as· two ASCII characters.

4.1~3 Other Type Out Commands

=

$=

nn=

n n 11

$ II

II

nn\

$\

\

nn[

$ [

Retypes out the current register in the alternate mode
as follows:

current
symbolic
constant
ASCII

alternate
constant
symbolic
constant

Retypes out the current register in the alternate mode,
as in 11 = 11 , and changes the current mode to the
alternate mode.

When preceded by a number or an expression, types out
the value of that expression. The result of such
expression arithmetic is not considered a value to be
written to an open register when closed.

opens location nn, but does not type out
remains in this mode until I or \ is typed.

analogous to $/

analogous to I

opens location
suppressed on

analogous to $/

analogous to I

nn, but the address
succeeding lines until I

type
or "

contents;

out is
is typed.

opens location nn, but types out contents in the
alternate mode (see =, above); does not change current
mode.

analogous to $I

analogous to /

5/78 Page 5

4.1.I~ Type In

symbols DDT contains symbols with predefined values to
facilitate type in of symbolic data. All of the op
codes and other instruction components of the Pluribus
assembler are appropriately defined. By using <space>
and/or <tab>, instructions may be entered in virtually
the same format as the assembler expects. Type in
routines correctly interpret displacements in branch
instructions. Malformed instructions result in the
type out "II", and all current type in is cancelled.
There is presently no facility for user defined
symbols.

nn

nn.

nn'

nn!

< d el.e te>

+

<space>

<tab>

NOTE: The characters <comma>,"=", "ti","+","-", "(",
and ")" have special meaning within an instruction type
in, as do the symbols RO, Rl, ••• R7. Refer to BBN
Report No. 3001, Pluribus Document 4, Basic Software,
Part 2, for a description of the Pluribus assembler
format.

Typed in numbers are generally interpreted according to
the current type out radix, except that numbers
containing letters A-F are always hexadecimal. Note
that some numbers look just like symbols; e.g., ADD,
ADDB, BC, BE, BFl, BF2, and BF3. These are treated as
symbols unless they are explicitly denoted as numbers
by a leading zero or by an "!" after the number. It is
a good habit to precede all hexadecimal numbers
beginning with the letters A-F by a leading Q.

a decimal number

an octal number

a hexadecimal number

echoes as "II" and cancels current input, that is, it is
as if whatever is being typed in was never typed.

addition

addition

addition

5/78 Page 6

subtraction

<backarr> has the val~e of the last quantity typed out as a
result of examining a register. This would be the
value of second -word of a two-word instruction when in
symbolic mode. If the value of the first word is
desired, use "=" followed by <backarr>.

<comma> is used to input two words at a time. Typing <comma>
after the first value saves that value until the
terminator is typed after the second value, then both
values are written to memory. The value of "•" is not
changed. A <delete> typed after the <comma> aborts the
entire input. If nothing is typed before the <comma>,
only the second word is changed.

4.1.5 Address Spaces

Pnn: sets the number of the current processor address space.
The processor number is specified according to the
Pluribus convention that assigns coupler addresses to
indicate the physical processor position in the
machine. If the processor doesn't exist, or is
inaccessible, subsequent references to its address
space produce the "WHO?" diagnostic. No checking is
done at the time the ":" is typed.

nn: selects a set of processors, according to the mask
given in nn. Bits correspond to processors in the
system, assigned right-to-left in increasing order by
processor number. If nn is 0 or the character "-" or
not specified at all, the mask is set to be all
processors currently running STAGE. Read references go
to the first processor that runs the Block Transfer
subroutine; if no processor running STAGE is in the
mask, then some processor in the mask is accessed by
its buddy (if the buddy is running STAGE), or the
lowest-numbered processor in the mask is accessed by
backwards bus coupling. The identity of the processor
in whose address space the location was examined types
after the "/" (see above). Write references are
performed by all processors in the mask, allowing
simultaneous patching of all processor local memories.

nn,nn F sets the map value of the memory page to be referenced
when examining addresses in the mappable segments

5/78 Page 7

(4000!-BFFF!) to the second argument. The map setting
is maintained internally to DDT, but is used for all
subsequent references through the corresponding address
window until changed by another-For I command. One
of the four segments is specified by the first
argument, which must be "MO", "Ml", "M2" or "M3" to
select a particular 4K map window. If the first
argument is missing, map 0 is assumed. The map setting
is interpreted as follows: (1) even numbers less than
200! select a logical page type, as maintained by Stage
MM. (2) even numbers 200! or greater select the
physical page with that map setting. (3) 0 selects
logical page 0 (the "reliability" page). (4) Any odd
number selects a physical page; in particular, 1
selects physical page O. An argument of -1 causes all
four maps to be set to their default values, which are
0,10,12,10 for the reliability, variables, second
variables, and variables (logical) pages. The current
map settings may be examined by opening locations MO-M3
(i.e., type "MO/" to see the current setting for
references to locations 4000-SFFF).

4.1.6 Control

starts the selected processor at nn. If the
processor is running STAGE, nn is copied
simulated RO and its RlS is set to 2.

selected
to its

starts the selected processor at the address last
specified by a -G command. If no argument is given and
no address has been specified previously, a "II" prints
and nothing else happens.

stops the selected processor if running and types out
the contents of the program counter. If not running,
types out "HALTED". For processors running in the
STAGE system, sets their simulated RlS to a 1, and
prints the contents of simulated RO.

Causes the selected processor to
current state. If a processor
selected, its RlS is set to 2.

proceed
running

from its
STAGE is

steps the selected processor one instruction and types
that instruction. Prcoessors running STAGE set their
RlS to 3. In this case, single-stepping is meaningless
and should not be tried.

5/7 8 Page 8

like -z but does not type the instruction.

nn-z like -z but first sets the program counter to nn.

4.1.7 IMP Version Features

n n-1 sets up a 1 eade r for a "semicolon message". Format is
"<leader!>, <leader2>, <leader3>, <leader4>,
<leaderS>-1 11 • Any field not specified is assumed to be
zero except for <leader!>, which is set to OFOO. Thus,
the command 3,6,-1 sets up a normal message leader for
semicolon messages to Host 3 on IMP 6, with no special
leader flags and a message-id of O.

-1

nn,nn-c

-@

-o

nn-o

clears the screen and repaints the display in the
bottom portion of the screen.

"crosspatches" all subsequent type in.
argument is the IMP to send to; the first
on that IMP. Host OFD (i.e., the DDT
assumed if the first argument is omitted.

The second
is which Host
fake Host) is

undoes -c and directs type in to the local DDT - echoes
a <er>, <lf> pair.

returns as a value in the current radix the number of
the last IMP Teletype to "crosspatch" to the local
Teletype.

complements value of the override switch and echoes
11 -oN" or 11 -oF" as appropriate.

same as -o for
has no physical
are maintained
function.

"sense switch" nn (1-4). The Pluribus
sense switches; software sense switches

in this fashion, but currently have no

nn<dollar> activates the operator help (OPHELP)
These commands are various maintenance
aids which enable day-to-day operation
system without detailed knowledge of the

command nn.
and debugging

of the IMP
program. For

ex
ample, OPHELP commands

lines, or look up the
block.

can loop
address

and unloop modem
of a Host parameter

5/78 Page 9

4.1.8 Miscellaneous Commands

nn,nn,nn-B copies contents of some processor's private memory to
the corresponding locations of the private memory of
the currently selected processor(s). The first
argument selects which processor(s) should be the
source of the transfer, where nn is interpreted as in
the nn: command (see above). Pnn: may be used to copy
from one specific processor. The latter two arguments
give the inclusive bounds on the addresses to be
copied. Omitting arguments causes the last value
previously specified for that field to be used; if none
exists, a "II" is echoed and no copy takes place.

4.2 Control Structure of DDT

The Teletype handler process and the DDT process are polled
from the operational IMP program when they have work to do (i.e.,
characters to process). The Teletype process is also called
periodically to check for new input characters from the Teletype
interface. Since crosspatching allows the local Teletype to send
its characters to another IMP, and other IMPs or Hosts may send
characters to the DDT process, the two processes must be
independent. The -c and -@ commands provide control over the
crosspatching of the local IMP Teletype.

DDT makes use of the Stage Block Transfer process to perform
operations that involve moving data in memory. The various
Examine and Deposit functions are such operations, as are the -x,
-G, -p, -z, and -B commands. Failures within the Block Transfer
process set error codes, which DDT attempts to interpret. Table
1 shows the DDT error type outs and their meanings.

The Teletype and DDT processes communicate only by passing
characters through buffers. The Fake Host processes responsible
for communicating these characters to and from the network manage
the other side of these buffers. When the system is in debugging
mode, and the IMP processes stop passing these characters for
several seconds, a special mode is entered which permits the
characters to be passed directly from Teletype to DDT and back.
In this mode, the IMP Fake Host processes are bypassed (since
they may have stopped running anyway). Refer to the discussion
of debugging mode below.

5/78

Type-out

QUIT

FAILED

WHO?

TIMEOUT

? ? ?

Page 10

Meaning

Block Transfer got a QUIT trying to complete the last
request. If the request was performed by several
processors, the mask specifying which processors got
the QUIT will print in parentheses. A mask of FFFF
indicates that. the single processor which was selected
could not complete the transfer.

Block Transfer couldn't complete the transfer in the
requested processor's address space. Again, a mask
saying which processor(s) had trouble will be printed.

Some non-existant processor was specified to Block
Transfer. The mask which prints says which processor;
if a single processor is selected, a mask of FFFF will
print and that processor doesn't exist.

Block Transfer timed out before the requested transfer
could complete. This shouldn't happen; if it does, it
indicates a program bug or perhaps a very busy machine.

A Block Transfer error has
decode. This should never
program bug in DDT.

Table 1

happened which DDT can't
occur; it would indicate a

DDT Error Type-Outs.

4.3 Protection, Override

DDT has the power to change any location in memory in such a
way that it cannot be detected (by a failing checksum, for
example). As such, it could completely disable the continued
operation of the operational IMP system. For this reason, all
potentially dangerous actions of DDT are protected by the
override mechanism. Normally, the override condition is disabled
in a running IMP system. Only certain Hosts (the NCC IMP
Teletype Fake Host, for example) may turn on override. Override
is always disabled following a system restart. Once override is
enabled, all of DDT's features are permitted, so extreme care
must be used that incorrect actions are not requested. As soon
as the necessary requests to DDT have been completed, override
should be immediately disabled. Override is controlled by the ~o
command.

5/78 Page 11

Commands that can modify memory include a direct request to
change an open memory location with <lf> or <er> (although memory
may be examined with override off), the <dollar> commands, the
processor-control commands c-x, -p, -G, and -z), the local memory
copy command -B, and the crosspatch command -c. Examining memory
and typing <lf> to progress to the next location is permissible
with override off (since nothing was typed in to be deposited).

4.4 Debugging Environment of DDT

DDT attempts to maintain a "logical" debugging environment
similar to the environment the programmer is coding in when
he/she is writing the program. In particular, DDT assigns
special meanings to such hardware features as the memory map
registers (and their effects) and the processor registers. The
debugger can thus simulate step-by-step the action of a
particular routine by changing the contents of these hardware
registers in DDT. DDT, of course, does not change the actual
registers, since it is using the registers for its own purposes.
Instead, the registers and (in the case of the maps) their
side-effects are simulated by DDT.

The simulated or pseudo-map registers can be accessed in
DDT, either explicitly by opening locations MO, Ml, M2, or M3
(or, equivalently, OFCOO!, OFC02!, OFC04! or OFC06!), or
implicilty in the nn,nn/ and -F commands. The current settings
in DDT's simulated registers may be examined by opening locations
MO-M3. (The hardware map settings cannot be read directly!)

The processor registers can also be examined for processors
running in the system. Of course, since the processor is running
at the time, these have no meaning. Instead, DDT displays the
registers at the time of the last "snapshot". A snapshot is
triggered by a extraordinary occurence in the IMP program. An
unexpected QUIT is such an occurence. In many places, traps that
are not supposed to happen ever, and in particular traps that may
indicate some hardware malfunction, are transformed into snapshot
traps (see description of illegal instruction interrupt handler,
section S.1.14). The snapshot consists of a complete picture of
the processor registers at the time of the snapshot, plus other
interesting information that may have some bearing on the problem
at hand. Snapshots are sent periodically to TENEX by the PLOG
process when debugging mode is disabled, so that a permanent
record of them may be kept and the snapshot area may be reused.
Table 2 lists the simulated registers and their meanings.

5/78 Page 12

Register Contents

RO The illegal instruction (ILLOPR) that triggered this

Rl-R7

RB

R9

RIO

Rl 1

R12

R13

Rl4

RlS

170

172-6

snapshot. Refer to the trap listing for the IMP for
its meaning.

The contents of processor registers 1-7 at
snapshot trap was executed. Refer to
listing to discover their meaning at the
particular trap.

the time the
the program
time of this

The processor status register at the time of the trap.

The contents of the program counter at the time of the
trap. (i.e., the memory location containing the trap
instruction)

The last call to the Stage restart WST, WSTCOM, or ws.
Encodes the reason for the last restart of this
processor.

The contents of the program counter the last time a
"program in a loop" condition was detected.

The address being referenced
unexpected QUIT occured.

tha last

The contents of the
unexpected QUIT.

status register at

time an

the last

The program counter at the last unexpected QUIT.

The simulated processor control register. For more
discussion, see the section on debugging mode.

(This location is right after RlS; a <lf> after
examining RlS will examine this location). The mapO
setting at the last snapshot.

Maps 1-3 at the last snapshot. The map settings will
always have the 2-bit or'ed in.

Table 2
Simulated Processor Registers.

5/78 Page 13

4.5 Debugging Mode

Debugging mode is a special IMP program feature which should
never be required during normal operation. It allows processors
to "hang" in the early portions of STAGE under various drastic
error conditions, so that the state of a computation can be
examined in DDT after the occurence of the error. This facility
is much like the notion of a "breakpoint" in many other DDT's.
In the Pluribus, however, we have modified the notion somewhat
because of the demands of the multiprocessor environment. In
particular, DDT may only run when enough of STAGE is running to
guarantee proper communication between the processors in the
system. In other words, enough of STAGE must be running to
ensure proper operation of the Block Transfer process. This
comprises the "kernel" of STAGE, or Stages LK through RC.

Once these Stages are enabled, the Stage dispatcher checks
the debugging mode flag. This is a flag within the local kernel
checksum bit-coded by processor - if the bit corresponding to a
processor is set, it is in debugging mode. Processors in
debugging mode will hang at Stage RC if their simulated "halt"
bit (bit 1 in RlS) is set. They continue to poll Block Transfer
and the Teletype and DDT processes, however, so that the state of
the system may be examined by the programmer. There are known
dead states in debugging mode! The DDT code page, for example,
is not checked before the Teletype and DDT routines are called,
so• a problem in those routines could cause processors to execute
a halt or worse. Use of debugging mode is dangerous, and is only
intended for checkout of new systems on machines not performing
an operational function. In a redundant system, debugging mode
could possibly be used selectively to diagnose a failure in only
one processor or processor bus, but extreme caution is advised.

In debugging mode, Stage interprets the processor "Halt" bit
(i.e., the 1-bit in snapshot register Rl5) to mean "stop running
the system and all stages later than stage RC". When all is
normal, the "run" bit (the 2-bit) will be set. An occurence of a
snapshot trap will turn off the run bit, but not set the halt bit
(this is the "ha 1 f- ha 1 t e d" state) • A serious condition (an
unexpected QUIT, or the special halt traps OFFFF and OFADE) will
set the halt bit, and this processor will cease running the
operational system. In addition, extra bits are set to indicate
which condition caused the processor to hang in STAGE, and the
reason will print out as "Pnn xxxx@yyyy", where xxxx is the error
condition and yyyy is the location of the snapshot trap that
caused the halt. The conditions and their meanings are listed in
Table 3.

5/78 Page 14

Type-Out Meaning

QUIT The processor got an unexpected QUIT at the instruction
whose address is typed in the error print out.

I LO PR

FADE

The processor executed
specified location.

a OFFFF instruction at the

The processor executed the special illegal instruction
OFADE at the specified location. This causes a flag to
be set in common variables which in turn forces all the
other processors also to hang in STAGE. This is useful
when debugging a problem requires looking at the global
environment of the system. Each processor checks the
flag as it completes the strip it was running.

Table 3
Debugging Mode Halt Type-Outs.

NOTE: In the "halted" state, Stages LK-RC continue to run.
This means that debugging those Stages is very touchy with the
use of the OFFFF or OFADE traps. Programmers are advised to try
to use snapshot traps wherever possible for debugging, and to
resort to the halt traps only rarely. In most cases, enough
useful data can be loaded into the registers at the time of the
snapshot to permit effective debugging of bad conditions.

The snapshot area, once it contains a valid snapshot, will
only be overwritten by the serious condition type of snapshot.
The serious snapshot will never be overwritten, but the processor
must have its "halt" bit turned off before it reenters the
system. The overwriting is controlled by looking at the stets of
the simulated RlS run and halt bits. Snapshots are permissable
which progress from "run" state to "half-

hal ted" or "halted"
state, and from "half-halted" state to "halted" state. Causing
processors to leave either "half-halted" or "halted" state is
achieved by typing ~P with the appropriate processor(s) selected.
This sets their Rl5 back into "run" state to permit more
snapshots. When not in debugging mode, the TLOG process, as it
sends off snapshot messages, turns the "run" bit (bit 2) back on
to allow more snapshots to take place.

5/7 8 Page 15

Chapter 5
Detailed Program Descriptions

A concise, systematic approach has been taken in presenting
details of the IMP programs in the following pages. The approach
is reflected by the headings of the outline used in describing
the programs:

Function - for complex routines, each function is
for reference in subsequent sections. The list of
contains those which are fundamental to
operations.

numbered
functions

major IMP

2. Control Structure - A general description of
structure and its control flow.

the coding

a. Entry points - locations and modes by which the program
is entered.
b. External calls - the names of subroutine or coroutine
calls which the program makes.
c. Initialization important settings made during the
initialization process.
d. Cleanup - actions taken before exiting or during unusual
situations.

3. Data Structures.
a. Local data - variables and constants which are used only
by the program.
b. Shared - tables, variables and locks which are used by
other programs as well. Care must be taken to use software
locks wisely so as to insure consistency in shared data.

4. I/O Performed - Any actions taken which affect the state of
any hardware interface in the IMP. Included are resets as
well as input and output operations.

I
I
[
,-
I

l

1.

J

I
I

I
"""'

5/78 Page 16

5.1 Stage System

Function
The Stage system is a series of processes which
progressively build up a picture of the Pluribus
machine configuration. The output is typically in
tables which may be used by operational systems (such
as the IMP program) to initiate and perform their
tasks. Each of the processes ·is described in a
subsection of this section. Dispatch control for
initiating these processes is described in this
section. Other basic system functions performed by the
Stage routines are described in subsections following
the individual Stages.

Control Structure
The Stage dispatcher polls individual Stages which have
been enabled, under control of the WDIS word. In
addition, the Block Transfer process is polled and, if
in debugging mode, the Teletype and DDT processes. The
dispatcher also maintains the Stage timing functions
and consensus arrays for each Stage.

Entry Points
Stage is the first system entered on start-up or after
a drastic system failure. Following are various
entries to Stage, and their uses:
SETUP: a halt, so pushing RUN on the operator console
proceeds at ws.
WS: restart entry, to
reinitialization; normal
paper-tape reload.

force total
entry following a

system
fresh

WSTINI: entry for processor that is restarted by
another processor; sets up PROCNO and enters WST.
SJ7: entry if this processor believes the communication
page has failed.
WSTCOM: entry to force finding of a {possibly new)
communication page.
WST: entry following certain drastic local
such as unexpected QUITs or program loops.

External Calls

failures,

SBAD: routine to disable later Stages; called on
initial entry to disable all but the first Stage (Stage
LK).
STPOLL: entry to poll DDT and Teletype from Stage, for
debugging only.

5/7 8 Page 1 7

BLT: Block Transfer process; provides mechanism for
processor reloads and restarts, DDT examine and
deposit, and packet core transfers.

Initialization
Each Stage, as it succeeds, initializaes the dispatch
(WSLA7) for the succeeding Stage.

Cleanup
All hardware configuration data is periodically checked
and kept correct by the Stage processes.

Data Structures
Local Data

UWST: saved address of last caller to initial entry to
Stage.
WSTAGE: currently running Stage index.
WTEMP: temporary register save word.
WSLA1-WSLA7: tables (by Stage) of saved register
settings.
SVTIME: most recent time read from real
Stage is using (LCLOCK).

Shared Data

time clock

LCLOCK: address of current real-time clock for Stage to
use.
UTIME: time next to run Stage LK (so all Stages run
occasionally).
WDIS: Stage dispatch control; bit-coded by Stage.
CONSOL: address of operator console light registers, if
any.
LTIME: time (from LCLOCK RTC) before which the Stage
dispatcher should next be entered.
DEBUGM: debugging mode flag.
PROCBT: bit for this processor.
SNAP: snapshot save area.
MAPREL, MAPCOM, MAPVAR: map settings for reliability,
communication, and variables pages.
STIME: local copy of Stage system time (SYTIME).
COMPTR: pointer from each common memory page to the
communication page.
SYTIME, SYTIM2: time
running), controls many
COMREL: communication

(25.6 ms ticks if IMP system
Stage timeout functions.
page pointer to reliability

(rely) page.
SEGCON, STGCON,
MEMCON' roe ON'
RK, BD, CD , RC,

BUSCON, COUCON, RCKCON, LOCCON, CKSCON,
INICON: consensus arrays for Stages MD,
LC, MC, MM, ID, AR.

5/78 Page 18

I/O Performed
While Stage is running, WDIS is displayed in the
console address lights. If an external reload is in
progress, the packet core address (PKCADD) is displayed
in the console data lights by BLT.

5/78 Page 19

5.1.l Stage LK - Local Kernel Checks

Function
This Stage operates on configuration data local to each
processqr. Upon successful completion, the processor
has initialized its interrupt dispatches (for QUITS,
power fails and restores, and the 60-hertz ("jiffy")
clock interrupts), discovered its operator console (if
any), checksummed the local kernel code, and found a
system real time clock (RTC) to use for timing Stage.

Control Structure

Data

Entered on any Stage restart, and then runs forever as
a coroutine with the Stage dispatcher.

Entry Points
Restarts enter at SLKOO.

External Calls
CKSUBI, CKSUBR to checksum the local kernel code.
SLKSLE to dismiss coroutine (special entry to WSLEEP).
FNDCLK to search for a real time clock.
SOKAY to signal successful completion of this Stage.

Initialization
None.

Cleanup
None.

St rue t ur es)
Local Data

None.

Shared Data
UQUIT: pointer to unexpected QUIT handler.
CONSOL: address of operator console, if any.
PROCNO: processor number for thie processor.
PROCBT: bit assigned to this processor.
LCLOCK: address of RTC for Stage to use.

I/O Performed
Processor interrupt vectors are initialized and level 1
and 4 interrupts are enabled.

5/78 Page 20

5.1.2 Stage MD - Com~on Memoty Discovery

Function
This Stage searches the common memory space to find
usable common memories. In addition, it must maintain
the identity of the communication page, which must be
the lowest numbered page the processor can see.

Cnntrol Structure
Searches through all possible memory from map 0 to map
7EOO!. Each memory is tested for proper operation with
a brief memory test. The lowest page found is used as
a communication page.

Entry Points
Coroutine, entered from Stage Dispatcher via WSLA7.

External Calls
WSLEEP to dismiss coroutine.
SFIXIT to reach consensus for modifying MEMSEG.
SCLEAR to remove this processor's FIXIT bit.
SOKAY to allow next Stage to run.
SBAD to disable later Stages.

Initialization
WSLA7 is initialized to dispatch to SMDOO.

Cleanup
None.

Data Structures
Local Data

MYSEGS: this processor's version of common memory
table.
WMLOCK: lock on memory test area.
SMDFLG: flag for timing COMTST.
SMDTIM: timer for COMTST counters.
SMDBUC: junk word (bit bucket) to store into
memory.
SMDBLK: memory test area.

to find

COMTST: bit-coded (by processor) timers to fix a COMPTR
word.

Shared Data
MAPCOM: map setting for communication page.
MEMSEG: common memory table (bit-coded).
MEMTOT: total number of 4K memory pages found.

5/78 Page 21

STIME: Stage time (local copy).
SLFPTR: page self-pointer (copy of map setting).
COMPTR: pointer from each page to the communication
page.
PROCBT: processor bit for this processor.

1/0 Performed
None.

5/78 Page 22

5.1.3 Stage RK - Reliability Page Kernel Check

Function
This Stage searches through common memory for a
common memory kernel. The kernel, and the whole
are checksummed. The result is recorded
consensus) in COMREL on the communication page.

viable
page,

(via

Control Structure
Searches through memory pages discovered by Stage MD.
Existence of a kernel is denoted by the password DACE!
being stored at location RKEPAS. Checksums of the
kernel, and the whole (reliability) page are verified.

Entry Point
Coroutine, dispatch from Stage dispatcher via WSLA7.

External Calls
SCLROK to pass the Stage and ~emove fix-it bit.
WSLEEP to dismiss the coroutine.
MEMTS2 to check for existence of a memory page.
CKSUBI, CKSUBR to compute checksums.
SFXBAD to hang this Stage and await consensus for
modifying COMREL.

Initialization
WSLA7 is initialized to dispatch to SRKOO.

Cleanup
None.

