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1. Introduction 

To date, two distinct approaches to programming the ButterflyTM Parallel 

Processor have seen widespread use. One approach is based on the notion of 

cooperating sequential processes as described by Dijkstra, Hoare and others. The 

second is the Uniform System approach developed by BBN Laboratories. It emphasizes 

the computational tasks that comprise an application and de-emphasizes the notion of 

processes. A third approach to programming the machine uses the Butterfly Lisp 

implementation currently under development at BBN Laboratories. This approach will 

assume greater importance as the Lisp implementation comes into general use. 

Combinations of two or more of 'these approaches are possible, as are completely 

different approaches. 

The Uniform System approach is the subject of this document. Other approaches 

to programming the Butterfly system are described elsewhere. The purpose of this 

document is to provide enough information about the Uniform System approach to 

enable an application programmer to write programs for the Butterfly Parallel 

Processor. 

This document assumes familiarity with the C programming language 1 and the 

Unix TM operating system. It also assumes that the reader has read the document 

Butterfly Parallel Processor Overview and has access to the reference manual for the 

Chrysalis TM operating system, Chrysalis Programmers Manual. Basic information about 

using the machine and various software tools can be found in the Butterfly Parallel 

Processor Tutorial. 

The Uniform System methodology is supported by a set of subroutines collected 

in a program library called the Uniform System Library. The Uniform System approach 

and the supporting library are evolving as experience with them in various 

applications grows. Therefore, this document represents a snapshot of the Uniform 

System. While the basic concepts of the approach (e.g., the notion of task generation, 

the notions of globally shared memory and of scattering data uniformly about the 

machine) are unlikely to change, its details are. 

There are two versions of the Uniform System Library: one for the Butterfly and 

one for the the front end machine (typically a VAX or Sun Workstation}. The front end 

machine version implements all the routines in the Butterfly version and emulates 

1Tne Uniform System can also be used from Butterfly Fortan programs. 
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enough of the Chrysalis functions to permit most programs to be (partially) debugged 

on the front end machine in a uniprocessor environment before moving them to the 

Butterfly Parallel Processor. 

Section 2 describes the philosophy of the Uniform System approach to 

programming the Butterfly Parallel Processor. Section 3 explains how to use Chrysalis 

and the Uniform System Library in applications. Several example programs that use 

the Uniform System are presented in Section 4. Section 5 contains additional 

information that is useful for running and tuning programs that use the Uniform 

System. The mechanics of compiling, loading and running programs on the Butterfly 

system are described in Appendix I. Finally, Appendix II is organized as a reference 

manual for the Uniform System Library; it contains descriptions of each routine found 

in the library. 
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2. Philosophy of the Uniform System Approach 

The Butterfly hardware and Chrysalis operating system comprise a foundation on 

which to build a variety of software structures .. A teachable, efficient programming 

style for using this foundation has evolved from experiments with a wide range of 

software applications. This style, called the Uniform System approach, has proven to 

be particularly effective for applications containing a few frequently repeated tasks; 

e.g., much of scientific computing. It has also been successfully used in applications 

with less homogeneous task struct.ures. 

Beyond the usual concerns of programming, there are two key considerations 

specific to the Butterfly Parallel Processor: storage management and processor 

management. The goal of storage management is to keep all the memories in the 

machine equally busy, thereby preventing the slowdown that occurs when many 

processors attempt to access a single memory. The goal of processor management is 

to keep all the processors equally busy, thereby preventing the inefficiency that 

occurs when some processors are overloaded and others sit idle without work to do. 

Memory Management 

The Butterfly switch provides low delay, high bandwidth access to all ol the 

memory in the machine. To help the programmer take advantage of this "common 

memory", the Uniform System implements a large shared memory for application 

programs, and provides means to spread application data uniformly across the 

memories of the machine. 

The Chrysalis operating system provides "memory mapping" operations that 

enable processes to manage their address spaces, and hence the memory they access. 

Two or more processes can share memory by mapping the sam.e memory segment. 

In practice, memory sharing among processes is typically used in two quite 

different ways. One approach to programming the machine is to isolate processes from 

one another by mapping memory so that only a relatively small subset of each process 

address space is accessible to other processes. This subset can consist of up to 256 

separate segments, can be changed at any time, and is often different for different 

groups of processes. This method facilitates debugging by limiting the number of 

processes likely to have touched a particular data structure. 

The Uniform System uses a different approach, which is to share a single .large 

block of memory by mapping the block into the address space of each process. This 

frees the application programmer from the need to manipulate memory maps, and 
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simplifies programming by implementing a large shared address space for application 

programs. Data that must be shared by two or more processors is allocated without 

regard to which processors will be using it. Of course the stack and variables local 

to individual processors are kept locally, _and like code, are not fetched across the 

Butterfly switch. 

Collectively, the memories of Butterfly processor nodes form the shared memory 

of the machine. This means the large shared memory an application program sees is 

implemented by a collection of separate memories. If all the shared data used by an 

application happened to be located in a single physical memory, contention for that 

memory (as many processors attempt to access the data) would force the processors 

to proceed serially, thereby slowing program execution. Since the aggregate memory 

bandwidth of the machine is very large (10 gigabits per second for a 256 processor 

machine), slowdowns due to memory contention can be reduced by scattering 

application data uniformly across the physical memories of the machine. When many 

processors access data that has been scattered, their references tend to be 

distributed across the memories and can make use of the full memory bandwidth of the 

machine. The Uniform System Library provides a memory allocator that scatters data 

structures in a way that allows straightforward addressing conventions. It also 

supports a set of more specialized techniques for cases where that allocator- .is either 

inappropriate or ineffective. 

To summarize, the approach to memory management used by the Uniform System 

is based on two principles: 

1. Use of a single large address space shared by all processes to simplify 
programming; and 

2. Scattering application data uniformly across all memories of the machine to 
reduce possible memory contention. 

This memory management strategy has a cost, due both to the slower access to 

remote memory and to possible contention in the switch and at the memories. This 

cost is an increase in execution time, typically from 43 to 83, and is due less to 

contention than to the slightly slower access. The benefit of this memory management 

strategy is that the programmer can treat all processors as identical workers, each 

able to do any application task since each has access to all application data. This 

greatly simplifies programming the machine, and we feel this benefit greatly outweighs -

the modest cost. 

