
~ Chrysalis 4.0 Technical Notes
-

BUTTERFLY
~PLUS

\ ~

\ ~

Chrysalis 4.0 Technical Notes

January, 1988

Copyright © 1988 by BBN Advanced Computers Inc.

ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise without the prior written permission ofBBN ACI.

RELEASE LEVEL

This manual conforms to the Final Version of the Chrysalis 4.0 operating system

software for the Butterfly™ Plus Parallel Processor released in January of 1988.

NOTICE

BBN Advanced Computers Inc. (BBN ACI) has prepared this manual for the exclus~ve

use ofBBN customers, personnel, and licensees. The information in this manual is sub­

ject to change without notice, and should not be construed as a commitment by BBN

ACI. BBN ACI assumes no responsibility for any errors that appear in this document.

TRADEMARKS

Butterfly and Chrysalis are tradem~ of Bolt Beranek and Newman Inc.

v AX, Microv AX, and DEcnet are trademarks of Digital Equipment Corporation.

UNIX is a registered trademaik of AT&T.

Multibus is a trademark of Intel Corporation.

Ethernet is a registered trademaik of Xerox Corporation.

The x Windows System and Scheme are trademarks of the Massachusetts Institute of Technology.

VMEbus is a trademaik of Motorola Semiconductor Products, Inc.

Lisp Machine is a trademark of Symbolics, Inc.

Limited Rights Legend

The -· goveming the - of l<Clmical data maked with tho legam..., •et fotth in lhe definlion of 'Limited Rigbtl' ;,..,..,.. l'Z'/.471. 1bio legam, together with the

indicatiom of tho portiom of llli• .i- wbieb ..., tubject to limiliOd rigbb, shall be included on my ~ beleof wbieb includea my pmt of the portiom .,bjoct to oueh

limiliOd ri@bt1. The lialiHd rigbb lepnd 1hallbe bcnoredonly u lmg u tbe dmacoodn- tom-tbemfinilioa of limited ri@bta.

Contents

Chapter 1 Introduction

Chapter 2 Interprocess Calls in Chrysalis

Data structures and calling conventions
W nt1ng a server .. .
W 't' l' t . n ing a c ien .. "'

Finding the Server
Calling on the Server .. .
Using Asynchronous Procedure Calls

Data types
Buffer and Strings Passing .. .

A sample client and server .. .
example.h:
example_client.c
example_service.c: .. .

Call summary .. .
Arglists and Supported Data Types, .. .
Calls Used by the Server
Calls Used by Client Programs,

2-1
2-1
2-6
2-6
2-7
2-9

2-10
2-11
2-11
2-12
2-12
2-15
2-19
2-19
2-20
2-22

Contents Chrysalis 4.0 Technical Notes

Chapter 3 Use of the Butterfly Network Software

Organization of th.is Chapter 3-1
Network Protocols: IP, UDP, RDP, TCP ... 3-1

Sockets ··GI·············· 3-3
Writing Network Applications: A TCP Example_ 3-3

Server Program Example ... 3-4
Server Program Steps 3-4
User Program Example ... ~ 3-6
User Program Step ... 3-7

Components •o•···~······················ 3-7
Device Drivers and Related Programs 3-8
Protocol demons .. 3-9
Network utilities 3-9
Network Servers 3-10
Libraries 3-11
Remote Access Using TELNET or B EXEC 3-11
Error Conditions and Troubleshooting .. 3-12

ENOSOCKETS Error .. 3-12
ENE1RESET Error ;.......................... 3-12
Broadcast Packet Error 3-13

Chapter 4 Using Assembler Language

Assembler Mnemonics 4-1
Addressing Modes ... 4-5
The MOVEM Instruction ... 4-6
Other Differences from Motorola Syntax 4-7
User Considerations 4-10
Linking Assembly Language to C ... 4-11

ii

Chrysalis 4.0 Technical Notes Contents

Chapter 5 Getting Started With DBX68

Notation •••••••eoo••••••••••••••••••••••••o•••e• 5-1
Starting th.e ldpserver ... 5-2
Compiling for DBX68 ... 5-2
Creating th.e Butterfly Environment ... 5-3

Debugging 5-5

Chapter 6 Butterfly Event Logging Facility

Description .. .
Instrumenting a Program .. .
The Sendelog Utility _
The gist Program .. .
Starting gist

Controlling the Trace Display
Obtaining Hardcopy .. .
E 'tm· · t x1 g gzs .. .

The Event Logging Functions

Chapter 7 STREAMS Remote File System Library

6-1
6-2
6-5
6-6
6-7
6-8

6-12
6-13
6-13

System Description 7-2
The Server ... :.......... 7-5
An Example 7-6
Multiple files 7 -8
New Tools for Redirecting Input and Output 7-10
Caveats 7-12

iii

Contents Chrysalis 4.0 Technical Notes

Tables

4-1
4-2
4-3
4-4
4-5

iv

Motorola Instruction Equivalents in as68
Motorola Instruction Mnemonics Identical in as68
Motorola Instructions Not Supported by as68*
Motorola Addressing Syntax and as68 Equivalents
as68 Pseudo-ops .. .

4-2
4-3
4-4
4-5
4-8

Chapter 1

Introduction

This document is a collection of technical information on release 4.0 of
the Chrysalis operating system. It provides information on the following
topics:

• interprocess calls

• using the Butterfly network software

• using the assembler language on the Butterfly

• using the DBX68 debugger

• Butterfly event-logging facility

• using the streams remote file system library

1-1

Chapter 2

Interprocess Calls in Chrysalis

To complement the SUN remote procedure call mechanism for inter-host
procedure calls, Chrysalis has an inter-process procedure call mechanism,
called service calls. The implementation was inspired by a combination
of the SUN remote procedure call mechanism and the msgio library, but
the details are somewhat different (for example, since we can assume
homogenous hardware, there is no XOR mechanism, although some type­
checking is done on arguments and return values).

DATA STRUCTURES AND CALLING CONVENTIONS

The service call routines use an opaque (meaning, the internals are invisi­
ble to user programs) data structure to coordinate their activities. This
data structure, SCStream, is analogous to the FILE data structure used by
the stdio package. It contains a description of the service-call stream, as
well as the data buffered on the stream.

Service call routines throw on errors in transmitting or packaging mes­
sages.

WRITING A SERVER

Writing a server with the Chrysalis service-call mechanism is quite sim­
ple. A server consists of a preamble to register the service with the

2-1

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

system, a dispatcher routine which dispatches to the user's routines based
on the received message, and the subroutines which the server implements
and exports to the user.

The routines provided for writing servers (and the proper sequence for
calling them) are:

• Register the service with the system using sc _create _service:

QH sc_create_service(char *name)

Registers a service with the name name. sc _create _service returns
a queue handle which is used in subsequent calls to the service-call
package. Some system services (e.g., the name server and the
remote daemon) have their queue handles stored in a global data
structure maintained by Chrysalis rather than in the name table .
. They define their queue during startup, and use that queue when cal­
ling sc _server.

• .Call the sc server routine:

void sc server(QH requestq, void-procedure dispatch, arg-to-dispatch)

sc _server does not return. It is passed the queue handle returned by
sc create service and the address of a routine to call when a mes­
sage arrives. This routine serves to dispatch the incoming message
to the proper subroutine, and looks like this:

void dispatch(SCStream *scstr, arg-to-dispatch, int selection)

arg-to-dispatch is an argument which may be passed to the dispatch
routine. If you write your own dispatch routine, arg-to-dispatch is
not interpreted by the service-call mechanism. selection is a user­
defined constant used to select which subroutine is inv~ed by the
message.

• dispatch consists of doing a using selection to decide which subroutine
to call, and calling the user's routine using sc _invoke:

2-2

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

void sc _invoke(SCStream * scstr, procedure selected Junction)

sc _invoke unpackages the arguments to the user's procedure,
selected Junction, and calls selected Junction with the right argu­
ments. The first argument passed to selected Junction is the
SCStream pointer.

• To simplify writing servers even more, a standard dispatch routine is
provided.

sc_standard_dispatch expects the user's routines to be numbered
sequentially, starting at 0. The selection is used as an index into a
null-terminated table of function pointers, the address of which is
sc _standard_ dispatch' s second argument. Here is an example
declaration of a table, as well as showing how to invoke sc _server
to call sc _standard_ dispatch:

.int do_RoutineO(), do_Routinel(), do_Routine2(),

do_Routine3(), do_Routine4(),

do_Routine5(), do_Routine6(), do_Routine7();

.int dispatch_table[] = {

do RoutineO, -
do Routinel, -
do Routine2, -
do Routine3, -
do Routine4, -
do Routines, -
do Routine6, -
do Routine?, -
NULL,

} ;

extern sc_standard_dispatch();

sc_server(service_queue, sc_standard_dispatch, dispatch_table);

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

• values are returned to the client program using:

sc _send _return _value(SCStream * scstr, arglist ...)

This is a subroutine call, and calling it doesn't result in the server
routine returning (that is, the server routine should contain its own
return. sc_send_return-.value takes an argument list similar to
sc _call (see the section on writing a client), alternating sc _type
specifications and pointers to values, terminated by a NULL
SC type.

Should a server get a throw when processing a client's request, the
throwcode, throwvalue, and throw string are returned to the client.
The service-call mechanism at the client end will then perform the
throw. The throwstring has the string "(SERVER):" prefixed to it,
to make it clear that the throw took place on the server end of the
connection.

• Should a server need to exit, it should call sc _delete _service:

sc_delete_service(char *name, int exit_value)

This routine will notify the system that the service with name name
is no longer offered, and, if exit_value is non-negative, will call exit
with exit_value as an argument. If exit_value is negative (typically,
-1), sc_delete_service will not call exit, but will return, instead.

• throws which occur while the server is executing a service call are tran­
sparently forwarded to the client if uncaught within the body of the
user's routine or dispatch routine.

The subroutines exported by a server all look like normal subroutines, as
they would be written in a user program, except that the first argument to
the subroutine is a pointer to an SCStream, and, instead of calling return,
the server routines call sc send return value. For example:

do_Routinel(scstr, str, number)

2-4

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

SCStream *scstr;

char *str;

int number;

initial processing, calculating a result for the client ...

sc_send_return_value(scstr, SC_int, &number, RETURNEND);

any further processing (the results of which aren't reported

to the client) ...

(NOTE: the memory allocated for the string str gets

unmapped by sc_send_retum_ value, so its contents

are no longer accessible.)

As is shown, results (perhaps a simple acknowledgement of receipt of the
client's request) may be returned to the client before the service subrou­
tine completes, allowing processing to continue in parallel. If you use
such an approach, arguments which were passed to the routine on the
stack (integers, characters, shorts, and doubles) are still available after one
of the return-sending routines is called. Arguments which are passed to
the routine as pointers on the stack (strings and buffers) point to storage
which is freed by sc_send_return_value. In order to use string or buffer
arguments after you send a return, you must copy the data to memory you
manage yourself.

Note that nothing in the definition of the server routines restricts the server
to a single process. Once the service's queue handle is registered with the
system, any number of processes can execute sc server in parallel, since a
message arrives in the form of a single datum dequeued off of the service
queue. Thus, a server need not worry about accessing the service-call data
structures atomically, since atomicity is built in on the server side.

A simple example of a server is contained in a later section in this docu­
ment.

2-5

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

WRITING A CLIENT

Finding the Server, Allocating Service Call Resources, and
Freeing Them

In order to find a service, one can call sc_open to get an SCStream *for
use in accessing the service:

SCStream *sc_open(char *name)

sc _open takes the name of the servic~ being sought, and returns an
SCstream pointer to use in calls to the service.

Note: SCStream structures aren't accessed atomically, and use malloc to
allocate space for data, so it is important .that each process or thread that a
user's program has which wishes to use this service performs its own
sc open on it.

An SCStream * obtained usmg sc_open can be gotten rid of using
sc close:

sc_close(SCStream *scstr)

sc _close deletes the data structures allocated by sc _open; and performs
other clean-up tasks.

Of course, kernel routines (which also rely on the service-call mechanism)
cannot use malloc, and make such frequent use of the services in question
that they don't want to look them up by name all the time. Therefore, for
processes which already know the queue handle the desired service is
using, there exists another call:

sc_bind(SCStream *scstr, QH service_queue, long
*reply_ queue _storage, int reply_ queue _length)

sc_bind takes a pointer to an SCStream allocated by the calling routine
and packages it to connect to a service listening on service_ queue .

. 2-6

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

Service connections are implemented using two dual queues, one listened
to by the server (service_ queue) and one listened to by the client waiting
for return values. Make_DualQ is called with reply_queue_storage and
its length, reply_ queue _length to make the dual queue to which return
values are sent.

As is clear from the invocation sequence, sc _bind uses a dual queue to
transmit its return value messages. This is necessary if there is a possibil­
ity that multiple return value messages could be posted to the procedure
call (as can be the case in asynchronous calls, see below). As creation of a
dual queue is a moderately expensive operation, there is an additional call,
which is used extensively in the kernel:

sc bind using event(SCStream *scstr, QH service queue) - - - -

This call will have messages containing return values posted as an event
(using the CurPCB->p _teh event the system keeps lying around for such
occasions), saving a good deal of time in binding the queue.

An SCStream * obtained using sc_bind or sc_bind_using_event can be
gotten rid of using sc _unbind:

sc _unbind(SCStream * scstr)

Calling on the Server

Service calls are made using the sc _call routine:

sc _call(SC Stream * scstr, int routine _selector, arg-lisL.,
ARGEND, retval-lisL., RETURNEND)

routine selector is a user-defined flag which is used to select which rou­
tine is to be called (basically, routine _selector is passed to the server's
dispatch routine, which calls the appropriate service routine). arg-list and
retval-list are argument and return value lists, respectively. The lists are
composed of alternating sc _type specifiers and pointers to values of the

2-7

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

appropriate type, e.g.:

void sc call(scstr, READ, SC int, &fd, SC buffer, &ptr to buffer, - - - - -
buffer/en, SC _int, &buffer/en, ARGEND, SC _int, &nread, RETUR~
NEND);

Which illustrates a routine written to imitate a UNIX-style read, where an
integer file descriptor, a buffer and a buffer length is passed to the server,
and the number of bytes actually read is returned in nread. ARGEND and
RETURNEND are both defined as NULL, but the names are supplied to
make one's code clearer and easier to read.

