
~ Programming with the Uniform System
-

BUTTERFLY
~PLUS

\ ~

\ ~

PROGRAMMING WITH

THE UNIFORM SYSTEM

October 28, 1987

Copyright© 1987 by BBN Advanced Computers Inc.

ALL RIGHTS RESERVED

RELEASE LEVEL

This manual conforms to the Beta Test version of the Butterfly Plus Parallel Processor

released October, 1987, and Version 4.0 of the Chrysalis operating system.

NOTICE

BBN Advanced Computers Inc. (BBNACI) has prepared this manual for the exclusive

use .of BBN customers, personnel, and licensees. The information in this manual is

subject to change without notice, and should not be construed as a commitment by

BBNACI. BBNACI assumes no responsibility for any errors that appear in this

document.

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise without the prior written permission of BBN Advanced

Computers Inc.

Butterfly Plus and Chrysalis are trademarks of Bolt Baranek and Newman, Inc.

UNIX is a registered trademark of AT&T.

DEC, VAX, IBtrix, PDP-11, and VMS are trademarks of Digital Equipment Corporation.

4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.

IBM/370 is a trademark of International Business Machines, Inc.

The information in this publication is subject to change without notice.

Chapter 1

Memory Management
Processor Management

Chapter 2

Include File

Contents

The Uniform System Approach

Using the Uniform System

1-2
1-4

2-1
Initializing the Uniform System ... ·........... 2-2
Obtaining Configuration Information 2-2
Memory Management 2-4
Memory Allocators .. 2-7
Synchronization and Atomic Operations ... 2-10
Processor Management 2-12
Synchronous Generators .. 2-15

The Index Family of Generators .. 2-16
The Array Family of Generators .. . 2-18
The Half Array Family of Generators 2-19
Miscellaneous Generators ·... 2-20

Asynchronous Generators 2-20
Copying Process Private Data .. 2-22
Sharing Variables Among Processors ... 2-29
Measuring Your Program 2-30
Reading the Clock 2-33
Input an.d OutJ)ut .. ·...................................... 2-33
Configuring the Uniform System ... 2-33
Tagging Memories 2-38

iii

Contents The Uniform System

Building a Generator 2-39

Chapter 3 Uniform System Examples ·

Multiprocessor "Hello World" ;................... 3-1
Matrix Multiplication 3-3
Convolution 3-8

Chapter 4 Tuning Programs for Performance

Insufficient Tasks 4-1
Tasks Not Long Enough 4-2
Memory Contention

Chapter 5 Uniform System Library Routines

Figures

2-1
2-2
2-3
2-4
2-5
2-6
2-7
3-1
3-2
3-3
3-4
3-5
3-6

iv

Address Space of a Uniform System Process
Processes Share Much of Their Address Spaces
A Scattered Matrix Created by U sAllocScatterMatrix
Share Passes Copies of Process Private Variables
Between U sAllocScatterMatrix and ShareScatterMatrix Calls
After All Processors Start Working on GenOn ... Tasks
The U sGenDesc typedef
Output from "Hello World" Program
Program Code for "Hello World" Program
Output from Matrix Multiplication Program
Program Code for Matrix Multiplication Program
Output from Convolution Program
Program Code for Convolution Program

4-3

2-5
2-6
2-9

2-24
....... 2-26
2-27
2-40

3-1
3-2
3-4
3-7
3-9

3-11

Chapter 1

The Uniform System Approach,

The Butterfly Plus TM hardware and Chrysalis TM operating system are a
foundation on which a variety of software structures may be built. Experi­
mentation with a wide range of software applications has produced a
teachable, efficient programming style for using this foundation. This
style, called the Unifo~ System approach, has proven particularly effec­
tive for applications containing a few frequently repeated tasks (e.g., much
of scientific computing). It has also been used successfully in applications
with less homogeneous task structures.

The Uniform System is a library of subroutines that can be used with C
language or FORTRAN programs. This manual is written from the point of
view of the C language. For th~ most part, the FORTRAN and C language
implementations of the Uniform System are functionally equivalent. Any
minor differences are pointed out in this m~ual.

There are two versions of the Uniform System library: one for the
Butterfly Plus and one for the frontend machine (typically a VAX or Sun
workstation). The frontend machine version implements all the routines
in the Butterfly Plus version and emulates enough of the Chrysalis func­
tions to permit most C language programs to be partially debugged on the
frontend machine in a uniprocessor environment. The partially debugged
programs can then be moved to the Butterfly Plus parallel processor.

1-1

The Uniform System Approach The Uniform System

Beyond the usual concerns of programming, there are two key considera­
tions specific to the Butterfly Plus parallel processor: storage management
and processor management. The goal of storage management is to use the
full memory bandwidth of the machine; that is, to keep all the memories in
the machine equally busy, thereby preventing the slowdown that occurs
when many processors attempt to access a single memory. The goal of
processor management is to utilize the full processor bandwidth of the
machine; that is, to keep all the processors equally busy, thereby prevent­
ing the inefficiency that occurs when some processors are overloaded
while others sit idle.

MEMORY MANAGEMENT

The Butterfly Plus switch provides low delay, high bandwidth access to all
memory in the machine. To help the programmer take advantage of this
"common memory," the Uniform System implements a large shared
memory for application programs, and provides means to spread applica­
tion data uniformly across the memories of the machine.

The Chrysalis operating system provides "memory mapping" operations
that enable processes to manage their address spaces, and hence the
memory they access. Two or more processes can share memory by map­
ping the same memory segment.

In practice, memory sharing among processes is typically used in two dif­
ferent ways. One approach to programming the machine is to isolate
processes from one another by mapping memory so th~t only a relatively
small subset of each process address space is accessible to other
processes. This subset can be changed at any time, and is often different
for different groups of processes. This met.hod facilitates debugging by
limiting the number of processes likely to have touched a particular data
structure.

The Uniform System uses a different approach, which is to share a single
large block of memory by mapping the block into the address space of
each process. This frees the application programmer from the need to

'

1-2

The Uniform System The Uniform Syste~ Approach

manipulate memory maps, and simplifies programming by implementing a
large shared address space for application programs. Data two or more
processors must share is allocated without regard to which processors will
be using it. The stack and variables local to individual processors are kept
locally, and like code, are not fetched across the Butterfly Plus switch.

Collectively, the memories of Butterfly Plus processor nodes form the
shared memory of the machine. This means the large shared memory an
application program sees is implemented by a collection of separate
memories. If all the shared data used by an application happened to be
located in a single physical memory, contention for that memory (as many
processors attempt to access the data) would force the processors to
proceed serially, thereby slowing program execution. Since the aggregate
memory bandwidth of the machine is very large (10 gigabits per second
for a 256 processor machine), slowdowns due to memory contention can
be reduced by scattering application data across the physical memories of
the machine. When many processors access data that has been scattered,
their references tend to be distributed across the memories and can make
use of the full memory bandwidth of the machine. The Uniform System
Library memory allocator scatters data structures in a way that allows
straightforward addressing conventions. The system also supports a set of
more specialized techniques for use if the allocator is either inappropriate
or ineffective.

To summarize, the approach to memory management used by the Uniform
System is based on two principles:

• Use a single large address space shared by all processes to simplify pro­
gramming; and

• Scatter application data across all memories of the machine to reduce
possible memory contention.

This memory management strategy has a cost, due both to the slower
access to remote memory and to possible contention in the switch and at
the memories. This cost is an increase in execution time, typically from
4% to 8%, and is due less to contention than to the slightly slower remote

1-3

The Uniform System Approach The Uniform Systel'l'.1

access. The benefit of .this memory management strategy is that the pro­
grammer can treat all processors as identical workers, each able to do any
application task, since each has access to all application data. This greatly
simplifies programming the machine, a benefit that far outweighs the mod­
est cost.

Another aspect of memory management is the need to make certain
memory operations atomic. The Chrysalis kernel provides an extensive
repertoire of primitive atomic operations. When the atomic operations
required are more complex than these primitives provide, the primitives
can be used to build simple locks that, in turn, can be used to implement
arbitrarily complex atomic operations.

PROCESSOR MANAGEMENT

The most novel aspect of programming the Butterfly Plus is processor
management. This falls naturally into two separate parts: identification of
the parallel structure inherent in a chosen algorithm, and controlling the
processors to achieve the determined parallelism. In many applications
the parallel structure is both obvious and rich. In others, the structure is
less clear and may require reworking the algorithm. Occasionally, an
application will be inherently serial, and cannot be structured to take
advantage of parallel processing. We can, however, offer a few guide­
lines:

1. Start with the best existing algorithm that implements the application.
A B utterfty Plus system with P processors can do no more than speed
up an algorithm by a factor of P. Speeding up a poor algorithm may
not overcome its inefficiencies. For example, it may take an 0(N2)

parallel sort longer to run on a 128 processor Butterfly Plus than it
takes an O(NlogN) sort to run on a single processor.

2. Attempt to do the same number and kind of steps as those in the best
algorithm. The order of steps in an algorithm can often be manipu­
lated to achieve parallelism. This may involve adding logic in the
form of simple locks to ensure the atomicity of selected operations.

1-4

The Uniform System The Uniform System Approach

3. Look for parallel structure at all levels and in all sizes: the more the
better. If necessary, it is usually relatively easy to combine small
tasks at a later stage into larger more manageable sizes; it is often
more difficult to divide a task at a later stage into smaller ones. For
example, if an application requires fast Fourier transforms (FFI's) on a
number of different channels, the programmer should plan to exploit
both the parallelism inherent in an individual FFI' and the parallelism
due to different channels.

The Butterfly Plus parallel processor can work very efficiently with
individual tasks a few milliseconds in length; if necessary, it can also
work on tasks in the hundreds of microseconds. For shorter tasks,
various overheads begin to interfere with good performance.

There are two strategies for determining the desirable number of con­
current operations to have at any stage in the processing. One strategy
recommends a relatively static approach, using exactly as many con­
current tasks as there are processors. The other strategy uses many tasks.
per processor. Both strategies attempt to deal with end effects-the pro­
cessor idle time that occurs toward the end of a stage when some proces­
sors have finished and others are still working. The first approach minim­
izes the effect by explicit construction: here the programmer tries to
apportion the work so that all processors finish at approximately the same
time. The second approach allocates tasks to processors dynamically in
an attempt to balance the load. As a processor finishes a task, it is
assigned the "next" task ready for execution. This approach minimizes
end effects by having many more tasks than processors. Some wait time
occurs at the end of the problem, but is generally small relative to the total
program execution time.

The Uniform System encourages the dynamic approach, but also supports
the static appr~ach. For many applications the dynamic approach is
simpler and more -reliable, since it is not necessary to know in advance
how long an individual piece of work will take. Furthermore, this
approach adapts readily to varying numbers of processors and sizes of
problems.

1-5

The Uniform System Approach · The Uniform System

Once the programmer determines what processing will occur in parallel,
he or she must then control the Butterfly Plus parallel processor to make
this happen. There are several ways to do this. The Chrysalis kernel pro­
vid~s a rich collection of relatively low level operations for starting
processes e>n various processors and for communicating among them. The
Uniform System provides a higher level abstraction for managing the pro­
cessors; one that is natural and efficient for a large class of applications.

The Unifo~ System treats processors as a group of identical workers,
each able to do any task. To use the Uniform System, a programmer must
structure the application into two parts:

• A set of subroutines that perform various application tasks; and,

• One or more "generators" that identify the "next" task for execution.

To illustrate this, consider matrix multiplication. On a uniprocessor the
following nested loop could be used to multiply n x o matrix A by o x m
matrix B to produce n x m result matrix C :

for (i = O; i < n; i++)
for (j = O; j < m; j++)

Dot:eroduct (i, j)

where the DotProduct routine computes the dot product of the ith row of
A and the jth column of B, then stores the result as the (i, J)th element of
C. One way to parallelize this loop would be to cause the DotProduct
r<;>utine to execute as a task, ensuring that the DotProduct task gets per­
formed once for each element in the result matrix. There is a task genera­
tor in the Uniform System library, called GenOnA, that can be used to do

· this; the uniprocessor nested loop would then be replaced by:

GenOnA (Dot:eroduct, n, m);

The GenOnA task generator causes the DotProduct task to execute once
for each (row, column) pair in the range (n, m), using available processors
to perform the computation. _

Whether intended for parallel execution or not, a well-designed program is
usually structured as a set of subroutines to improve program modularity.
There is normally a subroutine for each task type, each subroutine taking
arguments that define individual tasks in terms of subsets of the program

1-&

The Uniform System The Uniform System Approach

data to be operated on. To use the Uniform system, the programmer sim­
ply insures that these subroutines correspond to the tasks he wants to do in
parallel. In ·the matrix multiplication example there is one task type, com­
puting dot products. Corresponding to that task type is the dot product
routine, whose row and column parameters specify particular tasks.

The second part of a Uniform System application code structure consists
of one or more subroutines that identify the "next" task for execution.
Such a subroutine is called a "generator," since its function is to generate
tasks. In a serial program the generator function is usually embedded in
the control structure of the program (e.g., do this, do that, then do 10 of
these). For parallel processing via the Uniform System, the programmer
is expected to make generation of the next task explicit. For the matrix
multiplication example, the task generator would be responsible for gen­
erating a call on the dot product routine for each element in the result
matrix.

It is helpful to think of the generator concept in terms of three procedures
and a task descriptor data structure. A generator activator procedure (GA)
takes as parameters a worker procedure (W), a description of data (D)
upon which work is to be done, and a task generation procedure (TG):

GA (W, D, TG)

The generator activator procedure first builds a task descriptor data struc­
ture that specifies the tasks to be generated in terms of the worker pro­
cedure, the data , and the task generation procedure. It then "activates"
the generator by making the task descriptor available to other processors.
The processor that invoked the generator a~tivator, along with other avail­
able processots, then uses the task descriptor and the task generation pro­
cedure to make repeated calls on the worker procedure, specifying subsets
of the data to work upon. Each call of the worker procedure is a task.
When the last task is done, the processor that called the generator activator
procedure continues execution of its program, while the other processors

· that worked on the tasks look for other work. In the matrix multiplication
example, the worker procedure is the dot product routine, and the data is
the operand and result ~trices. The dot product worker routine is called
once for each combination of row and column index; these indices are

1-7

The Uniform System Approach The Uniform System

stored in the task descriptor and are incremented indivisibly each time· the
task generation procedure is executed by a processor.

Conceptually, the generator notion is similar to the various "map" func­
tions in the Lisp language. The unique thing about the Uniform System is
that it achieves parallel operation by using processors as they are available
to execute the various calls upon the worker procedure. Task generation
and the processor management associated with it are implemented in a
distributed fashion in the sense that each processor performing tasks parti­
cipates in their generation.

Often the required generator is quite simple. In the matrix multiplication
example, where a dot product is computed for every element in the result
matrix, the generator can find the next task by incrementing row and
column counters that identify the element in the result matrix to be com­
puted next. Occasionally a generator must be more complex. A generator
that selects the next node to process in an alpha-beta tree walk, for exam­
ple, would rely heavily on using the most up-to-date information about the
state of processing of the tree. Sometimes a generator uses a simple
queue, in which case it operates much like the process scheduler found in
many timesharing systems, where the next task for execution is the one at
the front of the queue. In general, though, the generators included in the
Uniform System library suffice to build many applications.

The Uniform System library provides a way to bind task generation pro­
cedures to worker procedures. The basis for this binding mechanism is a
"universal" generator activator procedure. To use this universal genera­
tor activator procedure ~ectly, application programs specify both a
worker procedure and a task generation procedure. The library also
includes a set of generator activator procedures that embody many com­
monly used task generation procedures. When an application program
calls one of these "specific" generator activator procedures, it specifies
only the worker procedure. The generator activator passes its associated
task generation procedure and a task descriptor to the universal generator
activator along with the worker procedure supplied by the application pro-
gram.1 ·

1. This section has been.careful to use the terms generator activator procedure and
1~ .

The Uniform System The Uniform, System Approach

Often an algorithm requires multiple, perhaps nested, instances of genera­
tors. As long as the algorithm does not depend upon the order of task gen­
eration between different generators, the programmer is free to make mul­
tiple calls to task generators to start the system working on all of them at
once. If the algorithm does depend upon the order, the programmer must
either provide a task generation procedure to properly answer the question
about what to do next, or carefully manage the use of existing generator
activator procedures to ensure the algorithm's ordering requirements are
met.

The Uniform System approach to processor management offers three
important benefits:

• The generator mechanism is very efficient. It is implemented using one
process per processor in a way that prevents unnecessary context
swaps. Each processor executes a tight loop consisting of "generate
next task-execute next task." The programmer supplies both the task
generation and worker procedures, usually choosing an appropriate gen­
erator activator procedure from the library. Both the task generation
procedure and the worker procedure execute at the application level.
As a result, once a generator gains control of a processor, the Chrysalis
kernel need not be involved until the generator has exhausted all the
work it knows how to find.

• Programs that use the Uniform System task generation mechanism to
exploit parallelism are insensitive to the number of processors. It is
possible to debug programs on small configurations and run them on
larger ones. Should an application grow to exceed the capacity of its
current configuration, it can be moved without modification to a larger
one. Perhaps more importantly, programs can also run on "reduced"
configurations (e.g., where processors have been removed for repair).

task generation procedure. The rest ~f this manual uses the term generator, both
when referring to the generator activator procedure and when referring to the result of
activating a task generator. We use the more specific terms only when it is important
to distinguish between generator activation and task generation.

1-9

The Uniform System Approach The Uniform System

• The load can be balanced dynamically. Whenever a processor becomes
free, a generator identifies the next task to execute. Since the task gen­
eration procedures are supplied by the application programmer, the task
choice can be based on the current state of the co·mputation and the
requirements of the application.

1-10

Chapter 2

Using the Uniform System

When the Uniform System approach is used on the Butterfly Plus parallel
processor, programs are written in much the same way as for a uniproces­
sor. In fact, a program that never invokes a task generator can run on a
single Butterfly Plus processor node. The program is loaded into all of the
processors, however, so the potential for parallel processing is there.
Since Chrysalis runs a process scheduler on every processor, it is possible
to have several independent application processes running on a single pro­
cessor. However, when the Uniform System is used, there is usually only
one process per processor.

This chapter describes each routine found in the Uniform System library.
Several example programs that illustrate how to use the Uniform System
routines are contained in Chapter 3. Chapter 4 describes some of the ways
programmers can tune programs for better performance. The descriptions
of the library routines in this chapter are narrative in nature. The informa­
tion presented in this chapter is repeated in Chapter 5, which is organized
for use as a reference manual for the Uniform System Library.

INCLUDE FILE

All Uniform System programs must include the header file us.h:

#include <us.h>

2-1

Using the Uniform System The Uniform System

INITIALIZING THE UNIFORM SYSTEM

The routine:

Initializeus () ;

initializes the Uniform System. This routine creates and starts a Uniform
System process on every available processor, sets up the memory that is
globally shared among all Uniform System processes, and initializes the
Uniform System storage allocator. InitializeUs should be called before
any other. Uniform System routine except SetUsConfig or ConfigureUs.
Normally it should be called only once in a program.

