
BUTTERFLY™
Parallel Processing

The Uniform System Approach
To Programming The Butterfly™
Parallel Processor

BBN Advanced Computers Inc.
A Subsidiary of Bolt Beranek and Newman Inc.

THE UNIFORM SYSTEM APPROACH

TO PROGRAMMING

THE BUTTERFLYTM PARALLEL PROCESSOR

BBN Report No. 6149

Version 2

June 16, 1986

DRAFT

Copyright 1986, BBN Laboratories Incorporated

1

Preface

Will Crowther developed the Uniform System approach to programming the
Butterfly Parallel Processor and wrote documentation for the initial version of
the Uniform System Library. David Mankins and Bob Thomas have refined and
extended the Uniform System Library. This document was written by Bob
Thomas. Numerous people in the Butterfly Group at BBN Laboratories ·
contributed suggestions on how to present this material. Peter Keville
provided valuable editorial assistance.

Preparation of this document was supported by the Defense Advanced
Research Projects Agency of the Department of Defense.

Table of Contents

1. Introduction
2. Philosophy of the Uniform System Approach
3. Using the Uniform System
4. Examples

4.1. Multiprocessor "hello world"
4.2. Matrix Multiplication
4.3. Convolution

5. Running and Tuning Uniform System Programs
I. Appendix
II. Appendix

1
3

10
38
38
41
44
49
54
59

ii

List of Figures

Figure 1: Address space of a Uniform System process. 14
Figure 2: Uniform System processes share a large portion of their address 16

spaces.
Figure 3: A scattered matrix created _by AllocScatterMatrix.
Figure 4: Share is used to pass copies of process private variables.
Figure 5: Typescript from the multiprocessor "Hello world" program.
Figure 6: The multiprocessor "Hello world" program.
Figure 7: Typescript of the matrix example program.
Figure 8: The matrix example program.
Figure 9: Typescript from the convolution program.
Figure 10: The convolution example program.
Figure 11: "Makefile" template for Uniform System programs.

19
29
39
40
42
43
46
47
58

1. Introduction

To date, two distinct approaches to programming the ButterflyTM Parallel

Processor have seen widespread use. One approach is based on the notion of

cooperating sequential processes as described by Dijkstra, Hoare and others. The

second is the Uniform System approach developed by BBN Laboratories. It emphasizes

the computational tasks that comprise an application and de-emphasizes the notion of

processes. A third approach to programming the machine uses the Butterfly Lisp

implementation currently under development at BBN Laboratories. This approach will

assume greater importance as the Lisp implementation comes into general use.

Combinations of two or more of 'these approaches are possible, as are completely

different approaches.

The Uniform System approach is the subject of this document. Other approaches

to programming the Butterfly system are described elsewhere. The purpose of this

document is to provide enough information about the Uniform System approach to

enable an application programmer to write programs for the Butterfly Parallel

Processor.

This document assumes familiarity with the C programming language 1 and the

Unix TM operating system. It also assumes that the reader has read the document

Butterfly Parallel Processor Overview and has access to the reference manual for the

Chrysalis TM operating system, Chrysalis Programmers Manual. Basic information about

using the machine and various software tools can be found in the Butterfly Parallel

Processor Tutorial.

The Uniform System methodology is supported by a set of subroutines collected

in a program library called the Uniform System Library. The Uniform System approach

and the supporting library are evolving as experience with them in various

applications grows. Therefore, this document represents a snapshot of the Uniform

System. While the basic concepts of the approach (e.g., the notion of task generation,

the notions of globally shared memory and of scattering data uniformly about the

machine) are unlikely to change, its details are.

There are two versions of the Uniform System Library: one for the Butterfly and

one for the the front end machine (typically a VAX or Sun Workstation}. The front end

machine version implements all the routines in the Butterfly version and emulates

1Tne Uniform System can also be used from Butterfly Fortan programs.

2

enough of the Chrysalis functions to permit most programs to be (partially) debugged

on the front end machine in a uniprocessor environment before moving them to the

Butterfly Parallel Processor.

Section 2 describes the philosophy of the Uniform System approach to

programming the Butterfly Parallel Processor. Section 3 explains how to use Chrysalis

and the Uniform System Library in applications. Several example programs that use

the Uniform System are presented in Section 4. Section 5 contains additional

information that is useful for running and tuning programs that use the Uniform

System. The mechanics of compiling, loading and running programs on the Butterfly

system are described in Appendix I. Finally, Appendix II is organized as a reference

manual for the Uniform System Library; it contains descriptions of each routine found

in the library.

3

2. Philosophy of the Uniform System Approach

The Butterfly hardware and Chrysalis operating system comprise a foundation on

which to build a variety of software structures .. A teachable, efficient programming

style for using this foundation has evolved from experiments with a wide range of

software applications. This style, called the Uniform System approach, has proven to

be particularly effective for applications containing a few frequently repeated tasks;

e.g., much of scientific computing. It has also been successfully used in applications

with less homogeneous task struct.ures.

Beyond the usual concerns of programming, there are two key considerations

specific to the Butterfly Parallel Processor: storage management and processor

management. The goal of storage management is to keep all the memories in the

machine equally busy, thereby preventing the slowdown that occurs when many

processors attempt to access a single memory. The goal of processor management is

to keep all the processors equally busy, thereby preventing the inefficiency that

occurs when some processors are overloaded and others sit idle without work to do.

Memory Management

The Butterfly switch provides low delay, high bandwidth access to all ol the

memory in the machine. To help the programmer take advantage of this "common

memory", the Uniform System implements a large shared memory for application

programs, and provides means to spread application data uniformly across the

memories of the machine.

The Chrysalis operating system provides "memory mapping" operations that

enable processes to manage their address spaces, and hence the memory they access.

Two or more processes can share memory by mapping the sam.e memory segment.

In practice, memory sharing among processes is typically used in two quite

different ways. One approach to programming the machine is to isolate processes from

one another by mapping memory so that only a relatively small subset of each process

address space is accessible to other processes. This subset can consist of up to 256

separate segments, can be changed at any time, and is often different for different

groups of processes. This method facilitates debugging by limiting the number of

processes likely to have touched a particular data structure.

The Uniform System uses a different approach, which is to share a single .large

block of memory by mapping the block into the address space of each process. This

frees the application programmer from the need to manipulate memory maps, and

4

simplifies programming by implementing a large shared address space for application

programs. Data that must be shared by two or more processors is allocated without

regard to which processors will be using it. Of course the stack and variables local

to individual processors are kept locally, _and like code, are not fetched across the

Butterfly switch.

Collectively, the memories of Butterfly processor nodes form the shared memory

of the machine. This means the large shared memory an application program sees is

implemented by a collection of separate memories. If all the shared data used by an

application happened to be located in a single physical memory, contention for that

memory (as many processors attempt to access the data) would force the processors

to proceed serially, thereby slowing program execution. Since the aggregate memory

bandwidth of the machine is very large (10 gigabits per second for a 256 processor

machine), slowdowns due to memory contention can be reduced by scattering

application data uniformly across the physical memories of the machine. When many

processors access data that has been scattered, their references tend to be

distributed across the memories and can make use of the full memory bandwidth of the

machine. The Uniform System Library provides a memory allocator that scatters data

structures in a way that allows straightforward addressing conventions. It also

supports a set of more specialized techniques for cases where that allocator- .is either

inappropriate or ineffective.

To summarize, the approach to memory management used by the Uniform System

is based on two principles:

1. Use of a single large address space shared by all processes to simplify
programming; and

2. Scattering application data uniformly across all memories of the machine to
reduce possible memory contention.

This memory management strategy has a cost, due both to the slower access to

remote memory and to possible contention in the switch and at the memories. This

cost is an increase in execution time, typically from 43 to 83, and is due less to

contention than to the slightly slower access. The benefit of this memory management

strategy is that the programmer can treat all processors as identical workers, each

able to do any application task since each has access to all application data. This

greatly simplifies programming the machine, and we feel this benefit greatly outweighs -

the modest cost.

The need to make certain operations on memory atomic is another aspect of

memory management. This is not unique to parallel systems; it is also necessary in

5

multiprogrammed uniprocessors. The Chrysalis kernel provides an extensive repertoire

of primitive atomic operations. When the atomic operations required are more complex

than these primitives provide, the primitives can be used to build simple locks that, in

turn, can be used to implement arbitrarily complex atomic operations.

Processor Management

The most novel aspect of programming the Butterfly is processor management.

This falls naturally into two separate parts: identification of the parallel structure

inherent in a chosen algorithm, and controlling the processors to achieve the

determined parallelism.

In many applications the parallel structure is both obvious and rich. In others,

the structure is less clear and may require reworking the algorithm. Occasionally, an

application will be inherently serial, and cannot be structured to take advantage of

parallel processing. We can, however, offer a few guidelines:

1. Start with the best existing algorithm that implements the application. A
Butterfly system with P processors can do no more than speed up an
algorithm by a factor of P. Speeding up a poor algorithm may not overcome

its inefficiencies. For example, it may· take an N2 parallel sort longer to run
on a 128 processor Butterfly than it takes an N log N sort to run on a
single 68000.

2. Attempt to do the same number and kind of steps as the best algorithm.
The order of steps in an algorithm can often be manipulated to achieve
parallelism. This may involve adding logic in the form of simple locks to
ensure the atomicity of selected operations.

3. Look for parallel structure at all levels and in all sizes: the more the better.
If necessary, it is usually relatively easy to aggregate small tasks at a later
stage into larger more manageable sizes; it is often more difficult to divide a
task at a later stage into smaller ones. For example, if an application
requires Fast Fourier Transforms (FFT's) on a number of different channels,
the programmer should plan to exploit both the parallelism inherent in an
individual FFT and the parallelism due to different channels.

The Butterfly Parallel Processor can work very efficiently with individual
tasks a few milliseconds in length; if necessary, it can work on tasks in the
hundreds of microseconds. For shorter tasks, various overheads begin to
interfere with good performance.

There are two strategies for determining the desirable number of concurrent

operations to have at any stage in the processing. One strategy recommends a

relatively static approach, using exactly P concurrent tasks for P processors. The

other strategy recommends using many more than P tasks, typically an order of

magnitude or more. Both strategies attempt to deal with end effectS - the processor

idle time that occurs toward the end of a stage when Some processors have finished

6

and others are still working. The first approach minimizes the effect by explicit

construction: here the programmer attempts to manipulate the work so that all

processors finish at approximately the same time. The second approach allocates

tasks to processors dynamically in an attempt to balance the load. As a processor

finishes a task, it is assigned the "next" task ready for execution. This approach

relies on having a large number of tasks relative to processors to minimize end

effects: some waiting occurs at the end of the problem, but this waiting is generally

acceptable since it is small relative to the total program e·xecution time.

The Uniform System encourages the dynamic approach. For many applications

the dynamic approach is simpler and more reliable, since it is unnecessary to know in

advance how long an individual piece of work will take. Furthermore, it is adaptable

to varying numbers of processors and sizes of problems.

After the programmer has determined the processing that is to occur in parallel,

he must then control the Butterfly Parallel Processor to make this happen. There are

several ways to do this. The Chrysalis kernel provides a rich collection of relatively

low level operations for starting processes on various processors and for

communicating among them. The Uniform System provides a higher level abstraction

for managing the processors; one that is natural and efficient for a large cl~ss of

applications.

The Uniform System treats processors as a group of identical workers, each able

to do any task. To use the Uniform System, the programmer is required to structure

an application into two parts:

1. A set of subroutines that perform various application tasks; and,

2. One or more "generators" that identify the "next" task for execution.

To illustrate this, consider matrix multiplication as an example. One way to

structure a matrix multiplication program would be to write a routine that computes

the dot product of a row and a column; and to ensure that the routine for the dot

product task gets called once for each element of the result matrix, using the

appropriate row and column of the operand matrices as parameters.

Usually a well designed program will be structured as a set of subroutines to

improve program modularity, whether or not it is intended for parallel e::xecution.

Normally, there will be a subroutine per task type, each subroutine taking arguments

that define individual tasks in terms of subsets of the program data to be operated

on. To use the Uniform system, the programmer simply insures that these subroutines

7

correspo~d to the tasks he wants to do in parallel. In the case of the matrix

multiplication example, there is a single task type, computing dot products, and

corresponding to that task type, the dot product routine, whose row and column

parameters specify particular tasks.

The second part of the application code comprises one or more subroutines able

to identify the "next" task for execution. Such a subroutine is called a "generator",

since its function is to generate tasks. In a serial program the generator function is

usually embedded in the control structure of the program (e.g., do this, do that, then

do 10 of these). For parallel processing via the Uniform System the programmer is

expected to make generation of the next task explicit. For the matrix multiplication

example, the task generator would be responsible for generating a call on the dot

product routine for each element in the result matrix.

It is helpful to think of the generator concept in terms of three procedures and

a task descriptor data structure. A generator activator procedure (GA) takes as

parameters a worker procedure (W}, a description of data (D) upon which work is to be

done, and a task generation procedure (TG}:

GA (W, 0, TG)

The generator activator procedure (GA) first builds a task descriptor data structure

(TD) that specifies the task generator in terms of the worker (W) procedure, the data

(D), and the task generation (TG) procedure. It then "activates" the generator by

making the task descriptor (TD) available to other processors. The processor that

invoked the generator activator along with other available processors then use the

task descriptor (TD) and the task generation procedure (TG) to make repeated calls on

the worker procedure (W), specifying subsets of the data to work upon. Each call of

the worker procedure (W) is a task. When the last task is done, the processor that

called the generator activator procedure (GA) continues execution of its program,

while the other processors that worked on the tasks look for something else to do. In

the matrix multiplication example, the worker procedure is the dot product routine,

and the data is the operand and result matrices. The dot product worker routine is

called once for each combination of row and column index; these indices are stored in

the task descriptor and are incremented indivisibly each time the task generation

procedure is executed by a processor.

Conceptually, the generator notion is similar to the various "map" functions in

the Lisp language .. The unique thing about the Uniform System is that it achieves

parallel operation by using processors as they are available to execute the various

calls upon the worker procedure. Task generation and the processor management

8

associated with it are implemented in a distributed fashion in the sense that each

processor performing tasks participates in their generation.

Often the required generator is qui~e simple. In the matrix multiplication

example, where a dot product is computed for every element' in the result matrix, the

generator can find the next task by incrementing row and column counters that

identify the element in the result matrix to be computed next. Occasionally a

generator must be more complex. A generator that selects the next node to process

in an alpha-beta tree walk, for example, would rely heavily on using the most up to

date information about the state of processing of the tree. Occasionally a generator

will involve a simple queue, in which case it would operate much like a process

scheduler found in many time sharing systems; the next task for execution would be

the one at the front of the queue. In general, though, a large number of applications

can be constructed from a small set of generators. The Uniform System Library

includes a collection of commonly used generators, and others will be added over time.

The Uniform System Library provides a way to bind task generation procedures

to worker procedures. The basis for this binding mechanism is a "universal" generator

activator procedure. To use this universal generator activator procedure directly,

application programs specify both a worker procedure and a task generation .

procedure. The library also includes a set of generator activator procedures that

embody many commonly used task generation procedures. When an application

program calls one of these "specific" generator activator procedures, it specifies only

the worker procedure. The generator activator passes its associated task generation

procedure and a task descriptor to the universal generator activator along with the

worker procedure supplied by the application program2.

Often an algorithm will require multiple, perhaps nested, instances of generators.

As long as the algorithm does not depend upon the order of task generation between

different generators, the programmer is free to make multiple calls to task generators

to start the system working on all of them at once. If the algorithm does depend

upon the order, the programmer must either provide a task generation procedure to

properly answer the ~uestion about what to do next, or carefully manage the use of

existing generator activator procedures to ensure the algorithm's ordering

2Th is section hos been ca ref u I to use the terms genera.tor activator procedure and task
generation procedure. The rest of this document uses the term generator. both when
referring to the generator activator procedure and when referring to the result of
octi~ating a task generator. We use the more specific terms only when it is important to
distinguish between generator activation and task generation.

