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Chapter 1 

The Uniform System Approach, 

The Butterfly Plus TM hardware and Chrysalis TM operating system are a 
foundation on which a variety of software structures may be built. Experi­
mentation with a wide range of software applications has produced a 
teachable, efficient programming style for using this foundation. This 
style, called the Unifo~ System approach, has proven particularly effec­
tive for applications containing a few frequently repeated tasks (e.g., much 
of scientific computing). It has also been used successfully in applications 
with less homogeneous task structures. 

The Uniform System is a library of subroutines that can be used with C 
language or FORTRAN programs. This manual is written from the point of 
view of the C language. For th~ most part, the FORTRAN and C language 
implementations of the Uniform System are functionally equivalent. Any 
minor differences are pointed out in this m~ual. 

There are two versions of the Uniform System library: one for the 
Butterfly Plus and one for the frontend machine (typically a VAX or Sun 
workstation). The frontend machine version implements all the routines 
in the Butterfly Plus version and emulates enough of the Chrysalis func­
tions to permit most C language programs to be partially debugged on the 
frontend machine in a uniprocessor environment. The partially debugged 
programs can then be moved to the Butterfly Plus parallel processor. 
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Beyond the usual concerns of programming, there are two key considera­
tions specific to the Butterfly Plus parallel processor: storage management 
and processor management. The goal of storage management is to use the 
full memory bandwidth of the machine; that is, to keep all the memories in 
the machine equally busy, thereby preventing the slowdown that occurs 
when many processors attempt to access a single memory. The goal of 
processor management is to utilize the full processor bandwidth of the 
machine; that is, to keep all the processors equally busy, thereby prevent­
ing the inefficiency that occurs when some processors are overloaded 
while others sit idle. 

MEMORY MANAGEMENT 

The Butterfly Plus switch provides low delay, high bandwidth access to all 
memory in the machine. To help the programmer take advantage of this 
"common memory," the Uniform System implements a large shared 
memory for application programs, and provides means to spread applica­
tion data uniformly across the memories of the machine. 

The Chrysalis operating system provides "memory mapping" operations 
that enable processes to manage their address spaces, and hence the 
memory they access. Two or more processes can share memory by map­
ping the same memory segment. 

In practice, memory sharing among processes is typically used in two dif­
ferent ways. One approach to programming the machine is to isolate 
processes from one another by mapping memory so th~t only a relatively 
small subset of each process address space is accessible to other 
processes. This subset can be changed at any time, and is often different 
for different groups of processes. This met.hod facilitates debugging by 
limiting the number of processes likely to have touched a particular data 
structure. 

The Uniform System uses a different approach, which is to share a single 
large block of memory by mapping the block into the address space of 
each process. This frees the application programmer from the need to 

' 
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manipulate memory maps, and simplifies programming by implementing a 
large shared address space for application programs. Data two or more 
processors must share is allocated without regard to which processors will 
be using it. The stack and variables local to individual processors are kept 
locally, and like code, are not fetched across the Butterfly Plus switch. 

Collectively, the memories of Butterfly Plus processor nodes form the 
shared memory of the machine. This means the large shared memory an 
application program sees is implemented by a collection of separate 
memories. If all the shared data used by an application happened to be 
located in a single physical memory, contention for that memory (as many 
processors attempt to access the data) would force the processors to 
proceed serially, thereby slowing program execution. Since the aggregate 
memory bandwidth of the machine is very large ( 10 gigabits per second 
for a 256 processor machine), slowdowns due to memory contention can 
be reduced by scattering application data across the physical memories of 
the machine. When many processors access data that has been scattered, 
their references tend to be distributed across the memories and can make 
use of the full memory bandwidth of the machine. The Uniform System 
Library memory allocator scatters data structures in a way that allows 
straightforward addressing conventions. The system also supports a set of 
more specialized techniques for use if the allocator is either inappropriate 
or ineffective. 

To summarize, the approach to memory management used by the Uniform 
System is based on two principles: 

• Use a single large address space shared by all processes to simplify pro­
gramming; and 

• Scatter application data across all memories of the machine to reduce 
possible memory contention. 

This memory management strategy has a cost, due both to the slower 
access to remote memory and to possible contention in the switch and at 
the memories. This cost is an increase in execution time, typically from 
4% to 8%, and is due less to contention than to the slightly slower remote 
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access. The benefit of .this memory management strategy is that the pro­
grammer can treat all processors as identical workers, each able to do any 
application task, since each has access to all application data. This greatly 
simplifies programming the machine, a benefit that far outweighs the mod­
est cost. 

Another aspect of memory management is the need to make certain 
memory operations atomic. The Chrysalis kernel provides an extensive 
repertoire of primitive atomic operations. When the atomic operations 
required are more complex than these primitives provide, the primitives 
can be used to build simple locks that, in turn, can be used to implement 
arbitrarily complex atomic operations. 

PROCESSOR MANAGEMENT 

The most novel aspect of programming the Butterfly Plus is processor 
management. This falls naturally into two separate parts: identification of 
the parallel structure inherent in a chosen algorithm, and controlling the 
processors to achieve the determined parallelism. In many applications 
the parallel structure is both obvious and rich. In others, the structure is 
less clear and may require reworking the algorithm. Occasionally, an 
application will be inherently serial, and cannot be structured to take 
advantage of parallel processing. We can, however, offer a few guide­
lines: 

1. Start with the best existing algorithm that implements the application. 
A B utterfty Plus system with P processors can do no more than speed 
up an algorithm by a factor of P. Speeding up a poor algorithm may 
not overcome its inefficiencies. For example, it may take an 0(N2) 

parallel sort longer to run on a 128 processor Butterfly Plus than it 
takes an O(NlogN) sort to run on a single processor. 

2. Attempt to do the same number and kind of steps as those in the best 
algorithm. The order of steps in an algorithm can often be manipu­
lated to achieve parallelism. This may involve adding logic in the 
form of simple locks to ensure the atomicity of selected operations. 
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3. Look for parallel structure at all levels and in all sizes: the more the 
better. If necessary, it is usually relatively easy to combine small 
tasks at a later stage into larger more manageable sizes; it is often 
more difficult to divide a task at a later stage into smaller ones. For 
example, if an application requires fast Fourier transforms (FFI's) on a 
number of different channels, the programmer should plan to exploit 
both the parallelism inherent in an individual FFI' and the parallelism 
due to different channels. 

The Butterfly Plus parallel processor can work very efficiently with 
individual tasks a few milliseconds in length; if necessary, it can also 
work on tasks in the hundreds of microseconds. For shorter tasks, 
various overheads begin to interfere with good performance. 

There are two strategies for determining the desirable number of con­
current operations to have at any stage in the processing. One strategy 
recommends a relatively static approach, using exactly as many con­
current tasks as there are processors. The other strategy uses many tasks. 
per processor. Both strategies attempt to deal with end effects-the pro­
cessor idle time that occurs toward the end of a stage when some proces­
sors have finished and others are still working. The first approach minim­
izes the effect by explicit construction: here the programmer tries to 
apportion the work so that all processors finish at approximately the same 
time. The second approach allocates tasks to processors dynamically in 
an attempt to balance the load. As a processor finishes a task, it is 
assigned the "next" task ready for execution. This approach minimizes 
end effects by having many more tasks than processors. Some wait time 
occurs at the end of the problem, but is generally small relative to the total 
program execution time. 

The Uniform System encourages the dynamic approach, but also supports 
the static appr~ach. For many applications the dynamic approach is 
simpler and more -reliable, since it is not necessary to know in advance 
how long an individual piece of work will take. Furthermore, this 
approach adapts readily to varying numbers of processors and sizes of 
problems. 
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Once the programmer determines what processing will occur in parallel, 
he or she must then control the Butterfly Plus parallel processor to make 
this happen. There are several ways to do this. The Chrysalis kernel pro­
vid~s a rich collection of relatively low level operations for starting 
processes e>n various processors and for communicating among them. The 
Uniform System provides a higher level abstraction for managing the pro­
cessors; one that is natural and efficient for a large class of applications. 

The Unifo~ System treats processors as a group of identical workers, 
each able to do any task. To use the Uniform System, a programmer must 
structure the application into two parts: 

• A set of subroutines that perform various application tasks; and, 

• One or more "generators" that identify the "next" task for execution. 

To illustrate this, consider matrix multiplication. On a uniprocessor the 
following nested loop could be used to multiply n x o matrix A by o x m 
matrix B to produce n x m result matrix C : 

for (i = O; i < n; i++) 
for (j = O; j < m; j++) 

Dot:eroduct (i, j) 

where the DotProduct routine computes the dot product of the ith row of 
A and the jth column of B, then stores the result as the (i, J)th element of 
C. One way to parallelize this loop would be to cause the DotProduct 
r<;>utine to execute as a task, ensuring that the DotProduct task gets per­
formed once for each element in the result matrix. There is a task genera­
tor in the Uniform System library, called GenOnA, that can be used to do 

· this; the uniprocessor nested loop would then be replaced by: 

GenOnA (Dot:eroduct, n, m); 

The GenOnA task generator causes the DotProduct task to execute once 
for each (row, column) pair in the range (n, m), using available processors 
to perform the computation. _ 

Whether intended for parallel execution or not, a well-designed program is 
usually structured as a set of subroutines to improve program modularity. 
There is normally a subroutine for each task type, each subroutine taking 
arguments that define individual tasks in terms of subsets of the program 
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data to be operated on. To use the Uniform system, the programmer sim­
ply insures that these subroutines correspond to the tasks he wants to do in 
parallel. In ·the matrix multiplication example there is one task type, com­
puting dot products. Corresponding to that task type is the dot product 
routine, whose row and column parameters specify particular tasks. 

The second part of a Uniform System application code structure consists 
of one or more subroutines that identify the "next" task for execution. 
Such a subroutine is called a "generator," since its function is to generate 
tasks. In a serial program the generator function is usually embedded in 
the control structure of the program (e.g., do this, do that, then do 10 of 
these). For parallel processing via the Uniform System, the programmer 
is expected to make generation of the next task explicit. For the matrix 
multiplication example, the task generator would be responsible for gen­
erating a call on the dot product routine for each element in the result 
matrix. 

It is helpful to think of the generator concept in terms of three procedures 
and a task descriptor data structure. A generator activator procedure (GA) 
takes as parameters a worker procedure (W), a description of data (D) 
upon which work is to be done, and a task generation procedure (TG): 

GA (W, D, TG) 

The generator activator procedure first builds a task descriptor data struc­
ture that specifies the tasks to be generated in terms of the worker pro­
cedure, the data , and the task generation procedure. It then "activates" 
the generator by making the task descriptor available to other processors. 
The processor that invoked the generator a~tivator, along with other avail­
able processots, then uses the task descriptor and the task generation pro­
cedure to make repeated calls on the worker procedure, specifying subsets 
of the data to work upon. Each call of the worker procedure is a task. 
When the last task is done, the processor that called the generator activator 
procedure continues execution of its program, while the other processors 

· that worked on the tasks look for other work. In the matrix multiplication 
example, the worker procedure is the dot product routine, and the data is 
the operand and result ~trices. The dot product worker routine is called 
once for each combination of row and column index; these indices are 
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stored in the task descriptor and are incremented indivisibly each time· the 
task generation procedure is executed by a processor. 

Conceptually, the generator notion is similar to the various "map" func­
tions in the Lisp language. The unique thing about the Uniform System is 
that it achieves parallel operation by using processors as they are available 
to execute the various calls upon the worker procedure. Task generation 
and the processor management associated with it are implemented in a 
distributed fashion in the sense that each processor performing tasks parti­
cipates in their generation. 

Often the required generator is quite simple. In the matrix multiplication 
example, where a dot product is computed for every element in the result 
matrix, the generator can find the next task by incrementing row and 
column counters that identify the element in the result matrix to be com­
puted next. Occasionally a generator must be more complex. A generator 
that selects the next node to process in an alpha-beta tree walk, for exam­
ple, would rely heavily on using the most up-to-date information about the 
state of processing of the tree. Sometimes a generator uses a simple 
queue, in which case it operates much like the process scheduler found in 
many timesharing systems, where the next task for execution is the one at 
the front of the queue. In general, though, the generators included in the 
Uniform System library suffice to build many applications. 

The Uniform System library provides a way to bind task generation pro­
cedures to worker procedures. The basis for this binding mechanism is a 
"universal" generator activator procedure. To use this universal genera­
tor activator procedure ~ectly, application programs specify both a 
worker procedure and a task generation procedure. The library also 
includes a set of generator activator procedures that embody many com­
monly used task generation procedures. When an application program 
calls one of these "specific" generator activator procedures, it specifies 
only the worker procedure. The generator activator passes its associated 
task generation procedure and a task descriptor to the universal generator 
activator along with the worker procedure supplied by the application pro-
gram.1 · 

1. This section has been.careful to use the terms generator activator procedure and 
1~ . 
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Often an algorithm requires multiple, perhaps nested, instances of genera­
tors. As long as the algorithm does not depend upon the order of task gen­
eration between different generators, the programmer is free to make mul­
tiple calls to task generators to start the system working on all of them at 
once. If the algorithm does depend upon the order, the programmer must 
either provide a task generation procedure to properly answer the question 
about what to do next, or carefully manage the use of existing generator 
activator procedures to ensure the algorithm's ordering requirements are 
met. 

The Uniform System approach to processor management offers three 
important benefits: 

• The generator mechanism is very efficient. It is implemented using one 
process per processor in a way that prevents unnecessary context 
swaps. Each processor executes a tight loop consisting of "generate 
next task-execute next task." The programmer supplies both the task 
generation and worker procedures, usually choosing an appropriate gen­
erator activator procedure from the library. Both the task generation 
procedure and the worker procedure execute at the application level. 
As a result, once a generator gains control of a processor, the Chrysalis 
kernel need not be involved until the generator has exhausted all the 
work it knows how to find. 

• Programs that use the Uniform System task generation mechanism to 
exploit parallelism are insensitive to the number of processors. It is 
possible to debug programs on small configurations and run them on 
larger ones. Should an application grow to exceed the capacity of its 
current configuration, it can be moved without modification to a larger 
one. Perhaps more importantly, programs can also run on "reduced" 
configurations (e.g., where processors have been removed for repair). 

task generation procedure. The rest ~f this manual uses the term generator, both 
when referring to the generator activator procedure and when referring to the result of 
activating a task generator. We use the more specific terms only when it is important 
to distinguish between generator activation and task generation. 
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• The load can be balanced dynamically. Whenever a processor becomes 
free, a generator identifies the next task to execute. Since the task gen­
eration procedures are supplied by the application programmer, the task 
choice can be based on the current state of the co·mputation and the 
requirements of the application. 
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Chapter 2 

Using the Uniform System 

When the Uniform System approach is used on the Butterfly Plus parallel 
processor, programs are written in much the same way as for a uniproces­
sor. In fact, a program that never invokes a task generator can run on a 
single Butterfly Plus processor node. The program is loaded into all of the 
processors, however, so the potential for parallel processing is there. 
Since Chrysalis runs a process scheduler on every processor, it is possible 
to have several independent application processes running on a single pro­
cessor. However, when the Uniform System is used, there is usually only 
one process per processor. 

This chapter describes each routine found in the Uniform System library. 
Several example programs that illustrate how to use the Uniform System 
routines are contained in Chapter 3. Chapter 4 describes some of the ways 
programmers can tune programs for better performance. The descriptions 
of the library routines in this chapter are narrative in nature. The informa­
tion presented in this chapter is repeated in Chapter 5, which is organized 
for use as a reference manual for the Uniform System Library. 

INCLUDE FILE 

All Uniform System programs must include the header file us.h: 

#include <us.h> 
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INITIALIZING THE UNIFORM SYSTEM 

The routine: 

Initializeus () ; 

initializes the Uniform System. This routine creates and starts a Uniform 
System process on every available processor, sets up the memory that is 
globally shared among all Uniform System processes, and initializes the 
Uniform System storage allocator. InitializeUs should be called before 
any other. Uniform System routine except SetUsConfig or ConfigureUs. 
Normally it should be called only once in a program. 

The routine: 

TenninateUs () ; 

can be used to undo the effects of InitializeUs. It should be called only 
by the. process that called InitializeUs. TerminateUs kills all of the 
processes running on other nodes, and unmaps and deallocates the 
memory used to support the Uniform System shared memory. Termina­
teUs is useful when a program needs to release resources used by the Uni­
form System. For example, prior to entering a computational phase the 
program may not need the Uniform System functions and may require the 
resources the system was using. TerminateUs can also be used if a 
change in the Uniform System configuration is necessary. TerminateUs 
need not be called immediately prior to exiting a program. 

OBTAINING CONFIGURATION INFORMATION 

It is sometimes necessary to refer to processors by number. There are two 
separate numbering schemes for processors, and routines for converting 
between them. The first scheme uses the hardware processor number, an 
8-bit number assigned when the machine is assembled. The hardware 
processor number for the processor on which a process is running is 
directly accessible through the Chrysalis variable Proc _Node. For the 
frontend machine version of the Uniform System, Proc_Node is set arbi­
trarily. The particular numbers used as hardware processor numbers for a 
Butterfly Plus with P processors depend upon the size of the switch and 
the way the processors are connected to the switch; the hardware 
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processor numbers used can range from 0 to 25 5. The important point to 
note is that the hardware numbering scheme often has gaps. 