The routine:

TenninateUs () ;

can be used to undo the effects of InitializeUs. It should be called only
by the. process that called InitializeUs. TerminateUs kills all of the
processes running on other nodes, and unmaps and deallocates the
memory used to support the Uniform System shared memory. Termina­
teUs is useful when a program needs to release resources used by the Uni­
form System. For example, prior to entering a computational phase the
program may not need the Uniform System functions and may require the
resources the system was using. TerminateUs can also be used if a
change in the Uniform System configuration is necessary. TerminateUs
need not be called immediately prior to exiting a program.

OBTAINING CONFIGURATION INFORMATION

It is sometimes necessary to refer to processors by number. There are two
separate numbering schemes for processors, and routines for converting
between them. The first scheme uses the hardware processor number, an
8-bit number assigned when the machine is assembled. The hardware
processor number for the processor on which a process is running is
directly accessible through the Chrysalis variable Proc _Node. For the
frontend machine version of the Uniform System, Proc_Node is set arbi­
trarily. The particular numbers used as hardware processor numbers for a
Butterfly Plus with P processors depend upon the size of the switch and
the way the processors are connected to the switch; the hardware

2-2

The Uniform System Using the Uniform System

processor numbers used can range from 0 to 25 5. The important point to
note is that the hardware numbering scheme often has gaps.

Because it is generally easier for application software to deal with con­
secutively numbered processors, the Uniform System implements a
second processor numbering scheme that uses virtual processor numbers.
These virtual processor numbers form a dense set, consecutively num­
bered from 0 to P-1, where P is the number of processors available to the
program. The virtual processor number for the processor on which a pro­
cess is running is directly accessible through the Uniform System variable
UsProc Node. For the frontend version of the Uniform System,
UsProc_Node is always 0. The mapping between virtual processor
number and hardware processor number may change from run to run. The
routines:

UsProc = PhysProcToUsProc(PhysProc);
PhysProc = UsProcToPhysProc(UsProc);

can be used to convert between hardware processor number and Uniform
System processor number.

A program sometimes needs to know the number of processors and the
amount of memory available to it. The routines:

TotalProcsAvailable();
ProcsinUse ();
MemoriesAvailable();
DistinctMemoriesAvailable();

return such configuration information. TotalProcsA vailable returns the
number of processors in the Uniform System configuration; it includes
processes that have been removed by the TimeTest routine (see the sec­
tion entitled "Measuring Your Program" later in this chapter). Proc­
slnUse does not count processors that have been removed by the
Time Test routine. MemoriesA vailable counts memory in units ·of 64
kilobytes~ DistinctMemoriesA vailable counts memory modules and is
usually the same as TotalProcsA vailable, but there are cases when the
Uniform System initialization routine (lnitializeUs) cannot obtain
memory on a particular processor node (e.g., when other software, such as
the Ethernet routines, have taken it all).

2-3

Using the Uniform System The Uniform System

MEMORY MANAGEMENT

Two classes of memory are available to Uniform System programs:

• Process private memory. As the name suggests, data in process private
memory can be accessed by only one process.

• Globally shared memory. Data in globaily shared memory is accessible
by all Uniform System processes. 1

Within these two memory management classes, several different types of
storage are available to c programs. These storage types are best
described in terms of the types of variables available to C programs (see
Figure 2-1):

• c local variables. Local variables are process private and are stored on
the stack. A local variable is visible only within the routine that
declares it. There is one instance of the variable for every routine call.
Hence, the variable is private to the routine call, and hidden from every
other call.

• c globals. c global variables are process private. There is one instance
of each such variable per process. These variables are shared by sub­
routine calls within the same process, but are hidden from all other
processes.

• c dynamic storage. Storage of this type, obtained by malloc and related
routines, is process private. There is one instance of an allocated vari­
able per process. These variables can be accessed by subroutines
within the same process (providing the necessary pointers have been
made available), but are hidden from all other processes. In particular,
while you can pass a pointer from one process to another, if you try to
use it within another process you will either get a hardware fault or
(worse) access a random chunk of memory in that process. ·

1. It is possible, using the Chrysalis Map_Obj operation, to have memory that is
shared among some, but not all, processes. We recommend that you do not use
Chrysalis memory management operations directly within Uniform System programs
unless you understand the implementation of the Uniform System memory
management discipline in detail.

2-4

The Uniform System

Private
(per Process)

Shared

Figure 2-1

_,. ------................. ----;
• Chrysalis

Operating System

Text (program)

Stack and Heap

Uniform
System

Part

I

•
Chrysalis · •

•
, Operating System :

~-----------------J

Address Space of a Uniform System Process

Using the Uniform System

C Globals, C Locals,
C Allocatable (via Malloc)

Uniform System Allocatable
via Uniform System Allocator)

• Shared storage. Storage of this type is obtained using the Uniform Sys­
tem allocators UsAlloc, UsAllocScatterMatrix, and the like, and it is
globally shared. There is one instance of a Uniform System allocated
variable per Butterfly Plus machine. Since this storage is globally
shared, pointers to it are valid on all processors and can be passed freely
among them. This is the only way to communicate between different
processors and tasks, tinless you choose to use the Chrysalis mechan­
isms directly. To get started, most of the Uniform System task genera­
tors allow the user to pass a pointer to newly generated tasks. The
passed pointer is typically the root of a user-specified data structure.
(See also the discussion of the Share mechanism later in this chapter.)

The Uniform System storage -allocator creates and manages the globally
shared memory region of the process address space (see Figure 2-2). A
program can ask the allocator for space that is scattered about the

2-5

Using the Uniform System The Uniform System

machine, or for space in the memory of a particular processor node. Once
such globally shared space has been allocated to a program, the program is
free to pass pointers to variables in the space from one processor to
another.

Process m Process n

~ ~

Private • • •

,,,, ______ ,,,,,.__ ______ ~,,,,._,, __ .-.,.,,,

Shared

Figure 2-2
Processes Share Much of Their Address Spaces

Keeping the distinction between globally shared memory and process
private memory clearly in mind is critical to using the Uniform System. If
a program variable is declared to be a C global, for example, that only
means that the variable is accessible by all the program modules that are
linked together to make up a particuiar process. Since c globals are pro­
cess private, if an identical copy of that process is created on another pro­
cessor (or on the same processor), the new process will have its own
copies of any variables declared as C globals. Similarly, the malloc and
calloc system calls allocate memory that is process private rather than glo­
bally shared. The Uniform System uses the Chrysalis object management
~ystem to implement globally shared memory.

2-6

The Uniform System Using the Uniform System

MEMORY ALLOCATORS

The Uniform System provides a variety of memory allocators that allocate
storage in globally shared memory. (The normal allocators, such as ma/­

Loe, can be used with Unifoim System programs to allocate storage in pro­
cess private memory.)

Like the normal allocators, the Uniform System allocators return a pointer
to the block of memory allocated. H an allocator is unable to obtain the
requested amount of memory, it returns the null pointer (i.e., zero).

To allocate a block of storage in globally shared memory, use:

UsAlloc(SizeinBytes);

The Uniform System allocates the block from the memory with the smal­
lest amount of previously allocated space. To allocate globally shared
storage on the local processor, use:

UsAllocLocal(SizeinBytes);

To specify a particular processor, use:

UsAllocOnUsProc(Processor, SizeinBytes)

where Processor is a Uniform System virtual processor number. H Pro­
cessor exceeds the number of available memories, the space is allocated
on node Processor modulo P, where P = DistinctMemoriesA vailable().
If you want to specify the node by its hardware processor number, use:

UsAllocOnPhysProc(PhysProcessor, SizeinBytes);

Proper storage management on the Butterfly Plus computer is important.
If your data is not distributed over all available memory, you may get poor
performance. It usually does not save much (a few percent) to keep data
near the processor using it. However, clumping a lot of data in a single
processor node's memory can result in contention for that memory by
multiple processors, and can be devastating to program performance.

The Uniform System library provides storage allocation routines for regu­
lar data structures, such as arrays and matrices. These routines scatter
data across the memories of the machine in order to reduce memory con­
tention. More complex data structures can be scattered across the
machine via repeated calls to UsAllocOnUsProc, UsAllocOnPhysProc,

2-7

Using the Uniform System The Uniform System

or UsAllocAndReportC (described in "Tagging Memories" later in this
chapter) that specify different memories.

The data structures required by many applications can be represented
naturally by two-dimensional matrices. Furthermore, higher dimensional
matrices can be represented in a straightforward way by two-dimensional
matrices, as can one dimensional vectors. For example, a three­
dimensional matrix can be thought of as a two-dimensional matrix, each ·
element of which is a vector. Hence, two-dimensional matrices can be
used as a fundamental building block for supporting many application data
structures. To reduce potential memory contention, scatter these data
structures across the machine.

The routine:

UsAllocScatterMatrix(nrows, ncols, element_size)

allocates a matrix that is scattered by row over the memories of the
machine. It does this by allocating a vector of pointers nrows long, and
nrows separate vectors, each containing ncols items of size element_size
bytes. The Uniform System allocates the row vectors in separate
memories. UsAllocScatterMatrix returns a pointer to the vector of
pointers. The vector of pointers is itself filled in with pointers to the scat­
tered row vectors (see Figure 2-3). Elements of an array A allocated in
this way can be referenced using standard c array notation:

A[i] [j]

The FORTRAN-callable version of UsAllocScatterMatrix will scatter the
matrix by columns rather than by rows. It is otherwise identical to the C­
language-callable versions. Elements of an array allocated as a scatter
matrix can be referenced using standard FORTRAN array notation:

A (i, j)

Internally, UsAllocScatterMatrix uses the routine UsAllocAndReportC
(described in "Tagging Memories" later in this chapter) to scatter the row
vectors.

2-8

The Uniform System Using the Uniform System

P = AllocScatterMatrix {nrows, ncols, element_size)

.i j4 element _ size

. . . on Node B

• • • on NodeC

p [2] [1]

nrows

. . . on NodeW

. . .

• • • on NodeY

~ 1111111------ ncols -----i••I

Figure 2-3

A Scattered Matrix Created by UsAllocScatterMatrix

Space allocated by the UsAlloc ... storage allocators can be deallocated on . .
a block-by-block basis. To free space previously allocated by one of the
U sAlloc... allocators and pointed to by p, use:

UsFree(p)

Note that UsFree works for matrices scattered by UsAllocScatterMatrix
as well as for simple blocks of storage. The routine:

FreeA1l. ()

can be used to free all dynamically allocated shared memory. FreeAll
should be used with care. It reinitializes the Uniform System storage

2-9

Using the Uniform System The Uniform System

allocation system, freeing all shared memory, including memory allocated
by the UsAlloc ... allocators and that used by the Share mechanism.

It is always worth considering whether to copy the constants used by an
application into the local memory in order to avoid possible contention for
them. The Share routines (described later in this chapter in "Making
Copies of Process Private Data") and the generator "initialization" rou­
tines (described later in "Task Generators") are useful for making such
copies.

SYNCHRONIZATION AND ATOMIC OPERATIONS

· Sometimes two processors need to work on the same data at the same
time. ff the order of work does not matter (e.g., incrementing a counter),
the principal concern is that the processors do not interfere with one
another (i.e., that one finishes before the other starts). ff the order of work
does matter (e.g., task A is writing and task B is reading), the program
logic may be flawed in the sense that task B is really not ready to run, and
should not have been generated until A finished.

In many cases one of the atomic operations supported by Chrysalis is
sufficient to prevent processes from interfering with one another. These
Chrysalis operations implement a set of fetch and op functions that atomi­
cally read the value in a memory location, perform an operation on the
value, store the operation result back into the memory location, and return
the value originally read. The Chrysalis atomic operations (Atomic_add,
Atomic ior, etc.) work on 16-bit quantities.

Some situations require atomic 32-bit operations. The operation:

Atami.c_add_long(loc, val),;

implements 32-bit atomic addition. It atomically adds val to the location
addressed by loc. Atomic_ add_ long is similar to the Chrysalis
Atomic_add operation. It differs in that it operates on 32-bit quantities
and does not support the "fetch" part of the "fetch and add" function pro­
vided by Atomic_ add. 2

2. In its current implementation, Atomic_ add _long is atomic only with respect to
other Atomic_add_long calls. In particular, the execution of a read operation may be

ThE! Uniform System Using the Uniform System

Some cases may require more than a simple atomic operation. In these
cases it may be necessary to construct a lock around the code as follows:

lock;
code to do what you want

unlock;

The Uniform System provides lock and unlock operations:

UsLock(lock, n)
UsUnlock(lock)

The UsLock operation is a "busy wait" type of lock, where lock is a
pointer to a short variable used as the lock (assumed to have been initial­
ized in the unlocked state with value zero), and n is an integer that
specifies the time to wait in tens of microseconds between attempts to set
the lock. Using zero for n forces use of a default, which is about one mil­
lisecond. Note that when nesting these operations, care must be taken to
avoid deadlock.

If a program simply nee~s to wait until something occurs, and if "busy"
waiting is acceptable, it can use UsWait:

while (something has not occurred)
UsWait (n);

where n is an integer that specifies the time to wait in tens of
microseconds. As with UsLock, using zero for n forces use of a default
of about one millisecond.

To wait less than 100 microseconds, UsWait "spins" by executing a loop
enough times to delay the requested amount. For waits longer than 100
microseconds, UsWait uses the realtime clock to determine when to stop
waiting. To force the waiting to be done using the realtime clock, regard­
less of the requested amount, use:

UsWaitRtc (n) ;

To force the waiting to be done using the spin loop method, regardless of
the requested amount, use:

interleaved with an Atomic add long operation in a way that returns an inconsistent - -
result to the read. This can occur if the high-order 16 bits returned by the read are
obtained after the low-order 16 bits are incremented by the Atomic_add_long, but
before the carry (if any) is propagated to the higher-order bits.

2-11

Using the Uniform System The Uniform System

UsWaitSpin (n) ;

For a given requested delay, the number of times UsWait or UsWaitSpin
must execute the spin loop depends upon the speed of the p~essor. The
Uniform System uses a wait factor:

double UsWaitFactor;

to determine how many loop iterations are required for a requested delay.
This factor is set assuming that the machine is configured with MC68020
processor nodes. The factor can be recalibrated for an MC68000 (or sim­
ply for greater accuracy) by using the routine UsWaitGetFactor, which
computes a correction to the current factor by timing the loop for a
specified time (using the current factor). The following FORTRAN code
fragment resets the UsWaitFactor:

external UsWaitRetFactor, UsWaitGetFactor
double precision UsWaitRetFactor, UsWaitGetFactor
double precision f
f = UsWaitRetFactor()
f = f * UsWaitGetFactor(lOOOOO)
call UsWaitSetFactor(f)

If "busy" waiting is not acceptable, the Chrysalis operations that manipu­
late dual queues and events can be used to construct an appropriate wait
and signalling discipline.

PROCESSOR MANAGEMENT

The Uniform System processor management mechanism is accomplished
using task generators. A task is the basic unit of parallel computation; a
Uniform System task is a subroutine call. At any instant there is a set of
runnable tasks that must be mapped to the available set of processors. The
Uniform System takes the view that both the set itself and the priority of
items within the set are dynamically changing; as a result, a simple queue
is not an adequate model of the task structure. Instead, the Uniform Sys­
tem requires a user-supplied task generation procedure that can answer the
question, "What is the current most important task to run at this instant?"

Task generators are often rather simple. A common parallel operation is
to apply some function to each item of a structure (list or array) where the

2-12

The Uniform System Using the Uniform System

order is immaterial. For example, this might be the semantics for a
PARALLEL DO extension to FORTRAN. In this case the task generation
routine need only identify the next item in the list, which it can do by
incrementing a counter (atomically, since task generation is performed by
each processor for itself). However, a generator can be arbitrarily com­
plex. For example, a generator used in a chess playing program might do
alpha-beta pruning of a game tree, using the most up-to-date information
to decide where to devote its resources next. In this case, most of the
complexity of the code and the execution time of the program might reside
in the task generation procedure.

It is good practice to make the t~ks themselves small. The responsive­
ness of the system to changes in priorities depends on the size of a task,
because once a task is started, the system runs it to completion. Also,
even if the priorities are not changing, there will come a time toward the
end of a task generator when all of the tasks have been generated by the
task generation procedure. When that happens, if there are no other active
generators, some processors will sit idle while others finish the last tasks.
If the tasks are small in size, the idle time will not have much impact on
program efficiency.

Although the programmer must provide both task generation and task
implementor (worker) procedures, experience has shown that the rela­
tively small set of generators (or more precisely, generator activator pro­
cedures) supported by the Uniform System library is sufficient for a wide
range of applications. The easiest way to achieve parallel operation is to
structure the program to fit the mold of one of these task generators.

The Uniform System supports two generator control disciplines:

• Synchronous generators return to the caller after all of the generated
tasks have been processed. Furthermore, the processor that calls a sym­
chronous generator always works on the tasks that are generated.

• Asynchronous generators return to the caller as soon as the generator
has been activated. This enables the calling process to do other work.
The calling process can later work on generated tasks if it so chooses.

2-13

Using the Uniform System The Uniform System

The Uniform System matches available processors to the generated tasks
and keeps track of active task generators. Whenever a processor has noth­
ing to do, it obtains a task using the task generation procedure for one of
the active generators. When a Uniform System program begins execution,
all the processors, except the one used to start the program, are idle. As
long as there are active generators with tasks to be done, there are no idle
processors.

Generator calls can be nested, in which case the Uniform System deals
with the generators in an arbitrary order that depends largely upon the sto­
chastic nature of interprocessor timing. However, because the Uniform
System guarantees that at least one processor is working within each syn­
chronous generator, forward progress is assured on each.

There are some situations where it may be possible to place an upper
bound on the number of tasks required by a problem, but where the
number actually required may be data dependent. For example, consider a
search where the search space. can be partitioned into N disjoint regions
that can be searched by N tasks; if the first task finds the object in the first
region, there is little utility in searching the remaining N-1 regions. The
Uniform System supports abortable generators for such situations. An
abortable generator can be terminated before all the tasks it describes have
been generated and executed. After an abortable generator has been
aborted, it will generate no more tasks; however, any tasks started before
the generator was aborted will be proce~sed.

Normally when a generator is active, processors,_ as they become free,
begin working on the generator until either all processors are working on
it, or all the tasks have been generated. In situations where several classes
of tasks can be active simultaneously, it may be desirable to control the
number of processors used for each task class. The Uniform System pro­
vides limited generators, which use only a specified number of processors
(or fewer), for such situations.

Generators are very efficient It takes a little overhead to get a processor
to notice a generator, but · once the processor does, it will continue

.,

2-14

The 'Uniform System Using the Uniform System

generating and working on the tasks defined by the generator at a cost of
about one extra subroutine call per task.