9

requirements are met.

The Uniform System approach to processor management offers three important

benefits:

1. The generator mechanism is very efficient. It is implemented using one
process per processor in a way that ensures no unnecessary context swaps
occur. Each processor executes a tight loop consisting of "generate next
task - execute next task". The programmer supplies both the task
generation and worker procedures, usually by finding an appropriate
generator activator procedure in the library. Both the task generation and
the worker procedures execute at the application level. As a result, once a
generator gains control of a processor, the Chrysalis kernel need not be
involved until the generator has. exhausted all the work it knows how to
find.

2. Programs that use the Uniform System task generation mechanism to exploit
parallelism are insensitive to the number of processors. It is possible to
debug programs on small configurations and run them on larger ones.
Should an application grow to exceed the capacity of its current
configuration, it can be moved without modification to a larger one.
Perhaps more important, programs are able to run on "reduced"
configurations: for example, one where processors have been removed for
repair.

3. The load can be balanced dynamically. Whenever a processor becomes free,
a generator identifies the next task to be executed. Since the task
generation procedures are supplied by the application programmer, the· task
choice can be based on the current state of the computation and the
requirements of the application.

10

3. Using the Uniform System

When the Uniform System approach is used on the Butterfly Parallel Processor,

programs are written much the same way. as for a uniprocessor. In fact, if a program

never invokes a task generator, it will run on a single Butterfly processor. The

program is loaded into all of the processors, however, so the potential for parallel

processing is there.

Since Chrysalis runs a process scheduler on every processor, it is possible to

have several independent application processes running on a single processor.

However, when the Uniform System is used, there is usually only one process per

processor.

This section describes each routine found in the Uniform System Library. as well

as some frequently used Chrysalis routines. Several example programs that illustrate

how to use the Uniform System routines are contained in Section 4. Section

5 describes how to run Uniform System programs on the Butterfly system, and it also

discusses some issues in tuning program performance. The descriptions of the library

routines in this section are narrative in nature. The information presented in this

section is repeated in Appendix II, which is organized for use as a reference. manual

for the Uniform System Library.

Initialization

The routine

In i t i a I i zeUs () :

initializes the Uniform System. This routine creates and starts a Uniform System

process on every available processor, sets up the memory that is globally shared

among all Uniform System processes, and finally initializes the Uniform System storage

allocator. JnitializeUs must be called before any other Uniform System routine, and it

should be called only once.

Configuration Information

It may be desirable for a program to know the number of processors and memory

banks available on a machine. The routines

TotalProcsAvailable()
ProcslnUse()
MemoriesAvailoble()
DistinctMemoriesAvailable()

return configuration information. ProcslnUse does not count processors that have

l1

been removed by the TimeTest routine (see "Measuring Your Program" below).

MemoriesAvailable counts memory in units of 64 KBytes. DistinctMemoriesAvailable is

usually the same as TotalProcsAvailable, but there are cases when the Uniform System

initialization routine (lnitializeUs) cannot. obtain memory on a particular processor

node (for example, when other software, such as the Ethernet routines, have taken it

all).

It is sometimes necessary to refer to processors by number. There are two

separate numbering schemes for processors, and routines for converting between them.

The first scheme uses the hardwar~ processor number, an 8 bit number assigned

when the machine is assembled. The hardware processor number for the processor on

which a process is running is directly accessible through the Chrysalis variable

Proc_Node. For the front end machine version of the Uniform System, Proc_Node is

arbitrarily set. The particular numbers used as hardware processor numbers for a

Butterfly machine with P processors depend upon the size of the switch and the way

the processors are connected to the switch; the hardware processor numbers used can

range from 0 to 255. The important point to note is that the hardware numbering

scheme usually has gaps .

.
Because it is generally easier for application software to deal with consecutively

numbered processors, the Uniform System implements a second processor numbering

scheme that uses virtual processor numbers. These virtual processor numbers form a

dense set, consecutively numbered from 0 to P-1, where P is the number of

processors available to the program. The virtual processor number for the processor

on which a process is running is directly accessible through the Uniform System

variable UsProc_Node. For the first end version of the Uniform System, UsProc_Node

is always 0.

It is important to note that the mapping between virtual processor number and

hardware processor number may change from run to run. This can happen, for

example, if some processors are missing from the configuration when the program is

run.

The routines

UsProc • PhysProcToUsProc(PhysProc);
PhysProc • UsProcToPhysProc(UsProc);

can be used to convert between hardware processor number and Uniform System

processor number.

12

Synchronization and Atomic Operations

Sometimes two processors need to work on the same data at the same time. If

the order of work doesn't matter (incrementing a counter, for example), then t:·~e

principal concern is that the processors don't interfere with one another {i.e., that

one finishes before the other starts). If the order of work does matter (A is writing

and B is reading, say), the program logic is probably flawed in the sense that task B

is really not ready to run, and should not have been generated until A finished.

In many cases there is a Chrysalis atomic operation (e.g., Atomic_add, Atcmic_ior,

etc.) that performs the desired operation. The Chrysalis atomic operations work on

16 bit quantities.

Some situations require atomic 32 bit operations. The operation

Atomie_odd_long(loc, val):

implements 32 bit atomic addition; it atomically adds val to the location pointed to by

Loe. Atomic_add_long is similar to the Chrysalis Atomic_add operation; it differs in

that it operates on 32 bit quantities and does not support the "fetch" part of the

"fetch and add" functionality provided by Atomic_add. It is also important to note

that in its current implem~ntation Atomic_add_long is atomic only with respect to

other Atomic_add_Jong calls. In particular, it is possible for the execution of a read

operation to be interleaved with an A tomic_add_long operation in a way that returns

an inconsistent result to the read. This can occur if the high order 16 bits . returned

by the read are obtained after the low order 16 bits are incremented by the

Atomic_add_long, but before the carry (if any) is propagated to the higher order bits3 .

Some cases may require more than a simple atomic operation. In these cases it

may be necessary to construct a lock around the code as follows:

lock:
code to do what you want

unlock:

The Uniform System provides lock and unlock operations:

LOCK (I oc k. n)
UNLOCK(I ock)

The LOCK operation is a "busy wait" type of lock, where lock is a pointer to a short

variable used as the lock (assumed to have been initialized in the unset state with

3This anomalous behavior may be eliminated in a future release of Chrysa I is that provides
ful I support for at011ic operations on 32 bit quantities.

13

value O), and n is an int that specifies the time to wait in tens of microseconds

between attempts to set the lock. Using zero for n forces use of a def a ult which is

about 1 millisecond4
.

If a program simply needs to wait until something occurs, and if "busy" waiting is

acceptable, it can use Uslf'ait:

while (something has not occurred)
UsWait(n);

where n is an int that specifies the time to wait in tens of microseconds. As with

LOCK, using zero for n forces use of a def a ult which is about 1 millisecond.

If "busy" waiting is not acceptable, the Chrysalis operations that manipulate dual

queues and events can be used to construct an appropriate wait and signalling

discipline. The Chrysalis operations include:

Make_DualO
Enq_OualQ
Oeq_DualQ
Wai t_DuolO
Pool_OualQ
Make_Event
Post_Event
Wait

Consult the Chrysalis Manual for details of these and related operations.

Memory Management

Two classes of memory are available to Uniform System programs:

1. Process private memory. As the name suggests, data in process private
memory can be accessed only by one process.

2. Globally shared memory. Data in globally shared memory is accessible by all
Uniform System processes5.

Within these two classes several quite different types of storage are available to

C programs. These storage types are best described in terms of the types of variables

available to C programs (see Figure 1):

4Note that if you nest these operations casually, you con achieve deadlock.

51t is possible, using the Chrysalis A!ap_Obj operation, to hove me•ory that is shored
among some, but not all, processes. We recommend you not use Chrysalis metftory management
operations directly within Uniform System programs unless you understand the implementation
of the Uniform System memory management discipline in detai I.

Private

(per Process)

Shared

14

~,,,,,,,,,,,,,,,,,,,, , , , ,
, Chrysalis , , ,
: Operating System : , ,

Text (program)

Stack and Heap

Uniform

System

Part
~,,,,,,,,,,,,,,,,,,,

, , , Chrysalis , , , Operating System ,
,,,,,,,,,,,,,,,,,,,,~

C Globals, C Locals, --.....
C Allocatable (via Malice)

...,_ Uniform System Allocatable --
(via Uniform System Allocator)

Uniform System Buffers
....-

for" Hidden" Memory

Figure 1; Address space of a Uniform System process.

15

o C Local variables. Local variables are process private and are stored on the
stack. A local variable is visible only within the routine that declares it.
There is one instance of the variable for every routine call. Hence, the
variable is private to the routine call, and hidden from every other call.

o C Globals. C global variables are process private. There is one instance of
each such variable per process. These variables are shared by subroutine
calls within the same process, but are hidden from all other processes.

o C Dynamic storage. Storage of this type, obtained by malloc and related
routines, is process private. There is one instance of an allocated variable
per process. These variables can be accessed by subroutines within the
same process (providing the necessary pointers have been made available),
but are hidden from all other processes. In particular, while you can pass a
pointer from one process to another, if you try to use it within another
process you will either get a hardware fault or (worse) access a random
chunk of memory in that process.

o Shared storage. Storage of this type is obtained using the Uniform System
allocators Allocate, AllocScatterMatri:t, and the like, and it is globally
shared. There is one instance of a Uniform System allocated variable per
Butterfly machine. Since this is globally shared storage, you can pass
pointers from processor to processor, and use them on whatever processor
you like. This is the only way to communicate between different processors
and tasks, unless you choose to bypass the Uniform System and use the
Chrysalis mechanisms directly. To get started, most of the Uniform -System
task generators allow the user to pass a pointer to newly generated tasks.
The passed pointer is typically the root of a user specified data structure.
(See also the discussion of Share and ShareSM below.)

o Hidden Storage. Storage of this type is globally shared. A Butterfly node is
limited to a 24 bit virtual address (16 MBytes) by its 68000 processor. The
Uniform System allows the user to access nearly that amount of memory
directly (there is an area at the top and one at the bottom of memory taken
by Chrysalis). However, Butterfly systems with more than 16 processors
have more than 16 MBytes of real memory. To support the use of that
memory the Uniform System supports the notion of "hidden" memory. Hidden
memory is allocated much like regular memory, but the allocator returns a
descriptor for tbe block of memory rather than a pointer. The user
program can use Uniform System operations to copy data between hidden
memory and directly accessible memory. Thus hidden memory acts rather
like fast secondary storage. (The hidden memory feature is not yet
implemented.)

The Uniform System storage allocator creates and manages the globally shared

memory region of the process address space (see Figure 2). A program can ask the

allocator for space that is scattered about the machine, or for space in the memory of

a particular processor node. Once such globally shared space has been allocated to a

program, the program is free to pass pointers to variables in the space from one

processor to another.

Implementing globally shared memory is somewhat more involved than it might

seem at first. Since the Butterfly computer uses a standard 68000 C compiler, the

language provides no help when it comes to allocating globally accessible storage. If a

16

Process 1 Process 2 Process m Process n

"' "' "' ~
Private • • •

I I I ,.._ _ _.r,-, Ii' ,.._ _____ r I' I' I I.._ __ .. I I I I'

Shared

Figure 2: Uniform System processes share a large portion of their address spaces.

program variable is declared to be a C global, that only means that the variable is

visible to the program modules linked together to make up a particular process. Since

c globals are process private, if an identical copy of that process is created on

another processor (or on the same processor), the new process will have its own

copies of any variables declared as C globals. Similarly, the malloc and alloc system

calls supported by Chrysalis allocate memory that .is process private rather than

globally· shared. The Uniform System uses the Chrysalis Object Management System to

implement globally shared memory.

Storage Allocation

You can allocate a block of storage in globally' shared memory with:

Al locate(SizelnBytes);

The Uniform System allocates the block from the memory with the most free space.

If you want to allocate globally shared storage on the local processor, use

Allocotelocal(SizelnBytes);

If you want to specify a particular processor, you can use:

Al locateOnUsProc(Processor, SizelnBytes);

where Processor is a Uniform System processor number. If Processor exceeds the

number of av~ilable memori~s. the space is allocated on node Processor mod P, where

P = DistinctMemoriesAvailable(}. This is expected usage. If you want to specify the

node by its hardware processor number, use

Al locoteOnPhysProc(PhysProcessor, SizelnBytes);

Proper storage management on the Butterfly computer is important! If your data

isn't uniformly distributed over all available memory, you may get poor performance.

It usually doesn't save much (a few percent) to keep data near the processor using it.

However, clumping a lot of data in a single processor node's memory can result in

contention for that memory by multiple processors, and can be devastating to program

performance.

The Uniform System Library provides storage allocation routines (described

below) for regular data structures, such as arrays and matrices. These routines

scatter data across the memories of the machine in order to reduce memory

contention. For more complex data structures, AllocateOnUsProc and

Alloca,teOnPhysProc can be used to scatter data across the machine. In addition, it is

always worth considering whether to copy the constants used by an application into

18

the local memory in order to avoid possible contention for them. The Share routines

(described below in "Making Copies of Process Private Data") and the generator

"initialization" routines (described below in "Generators") are useful for making such

copies.

The data structures required by many applications can be represented naturally

by 2-dimensional mB:trices. Furthermore, higher dimensional matrices can be

represented in a straightforward way by 2-dimensional matrices, as can one

dimensional vectors. For example, a 3-dimensional matrix can be thought of as a 2-

dimensional matrix, each element of which is a vector. Hence, 2-dimensional matrices

can be used as a fundamental building block for supporting many application data

structures. To reduce potential memory contention, it is desirable to scatter these

data structures across the machine.

The routine

AllocScotterMotrix(nrows, ncols, element_size)

allocates a matrix that is scattered by row over the memories of the machine. It does

this by allocating a vector of pointers nrows long. and nrows separate vectors, each

containing ncols items of size element_size bytes6. The Uniform System allocates the

vectors in separate memories. The vector of pointers, a pointer to which is returned

to the caller, is filled in with pointers to the scattered row vectors (see Figure 3).

Elements of an array A allocated in this way can be referenced using standard C array

notation:

A[i)[j)

Currently, the Uniform System storage allocator is fairly simple. In particular, it

cannot free storage piecemeal. You can free it all using

FreeAI I();

or your program can simply live with its garbage.

Processor Management

The Uniform System processor management mechanism is accomplished through

the use of task generators. A "task" is the basic unit of parallel computation; at any

instant there is a set of runnable tasks that must be mapped to the available. set of

processors. The Uniform System takes the view that both the set itself and the

6At present. ncols•element_size must be <• 64K bytes, and nrows•4 must be <• 64K bytes.

19

P =AllocScatterMatrix (nrows, ncols, element_size)

p

•
nrows

I

~
~

-..! J-- elemenLsize

• • • on Node B

• • • on Node C

p [2] [1]

• • • on Node W

• • ti on Node X

• • • on Node Y

~------ncols------~

Figure 3: A scattered matrix created by AllocScatterMatrix.

20

priority of items within the set are dynamically changing; as a result, a simple queue

is not an adequate model of the task structure. Instead, the Uniform System requires

a user supplied routine that is able to answer the question: "what is the current most

important task to run at this instant?"

Task generators are often rather simple. A common parallel operation is to

apply some function to each item of a structure (list or array) where the order is

immaterial. For example, this might be the semantics for a PARALLEL DO extension to

Fortran. In this case the task generation routine need only identify the next item in

the list, which it can do by incrementing a counter (atomically, of course, since task

generation is distributed). However, a generator may be arbitrarily complex. For

example, a generator used in a chess playing program might do alpha - beta pruning of

a game tree, using the most up-to-date information to decide where to devote its

resources next. In this case most of the complexity of the code and the execution

time of the program might reside in the task generation procedure.