Data Structures
Local Data

SRKKER: kernel that has been found by this stage, if
any.
RKEPAS:
kernel.

location of password constant identifying the

RKERCK: checksum and limit words for kernel checksum.
SRKREL: copy of COMREL, used to limit search loop.

Shared Data
COMREL:
page.

pointer from communication page to reliability

CKSUM: checksum and limit words for common code page.
TYPE4K: core type word for common code page.

5/7 8

1/0 Performed
None.

Page 23

5/78 Page 24

5.1.4 Stage BD - Common Bus Discovery

Function
Check variables area in common memory for this and
later Stages for bad parity and currency; reinitialize
it if there is bad parity or if the variables are no
longer current. Find which common busses exist (for
I/O or memmory). Note which I/O busses have real time
clocks. Results are recorded in USEBUS.

Control Structure
Scans the common variables area for bad parity, which
is indicated by the occurrence of a QUIT. Checks for
existence of common busses. I/O busses are checked to
see if they have a PID and real time clock. Memory
busses exist if their lowest-numbered page is in
MEMS EG.

Entry Points
Coroutine, called from Stage dispatcher via WSLA7~

External Calls
SCLROK to pass the Stage and remove fix-it bit.
WSLEEP to dismiss the coroutine.
SFXBAD to hang this Stage and await fix-it consensus.
WST to restart Stage.
WSTMEM to remove a failing memory page from usage and
restart Stage.

Initialization
WSLA7 is initialized to dispatch to SBDOO.

Cleanup
None.

Data Structures
Local Data

STGTIM: timeout on the Stage common variables area.

Shared Data
COMAR: Stage common variables area.
BBCLOK: lock on backwards bus coupling privelege.
BLTLOK: lock on Block Transfer parameters.
BUSCON, COUCON, RCKCON, LOCCON, CKSCON, MEMCON, IOCON,
INICON: Consensus arrays for Stages BD, CD, RC, LC,
MC, MM, ID, AR.
STIME: local copy of system time.

5/78 Page 25

MEMSEG: table of existing memory pages from Stage MD.
PIDGET: local table of PID read addresses.
USEBUS: bit-coded table of existing common busses and
real time clocks.
LKERCK: local kernel code checksum.
MAPREL: map for reliability code page.

I/O Performed
None.

5/78 Page 26

5.1.5 Stage CD - Bus. Coupler Discovery

Function
Search for all couplers in the system (processor to
memory, processor to I/O, and I/Oto memory). Search
for all processors in the system.

Control Structure
Scans all of coupler addresses on I/O and memory
busses. Couplers appearing on I/O busses must be from
processor busses; if memory busses have couplers that
correspond, they are assumed to be from processor
busses also. Couplers appearing only on memory busses
are assumed to be from I/O busses, and are remembered
separately. Processors are assigned numbers based on
their coupler addresses (which generally correspond to
their physical location in the Pluribus machine).

Entry Points
Coroutine,

External Calls

called from Stage dispatcher through WSLA7.

SFIXIT to achieve consensus for modifying results of
this Stage.
SCLROK to pass this Stage and remove this processor's
fix-it bit.
WSLEEP to dismiss coroutine.
SFXBAD to hang this Stage and await consensus to fix
results.
WST to restart Stage if this processor discovers its
own number was wrong.

initialization
WSLA7 is initialized to SCDOQ.

Cleanup
None.

Data Structures
Local Data

PROCD: accumulates set of existing processors.
SCDIOI: current index to non-processor coupler table.
SCDBUS: accumulates bits by bus for which common busses
this coupler exists on.
AMPCOM: table of common bus amputation states.
COUBUS: which busses each processor has couplers on.

5/78 Page 27

IOCTBL: table of non-processor couplers and which
(memory) busses they exist on.

Shared Data
PROCEX: bit-coded table of existing processors.
PROCNO:.my own processor index in COUTAB.
COUTAB: table of processor coupler addresses.
MYPROC: my processor number = coupler index (bus
address) plus odd bit if I'm the odd processor.
PROIOR: bit table of processors that should be removed
from system.
AMPROC: amputate words by processor coupler.
SEGCON: Stage MD consensus.
USEBUS: bit-coded table of existing busses.
BBCLOK: lock on backwards bus coupling privelege.
QUITV: pointer to most recent QUIT vector used.

I/O Performed
None.

5/78 Page 28

5.1.6 Stage RC - Reliability Page Check

Function
Decides (based on result of Stage RK) whether the
checksum on all of the reliability page code is good.
If it isn't, trigger a reload. If okay, see whether
debugging and this processor is in the simulated halt
state; if it is, hang in this Stage.

Control Structure
Examines COMREL to determine whether reliability page
has a good checksum. DEBUGM and BLTMYC (simulated
processor control register) control the halted
debugging state.

Entry Points
Coroutine, called by Stage dispatcher via WSLA7.

External Calls
WSLEEP to dismiss the coroutine.
SBAD to hang the Stage pending a reload.
STEST to conditionally pass this Stage.
RELTRY to initiate a Block Transfer for a reload.

Initialization
WSLA7 is initialized to SRCOO.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
PROCBT: my assigned proessor bit.
SNAP: snapshot save area.
COMREL: pointer from communication page to reliability
code page.
TLIMIT: limit of checksummed area on each code page.
CKSUM: checksum on a code page.
RCKCON: consensus array for this Stage.

I/O Performed
None.

5/78 Page 29

5.1.7 Stage LC - Local Page Checksum

Function
Verifies the checksum
this processor. If
(i.e., consensus is
reload.

on all the local memory code for
checksum fails in every processor
reached), trigger an external

Contorl Structure
Computes additive checksum on all constant words of
local memory, which should be zero. External reload is
initiated by setting appropriate Block Transfer
par ame te rs •

Entry Points
Coroutine, called from Stage dispatcher via WSLA7.

External Calls
SCLROK to pass this Stage and remove fix-it bit for
this processor.
WSLEEP to dismiss coroutine.
CKSUBI, CKSUBR to compute local code checksum.
SFXBAD to hang this Stage and reach consensus to
reload.
RELTRY to initiate an external reload of local memory.

Initial iza ti on
WSLA7 is initialized to dispatch to SLCOO.

Cleanup
None.

Data St rue tur es
Local Data

None.

Shared Data
BLTST: Block Transfer state.
LOCALC, HOTLIM: local code checksum and limit.
LOCCON: consensus for this Stage.

I/O Performed
None.

5/78 Page 30

5.1.8 Stage MC - Common Memory Checksums

Function
For each common page in
reliability page, compute
with invalid checksum to be
improper page type) but with

the system except the
its checksum. Force page

empty (signalled by an
a good checksum.

Control Checksum
Computes additive checksum for each page, using a limit
provided on each page. A special checksum value
(password) signals that the checksum should be
recomputed, for system initialization after paper tape
loading.

Entry Points
Coroutine, called from Stage dispatcher via WSLA7.

External Calls
MEMTS2 to see whether a page exists in MEMSEG.
CKSUBI, CKSUBR to compute code checksum.
WSLEEP to dismiss subroutine.
SFXBAD to hang this Stage and reach consensus to reset
a page with bad checksum.
SCLEAR to clear this processor's bit from a fix-it
array.
SOKAY to signal successful completion of verifying all
checksums.
WSTMEM to remove a failing memory page from usage.

Initialization
WSLA7 is initialized to dispatch to SMCOO.

Cleanup
Pages with bad checksums are set to be unused (invalid
page type). Pages with parity failures that can be
fixed are marked to be reinitialized. Pages with solid
memory parity failures are removed from usage.

Data Structures
Local Data

SMCNEX: next page to checksum.
SMCLAS: page we checksummed last.
CKSMEM: flag to signal a page whose checksum may have
failed.

5/78 Page 31

Shared Data
MAPREL: map setting for reliability page.
CKSUM: page checksum word.
BLTST: Block Transfer state.
INTIME: page initialization flag.

I/O Performed
None.

5/78 Page 32

5.1.9 Stage MM - Common Memory Management

Function

This stage consists of four subparts, each to deal with
one class of page type:

1) Find and maintain the active code pages. If can't find
one with a given type, and haven't found the minimum
number of code pages needed to run the system, hang in
this stage, awaiting a reload. If a spare of the given
type exists, copy a fresh page from it. The code pages
are allocated starting on the lowest-numbered end of
memory. All other page types will be allocated from
the high end downwards.

2) Find and maintain the required variables pages. If
can't find one with a given type, create one and zero
it. If not enough memory for all these pages, hang in
this stage.

3) Find or construct spares of all the code pages.
4) Find or construct optional variables pages, up to the

maximum tbs system can use.
Pass this stage if we get at least to part 3.

Control Structure
1) Starting at the bottom of common memory, each map is

checked to see if it is a) in the MEMSEG table and b)
its CMAP and LMAP entries agree with its type. This is
repeated for all the required code pages until either
the necessary code pages have been checked or until
memory runs out. If memory runs out, STAGE will hang
here.

2) Starting at the top of common, the
repeated for the required variables
is missing, another is usually found
vars page.

same checks are
pages. If a page
or made into a

3) The spare code pages are next found and entered into
LMAP and CMAP tables. If no spare page exists, the
original, if it exists, may be copied and saved.

4) The optional variables are now checked and set up, if
there is room. If there is enough room to allocate all
of the previous pages, then any excess pages are marked
free.

Entry Points
Coroutine, called from the Stage dispatcher via WSLA7.

5/78 Page 33

External Calls
SMMHTS, SMMLTS to check maps and supply free pages or
spares if map wrong.
MEMTST to check if a page is in the MEMSEG table.
SCLROK to say this stage passed and OK.
SMMCOP to copy a page of memory to a new page.
SMMCP2 to clear and check a variables page.
SFXBAD to set and check the consensus.
FIXJIF to cleanly reenable jiffy interrupts.
WSLEEP to dismiss the coroutine.
WST to restart Stage if too little common memory exists
for the system to run.

Initialization
WSLA7 is initialized to dispatch to SMMOO.

Cleanup
Pages that the system doesn't need are marked with an
invalid page type to indicate that they are unused. If
memory runs out first, the remaining entries in CMAP
and LMAP are marked empty.

Data Structures
Local Data

SMMHI: the high limit of unchecked pages.
SMMLOW: the low limit of unchecked pages.
SMMSPA: a word used to hold the location of the spare
page of desired type.
SMMFRE: remembers any free page that has been found.
SMMTOT: total pages allocated so far, biased by count
of desired variables.

Shared Data
LMAP: local copy of CMAP.
CMAP: system map table by page type.
CKSUM: common page checksum.
TLIMIT: common page checksum limit.
MAPCOM: map setting for communication page.
MEMTOT: total number of memory pages, from Stage MD.
INTIME: page initialization flag.
BLTST: Block Transfer state.
COMREL: communication page pointer to reliability page.
TYPE4K: common page type word.

I/O Performed
None.

5/78 Page 34

5.1.10 Stage ID - I/O Interfaces Discovery

Function
Search through I/O address space for common I/O
interfaces. Results ~re built as a bit-coded table.

Control Structure
Devices are checked for whether their device status
register exists. Existing interfaces are tabled by bit
in USEIO. Majority agreement among processors is
required to decide that an interface exists.

Entry Point
Coroutine, called from Stage dispatcher via WSLA7.

External Calls
WSLEEP to dismiss the coroutine.
SCLEAR to remove this processor's fix-it vote.
STEST to conditionally pass this Stage.
SBAD to hang this Stage.

Initialization
WSLA7 is initialized to dispatch to SIDOO.

Cleanup
None.

Data Structures
Local Data

IOFIX: fix-it array for voting to change the USEIO
table.

Shared Data
PIDGET: table of PIDs from Stage BD.
USEIO: bit-coded table of existing devices.
PROCBT: this processor's bit.
!OCON: this Stage's consensus.
CONFLG: flag to tell Configuration that USEIO changed.
CONPNT: pointer to current Configuration page.
CONA7: current Configuration dispatch.

I/O Performed
None.

5 /7 8 Page 35

5.1.11 Stage AR - Application-dependent Checks

Function
1) Check for any processors that have failed local memory

checksums, and initiate Block Transfer to reload them.
2) Check for any processors that should be running and

aren't, and initiate Block Transfer to reload and
restart them.

3) Poll initialization checking routines on each code
page, if any.

4) Check for occurences of successful QUIT retries or
unsuccessful real time clock readings, and report them
(via traps). Report if jiffy interrupts have stopped
occuring.

5) If any traps have been saved in the local buffer, tally
them in the common memory trap tables.

Control Structure
Functions are performed in order given. If an
initialization check routine indicates that
initialization needs to be performed, reach consensus
and call the specified initialization routine.

Entry Points
Coroutine, called from Stage dispatcher via WSLA7.

External Calls
1-2) RELTO to initiate Block Transfers.

3) FIXJIF to cleanly reenable jiffy interrupts following
an initialization.
WSLEEP to dismiss coroutine.

4) SCLROK to pass this stage and remove this processor's
fix-it bit.
RCLOCK to read the Stage real time clock.

5) ILLCNT to tally a trap in common memory tables.

Initialization
WSLA7 is initialized to dispatch to SAROO.

Cleanup
4) Counters for QUIT retries and unsuccessful real

clock readings are cleared.
5) Local trap table is cleared.

Data Structures
Local Data

2) TEMPl: bit-coded set of processors to start.

time

5/78 Page 36

3) TEMP2: index of page being called for initialization
check.

Shared Data
1) BLTST: Block Transfer state.

LOCFIX: Stage LC fix-it array.
LOCALC: local memory code checksum and limit.
CKSCON: Stage MC consensus.

2) PRTIME: time next to check for processors to start up.
STIME: local copy of Stage system time.
PROIOR: processors that shouldn't be started.
SEGCON: Stage MD consensus.
PROCEX: bit-coded array of processors that exist.

3) LMAP: local table of page maps by type.
PGINIT: pointer to initialization check for common code
page.
MAPREL: map setting for reliability code page.

4) QUITRT: count of successful quit retries.
CLOKRT: count of unsuccessful real time clock reads.
PROCNO: index of this processor name in COUTAB.
JTIME: real time clock reading at last jiffy interrupt.

5) MAPVAR: variables page map.
LOCIPT: pointer into local trap table.
LOCILL: local trap table.·

I/O Performed
Jiffy interrupts are disabled while initialization is
performed.

5/78 Page 37

5.1.12 Block Transfer

Function
Performs a variety of functions associated with moving
blocks of memory around in the machine. In particular,
this process performs reloads from external sources, as
in packet core, reloads of individual processors from
other processors, dumps of portions of memory for
diagnosis or verification, and examine and deposit
operations for DDT.

Control Structure
Block Transfer is a large subroutine. It checks the
state of the Block Transfer parameters and performs any
indicated actions.

Entry Points
BLT, or BLTLKD if BLTLOK is already locked. Called
from the Stage dispatcher, and from the operational
system if there is a transfer in progress.

External Calls
BLTPRM, BLTPRS to do some checking for transfers to or
from individual processors. BLTRLD is the entry to the
external reload (packet core) process.

Initialization
None.

Cleanup
A variety
transfer in

Data Structures
Local Data

of error conditions
progress early.

TEMPI: saved subroutine return.

will terminate the

TEMP2: which processors were done this call
(bit-coded).
TEMP3: index of bus being used for backwards bus
coupling.
TEMP4: correct bus coupler password to use.
BBCRST: processor last started.
BBCBAD: processor to which backwards bus coupling last
failed.

Shared Data
BLTST: Block Transfer state plus error bits.

5/78 Page 38

BLTLOK: Block transfer lock.
BLTTO: timeout on Block Transfer actvity.
BLTADD: current Block Transfer address.
BLTSIZ: how many bytes to transfer still.
BLTDON: how much was transferred in this piece.
BLTBFM: map setting for buffer for Block Transfer.
BLTBFA: address for buffer.
BLTPRO: number of processor that did the Block
Transfer.
BLTBMK: bit table of processors that had trouble in
Block Transfer.
BLTDID: number of processor whose address space last
transfer was to or from.
BLTPOK: PID level for Block Transfer to poke when it's
done.
BLTSTY: source core type for transfer.
BLTSPM: source bit table of processors.
BLTDTY: destination core type for transfer.
BLTDPI: destination bit table for processors.
BLTDPM: destination bit table for this piece of
transfer.
BLTBUF: 36 word buffer for doing Block Transfers.
RLDDEV: current device to reload from.
RLDINI: flag to signal initialization of reload
parameters.
MYPROC: my processor's coupler number.
STIME: local copy of Stage system time.
LMAP: local table of map settings by type.
PRTIME: time when next to try a processor restart.
BLTMYM: simulated maps for Block Transfer.
COUTAB: table of coupler addresses for processors.
PROCEX: bit table of processors in system.
PROCBT: my processor bit.
PROCNO: my processor number (index to COUTAB).
AMPROC: table of coupler passwords by processor.
USEBUS: bit table of busses in system.
BBCLOK: lock on backwards bus coupling privelege.

I/O Performed
None.

5/78 Page 39

5.1.13 Quit Handler

Function
Services Non-existent Memory interrupts, also know as
QUITs. Each QUIT is retried once in case it was
intermittent. If it is solid, check for a "password",
which is a special form of the NOP instruction, at the
location following the instruction that got the QUIT,
and transfer control to its target branch address if it
is there. Otherwise, enter the unexpected QUIT
handler, which will restart the system in Stage.

Control Structure
Obtains control via the processor QUIT vector in low
address of local memory. Returns to main program or
enters unexpected QUIT handler if the QUIT is solid and
there is no password. Instruction fetch QUITs and
QUITs within the Quit Handler are always treated as
unexpected.

En try Po in ts
QSO if even processor (key O); Q70 if odd (key 1).

External Calls
QSUBR, QS UB 0
QUIT, QUIT
Handler.

Initialization

to set up parameters
on instruction fetch,

during unexpected
or QUIT in Quit

Local memory interrupt vectors are initialized to
dispatch to QSO and Q70.
UQUIT is initialized to dispatch to SYSUQ, the system
unexpected Quit Handler.

Cleanup
Unexpected QUITs, QUITs on instruction fetches, and
QUITS in the Quit Handler all cause system restarts via
the unexpected QUIT routine.

Data Structures
Local Data

QX: register save area.
QUITFL: flag that is normally set only while inside
Quit Handler.
QUITAD: address of most recent QUIT.
QUITPC: instruction address at most recent QUIT.
QUITST: program status at most recent QUIT.

5/78 Page 40

QUITTM: real time clock reading at most recent QUIT.

Shared Data
QUITV: address of QUIT vector used (to distinguish
main, alternate processors on a processor bus).
LCLOCK: pointer to Stage real time clock to use.
QUITRT: count of QUIT retries; counts up each retry and
down each solid QUIT.
UQUIT: pointer to unexpected QUIT routine for system.

I/~ Performed
None.

5/78 Page 41

5.1.14 Illegal Instruction Interrupt Handler

Function
Processes interrupt caused by executing illegal
instruction codes. Certain illegal instructions are
used by the system to signal particular error
conditions; these are called traps. Some traps merely
save their number; others cause production of a
snapshot of a portion of local memory with important
parameters of the machine state at the time of the
trap. The special traps OFFFFl and OFADEl have special
effects when in debugging mode; the former causes the
processor to enter the simulated halt state and the
latter does this plus setting the common password to
cause all processors to enter this state.

Control Structure
Decide whether this is a trap, snapshot, or true
illegal instruction. F9r traps and snapshots, save the
required data. For true illegal instructions, restart
the Stage system.

Entry Points
ILLPO for even
processor.

External Calls

(key 0) , ILLPl for odd

SA VM AP t o s av e map s in the s n a p sh o t a r ea •

(key

ILLCNT to save trap number in common memory table.
WST to restart Stage system.

Initialization

1)

The local memory interrupt vectors
instructions are initialized to dispatch to
ILLPl.

for illegal
ILLPO and

Data Structures
Local Data

ULIIOP: last illegal instruction, ignoring traps.

Shared Data
IX: register save area.
IRET: place to set up return vector from interrupt.
MAPVAR: variables page map.
DHALT: password for halting all processors (if in
debugging mode).
BLTMYC: simulated control register for debugging.

5/78 Page 42

SNAPBG: beginning of area to copy into snapshot.
SNAP: snapshot buffer in local memory.
TYPE4K: common memory type word.
LOCIPT: current pointer into local trap table.
LOCILL: local trap table.

I/O Performed
None.

5/78 Page 43

S.1.15 Level l Interrupt Handler

Function
Process level 1 external interrupts. If a remote power
failure, stop buddy processor, wait a while for power
to go away, then restart this processor and its buddy
in Stage. If an attention interrupt following a reset,
set the simulated halt state for debugging and .restart
Stage. Otherwise trap and restart Stage.

Control Structure
Started via local interrupt vector for level 1
interrupt. Cause of the interrupt is distinguished ~y
a device code stored in the interrupt vector.

Entry Points
Entered at LEVELl. Entered from Level 4 Handler at
HALTUS to perform restart function for this processor
and its buddy.

External Calls
WST to restart in Stage system.
DSTAND to restart with simulated halt condition for
debugging•

Data Structures
Local Data

None.

Shared Data
IX: register save area.

I/O Performed
None.

5/78 Page 44

5.1.16 Level 4 Interrupt Handler

Function
1) Process Level 4 interrupts.
2) For local power fail interrupts, call HALTUS (see Level

1 Handler).
3) For local power restore ~nterrupts, restart the system

i.n Stage.
4) For sixty-cycle interrupts ("jiffies"), check if the

system real time clock is operating properly; if not,
find a new one and restart Stage. Else, che~k if the
program is hung up by examining local time; if not,
return to main program. If it is hung on a locking
instruction, unlock the indicated lock. Otherwise the
program is in a loop, and the system is restarted in
Stage.

5) Merely trap on other level 4 interrupts and return to
program.

Entry Points
Entered at SJIF.

External Calls
2) HALTUS to stop this processor and its buddy.

3,4) WST to restart Stage
4) FNDCLK to start using a new real time clock.

RCLOCK to read the system real time clock.

Initialization
Level 4 interrupt vector is initialized to dispatch to
SJIF.

Cleanup
Hung locks are unlocked.
restart in Stage.

Data Structures
Local Data

Abnormal conditions cause a

4) JTIME: reading of real time clock at previous jiffy
interrupt.
UJIFFY: program counter at latest program in a loop
condition.

Shared Data
1) IX: register save area.
4) LTIME: time to run Stage next.

IRET: place to build return vector.

5 /7 8

I/O Performed
None.

Page 4 5

5/78 Page 46

5.2 IMP System Central Dispatch

Function
Dispatch to routines needing service according to their
PID levels.

Control Structure
At entry check maps for their default values. If it is
time to run Stage, transfer control to the Stage
dispatcher. If running in a processor with an operator
console, maintain the light words. If in debugging
mode, check for system halts and return to Stage ,if
halted. Otherwise, poll the system PIDs in order,
dispatching through the BASE dispatch table by PID
level.

Entry Points
LOOP is the nominal entry point (return from most
strips).
LOOPM to reset map 0 before checking.
LOOPMV to set all maps properly and not check.
BAD is dispatch from BASE for an unexpected PID.
NOPIDS is dispatch from simulated last PID (to end the
polling of real system PIDs).

External Calls
SJ6 is the return point to the Stage dispatcher.
BASE contains dispatches for each PID level in use in
the system.

Initial iza ti on
None.

Cleanup
None.

Data Structures
Local Data

OLDP: saved copy of last value read from PID.

Shared Data
BASE: the dispatch table.
MAPCOD: proper map setting for map o.
SLFPTR, FMAP2, SLFLK page self-pointers for
map-checking.
MAPVAR, MAPV2: proper settings for maps 1-3.
LCLOCK: pointer to clock to time Stage.

5/78 Page 47

LTIME: next time Stage should run.
CONSOL: pointer to processor console (operator panel),
if any.
WATMl, WATCH!, WATM2, WATCH2: map settings and light
pointers for console lights.
DEBUGM: debugging mode flag.
PROCBT: my processor bit.
SNAP: snapshot save area.
DHALT: location to check for halt password to halt all
processors.
PIDGET: table of PIDs to poll.
WATCHS: light word; each processor complements its bit
as it enters Stage, nominally displayed in ADDRESS
lights in console.
IDLEC: count of number of times all PIDs were empty.

1/0 Performed
Each time a processor references a PID, the highest
level in that PID which is set is returned, and that
level is cleared. PID levels may correspond either to
hardware devices needing service or software processes
that should be run. For processors having an attached
operator console, the ADDRESS and DATA lights are made
to display the values requested via the light pointer
words.

5/78 Page 48

5.3 Modem to IMP

Function
1)
2)
3)

Process input
Verify packet
Place routing
routing.

PIDs and initiate new modem inputs.
checksums and lengths.
packets on routing input queue and poke

4) Pass data packets to Task and poke it.
5) Free acknowledged

acks.
packets and poke modem output to send

6) Place packet core buffers on the packet core queue and
poke the packet core fake host JAM side.

Control Structure
All modem inputs are handled by reentrant code.
Variables for each modem are obtained from the proper
parameter block. The hardware is first checked and, if
idle, a new buffer is put up for input. Otherwise, a
queue of input buffers previously completed is polled
and processed in order.

Entry Points
Each input PID dispatches to M2I.

External Calls
1) FREGET to get a new buffer for input after next

(double-buffered).
FLUSHB to free buffers with hardware input errors.

2) CKQPUT to queue a buffer to send to the NCC diagnostic
terminal.
WHEORB to modify buffer use bits.
DEQUE to get packets off the modem input queue.
SUBCHN the shared software checksumming subtract chain.