If the return list isn't empty, sc_call blocks waiting for the server to send
return values. A call which doesn't require a return value need not block
(of course, in this case, there is no guarantee that the server actually
processes the message, since there is no acknowledgement returned of
receipt of the message and there is no way to know that a call has thrown
in the server).

If it is expecting a return value, SC_ call will wait forever for a server to
reply. If the server is hung or in an infinite loop, the client will also hang.
This is, of course, the same as for any normal procedure call, however it
can lead to programs hanging mysteriously. When one can predict an
upper-bound for the time a routine will take, one can build a more robust
application using sc _call_ with _timeout to detect hung or looping servers:

sc_call_with_timeout(SCStream *scstr, int timeout, int routine,
arg-list ...)

The timeout is specified in seconds. If the server doesn't respond within
timeout seconds, a throw occurs. A user program can detect this throw,
and at least can print a message that helps you isolate the probelm with
your program.

In addition, if you 're going to be communicating with a server once, for a
single call, you probably don't want to go through the overhead of doing a

2-8

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

sequence of sc_openlsc_calllsc_close or sc_bindlsc_calllsc_unbind,
which were designed for lengthy dialogs between a user program and a
server. To facilitate a "datagram" or "one-shot" style of communicating
with a server, there is another way to call on a server:

sc_call_using_queue(QH servers_queue, int timeout, int routine,
args .. .)

This routine, used within the kernel to call on kernel services, combines
the three steps (allocating resources for the service call, making the ser­
vice call, and freeing the allocated resources) into one.

Using Asynchronous Procedure Calls

One may also perform asynchronous service calls, using sc _call _start and
sc _call Jmish.

sc_call_start(SCStream *scstr, EH event, int routine_selector,
arg-list ...)

This routine sends the arguments to the server. The client process can
then continue to run in parallel with the server's processing the call. When
the server sends the return values, it also posts the event event if it's non­
null. If one uses a separate event for each asynchronous call, one may
have several asynchronous calls outstanding (either to the same server, or
to several different servers). If this is done, care should be taken to read
the return values in the order that the events are posted, otherwise replies
will be lost. - -

Once the event has been posted, the return value can be retrieved using
sc _ ca/l _finish:

sc _call Jmish(SCStream * scstr, retval-list ...)

If you use asynchronous calls, you must have used sc open or sc bind to - -
obtain a service call stream using a dual queue. Service-call streams

2-9

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

constructed with sc_bind_using_events cannot be used with these asyn­
chronous calls. An attempt to do so will result in a CONSISTENCY throw,
with the warning that asynchronous calls require a reply queue.

DATA TYPES

The routine-calling and return value sending routines both take lists of
sc _types. Generally one must pass a pointer to a value to send the value,
or a pointer to the place to put the value when receiving a value. This is
analogous to SUN's XOR routines -- the same routine is used to send an
integer as is used to receive an integer.

sc_types, and the way to pass them, are:

2-10

SC _int, &((int) datum) -- send/receive the 32-bit integer, datum.

SC_ short, &((short) datum) -- send/receive the 16-bit integer,
datum.

SC_char, &((char) datum) -- send/receive the 8-bit character,
datum.

SC_double, &((double) datum) -- send/receive the 64-bit floating
point number, datum.

SC_string, &((char *)datum) -- send/receive the null-terminated
string pointed to-by ~datu~. Note: datum is a pointer to the address
of the string being sent or received, not a pointer to the string (see
discussion below).

SC _buffer, &((char *)datum), bufferlen -- send/receive the buffer
pointed to by *datum. In addition to a pointer to the address of the
buffer (not a pointer to the buffer), the length of the buffer is passed
(see discussion below).

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

The C data type, long, and the Chrysalis data types, QH, OID, bits and
EH, are also represented (as puns on int).

Why Buffers and Strings Must Be Passed Using Double­
Indirection

chars, shorts, and ints all may be returned on the stack. Strings and
buffers, being arbitrarily long, aren't easily returned on the stack (and if
they were, you would have to copy them somewhere before they are
overwritten by calling the next subroutine), so space must be allocated for
them somewhere else. If *datum is NULL, space will be allocated for the
string or buffer using malloc, and a pointer to the allocated space will be
returned in datum (if *datum is non-null, then the user has provided space
for the buffer to be received (and is presumed prepared to take the conse­
quences if there isn't enough room for the buffer in the provided space)).
Therefore, instead of a pointer to the string, a pointer to a pointer to the
string must be passed when receiving strings, and to be consistent, a
pointer to a pointer must be passed when sending a string or a buffer.

The use of pointers to buffers or strings, instead of pointers to pointers to
buffers or strings, is the single most prevalent programming error in using
service calls. Here is an exammple of a correctly-formatted call:

char **strp;

char *str= nhello,theren;

strp=&str;

sc_call(scstr, sc_string, strp, ARGEND, RETURNED);

A SAMPLE CLIENT AND SERVER

We present here an extended example of a client and a server, illustrating
many of the variations for using the service-call mechanism. This exam­
ple is taken from a pair of programs written to test the different features of
the service-call mechanism, and contains examples of almost all the
varieties of calls.

2-11

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

Another example of use of the service call mechanism may be found in
the Chrysalis sources: the name daemon and its routines (Name _Bind,
etc.) are implemented using service calls, as is the interface
(Load _Process) with the loader daemon.

example.h:

First, we define the subroutine selections and some shared data structures
in a header file to be included by users of the example service:

I* Routine name/index:
#define Routinel 1

#define\Routine2 2

#define Routine3 3

#define Routine4 4

#define SERVICE "example"

types of arguments and return-values: *I
I* string, int, returns int *I

I* struct s, no return *I
I* no argument, string return *I

I* no argument, tests asynch. calls *I

I* This service is named "Example" *I

sb:uct s { I* A structure to test passing buffers */

} ;

int a;

sboz:t b;

sbm:t c;

c:bar d [10];

example_client.c

This example is just one long routine, which calls several example rou­
tines to test various features of the service call mechanisms.

#incl.:uda <stdio.h>

#jncJ•de <sc_public.h>

#jncl•de "example.h"

main() {

SCSt....,. *strp;.

I*

* Get a handle for the service.

2-12

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

!*

*I
strp = sc_open(SERVICE);

I*
*We do an infinite loop to stress resource allocation. Run forever,

or until we run out of some resource (F8 space, SARs, etc.).

*Running out of something means the service call code isn'tfreeing data appropriately.

while it's running you can keep an

* eyt1 on resources allocated using show and showproc to detect memory leaks.

*I
1lbil.e (true) say_hello(strp); Sleep(lOOO);

*Call most of the different varieties of routines possible, testing different combinations of

argument types, and reply types.

*
*This program prints out messages marked by asterisks when something goes wrong.

A message without asterisks indicates normal operation

*or a normal status message.

*I
say_hello(strp)

SCStxaam *strp;

char *str = "hello, there";

int number 23;

int result 0;

sb::uct s s;

sb::uct s *sptr;

static EB event

EB got_event;

I*

NULL;

* Call Routinel, sending a string, an int, and returning an int. NOTE: "&str',. is a c:bar ** ! , not just a •

*/

catch

printf("Calling Routinel(

sc_call(strp, Routinel, SC_string, &str, SC_int, &number, ARGEND,

SC_int, &result, RETURNEND);

if(result == 92) printf("Win! Result is %d0, result);

else printf("O***What? result is %d0, result);

onthrow

when (true)

printf("O***Routinel Lose!

throwlocation);

%s(%X)@%XO, throwtext, throwvalue,

2-13

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

2-14

endcatch;

I*

* Call routine2: this also tests whether or not the sc_call waits for anything, or returns

immediately after enque_uing the message.

*
* How to pass a structure to a server:

*!

Soa -3;

s.b -6;

s.c -9;

s pt r = & s; I* Because we have to use a pointer to a pointer *I

strcpy(s.d, "Hola!");

catch

printf("Calling VOID Routine2(s(a:-3, b:-6, c:-9, d:

sc_call(strp, Routine2, SC_buffer, &sptr, sizeof(s), SC_int, &numbe

ARGEND, RETURNEND);

printf("Win!O);

on throw

when(true)

printf("O***Routine2 Lose!

throwlocation);

endcatch;

!*

%s(%X)@%XO, throwtext, throwvalue,

* Call routine3: this tests routines with no arguments, and also tests returning a string value.

*I

str

catch

NULL; I* Want to test malloc. *I

printf("Calling Routine3() should return

sc_call(strp, Routine3, ARGEND, SC_string, &str, RETURNEND);

printf("Win! Returned

I*

* NOTE: strings are returned as pointers to malloced areas. THEREFORE, we have to

*free the malloced thing,· while we still have a pointer to it.

*!

free(str);

on throw

when(true)

printf("O***Routine3 Lose!

throwlocation);

endcatch;

%s(%X)@%XO, throwtext, throwvalue,

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

I*

* Testing asynchronous calls.

*
* Make an event for this routine to tell us there are arguments waiting.

*I

if(event ==NULL) event= Make_Event(O, O, RW_rw_, 0);

catch

printf(ncalling Routine4(); ");

sc_call_start(strp, event, Routine4, ARGEND);

printf(nwaiting for response ");

I*

* Wait for the reply to arrive.

*!

got_event =Wait();

if(got event == event)

char buffer[lO];

str = &buffer [0) ; I* Provide pre-allocated space -- again, note the use of a pointer to a poi1

catch

printf("Collecting response (should be

sc_call finish(strp, SC_string, &str, RETURNEND);

printf("Routine4 Win! Returned

on throw

when(true)

printf("0***Routine4 lose in sc call finish! %s(%X)@%XO,

throwtext, throwvalue, throwlocati6n);

endcatch;

Reset Event(event);

} else printf("O***Routine4 Lose! got wrong event!O);

onthrow

when(true) printf("O***Routine4 Lose! %s(%X)@%XO, throwtext,

throwvalue, throwlocation);

endcatch;

example,...... service.c:

A server is simply a loop listening for messages on the service queue.
Since operations on a queue are atomic~ a server could be implemented as
many processes, each waiting to dequeue a request from the service
queue.

2-15

Interprocess Calls in Chrysalis

#jnclnde <stdio. h>

#incl•xte <sc_public. h>

#jncJude "example.h"

char *progname;

Chrysalis 4.0 Technical Notes

Ult do_RoutineO(), do_Routinel(), do_Routine2(), do_Routine3(), do Routi

Ult sc_standard_dispatch();

Ult dispatch_table[]

do_RoutineO,

do_Routinel,

do Routine2, -
do Routine3, -
do_Routine4,

NULL,

} ;

ma.in(argc, argv)

Ult argc;

char** argv;

Of sq;

=

progname = argv[O];

{

sq = sc_create_service (SERVICE); I* register service with system *I

sc_server (sq, sc_standard_dispatch, dispatch_table); I* run the service. *I

2-16

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

I*
* A non-entity because the table begins at 0, but the routine defs start at 1 (in studying

* the anatomy of the software that has evolved, occasionally we find a vermiform appendix).

*I
do_RoutineO () {}

I*
* sc_invoke will pass the arguments on the stack just as they would be packaged by the client routine,

* if we didn't have the baroque calling sequence with argument "types.

*
* The arguments to Routine] are a string followed by an integer. Note the natural handling of strings

* in arguments (in contrast to the double-indirection forced on the caller).

* Note also that integer arguments are direct, rather than indirect through a pointer.

*
* Returns an integer.

*I
do_Routinel(scstr, str, number)

SCSb:emn. *scstr;

char *str;

int number;

printf("Routinel:

number *= 4;

sc_send_return_value(scstr, SC_int, &number, RETURNEND);

I*
* This routine has no return value. It tests passing a structure to a server.

*I
do_Routine2(scstr, str, number)

SCSb:emn. *scstr;

struct s * st r ;

int number;

printf("Routine2: number: %d, s.a: %d, s.b: %d, s~c: %d, s.d:

number, str->a, str->b,- str->_c, str->d);

I*
* This routine has no arguments, but does return a string. Note that when we're returning a string,

* its back to double-indirection (&str, where str is a char *).
*I

do_Routine3(scstr)

SCSt:man *scstr;

2-17

Interprocess Calls in Chrysalis

c:ba: *str == "Hiya ! n;

printf("Routine30);

Chrysalis 4.0 Technical Notes

sc_send_return_va1ue(scstr, SC_string, &str, RETURNEND);

I*

* This routine tests asynchronous calls. No arguments, but it returns a string (after waiting a perceptit

*/

do_Routine4(scstr)

sest__......, *scstr;

c:ba: *str == "Hoya! n;

printf("Routine40);

Sleep(SOOO);

printf("Sending resu1t0);

sc_send_return_va1ue(scstr, SC_string, &str, RETURNEND);

As noted in the discussion of sc_server, a standard dispatcher is provided.
The example above makes use of it. Here is an illustration of a server
defining its own dispatcher.

int do_RoutineO(), do_Routinel(), do_Routine2(), do_Routine3(), do_Routine4();

I*
* Given the constant which selects the routine, invoke the routine for the user.
* This is presented as pedagogical proof that one can write one's own dispatch routir.
* dispatch the request to one of several tasks).