It is not easy to cause deadlocks using generators, but it is possible. For
synchronous generators, since there is always at least one processor work­
ing on each generator (perhaps recursively), progress should be made
unless that processor hangs. It is, of course, bad practice to write code so
that a processor can hang. Unfortunately, it is good practice to write code
where processors take turns accessing some resource in an atomic way,
and it is not always easy to tell if a program will cause deadlocks just by
looking at the code. The distinction, of course, is that accesses made by
deadlock-free programs eventually (and usually quickly) give up the
resource. With asynchronous generators, more care needs to be taken to
avoid race and deadlock conditions.

The Uniform System Library includes a collection of generator activator
procedures that embody various commonly-used task generation p~o­
cedures. The next section describes the synchronous generator activator
procedures in the library. The section following that describes the asyn­
chronous generator activator procedures. All these generator activator
procedures make use of a "universal" generator activator procedure. Use
of the universal generator activator procedure is described later, in the sec­
tion entitled "Building a Generator."

SYNCHRONOUS GENERATORS

The Uniform System Library supports several major "families" of gen­
erators:

• Index family. Given an integer range, generators in the index family
generate a task for each value (index) within the range.

• Array family. Given two integer ranges (which can be thought of as
array dimensions), generators in the array family generate a task for
each pair of values (which can be thought of as row and column
indices) within the ranges.

2-15

Using the Uniform .system The Uniform System

• Half array family. Given two integer ranges, which can be thought of
as array dimensions, generators in the half array family generate a task
for each array element that is beneath the "diagonal."

Each family of generators has a simple version of the call to the generator,
an abortable version that allows a process to stop the generator at any
time, a limited version that restricts task generation to a subset of the pro­
cessors, and a full version that is a superset of all the other calls. The full
version of a generator call requires all the arguments and can be used
instead of any other call in the same generator family. There are also
asynchronous versions of all the generators that return control to the pro­
cess directly after the generator has been called. The full versions of the
generators are described first, in the remainder of this chapter, and
descriptions of the simpler versions follow.

The Index Family of Generators

Consider a subroutine Worker(Arg, index, ...), which is to be called for
all values of index from zero through Range-I. A call of the form:

code= GenOnIFul.l (Init, Worker, Final, Arg, Range, Limited, Abortable);

causes Worker to be executed in parallel for the values of index between
zero and Range-1; Range must be less than 231• Task generation is
somewhat faster if Range is less than 215, since the task generation pro­
cedures can use Atomic add to increment the index. Arg is typically a
pointer to a problem description data structure. Elements of Arg might
point to the multiplier, multiplicand, and product matrices in a matrix mul­
tiplication problem, for example.

To facilitate application bookkeeping, before the generator calls Worker
for the first time on a particular processor, it will call:

Init(Arg);

on that processor. Typically, the Init routine is used to copy frequently
referenced constants from globally shared memory into process private
memory or to initialize process private temporaries. By convention, 0
specifies that there is no lnit routine.

2-16

The 'Uniform System Using the Uniform System

Similarly, after the last call of the Worker routine on each processor used
to perform tasks for the generator, the routine Final is called once on each
such processor used. The Final routine is called with Arg as a parameter:

Final(Arg);

and is typically used for per-processor post-processing associated with
tasks. By convention, 0 specifies that there is no Final routine.

The Limited parameter indicates the number of processors to which the
generator is to be restricted. A value of 0 or -1 signals no limitation; a
positive value ensures that no more than that number of processors will be
used on the tasks.

The Abortable parameter is a boolean variable that indicates whether or
not the generator can be aborted. The value of Abortable determines the
arguments passed to the Worker routine. H Abortable is FALSE, two
arguments are passed to Worker:

Worker(Arg,index);

otherwise, if Abortable is TRUE, each call to Worker takes an additional
argument:

Worker (Arg, index, GenID);

where Gen ID is an "identifier" for the generator (C type= UsGenDesc*,
defined in the #include file us.h).

If the generator identified by GenlD is abortable, it can be aborted using:

AbortGen(GenID, tez:mination_code);

where termination_ code is an integer. AbortGen prevents the genera­
tion of new tasks. Any tasks in progress when AbortGen is called will
run to completion.

All synchronous generators in the index family return a value. If a gen­
erator is abOrtable and was aborted, it returns the termination_ code argu­
ment supplied to AbortGen. (More than one processor may call Abort­
Gen to abort a generator. In such a case, the value returned is the smallest
termination_code supplied to AbortGen.) If all of a generator's tasks
have been performed, either the generator was not abortable or it was ,

2-17

Using the Uniform System · The Uniform System

abortable but it was not aborted. In either case, the generator returns the
code genEXHAUSTED .

. Other synchronous generators in the index family are useful in situations
not requiring the full flexibility of GenOnIFull. For example, since these.
routines take no Arg routine, they can be used when calls to Share
.(described below) and its companion routines eliminate the need to pass
problem description data structures around.

The generator:

code= GenOnI (Worker, Range);

generates tasks of the form:

Worker(O, index);

Note that the Worker routine is passed a dummy Arg parameter. The
generator:

code= GenOnILi.mited (Worker, Range, nprocs);

is like GenOnl, differing in that it limits the generator to the specified
number of processors. The generator:

code= GenOnIAbortable (Worker, Range);

is like GenOnl, difft'!ring in that it is abortable; it generates tasks of the
form:

Worker(O, index, GenID);

The Array Family of Generators

The generator:

code == GenOnAFull (Init, Worker, Final, IU:g, Rangel,
Range2, Limited, Abortable);

is similar to GenOnIFull except that Worker takes a second index, which
runs over Range2. More specifically, if Abortable is FALSE,

GenOnAFull generates tasks of the form:

Worker(IU:g,indexl, index2);

and if Abortable is TRUE, it _generates tasks of the form:

Worker(IU:g,indexl, index2, GenID);

. 2-18

The Uniform System Using the Uniform System

As with the index family, several additional generators in the array family
are useful in situations that do not require the full flexibility of
GenOnAFull. The generator:

code= GenOnA (Worker, Rangel, Range2);

generates tasks of the form:

Worker(O, indexl, index2);

The generator:

code= GenOnALimited (Worker, Rangel, Range2, nprocs);

is like GenOnA except that it limits the generator to the specified number
of processors. The generator:

code= GenOnAAbortable (Worker, Rangel, Range2);

is like GenOnA except that it is abortable. It generates tasks of the form:

Worker(O, indexl, index2, GenID);

The Half Array Family of Generators

The generator:

code= GenOnHAFull(Init, Worker, Final, Arg, Rangel,
Range2, Limited, Abortable);

is similar to GenOnA, except for the range of the indexl, index2 argu­
ments passed to the worker routine. The sequence of (indexl, index2)
values span the "half" array beneath the diagonal of a Rangel x Range2
array as follows:

index2 = O, indexl = 1, .•• , (Rangel-1)
index2 a 1, indexl = 2, ... , (Rangel-1)

index2 = R-2, indexl = (R-1), ••• , (Rangel-1)

where:

R = min(Rangel,Range2)

Similarly, the generators:

code= GenOnHA (Worker, Rangel, Range2);
code= GenOnHALimited (Worker, Rangel, Range2, nprocs);
code= GenOnHAAbortable (Worker, Rangel, Range2);

are analogous to the corresponding routines in the array family.

2-19

Using the Uniform System The Uniform _System

It may appear that more variants are needed for half arrays; for example,
those that include the diagonal. However, GenOnHA can be used with
some simple tricks to get the desired behavior; for example, to include the
diagonal, add one to the ranges in the call to GenOnHA and subtract one
from indexl and index2 in the Worker routine.

Miscellaneous Generators

The generator:

GenTaskForEachProc (call, arg);

generates exactly one task, call(arg), for every processor (that has not
been removed by the TimeTest routine).

The generator:

GenTaskForEachProcL.llnited (call, arg, nprocs);

generates exactly one task, call(arg), for each of nprocs different proces­
sors.

The generator:

GenTasksFromList (routine_list, arg_list, n);

where routine_ list is an array of routines of length n, r l, •.• ,rn, and
arg_list is an array of "arguments" of length n, argl,°".,argn, generates n
tasks. The ith task is ri(argi).

ASYNCHRONOUS GENERATORS

There are asynchronous versions of each of the generators in the index,
array, and half array generator families. Although the form of the tasks
generated by these generators varies from family to family, the asynchro­
nous gen~rators use a common control discipline.

Suppose AsyncGen .•• is an asynchronous generator. The call:

GenID = AsyncGen ••• (•••);

activates the generator and then returns control immediately to its caller
along with GenID, an "identifier" for the generator activated.

2-20

The Uniform System Usi'ng the Uniform System

The processor that invokes an asynchronous generator can choose to work
on tasks generated by the generator, or can do other things. To work on
tasks from the generator, it uses the call:

code= WorkOn (GenID);

After all of the tasks generated have been processed, WorkOn returns a
code to the caller. The code indicates either that the generator exhaus­
tively produced all of its tasks or that it was aborted via AbortGen.

The sequence:

GenID = AsyncGen ... (...);
code= WorkOn (GenID);

is functionally equivalent to the corresponding synchronous generator.

A processor that has previously invoked an asynchronous generator can
use the call: ·

code= WaitForTasksToFinish (GenID);

to wait until all the tasks associated with the specified generator have been
completed. As with WorkOn, the returned code indicates whether the
generator exhaustively produced all its tasks or was aborted.

Both WorkOn and WaitForTasksToFinish should be·used only by the
process that activated the generator in question, and only if that process is
not already working on the generator. Furthermore, a process may invoke
either WorkOn or WaitForTasksToFinish, but not both.

All task generators (synchronous and asynchronous) use a task descriptor
data structure to rec_ord information about the generator, such as the iden­
tity of the worker routine, ·and to keep track of generator progress. When
a generator is invoked, a task descriptor data structure is allocated, and .

· when the generator completes, the task descriptor data structure is deallo­
cated. For synchronous generators, · the deallocation OCCU!S before the
generator call returns. For asynchronous generators, the deallocation is
done within the WorkOn or WaitForTas~sToFinish routine. The
present implementation limits the number of generators that may be active
at any time to 256 (of course, each generator can describe thousands of
tasks). Therefore, a program that makes more than 256 calls to

2-21

Using the Uniform System The Uniform System

asynchronous generators must use .WorkOn or WaitForTasksToFinish
to force the deallocation of at least some of the task descriptor data struc­
tures to proceed beyond the first 256 calls.

The asynchronous generators currently supported by the Uniform System
are:

Index family:

GenID = AsyncGenOnIFull (Init, Worker, Final, Arg, Range, Limited,
Abortable);

GenID = AsyncGenOnI(Worker, Range);
GenID = AsyncGenOnILimited (Worker, Range, nprocs);
GenID == AsyncGenOnIAbortable (Worker, Range);

Array family:

GenID = AsyncGenOnAFull (Init, Worker, Final, Arg, Rangel, Range2,
Limited, Abortable);

GenID = AsyncGenOnA(Worker, Rangel, R.ange2);
GenID = AsyncGenOnALimited (Worker, Rangel, R.ange2, nprocs);
GenID = AsyncGenOnAAbortable (Worker, R.angel,·Range2);

Half Array Family:

GenID = AsyncGenOnHAFull (Init, Worker, Final, Arg, Rangel, R.ange2,
Limited, Abortable) ;

GenID = AsyncGenOnHA (Worker, Rangel, Range2);
GenID = AsyncGenOnHALimited (Worker, Rangel, Range2, nprocs);
GenID = AsyncGenOnHAAbortable (Worker, Rangel, Range2);

Each of these corresponds to one of the synchronous generators described
. above.

COPYING PROCESS PRIVATE DATA

It is often useful for each proc~ssor to have its own copy of certain fre­
quently referenced variables declared as c globals. These copies eliminate
the memory contention that might otherwise occur as multiple processors
access shared copies of the variables. For example, as part of initializa­
tion one processor might set C global variables that other processors mtf:st
access. Recall that C globals are in process private memory. One way to
make the values of these variables accessible to the other processors is to
pass the values in the data structure argument to a task generator and have
the generator "initialization" routine make copies on each processor.
Often a _more convenient way to achieve this effect is to use one of the

2-22

The Uniform System Using the Uniform System

Share routines.

Assume that Xis a 4-byte data item (e.g., an integer) declared as global or
static; X is therefore process private. The effect of:

Share (&X);

is to copy the value of X into each processor that performs tasks generated
by subsequent task generators. The value copied is the value X has when
Share is invoked. The value of Xis copied to each processor prior to the
call of the task initialization routine for the next task generator handled by
that processor. For generators ~at have no explicit initialization routine,
X is set prior to the first call .of the task worker routine on that processor.
The effect of Share is illustrated schematically in Figure 2-4. Note that
when processor P executes Share(&X) the effect is as if:

1. P allocates space in shared memory to hold the value of X;

2. On the .next generator called:

For the Arg parameter for the generator, P passes a pointer to the
shared memory location that holds the copy of X;

For the Init parameter for the generator, P passes a routine that copies
the value of X from the shared memory location pointed to by Arg to
the location of X in process private memory.

In particular, note that the value of Xis propagated to other processors by
the Share mechanism, but the variable X itself is not shared. Therefore,
should one processor change its copy of X, only that processor will see the
changed value.

2-23

Using the Uniform System The Uniform System

x

3 3

Private •••

Shar~&x} Tasveneration

Shared -3-1

Figure 2-4
Share Passes Copies of Process Private Variables

A block of data declared global or static can be passed to other processors
by:

ShareBlk(&X, size);

where size is the size of the block, in bytes, and &Xis its starting address.

A pointer variable P, which is declared to be global or static, and the
block of data it points to can be passed to other processors by:

SharePtrAndBlk(&P, size);

where size is the size of the block in bytes. The following code fragment
allocates and initializes a block of data in process private memory and
then uses.SharePtrAndBlk to propagate the data to other processors:

int * p;

p = (int*) malloc (10 * sizeof (int));
for (i = O; i < 10; i++)

p [i] = i;
SharePtrAndBlk (& p, 10 * sizeof (int));

When many processors make frequent references to many elements of an
array allocated by UsAllocScatterMatrix, it is often desirable for each
processor to have its own copy of the vector of pointers created by UsAl­
locScatterMatrix. This reduces contention for those pointers, which are

2-24

The Uniform System Using the Uniform System

all stored in a single memory and which must be referenced to access the
array elements. The routine:

ShareScatterMatrix(&P, nrows);

where P is a C global allocated by:

P = UsAllocScatterMatrix(nrows, ncols, element_size);

causes such copies to be made. Each processor that performs tasks gen­
erated by task generators called after the call to ShareScatter Matrix will
have its P set to point to a local copy of the vector of pointers (the local
copy is allocated in globally shared memory). As with Share, ShareBlk
and SharePtr AndBlk, the value of P in each such processor will be set
prior to the call of the task initialization routine for the next task generator
handled by that processor. The call:

ShareScatterMatrix(&P, nrows);

is equivalent to:

SharePtrAnc!Blk(&P, 4 x nrows);

in terms of the copies made. However it differs in two important ways:
ShareScatterMatrix maintains information about the scatter matrix
required for proper specification of UsFree (see below), whereas ShareP­
tr AndBlk. In addition, ShareScatter Matrix operates faster on larger
Butterfly Plus configurations, since it is careful to avoid memory conten­
tion by making copies from other copies as well as from the original.

The FORTRAN-callable version of ShareScatterMatrix takes as its second
parameter the number of columns rather than the number of rows. Stated
somewhat differently, the second parameter of ShareScatterMatrix is the
number of scattered entities, which for C language matrices are rows and
for FORTRAN matrices are columns.

2-25

Using the Uniform System The Uniform System

Process Pa

~

p__. ___

Figure 2-5
Between UsAllocScatterMatrix and ShareScatterMatrix Calls

Figures 2-5 and 2-6 show the effect when a process Pa executes the code
sequence:

p = UsAllocScatterMatrix (n, m, size);
ShareScatterMatrix (&P, n);
GenOn ... ;

2-26

The Uniform System

Figure 2-6

Using the Uniform System

Process Pa

~

After All Processors Start Working on GenOn ... Tasks.

To deallocate a scatter matrix after ShareScatterMatrix has been used to
make copies of the vector of pointers, UsFree must be called for each of
the vector of pointers. When UsFree is called for the last vector of
pointers, the rows of the scatter matrix (columns for FORTRAN arrays) are
deallocated.

The Share mechanism was developed to facilitate program initialization
by making it relatively easy to propagate the values of process private
variables set during program initialization to all processes. However, the
mechanism is also often used to propagate updates to process private vari­
ables to all processes. ·

Normally,' the Share mechanism automatically propagates copies of such
data. The copies are "refreshed" each time a process starts working on
tasks from a new task generator .. This is done within the generator

2-27

Using the Uniform System The Uniform System

mechanism by checking to see whether there are new values to be copied
before the process gets its first task from the new generator.

Although this automatic mechanism is adequate when the Share mechan­
ism is used to propagate values of process private variables set during pro­
gram initialization, it is often not adequate when the Share mechanism is
used in other ways. The routine:

RefreshLocalShareVariables();

can be used by a process to force a refresh of its copies of any process
private variables that may have been updated and re-Shared by other
processes.

As part of its operation, the Share mechanism allocates memory. In addi­
tion to the memory it allocates and makes available to the user's program
via ShareScatterMatrix and SharePtrAndBlk, it allocates memory for
internal bookkeeping. If there is insufficient memory, the Share mechan­
ism will fail. This failure could occur when Share (ShareBlk,, ShareP­
tr AndBlk or ShareScatterMatrix) is called, or it could occur when a
copy of the data being shared is being made on a processor as part of gen­
erator initialization for that processor. Depending upon how a Share
operation is being used, its failure may or may not be "fatal." For exam­
ple, the failure of Shares being done to initialize process private variables
are probably fatal, whereas the failure of Shares being done to reduce
memory contention probably are not.

Each of the Share routines normally returns a boolean value (1=TRUE,0
= FALSE) that indicates whether or not the routine succeeded in setting up
the requested Share. In addition, SetUsConfig (see the section entitled
"Configuring the Uniform System" later in this chapter) can be used with
the configStopOnShareFail and configWarningOnShareFail
configuration codes to control the ?ehavior of a program when a failure in
the Share mechanism occurs. The default behavior when a Share failure
occurs is for the process detecting the failure to print a warning message
and suspend itself. The FORTRAN versions of the Share routines do not
provide this return value, and are called as subroutines.

2-28

The Uniform System Using the Uniform System

SHARING VARIABLES AMONG PROCESSORS

The share mechanism described in the previous section propagates copies
of variable values from one processor to others. Situations often occur
where it is desirable ·to share variables among processors in a more
dynamic fashion, such that when one processor changes the value of such
a variable all the processors see the change.