It is good practice to make the tasks themselves small. The responsiveness of

the system to changes in priorities depends on the size of a task, because once a task

is started, th_e system runs it to completion. Also, even if the priorities are not

chan_ging, there will come a time toward the end of a task g·enerator when all of the

tasks have been generated by the task generation procedure. When that happens, if

there are no other active generators, some processors will sit idle while others finish

the last tasks. If the tasks are small in size, the idle time will not have a large effect

on system efficiency.

While the application programmer is expected to provide both task generation

and task implementor (worker) routines, experience has shown that the relatively small

set of generators (or more precisely, generator activator procedures) supported by the

Uniform System Library (see "Generators" below} are sufficient for a wi9e range of

applications. The way to achieve parallel operation is to structure your program to

fit the mold of one of these task generators.

The Uniform System supports two generator control disciplines:

1. Synchronous generators. When a process invokes a synchronous generator,
control returns from the generator procedure after all of the tasks
generated have been processed. Furthermore, the processor that calls the
generator works on the tasks that are generated.

2. Asynchronous generators. When an asynchronous generator is invoked,
control is returned to the calling process as soon as the generator has
been activated. This enables the process to work on other things. The
calling process may later work on tasks generated if it so chooses.

21

The Uniform System matches available processors to the tasks generated. Its

System processor manager keeps track of active task generators. Whenever a

processor has nothing to do, it obtains a task using the task generation procedure for

one of the active generators. When a Uniform System program begins execution, all

the processors, except the one used to start the program, are labeled idle. As long as

there are active generators, there are no idle processors.

It is perfectly reasonable to nest calls to generators. In fact, that is an

expected mode of operation. When calls to generators are nested, the Uniform System

assumes the order the generators are dealt with is unimportant, and it picks an

arbitrary order that depends largely upon the stochastic nature of interprocessor

timing. However, because the Uniform System guarantees that at least one processor

is working within each synchronous generator, forward progress is assured on each.

There are some situations where it may be possible to place an upper bound on

the number of tasks required by a problem, but where the number actually required

may be data dependent. For example, consider a search where the search space can

be partitioned into N disjoint regions which can be searched by N tasks performed· in

parallel; if the first task finds the object in the first region, there is little utility in

searching the remaining N-1 regions. The Uniform System supports abortable.

generators for such situations. An abortable generator can be terminated before all

the tasks it describes have been generated and executed. After an abortable

generator has been aborted, it will generate no more tasks; however, any tasks started

before the generator was aborted will be processed.

Normally when a generator is active, processors, as they become free, begin

working on the generator until either all processors are working on it, or all the

tasks have been generated. In situations where several classes of tasks can be active

simultaneously, it may be desirable to control the number of processors used for each

task class. The Uniform System provides limited generators, which use only a specified

number of processors (or fewer), for such situations.

Generators are very efficient. It takes a little overhead to get a processor to

notice a generator, but once the processor does, it will continue generating and

working on the tasks defined by the generator at e. cost of about one extra

subroutine call per. task.

It is not easy to cause deadlocks using generators, but it is possible. For

synchronous generators, since there is always at least one processor working on each

generator (perhaps recursively), progress should be made unless that processor hangs.

22

It is, of course, bad practice to write code so that a processor can hang.

Unfortunately, it is good practice to write code where processors take turns accessing

some resource in an atomic way, and it is not always easy to tell the difference just

by looking at the code. The distinction, 9f course, is that acce$ses made by deadlock

free programs eventually (and usually quickly) give up the resource. With

asynchronous generators more care needs to be taken to avoid race and deadlock

conditions.

The Uniform System Library includes a collection of generator activator

procedures that embody various commonly used task generation procedures. The next

section describes the synchronous generator activator procedures in the library. The

section following that describes the asynchronous activator generator procedures. All

these generator activator procedures make use of a "universal" generator activator

procedure. Use of the universal generator activator procedure is described below in

the section "Building a Generator".

Synchronous Generators

The Uniform System Library supports several major "families" of generators:

o Index family. Given an integer range, generators in the index family
generate a task for each value (index) within the range.

o Array family. Given two integer ranges (which can be thought of as array
dimensions), generators in the array family generate a task for each pair of
values (which can be thought of as row and column indices) within the
ranges.

o Half array family. Given two integer ranges, which can be thought of as
array dimensions, generators in the half array family generate a task for
each array element that is beneath the "diagonal".

The Index Family of Generators

Consider a subroutine Worker(Arg, index, ...) which is to be called for all values

of index from zero through Ra.nge-1. A call of the form:

code• GenOnlFult (lnit, Worker, Final, Arg, Range, Limited, Abortable)

causes Worker to be executed in parallel for the index values between zero and

Ra.nge-1 7 . Arg is typically a pointer to a problem description data structure.

7Earlier versions of the Index family generators required Ra.nge to be less than 215.
That limitation has been removed. However, task generation is somewhat faster if Range is

less than 215 since the task generation procedures con use Atomic_a.dd to increment the
index.

23

Elements of Arg might point to the multiplier, multiplicand, and product matrices in a

matrix multiplication problem, for example. To facilitate application bookkeeping,

before the generator calls Worker for the first time on a particular processor, it will

call

Init(Arg)

on that processor. Typically, the /nit routine is used to copy frequently referenced

constants from globally shared memory into process private memory or to initialize

process private temporaries. By convention 0 specifies that there is no /nit routine.

Similarly, the routine Final is called once on each processor used to perform tasks for

the generator after the last call of the Worker routine on eac.h such processor. The

Final routine is called with Arg as a parameter:

Final(Arg),

and is typically used for per processor post processing associated with tasks. By

convention 0 specifies that there is no Final routine.

The Limited parameter indicates the number of processors to which the generator

is to be restricted. A value of 0 or -1 signals no limitation; a positive value ensures

that no more than that number of processors will be used on the tasks.

The A bortable parameter is a boolean which indicates whether or not the

generator can be aborted. The value of Abortable determines the arguments passed to

the Worker routine. If Abortable is false, two arguments are passed to Worker

Worker(Arg. index);

otherwise, if Abortable is true, each call to Worker takes an additional argument

Worker (Arg, index. GenHandle);

where GenHandle is an "identifier" for the generator (C type = UsGenDesc *, defined

in the #include file usgen. h).

If the generator identified by GenHandle .is abortable, it can be aborted using

AbortGen(GenHandle, termination_code):

where termina.tion_code is an int. All synchronous generators in the Index family

return a value. If a generator is abortable and was aborted, it returns the

termina.tion_code argument supplied to AbortGen8. If all of a generator's tasks have

8More than one processor may call AbortGen to abort a generator. In such a case, the
value returned is the smallest termination_code.

24

been performed (i.e., either it is not abortable, or it is abortable but it was not

aborted), the generator returns the code genEXHAUSTED.

There are other synchronous gener~tors in the Index family which are useful in

situations not requiring the full flexibility of GenOn/Full. For example, since these

routines take no Arg routine, they can be used when calls to Share (described below)

and its companion routines elimin_ate the need to pass problem descriptions around.

The generator

code• GenOnl (Worker, Range)

generates tasks of the form

Worker(e, index):

note that the Worker routine is passed a dummy Arg parameter. The generator

code• GenOnILimited (Worker, Range, nprocs)

is like CenOnl, differing in that it limits the generator to the specified number of

processors. The generator

code • GenOnlAbortable (Worker, Range)

is like GenOnl, differing in that it is abortable; it generates tasks. of the form

Worker(e, index, GenHandle);

The Array Family of Generators

The generator

code• GenOnAFull (Init, Worker, Final, Arg, Range1, Range2,
Limited, Abortable)

is similar to GenOn/Full except that Worker takes a second index which runs over

Range2. More specifically, if Abortable is false, GenOnAFull generates tasks of the

form

Worker(Arg, index1, index2)

and if Abortable is true, it generates tasks of the form

Worker(Arg, index1, index2, GenHandle)

As with the Index family, there are several additional generators in the Array

family that are useful in situations that do not require the full flexibility of

GenOnAFull.

25

The generator

code• GenOnA (Worker, Range1, Range2)

generates tasks of the form

Worker(0, index1, index2).

The generator

code• GenOnALimited (Worker, Range1, Range2, nprocs)

is like GenOnA except that it limits the generator to the specified number of

processors. The generator

code• GenOnAAbortable (Worker, Range1, Range2)

is like GenOnA except that it is abortable; it generates tasks of the form

Worker(0, index1, index2, GenHandle);

The Half Array Family of Generators

The generator

code• GenOnHAFul I (Init, Worker, Final, Arg, Range1, Range2,
Limited, Abortable)

is similar to penOnA, except for the range of the indext, index2 arguments. The

sequence of (indext, index2) values span the "half" array beneath the diagonal of a

Range 1 x Range2 array as follows:

index2 - e.
index2-= 1,

index1 • 1, ... ,(Range1-1)
index1 = 2, ... ,(Range1-1)

index2 • R-2, index1 • (R-1), ... ,(Range1-1)

where R • min(Ronge1, Range2)

Similarly, the generators:

code• GenOnHA (Worker, Range1, Range2)
code• GenOnHALimited (Worker, Range1, Range2, nprocs)
code• GenOnHAAbortable (Worker, Range1, Range2)

are analogous to the corresponding routines in the Array family.

It may appear that more variants are needed for half arrays; for example, those

that include the diagonal. . However, GenOnHA can be used with some- simple tricks to

get the desired behavior; for example, to include the diagonal, add one to the ranges

(in the call to GenOnHA) and subtract one from the variable i (in the Worker routine).

26

Miscellaneous Generators.

The generator

GenTaskForEochProc (cal I, org)

generates exactly 1 task, call(arg), for every processor (that has not been removed by

the TimeTest routine).

The generator

GenTaskForEachProcLimited (call, arg, nprocs)

exactly 1 task, call(arg), for each of nprocs different processors.

The generator

GenTosksFromList (routine_list, arg_list, n)

where routine_list is an array of routines of length n, rO, ... ,rn-1, and arg_list is an

array of "arguments" of length n, arg1, ... ,argn, generates n tasks; the ith task is

ri(argi).

Asynchronous Generators

There are asynchronous versions of each of the generators in the Index, Array

and Half Array generator families. While the form of the tasks generated by these

generators varies from family to family, the asynchronous generators use a common

control discipline.

Suppose AsyncGen ... is an asynchronous generator. The call

GenHandle • AsyncGen ... (...):

activates the generator and then returns control immediately to its caller along with

GenHandle, an "identifier" for the generator activated. The processor that invokes an

asynchronous generator can choose to work on tasks generated by the generator by

using the call

code• WorkOn (GenHandle):

After all of the tasks generated have been processed, WorkOn returns a code to the

caller. The code indicates either that the generator exhaustively produced all of its

tasks or that it was aborted via A bortGen. Alternatively, the processor that invo·kes

an asynchronous generator can do other things.

The sequence

GenHandle s AsyncGen ... (...);
code= WorkOn (GenHandle);

is functionally equivalent to the corresponding synchronous generator.

A procesor that has previously invoked an asynchronous generator can use the

call'

code• WaitForTasksTofinish (GenHandle)

to wait until all of the tasks associated with the specified generator have been

completed. As with WorkOn, the returned code indicates whether the generator

exhaustively produced all of its tasks or was aborted.

B.oth WorkOn and WaitForTasksToFinish should be used only by the process that

activated the generator in question, and only if that process is not already working

on the generator.

The asynchronous g~nerators currently supported by the Uniform System are:

Index f'omi ly:
GenHond I e • AsyncGenOnlf'u I I (1 nit. Worker. f'i na I • Arg. Range.

Limited, Abortoble)
GenHandle • AsyncGenOnl (Worker. Range)
GenHandle • AsyncGenOnllimited (Worker, Range. nprocs)
GenHandle • AsyncGenOnlAbortable (Worker, Range)

Array Femi ly:
GenHondle • AsyncGenOnAFull (lnit. Worker. final, Arg, Ronge1. Ronge2.

Limited. Abortoble)
GenHondle • AsyncGenOnA (Worker, Ronge1, Range2)
GenHondle • AsyncGenOnALimited (Worker, Rangei, Range2, nproes)
GenHandle • AsyncGenOnAAbortable (Worker, Ronge1. Ronge2)

Half Array Forni ly:
GenHandle = AsyncGenOnHAFul I (lnit. Worker. Final, Arg. Range1, Range2,

Limited, Abortable)
GenHandle • AsyncGenOnHA (Worker, Range1, Range2)
GenHandle • AsyncGenOnHALimited (Worker, Range1, Ronge2, nprocs)
GenHondle • AsyncGenOnHAAbortable (Worker, Ronge1, Ronge2)

Each of these corresponds to one of synchronous generator described above.

Ma.king Copies of Process Private Data

It is often useful for each processor to have its own copy of certain frequently

referenced variables declared as C globals. These copies eliminate the memory

contention that could occur as multiple processors access the variables. For example,

as part of initialization one processor might set C global variables which other

processors must access. Recall that C globals are in process private memory. One

way to make the values of these variables accessible to the other processors is to

pass the values in the data structure argument to a task generator and have the

28

generator "initialization" routine make copies on each processor. Often a more

convenient way is to use one of the Share routines.

The effect of

Share(&N);

where N is declared as a global int (and is therefore process private}, is to cause the

value of N (in the processor invoking Share at the time Share is invoked) to be copied

into N in each processor used to perform tasks generated by subsequent task

generators. The value of N is set in each such processor prior to the call of the task

initialization routine for the next task gener_ator handled by that process~r9 . The·

effect of Share is illustrated schematically in Figure 4. Note that only the value of N

is propagated to other processors by the Share mechanism. Therefore, should one

processor change its· copy of N, only that processor will see the changed value.

A non-integer variable X can be passed to other processors by

ShareBlk(tX. size)

where size is the size of X in bytes. A pointer variable P and the block of data it

points to can be passed to other processors by

SharePtrAndBlk(~. size)

where size is the size in bytes of the block of data pointed to by P.

When many processors make frequent references to many elements of an array

allocated by AllocSca.tterMatrix, it is often desirable for each processor to have its

own copy of the vector of pointers created by AllocSca.tterMatrix. This reduces

contention for those pointers, which are all stored in a single memory and which must

be referenced to access the array elements. The routine

ShareScatterMotrix(&P. nrows);

where P is a C global allocated by

P •Al locScotterMatrix(nrows, ncots. element_size):

will cause such copies to be made. Each processor used to perform tasks generated

by task generators called after the call to ShareScatterMatrix will have its P set to

9Generators that hove no explicit initialization routine (see the section on "Synchronous
Generators" above) con be thought of os having a nut I or no-op initialization routine. N is
set prior to the (non-existent) call of the null initialization routine, and therefore prior
to the first coll of the ta$k worker routine on that processor.

29

3 3

Private • •

I
Task Generation

"x y
Shared [2J

Figure 4: Share is used to pass copies of process private variables.

30

point to a local copy of the vector of pointers (the local copy is allocated in globally

shared memory}. As with Share, ShareBlk and SharePtrAndBlk, the value of P in each

such processor will be set prior to the call of the task initialization routine for the

next task generator handled by that processor 10.

Sharing Variables Among Processors

The "share" mechanism described in the previous section propagates copies of

variable values from one processor to others. Situations often occur where it is

desirable to share variables among processors in a more dynamic fashion, such that

when one processor changes the value of such a variable all the processors see the

change.

Ideally, one would like to use a storage class specifier, similar to static or

extern, to declare that a variable is to be shared in this fashion; for example,

global ly_shared int N:
int M;

would cause N to be allocated in the globally shared portion of the address space, and

M to be allocated in the process private portion of the address space. However. as

noted earlier, the Butterfly C compiler is a standard uniprocessor C compiler that does

not support the notion of globally shared storage.