The need to make certain operations on memory atomic is another aspect of 

memory management. This is not unique to parallel systems; it is also necessary in 
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multiprogrammed uniprocessors. The Chrysalis kernel provides an extensive repertoire 

of primitive atomic operations. When the atomic operations required are more complex 

than these primitives provide, the primitives can be used to build simple locks that, in 

turn, can be used to implement arbitrarily complex atomic operations. 

Processor Management 

The most novel aspect of programming the Butterfly is processor management. 

This falls naturally into two separate parts: identification of the parallel structure 

inherent in a chosen algorithm, and controlling the processors to achieve the 

determined parallelism. 

In many applications the parallel structure is both obvious and rich. In others, 

the structure is less clear and may require reworking the algorithm. Occasionally, an 

application will be inherently serial, and cannot be structured to take advantage of 

parallel processing. We can, however, offer a few guidelines: 

1. Start with the best existing algorithm that implements the application. A 
Butterfly system with P processors can do no more than speed up an 
algorithm by a factor of P. Speeding up a poor algorithm may not overcome 

its inefficiencies. For example, it may· take an N2 parallel sort longer to run 
on a 128 processor Butterfly than it takes an N log N sort to run on a 
single 68000. 

2. Attempt to do the same number and kind of steps as the best algorithm. 
The order of steps in an algorithm can often be manipulated to achieve 
parallelism. This may involve adding logic in the form of simple locks to 
ensure the atomicity of selected operations. 

3. Look for parallel structure at all levels and in all sizes: the more the better. 
If necessary, it is usually relatively easy to aggregate small tasks at a later 
stage into larger more manageable sizes; it is often more difficult to divide a 
task at a later stage into smaller ones. For example, if an application 
requires Fast Fourier Transforms (FFT's) on a number of different channels, 
the programmer should plan to exploit both the parallelism inherent in an 
individual FFT and the parallelism due to different channels. 

The Butterfly Parallel Processor can work very efficiently with individual 
tasks a few milliseconds in length; if necessary, it can work on tasks in the 
hundreds of microseconds. For shorter tasks, various overheads begin to 
interfere with good performance. 

There are two strategies for determining the desirable number of concurrent 

operations to have at any stage in the processing. One strategy recommends a 

relatively static approach, using exactly P concurrent tasks for P processors. The 

other strategy recommends using many more than P tasks, typically an order of 

magnitude or more. Both strategies attempt to deal with end effectS - the processor 

idle time that occurs toward the end of a stage when Some processors have finished 
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and others are still working. The first approach minimizes the effect by explicit 

construction: here the programmer attempts to manipulate the work so that all 

processors finish at approximately the same time. The second approach allocates 

tasks to processors dynamically in an attempt to balance the load. As a processor 

finishes a task, it is assigned the "next" task ready for execution. This approach 

relies on having a large number of tasks relative to processors to minimize end 

effects: some waiting occurs at the end of the problem, but this waiting is generally 

acceptable since it is small relative to the total program e·xecution time. 

The Uniform System encourages the dynamic approach. For many applications 

the dynamic approach is simpler and more reliable, since it is unnecessary to know in 

advance how long an individual piece of work will take. Furthermore, it is adaptable 

to varying numbers of processors and sizes of problems. 

After the programmer has determined the processing that is to occur in parallel, 

he must then control the Butterfly Parallel Processor to make this happen. There are 

several ways to do this. The Chrysalis kernel provides a rich collection of relatively 

low level operations for starting processes on various processors and for 

communicating among them. The Uniform System provides a higher level abstraction 

for managing the processors; one that is natural and efficient for a large cl~ss of 

applications. 

The Uniform System treats processors as a group of identical workers, each able 

to do any task. To use the Uniform System, the programmer is required to structure 

an application into two parts: 

1. A set of subroutines that perform various application tasks; and, 

2. One or more "generators" that identify the "next" task for execution. 

To illustrate this, consider matrix multiplication as an example. One way to 

structure a matrix multiplication program would be to write a routine that computes 

the dot product of a row and a column; and to ensure that the routine for the dot 

product task gets called once for each element of the result matrix, using the 

appropriate row and column of the operand matrices as parameters. 

Usually a well designed program will be structured as a set of subroutines to 

improve program modularity, whether or not it is intended for parallel e::xecution. 

Normally, there will be a subroutine per task type, each subroutine taking arguments 

that define individual tasks in terms of subsets of the program data to be operated 

on. To use the Uniform system, the programmer simply insures that these subroutines 
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correspo~d to the tasks he wants to do in parallel. In the case of the matrix 

multiplication example, there is a single task type, computing dot products, and 

corresponding to that task type, the dot product routine, whose row and column 

parameters specify particular tasks. 

The second part of the application code comprises one or more subroutines able 

to identify the "next" task for execution. Such a subroutine is called a "generator", 

since its function is to generate tasks. In a serial program the generator function is 

usually embedded in the control structure of the program (e.g., do this, do that, then 

do 10 of these). For parallel processing via the Uniform System the programmer is 

expected to make generation of the next task explicit. For the matrix multiplication 

example, the task generator would be responsible for generating a call on the dot 

product routine for each element in the result matrix. 

It is helpful to think of the generator concept in terms of three procedures and 

a task descriptor data structure. A generator activator procedure (GA) takes as 

parameters a worker procedure (W}, a description of data (D) upon which work is to be 

done, and a task generation procedure (TG}: 

GA (W, 0, TG) 

The generator activator procedure (GA) first builds a task descriptor data structure 

(TD) that specifies the task generator in terms of the worker (W) procedure, the data 

(D), and the task generation (TG) procedure. It then "activates" the generator by 

making the task descriptor (TD) available to other processors. The processor that 

invoked the generator activator along with other available processors then use the 

task descriptor (TD) and the task generation procedure (TG) to make repeated calls on 

the worker procedure (W), specifying subsets of the data to work upon. Each call of 

the worker procedure (W) is a task. When the last task is done, the processor that 

called the generator activator procedure (GA) continues execution of its program, 

while the other processors that worked on the tasks look for something else to do. In 

the matrix multiplication example, the worker procedure is the dot product routine, 

and the data is the operand and result matrices. The dot product worker routine is 

called once for each combination of row and column index; these indices are stored in 

the task descriptor and are incremented indivisibly each time the task generation 

procedure is executed by a processor. 

Conceptually, the generator notion is similar to the various "map" functions in 

the Lisp language .. The unique thing about the Uniform System is that it achieves 

parallel operation by using processors as they are available to execute the various 

calls upon the worker procedure. Task generation and the processor management 
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associated with it are implemented in a distributed fashion in the sense that each 

processor performing tasks participates in their generation. 