Ideally, one would like to use a storage class specifier, similar to static or
extern, to declare that a variable is to be shared in this fashion; for exam­
ple:

shared int N;
int M;

would cause N to be allocated in the globally shared portion of the address
space, and M to be allocated in the process private portion of the address
space. However, as noted earlier, the Butterfly Plus c compiler is a stan­
dard uniprocessor C compiler that does not support the notion of globally
shared storage.

The Uniform System supports a mechanism that achieves the effect of a
globally shared storage class by facilitating the creation and use of dynam­
ically shared variables. This mechanism allows a programmer to declare
and use a set of variables that are globally shared among all processors.
There are three parts to the mechanism:

1. Declaration of the shared variables. The declaration:

BEGIN SHARED DECL - -
int N;
char c;

END_SHARED_DECL;

declares N, c, and the other variables between BEG IN_ SHARED_ DECL and
END_SHARED_DECL, to be globally shared.

2. Allocation of the shared variables. The macro:

MakeSharedVariables;

which must be called after InitializeUs and before using the shared vari­
ables, allocates space for the variables and propagates knowledge of
where they are to all processors.

2-29

Using the Uniform System The Uniform System

3. Referencing the shared variables. To reference a globally shared vari­
able that has been declared in this way, the programmer must expli­
citly specify that it is shared via the SHARED prefix; for example:

SHARED N - (x + SHARED N) I a2;
if (SHARED c =- '1'). break;

The constructs BEGIN_SHARED_DECL, END_SHARED_DECL, SHARED,

and MakeSharedVariables are all macros processed by the C langliage
preprocessor. They are not available to FOR1RAN programs.

When using this mechanism, some important limitations must be kept in
mind:

• BEGIN_SHARED_DECL may appear only once in a program. All vari­
ables to be shared via this mechanism must be declared in one place.

• All of the shared variables are allocated in the same physical memory.
Hence, contention for that memory could be a performance bottleneck.
(See Chapter 4, Tuning Programs for Performance, for a discussion of
the performance implications of memory contention.)

Despite these limitations, the mechanism is useful in many situations.

MEASURING YOUR PROGRAM

You may want to measure the performance of your program on different
numbers of processors. The Uniform System offers a utility routine called
Time Test that facilitates this kind of measurement:

TimeTest(Init, Execute, l?rintResults);

To use TimeTest, you need to divide your application into three major
subroutines: one that does all of the initialization (lnit), another that does
the real work of the program (Execute), and a third that prints results
(PrintResults). · TimeTest takes the names of these subroutines as argu­
ments, and runs your application on various configurations of the ~chine
by calling lnit, Execute, and PrintResults in sequence. It times the mid­
dle routine only (Execute), and passes the execution time, the number of
processors, and the effective number of processors to the specified display

2-30

The Uniform System Using the Uniform System

routine (PrintResults) at the end of each pass:3

PrintResu1ts(time, procs, effprocs);
int time, procs;
float effprocs_;

The Uniform System provides a simple PrintResults routine called
TimeTestPrint that outputs time, procs, and effprocs. You may prefer
to supply your own display routine that prints other information.

- At the start of the run, TimeTest prompts the user for the number of pro­
cessors to use. The user is asked how many processors should be used the
first time the Execute routi1:1e is timed (start), how many processors
should be added for each iteration of the time test (delta), and how many
processors should be used for the last time test (end).

Please enter start, delta (O=exp), and end for time test: 4 2 16
using start - 4, delta = 2, end - 16

The effect of this interaction is to start a program on four nodes and
increase the number of nodes by two for each timed run until 16 nodes are
used. If there are only 15 processors available to the program, only 15
processors will be used for the last timed run. If the start parameter is set
to 0 or 1, the first timed run will use one processor. If the delta parameter
is set to zero, the number of processors will increase exponentially (i.e., 1,
2, 4, 8). If the end parameter is set to zero, the final timed run uses all
available processors.

A variant on TimeTest eliminates the need to obtain the processor
configurations to be timed from the user:

TimeTestFu1l(Init, Execute, PrintResults, start delta, end);

TimeTestFull allows a start, increment (delta) and end value to be
specified for a set of runs. The first test is run on start processors, the
next on start + delta processors, and so forth, up to the final test that is
run on end processors. TimeTestFull is particularly useful on bigger
machines, where incrementing by one processor can be tedious. If start

3. The effective number of processors is afloat equal to (time 1 proc)/(time n procs),
which is a good measure of the speedup your program achieves over one processor
when n processors are used. If the first test run uses more than one (=k) processor,
then the effective number of processors is k(time k proc)/(time nprocs).

2-31

Using the· Uniform System The Uniform System

(or end) is zero, the test is run from (to) the end of the range of available
processors, and in particular, it is run for the limiting processor case
whether or not it is in the normal progression specified by delta.

If delta is specified to be zero, the number of processors used increases by
powers of two (1, 2, 4, 8, etc.). The rules for start and end still apply. If
the delta specified is negative, start and end are ignored and TimeTest­
Full asks the user to supply values for start, delta, and end. This is the
normal usage for timing many programs, and is equivalent to TimeTest.

Although all processor nodes in a Butterfly· Plus system are functionally
equivalent, there are situations in which some nodes may appear to be
slower to application programs than others. A node will appear to be
slower than others if it is running a window manager process. When
benchmarking a program, avoid using such nodes so that the measure­
ments are not affected by the processing requirements of the window
manager. Chrysalis releases since 3.0 provide a multiple user capability
based on the notion of partitions of processor nodes, called clusters, that
are allocated to users. Each user has at least one cluster, and one of the
processors in one of the clusters runs the user's window manager process.
The proper way to avoid a node running a window manager process is to
create a new cluster with the desired number of nodes and to run the pro­
gram in that cluster. The following sequence of shell interactions illus­
trates how this can be done:

(cluster 5) [8] make-cluster 8 ; Create cluster with 8 nodes
NewCluster = 7
(cluster 5) cluster 7
Cluster == 7
(cluster 7) [8]

(cluster 7) cluster 5
(cluster 5) free-cluster 7

; Cause programs to run i~ new cluster

; Run your program in original cluster

; Delete new cluster

Prior to Chrysalis release 3.0, the node to be avoided was the king node
and the way to avoid it was for a program to use the routine:

InitializeUsForBenchmark();

rather than lnitializeUs to initialize the Uniform System, and to start the
program on a node other than the king node.

2-32

. The Uniform System Using the Uniform System

READING THE CLOCK

A program can read the Butterfly Plus clock using the routine:

GetRtc ();

which returns the time since the system was booted in units of 62.5
microseconds. On the Butterfly Plus the clock value is the same (plus or
minus two ticks) on every processor. The frontend version of the Uniform
System Library uses the real time clock on the frontend machine to imple­
ment GetRtc, and converts to these 62.5 microsecond units. If you
merely want the clock to measure the speed of your program, see the sec­
tion en~tled "Measuring Your Program" earlier in this chapter.

INPUT AND OUTPUT

The routines printf and scanf are available for terminal 1/0. The opera­
tion of these functions is generally the same as that of their UNIX counter­
parts.

A RAM:file package is available that uses Butterfly Phis memory to imple­
ment a "file" system. Programs can create, read, and write RAMfiles, and
there are utilities for moving RAMfiles between the Butterfly Plus and the
frontend host file system. In addition, support for the standard UNIX file
1/0 functions for files on the frontend host is being developed. In the
interim, a simple mechanism, supported by a streams package, has been
developed to permit a program running on the Butterfly Plus to read and
write files on the frontend computer. Consult the Chrysalis Programmer's
Manual for details on how to use the streams package.

CONFIGURING THE UNIFORM SYSTEM

Normally InitializeUs creates a process for its program on every available
processor in the system, and seizes as much memory as it can use from
each processor node in order to establish the Uniform System globally
shared address space. Although this is appropriate in many cases, there
are situations that may require finer control of the resources used by Uni­
form System programs. In such situations, the routine:

2-33

Using.the Uniform System The Uniform System

SetUsConfig(configuration_cod.e, value);

can be used prior to calling Initialize Us. The configuration_ code serves
to identify a configuration parameter to be set, and value specifies its
value.

To set more than a single parameter, use the routine;

ConfigureUs(Spec, n);

where Spec is an array (of integers) that specifies the configuration in
terms of n parameter specification blocks. Each parameter specification
block contains a configuration_ code that identifies the parameter being
set, followed by the value for the parameter.

Note: Before setting configuration parameters using configuration_ codes
you must include the #include file usgen.h.

The following configuration_ codes are defined:

configProcs Specifies the number of processors to include
in the Uniform System configuration. The
number should be an integer less than or equal
to the number of nodes in the cluster. If
configProcs is set greater than the number of
available nodes, the Uniform System uses only
the nodes available to it.

configSuppresslnitMsgs Specifies whether to print messages that report
the progress of InitializeUs: 1 means suppress
the messages, 0 means print the messages. The
default is 1.

configTimeTest ViaReinit

2-34

Specifies behavior of the TimeTest mechanism
(see "Measuring Your Program"). 1 means
completely reinitialize the Uniform System for
each configuration timed. This ensures that
only the resources of the processors being
timed are used; in particular, only the memory
of those processors is used. 0 means use the

The Uniform System Using the Uniform System

Uniform System as is, by "diverting" enough
processors to an idle loop in order to time a
given processor configuration. This means that
only the CPU resources of the proces$ors in the
configuration are used, but the memory
resources of all processors, including those that
have been diverted, may be used. The default
is 0. This parameter may be specified anytime
before calling TimeTest.

configAllocAcross64K Specifies whether Uniform System memory
allocators (see "Memory Allocators") may
allocate blocks of memory that cross 64-
kilobyte boundaries in a process address space.
Early versions of the Uniform System would
not allocate blocks that cross 64-kilobyte boun­
daries. 1 means allow allocation across 64-
kilobyte blocks; 0 means don't allow allocation
across 64-kilobyte blocks. The default is 1.

con fig WarningOnShareFail
Specifies behavior on a failure of the Share
mechanism (see "Copying Process Private
Data"); 1 means print a warning message on a
Share failure; 0 means don't print a warning
message on a Share failure. The default is 1.

configStopOnShareFail Specifies behavior on. a failure of the Share
mechanism (see "Copying Process Private
Data"); 1 means suspend process on a Share
failure; 0 means allow process to continue exe­
cution on a Share failure. The default is 1.

configMemObjsFree Specifies the number of 64-kilobyte memory
objects to leave free on each processor node.
Setting this configuration option overides any
previous use of configMaxMemObjs.

2-35

Using the Uniform System The Uniform System

configMaxMemObjs Specifies the maximum number of 64-kilobyte
memory objects to obtain from each processor
when making the Uniform System shared
memory. Setting this configuration option
overides any previous use of
configMemObjsFre~.

configObjsRetRoot During lnitializeUs, the Uniform System
obtains memory in 64-kilobyt~ blocks to be
used to build its shared address space. It
obtains as many 64-kilobyte blocks as it can on
each processor node in the configuration. It
then returns some 64-kilobyte blocks on each
node to allow operations requiring memory to
occur on the nodes; for example, running the
various Chrysalis utilities such as ps and
showmem require memory. This configuration
code is used to specify the number of 64-
kilobyte blocks the Uniform System should
return for the processor node on which the Uni­
form System program is started (the root pro­
cessor). The parameter is interpreted only if
configMaxMemObjs and
coilfigMemObjsFree have not been specified.
The default is 2.

configObjsRetChild Similar to configObjsRetRoot, but specifies
the number of 64-kilobyte blocks.to be
returned for child processor nodes. The param­
eter is interpreted only if configMaxMemObjs
and configMemObjsFree have not been
specified. The default is 2.

configMaxSars Specifies the maximum size of the shared por­
tion of the process address space in terms of
64-kilobyte blocks or "segments. "4 This

4. Prior to the Butterfly Plus, Butterfly processor nodes contained a custom memory

2-36

The Uniform System ·

configTotalSars

Using the Uniform System

parameter should be an integer greater than 15.
The default is 237.

Specifies the maximum size of the process
address space in terms of 64-kilobyte blocks or
"segments. " 5 This includes the space con­
sumed by the program, the stack, process
private data, and Uniform System shared
memory. The default value for this parameter
is 256. The maximum allowable value for this
parameter is also 256. This value restricts Uni­
form System programs to a 16-megabyte
address space.

As an example, the code fragment:

#include <usgen.h>
SetUsConfig(configProcs, 6);
Initializeus () ;

limits the Uniform System program to (a maximum of) six processors.
The code fragment:

SetUsConfig(configprocs, 3);
SetUsConfig(configSuppressinitMsgs,0);

is equivalent to the code fragment:

int config [4];
config [0] = configProcs;
config [l] = 3;
config [2] = configSuppressinitMsgs
config [3] = O;
ConfigureUs(config, 2);

management unit that made use of registers called Segment Attribute Registers (SARs).
On those machines, the Uniform System used one SAR for each 64-kilobyte segment of
the shared portion of the process address space.
5. It was useful to use this configuration code prior to the Butterfly Plus to reduce the
number of SARs required by a program, because SARs were a relatively scarce
processor node resource. Since Butterfly Plus processor nodes do not contain SARs,
Butterfly Plus programs should not need to use this configuration code.

2-37

Using the Uniform System · The Uniform System

TAGGING MEMORIES

Sometimes it is useful to partition the node memories into classes. For
example, the UsAlloc and UsAllocScatterMatrix routines use all of the
memories of the machine. It may be desirable to limit allocation to a
smaller set of memories; for example, only the memories of processor
nodes being used to run a program. The routine:

UsSetClass(proc, class);

where proc is a physical processor number and class is an integer, makes
the memory of the specified processor node a member of the specified
class. The function:

UsGetClass (proc);

returns the class of which proc is a member. All memories are initially in
class 0.

The allocation routines:

UsAl.locC{nbytes, class);
UsAJ.locScatterMatrixC(nrows, ncols, nybtes, class);
UsAl.locOnUsProcC(usproc, nbytes, class);

where class is an integer, are similar to UsAlloc, UsAllocScatterMatrix,
and so on, differing in that they allocate space only on memories in the
specified class. UsAllocOnUsProcC will fail if proc is not in class.

The allocation routine:

UsAllocAndReportC (usproc, wherep, nbytes, class)

attempts to allocate a block of size nbytes on a processor in the specified
class and, if successful, sets the location pointed to by wherep (an int *)

to the Uniform System ID for the processor on which the block was allo­
cated. The routine first attempts to allocate the space on usproc; should
that fail, it tries usproc+l, and so forth (wrapping around to processor 0),
until it either succeeds, or has tried all processors in the class. UsAllo­
cAndReportC is useful for building allocators for scattered data struc­
tures, such as the scatter matrices allocated by UsAllocScatterMatrix.

The following program fragment illustrates the use of these routines:

UsSetClass(l0,3);

2-38

The Uniform System Using the Uniform System

UsSetClass(4,3);
UsAllocC(64,3);

It sets processors 10 and 4 to class 3 and allocates 64 bytes on either 10 or
4, whichever has the least memory previously allocated.

BUILDING A GENERATOR

The Uniform System Library contains a set of useful generators for a wide
range of applications. Occasionally it may be necessary, however, to con­
struct a generator for a particular application. Building a generator is an
advanced topic, and although the general approach to building generators
is not likely to change, the details may. The generator activators sup­
ported by the library all make use of the "universal" generator activator
procedure. This procedure can be called directly by application programs,
and can be used to build new generator activator procedures:

ActivateGen(Init, Worker, Final, Arg, Rangel, Range2, Type, Genl?roc,
Async, MaxProcsToUse, Abortable, ResultP, Language);

lnit is the per-processor initialization routine, Worker is the task worker
routine, and Final is the per-processor post-processing routine. Arg is a
pointer to a data structure, which is passed to the Init, Worker, and Final
routines. Type must be set to GENERATOR, and Rangel and Range2 are
integers. GenProc is a task generation routine described in more detail
below. The Async parameter specifies whether the generator is to be syn­
chronous or asynchronous. It should be set to TRUE for synchronous or
FALSE for asynchronous. MaxProcsToUse specifies the maximum
number of processors that the generator can generate tasks for. To use all
available processors, MaxProcsToUse should be set to TotalProcsAvail­
able(). The Abortable parameter determines whether the generator is to
be abortable. It should be set to TRUE if the generator is to be abortable or
FALSE if the generator is not to be abortable. ResultP is a pointer used
when Abortable is true. It specifies where to store the generator "result
code" if the generator is aborted so that the generator activator routine can
find it. Finally, Language specifies the programming language from
which the generator is being called (0 for the C langauge, 1 for FORTRAN).

GenProc is the task generation routine. It is of the form:

Genl?roc(TD);

2-39

Using the Uniform System The Uniform System

VsGenDesc * TD;

where TD is a pointer to a task descriptor data structure in globally shared
memory. The task descriptor data structure, UsGenDesc, which is defined
in us.h, is shown in Figure 2-7:

typedef struct UsGenDescStruct
{ int id;

short * completion_location;
struct UsGenDescStruct * prev~tr;
struct UsGenDescStruct * next~tr;
int in_hash_table;
char * currentShare;
int end;
short started;
short us_lock;
short retcode;

t define genEXHAUSTED -1
short
int
int
int
int
int

endlock;
(* init) ();
(* gen) ();
(* final) () ;
arg;
(* ca.ll) ();

int range;
int range2;
int abortable;
short max~rocs_to_use;

short language;
t define C_CALLING 0
t define FORTRAN_CALLING 1

union
longLong;

short Short;
index;

union
unsigned long Long;

unsigned short Short;
} index2;
short lock;

UsGenDesc;

Figure 2°7
The UsGenDesc typedef

The fields id through language are used internally by.the Uniform System
generator mechanism. The Worker, Init, Final, GenProc, Arg, Rangel,
Rangel, MaxProcsToUse, and Language parameters of ActivateGen
are used to initialize the call, init, final, gen, arg, range, range2,

2-40

The Uniform System · U~ing the Uniform System

max _procs _to_ use, abortable, and language fields of the data structure.
The other fields between id and language are used by the generator
mechanism for internal bookkeeping. The remaining fields (index
through lock) are initialized to 0, and are available for use by the Gen­
Proc route for any generator-specific bookkeeping associated with gen­
erating tasks.

After ActivateGen initializes the task descriptor data structure, it makes
the descriptor accessible to other processors. If Async is TRUE, Activa­
teGen then returns its caller a pointer to the task descriptor data structure;
otherwise, the processor running ActivateGen calls the GenProc task
generation procedure. That processor, and others as they become free, use
the task generator descriptor (TD) and the GenProc task generation pro­
cedure to generate and execute calls to the Worker procedure.