4) TSKPUT to enqueue buffers for Task, and poke it.
5) UNPACK to access buffer (if tracing).

TRCDUN to copy trace data to trace buffer.

Initialization
The first input after a reset and initialization is
discarded by reading into the shared bit sink JUNK.

Cleanup
When a line is declared down by Line State Timeout,
input is stopped via a reset and input buffers freed,
if any.

5/78 Page 49

Data Structures
Local Data

4) TEMP3: input subchannel octet and bit for Task.
5) TEMP2: bit table of ACKs to do.

Shared Data
1) MBLKS: the table of parameter blocks by PID.

IOBLOC: the hardware interface address for this modem.
M2ILOC: lock on modem input hardware.
NXTBF: pre-allocated buffer to read into.
POINT: high-order buffer address bits.
FILLING: input buffer currently in use.
LMIQ: lock on queue of completed input buffers.
SMIQ, EMIQ: queue of completed input buffers.
JUNK: address of junk buffer.
CHAN: buffer word used for input endpointer.

2) LOCKM: lock on modem software variables.
BUFE: end of data in buffer.
INCH: which modem this buffer is from.
CKERRS: count of hardware checksum errors.
MLOOP: modem loop state.
MNOBUF: count of missed inputs.
CLOCK: pointer to current system real-time clock.
IT: input time this packet (for trace).

3) MINE: my IMP number.
LENDR, LENDT: end bit values, for detecting looped
lines.
LSTATE: lint up/down state.
MODEM: index to neighbor table.
M2NGHB: modem neighbor table.
NEIGH: neighbor this modem.
SIHY: flag to send I-heard-you.
LOCKR: lock on routing parameters.
ERUTQ: routing input queue endpointer.
THD: pointer to line to leader for time
synchronization.
SYNC: local copy of network time for statistics.
LAC: line alive count, drives LSTATE in DEDL.

4) INFREE: input channels for which we have no input (bit
table).
RSEX: state of input subchannels (bit table).

5) MAXCHN: number of logical subchannels this line.
TSEX: state of output subchannels (bit table).
SSENTQ, ESENTQ: queue of packets awaiting
acknowledgements.
CHNBSY: output channels that are assigned (bit table).
SLOTS: count of busy output channels.

5/78

THRUPT: modem output throughput.
ITRACE: trace on/off flag.
SNDING: current output packet.

Page 50

LATER: flag to flush current output packet when done
sending.

6) CORIOB, LOCKF: lock on packet core fake host.
EFHCQ: packet core input queue endpointer.
BHPID: PID for packet core fake host process.

I/O Performed
Input of data packet into a packet buffer; junk buffer
used if first input after a reset or no free buffer
available. Input buffers are preallocated to achieve
double-buffering.

5/78 Page 51

5.4 IMP to Modem

Function
1) Process output modem PIDs.
2) Free the packet last sent if acknowledged while being

sent.
3) Send packet core messages, reload demands.
4) Send routing messages and nulls after routing.
5) Retransmit packets unacknowledged for MRTIME (* 100

microseconds). Verify their checksums.
6) Send new priority packet if channel available.
7) Send new regular packet if channel available.
8) Send null packet of acknowledgements.

Control Structure
The routine checks the modem output state. If it is
still busy, it ignores the PID and dismisses. If not,
it performs functions 1 and 2. It then attempts to
perform functions 3 through 8 as required, in that
order. If none are required, the output is marked
inactive by clearing SNDING.

Entry Points
The IMP to modem PIDs dispatch to I2M, which loads
appropriate parameter block address from MBLKS.
modems share reentrant code. I2M is poked by
timeout every 25.6 milliseconds.

External Calls
2) FLUSH to free the buffer.
3) WHEORM to adjust use bits for core packet.
4) UNPACK to access routing message packet.
5) DEQUE to get next packet awaiting retransmission.

SUBCHN to checksum retransmitted packet.

the
All

fast

WHEORB to adjust buffer use bits if bad checksums.
CKQPUT to send retransmissions with bad checksums to
NCC diagnostic terminal.

6-7) DEQUER to get next priority or regular packet.

Initialization
None.

Cleanup
When a line enters its "hold-down" line state, no
outputs are initiated for a specified time, while
queues are cleared and pending packets rerouted onto
other lines.

5/78 Page 52

Data Structures
Local Data

None.

Shared Data
1) MBLKS to access proper parameter block.

IOBLOC: address of hardware status registers.
I2MLOC: modem output hardware lock.
LOCKM: modem software lock.
RUTTIM, RUTRAT: line speed timing variables.
CLOCK: pointer to active system real-time clock.

2) SNDING: packet last sent, if any.
LATER: flag to flush previously sent packet.
ESENTQ: end pointer of queue of packets awaiting
acknowledgement or retransmission.
LOCKRO: lock on routing output buffer queue.
CHAN: buffer word used as routing output use count.
MAXCHN: number of logical sub~hannels on this line.
SNULL: flag to send nulls by octet (16 octets for 128
channels).

3) SROUTE: flag to send routing or reload packet.
SBLK: pointer to reload packet to send.

4) LSTATE: line state for this line.
RUTOBF: present routing output buffer to use.

5) SSENTQ: head of queue of packets awaiting
acknowledgement or retransimssion.
ST: time this packet was sent.
BUFE: length of packet.
STIMER: retransmission count for this packet.

6) SPRIQ: head of priority queue.
7) SREGQ: head of regular queue.

6-7) CHNBSY: bit table of busy output channels.
TSEX: output odd/even sex by channel (bit table).

3-7) POINT: high-order memory address of packet.
8) SIHY: flag to send I-heard-you with null.

SYNC: network time locally.
MINE: my IMP number.
NULLHD: buffer for null, one dedicated to each modem.

4-8) RSEX: receive odd/even bits, sent as scknowledgements
to other end of line.
LENDT: proper end bit ("I am high IMP").

I/O Performed
3) Output of packet core message from specified buffer.
4) Output of routing from buffer from RUTOBF.

5-7) Output from specified data buffer.
8) Output of null from fixed buffer for this modem.

5/78 Page 53

5.5 Host to IMP

Function
1) Process Host input PID
2) For control message, take appropriate action and

initiate input.
3) For regular message leader, begin processing of message

and initiate first packet input.
4) For input of first packet, if destination has not

allocated space, initiate request and input of second
packet (if any).

5) For first packet, if destination has allocated space,
process packet and initiate input of second packet.

6) For second through final packet, process the packet and
initiate input of subsequent packet.

7) For all packets, check length, generate software
checksum, and pass them to Task.

Control Structure
Function 1 is performed, then one of the remaining
functions is resumed from the last coroutine exit.

Entry Points
All Host input PIDs come to HI, which picks up the
appropriate parameter block address from MBLKS.
Coroutine control returns via the parameter block entry
HILO.

External Calls
1) HILEDI, HILEDM to read the next leader.

HINOPT to check if a NOP.
HIERC to set up IMP to Host error message.
LEDPO to queue error message.
HINBWT to await I/O completion.
FLUSH to free input buffers.
HIWM, HIWFE to exit coroutine.
HITTGO to initialize wait timer for hardware.
TRNPUT to allocate a transaction block for next leader
input.

3) HINBUF
4) FNDHAC

MESGET

to initiate next packet input.
to get Host access words for raw packets.
to get a message number on an open end-to-end

connection.
TALLYG to get an 8-packet allocate.

4-7) HIPKTR, HIPKT, HISET, HIPKTE to set up packet header
and checksum it.
HI2TSV, HI2TSK to give packet to Task.

5 /7 8 Page 54

HOTHRU to count Host input throughput.

Initialization
HILO is initialized to HIGO.
Hosts is always discarded.

Cleanup

The first input from real

The above initial state is entered and all resources
freed whenever a hardware error is detected, when the
Host ready line first comes up, or an input (subsequent
to a message leader) takes more than 15 seconds.

Data Structures
Local Data

TEMPl, TEMP2: used as arguments and temporary returns
for various subroutines.
HISAV7, HTEMP7: save returns for routines that can
sleep.
HILO: main coroutine sleep location.
HISP: current buffer in progress.
HIBF: next buffer to process (double-buffered).
HIPKTH: builds PKTH word for each packet.
HIHAND: remembers handling type for packet.
HIENDI: remembers hardware endpointer for packet in
HISP.
HTEMP: saves certain subroutine parameters.
HIOLDB: points to current transmit message (TM) block.

Shared Data
DEADSC: Host dead subcodes (from Host going down
message).
TRMIDL: message-id field in leader in transaction
block.
IOBLOC: pointer to hardware for this Host.
JUNK: shared bit-sink to throw away input.
FAKE: flag for Fake, Back, or VDH Host.
FAKESI: input pointer for Fake "hardware".
BHPID: Fake Host JAM PID.
HIHD: Host Status.
OPHGO: flag for Host state change.
MYIMP: local IMP coming up counter.
HIBITS: Host status bits; communicated to Task.
HITRAN: pointer to current transaction block.
HOMODE: Host new/old leader format flag.
TRNETL: beginning of leader area in transaction block.
TRTYPL: leader type word in transaction block.

5/78 Page 55

TRHSTL: handling type and destination Host in leader,
replaced after MESGET by message block (TM) number and
message number.
TRDSTL: destination IMP in leader.
TRNTIM: transaction block timeout byte.
TRSTAT: transaction block status.
HIPAD: shared Host padding bit sink.
RUT: table of best delay routes by IMP.
!STATE: IMP state from routing.
HACCOM: table of Host access - communicate words.
TRLUSE: transaction block local use number for TM
block.
TRPACK: transaction block packet pointer.
HTPMTN: Host input throughput counters.
TRDEDS: reason for destination dead in transaction
block.

I/O Performed
Initiates all inputs from Hosts. Leaders are read into
transaction blocks and data into packet buffers.

5/78 Page 56

5.6 IMP to Host

Fune tion
1) Process Host output PIDs.
2) Reset Host output hardware if error or timed out.
3) If just completed sending a message, mark RM block to

send rfnm or rfnm with allocate.
4) For each packet of a message, trace it if necessary and

flush it.
5) Send next control message if any.
6) Send next priority message unless next regular message

is too old.
7) Send next regular message if any.

Control Structure
Fune t ions 1-4 are
occurs if necessary.
in order as needed.

performed each time the output PID
Then functions 5-7 are performed

Entry Points
All IMP to Host PIDs dispatch to IH, which sets up the
appropriate parameter block address and resumes the
coroutine through IHLO. All IMP to Host routines are
performed by shared, reentrant code. In addition to
the hardware (simulated for Fake Hosts), IMP to Host is
poked by Host to IMP, Task, Host timeout, and itself.

External Calls
1) IHDB, IHDBA are the Imp to Host sleep routines, called

from various points (IMP to Host runs as a coroutine).
2) LEDGET to get the next control message.

IHDUMP to place unprocessed messages on the discard
Host output queue when resetting.

3) HOTHRU to compute IMP to Host throughput.
4) DEQUE to take packets off output queues.

TRCDUN to trace each packet.
FLUSHB to free each buffer.

5) IHLS to send a control message.
6-7) IHLSN to send message leader.

UNPACK, UNPCKC to access buffers.

Initialization
IHLO is initialized to dispatch to IHIDLE.
comes up, IMP to Host first sends 4
"Interface was reset" control message.

When a Host
NOPs and a

5/7 8 Page 57

Cleanup
If any output takes more than 30 seconds to complete,
all pending control messages are freed, all messages on
the Host's regular and priority output queues are
discarded and the corresponding RM states marked
"dead", the Host's ready line is flapped, and the
initialization state (above) is entered. The Host is
declared tardy or down, depending on whether its ready
line is asserted or not.

Data Structures
Local Data

3) TEMPl: local argument to HOTHRU.

Shared Data
1) MBLKS: table of parameter blocks by PID.

IHLOC: Host output hardware lock.
IOBLOC: ost interface address.
IHGOIN: H t timeout/reset flag.
LOCKIH: Hos output software lock.
IHLO: dispat h address.
IHWQ: pointer to current queue to send message from
(regular or pr ority).

2) HIHD: Host state.
OPHGO: flag for Host state change.
FAKE: flag for Fake, VDH Hosts.
SPECAL: flag for initialization control messages.

3) HTPMFN: Host throughput counters.
IHLEDR: IMP to Host leader buffer.
BUFB: pointer to RM block.
RMLOCK: lock on RM block.
RMMESS: RM message number.
RSTATE, RMTYPE: RM message state bits.
HOTPID: IMP to Host PID.

4) !TRACE: global trace flag.
CLOCK: system real-time clock.
IHLSTP: last-packet flag.

5) IHTT: Host output timeout counter.
HOMODE: Host new/old leader mode flag.
HIHOST: Host number.
HIMINE: Host's IMP number.

6-7) CHAN: buffer age word.
SHQ, SHPQ: Host regular, priority queues.
TIME: global time in 25.6 millisecond ticks.
RMCTL: RM block handling type.
RMHOST: RM block remote Host.
POINT: buffer high-order address.

5/78

BUFE: end of buffer.
FAKESO: Fake Host output pointer.
HBPID: Fake IMP to Host PID.

Page 58

I/O Performed
2) Host interface output side is reset.

5-8) Initiate output of control and data messages. Control
messages are sent from transaction blocks, message
leaders from a dedicated buffer in the Host parameter
block, and data from packet buffers.

5/78 Page 59

5.7 Task

Function
1) Process Task PIDs and service the Task queue.
2) For input for Host on this IMP, pass packet to Task For

Us, and.ACK its source.
3) For store-and-foreward packets, select output line.
4) If space is available and an output modem subchannel is

free, queue the packet on modem priority or regular
queue, poke modem output, and ACK source of packet.

5) If the packet is a packet from store/forward,
rerouting, or a reply, and space is available but the
output modem subchannels are full, queue the packet on
the auxilliary Task queue to retry later.

6) If space is not available, NACK its source, and poke
it.

Control Structure
Task is entered once for each packet on its input
queue. If its queue is still empty after removing the
first packet, it pokes itself immediately, permitting
multiple processors to work concurrently on separate
packets.

Entry Points
Entered at TSK. Poked by Host to IMP, Modem to IMP,
Back Hosts, and Fast and Slow Timeout, in addition to
itself.

External Calls
1) DEQUE to get packet from Task queue.

FLUSHB to discard packets with discard bit (to clear
input subchannel).

2) FORUS is entered directly (next section).
4) CMOVE to allocate buffer space.

TRYMl to poke output and input modem routines.
WHEORB to adjust use bits for packet.

Initialization
None.

Cleanup
Flush packets bound for dead IMPs.

Data Structures
Local Data

5/78

1) TSKCHN: copy of CHAN word for
subchannel octet and bit; Host:

Shared Data
1) LTQ: lock on Task queue.

STQ, ETQ: Task queue.

buffer
0) •

(modem:

Page 60

input

INCH: address of parameter block for packet source.
2) !STATE: table of IMP states from routing.

RUT: table of best-delay paths to each IMP.
DELTIM: delay hold-down routing table.

4) LSTATE: output line state.
SLOTS: count of available logical channels on output
line.
LOCKM: lock on output modem software variables.
SREGQ, SPRIQ, EREGQ, EPRIQ: modem regular and priority
output queues.
CLOCK: system real-time clock.
QT: time this buffer was queu•d for output.

5) ERQ: auxilliary Task queue endpointer.
3-6) INFREE: bit table of free Modem to IMP subchannels.

RSEX: bit table of odd/even state by subchannel.
MITHRU: Modem to IMP throughput (packets).
SNULL: bit-coded (by octet) flag to ~d null for
acknowledgements.
HINPID: Host to IMP PID to poke.
LOCKHI: lock on Host to IMP parameters.
HIBITS: Host to IMP state bits for communicating with
Task.
HIT RAN: pointer to current Host to IMP transaction
block.
TRSTAT: state bits for transaction block.

I/O Performed
None.

5/78 Page 61

5.7.1 Task For Us

Function
1) Set up local variables.
2) Check for raw packets and process them.
3) Check message block. If it mismatches, check for and

process get-a-block, incomplete query, reset and reset
reply messages. Ignore other block error packets.

4) Check status of local Host, and set flags if down or
access failure.

5) Check message number and set flags for out of range,
next to go, in next 8, and in previous 8.

6) For eight-packet message packets, find the reassembly
block for the message and add this packet if not a
duplicate. Ignore if reply message state indicates
message completed already.

7) For single-packet messages, find the reassembly block
for this message and mark it complete.

8) For eight-packet requests, mark the reply state table
to show the request received.

9) For single-packet requests that are the next to go,
mark the reply state .and queue them directly on the
output Host queue.

10) For single-packet requess that are not the next to go,
find a free reassembly block and mark it complete (like
7).

11) In either 9 or 10, if there is insufficient reassembly
space, mark the reply state table to show a
single-packet request received.

12) For incomplete message packets, free any associated
reassembly resources and mark reply table.

13) For givebacks, find and free a reassembly block and
mark the reply table.

14) For incomplete queries, if message number out of range
send an out-of-range reply; else if in last 8 messages
and reply state is idle, send correct duplicate reply;
else if in last 8 and not idle state, send
out-of-range; else if in current message window
perform cleanup of reassembly resources and mark reply
state for incomplete reply.

15) In each of functions 6-14, if marking reply state bits
or completing a message, search for completed messages
to queue for the IMP to Host routine, and poke it if
any.

16) For rfnm messages, mark the transmit message number
complete.

5/78 Page 62

17) For rfnm with allocate messages, if in reply to a
single-packet request, pick up the saved copy of the
message and send it, else (was 8-packet request)
increment the allocate count in the TM block.

18) For dead replies, set the stop bit.
19) For incomplete replies, adjust the condition codes in

the transaction block.
20) For each of 16-19, if the reply was for a regular

message, queue the transaction block to send a reply to
the originating Host and poke its IMP to Host routine.

21) For out-of-range replies, send a reset message right
away.

22) For got-a-block messages, modify TM block state
appropriately to open conversation or send destination
de ad to Host •

23) For reset request message, set age of TM block to
maximum to signal the request .•

24) For reset message, mark RM block idle and send reset
reply right away.

25) For reset reply message, mark the TM block id le.

Control Structure
Task For Us is structured as some common setups
(functions 1-5), followed by a dispatch based on the
message-type for functions 6-25. There are many
subroutines for shared functions after the dispatch.

Entry Points
Entered directly from Task at FORUS.

External Calls
HOSTNM, HOSTNO to set up local Host status and access
control.
RALLYP to modify reply state bits.
REGCHK, REGCH2 to check state of reply
transmissions (5-15).
FIXNRE, FIXNAE to adjust reassembly and
counts.

bits for

allocate

REPCHK to check transmit message state for replies
(16-2 1).
RFLEDP to mark a transaction block for a reply to the
Host.
LEDPC to either free or queue a transaction
reply to a Host, depending on whether the
REPFIX to mark a transmit message complete
block.

block for a
Host is up.
in the TM

5/78 Page 63

REASF to free a reassembly block and any buffers it
·contains.
REASGT to find a specific reassembly block (by message
number).
REASFl, REASF8 to find allocated reassembly blocks for
1, 8 packet messages respectively.
FTRNGT to find a transaction block to go with a reply.
CMOVE to allocate buffer space for immediate replies,
raw packets, or one-packet requests.
TSKPUT to requeue immediate replies for Task.
WHEORB to modify use bits for buffers for Hosts.
REASAL to allocate a free reassembly block for out of
order one-packet requests.
UNPACK, UNPCKC to access packets of a message to give
to Host.
FLUSH to free packets in a reassembly block.

Initialization
None.

Cleanup
Reset TM and RM blocks are marked free. Transaction
blocks for outstanding messages from Hosts that have
gone down are freed. Reassembly blocks for incomplete
messages are freed, together with any packets they
contain.

Data Structures
Local Data

TSKBUF: address of buffer in process.
TSKB TS:
TSKHST:

state bits for Host state, message range, etc.
pointer to local Host parameters for this

message.
RALSHF: amount for RALLYP to shift bits
RMTYPE.
REPBIT: bit for TM message for replies.

for RSTATE,

TEMPI, TEMP2: local returns used in various subroutines
and main line.

Shared Data
RMBLKS: reply message (RM) blocks, including:

RMLOCK: lock on the block.
RMIMP: foreign IMP number.
RMHOST: foreign and local Host numbers.
RMCTL: handling type, foreign use number, and foreign
block number (TM).
RMMESS: message number, local use number, and age.

5/78 Page 64

RSTATE: reply state bits for 8 messages in window.
RMTYPE: auxilliary reply state bits (with RSTATE).
RMLHN: index of local Host parameter block in H2PBLK.

TMBLKS: transmit message (TM) blocks, including:
TMLOCK: lock on the block.
TMIMP: foreign IMP number.
TMHOST: foreign and local Host numbers.
TMCTL: handling type, foreign use number, and foreign
block number (RM).
TMMESS: message number, local use number, and age.
TSTATE: reset and init bits, allocate count, and
message state bits.
TMSTP: stop bit and allocate timer for givebacks.
TMLHN: index of local Host parameter block.

MESSTK: pool of reassembly blocks, each containing:
REASLK: lock on the block.
RSF: number of packets so far.
REASST: reassembly block st~te.
RID: receive message (RM) block number.
REMESS: receive message number.
RUSE: RM block use number.
RMAX: highest packet number to get.
RAL: number allocated in this block.
REASQ, REASQE: queue of message packets.
RSFBT: count of total words of message so far.

TRNBLK: pool of transaction blocks, each containing:
TRSTAT: transaction block state.
TRTYPL: reply type to Host.
TRHSTL: message number and TM block for this
transaction block.
TRDEDS: dead subcodes for control message to Host.

DEADSC: Host dead status codes.
HIRD: Host state.
HINPID: Host to IMP PID.
INCH: packet source, set to 0 for immediate replies.
CHAN: set to non-zero for immediate replies (can't
refuse).
QT: queue time for trace.
BUFB: pointer from buffer to RM block.
CNTRS: buffer counters for reassembly and background.
WHERE: buffer use bits and count index.
NAL: allocate count.
EHPQ,EHQ: Host priority, regular output queues.
LOCKIH: IMP to Host software lock.
HOTPID: IMP to Host PID.
MYIMP: IMP coming up counter.
RUT: best delay route by IMP.

5/78 Page 65

MINE: my IMP number.
HACSPC, HACCOM, HACMEM: Host access control tables.
H2PBLK: table of Host parameter blocks.
HOMODE: Host new/old leader format mode switch.

I/O performed
None.

5/78 Page 66

5.7.2 Back Hosts

Function
(named from "background") perform

various functions related to end to end message
processing. When control messages require reserving
resources, or timing out idle resources, Task itself
can't perform the function. The Back Hosts were
created for these resource-reserving and freeing

The Back Hosts

functions.

Control Structure
Each Back Host has a parameter block, which is very
similar to the beginning of a real Host parameter
block. Indeed, the Back Hosts share quite a bit of
code with the Host to IMP process for real Hosts. This
is because Back Hosts can produce packets to give to
Task just as real Hosts can.

Entry Points
All Back Host PIDs dispatch to BACK,
proper parameter block from MBLKS and
proper point in the Back Host. Each
a coroutine.

which obtains the
returns to the

Back Host runs as

External Calls
See individual Back Host descriptions following.

Initalization
Each Back Host dispatch is initialized to
its loop.

Cleanup
See individual descriptions.

Data Structures
Local Data

None.

Shared Data
LOCKHI: lock on each Back Host.
BMESSB: index of current message block.
HITT: Back Host timer.

I/O Performed
None.

the top of

5/78 Page 67

5.7.2.1 Back Host 5

Function
Send RFNMs, allocates, destination dead s, and
incomplete replies.

Control Sturcture
Scans all receive message (RM) blocks, starting one
after the last block serviced (for fairness). For a
block needing a reply sent, obtain the necessary
resources (allocate, reassembly block, and buffer) and
send the reply. If unable to obtain allocation
resources after one half second, proceed to the next RM
block (for piggyback attempts, send a RFNM with no
allocate).

Entry Points
Coroutine, dispatch is through HILO.

External Calls
HIWM to dismiss coroutine.
BSET to set up common fields of message in parameter
block.
BGETA to try to get allocation and a reassembly block.
REASAL to find a free reassembly block.
BSEND to obtain a buffer, construct the message, and
give it to Task.

Initialization
HILO is initialized to dispatch to BACKS.

Cleanup
None.

Data Structures
Local Data

BMESSB: current RM block being tested.
BPKTH: PKTH word for control message.
BSEQH: SEQH word for control message.

Shared Data
RMLOCK: RM block lock.
RSTATE: RM block state, 2 bits per message.
RMIMP: RM block remote IMP number.
RMTYPE: RM block substate, 2 bits per message.
RMMESS: RM block message number, use number, and age.
CNTRS, NRE: reassembly count.

5/78 Page 68

NAL: allocate count.
NF: number of free buffers MINF: number of guaranteed
buffers total (lower limit for NF).
RAL: reassembly block allocate count.
RID: reassembly block RM block pointer.
RUSE: reassembly block RM use number.
RSF: reassembly block count of buffers received.
REASST: reassembly block state.
REASLK: reassembly block lock.

I/O Performed
None.

5/78 Page 69

5.7.2.2 Back Host 6

Function
Send
(TM)

incomplete query messages for transmit message
blocks whose incomplete timers have reached zero.

Control Structure
Each time it is entered, Back Host 6 checks all the TM
blocks for any whose incomplete timers have reached
zero. If one is found, Back Host 6 marks the
corresponding transaction block for the oldest
outstanding message, gets a buffer and sends an
incomplete query message for that message.