Because it is generally easier for application software to deal with con­
secutively numbered processors, the Uniform System implements a 
second processor numbering scheme that uses virtual processor numbers. 
These virtual processor numbers form a dense set, consecutively num­
bered from 0 to P-1, where P is the number of processors available to the 
program. The virtual processor number for the processor on which a pro­
cess is running is directly accessible through the Uniform System variable 
UsProc Node. For the frontend version of the Uniform System, 
UsProc_Node is always 0. The mapping between virtual processor 
number and hardware processor number may change from run to run. The 
routines: 

UsProc = PhysProcToUsProc(PhysProc); 
PhysProc = UsProcToPhysProc(UsProc); 

can be used to convert between hardware processor number and Uniform 
System processor number. 

A program sometimes needs to know the number of processors and the 
amount of memory available to it. The routines: 

TotalProcsAvailable(); 
ProcsinUse (); 
MemoriesAvailable(); 
DistinctMemoriesAvailable(); 

return such configuration information. TotalProcsA vailable returns the 
number of processors in the Uniform System configuration; it includes 
processes that have been removed by the TimeTest routine (see the sec­
tion entitled "Measuring Your Program" later in this chapter). Proc­
slnUse does not count processors that have been removed by the 
Time Test routine. MemoriesA vailable counts memory in units ·of 64 
kilobytes~ DistinctMemoriesA vailable counts memory modules and is 
usually the same as TotalProcsA vailable, but there are cases when the 
Uniform System initialization routine (lnitializeUs) cannot obtain 
memory on a particular processor node (e.g., when other software, such as 
the Ethernet routines, have taken it all). 
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MEMORY MANAGEMENT 

Two classes of memory are available to Uniform System programs: 

• Process private memory. As the name suggests, data in process private 
memory can be accessed by only one process. 

• Globally shared memory. Data in globaily shared memory is accessible 
by all Uniform System processes. 1 

Within these two memory management classes, several different types of 
storage are available to c programs. These storage types are best 
described in terms of the types of variables available to C programs (see 
Figure 2-1): 

• c local variables. Local variables are process private and are stored on 
the stack. A local variable is visible only within the routine that 
declares it. There is one instance of the variable for every routine call. 
Hence, the variable is private to the routine call, and hidden from every 
other call. 

• c globals. c global variables are process private. There is one instance 
of each such variable per process. These variables are shared by sub­
routine calls within the same process, but are hidden from all other 
processes. 

• c dynamic storage. Storage of this type, obtained by malloc and related 
routines, is process private. There is one instance of an allocated vari­
able per process. These variables can be accessed by subroutines 
within the same process (providing the necessary pointers have been 
made available), but are hidden from all other processes. In particular, 
while you can pass a pointer from one process to another, if you try to 
use it within another process you will either get a hardware fault or 
(worse) access a random chunk of memory in that process. · 

1. It is possible, using the Chrysalis Map_Obj operation, to have memory that is 
shared among some, but not all, processes. We recommend that you do not use 
Chrysalis memory management operations directly within Uniform System programs 
unless you understand the implementation of the Uniform System memory 
management discipline in detail. 
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• Shared storage. Storage of this type is obtained using the Uniform Sys­
tem allocators UsAlloc, UsAllocScatterMatrix, and the like, and it is 
globally shared. There is one instance of a Uniform System allocated 
variable per Butterfly Plus machine. Since this storage is globally 
shared, pointers to it are valid on all processors and can be passed freely 
among them. This is the only way to communicate between different 
processors and tasks, tinless you choose to use the Chrysalis mechan­
isms directly. To get started, most of the Uniform System task genera­
tors allow the user to pass a pointer to newly generated tasks. The 
passed pointer is typically the root of a user-specified data structure. 
(See also the discussion of the Share mechanism later in this chapter.) 

The Uniform System storage -allocator creates and manages the globally 
shared memory region of the process address space (see Figure 2-2). A 
program can ask the allocator for space that is scattered about the 
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machine, or for space in the memory of a particular processor node. Once 
such globally shared space has been allocated to a program, the program is 
free to pass pointers to variables in the space from one processor to 
another. 

Process m Process n 

~ ~ 

Private • • • 

,,,, ______ ,,,,,.__ ______ ~,,,,._,, __ .-.,.,,, 

Shared 

Figure 2-2 
Processes Share Much of Their Address Spaces 

Keeping the distinction between globally shared memory and process 
private memory clearly in mind is critical to using the Uniform System. If 
a program variable is declared to be a C global, for example, that only 
means that the variable is accessible by all the program modules that are 
linked together to make up a particuiar process. Since c globals are pro­
cess private, if an identical copy of that process is created on another pro­
cessor (or on the same processor), the new process will have its own 
copies of any variables declared as C globals. Similarly, the malloc and 
calloc system calls allocate memory that is process private rather than glo­
bally shared. The Uniform System uses the Chrysalis object management 
~ystem to implement globally shared memory. 
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MEMORY ALLOCATORS 

The Uniform System provides a variety of memory allocators that allocate 
storage in globally shared memory. (The normal allocators, such as ma/­

Loe, can be used with Unifoim System programs to allocate storage in pro­
cess private memory.) 

Like the normal allocators, the Uniform System allocators return a pointer 
to the block of memory allocated. H an allocator is unable to obtain the 
requested amount of memory, it returns the null pointer (i.e., zero). 

To allocate a block of storage in globally shared memory, use: 

UsAlloc(SizeinBytes); 

The Uniform System allocates the block from the memory with the smal­
lest amount of previously allocated space. To allocate globally shared 
storage on the local processor, use: 

UsAllocLocal(SizeinBytes); 

To specify a particular processor, use: 

UsAllocOnUsProc(Processor, SizeinBytes) 

where Processor is a Uniform System virtual processor number. H Pro­
cessor exceeds the number of available memories, the space is allocated 
on node Processor modulo P, where P = DistinctMemoriesA vailable( ). 
If you want to specify the node by its hardware processor number, use: 

UsAllocOnPhysProc(PhysProcessor, SizeinBytes); 

Proper storage management on the Butterfly Plus computer is important. 
If your data is not distributed over all available memory, you may get poor 
performance. It usually does not save much (a few percent) to keep data 
near the processor using it. However, clumping a lot of data in a single 
processor node's memory can result in contention for that memory by 
multiple processors, and can be devastating to program performance. 

The Uniform System library provides storage allocation routines for regu­
lar data structures, such as arrays and matrices. These routines scatter 
data across the memories of the machine in order to reduce memory con­
tention. More complex data structures can be scattered across the 
machine via repeated calls to UsAllocOnUsProc, UsAllocOnPhysProc, 
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or UsAllocAndReportC (described in "Tagging Memories" later in this 
chapter) that specify different memories. 

The data structures required by many applications can be represented 
naturally by two-dimensional matrices. Furthermore, higher dimensional 
matrices can be represented in a straightforward way by two-dimensional 
matrices, as can one dimensional vectors. For example, a three­
dimensional matrix can be thought of as a two-dimensional matrix, each · 
element of which is a vector. Hence, two-dimensional matrices can be 
used as a fundamental building block for supporting many application data 
structures. To reduce potential memory contention, scatter these data 
structures across the machine. 

The routine: 

UsAllocScatterMatrix(nrows, ncols, element_size) 

allocates a matrix that is scattered by row over the memories of the 
machine. It does this by allocating a vector of pointers nrows long, and 
nrows separate vectors, each containing ncols items of size element_size 
bytes. The Uniform System allocates the row vectors in separate 
memories. UsAllocScatterMatrix returns a pointer to the vector of 
pointers. The vector of pointers is itself filled in with pointers to the scat­
tered row vectors (see Figure 2-3). Elements of an array A allocated in 
this way can be referenced using standard c array notation: 

A[i] [j] 

The FORTRAN-callable version of UsAllocScatterMatrix will scatter the 
matrix by columns rather than by rows. It is otherwise identical to the C­
language-callable versions. Elements of an array allocated as a scatter 
matrix can be referenced using standard FORTRAN array notation: 

A (i, j) 

Internally, UsAllocScatterMatrix uses the routine UsAllocAndReportC 
(described in "Tagging Memories" later in this chapter) to scatter the row 
vectors. 
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P = AllocScatterMatrix {nrows, ncols, element_size) 

.i j4 element _ size 

. . . on Node B 

• • • on NodeC 

p [2] [1] 

nrows 

. . . on NodeW 

. . . 

• • • on NodeY 

~ 1111111------ ncols -----i••I 

Figure 2-3 

A Scattered Matrix Created by UsAllocScatterMatrix 

Space allocated by the UsAlloc ... storage allocators can be deallocated on . . 
a block-by-block basis. To free space previously allocated by one of the 
U sAlloc... allocators and pointed to by p, use: 

UsFree(p) 

Note that UsFree works for matrices scattered by UsAllocScatterMatrix 
as well as for simple blocks of storage. The routine: 

FreeA1l. () 

can be used to free all dynamically allocated shared memory. FreeAll 
should be used with care. It reinitializes the Uniform System storage 
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allocation system, freeing all shared memory, including memory allocated 
by the UsAlloc ... allocators and that used by the Share mechanism. 

It is always worth considering whether to copy the constants used by an 
application into the local memory in order to avoid possible contention for 
them. The Share routines (described later in this chapter in "Making 
Copies of Process Private Data") and the generator "initialization" rou­
tines (described later in "Task Generators") are useful for making such 
copies. 

SYNCHRONIZATION AND ATOMIC OPERATIONS 

· Sometimes two processors need to work on the same data at the same 
time. ff the order of work does not matter (e.g., incrementing a counter), 
the principal concern is that the processors do not interfere with one 
another (i.e., that one finishes before the other starts). ff the order of work 
does matter (e.g., task A is writing and task B is reading), the program 
logic may be flawed in the sense that task B is really not ready to run, and 
should not have been generated until A finished. 

In many cases one of the atomic operations supported by Chrysalis is 
sufficient to prevent processes from interfering with one another. These 
Chrysalis operations implement a set of fetch and op functions that atomi­
cally read the value in a memory location, perform an operation on the 
value, store the operation result back into the memory location, and return 
the value originally read. The Chrysalis atomic operations (Atomic_add, 
Atomic ior, etc.) work on 16-bit quantities. 

Some situations require atomic 32-bit operations. The operation: 

Atami.c_add_long(loc, val),; 

implements 32-bit atomic addition. It atomically adds val to the location 
addressed by loc. Atomic_ add_ long is similar to the Chrysalis 
Atomic_add operation. It differs in that it operates on 32-bit quantities 
and does not support the "fetch" part of the "fetch and add" function pro­
vided by Atomic_ add. 2 

2. In its current implementation, Atomic_ add _long is atomic only with respect to 
other Atomic_add_long calls. In particular, the execution of a read operation may be 
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Some cases may require more than a simple atomic operation. In these 
cases it may be necessary to construct a lock around the code as follows: 

lock; 
code to do what you want 

unlock; 

The Uniform System provides lock and unlock operations: 

UsLock(lock, n) 
UsUnlock(lock) 

The UsLock operation is a "busy wait" type of lock, where lock is a 
pointer to a short variable used as the lock (assumed to have been initial­
ized in the unlocked state with value zero), and n is an integer that 
specifies the time to wait in tens of microseconds between attempts to set 
the lock. Using zero for n forces use of a default, which is about one mil­
lisecond. Note that when nesting these operations, care must be taken to 
avoid deadlock. 

If a program simply nee~s to wait until something occurs, and if "busy" 
waiting is acceptable, it can use UsWait: 

while (something has not occurred) 
UsWait (n); 

where n is an integer that specifies the time to wait in tens of 
microseconds. As with UsLock, using zero for n forces use of a default 
of about one millisecond. 

To wait less than 100 microseconds, UsWait "spins" by executing a loop 
enough times to delay the requested amount. For waits longer than 100 
microseconds, UsWait uses the realtime clock to determine when to stop 
waiting. To force the waiting to be done using the realtime clock, regard­
less of the requested amount, use: 

UsWaitRtc (n) ; 

To force the waiting to be done using the spin loop method, regardless of 
the requested amount, use: 

interleaved with an Atomic add long operation in a way that returns an inconsistent - -
result to the read. This can occur if the high-order 16 bits returned by the read are 
obtained after the low-order 16 bits are incremented by the Atomic_add_long, but 
before the carry (if any) is propagated to the higher-order bits. 
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UsWaitSpin (n) ; 

For a given requested delay, the number of times UsWait or UsWaitSpin 
must execute the spin loop depends upon the speed of the p~essor. The 
Uniform System uses a wait factor: 

double UsWaitFactor; 

to determine how many loop iterations are required for a requested delay. 
This factor is set assuming that the machine is configured with MC68020 
processor nodes. The factor can be recalibrated for an MC68000 (or sim­
ply for greater accuracy) by using the routine UsWaitGetFactor, which 
computes a correction to the current factor by timing the loop for a 
specified time (using the current factor). The following FORTRAN code 
fragment resets the UsWaitFactor: 

external UsWaitRetFactor, UsWaitGetFactor 
double precision UsWaitRetFactor, UsWaitGetFactor 
double precision f 
f = UsWaitRetFactor() 
f = f * UsWaitGetFactor(lOOOOO) 
call UsWaitSetFactor(f) 

If "busy" waiting is not acceptable, the Chrysalis operations that manipu­
late dual queues and events can be used to construct an appropriate wait 
and signalling discipline. 

PROCESSOR MANAGEMENT 

The Uniform System processor management mechanism is accomplished 
using task generators. A task is the basic unit of parallel computation; a 
Uniform System task is a subroutine call. At any instant there is a set of 
runnable tasks that must be mapped to the available set of processors. The 
Uniform System takes the view that both the set itself and the priority of 
items within the set are dynamically changing; as a result, a simple queue 
is not an adequate model of the task structure. Instead, the Uniform Sys­
tem requires a user-supplied task generation procedure that can answer the 
question, "What is the current most important task to run at this instant?" 

Task generators are often rather simple. A common parallel operation is 
to apply some function to each item of a structure (list or array) where the 
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order is immaterial. For example, this might be the semantics for a 
PARALLEL DO extension to FORTRAN. In this case the task generation 
routine need only identify the next item in the list, which it can do by 
incrementing a counter (atomically, since task generation is performed by 
each processor for itself). However, a generator can be arbitrarily com­
plex. For example, a generator used in a chess playing program might do 
alpha-beta pruning of a game tree, using the most up-to-date information 
to decide where to devote its resources next. In this case, most of the 
complexity of the code and the execution time of the program might reside 
in the task generation procedure. 

It is good practice to make the t~ks themselves small. The responsive­
ness of the system to changes in priorities depends on the size of a task, 
because once a task is started, the system runs it to completion. Also, 
even if the priorities are not changing, there will come a time toward the 
end of a task generator when all of the tasks have been generated by the 
task generation procedure. When that happens, if there are no other active 
generators, some processors will sit idle while others finish the last tasks. 
If the tasks are small in size, the idle time will not have much impact on 
program efficiency. 

Although the programmer must provide both task generation and task 
implementor (worker) procedures, experience has shown that the rela­
tively small set of generators (or more precisely, generator activator pro­
cedures) supported by the Uniform System library is sufficient for a wide 
range of applications. The easiest way to achieve parallel operation is to 
structure the program to fit the mold of one of these task generators. 

The Uniform System supports two generator control disciplines: 

• Synchronous generators return to the caller after all of the generated 
tasks have been processed. Furthermore, the processor that calls a sym­
chronous generator always works on the tasks that are generated. 

• Asynchronous generators return to the caller as soon as the generator 
has been activated. This enables the calling process to do other work. 
The calling process can later work on generated tasks if it so chooses. 
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The Uniform System matches available processors to the generated tasks 
and keeps track of active task generators. Whenever a processor has noth­
ing to do, it obtains a task using the task generation procedure for one of 
the active generators. When a Uniform System program begins execution, 
all the processors, except the one used to start the program, are idle. As 
long as there are active generators with tasks to be done, there are no idle 
processors. 

Generator calls can be nested, in which case the Uniform System deals 
with the generators in an arbitrary order that depends largely upon the sto­
chastic nature of interprocessor timing. However, because the Uniform 
System guarantees that at least one processor is working within each syn­
chronous generator, forward progress is assured on each. 

There are some situations where it may be possible to place an upper 
bound on the number of tasks required by a problem, but where the 
number actually required may be data dependent. For example, consider a 
search where the search space. can be partitioned into N disjoint regions 
that can be searched by N tasks; if the first task finds the object in the first 
region, there is little utility in searching the remaining N-1 regions. The 
Uniform System supports abortable generators for such situations. An 
abortable generator can be terminated before all the tasks it describes have 
been generated and executed. After an abortable generator has been 
aborted, it will generate no more tasks; however, any tasks started before 
the generator was aborted will be proce~sed. 

Normally when a generator is active, processors,_ as they become free, 
begin working on the generator until either all processors are working on 
it, or all the tasks have been generated. In situations where several classes 
of tasks can be active simultaneously, it may be desirable to control the 
number of processors used for each task class. The Uniform System pro­
vides limited generators, which use only a specified number of processors 
(or fewer), for such situations. 

Generators are very efficient It takes a little overhead to get a processor 
to notice a generator, but · once the processor does, it will continue 

., 

2-14 



The 'Uniform System Using the Uniform System 

generating and working on the tasks defined by the generator at a cost of 
about one extra subroutine call per task. 

It is not easy to cause deadlocks using generators, but it is possible. For 
synchronous generators, since there is always at least one processor work­
ing on each generator (perhaps recursively), progress should be made 
unless that processor hangs. It is, of course, bad practice to write code so 
that a processor can hang. Unfortunately, it is good practice to write code 
where processors take turns accessing some resource in an atomic way, 
and it is not always easy to tell if a program will cause deadlocks just by 
looking at the code. The distinction, of course, is that accesses made by 
deadlock-free programs eventually (and usually quickly) give up the 
resource. With asynchronous generators, more care needs to be taken to 
avoid race and deadlock conditions. 