An example may help illustrate use of ActivateGen to build a generator.
Suppose a generator:

GenOnShortindex(Init, Worker, Arg, Range);

is desired that is to be similar to GenOnl, differing in that it takes an Init
routine and an Arg parameter, and that the Range is to be restricted to a
short. GenOnShortlndex could be implemented by calling:

ActivateGen(Init, Worker, 0, Arg, Range, 0, GENERATOR, GenShortidx, FALSE,
TotalProcsAvailable, FALSE, O, 0);

where GenShortldx is:

GenShortidx(TD) UsGenDesc *TD;
{ register int index;

}

register short* pl=(short *)&TD->(index.Short);
register short range = TD->range;
register int (*worker) ()= TD->call;
register int arg = TD->arg;
for (;;)
{index= Atomic_add(pl,l); /*make next index*/

if (index >== range) break; /* range exceeded? */
(*worker) (arg, index); /*no: call worker*/

ActivateGen initializes a task generator descriptor (TD, a UsGenDesc
data structure) from its parameters, and makes the descriptor accessible to
other processors.· The processor on which ActivateGen is invoked then
calls GenShortldx. That processor, along with others as they become

2-41

Using the Uniform System The Uniform System

free, use the task generator descriptor and GenShortldx to generate and
execute tasks.

2-42

Chapter 3

Uniform System Examples

This section presents several example programs that illustrate use of the
Uniform System.

MULTIPROCESSOR "HELLO WORLD"

This example illustrates the use of the task generator GenOnl, the vari­
able Proc _Node, and the routines TotalProcsA vailable, PhysProcm
ToUsProc, and Share. It is a multiprocessor version of the "hello world"
program in Kernighan and Ritchie's The C Programming Language, and
is only a little more complicated. The program causes each processor to
print out, "Hello world from node n," exactly once. The output produced
by running it on a large Butterfly Plus system is shown in Figure 3-1.

(cluster 14) [c] Hello

There are 32 nodes on this machine

Hello from node #29 (= hardware node tc)
Hello from node #5 (= hardware node t9c)

Hello from node #13 (= hardware node tac)
Hello from node #3 (= hardware node #98)
(cluster 14) [c]

Figure 3-1
Output from "Hello World" Program

3-1

Uniform System Examples The Uniform System

The multiprocessor "hello world" program uses UsAlloc to reserve space
in gl~bally shared memory for nodecount, a variable used for bookkeep­
ing by the processors. Nodecount is initialized with the number of pro­
cessors on the machine, a number obtained via TotalProcsA vailable.
After using Share to propagate the location of nodecount to other proces­
sors, the program then uses GenOnl to generate tasks that print the
"hello" message from each processor. The only tricky part is ensuring
that each processor performs exactly one task. In general, without some
form of coordination, some processors could get more than one task and
others might get none. For this program, the coordination is simple. After
printing its message, each processor atomically decrements a counter
maintained in globally shared memory (nodecount), and then waits until
the counter indicates that all messages have been printed. This guarantees
that no processor finishes its task until all messages have been printed;
therefore all tasks are generated before any processor finishes. The pro­
gram code is shown in Figure 3-2.

/* Mul.tiprocessor "Hello" program */

#include <us.h>

short * nodecount;

PrintHello (dum:ny, index)
int dum:ny, index;
printf ("Hello from node #%d (=hardware node #%x)O,

PhysProcToUsProc(Proc_Node), Proc_Node);
Atomic_add (nodecount,-1);
while (*nodecount!= 0) UsWait (0);

main ()
InitializeUs () ;
p.odecount == (short*) UsAlloc (sizeof (short));
* nodecount • TotalProcsAvailable ();
printf ("\nThere are %d nodes on this machine\n\n", *nodecount);
Share (& nodecount);
GenOnI (PrintHello, * nodecount);

Figure 3-2

Program Code for. "Hello World" Program

3-2

The Uniform System Uniform System Examples

MATRIX MULTIPLICATION

This example illustrates use of the UsAllocScatterMatrix storage alloca­
tor, the GenOnA task generator, and the routines InitializeUs, Share,
TimeTest, and TimeTestPrint. The example is an unoptimized program
that multiplies two matrices. The program computes the matrix a = b * c.
Recall that the product (a) of two matrices (b and c) is the matrix whose
(i J)th component is the sum of the products of the corresponding elements
(the dot product) of the ith row of band thejth column of c.

The program is written t~ run on a set of processor configurations
specified from the keyboard. The output produced by running the matrix
example program on a small Butterfly Plus system is shown in Figure 3-3.

3-3

Uniform System Examples The Uniform System

(cluster 14) [c] Ma.tri.xExample

Starting Matrix Multiply
Matrix Size: 20

Please enter start, delta (O=exp), and end f9r time test: 1 0 8
Using start = 1, delta = O, end = 8

a row 0 o. 60. 120. 180. 240. 300.
a row 1 3. 63. 123. 183. 243. 303.
a row 2 6. 66. 126. 186. 246. 306.
a row 3 9. 69. 129. 189. 249. 309.
a row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195. 255. 315.
[l] time = 6287 ticks = .39 sec; ep = 1.0; eff == 1.0000

a row 0 o. 60. 120. 180. 240. 300.
a row 1 3. 63. 123. 183. 243. 303.·
a row 2 6. 66. 126. 186. 246. 306.
a row 3 9. 69. 129. 189. 249. 309.
a row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195. 255. 315.
(2] time = 3580 ticks = .22 sec; ep = 1. 7; eff = .8780

a row 0 0. 60. ;t.20. 180. 240. 300.
a row 1 3"' 63. 123. 183. 243. 303.
a row 2 6. 66. 126. 186. 246. 306.
a row 3 9. 69. 129. 189. 249. 309.
a row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195. 255. 315.
(4) time = 1798 ticks = .11 sec; ep = 3.4; eff = .8741

a row 0 0. 60. 120. 180. 240. 300.
a row 1 3. 63. 123. 183. 243. 303.
a row 2 6. 66. 126. 186. 246. 306.
a row 3 9. 69. 129. 189. 249. 309.
a row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195. 255. 315.
[8]' time = 1146 ticks .. .07 sec; ep = 5.4; eff = .6857
(cluster 14) [c]

Figure 3-3

Output from Matrix Multiplication Program

The line:

please enter start

is used to specify the processor configurations for the run. It is printed by
the TimeTest routine. See the previous chapter for an explanation of the

3-4

The Uniform ~ystem Uniform System Examples

start, delta and end parameters. The line:

[8] time= 1146 .•.

is printed by TimeTestPrint. It indicates that the matrix example pro­
gram took 1,146 ticks or 0.07 seconds on eight processors, and that it
achieved a speedup of 5.4 over one processor(= 5.4 effective processors),
utilizing the eight processors with 68.6% efficiency. The program itself is
shown in Figure 3-4.

3-5

Uniform System Examp1$S The Uniform System

/* Matrix multiply - unoptimizedexample program */

Jinclude <us.h>

int Size;
float * * a, * * b, * * c;

InitProblemOnce ()

{ int i, j;
a= (float *
b .. (float *
c = (float *

*)
*)
*)

UsAllocScatterMatrix (Size, Size, sizeof(float));
UsAllocScatterMatrix (Size, Size, sizeof(float));
UsAllocScatterMatrix (Size, Size, sizeof(float));

ShareScatterMatrix (&a, Size); Share (& b); Share (& c);
for (i=O; i<Size; i++)

for (j=O; j<Size; j++)
{ if (i=j) b[i] [j] = 3.; else b[i] [j] O.;

c[i] [j] = Size * i + j;

InitPerRun ()
int i, j;
for (i=O; i<Size; i++)

for. (j=O;_ j<Size; j++)
a[i][j] = O.;

DotProduct (dummy, i, j)
int dummy, i, j;
int k; float * bb, * cc, temp;
temp - 0.0; bb = b[i]; cc
for (k=O; k<Size; k++)

temp += *bb++ * *cc++;
a[i] [j] =temp;

Body ()
{ GenOnA (DotProduct, Size, Size);
}

PrintAnswer(time, procs, speedup)
int time, procs; float speedup;
int i, j;
for (i=O; i<6; i++)
{ printf ("\na row %d ", i);

for (j=O; j<6; j++)

c[j];

printf ("%d. ", (int) a[i][j]);

printf ("\n");
TimeTestPrint (time, procs, speedup);

main ()
{ InitializeUs ();

3-6

The Uniform System Uniform System Examples

printf ("\nStarting Matrix Multiply\nMatrix Size: "); scanf ("%d", &Size);
Share (&Size);
InitProblercOnce ();
TimeTest (InitPerRun, Body, PrintAnswer);

Figure 3-4

Program Code for Matrix Multiplication Program

This program parallelizes matrix multiplication by computing the indivi­
dual elements of product matrix a in parallel. Each element is the dot pro­
duct of a row of matrix b and a column of matrix c. Chrysalis starts $e
program by calling the routine main on a single processor. The program
has six routines:

1. InitProblemOnce, as its name suggests, is an initialization routine,
called once per invocation of the program, that reserves space in glo­
bally shared memory for the result matrix, a, ,and the two operand
matrices, band c, using the Uniform System allocator, UsAllocScat­
terMatrix. The variables a, b, and care C globals and, hence, process
private. Next, InitProblemOnce uses Share to make copies of a, b,
and c available to any processors used in tasks generated to do the
matrix multiplication. Finally, it initializes the band c matrices (with
dummy data) using nested for loops. Since matrix b will be accessed
by row, and matrix c will be accessed by column, b is scattered by row
and c is scattered by column. That is, b[i][j] is the element in row i,
column j of b, whereas c[i][j] is the element in row j, column i of c.

2. InitPerRun is an initialization routine called before each run of the
matrix multiplication code on a given configuration of processors. It
simply zeros answer matrix a. Strictly speaking, since every element
of a is written during the matrix multiplication, it is not necessary to
zero them between runs. They are zeroed here only to illustrate the
use of an initialization routine for TimeTest. Note that the rows of the
matrix could be zeroed in parallel if the matrix was very big.

3. DotProduct is a worker routine called by the GenOnA task generator.
It computes the vector dot product of row i of the b matrix and column
j of the c matrix and stores the result in element a[i] [j] of the result

3-7

Uniform System Examples The Uniform System

matrix. It uses a for loop to. accumulate the individual products in a
temporary variable, which it then stores in the result matrix. The vari­
able bb is a pointer to row i of matrix b and variable cc is a pointer to
column j of matrix c. Since matrix b is scattered by row and matrix c
is scattered by column, successive elements of the ith row of b and the
jth column of c can be accessed by incrementing and de-referencing
the bb and cc pointers. Using *hb rather than b[i]lj] avoids accessing
b[i] (which is constant since i does not change) in each iteration of the
for loop. This helps avoid contention for the memory that holds the b
vector of pointers. A similar comment applies to the use of cc.

4. Body is the routine that computes the matrix product. It uses the
GenOnA task generator to spawn tasks that execute in parallel to
compute the individual dot products that make up the result matrix.
The generator ensures that DotProduct is called for all combinations
of i andj for i[O Si Size] and i[O Sj Size].

5. PrintAnswer is the display routine called by TimeTest. Jt prints out
.part of the result matrix and then calls TimeTestPrint to print the run­
time, number of processors, and the speedup obtained over one pro­
cessor by a particular processor configuration.

6. The program starts in main. After initializing the Uniform System,
main asks for the size of the matrices (square matrices are assumed)
and stores the reply in the C global, process private variable Size.
Next, it calls Share to copy the value of Size in all processors that
execute any tasks subsequently generated. It then calls InitProb­
lemOnce to allocate and initialize the a, b, and c matrices. Finally, it
calls TimeTest to run the matrix multiplication on the range of pro­
cessor configurations specified by the user. The routines lnitPerRun,
Body, and PrintAnswer are called in order by Time Test on each pro­
cessor configuration, and Body is timed for each configuration.

CONVOLUTION

This example illustrates use of the GenOnIFull task generator and the
Chrysalis block transfer operation. The e~ample is an unoptimized pro­
gram that petforms a convolution operation on an input image to produce

3-8

The Uniform· System Uniform System Examples

a new output image. Each pixel in the output image is the weighted sum
of the corresponding pixel in the input image and pixels adjacent to it.
The weighting is specified by a mask. For the example program a specific
3-pixel by 3-pixel mask is used:

-1 -1 -1
-1 8 -1
-1 -1 -1

The value of each pixel in the output image is eight times the value of the
corresponding pixel in the input image minus the values of each of the
eight adjacent input image pixels. The output from running the program
on a small Butterfly Plus configuration is shown in Figure 3-5.

(cluster 14) [c] convolve

Image size = 256

Please enter start, delta (O=exp), and end for time test: 1 0 8
Using start = 1, delta = O, end = 8

[l] time - 50321 ticks = 3.14 sec; ep = 1.0; eff = 1.0000
[2] time = 24772 ticks = 1.54 sec; ep = 2. O; eff == 1.0156
[4] time = 12407 ticks = .77 sec; ep = 4.0; eff = 1.0139
[8] time = 6413 ticks = .40 sec; ep = 7.8; eff .= .9808
(cluster 14) [c]

Figure 3-5
Output from Convolution Program

The program parallelizes the convolution operation by computing rows of
pixels in the output image in parallel. The GenOnIFull task generator is
called with a Range parameter equal to the number of input image rows
minus ·two to generate the tasks. The top and bottom rows, and the left
and right columns are not convolved because they are on the edge of the
image, and therefore have insufficient adjacent pixels. The program code
is shown in Figure 3-6.

3-9

Uniform System Examples The Uniform System

I* Image convolution- unoptimizedexample program */

#include <us.h>

#define true 1
#define false 0

int N, End;
int * * im, * * an;
int * row, * row_ml, * row_;pl, * row_ans;

InitProblerOn.ce ()
{ int i, j;

im=(int * *) UsAllocScatterMatrix (N, N, sizeof(int));
an=(int * *) UsAllocScatterMatrix (N, N, sizeof(int));
for (i = 0; i < N; i++)

for (j = O; j < N; j++)
im[i] [j] = i % 2;

Share (& N); Share (& im); Share (&an);

InitforProc(dummy)
int dummy;
End= N - l;
row= (int*) malloc (N*sizeof(int));
row_ml =(int*) malloc (N*sizeof(int));
row_;pl = (int*) malloc (N*sizeof(int));
row ans= (int*) malloc (N*sizeof(int));

DoConvol. (dummy , r)
int dummy, r;
int c;
if (r & 1)

r = N-r-2;
Do bt (im[r++],
Do_bt (im[r++],
Do_bt (im[r--],
for (c = l; c <

row_ans[c]

Do bt (row_ans,

Final.forl?roc ()
free (row);
free (row_ml);
free (row_;pl).;
free (row_ans);

Body ()

row_ml, N*sizeof(int));
row, N*sizeof(int));
row_;pl, N*sizeof(int));
End; c++)
-row[c-1] + (row(c] << 3) - row[c+l]

-row_ml[c-1] - row_ml[c] - row_ml[c+l]
-row_;pl[c-1] - row_;pl[c] ~ row_;pl[c+l];

an[r), N*sizeof(int));

{ GenOnIFull (Initforl?roc, DoConvol, Finalforl?roc, O, N-2, 0, false);

3-10

The Uniform System Uniform System Examples

main ()
InitializeUs () ;
printf ("\nimage size="); scanf ("%d", &N);
Init~roblem::>nce ();
TimeTest (0, Body, TimeTestPrint);

Figure 3-6
Program Code for Convolution Program

The program has six routines.

1. InitProblemOnce allocates space in globally shared memory for the
input (im) and output (an) images (square images of dimension N by
N are assumed). The images are scattered by row across the
memories of the machine. It then generates pixel values for the input
image. Next, it uses Share to make copies of N, im, and an available
to processors used in tasks generated to do the convolution.

2. InitforP~oc is the "initialization" routine passed to GenOnIFull. It
is called once on each processor that executes tasks generated by
GenOnIFull before any of the tasks themselves are. InitforProc allo­
cates process private space, to be used by DoConvol, for four rows of
image pixels: row, row_ml, row_pl, and row_ans.

3. The DoConvol routine computes one row of the output image. Calls
to it are generated by the GenOnIFull task generator. Before comput­
ing output pixels, DoConvol makes local copies in process private

· memory of the pixel values it needs using the Chrysalis Do_ ht block
transfer operation. Each iteration of the for loop computes one pixel
of the output image. As their values are computed, the output pixels
are accumulated in process private memory in row_ ans. After all
have been computed, row_ ans is copied to the output image by a
block transfer.

The four block transfer operations are motivated by two performance
considerations. When referencing many contiguous items, it is more
efficient to first use block transfer to make a local copy and then

3-11

Uniform System Examples The Uniform System

reference the copied values locally than it is to reference the items one
at a time through the Butterfly Plus switch. After a small amount of
setup, the block transfer occurs at.the full 32-megabit per second rate
of the Butterfly Plus· switch, whereas individual remote references
would be slower, since they incur setup overhead for each remote
reference. Using the block transfer operation to put frequently refer­
enced data in local memory is the Butterfly Plus analogy to using
register variables in C to hold data in faster memory. The second per­
formance consideration is that potential multiprocessor contention for
the memory holding the pixel values is reduced, since the single block
transfer ties up the memory for less time than the individual remote
references.

The if statement that changes r when it is odd is also motivated by
memory contention considerations. Since each instance of DoConvol
references three rows of the input image, processors working on adja­
cent rows need to access two rows in common. To reduce the conten­
tion that could occur when the processors atte~pt to block transfer
copies of the same rows, processors that are passed an even r index
use the index directly as a row index, whereas those with an odd r
index use the index as an offset from the bottom of the image. (As
written, the program assumes that N is even.) This tends to spread the
processors out on the image; processors start both at the top of the
image and work down on even rows, and at the bottom of the image
and work up on odd rows. This scheme assumes that GenOnIFull
generates index values in sequence, which in fact it does. Note that
there is still a potential for contention with this approach since, for
example, the processors working on rows 2 and 4 both access row 3.
A slightly more complex scheme would eliminate this contention.

4. FinalforProc is the "finalization" routine passed to GenOnIFull. It
is called on each processor used for tasks generated by GenOnIFull
after the last such task has been executed on the processor. Final­
forProc deallocates the space for row, row_ ml, row _pl, and
row ans.

5. Body is the routine timed by Time Test. It uses GenOnIFull to gen­
erate the tasks that compute rows of output image pixels in parallel.

3-12

The Uniform System Uniform System Examples

6. The program starts with main, which simply initializes the Uniform
System, obtains the size of the image to be convolved from the user,
and times the parallel convolution on the processor configurations
specified by the user.

3-13

Chapter 4

Tuning Programs for Performance

This section presents a few suggestions for tuning the multiprocessor per­
formance of Uniform System programs. Programs are often developed in
two stages. The first stage focuses on getting the program to function
correctly, and the second stage focuses on achieving an acceptable level of
performance by tuning the correctly functioning program. We recom­
mend this two-stage approach to multiprocessor programs: first, get the
program to work, and then tune its performance. Although this section is
concerned with tuning a program's multiprocessor behavior, the unipro­
cessor behavior should, of course, also be tuned.