Entry Points
/

Coroutine, entered from BACK via HILO.

External Calls
HIPOK to poke itself and dismiss.
HIWM to sleep until the next 25.6 ms wakeup from Back
Host Timeout.
BFIXT to set up the common message fields in the
parameter block.
BSEND to get a buffer, construct the control message,
and give it to Task.

Initialization
HILO is initialized to dispatch to BACK6.

Cleanup
The message timeout field for idle RM blocks, or blocks
that have no outstanding messages, is set to 1 if it
was O.

Data Structures
Local Data

BMESSB: current TM block to work on.

Shared Data
TMLOCK: lock on TM block.
TSTATE: TM block state bits.
TMIMP: TM block remote IMP number.
TMMESS: TM block message number, use number, and age.
TRNBLK: transaction block pool.
TRSTAT: transaction block state.
TRHSTL: transaction block message number and TM block.
TRMIDL: transaction block message-id and subtype.

I/O Performed
None.

Page 70

5/78 Page 71

5.7.2.3 Back Host 7

Function
1) Compute age "clips" beyond which to reset RM and TM

blocks, based on how many free blocks there are left.
2) Send resets (for TM blocks) or reset requests (for RM

blocks) for any blocks that have reached the
corresponding clip.

Contorl Structure
Each time it is awakened, Back Host 7 recomputes the
two age clips. It then scans all message blocks for
any old enough to reset. If any are found, the reset
or request is sent, and control returns to the
beginning. If no more resets or requests need to be
sent, Back Host 7 waits 640 ms before trying again
(since this is how often the blocks can be aged).

Entry Points
Coroutine, awakened via HILO from BACK.

External Calls
1) B7SUB to maintain the clip values.

HIPOK to poke itself and dismiss.
2) BFIXT, BFIXR to set up common message fields in

parameter block.
BSEND to obtain a buffer, construct the message, and
give it to Task.

Initialization
HILO is initialized to dispatch to BACK7.

Cleanup
None.

Data Structures
Local Data

BSEQH: SEQH for control message.
RCLIP: RM block age clip.

Shared Data
TCLIP: TM block age clip.
TMIMP: TM block remote IMP, or minus if free.
TSTATE: TM block state bits.
TMLOCK: lock on TM block.
TMMESS: TM block message number, use number, and age.
RMIMP: RM block remote IMP, or minus if idle.

5/78 Page 72

RMLOCK: RM block lock.
RMMESS: RM block message number, use number, and age.
HITT: Back Host software timer.

I/O Performed
None.

5/78 Page 73

5.7.2.4 Back Host 9

Function
Back Host 9 sends giveback messages for allocates that
haven't been used for 150 ms, or when more than 2 are
being held in a TM block.

Control Structure

Data

Back Host 9 scans all the TM blocks for any allocates
that should be given back to the remote IMP. If it
finds any, it obtains a transaction block, removes the
allocate from the TM block, reserves a message number,
and constructs and sends the giveback message.

Entry Points
Back Host 9 is a coroutine, awakened
HILO.

from BACK via

External Calls
HIWM to dismiss.
BFIXT to set up the common message fields from the TM
block.
TRNPUT to allocate a transaction block.
BSEND to obtain a buffer, copy in the message, and give
it to Task.

Initialization
HILO is initialized to dispatch to BACK9.

Cleanup
TSTATE is cleared for idle blocks to speed up the
search.

Structures
Local Data

BMIDH: MIDH word for control message.
BPKT H: PKTH word for message.
BSEQH: SEQH word for message.

Shared Data
TMSTP: TM block stop flag.
TMLOCK: TM block lock.
TSTATE: TM block state.
TMIMP: TM block IMP number.
TMMESS: TM block message number, use number, and age.
TCLIP: TM block age clip (from Back Host 7).
TRLUSE: transaction block use number.

5/7 8 Page 74

TRHSTL: transaction block message number and TM block.
TRSTAT, TRNTIM: transaction block state and timeout.

I I 0 Pe r f o rm e d
None.

5/78 Page 75

5.8 Routing

Function
1) Process buffers on the routing input queue.
2) Update internal routing state tables.
3) Recompute new routing output buffers as needed, and

free old ones as they fall into disuse.

Control Structure
Routing runs once for each entry of each input message.
It pokes itself if there is more to do, once it has
picked an entry to process. Modem to IMP pokes it each
time a new routing buffer is queued. Slow Timeout
pokes it once every 640 milliseconds.

Entry Points
Entered at ROUTE.

External Calls
1) DEQUE to get next routing buffer.

FLUSHB to free completed routing buffers.
UNPCKC to access current buffer.

3) FREGET to get a new buffer for next routing output
buffer.
SUBCHN to compute checksum on it.
FLUSH to free old output buffers.

Initialization
None.

Cleanup
Old routing output buffers and completed routing input
buffers are freed.

Data Structures
Local Data
1-2) RUTJOB: index of current entry to process.

RUTBUF: current input buffer in process.

Shared Data
1) SRUTQ: routing input queue head.

LOCKR: lock on routing parameters.
MINE: my IMP number.
LSTATE: line state of input modem.

2) HOPDEL: table of current hops and delay by IMP.
LOCALD: delay on input line (queue length).
RUT: current best delay route by IMP.

5 /7 8 Page 76

DELTIM: delay hold-down timer by IMP.
THSDEL, OLDDEL: tables of "deltas" for smoothing delay.
MODEM: input modem number.
HOPRUT: current best hop route.
HOPTIM: hop route holddown timer.

3) LOCKRO: lock on routing output queue.
RUTOBF: queue of routing output buffers.
RNOBUF: number of missed routing updates due to no
buffers.

1/0 Performed
None.

5/78 Page 77

S.9 Fake Hosts

Function
Fake Hosts are processes that simulate the action of
real Hosts on the IMP, in that they accept and produce
messages through simulated "1822" interfaces. Each
Fake Host consists of two processes, one for the IMP to
Host messages and one for the Host to IMP messages.
Each is a coroutine, and is assigned a PID level. The
main dispatch for the IMP to Host routines is WAITW,
and for the Host to IMP routines DOZEW.

Emtry Points
PIDs for the Fake Host IMP to Host routines come to
WAITW, which sets the Fake page map and jumps to
FWAITW. Here, the appropriate Fake Host parameter
block is loaded from MBLKS and the process resumed
through WAITT. The corresponding Host to IMP side
routine is DOZEW, which sets maps and jumps to FDOZEW.
Again the proper parameter block is accessed and
control passed through DOZET.

External Calls
None.

Initialization
See individual Fake Host descriptions.

Cleanup
None.

Data Structures
Local Data

WAITT: saved return
WAITT3: temporary
dismisses.

to coroutine (IMP to Host side).
storage for R3 over coroutine

DOZET: saved return to coroutine (Host to IMP side).
DOZET3: temporary storage for RJ.

Shared Data
MBLKS: table of parameter blocks by PID level.
LOCKF: lock on Fake Host parameters.

I/O Performed
None.

5/78 Page 78

5.9.1 TTY Fake Host to IMP

Function
Accepts characters from the teletype input process and
sends them as messages (one character per message) to
the current crosspatch destination. If a semicolon is
read, uses a separate leader and sends characters as a
single message until a second semicolon is read
(so-called "semicolon message"). If a null (code 80!,
a control-@) is typed, it is sent and the crosspatch
destination is reset to be the DDT Fake Host in the
same IMP.

Control Structure
Characters are taken from the teletype input buffer and
passed through the Fake Host interface.

Entry Points
Coroutine, entered via DOZET from DOZEW.

External Calls
T2FG to get next input character.
JAMLED to send leaders.
JAM to send each word of message (one character per
WO rd) •
JAMEND to send last word of message and padding.

Initialization
DOZET is initialized to dispatch
leader is initialized to have
destination.

Cleanup

to FTH. Crosspatch
this IMP's DDT as

Crosspatch leader is reinitialized if a null was typed.

Data Structures
Local Data

TTCR: next character to send.

Shared Data
CCLED: current crosspatch leader.
MINE: my IMP number.
CLLED: current leader for semicolon messages.

I/O Performed
None.

5/78 Page 79

5.9.2 TTY Fake IMP to Host

Function
Messages to the TTY fake (number 252 decimal) are
accepted one word at a time and characters passed eight
bits at a time to the teletype handler to be printed on
the IMP terminal. If octal print is specified, input
is interpreted as octal numbers and their values are
printed (including the leader) eight words per line.

Control Structure
Each message is read via the Fake Host interface and
passed in order to the teletype output buffer.

Entry Points
Coroutine, entered from WAITW via WAITT.

External Calls
SUCLED to read the message leader into a six-word save
area.
SUCK to read the message data one word at a time.
FHTP to pass a character to the teletype output buffer.
PRINTC to print a carriage-return linefeed combination.
WORDP to print the octal value of a message word.

Initialization
Initial dispatch is to FHT.

Cleanup
None.

Data Structures
Local Data

FHTHLD: six-word leader buffer.
FHTTl: temp for first word of message.

Shared Data
TTYWHO:
IMP.

IMP number of last TTY to crosspatch to this

FLAGOP: octal print flag.

I/O Performed
None.

5/78 Page 80

5.9.3 DDT Fake Host to IMP

Function
Accepts characters from the DDT process and sends them
to the originator of the last message to DDT from the
network. Characters are sent as s single message until
terminated by semicolons, which the DDT Fake IMP to
Host process sends through DDT. This ensures that a
multicharacter response to a singie DDT command all is
sent to the proper source.

Control Structure
Characters are read from DDT via a single-character
buffer, and passed through the Fake Host interface.

Entry Points
Coroutine, entered from DOZEW.via DOZET.

External Calls
JAMLED to send a leader.
JAM to send each character as a word of the message.
JAMEND to send the last word of zero and padding.

Initialization
DOZET is initialized to dispatch to FDH.

Cleanup
None.

Data Structures
Local Data

FDHBSY: flag
character or

Shared Data

for
not).

state of message (awaiting

D2FL: lock on character buffer from DDT.
D2FB: character buffer from DDT.

first

DDTLED: leader buffer, read in by DDT Fake IMP to Host.
BHPID: PID for this process.
D2FPOK: PID for DDT to poke when it puts a character
into the buffer.

I/O Performed
None.

5/78 Page 81

5.9.4 DDT Fake IMP to Host

Function
Reads messages from the network and passes them to DDT.
As each .message terminates, send a semicolon which,
after DDT echoes it back, will cause the DDT Fake Host
to IMP process to send a message.

Control Structure
The message leader is read into the DDT leader
Then characters of the message, and the
semicolon, are passed one at a time to DDT.

Entry Points
Coroutine, dispatch from WAITW through WAITT.

External Calls
SUCLED to read a leader.
SUCK to read each word of the message.

buffer.
final

F2DP to store a character in the buffer to DDT, and
poke DDT.

Initialization
WAITT is initialized to dispatch to FHD.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
DDTLED: DDT leader buffer.

I/O Performed
None.

5/78 Page 82

5.9.5 Packet Core Fake Host to IMP

Function
Accepts packet core packets from FHCQ that have arrived
from our neighbor IMPs and sends them as messages into
the network. Also polls block transfer for packet core
messages from us if our own packet core process is
active.

Control Structure
Checks block transfer state to see if packet core is
active in our IMP, and if so, gets a free buffer and
polls the process that constructs packet core messages
from us. Otherwise, checks the packet core queue for
any buffer from our neighbor to send. If any packet
core message is found, it is sent via JAM and JAMEND
into the network.

Entry Points
Coroutine, dispatch is through DOZET.

External Calls
FREGET to allocate a buffer for a possible packet core
message from us.
PKCOC to construct a packet core message to send.
UNPCKC to access the message buffer.
FLUSHB to free the buffer if not needed, or when sent.
DEQUE to get buffers from the modem input packet core
message queue.
JAMLIN to force modems out of line hold-down state.
JAMLED to send the message leader.
JAMEND to send the last word of message.
JAM to send each word of the message.

Initialization
DOZET is initialized to dispatch to FH2J.

Cleanup
None.

Data Structures
Local Data

FHCQBF: current buffer in process.
FHCQND: end pointer for that buffer.
FHCQLD: buffer to build message leader from packet core
message.
FHCJA6: temporary for buffer pointer while sending.

5/78 Page 83

Shared Data
BLTST: block transfer state.
BLTSTY: block transfer source type.
BLTDTY: block transfer destination type.
BLTLOK: lock on block transfer parameters.
CORIOB:. parameter block for packet core Fake Host.
BHPID: PID for our process.
BLTPOK: PID for block transfer to poke when it's done.
SFHCQ: queue of received packet core messages.
INCH: modem from which buffer came.
MODEM: number of this modem.
M2NGHB: modem neighbor table.
BUFE: buffer end pointer.
MINE: my IMP number.
PCHELP: flag destination to which to send "empty"
packet core messages from our neighbors, cleared when
used.

I/O Performed
None.

5/78 Page 84

5.9.6 Packet Core Fake IMP to Host

Function
Accepts packets which control the loading and dumping
of core areas within the IMP. When converted to
special packet core messages, they may be sent to a
specified malfunctioning neighbor IMP.

Control Structure
The message leader is read, and then the first word of
data is read. If this word is negative, the message is
processed as a packet core message, else it is for
parameter change and thus is ignored (parameter change
i s n o t imp 1 em en t e d ye t) •

Entry Points
Coroutine, dispatch is through WAITT from WAITW.

External Calls
SUCLED to read the message leader.
SUCK to read each word of the message.
FREGET to get a new buffer to construct the packet core
message.
UNPCKC to acces this buffer.
WAIT to await a free buffer if none is available.
SUBCHN to compute the checksum on the message.
JAMLIN to prevent the modem state from entering line
hold-down.
PKCIC to process packet core messages for us.
FLUSHB to free the buffer when the packet core message
is processed.

Initialization
WAITT is initialized to dispatch to FH2S.

Cleanup
None.

Data Structures
Local Data

FHCSBF: current packet core buffer.
FHCSAD: where we are in this buffer.
FHCSTM: timeout counter for sending buffer
neighbor IMP.

Shared Data
FH2LED: leader buffer area.

to a

5/78

M2NGHB: neighbor table by modem.
M2PBLK: modem parameter block table.
SBLK: modem packet core buffer to send.
SROUTE: modem send-routing flag.

Page 85

CORIOB: parameter block for packet core Fake Host.
BLTLOK: lock on block transfer parameters.
BLTST: block transfer state.
BLTSTY: block transfer source type.
BLTDTY: block transfer destination type.
HBPID: out PID value.
BLTPOK: PID for block transfer to poke when done
processing the packet core input.

I/O Performed
None.

5/78 Page 86

5.9.7 Statistics Fake Host to IMP

Function
1) Check active statistics routines to see if it is time

to send them now. If so, send the leader and do the
statistic.

2) Call one of the statistics routines:
a) GENM, the message generator.
b) TLOG, the TENEX logger routine.
c) TRBLl, the status report.
d) TRBL2, the throughput report.
e) TRBL3, the anomalies report.
f) DIAGRP, diagnostics report, containing bad packets.
g) HOLDWD, a zero length packet to hold down the

software watchdog timer.
3) Maintain a table of when each statistic was last

called.

Control Structure
All the statistics routines are multiplexed onto one
single Fake Host. Each routine is controlled by an
on/off flag in the leader buffer area and network
global time offset by the IMP number.

Entry Points
Coroutine, entered from DOZEW via DOZET.

External Calls
JAMLED to send the leader.
DOZE to sleep 25.6 miliseconds.

Initialization
All statistics are initialized to be off except TLOG
and HOLDWD which are on.

Cleanup
None.

Data Structures
Local Data

STATN: the index into tables CAWL and STBP being used
at the moment.
OLDS: when this statistic was done last.

Shared Data
MGSB, TLSB, ARSB, TRSB, SRSB, DGSB, HWSB:
buffers and parameters for each statistic.

leader

5/78 Page 87

SYNC: global time.
ANOM: IMP anomalies word.
STATF: the frequency, in 25.6 ms clock ticks, of the
statistic.
IMPOFF: the time offset of a report from this IMP.

I/O Performed
None.

5/78 Page 88

5.9.8 Discard Fake IMP to Host

Function
Discard is a message sink - all incoming
ignored. Incoming RFNM's hold off
watchdog timer; the statistics process
messages that should periodically cause
system is operating normally.

Control Structure

messages are
the software
HOLDWD sends
RFNM's if the

Leaders are read into the discard leader area for
checking for RFNM's. Messages are ignored by directly
modifying the simulated Host interface parameters.

Entry Points
Coroutine, entered from DOZEW via DOZET.

External Calls
SUCLED to read a leader or control message.
SUCK to read single words of a message.
SUCPKT to signal end of reading a buffer of data.

Initialization
DOZET is initialized to dispatch to DISCRD.

Cleanup
None.

Data Structures
Local Data

COUNTD: total buffers discarded.
DISLED: leader buffer area.

Shared Data
SOWDTM: software watchdog timer.

I/O Performed
None.

5/78 Page 89

S.10 Very Distant Host (VDH) Interface

Function
Implement the Very Distant Host interface described in
Appendix F of BBN Report 1822. This includes handling
the VDH modem interfaces, implementing the Reliable
Transmission Package described in Appendix F, and
efficiently interfacing the Reliable Transmission
Package to IMP to Host and Host to IMP while at the
same time simulating the Regular Host Interface as far
as Host to IMP and IMP to Host are concerned. The VDH
routine can be used for any Host as determined by
hardware switch settings on the associated modem card.
Modems with switches set to a number greater than the
contents of location VD.CLP are VDH modems; their Host
number is calculated by subtracting the contents of
location VD.OFF from the number in the switches.

Control Structure
VDH is a separately loadable module within the IMP.
When loaded VDH consists of four principal PID driven
coroutines, plus seven special exits from standard IMP
routines. These are described in detail below.
Basically, Modem to VDH (M2V) accepts packets from a
modem and puts them in 'slots'. VDH to Host (V2H)
takes packets in order from the slots and passes them
to the normal Host to IMP code (HI). When a packet has
been accepted by the IMP, V2H arranges for an
acknowledgement to be sent (an ACK). In the other
direction, IMP to Host (IH) passes packets to Host to
VDH (H2V) which puts them into (other) slots. VDH to
Modem (V2M) transmits (and if necessary retransmits)
packets in these slots until they are acknowledged.
The exit routines provide for proper handling of VDH
devices in configuration and checking routines, provide
timing functions (both 25ms and 625ms intervals), and
intercept Host timeouts to simulate hardware resets.

Data Structures
All VDH specific variables are contained in VDH blocks.
These blocks are allocated, one per VDH Modem, from the
dynamic allocation area. The start of each VDH block
has the format of an IO-block, as described in the
section on Fake Hosts. Following the IO-block section
are variables which determine the state of the VDH
process at any given time. These include a pointer to
the associated Host block, the hardware address of the

5/78 Page 90

modem being used, counters which record unusual events
to aid in checking out new VDH code in the Hosts, the
'slots' mentioned above, and a Host-IMP Leader work
area for each slot. (See Section 6.9 for detailed
layout.)

Each (VDH) Host block contains a pointer to its VDH
block in the variable IOBLOC. In addition, V2PBLK is
an array of pointers to all VDH blocks, organized by
internal host number, parallel to the similar H2PBLK
array of pointers to Host blocks.·

5/78 Page 91

5.10.1 VDH Line Initialization Subroutine

Fune t ion
This subroutine is called to initialize a particular
VDH interface. Initialization forces a line to go down
and stay down long enough for the other side to
recognize the problem and resynchronize. This state is
called 'holddown'. During initialization the line
state is cleared, slots are cleared, buffers returned,
and fake device ready and busy bits are cleared to
cause the HI and IR to reset as necessary. If the
modem still exists, the modem hardware is reset.

This subroutine is called under several conditions:
1) HI or IR times out (25 ms timer IHTC); simulates a host

hardware reset by entering holddown.
2) M2V recognizes the line has been looped (or unlooped);

enters holddown.
3) The 625ms timer recognizes that too few I-Heard-You

messages have received recently; enters holddown.
4) Configuration notices that the modem hardware

(including spare if any) has disappeared; releases all
resources. Configuration will report to the NCC that
the host has disappeared.

En try Point
Entered at VDINIT.

External Calls
Calls FLUSH to return outstanding buffers.

Data Structures
Local Data

None •

. Shared Data
VLS, VCHNI, VCHNO, VCBO, VCBI, VOEBI, VOEBO are all
cleared.
VLSTT is set to start holddown timing.
VACKI is cleared except for the Host/IMP bit.
STATIH and STATOR have their HBUSY and HREADY bits
cleared.

I/O Performed
The VDH modem is reset.

5/78 Page 92

5.10.2 VDH Exit Routines

Function
These exits allow Configuration to handle VDH modems
and VDH fake hosts.

1) VittH>-V extends FINDEV to recognize and accept VDH blocks
as fake IO blocks.

Vl)!..iif<'i~ 2) ~ is an exit early in CONFIG. It goes though all
VDH blocks checking that their modems still exist.
Primary modem switch settings are checked; secondary
modems are removed if non-exi~tent or equal to the
primary modem. When a primary modem disappears this
routine switches in the secondary modem if any. If
there is no secondary, we Trap and deconfigure the VDH
fake device.

c·,1 3) V·DttCHK is called from CONFIG for each physical modem.
It decides if the modem is a VDH modem; if not it
returns immediately. OtherwiBe, it checks the host
designated in the switches; if the host number is too
big the modem is ignored. If the host is up it is
checked to be sure that it really is a VDH host; if not
we Trap. The BASE and MBLKS entries are established or
checked; errors Trap. If the modem is not the primary
device it is noted as the secondary modem in the VDH
block. On the other hand, if the host is not up, this
routine allocates and initializes a VDH block, calls
BLDHST to set up a corresponding VDH Host, then starts
over to set up and check the BASE and MBLKS entries.

v ;\ 4) .lfB-G.RS is an exit fr om the BASE and MBLKS checking
routine in CONFIG. If BASE points to a VDH routine,
the corresponding MBLKS entry is located in V2PBLK and
the PID level is verified against the VDH block. The
BASE entry is reset on failures.

5) VDHF is an exit from IHTC, and occurs every 25ms. It

6)

7)

has several functions:
a) Initialize the VDH state if IH times out (checks

IHGOIN).
b) Copy the IHLOOP (host looping control) word to VLOOP

and to the modem.
c) Poke the modem to hold it active.
d) Count down packet retransmit times (STL timers in

the VDH block) and add one to VSDUP whenever the
timer goes to zero.

VDHITO is an exit from IHTC when HI times out. For VDH
devices, it calls VD I NIT to put the line into holddown.
VDHS is a normal exit routine from slow timeout
(6 2 5ms) • For each VDH host it handles the

5/78 Page 93

Hello/I-Heard-You protocol timing, and simulates the
fake host ready bit. The line can be in holddown,
down, or up, as indicated by VLS. Seeing several I-H-Y
messages brings the line up if down; missing several
brings the line into holddown; holddown times out to
down. While in holddown no Hellos are sent. Assembly
parameters control the timing and number of successes
required. When the line is up HREADY in STATIH in the
VDH block is a one, otherwise it is a zero. Both VDH
PIDs are set in part to clear possibl~ .lockups.

Entry Points
See above.

External Calls 7'5': ;, .. ·"'
VDHCON calls FT"N-DE"V to check if modem exists.
VDHCON, VDHF, VDHITO, and VDHS all call VDINIT to
initialize the line state.
VDHpHK calls INBASE to set up BASE and MBLKS, BLDBLK to
allocate a VDH block, and BLDHST to initialize the VDH
host.

Data Structures
Local Data

None.

Shared Data
VDH block variables, Host block variables.
V2PBLK and H2PBLK arrays.

1/0 Performed
Calls to VDINIT reset the modem hardware.
VDHF loops/unloops the modem and holds its watchdog
timer active.

5/78 Page 94

5.10.3 Modem to VDH Coroutine

Fune t ion
This coroutine (with V2H) is responsible
the data input side of VDH modems, and
information it receives to the other
Specifically, it:

for operating
passing the

parts of VDH.

1) Initiates a modem read operation into an IMP buffer.·
2) Waits for the operation to complete. .
3) Checks for and handles certain unusual evenes, such as

checksum errors.
4) Restarts the modem input into a new buffer area (if

possible), to provide overlap of I/O with processing.
5) Checks for a change in Loop state, and if so

initializes the line.
6) Handles the four types of VDH message: Hello,

I-Heard-You, Null, and Regular Data Packet.
a) For Hello messages, sets a bit to tell V2M to send

an I-H-Y.
b) For I-H-Y messages, sets a bit which tells VDHS that

an I-H-Y has been received.
c) Nulls are handled like regular data packets until

their ACKs have been processed, but are then
discarded.

d) Regular data packets are checked for validity, then
their ACK word is saved in VACKI (in the VDH block).
The ACKs are processed later by V2M. Duplicate
packets are discarded; there are two cases,
depending on whether or not V2H has as yet accepted
the original packet. If VDH is out of its buffer
allocation, step 4) has reused the current buffer
area, so the contents are discarded at this point.
But ordinarily, _ the packet is placed in the
appropiate 'slot' depending on its channel number,
to be processed further by V2H in turn; this ensures
the correct packet order is maintained in the
presence of garbled packets and retransmissions.