The Uniform System Library includes a collection of generator activator 
procedures that embody various commonly-used task generation p~o­
cedures. The next section describes the synchronous generator activator 
procedures in the library. The section following that describes the asyn­
chronous generator activator procedures. All these generator activator 
procedures make use of a "universal" generator activator procedure. Use 
of the universal generator activator procedure is described later, in the sec­
tion entitled "Building a Generator." 

SYNCHRONOUS GENERATORS 

The Uniform System Library supports several major "families" of gen­
erators: 

• Index family. Given an integer range, generators in the index family 
generate a task for each value (index) within the range. 

• Array family. Given two integer ranges (which can be thought of as 
array dimensions), generators in the array family generate a task for 
each pair of values (which can be thought of as row and column 
indices) within the ranges. 
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• Half array family. Given two integer ranges, which can be thought of 
as array dimensions, generators in the half array family generate a task 
for each array element that is beneath the "diagonal." 

Each family of generators has a simple version of the call to the generator, 
an abortable version that allows a process to stop the generator at any 
time, a limited version that restricts task generation to a subset of the pro­
cessors, and a full version that is a superset of all the other calls. The full 
version of a generator call requires all the arguments and can be used 
instead of any other call in the same generator family. There are also 
asynchronous versions of all the generators that return control to the pro­
cess directly after the generator has been called. The full versions of the 
generators are described first, in the remainder of this chapter, and 
descriptions of the simpler versions follow. 

The Index Family of Generators 

Consider a subroutine Worker(Arg, index, ... ), which is to be called for 
all values of index from zero through Range-I. A call of the form: 

code= GenOnIFul.l (Init, Worker, Final, Arg, Range, Limited, Abortable); 

causes Worker to be executed in parallel for the values of index between 
zero and Range-1; Range must be less than 231• Task generation is 
somewhat faster if Range is less than 215, since the task generation pro­
cedures can use Atomic add to increment the index. Arg is typically a 
pointer to a problem description data structure. Elements of Arg might 
point to the multiplier, multiplicand, and product matrices in a matrix mul­
tiplication problem, for example. 

To facilitate application bookkeeping, before the generator calls Worker 
for the first time on a particular processor, it will call: 

Init(Arg); 

on that processor. Typically, the Init routine is used to copy frequently 
referenced constants from globally shared memory into process private 
memory or to initialize process private temporaries. By convention, 0 
specifies that there is no lnit routine. 
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Similarly, after the last call of the Worker routine on each processor used 
to perform tasks for the generator, the routine Final is called once on each 
such processor used. The Final routine is called with Arg as a parameter: 

Final(Arg); 

and is typically used for per-processor post-processing associated with 
tasks. By convention, 0 specifies that there is no Final routine. 

The Limited parameter indicates the number of processors to which the 
generator is to be restricted. A value of 0 or -1 signals no limitation; a 
positive value ensures that no more than that number of processors will be 
used on the tasks. 

The Abortable parameter is a boolean variable that indicates whether or 
not the generator can be aborted. The value of Abortable determines the 
arguments passed to the Worker routine. H Abortable is FALSE, two 
arguments are passed to Worker: 

Worker(Arg,index); 

otherwise, if Abortable is TRUE, each call to Worker takes an additional 
argument: 

Worker (Arg, index, GenID); 

where Gen ID is an "identifier" for the generator (C type= UsGenDesc*, 
defined in the #include file us.h). 

If the generator identified by GenlD is abortable, it can be aborted using: 

AbortGen(GenID, tez:mination_code); 

where termination_ code is an integer. AbortGen prevents the genera­
tion of new tasks. Any tasks in progress when AbortGen is called will 
run to completion. 

All synchronous generators in the index family return a value. If a gen­
erator is abOrtable and was aborted, it returns the termination_ code argu­
ment supplied to AbortGen. (More than one processor may call Abort­
Gen to abort a generator. In such a case, the value returned is the smallest 
termination_code supplied to AbortGen.) If all of a generator's tasks 
have been performed, either the generator was not abortable or it was , 
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abortable but it was not aborted. In either case, the generator returns the 
code genEXHAUSTED . 

. Other synchronous generators in the index family are useful in situations 
not requiring the full flexibility of GenOnIFull. For example, since these. 
routines take no Arg routine, they can be used when calls to Share 
.(described below) and its companion routines eliminate the need to pass 
problem description data structures around. 

The generator: 

code= GenOnI (Worker, Range); 

generates tasks of the form: 

Worker(O, index); 

Note that the Worker routine is passed a dummy Arg parameter. The 
generator: 

code= GenOnILi.mited (Worker, Range, nprocs); 

is like GenOnl, differing in that it limits the generator to the specified 
number of processors. The generator: 

code= GenOnIAbortable (Worker, Range); 

is like GenOnl, difft'!ring in that it is abortable; it generates tasks of the 
form: 

Worker(O, index, GenID); 

The Array Family of Generators 

The generator: 

code == GenOnAFull (Init, Worker, Final, IU:g, Rangel, 
Range2, Limited, Abortable); 

is similar to GenOnIFull except that Worker takes a second index, which 
runs over Range2. More specifically, if Abortable is FALSE, 

GenOnAFull generates tasks of the form: 

Worker(IU:g,indexl, index2); 

and if Abortable is TRUE, it _generates tasks of the form: 

Worker(IU:g,indexl, index2, GenID); 
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As with the index family, several additional generators in the array family 
are useful in situations that do not require the full flexibility of 
GenOnAFull. The generator: 

code= GenOnA (Worker, Rangel, Range2); 

generates tasks of the form: 

Worker(O, indexl, index2); 

The generator: 

code= GenOnALimited (Worker, Rangel, Range2, nprocs); 

is like GenOnA except that it limits the generator to the specified number 
of processors. The generator: 

code= GenOnAAbortable (Worker, Rangel, Range2); 

is like GenOnA except that it is abortable. It generates tasks of the form: 

Worker(O, indexl, index2, GenID); 

The Half Array Family of Generators 

The generator: 

code= GenOnHAFull(Init, Worker, Final, Arg, Rangel, 
Range2, Limited, Abortable); 

is similar to GenOnA, except for the range of the indexl, index2 argu­
ments passed to the worker routine. The sequence of (indexl, index2) 
values span the "half" array beneath the diagonal of a Rangel x Range2 
array as follows: 

index2 = O, indexl = 1, .•• , (Rangel-1) 
index2 a 1, indexl = 2, ... , (Rangel-1) 

index2 = R-2, indexl = (R-1), ••• , (Rangel-1) 

where: 

R = min(Rangel,Range2) 

Similarly, the generators: 

code= GenOnHA (Worker, Rangel, Range2); 
code= GenOnHALimited (Worker, Rangel, Range2, nprocs); 
code= GenOnHAAbortable (Worker, Rangel, Range2); 

are analogous to the corresponding routines in the array family. 
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It may appear that more variants are needed for half arrays; for example, 
those that include the diagonal. However, GenOnHA can be used with 
some simple tricks to get the desired behavior; for example, to include the 
diagonal, add one to the ranges in the call to GenOnHA and subtract one 
from indexl and index2 in the Worker routine. 

Miscellaneous Generators 

The generator: 

GenTaskForEachProc (call, arg); 

generates exactly one task, call(arg), for every processor (that has not 
been removed by the TimeTest routine). 

The generator: 

GenTaskForEachProcL.llnited (call, arg, nprocs); 

generates exactly one task, call(arg), for each of nprocs different proces­
sors. 

The generator: 

GenTasksFromList (routine_list, arg_list, n); 

where routine_ list is an array of routines of length n, r l, •.• ,rn, and 
arg_list is an array of "arguments" of length n, argl,°".,argn, generates n 
tasks. The ith task is ri(argi). 

ASYNCHRONOUS GENERATORS 

There are asynchronous versions of each of the generators in the index, 
array, and half array generator families. Although the form of the tasks 
generated by these generators varies from family to family, the asynchro­
nous gen~rators use a common control discipline. 

Suppose AsyncGen .•• is an asynchronous generator. The call: 

GenID = AsyncGen ••• ( ••• ); 

activates the generator and then returns control immediately to its caller 
along with GenID, an "identifier" for the generator activated. 
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The processor that invokes an asynchronous generator can choose to work 
on tasks generated by the generator, or can do other things. To work on 
tasks from the generator, it uses the call: 

code= WorkOn (GenID); 

After all of the tasks generated have been processed, WorkOn returns a 
code to the caller. The code indicates either that the generator exhaus­
tively produced all of its tasks or that it was aborted via AbortGen. 

The sequence: 

GenID = AsyncGen ... ( ... ); 
code= WorkOn (GenID); 

is functionally equivalent to the corresponding synchronous generator. 

A processor that has previously invoked an asynchronous generator can 
use the call: · 

code= WaitForTasksToFinish (GenID); 

to wait until all the tasks associated with the specified generator have been 
completed. As with WorkOn, the returned code indicates whether the 
generator exhaustively produced all its tasks or was aborted. 

Both WorkOn and WaitForTasksToFinish should be·used only by the 
process that activated the generator in question, and only if that process is 
not already working on the generator. Furthermore, a process may invoke 
either WorkOn or WaitForTasksToFinish, but not both. 

All task generators (synchronous and asynchronous) use a task descriptor 
data structure to rec_ord information about the generator, such as the iden­
tity of the worker routine, ·and to keep track of generator progress. When 
a generator is invoked, a task descriptor data structure is allocated, and . 

· when the generator completes, the task descriptor data structure is deallo­
cated. For synchronous generators, · the deallocation OCCU!S before the 
generator call returns. For asynchronous generators, the deallocation is 
done within the WorkOn or WaitForTas~sToFinish routine. The 
present implementation limits the number of generators that may be active 
at any time to 256 (of course, each generator can describe thousands of 
tasks). Therefore, a program that makes more than 256 calls to 
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asynchronous generators must use .WorkOn or WaitForTasksToFinish 
to force the deallocation of at least some of the task descriptor data struc­
tures to proceed beyond the first 256 calls. 

The asynchronous generators currently supported by the Uniform System 
are: 

Index family: 

GenID = AsyncGenOnIFull (Init, Worker, Final, Arg, Range, Limited, 
Abortable); 

GenID = AsyncGenOnI(Worker, Range); 
GenID = AsyncGenOnILimited (Worker, Range, nprocs); 
GenID == AsyncGenOnIAbortable (Worker, Range); 

Array family: 

GenID = AsyncGenOnAFull (Init, Worker, Final, Arg, Rangel, Range2, 
Limited, Abortable); 

GenID = AsyncGenOnA(Worker, Rangel, R.ange2); 
GenID = AsyncGenOnALimited (Worker, Rangel, R.ange2, nprocs); 
GenID = AsyncGenOnAAbortable (Worker, R.angel,·Range2); 

Half Array Family: 

GenID = AsyncGenOnHAFull (Init, Worker, Final, Arg, Rangel, R.ange2, 
Limited, Abortable) ; 

GenID = AsyncGenOnHA (Worker, Rangel, Range2); 
GenID = AsyncGenOnHALimited (Worker, Rangel, Range2, nprocs); 
GenID = AsyncGenOnHAAbortable (Worker, Rangel, Range2); 

Each of these corresponds to one of the synchronous generators described 
. above. 

COPYING PROCESS PRIVATE DATA 

It is often useful for each proc~ssor to have its own copy of certain fre­
quently referenced variables declared as c globals. These copies eliminate 
the memory contention that might otherwise occur as multiple processors 
access shared copies of the variables. For example, as part of initializa­
tion one processor might set C global variables that other processors mtf:st 
access. Recall that C globals are in process private memory. One way to 
make the values of these variables accessible to the other processors is to 
pass the values in the data structure argument to a task generator and have 
the generator "initialization" routine make copies on each processor. 
Often a _more convenient way to achieve this effect is to use one of the 
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Share routines. 

Assume that Xis a 4-byte data item (e.g., an integer) declared as global or 
static; X is therefore process private. The effect of: 

Share (&X); 

is to copy the value of X into each processor that performs tasks generated 
by subsequent task generators. The value copied is the value X has when 
Share is invoked. The value of Xis copied to each processor prior to the 
call of the task initialization routine for the next task generator handled by 
that processor. For generators ~at have no explicit initialization routine, 
X is set prior to the first call .of the task worker routine on that processor. 
The effect of Share is illustrated schematically in Figure 2-4. Note that 
when processor P executes Share( &X) the effect is as if: 

1. P allocates space in shared memory to hold the value of X; 

2. On the .next generator called: 

For the Arg parameter for the generator, P passes a pointer to the 
shared memory location that holds the copy of X; 

For the Init parameter for the generator, P passes a routine that copies 
the value of X from the shared memory location pointed to by Arg to 
the location of X in process private memory. 

In particular, note that the value of Xis propagated to other processors by 
the Share mechanism, but the variable X itself is not shared. Therefore, 
should one processor change its copy of X, only that processor will see the 
changed value. 
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Figure 2-4 
Share Passes Copies of Process Private Variables 

A block of data declared global or static can be passed to other processors 
by: 

ShareBlk(&X, size); 

where size is the size of the block, in bytes, and &Xis its starting address. 

A pointer variable P, which is declared to be global or static, and the 
block of data it points to can be passed to other processors by: 

SharePtrAndBlk(&P, size); 

where size is the size of the block in bytes. The following code fragment 
allocates and initializes a block of data in process private memory and 
then uses.SharePtrAndBlk to propagate the data to other processors: 

int * p; 

p = (int*) malloc (10 * sizeof (int)); 
for (i = O; i < 10; i++) 

p [i] = i; 
SharePtrAndBlk (& p, 10 * sizeof (int)); 

When many processors make frequent references to many elements of an 
array allocated by UsAllocScatterMatrix, it is often desirable for each 
processor to have its own copy of the vector of pointers created by UsAl­
locScatterMatrix. This reduces contention for those pointers, which are 
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all stored in a single memory and which must be referenced to access the 
array elements. The routine: 

ShareScatterMatrix(&P, nrows); 

where P is a C global allocated by: 

P = UsAllocScatterMatrix(nrows, ncols, element_size); 

causes such copies to be made. Each processor that performs tasks gen­
erated by task generators called after the call to ShareScatter Matrix will 
have its P set to point to a local copy of the vector of pointers (the local 
copy is allocated in globally shared memory). As with Share, ShareBlk 
and SharePtr AndBlk, the value of P in each such processor will be set 
prior to the call of the task initialization routine for the next task generator 
handled by that processor. The call: 

ShareScatterMatrix(&P, nrows); 

is equivalent to: 

SharePtrAnc!Blk(&P, 4 x nrows); 

in terms of the copies made. However it differs in two important ways: 
ShareScatterMatrix maintains information about the scatter matrix 
required for proper specification of UsFree (see below), whereas ShareP­
tr AndBlk. In addition, ShareScatter Matrix operates faster on larger 
Butterfly Plus configurations, since it is careful to avoid memory conten­
tion by making copies from other copies as well as from the original. 

The FORTRAN-callable version of ShareScatterMatrix takes as its second 
parameter the number of columns rather than the number of rows. Stated 
somewhat differently, the second parameter of ShareScatterMatrix is the 
number of scattered entities, which for C language matrices are rows and 
for FORTRAN matrices are columns. 
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Figure 2-5 
Between UsAllocScatterMatrix and ShareScatterMatrix Calls 

Figures 2-5 and 2-6 show the effect when a process Pa executes the code 
sequence: 

p = UsAllocScatterMatrix (n, m, size); 
ShareScatterMatrix (&P, n); 
GenOn ... ; 
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Figure 2-6 
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After All Processors Start Working on GenOn ... Tasks. 

To deallocate a scatter matrix after ShareScatterMatrix has been used to 
make copies of the vector of pointers, UsFree must be called for each of 
the vector of pointers. When UsFree is called for the last vector of 
pointers, the rows of the scatter matrix (columns for FORTRAN arrays) are 
deallocated. 

The Share mechanism was developed to facilitate program initialization 
by making it relatively easy to propagate the values of process private 
variables set during program initialization to all processes. However, the 
mechanism is also often used to propagate updates to process private vari­
ables to all processes. · 

Normally,' the Share mechanism automatically propagates copies of such 
data. The copies are "refreshed" each time a process starts working on 
tasks from a new task generator .. This is done within the generator 
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mechanism by checking to see whether there are new values to be copied 
before the process gets its first task from the new generator. 

Although this automatic mechanism is adequate when the Share mechan­
ism is used to propagate values of process private variables set during pro­
gram initialization, it is often not adequate when the Share mechanism is 
used in other ways. The routine: 

RefreshLocalShareVariables(); 

can be used by a process to force a refresh of its copies of any process 
private variables that may have been updated and re-Shared by other 
processes. 

As part of its operation, the Share mechanism allocates memory. In addi­
tion to the memory it allocates and makes available to the user's program 
via ShareScatterMatrix and SharePtrAndBlk, it allocates memory for 
internal bookkeeping. If there is insufficient memory, the Share mechan­
ism will fail. This failure could occur when Share (ShareBlk,, ShareP­
tr AndBlk or ShareScatterMatrix) is called, or it could occur when a 
copy of the data being shared is being made on a processor as part of gen­
erator initialization for that processor. Depending upon how a Share 
operation is being used, its failure may or may not be "fatal." For exam­
ple, the failure of Shares being done to initialize process private variables 
are probably fatal, whereas the failure of Shares being done to reduce 
memory contention probably are not. 