Often the required generator is qui~e simple. In the matrix multiplication 

example, where a dot product is computed for every element' in the result matrix, the 

generator can find the next task by incrementing row and column counters that 

identify the element in the result matrix to be computed next. Occasionally a 

generator must be more complex. A generator that selects the next node to process 

in an alpha-beta tree walk, for example, would rely heavily on using the most up to 

date information about the state of processing of the tree. Occasionally a generator 

will involve a simple queue, in which case it would operate much like a process 

scheduler found in many time sharing systems; the next task for execution would be 

the one at the front of the queue. In general, though, a large number of applications 

can be constructed from a small set of generators. The Uniform System Library 

includes a collection of commonly used generators, and others will be added over time. 

The Uniform System Library provides a way to bind task generation procedures 

to worker procedures. The basis for this binding mechanism is a "universal" generator 

activator procedure. To use this universal generator activator procedure directly, 

application programs specify both a worker procedure and a task generation . 

procedure. The library also includes a set of generator activator procedures that 

embody many commonly used task generation procedures. When an application 

program calls one of these "specific" generator activator procedures, it specifies only 

the worker procedure. The generator activator passes its associated task generation 

procedure and a task descriptor to the universal generator activator along with the 

worker procedure supplied by the application program2. 

Often an algorithm will require multiple, perhaps nested, instances of generators. 

As long as the algorithm does not depend upon the order of task generation between 

different generators, the programmer is free to make multiple calls to task generators 

to start the system working on all of them at once. If the algorithm does depend 

upon the order, the programmer must either provide a task generation procedure to 

properly answer the ~uestion about what to do next, or carefully manage the use of 

existing generator activator procedures to ensure the algorithm's ordering 

2Th is section hos been ca ref u I to use the terms genera.tor activator procedure and task 
generation procedure. The rest of this document uses the term generator. both when 
referring to the generator activator procedure and when referring to the result of 
octi~ating a task generator. We use the more specific terms only when it is important to 
distinguish between generator activation and task generation. 
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requirements are met. 

The Uniform System approach to processor management offers three important 

benefits: 

1. The generator mechanism is very efficient. It is implemented using one 
process per processor in a way that ensures no unnecessary context swaps 
occur. Each processor executes a tight loop consisting of "generate next 
task - execute next task". The programmer supplies both the task 
generation and worker procedures, usually by finding an appropriate 
generator activator procedure in the library. Both the task generation and 
the worker procedures execute at the application level. As a result, once a 
generator gains control of a processor, the Chrysalis kernel need not be 
involved until the generator has. exhausted all the work it knows how to 
find. 

2. Programs that use the Uniform System task generation mechanism to exploit 
parallelism are insensitive to the number of processors. It is possible to 
debug programs on small configurations and run them on larger ones. 
Should an application grow to exceed the capacity of its current 
configuration, it can be moved without modification to a larger one. 
Perhaps more important, programs are able to run on "reduced" 
configurations: for example, one where processors have been removed for 
repair. 

3. The load can be balanced dynamically. Whenever a processor becomes free, 
a generator identifies the next task to be executed. Since the task 
generation procedures are supplied by the application programmer, the· task 
choice can be based on the current state of the computation and the 
requirements of the application. 
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3. Using the Uniform System 

When the Uniform System approach is used on the Butterfly Parallel Processor, 

programs are written much the same way. as for a uniprocessor. In fact, if a program 

never invokes a task generator, it will run on a single Butterfly processor. The 

program is loaded into all of the processors, however, so the potential for parallel 

processing is there. 

Since Chrysalis runs a process scheduler on every processor, it is possible to 

have several independent application processes running on a single processor. 

However, when the Uniform System is used, there is usually only one process per 

processor. 

This section describes each routine found in the Uniform System Library. as well 

as some frequently used Chrysalis routines. Several example programs that illustrate 

how to use the Uniform System routines are contained in Section 4. Section 

5 describes how to run Uniform System programs on the Butterfly system, and it also 

discusses some issues in tuning program performance. The descriptions of the library 

routines in this section are narrative in nature. The information presented in this 

section is repeated in Appendix II, which is organized for use as a reference. manual 

for the Uniform System Library. 

Initialization 

The routine 

In i t i a I i zeUs () : 

initializes the Uniform System. This routine creates and starts a Uniform System 

process on every available processor, sets up the memory that is globally shared 

among all Uniform System processes, and finally initializes the Uniform System storage 

allocator. JnitializeUs must be called before any other Uniform System routine, and it 

should be called only once. 

Configuration Information 

It may be desirable for a program to know the number of processors and memory 

banks available on a machine. The routines 

TotalProcsAvailable() 
ProcslnUse() 
MemoriesAvailoble() 
DistinctMemoriesAvailable() 

return configuration information. ProcslnUse does not count processors that have 
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been removed by the TimeTest routine (see "Measuring Your Program" below). 

MemoriesAvailable counts memory in units of 64 KBytes. DistinctMemoriesAvailable is 

usually the same as TotalProcsAvailable, but there are cases when the Uniform System 

initialization routine (lnitializeUs) cannot. obtain memory on a particular processor 

node (for example, when other software, such as the Ethernet routines, have taken it 

all). 

It is sometimes necessary to refer to processors by number. There are two 

separate numbering schemes for processors, and routines for converting between them. 

The first scheme uses the hardwar~ processor number, an 8 bit number assigned 

when the machine is assembled. The hardware processor number for the processor on 

which a process is running is directly accessible through the Chrysalis variable 

Proc_Node. For the front end machine version of the Uniform System, Proc_Node is 

arbitrarily set. The particular numbers used as hardware processor numbers for a 

Butterfly machine with P processors depend upon the size of the switch and the way 

the processors are connected to the switch; the hardware processor numbers used can 

range from 0 to 255. The important point to note is that the hardware numbering 

scheme usually has gaps . 

. 
Because it is generally easier for application software to deal with consecutively 

numbered processors, the Uniform System implements a second processor numbering 

scheme that uses virtual processor numbers. These virtual processor numbers form a 

dense set, consecutively numbered from 0 to P-1, where P is the number of 

processors available to the program. The virtual processor number for the processor 

on which a process is running is directly accessible through the Uniform System 

variable UsProc_Node. For the first end version of the Uniform System, UsProc_Node 

is always 0. 

It is important to note that the mapping between virtual processor number and 

hardware processor number may change from run to run. This can happen, for 

example, if some processors are missing from the configuration when the program is 

run. 