The Uniform System supports a mechanism that achieves the effect of a globally

shared storage class by facilitating the creation and use of dynamically shared

variables. This mechanism allows a programmer to declare and use a set of variables

that are globally shared among all processors.

The declaration

BEGIN_SHAREO_OECL
int N;
char c:

ENO_SHAREO_OECL;

declares N, c, and the other variables between BEGIN_SHARED_DECL and

END_SHARED_DECL to be globally shared. The "statement"

MokeSharedVariables:

10 ShareScatterM atrix(&P, nrows) is I og i ea 11 y equ i va I ent to
SharePtrAndBlk(&P, 4•nrows), but operates much foster, since it is careful to make copies
from other copies as well as from the original.

31

which must be called after lnitializeUs and before using the shared variables,

allocates space for the variables and propagates knowledge of where they are to all

processors. To reference a globally shared variable that has been declared in_ this

way, the programmer must explicity specify that it is shared via the SHARED prefix;

for example,

SHARED N • (x + SHARED N) / 12;
if (SHARED c -- '1') break;

When using this mechanism, there are some important limitations that must be

kept in mind:

1. BECIN_SHARED_DECL may appear only once in a program. That is all
variables to be shared via this mechanism must be declared in one place.

2. All of the shared variables are allocated in the same· physical memory.
Hence contentions for that memory could be a performance bottleneck. (See
Section 5 for a discussion of the performance implications of memory
contention.)

Despite these limitations, the mechanism is useful in many situations.

Measuring Your Program

You may-want to measure the performance of your program on different. numbers

of processors. The Uniform System offers a utility routine called TimeTest that

facilitates this kind of measurement.

TimeTest(Init. Execute, PrintResults)

To use TimeTest, you need to divide your application into three major subroutines: one

that does all of the initialization (/nit). another that does the real work of the

program (Execute), and a third that prints results (PrintResults). TimeTest takes the

names of these subroutines as arguments, and runs your application on various

configurations of the machine. It times the middle routine only (Execute), and passes

the execution time, the number of processors, and the effective number of

processors 11 on to the specified display routine (PrintResults) at the end of each

pass:

PrintResults(time, procs, effprocs)
int time, procs;
float effprocs:

/• Written by the user. However note •/
/• that the Uniform System provides •/
/• a simple version, see below. •/

11 The effective number of processors is a float equal to {time 1 proc) /{time n procs).
which is a good measure of the speedup your program achieves over one processor when n
processors ore used. If the first test run uses more than one {•k) processors, then the
effective number of processors is {time k proc) / {k • {time n procs)).

32

At the start of the run, TimeTest asks you to specify from the keyboard the

configurations to be timed. If, for example, all possible configurations are specified,

Time Test will run the three specified routines in order on a single processor, then call

them again with a two processor configur_ation, and so forth until it has run the

program on every possible processor configuration up to the size of the machine being

used.

The display routine

TimeTestPrint(time, procs, effprocs)

can be used to print time, procs and effprocs. You may prefer to supply your own

display routine if you want to print other information.

A variant on TimeTest gives somewhat more control over the test. runs:

TimeTestFull(Init, Execute, PrintResults, start, delta, end)

TimeTestFull allows a start, increment (delta) and end value to be specified for a set

of runs. The first test is run on start processors, the next on start + delta

processors, and so forth, up to the final test which is run on end processors.

TimeTestFuU is particularly useful on bigger machines, where incrementing by one

processor can be tedious. If start (or end) is zero, the test is run from (to)· the end

of the range of available processors, and in particular, it is run for the limiting

processor case whether or not it is in the normal progression specified by delta.

If delta is specified to be zero, the number of processors used increases by

powers of two (1, 2, 4, 8, etc). The rules for start and end still apply. If the delta

specified is negative, TimeTestFull asks the user to supply values for start, delta, and

end at the start of the run. This is the normal usage for timing many programs, and

is what you get with the simpler TimeTest.

Although all Processor Nodes in a Butte;rfly system are functionally equivalent,

there is a distinguished King Node that is special in two ways: it is the node to which

the console terminal is connected; and it controls the machine while the operating

system is being booted. Because a terminal handler and window manager run on the

King Node, it appears about 83-103 slower than the other nodes to application

programs. When benchmarking a program, it is desirable to avoid using the King Node

to ensure that the measurements were not affected by the processing requirements of

the terminal handler and window manager,

The King Node can be avoided by using the routine

33

InitiolizeUsForBenchmark();

rather than lnitializeUs, and starting the program on some node other than the King

Node 12.

Tagging Memories

Sometimes it is useful to partition the node memories into classes. For example,

the Allocate and AllocScatterMatrix routines use all of the memories of the machine.

It may be desirable to limit allocation to a smaller set of memories; for example, only

the memories of Processor Nodes being used to run a program.

The routine

UsSetCloss(proc, class)

where proc is a physical processor number and class is an int, makes the memory of

the specified Processor Node a member of the specified class. All memories are

initially in class 0.

The allocation routines

Al locoteC(SizelnBytes, class)
AllocScotterMotrixC(Processor, SizelnBytes, class)
AllocoteOnUsProcC(nrows, ncols, element_size, class)

where class is an int, are similar to Allocate, AllocScatterMatrix, and AllocateOnUsProc,

differing in that they allocate space only on memories in the specified class.

ALLocateOnUsProcC will fail if proc is not in class.

Configuring the Uniform System

Normally Initialize Us creates a process for its program on every available

processor in the system, and seizes as much memory as it can obtain from each

processor node in order to establish the Uniform System globally shared address

space.

While this is appropriate in many cases, there are situations which may require

finer control of the resources used by Uniform System programs. In such situations,

the routine

Conf igureUs(Spec, n);

12Tne -on switch of the run command or the us ut i Ii ty con be used to start a program on
o non-King node. See Sect ion 5 and the Chrysa I is Programmers~ for detoi .Is.

34

can be used prior to calling InitializeUs to specify values for configuration parameters

that differ from the values normally used by JnitializeUs. Spec is an array (of int's)

which specifies the configuration; it contains n parameter specification blocks. Each

parameter specification block contains a~ integer configuration_code that serves to

identify the parameter being set followed by one (or more) integer(s) which specify the

value for the parameter.

Currently the following configuration_code 's are defined:

Code

conf i9Procs

conf i9MoxSars

Parameter

integer - number of processors to include
in the Uniform System configuration.

integer • number of segment attribute
registers (SARs) to use to define
process address spaces.

As an example, the code fragment:

spec [0] • conf igProcs;
spec [1] • S;
Conf igureUs (spec, 1);
In i t i a I i zeUs () ;

limits the Uniform System program to (a maximum of) 6 processors.

Clock

Your program can read the Butterfly clock using the routine

GetRtc()

that returns the time since the system was booted in units of 62.5 microseconds. On

the Butterfly the clock value is the same (plus or minus two ticks) on every processor.

The front end version of the Uniform System Library uses the real time clock on the

front end machine to implement GetRtc, and converts to these 62.5 microsecond units.

If you merely want the clock to measure the speed of your program, see

"Measuring Your Program" above.

I/O

The routines printf and scanf are available for terminal 1/0. The operation of

these functions is generally the same as that of their Unix counterparts.

The Chrysalis utility tftp provides means for a user to manually transfer files to

and from the front end host. Consult the tftp section of the Chrysalis Manual for

information on how to use this utility. In addit.ion, support for the standard Unix file

35

1/0 functions for files on the front end host is being developed. ·In the interim, a

simple mechanism, supported by a streams package, has been developed to permit a

program running on the Butterfly to read and write files on the front end computer .

. Consult the Chrysalis Manual for deails OJ?. how to use the streams package,

Building a Generator 13

The Uniform System Library contains a set of useful generators for a wide range

of applications. Occasionally it may be necessary, however, to construct a generator

for a particular application.

The generator activators supported by the library all make use of the

"universal" generator activator procedure. This procedure can be called directly by

application programs, and can be used to build new generator activator procedures:

ActivateGen(Init, Worker, Final, Arg, Ronge1, Range2, Type, Gen,
Async, MaxProcsToUse, Abortable, ResultP)

As above, Jnit, Worker, and Final are routines, Arg is typically a pointer to a data

structure, and Ranget and Range2 are short's. Type is GENERATOR. Gen is a task

generation routine you supply to generate the next task (described in more detail

below). Async is a boolean which specifies whether the generat9r is to be activated

asynchronously (true) or synchronously (false). MazProcsToUse specifies the number

of processors to which the generator is to be restricted; as with the "limited" forms of

the generators, 0 or -1 indicates no limitation, and a positive value ensures that no

more than that number of processors will be used. A bortable is a boolean which

specifies whether the generator is to be abortable (true) or not (false). Finally,

Result? is a pointer that is used if Abor~able is true; it specifies a location where the

ActivateGen should store the generator "result code" (= genEXHAUSTED if all tasks

are generated; or the termination code parameter of A bortGen if the generator is

aborted).

The Gen task generation routine has the form:

Gen(TD)
UsGenDesc •;

where TD is a pointer to a task descriptor data structure of the form;

13This is an advanced topic. While the general approach to building generators is not
likely to change, the details may.

struct
I short started:

short type;
/• Defined types are: •/

#define IDLETASK 1
fdef ine GOAWAYTASK 2
fdef ine GENERATOR 4

short incarnation_number:
short state;
/• Defined states are: •/

#define ACTIVE 1
fdef ine INACTIVE 2

short us_lock;
short lock:
int (•i.,it)():
int (•call)(}:
int (•gen)():
int (•final)():
int org;
char •currentShare;
int range;
int range2:
OH returnQ:
int post_pending;
short MaxProcsToUse;
int end;
int obortable;
short retcode;
/• Oef ined retcodes are: •/

#define genEXHAUSTEO -1
short endlock;

36

union f long Long; short Short;J index;
union ·iunsigned long Long: unsigned short Short: I index2;
short locka[nlocks]:
short index1a[nlocks];
short index2a[nlocks]:

The task descriptor data structure is declared in the header file usgen.h which you

must #include with your program when using ActivateGen. The Worker, /nit, Final, Gen,

Arg, Rangef, Range2, Type, MaxProcsToUse, and Abortable parameters of ActivateGen

are used to initialize the call, init, final, gen, arg, range, range2, type,

MaxProcsToUse, and abortable fields of the task descriptor structure. The Lock and

the lock a array fields of the task. descriptor structure are initialized to 0 and are

available for use as locks by the Gen routine you supply; and, the index and inde.x2

fields, and the inde.x1 a and inde.x2a array fields are initialized to 0 and are available

for use by your Gen routine for bookkeeping associated with generating the tasks.

ActivateGen uses the remaining fields (started, shareCount, returnQ, etc.) for internal

bookkeeping.

An example may help illustrate use of ActivateGen to build a generator. Suppose

a generator

GenOnShortlndex(lnit, Worker, Arg. Range)

is desired which is to be similar to GenOnl, differing in that it takes an /nit routine

37

and an Arg parameter, and that the Range is to be restricted to a short.

CenOnShortlndex could be implemented by calling

ActivoteGen(Init, Worker, 0, Arg, Range, 0, GENERATOR, GenShortldx,
folse, 0, folse, 0)

where CenShortldx is

GenShortldx(TO) UsGenDesc •TD;
I register int index;

register short • p1 s (short •)&TO->(index.Short);
register short range• TO->ronge;
register int (•worker)() • TO->cal I;
register int org • TO->org;
for(:;)
I index• Atomic_add(p1,1); /•Generate the next index volue. •/

if (index>= range) break; /• Finished if ronge exceeded. •/
(•worker) (org, index); /• Otherwise, col I the worker routine. •/

ActivateCen initializes a task generator descriptor (TD, a UsCenDesc data structure)

from its parameters, and makes the descriptor accessible to other processors. The

processor on which ActivateCen is invoked then calls CenShortldx. That processor,

along with others as they become free, use the task generator descriptor (TD) and

CenShortldx to generate and execute tasks.

38

4. Examples

This section contains several example programs that illustrate use of the Uniform

System.

4.1. Multiprocessor "hello world"

This example illustrates the use of the task generator GenOn/, the variable

Proc_Node, and the TotalProcsAvailable, PhysProcToUsProc and Share routines. The

example is a multiprocessor version of the "hello world" program in Kernighan and

Ritchie's The f Progra,mming Language, and is only a little more complicated.

The program causes each processor to print out "Hello world from node n"

exactly once. Figure 5 is the typescript produced by running it on a large Butterfly

system. The -sars 200 option to run is explained in Section 5. The line

init1 -- find memory ... is generated by lnitializeUs as a debugging aid, and is likely

to be eliminated in a future version of the Uniform System.

The multiprocessor "hello world" program is shown in Figure 6. The program

uses Allocate to allocate space in globally shared memory for nodecount, a variable

used for bookkeeping by the processors. Nodecount is initialized with ~he number of

processors on the machine, a number obtained via TotalProcsAvailable. After using

Share to propagate the location of nodecount to other processors, the program then

uses GenOnl to generate tasks to print the "Hello" message from each processor. The

only tricky part is ensuring that each processor performs exactly one task. Without

some form of coordination, it is possible, in general, that some processors would get

more than one task, and others would get none. For this program, the coordination is

simple. Each processor simply prints its message, atomically decrements a counter

maintained in globally shared memory (nodecou.nt), and then waits until the counter

indicates that all messages have been printed. This guarantees that no processor

finishes its task until all messages have been printed; therefore all tasks are

generated before any processor finishes.

[0] run -sors 200 Hello
loading Hello from VAX ...

init1 ~ find memory

39

init2 ~map memory

There are 123 nodes on this machine

Hello world from node #0 (• hardware node #0)
Hello world from node #3 (•hardware node #6)
Hello world from node #2 (• hardware node #4)
Hello world from node #4 (•hardware node #8)
Hello world from node #5 (•hardware node #a)
Hello world from node #1 (•hardware node #2)
Hello world from node #6 (•hardware node #c)
Hello world from node #7 ~- hardware node #e)
Hello world from node #8 (• hardware node #10)
Hello world from node #9 {•hardware node #12)

Hel o world from node #79 (• hardware node #a2)
Hel o world from node #72 (•hardware node #94)
He o world from node #46 (• hardware node #Se)
He o world from node #44 (•hardware node #Sa)
He o world from node #49 (• hardware node #64)
He o world from node #60 (• hardware node #7c)
He o world from node #58 (•hardware node #78)
He o world from node #113 (• hardware node #eB)
He o world from node #85 (•hardware node foe)
He o world from node #76 (•hardware node #9c)
He o world from node #65 (•hardware node #86)
He o world from node #81 (•hardware node #a6)
He o world from node #25 (• hardware node #32)
He o world from node #66 (•hardware node #88)
Hel o world from node #120 (•hardware node ff6)
Hel o world from node #59 (•hardware node #7a)
Hel o world from node #82 (• hardware node #08)
Hel o world from node #41 (•hardware node #54)
Hel o world from node #47 (•hardware node #60)
Hel o world from node #108 (• hardware node #de)
Hel o world from node #53 (•hardware node #Se)
Hel o world from node #86 (•hardware node #b0)
Hel o world from node #24 (• hardware node #30)
Hel o world from node #118 (• hardware node #f2)
Hel o world from node #107 (• hardware node #de)
Hel o wor d from node #29 (• hardware node #3a)
Hel o wor d from node #32 (• hardware node #40)
Hel o wor d from node #90 (• hardware node #b8)
Hel o wor d from node #104 (• hardware node #d4)
Hel o wor d from node #95 (• hardware node #c2}
Hel o wor d from node #91 (• hardware node fba)
Hel o wor d from node #64 (• hardware node #84)
Hel o wor d from node #22 (• hardware node f2c)
Hel o wor d from node #48 (• hardware node #62}
Hel o wor d from node #61 (•hardware node #7e}
Hel o wor d from node #96 (• hardware node #c4}
Hel o wor d from node #112 {• hardware node #e6}
[0]

init3 ~ start processors

Figure 5: Typescript from the multiprocessor "Hello world" program.