Each of the Share routines normally returns a boolean value (1=TRUE,0 
= FALSE) that indicates whether or not the routine succeeded in setting up 
the requested Share. In addition, SetUsConfig (see the section entitled 
"Configuring the Uniform System" later in this chapter) can be used with 
the configStopOnShareFail and configWarningOnShareFail 
configuration codes to control the ?ehavior of a program when a failure in 
the Share mechanism occurs. The default behavior when a Share failure 
occurs is for the process detecting the failure to print a warning message 
and suspend itself. The FORTRAN versions of the Share routines do not 
provide this return value, and are called as subroutines. 
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SHARING VARIABLES AMONG PROCESSORS 

The share mechanism described in the previous section propagates copies 
of variable values from one processor to others. Situations often occur 
where it is desirable ·to share variables among processors in a more 
dynamic fashion, such that when one processor changes the value of such 
a variable all the processors see the change. 

Ideally, one would like to use a storage class specifier, similar to static or 
extern, to declare that a variable is to be shared in this fashion; for exam­
ple: 

shared int N; 
int M; 

would cause N to be allocated in the globally shared portion of the address 
space, and M to be allocated in the process private portion of the address 
space. However, as noted earlier, the Butterfly Plus c compiler is a stan­
dard uniprocessor C compiler that does not support the notion of globally 
shared storage. 

The Uniform System supports a mechanism that achieves the effect of a 
globally shared storage class by facilitating the creation and use of dynam­
ically shared variables. This mechanism allows a programmer to declare 
and use a set of variables that are globally shared among all processors. 
There are three parts to the mechanism: 

1. Declaration of the shared variables. The declaration: 

BEGIN SHARED DECL - -
int N; 
char c; 

END_SHARED_DECL; 

declares N, c, and the other variables between BEG IN_ SHARED_ DECL and 
END_SHARED_DECL, to be globally shared. 

2. Allocation of the shared variables. The macro: 

MakeSharedVariables; 

which must be called after InitializeUs and before using the shared vari­
ables, allocates space for the variables and propagates knowledge of 
where they are to all processors. 
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3. Referencing the shared variables. To reference a globally shared vari­
able that has been declared in this way, the programmer must expli­
citly specify that it is shared via the SHARED prefix; for example: 

SHARED N - (x + SHARED N) I a2; 
if (SHARED c =- '1'). break; 

The constructs BEGIN_SHARED_DECL, END_SHARED_DECL, SHARED, 

and MakeSharedVariables are all macros processed by the C langliage 
preprocessor. They are not available to FOR1RAN programs. 

When using this mechanism, some important limitations must be kept in 
mind: 

• BEGIN_SHARED_DECL may appear only once in a program. All vari­
ables to be shared via this mechanism must be declared in one place. 

• All of the shared variables are allocated in the same physical memory. 
Hence, contention for that memory could be a performance bottleneck. 
(See Chapter 4, Tuning Programs for Performance, for a discussion of 
the performance implications of memory contention.) 

Despite these limitations, the mechanism is useful in many situations. 

MEASURING YOUR PROGRAM 

You may want to measure the performance of your program on different 
numbers of processors. The Uniform System offers a utility routine called 
Time Test that facilitates this kind of measurement: 

TimeTest(Init, Execute, l?rintResults); 

To use TimeTest, you need to divide your application into three major 
subroutines: one that does all of the initialization (lnit), another that does 
the real work of the program (Execute), and a third that prints results 
(PrintResults). · TimeTest takes the names of these subroutines as argu­
ments, and runs your application on various configurations of the ~chine 
by calling lnit, Execute, and PrintResults in sequence. It times the mid­
dle routine only (Execute), and passes the execution time, the number of 
processors, and the effective number of processors to the specified display 
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routine (PrintResults) at the end of each pass:3 

PrintResu1ts(time, procs, effprocs); 
int time, procs; 
float effprocs_; 

The Uniform System provides a simple PrintResults routine called 
TimeTestPrint that outputs time, procs, and effprocs. You may prefer 
to supply your own display routine that prints other information. 

- At the start of the run, TimeTest prompts the user for the number of pro­
cessors to use. The user is asked how many processors should be used the 
first time the Execute routi1:1e is timed (start), how many processors 
should be added for each iteration of the time test (delta), and how many 
processors should be used for the last time test (end). 

Please enter start, delta (O=exp), and end for time test: 4 2 16 
using start - 4, delta = 2, end - 16 

The effect of this interaction is to start a program on four nodes and 
increase the number of nodes by two for each timed run until 16 nodes are 
used. If there are only 15 processors available to the program, only 15 
processors will be used for the last timed run. If the start parameter is set 
to 0 or 1, the first timed run will use one processor. If the delta parameter 
is set to zero, the number of processors will increase exponentially (i.e., 1, 
2, 4, 8). If the end parameter is set to zero, the final timed run uses all 
available processors. 

A variant on TimeTest eliminates the need to obtain the processor 
configurations to be timed from the user: 

TimeTestFu1l(Init, Execute, PrintResults, start delta, end); 

TimeTestFull allows a start, increment (delta) and end value to be 
specified for a set of runs. The first test is run on start processors, the 
next on start + delta processors, and so forth, up to the final test that is 
run on end processors. TimeTestFull is particularly useful on bigger 
machines, where incrementing by one processor can be tedious. If start 

3. The effective number of processors is afloat equal to (time 1 proc)/(time n procs), 
which is a good measure of the speedup your program achieves over one processor 
when n processors are used. If the first test run uses more than one (=k) processor, 
then the effective number of processors is k(time k proc)/(time nprocs). 
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(or end) is zero, the test is run from (to) the end of the range of available 
processors, and in particular, it is run for the limiting processor case 
whether or not it is in the normal progression specified by delta. 

If delta is specified to be zero, the number of processors used increases by 
powers of two (1, 2, 4, 8, etc.). The rules for start and end still apply. If 
the delta specified is negative, start and end are ignored and TimeTest­
Full asks the user to supply values for start, delta, and end. This is the 
normal usage for timing many programs, and is equivalent to TimeTest. 

Although all processor nodes in a Butterfly· Plus system are functionally 
equivalent, there are situations in which some nodes may appear to be 
slower to application programs than others. A node will appear to be 
slower than others if it is running a window manager process. When 
benchmarking a program, avoid using such nodes so that the measure­
ments are not affected by the processing requirements of the window 
manager. Chrysalis releases since 3.0 provide a multiple user capability 
based on the notion of partitions of processor nodes, called clusters, that 
are allocated to users. Each user has at least one cluster, and one of the 
processors in one of the clusters runs the user's window manager process. 
The proper way to avoid a node running a window manager process is to 
create a new cluster with the desired number of nodes and to run the pro­
gram in that cluster. The following sequence of shell interactions illus­
trates how this can be done: 

(cluster 5) [8] make-cluster 8 ; Create cluster with 8 nodes 
NewCluster = 7 
(cluster 5) cluster 7 
Cluster == 7 
(cluster 7) [8] 

(cluster 7) cluster 5 
(cluster 5) free-cluster 7 

; Cause programs to run i~ new cluster 

; Run your program in original cluster 

; Delete new cluster 

Prior to Chrysalis release 3.0, the node to be avoided was the king node 
and the way to avoid it was for a program to use the routine: 

InitializeUsForBenchmark(); 

rather than lnitializeUs to initialize the Uniform System, and to start the 
program on a node other than the king node. 
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READING THE CLOCK 

A program can read the Butterfly Plus clock using the routine: 

GetRtc (); 

which returns the time since the system was booted in units of 62.5 
microseconds. On the Butterfly Plus the clock value is the same (plus or 
minus two ticks) on every processor. The frontend version of the Uniform 
System Library uses the real time clock on the frontend machine to imple­
ment GetRtc, and converts to these 62.5 microsecond units. If you 
merely want the clock to measure the speed of your program, see the sec­
tion en~tled "Measuring Your Program" earlier in this chapter. 

INPUT AND OUTPUT 

The routines printf and scanf are available for terminal 1/0. The opera­
tion of these functions is generally the same as that of their UNIX counter­
parts. 

A RAM:file package is available that uses Butterfly Phis memory to imple­
ment a "file" system. Programs can create, read, and write RAMfiles, and 
there are utilities for moving RAMfiles between the Butterfly Plus and the 
frontend host file system. In addition, support for the standard UNIX file 
1/0 functions for files on the frontend host is being developed. In the 
interim, a simple mechanism, supported by a streams package, has been 
developed to permit a program running on the Butterfly Plus to read and 
write files on the frontend computer. Consult the Chrysalis Programmer's 
Manual for details on how to use the streams package. 

CONFIGURING THE UNIFORM SYSTEM 

Normally InitializeUs creates a process for its program on every available 
processor in the system, and seizes as much memory as it can use from 
each processor node in order to establish the Uniform System globally 
shared address space. Although this is appropriate in many cases, there 
are situations that may require finer control of the resources used by Uni­
form System programs. In such situations, the routine: 
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SetUsConfig(configuration_cod.e, value); 

can be used prior to calling Initialize Us. The configuration_ code serves 
to identify a configuration parameter to be set, and value specifies its 
value. 

To set more than a single parameter, use the routine; 

ConfigureUs(Spec, n); 

where Spec is an array (of integers) that specifies the configuration in 
terms of n parameter specification blocks. Each parameter specification 
block contains a configuration_ code that identifies the parameter being 
set, followed by the value for the parameter. 

Note: Before setting configuration parameters using configuration_ codes 
you must include the #include file usgen.h. 

The following configuration_ codes are defined: 

configProcs Specifies the number of processors to include 
in the Uniform System configuration. The 
number should be an integer less than or equal 
to the number of nodes in the cluster. If 
configProcs is set greater than the number of 
available nodes, the Uniform System uses only 
the nodes available to it. 

configSuppresslnitMsgs Specifies whether to print messages that report 
the progress of InitializeUs: 1 means suppress 
the messages, 0 means print the messages. The 
default is 1. 

configTimeTest ViaReinit 
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Uniform System as is, by "diverting" enough 
processors to an idle loop in order to time a 
given processor configuration. This means that 
only the CPU resources of the proces$ors in the 
configuration are used, but the memory 
resources of all processors, including those that 
have been diverted, may be used. The default 
is 0. This parameter may be specified anytime 
before calling TimeTest. 

configAllocAcross64K Specifies whether Uniform System memory 
allocators (see "Memory Allocators") may 
allocate blocks of memory that cross 64-
kilobyte boundaries in a process address space. 
Early versions of the Uniform System would 
not allocate blocks that cross 64-kilobyte boun­
daries. 1 means allow allocation across 64-
kilobyte blocks; 0 means don't allow allocation 
across 64-kilobyte blocks. The default is 1. 

con fig WarningOnShareFail 
Specifies behavior on a failure of the Share 
mechanism (see "Copying Process Private 
Data"); 1 means print a warning message on a 
Share failure; 0 means don't print a warning 
message on a Share failure. The default is 1. 

configStopOnShareFail Specifies behavior on. a failure of the Share 
mechanism (see "Copying Process Private 
Data"); 1 means suspend process on a Share 
failure; 0 means allow process to continue exe­
cution on a Share failure. The default is 1. 

configMemObjsFree Specifies the number of 64-kilobyte memory 
objects to leave free on each processor node. 
Setting this configuration option overides any 
previous use of configMaxMemObjs. 
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configMaxMemObjs Specifies the maximum number of 64-kilobyte 
memory objects to obtain from each processor 
when making the Uniform System shared 
memory. Setting this configuration option 
overides any previous use of 
configMemObjsFre~. 

configObjsRetRoot During lnitializeUs, the Uniform System 
obtains memory in 64-kilobyt~ blocks to be 
used to build its shared address space. It 
obtains as many 64-kilobyte blocks as it can on 
each processor node in the configuration. It 
then returns some 64-kilobyte blocks on each 
node to allow operations requiring memory to 
occur on the nodes; for example, running the 
various Chrysalis utilities such as ps and 
showmem require memory. This configuration 
code is used to specify the number of 64-
kilobyte blocks the Uniform System should 
return for the processor node on which the Uni­
form System program is started (the root pro­
cessor). The parameter is interpreted only if 
configMaxMemObjs and 
coilfigMemObjsFree have not been specified. 
The default is 2. 

configObjsRetChild Similar to configObjsRetRoot, but specifies 
the number of 64-kilobyte blocks.to be 
returned for child processor nodes. The param­
eter is interpreted only if configMaxMemObjs 
and configMemObjsFree have not been 
specified. The default is 2. 

configMaxSars Specifies the maximum size of the shared por­
tion of the process address space in terms of 
64-kilobyte blocks or "segments. "4 This 

4. Prior to the Butterfly Plus, Butterfly processor nodes contained a custom memory 
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parameter should be an integer greater than 15. 
The default is 237. 

Specifies the maximum size of the process 
address space in terms of 64-kilobyte blocks or 
"segments. " 5 This includes the space con­
sumed by the program, the stack, process 
private data, and Uniform System shared 
memory. The default value for this parameter 
is 256. The maximum allowable value for this 
parameter is also 256. This value restricts Uni­
form System programs to a 16-megabyte 
address space. 

As an example, the code fragment: 

#include <usgen.h> 
SetUsConfig(configProcs, 6); 
Initializeus () ; 

limits the Uniform System program to (a maximum of) six processors. 
The code fragment: 

SetUsConfig(configprocs, 3); 
SetUsConfig(configSuppressinitMsgs,0); 

is equivalent to the code fragment: 

int config [4]; 
config [0] = configProcs; 
config [l] = 3; 
config [2] = configSuppressinitMsgs 
config [3] = O; 
ConfigureUs(config, 2); 

management unit that made use of registers called Segment Attribute Registers (SARs). 
On those machines, the Uniform System used one SAR for each 64-kilobyte segment of 
the shared portion of the process address space. 
5. It was useful to use this configuration code prior to the Butterfly Plus to reduce the 
number of SARs required by a program, because SARs were a relatively scarce 
processor node resource. Since Butterfly Plus processor nodes do not contain SARs, 
Butterfly Plus programs should not need to use this configuration code. 
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TAGGING MEMORIES 

Sometimes it is useful to partition the node memories into classes. For 
example, the UsAlloc and UsAllocScatterMatrix routines use all of the 
memories of the machine. It may be desirable to limit allocation to a 
smaller set of memories; for example, only the memories of processor 
nodes being used to run a program. The routine: 

UsSetClass(proc, class); 

where proc is a physical processor number and class is an integer, makes 
the memory of the specified processor node a member of the specified 
class. The function: 

UsGetClass (proc); 

returns the class of which proc is a member. All memories are initially in 
class 0. 

The allocation routines: 

UsAl.locC{nbytes, class); 
UsAJ.locScatterMatrixC(nrows, ncols, nybtes, class); 
UsAl.locOnUsProcC(usproc, nbytes, class); 

where class is an integer, are similar to UsAlloc, UsAllocScatterMatrix, 
and so on, differing in that they allocate space only on memories in the 
specified class. UsAllocOnUsProcC will fail if proc is not in class. 

The allocation routine: 

UsAllocAndReportC (usproc, wherep, nbytes, class) 

attempts to allocate a block of size nbytes on a processor in the specified 
class and, if successful, sets the location pointed to by wherep (an int *) 

to the Uniform System ID for the processor on which the block was allo­
cated. The routine first attempts to allocate the space on usproc; should 
that fail, it tries usproc+l, and so forth (wrapping around to processor 0), 
until it either succeeds, or has tried all processors in the class. UsAllo­
cAndReportC is useful for building allocators for scattered data struc­
tures, such as the scatter matrices allocated by UsAllocScatterMatrix. 

The following program fragment illustrates the use of these routines: 

UsSetClass(l0,3); 
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UsSetClass(4,3); 
UsAllocC(64,3); 

It sets processors 10 and 4 to class 3 and allocates 64 bytes on either 10 or 
4, whichever has the least memory previously allocated. 

BUILDING A GENERATOR 

The Uniform System Library contains a set of useful generators for a wide 
range of applications. Occasionally it may be necessary, however, to con­
struct a generator for a particular application. Building a generator is an 
advanced topic, and although the general approach to building generators 
is not likely to change, the details may. The generator activators sup­
ported by the library all make use of the "universal" generator activator 
procedure. This procedure can be called directly by application programs, 
and can be used to build new generator activator procedures: 

ActivateGen(Init, Worker, Final, Arg, Rangel, Range2, Type, Genl?roc, 
Async, MaxProcsToUse, Abortable, ResultP, Language); 

lnit is the per-processor initialization routine, Worker is the task worker 
routine, and Final is the per-processor post-processing routine. Arg is a 
pointer to a data structure, which is passed to the Init, Worker, and Final 
routines. Type must be set to GENERATOR, and Rangel and Range2 are 
integers. GenProc is a task generation routine described in more detail 
below. The Async parameter specifies whether the generator is to be syn­
chronous or asynchronous. It should be set to TRUE for synchronous or 
FALSE for asynchronous. MaxProcsToUse specifies the maximum 
number of processors that the generator can generate tasks for. To use all 
available processors, MaxProcsToUse should be set to TotalProcsAvail­
able(). The Abortable parameter determines whether the generator is to 
be abortable. It should be set to TRUE if the generator is to be abortable or 
FALSE if the generator is not to be abortable. ResultP is a pointer used 
when Abortable is true. It specifies where to store the generator "result 
code" if the generator is aborted so that the generator activator routine can 
find it. Finally, Language specifies the programming language from 
which the generator is being called (0 for the C langauge, 1 for FORTRAN). 