The routines 

UsProc • PhysProcToUsProc(PhysProc); 
PhysProc • UsProcToPhysProc(UsProc); 

can be used to convert between hardware processor number and Uniform System 

processor number. 
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Synchronization and Atomic Operations 

Sometimes two processors need to work on the same data at the same time. If 

the order of work doesn't matter (incrementing a counter, for example), then t:·~e 

principal concern is that the processors don't interfere with one another {i.e., that 

one finishes before the other starts). If the order of work does matter (A is writing 

and B is reading, say), the program logic is probably flawed in the sense that task B 

is really not ready to run, and should not have been generated until A finished. 

In many cases there is a Chrysalis atomic operation (e.g., Atomic_add, Atcmic_ior, 

etc.) that performs the desired operation. The Chrysalis atomic operations work on 

16 bit quantities. 

Some situations require atomic 32 bit operations. The operation 

Atomie_odd_long(loc, val): 

implements 32 bit atomic addition; it atomically adds val to the location pointed to by 

Loe. Atomic_add_long is similar to the Chrysalis Atomic_add operation; it differs in 

that it operates on 32 bit quantities and does not support the "fetch" part of the 

"fetch and add" functionality provided by Atomic_add. It is also important to note 

that in its current implem~ntation Atomic_add_long is atomic only with respect to 

other Atomic_add_Jong calls. In particular, it is possible for the execution of a read 

operation to be interleaved with an A tomic_add_long operation in a way that returns 

an inconsistent result to the read. This can occur if the high order 16 bits . returned 

by the read are obtained after the low order 16 bits are incremented by the 

Atomic_add_long, but before the carry (if any) is propagated to the higher order bits3 . 

Some cases may require more than a simple atomic operation. In these cases it 

may be necessary to construct a lock around the code as follows: 

lock: 
code to do what you want 

unlock: 

The Uniform System provides lock and unlock operations: 

LOCK ( I oc k. n) 
UNLOCK( I ock) 

The LOCK operation is a "busy wait" type of lock, where lock is a pointer to a short 

variable used as the lock (assumed to have been initialized in the unset state with 

3This anomalous behavior may be eliminated in a future release of Chrysa I is that provides 
ful I support for at011ic operations on 32 bit quantities. 
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value O), and n is an int that specifies the time to wait in tens of microseconds 

between attempts to set the lock. Using zero for n forces use of a def a ult which is 

about 1 millisecond4
. 

If a program simply needs to wait until something occurs, and if "busy" waiting is 

acceptable, it can use Uslf'ait: 

while (something has not occurred) 
UsWait(n); 

where n is an int that specifies the time to wait in tens of microseconds. As with 

LOCK, using zero for n forces use of a def a ult which is about 1 millisecond. 

If "busy" waiting is not acceptable, the Chrysalis operations that manipulate dual 

queues and events can be used to construct an appropriate wait and signalling 

discipline. The Chrysalis operations include: 

Make_DualO 
Enq_OualQ 
Oeq_DualQ 
Wai t_DuolO 
Pool_OualQ 
Make_Event 
Post_Event 
Wait 

Consult the Chrysalis Manual for details of these and related operations. 

Memory Management 

Two classes of memory are available to Uniform System programs: 

1. Process private memory. As the name suggests, data in process private 
memory can be accessed only by one process. 

2. Globally shared memory. Data in globally shared memory is accessible by all 
Uniform System processes5. 

Within these two classes several quite different types of storage are available to 

C programs. These storage types are best described in terms of the types of variables 

available to C programs (see Figure 1): 

4Note that if you nest these operations casually, you con achieve deadlock. 

51t is possible, using the Chrysalis A!ap_Obj operation, to hove me•ory that is shored 
among some, but not all, processes. We recommend you not use Chrysalis metftory management 
operations directly within Uniform System programs unless you understand the implementation 
of the Uniform System memory management discipline in detai I. 
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Figure 1; Address space of a Uniform System process. 
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o C Local variables. Local variables are process private and are stored on the 
stack. A local variable is visible only within the routine that declares it. 
There is one instance of the variable for every routine call. Hence, the 
variable is private to the routine call, and hidden from every other call. 

o C Globals. C global variables are process private. There is one instance of 
each such variable per process. These variables are shared by subroutine 
calls within the same process, but are hidden from all other processes. 

o C Dynamic storage. Storage of this type, obtained by malloc and related 
routines, is process private. There is one instance of an allocated variable 
per process. These variables can be accessed by subroutines within the 
same process (providing the necessary pointers have been made available), 
but are hidden from all other processes. In particular, while you can pass a 
pointer from one process to another, if you try to use it within another 
process you will either get a hardware fault or (worse) access a random 
chunk of memory in that process. 

o Shared storage. Storage of this type is obtained using the Uniform System 
allocators Allocate, AllocScatterMatri:t, and the like, and it is globally 
shared. There is one instance of a Uniform System allocated variable per 
Butterfly machine. Since this is globally shared storage, you can pass 
pointers from processor to processor, and use them on whatever processor 
you like. This is the only way to communicate between different processors 
and tasks, unless you choose to bypass the Uniform System and use the 
Chrysalis mechanisms directly. To get started, most of the Uniform -System 
task generators allow the user to pass a pointer to newly generated tasks. 
The passed pointer is typically the root of a user specified data structure. 
(See also the discussion of Share and ShareSM below.) 

o Hidden Storage. Storage of this type is globally shared. A Butterfly node is 
limited to a 24 bit virtual address (16 MBytes) by its 68000 processor. The 
Uniform System allows the user to access nearly that amount of memory 
directly (there is an area at the top and one at the bottom of memory taken 
by Chrysalis). However, Butterfly systems with more than 16 processors 
have more than 16 MBytes of real memory. To support the use of that 
memory the Uniform System supports the notion of "hidden" memory. Hidden 
memory is allocated much like regular memory, but the allocator returns a 
descriptor for tbe block of memory rather than a pointer. The user 
program can use Uniform System operations to copy data between hidden 
memory and directly accessible memory. Thus hidden memory acts rather 
like fast secondary storage. (The hidden memory feature is not yet 
implemented.) 

The Uniform System storage allocator creates and manages the globally shared 

memory region of the process address space (see Figure 2). A program can ask the 

allocator for space that is scattered about the machine, or for space in the memory of 

a particular processor node. Once such globally shared space has been allocated to a 

program, the program is free to pass pointers to variables in the space from one 

processor to another. 