7) Maintains various counters in the VDH block:
a) Too-long packets and modem quits Trap; these plus

checksum errors (or overruns) are counted in VIMERS;
the modem is reset.

b) Too-short packets just Trap.
c) All NOPs received are counted in VRNOP.
d) All duplicates received are counted in VRDUP.
e) If a packet is lost (will need to be retransmitted)

due to M2V being out of buffer allocation, we Trap
and add one to VRUIBF.

5/78 Page 95

Control Structure
M2V is a strip which shares its PID with V2H; if M2V
finds the modem has not yet read in a packet, it passes
control to V2H. Logically, M2V is a coroutine driven
by the modem hardware and driving V2H through the
'slots' data structure.

Entry Point
M2V is entered from LOOP at the tag 'M2V' when a modem
input PID is set. M2V passes control on to V2H if the
modem input has not yet completed; this allows M2V and
V2H to share a PID level.

External Calls
FREGET to allocate a free buffer.
VDINIT to initialize on change of Loop state.
FLUSH to deallocate messages not put into 'slots'.

I/O Performed
VDH modem input is started and tested.
The modem input is reset on certain error conditions.

5/78 Page 96

5.10.4 VDH to Host-code Coroutine

Function
This coroutine passes VDH packets to HI, by copying
leader packets into transaction blocks or exchanging
buffers containing data packets for empty HI buffers.
V2H is polled every 25ms and when either M2V or HI want
it to try to do something: When HI is ready for data,
and a packet is available in the next channel's 'slot',
the ACK bit for that channel is complemented, and the
VSSACK bit is set in VSTAT to ensure that a NOP is sent
soon even if there is no other traffic to send.

1) If HI wants a leader, the packet is copied into the
transaction block supplied by HI, the HI transfer is
marked complete, and the packet is discarded.

2) If HI has supplied a real buffer, it is exchanged for
the data packet, and HI's buffer is freed. The
allocation for the data packet is transfered from M2V
to HI, making it possible for M2V to accept another
packet. Finally, the HI transfer is marked complete.

3) If HI has supplied JUNK as its buffer, the data packet
is discarded and the transfer is marked complete.

Control Structure
V2H is a strip which shares its PID with M2V; M2V gives
V2H control if M2V has nothing to do. Logically, V2H
is a dual coroutine driven by V2H through the 'slots'
data structure, and driving HI through a fake I/O
interface, simulating normal host hardware.

Entry Points
M2V transfers to the tag 'V2H'. The return is always
to LOOP.

External Calls
FLUSH to deallocate buffers.

I/O Performed
None.

5/78 Page 97

S.10.S Host-code to VDH Coroutine

Function
This coroutine accepts IH leaders and data packets and
passes them on to V2M in slots. H2V is polled every
25ms, or when either IH or V2M want it to do something.
If IH has started its (fake) I/O transfer, the VDH line
is up, and the next channel (in sequence) has its slot
free, then data is accepted by H2V. There are two
cases:
1) The data is in the IH leader send area; in this case

the leader is copied to the leader holding area for
this channel in the VDH block (VLDR).

2) The data is in a buffer; in this case the H2V buffer
ownership bit is set for the buffer.

In either case the word before the data area is
initialized to become the VDH header word. Then a
pointer to the data area is stored in the channel's
slot, the retransmission counter (STL) is cleared to
indicate the information should be transmitted by V2M,
the (fake) device complete status is set for IH, and
the current channel number is advanced.

Control Structure
H2V is a strip which shares its PID with V2M; V2M gives
V2H control if V2M has nothing to do. Logically, H2V
is a dual coroutine driven by IH through the fake I/O
interface, and driving V2M through the 'slots' data
structure.

Entry Points
V2M transfers to the tag 'H2V'.
to LOOP.

External Calls
None.

I/O Performed
None.

The return is always

5/78 Page 98

5.10.6 VDH to Modem Coroutine

Function
This coroutine is responsible for operating the data
output side of VDH modems. It takes its data from
'slots' set up by H2V, and sends Hello, I-Heard-You,
and NOP messages based on requests from other parts of
VDH. Specifically, it:

1) Waits for modem output to finish (if any).
2) Checks for and counts output hardware errors (in

VOMERS).
3) If necessary, sends an I-H-Y or Hello message.
4) Checks each channel for new ACKs; ACKs are checked for

validity (Trap on failure), and ACKed data buffers are
deallocated. Valid ACKs clear the associated channel's
slot.

5) Occupied slots represent data which may need to be
transmitted. A timer (STL) associated with each slot
controls the retransmission interval. When a packet
needs to be transmitted, V2M inserts the current ACK
bits (from VOEBI, maintained by V2H) into the VDH
header word, clears VSSACK in VSTAT, and starts the
modem hardware.

6) If no packet needs to be transmitted, the VSSACK bit is
tested to determine if an input side ACK needs to be
transmitted in a NOP message. If it does, the counter
VSNOP is advanced, and a NOP message is constructed and
sent.

Control Structure
V2M is a strip which shares its PID with H2V; if V2M
finds the modem output active, or has nothing to send,
it passes control to H2V. Logically, V2M is a
coroutine driven through the 'slots' data structure and
various control bits in VSTAT, which drives the modem
output hardware.

Entry Point
In LOOP, VDH output PIDs are dispatched to the tag
'V2M'. V2M passes control to H2V unless it starts up
an output operation.

External Calls
FLUSH to deallocate acknowledged data buffers.

I/O Performed

5/78 Page 99

VDH modem output is started, and is tested for
completion and for error conditions.

5/78 Page 100

5.11 Timeout

Function
1) Service the 25.6 ms clock PID and count the

25.6 ms units.
time in

2) For dual-RTC machines, check for correct operation of
each RTC.

3) Update in-core copies of the console lights.
4) Poke all modem output routines.
5) Poke all Fake Host processes. .
6) Maintain line state timers, initiate sending of routi~g

messages for each modem, and maintain modem interface
hardware watchdog timers and low-order buffer address
bits.

7) Poke the routines Display, Teletype, Back Host Timeout,
and Host Timeout.

8) If it is not empty, append the Task retry queue to the
Task queue and poke Task.

9) On "medium" timeout (every 5 ticks = 128 ms), maintain
Host interface hardware watchdog timers and low-order
buffer address bits.

10) Poke the slow timeout PID every 25 ticks (640 ms).

Control Structure
Timeout decides what to do based on the timer CYCLE.
For each tick, functions 1-8 are performed. Function 9
occurs every 5 ticks, and function 10 every 25.

Entry Points
Entered at TOHOT, which sets maps for the RELY page and
jumps to TOREL.

External Calls
6) JSRT does all the work
8) TSKPEP to unlock the Task lock and poke Task.
9) HPOKE does all the work.

Initialization
CYCLE is initialized to 9001! at startup and every 25
tic ks.

Cleanup
2) If the backup clock PID wakeup determines that the main

clock has stopped working, it assumes the functions of
the main clock. The F-bus clock is always the
preferred system RTC.

5/78 Page 101

Data Structures
Local Data

2) CLKLOK: lock on checking variables.
CLKlUP, CLK2UP: timeout counters for main, backup
clocks.

3) WATCHO: two-word save area for copy of console lights.

Shared Data
1) TIME: local time in 25.6 ms ticks.

SYNC: local version of network time, 25.6 ms ticks.
SYTIME: STAGE time in 25.6 ms ticks.

2) CLOCK: pointer to current system clock.
TIMEA: local time for alternate clock.

3) WATMl, WATM2: map settings for console lights pointers.
WATCHl, WATCH2: console light pointers.
CONFLG: flag to force Configuration to run before
Timeout.

4) M2PBLK: table of modem parameter blocks.
MOTPID: modem output PID.

5) IOBASE: base addresses for I/O devices.
BHPID, HBPID: Fake Host software PIDs for DOZE, WAIT.

8) SRQ, ERQ: Task retry queue.
LRQ: Task lock.
ETQ: Task queue end pointer.

9-10) CYCLE: timeout state counter.

I I 0 Pe r f o rm e d
Host and modem interface watchdog
interfaces are held off, and their
address bits maintained, by storing
into the hardware status registers.

time~s for active
low-order buffer
the proper values

5/7 8 Page 102

5.11.1 Host Timeout

Function
Performs timing functions for Host software, both IMP
to Host and Host to IMP.

Control Structure
Each time it is poked from timeout, Host timeout
initiates one pass through the Host parameter blocks.
For fairness, each pass starts with a different block.

Entry Points
Starts at IHTC. Poked by the 25.6 ms timeout
and by itself until a pass is completed.
Timeout enters at IHTC5 (see next section).

routine,
Back Host

External Calls
Pokes Host input and output PIDs as needed.

Initialization
TCGO and TCGOA are initialized to 2.

Cleanup
Initiates resets of software when data
out.

Data Structures
Local Data

TCGO: lock, current Host to service.
TCGOA: Host to end this pass with.

Shared Data
H2PBLK: table of Host parameter blocks.
IOBLOC: interface address for Host.

transfers

IHLOC: lock on IMP to Host hardware parameters.
IHTT: IMP to Host timer.
IHGOIN: flag to force IMP to Host software reset.
FAKE: flag for Fake, Back, VDH Hosts.
HIRD: Host state.
HOTPID: IMP to Host PID level.
LOCKHI: lock on Host to IMP parameters.
HITT: Host to IMP timer.
HIBITS: Host to IMP software state bits.
HINPID: Host to IMP PID level.

I/O Performed
If the Host to IMP hardware times out, it is reset.

time

5/78 Page 103

5.11.2 Back Host Timeout

Function
Performs timing functions for Back Hosts.

Control Structure
Each time it is poked by timeout, Back Host timeout
makes one pass through the Back Host parameter blocks.
For fairness, each pass starts with a different block.
Most of the routine is performed by code which is
shared with Host Timeout (previous section).

Entry Points
Starts at BTC. Poked by 25.6 ms timeout routine, and by
itself until a pass is completed.

External Cal ls
Pokes Back Hosts as needed.

Initialization
TBKGO and TBKGOA are initializaed to 2.

Cleanup
None.

Data Structures
Local Data

TBKGO: lock, current Back Host to service.
TBKGOA: Back Host to end this pass with.

Shared Data
BBKO-BBK3: Back Host parameter blocks.
LOCKHI: parameter block lock.
HITT: timer on Back Host.
HINPID: Back Host PID.

I/O Performed
None.

5/78 Page 104

5.11.3 Slow Timeout

Function
Polls various routines which do timing functions,
reliability checking, and various cleanups. The called
routines are documented as subsections to this section.

Control Structure
Scans each common memory code page. The timeout table
on each page, if any, lists routines to be polled every
slow timeout period. Continues to poke itself until it
completes a pass through all the routines.

Entry Points
Entered at TOSS, which dispatches in coroutine fashion
to the current routine.

External Calls
None.

Initialization
TOA7 is initialized to dispatch to TOINIT.

Cleanup
None.

Data Structures
Local Data

SLOWTO: index into current timeout table.
SLOWMP: index into LMAP for current memory page.
TOA7: coroutine dispatch.

Shared Data
TOLOCK: Slow Timeout process lock.
LMAP: local table of map settings for common memory.
TOPNTR: pointer to timeout table for common memory
page.

I/O Performed
None.

5/78 Page 105

5.11.3.1 Teletype Buffer Check

Function
Keep values of teletype buffer pointers reasonable.

Control Structure
Keep teletype buffer pointers less than or equal to 31.

Entry Points
Entered at TTYFIX only.

External Calls
None.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
TTY2SS, TTY2SE,
pointers.

I/O Performed
None.

S2TTYS, S2TTYE: the teletype buffer

5/78 Page 106

5.11.3.2 Reassembly Block Check

Function
Scan reassembly blocks for any associated with old
messages or conversations.

Control Structure
For each reassembly block, lock the block and make sure
it is in a legal state. Then check the associated
receive message (RM) block and use number for
consistency. If the RM block is idle, or has been
reused for a new conversation, or the reassembly block
message number is too old, the reassembly block is
freed.

Entry Points
Entered at DEDREA only, from Slow Timeout dispatch.

External Calls
REASF to free a reassembly block and
buffers.

Initialization
None.

Cleanup

its associated

Blocks failing any of the above checks are freed.

Data Structures
Local Data

None.

Shared Data
REASLK: reassembly block lock.
REASST: reassembly block state.
RID: RM block for this reassembly block.
RMMESS: RM block message number and use number.
RUSE: reassembly block use number.
RMIMP: RM block source IMP number.
REMESS: reassembly block message number.

I/O Performed
None.

5/78 Page 107

5.11.3.3 Host Access Checksum

Fune t ion
Verify checksum on Host access words tables.

Control Structure
Checksum the table and its checksum to produce zero,
then clear the Host data checkum error bit in the
anomalies word and return. A bad checksum causes the
error in the checksum to be saved, and the Host data
checksum error bit to be set in the anomalies word.

Entry Points
CONCHK, only.

External Calls
SUBCHN, the
checksum.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

subtraction chain

CONCER: word to save checksum error.

Shared Data
ANOM: anomalies word.

I/O Performed
None.

that produces the

5/78 Page 108

5.11.3.4 Line State Timeout

Fune tion
Maintain line state (LSTATE) words for each modem.

1) For each modem in the
table, infer the line
time to send a null
line speed word.

modem parameter block pointer
speed on the basis of the elasped
message and save the speed in the

2) If line is alive
I-heard-you (IHY),
LSTATE down one.

(LSTATE < 5), and received an
set LSTATE to 4. If no IHY, count

3) If line is coming up (4 < LSTATE < "half count", where
half count depends on line speed), and got an IHY,
count LSTATE down one, else count it up one.

4) If line is dead and not coming up (half count < LSTATE
< twice half count) and got an IHY, set LSTATE to half
count, else count it up by one and, if it reaches twice
half count, set it to 80!.

5) If line is down (LSTATE > 80!) perform associated
cleanup.

6) If line has been down about 8 seconds (LSTATE > 8C!)
set LSTATE to half count to try to bring it up.

7) Check and clear the send-I-heard-you flag and use the
result to increment (or not) the line error count.

Control Structure
Processing for each line begins with function 1.
of functions 2-6 is performed next, based on the
state and whether an IHY was received during the
slow timeout period. Then function 7 is performed.

Entry Points
DEDL only, called from Slow Timeout dispatcher.

External Calls
1) TSLEEP, provides strip break between modems.

One
line
last

5) LINEil is line initialization for lines recently in
use.
LINEI2 is line initialization for lines down more than
one slow timeout.

Initialization
None.

Cleanup
For any line that has gone down, all pending packets
are rerouted by resubmitting them to Task. Any routes

5/7 8

that were using
or delay, and
news" about this
the network.

Page 109

this line are marked for maximum hops
hold-down is entered, so that the "bad
line will propagate to other !MPs in

Data Structures
Local Data

DEDLC: temporary strip break storage.

Shared Data
M2PBLK: table of modem parameter block pointers.
RUTRAT: elasped time to send a null message.
CLOCKM: line speed word in modem parameter block.
LINCLK: clock words to synchronize routing.
LOCKM: modem parameter block iock.
LAC: !HY-received flag.
LSTATE: line state word.
SIHY: send-I-heard-you (routing received) flag.
RTRERR: line errors count (for NCC).
RTSSNT: routing sent count (for NCC).
MODEM: logical modem number.
RUT: best delay route by IMP.
HOPDEL: hops and delay word by IMP.
DELTIM: delay hold-down counter by IMP
HOPRUT: path for best hops by IMP.
HOPTIM: hop hold-down timer by IMP.
LOCKR: routing lock.

I/O Performed
None.

5/78 Page 110

5.11.3.5 IMP to Host Software Check

Function
Check the IMP-Host data and dispatch structures.

Control Structure
For each Host, make sure that the last queue serviced
was a legal queue.

Entry Points
RIHS only, called from Slow Timeout dispatcher.

External Calls
IHSINI to reinitialize IMP to Host parameters.

Initialization
None.

Cleanup
If an illegal
block.

Data Structures
Local Data

None.

Shared Data

queue was accessed, reinitialize the

H2PBLK: Host parameter block pointer table.
IHLOC: IMP-to-Host parameters lock.
IHWQ: last queue serviced in this block.
SHQ: start of Host queue of regular messages.
SHPQ: start of Host priority queue.

I/O Performed
None.

5/78 Page 111

S.11.3.6 Central Dispatch Check

Function
Sets up and pokes some PIDs in common use.

Control Structure
Pokes certain other processes and
dispatches for several routines.

Entry Points
BASETP when called from Slow Timeout.

then sets up the

BASETO when called from Initialization (no PID pokes).

External Calls
None, but pokes the Restart, Block Transfer Poll, DDT
Poll, Configuration, Task, and Routing PIDs.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
BASE: the table of dispatches, indexed by PID level.

I/O Performed
None.

5/78 Page 112

5.11.3.7 Transaction Block Timeout

Function
Search for and free transaction blocks that are out of
date or inconsistent.

1) If transaction block is reserved by a Host, check that
some Host parameter block points to it.

2) If it is queued for transmission as a control message
to a Host, be sure that Host is alive and has its
pending control message count non-zero.

3) If transaction block is associated with a message in
process, check that its parameters are consistent with
the transmit message (TM) block indicated.

Control Structure
DEDTRN first checks the state of the transaction block
to determine the present user of the block. One of
functions 1-3 is then performed, based on the state, to
determine if the transaction block is consistent with
its "owner" (a Host parameter block or TM block).

Entry Points
DEDTRN only, called from Slow Timeout dispatcher.

External Calls
TRNFLS to free a transaction block and its associated
buffer, if any.
LEDPF, to signal a Host for a control message.

Initialization
None.

Cleanup
1-2) If inconsistencies are found, a timeout counter for the

transaction is decremented and, if it reaches zero, the
block is freed.

3) If the block is found inconsistent, it is freed.

Data Structures
Local Data

None.

Shared Data
TRSTAT:
TRHSTL:
TMLOCK:
TMIMP:

transaction block status.
message block pointer and message number.
TM block lock.

TM block remote IMP number.

5/78 Page 113

TMMESS: TM block message number and use number word.
TRLUSE: transaction block use number word.
TRHOST: Host on which this transaction block queued.
H2PBLK: table of Host parameter block pointers.
TRNTIM: transaction block timer.
LOCKHI: Host output software lock.
NXTLED: pointer to pending Host control message.
HITRAN: pointer in Host parameter block to reserved
transaction block.

I/O Performed
None.

5/78 Page 114

5.11.3.8 Real Host Ready Line Check

Function
1) Count down my IMP coming up timer.
2) Maintain Host status words for real Hosts.

Control Structure
1) If MYIMP is not zero, subtract one, else do nothing.
2) For each real Host, check the present value of the

status word to make sure that it is not now
reinitializating; then look at the hardware status for
the state of the ready line. If the ready line is up,
and the software status word says down, clear the
software status word and clear the IMP-to-Host software
timer to trigger an IMP-to-Host software reset. If the
hardware is down, set the software status word to 1.

Entry Points
DEDH only, called from Slow Timeout dispatcher.

External Calls
None.

Initialization
MYIMP is set to 60 at startup.

Cleanup
When a Host first comes up, clear its saved dead status
codes.

Data Structures
Local Data

None.

Shared Data
MYIMP: status of this IMP relative to the network; if
not zero Hosts will be prevented from communicating
with the rest of the network.
H2PBLK: table of Host parameter block pointers.
HIHD: software status word in Host parameter block.
IOBLOC: pointer to Host hardware.
DEADSC: dead subcodes, holds detailed software status
word of dead Host.
IHTT: IMP-to-Host software timer.

I/O Performed
None.

5/78 Page 115

5.11.3.9 Routing Timeout

Function
1) Set routes to us to zero.
2) Count down the routing hold-down timers.
3) Maintain state of each IMP (up, down, coming up,

down).
4) Maintain line for network time synchronization.
5) Synchronize line state clocks.

Control Structure

going

1) Using a table of
to us are
used.

set
our

to
IMP numbers, the routes pointing

zero to assure that they won't be

2) The whole
counting
hops.

routing table is accessed sequentially,
down the hold down timers for delay, then for

3) By masking the hops/delay word to give only the hops,
decide whether an IMP is reachable. Unreachable IMPs
that are down get their state set to -1; unreachable
IMPs that are up get counted up by two and if the count
reaches 16 the IMP is declared down. Reachable IMPs
that are up get their state set to two; Reachable IMPs
that are not up get counted up to 7F! and then are
declared up. When my own IMP number is encountered,
the paths for best hops and delay are both set zero to
preclude usage.

4) Finally after all IMPs in the table are done, search
for the first live line and save its delay route; this
line is used to maintain synchrony with the rest of the
network for statistics.

5) Return to the dispatcher after synchronizing
clocks.

Entry Points

the

RTGO only, called from Slow Timeout dispatcher.

External Calls
TSLEEP to dismiss coroutine for a strip break.

Initialization
None.

Cleanup
None.

fast

5/78 Page 116

Data Structures
Local Data

RTGOT: temporary storage.

Shared Data
MINE: table of my IMP numbers.
RUT: table of best delay paths by IMP.
THSDEL: the change in delay this tick by IMP.
OLDDEL: the change in delay last tick by IMP.
DELTIM: delay hold-down timer by IMP.
HOPTIM: hop hold-down timer by IMP.
HOPDEL: hops and delay word by IMP.
ISTATE: IMP state table.
LOCKR: routing lock.
THD: modem number of line to lowest-numbered live IMP.
LINCLK: table of line clocks for sending routing.

I/O Performed
None.

5/78 Page 117

5.11.3.10 Incomplete Message Timeout

Function
Time out
messages.

Control Structure

transmit message blocks for incomplete

Decrements message number timeout counter for transmit
message (TM) blocks which are active and have
outstanding messages. Three blocks are timed each slow
timeout, so that each is checked every 12 seconds or so
(for 56 TM blocks).

Entry Points
MESSTO only, called from Slow Timeout.

External Calls
None.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

MESST: the index storage.

Shared Data
TMIMP: destination IMP number in TM block.
TMLOCK: transmit message block lock.
TSTATE: TM block message status and timeout word.

1/0 Performed
None.

5/78 Page 118

S.11.3.11 Routing Software Check

Function
1) Check routing delay tables for proper lines and

non-zero delays except to us.
2) Check routing hop table for same.
3) Check IMP s tat e tab 1 e •

Control Structure
Checks entries
between.

Entry Points

for 8 IMPs each call,

RSOFT, called from Slow Timeout dispatch.

External Calls
TSLEEP to dismiss every 8 IMPs.
MTES to see if a valid modem is given.

sleeping in

MINETE to compare an IMP number with our IMP numbers.

Initialization
None.

Cleanup
Any failures cause a trap and the offending entry in
the table is set to -1.

Data St rue tur es
Local Data

RSOFAl: saves place in table over strip break.

Shared Data
RUT: modem for best delay route by IMP.
HOPRUT: modem for best hop route by IMP.
ISTATE: state by IMP number.
HOPDEL: hops and delay by IMP.
DELTIM: hold down timer by IMP.

I/O Performed
None.

5/78 Page 119

5.11.3.12 Buffer Counters Check

Function
1) Calculate minimum guaranteed buffer counters using the

algorithms MINMI m+2lm+l, MINSF = 3lm, MINHI = lh,
MINBAK = 3, MINRE = 1+8lh, MINRUT = 2, where m = total
modems, lm live lines, lh = live Hosts. MINMI is
minimum for Modem Input, MINSF for store-forward, MINHI
for Host input, MINBAK for Back Host, MINRE for
reassembly, MINRUT for routing output. When the sum of
the counters above exceeds the number of buffers
allowed, the algorithms used are: MINMI = m+l, MINSF
m, MINHI = 2, MINBAK = 1, MINRE = 9, MINRUT = 2.

2) Verify dynamic counters by scanning all buffers in use
and adding to the minima from above. If discrepancies
in the dynamic counters are found, smoothly adjust them
until they match the results of the scan.

Control Structure
1) Modems and live lines are first counted and their

contributions to MINMI and MINSF are summed. Next the
Hosts are treated similarly, contributing to MINHI and
VDHI (VDH Host input, 3 for each Host) if a VDH. When
all are counted, MINRE is calculated from MINHI and all
the counters are summed, assumming MINRUT+MINBAK S.
The result of the sum is compared to MAXNF, the allowed
buffers, and if an overflow occurs, the counters are
modified as per specification above. The results,
recalculated if necessary, are stored as the trial
counters. Two more counters for the optional PTIP are
stored and their effect on the sum accounted. The sum
of the counters is put into MINF, and a strip break
occurs.

2) On return from the break, count the actual buffers in
use by indexing through the buffer ownership table and
incrementing the proper counters. After counting all
buffers, all the trial counters are compared to the
actual counters and the difference adjusted by the
smoothing routine. The differences are then used to
update the actual counters. The updated counters are
summed and the sum smoothed to give NF.

Entry Points
RCNTRS only, called from Slow Timeout.

External Calls
TSLEEP for a strip break.

5 /7 8

FIXER is the smoothing routine.

Initialization
None.

Cleanup

Page 120

Counters found to be in error are statistically
modified towards their proper value.

Data Structures
Local Data

NEWCTS: storage for trial counters.
TOTMPl: temporary storage.
TRENDS: trends used in smoothing routine.
TRENDF: trend for smoothing NF.

Shared Data
M2PBLK: table of modem parameter blocks.
LSTATE: variable in modem block for line state~
H2PBLK: table of Host parameter blocks.
HIRD: Host status word in Host block.
FAKE: VDH if non-zero.
MAXNF: number of buffers allocated by Buffer
Initialization.
MINF: total reserved buffers.
MAXBUF: number of buffers allocated * 2.
WHERE: buffer ownership table.
CNTRS: the actual dynamic counters.
NF: length of free list.