* * Also illustrates the use of the sc_invoke routine, which unpacka,ges the arguments s~

* the stack so server routines are written naturally.
*I

dispatch(scstr, ignored_argument, selection)
SCSb:emn *scstr;

2-18

int selection;

sw:itdl(selection) {
case RoutineO:

sc_invoke(scstr, do_RoutineO);
case Routine 1:

sc_invoke(scstr, do_Routinel);
bcaak;

case Routine2:

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

}

sc_invoke(scstr, do_Routine2);
bceak;

case Routine3:
sc_invoke(scstr, do_Routine3);
bceak;

case Routine4:
sc_invoke(scstr, do_Routine4);
bceak;

defanlt:

}

printf("Got trash: claimed routine is %x\n", selection); ·
bceak;

main(argc, argv)

{

}

int argc;
mar** argv;

(JI sq;
progname = argv[O];

sq= sc_create_service(SERVICE); /* register service with system *I
sc_server(sq, dispatch, NULL); /* run the service. *I

do_Routinel(scstr,)

CALL SUMMARY

Arglists and Supported Data Types

Arguments are passed in the call and return values returned from a call as
a list of values representing the type of the argument followed by a pointer
to the value of the argument. The exceptions to this are: strings, which are
passed as a flag denoting a string argument, followed . by a pointer to a
string pointer, and arbitrary buffers of bytes, which are passed as a flag
denoting a buffer, followed by a pointer to a buffer pointer, followed by
the length, in bytes of the buffer. The list is terminated by a NULL appear­
ing in a type specifier's place. For example:

2-19

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

SC _int, &intarg, SC _short, &shortarg, SC _buffer, &buffer _pointer,
buffer/en, NULL

There are two defines, ARGEND and RETURNEND which may be used in
place of NULL to terminate a list of arguments. Lists of this type will be
referred to below as arglists.

Types (and how they are used) are:

2-20

SC_int, &((int) intarg),
SC_short &((short) shortarg),
SC_char &((char) chararg),
SC_double &((double) floatarg),
SC_string &((char*) string_pointer),
SC_buffer &((char*) buffer_pointer), buffer_length,

The C data type, l.ang, and the Chrysalis data types, QH, 010,
bits and EH, are also represented (as puns on int).

Calls Used by the Server

QH sc_create_service(char *name)

Tells the system about the existence of a service named
name. Returns a queue handle to be used in a following
sc server call.

void sc_delete_service(char *name, int exit_value)

Deletes a service created with sc create service, called by a - -
server before it exits.

void sc _server(Q H requestq, intdispatcher, bits arg)

Does not return. Contains a loop which calls
dispatcher(SCStream *s, arg, int selection_
from_user_request_message) repeatedly when service

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

requests arrive on the requestq queue. Usually called using
sc _standard_ dispatch, in which case arg is a pointer to a
null-terminated table of pointers to routines:

im:. do_RoutineO(), do_Routinel(), do_Routine2(), do_Routine3(), do R

im:. dispatch_table[] = {

do_RoutineO,

do_Routinel,

do_Routine2,

do_Routine3,

do_Routine4,

NULL,

} ;

extern sc_standard_dispatch();

sc_server(service_queue, sc_standard_dispatch, dispatch_table);

sc _standard_ dispatch itself is never called directly by someone
writing a server.

void sc send return value(SCStream * s, arglist ...) - - -

Sends a list of return values on the SCStream at s.

void dispatch(SCStream *s, bits argJrom_sc_server, int
selection)

dispatch is a user-provided routine (if the user intends to provide a
dispatch routine other than the standard one.

voiJ:Jsetyice_routine(scstr, a, b, c)

sestream *scstr;

int.a;

char *b;

2-21

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

2-22

short c;

This is an example of a service routine provided by a person writ­
ing a server. The first argument to a routine invoked by the service
call mechanism is a: pointer to an SCStream. The remaining argu­
ments are standard arguments (not an arglist).

Calls Used by Client Programs

SCStream * sc_open(char *name)

Finds a service with the name at name, allocates (using mal­
loc) storage for an SC Stream structure and creates a dual
queue for use by the server in sending replies to the client,
and initializes the SCStream to communicate with the ser­
vice.

SCStream *sc_open_with_resources(char *name, SCStream
*scstr, long *reply _queue _storage,"int queue _!en)

This routine is the equivalent of sc _open, except that it does
not allocate any resources for the SCStream. It is used by
the msgio library, which allocates the SCStream and other
resources itself.

void sc_close(SCStream *scstr)

Used to free the resources allocated by sc_open or
sc _open_ with _resources.

void sc_bind(SCStream *s, QH server _queue, char
*reply_ queue _st01:age, int reply_ queue _length _in _bytes)

Used when a client knows what queue handle to use to com­
municate with a server, the calling program provides storage

Chrysalis 4.0 Technical Notes Interprocess Calls in Chrysalis

for an SCStream, and storage for a queue to use for the
server to send replies to.

void sc_bind_using_event(SCStream *s, QH server _queue)

Used when a client knows what queue handle to use to com­
municate with a server, and wishes to avoid the overhead of
creating a dual-queue for replies. Can be used only when
the connection isn't going to be used for asynchronous calls.

void sc_unbind(SCStream *s)

Used to free the resources allocated by an sc bind or
sc_bind_using_event call in a long-lived process. These
resources are automatically released when a process exits.

void sc_call(SCStream *s, int routine_selector, arglist, arglist)

Calls service routine selected by routine _selector, an integer
defined in a header file for the service (the routine selector is
usually an index into a table of routines). The first arglist
(terminated by ARGEND) is the list of arguments to the sub­
routine. The second arglist (terminated by RETURNEND) is
the list of return values expected from the routine.

void sc_call_with_timeout(SCStream *s, int timeout, int
routine selector, arglist, arglist)

Calls service routine selected by routine selector. If the
server doesn't respond within timeout seconds, this call will
throw, with a FAILED throwcode. The first arglist (ter­
minated by ARGEND) is the list of arguments to the subrou­
tine. The second arglist (terminated by RETURNEND) is
the list of return values expected from the routine.

2-23

Interprocess Calls in Chrysalis Chrysalis 4.0 Technical Notes

2-24

void sc_call_using_queue(QH requestq, int timeout, int routine,
arglist, arglist)

Like sc_call_with_timeout, but performs a subroutine call on
a server with a minimum of overhead, provided that you
know the queue on which the server is listening for requests.
This call is used within the kernel to communicate with ker­
nel services such as the name daemon and the loader dae­
mon. sc _call_ using_ queue is the equivalent of calling
sc _bind_ using_ event, sc _call_ with _timeout, and sc _unbind
in sequence. The first arglist (tenninated by ARGEND) is
the list of arguments to the subroutine. The second arglist
(tenninated by RETURNEND) is the list of return values
expected from the routine.

void sc_call_start(SCStream *scstr, EH event, int routine,
arglist) .

Used for asynchronous calls. sc _call _start returns immedi­
ately after sending the subroutine request to the server.
When the server sends a reply to the request, it will also post
event. You can have multiple outstanding asynchronous
calls, but care must be taken to read the returns of the calls
in the order in which they are posted, or results will be dis­
carded.

void sc_call_fznish(SCStream *scstr, arglist)

Reads the return values of an asynchronous call started with
sc call start.

Chapter 3

Use of
Software

the Butterfly Network

The network figures prominently "in the use of the BBN Butterfly parallel
processor. This chapter gives an overview of the Chrysalis network
software.

ORGANIZATION OF THIS CHAPTER

The second section introduces the design concepts of the Butterfly net­
work software, and also some of the terminology and acronyms used in
discussing the network software. Section three provides examples that
explain the use of the network routines in writing programs. Section four
describes each of the components of the network software. The conclud­
ing section explains how to bring up the network software on your
machine.

NETWORK PROTOCOLS: IP, UDP, RDP, TCP

The Butterfly network software implements the DOD standard Internet
Protocol (IP). The IP layer provides a common internetwork addressing
scheme for higher level protocols, such as ·the User Datagram Protocol
(UDP), the Reliable Datagram Protocol (RDP) or the Transmission Control
Protocol (TCP). Below the IP layer is the Ethernet layer.

3-1

Use of the Butterfly Network Software Chrysalis 4.0 Technical Notes

UDP, RDP, and TCP sit in parallel on top of IP, and provide different types
of service. UDP provides an "unreliable", low effort, low overhead
datagram service. The unit of transmission in UDP is the individual packet
or datagram. UDP users must implement their own means of packet
delivery and packet sequencing. In UDP packets may be delivered out of
sequence, delivered more than once, or may be dropped by one of the
intermediate layers, with no notification provided to the user of a problem.
RDP provides a reliable datagram service. TCP provides reliable,
sequenced byte-streams to the user.

Other protocols (e.g., the File Transfer Protocol (FfP), the Network Ter­
minal Protocol (TELNET), user-written applications) are layered on top of
TCP, RDP, or UDP.

When a user writes with a UDP channel, the network server prefixes the
user's data on a UDP header, which contains the length of the message, the
destination port identifier, and the source port identifier. This prefixed
packet is in turn handed to the IP layer, which adds a similar prefix. The IP

layer then hands the packet to the Ethernet device driver, which prefixes a
header that tells the Ethernet hardware how to deliver the packet to its des­
tination.

TCP works similarly but, by providing sequencing information m its
header, is able to present a reliable byte-stream abstraction.

Why so many layers? The IP layer is separated from the Ethernet layer
because the final destination may not be on this Ethernet. Networks are
joined by gateways, and the IP header vouchsafes the packet through gate­
ways through one or more networks. The user rarely works directly with
the IP layer. UDP, RDP, and TCP all sit in parallel on top of IP, and provide
different kinds of services to the user.

More information about the whys and wherefores of the DOD network
implementation can be obtained from the Network Wormation Center
(NIC):

Network Information Center

3-2

Chrysalis 4.0 Technical Notes Use of the Butterfly Networ-k Software

SRI International
MenloPark, California 94025 (NIC@NIC.ARPA)
(415)859-3695

SOCKETS

Like the Berkeley 4.2bsd UNIX system, the Butterfly network software is
organized around sockets. A socket is a channel through which one com­
municates with the network software, and, in tum, the network.

There are some differences between a Berkeley UNIX socket and a
Butterfly socket. The underlying abstraction for I/O on the Butterfly com­
puter is a structure similar to the UNIX Standard-I/O library FILE structure
(and similarly named). Also, a socket handle is a pointer on the Butterfly,
instead of being a small integer as in 4.2bsd UNIX. Chrysalis FILES are
one-way (read or write) due to the buffering which takes place using
FILEs. So in order to both read and write from a Butterfly socket you must
make a copy of the socket once it is open. The Butterfly socket does not
provide the select call, but it does have true asynchronous calls on the net­
work (accept _start, accept ,_finish, read _start, read Jmish, recv _start,
recv _next, send _start, and send next along with the Butterfly's event
mechanism).

Except for the above considerations, writing a network-using program on
the Butterfly is very similar to writing a network-using program on a
4.2bsd UNIX machine such as the SUN workstation.

WRITING NETWORK APPLICATIONS: A TCP EXAMPLE

TCP is the protocol of choice for most users who are just starting to write
network applications. (Those who want to use UDP are expected to have
more expertise.)

Network connections come in two halves--the server and the user. The
distinction is that the server creates a socket and then listens passively

3-3

Use of the Butterfly Network Software Chrysalis 4.0 Technical Notes-

(possibly for many connections from different hosts), while a user creates
a socket and then actively connects (and can connect to only one host
using the socket).

Server Program Example

A server schema looks like this (the catch blocks are left out of this exam­
ple to focus layout attention on the network calls):

#include <public.h>
#include <stdio.h>
#include <net/types.h>
#include <net/in_addr.h>
#include <net/protonum.h>

#define MY PORT NUMBER 4321 /* arbitrarily chosen port
number *I

FILE *socket(), *accept(), *MSGdup();
main() {

FILE *socket_for_listening;
FILE *socket_for_reading;
FILE *socket_for_ writing;

Server Program Steps:
1) socket_for_listening = socket(TCPROTO, "r");
2) bind(socket_for_listening, 0, MY_PORT_NUMBER, 0);
3 listen(socket_for_listening, MAXIMUM_NUMBER_OF _LISTENERS);
4) socket_for_reading = accept(socket_for_listening, NULL, NULL);
I*
* socketJor _reading may now be used as a file descriptor for
* reading. In order to write on the network connection,
* one must:
*I

socket_for_writing = MSGdup (socket_for_reading, "w").

Server Program Steps

1. A server program begins by obtaining from the network system a pro­
tocol socket on which to make network requests (socket(TCPROTO,

3-4

Chrysalis 4.0 Technical Notes Use of the Butterfly Network Software

"r")). In this example, the server has requested that the network con­
nection use TCP (TCPROTO).

2. The server program then gives the socket a name
(bind(socketJor _listening, 0, MY_PORT_NUMBER, 0)). A "name"
on the network consists of two parts: a 32-bit host address and a 16-bit
number known as a port. In the case of the server, the host address is
the same as the machine the server is running on, so the address argu­
ment to the bind call is left as 0, indicating that the network system
can fill in this field with an appropriate value.

Note that you can choose your port number according to the service
you are providing. Certain port numbers (those below 1000) are
reserved for network-wide functions. Also, Berkeley 4.2bsd UNIX

systems will only allow the root to create a socket with a port number
less than 1024, so choosing such a port number is a bad idea if you are
debugging a program.

One place to look for currently reserved port numbers is in the
/etc/services file on your 4.2bsd machine. Another place to consult is
the Network Information Center (NIC) at SRI (NIC@NIC.ARPA), or Jon
Postel at USC-ISi (Postel@ISI.ARPA). The NIC maintains a list
(updated periodically) of reserved network port numbers. Dr. Postel is
in charge of allocating Internet resources such as reserved port
numbers.

If you are providing an entirely new kind of service, you are fairly
safe from conflicts if you choose a random 16-bit number greater than
1000. All that really matters is that everyone who wants to talk to
your service knows what port number to use, and that no one else is
likely to use the port number for some other service.

3. Having given the socket a name, the server must listen for a process to
actively connect to the socket. listen takes a second argument to
specify the number of unaccepted connections the system should
maintain. This is generally set to 5, signalling that socket initialization
is complete and permitting adverisement of service.

3-5

Use of the Butterfly Network Software Chrysalis 4.0 Technical Notes

4. Following the listen, the server does an accept. Here a server is able
to specify from which hosts or ports on hosts it will accept a message;
once accept is executed the system rejects attempts to connect by
other hosts. The server in the example will accept connections from
anyone. accept returns a FILE pointer which may be used in subse­
quent reads and writes, fprintfs and fscanfs.