40

1 /• Mu It i processor 0 He 11 o" program •/
2
3 #include <us.h>
4
5 short • nodecount;
6
7 PrintHel lo(dummy, index}
8 int dummy, index;
9 printf{"Hello world from node f%d (•hardware node #%x}\n°,

10 PhysProcToUsProc(Proc_Node}, Proc_Node};
11 Atomic_odd(nodecount, -1);
12 while (•nodecount I• 0) UsWoit(0);
13
14
15 main()
16 l InitializeUs():
17 nodecount •(short•) Allocote(sizeof(short));
18 • nodecount • TotolProcsAvoilable();
19 printf(0 \nThere are %d nodes on this mochine\n\n", •nodecount);
20 Share(tnodecount):
21 GenOnl(PrintHello, •nodecount);
22

Figure 6: The multiprocessor "Hello world" program.

41

4.2. Matrix Multiplication

This example illustrates use of the AllocScatterMatrix storage allocator, the

GenOnA task generator, and the routines JnitializeUs, Share, TimeTest, and

Time Te stPrint.

The example is an unoptimized program that multiplies two matrices. The

program computes the matrix a = b * c. Recall that the product (a) of two matrices

(b and c} is the matrix whose (i,j)th component is the sum of the products of the

corresponding elements (the dot product) of the ith row of b and the jth column of c.

The program is written to run on a set of processor configurations specified

from the keyboard. Figure 7 is a typescript produced by running the matrix example

program on a small Butterfly system. The line please enter start ... is used to gather

specification of the processor configurations to be used for the run. It is output by

the TimeTest routine; see the discussion of TimeTest in Section 3 for an explanation of

the start, del and end parameters. The line [8] time = 12657 ... is output by

TimeTestPrint. It indicates that the matrix example program took 12657 ticks or .79

seconds on 8 processors, and that it achieved a speedup of 7 .8 over 1 processor

(= 7 .8 effective processors}, utilizing the 8 processors with 98.70 3 efficiency.

The program itself is shown in Figure 8. It parallelizes matrix multiplication by

computing the individual elements of the product matrix a in parallel. Each element is

the dot product of a row of matrix b and a column of matrix c.

The program has 6 routines 14:

1. JnitProblemOnce. As its name suggests, this is an initialization routine called
once per invocation of the program. JnitProblemOnce allocates space in
globally shared memory for the result matrix a, and the two operand
matrices b and c, using the Uniform System allocator ALlocScatterMatri:r.
Note that the variables a, b, and c are C globals and, hence, process
private. Next, JnitProblemOnce uses Share to make copies of a., b, and c
available to any processors used in tasks generated to do the matrix
multiplication. Finally: it initializes the b and c matrices (with dummy data)
using nested for loops. Since matrix b will be accessed by row, and matrix
c will be accessed by column, b is scattered by row and c is scattered by
column. That is, b[i][j] is the element in row i, column j of b, whereas c[i)(j]
is the element in row j, column i of c.

2. JnitPerRun. This is an initialization routine called before each run of the
matrix multiplication code on a given configuration of processors. It simply

14Chrysal is starts the program by cal ling the routine main on a single processor.

[0] run -sars 200 MotrixExample
loading MatrixExample from VAX ...

42

init1 ~find memory init2 ~map m~mory

Starting Matrix Multiply
Matrix Size: 20

init3 ~start processors

please enter start. del(0-exp). and end for time test: 1 0 8

using start • 1 • de I ta • 0, end • 8
a row 0 0. 60. 120. 180. 240. 300.
a row 1 3. 63. 123. 183. 24~. 303.
a row 2 6. 66. 126. 186. 246. 306.
a row 3 9. 69. 129. 189. 249. 309.
0 row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195. 255. 315.
[1) time • 99944 ticks• 6.24 sec: ep • 0.9; eff • 0.9999
a row 0 0. 60. 120. 180. 240. 300.
0 row 1 3. 63. 123. 183. 243. 303.
a row 2 6. 66. 126. 186. 246. 306.
a row 3 9. 69. 129. 189. 249. 309.
0 row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195. 255. 315.
[2] time• 50204 ticks• 3.13 sec: ep • 1.9; eff • .9953
0 row e 0. 60. 120. 180. 240. 300.
a row 1 3. 63. 123. 183. 243. 303.
0 row 2 6. 66. 126. 186. 246. 306.
a row_ 3 9. 69. 129. 189. 249. 309.
0 row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195~ 255. 315.
[4] time• 25079 ticks• 1 .56 sec; ep • 3.9; ef f • .9962
0 row 0 0. 60. 120. 180. 240. 300.
a row 1 3. 63. 123. 183. 243. 303.
0 row 2 6. 66. 126. 186. 246. 306.
a row 3 9. 69. 129. 189. 249. 309.
0 row 4 12. 72. 132. 192. 252. 312.
a row 5 15. 75. 135. 195. 255. 315.
[8] time= 12657 ticks= .79 sec; ep -= 7.8; eff = .9870
[0]

Figure 7: Typescript of the matrix example program.

43

1 /• Matrix multiply - unoptimized example program •/
2
3 #include <us.h>
4
5 int Size;
6 float ••o,••b,••c;

·7
lnitProblemOnce()
i int t.J; .

8
9

10
11
12
13
14
15
16
17
18
19
20

a• (float ••)Al locScatterMatrix{Size,Size,sizeof(float));
b • (f loot ••)Al locScatterMatrix(Size.Size,sizeof(float)):
c • (float ••)Al locScatterMatrix(Size,Size,sizeof(float)):
Share(ta): Share(tb); Share(tc):
for (i•0: i<Size: i++)

for (j•0: j<Size; j++)
I if {i--j) b[i][j) • 3.; else b[i)[j) • 0.;

c[i][j] •Size• i + j:
l

21 lnitPerRun()
22 { int i , j;
23 for (i •0; i <Size; i ++)
24 for {j-0; j<Size; j++)
25 a[i)[j] • 0.:
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

DotProduct{dummy,i,j)
int dummy, i ,j:
int k; float •bb, •cc, temp;
temp• 0.0; bb • b[i]; cc• c[j);
for (k•0; k<Size; k++)

temp -+-- •bb++ • •cc++;
a[i][j] • temp;

Body()
t GenOnA(DotProduct, Size. Size);
I

PrintAnswer(time,procs.speedup)
int time,procs; f loot speedup:
int i. j;
for (i•0: i<6; i++)
I print f ("\no row ~d ". i);

for (j-0: j<6; j++)
printf ("~d. ", (int) a(i](j]);

I
TimeTestPrint{time,procs,speedup);

main()
I lnitializeUs();

printf("\nStarting Matrix Multiply\nt.Catrix
Shore(.tSize);
lnitProblernOnce():
TimeTest(InitPerRun, Body, PrintAnswer);

Size: ") : scan f ("%d" , l:S i ze) ;

Figure 8: The matrix example program.

44

zeros the answer matrix a 15. Note that the rows of the matrix could be
zeroed in parallel if the matrix was very big.

3. DotProduct. This is a worker routine called by the GenOnA task generator.
It computes the vector dot product of row i of the b matrix and column j of
the c matrix and stores the result in element a[i](j) of the result matrix. It
uses a for loop to accumulate the individual products in a temporary
variable, which it then stores in the result matrix. The variable bb is a
pointer to row i of matrix b and variable cc is a pointer to column j of
matrix c. Since matrix b is scattered by row and matrix c is scattered by
column, successive elements of the ith row of b and the jth column of c can
be accessed by incrementing and de-referencing the bb and cc pointers.
Using *bb rather than b[i)(j) avoids accessing b[i] .(which is constant since i
doesn't change) in each iteration of the for loop. This helps avoid
contention for the memory that holds the b vector of pointers. A similar
comment applies to the use of cc.

4. Body. This is the routine that computes the matrix product. It uses the
CenOnA task generator to spawn tasks that execute in parallel to compute
the individual dot products that make up the result matrix. The generator
ensures that DotProduct is called for all combinations of i and j for
0 < = i < Size and 0 < = i < Size.

5. PrintAnswer. This is the display routine called by TimeTest. It prints out
part of the result matrix and then calls TimeTestPrint to print the runtime,
number of processors, and the speedup obtained over 1 processor by a
particular processor configuration.

6. main. The program starts in main. After initializing the Uniform System,
main asks the user to supply the size of the matrices (square matrices are
assumed) and stores the reply in the C global, process private variable Size.
Next, it calls Share to make a copy of the value of Size in all processors
that execute any tasks subsequently generated. It then calls
lnitProblemOnce to allocate and initialize the a, b, and c matrices. Finally,
it calls TimeTest to run the matrix multiplication on the range of processor
configurations specified by the user. The routines lnitPerRun, Body, and
PrintAnswer are called in order by TimeTest on each processor
configuration, and. Body is timed for each configuration.

4.3. Convolution

This example illustrates use of the CenOn/Full task generator and the Chrysalis

block transfer operation.

The example is an unoptimized program that performs a convolution operation on

an input image to produce a new output image. Each pixel in the output image is the

weighted sum of the corresponding pixel in the input imag.e and pixels adjacent to it.

The weighting is specified by a mask. For the example program a specific

15strictly speaking, since every element of a is written during the matrix multiplication,
it is not necessary to zero them between runs. They are zeroed here only to illustrate the
use of an "init 11 routine for TimeTest.

3 pixel x 3 pixel mask is used:

_, _, _,
_, 8 -1
-1 _, -1

45

The value of each pixel in the output image is 8 times the value of the corresponding

pixel in the input image minus the values of each of the 8 adjacent input image pixels.

Figure 9 is a typescript from running the program on a small Butterfly

configuration. The convolution program is shown in Figure 10.

The program parallelizes the convolution operation by computing rows of pixels

in the output image in parallel. The GenOnlFull task generator is called with a Range

parameter equal to the number of input image rows minus 2 to generate the tasks 16.

The program has six routines:

1. JnitProblemOnce. This routine allocates space in globally shared memory for
the input (im) and output (an) images (square images of dimension N x N are
assumed). The images are scattered by row across the memories of the
machine. It then generates pixel values for the input image. Next, it uses
Share to make copies of N, im, and an available to processors used in tasks
generated to do the convolution.

2. Jnitf or Proc. This is the "init" routine passed to GenOnlFuLl. It is called once
on each processor that executes tasks generated by GenOnIFull before any
of the tasks themselves are. lnitforProc allocates process private space, to
be used by DoConvol, for four rows of image pixels: row, row_m1, row_p1,
and row_ans.

3. DoConvol. This routine computes one row of the output image. Calls to it
are generated by the GenOnJFull task generator. Before computing output
pixels, DoConvol makes local copies in process private memory of the pixel
values it needs using the Chrysalis Do_bt block transfer operation. Each
iteration of the for loop computes one pixel of the output image. As their
values are computed, the output pixels are accumulated in process private
memory in row_ans. After all have been computed, row_ans is copied to the
output image by means of block transfer.

The four block transfer operations are motivated by two performance
considerations. First, when referencing a large number of contiguous items,
it is more efficient to first use block transfer to make a local copy of them
and then reference the copied values locally, than it is to reference the
items one at a time through the switch. After a small amount of setup, the
block transfer occurs at the full 32 Mbit/second rate of the Butterfly
switch, whereas the individual remote references do not, since setup
overhead must be incurred for each remote reference. Using the block
transfer operation to put frequently referenced data in local memory is the

16The top and bottom rows. and the left and right columns are not convolved because they
ore on the edge of the image, and therefore have insufficient adjacent pixels.

[0] run -sars 200 convolve
loading convolve from VAX ...

46

init1 -- find memory init2 -- mop memory

Image size = 256

init3 - start processors

please enter start, del(0-exp), and end for time test: 1 0 8

using start• 1, del to • 0, end • 8
[1] time• 147647 ticks= 9 .22 sec: ep = 0.9; ef f = 0.9999
[2] time• 73397 ticks• 4.58 sec: ep • 2.0; eff -1.0058
[4] time • 36786 ticks 2.29 3ec; ep • 4.0; eff • 1.0034
[8] time • 18498 ticks • 1. 15 sec; ep .. 7.9; ef f - .9977
[0]

Figure 9: Typescript from the convolution program.

47

1 /• Image convolution - unoptimized example program •/
2
3 #include <us.h>
4
5 #define true·
6 fdef ine false 0
7
8 int N, End;
9 int • • im, • •on;

10 int • row. • row_m1. • row_p1 • • row_ ans:
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

lnitProblemOnce ()
l int i , j;

im-(int • •)Al locScotterMotrix(N,
on-(int • •)AllocScotterMotrix(N,
for (i •0; i <N; i++)

for (j • 0;. j < N; j++)
im[i)[j) • i % 2:

Shore(l:N); Shore(tim); Shore(ton);

lnitforProc(dummy}
int dummy;
End • N - 1;

N, sizeof(int));
N, sizeof(int)):

row• (int •) mol loc (N•sizeof(int)):
row_m1 •(int•) molloc (N•sizeof(int));
row_p1 •(int•) molloc (N•sizeof(int));
row_ans • (int •) mol loc (N•sizeof(int));

OoConvol(dummy ,r)
int dummy, r;
int c:
if (r I: 1)

r • N-r-2;
Do_bt (im[r++], row_m1, N•sizeof(int));
Do_bt (im[r++], row, N•sizeof (int));
Oo_bt (im[r--], row_p1, N•sizeof(int));
for (c = 1; c <End; c++)

row_ans[c] • -row[c-1] + (row[c] << 3) - row[c+1)
-row_m1[c-1] - row_m1[c] - row_m1[c+1]
-row_p1 [c-1] - row_p1 [c] - row_p1 [c+1]:

Oo_bt (row_ons, on[r], N•sizeof(int));

46 FinalforProc ()
47 I free (row);
48 free (row_m1);
49 free (row_p1);
50 free (row_ons):
51
52
53
54
55
56
57
56
59
60
61
62
63

Body()
I GenOnlFul l(lnitforProc. OoConvol, FinolforProc, 0, N-2, e, false);
I

main()
I int TimeTestPrint();

I n i ti a I i zeUs () :
printf("\nlmoge size• 11

); sconf("%d", ~);
lnitProbtentOnce();
TimeTest(e, Body, TimelestPrint);

Figure 10: The convolution example program.

48

Butterfly analogy to using register variables in C to hold data in faster
memory. The second performance consideration is that potential
multiprocessor contention for the memory holding the pixel values is
reduced, since the single block tr an sf er ties up the memory for less time
than the individual remote references.

The if statement that changes r when it is odd is also motivated by memory
contention considerations. Since each instance of DoConvol references three
rows of the input image, processors working on adjacent rows need to
access two rows in common. To reduce the contention that could occur
when the processors attempt to block transfer copies of the same rows,
processors that are passed an even r index use the index directly as a row
index whereas those with an odd r index use the index as an offset from the
bottom of the image 17. This tends to spread the processors out on the
image; processors start both at the top of the image and work down on even

·rows, and at the bottom of the image and work up on odd rows 18 .

4. FinalforProc. This is the "final" routine passed to GenOn/Full. It is called
on each processor used for tasks generated by GenOnJFull after the last
such task has been executed on the processor. Final! orProc deallocates the
space for row, row_mt, row_p 1, and row_ans.

5. Body. This is the routine timed by TimeTest. It uses GenOn/Full to generate
the tasks that compute rows of output image pixels in parallel.

6. main. The program starts with main. Main simply initializes the Uniform
System, obtains the size of the image to be convolved from the user, and
times the parallel convolution on the processor configurations specified by
the user.

17As written, the program assumes that N is even.

18This scheme assumes that GenOnlFuLL generates index values in sequence, which, in fact,
it does. Note that there is still a potential for contention with this approach since, for
example, the processors working on rows 2 and 4 both access row 3. A slightly more complex
scheme would eliminate this contention.