GenProc is the task generation routine. It is of the form: 

Genl?roc(TD); 
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VsGenDesc * TD; 

where TD is a pointer to a task descriptor data structure in globally shared 
memory. The task descriptor data structure, UsGenDesc, which is defined 
in us.h, is shown in Figure 2-7: 

typedef struct UsGenDescStruct 
{ int id; 

short * completion_location; 
struct UsGenDescStruct * prev~tr; 
struct UsGenDescStruct * next~tr; 
int in_hash_table; 
char * currentShare; 
int end; 
short started; 
short us_lock; 
short retcode; 

t define genEXHAUSTED -1 
short 
int 
int 
int 
int 
int 

endlock; 
(* init) (); 
(* gen) (); 
(* final) () ; 
arg; 
(* ca.ll) (); 

int range; 
int range2; 
int abortable; 
short max~rocs_to_use; 

short language; 
t define C_CALLING 0 
t define FORTRAN_CALLING 1 

union 
longLong; 

short Short; 
index; 

union 
unsigned long Long; 

unsigned short Short; 
} index2; 
short lock; 

UsGenDesc; 

Figure 2°7 
The UsGenDesc typedef 

The fields id through language are used internally by.the Uniform System 
generator mechanism. The Worker, Init, Final, GenProc, Arg, Rangel, 
Rangel, MaxProcsToUse, and Language parameters of ActivateGen 
are used to initialize the call, init, final, gen, arg, range, range2, 
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max _procs _to_ use, abortable, and language fields of the data structure. 
The other fields between id and language are used by the generator 
mechanism for internal bookkeeping. The remaining fields (index 
through lock) are initialized to 0, and are available for use by the Gen­
Proc route for any generator-specific bookkeeping associated with gen­
erating tasks. 

After ActivateGen initializes the task descriptor data structure, it makes 
the descriptor accessible to other processors. If Async is TRUE, Activa­
teGen then returns its caller a pointer to the task descriptor data structure; 
otherwise, the processor running ActivateGen calls the GenProc task 
generation procedure. That processor, and others as they become free, use 
the task generator descriptor (TD) and the GenProc task generation pro­
cedure to generate and execute calls to the Worker procedure. 

An example may help illustrate use of ActivateGen to build a generator. 
Suppose a generator: 

GenOnShortindex(Init, Worker, Arg, Range); 

is desired that is to be similar to GenOnl, differing in that it takes an Init 
routine and an Arg parameter, and that the Range is to be restricted to a 
short. GenOnShortlndex could be implemented by calling: 

ActivateGen(Init, Worker, 0, Arg, Range, 0, GENERATOR, GenShortidx, FALSE, 
TotalProcsAvailable, FALSE, O, 0); 

where GenShortldx is: 

GenShortidx(TD) UsGenDesc *TD; 
{ register int index; 

} 

register short* pl=(short *)&TD->(index.Short); 
register short range = TD->range; 
register int (*worker) ()= TD->call; 
register int arg = TD->arg; 
for (;;) 
{index= Atomic_add(pl,l); /*make next index*/ 

if (index >== range) break; /* range exceeded? */ 
(*worker) (arg, index); /*no: call worker*/ 

ActivateGen initializes a task generator descriptor (TD, a UsGenDesc 
data structure) from its parameters, and makes the descriptor accessible to 
other processors.· The processor on which ActivateGen is invoked then 
calls GenShortldx. That processor, along with others as they become 
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free, use the task generator descriptor and GenShortldx to generate and 
execute tasks. 
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Chapter 3 

Uniform System Examples 

This section presents several example programs that illustrate use of the 
Uniform System. 

MULTIPROCESSOR "HELLO WORLD" 

This example illustrates the use of the task generator GenOnl, the vari­
able Proc _Node, and the routines TotalProcsA vailable, PhysProcm 
ToUsProc, and Share. It is a multiprocessor version of the "hello world" 
program in Kernighan and Ritchie's The C Programming Language, and 
is only a little more complicated. The program causes each processor to 
print out, "Hello world from node n," exactly once. The output produced 
by running it on a large Butterfly Plus system is shown in Figure 3-1. 

(cluster 14) [c] Hello 

There are 32 nodes on this machine 

Hello from node #29 (= hardware node tc) 
Hello from node #5 (= hardware node t9c) 

Hello from node #13 (= hardware node tac) 
Hello from node #3 (= hardware node #98) 
(cluster 14) [c] 

Figure 3-1 
Output from "Hello World" Program 
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The multiprocessor "hello world" program uses UsAlloc to reserve space 
in gl~bally shared memory for nodecount, a variable used for bookkeep­
ing by the processors. Nodecount is initialized with the number of pro­
cessors on the machine, a number obtained via TotalProcsA vailable. 
After using Share to propagate the location of nodecount to other proces­
sors, the program then uses GenOnl to generate tasks that print the 
"hello" message from each processor. The only tricky part is ensuring 
that each processor performs exactly one task. In general, without some 
form of coordination, some processors could get more than one task and 
others might get none. For this program, the coordination is simple. After 
printing its message, each processor atomically decrements a counter 
maintained in globally shared memory (nodecount), and then waits until 
the counter indicates that all messages have been printed. This guarantees 
that no processor finishes its task until all messages have been printed; 
therefore all tasks are generated before any processor finishes. The pro­
gram code is shown in Figure 3-2. 

/* Mul.tiprocessor "Hello" program */ 

#include <us.h> 

short * nodecount; 

PrintHello (dum:ny, index) 
int dum:ny, index; 
printf ("Hello from node #%d (=hardware node #%x)O, 

PhysProcToUsProc(Proc_Node), Proc_Node); 
Atomic_add (nodecount,-1); 
while (*nodecount!= 0) UsWait (0); 

main () 
InitializeUs () ; 
p.odecount == (short*) UsAlloc (sizeof (short)); 
* nodecount • TotalProcsAvailable (); 
printf ("\nThere are %d nodes on this machine\n\n", *nodecount); 
Share (& nodecount); 
GenOnI (PrintHello, * nodecount); 

Figure 3-2 

Program Code for. "Hello World" Program 
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MATRIX MULTIPLICATION 

This example illustrates use of the UsAllocScatterMatrix storage alloca­
tor, the GenOnA task generator, and the routines InitializeUs, Share, 
TimeTest, and TimeTestPrint. The example is an unoptimized program 
that multiplies two matrices. The program computes the matrix a = b * c. 
Recall that the product (a) of two matrices (b and c) is the matrix whose 
( i J )th component is the sum of the products of the corresponding elements 
(the dot product) of the ith row of band thejth column of c. 

The program is written t~ run on a set of processor configurations 
specified from the keyboard. The output produced by running the matrix 
example program on a small Butterfly Plus system is shown in Figure 3-3. 
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(cluster 14) [c] Ma.tri.xExample 

Starting Matrix Multiply 
Matrix Size: 20 

Please enter start, delta (O=exp), and end f9r time test: 1 0 8 
Using start = 1, delta = O, end = 8 

a row 0 o. 60. 120. 180. 240. 300. 
a row 1 3. 63. 123. 183. 243. 303. 
a row 2 6. 66. 126. 186. 246. 306. 
a row 3 9. 69. 129. 189. 249. 309. 
a row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195. 255. 315. 
[l] time = 6287 ticks = .39 sec; ep = 1.0; eff == 1.0000 

a row 0 o. 60. 120. 180. 240. 300. 
a row 1 3. 63. 123. 183. 243. 303.· 
a row 2 6. 66. 126. 186. 246. 306. 
a row 3 9. 69. 129. 189. 249. 309. 
a row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195. 255. 315. 
(2] time = 3580 ticks = .22 sec; ep = 1. 7; eff = .8780 

a row 0 0. 60. ;t.20. 180. 240. 300. 
a row 1 3"' 63. 123. 183. 243. 303. 
a row 2 6. 66. 126. 186. 246. 306. 
a row 3 9. 69. 129. 189. 249. 309. 
a row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195. 255. 315. 
(4) time = 1798 ticks = .11 sec; ep = 3.4; eff = .8741 

a row 0 0. 60. 120. 180. 240. 300. 
a row 1 3. 63. 123. 183. 243. 303. 
a row 2 6. 66. 126. 186. 246. 306. 
a row 3 9. 69. 129. 189. 249. 309. 
a row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195. 255. 315. 
[8]' time = 1146 ticks .. .07 sec; ep = 5.4; eff = .6857 
(cluster 14) [c] 

Figure 3-3 

Output from Matrix Multiplication Program 

The line: 

please enter start 

is used to specify the processor configurations for the run. It is printed by 
the TimeTest routine. See the previous chapter for an explanation of the 
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start, delta and end parameters. The line: 

[8] time= 1146 .•. 

is printed by TimeTestPrint. It indicates that the matrix example pro­
gram took 1,146 ticks or 0.07 seconds on eight processors, and that it 
achieved a speedup of 5.4 over one processor(= 5.4 effective processors), 
utilizing the eight processors with 68.6% efficiency. The program itself is 
shown in Figure 3-4. 
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/* Matrix multiply - unoptimizedexample program */ 

Jinclude <us.h> 

int Size; 
float * * a, * * b, * * c; 

InitProblemOnce () 

{ int i, j; 
a= (float * 
b .. (float * 
c = (float * 

*) 
*) 
*) 

UsAllocScatterMatrix (Size, Size, sizeof(float)); 
UsAllocScatterMatrix (Size, Size, sizeof(float)); 
UsAllocScatterMatrix (Size, Size, sizeof(float)); 

ShareScatterMatrix (&a, Size); Share (& b); Share (& c); 
for (i=O; i<Size; i++) 

for (j=O; j<Size; j++) 
{ if (i=j) b[i] [j] = 3.; else b[i] [j] O.; 

c[i] [j] = Size * i + j; 

InitPerRun () 
int i, j; 
for (i=O; i<Size; i++) 

for. (j=O;_ j<Size; j++) 
a[i][j] = O.; 

DotProduct (dummy, i, j) 
int dummy, i, j; 
int k; float * bb, * cc, temp; 
temp - 0.0; bb = b[i]; cc 
for (k=O; k<Size; k++) 

temp += *bb++ * *cc++; 
a[i] [j] =temp; 

Body () 
{ GenOnA (DotProduct, Size, Size); 
} 

PrintAnswer(time, procs, speedup) 
int time, procs; float speedup; 
int i, j; 
for (i=O; i<6; i++) 
{ printf ("\na row %d ", i); 

for (j=O; j<6; j++) 

c[j]; 

printf ("%d. ", (int) a[i][j]); 

printf ("\n"); 
TimeTestPrint (time, procs, speedup); 

main () 
{ InitializeUs (); 
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printf ("\nStarting Matrix Multiply\nMatrix Size: "); scanf ("%d", &Size); 
Share (&Size); 
InitProblercOnce (); 
TimeTest (InitPerRun, Body, PrintAnswer); 

Figure 3-4 

Program Code for Matrix Multiplication Program 

This program parallelizes matrix multiplication by computing the indivi­
dual elements of product matrix a in parallel. Each element is the dot pro­
duct of a row of matrix b and a column of matrix c. Chrysalis starts $e 
program by calling the routine main on a single processor. The program 
has six routines: 

1. InitProblemOnce, as its name suggests, is an initialization routine, 
called once per invocation of the program, that reserves space in glo­
bally shared memory for the result matrix, a, ,and the two operand 
matrices, band c, using the Uniform System allocator, UsAllocScat­
terMatrix. The variables a, b, and care C globals and, hence, process 
private. Next, InitProblemOnce uses Share to make copies of a, b, 
and c available to any processors used in tasks generated to do the 
matrix multiplication. Finally, it initializes the band c matrices (with 
dummy data) using nested for loops. Since matrix b will be accessed 
by row, and matrix c will be accessed by column, b is scattered by row 
and c is scattered by column. That is, b[i][j] is the element in row i, 
column j of b, whereas c[i][j] is the element in row j, column i of c. 

2. InitPerRun is an initialization routine called before each run of the 
matrix multiplication code on a given configuration of processors. It 
simply zeros answer matrix a. Strictly speaking, since every element 
of a is written during the matrix multiplication, it is not necessary to 
zero them between runs. They are zeroed here only to illustrate the 
use of an initialization routine for TimeTest. Note that the rows of the 
matrix could be zeroed in parallel if the matrix was very big. 

3. DotProduct is a worker routine called by the GenOnA task generator. 
It computes the vector dot product of row i of the b matrix and column 
j of the c matrix and stores the result in element a[i] [j] of the result 
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matrix. It uses a for loop to. accumulate the individual products in a 
temporary variable, which it then stores in the result matrix. The vari­
able bb is a pointer to row i of matrix b and variable cc is a pointer to 
column j of matrix c. Since matrix b is scattered by row and matrix c 
is scattered by column, successive elements of the ith row of b and the 
jth column of c can be accessed by incrementing and de-referencing 
the bb and cc pointers. Using *hb rather than b[i]lj] avoids accessing 
b[i] (which is constant since i does not change) in each iteration of the 
for loop. This helps avoid contention for the memory that holds the b 
vector of pointers. A similar comment applies to the use of cc. 

4. Body is the routine that computes the matrix product. It uses the 
GenOnA task generator to spawn tasks that execute in parallel to 
compute the individual dot products that make up the result matrix. 
The generator ensures that DotProduct is called for all combinations 
of i andj for i[O Si Size] and i[O Sj Size]. 

5. PrintAnswer is the display routine called by TimeTest. Jt prints out 
.part of the result matrix and then calls TimeTestPrint to print the run­
time, number of processors, and the speedup obtained over one pro­
cessor by a particular processor configuration. 

6. The program starts in main. After initializing the Uniform System, 
main asks for the size of the matrices (square matrices are assumed) 
and stores the reply in the C global, process private variable Size. 
Next, it calls Share to copy the value of Size in all processors that 
execute any tasks subsequently generated. It then calls InitProb­
lemOnce to allocate and initialize the a, b, and c matrices. Finally, it 
calls TimeTest to run the matrix multiplication on the range of pro­
cessor configurations specified by the user. The routines lnitPerRun, 
Body, and PrintAnswer are called in order by Time Test on each pro­
cessor configuration, and Body is timed for each configuration. 

CONVOLUTION 

This example illustrates use of the GenOnIFull task generator and the 
Chrysalis block transfer operation. The e~ample is an unoptimized pro­
gram that petforms a convolution operation on an input image to produce 
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a new output image. Each pixel in the output image is the weighted sum 
of the corresponding pixel in the input image and pixels adjacent to it. 
The weighting is specified by a mask. For the example program a specific 
3-pixel by 3-pixel mask is used: 

-1 -1 -1 
-1 8 -1 
-1 -1 -1 

The value of each pixel in the output image is eight times the value of the 
corresponding pixel in the input image minus the values of each of the 
eight adjacent input image pixels. The output from running the program 
on a small Butterfly Plus configuration is shown in Figure 3-5. 

(cluster 14) [c] convolve 

Image size = 256 

Please enter start, delta (O=exp), and end for time test: 1 0 8 
Using start = 1, delta = O, end = 8 

[l] time - 50321 ticks = 3.14 sec; ep = 1.0; eff = 1.0000 
[2] time = 24772 ticks = 1.54 sec; ep = 2. O; eff == 1.0156 
[4] time = 12407 ticks = .77 sec; ep = 4.0; eff = 1.0139 
[8] time = 6413 ticks = .40 sec; ep = 7.8; eff .= .9808 
(cluster 14) [c] 

Figure 3-5 
Output from Convolution Program 

The program parallelizes the convolution operation by computing rows of 
pixels in the output image in parallel. The GenOnIFull task generator is 
called with a Range parameter equal to the number of input image rows 
minus ·two to generate the tasks. The top and bottom rows, and the left 
and right columns are not convolved because they are on the edge of the 
image, and therefore have insufficient adjacent pixels. The program code 
is shown in Figure 3-6. 
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I* Image convolution- unoptimizedexample program */ 

#include <us.h> 

#define true 1 
#define false 0 

int N, End; 
int * * im, * * an; 
int * row, * row_ml, * row_;pl, * row_ans; 

InitProblerOn.ce () 
{ int i, j; 

im=(int * *) UsAllocScatterMatrix (N, N, sizeof(int)); 
an=(int * *) UsAllocScatterMatrix (N, N, sizeof(int)); 
for (i = 0; i < N; i++) 

for (j = O; j < N; j++) 
im[i] [j] = i % 2; 

Share (& N); Share (& im); Share (&an); 

InitforProc(dummy) 
int dummy; 
End= N - l; 
row= (int*) malloc (N*sizeof(int)); 
row_ml =(int*) malloc (N*sizeof(int)); 
row_;pl = (int*) malloc (N*sizeof(int)); 
row ans= (int*) malloc (N*sizeof(int)); 

DoConvol. (dummy , r) 
int dummy, r; 
int c; 
if (r & 1) 

r = N-r-2; 
Do bt (im[r++], 
Do_bt (im[r++], 
Do_bt (im[r--], 
for (c = l; c < 

row_ans[c] 

Do bt (row_ans, 

Final.forl?roc () 
free (row); 
free (row_ml); 
free (row_;pl).; 
free (row_ans); 

Body () 

row_ml, N*sizeof(int)); 
row, N*sizeof(int)); 
row_;pl, N*sizeof(int)); 
End; c++) 
-row[c-1] + (row(c] << 3) - row[c+l] 

-row_ml[c-1] - row_ml[c] - row_ml[c+l] 
-row_;pl[c-1] - row_;pl[c] ~ row_;pl[c+l]; 

an[r), N*sizeof(int)); 

{ GenOnIFull (Initforl?roc, DoConvol, Finalforl?roc, O, N-2, 0, false); 
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main () 
InitializeUs () ; 
printf ("\nimage size="); scanf ("%d", &N); 
Init~roblem::>nce (); 
TimeTest (0, Body, TimeTestPrint); 

Figure 3-6 
Program Code for Convolution Program 

The program has six routines. 

1. InitProblemOnce allocates space in globally shared memory for the 
input (im) and output (an) images (square images of dimension N by 
N are assumed). The images are scattered by row across the 
memories of the machine. It then generates pixel values for the input 
image. Next, it uses Share to make copies of N, im, and an available 
to processors used in tasks generated to do the convolution. 