As noted above, Butterfly FILE structures are one-way. To be able to both
read and write a socket, one must use MSGdup on it to get a FILE structure
to go the other way.

User Program Example

The schema · for a user program--one which actively establishes a
connection--looks like this:

3-6

iinclude <public.h>

iinclude <stdio.h>

iinclude <net/types.h>

iinclude <net/in_addr.h>

iinclude <net/protonum.h>

idefine MY_PORT_NUMBER 4321 /* arbitrarily chosen port number *I

FILE *socket(), *MSGdup();

main(argc, argv)

int argc;

char **argv;

FILE *s;

struct in_addr dstaddr;

struct in_addr *atoIPa () ;

s = socket (TCl?ROTO, "w");

skip for client

* Server willing to specify port and address

dstaddr = *atoxl?a(argv[l]);

connect(s, dstaddr, MY_PORT_NUMBER);

I*

* At this point, the socket is a FILE pointer and may be

* used for writing (have to do a MSGdup to use it for reading).

Chrysalis 4.0 Technical Notes Use of the Butterfly Network Software

*I

User Program Step

Again, we create a socket and give it a name. The name we give it is not
important, because no one will ever use it (in contrast, we must use the
server's name in order to connect to it). The routine atoipa is in libnet.a
and translates an ASCII representation of a host address, e.g.,
"128.11.7.1" into a struct in_addr, and returns a pointer to the result.
(Here I've used structure assignment to perform the actual assignment of
the structure elements.) After finding the host address to which we want
to connect, we use the connect call to tell the system the name of the net­
work connection we want to use.

COMPONENTS

The programs providing network service on the Butterfly computer fall
into four major categories. These categories are:

Device Drivers

The device drivers talk directly to the hardware or perform very low
level functions.

Protocol Demons

The protocol demons implement the TCP, RDP, and UDP protocols,
as well as the associated IP functions such as routing table mainte­
nance.

Network Utilities

The network utilities are tools to configure and manage other net­
work software.

3-7

Use of the Butterfly Network Software Chrysalis 4.0 Technical Notes

Network Servers

The network servers provide higher level services such as virtual
terminal emulation and file transfer.

Libraries

Finally, the libraries provide user programs with routines to access
and control the rest of the network software.

DEVICE DRIVERS AND RELATED PROGRAMS

initmb

initnet

start ex

excelan

loop

3-8

Initialize Multibus Adapter. This program sets up the
parameters of the Butterfly Multibus Adapter card so that
the software or the node can interract with devices on the
Multibus. initmb must be run on the node to which the
Multibus adapter is connected.

Initialize network data strucutres. initnet constructs a
named memory obect to hold network process IDs and
certain dual queues that take user requests. It is a rendez­
vous point.
initnet must also be run on the node to which the Mul­
tibus adapter is connected.

This parameter checking program is a preprocessor to the
excelan driver. By using startex to start the excelan
driver, you discard all the code used for parameter check­
ing once the driver is running.

The Excelan Ethernet interface device driver. This pro­
gram talks to the Ethernet chips on the-Excelan board con­
tained in the Multibus cage. excelan must be run on the
node to which the Multibus adapter is.connected.

Loops all IP packets received back to the sender. This
program pretends to be a network device driver, but actu­
ally acts as a "mirror" for all packets it sees. The loop is

Chrysalis 4.0 Technical Notes Use of the Butterfly Network Software

primarily used for testing.

PROTOCOL DEMONS

arp

internet

The "Address Resolution Protocol'' demon. The address
resolution protocol maps 32-bit Internet Protocol (IP)

addresses to 48-bit Ethernet hardware addresses. When a
user program asks to send an IP message, this process
looks at the IP address of the message and supplies a
corresponding Ethernet address from its table if such an
address is listed. If arp does not have a corresponding
Ethernet address, it queues the message, and broadcasts
the unknown internet address to all hosts on the Ethernet
with a request for address resolution. The intended host,
whose internet address appears in the request for address
resolution, then sends a reply directly to the Butterfly
machine. arp intercepts this reply, puts the Ethernet
address in arp' s table, and sends the original message in
an Ethernet packet.

Internet services demon. This process implements the
TCP, RDP, and UDP protocols. It is by far the largest of the
network processes. When the user makes requests of the
network via the MSG library, this is the process that he or
she will talk to.

NETWORK UTILITIES

cleanup

ipreceive

Releases sockets to the system; used after a server process
dies.

Defines device drivers that internet should talk to. When
internet is started up, it knows neither the network it is on
nor the addresses recognized by that network hardware.
IPreceive is used to communicate that information. The

\

3-9

Use of the Butterfly Network Software Chrysalis 4.0 Technical Notes

netstat

route

Butterfly software currently has only two device drivers
that internet can talk to (the excelan driver and a software
loopback driver called loop (q.v.)), but others will be
added in the future. ipreceive keeps configuration and
device-dependent knowledge out of the internet server.

Displays the status of the network connections.

Informs internet about gateways. This program tells the
internet process which gateways internet can use for rout­
ing internetwork packets. If route weren't run, the net­
work software could exchange packets only with hosts on
its Ethernet.

NETWORK SERVERS

tftp

net loader

telnetd

boottftp

3-10

"Trivial'' File Transfer Program. This program allows
Butterfly users to move files to and from another host.
This process is most useful to the inet-loader (see below).
tftp is useful only if the host you are trying to talk to is
running a tftp server. A tftp demon written by MIT for
4.2bsd is included in the· distribution because the original
tftp demon distributed with 4.2bsd does not correctly
implement the protocol except on SUN workstations.

Internet loader. This program loads process templates
over the network rather than over the serial line. Uses the
tftp program (see above).

TELNET demon. This program allows network users to
have a virtual terminal on the Butterfly machine.

Stub tftp implementation used to load programs quickly
during network boot. This program allows programs to
be loaded over the network before netloader, tp, and vari­
ous supporting programs are loaded.

Chrysalis 4.0 Technical Notes Use of the Butterfly Network Software

LIBRARIES

Originally, these library packages were separate libaries, but their func­
tions are so useful that the packages have been added to the standard
Chrysalis library, libcs.a.

streams-lib

msgw

net

STREAMS remote file system library. The modules in this
library provide a user program with a way to read and
write files on a remote host over the network. The remote
host must be running the streams-server.

Message Passing Network Library. The modules in this
library define the message-passing interface between the
user's program and the internet demon. This library con­
tains routines such as socket, bind, listen, connect, and
shutdown.

Network Utility Library. This library contains useful aux­
iliary routines that deal with network entities. It has such

· routines as atoea (ASCII-to-Ethernet-address), atoipa,
(ASCII-to-internet-protocol- address), in_cksm, and
read ns.

REMOTE ACCESS USING TELNET OR BEXEC

It is possible to access the Butterfly computer remotely through the net­
work using the Internet virtual terminal protocol TELNET. The TELNET

demon may be started once the network has been brought up:

run telnetd wm -login

TELNET provides a virtual terminal on the Butterfly machine across the
network, running the window manager, just like the Butterfly console. To
log off of the Butterfly machine, you should quit from the window
manager using wm' s <control-g>q command.

Users in their offices can log into a host computer and telnet from their
host to the Butterfly machine. When the TELNET connection is opened, a·

3-11

Use of the Butterfly Network Software Chrysalis 4.0 Technical Notes

window manager is started, a supercluster and cluster are created, and
they can use the Butterfly machine.

Users may also use blogin/bexec for more transparent access to the
Butterfly from a UNIX host.

ERROR CONDITIONS AND TROUBLESHOOTING

Three of the most common error conditions you may encounter are the
ENOSOCKETS error, the close:ENETRESET error, and the broadcast packet
error.

ENOSOCKETS Error

The ENOSOCKETS error may be caused by two separate conditions. See
the Chrysalis 4.0 Tutorial for further details.

1. Hung processes may be unnecessarily hanging on to sockets.

Using the netstat s command will show a list of all the sockets. The
cleanup command will allow the release of unused sockets to the sys­
tem.

2. There may be network processes that use up the allocated number of
sockets. ·

The network boot script can be changed to allocate more sockets when
the network starts up. .

ENETRESET Error

The ENETRESET error means that when the internet daemon tried to close
the TCP connection, it found out the SPECIFIC CONNECTION had already
been closed by the UNIX end. (This happens, for instance, if the front end
program exits without closing a socket.) In the same situation, UNIX

would return -1 and set errno to

3-12

Chrysalis 4.0 Technical Notes Use of the Butterfly Network Software

This is a TCP error. It means that TCP cannot guarantee you that all the
data you sent was read by the other process. You must rely on
application-level semantics to be sure that both ends received everything
they should have.

This is the kind of thing you-should understand if you are using a TCP con­
nection. See the 4.2/Sun IPC primer for more information, since Butterfly
sockets follow the same model.

Broadcast Packet Error

The broadcast packer error typically displays a message like the follow­
mg:

internet: ip_forward error: src 128.8.132.1dst128.8.132.255

This message may occur every few seconds.

This error occurs when you try to run subnets without properly
configuring the network.

The current solution is:

1. Edit the file $CHRYSALIS/include/sitedefs.h

At the end of this file is a discussion of subnetting, followed by the
line:

#define SUBNETS

which is commented out. At your site, it should not be commented
out: subnets should be defined.

2. Recompile and install intemet.68:

% cd $CHRYSALIS/net-src/internet
% make ver=Chrys40 (or whatever your version is)

3-13

Use of the Butterfly Network Software Chrysalis 4.0 Technical Notes

% make install

(By doing the "maken and "make install" separately you will not lose
your old installed version of internet.68 if the make fails for any rea­
son.)

3-14

Chapter 4

Using Assembler Language

This chapter is a quick overview of using assembler language on the
Butterfly. It does not describe how to program the Motorola 68000 and
68020 processors. You should refer to the Motorola manual MC68000
8-116-132-Bit _Microprocessors Programmer's Reference Manual for
details on the 68000, or to the Motorola manual MC68020 32-Bit
Microprocessor User's Manual for details on programming the 68020.

This chapter describes the differences between the syntax used by
Motorola-format assemblers and as68, the assembler supplied with the
Butterfly programming tools. It also gives a quick summary of all opera­
tions supported by as68.

ASSEMBLER MNEMONICS

as68 does not use standard Motorola mnemonics or syntax. There is,
however, a set of simple rules for converting Motorola mnemonics to as68
format:

• All as68 mnemonics should be written in lower case. as68 considers
case significant (like C does), and all its built-in symbols are defined in
lower case. User-defined symbols may be in upper, lower or mixed
case as desired.

4-1

Using Assembler Language Chrysalis 4.0 Technical Notes

• If the Motorola mnemonic has a size suffix (e.g., the ".I" in "add.I"),
drop the"." (e.g., "addl").

• If the instruction uses a special addressing form mnemonic (e.g.,
"addi" or "adda", but not "addx", which is a different operation
entirely), drop the addressing suffix (e.g., "add"). as68 does not
recognize the special form mnemonics in most cases. Exception: as68
does permit the "quick" forms of instructions: addq, subq, and moveq.

• The "move" instruction is written as "mov" in as68. "movem",
"moveq", and "movep" stay the same, however.

• Branch instructions may have an "s" suffix to indicate a short branch.
No suffix results in a short or long branch, at the whim of as68 (based
on its limited knowledge of where the target is). There is no way to
force a long branch (other than hand assembly).

• There is aj mnemonic corresponding to each b , which generates a
cc cc

long branch if necessary, by using a branch/jump instruction pair.
There is a similar "jbsr'" form of "bsr".

• Instructions supported by the 68020, but not the 68000, are not sup­
ported by as68. This includes all the bit instructions, the long form of
"b " the long form of "link" '~TRAP " and others.

cc' ' cc'

All Motorola instruction mnemonics which are different in as68 are listed
in Table 4-1. Instructions which are the same (except for leaving the"."
out of size suffixes) are listed in Table 4-2. Instructions not supported by
as68 are listed in Table 4-3.

4-2

Chrysalis 4.0 Technical Notes Using Assembler Language

Table 4-1

Motorola Instruction Equivalents in as68

Motorola Mnemonic as68 Mnemonic Comments

add, adda, addi add

and, andi and

B b not 32-bit form
cc cc

cmp, cmpa, cmpi cmp

bra bra not 32-bit form

bsr bsr not 32-bit form

chk chk word form only, omit length

divs divs divs.w form only, omit length

di vu di vu divu.w form only, omit length

eor, eori eor

link link word form only, omit length

move, movea mov

muls muls muls. w form only, omit length

mulu mulu mulu. w form only, omit length

or, ori or

sub, suba, subi sub

4-3

Using Assembler Language Chrysalis 4.0 Technical Notes

Table 4-2
Motorola Instruction Mnemonics Identical in as68

abed jsr rox.r

addq lea rte

addx Isl rtr

asl lsr rts

asr movem shed

bchg movep s cc
heir moveq stop

bset nbcd subq

btst subx ·"" neg

clr nop swap

not tas 1 cmpm

db pea trap
cc

exg reset trapv

ext rol tst

illegal ror un1k

jmp roxl

1. Do not use TAS on the Butterfly

Chrysalis 4.0 Technical Notes Using Assembler Language

Table 4-3

Motorola Instructions Not Supported by as68*

bf chg bkpt extb

bfclr callrn movec

bfexts cas pack

bf ex tu cas2 rtd

bfffo chk2 rtm

bfins cmp2 trap
cc

bf set divsl unpk

bftst divul

*All coprocessor instructions; All 32-bit branches

ADDRESSING MODES

as68 supports only those addressing modes supported by tfie 68000, and
does not support the extended set of addressing modes of the 68020.
Instructions using these modes must be hand assembled using . word
directives. as68 does not follow Motorola addressing mode syntax at all,
except for register direct addressing. Register names are in lower case
(i.e., "aO", not "AO"). Motorola syntax and the equivalent as68 format
for the supported address modes are sJ:iown in Table 4-4. as68 does not
support index scaling, base displacement, or indirect addressing modes.