49 .

5. Running and Tuning Uniform System Programs

This section presents information needed to run programs that use the Uniform

System. In. addition, it offers a few suggestions for tuning the multiprocessor

performance of Uniform System programs.

Running Uniform System Programs

When a program uses the Uniform System, it has access to a large globally

shared region of memory. Implementation of the shared memory region requires use of

more hardware mapping registers (called sars for Segment Attribute Registers) than

the Butterfly shell (bshell) load and run commands normally use for application

programs. Therefore, the bshell must be instructed to use the required number of

sars for Uniform System programs via the -sars option of the load or run command:

load -sars 200 program
run -sars 200 program

or via the us utility:

us program

The us utility is equivalent to run -sars 200; it also starts the program on a non­

King node, sets the switch timeout to a val~e appropriate for Uniform System

programs, (see discussion below) and enables alternate switch paths, if any (see

discussion below).

If the us utility is not used, then it is often advisable to use the Chrysalis toset

and alten utilities prior to running Uniform System programs, as described in the

following paragraphs.

Chrysalis manages the value of a timeout controlling the length of time processor

nodes will try to get a message (e.g .. a request to read or write a remote memory

location) through the Butterfly switch. Transmission of a message may fail for a

variety of reasons: contention within the switch or at a memory, failure of a

switching element, software or hardware failure of the destination processor node, and

so forth. When an attempt to send a message fails, the sending node repeatedly

retransmits the message until either the message is successfully transmitted or the

timeout period elapses. If the timeout elapses before the message is successfully

transmitted, Chrysalis signals an exception condition to the application program by

means of a "throw"19. Chrysalis uses 10 milliseconds as a default timeout period.

19see the Chrysalis Programmers~ or the appendix of the Butterfly Parallel Processor
Overview for a discussion of the throw mechoniSRI.

50

Experience has shown that this is too small for many programs on moderately sized

and larger machines (>= 16 processors). The toset utility may be used to change the

switch timeout to a larger value. A value of 4 seconds works well;

toset 4000

The switches for larger Butterfly systems (> 16 processors) are typically

configured with alternate paths. Unless it is explicitly told to do so, Chrysalis will not

use the alternate paths. The alten utility may be used to enable the use of alternate

paths;

a I ten 2

enables the use of two paths between source and destination.

Performance Tlining

Programs are often developed in two stages. The first stage focuses on getting

the program to function correctly, and the second stage focuses on achieving an

acceptable level of performance by tuning the correctly functioning program.

We recommend this two stage approach to multiprocessor programs: first, get

the program to work, and then tune its performance. Although this section -is

concerned with tuning a program's multiprocessor behavior, the uniprocessor behavior

should, of course, also be tuned.

For Uniform System programs, multiprocessor performance bottlenecks may occur

for several reasons. Performance bottlenecks can occur if:

1. There are insufficient tasks;

2. The tasks are too small;

3. There is memory contention.

The following paragraphs briefly considers each of these.

If there are insufficient tasks, processor starvation occurring as task generators

finish up can limit program performance. For example, assuming that there are 128

processors, consider the simple case of an application with 129 tasks, each of which

takes about T time units to perform. One processor will perform 2 tasks and the

remaining 127 processors a single task. Therefore, the time to run on 128 processors

will be

2 T

51

and the maximum speedup attainable over running on a single processor is

Mox speedup - (Time on 1 proc) / (Time on 1~8 procs)
- 129 T I 2 T
- 64.5

which results in a processor utilization of only 50 3.

On a speedup plot (a plot of actual processors versus effective processes)

processor starvation effects will show up as a periodic "saw tooth" superimposed on a

generally monotonically increasing curve.

The obvious way to remedy this situation is to increase the number of tasks20.

In some cases, this is straightforward. For example, if it were necessary to increase

the number of tasks in the convolution example of Section 4, the number of tasks

could be doubled by having each task process only half of an image row.

When the tasks are too short, poor performance may be due to two factors:

1. If task generation time is a significant fraction of total run time, the
overhead of the task generator may be unacceptably high. Speedup curves
will often be linear in this situation.

2. Task generators typically contain an internal "critical" region through which
processors must proceed one at a time. For example, GenOnlnde:c must
atomically increment a counter to step through the Range parameter (see
"Building a Generator" in Section 3). Critical regions in task generation may
limit the number of processors that can be used efficiently. To _see this, let
T be the time it takes to execute a task. T includes the time to generate
the task (Tgen) and the time to p·erform the task computation (Twork).

T • Tgen + Twork

Tgen is made up of time spent in the critical region Tcrit and in the
noncritical region (Tnoncrit); hence,

T • Tcrit + Tnoncrit + Twork

Letting Trest be the sum of Tnoncrit and Twork gives

T • Tcrit +Trest.

Since processors must proceed through the critical region serially, the

maximum number of processors that can be fully utilized21 is:

20 1n a large application, witH many generators active at once. having a -relatively smal I
number of tasks for some generators need not be a concern.

21 That is. used without waiting to proceed though the critical region.

52

Mox I procs • T / Tcrit-= (Tcrit +Trest)/ Tcrit

... Trest / Tcrit for Trest >> Tcrit.

For example, if the critical region is half the total task time, only two
processors can be fully utilized.

This effect will usually manifest itself as a flattening of the speedup curve,
asymptotically approaching T / Tcrit effective processors.

The effects of both factors can be minimized by increasing task length. The

convolution example in Section 4 is an intermediate version in a sequence that led to

an optimized program. An earlier version parallelized the convolution by computing

single pixels in the output image in parallel. That task took about 45 microseconds

and was far too small, since the critical region in the GenOnArray task generator used

was about 10 microseconds.

Finally, if there is significant memory contention, processors are forced to

proceed serially as they contend for "hot" memory. Hot spots typically show as a

flattening of the speedup curve. If the hot spot is severe, the curve may turn down

or oscillate. The remedy for this situation is to remove the hot spot. In practice this

is usually a two step process: detecting the hot spot, and then removing it.

In some cases hot spots can be identified by studying the code. In other cases

the hot spots are not so obvious. In such cases, the Butterfly program profiling

utility can be used to determine where, if at all, there is significant memory

contention. Consult the Chrysalis Manual for detailed information on using the

profiler.

After hot spots are identified, they must be eliminated. Eliminating them is

usually application dependent. However, a few general guidelines can be offered:

1. Distribute the program's data across the machine. AllocScatterMatri.% can be
used to do this.

2. Make local copies of frequently accessed data items. Share and
ShareScatterMa.triz, or more specialized code in the per processor
initialization routines of task generators can be used to do this.

3. Distribute references to frequently accessed data across multiple copies of
the data. In some cases it may neither be necessary nor practical to have
a copy of frequently accessed data on every processor. In many cases, a

few copies are sufficient22. Of course, if the copied data changes as the
computation proceeds and multiple processors need to see the changes,

22If there ore n copies, processor p would access copy (p mod n).

53

managing the copies can become complex.

4. Make local cache copies of data structures before referencing them, as in
the convolution example in Section 4. Do_bt can be used to do this.

54

I. Append~x

Compiling. Loading •. and Running Programs

This appendix gives step by step instructions for compiling, linking and running

Uniform System programs on the Butterfly Parallel Processor. The Butterfly Parallel

Processor Tutorial and the Chrysalis Programmers Manual should be consulted for

more detailed information on the mechanics of using the Butterfly system.

The instructions below refer to various directories. header files. tools, etc.

These all come on Butterfly software distribution tapes. Instructions for installing

software distribution tapes on your front end host can be found 'in the Chrysalis

Programmers Manual.

STEP 1:

STEP 2:

Set up search paths on the Unix front end machine. You will need
to access several directories besides the one containing your
sources. To do this you will have to edit your .profile file (if a
bourne shell user} or your .login file (if a cshell user}.

The- changes for the borne shell are:

1. Add BFlyDir /bin to your Unix search path, where BFlyDir
is the root Butterfly directory (usually /usr /butterfly}.

2. Add to your .profile file the lines:

'
CHRYS-SFlyOir/chrys/release
8_PATH=:.:$CHRYS/tools:$CHRYS/net-tools:$CHRYS
export B_PATH CHRYS

where BFlyDir is the root Butterfly directory (usually
/usr /butterfly).

The changes for the cshell are:

1. Add BFlyDir /bin to your Unix search path, where BFlyDir
is the root Butterfly directory (usually /usr /butterfly).

2. The changes to your . login file for the cshell are:

setenv CHRYS BFlyOir/chrys/release
setenv B_PATH .:$CHRYS/tools:$CHRYS/net-tools:f$CHRYSI

where BFlyDir is the root Butterfly directory (usually
/usr /butterfly}.

Set up your directory. Make a directory on the front end machine
in which to build your program.

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

STEP 8:

STEP 9:

NOTE:

55

Construct with your favorite editor both a source file (extension . c)
and a makefile for your program. We strongly recommend that you

start with an existing template for both of these files 23: Figure 8,
the matrix multiply example program, and Figure 11 are suitable to
serve as templates. (These templates may be found in the directory
$(CHRYS)/us in the file·s MatrixExample. c and us-prog.makefile.)

Customize your makefile. Edit the first line in the makefile template
replacing name with the name of your program. If your program is
named prog. c, the line should be:

MINE • prog

If your program requires several files to be linked together, you will
need to change one of the "rules" in the makefile template - consult
the Unix documentation for make.

You are now ready to edit, compile, and run programs. Construct
your source file. It must be in the directory you just created, and
it must have extension . c. At the start of the file, add the line:

#include <us.h>

This incorporates a few definitions that allow compilation of the
same program for both the Butterfly and the front end without
modification.

Compile your file. To compile for the front end, make prog. out. To
compile for the Butterfly, make prog.68.

Debug your program on the front end machine'. Make prog. out
creates the usual front end .executable version of your program;
debug it using whatever techniques you prefer.

Go to a Butterfly console terminal.

Type ctl-c. If you don't get a prompt, consult your local Butterfly
system expert. You are now talking to USD; a very simple minded

ROM-based loader/ debugger program24.

Type T (capitals matter), then return. You should now be speaking
to the front end. Log out if necessary, then log in and change
directory to the one that contains your program.

You can get to the front end whenever you want by typing ctl-c and
T. If you wish, you can edit and compile while connected to the
front end in this manner.

23Alternotively. you might choose to use the genmake utility to construct your makefile.
Consult the Chrysalis Progronners Manual for details.

24There ore several variations to the scenario described in this step and steps 9 through
13~ Consult the Butterfly Porat tel Processor Tutorial for details.

STEP 10:

STEP 11:

STEP 12:

STEP 13:

STEP 14:

STEP 15:

STEP 16:

56

Decide whether you want to reload Chrysalis. Usually you won't
need to. If you need to reload Chrysalis, reenter the front end and
execute:

bid chrys.68

Start Chrysalis. Return to the Butterfly by typing ctl-c, then type
G.

Configure the machine. Chrysalis will tell you which processors are
available, and which you are currently using. It will then ask if you
want to change things around. The dialog is self explanatory.
Usually, it is fine to use all of the processors that are available.

When Chrysalis asks you for the terminal type you are using, answer
it. After you respond, Chrysalis will clear your screen and print a
prompt of the form "[n]" where n is the number of the processor
node that your terminal happens to be connected to. At this point,
you are talking to to the Butterfly Shell (bshell) command
interpreter. The commands that the bshell will execute are
documented in the Chrysalis Programmers Manual. Only the bare
minimum are given below.

To run your program, type the line:

us prog

where prog is the name of your program25. Your program ·will now
be in control. If it executes correctly, you are done and you may
logout.

If your program doesn't execute eorrectly, it will hang, print forever,
or print some error message. You have a couple of options at this
point. If you do not care to learn more about the detailed workings
of the Butterfly, you must use printf's (the standard C programmer's
fallback). Otherwise, you can learn to read the information that
appears in the error messages, and you can learn about the
debugging tools.

The surest and simplest way to regain control of the machine is to
type ctl-c. After that, you can type G to restart Chrysalis. There
are less catastrophic ways to stop the machine26 which will save you
time in the compile/ edit/ debug cycle (restarting Chrysalis is not a
quick operation). Typing ctl-g k will terminate your program and
return you to bshell. At this point you can return to the front end
by typing ctl-g h. After editing and recompiling your program you
can return to the Butterfly by typing ctl-g %, where % is any
character other than ctl-g; to send ctl-g to the front end, type

25The u.s utility provides a simple way for starting Uniform System programs which is
adequate for many situations. See Section 5 for a discussion of other ways to start a
Uniform System program.

26see the Butterfly Parallel Processor Tutorial for details.

57

ctl-g ctl-g. To run your program again, you should first remove the
old version by typing

rm prog

to the bshell. Now you can run the new version of your program by
going back to STEP 14.

You should now be able to go through the compile/edit/debug cycle.

tJ.INE
BF'
VER
CHRYS
u
IOIR
I FLAGS
x
h

name
Butterfly root directory
release
$(BF)/chrys/$(VER)

= $(CHRYS)/us
$(CHRYS)/include
-I$(IDIR)
$(CHRYS)/chrys.68
$(CHRYS)/include

• $(BF')/bin/bcc
-0 -DBF'LY

58

CC68
CC68FLAGS
LNK68LIBS
CF' LAGS
LF'LAGS
pref ix
sys

• $(CHRYS)/lib/libcs.a $(CHRYS)/lib/libtools.a
• -c -Im -g
• -Im -g
• $(CHRYS)/lib/boss.o68
• $x ${pref ix) ${LNK68LIBS)

hdrs • $h/public.h $h/stdio.h $h/us.h

al I: $(MINE).68 ${MINE)

#Object file dependencies

$(MINE).68:
$(MINE).out:

$(sys) $(MINE).o68
$u/us.o $(MINE).o

I Source file dependencies·

$(MINE).o68: $(hdrs)

. SUFFIXES:

.SUFFIXES: .out .o

.SUFFIXES: .68 .068 .a68 .s68 .c68 .c

I Source file suffixes:
I .c68 - C source code file
.068 - assembler source code file

#Intermediate file suffixes:
.068 - relocatable output of assembler {butterfly)
.o - relocatable output of assembler (vox)
I Executable file suffixes:
I .68 - executable 68000 file in a.out format (stable version)

.c68.o68:

.c.068:

.068.68:

.c.o:

.o.out:

rm -f $•.168; $(CC68) $(IF'LAGS} $(CC68F'LAGS) -c $•.c68
rm -f $•.168; $(CC68) $(1F'LAGS} $(CC68FLAGS) -c $•.c
$(CC68} -o $0 $•.068 $(LNK68LIBS): splitsyms $0
rm -f $•.o: cc -I$(u) $(CFLAGS} -0 $•.c
cc -o $• $•.o $u/us.o $(LF'LAGS): touch $•.out

Figure 11: "Makefile" template for Uniform System programs.

59

II. Appendix

Uniform System Library Routines

This appendix documents each of the operations supported by the Uniform

System Library. The operations are ordered alphabetically. The page references refer

to the narrative descriptions for the various operations in Section 3.

o AbortGen

AbortGen(GenHandle, code)
UsGenOesc • GenHandle;
int code;

page 23

Abort the active task generator specified by GenHandle by preventing the
generation of new tasks. Any tasks in progress will run to completion. The
value of code is returned as the result code for the generator. If AbortGen
is called more than once for a given generator, the smallest code is
returned as the generator result code.

GenHa,ndle must specify an abortable generator.

o ActivateGen

UsGenDesc •
ActivateGen(lnit, Worker, Final, Arg, Range1. Range2, Type

Gen, Asyne, MaxProcsToUse Abortable, ResultP)
int (• !nit)(), (•Worker)(), (• final)();
int Arg, Ronge1, Ronge2, Type;
int (• Gen)();
int Asyne, MaxProcsToUse, Abortable, • ResultP;

page 35

ActivateGen is the "universal" generator activator procedure. It is called by
all of the GenOn ... generator activator procedures. Activa,teGen may be used
directly by application programs to construct new generators.