Implementing globally shared memory is somewhat more involved than it might 

seem at first. Since the Butterfly computer uses a standard 68000 C compiler, the 

language provides no help when it comes to allocating globally accessible storage. If a 
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Figure 2: Uniform System processes share a large portion of their address spaces. 



program variable is declared to be a C global, that only means that the variable is 

visible to the program modules linked together to make up a particular process. Since 

c globals are process private, if an identical copy of that process is created on 

another processor (or on the same processor), the new process will have its own 

copies of any variables declared as C globals. Similarly, the malloc and alloc system 

calls supported by Chrysalis allocate memory that .is process private rather than 

globally· shared. The Uniform System uses the Chrysalis Object Management System to 

implement globally shared memory. 

Storage Allocation 

You can allocate a block of storage in globally' shared memory with: 

Al locate(SizelnBytes); 

The Uniform System allocates the block from the memory with the most free space. 

If you want to allocate globally shared storage on the local processor, use 

Allocotelocal(SizelnBytes); 

If you want to specify a particular processor, you can use: 

Al locateOnUsProc(Processor, SizelnBytes); 

where Processor is a Uniform System processor number. If Processor exceeds the 

number of av~ilable memori~s. the space is allocated on node Processor mod P, where 

P = DistinctMemoriesAvailable(}. This is expected usage. If you want to specify the 

node by its hardware processor number, use 

Al locoteOnPhysProc(PhysProcessor, SizelnBytes); 

Proper storage management on the Butterfly computer is important! If your data 

isn't uniformly distributed over all available memory, you may get poor performance. 

It usually doesn't save much (a few percent) to keep data near the processor using it. 

However, clumping a lot of data in a single processor node's memory can result in 

contention for that memory by multiple processors, and can be devastating to program 

performance. 

The Uniform System Library provides storage allocation routines (described 

below) for regular data structures, such as arrays and matrices. These routines 

scatter data across the memories of the machine in order to reduce memory 

contention. For more complex data structures, AllocateOnUsProc and 

Alloca,teOnPhysProc can be used to scatter data across the machine. In addition, it is 

always worth considering whether to copy the constants used by an application into 
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the local memory in order to avoid possible contention for them. The Share routines 

(described below in "Making Copies of Process Private Data") and the generator 

"initialization" routines (described below in "Generators") are useful for making such 

copies. 

The data structures required by many applications can be represented naturally 

by 2-dimensional mB:trices. Furthermore, higher dimensional matrices can be 

represented in a straightforward way by 2-dimensional matrices, as can one 

dimensional vectors. For example, a 3-dimensional matrix can be thought of as a 2-

dimensional matrix, each element of which is a vector. Hence, 2-dimensional matrices 

can be used as a fundamental building block for supporting many application data 

structures. To reduce potential memory contention, it is desirable to scatter these 

data structures across the machine. 

The routine 

AllocScotterMotrix(nrows, ncols, element_size) 

allocates a matrix that is scattered by row over the memories of the machine. It does 

this by allocating a vector of pointers nrows long. and nrows separate vectors, each 

containing ncols items of size element_size bytes6. The Uniform System allocates the 

vectors in separate memories. The vector of pointers, a pointer to which is returned 

to the caller, is filled in with pointers to the scattered row vectors (see Figure 3). 

Elements of an array A allocated in this way can be referenced using standard C array 

notation: 

A[ i )[j) 

Currently, the Uniform System storage allocator is fairly simple. In particular, it 

cannot free storage piecemeal. You can free it all using 

FreeAI I(); 

or your program can simply live with its garbage. 

Processor Management 

The Uniform System processor management mechanism is accomplished through 

the use of task generators. A "task" is the basic unit of parallel computation; at any 

instant there is a set of runnable tasks that must be mapped to the available. set of 

processors. The Uniform System takes the view that both the set itself and the 

6At present. ncols•element_size must be <• 64K bytes, and nrows•4 must be <• 64K bytes. 
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P =AllocScatterMatrix (nrows, ncols, element_size) 
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Figure 3: A scattered matrix created by AllocScatterMatrix. 
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priority of items within the set are dynamically changing; as a result, a simple queue 

is not an adequate model of the task structure. Instead, the Uniform System requires 

a user supplied routine that is able to answer the question: "what is the current most 

important task to run at this instant?" 

Task generators are often rather simple. A common parallel operation is to 

apply some function to each item of a structure (list or array) where the order is 

immaterial. For example, this might be the semantics for a PARALLEL DO extension to 

Fortran. In this case the task generation routine need only identify the next item in 

the list, which it can do by incrementing a counter (atomically, of course, since task 

generation is distributed). However, a generator may be arbitrarily complex. For 

example, a generator used in a chess playing program might do alpha - beta pruning of 

a game tree, using the most up-to-date information to decide where to devote its 

resources next. In this case most of the complexity of the code and the execution 

time of the program might reside in the task generation procedure. 

It is good practice to make the tasks themselves small. The responsiveness of 

the system to changes in priorities depends on the size of a task, because once a task 

is started, th_e system runs it to completion. Also, even if the priorities are not 

chan_ging, there will come a time toward the end of a task g·enerator when all of the 

tasks have been generated by the task generation procedure. When that happens, if 

there are no other active generators, some processors will sit idle while others finish 

the last tasks. If the tasks are small in size, the idle time will not have a large effect 

on system efficiency. 

While the application programmer is expected to provide both task generation 

and task implementor (worker) routines, experience has shown that the relatively small 

set of generators (or more precisely, generator activator procedures) supported by the 

Uniform System Library (see "Generators" below} are sufficient for a wi9e range of 

applications. The way to achieve parallel operation is to structure your program to 

fit the mold of one of these task generators. 

The Uniform System supports two generator control disciplines: 

1. Synchronous generators. When a process invokes a synchronous generator, 
control returns from the generator procedure after all of the tasks 
generated have been processed. Furthermore, the processor that calls the 
generator works on the tasks that are generated. 

2. Asynchronous generators. When an asynchronous generator is invoked, 
control is returned to the calling process as soon as the generator has 
been activated. This enables the process to work on other things. The 
calling process may later work on tasks generated if it so chooses. 
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The Uniform System matches available processors to the tasks generated. Its 

System processor manager keeps track of active task generators. Whenever a 

processor has nothing to do, it obtains a task using the task generation procedure for 

one of the active generators. When a Uniform System program begins execution, all 

the processors, except the one used to start the program, are labeled idle. As long as 

there are active generators, there are no idle processors. 