I I 0 Pe r f o rm e d
None.

5/78 Page 121

5.11.3.13 Allocate Count Check

Function
Maintain the count of allocated buffers.

Control Structure
Buffers are counted by checking all the reassembly
blocks and summing assigned buffers. The difference
between the new count and the previous count is
smoothed by a smoothing routine and then used to update
the previous count.

Entry Points
RNAL, polled from Slow Timeout.

External Calls
FIXER to smooth the buffer count.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

TRENDA: the trend used in smoothing.

Shared Data
MESSTK: the reassembly block area.
REASST: reassembly block status.
REASLK: reassembly block lock.
RAL: reassembly block allocate count.
NAL: the total allocate count.
NF: free list lock and counter.

I/O Performed
None.

5/78 Page 122

5.11.3.14 Modem Queue Check

Function
Count queues held by each modem to verify slots count.

Control Structure
For each block in use, starting at the end of the modem
parameter blocks, first calculate the number of slots
in use on the basis of the maximum channels and free
slots. Then, using seperate counters, the number of
busy channels is counted and subtracted from the number
of slots in use, and the number of buffers in the sent
queue plus the buffer being sent (if any) is also
subtracted from the slots in use. The resultant two
numbers are checked against each other and should be
equal. The regular queue and the priority queue are
next counted and subtracted from the present count to
result in zero, confirming the count of slots in use.

Entry Points
MQCNT only, called from slow timeout.

External Calls
COUNTQ to count the number of buffers on a queue.

Initialization
None.

Cleanup
In the case that either of the checks fail, trap and
set the line state dead.

Data Structures
Local Data

None.

Shared Data
M2PBLK: table of modem parameter block pointers.
LSTATE: line state.
CHNBSY: table containing bit flags for busy channels.
MAXCHN: maximum channels this modem.
SLOTS: free slots.
SNDING: buffer being sent.
LATER: flag to indicate current buffer (SNDING) will be
flushed soon.
SSENTQ: start of retransmit queue.
SREGQ: start of regular queue.

5 /7 8

SPRIQ: start of priority queue.
LOCKM: modem block software lock.

1/0 Performed
None.

Page 123

5/78 Page 124

5.11.3.15 Buffer Timeout

Function

1) Check the POINT word for every buffer in use and make
sure it corresponds to the areas allotted by memory
management.

2) Check and see that every buffer has been flushed at
least once every slow timeout.

3) Count and check the free list.

Control Structure
Runs off the slow timeout dispatch, checking eight
buffers on each call. The eight buffers are specified
by a counter, BUFTIM, which gets incremented by sixteen
each pass. BUFTIM is maintained modulo 4096 and
therefore wraps around every 256 calls, to result in a
consistent loop time. Each buffer is passed to
subroutine CHKPNT which performs function 1). Next the
FLUSHD word of the buffer is checked and, if zero, the
buffer has remained out of circulation for too long and
is freed. If the FLUSHD word is non-zero, it is just
cleared (normal case). After all the buffers have been
checked, the list of free buffers is counted and
checked. Checks of the free list consist of making
sure the start pointer is legal, then checking buffer
ownership and counting the number of free buffers.

Entry Points
BUFT only.

External Calls
CHKPNT: to check a buffer pointer.
FLUSH2: to flush and requeue an unflushed buffer.

Initialization
None.

Cleanup
1) Set the initialization flag,

page reinitialization.
2) Free the timed-out buffer.
3) Errors in the free list cause

is returned to a legal state.

Data Structures
Local Data

INTIME, to zero, to

traps and the free

cause

list

5/78 Page 125

BUFTIM: a pointer keeping track of which eight buffers
are to be tested next.

Shared Data
CHAIN, FLUSHD, WHERE: buffer system tables.
MAXBUF: max number of buffers * 2.
FREE, FREEND: beginning and end of list of free
buffers.

1/0 Performed
None.

5/78 Page 126

5.11.3.16 Trace Buffer Check

Function
Check the variables used for tracing packets.

Control Structure
Find the present value of the buffer pointer and
compare it with the limits of the buffer area assigned
to the trace routine. Any overflow or underflow causes
a trap and resets the pointer to the beginning of the
buffer.

Entry Points
TRACH only, called from Slow Timeout.

External Calls
GOTRAC, to initialize and unlock the
pointer.

Initial iza ti on
None.

Cleanup

trace buffer

Failure results in resetting the buffer pointer.

Data St rue tur es
Local Data

None.

Shared Data
TRCPTR: the trace buffer pointer.
TRCLOK: the trace buffer lock.
TRCBUF: the trace buffer.

1/0 Performed
None.

5/78 Page 127

5.11.3.17 Age Message Blocks

Function
Check and time out message blocks.

Control Structure
The timing out of each message block is done by the
routines, AGETM and AGEING, called by BTO from within a
loop covering all the transmit (TM) and receive (RM)
message blocks. Then, various checks on the block
state are performed. Every eight blocks the routine
goes to sleep.

Entry Points
BTO only, called from Slow Timeout.

External Calls
TSLEEP for a strip break.
AGETM, AGEING to count block age.

Initialization
None.

Cleanup
Blocks with invalid IMP or local Host numbers are
unilaterally freed, as are blocks associated with IMPs
that have gone dead in routing. TM blocks for dead
destination Hosts that have reached age 4 are freed.
Blocks associated with local Hosts that have gone down
are set to maximum age to trigger a reset of the
c onv ersa ti on.

Data Structures
1.ocal Dafa-

BTOAl: strip break storage for timer flags.
BTOA5: strip break storage for block index.
BTOA7: strip break storage for return from AGETM or
AGEING.

Shared Data
TMLOCK: transmit message block lock.
RMLOCK: receive message block lock.
TSTATE: TM block transmit status.
TMMESS (RMMESS): TM (RM) block message number, use
number, and age.
TMIMP (RMIMP): destination (source) IMP.
ISTATE: IMP state table.

5/78

H2PBLK: table of Host parameter block pointers.
HIHD: Host status.

I/O Performed
None.

Page 128

5/78 Page 129

5.11.3.18 IMP-going-down Message Check

Function
Send an IMP-going-down message to all Hosts.

Control Structure
For each Host in operation, get a transaction block,
fill it with the proper leader and code, and put the
leader on the control queue.

Entry Points
Called at IMPDWN from Slow Timeout dispatch.

External Calls
TSLEEP to poke Slow Timeout and dismiss.
LEDPO to place a leader on the control queue.

Initialization
The IMP-going-down flag is set zero.

Cleanup
The IMP-going-down flag
messages are sent.

Data Structures
Local Data

is turned off after all the

IGDTMP: temp for this routine. Saves a register over a
strip break.

Shared Data
IGDOWN: the IMP-going-down flag.
H2PBLK: Host parameter blocks.
HIRD: Host status word in the parameter blocks.
TRNLOK: transaction block lock.
TRNBLK: pointers to transation blocks.
TRSTAT: status of a transaction block.

I/O Performed
None.

5/78 Page 130

5.11. 3.19 Statistics Check

Function
Maintain the IMP offset time for the statistics
reports, so that each IMP reports its statistics at a
time staggered from the other IMPs.

Control Structure
For each statistic that is sending on a relatively long
frequency, calculate the offset for this IMP based on
i ts IMP number •

Entry Points
GOSTAT only, called from Slow Timeout.

External Calls
None.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
MINE: my IMP number.
STATF: frequency of a statistic.
IMPOFF: offset for this statistic.

I I 0 Pe r f o rm e d
None.

5/78 Page 131

5.11.3.20 Restart Buffer Check

Function
Verify that the ring buffer for the Restarter process
is valid.

Control Structure
Look to see if the ring pointer is greater than the
begining of the ring buffer and less than the end of
the structure. Then check that the counter is greater
than 0 and less than the length of the structure.

Entry Points
RNGCHK, called from Slow Timeout.

External Calls
None.

Initialization
None.

Cleanup
If either failure above occurs, reinitialize the ring
structure and trap.

Data Structures
Local Data

None.

Shared Data
RINGF: the ring pointer.
RING: the ring buffer.
RINGC: the ring counter.
RINGLN: the length of the ring.
RINGE: the end of the ring.

I/O Performed
None.

5/78 Page 132

5.11.3.21 Fake Host Software Check

Fune t ion
Make sure fake Hosts are working right.

Control Structure
For each fake Host, rewrite the constants for that fake
and check the dispatches to see that legal dispatches
are being taken.

Entry Points
RFAKE only.

External Calls
BLDFH, to rewrite constants.
RETURN, to check a dispatch.

Initialization
None.

Cleanup
If a bad dispatch is found, trap and remove this
from the IO tables.

Data Structures
Local Data

fake

RFAKT3, saves the index to the fakes table over a strip
break.

Shared Data
FAKEIO: table of fake Hosts.
IIOBL3: pointer to IO parameter block.
LOCKF: fake Host lock.
DOZET: contains the return from a strip break for this
Host.
WAITT: contains the return from a strip break via WAIT
rather than DOZE.
WAITT3: contains the return from SUCK if SUCK called
WAIT.

I/O Performed
None.

5/78 Page 133

S.11.3.22 Back Host Software Check

Function
Test the Back Host parameter blocks.

Control Structure
For each Back Host parameter block, set up various
constant data such as its PID level and dispatch in
BASE.

Entry Points
BKTST only, called from Slow Timeout.

External Calls
BCOMT, to do the work for each parameter block.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
MBLKS: parameter block table parallel to BASE.
BASE: main dispatch table, indexed by PID level.
FAKE: flag word within Host parameter block for Fake,
Back Hosts.
LOCKHI: Host to IMP (or Back Host) software lock.

I/O Performed
None.

5/78 Page 134

5.11.3.23 Trouble Report Checks

Function
1) Check the status of the NCC IMP; if up, turn on the

trouble reports(TRBLl , -2, -3), else turn off.
2) Compare the anomalies word with its value at the last

anomalies report; if different, or if any Host state
has changed, or if any trap has occured, send an
anomalies report immediately.

3) Check to see if any traps have occurred; if so send a
trap report immediately.

4) Maintain a check on how often the reports are sent; if
too often, restrict the reports.

Control Structure
TRBTIM is polled from Slow Timeout and proceeds in a
straightforward manner.

Entry Points
Called at TRBTIM by Slow Timeout dispatcher.

External Calls
None.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

THROTC: 'throttling' count to limit number of reports.

Shared Data
BANOM: value of ANOM word sent in last report.
ANOM: anomalies word.
OPHGO: flag to send anomalies report if Host state
changes.
SRSB, TRSB, ARSB: leader buffer areas for status,
throughput and anomalies (traps) reports.
STATF: frequency of statistics; when set to O, report
is sent immediately.
SNON: flag to turn on/off a statistic.

I/O Performed
None.

5/78 Page 135

5.11.3.24 Light Display Check

Function
Produce words to place into console DATA lights.

Control Structure
1) Using a word initially set all ones, turn off a bit for

every running Host, lowest numbered Host (Host 0) being
the highest order bit. Save the word (for displaying
16 Hosts' status). Reset the high order byte of the
same word to all ones, and turn off lights for lines
up, again lowest modem (modem 1) being highest order
bit. Save this word.

2) Once these are done, check light pointer words ••

Entry Points
LITES only, polled by Slow Timeout.

External Calls
None.

Initialization
None.

Cleanup
If lights pointers produce quits, reset to default
values.

Data Structures
Local Data

None.

Shared Data
H2PBLK: table of Host parameter block pointers.
HIRD: Host status.
WATCHH: word for Host lights.
M2PBLK: table of modem parameter block pointers.
LSTATE: line state.
WATCH: Host and line state lights word.
WATMl: map setting for upper lights.
WATM2: map setting for lower lights.
WATCHl: light pointer for upper (ADDRESS) lights.
WATCH2: pointer for lower (DATA) lights.

I/O Performed
None.

5/78 Page 136

5.11.3.25 Nice Stop Check

Function
Checks for a nice-stop or panic-stop request and
performs the desired action. The nice-stop process
attempts to halt IMP processing gracefully, while a
panic-stop does so instantly. When stopping is
complete, the system will either halt each processor,
request a reload, or restart the IMP.

Control Structure
NSCHK runs as a coroutine to Slow Timeout. At initial
entry NSCHK simply checks the nice-stop flag; if it is
zero nothing happens and NSCHK returns. If positive, a
panic stop is in process and an exit to the panic stop
follows; if negative, a nice-stop is begun and the
control structure is modified to run a stage of the
nice-stop every five seconds. The nice-stop· process
consists of informing users and neighbors of the
upcoming interruption of service, resetting devices,
and halting operations prior to halting each processor.
The first stage is simply setting the IMP-going-down
flag and then waiting five seconds for the messages to
be sent. Next the Hosts are turned off by setting
their status to be "not initialized" and setting the
IMP status word negative. Stage three of the nice-stop
is halting the store/forward traffic by removing their
buffers from circulation. The modems are halted next
and finally the Slow Timeout dispatcher is backed up so
that the next dispatch is to NSCHK again. The
processor running the code then pokes the Slow Timeout
PID, so that the next processor will arrive at this
point too. If a halt is desired, each processor
inhibits level one and four interrupts and halts.
Otherwise, each processor reenters STAGE to perform a
restart or reload.

Entry Points
NSCHK is the nominal entry point. If a nice-stop is
already in progress, coroutine control passes via NSCRT
to the proper point of the process.

External Calls
NSWT to return wait five seconds before the next stage
of nice-stop.
NSRET to dismiss the coroutine.

5/78

ws, WST to reenter STAGE for restart,
respectively.

Initialization
NSCRT is initialized to dispatch to NS!.

Cleanup
None.

Data Structures
Local Data

Page 137

reload

NSCRT: contains the next dispatch.
NSWTIM: a counter to count down the
between stages of the nice-stop.
NSWRET: saves the return from NSWT.

five second wait

Shared Data
NSRTF: nice-stop request flagr
IGDOWN: IMP-going-down flag.
H2PBLK: table of Host parameter blocks.
HIRD: Host state.
MYIMP: IMP status of this IMP; negative for nice stop
in progress.
NF: number of free buffers.
MAXNF: total buffers in system.
NSF: store/forward buffer count.
M2PBLK: table of modem parameter blocks.
LSTATE: line state for modem.
SLOWTO: Slow Timeout dispatch index.
TOLOCK: Slow Timeout lock.
LOCALC: checksum on local code.
MAPCOM: communications page map.
MEMSEG: bit table of existant memory.
CKSUM: common memory page checksum.

I/O Performed
None.

5/78 Page 138

5.12 Initialization

Function
Prepare variables and data structures for use by IMP
system; also reset same in case of drastic failure.

Control Structure
Before initialization, checks are made to see if
initialization is required. The checks determine
timeout status, debugging status, map table consistency
and look for manual requests for initialization. If
initialization is not needed, and the common memory
snapshot area is vacant, copy any local snapshot to
common and clear the local snapshot buffer. If
initialization is desired, the procedure is as follows:

1) Return to Stage AR and check FIXIT word. If allowed to
do the fix, return to the init routine and start.

2) Look for other running processors, if insufficient
numbers, wait for more.

3) Zero variables page, buffer tables.
4) Empty base table.
5) Fill configuration tables and routing tables with -ls.
6) Zero variables on fake page.
7) Set up the Fake Host leader buffers.
8) Unlock locks.
9) Set queues up; point endpointer at begin pointer, set

begin pointer to 1.
10) Set up constant dispatches in the central dispatch

table.
11) Find and initialize a real-time clock (RTC); find IMP

number and check it.
12) Initialize reassembly blocks.
13) Initialize message blocks.
14) Initialize buffer tables.
15) Initialize trace blocks.
16) Initialize Back Hosts.
17) Remove I/O blocks for the Fake Hosts.
18) Initialize statistics Fake Host.
19) Calculate the statistics offset time for this IMP.
20) Trap to note completion of initialization.

Entry Points
Entered from Stage AR at INITCK.
to be performed, return after
consensus is at INIT.

If initialization is
that stage reaches

5/7 8 Page 139

External Calls
PCOUNT to count procs.
BASETO to initialize certain invariant software PID
level entries in BASE.
CONCLK to find the RTC and IMP number.
CONINI to initialize the Configuration dispatch.
BUFINI to initialize the buffer structures.
FLUSH2 to flush the newly created buffers.
GOTRAC to initialize trace routines.
BREINI to initialize each Back Host.
GOSTAT to set up statistics constants.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

VMAP: map settings for variables and buffers pages at
initialization time.

Shared Data
All variables on the common variables page, second
variables page, and fake code page are cleared. Then
the following are initialized:
BASE: the PID dispatch table - "BAD", the dispatch for
unexpected PIDs.
H2PBLK, M2PB LK, V2PB LK: tab le s of Ho st, mod em, VDH
modem parameter blocks - -1 (for no block).
RUT, HOPDEL, HOPRUT, ISTATE: Routing best delay route,
hop and delay counts, best hop route, and IMP state by
IMP - -1 for "dead".
WATCH!, WATCH2: light pointers - WATCHS, WATCH (normal
light display).
DYNXT: dynamic parameter blocks pointer DYBLKS
(beginning of free area for blocks).
CYCLE: Timeout counter - 9001!.
TCGO, TCGOA: Host Timeout control - 2.
TBKGO, TBKGOA: Back Host Timeout control - 2.
TOA7: Slow Timeout dispatch - TOINIT.
MYIMP: my IMP coming up counter - 60.
NSCRT: nice-stop coroutine dispatch - NSl.
CCLED: teletype Fake Host leader - DDT Fake Host on
this IMP.

5/78 Page 140

RINGF: Restart ring buffer pointer - RING (beginning of
the buffer).
TRSB, ARSB, SRSB, DGSB: leaders for throughput reports,
anomalies reports, status reports and diagnostic
reports - NCC Host address.
MGSB, HWSB: message generator, software watchdog
statistics - Discard Fake Host on this IMP.
TLSB, TLTTCP: TENEX Logger process leader and internet
header - BBN System E TENEX address.
DSPLOK: Display lock - 1.
TOLOCK: Slow Timeout lock - 1.
CLKLOK: lock on RTC reliability in Timeout - 1.
NF: number of free buffers (lock) - 1, increased as
buffers are freed.
FREE, FREEND: free list head and tail - 1, then build
initial free list.
LTQ: lock on Task queue - 1.
LOCKR: lock on Routing parameters - 1.
LOCKRO: lock on Routing output buffers - 1.
RUTOBF: list of Routing output buffers - 1.
TRNLOK: lock on free transaction blocks - 1.
RINGLK: lock on Restart process parameters - 1.
D2FL, F2DL: DDT to Fake Host buffer locks - 1.
T2FL, F2TL: Teletype to Fake Host buffer locks - 1.
DDTLOK: lock on DDT process - 1.
TTYLOK: lock on Teletype process - 1.
STQ: Task queue - empty.
SRUTQ: Routing input queue - empty.
SRQ: Task retry queue - empty.
SCKQ: diagnostic queue of bad buffers - empty.
SFHCQ: queue of incoming packet core messages - empty.
BASE: dispatches for Restart process RSTGO; Block
Transfer Poll - BLTCAL; DDT Poll - JJDDT; Configuration

CON; Task - TSK; Routing - ROUTE; Display - JDSPLY;
Back Host Timeout - BTC; Teletype Poll JJTTY; Host
Timeout !HTC; Slow Timeout TOSS; the "last"
(simnulated) PID - NOPIDS; and each empty PID EMTY.
REASLK: lock on each reassembly block - unlocked.
REASST: reassembly block state - 1.
RMLOCK, TMLOCK: lock on each RM, TM block - unlocked.
RMIMP, TMIMP: RM, TM block remote IMP - -1.
PKCLIM: destination IMP number for reload/dump in
packet core - o.
FAKEIO: table of Fake Host "devices" - O.
STATDT: table of destinations for message generator
torture test - assorted destinations.

5/78

INTIME: initialization flag on
stop future initializations).
In addition, the following are
MAPVAR, MAPV2: map settings
variables pages.

fake code page -

also referenced:
for variables,

MAPB1-6i map settings for 6 all-buffers pages.
PROCBT: my processor bit.
SNAP: local memory snapshot area.
STAIOB: statistics Fake parameter block.
SNAPBF: common memory snapshot buffer.

Page 141

3 (to

second

MAXBUF: 2 times total number of buffers in system.
MAPREL: map for reliability code page.
MINE: my IMP number.

I I 0 Pe r f o rm e d
None.

5/78 Page 142

5.12.1 Buffer Initialization

Fune t ion
Set up buffer pointers on the six buffers pages and on
the leftover room on the second variables page.

Control Structure
BUFINI is called on initialization to divide the
buffers pages into buffer sized blocks, storing packed
buffer addresses into the table POINT. First the six
all-buffers pages are divided and then an attempt is
made to fit buffers between the tables POINT, CHAIN,
WHERE, FLUSHD and CHAN.

Entry Points
Entered at BUFINI.

External Calls
DOBUFS to divide a page into buffers and set up the
POINT words.

Initialization
The buffers pages have been allocated (in Stage MM) by
placing the maps for those pages (or -1 if no room is
available for that buffer page) into the map table.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
MAPBl, MAPB2, MAPB3, MAPB4, MAPBS, MAPB6: map settings
for up to six all-buffers pages.
MAPV2: map for second variables page.
POINT: the table of packed addresses for each buffer.
MAXNF: the count of buffers.
MAXBUF: the length of the buffers tables.
JUNK: the last buffer.
BUFLEN: the length of a buffer.

I/O Performed
None.

5/78 Page 143

5.12.2 DDT Page Initialization

Function
Initializes dispatch vectors, locks and variables for
DDT.

Control Structure
DDT initialization is entered via a subroutine call,
and checks the page reinitialization word. If the word
is non-zero, nothing happens and a return proceeds. If
the word is zero, a subroutine call to the skip return
is used to allow the calling routine to participate in
the consensus. If the consensus agrees, the calling
routine returns to the initialization and
initialization proceeds. Initialization consists of
unlocking locks in a table and filling some locations
with values found in a table. The return after
initialization is directly to stage AR, where more page
initializations are done.

Entry Points
DDTINC is the top level
initialization word.

entry and checks the page

a routine to set up DDT's dummy maps to their
values.

External Calls
CNTLFS,
default
CHKPRO, to set up processor and page type masks.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
D2FL: DDT to fake Host lock.
F2DL: Fake Host to DDT lock.
T2FL: Teletype to fake Host lock.
F2TL: Fake Host to Teletype lock.
DDTA7: is initialized to print the DDT herald.
TOMODE: the type out mode flag, is set for hexadecimal.

5 /7 8 Page 144

TT3+<6*words>: the display dispatch, gets set so that
the display is immediately refreshed.
INTIME: the page init word, is set non-zero so that
initialization won't be called again.

I/O Performed
None.

5/78 Page 145

5.13 Configuration

Function
The configuration code manages several functions
related to the initialization of variables depending on
real or simulated ("Fake") I/O devices. The
configuration routines generally do some testing of
devices and then set up tables as needed by the
devices.

Control Structure
Configuration routines are driven by a central dispatch
located in local memory. This dispatch uses the
pointer to the timeout dispatch table on every common
memory code page (TOPNTR) to locate the configuration
routine and transfers there. Configuration then
proceeds until either completion or a strip break is
reached. DDT, LOCAL and WARM pages have no
configuration routines on them. Reliablilty page
routines test modems, test real Hosts, test dispatch
tables, look for and test devices, check VDH modems if
any, check and test PID levels for the devices, and
build parameter blocks for the devices if necessary.
FAKE page routines make sure Fake Hosts are
operational, and set up clocks.

Entry Points
CON, the central dispatch mechanism.
returns via CONA7.

Coroutine control

External Calls
CSLEEP to dismiss coroutine at a strip break.
MTEST to test a modem.
HOTEST to test a Host.
PIDTST to see if a PID level is in use.
BLDMOD to build a modem or host parameter block.
GOFH to initialize a Fake Host.
CONCLK to set up the clocks.
RSTART to cause Configuration to
reaches low priority.

Initialization

dismiss until

CONA7 is initialized to dispatch to CONINI.

Cleanup

PID

Parameter blocks are deallocated when the devices they
correspond to disappear. Blocks are reinitialized when
reliability checks fail.

5 /7 8 Page 146

Data Structures
Local Data

CONAl: a temp to store register 1.
CONA7: coroutine dispatch.
CONLOK: lock on Configuration process.
CONPNT: index in LMAP of present code page to use.
CONFTI, CONFTB: temporary storage for index values.
FAKCT3: temporary index storage over subroutines.

Shared Data
LMAP: table of map settings for each common memory
page.
TOPNTR: pointer to timeout table (containing
configuration routine dispatch) on each code page.
CONFLG: flag to force Configuration to complete before
Timeout will run.
M2PBLK, H2PBLK: tables of modem, Host parameter blocks.
BASE: central dispatch table by PID level.
MBLKS: table of parameter blocks, parallel to BASE.
USEBUS: bit-coded word indicating which common busses
exist.
MINPID, MOTPID: modem input, output PID levels.
USEIO: bit-coded table of which I/O interfaces exist.
IOBLOC, ALTIO: main, alternate I/O interface addresses
for a modem or Host.
HINPID, HOTPID: Host to IMP and IMP to Host PID levels.
MAPREL: map setting for reliability page.
FAKEIO: simulated extension of USEIO (device table) for
Fake Host "hardware".
MAPV2: map setting for second variables page.

I/O Performed
Device interfaces are reset when (1) they are first
allocated, (2) they are reinitialized, and (3) they are
removed from use.