2. InitforP~oc is the "initialization" routine passed to GenOnIFull. It 
is called once on each processor that executes tasks generated by 
GenOnIFull before any of the tasks themselves are. InitforProc allo­
cates process private space, to be used by DoConvol, for four rows of 
image pixels: row, row_ml, row_pl, and row_ans. 

3. The DoConvol routine computes one row of the output image. Calls 
to it are generated by the GenOnIFull task generator. Before comput­
ing output pixels, DoConvol makes local copies in process private 

· memory of the pixel values it needs using the Chrysalis Do_ ht block 
transfer operation. Each iteration of the for loop computes one pixel 
of the output image. As their values are computed, the output pixels 
are accumulated in process private memory in row_ ans. After all 
have been computed, row_ ans is copied to the output image by a 
block transfer. 

The four block transfer operations are motivated by two performance 
considerations. When referencing many contiguous items, it is more 
efficient to first use block transfer to make a local copy and then 
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reference the copied values locally than it is to reference the items one 
at a time through the Butterfly Plus switch. After a small amount of 
setup, the block transfer occurs at.the full 32-megabit per second rate 
of the Butterfly Plus· switch, whereas individual remote references 
would be slower, since they incur setup overhead for each remote 
reference. Using the block transfer operation to put frequently refer­
enced data in local memory is the Butterfly Plus analogy to using 
register variables in C to hold data in faster memory. The second per­
formance consideration is that potential multiprocessor contention for 
the memory holding the pixel values is reduced, since the single block 
transfer ties up the memory for less time than the individual remote 
references. 

The if statement that changes r when it is odd is also motivated by 
memory contention considerations. Since each instance of DoConvol 
references three rows of the input image, processors working on adja­
cent rows need to access two rows in common. To reduce the conten­
tion that could occur when the processors atte~pt to block transfer 
copies of the same rows, processors that are passed an even r index 
use the index directly as a row index, whereas those with an odd r 
index use the index as an offset from the bottom of the image. (As 
written, the program assumes that N is even.) This tends to spread the 
processors out on the image; processors start both at the top of the 
image and work down on even rows, and at the bottom of the image 
and work up on odd rows. This scheme assumes that GenOnIFull 
generates index values in sequence, which in fact it does. Note that 
there is still a potential for contention with this approach since, for 
example, the processors working on rows 2 and 4 both access row 3. 
A slightly more complex scheme would eliminate this contention. 

4. FinalforProc is the "finalization" routine passed to GenOnIFull. It 
is called on each processor used for tasks generated by GenOnIFull 
after the last such task has been executed on the processor. Final­
forProc deallocates the space for row, row_ ml, row _pl, and 
row ans. 

5. Body is the routine timed by Time Test. It uses GenOnIFull to gen­
erate the tasks that compute rows of output image pixels in parallel. 
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6. The program starts with main, which simply initializes the Uniform 
System, obtains the size of the image to be convolved from the user, 
and times the parallel convolution on the processor configurations 
specified by the user. 
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Chapter 4 

Tuning Programs for Performance 

This section presents a few suggestions for tuning the multiprocessor per­
formance of Uniform System programs. Programs are often developed in 
two stages. The first stage focuses on getting the program to function 
correctly, and the second stage focuses on achieving an acceptable level of 
performance by tuning the correctly functioning program. We recom­
mend this two-stage approach to multiprocessor programs: first, get the 
program to work, and then tune its performance. Although this section is 
concerned with tuning a program's multiprocessor behavior, the unipro­
cessor behavior should, of course, also be tuned. 

Multiprocessor performance bottlenecks in Uniform System programs 
may occur for several reasons. Performance bottlenecks can occur if: 

• There are insufficient tasks 

• The tasks are not long enough 

• There is memory contention. 

The following paragraphs briefly consider each of these. 

INSUFFICIENT TASKS 

If there are insufficient tasks, processor starvation occurring as task gen­
erators finish up can limit program performance. For example, assume a 
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system with 128 processors, and an application with 129 tasks, each of 
which takes about T time units to perform. One processor will perform 
two tasks and the remaining 127 processors a single task. Therefore, the 
time to run on 128 processors will be 2T, and the maximum spee~up 
attainable over running on a single processor is the execution time on one 
processor divided by the execution time on 128 processors, equal to 129T 
divided by 2T, or 64.5, which results in a processor utilization of only 
50%. On a speedup plot (a plot of actual processors versus effective 
processes) processor starvation effects will show up as a periodic "saw 
tooth" superimposed on a generally monotonically increasing curve. 

The obvious way to remedy this situation is to increase the number of 
tasks. (In a large application, with many generators active at once, having 
a relatively small number of tasks for some generators need not be a con­
cern.) In some cases, this is straightforward. For example, if it were 
necessary to increase the number of tasks in the convolution example of 
the previous chapter, the number of tasks could be doubled by having each 
task process only half of an image row. 

TASKS NOT LONG ENOUGH 

When the tasks are not long enough, poor performance may be due to two 
factors: 

• If task generation time is a significant fraction of total run time, the 
overhead of the task generator may be unacceptably high. Speedup 
curves will often be linear in this situation. 

• Task generators typically contain an internal "critical" region through 
which processors must proceed one at a time. For example, GenOnln­
dex must atomically increment a counter to step through the Range 
parameter (see the section entitled "Building a Generator" in Chapter 
2). 

Critical regions in task generat~on may limit the number of processors that 
can be used efficiently. To see this, let T be the time it takes to execute a 
task. T includes the time to generate the task (Tgen) and the time to 
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perform the task computation (Twork). 

T = Tgen + Twork 

T gen is made up of time spent in the critical region (T crit) and in the non­
critical region (T noncrit). Hence, 

T = T crit + T noncrit + T work 

Letting T~est be the sum of T noncrit and T work gives: 

T = Tcrit +Trest 

Since processors must proceed through the critical region serially, the 
maximum number of processors that can be fully utilized (i.e., used 
without waiting to proceed though the critical region) is: 

Max # procs = T ff crit = (T crit + T rest)(f crit = l + T resff crit 

For example, if the critical region is half the total task time, only two pro­
cessors can be fully utilized. This effect will usually manifest itself as a 
flattening of the speedup curve, asymptotically approaching T ff crit effec­
tive processors. 

The effects of both factors can be minimized by increasing task length. 
The convolution example in the previous chapter is an intermediate ver­
sion in a sequence that led to an optimized program. An earlier version 
parallelized the convolution by computing single pixels in the output 
image in parallel. That task took about 45 microseconds and was far too 
small, since the critical region in the GenOnArray task generator used 
was about 10 microseconds. 

MEMORY CONTENTION 

Finally, if there is significant memory contention, processors are forced to 
proceed serially as they contend for ''hot" memory. Hot spots typically 
show as a flattening of the speedup curve. If the hot spot is severe, the 
curve may tum down or oscillate. The remedy for this situation is to 
remove the hot spot. In practice this is usually a two step process: detect­
ing the h<?t spot, and then removing it. 
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In some cases hot spots can be identified by studying the code. In other 
cases the hot spots are not so obvious. In such cases, the Butterfly Plus 
program profiling utility can be used to determine where, if at all, there is 
significant memory contention. Consult the Chrysalis Programmer's 
Manual for detailed information on using the profiler. 

After hot spots are identified, they must be eliminated. Eliminating them 
is usually application· dependent. However, a few general guidelines can 
be offered: 

• Distribute the program's data across the machine. UsAllocScatterMa­
trix can be used to do this. 

• Make local copies of frequently accessed data items. Share and 
ShareScatterMatrix, or more specialized code in the per-processor ini­
tialization routines of task generators, can be used to do this. 

• Distribute references to frequently accessed data across multiple copies 
of the data. In some cases it may neither be necessary nor practical to 
have a copy of frequently accessed data on every processor. In many 
cases, a few copies are sufficient. (If there are n copies, processor p 
would access copy p modulo n.) Of course, if the copied data changes 
as the computation proceeds and multiple processors need to see the 
changes, managing the copies can become complex. 

• Make local cache copies of data structures before referencing them, as 
in the convolution example in Chapter 3. Do bt can be used to do this. 
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Uniform System Library Routines 

This section documents each of the operations supported by the Uniform 
System. The operations are ordered alphabetically. 

•AbortGen 

AbortGen(GenID, code) 
UsGenDesc * GenID; 
int code; 

AbortGen aborts an active task generator by preventing the generation of 
new tasks. Any tasks in progress will run to completion. GenID is an 
identifier for the generator. It must specify an abortable generator. Code 
is returned as the result code for the generator. If AbortGen is called 
more than once for a given generator, the smallest code is returned as the 
generator result code. 

• ActivateGen 

UsGenDesc * ActivateGen(Init, Worker, Final, Arg, Rangel, Range2, Type, 
Gen, Async, MaxProcsToUse, Abortable, 
Result!?, lang) 

int (* Init) (), (*Worker) (), (* Final) (); 
int Arg, Rangel, Range2, Type, (* Gen) (); 
int Async, MaxProcsToUse, Abortable, * Result!?, lang; 

ActivateGen is the "universal" generator activator procedure. It is called 
by all of the generators to activate parallel activity. Application programs 
can use ActivateGen directly to build new generators. 
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· Init is the per-processor initialization routine, Worker is the task worker 
routine, and Final is the per-processor post-processing routine. Arg is a 
pointer to a data structure, which is passed to the I nit, Worker, and Final 
routines. Type must be set to GENERATOR, and Rangel and Range2 are 
integers. GenProc is a task generation routine described in more detail 
below. The Async parameter specifies whether the generator is to be syn­
chronous or asynchronous. It should be set to TRUE for synchronous or 
FALSE for asynchronous. MaxProcsToUse specifies the maximum 
number of processors that the generator can generate tasks for. To use all 
available processors, MaxProcsToUse should be set to TotalProcsAvail­
able( ). The Abortable parameter determines whether the generator is to 
be abortable. It should be set to TRUE if the generator is to be abortable or 
FALSE if the generator is not to be abortable. ResultP is a pointer used 
when Abortable is true. It specifies where to store the generator "result 
code" if the generator is aborted, so the generator activator routine can 
find it. Finally, Language specifies the programming language from 
which the generator is being called (0 for the C language, 1 for FORTRAN). 

GenProc is the task generation routine. It is of the form: 

GenProc(TD); 
UsGenDesc * TD; 

where TD is a pointer to a task descriptor data structure in globally shared 
memory. The task descriptor data structure, UsGenDesc, which is defined 
in us.h, is: 

typedef struct UsGenDescStruct 
{ int id; 

short * completion_location; 
struct UsGenDescStruct * prev_J'tr; 
struct UsGenDescStruct * next_J'tr; 
int in_hash_table; 
char * currentShare; 
int end; 
short started; 
short us_lock; 
short retcode; 

# define genEXHAUSTED -1 
short endlock; 
int (* init) (); 
int (* gen) (); 
int (* final) () ; 
int arg; 
int (*call)(); 
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int range; 
int range2; 
int abortable; 
short max_J>rocs_to_use; 
short language; 

t define C CALLING 0 
f define FORTRAN CALLING 1 

union 
longLong; 

short Short; 
} index; 
union 

unsigned long Long; 
unsi911ed short Short; 
} index2; 
short . lock; 

} UsGenDesc; 

Uniform System Library Routines 

The fields id through language are used internally by the Uniform System 
generator mechanism. The Worker~ Init, Final, GenProc, Arg, Rangel, 
Range2, MaxProcsToUse and Language parameters of ActivateGen are 
used to initialize the call, init, final, gen, arg, range, range2, 
max_procs _to_ use, abortable, and language fields of the data structure, 
and the other fields between id and language. are used by the generator 
mechanism for internal book.keeping. The remaining fields (index 
through lock) are initialized to 0, and are available for use by the Gen­
Proc routine for any generator-specific bookkeeping associated with gen­
erating tasks. 

After ActivateGen initializes the task descriptor data structure, it makes 
the descriptor accessible to other processors. If Async is TRUE, Activa­
teGen then returns its caller a pointer to the task descriptor data structure; 
otherwise, the processor running ActivateGen calls the GenPr9c task 
generation procedure. That processor, and others as they become free, use 
the task generator descriptor (TD) and the GenProc task generation pro­
cedure to generate and execute calls to the Worker procedure. 

• AsynchGenOnA 

UsGenDesc * 
AsynchGenOnA(Worker, Rangel, Range2) 
int (*Worker)(); 
int Rangel, Range2; 

Worker(O, indexl, index2, GenID) 
int indexl, index2; 
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AsyncGenOnA is the asynchronous version of GenOnA. It is equivalent 
to: 

AsyncGenOnAFull(O, Worker, O, O, Rangel, Range2, 0, FALSE) 

• AsyncGenOnAAbortable 

UsGenDesc * 
AsyncGenOnAAbortable(Worker, Rangel, Range2) 
int (* Worker) () ; 
int Rangel, Range2; 

Worker(O, indexl, index2, GenID) 
int indexl, index2; 
UsGenDesc * GenID; 

AsyncGenOnAAbortable is the 
GenOnAAbortable. It is equivalent to: 

asynchronous 

AsyncGenOnAFull(O, Worker, O, O, Rangel, Range2, 0, TRUE) 

• AsyncGenOnAFull 

UsGenDesc * 

version of 

AsyncGenOnAFull(Init, Worker, Final, Arg, Rangel, Range2, Limited, Abortable) 
int (*Init) (), (* Worker) (), (* Final) () ; 
int Arg, Rangel, Range2, Limited, Abortable; 

.worker(O, indexl, index2) 
int indexl, index2 

or 

/* If Abortable = FALSE */ 

Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */ 
int indexl, index2; 
UsGenDesc * GenID 

Init (Arg) 
int Arg; 

Final(Arg) 
int Arg; 

AsyncGenOnAFull. is the asynchronous version of GenOnAFull. It 
returns to the caller as soon as the task generator is activated, enabling the 
caller _to work on other things while the tasks are executed. Asyn­
chGenOnAFull returns a generator handle that can be used with the W or­
kOn or WaitForTasksToFinish routines. See the description of 
GenOnAFull for an explanation of the parameters. 
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• AsyncGenOnALimited 

UsGenDesc * 
AsyncGenOnALimi_ted(Worker, Rangel, Range2, MaxProcsToUse) 
int (*Worker)(); 
int Rangel, Range2, MaxProcsToUse; 

Worker(O, ~ndexl, index2) 
int indexl, index2; 

AsyncGenOnALimited is the asynchronous version of GenOnALim­
ited. It is equivalent to: 

AsyncGenOnAFull(O, Worker, O, O, Rangel, Range2, MaxProcsToUse, FALSE) 

• AsyncGenOnHA 

UsGenDesc * 
AsyncGenOnHA(Worker, Rangel, Range2) 
int (*Worker)(); 
int Rangel, Range2; 

Worker(Arg,indexl, index2) 
int Arg, indexl, index2; 

AsyncGenOnHA is the asynchronous version of GenOnHA. It is 
equivalent to: 

AsyncGenOnHAFull(O, Worker, O, 0, Rangel, Range2, 0, FALSE) 

• AsyncGenOnHAAbortable 

UsGenDesc * 
AsyncGenOnHAAbortable(Worker, Rangel, Range2) 
int (*Worker)(); 
int Rangel, Range2; 

Worker(O, indexl, index2, GenID) 
int indexl, index2; 
UsGenDesc * GenID; 

AsyncGenOnHAAbortable is the asynchronous 
GenOnHAAbortable. It is equivalent to: 

AsyncGenOnHAFull(O, Worker, O, O, Rangel, Range2, 0, TRUE) 

• AsyncGenOnHAFull 

UsGenDesc * 
· AsyncGenOnHAFull (Init, Worker, Final, Arg, Rangel, 

Range2, Limited, Abortable) 
int (* Init) (), (* Worker) (), (* Final) () ; 

version of 
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int Arg, Rangel, ~ge2, Limited, Abortable; 

Worker(O, indexl, index2) 
int indexl, index2 

or 

/* If Abortable • FALSE */ 

Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */ 
int indexl, index2; 
UsGenDesc * GenID 

Init (Arg) 
int Arg; 

Final (Arg) 
int Arg; 

AsyncGenOnHAFull is the asynchronous version of GenOnHAFull. It 
returns to the caller as soon as the task generator is activated, enabling the 
caller to work on other things while the tasks are executed. 
AsyncGenOnHAFull returns a generator handle that can be used with the 
WorkOn or WaitForTasksToFinish routines. See the description of 
GenOnAFull for an explanation of the parameters. 

• AsyncGenOnHALimited 

UsGenDesc * 
AsyncGenOnHALimited(Worker, Rangel, Range2, Ma.xProcsToUse) 
int (*Worker)(); 
int Rangel, Range2, Ma.xProcsToUse; 

Worker(Arg,indexl, index2) 
int Arg, indexl, index2; 

AsyncGenOnHALimited 1s the 
GenOnHALimited. It is equivalent to: 

asynchronous version 

AsyncGenOnHAFull(O, Worker, O, O, Rangel, Range2, MaxProcsToUse, FALSE) 

• ~syncGenOnl 

UsGenDesc * 
AsyncGenOnI (Worker, Range) 
int (*Worker)(); 
int Range; 

Worker(O,ind.ex) 
int index; 

of 

AsyncGenOnl is the asynchronous version of GenOnl. Control is 
returned to ~e process that executed AsyncGenOnl without waiting for 
the tasks to complete. It is equivalent to: 
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AsyncGenOnIFull(O, Worker, 0, 0, Range, 0, FALSE) 

• AsyncGenOnIAbortable 

UsGenDesc * _ 
AsyncGenOnIAbortable(Worker, Range) 
int (* Worker) (); 
int Range; 

Worker(O,index,GenID) 
int index; 
UsGenDesc * GenID; 

AsyncGenOnIAbortable is the asynchronous version of 9enOnlAbort­
able. Control is returned to the process that executed AsyncGenOnIA­
bortable without waiting for the tasks to complete. It is equivalent to: 

AsyncGenOnIFull(O, Worker, 0, 0, Range, O, TRUE) 

• AsyncGenOnIFull 

UsGenDesc * 
AsyncGenOnIFull(Init, Worker, Final, Arg, Range, Limited, Abortable) 
int (* Init) (), (* Worker) (), (* Final) (); 
int Arg, Range, Limited, Abortable; 

Worker(O, index) 
int index 

or 
Worker(O, index, GenID) 
int index; 
UsGenDesc * GenID 

Init (Arg) 
int Arg; 

Final (Arg) 
int Arg;. 