It is perfectly reasonable to nest calls to generators. In fact, that is an 

expected mode of operation. When calls to generators are nested, the Uniform System 

assumes the order the generators are dealt with is unimportant, and it picks an 

arbitrary order that depends largely upon the stochastic nature of interprocessor 

timing. However, because the Uniform System guarantees that at least one processor 

is working within each synchronous generator, forward progress is assured on each. 

There are some situations where it may be possible to place an upper bound on 

the number of tasks required by a problem, but where the number actually required 

may be data dependent. For example, consider a search where the search space can 

be partitioned into N disjoint regions which can be searched by N tasks performed· in 

parallel; if the first task finds the object in the first region, there is little utility in 

searching the remaining N-1 regions. The Uniform System supports abortable. 

generators for such situations. An abortable generator can be terminated before all 

the tasks it describes have been generated and executed. After an abortable 

generator has been aborted, it will generate no more tasks; however, any tasks started 

before the generator was aborted will be processed. 

Normally when a generator is active, processors, as they become free, begin 

working on the generator until either all processors are working on it, or all the 

tasks have been generated. In situations where several classes of tasks can be active 

simultaneously, it may be desirable to control the number of processors used for each 

task class. The Uniform System provides limited generators, which use only a specified 

number of processors (or fewer), for such situations. 

Generators are very efficient. It takes a little overhead to get a processor to 

notice a generator, but once the processor does, it will continue generating and 

working on the tasks defined by the generator at e. cost of about one extra 

subroutine call per. task. 

It is not easy to cause deadlocks using generators, but it is possible. For 

synchronous generators, since there is always at least one processor working on each 

generator (perhaps recursively), progress should be made unless that processor hangs. 
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It is, of course, bad practice to write code so that a processor can hang. 

Unfortunately, it is good practice to write code where processors take turns accessing 

some resource in an atomic way, and it is not always easy to tell the difference just 

by looking at the code. The distinction, 9f course, is that acce$ses made by deadlock 

free programs eventually (and usually quickly) give up the resource. With 

asynchronous generators more care needs to be taken to avoid race and deadlock 

conditions. 

The Uniform System Library includes a collection of generator activator 

procedures that embody various commonly used task generation procedures. The next 

section describes the synchronous generator activator procedures in the library. The 

section following that describes the asynchronous activator generator procedures. All 

these generator activator procedures make use of a "universal" generator activator 

procedure. Use of the universal generator activator procedure is described below in 

the section "Building a Generator". 

Synchronous Generators 

The Uniform System Library supports several major "families" of generators: 

o Index family. Given an integer range, generators in the index family 
generate a task for each value (index) within the range. 

o Array family. Given two integer ranges (which can be thought of as array 
dimensions), generators in the array family generate a task for each pair of 
values (which can be thought of as row and column indices) within the 
ranges. 

o Half array family. Given two integer ranges, which can be thought of as 
array dimensions, generators in the half array family generate a task for 
each array element that is beneath the "diagonal". 

The Index Family of Generators 

Consider a subroutine Worker( Arg, index, ... ) which is to be called for all values 

of index from zero through Ra.nge-1. A call of the form: 

code• GenOnlFult (lnit, Worker, Final, Arg, Range, Limited, Abortable) 

causes Worker to be executed in parallel for the index values between zero and 

Ra.nge-1 7 . Arg is typically a pointer to a problem description data structure. 

7Earlier versions of the Index family generators required Ra.nge to be less than 215. 
That limitation has been removed. However, task generation is somewhat faster if Range is 

less than 215 since the task generation procedures con use Atomic_a.dd to increment the 
index. 
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Elements of Arg might point to the multiplier, multiplicand, and product matrices in a 

matrix multiplication problem, for example. To facilitate application bookkeeping, 

before the generator calls Worker for the first time on a particular processor, it will 

call 

Init(Arg) 

on that processor. Typically, the /nit routine is used to copy frequently referenced 

constants from globally shared memory into process private memory or to initialize 

process private temporaries. By convention 0 specifies that there is no /nit routine. 

Similarly, the routine Final is called once on each processor used to perform tasks for 

the generator after the last call of the Worker routine on eac.h such processor. The 

Final routine is called with Arg as a parameter: 

Final(Arg), 

and is typically used for per processor post processing associated with tasks. By 

convention 0 specifies that there is no Final routine. 

The Limited parameter indicates the number of processors to which the generator 

is to be restricted. A value of 0 or -1 signals no limitation; a positive value ensures 

that no more than that number of processors will be used on the tasks. 

The A bortable parameter is a boolean which indicates whether or not the 

generator can be aborted. The value of Abortable determines the arguments passed to 

the Worker routine. If Abortable is false, two arguments are passed to Worker 

Worker(Arg. index); 

otherwise, if Abortable is true, each call to Worker takes an additional argument 

Worker (Arg, index. GenHandle); 

where GenHandle is an "identifier" for the generator (C type = UsGenDesc *, defined 

in the #include file usgen. h). 

If the generator identified by GenHandle .is abortable, it can be aborted using 

AbortGen(GenHandle, termination_code): 

where termina.tion_code is an int. All synchronous generators in the Index family 

return a value. If a generator is abortable and was aborted, it returns the 

termina.tion_code argument supplied to AbortGen8. If all of a generator's tasks have 

8More than one processor may call AbortGen to abort a generator. In such a case, the 
value returned is the smallest termination_code. 
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been performed (i.e., either it is not abortable, or it is abortable but it was not 

aborted), the generator returns the code genEXHAUSTED. 

There are other synchronous gener~tors in the Index family which are useful in 

situations not requiring the full flexibility of GenOn/Full. For example, since these 

routines take no Arg routine, they can be used when calls to Share (described below) 

and its companion routines elimin_ate the need to pass problem descriptions around. 

The generator 

code• GenOnl (Worker, Range) 

generates tasks of the form 

Worker(e, index): 

note that the Worker routine is passed a dummy Arg parameter. The generator 

code• GenOnILimited (Worker, Range, nprocs) 

is like CenOnl, differing in that it limits the generator to the specified number of 

processors. The generator 

code • GenOnlAbortable (Worker, Range) 

is like GenOnl, differing in that it is abortable; it generates tasks. of the form 

Worker(e, index, GenHandle); 

The Array Family of Generators 

The generator 

code• GenOnAFull (Init, Worker, Final, Arg, Range1, Range2, 
Limited, Abortable) 

is similar to GenOn/Full except that Worker takes a second index which runs over 

Range2. More specifically, if Abortable is false, GenOnAFull generates tasks of the 

form 

Worker(Arg, index1, index2) 

and if Abortable is true, it generates tasks of the form 

Worker(Arg, index1, index2, GenHandle) 

As with the Index family, there are several additional generators in the Array 

family that are useful in situations that do not require the full flexibility of 

GenOnAFull. 
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The generator 

code• GenOnA (Worker, Range1, Range2) 

generates tasks of the form 

Worker(0, index1, index2). 