5/78 Page 147

5.14 Miscellaneous Routines

5.14.1 Packet Core Reload

Function
Implements the Packet Core protocol, which is used to
dump or reload failed IMPs, and is used for debugging
and network control functions in general.

Control Structure
Runs as a
(see above).
parameters.

Entry Poinhts

special part of the Block Transfer Process
Controlled in part by Block Transfer

BLTRLD is the entry point from Block Transfer.

External Calls
PKCIC to process a received packet core message.
PKCOC to check if a packet core message should be sent.

Initialization
None.

Cleanup
The Packet Core Process retries periodically if it is
awaiting a reload. Each modem interface is used in
sequence, with several tries on each interface.

Data Structures
Local Data

BLTRCT:
PKCMYI:
PKCFID:
PKCTYH:
PS DATA:

count of tries remaining for current device.
My IMP number for packet core messages.
foreign message-id for setup messages.
TYPH word for packet core messages.
first data word of packet core message; setup

from core message.
PKCLHA: handling type and host destination for packet
core message.
PKCTYP: packet core type.
PKCLEN: length of transfer in words.
PKCADD: packet core word address; 8000! bit indicates
common memory, 4000! bit indicates logical page type.
PKCSSF: flag to force sending of a setup message.
RLDTIM: timeout on packet core process.
PKCLID: local message-id for packet core messages.

5/78 Page 148

BLTRIB, BLTROB: buffers for packet core input, output.
PKCNIM: packet core neighbor IMP number.

Shared Data
RLDDEV: current device to try reload from.
RLDINI: flag to trigger reload parameters
reinitialization.
LCLOCK: current Stage system clock.
BLTSTY, BLTDTY: Block Transfer source, destination
types.
USEBUS: bit table of existing busses.
BLTSIZ: size in bytes of Block Transfer.
BLTADD: Block Transfer address; odd for common memory,
8000! bit for logical page type.
STIME: local copy of Stage system time.
CONSOL: address of this processor's operator console,
if any.
MAPREL: map setting for reliability page.
BLTST: Block Transfer state.

I/O Performed
While a packet core transfer is in progress, the
current address (PKCADD) is displayed in the operator
console DATA lights so progress of the transfer may be
monitored.

5/78 Page 149

5.14.2 Block Transfer Polling Process

Fun ct ion
Poll the Block Transfer (BLT) Process.

Control Structure
Set up the code map for block transfer (MAPREL) and
check the state of block transfer to see if anything
needs to be done. If nothing, exit; otherwise call
block transfer. On return from block transfer, restore
maps 1, 2, and 3. Call subroutine RSTART to reschedule
this process to run when priority is low. An exit to
the main loop completes the routine.

Entry Points
BLTCAL only.

External Calls
BLT, the block transfer subroutine.
RSTART, to place a pid into the ring buffer.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
MAPREL: code map for BLT.
MAPVAR: first variables map.
MAPV2: second variables map.

I/O Performed
None.

5/78 Page 150

5.14.3 Restart Process

Function
Poke PIDs for processes that have gone to sleep until
the PID priority is low (by calls to RSTART).

Control Structure
Checks count of PIDs in its ring buffer and, if non
zero, picks up the next one and stores it into the PID.

Entry Points
RSTGO, dispatch is from main dispatch loop. Poked
whenever RSTART is called, and by itself if still more
entries are left in the ring buffer.

External Cal ls
None.

Initialization
The ring buffer is initialized to be empty.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
RINGLK: lock on the ring buffer.
RINGC: count of PIDs in the buffer.
RINGF: current ring buffer pointer.
RING: ring buffer.

I I 0 P er f o rm e d
None.

5/78 Page 151

5.14.4 DDT Polling Process

Function
Poll DDT process periodically while the IMP system is
running.

Control Structure
Restores registers for the DDT process and
at the last coroutine dismiss point.

En try Po in ts

resumes it

JJDDT sets up the code map for the DDT page, and then
proceeds to DDTWAK to resume the DDT process.

External Calls
DDTPOL to resume DDT process.

Initial iza ti on
None.

Cleanup
None.

Data Structures
Local Data

None.

Shared Data
IMPDDT: flag to show IMP is polling DDT.

I/O Performed
None.

5/78 Page 152

5.14.5 Teletype Handler Polling Process

Function
Poll the teletype handler process.

Control Structure
Restores registers for the teletype process and resume
from previous coroutine dismiss point.

Entry Points
JJTTY, which sets up the code map for DDT and jumps to
TTYWAK.

External Calls
TTYPOL to poll the teletype handler process.
RSTART to cause this routine to be poked when the PID
level reaches low priority.

Initial iza ti on
None.

Cleanup
If the teletype lock timer reaches
ignored and operations proceed as if it
upon entering.

Data Structures
Local Data

16, the lock is
we re unlocked

TTYLTO: teletype lock timer
lockings.

to prevent overly long

Shared Data
RSTRSW: restart switch, indicating teletype process
needs to be polled again.
STIME: local copy of system time.
POLTIM: time at last polling.

I/O Performed
None.

5/78 Page 153

5.14.6 Display Process

Fune tion
1) Update information for bottom line of terminal.

teletype 2) Write out display information to
buffer.

Control Structure

output

Using a table of words to display on the bottom line,
the present value of the words are compared to the
value now on the screen. A difference causes a flag to
be set and the new value stored. When the results for
all the entries are completed, a table of buffers
containing display information (including the results
just added) and the flag word are used to print those
buffers that have changes. When all the buffers are
done, sleep for about six seconds and run the process
again.

Entry Points
JDSPLY, which
to DISPLY which

External Calls

sets up code map for DDT page and jumps
resumes the display handler coroutine.

<'--

F2TPED places a character in the teletype output buffer
if room, else sleeps until room is available.
DSPSLP is the coroutine dismiss (sleep) routine.

Initialization
None.

Cleanup
None.

Data Structures
Local Data

TTl: variable to save cursor location.
TT3: register save area.

Shared Data
DINIT: word containing flags for data buffers by
display line.
MAPCOM, MAPREL, MAPDDT, MAPCOD, MAPFAK, MAPVAR, MAPV2,
MAPV2+2, MAPBl, MAPB2, MAPREL+NVARSP, MAPDDT+NVARSP,
MAPCOD+NVARSP, MAPFAK+NVARSP, MAPFAK+NVARSP+2:
locations (map settings) to be displayed in bottom line
of display.

5/78 Page 154

CILLOC, CILLPR, CILLCT, Wl: buffers of words to be
displayed (first three are tables of trap numbers,
processor masks, and counts).

I/O Performed
None.

5/78

Chapter 6
Data Formats

6.1 Old-style Leader Format

Host to IMP

y-{l<<<<<<<<<<<<<<<<<<I
I I I XXXXXI Message-ID (Link)
I
I ,_._._._,_._._._,_._._._,_._._._,
'->l_J_J_J_1_._._._1_._J_._,_._._._1

v v v v \ I \ I \ I
I I I I -v- v --v--
1 I I I I I '->Destination IMP
I I I I I '->Destination Host
I I I I '->Host-IMP message type
I I I '->Octal print (for TTY)
I I '->Trace
I '->For IMP
'->Priority

IMP to Host

y-{1<<<<<<<<<<<<<<<<<<1
y+-{ l<<<<<<<<<<<<<<<<<<I

I ,
I ' • • • ' • • • ' • • • ' • • • ' '->l_J_J_J_l-.-.-.-i-.-.-.-,-.-.-.-1

vvvv\--7\7\ ____ 7
I I I I -v- v --v--
1 I I I I I '->Source IMP
I I I I I '->Source Host
I I I I '->IMP-Host message type
I I I '->Octal print (for TTY)
I I '->Trace
I '->From IMP
'->Priority

' . . . ' . . . ' . . . ' . . . ' -->1-.-.-.-,-.-.-.-,-.-.-.-L-.-.-.-L ,----------,,--,
v v
I '->Message subtype
'->Message-ID (Link) or Host status

Page 155

5/78 Page 156

6.2 New-style Leader Format

Host to IMP

0-9-{

IXXXXI 1xxxxxxxx1 New Leader Flag = OFOO
y-{l<<<<<<<<<<<<<<<<<<I

y+-{l<<<<<<<<<<<<<<<<<<I
I I Destination IMP

y++-<l<<<<<<<<<<<<<<<<<<I
I I
I I
I I
I I
I I

Message length (type 0 only)

0-9 Padding words (type 0 only)

I I , • • • , • • • , • • • , • • • , I '->lxxxxxxxi-~-.-.-1-.-.-.-,-.-.-.-l
I ----v\-7\------7
I I -~ v
I I I '->Host-IMP message type
I I '->Leader flags (octal print = 400)
I
I
I
I
I
I
I

'->Trace
' . . . ' . . . ' . . . ' . . . ' -->,-.-.-.-,-.-.-.-i-.-.-.-,-.-.-.-, ,------7,------7

v v
I '->Destination Host
'->Handling type

I ,_._._._,_._._._,_._._._,_._._._,
'---> 1 • • • , • • • , • • • 1 • • • L

,----------7\~~7

v v
I '->Subtype
'->Message-ID (Link)

5/78 Page 157

IMP to Ho st

1xxxx1 1xxxxxxxx1 New Leader Flag = OFOO
y-<T<<<<<<<<<<<<<<<<<<

y+-<I<<<<<<<<<<<<<<<<<<
I I I Source IMP

y++-<l<<<<<<<<<<<<<<<<<<I
I I
I I Message length (type 0 only)
I I

0-9-{ 11 0-9 Padding words (type 0 only)
I I
I I ,_._._._,_._._._,_._._._,_._._._,
l'->lXXXXXXXI ' • • l • • • , • • • l I ----v\-7\------7
I I v v
I I I '->IMP-Host message type
I I '->Leader flags
I '->Trace
I ,_._._._,_._._._,_._._._,_._._._,
'- -> 1 • • • ' • • • ~ • • • ' • • • ~ ,------,,------,

v
I

v
'->Source Host

'->Handling type ,_._._._,_._._._,_._._._,_._._._,
'--->1 • • • , • • • , • • • L • • • L \ - - - - - - - - - - 7 \-= =-7

v v
I '->Subtype
'->Message-ID (Link) or Host status

5/78

6.3

8--{

63-{

I
I
I
I

9--{
I
I
I
\

Buffer Format

Page 158

Packet header words NETH through MIDH

Packet data words DATA through DATA+62

(unused)
Number of bytes in buffer - 2
Source of this buffer (INCH)
Retransmission counter
Input time for Trace
Queue time for Trace
Sent time for Trace
Pointer to receive message block
(unused)

5/78 Page 159

6.4 Basic Packet Structure

Not all of the various messages have all of these fields, but
if they do have them they will appear as diagrammed here.

1xxxxxxxxxxxxxxxxxx1

NETH: Modem control bits
TYPH: Packet type and other flags
CHKH: Software checksum
SRCH: Source IMP
SEQH: Message/block number
PKTH: Packet code, number, and other flags
DSTH: Destination IMP
MIDH: Message ID
DATA: Beginning of 0-63 data words

Every packet has SRCH, CHKH, and the fields Packet type and Compat.

Packet type is the high order two bits of TYPH.
The basic types are:

0 Data : Message, RFNM, etc
1 Network control: Get-a-block, Reset, etc
2 Switch control: Routing, Null, etc
3 Special: Packet core, Demand reload, etc

Compat is the next bit below packet type and is used as an
odd/even bit within packet type so that an incompatible
release can be propagated.

For packet types 0 and 1, and null packets (type 2),
on an eight channel line, NETH has the following format:

.._._,_._._._,_._._._,_._._._
1 ~ ~ ~xl ... 1x~x~x~x+x~x~x~ l vv-v-,--7--------v

I I I -v- I
I I I I '->Always zero
I I I '->Modem channel number (0-7)
I I '->discard this packet if set
I '->HI/LO IMP on line end bit
'->Odd/even bit for the modem channel

5/78 Page 160

On a sixteen logical channel line, NETH is structured
as follows (packet types 0 and 1):

,_._._._,_._._._,_._._._,_._._._,
l_l_l_l!!_._._._~_._._._,_._._._1
v v v \ __ I \ I
I I I
I I I
I I I

v v
I '->Modem acknowledge bits, left half
'->Modem channel number

I I '->discard this packet if set
I ' - >HI IL 0 IMP on 1 in e end b it
'->Odd/even bit for the modem channel

On a 32 to 128 logical channel line, NETH is structured
as follows (packet types 0 and 1):

' . . . ' . . . ' . . . ' . . . '
l_l_l_lx!-.-.-.-~x~-.-.-,-.-.-.-~

vvv-,--7-,-----7
I I I -v- v
I I I I '->Modem logical channel number
I I I '->Which octet acknowledge bits apply to
I I '->discard this packet if set
I '->HI/LO IMP on line end bit
'->Odd/even bit for this logical channel

5/78 Page 161

6.4.1 Packet Type 0 Formats

Packet type 0 is for messages concerned with the actual
transmision of data

The packet codes are:
0 Message
1 Request (for 1 or 8 depending on multipacket bit)
2 Giveback (Multipacket bit always on)
3 Incomplete message
4 RFNM
5 RFNM w/allocate
6 Destination was dead
7 Incomplete reply

5/78 Page 162

6.4.1.1 Packet format for Type O, Codes 0-3

NETH
y-{l<<<<<<<<<<<<<<<<<<I
I
I

CHKH
SRCH

y+-{ !<<<<<<<<<<<<<<<<<<!
y++-<l<<<<<<<<<<<<<<<<<<I
I I I DSTH

y+++-<l<<<<<<<<<<<<<<<<<<I

I
I ,_._._._,_._._._,_._._._,_._._._,
'->1_._i_i_1_i_._._L_._._._,_._._._L

\ I v v v \ I \ I
v I I I -v- v
I I I I I '->Modem acknowledge bits, right half
I I I I '->Leader flags
I I I '->Trace this packet
I I '->Priority message
I '->Compatibility odd/even bit
'->Packet type: =O (Transmission)

'-·~·-•_,_._._._,_._._._,_._._._,

--> l . . . , . . . l . . . , . . . l ,------7,------7
v v
I '->Receive message block number
'->Message number

,_._._._,_._._._,_._._._,_._._._,
--->l_i_~~~~1_._._._J_._._._L_._._._L

v v \ _ _ I \ _ _ I \ _ _ I
I I v v v
I I I I '->Packet code (= 0-3)
I I I '->Packet number
I I '->Receive message block use number
I '->This is the last packet
'->This is multipacket (or part of a multipacket message)

,_._._._,_._._._,_._._._,_._._._,
'---->1_._._._,_._._._,_._._._i_._._._l

\ I \ __ I
v
I
I
'->Message ID

v
'->Subtype (only 0 and 3 are

defined, see below for =3)

5/78 Page 163

6.4.1.2 Type O, codes 4-7

NETH
y-{l<<<<<<<<<<<<<<<<<<I
I CHKH
I SRCH

y+-{ l<<<<<<<<<<<<<<<<<<I

1ii-{I<<<<<<<<<<<<<<<<<</ DSTH

I I I I XXXXXXXXXXXXX I I Sub type: =0
111 Dead host status
I I I
I I I ,_._._._,_._._._,_._._._,_._._._,
I l'->1 • ~ ~ 1 'xxxxxi ••• , ••• ~ 11 \7vvv ___ \ ______ 7

11 v I I I v
I I I I I I '->Modem acknowledge bits, right half
I I I I I '->Trace this packet
11 I I '->Priority (always set)
I I I '->Compatibility odd/even bit
I I '->Packet type: =O (transmission reply)
I I ,_._._._,_._._._,_._._._,_._._._,
I '-->1 •.. ' ••. i ... ' ... i
I ,------7\------7
I v v
I I '->Transmit message block number
I '->Message number
I ,_._._._,_._._._,_._._._,_._._._,
·--->lxxxxxxx1 .•• Jxxxxxxxi ••• l - - - - \--= ~7 - - - - \--= ~7

v v
I '->Packet code (=4-7: means reply)
'->Transmit message block use number

5/78 Page 164

6.4.1.3 Type 0, subtype 3: Uncontrolled packet

NETH
y-{l<<<<<<<<<<<<<<<<<<I
I I CHKH
I SRCH

y+-< I<<<<<<<<<<<<<<<<<< I
I I I I Source Host MEMBER accesss bits
11 DSTH

y++-<l<<<<<<<<<<<<<<<<<<I
I I
I I 0 to 62 data words
I I
I I Source Host COMMUNICATE access bits
I I
I I ,_._._._,_._._._,_._._._,_._._._,

'->1_._,_,_1_i_._._1_._._._,_._._._1
\ I v v v \ I \ I
v I I I v v
I I I I I '->Modem acknowledge bits, right half
I I I I '->Leader flags
I I I '->Trace this packet
I I '->Priority message
I '->Compatibility odd/even bit
'->Packet type: =O (transmission)

' . . . ' . . . ' . . . , . . . '

-->!=·=·=·=,=·=·=·=l=·=·=·=,=·=·=·=L \ I \ I
v v
I '->Source Host
'->Destination Host

,_._._._,_._._._,_._._._,_._._._,
--->1_._._._,_._._._,_._._._i_._._._L

\ I \ __ I
v
I
I
'->Message ID

v
'->Sub type: =3 (marks as

uncontrolled)

5/78 Page 165

6.4.2 Type 1 Packet Formats

The type 1 packets use the following codes:
8 Incomplete query
9 Get-a-block
A Reset block
B •• unused
C Out of range
D Got-a-block or Got-no-block (i.e., reply to a get-a-block)
E Reset block request
F Reset block reply

5/78 Page 166

6.4.2.1 Packet type 1, codes 8, A, C, D, E and F

NETH
y-{l<<<<<<<<<<<<<<<<<<I
I I l CHKH
I 1 SRCH

y+-{ <<<<<<<<<<<<<<<<<<!
y++-{ <<<<<<<<<<<<<<<<<<!
I I I 1 1 DSTH

y+++-{l<<<<<<<<<<<<<<<<<<I
I I I Dead host status
I
I ' • • • , • • • ' • • • , • • • ' '->1-.-,-,-1-,-,-,-1-.-.-.-,-.-.-.-1 \7vvvvvv\ ______ 7

v I I I I I I v
I I I I I I I '->Modem acknowledge bits, right half
I I I I I I '->Host dead or non-existent (code D)
I I I I I '->Host access violation (code D)
I I I I '->Used an allocate (code 8)
I I I '->Trace this packet
I I '->Priority (always set)
I '->Compatibility odd/even bit
'->Packet type: =1 (net control)

,_._._._,_._._._,_._._._,_._._._,
'--> 1 • • • , • • • L • • • , • • • ~ ,------7,------7

v v
I '->Destination message block number
'->Message number (codes 8 & C)

,_._._._,_._._._,_._._._,_._._._,
--->1xxxxxxx1 ... 1xxxxxxx1 ••. 1 ----\-= =-7 - - - - \-= =-7

v v
I '->Packet code: = 8,A,C-F
'->Destination message block use number

v v
I '->Source message block number
'->Source message block use number

5/78 Page 167

6.4.2.2 Packet type 1, code 9

NETH
y-{l<<<<<<<<<<<<<<<<<<I
I I I CHKH
I 1 SRCH

y+-{ <<<<<<<<<<<<<<<<<<l
11 XXXXXXXXXXXXXI I Packet code: = 9 (get-a-block)
I I 1 DSTH

y++-<j<<<<<<<<<<<<<<<<<<I
I I I Source Host MEMBER access bits
I I
I I

Source Host COMMUNICATE access bits

I I ,_._._._,_._._._,_._._._,_._._._,
I ' - > l • J J l J J x :x:x l . . . , . . . L
I \7vvvv--,------7
I v I I I I v
I I I I I I '->Modem acknowledge bits, right half
I I I I I '->Need an allocate
I I I I '->Trace this packet
I I I '->Priority (always set)
I I '->Compatibility odd/even bit
I '->Packet type: =l (net control)
I
I
I
I
I
I
I

,_._._._,_._._._,_._._._,_::•_•_•_,
-->1,._._._,_._._.7 L,._._._,_._._.7L

v v
I '->Source Host
'->Destination Host

,_._._._,_._._._,_._._._,_._._._,
'--->I • • • I • • • I • • • • • • L ., - - 7•\ - - 7•- - - _,_ - - -

-- --- \ I v v v
I I '->Source message block number
I '->Source message block use number
'->Handling type

.5/78 Page 168

6. 4. 3 Packet type 2: Routing and null

Routing packet

67---{

y-{l<<<<<<<<<<<<<<<<<<I
y+-{l<<<<<<<<<<<<<<<<<<I

I I I CHKH
SRCH

I
I
I
I

Routing words for IMPs 1 to 67

,_._._._,_._._._,_._._._,_._._._,
'->l ••. , ••• Lxxxxxxx;xxxxx~ 1 \------7--------v

v
I
'->Serial number

I
'->=0

,_._._._,_._._._,_._._._,_._._._,
- -> 1 . ~ ~ x;x ~ . ~ l xxxxxxx•xxxxxxx l \7v--\7v _______ _

v I v I
I I I '->=0 (marks as ROUTING)
I I '->Compatibility number
I '->Compatibility odd/even bit
'->Packet type: =2 (routing type)

Format for word N of routing data in above message

,_._._._,_._._._,_._._._,_._._._,
~-·-·-·-'-~-·-·_,_._._._,_._._._~
\ I \ I

v v
I '->Delay to IMP N
'->Number of hops to IMP N

5/78 Page 169

Null packet

I NETH (see section 6.4)
y-{l<<<<<<<<<<<<<<<<<<I
I I CHKH
I I SRCH
I I Sync time
I
I ,_._._._,_._._._,_._._._,_._._._,
'->~ • ' J lXJ J J l • • • , • • • l \7vv-vvv\ ______ 7

v I I I I I v
I I I I I I '->Modem acknowledge bits, right half
I I I I I '->=1 (mark as NULL)
I I I I '->"I heard you" (if 1)
I I I '->"I am a stub" (if 0)
I I '->"I believe this line is up" (if 1)
I '->Compatibility odd/even bit
'->Packet type: =2 (routing type)

5/78 Page 170

6.4.4 Packet Type 3

Type 3 packets include Demand reload, Reload request and
Packet core

6.4.4.1 Demand reload

Jxxxxxxxxxxxxxxxxl I =O
y-<l<<<<<<<<<<<<<<<<<<I

', I I CHKH Reload code
I Password
I ,_._._._,_._._._,_._._._,_._._._, I
'->l_•_l_l!+~l_._._l!X~X~X~+~X~X!X!l

\ I v \ I
v I v
I I '->=1
I '->Compatibility odd/even bit
'->Packet type: =3 (special)

6.4.4.2 Reload request

lxxxxxxxxxxxxxxxxl =O
y-{l<<<<<<<<<<<<<<<<<<I
I CHKH
I
I ' • • • , • • • ' • • • ' • • • '
'->1-.-i-ix+x~-.-.-ixxxxxxx+xxxxxxxl \ 7 v - - ,_-_7 - - - - - - - -

v I v
I I '->=2
I '->Compatibility odd/even bit
'->Packet type: =3 (special)

5/78 Page 171

6.4.4.3 Packet core

y-{l<<<<<<<<<<<<<<<<<<I

ri-{l<<<<<<<<<<<<<<<<<<j CHKH

I I I Satellite source IMP
I I I I Satellite destination IMP

y++-<I<<<<<<<<<<<<<<<<<<
I I I DSTH

y+++-<l<<<<<<<<<<<<<<<<<<I
11
11 ,_._._._,_._._._,_._._._,_._._._,
l'->l ... ' ... 1 ••• ' ••• l I ,------7,------7
I
I
I

v
I
'->=0

v
'->Packet size (must be even)

I ,_._._._,_._._._,_._._._,_._._._,
'-->J • ~ JXJXJ •• ~XXXXXXXJXXXXXXXI

\7v--\-7-----~--

v I -v-
i I '->=O
I '->Compatibility odd/even bit
'->Packet type: =3 (special) ,_._._._,_._._._,_._._._,_._._._,

--->1_._._._,_._._._1_._._._,_._._._~

\ I \ I
v v
I '->Destination Host
'->Handling type

,_._._._,_._._._,_._._._,_._._._,
---->1_._._._,_._._._,_._._._1_._._._l

\ I \ __ I
v
I
'->Message ID

v
'->Sub type

5/78 Page 172

6.4.4.3.1 Data for SETUP message

y-{l<<<<<<<<<<<<<<<<<<I
y+-{ l<<<<<<<<<<<<<<<<<<I
I I I Foreign IMP

y++-<l<<<<<<<<<<<<<<<<<<I
y+++-<l<<<<<<<<<<<<<<<<<<I
I I I I Starting address

Transfer size
Send setup flag
Send/Receive flag

I I
I I
I I
I I
I I, ... , ... , ... , ... ,
I '->l=·=·=·=,=·=·=~=l=·=·=·=,=·=·=·=L I \ I v \ I
I v I v
I I I '->Destination line number
I I '->Magic modem bit
I '->"SETUP" code

,_._._._,_._._._,_._._._,_._._._,
-->J_._._._,_._._._1_._._._,_._._._1

\ I \ I
v v
I '->Foreign Host number
'->Foreign handling type ,_._._._,_._._._,_._._._,_._._._,

- --> l . . . ' . . . , . . . l . . . l
\ - - - - - - - - - - 7 '-= ~7

v
I

v
'->Subtype

'->Foreign message ID
' . . . ' . . . ' . . . ' . . . '

---->1-.-.-.-,-.-.-~-1-.-.-.-,-.-.-.-l
,-----7-v,------7

v I v
I I '->Foreign Line number
I '->Magic modem bit
'->Core type

5/78 Page 173

6.4.4.3.2 Data for CORE message

I
Core pieces-{

\

y-{l<<<<<<<<<<<<<<<<<<I
I

y+~<l<<<<<<<<<<<<<<<<<<I
y++-<l<<<<<<<<<<<<<<<<<<I

II
II

The words of data

II ,_._._._,_._._._,_._._._,_._._._,
I '->L_._._._,_._._~_1_._._._,_._._._L
I \ I v \ I
I v I v
I I I '->Destination line number
I I '->Magic modem bit
I '->"CORE" code
I , - • - • - • - ' - • - • - • - ' - • - • - • - '- •. _ • - • - , '-->1_._._._,_._._._,_._._._,_._._._L

\ I
v
'->Starting address of this piece

(or 0 if no more) ,_._._._,_._._._,_._._._,_._._._,
--->l,._._._,_._.,~,,_._._._,_._._.,l

v v
I '->Size of this piece
' - >Co re type

5/78 Page 174

6.5 Modem Parameter Blocks

One block per modem.
Length is 56 to 80 words, depending on number of logical
channels.