Multiprocessor performance bottlenecks in Uniform System programs
may occur for several reasons. Performance bottlenecks can occur if:

• There are insufficient tasks

• The tasks are not long enough

• There is memory contention.

The following paragraphs briefly consider each of these.

INSUFFICIENT TASKS

If there are insufficient tasks, processor starvation occurring as task gen­
erators finish up can limit program performance. For example, assume a

4-1

T~ning Programs for Performance . The Uniform System

system with 128 processors, and an application with 129 tasks, each of
which takes about T time units to perform. One processor will perform
two tasks and the remaining 127 processors a single task. Therefore, the
time to run on 128 processors will be 2T, and the maximum spee~up
attainable over running on a single processor is the execution time on one
processor divided by the execution time on 128 processors, equal to 129T
divided by 2T, or 64.5, which results in a processor utilization of only
50%. On a speedup plot (a plot of actual processors versus effective
processes) processor starvation effects will show up as a periodic "saw
tooth" superimposed on a generally monotonically increasing curve.

The obvious way to remedy this situation is to increase the number of
tasks. (In a large application, with many generators active at once, having
a relatively small number of tasks for some generators need not be a con­
cern.) In some cases, this is straightforward. For example, if it were
necessary to increase the number of tasks in the convolution example of
the previous chapter, the number of tasks could be doubled by having each
task process only half of an image row.

TASKS NOT LONG ENOUGH

When the tasks are not long enough, poor performance may be due to two
factors:

• If task generation time is a significant fraction of total run time, the
overhead of the task generator may be unacceptably high. Speedup
curves will often be linear in this situation.

• Task generators typically contain an internal "critical" region through
which processors must proceed one at a time. For example, GenOnln­
dex must atomically increment a counter to step through the Range
parameter (see the section entitled "Building a Generator" in Chapter
2).

Critical regions in task generat~on may limit the number of processors that
can be used efficiently. To see this, let T be the time it takes to execute a
task. T includes the time to generate the task (Tgen) and the time to

4-2

The Uniform System Tuning Programs for Performance

perform the task computation (Twork).

T = Tgen + Twork

T gen is made up of time spent in the critical region (T crit) and in the non­
critical region (T noncrit). Hence,

T = T crit + T noncrit + T work

Letting T~est be the sum of T noncrit and T work gives:

T = Tcrit +Trest

Since processors must proceed through the critical region serially, the
maximum number of processors that can be fully utilized (i.e., used
without waiting to proceed though the critical region) is:

Max # procs = T ff crit = (T crit + T rest)(f crit = l + T resff crit

For example, if the critical region is half the total task time, only two pro­
cessors can be fully utilized. This effect will usually manifest itself as a
flattening of the speedup curve, asymptotically approaching T ff crit effec­
tive processors.

The effects of both factors can be minimized by increasing task length.
The convolution example in the previous chapter is an intermediate ver­
sion in a sequence that led to an optimized program. An earlier version
parallelized the convolution by computing single pixels in the output
image in parallel. That task took about 45 microseconds and was far too
small, since the critical region in the GenOnArray task generator used
was about 10 microseconds.

MEMORY CONTENTION

Finally, if there is significant memory contention, processors are forced to
proceed serially as they contend for ''hot" memory. Hot spots typically
show as a flattening of the speedup curve. If the hot spot is severe, the
curve may tum down or oscillate. The remedy for this situation is to
remove the hot spot. In practice this is usually a two step process: detect­
ing the h<?t spot, and then removing it.

4-3

Tuning Prog~ams for Performance The Uniform System

In some cases hot spots can be identified by studying the code. In other
cases the hot spots are not so obvious. In such cases, the Butterfly Plus
program profiling utility can be used to determine where, if at all, there is
significant memory contention. Consult the Chrysalis Programmer's
Manual for detailed information on using the profiler.

After hot spots are identified, they must be eliminated. Eliminating them
is usually application· dependent. However, a few general guidelines can
be offered:

• Distribute the program's data across the machine. UsAllocScatterMa­
trix can be used to do this.

• Make local copies of frequently accessed data items. Share and
ShareScatterMatrix, or more specialized code in the per-processor ini­
tialization routines of task generators, can be used to do this.

• Distribute references to frequently accessed data across multiple copies
of the data. In some cases it may neither be necessary nor practical to
have a copy of frequently accessed data on every processor. In many
cases, a few copies are sufficient. (If there are n copies, processor p
would access copy p modulo n.) Of course, if the copied data changes
as the computation proceeds and multiple processors need to see the
changes, managing the copies can become complex.

• Make local cache copies of data structures before referencing them, as
in the convolution example in Chapter 3. Do bt can be used to do this.

4-4

Chapter 5

Uniform System Library Routines

This section documents each of the operations supported by the Uniform
System. The operations are ordered alphabetically.

•AbortGen

AbortGen(GenID, code)
UsGenDesc * GenID;
int code;

AbortGen aborts an active task generator by preventing the generation of
new tasks. Any tasks in progress will run to completion. GenID is an
identifier for the generator. It must specify an abortable generator. Code
is returned as the result code for the generator. If AbortGen is called
more than once for a given generator, the smallest code is returned as the
generator result code.

• ActivateGen

UsGenDesc * ActivateGen(Init, Worker, Final, Arg, Rangel, Range2, Type,
Gen, Async, MaxProcsToUse, Abortable,
Result!?, lang)

int (* Init) (), (*Worker) (), (* Final) ();
int Arg, Rangel, Range2, Type, (* Gen) ();
int Async, MaxProcsToUse, Abortable, * Result!?, lang;

ActivateGen is the "universal" generator activator procedure. It is called
by all of the generators to activate parallel activity. Application programs
can use ActivateGen directly to build new generators.

5-1

Uniform System Library Routines The Uniform System

· Init is the per-processor initialization routine, Worker is the task worker
routine, and Final is the per-processor post-processing routine. Arg is a
pointer to a data structure, which is passed to the I nit, Worker, and Final
routines. Type must be set to GENERATOR, and Rangel and Range2 are
integers. GenProc is a task generation routine described in more detail
below. The Async parameter specifies whether the generator is to be syn­
chronous or asynchronous. It should be set to TRUE for synchronous or
FALSE for asynchronous. MaxProcsToUse specifies the maximum
number of processors that the generator can generate tasks for. To use all
available processors, MaxProcsToUse should be set to TotalProcsAvail­
able(). The Abortable parameter determines whether the generator is to
be abortable. It should be set to TRUE if the generator is to be abortable or
FALSE if the generator is not to be abortable. ResultP is a pointer used
when Abortable is true. It specifies where to store the generator "result
code" if the generator is aborted, so the generator activator routine can
find it. Finally, Language specifies the programming language from
which the generator is being called (0 for the C language, 1 for FORTRAN).

GenProc is the task generation routine. It is of the form:

GenProc(TD);
UsGenDesc * TD;

where TD is a pointer to a task descriptor data structure in globally shared
memory. The task descriptor data structure, UsGenDesc, which is defined
in us.h, is:

typedef struct UsGenDescStruct
{ int id;

short * completion_location;
struct UsGenDescStruct * prev_J'tr;
struct UsGenDescStruct * next_J'tr;
int in_hash_table;
char * currentShare;
int end;
short started;
short us_lock;
short retcode;

define genEXHAUSTED -1
short endlock;
int (* init) ();
int (* gen) ();
int (* final) () ;
int arg;
int (*call)();

5-2

The Uniform System

int range;
int range2;
int abortable;
short max_J>rocs_to_use;
short language;

t define C CALLING 0
f define FORTRAN CALLING 1

union
longLong;

short Short;
} index;
union

unsigned long Long;
unsi911ed short Short;
} index2;
short . lock;

} UsGenDesc;

Uniform System Library Routines

The fields id through language are used internally by the Uniform System
generator mechanism. The Worker~ Init, Final, GenProc, Arg, Rangel,
Range2, MaxProcsToUse and Language parameters of ActivateGen are
used to initialize the call, init, final, gen, arg, range, range2,
max_procs _to_ use, abortable, and language fields of the data structure,
and the other fields between id and language. are used by the generator
mechanism for internal book.keeping. The remaining fields (index
through lock) are initialized to 0, and are available for use by the Gen­
Proc routine for any generator-specific bookkeeping associated with gen­
erating tasks.

After ActivateGen initializes the task descriptor data structure, it makes
the descriptor accessible to other processors. If Async is TRUE, Activa­
teGen then returns its caller a pointer to the task descriptor data structure;
otherwise, the processor running ActivateGen calls the GenPr9c task
generation procedure. That processor, and others as they become free, use
the task generator descriptor (TD) and the GenProc task generation pro­
cedure to generate and execute calls to the Worker procedure.

• AsynchGenOnA

UsGenDesc *
AsynchGenOnA(Worker, Rangel, Range2)
int (*Worker)();
int Rangel, Range2;

Worker(O, indexl, index2, GenID)
int indexl, index2;

5-3

Uniform. System Library Routines The Uniform System

AsyncGenOnA is the asynchronous version of GenOnA. It is equivalent
to:

AsyncGenOnAFull(O, Worker, O, O, Rangel, Range2, 0, FALSE)

• AsyncGenOnAAbortable

UsGenDesc *
AsyncGenOnAAbortable(Worker, Rangel, Range2)
int (* Worker) () ;
int Rangel, Range2;

Worker(O, indexl, index2, GenID)
int indexl, index2;
UsGenDesc * GenID;

AsyncGenOnAAbortable is the
GenOnAAbortable. It is equivalent to:

asynchronous

AsyncGenOnAFull(O, Worker, O, O, Rangel, Range2, 0, TRUE)

• AsyncGenOnAFull

UsGenDesc *

version of

AsyncGenOnAFull(Init, Worker, Final, Arg, Rangel, Range2, Limited, Abortable)
int (*Init) (), (* Worker) (), (* Final) () ;
int Arg, Rangel, Range2, Limited, Abortable;

.worker(O, indexl, index2)
int indexl, index2

or

/* If Abortable = FALSE */

Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */
int indexl, index2;
UsGenDesc * GenID

Init (Arg)
int Arg;

Final(Arg)
int Arg;

AsyncGenOnAFull. is the asynchronous version of GenOnAFull. It
returns to the caller as soon as the task generator is activated, enabling the
caller _to work on other things while the tasks are executed. Asyn­
chGenOnAFull returns a generator handle that can be used with the W or­
kOn or WaitForTasksToFinish routines. See the description of
GenOnAFull for an explanation of the parameters.

5-4

The Uniform System Uniform System Library Routines

• AsyncGenOnALimited

UsGenDesc *
AsyncGenOnALimi_ted(Worker, Rangel, Range2, MaxProcsToUse)
int (*Worker)();
int Rangel, Range2, MaxProcsToUse;

Worker(O, ~ndexl, index2)
int indexl, index2;

AsyncGenOnALimited is the asynchronous version of GenOnALim­
ited. It is equivalent to:

AsyncGenOnAFull(O, Worker, O, O, Rangel, Range2, MaxProcsToUse, FALSE)

• AsyncGenOnHA

UsGenDesc *
AsyncGenOnHA(Worker, Rangel, Range2)
int (*Worker)();
int Rangel, Range2;

Worker(Arg,indexl, index2)
int Arg, indexl, index2;

AsyncGenOnHA is the asynchronous version of GenOnHA. It is
equivalent to:

AsyncGenOnHAFull(O, Worker, O, 0, Rangel, Range2, 0, FALSE)

• AsyncGenOnHAAbortable

UsGenDesc *
AsyncGenOnHAAbortable(Worker, Rangel, Range2)
int (*Worker)();
int Rangel, Range2;

Worker(O, indexl, index2, GenID)
int indexl, index2;
UsGenDesc * GenID;

AsyncGenOnHAAbortable is the asynchronous
GenOnHAAbortable. It is equivalent to:

AsyncGenOnHAFull(O, Worker, O, O, Rangel, Range2, 0, TRUE)

• AsyncGenOnHAFull

UsGenDesc *
· AsyncGenOnHAFull (Init, Worker, Final, Arg, Rangel,

Range2, Limited, Abortable)
int (* Init) (), (* Worker) (), (* Final) () ;

version of

5-5

Uniform System library Routines The Uniform System

int Arg, Rangel, ~ge2, Limited, Abortable;

Worker(O, indexl, index2)
int indexl, index2

or

/* If Abortable • FALSE */

Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */
int indexl, index2;
UsGenDesc * GenID

Init (Arg)
int Arg;

Final (Arg)
int Arg;

AsyncGenOnHAFull is the asynchronous version of GenOnHAFull. It
returns to the caller as soon as the task generator is activated, enabling the
caller to work on other things while the tasks are executed.
AsyncGenOnHAFull returns a generator handle that can be used with the
WorkOn or WaitForTasksToFinish routines. See the description of
GenOnAFull for an explanation of the parameters.

• AsyncGenOnHALimited

UsGenDesc *
AsyncGenOnHALimited(Worker, Rangel, Range2, Ma.xProcsToUse)
int (*Worker)();
int Rangel, Range2, Ma.xProcsToUse;

Worker(Arg,indexl, index2)
int Arg, indexl, index2;

AsyncGenOnHALimited 1s the
GenOnHALimited. It is equivalent to:

asynchronous version

AsyncGenOnHAFull(O, Worker, O, O, Rangel, Range2, MaxProcsToUse, FALSE)

• ~syncGenOnl

UsGenDesc *
AsyncGenOnI (Worker, Range)
int (*Worker)();
int Range;

Worker(O,ind.ex)
int index;

of

AsyncGenOnl is the asynchronous version of GenOnl. Control is
returned to ~e process that executed AsyncGenOnl without waiting for
the tasks to complete. It is equivalent to:

5-6

The Uniform System Uniform System Library Routines

AsyncGenOnIFull(O, Worker, 0, 0, Range, 0, FALSE)

• AsyncGenOnIAbortable

UsGenDesc * _
AsyncGenOnIAbortable(Worker, Range)
int (* Worker) ();
int Range;

Worker(O,index,GenID)
int index;
UsGenDesc * GenID;

AsyncGenOnIAbortable is the asynchronous version of 9enOnlAbort­
able. Control is returned to the process that executed AsyncGenOnIA­
bortable without waiting for the tasks to complete. It is equivalent to:

AsyncGenOnIFull(O, Worker, 0, 0, Range, O, TRUE)

• AsyncGenOnIFull

UsGenDesc *
AsyncGenOnIFull(Init, Worker, Final, Arg, Range, Limited, Abortable)
int (* Init) (), (* Worker) (), (* Final) ();
int Arg, Range, Limited, Abortable;

Worker(O, index)
int index

or
Worker(O, index, GenID)
int index;
UsGenDesc * GenID

Init (Arg)
int Arg;

Final (Arg)
int Arg;.

/* If Abortable = FALSE */

/* If Abortable = TRUE */

AsyncGenOnIFull is the asynchronous version of GenOnIFull. It
returns to the caller as soon as the task generator is activated, enabling the
caller to work on other things while the tasks are executed.
AsyncGenOnIFul~ returns a generator handle that can be used with the
WorkOn or WaitForTasksToFinish- routines. See the description of
GenOnIFull for an explanation of the parameters.

• AsyncGenOnILimited

UsGenDesc *

5-7

Uniform System Library Routines

AsyncGenOnILimited(Worker, Range, MaxProcsToUse)
int (*Worker)();
int Range, MaxProcsToUse;

Worker(O,index)
int index;

The Uniform System

AsyncGenOnILimited is the asynchronous version of GenOnILimited.
It is equivalent to:

AsyncGenOnIFull(O, Worker, 0, 0, Range, MaxProcsToUse, FALSE)

• Atomic_add_long

Atomic_add_long(loc, val)
int * loc, val;

Atomic_add_long atomically adds val to the location addressed by loc. It
is similar to the Chrysalis 16-bit Atomic_ add operation except that it
operates on 32-bit quantities and does not support the fetch part of the
"fetch and add" function provided by Atomic_add.

Atomic_add_long is atomic only with respect to other Atomic_add_long
calls. In particular, execution of a read operation can be interleaved with
an Atomic_add_long operation in a way that returns an inconsistent result
to the read. This can occur if the high-order 16 bits returned by the read
are obtained after the low-order 16 bits aie incremented by the
Atomic_add_long, but before the carry (if any) propagates to the higher
order bits.

•BEGIN SHARED DECL and END SHARED DECL - - - -
BEGIN_SHARED_DECL

(normal C declarations,')

END_SHARED_DECL;

BEGIN SHARED DECL and END SHARED DECL are macros that declare - -
variables to be globally shared· among all of the proc~ssors. They create a
structure that contains all the variables. Space is allocated for the struc­
ture via the macro MakeSharedVariables. Variables in the structure are
referenced via the macro SHARED.

5-8

The Uniform System Uniform System library Routines

Only one BEGIN_SHARED _DECL and END _SHARED _DECL declaration
can appear in a Uniform System· program. All variables declared via
BEGIN SHARED DECL and END SHARED DECL are allocated on the - - - -
same physical memory. In some situations this may lead to memory con­
tention.

•Configure Us

ConfigureUs(Spec, n)
int * Spec, n;

ConfigureUs can be used prior to calling InitializeUs to specify values
for configuration parameters that differ from the default values used by
InitializeUs. Spec is an array of integers that specifies the configuration
parameters to be set; it contains n parameter specification blocks. Each
parameter specification block contains an integer configuration code that
serves to identify the parameter being set, followed by one or more
integers that specify the value for the parameter. See SetUsConfig for a
list of the configuration codes currently defined.

• DistinctMemoriesA vailable

DistinctMemoriesAvailable()

DistinctMemoriesA vailable returns the number of memories available
for use by the application program. This number is usually the same as
TotalProcsA vailable, but there are cases where it will be a smaller
number because memory cannot be obtained on a particular processor
node.

• FreeAU

FreeAll ()

FreeAll reinitializes the Uniform System memory allocator by freeing all
globally allocated storage, including memory allocated by any of the allo­
cators.