/* If Abortable = FALSE */ 

/* If Abortable = TRUE */ 

AsyncGenOnIFull is the asynchronous version of GenOnIFull. It 
returns to the caller as soon as the task generator is activated, enabling the 
caller to work on other things while the tasks are executed. 
AsyncGenOnIFul~ returns a generator handle that can be used with the 
WorkOn or WaitForTasksToFinish- routines. See the description of 
GenOnIFull for an explanation of the parameters. 

• AsyncGenOnILimited 

UsGenDesc * 
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AsyncGenOnILimited(Worker, Range, MaxProcsToUse) 
int (*Worker)(); 
int Range, MaxProcsToUse; 

Worker(O,index) 
int index; 

The Uniform System 

AsyncGenOnILimited is the asynchronous version of GenOnILimited. 
It is equivalent to: 

AsyncGenOnIFull(O, Worker, 0, 0, Range, MaxProcsToUse, FALSE) 

• Atomic_add_long 

Atomic_add_long(loc, val) 
int * loc, val; 

Atomic_add_long atomically adds val to the location addressed by loc. It 
is similar to the Chrysalis 16-bit Atomic_ add operation except that it 
operates on 32-bit quantities and does not support the fetch part of the 
"fetch and add" function provided by Atomic_add. 

Atomic_add_long is atomic only with respect to other Atomic_add_long 
calls. In particular, execution of a read operation can be interleaved with 
an Atomic_add_long operation in a way that returns an inconsistent result 
to the read. This can occur if the high-order 16 bits returned by the read 
are obtained after the low-order 16 bits aie incremented by the 
Atomic_add_long, but before the carry (if any) propagates to the higher 
order bits. 

•BEGIN SHARED DECL and END SHARED DECL - - - -
BEGIN_SHARED_DECL 

(normal C declarations,') 

END_SHARED_DECL; 

BEGIN SHARED DECL and END SHARED DECL are macros that declare - -
variables to be globally shared· among all of the proc~ssors. They create a 
structure that contains all the variables. Space is allocated for the struc­
ture via the macro MakeSharedVariables. Variables in the structure are 
referenced via the macro SHARED. 
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Only one BEGIN_SHARED _DECL and END _SHARED _DECL declaration 
can appear in a Uniform System· program. All variables declared via 
BEGIN SHARED DECL and END SHARED DECL are allocated on the - - - -
same physical memory. In some situations this may lead to memory con­
tention. 

•Configure Us 

ConfigureUs(Spec, n) 
int * Spec, n; 

ConfigureUs can be used prior to calling InitializeUs to specify values 
for configuration parameters that differ from the default values used by 
InitializeUs. Spec is an array of integers that specifies the configuration 
parameters to be set; it contains n parameter specification blocks. Each 
parameter specification block contains an integer configuration code that 
serves to identify the parameter being set, followed by one or more 
integers that specify the value for the parameter. See SetUsConfig for a 
list of the configuration codes currently defined. 

• DistinctMemoriesA vailable 

DistinctMemoriesAvailable() 

DistinctMemoriesA vailable returns the number of memories available 
for use by the application program. This number is usually the same as 
TotalProcsA vailable, but there are cases where it will be a smaller 
number because memory cannot be obtained on a particular processor 
node. 

• FreeAU 

FreeAll () 

FreeAll reinitializes the Uniform System memory allocator by freeing all 
globally allocated storage, including memory allocated by any of the allo­
cators. 

•GenOnA 

GenOnA(Worker, Rangel, Range2) 
int (*Worker)(); 
int Rangel, Range2; 
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Worker(O, ind.exl, index2) 
int indexl, index2; 

The Uniform Syste~ 

GenOnA generates tasks that execute the worker routine in parallel for all 
combinations of two ranges of values. The worker routine will be exe­
cuted Rangel x Range2 times. The indexes are the specific values given 
to the worker routine each time it is executed. lndexl ranges from ()to 
(Rangel-1). lndex2 ranges from 0 to (Range2-1). The processor that 
invokes GenOnA, and possibly other processors, will execute the gen­
erated tasks. When GenOnA returns, all generated tasks will have 
finished. A call to GenOnA is equivalent to: 

GenOnAFul.J.(0, Worker, O, 0, Rangel, Range2, 0, FALSE) 

• GenOnAAbortable 

GenOnAAbortabJ.e(Worker, Rangel, Range2) 
int (* Worker) (); 
int Rangel, Range2; 

Worker(O, indexl, index2, GenID) 
int indexl, index2; 
UsGenDesc * GenID; 

GenOnAAbortable is the abortable version of GenOnA. GenID is an 
identifier for the task generator. It is used with the AbortGen routine to 
abort it. GenOnAAbortable returns a value that indicates whether 
AbortGen was used to abort the generator. It is equivalent to: 

GenOnAFuJ.J.(0, Worker, O, O, Rangel, Range2, O, TRUE) 

• GenOnAFull 

GenOnAFuJ.J.(Init, Worker, Final, Arg, Rangel, Range2, Limited, Abortable) 
int (* Init) (), (* Worker) () , .(* Final) () ; 
int Arg, Rangel, Range2, Limited, Abortable; 

Worker(O, indexl, index2) 
int indexl, index2 

or 

/* If Abortable = FALSE */ 

Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */ 
int indexl, index2; 
UsGenDesc * GenID 

Init (Arg) 
int Arg; 

Final(Arg) 

5-10 



The Uniform System Uniform System Library Routines 

int Arg; 

GenOnAFull generates tasks on an array. It is the complete version of 
the GenOnA generator family. The Abortable parameter determines 
whether the generator is abortable. The parameter should be set to FALSE 

if the generator is not abortable or TRUE if the generator is abortable. If 
the generator is not abortable, the worker routine is: 

Worker(Arg,indexl, index2) 
int Arg, indexl, index2; 

If the generator is abortable, the worker routine is: 

Worker(Arg,indexl, index2, GenID) 
int Arg, indexl, index2; 
UsGenDesc * GenID; 

The Init routine is called once on each processor used to execute the gen­
erated tasks. It is called before the Worker routine runs for the first time 
on that processor. The Final routine is called once on each processor used 
to execute the generated tasks, after the Worker routine runs for the last 
time on that processor. The Limited parameter controls the number of 
processors used by the generator. If Limited is set to 0 or -1, the genera­
tor may use all available processors. If Limited is set to a positive value, 
the generator will use no more than that number of processors. It may use 
less than the maximum number of processors. 

If GenOnAFull returns without being aborted, all the generated tasks 
have finished and the value genEXHAUSTED is returned. If the Abortable 
parameter was set to TRUE and the generator was aborted, some of the 
tasks may not have been performed and the code that was passed to 
AbortGen is returned. 

• GenOnALimited 

GenOnALimited(Worker, Rangel, Range2, MaxProcsToUse) 
int (*Worker)(); 
int Rangel, Range2, MaxProcsToUse; 

Worker(O, indexl, index2) 
int indexl, index2; 

GenOnALimited is the limited version of GenOnA. It is equivalent to: 

GenOnAFull(O, Worker, _o, O, Rangel, Range2, MaxProcsToUse, FALSE) 
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eGenOnHA 

GenOnHA(Worker, Rangel, Range2) 
int (*Worker)(); 
int Range1, Range2; 

Worker(Arg,indexl, index2) 
int Arg, indexl,. index2; 

The Uniform System 

GenOnHA generates tasks that execute. the worker routine in parallel for 
certain combinations of two ranges of values. The combinations of values 
span the half array below the diagonal of the array. The indexes are the 
specific values given to the Worker routine each time it is executed. The 
indexes range as follows: 

index2 = 0, indexl = 1, ..• , (Rangel-1) 
index2 = 1, indexl = 2, ... , (Rangel-1) 

index2 = R-2, indexl = (R-1), ••• , (Rangel-1) 

where R is the lesser of Range 1 and Range2. The processor that invokes 
GenOnHA, and possibly other processors, will execute the generated 
tasks. When GenOnHA returns, all of the generated tasks will have 
finished. GenOnHA is equivalent to: 

GenOnHAFull(O, Worker, O, 0, Rangel, Range2, O, FALSE) 

• GenOnHAAbortable 

GenOnHAAbortable(Worker, Rangel, Range2) 
int (*Worker)(); 
int Rangel, Range2; 

Worker(O, indexl, index2, GenID) 
int indexl, index2; 
UsGenDesc * GenID; 

GenOnHAAbortable is the abortable version of GenOnHA. GenID is 
an identifier for the task generator. It is used with AbortGen to abort it. 
GenOnHAAbortable returns a value that indicates whether AbortGen 
aborted the generator. It is equivalent·to: 

GenOnHAFull(O, Worker; 0, O, Rangel, Range2, O, TRUE) 

• GenOnHAFull 

GenOnHAFull(Init, Worker, Final, Arg, Rangel, Range2, Limited, Abortable) 
int (* Init) (), (* Worker) () , (* Final) () ; 
int Arg, Rangel, Range2, Limited, Abortable; 
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Worker(O, indexl, index2) /* If Abortable = FALSE */ 
int indexl, index2 

or 
Worker(O, indexl, index2, GenID) /* If Abortable =TRUE */ 
int indexl, index2; 
UsGenDesc * GenID 

Init (Arg) 
int Arg; 

Final (Arg) 
int Arg; 

GenOnHAFull generates tasks on half of an array. It is the complete ver­
sion of the GenOnHA generator family. The Abortable parameter deter­
mines whether the generator is abortable. The parameter should be set to 
FALSE if the generator is not abortable or TRUE if the generator is abort­
able. If the generator is not abortable, the worker routine is: 

Worker(Arg,indexl, index2) 
int Arg, indexl, index2; 

If the generator is abortable, the worker routine is: 

Worker(Arg,indexl, index2, GenID) 
int Arg, indexl, index2; 
UsGenDesc * GenID; 

The lnit routine is called once on each processor used to execute the gen­
erated tasks. It is called before the Worker routine runs for the first time 
on that processor. The Final routine is called once on each processor used 
to execute the generated tasks, after the Worker routine runs for the last 
time on that processor. The Limited parameter controls the number of 
processors used by the generator. If Limited is set to 0 or -1, the genera­
tor may use all available processors. If Limited is set to a positive value, 
at most, the generator will use that number of processors. It may use less 
than the maximum number of processors. 

If GenOnHAFull returns without being aborted, all the generated tasks 
have finished and the value genEXHAUSTED is returned. If the Abortable 
parameter was set to TRUE and the generator was aborted, some of the 
tasks may not have been performed and the code that was passed to 
AbortGen is returned. 
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• GenOnHALimited 

GenOnHALimited(Worker, Rangel, Range2, MaxProcsToUse) 
int (* Worker) (); 
int Rangel, Range2, Maxl?rocsToUse; 

Worker(Arg,indexl, index2) 
int Arg, indexl, index2; 

GenOnHALimited is the limited version of GenOnHA. It is equivalent 
to: 

GenOnHAFull(O, Worker, O, 0, Rangel, Range2, Maxl?rocsToUse, TRUE) 

•GenOnl 

GenOnI(Worker, Range) 
int (*Worker)(); 
int Range; 

Worker(O,index) 
int index; 

qenOnl generates tasks that execute a worker routine for a range of 
values. Range is the number of times that the Worker routine will be 
executed. index is the specific value given to the Worker routine each 
time it is executed. index ranges from 0 to (Range-1). The processor 
that invokes GenOnl, and possibly other processors, will execute the gen­
erated tasks. When GenOnl returns, all of the generated tasks will have 
finished. A call to GenOnl is equivalent to: 

GenOnIFull(O, Worker, 0, 0, Range, 0, FALSE) 

• GenOnlAbortable 

GenOnIAbortable (Worker, Range) 
int (*Worker)(); 
int Range; • 

Worker(O,index,GenID) 
int index; 
UsGenDesc * GenID; 

GenOnIAbortable is the abortable version of GenOnl. GenlD is an 
identifier for the task generator. It is used with the AbortGen routine to 
abort it. GenOnlAbortable returns a value that indicates whether Abortm 
Gen was used to abort the generator. GenOnIAbortable is equivalent to: 

GenOnIFull(O, Worker; 0, O, Range, O, TRUE) 
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• GenOnIFull 

GenOnIFull(Init, Worker, Final, Arg, Range, Limited, Abortable) 
int (*Init) (), (* Worker) (), (* Final) (); 
~nt Arg, Range, Limited, Abortable; 

Worker(O, index) /* If Abortable = FALSE */ 
int index 

or 
Worker(O, index, GenID) /* If Abortable = TRUE */ 
int index; 
UsGenDesc * GenID 

Init(Arg) 
int Arg; 

Final (Arg) 
int Arg; 

GenOnlFull generates tasks on an index. It is the complete version of the 
GenOnl generator family. The Abortable parameter determines whether 
the generator is abortable. The parameter should be set to FALSE if the 
generator is not abortable or TRUE if the generator is abortable. If the gen­
erator is not abortable, the worker routine is: 

Worker(Arg,index) 
int Arg, index; 

If the generator is abortable, the worker routine is: 

Worker(Arg,index, GenID) 
int Arg, index; 
UsGenDesc * GenID; 

The Init routine is called once on each processor used to execute the gen­
erated tasks. It is called before the Worker routine runs for the first time 
on that processor. The Final routine is called once on each processor used 
to execute the generated tasks, after the Worker routine runs for the last 
time on that processor. The Limited parameter controls the number of 
processors used by the generator. If Limited is set to 0 or -1, the genera­
tor may use all available processors. If Limited is set to a positive value_, 
at most, the generator will use that number of processors. It may use less 
than the maximum number of processors. 

If GenOnIFull returns without being aborted, all the generated tasks have 
finished and the value genEXHAUSTED is returned. If the Abortable 

. parameter was set to TRUE and the generator was aborted, some of the 
tasks may not have been performed and the code that was passed · to 
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AbortGen is retUmed. 

• GenOnILimited . 
GenOnILimited(Worker, Range, MaxProcsToUse) 
int ('*worker) () ; 
int Range; 

Worker(O,index) 
int index; 

The Uniform System 

GenOnILimited is the limited version of GenOnl. It will only generate 
tasks for a limited number of processors. MaxProcsToUse is the number 
of processors to use. GenOnILimited is equivalent to: 

GenOnIFull(O, Worker, 0, 0, Range, MaxProcsToUse, FALSE) 

• GenTaskForEachProc 
GenTaskForEachProc(Worker, Arg) 
int (* Worker) (); 
int Arg; 

Worker (Arg) 
int Arg; 

GenTaskForEachProc generates exactly one call on the worker routine 
for every processor. 

• GenTaskForEachProcLimited 

GenTaskForEachProcLimited(Worker, Arg, NProcs) 
int (*Worker)(); 
int Arg, NProcs; 

Worker (Arg) 
int Arg; 

GenTaskForEachProcLimited generates exactly one call on the worker 
routine for every processor. The number of processors to use is limited to 
NProcs. If ProcslnUse() is less than NProcs, this call will hang. 

• GenTasksFromList 

GenTasksFromList(Routine_List, Arg_List, n) 
int* (* RoutineList) (); 
int * Arg_ List; 
int n; 

GenTasksFromList generates n tasks from a list of tasks. Routine List 
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is the list of routines to be executed, r 1' ... ,r 8 • Arg_ List is the list of argu­
ments to the routines, argl' ... ,arg8 • There is one argument for each rou­
tine. The first task is of the form r 1 (arg1). The C notation for the first task 
is: 

(* Routine_List [0]) (Arg_List[O]); 

•GetRtc 

GetRtc() 

GetRtc returns the time since the system was last reset in units of 62.5 
microseconds. 

• InitializeUs 

InitializeUs () 

InitializeUs initializes the Uniform System. It creates and starts a Uni­
form System process on every available processor and sets up the memory 
that is globally shared among all Uniform System processes. It also ini­
tializes the Uniform System storage allocator. InitializeUs must be called 
once in every program. It is called before other Uniform System routines 
except for ConfigureUs and SetUsConfig. 

• MakeSharedVariables 

MakeSharedVariables; 

MakeSharedVariables is a macro that allocates space in globally shared 
memory for the structure created by BEGIN_SHARED_DECL and 
END SHARED DECL. It makes the location of the structure known to - -
other processors. MakeSharedVariables must be called after Initial~ 

izeUs() and before any of the shared variables are referenced. 

• MemoriesA vailable 

MemoriesAvailable() 

MemoriesAvailable returns the amount of globally-shared memory avail­
able to the application program in units of 64 kilobytes. 

• PhysProcToUsProc 

PhysProcToUsProc(physproc) 
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int physproc; 

PhysProcToUsProc returns the Uniform System virtual processor 
number corresponding to the physical processor number, physproc. 