4-5

··Using Assembler Language Chrysalis 4.0 Technical Notes

Table 4-4

Motorola Addressing Syntax and as68 Equivalents

Motorola Syntax as68 Syntax

Dn dn

An an

(An) an@

(An)+ an@+

-(An) an@-

(dl6' An) an@(d)

(d8.An,Xn) an@(d~~xn)

(d8,An,Xn. W) an@(d8'xn:w)

(d8,An,Xn.L) an@(d8'xn:l)

(d16'PC) pc@(d16)

(dS'PC,Xn) pc@(d8'xn)

(d8,PC,Xn. W) pc@(dS'xn:w)

(d8,PC,Xn.L) pc@(d8'xn:l)

symbol symbol

symbol.W symbol.w

symbol.L symbol.l

#value #value

THE MOVl.:M INSTRUCTION

The "movem" instruction has a somewhat different argument format than
that used by Motorola assemblers. Instead of using a register list, it takes
an immediate operand which is the appropriate register mask. Addition­
ally, this mask must be supplied in bit-reversed order if the instruction
uses the pre-decrement addressing mode. Thus,

MOVEM.L DO-D3/AO/A4, foo

4-6

Chrysalis 4.0 Technical Notes Using Assembler Language

becomes

moveml #/1 lOF, foo

in as68, while

MOVEM.L DO-D3/AO/A4, -(A7)

becomes

moveml #/F088, sp@-

mas.

OTHER DIFFERENCES FROM MOTOROLA SYNTAX

• Comments start with a ";" or "I" character.

• Labels must be followed by a ":" character.

• Local labels are named "<decimal number>$", and are forgotten any­
time a normal label is encountered. An example:

foo:
; start of scope of 1$

movl dO, dl
bmi 1$
movl dO, d2

1$:
subql #1, d3

; end of scope of 1$
bar:

#1, d2 addql
bne 1$; *** error: 1$ is no longer defined

bletch:

• Constants are assumed to be decimal unless otherwise indicated. A""""
prefixes octal constants, a "Ox" or "/"prefixes hexadecimal Gnes, and

4-7

Using Assembler Language Chrysalis 4.0 Technical Notes

a "%" prefixes binary constants. Hexadecimal constants may use
either upper or lower case letters. A trailing "." indicates a decimal
constant.

• Expressions are normally evaluated strictly left-to-right. "[" and"]"
may be used to group expressions like parentheses are used in c. The c
binary operators +, -, *, /, &, <<, and >> are supported in as68. The c
"%"operator (modulo) is""" in as68, and C "I" (bit or) is"!". The
unary c operators +, -, and - are also supported.

• A symbol may be defined by assignment from an expression with the
"="operator (e.g., foo = bar+3).

• Most of the pseudo-ops are different. Table 4-5 summarizes the avail­
able pseudo-ops.

4-8

Chrysalis 4.0 Technical Notes Using Assembler Language

Table 4-5

as68 Pseudo-ops *<delim>is any character not in <string>

Pseudo-op

.ascii

.asciz

.bl.kb

.bl.kw

.blkl

.zerob

.zerow

.zero!

.byte

. word

.long

.ins rt

.even

.text

.data

.bss

.end

.endpass

.globl

.comm

.defrs

. stabs

.stabn

.stabd

Arguments

<delim> <string> <delim>

<delim> <string> <delim>

<length>

<length>

<length>

<length>

<length>

<length>

<expr> [, <expr>] .. .

<expr> [, <expr>] .. .

<expr>[,<expr>] ...

"<filename>"

[<start address>]

<symbol>,[<symbol>]

<name>, <expr>

<symbol> ,<register> ...

"<string>", <type>,

Function

assemble string constant;*

zero-terminated string constant

reserve <length> bytes of storage

reserve <length> words of storage

reserve <length> longwords of storage

reserve and zero <length> bytes

reserve and zero <length> words

reserve and zero <length> longs

store 8-bit value of expr(s)

store 16-bit value of expr(s)

store 32-bit value of expr(s)

include contents of file <filename>

force word alignment

assemble into text segment of program

assemble into data segment of program

assemble into bss segment of program

stop assembly of current file with optional start address·

stop assembly immediately

defines <symbol>(s) as global(s)

define common block name and size

define <symbol>(s) as register name(s)

<other>, <desc>, <value> enter <string> in symbol table

<type>, <other>, <desc>,

<value> enter unnamed symbol in symbol table

<type>, <other>, <desc> enter unnamed symbol in symbol table

with value equal to current location

4-9

Using Assembler Language Chrysalis 4.0 Technical Notes

USER CONSIDERATIONS

• as68 sometimes "optimizes" your instructions. It is especially liable to
tum "addl #k, xn" into "addql #k, xn" if it can. It also will tum "movl
#0, foo" into "clr foo", which actually produced different behavior on
the 68000 (because it implemented "clr foo" as "and #0, foo"). This
will normally only bother you if you think the instruction should have
been a different length than the one it produced. It may also startle you
if you read the hex output in .168 files closely.

• Expression evaluation is left-to-right-no precedence! Use"(" and"]"
to force a different order of evaluation.

• Local labels have a scope only between real labels. This can often pro­
duce mysterious complaints about undefined expressions .

• Undefined expressions often produce the error message "span depen­
dency error''.

• Global or extern symbols should not be used in immediate expressions
in instructions which use short constants (e.g., btst, addq), because the
linker can't cope with them. If you do this, you may get unedifying
complaints from the assembler. One easy way to inadvertently cause
this is to reference an undefined symbol in such an expression when the
''-defineall'' switch has been turned on.

• The TAS, CAS, and CAS2 instructions (i.e., the instructions that use indi­
visible read-modify-write memory operations) are not supported by the
Butterfly. TAS is recognized by the assembler, but no warning is given
if it is used. On the Butterfly Plus, these instructions may be used on
local memory only. Remote references by those instructions will cause
bus errors. Unfortunately, a strange interaction between the 68020 and
the 68881 Pl\tlMU will also cause a bus error (even on a local reference)
if the Pl\tlMU needs to table-walk during the RMW instruction.

4-10

Chrysalis 4.0 Technical Notes Using Assembler Language

LINKING ASSEMBLY LANGUAGE TO C

It is relatively simple to call assembly language from C, and vice-versa.
First, you should understand C argwnent-passing conventions. The Green
Hills C compiler passes all arguments on the stack, with the first argwnent
lowest on the stack (just above the return PC). See Kernighan and Ritchie
for the details on exactly how various types of argwnents are converted
when passed as argwnents. If your routine will return a value, it should be
in dO when you exit your function. Double-precision floats are passed
back in dO and dl, with the least-significant part of the mantissa being in
dl. (If you enable the -X130 switch to the Butterfly C compiler, float
results are returned in fpO, instead. This option is disabled by default.)

When the subroutine is entered, the SP will be pointing at the return
address, with the first argwnent (if any), directly above it. Normal pro­
cedure is to use a6 as a frame pointer. If you fail to follow this conven­
tion, nothing will break, but you may confuse ddt or dbx if it has to do a
stack backtrace through your routine. If you do use the frame linkage, the
first instruction in your routine should be "link a6,#-<size of locals>",
and you should put "unlk a6" just before the rts at the end of your routine.
Don't forget that the value in the link instruction should be negative- this
is an easy error and results in a badly trashed stack. 1

Subroutine entry points callable from C must start with "_", which is
added by the c compiler to all symbol names. This name must also appear
in a .globl directive, so that the symbol is marked as externally visible.

A simple example which increments its long integer argument by one and
returns the result (called from C as "addone(value)"):

.globl addone
addone:

link a6,#-4
movl a6@(8), a6@(-4)
addl #1, a6@(-4)
movl a6@(-4), dO
unlk a6
rts

4-11

Using Assembler Language Chrysalis 4.0 Technical Notes

4-12

Chapter 5

Getting Started With DBX68

This docilm.ent is intended to help you get started using the source level
debugging and execution capabilities of dbx68. Dbx68 is a tool for
debugging programs under Chrysalis™ on the Butterfly™ machine.
Dbx68 runs on the host machine (VAX or SUN) and uses the Loader
Debugger Protocol (LDP) to interact with the ldpserver process that must
be running on the Butterfly.

The following is an example debugging session with the "oops" program
which is discussed in the Tutorial for Programming in the C Language.

NOTATION

In the example shown below, the user input appears after the front end
system prompt "#>" where # is an integer, or after the dbx68 prompt
"(dbx68)". The rest of the interaction consists of output generated by
dbx68. The "[#" and "#]" are delimiters surrounding comments to
explain the dbx68 commands that the user has typed.

This tutorial is intended for users of Chrysalis version Chrys4.0, and
describes dbx68 version 3.21.175.

5-1

Getting Started With DBX68 · Chrysalis 4.0 Technical Notes

STARTING THE LDPSERVER

Before starting the ldpserver, you must start up the network. In order to
determine whether the network is running, run "netstat s". N etstat throws
if the network is not up and running. Otherwise, it reports on the sockets.
If the network is not already running on your Butterfly machine, the fol­
lowing command will start the network:

take <machine-name> .netboot

At most one ldpserver process may be running on the Butterfly machine.
The following command will start the ldpserver:

run -kernel ldpserver &

If someone already started the ldpserver on the Butterfly machine, an error
message like the one following will appear:

LDPServer> Unable to complete bind operation to establish listen connec­
tion. LDPServer> There is another LDPServer running. LDPServer>
LDPServer exiting.

When the ldpserver starts up, it disowns itself to the NETSYSTEM object.
Therefore, if the netoff program is run, the ldpserver will be killed.

COMPILING FOR DBX68

In order to use all of the debugging features of dbx68, you must compile
and link your program with the -g flag to produce the symbol information
in the object file. If your program is not compiled with -g, you may use
the machine level debugging facilities of dbx68.

5-2

Chrysalis 4.0 Technical Notes Getting Started With DBX68

Now let's compile the program we want to debug:

13> ed -

14> ep /usr/butterfly/ehrys/Chrys40/tools/oops.e68

15> setenv CHRYSALIS /usr/butterfly/chrys/Chrys40/BF_PLUS

16> bee -g oops.e68

Please note that the compiler flag to disable the allocation of local vari­
ables to registers (usually -X18) is helpful for reliable inspection of locals.
Alternatively, the register variable may be examined near a reference to
the variable.

CREATING THE BUTTERFLY ENVIRONMENT

In the multi-user environment of Chrysalis 4.0, the supercluster forms the
individual user's context. You must create a supercluster via the remote
shell's blogin program or via telnet. In either case, the name you supply
to the. "login:" prompt identifies your supercluster. You may set up any
environment variables required by your program before you begin debug­
gmg.

If you should forget to set up the Butterfly environment and you've
already run dbx68, you may use the dbx68 "sh" command. This com­
mand allows you to submit a command line to the shell for execution. In
this manner, you may run blogin to create a supercluster.

5-3

Getting Started With DBX68 Chrysalis 4.0 Technical Notes

Here is the source code for the oops program:

5-4

/* erroneous demo program */

tinclude <public.h>

subr(x,s)

int x;

char * s;

printf(" in subr: x=%d, s=

throw(CHECK, s, x); /* cause a throw to show off backtrace */

rnain(argc, argv)

int argc;

char *"argv[];

short foo;

char *odd_ptr;

/* place to put uninteresting results */

/* pointer to odd address */

if (argc ! = 2)

printf("usage: oops {batsl}O);

else switch (argv[l] [0])

case 'b':

printf("oops: causing bus errorO);

foo =*((short*) NULL); /*don't have read access here */

break;

case a :

printf("oops: causing address errorO);

odd_ptr = (char *) OxFDOOOl;

foo =*((short*) odd_ptr);

break;

case 't':

I* pointer to odd address */

I* word read at odd address */

printf("oops: throwing awayO);

throw(FAILED, "oops: requested throw", 0);

break;

case 's ':

printf("calling subr(20,

subr(20, "foobar 0);

break;

case 'l':

while (TRUE) /* loop forever */

Chrysalis 4.0 Technical Notes Gett!ng Started With ~~X68

break;

default:

printf("oops: invalid argument '%s'O, argv[l]);

break;

DEBUGGING

Let's indicate to dbx68 that we want to run the progr~m immediately by
specifying the -r switch. Dbx68 will exit if the program terminates suc­
cessfully.

17>dbx68 -r oops.68

dbx68 version 3.21.175 of 12/21/87 12:06 (socrates.bbn.com).

Type 'help' for help.

enter target host name or Internet address: jolt.bbn.com

enter target supercluster name (default is 'jvd'):

connected to existing supercluster: jvd

loading program ...

usage: oops {batsl}

18>

Now let's debug the program without running it immediately. Notice that
the ".68" file name extension is optional.

18>dbx68 oops

dbx68 version 3.21.175 of 12/21/87 12:06 (socrates.bbn.com).

Type 'help' for help.

reading symbolic information ...

reading '/usr/butterfly/chrys/Chrys40/BF_PLUS/chrys.syms'

(dbx68)

When starting up, dbx68 reads the Chrysalis symbols found in the file
"chrys.syms". In order to locate the chrys.syms file, dbx68 searches the
B _PATH environment variable.