•GenOnA

GenOnA(Worker, Rangel, Range2)
int (*Worker)();
int Rangel, Range2;

5-9

Uniform System Library Routines

Worker(O, ind.exl, index2)
int indexl, index2;

The Uniform Syste~

GenOnA generates tasks that execute the worker routine in parallel for all
combinations of two ranges of values. The worker routine will be exe­
cuted Rangel x Range2 times. The indexes are the specific values given
to the worker routine each time it is executed. lndexl ranges from ()to
(Rangel-1). lndex2 ranges from 0 to (Range2-1). The processor that
invokes GenOnA, and possibly other processors, will execute the gen­
erated tasks. When GenOnA returns, all generated tasks will have
finished. A call to GenOnA is equivalent to:

GenOnAFul.J.(0, Worker, O, 0, Rangel, Range2, 0, FALSE)

• GenOnAAbortable

GenOnAAbortabJ.e(Worker, Rangel, Range2)
int (* Worker) ();
int Rangel, Range2;

Worker(O, indexl, index2, GenID)
int indexl, index2;
UsGenDesc * GenID;

GenOnAAbortable is the abortable version of GenOnA. GenID is an
identifier for the task generator. It is used with the AbortGen routine to
abort it. GenOnAAbortable returns a value that indicates whether
AbortGen was used to abort the generator. It is equivalent to:

GenOnAFuJ.J.(0, Worker, O, O, Rangel, Range2, O, TRUE)

• GenOnAFull

GenOnAFuJ.J.(Init, Worker, Final, Arg, Rangel, Range2, Limited, Abortable)
int (* Init) (), (* Worker) () , .(* Final) () ;
int Arg, Rangel, Range2, Limited, Abortable;

Worker(O, indexl, index2)
int indexl, index2

or

/* If Abortable = FALSE */

Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */
int indexl, index2;
UsGenDesc * GenID

Init (Arg)
int Arg;

Final(Arg)

5-10

The Uniform System Uniform System Library Routines

int Arg;

GenOnAFull generates tasks on an array. It is the complete version of
the GenOnA generator family. The Abortable parameter determines
whether the generator is abortable. The parameter should be set to FALSE

if the generator is not abortable or TRUE if the generator is abortable. If
the generator is not abortable, the worker routine is:

Worker(Arg,indexl, index2)
int Arg, indexl, index2;

If the generator is abortable, the worker routine is:

Worker(Arg,indexl, index2, GenID)
int Arg, indexl, index2;
UsGenDesc * GenID;

The Init routine is called once on each processor used to execute the gen­
erated tasks. It is called before the Worker routine runs for the first time
on that processor. The Final routine is called once on each processor used
to execute the generated tasks, after the Worker routine runs for the last
time on that processor. The Limited parameter controls the number of
processors used by the generator. If Limited is set to 0 or -1, the genera­
tor may use all available processors. If Limited is set to a positive value,
the generator will use no more than that number of processors. It may use
less than the maximum number of processors.

If GenOnAFull returns without being aborted, all the generated tasks
have finished and the value genEXHAUSTED is returned. If the Abortable
parameter was set to TRUE and the generator was aborted, some of the
tasks may not have been performed and the code that was passed to
AbortGen is returned.

• GenOnALimited

GenOnALimited(Worker, Rangel, Range2, MaxProcsToUse)
int (*Worker)();
int Rangel, Range2, MaxProcsToUse;

Worker(O, indexl, index2)
int indexl, index2;

GenOnALimited is the limited version of GenOnA. It is equivalent to:

GenOnAFull(O, Worker, _o, O, Rangel, Range2, MaxProcsToUse, FALSE)

5-11

Uniform System Library Routines

eGenOnHA

GenOnHA(Worker, Rangel, Range2)
int (*Worker)();
int Range1, Range2;

Worker(Arg,indexl, index2)
int Arg, indexl,. index2;

The Uniform System

GenOnHA generates tasks that execute. the worker routine in parallel for
certain combinations of two ranges of values. The combinations of values
span the half array below the diagonal of the array. The indexes are the
specific values given to the Worker routine each time it is executed. The
indexes range as follows:

index2 = 0, indexl = 1, ..• , (Rangel-1)
index2 = 1, indexl = 2, ... , (Rangel-1)

index2 = R-2, indexl = (R-1), ••• , (Rangel-1)

where R is the lesser of Range 1 and Range2. The processor that invokes
GenOnHA, and possibly other processors, will execute the generated
tasks. When GenOnHA returns, all of the generated tasks will have
finished. GenOnHA is equivalent to:

GenOnHAFull(O, Worker, O, 0, Rangel, Range2, O, FALSE)

• GenOnHAAbortable

GenOnHAAbortable(Worker, Rangel, Range2)
int (*Worker)();
int Rangel, Range2;

Worker(O, indexl, index2, GenID)
int indexl, index2;
UsGenDesc * GenID;

GenOnHAAbortable is the abortable version of GenOnHA. GenID is
an identifier for the task generator. It is used with AbortGen to abort it.
GenOnHAAbortable returns a value that indicates whether AbortGen
aborted the generator. It is equivalent·to:

GenOnHAFull(O, Worker; 0, O, Rangel, Range2, O, TRUE)

• GenOnHAFull

GenOnHAFull(Init, Worker, Final, Arg, Rangel, Range2, Limited, Abortable)
int (* Init) (), (* Worker) () , (* Final) () ;
int Arg, Rangel, Range2, Limited, Abortable;

5-12

The Unifofm System Uniform System Library Routines

Worker(O, indexl, index2) /* If Abortable = FALSE */
int indexl, index2

or
Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */
int indexl, index2;
UsGenDesc * GenID

Init (Arg)
int Arg;

Final (Arg)
int Arg;

GenOnHAFull generates tasks on half of an array. It is the complete ver­
sion of the GenOnHA generator family. The Abortable parameter deter­
mines whether the generator is abortable. The parameter should be set to
FALSE if the generator is not abortable or TRUE if the generator is abort­
able. If the generator is not abortable, the worker routine is:

Worker(Arg,indexl, index2)
int Arg, indexl, index2;

If the generator is abortable, the worker routine is:

Worker(Arg,indexl, index2, GenID)
int Arg, indexl, index2;
UsGenDesc * GenID;

The lnit routine is called once on each processor used to execute the gen­
erated tasks. It is called before the Worker routine runs for the first time
on that processor. The Final routine is called once on each processor used
to execute the generated tasks, after the Worker routine runs for the last
time on that processor. The Limited parameter controls the number of
processors used by the generator. If Limited is set to 0 or -1, the genera­
tor may use all available processors. If Limited is set to a positive value,
at most, the generator will use that number of processors. It may use less
than the maximum number of processors.

If GenOnHAFull returns without being aborted, all the generated tasks
have finished and the value genEXHAUSTED is returned. If the Abortable
parameter was set to TRUE and the generator was aborted, some of the
tasks may not have been performed and the code that was passed to
AbortGen is returned.

5-13

Uniform System Library Routines The Uniform System

• GenOnHALimited

GenOnHALimited(Worker, Rangel, Range2, MaxProcsToUse)
int (* Worker) ();
int Rangel, Range2, Maxl?rocsToUse;

Worker(Arg,indexl, index2)
int Arg, indexl, index2;

GenOnHALimited is the limited version of GenOnHA. It is equivalent
to:

GenOnHAFull(O, Worker, O, 0, Rangel, Range2, Maxl?rocsToUse, TRUE)

•GenOnl

GenOnI(Worker, Range)
int (*Worker)();
int Range;

Worker(O,index)
int index;

qenOnl generates tasks that execute a worker routine for a range of
values. Range is the number of times that the Worker routine will be
executed. index is the specific value given to the Worker routine each
time it is executed. index ranges from 0 to (Range-1). The processor
that invokes GenOnl, and possibly other processors, will execute the gen­
erated tasks. When GenOnl returns, all of the generated tasks will have
finished. A call to GenOnl is equivalent to:

GenOnIFull(O, Worker, 0, 0, Range, 0, FALSE)

• GenOnlAbortable

GenOnIAbortable (Worker, Range)
int (*Worker)();
int Range; •

Worker(O,index,GenID)
int index;
UsGenDesc * GenID;

GenOnIAbortable is the abortable version of GenOnl. GenlD is an
identifier for the task generator. It is used with the AbortGen routine to
abort it. GenOnlAbortable returns a value that indicates whether Abortm
Gen was used to abort the generator. GenOnIAbortable is equivalent to:

GenOnIFull(O, Worker; 0, O, Range, O, TRUE)

5-14

The Uniform System Uniform System Library Routines

• GenOnIFull

GenOnIFull(Init, Worker, Final, Arg, Range, Limited, Abortable)
int (*Init) (), (* Worker) (), (* Final) ();
~nt Arg, Range, Limited, Abortable;

Worker(O, index) /* If Abortable = FALSE */
int index

or
Worker(O, index, GenID) /* If Abortable = TRUE */
int index;
UsGenDesc * GenID

Init(Arg)
int Arg;

Final (Arg)
int Arg;

GenOnlFull generates tasks on an index. It is the complete version of the
GenOnl generator family. The Abortable parameter determines whether
the generator is abortable. The parameter should be set to FALSE if the
generator is not abortable or TRUE if the generator is abortable. If the gen­
erator is not abortable, the worker routine is:

Worker(Arg,index)
int Arg, index;

If the generator is abortable, the worker routine is:

Worker(Arg,index, GenID)
int Arg, index;
UsGenDesc * GenID;

The Init routine is called once on each processor used to execute the gen­
erated tasks. It is called before the Worker routine runs for the first time
on that processor. The Final routine is called once on each processor used
to execute the generated tasks, after the Worker routine runs for the last
time on that processor. The Limited parameter controls the number of
processors used by the generator. If Limited is set to 0 or -1, the genera­
tor may use all available processors. If Limited is set to a positive value_,
at most, the generator will use that number of processors. It may use less
than the maximum number of processors.

If GenOnIFull returns without being aborted, all the generated tasks have
finished and the value genEXHAUSTED is returned. If the Abortable

. parameter was set to TRUE and the generator was aborted, some of the
tasks may not have been performed and the code that was passed · to

5-15

Uniform System Library Routines

AbortGen is retUmed.

• GenOnILimited .
GenOnILimited(Worker, Range, MaxProcsToUse)
int ('*worker) () ;
int Range;

Worker(O,index)
int index;

The Uniform System

GenOnILimited is the limited version of GenOnl. It will only generate
tasks for a limited number of processors. MaxProcsToUse is the number
of processors to use. GenOnILimited is equivalent to:

GenOnIFull(O, Worker, 0, 0, Range, MaxProcsToUse, FALSE)

• GenTaskForEachProc
GenTaskForEachProc(Worker, Arg)
int (* Worker) ();
int Arg;

Worker (Arg)
int Arg;

GenTaskForEachProc generates exactly one call on the worker routine
for every processor.

• GenTaskForEachProcLimited

GenTaskForEachProcLimited(Worker, Arg, NProcs)
int (*Worker)();
int Arg, NProcs;

Worker (Arg)
int Arg;

GenTaskForEachProcLimited generates exactly one call on the worker
routine for every processor. The number of processors to use is limited to
NProcs. If ProcslnUse() is less than NProcs, this call will hang.

• GenTasksFromList

GenTasksFromList(Routine_List, Arg_List, n)
int* (* RoutineList) ();
int * Arg_ List;
int n;

GenTasksFromList generates n tasks from a list of tasks. Routine List

5-16

The Uniform System Uniform System Library Routines

is the list of routines to be executed, r 1' ... ,r 8 • Arg_ List is the list of argu­
ments to the routines, argl' ... ,arg8 • There is one argument for each rou­
tine. The first task is of the form r 1 (arg1). The C notation for the first task
is:

(* Routine_List [0]) (Arg_List[O]);

•GetRtc

GetRtc()

GetRtc returns the time since the system was last reset in units of 62.5
microseconds.

• InitializeUs

InitializeUs ()

InitializeUs initializes the Uniform System. It creates and starts a Uni­
form System process on every available processor and sets up the memory
that is globally shared among all Uniform System processes. It also ini­
tializes the Uniform System storage allocator. InitializeUs must be called
once in every program. It is called before other Uniform System routines
except for ConfigureUs and SetUsConfig.

• MakeSharedVariables

MakeSharedVariables;

MakeSharedVariables is a macro that allocates space in globally shared
memory for the structure created by BEGIN_SHARED_DECL and
END SHARED DECL. It makes the location of the structure known to - -
other processors. MakeSharedVariables must be called after Initial~

izeUs() and before any of the shared variables are referenced.

• MemoriesA vailable

MemoriesAvailable()

MemoriesAvailable returns the amount of globally-shared memory avail­
able to the application program in units of 64 kilobytes.

• PhysProcToUsProc

PhysProcToUsProc(physproc)

5-17

Uniform System Library Routines The Uniform _System

int physproc;

PhysProcToUsProc returns the Uniform System virtual processor
number corresponding to the physical processor number, physproc.

• Procsln Use

ProcsinUse ()

ProcslnUse returns the number of processors available to an application
program, excluding any processors that were removed by TimeTest or
TimeTestFull.

• RefreshLocalShareValues

RefreshLocalShareValues ()

The Uniform System Share mechanism propagates copies of process
private data to all processes. It facilitates program initialization by mak­
ing it relatively easy to propagate the values of variables set during pro­
gram initialization to all processors. Copies of. such data normally pro­
pagate to a process automatically. This occurs within the Uniform System
generator mechanism, which checks to see whether there are any new
values to be copied before a process gets its first task from a new genera­
tor.

Although automatic propagation of process private data is adequate when
the Share mechanism is used to propagate initialized values of variables
that have been allocated in non-shared memory, it is often inadequate
when the Share mechanism is used in other ways. A process can use
RefreshltocalShare Values to refresh its copies of any variables whose
values may have been updated and propagated by other processes via the
Share mechanism. ·

• SetUsConfig

SetUsConfig(code, value)
int code, value;

SetUsConfig can be used prior to calling InitializeUs to specify a value
for a configuration parameter that differs from the default value used by
lnitializeUs. code is ,the configuration code for the. parameter name.
value is the integer value of the parameter.

5-18

The Uniform System Uniform System Library Routines

The following configuration codes are defined:

configProcs Specifies the number of processors to include
in the Uniform System c;onfiguration. The
number should be an integer less than or equal
to the number of nodes in the cluster. If
configProcs is set greater than the number of
available nodes, the Uniform System uses only
the nodes available to it.

configSuppresslnitMsgs Specifies whether to print messages that report
the progress of InitializeUs: 1 means suppress
the messages, 0 means print the messages. The
default is 1.

configTimeTestViaReinit
Specifies behavior of the TimeTest mechanism
(see "Measuring Your Program"). 1 means
completely reinitialize the Uniform System for
each configuration timed. This ensures that
only the resources of the processors being
timed are used; in particular, only the memory
of those processors is used. 0 means use the
Uniform System as is, by "diverting" enough
processors to an idle loop in order to time a
given processor configuration. This means that
only the CPU resources of the processors in the
configuration are used, but the memory
resources of all processors, including those that
have been diverted, may be used. The default
is 0. This parameter may be specified anytime
before calling TimeTest.

configAllocAcross64K Specifies whether Uniform System memory
allocators (see ''Memory Allocators'') may
allocate blocks of memory that cross 64-
kilobyte boundaries in a process address space.
Early versions of the Uniform System would

5-19

Uniform System library Routines The Uniform System

not allocate blocks that cross 64-kilobyte boun­
daries. 1 means allow allocation across 64-
kilobyte blocks; 0 means don't allow allocation
across 64-kilobyte blocks. The default is 1.

con fig WarningOnShareFail
Specifies behavior on a failure of the Share
mechanism (see "~opying Process Private
Data"); 1 means print a warning message on a
Share failure; 0 means don't print a warning
message on a Share failure. The default is 1.

configStopOnShareFail Specifies behavior on a failure of the Share
mechanism (see "Copying Process Private
Data"); 1 means suspend process on a Share
failure; 0 means allow process to continue exe­
cution on a Share failure. The default is 1.

configMemObjsFree Specifies the number of 64-kilobyte memory
objects to leave free on each processor node.
Setting this configuration option overides any
previous use of configMaxMemObjs.

configMaxMemObjs Specifies the maximum number of 64-kilobyte
memory objects to obtain from each processor
when making the Uniform System shared
memory. Setting this configuration option
overides any previous use of
configMemObjsFree.

configObjsRetRoot During InitializeUs, the Uniform System
obtains memory in 64-kilobyte blocks to be
used to build its shared address space. It
obtains as many 64-kilobyte blocks as it can on
each processor node in the configuration. It
then returns some 64-kilobyte blocks on each
node to allow operations requiring memory to
occur on the nodes; for example, running the
v¥ious Chrysalis utilities such ·as ps and

5-20

The Uniform System

configObjsRetChild

configMaxSars

configTotalSars

Uniform Syste.m Library Routines

showmem require memory. This configuration
code is used to specify the number of 64-
kilobyte blocks the Uniform System should
return for the processor node on which the Uni­
form System program is started (the root pro­
cessor). The parameter is interpreted only if
configMaxMemObjs and
configMemObjsFree have not been specified.
The default is 2.

Similar to configObjsRetRoot, but specifies
the number of 64-kilobyte blocks to be
returned for child processor nodes. The param­
eter is interpreted only if configMaxMemObjs
and configMemObjsFree have not been
specified. The default is 2.

Specifies the maximum size of the shared por­
tion of the process address space in terms of
64-kilobyte blocks or "segments." 1 This
parameter should be an integer greater than 15.
The default is 237.

Specifies the maximum size of the process
address space in terms of 64-kilobyte blocks or
"segments. " 2 This includes the space con­
sumed by the program, the stack, process
private data, and l,Jniform System shared
memory. The default value for this parameter
is 256. The maximum allowable value for this

1. Prior to the Butterfly Plus, Butterfly processor nodes contained a custom memory
management unit that made use of registers called Segment Attribute Registers (SARs).
On those machines, the Uniform System used one SAR for each 64-kilobyte segment of
the shared portion of the process address space.
2. It was useful to use this configuration code prior to the Butterfly Plus to reduce the
number of SARs required by a program, because SARs were a relatively scarce
processor node resource. Since Butterfly Plus processor nodes do _not contain SARs,
Butterfly Plus programs should not need to use this configuration code.

5-21

Uniform, System Library Routines The Uniform ~ystem

•Share

int
Share (N)
int * N;

parameter is also 256. This value restricts Uni­
form System programs to a 16-megabyte
address space.

Share passes the value pointed to by N to all processors used to execute
tasks generated subsequently. N must point t~ a variable allocated in pro­
cess private memory and declared to be a global or a static. In addition,
the variable pointed to by N must be four bytes in size. Share causes the
value pointed to by N-(in the processor invoking Share at the time Share
is invoked) to be copied into the location specified by Nin each processor
used to perform tasks generated by task generators activated subsequent to
the call of Share.

• ShareBlk

int
ShareBlk(N,nbytes)
int * N;
int nbytes;

ShareBlk passes the block of data of nbytes bytes pointed to by N to all
processors used to execute tasks generated subsequently. N must point to
a variable allocated in process private memory and declared to be a global
or a static. ShareBlk causes the block of data pointed to by N (in the pro­
cessor invoking ShareBlk at the time ShareBlk is invoked) to be copied
into the location beginning ·at N in each processor used· to perform tasks
generated by task generators activated subsequent to the call of ShareBlk.