First 14 words (byte offsets 0-lB!):

5---{

Lock on modem software
y-{l<<<<<<<<<<<<<<<<<<I
I
I

Neighbor IMP number

I -:--' ------~
y+-{l<<<<<<<<<<<<<<<<<<I

Hardware Checksum Error count
Count of unassigned channels

II
II
II
II
II
II
II

Transmit HI/LO end bit
Receive HI/LO end bit

Buffer for Null to send

Demand Reload flag for this line

II ,_._._._,_._._._,_._._._,_._._._,
l'->1_._._._,_._._._L_._._._,_._._._L
I \ I \ I
I
I
I
I

v
I
'->Line State

v
'->Line clock rate '(1-10 kb, 2-50 kb)

,_._._._,_._._._,_._._._,_._._._,
'-->l_._._._,_._._._~_._._._,_._._._~

\ I \ I
v v
I '->Logical modem number
'->Flag - received I-heard-you

.•

5/78 Page 175

Modem Parameter Blocks (cont.) - words 15-32 (bytes 1C-3F!)

y-{l<<<<<<<<<<<<<<<<<<I
y+-{ !<<<<<<<<<<<<<<<~

II I I
II I I
I I I
I I
I I
II
II
II
I I
I I
I I I 1xxxxxxxxx1

y++-<l<<<<<<<<<<<<<<<<<<I

Hardware Interface Address
Spare Interface Address, if
Modem Input Throughput
Modem Output Throughput
Current Input Buffer
Preallocated Next Buffer
Current Buffer being sent
Flag to Free Output Buffer
Local Delay on this line
Maximum Channel number this
Flag to send Routing

any

line

I I
I I
I I
I I
I I

Flags to send Nulls (l/ACK octet)
Core Packet to send
Sent Queue Start Pointer
Sent Queue End Pointer

i I ,_._._._,_._._._,_._._._,_._._._,
I '->I ' 'xxxJxxxxxxx+xxxxxxx+x1x1x1x1 1 vv _____________ _

I '->Crosspatch Modem Interface
'->Loop Modem Externally

' . . . ' . . . ' . . . ' . . . '
-->!-.-.-.-,-.-.-.-~-.-.-.-,-.-.-.-~ ,------7,------7

v v
I '->Hardware Receive PID Level
'->Hardware Transmit PID Level

I
I
I
I
I
I
I
I
I ,_._._._,_._._._,_._._._,_._._._,
'--- > 1 • • • ' • • • ~ • • • , • • • ~ ,------7,------7

v v
I '->Flag for Routing received
'->Flag to send I-heard-you

5/78 Page 176

Modem Parameter Blocks (cont.) - last 24 to 48 words (bytes 40-9F!)

(length = 56 for 8 or 16 channels, up to 80 for 128 channels)

1-8-{

1-8-{

1-8-{

1-8-{

0-7-{

y-{l<<<<<<<<<<<<<<<<<<I
I

Priority Queue Start Pointer
Priority Queue End Pointer
Regular Queue Start Pointer
Regular Queue End Pointer
Number of Routing Ticks (for NCC)
Number of Ticks with no Routing in
Transmit Hardware Lock
Receive Hardware Lock

Transmit Time of Null for timing
Elapsed Time to send Null
Lock on Modem Input Queue
Modem Input Queue Start
Modem Input Queue End

8-128 transmit channel states (TSEX)

8-128 receive channel states (RSEX)

8-128 receive channel free bits

8-128 transmit channel busy bi ts

Unused to next 8 -WO rd boundary

,_._._._,_._._._,_._._._,_._._._,
- > 1 • • • , • • • , • • ~ , • • • L \ - - - - - - - - - 7 ,~-~7

v v
I '->Routing Frequency Control Bits
'->Retransmit Time

5/78 Page 177

6.6 Host Parameter Blocks

One 56-word block for each Real, Fake, or Very Distant Host
First 7 words match Back Host Parameter Block (see below)

First 14 words (bytes 0-lB!):

6---{

I I
y-{l<<<<<<<<<<<<<<<<<<I
I_I ______ _._
I
I
I
I
I

Lock on Host Input Parameters

Host Input Dispatch
Temporary
Temporary Return
Temporary Return
Host Input Timer

y+-<al <<<<<<<<<<<.<<<<<<<I
II· ______ _

I I ·~I
-'-~~~~~~~~~~--'-

Host Output Leader Buffer

I I
I I , • • • , • • • , • • • , • • • , I'-> l- ~x:iiXIX.XIXIXIX.XIXIXIx;x:£x ,- i-1
I -v-------------vv
I I I '->l => Fake Host
I I '->l => Fake or VDH Host
I '->l => Back Host
I ,_._._._,_._._._,_._._._,_._._._,
'-->lXIXIXIXl i i i 1 • • • , • • • ~ -----v-vvv\ ______ 7

I I I I v
I I I I '->Host status (0-up, I-down,
I I I I 2-tardy, 3-doesn't exist,
I I I I 4-software reset in progress)
I I I '->Task accepted packet
I I '->Task refused packet
I '->Task should free Transaction Block
'->Reset Host Ouput Hardware and Software

5/78 Page 178

Host Parameter Blocks (cont.) - words 15-30 (bytes 1C-3B!)

y-{l<<<<<<<<<<<<<<<<<<I
y+-< l<<<<<<<<<<<<<<<<<<I
I I
I I
11

y++-{
y+++-{

I I
I I

I

I
I
I
I<<<<<<<<<<<<<<<<<<
T<<<<<<<<<<<<<<<<<<
I
I
I
I
1
l
I
]
l

Hardware Interface Address
Alternate Interface Address if any
Builds PKTH in Host Input

Handling type for Host Input
Dead Host Status
IMP number for this Host
Pointer to Transaction Block
Pointer to Transmit Message Block

· Current Hardware Input Buffer
Buffer Software is Processing
End Pointer for Software Buffer
Temporary storage for PTIP

,_._._._,_._._._,_._._._,_._._._,
->l_J_J!X!•!X!X!X!•!X!X!X!~XX!X!X!l

v v
I '->Crosspatch Host Interface (if Real or VDH Host)
'->Loop Modem Externally (if VDH Host) ,_._._._,_._._._,_._._._,_._._._,

--> j • • • , • • • L • · • , · • · L ,------,,------,
v v
I '->Host Input PID Level
'->Host Output PID Level ,_._._._,_._._._,_._._._,_._._._,

--->i_._._._,_._._._L_._._._,_._._._L
\ I \ I

v v
I '->Source Host (i. e. this Host)
'->Destination Host for Host Input

,_._._._,_._._._,_._._._,_._._._,
----> l JXXXJ ' ••• L ... ' .•• L v - - \..::__-..::__7 \ - - - - - - 7

I v v
I I '->Logical Host index (0-2E)
I '->Words of leader padding
'->New leader mode flag

517 8 Page 179

Host Parameter Blocks (cont.) - words 31-56 (bytes 3C-6F!)

3---{

y-{l<<<<<<<<<<<<<<<<<<I
I I
I I
I I
I
I
I
I

Host Throughput - Messages to Net
Host Throughput - Messages from Net
Host Th roug hpu t - Packets to Net
Host Th rough put - Packets from Net
Host Th roug hpu t - Messages to Self
Host Throughput - Messages from Self
Host Throughput - Packets to Self
Host Throughput - Packets from
Host Throughput - Words Input
Host Throughput - Words Out put

Lock on Host Output Hardware
Host Output Dispatch
Host Output Timer
Host Hardware Output Timer

Self

Pointer to current queue to service
Flag, <0 if just finished message
Flag to send special control message
Lock on Host Output Software

Regular Queue Start Pointer
Regular Queue End Pointer
Priority Queue Start Pointer
Priority Queue End Pointer

(unused)

I ,_._._._,_._._._,_._._._,_._._._,
'-> j • • • ' • • • 1 • • • ' • • • l ,------7,------7

v v
I '->Pointer to pending control message
'->Number of pending control messages

5/78 Page 180

6.7 Back Host Parameter Blocks

First 7 words match Host Parameter Block (above)

One 17-word block per Back Host

7---{ First seven match Host block

y-<l<<<<<<<<<<<<<<<<<<I
I I I TYPH for Back Host Message
I SRCH for Back Host Message
I I SEQH for Back Host Message
I I I PKTH for Back Host Message
I I _J_ DSTH for Back Host Message
I I I MIDH for Back Host Message
I I I First word of Data for Back Host Message
I 1xxxxxxxxx1 I Back Host PID level
I I I Message Block Pointer
I
I ,_._._._,_._._._,_._._._,_._._._,
'->l!~!~!~!•!~1~-~_l!~1~!~!+!~!~!~!l

v v
I ' ->Task took packet
' ->Task refused packet

5/78 Page 181

6.8 Fake Host Parameter Blocks

One 19-word block for each Fake Host.
The first seven words simulate a Pluribus Host Interface.
VDH Parameter Block is identical for first 12 words.

Words 1-12 (bytes 0-17!):

y-{ !<<<<<<<<<<<<<<<<<<!
I l" I
I ~'~~~~~~~

y+-{l<<<<<<<<<<<<<<<<<<I
II I

Input Start Pointer
Input End Pointer

Output Start Pointer
Output End Pointer II _,,_I --------:-

y++-{ !<<<<<<<<<<<<<<<<<<!

I

1xxxxxxxxx1
1xxxxxxxxx1

Fake Host Software Lock
Fake Host to IMP Word Pointer
Fake IMP to Host Word Pointer
Fake Host to IMP PID Level
Fake IMP to Host PID Level

I
I
I
I
I
I
I
I ,_._._._,_._._._,_._._._,_._._._,
'- >' . . . ' . . . 1 • • • ' • • • 1 ,------7,------7

v v
I '->Host Number (OFC-OFF! for Fakes)
'->Device Type = 2 (Ho st)

' . . . ' . . . , . . . ' . . . '
-->lXYX,-,-lXYXYXYXJ-.-.-.-,-.-.-.-1 ---y-y----,------7

I I
I I
I '->Host Up if 1
'->Input Busy if 1

v
'->Host to IMP PID Level

I , ••• , ••• , ••• , ••• ,
'---> 1XYX ,- 'x+xYXYXYX ,- .- .- .- ,- .- .- .- , ---y-----,------7

I v
I '->IMP to Host PID Level
'->Output Busy if 1

5/7 8 Page 182

Fake Host Parameter Block (cont.) - Words 13-19 (bytes 18-25!)

Return for JAMLED
Return for JAM
Return for DOZE
Return for SUCK
Return for WAIT
Saved Data Word for DOZE
Saved Data Word for WAIT

5/78 Page 183

6.9 Very Distant Host (VDH) Parameter Blocks

First 12 words match Fake Host Block (above)
Words 1-25 (bytes 0-31!):

12----{ First 12 words match Fake Host Block

VBHOST: Pointer to Host Parameter
VACKI: Current ACK Word
VCHNI: Current Input Channels
VCHNO: Current Output Channels
VDHDA: Modem Interface Address
VDHALT: Alternate Interface Address

y-{l<<<<<<<<<<<<<<<<<<I
y+-<l<<<<<<<<<<<<<<<<<<I

y++-<l<<<<<<<<<<<<<<<<<<I
I
I
I
I
I

VSDUP:
VRDUP:
VS NOP:
VRNOP:

Retransmission Counter
Received Duplicates Counter
Sent NOPs Counter
Received NOPs Counter

I ,_._._._,_._._._,_._._._,_._._._,
'->~_._._._,_._._._1_._._._,_._._._~

\ I \ I
v
I
I

v
'->VLSHS: Handshake Count until

Change State
'->VLS: Line State: 0-down, 1-handshaking, 2-up ,_._._._,_._._._,_._._._,_._._._,

-->1_._._._,_._._._~_._._._,_._._._1

\ I \ I
v
I
I
'->VIMERS:

v
'->VRUIBF: Input Reused a Buffer

Counter
Input Hardware Error Count

' . . . ' . . . ' . . . ' . . . ' '--->1-.-.-.-,-.-.-.-1-.-.-.-,-.-.-.-1
,------7,------7

v
I
I
'->VOMERS:

v
'->VLSTT: Line State Timeout

Counter
Output Hardware Error Count

5/78 Page 184

VDH Parameter Blocks (cont.) - Words 26-56 (bytes 32-6F!)

VLOOP-{

VS TAT-{

2-----{

2-----{

2-----{

2-----{
\

6-----{

y-{l<<<<<<<<<<<<<<<<<<I
I

y+-{l<<<<<<<<<<<<<<<<<<I
I I
I I
11 """'-'------~

VFILL: Curent Input Buffer
VHEAD: VDH Header Word

y++-<l<<<<<<<<<<<<<<<<<<I
I
I
I
I
I
I
I
r
I
I
I
I

VCBI: Input Channel Slots

VCBO: Output Channel Slots

STL: Output Channel Timers

VLDR: ACK word per Channel
Six Leader Words per channel

6 Unused words

I ,_._._._,_._._._,_._._._,_._._._,
'->1_~_~!X!J!X!X!X!4!X!X!X!4!X!X!X!1

v v
I '->MLOOPI: Crosspatch Modem Interface
'->MLOOPE: Loop Modem Externally

' . . . ' . . . ' . . . ' . . . '
- -> f!x:!xxx!+:!x:!x!x:!4!x!x!x! 1= ~= ~= ~= 1

v v v v
I I I '->VSSHLO: Send a Hello
I I '->VSSIHY: Send an
I I I-Heard-You
I '->VSRIHY: Got an I-Heard-You
'->VSSACK: Send an ACK ,_._._._,_._._._,_._._._,_._._._,

---> ~ • • • ' • • • ~ • • • ' • • • ~ ,------,,------,
v v
I '->VOEBO: Output Channel Odd/Even
I Bits
'->VOEBI: Input Channel Odd/Even Bits

5/78 Page 185

6.10 Transmit Message Block Table

56 8-word blocks

y-{l<<<<<<<<<<<<<<<<<<I
y+-{l<<<<<<<<<<<<<<<<<<I

y++-{l<<<<<<<<<<<<<<<<<<I
II I
II I

Lock on this block
Receive IMP (negative for unused block)

Outstanding message word (see below)
Dead Host status

y+++-<l<<<<<<<<<<<<<<<<<<I
II I
II ,_._._._,_._._._,_._._._,_._._._,
l'->l_._._._,_._._._1_._._._,_._._._1
I \ ·1 \ I

v
I
'->Receive Host

v
'->Transmit Host

I
I
I
I ,_._._._,_._._._,_._._._,_._._._,
'--~1_._._._J_._._._L_._._._,_.~·-·_l

\ __ _ I \ _ _ I \ I
v v

I
v
I

I '->Receive
'->Receive message block number

message block use number
I '->Handling type

I I ,_._._._,_._._._,_._._._,_._._._,
I '---> 1 • • • , • • • l • • • 1 • • • 1 I \ - - - - - - 7 \-= ~7 \-= ~7

v v v
I I '->Age

I
I
I
I
I

I '->Transmit message block use number
'->Next message number to send (TMESS) ,_._._._,_._._._,_._._._,_._._._,

' - ---> l ' • • ' • • • l • • • ' • • • ' 1 v\-----7,------7
I v v
I I '->Local Host index (0-2E)
I '->Allocate timeout for giveback
'->Clear message pipe

5/78 Page 186

Transmit Message Block Table (cont.)

Outstanding message word:
(sixth transmit message block word)

' . . . ' . . . ' . . . , . . . '
l=~=~=·=,=·=~=·=1=~=~=~=1=~=~=~=1 v v \~ ~/ \ I v v v v v v v v

I I v v I I I I I I I I

I I I I I I I I I I I '->0 if message TMESS-8 outstanding
I I I I I I I I I I '->0 if message TMESS-7 outstanding
I I I I I I I I I '->0 if message TMESS-6 outstanding
I I I I I I I I '->0 if message TMESS-5 outstanding
I I I I I I I '->0 if message TMESS-4 outstanding
I I I I I I '->0 if message TMESS-3 outstanding
I I I I I '->0 if message TMESS-2 outstanding
I I I I '->0 if message TMESS-1 outstanding
I I I '->Incomplete query timeout
I I '->Allocate count
I '->Initialize
'->Reset

5/78 Page 187

6.11 Receive Message Block Table

56 8-word blocks

(see below for reply states and types)

I I
y-{l<<<<<<<<<<<<<<<<<<I

y+-{ !<<<<<<<<<<<<<<<<<<!
y++-{l<<<<<<<<<<<<<<<<<<I

Lock on this block
Transmit IMP (negative if block is

I I I I
II
II
II

1xxxxxxxxx1

2-bit reply states for 8 messages
2-bit reply types for 8 messages
Local Host index (0-2E)

II, ... , ... , ... , ... ,
l'->,-.-.-.-,-.-.-.-1-.-.-.-,-.-.-.-~
I \------7,------7

v v
I '->Receive Host
'->Transmit Host

I
I
I
I ,_._._._,_._._._,_._._._,_._._._,
'-->' . . . ' . . . 1 • • • ' • • • 1 '-= =-_7 \--= =-_ 7 \ - - - - - - 7

v v
I I
I '->Transmit
'->Handling type

v
'->Transmit message block number
message block use number

v v v
I I '->Age
I '->Receive message block use number
'->Next message number to give to Host (RMESS)

unused)

5 /7 8 Page I 88

Receive Message Block Table (cont.) - State and Type words

State and type words contain 8 2-bit entries, numbered i=I, ••• ,8
(left to right), where entry number i corresponds to either message
number RMESS-i (previous window, *P*), or to message number
RMESS+8-i (current window, *C*), depending on the values of state
and type. The meanings of various combinations, along with the
window (*P* or *C*), is given by the following table:

STATE->

TYPE
v

00

OI

IO

I I

IDLE
00

RFNM sent
P

ALLS sent
P

DEAD sent
P

INC sent
P

REQUEST
OI

(unused)

REQ8 rcvd
C

ALLI to
be sent

C

ALL8 to
be sent

P

MESSAGE REPLY
IO I I

ALLI sent/ RFNMI to
msg rcvd be sent
C,*P* *P*

RFNM8 to
GVB rcvd be sent

C *P*

DEAD to
DEAD rcvd be sent

* C* *P*

INC to
INC rcvd be sent

C *P*

5/78 Page 189

6.12 Transaction Block Table

40 8-word blocks

Transaction Block states depend on the status bits in the
sixth word. Blocks generally progress through the following
three states in order. Each Transaction Block keeps track of
the status of a single message from the time of reading in the
message leader until the RFNM is sent to the Host.

6.12.1 Reserved Transaction Block Format

Blocks reserved by Host to IMP processes

First leader word (see leader formats above)
Second leader word (flags and type (=O))
Third leader word (handling type and Host)
Fourth leader word (remote IMP number)
Fifth leader word (message-id)
Sixth leader word (message length)

y-{l<<<<<<<<<<<<<<<<<<I
I . I Packet pointer (one-packet source copy)
I
I ,_._._._,_._._._,_._._._,_._._._,
'->l ••• , ••. l i i ix1 i i i l ,------7-v-v-v--v-v-v-v

v
I
I
I
I
I
I
I
I
I
I

I I I I I I I
I I I I I I '->Host expects a reply for this
I I I I I I message
I I I I I '->Multipacket message or request
I I I I '->Request is outstanding (1 or 8
I I I I packet)
I I I '->This block has control message for Host
I I I < = o >
I I '->"Ready" message to Host pending
I '->This message used an allocate
'->This block reserved by Host (=1)

'->Transaction block timeout

5/78 Page 190

6.12.2 Outstanding Message Transaction Block Format

Messages awaiting replies from destination IMP

First leader word (see leader formats above)
Second leader word (flags and type (=O))

y-{l<<<<<<<<<<<<<<<<<<I
I .
I
I 1xxxxxxxx1 1xxxx1

Fourth leader word (remote IMP number)
Fifth leader word (message-id)
Transmit message block use number

y+-{l<<<<<<<<<<<<<<<<<<I
I I
I I

Packet pointer (one packet

I I ,_._._._,_._._._,_._._._,_._._._,
l'->1 ••• , ••• l . · . , · · · L I ,------7,------7

v v

source

I
I
I

I '->Transmit Message block number
'->Message number for this message

I ,_._._._,_._._._,_._._._,_._._._,
'-->~ ••• , ••• L i i ix~ i i ~ L ,------7vvv-vvvv

I I I I I I I

copy)

v
I
I
I
I
I
I
I
I
I
I

I I I I I I '->Host expects a reply for this
I I I I I I message
I I I I I '->Multipacket message or request
I I I I '->Request is outstanding (1 or 8
I I I I packet>
I I I '->This block has control message for
I I I Host (=0)
I I '->"Ready" message to Host pending
I '->This message used an allocate
'->This block reserved by Host (=0)

'->Transaction block timeout

5/78 Page 191

6.12.3 Control Message Transaction Block Format

Control Messages awaiting transmission to Host

I I

First leader word (see leader formats above)
Second leader word (flags and type)
Third leader word (handling type and Host)
Fourth leader word (remote IMP number)
Fifth leader word (message-id and subtype)
Dead Host status (if applicable)

y-<l<<<<<<<<<<<<<<<<<<I
I I I Pointer to Host to send to
I
I ,_._._._,_._._._,_._._._,_._._._,
'->l_._._._,_._._._~_i!X!X!l_i!X~X!l

\ I v v
v
I
I
I

I I
I '->This block has control message for Host
I C=l)
'->This block reserved by Host (=O)

'->Transaction block timeout

5/78 Page 192

6.13 Reassembly Block Table

24 8-word blocks

Lock on this block
y-{l<<<<<<<<<<<<<<<<<<I
I I I Pointer to receive message block

y+-{l<<<<<<<<<<<<<<<<<<I
y++-{1<<<<<<<<<<<<<<<<<<1

I I I Start pointer of packet queue
End pointer of packet queue
Message length so far in bytes

I -I ~~~~~~~~~~~

I
I ,_._._._,_._._._,_._._._,_._._._,
'->i ... ' ... 1 ••• ' ••• ~ ,------7,------7

v v
I '->State of Block (1-3, see below)
'->Number of packets received so far (0-7)

,_._._._,_._._._,_._._._,_._._._,
-->1 • •• , ••• 1 ••• ~XXXIXIXI ,------,,--,----

v v
I '->Receive message block use number
'->Message number

' . . . , . . . ' . . . ' . . . '
--->1---.-.-,-.-.-.-i-.-.-.-,-.-.-.-~ ,------,,------,

v v
I '->Number of allocated buffers this block
'->Highest packet number this message (1 or 8)

5/78 Page 193

Reassembly Block Table (cont.) - Block states:

Unused - State byte = 1, all other words (except lock) = 0

No-name - State byte = 3, number allocated = 1 or 8,
receive message block and use number set up.

Partial - State byte = 2, number allocated = original allocation
less number so far, packets so far = 1 to 7, message
block, use, and number set up, highest packet number
set up once last packet is received, length is total
for packets received so far.

Complete - State byte = 2, number allocated 0, packets
so far = highest packet number, else like partial.

5/78 Page 194

6.14 Routing Tables

RUT, Route Use Table, best line directory - 1 word/IMP

Pointer to modem line for best route to IMP

HOPDEL - Hops and Delay Table - 1 word/IMP
,_._._._,_._._._,_._._._,_._._.~,

1_._._._,_~_._._,_._._._,_._._._1

\ _ _ ! \ I
v v
I '->Delay count to this destination
'->Hop count to this destination

ISTATE and HOPRUT - IMP state and best Hop Route - 1 word/IMP ,_._._._,_._._._,_._._._,_._._._,
1_._._._,_._._._~_._._._,_._._._1

\ I \ I
v
I
I
'->IMP state:

v
'->Index of best hop route modem: 0-us,

2-modem 1, 4-modem 2, etc.
2-up, even-going down, FF-down, odd-coming up

DELTIM and HOPTIM - Delay and Hop Route Hold-down Timers - 1 word/IMP ,_._._._,_._._._,_._._._,_._._._,
1_._._._,_._._._~_._._._,_._._._1

\ I \ I
v v
I '->Hop hold-down timer: 0-not holding
'->Delay hold-down timer: 0-not holding

THSDEL - Change in Delay for This Routing Tick - 1 word/IMP

Accumulated change in delay, this routing tick

OLDDEL - Change in Delay for This and Last Routing Tick - 1 word/IMP

Accumulated change in delay, latest two ticks