As with the generators described elsewhere in this appendix, lnit, Worker,
and Final are respectively, the per processor initialization routine, the task
worker routine, and the per processor post processing routine; Arg is a
pointer to a data structure, which is passed to the /nit, Worker, and Final
routines. Type must be GENERATOR, and Range1 and Range2 are integers.
Gen is a task generation routine described in more detail below. Async is a
boolean that specifies if the generator is synchronous (true) or
asynchronous false. Ma:tProcsToUse specifies the processor limit for the
generator; 0 or -1 indicates no processor limitation; a positive values
indicates the maximum number of processors to be used on the generator.
A borta.ble is a boolean which indicates whether the generator is to be
abortable. Finally, ResultP is a pointer used when Aborta.ble is true; it
specifies a location where the generator "result code" should be stored if
the generator is aborted (so that the generator activator routine can find
it).

The task generation routine is of the form:

Gen(TD);
UsGenDesc • TD;

60

where TD is a pointer to a task descriptor data structure in globally shared
memory of the form (the type UsCenDesc is defined in usgen.h an #include
file which must be used when ActivciteCen is used):

struct
I short started;

short type;
/• Oef ined types ore: •/

#define IDLETASK 1
fdef ine GOAWAYTASK 2
fdef ine GENERATOR 4

short incornotion_number;
short state;
/• Defined states ore: •/

#define ACTIVE 1
#define INACTIVE 2

short us_lock;
short lock;
int {•init)();
int (•coll)():
int (•gen)();
int (•final)();
int arg;
char •currentShore:
int range;
int ronge2;
OH returnQ;
int post_pending;
short MaxProcsToUse;
int end;
int abortable;
short retcode;
/• Defined retcodes ore: •/

#define genEXHAUSTED -1
short endlock;
union llong Long; short Short;J index;
union Junsigned long Long; unsigned short Short;J index2;
short locka[nlocks];
short index1o[nlocks];
short index2a[nlocks];

The Worker, /nit, Final, Gen, Arg, Ranget. Range2, Type, MazProcsToUse, and
Abortable parameters of ActivateGen are used to initialize the call, init,
final, gen, arg, range, range2, type, MazProcsToUse, and abortable fields of
the task descriptor data structure. The lock and the locka array fields are
initialized to 0 and are available for use as locks by the Gen routine; and,
the index and incte:c2 fields, and the incte:ct a and incte:c2a array fields of the
task descriptor data structure are initialized to 0 and are available for use
by the Gen routine for bookkeeping associated with generating the tasks.
The remaining fields (e.g., started, state, shareCount, returnQ, etc.) are used
by ActivateGen for internal bookkeeping.

After ActivateGen initializes the task descriptor data structure, i_t makes the
descriptor accessible to other processors. If Async is true,, ActivateGen
then returns control to its caller along with a pointer to the task
descriptor data structure; otherwise, the processor on :which Activa.teGen is
invoked calls the Gen task generation procedure. That processor, and
others as they become free, use the task generator descriptor (TD) and the

61

Gen task generation procedure to generate and execute calls on the Worker
procedure.

o Allocate

char • Al locate(size)
int size;

page 17

Allocate· a block of storage of size bytes in globally shared memory. The
block is allocated from the memory with the most free space.

o AllocateC

char • Al locateC(size, cJass)
int size, class;

page 33

Allocate a block of storage of size bytes in globally shared memory. The
block is allocated from the memory in the class specified with the most free
space. See also UsSetClass.

o AllocateLocal

char •Al locatelocol(size)
int size;

page 17

Allocate from the memory of the local processor a block of globally shared
storage of size bytes.

o AllocateOnPhysProc

char • Al locateOnPhysProc(physproc, size)
int physproe, size;

page 17

Allocate from the memory of the processor whose hardware processor
number is physproc a block of globally shared storage of size bytes.

o AllocateOnUsProc

char • Al locateOnUsProe(proc, size)
int proc, size;

page 17

Allocate from the memory of the processor whose Uniform System processor
number is proc a block of globally shared storage of size bytes.

o AllocateOnUsProcC

char• AllocoteOnUsProcC(proe, size, class)
int proc, size, class:

page 33

Similar to AllocateOnUsProc, differing in that the block of memory will be
allocated only if the processor is in the specified class; otherwise, it fails.
See also UsSetClass.

o AllocScatterMatrix

char•• AllocScatterMotrix(nrows, ncolumns, element_size)
int nrows, ncolumns, element_size:

page 18

62

Allocate a matrix that is scatted by row over the memories of the machine.
A vector of pointers nrows long is allocated, and nrows separate vectors,
each containing ncols items of size element_size bytes. The vectors are
allocated in separate memories. The vector of pointers, a pointer to which
is returned to the caller, is filled in with pointers to the scattered row
vectors. Elements of an array A alfocated in this ·way can be referenced
using standard C array notation:

A[i)[j]

o AllocScatterMatrixC

char • • Al locScotterMatrixC(nrows, ncolumns,
element_size, class}

int nrows, ncolumns, element_size;

page 33

Similar to AllocScatterMatriz, differing in that only memories of the machine
that are in the specified class are used to hold the scattered rows of the
matrix and the vector of row pointers. See also ALLocScatterMatriz and
U sS etCla,ss.

o AsyncGenOnA

UsGenDesc •
AsyncGenOnA(Worker, Range1, Range2)
int (• Worker)();
int Range1, Range2~

Asynchronous version of GenOnA. AsyncGenOnA is equivalent to

AsyncGenOnAFu11(0, Worker, 0, 0, Ronge1, Range2, 0, false)

o AsyncGenOnAAbortable

UsGenDesc •
AsyncGenOnAAbortable(Worker, Ronge1, Ronge2)
int (• Worker)();
int Ronge1, Ronge2;

page 27

page 27

Asynchronous version of GenOnAA bortable. A.syncGenOnAA bortable is
equivalent to

AsyncGenOnAFu11(0, Worker, 0, 0, Range1, Range2, 0, true)

o AsyncGenOnAFull

UsGenOesc •
AsyncGenOnAFull(lnit, Worker, Final, Arg, Ronge1, Range2,

Limited, Abortable)
int (•lnit)(), (•Worker)(), (• Final)();
int Arg, Range1, Ronge2, Limited, Abortable;

po9e 27

Asynchronous version of GenOnAFull. AsyncGenOnAFull returns to the caller
as soon as the task generator is activated, enabling the caller to work on
other things while the tasks are executed. AsyncGenOnAFull returns a
generator handle that can be used with 'WorkOn or 'WaitForTasksToFinish.
See the description of GenOnAFull for an explanation of the parameters.

o AsyncGenOnALimited

63

UsGenDesc •
AsyncGenOnALimited(Worker, Ronge1, Ronge2, MoxProcsToUse)
int (•Worker)();
int Ronge1, Range2, MaxProcsToUse;

page 27

Asynchronous version of GenOnALim.ited. AsyncGenOnALim.ited is equivalent to

AsyncGenOnAFull(0, Worker, 0, 0, Ronge1, Ronge2, MaxProcsToUse, false)

o AsyncGenOnHA

UsGenDesc •
AsyncGenOnHA(Worker, Ronge1, Ronge2)
int (• Worker)():
int Ronge1, Range2:

page 27

Asynchronous version of GenOnHA. AsyncGenOnHA is equivalent to

AsyncGenOnHAFul 1(0, Worker, 0, 0, Ronge1, Ronge2, 0, false)

o AsyncGenOnHAAbortable

UsGenDesc •
AsyncGenOnHAAbortoble(Worker, Range1, Ronge2)
int (• Worker){):
int Range1, Ronge2;

page 27

Asynchronous version of GenOnHAAbortable. AsyncGenOnHAAbortable is
equivalent to

AsyncGen0nHAFu11(0, Worker, 0, 0, Ronge1, Ronge2, 0, true)

o AsyncGenOnHAFull

UsGenDesc •
AsyncGenOnHAFull(lnit, Worker, Final, Arg, Range1, Ronge2,

Limited, Abortoble)
int (• lnit)(), (•Worker)(), (• Final)();
int Arg, Ronge1, Ronge2, Limited, Abortable;

page 27

Asynchronous version of GenOnHAFull. AsyncCenOnHAFull returns to the
caller as soon as the task generator is activated, enabling the caller to
work on other things while the tasks are executed. It returns a generator
handle that can be used with WorkOn or WaitForTasksToFinish. See the
description of CenOnHAFull for an explanation of the parameters.

o UsGenDesc • AsyncGenOnHALimited

AsyncGenOnHALimited(Worker, Range1, Ronge2, MaxProcsToUse)
int (• Worker)();
int Range1, Range2, MaxProcsToUse:

poge 27

Asynchronous version of GenOnHALim.ited. AsyncGenOnHALimited is equivalent
to

AsyncGenOnHAFul 1(0, Worker, 0, 0, Range1, Range2, MaxProcsToUse. false)

o AsyncGenOnl

UsGenDesc • ·
AsyncGenOnl(Worker. Range)
int (• Worker)();
int Range;

64

Asynchronous version of GenOnl. AsyncGenOnl is equivalent to

AsyncGenOnIFul 1(0. Worker. 0. 0. Range, 0. false)

o AsyncGenOnlAbortable

UsGenOesc •
AsyncGenOnlAbortable(Worker. Range)
int (• Worker}():
int Range;

page 27

page 27

Asynchronous version of GenOnlA bortable. AsyncGenOnlA bortable is
equivalent to

AsyncGen0nIFu11(0. Worker. 0. 0. Range. 0. true)

o AsyncGenOnIFull

UsGenDesc •
AsyncGenOnIFull(lnit. Worker. Final. Arg. Range.

Limited. Abortable}
int (• Init}(). (• Worker)(). (• Final)();
int Arg. Range. Limited. Abortable;

page 27

Asynchronous version of GenOnJFull. AsyncGenOnlFull returns to the caller
as soon as the task generator is activated, enabling the caller to work on
other things while the tasks are executed. It returns a generator handle
that can be used with WorkOn or WaitForTasksToFinish. See the description
of GenOnJFull for an explanation of the parameters.

o AsyncGenOnILimited

UsGenDesc •
AsyncGenOnILimited(Worker, Range. MaxProcsToUse)
int (• Worker}():
int Range, MaxProcsToUse;

page 27

Asynchronous version of GenOnJLimited. AsyncGenOnJLimited is equivalent to

AsyncGen0nIFull(0, Worker, 0. 0. Range. MaxProcsToUse. false)

o Atomic_add_long

Atomic_add_long(loc. val)
int • toe. val:

page 12

Atomically add val to the location pointed to by Loe. Atomic_add_Long is
similar to the Chrysalis 16 bit Atomic_add operation; it differs in that it
operates on 32 bit quantities and does not support the "fetch" part of the
"fetch and add" functionality provided by Atomic_add.

It is also important to note that in its current implementation
Atomic_add_long is atomic only with respect to other Atomic_add_long calls.
In particular, ii is possible for the execution of a read operation to be

65

interleaved with an Atomic_add_long operation in a way that returns an
inconsistent result to the read. This can occur if the high order 16 bits
returned by the read are obtained after the low order 16 bits are
incremented by the Atomic_a.dd_long, but before the carry (if any) is
propagated to the higher order bits.

o BEGIN_SHARED_DECL

BEGIN_SHAREO_OECL page 30

normal C declarations;

ENO_SHARED_DECL;

BEGIN_SHARED_DECL is a macro. It is used with END_SHARED_DECL to
delimit' the declaration of variables that e.re to be globally she.red among all
of the processors. Variables declared in this way e.re referenced using the
SHARED prefix. Space for variables declared in this way must be allocated
via Ma.keSha.redVa.riables after Jnitia.lizeUs is called and before they are
referenced.

Only one BEGIN-.SHARED_DECL/END_SHARED_DECL declaration can appear in
a Uniform System program.

All of the variables declared via BEGIN_SHARED_DECL/END_SHARED_DECL
are allocated on the same physical memory. In some situations this may
lead to memory contention.

o ConfigureUs

Conf igureUs(Spec, n)
int • Spec, n;

page 33

Configur:eUs can be used prior to calling JnitializeUs to specify values for
configuration parameters that differ from the values normally used by
JnitializeUs. Spec is an array (of int's) which specifies the configuration; it
contains n parameter specification blo.cks. Each parameter specification
block contains an integer configuration_code that serves to identify the
parameter being set followed by one (or more) integer(s) which specify the
value for the parameter.

The following configuration_ co de 's are currently defined:

Code

conf igProcs

conf igMaxSars

o DistinctMemoriesAvailable

OistinctMemoriesAvai table()

Parameter

integer • number of processors to include
in Uniform System configuration.

integer • number of segment attribute
registers {SARs) to use to define
process address spaces.

page 1e

Return an integer which is the number of memories available for use ·by the
application program. This number is usually the same as
TotaLProcsAvaiLable, but there are cases where it will be a smaller number

66

because memory cannot be obtained on a particular processor node.

o END_SHARED_DECL page 30

END_SHARED_DECL is a macro used with BEGJN_SHARED_DECL to delimit the
declaration of variables that are to· be globally shared.

o FreeAll

FreeA 11 ()

Deallocate all globally allocated storage.

o GenOnA

GenOnA(Worker, Rangel, Range2)
int (•Worker)();
int Rangel, Range2;

page 18

page 25

Generate tasks that cause Worker{O, indext, index2) to be executed in
parallel for all combinations of indext and index2 for 0 <= indcxt < Range 1
and 0 <= index2 < Range2. The processor that invokes GenOnA, and
possibly other processors, will be used to execute the tasks generated.
When GenOnA returns, all of the tasks generated will have been completed.

o GenOnAAbortable

GenOnAAbortoble{Worker, Rangel, Range2)
int (• Worker)();
int Rangel, Range2:

page 25

Abortable version of GenOnA. The tasks generated are calls of the form
Worker{O, indext, index2, GenHandle), where GenHandle is an identifier for
the task generator that can be used with A bortGen to abort it.
CenOnAA bortable is equivalent to

GenOnAFul 1(0, Worker, 0, 0, Rangel, Range2, 0, true)

Note that GenOnAAbortable returns a value which indicate whether AbortGen
was used to abort the generator.

o Gen OnAFull

GenOnAFull(Init, Worker, Final, Arg, Rangel, Ronge2)
Limited, Abortable)

int (• lnit)(), (•Worker)(), (• Final)():
int Arg, Rangel, Range2, Limited, Abortable;

page 24

Generate tasks that cause Worker(Arg, indext, index2) (if Abortable is false)
or Worker(Arg, indext, index2, GenHandle) (if Abortable is true) to be
executed in parallel for all combinations of indext and index2 for
0 <= indext < Ranget and 0 <= index2 < Range2. The processor that
invokes GenOnAFuLl, and possibly other processors, will be used to execute
the tasks generated.

The routine Jnit(Arg) ·fs called on each processor used to execute the tasks
generated before the Worker routine is called for the first time on the
processor. The routine Final(Arg} is called on each processor used to
execute the tasks generated after the Worker routine is called for the last

67

time on the processor. The Limited parameter is used to control the number
of processors used by the generator; if Limited is 0 or -1 there is no
limitation on the number of processors; a positive value limits the
processors used to that number or fewer.