• SharePtr AndBlk

int
Sharel?trAndBlk(P, nbytes)
int * * P;
int nbytes;

SharePtrAndBlk passes the pointer pointed to by P, and the block of data
of nbytes bytes to which it points, to all processors used to execute tasks
generated subsequently. P must point to a pointer variable allocated in

5-22

The Uniform System Uniform System Library Routines

process private memory and declared to be a global or a static. ShareP­
tr AndBlk makes a copy of the pointer pointed to by P and the block of
data to which it points (in the processor invoking SharePtr AndBlk at the .
time the routine is invoked) for each processor used to perform tasks gen­
erated by task generators activated subsequent to the call of ShareP­
trAndBlk. A block of storage is allocated in the memory of the processor
and the block of data pointed to by the pointer pointed to by P is copied
into the newly allocated storage block. A pointer to the newly-allocated
storage block is stored in the location pointed to by P. For example, to
share a pointer and block:

int *p;
p=(int *)UsAlloc(sizeof(data block that p points to));

Ifill in block of data)
SharePtrAnd.Blk(&p,sizeof(data block that p points to));

• ShareScatterMatrix

int
ShareScatterMatrix(P, nrows)

·int * * * P;
int nrows;

P points to a global or static variable allocated by:

UsAllocScatterMatrix(nrows, ncols, element_size)

ShareScatterMatrix makes a copy of the vector of row pointers allocated
by UsAllocScatterMatrix in the memory of each processor used to exe­
cute tasks generated subsequently. It then sets the location pointed to by P
to point to that copy. ShareScatterMatrix is careful to make its copies
from other copies as well as from the original in order to avoid memory
contention on larger configurations.

•SHARED

SHARED is a macro used to access variables in the structure created by the
BEGIN_SHARED_DECL and END_SHARED_DECL macros. For example,
if N has been declared in this way, it may be referenced as SHARED N:

BEGIN SHARED DECL - -
int N;

END_SHARED_DECL;
main ()

. { InitializeUs ();

5-23

Uniform System Library Routines The Uniform System .

MakeSharedVariables;

SHARED N = 5;

}

Before a variable can be referenced in this way, space for it must be allo­
cated using MakeShared Variables.

•TimeTest

TimeTest(Init, Execute, PrintResults)
int (* Init) (), (* Execute) (), (* PrintResults) () ;

TimeTest times the execution of the routine Execute on various processor
configurations as specified by the user from the keyboard. TimeTest runs
the routines lnit, Execute, and PrintResults in sequence on each of the
processor configurations specified. It times only the Execute routine, and
passes the execution time, the number of processors, and the effective
number of processors to the specified PrintResults routine:

PrintResults(time, procs, effprocs)
int time, procs;
float effprocs;

The effective number of processors is afloat equal to (time 1 proc)/(time n
procs). This is a good measure of the speedup the Execute routine
achieves over one processor when n processors are used~ If the first test
run uses more than one (=k) processors, then the effective number of pro­
cessors is k(time k proc)/(time n procs).

The PrintResults routine is specified by the application program. The
Uniform System Library contains a routine that can be used for this pur­
pose, or the user can supply his own routine.

TimeTest asks the user to specify the processor configurations to be used
by specifying a start configuration, a step (delta), and an end
configuration. The first run uses start processors, the next uses start +
delta processors, and so forth, up to the final run, which uses end proces­
sors. If start (or end) is zero, the test is run from (to) the end of the range
of available processors. In particular, it is run for the limiting processor
case whether or not it is in the normal progression specified by delta. If
delta is specified to be zero, the number of processors used increases by

5-24

The Uniform System Uniform System Library Routines

powers of two (1, 2, 4, 8, etc). The rules for start and end still apply.

• TimeTestFull

Ti.meTestFul.l(Init, Execute, PrintResul.ts, start, delta, end)
int (*Init) (), (* Execute) (), (* PrintResults) ();
int start, delta, end;

TimeTestFull is similar to TimeTest. It differs only in that it accepts the
start, delta, and end parameters that specify the processor configurations
to be timed, rather than asking for them from the keyboard. If the delta
specified is negative, TimeTestFull asks the user to supply values for
start, del!a, and end at the start of the run.

• TimeTestPrint

Ti.meTestPrint(runti.me, procs, effprocs)
int runtime, procs;
float effprocs;

TimeTestPrint is used with TimeTest or TimeTestFull to print the tim­
ing results for a particular processor configuration. It prints the execution
time, the number of processors used, the effective number of processors
utilized (the speedup achieved over one processor), and the efficiency with
which processors were used for the given processor configuration.
TimeTestPrint outputs this information in the format:

[procs] ti.me = runtime ticks = S sec; ep = effprocs; eff = E

where E = effprocs/procs. (See TimeTest and TimeTestFull.)

• TotalProcsAvailable

TotalProcsAvailable()

TotalProcsA vailable returns the total number of processors available to
the application program. The value returned includes any processors that
may have been removed by TimeTest or TimeTestFull.

• UsAlloc

char * UsAlloc (nbytes)
unsigned long nbytes;

U sAlloc allocates a block of storage of nbytes in globally shared memory.
The block is allocated from the memory ·with the mo,st free space.

5-25

Uni'form System Library Routines The Uniform System

• UsAllocAndReportC

char * UsAllocAndReportC (usproc, wherep, nbytes, class)
int usproc;
int * wherep;
unsigned long nbytes;
int class;

UsAllocAndReportC attempts to allocate a block of size nbytes on a pro­
cessor in the specified class, and, if successful, sets the location pointed to
by wherep to the Uniform System processor number for the processor on
which the block was allocated. The routine first attempts to allocate the
space on usproc; -should that fail, it tries usproc+l, and so forth (wrap­
ping around to proce~sor 0) until it either succeeds, or has tried all proces­
sors in the class. UsAllocAndReportC is useful for building allocators
for scattered data structures, such as the scatter matrices allocated by
U sAllocScatter Matrix.

• UsAllocC

char * UsAllocC (nbytes,class)
unsigned long nbytes;
int class;

UsAllocC allocates a block of storage of nbytes in globally shared
memory. The block is allocated from the memory in the specified class
with the most free space. (See also UsSetClass.)

• UsAllocLocal

char * UsAllocLocal (nbytes)
unsigned long nbytes;

U sAllocLocal allocates nbytes of globally shared memory from the
memory of the local processor.

• UsAllocOnPhysProc

char * UsAllocOnPhysProc (physproc, nbytes)
int physproc;
unsigned long size;

UsAllocOnPhysProc allocates nbytes bytes of globally shared memory
from the memory of the processor whose physical processor number is
physproc.

5-26

The Uniform System Uniform System Library Routines

• UsAllocOnUsProc

char * UsAllocOnUsProc (usproc, nbytes)
int usproc;
unsigned long nbytes;

UsAllocOnUsProc allocates nbytes of globally shared memory from the
memory of the processor whose Uniform System virtual processor
number is usproc.

• UsAllocOnUsProcC

char * UsAllocOnUsProcC (usproc, nbytes, class)
int usproc;
unsigned long nbytes;
int class;

UsAllocOnUsProcC is similar to UsAllocOnUsProc, except that the allo­
cation will succeed only if usproc is in the specified class.

• UsAllocScatterMatrix

char * * UsAllocScatter.Matrix (rows, cols, nbytes)
int rows;
int cols;
int nbytes;

UsAllocScatterMatrix allocates space from global memory for a matrix.
The space is scattered by row across the memories of the machine. Each
row has a pointer to it. The pointers are put into a vector in the global
memory on the node that called UsAllocScatterMatrix. UsAllocScatter­
Matrix returns a pointer to that vector. nbytes is the number of bytes in
an element of the array.

• UsAllocScatterMatrixC

char * * UsAllocScatter.MatrixC (rows, cols, nbytes, class)
irit rows;
int cols;
int size;
int class;

· UsAllocScatterMatrixC is similar to UsAllocScatterMatrix, except that
only memories in the specified class will hold the scattered rows of the
matrix and the vector of row pointers. nbytes is the number of bytes in an
element of the array. (See also UsSetClass.)

5-27

Uniform System Library Routines

• UsFree
UsFree (ap)
char * ap;

The Uni.form System

UsFree frees memory allocated by one of the Uniform System allocators.
It is used to free a simple block of storage, as well as a scatter matrix allo­
cated by UsAllocScatterMatrix.

• UsGetClass

int UsGetClass (proc)
int proc

UsGetClass returns the class of which proc is a member. proc is a physi­
cal processor number.

• UsLock
UsLock (lock, n)
short * lock;
int n;

UsUnlock(lock)
short * lock;

UsLock sets a lock. It implements a busy-wait type of lock. Before
UsLock is called, storage for lock must be initialized to zero (the clear
state). When a processor has locked the lock, * lock is non-zero (the set
state). N specifies the time to wait between attempts to set the lock in tens
of microseconds. If n is zero, the process will wait about 1 millisecond.
U sLock does not return until the lock is set. For example:

short *lock;

lock= (short*) UsAlloc(sizeof(short));
*lock==O;
Share (&lock) ;

UsLock(lock, 10); /*Code "protected" by lock*/
counter - counter + 1;
other code;
UsUnlock(lock);

The first process to begin executing the code protected by the lockfinds the
lock unset. It sets the lock and executes the code. The next process that
tries to set the lock will find it already set and will wait 100 microseconds
before attempting to set it again. When the first process finishes executing
the code, it clears the lock. ·

5-28

The Uniform System

• UsProcToPhysProc

UsProcToPhysProc(UsProc)
int UsProc;

Uniform System Library Routines

UsProcToPhysProc returns the physical processor number corresponding
to the Uniform System virtual processor number UsProc.

• U sSetClass

UsSetClass(proc, class)
int proc, class; ·

UsSetClass adds the memory of the specified processor node to the
specified class. Initially all memories are in class 0. Se·e also U sAllocC,
UaAllocScatterMatrixC, UsAllocOnUsProcC.

• UsWait

UsWait (n)
int n;

UsWait waits for lOn microseconds. Using zero for n causes the process
to wait about one millisecond. UsWait is a busy wait.

• WaitForTasksToFinish

WaitForTasksToFinish(GenHandle)"
UsGenDesc * GenHandle;

WaitForTasksToFinish waits for the task generator specified by
GenHandle to complete. GenHandle must specify an asynchronous gen-·
erator activated by the calling process. WaitForTasksToFinish returns a
value (the result co~e for the generator), which indicates whether the gen­
erator ran to completion or was aborted by AbortGen.

•WorkOn

WorkOn(GenHandle)
UsGenDesc *_GenHandle;

W orkOn works on tasks generated by the task generator specified by
GenHandle. GenHandle must specify an asynchronous generator
activated by the calling process. WorkOn returns a value (the result code
for the generator), which indicates whether the generator ran to comple­
tion or was aborted by AbortGen.

5-29

Index

A
abortable generators 2-14, 2-16
Abortable parameter 2-17, 2-39
AbortGen 2-17, 2-21, 5-1, 5-29
ActivateGen 2-39, 2-41, 5-1, 5-3
address space 2-4
array family (of generators) 2-16,

2-18
arrays 2-8

multi-dimensional 2-8
AsyncGenOnA 2-22, 5-3, 5-4
AsyncGenOnAAbortable 2-22, 5-4
AsyncGenOnAFull 2-22, 5-4
AsyncGenOnALirnited 2-22, 5-5
AsyncGenOnHA 2-22, 5-5
AsyncGenOnHAAbortable 2-22, 5-5
AsyncGenOnHAFull 2-22, 5-5, 5-6
AsyncGenOnHALirnited 2-22, 5-6
AsyncGenOnI 2-22, 5-6
AsyncGenOnIAbortable 2-22, 5-7
AsyncGenOnIFull 2-22, 5-7
AsyncGenOnILimited 2-22, 5-7. 5-8
asynchronous generators 2-13, 2-20
atomic operations 2-10
Atomic_add 2-10, 2-16, 5-8
Atomic_add_long 2-10, 5-8
Atomic_ior 2-10

B
BEGIN_SHARED_DECL 2-29, 5-8,

5-9, 5-24
benchmarking 2-32

BBN Advanced Computers Inc.

block transfer 3-10
busy wait 2-11, 2-12

c
calloc 2-6
Chrysalis kernel 1-6
clock 2-33
cluster 2-32, 2-34, 5-19
configAllocAcross64K 2-35, 5-20
configMaxMemObjs 2-35, 5-21,

5-22
configMaxSars 2-36, 5-22
configMemObjsFree 2-35, 5-21,

5-22
configObjsRetChild 2-36, 5-21, 5-22
configObjsRetRoot 2-36, 5-21
configProcs 2-34, 5-19
configStopOnShareFail 2-35, 5-21
configSuppresslnitMsgs 2-34, 5-20
configTirneTestViaReinit 2-34, 5-20
configTotalSars 2-37, 5-22
configuration data 2-3
configuration_code parameter 2-34
ConfigureUs 2-2, 2-34, 5-9, 5-17
configWamingOriShareFail 2-35,

5-20
convolution (example) 3-7

D
data, process private 2-10, 2-17,

2-22
data structures 2-8

lndex-1

. Index

deadlock 2-11, 2-15
DistinctMemoriesAvailable 2-3, 2-7,

5-9
dual queue 2-12
dynamically shared variables 2-29

E
efficiency, of generators 2-15
END_SHARED_DECL 2-29, 5-24

F
families of generators 2-15
Final routine 2-17
FreeAll 2-10, 5-9 . .
freeing resources 2-2
freeing storage space 2-9
full generators 2-16

G
generator activators 1-7, 2-15

·generator, building a 2-39
generator control mechanism 2-13
generators 1-7, 2-13

abortable 2-14, 2-16
array family of 2-18
asynchronous 2-13,2-20
efficiency of 2-15
families of 2-15
full 2-16
half array family of 2-19
index 2-16, 2-22
limited 2-14, 2-16
miscellaneous 2-20
synchronous 2-13,2-15

GenID parameter 2-17
GenOnA 3-3, 3-6, 5-9, 5-10
GenOnAAbortable 2-19, 5-10
GenOnAFull 2-18, 5-10, 5-11
GenOnALimited 2-19, 5-11
GenOnHA 2-20, 5-12
GenOnHAAbortable 2-20, 5-12
GenOnHAFull 2-19, 5-12, 5-13
GenOnHALimited 2-20, 5-14
GenOnI 2-16, 3-1, 3-2, 5-14

lndex-2

GenOnIAbortable 2-18, 5-14
GenOnIFull 2-16, 2-18, 3-9, 5-15
GenOnILimited 2-18, 5-16
GenProc 2-39
GenTaskForEachProc 2-20, 5-16
GenTaskForEachProcLimited 2-20,

5-16
GenTasksFromList 2-20, 5-16, 5-17
GetRtc 2-33, 5-17
global memory 2-4, 2-6
global variables 2-4, 2-22

H
half array family (of generators)

2-16, 2-19
hardware processor number 2-3
hello, world (example) 3-1

I
include file 2-1
include files 2-17
index family (of generators) 2-15,

2-16, 2-22
Init parameter 2-23
Init routine 2-17

. initialization 2-2
InitializeUs 2-2, 2-29, 2-32, 3-3,

5-17,5-19,5-20,5-21
InitializeUsForBenchmark 2-32

K
king node 2-3 2

L
limited generators 2-14, 2-16
Limited parameter 5-10, 5-13, 5-15
Limited parameter 2-17
local variables 2-4
locks 2-11

M
MakeSharedVariables 2-29, 5-18,

5-24
malloc 2-6

BBN Advanced Computers Inc.

managing processors 2-12
Map_Obj 2-4
matrices 2-8
Matrix multiplication (example) 3-3
matrix, scattered 2-8
measuring performance 2-30
MemoriesAvailable 2-3, 5-18
memory

allocators 1-3, 2-7
bandwidth 1-3
global 2-4, 2-6
process private 2-4
shared 2-5
tagging 2-37

memory allocators 2-7
memory, shared 1-2
multi-dimensional arrays 2-8

N
node, king 2-32

p

performance measurement 2-30
PhysProcToUsProc 3-1, 5-18
pointer variable 2-24
PrintResults routine 2-31, 5-25
process private data 2-10, 2-17, 2-22
process private memory 2-4
processor management 1-2, 1-4,

2-12 .
processor numbers 2-2
Proc_Node 2-2, 3-1
ProcslnUse 2-3, 5-18

R
RAMFile package 2-33
realtime clock 2-33
RefreshLocalShare Values 5-18
RefreshLocalShare Variables 2-28
releasing resources 2-2

s
SARs 2-36, 5-21
scattered matrix 2-8

BBN Advanced Computers Inc.

Index

Segment Attribute Registers 2-36,
5-21

SetUsConfig 2-2, 5-17, 5-19
Share 2-10, 2-18, 2-23, 3-1, 3-2, 3-3,

3-5, 3-9, 4-4, 5-22, 5-23
ShareBlk 2-25, 5-23
SHARED 5-24
shared memory 2-5
SHARED prefix 2-30
SharePtrAndBlk 2-24, 5-23
ShareScatterMatrix 2-25, 4-4, 5-24
spin wait 2-11
storage allocator 2-6
storage classes 2-4
storage management 1-2, 2-7
synchronization 2-10
synchronous generators 2-13, 2-15

T
tagging memory 2-37
task descriptor 2-41
task generation overhead 4-2
task generators 2-13
tasks

classes of 2-14
number of 2-14
size of 2-13

TerminateUs 2-2
termination_code parameter 2-17
TimeTest 2-3, 2-30, 3-3, 3-6, 5-20,

5-24, 5-25, 5-26
TimeTestFull 2-31, 5-25, 5-26
TimeTestPrint 3-3, 3-7, 5-26
TotalProcsAvailable 2-3, 2-39, 3-1-,

3-2,5-26

u
Uniform System libraries 1-1
Uniform System, versions of 1-1
universal generator activator· 2-15,

2-39
UsAlloc 2-5, 2-7, 2-37, 3-2, 5-26
UsAllocAndReportC 2-38, 5-26
UsAllocC 5-27, 5-29

lndex-3

Index

UsAllocLocal 2-7, 5-27
UsAllocOnPhysProc 2-7, 2-8, 5-27
UsAllocOnUsProc .2-7, 2-8, 2-38,

5-27, 5-28
UsAllocOnUsProcC 5-27. 5-29
UsAllocScatterMatrix 2-5, 2-8, 2-9,

2-24, 2-37, 3-3, 4-4, 5-27,
5-28

.UsAllocScatterMatrixC 5-28, 5-29
UsFree 2-9, 5-28
UsGenDesc 2-39
UsGetClass 5-28
us.h 2-1
us.h include file 2-39
UsLock 2-11,5-28
UsProcToPhysProc 5-29
UsProc_Node 2-3
UsSetClass 2-38, 5-28, 5-29
UsWait 2-11, 2-12, 5-29
Us W aitGetF actor 2-12
UsWaitRtc 2-12
Us W aitSetF actor 2-12
UsWaitSpin 2-12

v
variables

global 2-4
local 2-4

virtual processor number 2-3

w
wait

busy 2-11, 2-12
spin 2-11

wait factor 2-12
WaitForTasksToFinish 2-21, 5-29
window manager 2-32
worker procedure 1-8, 2-13
WorkOn 2-21, 5-29

lndex-4 BBN Advanced Computers Inc.