The generator 

code• GenOnALimited (Worker, Range1, Range2, nprocs) 

is like GenOnA except that it limits the generator to the specified number of 

processors. The generator 

code• GenOnAAbortable (Worker, Range1, Range2) 

is like GenOnA except that it is abortable; it generates tasks of the form 

Worker(0, index1, index2, GenHandle); 

The Half Array Family of Generators 

The generator 

code• GenOnHAFul I (Init, Worker, Final, Arg, Range1, Range2, 
Limited, Abortable) 

is similar to penOnA, except for the range of the indext, index2 arguments. The 

sequence of (indext, index2) values span the "half" array beneath the diagonal of a 

Range 1 x Range2 array as follows: 

index2 - e. 
index2-= 1, 

index1 • 1, ... ,(Range1-1) 
index1 = 2, ... ,(Range1-1) 

index2 • R-2, index1 • (R-1), ... ,(Range1-1) 

where R • min(Ronge1, Range2) 

Similarly, the generators: 

code• GenOnHA (Worker, Range1, Range2) 
code• GenOnHALimited (Worker, Range1, Range2, nprocs) 
code• GenOnHAAbortable (Worker, Range1, Range2) 

are analogous to the corresponding routines in the Array family. 

It may appear that more variants are needed for half arrays; for example, those 

that include the diagonal. . However, GenOnHA can be used with some- simple tricks to 

get the desired behavior; for example, to include the diagonal, add one to the ranges 

(in the call to GenOnHA) and subtract one from the variable i (in the Worker routine). 
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Miscellaneous Generators. 

The generator 

GenTaskForEochProc (cal I, org) 

generates exactly 1 task, call( arg), for every processor (that has not been removed by 

the TimeTest routine). 

The generator 

GenTaskForEachProcLimited (call, arg, nprocs) 

exactly 1 task, call(arg), for each of nprocs different processors. 

The generator 

GenTosksFromList (routine_list, arg_list, n) 

where routine_list is an array of routines of length n, rO, ... ,rn-1, and arg_list is an 

array of "arguments" of length n, arg1, ... ,argn, generates n tasks; the ith task is 

ri( argi). 

Asynchronous Generators 

There are asynchronous versions of each of the generators in the Index, Array 

and Half Array generator families. While the form of the tasks generated by these 

generators varies from family to family, the asynchronous generators use a common 

control discipline. 

Suppose AsyncGen ... is an asynchronous generator. The call 

GenHandle • AsyncGen ... ( ... ): 

activates the generator and then returns control immediately to its caller along with 

GenHandle, an "identifier" for the generator activated. The processor that invokes an 

asynchronous generator can choose to work on tasks generated by the generator by 

using the call 

code• WorkOn (GenHandle): 

After all of the tasks generated have been processed, WorkOn returns a code to the 

caller. The code indicates either that the generator exhaustively produced all of its 

tasks or that it was aborted via A bortGen. Alternatively, the processor that invo·kes 

an asynchronous generator can do other things. 

The sequence 



GenHandle s AsyncGen ... ( ... ); 
code= WorkOn (GenHandle); 

is functionally equivalent to the corresponding synchronous generator. 

A procesor that has previously invoked an asynchronous generator can use the 

call' 

code• WaitForTasksTofinish (GenHandle) 

to wait until all of the tasks associated with the specified generator have been 

completed. As with WorkOn, the returned code indicates whether the generator 

exhaustively produced all of its tasks or was aborted. 

B.oth WorkOn and WaitForTasksToFinish should be used only by the process that 

activated the generator in question, and only if that process is not already working 

on the generator. 

The asynchronous g~nerators currently supported by the Uniform System are: 

Index f'omi ly: 
GenHond I e • AsyncGenOnlf'u I I (1 nit. Worker. f'i na I • Arg. Range. 

Limited, Abortoble) 
GenHandle • AsyncGenOnl (Worker. Range) 
GenHandle • AsyncGenOnllimited (Worker, Range. nprocs) 
GenHandle • AsyncGenOnlAbortable (Worker, Range) 

Array Femi ly: 
GenHondle • AsyncGenOnAFull (lnit. Worker. final, Arg, Ronge1. Ronge2. 

Limited. Abortoble) 
GenHondle • AsyncGenOnA (Worker, Ronge1, Range2) 
GenHondle • AsyncGenOnALimited (Worker, Rangei, Range2, nproes) 
GenHandle • AsyncGenOnAAbortable (Worker, Ronge1. Ronge2) 

Half Array Forni ly: 
GenHandle = AsyncGenOnHAFul I (lnit. Worker. Final, Arg. Range1, Range2, 

Limited, Abortable) 
GenHandle • AsyncGenOnHA (Worker, Range1, Range2) 
GenHandle • AsyncGenOnHALimited (Worker, Range1, Ronge2, nprocs) 
GenHondle • AsyncGenOnHAAbortable (Worker, Ronge1, Ronge2) 

Each of these corresponds to one of synchronous generator described above. 

Ma.king Copies of Process Private Data 

It is often useful for each processor to have its own copy of certain frequently 

referenced variables declared as C globals. These copies eliminate the memory 

contention that could occur as multiple processors access the variables. For example, 

as part of initialization one processor might set C global variables which other 

processors must access. Recall that C globals are in process private memory. One 

way to make the values of these variables accessible to the other processors is to 

pass the values in the data structure argument to a task generator and have the 
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generator "initialization" routine make copies on each processor. Often a more 

convenient way is to use one of the Share routines. 

The effect of 

Share(&N); 

where N is declared as a global int (and is therefore process private}, is to cause the 

value of N (in the processor invoking Share at the time Share is invoked) to be copied 

into N in each processor used to perform tasks generated by subsequent task 

generators. The value of N is set in each such processor prior to the call of the task 

initialization routine for the next task gener_ator handled by that process~r9 . The· 

effect of Share is illustrated schematically in Figure 4. Note that only the value of N 

is propagated to other processors by the Share mechanism. Therefore, should one 

processor change its· copy of N, only that processor will see the changed value. 