• Procsln Use 

ProcsinUse () 

ProcslnUse returns the number of processors available to an application 
program, excluding any processors that were removed by TimeTest or 
TimeTestFull. 

• RefreshLocalShareValues 

RefreshLocalShareValues () 

The Uniform System Share mechanism propagates copies of process 
private data to all processes. It facilitates program initialization by mak­
ing it relatively easy to propagate the values of variables set during pro­
gram initialization to all processors. Copies of. such data normally pro­
pagate to a process automatically. This occurs within the Uniform System 
generator mechanism, which checks to see whether there are any new 
values to be copied before a process gets its first task from a new genera­
tor. 

Although automatic propagation of process private data is adequate when 
the Share mechanism is used to propagate initialized values of variables 
that have been allocated in non-shared memory, it is often inadequate 
when the Share mechanism is used in other ways. A process can use 
RefreshltocalShare Values to refresh its copies of any variables whose 
values may have been updated and propagated by other processes via the 
Share mechanism. · 

• SetUsConfig 

SetUsConfig(code, value) 
int code, value; 

SetUsConfig can be used prior to calling InitializeUs to specify a value 
for a configuration parameter that differs from the default value used by 
lnitializeUs. code is ,the configuration code for the. parameter name. 
value is the integer value of the parameter. 
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The following configuration codes are defined: 

configProcs Specifies the number of processors to include 
in the Uniform System c;onfiguration. The 
number should be an integer less than or equal 
to the number of nodes in the cluster. If 
configProcs is set greater than the number of 
available nodes, the Uniform System uses only 
the nodes available to it. 

configSuppresslnitMsgs Specifies whether to print messages that report 
the progress of InitializeUs: 1 means suppress 
the messages, 0 means print the messages. The 
default is 1. 

configTimeTestViaReinit 
Specifies behavior of the TimeTest mechanism 
(see "Measuring Your Program"). 1 means 
completely reinitialize the Uniform System for 
each configuration timed. This ensures that 
only the resources of the processors being 
timed are used; in particular, only the memory 
of those processors is used. 0 means use the 
Uniform System as is, by "diverting" enough 
processors to an idle loop in order to time a 
given processor configuration. This means that 
only the CPU resources of the processors in the 
configuration are used, but the memory 
resources of all processors, including those that 
have been diverted, may be used. The default 
is 0. This parameter may be specified anytime 
before calling TimeTest. 

configAllocAcross64K Specifies whether Uniform System memory 
allocators (see ''Memory Allocators'') may 
allocate blocks of memory that cross 64-
kilobyte boundaries in a process address space. 
Early versions of the Uniform System would 
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not allocate blocks that cross 64-kilobyte boun­
daries. 1 means allow allocation across 64-
kilobyte blocks; 0 means don't allow allocation 
across 64-kilobyte blocks. The default is 1. 

con fig WarningOnShareFail 
Specifies behavior on a failure of the Share 
mechanism (see "~opying Process Private 
Data"); 1 means print a warning message on a 
Share failure; 0 means don't print a warning 
message on a Share failure. The default is 1. 

configStopOnShareFail Specifies behavior on a failure of the Share 
mechanism (see "Copying Process Private 
Data"); 1 means suspend process on a Share 
failure; 0 means allow process to continue exe­
cution on a Share failure. The default is 1. 

configMemObjsFree Specifies the number of 64-kilobyte memory 
objects to leave free on each processor node. 
Setting this configuration option overides any 
previous use of configMaxMemObjs. 

configMaxMemObjs Specifies the maximum number of 64-kilobyte 
memory objects to obtain from each processor 
when making the Uniform System shared 
memory. Setting this configuration option 
overides any previous use of 
configMemObjsFree. 

configObjsRetRoot During InitializeUs, the Uniform System 
obtains memory in 64-kilobyte blocks to be 
used to build its shared address space. It 
obtains as many 64-kilobyte blocks as it can on 
each processor node in the configuration. It 
then returns some 64-kilobyte blocks on each 
node to allow operations requiring memory to 
occur on the nodes; for example, running the 
v¥ious Chrysalis utilities such ·as ps and 
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configObjsRetChild 

configMaxSars 

configTotalSars 
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showmem require memory. This configuration 
code is used to specify the number of 64-
kilobyte blocks the Uniform System should 
return for the processor node on which the Uni­
form System program is started (the root pro­
cessor). The parameter is interpreted only if 
configMaxMemObjs and 
configMemObjsFree have not been specified. 
The default is 2. 

Similar to configObjsRetRoot, but specifies 
the number of 64-kilobyte blocks to be 
returned for child processor nodes. The param­
eter is interpreted only if configMaxMemObjs 
and configMemObjsFree have not been 
specified. The default is 2. 

Specifies the maximum size of the shared por­
tion of the process address space in terms of 
64-kilobyte blocks or "segments." 1 This 
parameter should be an integer greater than 15. 
The default is 237. 

Specifies the maximum size of the process 
address space in terms of 64-kilobyte blocks or 
"segments. " 2 This includes the space con­
sumed by the program, the stack, process 
private data, and l,Jniform System shared 
memory. The default value for this parameter 
is 256. The maximum allowable value for this 

1. Prior to the Butterfly Plus, Butterfly processor nodes contained a custom memory 
management unit that made use of registers called Segment Attribute Registers (SARs ). 
On those machines, the Uniform System used one SAR for each 64-kilobyte segment of 
the shared portion of the process address space. 
2. It was useful to use this configuration code prior to the Butterfly Plus to reduce the 
number of SARs required by a program, because SARs were a relatively scarce 
processor node resource. Since Butterfly Plus processor nodes do _not contain SARs, 
Butterfly Plus programs should not need to use this configuration code. 
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•Share 

int 
Share (N) 
int * N; 

parameter is also 256. This value restricts Uni­
form System programs to a 16-megabyte 
address space. 

Share passes the value pointed to by N to all processors used to execute 
tasks generated subsequently. N must point t~ a variable allocated in pro­
cess private memory and declared to be a global or a static. In addition, 
the variable pointed to by N must be four bytes in size. Share causes the 
value pointed to by N-(in the processor invoking Share at the time Share 
is invoked) to be copied into the location specified by Nin each processor 
used to perform tasks generated by task generators activated subsequent to 
the call of Share. 

• ShareBlk 

int 
ShareBlk(N,nbytes) 
int * N; 
int nbytes; 

ShareBlk passes the block of data of nbytes bytes pointed to by N to all 
processors used to execute tasks generated subsequently. N must point to 
a variable allocated in process private memory and declared to be a global 
or a static. ShareBlk causes the block of data pointed to by N (in the pro­
cessor invoking ShareBlk at the time ShareBlk is invoked) to be copied 
into the location beginning ·at N in each processor used· to perform tasks 
generated by task generators activated subsequent to the call of ShareBlk. 

• SharePtr AndBlk 

int 
Sharel?trAndBlk(P, nbytes) 
int * * P; 
int nbytes; 

SharePtrAndBlk passes the pointer pointed to by P, and the block of data 
of nbytes bytes to which it points, to all processors used to execute tasks 
generated subsequently. P must point to a pointer variable allocated in 
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process private memory and declared to be a global or a static. ShareP­
tr AndBlk makes a copy of the pointer pointed to by P and the block of 
data to which it points (in the processor invoking SharePtr AndBlk at the . 
time the routine is invoked) for each processor used to perform tasks gen­
erated by task generators activated subsequent to the call of ShareP­
trAndBlk. A block of storage is allocated in the memory of the processor 
and the block of data pointed to by the pointer pointed to by P is copied 
into the newly allocated storage block. A pointer to the newly-allocated 
storage block is stored in the location pointed to by P. For example, to 
share a pointer and block: 

int *p; 
p=(int *)UsAlloc(sizeof(data block that p points to)); 

Ifill in block of data) 
SharePtrAnd.Blk(&p,sizeof(data block that p points to)); 

• ShareScatterMatrix 

int 
ShareScatterMatrix(P, nrows) 

·int * * * P; 
int nrows; 

P points to a global or static variable allocated by: 

UsAllocScatterMatrix(nrows, ncols, element_size) 

ShareScatterMatrix makes a copy of the vector of row pointers allocated 
by UsAllocScatterMatrix in the memory of each processor used to exe­
cute tasks generated subsequently. It then sets the location pointed to by P 
to point to that copy. ShareScatterMatrix is careful to make its copies 
from other copies as well as from the original in order to avoid memory 
contention on larger configurations. 

•SHARED 

SHARED is a macro used to access variables in the structure created by the 
BEGIN_SHARED_DECL and END_SHARED_DECL macros. For example, 
if N has been declared in this way, it may be referenced as SHARED N: 

BEGIN SHARED DECL - -
int N; 

END_SHARED_DECL; 
main () 

. { InitializeUs (); 
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MakeSharedVariables; 

SHARED N = 5; 

} 

Before a variable can be referenced in this way, space for it must be allo­
cated using MakeShared Variables. 

•TimeTest 

TimeTest(Init, Execute, PrintResults) 
int (* Init) (), (* Execute) (), (* PrintResults) () ; 

TimeTest times the execution of the routine Execute on various processor 
configurations as specified by the user from the keyboard. TimeTest runs 
the routines lnit, Execute, and PrintResults in sequence on each of the 
processor configurations specified. It times only the Execute routine, and 
passes the execution time, the number of processors, and the effective 
number of processors to the specified PrintResults routine: 

PrintResults(time, procs, effprocs) 
int time, procs; 
float effprocs; 

The effective number of processors is afloat equal to (time 1 proc)/(time n 
procs). This is a good measure of the speedup the Execute routine 
achieves over one processor when n processors are used~ If the first test 
run uses more than one (=k) processors, then the effective number of pro­
cessors is k(time k proc)/(time n procs). 

The PrintResults routine is specified by the application program. The 
Uniform System Library contains a routine that can be used for this pur­
pose, or the user can supply his own routine. 

TimeTest asks the user to specify the processor configurations to be used 
by specifying a start configuration, a step (delta), and an end 
configuration. The first run uses start processors, the next uses start + 
delta processors, and so forth, up to the final run, which uses end proces­
sors. If start (or end) is zero, the test is run from (to) the end of the range 
of available processors. In particular, it is run for the limiting processor 
case whether or not it is in the normal progression specified by delta. If 
delta is specified to be zero, the number of processors used increases by 
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powers of two (1, 2, 4, 8, etc). The rules for start and end still apply. 

• TimeTestFull 

Ti.meTestFul.l(Init, Execute, PrintResul.ts, start, delta, end) 
int (*Init) (), (* Execute) (), (* PrintResults) (); 
int start, delta, end; 

TimeTestFull is similar to TimeTest. It differs only in that it accepts the 
start, delta, and end parameters that specify the processor configurations 
to be timed, rather than asking for them from the keyboard. If the delta 
specified is negative, TimeTestFull asks the user to supply values for 
start, del!a, and end at the start of the run. 

• TimeTestPrint 

Ti.meTestPrint(runti.me, procs, effprocs) 
int runtime, procs; 
float effprocs; 

TimeTestPrint is used with TimeTest or TimeTestFull to print the tim­
ing results for a particular processor configuration. It prints the execution 
time, the number of processors used, the effective number of processors 
utilized (the speedup achieved over one processor), and the efficiency with 
which processors were used for the given processor configuration. 
TimeTestPrint outputs this information in the format: 

[procs] ti.me = runtime ticks = S sec; ep = effprocs; eff = E 

where E = effprocs/procs. (See TimeTest and TimeTestFull.) 

• TotalProcsAvailable 

TotalProcsAvailable() 

TotalProcsA vailable returns the total number of processors available to 
the application program. The value returned includes any processors that 
may have been removed by TimeTest or TimeTestFull. 

• UsAlloc 

char * UsAlloc (nbytes) 
unsigned long nbytes; 

U sAlloc allocates a block of storage of nbytes in globally shared memory. 
The block is allocated from the memory ·with the mo,st free space. 
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• UsAllocAndReportC 

char * UsAllocAndReportC (usproc, wherep, nbytes, class) 
int usproc; 
int * wherep; 
unsigned long nbytes; 
int class; 

UsAllocAndReportC attempts to allocate a block of size nbytes on a pro­
cessor in the specified class, and, if successful, sets the location pointed to 
by wherep to the Uniform System processor number for the processor on 
which the block was allocated. The routine first attempts to allocate the 
space on usproc; -should that fail, it tries usproc+l, and so forth (wrap­
ping around to proce~sor 0) until it either succeeds, or has tried all proces­
sors in the class. UsAllocAndReportC is useful for building allocators 
for scattered data structures, such as the scatter matrices allocated by 
U sAllocScatter Matrix. 

• UsAllocC 

char * UsAllocC (nbytes,class) 
unsigned long nbytes; 
int class; 

UsAllocC allocates a block of storage of nbytes in globally shared 
memory. The block is allocated from the memory in the specified class 
with the most free space. (See also UsSetClass.) 

• UsAllocLocal 

char * UsAllocLocal (nbytes) 
unsigned long nbytes; 

U sAllocLocal allocates nbytes of globally shared memory from the 
memory of the local processor. 

• UsAllocOnPhysProc 

char * UsAllocOnPhysProc (physproc, nbytes) 
int physproc; 
unsigned long size; 

UsAllocOnPhysProc allocates nbytes bytes of globally shared memory 
from the memory of the processor whose physical processor number is 
physproc. 
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• UsAllocOnUsProc 

char * UsAllocOnUsProc (usproc, nbytes) 
int usproc; 
unsigned long nbytes; 

UsAllocOnUsProc allocates nbytes of globally shared memory from the 
memory of the processor whose Uniform System virtual processor 
number is usproc. 

• UsAllocOnUsProcC 

char * UsAllocOnUsProcC (usproc, nbytes, class) 
int usproc; 
unsigned long nbytes; 
int class; 

UsAllocOnUsProcC is similar to UsAllocOnUsProc, except that the allo­
cation will succeed only if usproc is in the specified class. 

• UsAllocScatterMatrix 

char * * UsAllocScatter.Matrix (rows, cols, nbytes) 
int rows; 
int cols; 
int nbytes; 

UsAllocScatterMatrix allocates space from global memory for a matrix. 
The space is scattered by row across the memories of the machine. Each 
row has a pointer to it. The pointers are put into a vector in the global 
memory on the node that called UsAllocScatterMatrix. UsAllocScatter­
Matrix returns a pointer to that vector. nbytes is the number of bytes in 
an element of the array. 

• UsAllocScatterMatrixC 

char * * UsAllocScatter.MatrixC (rows, cols, nbytes, class) 
irit rows; 
int cols; 
int size; 
int class; 

· UsAllocScatterMatrixC is similar to UsAllocScatterMatrix, except that 
only memories in the specified class will hold the scattered rows of the 
matrix and the vector of row pointers. nbytes is the number of bytes in an 
element of the array. (See also UsSetClass.) 
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• UsFree 
UsFree (ap) 
char * ap; 

The Uni.form System 

UsFree frees memory allocated by one of the Uniform System allocators. 
It is used to free a simple block of storage, as well as a scatter matrix allo­
cated by UsAllocScatterMatrix. 

• UsGetClass 

int UsGetClass (proc) 
int proc 

UsGetClass returns the class of which proc is a member. proc is a physi­
cal processor number. 

• UsLock 
UsLock (lock, n) 
short * lock; 
int n; 

UsUnlock(lock) 
short * lock; 

UsLock sets a lock. It implements a busy-wait type of lock. Before 
UsLock is called, storage for lock must be initialized to zero (the clear 
state). When a processor has locked the lock, * lock is non-zero (the set 
state). N specifies the time to wait between attempts to set the lock in tens 
of microseconds. If n is zero, the process will wait about 1 millisecond. 
U sLock does not return until the lock is set. For example: 

short *lock; 

lock= (short*) UsAlloc(sizeof(short)); 
*lock==O; 
Share (&lock) ; 

UsLock(lock, 10); /*Code "protected" by lock*/ 
counter - counter + 1; 
other code; 
UsUnlock(lock); 

The first process to begin executing the code protected by the lockfinds the 
lock unset. It sets the lock and executes the code. The next process that 
tries to set the lock will find it already set and will wait 100 microseconds 
before attempting to set it again. When the first process finishes executing 
the code, it clears the lock. · 
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• UsProcToPhysProc 

UsProcToPhysProc(UsProc) 
int UsProc; 

Uniform System Library Routines 

UsProcToPhysProc returns the physical processor number corresponding 
to the Uniform System virtual processor number UsProc. 

• U sSetClass 

UsSetClass(proc, class) 
int proc, class; · 

UsSetClass adds the memory of the specified processor node to the 
specified class. Initially all memories are in class 0. Se·e also U sAllocC, 
UaAllocScatterMatrixC, UsAllocOnUsProcC. 

• UsWait 

UsWait (n) 
int n; 

UsWait waits for lOn microseconds. Using zero for n causes the process 
to wait about one millisecond. UsWait is a busy wait. 

• WaitForTasksToFinish 

WaitForTasksToFinish(GenHandle)" 
UsGenDesc * GenHandle; 

WaitForTasksToFinish waits for the task generator specified by 
GenHandle to complete. GenHandle must specify an asynchronous gen-· 
erator activated by the calling process. WaitForTasksToFinish returns a 
value (the result co~e for the generator), which indicates whether the gen­
erator ran to completion or was aborted by AbortGen. 

•WorkOn 

WorkOn(GenHandle) 
UsGenDesc *_GenHandle; 

W orkOn works on tasks generated by the task generator specified by 
GenHandle. GenHandle must specify an asynchronous generator 
activated by the calling process. WorkOn returns a value (the result code 
for the generator), which indicates whether the generator ran to comple­
tion or was aborted by AbortGen. 
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