5-5

Getting Started With DBX6S- Chrysalis 4.0 Technical Notes

Now dbx68 waits for further commands:

5-6

(dbx68) conn jolt.bbn.com [# Establish connection to ldpserver #]

connected to existing supercluster: jvd

(dbx68) func main [# Identify the function name #]

(dbx68) stop if argc != 2 [# Set up a conditional breakpoint #]

[l] stop if oops.main.argc <> 2

(dbx68) trace main [# Ask dbx68 to trace entry/exit of main #]

[2] trace main

(dbx68) run[# Run the program with NO arguments #]

loading program ...

calling main(argc = 1, argv = Oxfb000710, Oxfb000790) from function

process_startup

[2] stopped in main at line 21 in file "oops.c68"

21 if (argc != 2)

(dbx68)

(dbx68) print argc

l

(dbx68) status

[l] stop if oops.main.argc <> 2

[2J trace main

(dbx68)

(dbx68) delete l

(dbx68) cont

[# Remove breakpoint/trace item number l #]

usage: oops {batsl}

returning 0 from main

execution completed, exit code is 0

(dbx68) delete 2 [# Remove breakpoint/trace item number 2 #]

(dbx68) status

(dbx68)

Chrysalis 4.0 Technical Notes Getting Started With DBX68

Let's try some other dbx68 commands:

(dbx68) list 14,24 [# Examine the source file #]

14 main(argc, argv)

15 int argc;

16 char* argv[];

17

18 short trash; /* place to put uninteresting results */

19 char *odd_ptr; /* pointer to odd address */

20

21

22

23

24

if (argc != 2)

printf(nusage: oops {batsl}\n");

else switch (argv[l] [0])

(dbx68) stop at 21 [# Set a breakpoin~ at line 21 #]

[4] stop at "oops.c68n:21

(dbx68) status [# Examine active stop/trace commands #]

[4] stop at noops.c68n:21

(dbx68) runt [#Run program with argument ''t'' #]

[4] stopped in main at line 21 in file noops.c68n

21 if (argc != 2)

(dbx68) where [# Print procedure call stack trace #]

main(argc = 2, argv = Oxfb000710, Oxfb000790), line 21 in "oops.c68"

process_startup (0x24eb4430, OxO). at Ox4004e

process_seed() at Oxfd00c2ca

(dbx68)

(dbx68) print argc, *argv

2 noops.68"

(dbx68) next [# Execute up to next source line #]

stopped in main at line 24 in file noops.c68"

24 else switch (argv[l] [0])

(dbx68) where

main(argc = 2, argv = Oxfb000710, Oxfb000790), line 24 in "oops.c68"

process_startup(Ox24eb4430, OxO) at Ox4004e

process_seed() at Oxfd00c2ca

(dbx68)

(dbx68) cont [# Continue execution from where it stopped #]

oops: throwing away

(oops) (OID=Ox24062680) : throw SYS-FAILED , Number OxO @ 04037e

"oops: requested throw": OxO

program frozen by throw 4224

5-7

Getting Started With DBX68 Chrysalis 4.0 Technical Notes

throw 00001080: oops: requested throw (00000000) in main at line 36
in file ,.oops

36

(dbx68) quit

19>

throw(FAILED, "oops: requested throw", 0);

Note: The throw code is 4224, hexadecimal 1080, (SYS-FAILED) and the
throw value is 0.

Dbx68 also allows you to connect to an existing process. Let's try execut­
ing oops on the Butterfly machine and then asking dbx68 to debug the pro­
cess.

Butterfly machine:

(cluster 8) [24] oops 1 [t Start oops running #]

Different Butterfly Window:

(cluster 8) [24) ps -x -on 24 [# Find oops process id t]

Process State Name

240115£0: w (/telnetd. 68)

24011 7d0: w (/telnetd. 68)

24043800: R (/usr/jvd/oops.68)

240d2170: w (nbshell. 68)

24034080: w (nbshell. 68)

24044lc0: R (ps.68)

2400la90: Pr (wm. 68)

240012b0: w <epoch scheduler>

24001430: w <remote demon>

2400lla0: w <startup>

(cluster 8) [24]

Dbx68 interaction:

5-8

Chrys@lis 4.0 Technical Note.s Getting Started V\fith DBX68

19>dbx68 oops

dbx68 version 3.21.175 of 12/21/87 12:06 {socrates.bbn.com).

Type 'help' for help.

reading symbolic information

reading '/usr/butterfly/chrys/Chrys40/BF_PLUS/chrys.syms' ...

{dbx68) alias jolt "conn jolt.bbn.comn [# Define an alias #]

{dbx68) jolt [# Connect to jolt.bbn.com #]

connected to existing supercluster: jvd

{dbx68) process 24043800 [# Start debugging the running process #]

No filename provided, default is oops.68

reading symbolic information ...

reading '/usr/butterfly/chrys/Chrys40/BF_PLUS/chrys.syms'

(dbx68)

(dbx68) where

main{argc = 2, argv = Oxfb000710, Oxfb000790), line 43 in "oops.c68"

process startup(Ox24792290, OxO) at Ox4004e

process seed() at Oxfd00c2ca

(dbx68)

{dbx68) list 40,45

40 subr(20, "foobar");

41

42

43

44

45

(dbx68)

break;

case 'l ' :

while (TRUE)

break;

default:

/* loop forever */

{dbx68) print argc, argv[l] [OJ[# Print out some variables #]

2 'l'

(dbx68) stop at 43

[l] stop at "oops.c68":43

(dbx68) status

[1] stop at "oops.c68":43

(dbx68) cont

[1] stopped in main at line 43 in

43 while (TRUE)

(dbx68) where

file "oops.c68"

/* loop forever */

main(argc = 2, argv = Oxfb000710, Oxfb000790), line 43 in "oops.c68"

process_startup(Ox24792290~ OxO) at Ox4004e

process seed() at Oxfd00c2ca

(dbx6B)

(dbx68) cont

[1] stopped in main at line 43 in file "oops.c68"

43 while (TRUE) /* loop forever */

(dbx68)

5-9

Getting Started With DBX68
. . . ~ ~ ··- . ~ .. Chrysalis 4.0 Technical Note~

Let's execute oops on the Butterfly machine with a different option and
then look at that process:

Butterfly machine:

(cluster 8) (24] oops s

calling subr(20, "foobar")

in subr: x=20, s="foobar"

(/usr/jvd/oops.68) (OID=Ox24112060): throw SYS-CHECK , Number OxO @

0402c2 "foobar": Oxl4

Dbx68 interaction:

(dbx68) process 24112060

No filename provided, default is oops.68

reading symbolic information ...

reading '/usr/butterfly/chrys/Chrys40/BF_PLUS/chrys.syrns'

(dbx68) where

_catch_df() at OxfdOOlebe

_throw(Ox2080, Ox208b4, Oxl4) at Oxfd00fd88

subr(x = 20, s = "foobar"), line 10 in "oops.c68"

main(argc = 2, argv = Oxfb000710, Oxfb000790), line 40 in "oops.c68"

process_startup(Oxl4ed2520, OxO) at Ox4004e

process seed() at Oxfd00c2ca

(dbx68)

(dbx68) list subr

4

5 subr(x,s)

6 int x;

7 char * s;

8

9

10

11

12

13

printf(" in subr: x=%d, s=

throw(CHECK, s, x); /*cause a throw to show off back~

14 main(argc, argv)

(dbx68) print x,s

20 "foobar"

5-10

Chrysalis 4.0 Technical Notes

(dbx68)

(dbx68) quit [:jj: Exit dbx68 :jj:]

Getting Started With DBX68

This introduction should give you enough information to begin debugging
using dbx68. For further details, see the dbx68 manual page (under Host
Tools) and the ldpserver manual page (under Butterfly Tools).

5-11

Chapter 6

Butterfly Event Logging Facility

The Butterfly Event Logging Facility can be used to produce a times­
tamped log of events that occur during the execution of a Butterfly pro­
gram. The resulting event or history log can then be used to understand
dynamic aspects of the program's behavior. This can be an aid to debug­
ging and to improving program performance.

This chapter describes the event logging facility and how to use it.

DESCRIPTION

There are three parts to the Butterfly Event Logging Facility:

1. A collection of event logging functions.

To use the facility with a Butterfly program, it is necessary to instru­
ment the program by inserting calls that invoke event logging func­
tions. These event logging functions are accessible to c language and
FORTRAN programs.

2. The sendelog utility.

Execution of a Butterfly program instrumented with calls that invoke
event logging functions produces an event log on the Butterfly. The
Butterfly utility sendelog can be used to transfer the event log to the
front end host for display and analysis. sendelog uses the Butterfly

6-1

· Butterfly Event ·t:'ogging Facitity · - · ·Chrysalis 4.0 Technical Notes· · ·

"streams package" to transfer the event log.

3. The gist display program.

The gist program can be used to display a Butterfly history log graphi­
cally. Gist uses the graphics capabilities of the X window system.
Consequently, the X window system must be running on the host when
gist is used.

The following steps are necessary to use the event logging facility with a
Butterfly program:

1. The program must be instrumented by inserting calls to event logging
functions.

2. The instrumented program must be run on a Butterfly to produce an
event log.

3. The sendelog utility must be run on the Butterfly to move the event log
to a host for display.

4. The gist program must be run on the host to display the event log.

The sections that follow describe each of these steps.

INSTRUMENTING A PROGRAM

To use the package, calls to a "log event" procedure are inserted into a
program. The file /usr/butterfly/src/gist/example.c is an example of a C

program that has been instrumented in this way.

Each entry in an event log ·contains

• A time stamp (the real time clock value when the event was recorded);

• An integer event code that serves to identify the event;

• An arbitrary 32 bit data item quantity. The data item is included in the
log entry for use by analysis and presentation programs, such as gist.

6-2

Chrysalis 4.0 Technical Notes Butterfly Event Logging Facility

The event log produced by the logging package is implemented by a
related collection of Chrysalis objects.

There is a "log" object for each processor. The object for a proces­
sor log contains the entries for each event logged on that processor.

There is a "directory" object that serves to define the event log. It
catalogs the individual processor logs that make up the log.

The following must be done to instrument a .Butterfly program:

1. Include elog.h

#include <elog.h>

2. A call must be inserted into the program to make the directory object
for the event log. The directory object must be created before any

-other event logging functions are invoked by the program.

From C this is done by

ELOG_INIT (name)

name is a character string used to generate a name for the event log;
the name generated is "name.elog".

From FORTRAN this is done by

CALL ELOG_INIT (NAME, CLEAR)

3. Each type of event to be logged must be defined so that the event type
can be handled properly by display and analysis programs.

From c an event is defined by

ELOG_DEFINE (event_code, event_name,
data_format_string)

6-3

Butterfly Event Logging Facility Chrysalis 4.0 Technical Notes

event_ code is an integer which uniquely identifies the event type. The
use of small integers is recommended. event_ name is a character
string. It is typically used by display programs, such as gist, to label
events. data Jormat _string is a "printf'' format string which specifies
how to print the data item logged with the event.

From FORTRAN this is done by

CALL ELOG_DEFINE (EVENT_CODE, EVENT_NAME,

DATA_FORMAT_STRING)

For example, the C statement:

ELOG_DEFINE (4, "State variables updated", "Iteration
%d");

defines event type 4 for which the data item logged is an integer
representing an iteration count.

4. Prior to logging any events on a processor, the object for the processor
log must be created.

6-4

From C this is done by

ELOG_CREATE (name)

nameo is a character string which specifies an event log
("name.~log") previously initialized by ELOG_INIT.

From FORTRAN this is done by

CALL ELOG_CREATE (NAME)

NOTE: In the present implementation, only one process on a proces­
sor may execute ELOG_CREATE for a given event log (and log events
to that log).

Chrysalis 4.0 Technical Notes. .. Butterfly.Event Logging Facility_

5. After the directory for an event log has been created, the event types
defined, and the log for a processor created, the processor may log
events.

From C an event is logged by

ELOG_LOG (event_code, data)

event_ code specifies an event type previously defined by
ELOG_DEFINE, and data is an arbitray 32-bit data item that is recorded
along with the time and the event_code.

From FORTRAN this is done by

CALL ELOG_LOG (EVENT_CODE, DATA)

The event logging facility includes functions beyond the four (ELOG_INIT,

ELOG_DEFINE, ELOG_CREATE, ELOG_LOG) described above. These addi­
tional functions are described in the last section of this chapter.

NOTE: The c language interface described above is implemented by mac­
ros. The compile time symbol ELOG controls how the macros expand. If
ELOG is defined, the macros expand to invoke the appropriate event log­
ging functions. ff ELOG is undefined, the macros expand to null state­
ments. This makes it possible to control at compile time whether an
instrumented program creates an event log. ff ELOG is undefined, then no
runtime overhead is incurred by the presence of the event log instrumenta­
tion.

THE SENDELOG UTILITY

The sendelog utility is used to move event logs from the Butterfly to a host
for analysis.

To use sendelog:

6-5

Butterfly Event logging Facmty . Chrysalis 4.0·Technical-Notes· ·

1. Make sure the streams-server is running on the target host and the
necessary Butterfly enviroment variables (STREAMS_HOST,

STREAMS_PASSWORD, etc.) are set properly.

2. Run sendelog on the Butterfly. To transfer an event log named
"program.elog" to the file "/usr/jones/data/program.elog":

(new) [f] sendelog program /usr/jones/data/program

sendelog responds by printing its progress as it sends the event log.

THE GIST PROGRAM

The best way to learn how to use gist is to try it. The file
/chrys/Chrys40/Examples/gist_example.elog is an example event log that
can be used with gist.

gist manages 3 separate windows.

1. Trace Window.
The trace window is the largest window, and occuppies most of the
screen. It contains an event trace for each processor. The set of pro­
cessor traces make a 2 dimensional processor-event versus time
display. Time advances on the horizontal axis and the processor axis
is the vertical axis. Each processor trace is a horizonal line. Logged
events are displayed as event boxes on the appropriate processor trace.

The user can scroll forward and backward along the time axis, as well
as zoom in and out. It is also possible to zoom and scroll the proces­
sor axis.

2. Legend Window.

6-6

The legend is a small window that appears to the right of the trace
window. It contains information about the log currently being
displayed and can be used to control which event types are displayed.
The legend window contains an entry for each event type (defined via
ELOG_DEFINE). The entry includes code for the event and its name.

Chrysalis 4.0 Technical Notes Butterfly Event Logging Facility

In addition, part of the entry is a box that indicates whether that event
type is currently displayable; the box is a "button" that may be tog­
gled via a mouse click to control whether the event type is displayable.

3. Prompt Window.
The Prompt Window appears beneath the Legend Window. It is used
to help the user by prompting for expected actions.

STARTING GIST

gist is started on the host by:

shell> gist [eventlog]

for example:

shell> gist /usr/butterfiy/chrys/Chrys40/Examples/gist/gist_example

Note that the .elog filename is not specified.