When GenOnAFull returns, either: ail of the tasks generated will have been
completed in which case GenOnAFull returns the value genEXHAUSTED; or
the A bortable parameter was true, the generator was aborted, and some of
the tasks may not have been performed, in which case GenOnAFull returns
the code passed to A bortGen when it was aborted ..

o GenOnALimited

GenOnALimited{Worker, Ronge1, Ronge2, MoxProcsToUse)
int (•Worker)();
int Ronge1, Ronge2, MaxProcsToUse;

"Limited" version of GenOn.A. GenOnALimited is equivalent to

page 25

GenOnAFul 1(0, Worker, 0, 0, Range1, Range2, MaxProcsToUse, false)

o GenOnHA

GenOnHA{Worker, Range1, Range2)
int (•Worker)():
int Ronge1, Ronge2:

page 25

Generate tasks that cause Worker(Arg, indexf, index2) to be executed in
parallel for combinations of index 1 and index2 that span the "half" array
beneath the diagonal of a Range 1 x Range2 array as follows:

index2 - 0,
i ndex2 • 1,

index1 • 1, .•. ,{Range1-1)
index1 • 2, ...• {Ronge1-1)

index2 • R-2. index1 c (R-1), ... ,(Ronge1-1)

where R • min(Ronge1, Range2)

The processor that invokes GenOnHA. and possibly other processors, will be
used to execute the tasks generated. When GenOnHA returns, all of the
tasks generated will have been completed.

o GenOnHAAbortable

GenOnHAAbortable(Worker, Range1, Range2)
int (•Worker)();
int Range1, Ronge2;

page 25

Abortable version of GenOnH A. The tasks generated are calls of the form
Jf'orker(O, index1, index2, GenHandle), where GenHandle is an identifier for
the task generator that can be used with AbortGen to abort it.
GenOnHAAbortable is equivalent to

Gen0nAFull(0, Worker, 0, 0, Range1, Range2. 0, true)

Note that GenOnHAAbortable returns a value which indicate whether AbortGen
was used to abort the generator.

o Gen OnHAFull

68

GenOnHAFul l(Init. Worker. Final. Arg. Range1. Range2.
Limited, Abortoble)

int (• lnit)(). (•Worker)(). (•Final)();
int Arg. Ronge1. Ronge2, Limited. Abortable;

page 25

Generate tasks that cause Worker(A"rg, indext, index2) (if A bortable is false)
or Worker(Arg, indext, index2, GenHandle) (if Abortable is true) to be
executed in parallel for combinations of indext and index2 that span the
"half" array beneath the diagonal of a Range 1 x Range2 array as follows:

index2•0.
index2•1.

index1•1 •...• (Range1-1)
index1•2 •...• (Ronge1-1)

index2-R-2. index1•(R-1) •...• (Ronge1-1)

where R • min(Ronge1. Range2)

The processor that invokes GenOnHAFull, and possibly other processors, will
be used to execute the tasks generated.

The routine /nit(Arg) is called on each processor used to execute the tasks
generated before the Worker routine is called for the first time on the
processor. The routine Final(Arg} is called on each processor used to
execute the tasks generated after the Worker routine is called for the last
time on the processor. The Limited parameter is used to control the number
of processors used by the generator; if Limited is 0 or -1 no limitation is
placed on the number of processors; a positive value limits the processors
used to that number or fewer.

When GenOnHAFull returns, either: all of the tasks generated will have· been
completed in which case GenOnHAFull returns the value genEXHAUSTED; or
the Abortable parameter was true, the generator was aborted, and some of
the tasks may not have been performed, in which case GenOnHAFull returns
the code passed to A bortGen when it was aborted ..

o GenOnHALimited

GenOnHALimited(Worker. Ronge1, Range2~ MaxProcsToUse)
int (•Worker)();
int Rangel, Range2, MaxProcsToUse;

"Limited" version of GenOnHA. GenOnHALimited is equivalent to

Gen0nAFull(0. Worker, 0, 0. Rangel. Range2. MaxProcsToUse. true)

o GenOnl

GenOnl(Worker. Range}
int (• Worker)();
int Range;

page 25

page 24

Generate tasks that cause Worker(O, index) to be executed in parallel for all
values. of index in the range 0 <= index < Range. The processor that
invokes GenOnl, and possibly other processors, will be used to execute the
tasks generated. When GenOn/ returns, all of the tasks generated will have ·
been completed.

o GenOnIAbortable

GenOnlAbortable(Worker, Range)
int (•Worker)();
int Range;

69

page 24

Abortable version of GenOnl. The tasks generated are calls of the form
Worker(O, index, GenHandle), where· GenHandle is an identifier for the task
generator that can be used with A bortGen to abort it. GenOnlA bortable is
equivalent to

GenOnIFul 1(0, Worker, e. 0, Range, 0, true)

Note that GenOn/Abortable returns a value which indic~te whether AbortGen
was used to abort the generator.

o GenOnIFull

GenOnIFurl(Init, Worker, Final, Arg, Range,
Limited, Abortable)

int (• lnit)(), (•Worker)(), (• Final)();
int Arg, Range, Limited, Abortoble;

page 22

Generate tasks that cause Worker(O, index) (if Abortable is false) or
Worker(Arg, index, GenHandle) (if Abortable is true) to be executed in
parallel for all values of index in the range 0 <= index < Range. The
processor that invokes GenOn/Full, and possibly other processors, will be
used to execute the tasks generated.

The routine lnit(Arg) is called on each processor used to execute the tasks
generated before the Worker routine is called for the first time on the-.
processor. The routine Final(Arg) is called on each processor used to
execute the tasks generated after the 'Worker routine is called for the last
time on the processor. The Limited parameter is used to control the number
of processors used by the generator; if Limited is 0 or -1 there is no
limitation on the number of processors; a positive value limits the
processors used to that number or fewer.

When GenOn/Full returns either: all of the tasks generated will have been
completed in which case GenOn/Full returns the value genEXHAUSTED; or the
A bortable parameter was true, the generator was aborted, and some of the
tasks may not have been performed, in which case GenOn/Full returns the
code passed to A bortGen when it was aborted.

o GenOnILimited

GenOnllimited(Worker, Range, MoxProcsToUse)

"Limited" version of GenOn/. GenOn/Limited is equivalent to

Gen0n1Full(0, Worker, e, e, Range, MaxProcsToUse, false)

o GenTaskForEachProc

GenTaskForEaehProe(Worker. Arg)
int (•Worker)();
int Arg;

page 24

page 26

Generate exactly one task of the form Worker(Arg) for every processor.

o GenTaskForEachProcLimited

70

GenToskForEochProclimited(Worker, Arg, NProcs)
int (•Worker)();
int Arg, NProcs;

page 26

Generate exactly one task of the form Worker(Arg) for each of NProcs
processor.

WARNING: If ProcslnUse() is less than NProcs: this call will hang.

o GenTasksFromList

GenTosksFromlist(Routine_List, Arg_List, n)
int • (• RoutineList)();
int • Arg_List;
int n;

page 26

Routine_List is a list of n routines. rt,. .. ,rn, and Arg_List is a list of n
arguments, arg 1, ... , argn. GenTasksFromList generates n tasks, where the ith
task is of the form ;i(argi}.

o GetRtc

GetRtc() page 34

Return the time since the system was booted in units of 62.5 microseconds.

o lnitializeUs

In i t i a I i z eUs () page 10 ·.

Initialize the Uniform System. This includes creating and starting a Uniform
System process on every available processor. setting up the memory that is
globally shared among all Uniform System processes, and initializing the
Uniform System storage allocator. lnitializeUs must be called before using
any other Uniform System routine, and it should be called only once.

o InitializeUsForBenchMark

lnitiolizeUsForBenehMork() page 10

Initialize the Uniform System. Similar to lnitializeUs. differing in that the
King Node will not be used by the program if the program is started on a
non-King node (via the -on switch of the run command or the us utility).
This is useful when benchmarking a program, where it is desirable that the
measurements not be affected by the processing requirements of the
terminal handler and window manager which run on the King Node.

o LOCK

LOCK(I ock. n)
short • lock;
int n;

page 12

Set the "lock" specified by lock. The short pointed to by lock is assumed to
have been initialized. in the unset state to the value 0. LOCK implements a
"busy wait" type of lock. The int n specifies the time to wait in tens of
microseconds between attempts to set the lock. Using zero for n forces use
of a def a ult which is about 1 millisecond. LOCK does not return until it has
set the lock. {See UNLOCK.)

71

o MakeSharedVariables

MakeSharedVariables; page 30

This is a macro. It allocates space .in globally shared memory for variables
declared as globally shared (via BEGIN_SHARED_DECL and
END_SHARED_DECL) and makes the location of the variables known to other
processors. MakeSharedVariables should be called after JnitializeUs, and
only if BEGIN_SHARED_DECL and END_SHARED_DECL have been used.

o MemoriesAvailable

MemoriesAvailable() page 10

Return an integer that is the amount of memory available to the application
program. The value returned is in units of 64 KBytes.

o PhysProcToUsProc

PhysProcToUsProc(PhysProc)
int PhysProc;

page 11

Return the Uniform System processor number corresponding to the physical
processor number PhysProc.

o ProcslnUse

ProcslnUse() page 10.

Return an integer which is the number of 'processors available to an
application program. The value returned will not count any processors
which have been removed by the TimeTest or TimeTestFull routines.

o Share

Share(N)
int • N;

page 28

Pass the value pointed to by N to all processors used to execute tasks
generated subsequently. N must point to a variable allocated in process
private memory and declared to be a global or a static. In addition, the
variable pointed to by N must be 4 bytes in size. Share causes the value
pointed to by N (in the processor invoking Share at the time Share is
invoked) to be copied into the location specified by N in each processor
used to perform tasks generated by task generators activated subsequent to
the call of Share.

o ShareBlk

ShareBlk(X, size)
int • X;
int size;

page 28

Pass the block of data of size bytes pointed to by X to all processors used
to execute tasks generated subsequently. X must point to a variable
allocated in process private memory and declared to be a global or a static.
ShareBlk causes the block of data pointed to by X (in the processor
invoking ShareBlk at the time ShareBlk is invoked) to be copied into the

72

location beginning at X in each processor used to perform tasks generated
by task generators activated subsequent to the call of ShareBlk.

o SHARED page 31

SHARED is a macro. It is used as a prefix to access variables which have
been declared as globally shared using
BEGIN_SHARED_DECL/END_SHARED_DECL. For example, if N has been
declared in this way, it may be referenced as SHARED N:

SHARED N • SHARED N ~ 7:

WARNING: before such a variable can be referenced, it must space for it
must be allocated using MakeSharedVariables.

o SharePtrAndBlk

SharePtrAndBlk(P, size)
int • • P:
int size:

page 28

Pass the pointer pointed to by P and the block of data of size bytes to
which it points to all processors used to execute tasks generated
subsequently. P must point to a pointer variable allocated in process
private memory and declared to be a global or a static. SharePtrAndBlk
causes a copy of the pointer pointed to by P and the block of data to which
it points (in the processor invoking SharePtrAndBlk at the time
SharePtrAndBlk is invoked) to be made for each processor used to perform
tasks generated by task generators activated subsequent to the call of ·
SharePtrAndBLk as follows: A block of storage is allocated in the memory of
the processor and the block of data pointed to by the pointer pointed to by
P is copied into the newly allocated storage block; a pointer to the newly
allocated storage block is stored in the location pointed to by P.

o ShareScatterMatrix

ShareScatterMotrix(P, nrows)
int • • • P;
int nrows:

P points to a global or static variable allocated by

AllocScotterMatrix(nrows, ncols, element_size)

poge 28

ShareScatterMatrix makes a copy of the vector of row pointers allocated by
ALLocScatterMatrix in the memory of each processor used to 'execute tasks
generated subsequently. It then sets the location pointed to by P to point
to that copy. ShareScatterMatri:r: is functionally equivalent to
SharePtrAndBlk, but operates much faster, since it is careful to make its
copies from other copies as well as from the original.

o TimeTest

TimeTest(Init, Execute, PrintResults) poge 31
int (• !nit)(), (•Execute)(), (• PrintResults)();

Time execution of the routine Execute on various processor configurations
as specified by the user from the keyboard. TimeTest runs the routines Jnit,

73

Execute, and PrintResutls in sequence on each of the processor
configurations specified. It times only the Execute routine, and passes the
execution time, the number of processors, and the effective number of
processors to the specified PrintResults routine:

PrintResults(time, procs, effprocs)
int time, procs;
float effprocs;

The effective number of processors is a float equal to ·
(time l proc} / (time n procs). This is a good measure of the speedup the
Execute routine achieves over one processor when n processors are used. If
the first test run uses more than one (=k) processors, then th.e effective
number of processors is (time k proc} / (k • (time n procs)).

The PrintResults routine is specified by the application program. The
Uniform System Library contains a routine (see TimeTestPrint below) that
can be used for this purpose, or the user can supply his own routine.

TimeTest asks the user to specify the processor configurations to be used by
specifying a start configuration, a step (delta), and an end configuration.
The first run uses start processors, the next uses start + delta processors,
and so forth, up to the final run which uses end processors. If start (or
end} is zero, the test is run from (to) the end of the range of available
processors. In particular, it is run for the limiting processor case whether
or not it is in the normal progression specified by delta. If delta is
specified to be zero, the number of processors used increases by powers of
two (1, 2, 4, 8, etc). The rules for start and end still apply.

o TimeTestFull

TimeTestFul l(Init, Execute, PrintResults, start, delta, end)
int (• Init)(), (•Execute)(), (• PrintResults)();
int start, delta, end;

page 32

TimeTestFull is similar to TimeTest (see above). It differs only in that it
accepts the start, delta, and end parameters that specify the processor
configurations to be timed, rather than asking for them from the keyboard.
If the delta specified is negative, TimeTestFull asks the user to supply values
for start, delta, and end at the start of the run.

o TimeTestPrint

TimeTestPrint(runtime, procs, effprocs)
int runtime, procs;
float effprocs;

page 32

Used with TimeTest or TimeTestFull to print the timing results for a
particular processor configuration. It prints the execution time, the number
of processors used, the effective number of processors utilized (= speedup
achieved over 1 processor), and the efficiency with which processors were
used for the given processor configuration. TimeTestPrint outputs this
information in the format:

[procs] time• runtime ticks• S sec; ep • effprocs; eff •.E

where E • ef fprocs / procs.

(See TimeTest and TimeTestFull.)

74

o TotalProcsAvailable

TotalProcsAvailable() page 10

Return the total number of processors available to the application program.
The value returned includes any processors that may have been removed by
TimeTest or TimeTestFull.

o UNLOCK

UNLOCK(lock) page 12
short • lock;

Clear the lock specified by lock. (See LOCK.)

o UsProcToPhysProc

UsProcToPhysProc(UsProc)
int UsProc;

page 11

Return the physical processor number corresponding to the Uniform System
processor number UsProc.

o UsSetClass

UsSetClass(proe, class)
int proc, class;

page 33

Add the memory of the specified Processor Node .to the specified class.··
Initially all memories are in class 0. See also Alloca.teC, AllocSca.tterMa.trixC,
A LlocateOnU sProc C.

o UsWait

UsWait(n)
int n;

page 13

Wait for 10 * n microseconds. Using zero for n forces use of a default
which is about 1 millisecond. Us'Wa.it is a "busy wait". ·

o WaitForTasksToFinish

WaitForTasksToFinish(GenHandle)
UsGenOesc • GenHandle;

page 27

Wait for the task generator specified by GenHandle to complete. GenHandle
must specify an asynchronous generator activated by the calling process.
'WaitForTasksToFinish returns a value (the result code for the generator),
which indicates whether the generator ran to completion or was aborted by
AbortGen.

o WorkOn

WorkOn(GenHandle)
UsGenOese • GenHandle;

page 26

Work on tasks generated by the task generator specified by GenHa.ndle.
GenHa.ndle must specify an asynchronous generator activated by the calling

75

process. WorkOn returns a value (the result code for the generator), which
indicates whether the generator ran to completion or was aborted by
AbortGen.

Butterfly and Chrysalis ore trademarks of Bolt Beranek and Newmon Inc.

Unix is a trademark of AT t T Bell Laboratories.

BBN Advanced Computers Inc.
A Subsidiary of Bolt Beranek and Newman Inc.

10 Fawcett Street
Cambridge, MA 02238

Telephone (617) 873-6000