If no event log is specified, gist simply prompts for an event log name:

shell> gist
Enter event log name:

After opening the event log, gist displays the initial portion of it.

Commands to gist are entered by means of a popup menu. To popup the
command menu, move the mouse to the Trace Window and press the mid­
dle mouse button and hold it down. To select a command from the menu,
move the mouse over the command desired and release the middle mouse
button; to abort the command selection, move the mouse out of the menu
and release the middle button.

Some commands gather parameters by means of dialog boxes. To select a
particular parameter to specify, move the mouse over the entry and click
any mouse button. For "text" parameters, the desired text may then be

6-7

Butterfly Event Logging Facility Chrysalis 4.0 Technical Notes

entered. The specification of single line "text" parameters can be ter­
minated by a carriage return or by moving the mouse out of the text region
and clicking it; the specification of multiple line "text" parameters can be
terminated only by moving the mouse out of the text region and clicking.
The dialog box can be completed by clicking the mouse over the "OK" or
"Cancel" buttons, or, if no entry is selected, by typing a carriage return.

Controlling the Trace Display

When an event log is opened, an initial trace display is created. The initial
trace display contains a processor trace for each processor in the log,
beginning at time = 0 (the time of the first event in the log). The space
between processor traces is chosen so that every trace can be displayed.
The scale of the time axis is arbitrarily chosen to display about 3000
microseconds of the event log.

Logged events are indicated by boxes on processor traces. If there is
enough space between traces, event codes are displayed within the event
boxes. (Generally, if there are 32 or fewer processors, codes can be
displayed within the boxes; if there are 64 or more processors they can­
not.)

Controlling the Events Displayed

When gist constructs the initial event log display, it displays event boxes
for all event types. The Legend Window can be used to control which
event types gist displays. The small sqµare 1,Joxes to the left of the event
descriptions can be used to control whether or not eventS of a particular
type are to be displayed. A box can be "toggled" by moving the mouse
over the box in the Legend Window and clicking any mouse button. After
the desired event types to be displayed have been specified, moving the
mouse over the box labeled Make Event Display Changes and clicking
any mouse button will cause gist to change the event types that are
displayed.

6-8

-Chrysalis 4.0 Technical. Notes- . . Butterfly Event Logging Facility -

Measuring Time Between Events

The Time Ruler menu command can be used to measure the time between
. 2 positions in the Trace Window. After selecting the Time Ruler com­

mand, the mouse is used to specify a fixed "anchor" point for the ruler.
After the anchor point is fixed, gist "tracks" mouse movements and
displays the time between the anchor point and the current mouse position.

Zooming and Scrolling the Time Axis

The bottom right of the trace display contains 6 mouse sensitive buttons
used to control the time region of the event log appearing on the screen.
Clicking any mouse button while the mouse is positioned above one of
these buttons will invoke the indicated function.

The "zoom in" and "zoom out" buttons control the scale of the time axis.

The 4 scroll buttons "start", "scroll left" (labeled with a left arrow),
"scroll right" (labeled with a right arrow) and "end" can be used to move
back and forth along the time axis.

The scroll left and scroll right buttons scroll the display by half the width
of the onscreen time axis.

Sometimes it is desirable to more precisely control the onscreen portion of
the event log. There are a variety of menu commands that allow you to
exercise such control, including:

Search For Event

This command allows you to specify an event to find. You can
specify the event, the processor for the event (any processor or a
specific processor), the search direction (forward or reverse in the
log), the time from which to begin the search, and the action to take
if the event is found (scroll to the event or zoom the time axis to
include the event).

6-9

Butterfly Event Logging FaoiUty . - . Chrysalis 4.0 Technical Notes .

Set Onscreen Min To ...

This command scrolls as required to provide a new onscreen
minimum for the time axis. The time value for the new minimum
can be specified in terms of a specific onscreen event (via the
mouse), a specific onscreen time (via the mouse), or a specific time.

Set Onscreen Max To •..

This command scrolls as required to provide a new onscreen max­
imum for the time axis. The time value for the new maximum can
be specified in terms of a specific onscreen event (via the mouse), a
specific onscreen time (via the mouse), or a specific time.

Scale By .••

This command changes the scale of the time axis such that the ori­
gin (the onscreen minimum) remains unchanged. The amount to
scale can be specified in terms of a specific onscreen event (via the
mouse), in which case the ~cale will be changed so that the event is
the new onscreen maximum, or in terms of a specific onscreen time
(via the mouse), in which case the specified time becomes the new
onscreen maximum.

Set Center For Zoom To ...

This command changes the time value used for centering the zoom
operations invoked by the zoom in and worn out buttons. The new
zoom center can be specified in terms of an onscreen event (via the
mouse) or an onscreen time (via the mouse).

Zoom •••.

6-10

This command can be used to zoom in or out on the time axis is a
more controlled fashion than that provided by the zoom in and
zoom out buttons. The zoom operation can be specified in terms of

Chrysalis 4.0 Technical Notes -Butterfly Event Logging Facility

an onscreen area that is to occupy the entire Trace Window (zoom­
ing in), or in terms of a compression (zooming out) or expansion
(zooming in) of an onscreen area anchored by the onscreen
rmmmum.

Zooming and Scrolling the Processor Axis

The lower right side of the trace display contains 6 buttons used to control
the scale of the processor axis and the processors traces appearing on the
screen (for logs containing sufficently many processors).

The "zoom in" and "zoom out" buttons control the scale of the processor
axis.

The 4 scroll buttons "start", "scroll up" (labeled with an up arrow),
"scroll down" (labeled with a down arrow) and "end" can be used to
move up and down along the processor axis.

NOTE: Zooming out both the time and the processor axes often reveals
patterns of events not so readily apparent in other more "normal" views.

Obtaining More Detailed Views

Events

Positioning the mouse over an event box and clicking the right mouse but­
ton pops up an event detail box that contains information about the event,
including the event time, the event code, the event name, and the data
logged with the event (displayed in the format specified by the
ELOG_DEFINE call used to define the event).

When an event detail box is up, moving the mouse over it or over the
corresponding event box and clicking the left mouse button will cause the
event detail box to be taken down.

6-11

Butterfly Event Logging Facnity Chrysalis 4.0 Technical Notes

Positioning the mouse over a processor trace line and clicking the right
mouse button pops up an event detail box for the event nearest the mouse
(if any), and causes the program to enter a mode where clicking the left
mouse button pops up event detail boxes for successively earlier
(onscreen) events and clicking the right mouse button pops up event detail
boxes for successively later (onscreen) events. Clicking the middle mouse
button exits this mode. To indicate entering this mode, the mouse cursor,
normally an "X" with a hole in the center, changes shape to a small box
between left and right arrows; upon exiting the mode, the normal mouse
cursor is restored.

Positioning the mouse over a processor trace line and clicking the left
mouse button will cause any event detail boxes for that processor trace to
be taken down.

Processors

When there is enough space between processor traces, the traces are
labeled. The traces are not labeled if they are too closely spaced, either
because there are too many (typically > 100) or because the user has
zoomed out too far.

If the processor traces are not labeled, positioning the mouse to the left of
the processor axis above the time axis and clicking the right mouse button
pops up the label for the nearest processor trace, and causes the program
to enter a mode where clicking the left mouse button pops up labels for
traces successively above and clicking the right mouse button pops up
labels for traces successively below. Clicking the middle mouse button
exits this mode. To indicate entering this mode, the mouse cursor changes
to a small box ·betwe~n arrows pointing to the upper left and lower right;
upon exiting the mode, the normal mouse cursor is restored.

Obtaining Hardcopy

The Dump Screen To File menu command can be used to write the con­
tents of the Trace Window and the Legend Window to a file in PostScript

6-12

Chrysalis 4~0 Technical Notes · Butterfly· Event·LoggiAg Facility· - ·

format. The resulting file can then be printed on a PostScript printer. The
Dump Screen To File allows the user to specify a caption for the screen
dump.

Exiting gist

To exit gist, position the mouse over the QUIT button at the bottom center
of the trace window and click any mouse button. A small window will
pop up asking for confirmation.

Alternatively, the "quit" command may be selected from the command
menu. Confirmation will be requested.

Upon exiting, the Trace, Legend, and Prompt windows are destroyed.

THE EVENT LOGGING FUNCTIONS

The following summarizes the include file and the functions required to
instruument a Butterfly program to produce an event log.

#include <elog.h>

elog.h contains definitions required by the event logging routines.

ELOG_INIT (name)

ELOG_INIT is a macro in the C environment and a subroutine in the
FOR1RAN environment. It creates a directory object for the log
"name.elog". ELOG_INIT must be called before any other event
logging functions are used. In the C environment ELOG_INIT

expands into a call to the routine elog_init if the compile time sym­
bol ELOG is defined; otherwise, it compiles into a null statement.

6-13

Butterfly Event-L-ogging Facility.-· Chrysalis 4.0-Tecl:lni.cal.Notes -

ELOG_CREATE (name)

ELOG_CREATE is a macro in the C environment and a subroutine in
the FORTRAN environment. It creates a log object for the processor
that calls it for the log "name.elogn. ELOG_CREATE must be called
on a processor before any events are logged by the processor.

In the C environment ELOG_CREATE expands into a call to the rou­
tine elog_create if the compile time symbol ELOG is defined; other­
wise, it compiles into a null statement.

ELOG_DEFINE (event_code, event_name, data_format_string)

ELOG_DEFINE is a macro in the c environment and a ·subroutine in
the FORTRAN environment. It is used to define an event type.
event_ code is an integer which uniquely identifies the event type.
The use of small integers is recommended. event name is a charac­
ter string. It is typically used by display programs, such as gist, to
label events. data Jormat _string is a "printf" format string which
specifies how to print the data item logged with the event.

ELOG_DEFINE should not be used until ELOG_INIT has been called.

In the C environment ELOG_DEFINE expands into a call to the rou­
tine elog_define if the compile time symbol ELOG is defined; other­
wise, it compiles into a null statement.

ELOG_LOG (event_code, data)

6-14

ELOG_LOG is a macro in the c environment and a subroutine in the
FORTRAN environment. It. is used to log an event of type
event_ code along with a 32 bit data item.

A processor log object can hold 5461 events. ELOG_LOG performs
a range check prior to logging the event. If the log object for the
processor is full, a warning message is printed and events are no

Chrysalis 4.0 Technical Notes Butterfly Event Logging Facility-

longer logged for the processor.

In the C environment ELOG_LOG expands into code that logs the
event if the compile time symbol ELOG is defined; otherwise, it
compiles into a null statement.

ELOG_FAST_ELOG (event_code, data)

ELOG_FAST_LOG is a macro in the C environment and not available
in the FORTRAN environment. It is similar to ELOG_LOG but is
somewhat faster (and less safe) since no range check is performed
prior to logging the event.

ELOG_FAST_LOG expands into code that logs the event if the com­
pile time symbol ELOG is defined; otherwise, it compiles into a null
statement.

ELOG_RESET

ELOG_RESET is a macro in the C environment and a subroutine in
the FORTRAN environment. It empties the event log for a processor.

In the c environment ELOG_RESET expands into a code that resets
the event log for the processor if the compile time symbol ELOG is
defined; otherwise, it compiles into a null statement.

6-15

.....

Chapter 7

STREAMS Remote File System Library

As applications for the Butterfly have developed, the need for ready
access to files resident upon other hosts has become apparent. This need
was first served by the rfs library. STREAMS is an outgrowth of the con­
cepts cgntained in the rfs library, but provides higher performance (on the
order of 250 000 bits/sec throughput on an unloaded system), and the abil­
ity to have files open on multiple remote hosts simultaneously. The server
has been similarly enhanced to use multiple processes, perform limited
authentication, and to permit access control on a per-file basis. It also is
designed to work on both V AXs and SUNs without modification. The price
paid for this increased flexibility is the ability to do arbitrary seeks on
remote files.

In addition to providing a new library for use in programs requiring high­
speed streams, new utilities are introduced with this library. These utili­
ties permit redirection of both input and output to remote files for arbitrary
Butterfly programs. These new programs provide the user with the ability
to do journalling and to run command scripts from remote host files, all
without the user's programs having to know about the file system. Other
new utilities allow the user to measure the throughput of the streams pack­
age at any time.

7-1

STREAMS Remote -File· System Library Chrysalis 4.0 Teehnica., Notes-

SYSTEM DESCRIPTION

As with the rfs library, the streams library provides basic functions for
opening, reading, writing, and closing files. On the Butterfly end, these
functions are contained in a single module, streams-lib.068 which is in
libcs.a, the default C language function library. On the host end, these
functions are performed by a program called streams-server. To the
Butterfly user, these programs operate as a single system.

The streams library provides eight basic functions that the user can call.
The functions are as follows: n_initialize_net_files (); fileptr = n_open
(filename, access); n_read (fileptr, buffer_address, byte_count); n_write
(fileptr, buffer_address, byte_count); n_close (fileptr); n_set_host (host­
name); n_set_quiet (boolean) n_set_port (portnumber) n_set_password
(password);

Manual pages for each function can be found in this section of the manual.

n _initialize_ net _files is a function that must be called before any other
streams function can be invoked. Its purpose is to initialize the data struc­
tures that are used for keeping track of the open files on the Butterfly side
of the system. n_open takes arguments like the UNIX/open function, and
returns a pointer to a structure of type FILE in the communications seg­
ment of the process. n_read and n_write both operate like read and write
in UNIX; they attempt to transfer a buffer of length byte count and return
the actual number of bytes read or written. n _close closes the file and
sends an end-of-file indication to the other end.

Note that no n_seek operation is provided. This omission is due to the
way that the streams library is implemented. Every file opened by the user
results in a unidirectional TCP stream being opened between the user and
the server. No overhead is added to this stream once it is opened; all
n _read and n _write operations simply map into read and write operations
on the corresponding TCP connection. This lack of overhead is the reason
that the data can be transferred between the two systems so quickly.
n_open and n_close operations are negotiated over a separate control TCP
connection. Since the control information is separated from the data

7-2

Chrysajis 4.0 Technical Notes STREAMS Remote File System Library

information, synchronization of the two streams is difficult. Since most
users polled want simply to read and write data without seeking, we have
decided to ignore the synchronization problem by not providing seeks.

One of the enhancements provided by the streams library is the ability to
open files on many different hosts simultaneously. The user can specify
the host she wishes to connect to by prefixing the filename parameter of
the n open subroutine with a four-octet internet address followed by a
colon(:). Therefore, the call

n_open ("128.11.1.1:/etc/motd", "r");

opens the file letclmotd on host 128.11.1.1.

Because servers running on different hosts may not be listening on the
same TCP ports, a similar mechanism is provided for specifying the port
number to which to connect. If the host address is followed by a comma
and a number in the filename of the n _open, this number is used as the
foreign port address for future connection attempts by the user. There­
fore, the call

n_open (" 128.11.1.1,25252:/etc/motd", "r");

will attempt to connect to the server on port 25252 of host 128.11.1.1 and
then open file /etclmotd.

To avoid confusion resulting from several users having streams servers
running on the same host, each server has a password associated with it
that the user end must supply when opening a file. This password may
also be specified in the file name after the host address by enclosing it in
square brackets([]). Therefore, the call

n_open ("128.l l.1.1,12345[MyPassword]:/etc/motd", "r");

will open a connection to the streams server listening on port 12345 on
host 128.11.1.1, specify a password of MyPassword, and open file

7-3

.$TRE.AMS R~mote.Fjle System Li!>r:ary Chrysalis 4.0 Technical Notes .

I etc!motd for reading.

Host address, port number, password, and file name must be specified in
that order.

Most users will not want to be bothered typing in all· these substrings just
to open a simple file. For this reason, all of the above filename parameters
are optional. If a parameter is not specified by the user in the filename, the
user's environment variables are searched for a corresponding streams
variable. Host addresses are specified by the variable STREAMS_ HOST,
port numbers by the variable STREAMS_PORT, and passwords by the
variable STREAMS _PASSWORD. Therefore, the effect of the last com­
mand mentioned above could have been achieved by preceding the
n _open call with the following shell commands (shown with the shell
prompt):

(new) [f] setgenv STREAMS_HOST 128.11.1.1 (new) [f] setgenv
STREAMS_PORT 12345 (new) [f] setgenv STREAMS_PASSWORD
My Password

and then invoking a program that executes

n_open ("/etc/motd", "r");

Should a program wish to override the environmental defaults for these
parameters, three subroutines are provided to allow it to do so:
n set host, n_set_port, and n_set_password. n set host and
n_set_password accept strings as arguments; n_set_port takes an integer.
A parameter changed with one of these three routines will stay changed
with a program until either the next occurrence of such a call or the next
time the user overrides the defaults with a filename specification. If any
of these routines are provided NULL or zero as an argument, they will
change the default back to the appropri~te environment variable.

If host, port, and password parameters are not specified in either the
environment or in the filename, then, as a last resort, compiled-in defaults

7-4

- - Chrysalis 4.0 Technical Notes- S:r'REAMS Remote File System Library

are used. The streams host will be whatever the system's BOOTHOST
variable is set to. The port is STREAMS_SERVER_PORT as defined in
<net/streams.h>. (The distributed value is 12345.) If the user neglects to
assign a password in either the environment or filename, a password of ""
(the null string) will be supplied.

These three techniques give the user a great deal of flexibility regarding
which hosts, ports, and passwords are to be used when opening files.
n_set_quiet suppresses library informational messages if given a non-zero
argument, and re-enables those messages if given a zero argument.

THE SERVER

The streams-server program implements the "back-end" of the streams
system. This program accepts TCP connections generated by the streams
library functions, opens disk files on behalf of the user, and then forks a
copy of itself for each open file.

The server produces logging messages on its standard output file. These
messages are time stamped and monitor the opening and closing of files
by the server. Most users will wish to redirect the standard output to a file
for use should a problem occur.

The only user parameter accepted by the server currently is an alternate
port number. If started with no arguments, the streams server will listen
on TCP port 12345. Should this port be busy (for example, it may be in
use by another streams server on the same machine), it may be desirable
to start the streams server on a different port. If the streams server is
started with one argument, the argument specifies the port number that
should be used for accepting connections.

When the streams server is started, it will prompt you for a password for
use in accepting connectio~s from Butterfly users. Echoing will be turned
off while you enter the password. Once the password has been set, the
streams server will fork a subprocess of itself running in the background.
Should you wish to kill the streams server at a later time, the process

7-5

~ - - STREAMS·Remote·File System Library Chrysalis-4.0 Teclmieal Notes· -

number of the child process is printed at the time of startup and is in the
first line of the log file.

AN EXAMPLE

The following is a simple program that reads a file and prints it on the
standard output using the streams library.

7-6

I*

* type.c68

*
* Open a streams file and print it on the standard output. e.g .•

* type 128.11.1.l:letclmotd

*!

Jinclude <public.h>

tinclude <stdio.h>

char buffer[2048];

FI_LE *read_file;

FILE *n_open ();

main (argc, argv)

int argc;

char **argv;

register int count;

I* place into which to read data *I

!* network file *I

I* returns a FILE * *I

n_initialize_net files ();

if (argc < 2) /* Was name supplied? *!

printf ("No file name given\n");

exit (1);

if ((read_file = n_open (argv[l], "r")) ==NULL)

I*

printf ("Cannot open file %s for reading\n", argv[l]);

exit (2);

* Read and print until EOF

*I

Chrysalis 4.0 Technical Notes STREAMS Remote File System Library

while (count - n_read (read_file, buffer, sizeof (buffer)))

write (stdout, buffer, count);

fflush (stdout);

n_close (read_file);

exit (0);

The program begins by initializing the network file system via a call to
n_initialize_net_files. It then checks to make certain it was given an argu­
ment; if so, it opens the argument string for reading via the streams library
call n_open. Once the file is open, n_reads are done until the byte count
returned by n_read is 0, indicating end-of-file. Then the output is flushed,
the file is closed, and the program exits.

This file is compiled using bee on the VAX host. No flags or special
libraries are required because the streams library is part of libcs.a, the
standard C library searched by bee.

Once the program is compiled, we start up the streams-server using the
following sequence:

$ streams-server >streams.log Please type in a password for remote users
(echo will be suppressed): abcdef Thank you, streams-server starting as
process 25932 $

This operation would normally be performed only once a session.

Now we connect to the Butterfly host via a serial line, the telnet program,
or blogin. Once we are logged onto the Butterfly, two ways of running
this program are possible. We could fully specify the server host, port,
and password, as well as the file name by typing

(new) [f] type 128.1 l.l.2,12345[abcdef]:/etc/motd

However, if we wished to run the program again, we would have to type
in the host address, port number, and password, as well as the new file

7-7

STREAMS Remote File Systern·Library -- Chrysalis 4.0 Technical Notes· - .

name. Therefore, in a case where the user wishes to use the streams
library extensively, it is better to set environment variables that define the
host and server parameters. Our Butterfly console session would then
look like this:

(new) [f] setgenv STREAMS_HOST 128.11.1.2 (new) [f] setgenv
STREAMS_PASSWORD abcdef (new) [f] type /etc/motd

Notice that we did not set the variable STREAMS_PORT (although we
could have), because we started the streams-server using the default port.

Once the user's environment is set up, running the program with a dif­
ferent file is easy, e.g.

type .login

MULTIPLE FILES

Making a few simple modifications to the type program results in a pro­
gram that copies files on a single machine or between two machines= The
program is as follows:

7-8

I*

* cp.c68

*
* Open a streams file and write it on another streams file. e.g.,

* cp letclmotd 128.11.1.2:mymotd

*I

#include <public.h>

#include <Stdio.h>

char buffer[2048];

FILE *read_file;

FILE *write_file;

FILE *n_open ();

main (argc, argv)

int argc;

char **argv;

!* place into which to read data *!

I* network file *I

!* ditto *!

!* returns a FILE * *I

Chrysalis 4.0 Technical Notes
.... ~. - ... -- - ... - S~~AMS R_e_~ote f'.ile Sys~em Librar_)_'. . _

register int count;

n initialize net files ();

if (argc < 3) /* Were names supplied? *!

printf ("Usage: cp filel fi1e2\n");

exit (1) ;

if ((read_file = n_open (argv[l], "r")) ==NULL)

printf ("Cannot open file %s for reading\n", argv[l]);

exit (2);

if ((write_file = n_open (argv[2], "w")) == NULL)

printf ("Cannot open file %s for writing\n", argv[2]);

exit (2);

!*

* Read and write until EOF

*!

while (count= n_read (read_file, buffer, sizeof (buffer)))

n write (write_file, buffer, count);

n_close (write_file);

n_close (read_file);

exit (0);

Provided that the user's streams environment variables are set as they
were in the previous example, and the streams-server is still running, typ­
ing

cp /etc/motd mymotd

will result in the file /etc/motd on host 128.11.1.2 being copied to the file
mymotd in the directory where the streams-server was started. However,
a.more powerful result can be accomplished by typing

7-9

ST-REAMS Remote-File-System -bibrary · Chrysalis 4.0 Teehnk-al Notes ·

cp /etc/motd 10.1.0.82:/usr/cdh/mymotd

This will copy the file /etc/motd on 128.11.1.2 to /usr/cdh/mymotd on
10.1.0.82 (provided that a streams-server is listening there on the default
service port with the same password).

The reverse is not true however. Typing

cp 10.1. 0. 82:/usr/cdh/mymotd /etc/motd

will simply move the file /usr/cdh/mymotd to /etc/motd on host 10.1.0.82.
This is because every time a host, port, or password is changed in a file
1_1arne, it is remembered by the streams library functions for future use.
Since the first argument of cp is opened first, its host address is remem­
bered for use in the open of the second argument. To achieve the effect of
moving the file from 10.1.0.82 to 128.11.1.2, either the host name must be
specified in both file names, or the STREAMS_HOST environment vari­
able changed to 10.1.0.82 before the program is run. Since most users
perform most of their work on one host, it seems more useful to have the
library remember the host name when it was not the default, than to have
the system always return to the default. Note that defaults are overridden
in this way only for the life of the program in which the open of the new
host happens (i.e., it does not change the STREAMS_HOST environn­
ment variable).

NEW TOOLS FOR REDIRECTING INPUT AND OUTPUT

With the streams library, six new tools have been distributed that make
use of the streams server. There are stdin, stdout, teein, teeout, streams­
source, and streams-sink. stdin and stdout perform functions analogous to
the less-than (<) and greater-than (>) operators in the UNIX shell. They
fork a new process with the standard input or the standard output of that
process directed at a streams library file. Therefore, to record the output
of the Butterfly MatrixMultiply command in a file r:esults on the
STREAMS_HOST, you would simply type

7-10

Chrysalis 4.0 Technical Notes STREAMS Remote File System Library

stdout results MatrixMultiply

To redirect the output to a different hos~ you would need only prefix the
file name argument with a host address (and password prefix if the server
password were different).

stdin works similarly when you wish to redirect the standard input.

teeout is directly analogous to the tee command in UNIX; it not only
redirects the output to a file, but also prints the output as it does this.
teein does the same thing with standard input; it prints the data from
the file as it is sent to the user program.

Due to a limitation in interprocess 1/0 in Chrysalis, these programs
currently do all ·their input and output one character at a time; therefore,
performance when using these programs will not be comparable to that
achievable when using the streams library directly. Nonetheless, data
rates of 20 000 bits/second are easily achievable.

The last two programs, streams-source and streams-sink, are test pro­
grams for use with the streams server in measuring the throughput of the
streams system on your network. The command syntax is as follows:

streams-source filename write-size number-of-bytes

Therefore to test how fast you can move 200000 bytes of data to your host
3400 bytes at a time, you could use the command

streams-source /dev /null 3400 200000

To do a similar process using streams-sink to transfer. data from the
remote host to the Butterfly, a source file of sufficient size is required (my
personal favorite is /usr/dict/words); the process will terminate when
either end-of-file is reached or the count is exhausted.

7-11

STREAMS Remote File System Library Chrysalis 4.0 Technical Notes

When they complete their transfers, streams-source and -sink print out
statistics of how well they did. Here is some sample output recorded with
stdout from bbn-atlas, a 3-processor Butterfly talking to a v AX 11nss
over a 10 MBit Ethernet.

Trying control connection

Open

Trying data connection .•.

Open

Starting transfer of 200000 bytes, 3400 bytes at a time.

Closing Transferred 200600 bytes in 5 seconds

buffer size was 3400

Data rate was 34232 bytes per second, 273856 bits per second

Closing connection

Closed

CAVEATS

The following items should be kept in mind when writing and running
programs using the streams library (including programs like stdout):

1. If two users wish to use the streams-server at the same time on the
same host, and they don't wish to share a common directory, one of
the servers will have to be started with a non-default port number.

· 2. Authentication is only a string comparison, and the strings are sent in
the clear.

3. Performance of the package is highly dependent upon the size of
blocks that you transfer. Block sizes between 2048 and 3400 bytes
seem to be the most efficient on our Ethernet. Larger sizes sometimes
suffer due to buffering constraints, fragmentation, and collisions.
Smaller sizes get swamped with packet overhead.

4. Performance is also highly dependent upon the traffic on your Ether­
net, which most users cannot control.

5. No n Jread and n _/write functions are yet provided, requiring the user
to provide her own buffering to achieve the kind of block sizes

7-12

-Chrysalis· 4:0 Technical Note~ ····STREAMS Remote-File System Library- -

mentioned above. These functions may be provided in a future
release.

6. If you are transferring binary data to or from a VAX using this pack­
age, you will have to do a four-byte reversal of all integers contained
in objects greater than 1 byte long.

7. If you want to know why an operation failed, you have to look at the
error number returned by the server. While this information is avail­
able in the library routines (it's in reply_buffer.n_reply_ermo), there
is currently no way to communicate this information to the user. The
only way to verify if a transfer really completed correctly now is to
compare the value returned by n _close (which is the number of bytes
successfully transferred) with t~e number of bytes you attempted to
transfer.

7-13

....... _