A non-integer variable X can be passed to other processors by 

ShareBlk(tX. size) 

where size is the size of X in bytes. A pointer variable P and the block of data it 

points to can be passed to other processors by 

SharePtrAndBlk(~. size) 

where size is the size in bytes of the block of data pointed to by P. 

When many processors make frequent references to many elements of an array 

allocated by AllocSca.tterMatrix, it is often desirable for each processor to have its 

own copy of the vector of pointers created by AllocSca.tterMatrix. This reduces 

contention for those pointers, which are all stored in a single memory and which must 

be referenced to access the array elements. The routine 

ShareScatterMotrix(&P. nrows); 

where P is a C global allocated by 

P •Al locScotterMatrix(nrows, ncots. element_size): 

will cause such copies to be made. Each processor used to perform tasks generated 

by task generators called after the call to ShareScatterMatrix will have its P set to 

9Generators that hove no explicit initialization routine (see the section on "Synchronous 
Generators" above) con be thought of os having a nut I or no-op initialization routine. N is 
set prior to the (non-existent) call of the null initialization routine, and therefore prior 
to the first coll of the ta$k worker routine on that processor. 
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Figure 4: Share is used to pass copies of process private variables. 
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point to a local copy of the vector of pointers (the local copy is allocated in globally 

shared memory}. As with Share, ShareBlk and SharePtrAndBlk, the value of P in each 

such processor will be set prior to the call of the task initialization routine for the 

next task generator handled by that processor 10. 

Sharing Variables Among Processors 

The "share" mechanism described in the previous section propagates copies of 

variable values from one processor to others. Situations often occur where it is 

desirable to share variables among processors in a more dynamic fashion, such that 

when one processor changes the value of such a variable all the processors see the 

change. 

Ideally, one would like to use a storage class specifier, similar to static or 

extern, to declare that a variable is to be shared in this fashion; for example, 

global ly_shared int N: 
int M; 

would cause N to be allocated in the globally shared portion of the address space, and 

M to be allocated in the process private portion of the address space. However. as 

noted earlier, the Butterfly C compiler is a standard uniprocessor C compiler that does 

not support the notion of globally shared storage. 

The Uniform System supports a mechanism that achieves the effect of a globally 

shared storage class by facilitating the creation and use of dynamically shared 

variables. This mechanism allows a programmer to declare and use a set of variables 

that are globally shared among all processors. 

The declaration 

BEGIN_SHAREO_OECL 
int N; 
char c: 

ENO_SHAREO_OECL; 

declares N, c, and the other variables between BEGIN_SHARED_DECL and 

END_SHARED_DECL to be globally shared. The "statement" 

MokeSharedVariables: 

10 ShareScatterM atrix( &P, nrows) is I og i ea 11 y equ i va I ent to 
SharePtrAndBlk(&P, 4•nrows), but operates much foster, since it is careful to make copies 
from other copies as well as from the original. 
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which must be called after lnitializeUs and before using the shared variables, 

allocates space for the variables and propagates knowledge of where they are to all 

processors. To reference a globally shared variable that has been declared in_ this 

way, the programmer must explicity specify that it is shared via the SHARED prefix; 

for example, 

SHARED N • (x + SHARED N) / 12; 
if (SHARED c -- '1') break; 

When using this mechanism, there are some important limitations that must be 

kept in mind: 

1. BECIN_SHARED_DECL may appear only once in a program. That is all 
variables to be shared via this mechanism must be declared in one place. 

2. All of the shared variables are allocated in the same· physical memory. 
Hence contentions for that memory could be a performance bottleneck. (See 
Section 5 for a discussion of the performance implications of memory 
contention.) 

Despite these limitations, the mechanism is useful in many situations. 

Measuring Your Program 

You may-want to measure the performance of your program on different. numbers 

of processors. The Uniform System offers a utility routine called TimeTest that 

facilitates this kind of measurement. 

TimeTest(Init. Execute, PrintResults) 

To use TimeTest, you need to divide your application into three major subroutines: one 

that does all of the initialization (/nit). another that does the real work of the 

program (Execute), and a third that prints results (PrintResults). TimeTest takes the 

names of these subroutines as arguments, and runs your application on various 

configurations of the machine. It times the middle routine only (Execute), and passes 

the execution time, the number of processors, and the effective number of 

processors 11 on to the specified display routine (PrintResults) at the end of each 

pass: 

PrintResults(time, procs, effprocs) 
int time, procs; 
float effprocs: 

/• Written by the user. However note •/ 
/• that the Uniform System provides •/ 
/• a simple version, see below. •/ 

11 The effective number of processors is a float equal to {time 1 proc) /{time n procs). 
which is a good measure of the speedup your program achieves over one processor when n 
processors ore used. If the first test run uses more than one {•k) processors, then the 
effective number of processors is {time k proc) / {k • {time n procs)). 
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At the start of the run, TimeTest asks you to specify from the keyboard the 

configurations to be timed. If, for example, all possible configurations are specified, 

Time Test will run the three specified routines in order on a single processor, then call 

them again with a two processor configur_ation, and so forth until it has run the 

program on every possible processor configuration up to the size of the machine being 

used. 

The display routine 

TimeTestPrint(time, procs, effprocs) 

can be used to print time, procs and effprocs. You may prefer to supply your own 

display routine if you want to print other information. 

A variant on TimeTest gives somewhat more control over the test. runs: 

TimeTestFull(Init, Execute, PrintResults, start, delta, end) 

TimeTestFull allows a start, increment (delta) and end value to be specified for a set 

of runs. The first test is run on start processors, the next on start + delta 

processors, and so forth, up to the final test which is run on end processors. 

TimeTestFuU is particularly useful on bigger machines, where incrementing by one 

processor can be tedious. If start (or end) is zero, the test is run from (to)· the end 

of the range of available processors, and in particular, it is run for the limiting 

processor case whether or not it is in the normal progression specified by delta. 

If delta is specified to be zero, the number of processors used increases by 

powers of two ( 1, 2, 4, 8, etc). The rules for start and end still apply. If the delta 

specified is negative, TimeTestFull asks the user to supply values for start, delta, and 

end at the start of the run. This is the normal usage for timing many programs, and 

is what you get with the simpler TimeTest. 

Although all Processor Nodes in a Butte;rfly system are functionally equivalent, 

there is a distinguished King Node that is special in two ways: it is the node to which 

the console terminal is connected; and it controls the machine while the operating 

system is being booted. Because a terminal handler and window manager run on the 

King Node, it appears about 83-103 slower than the other nodes to application 

programs. When benchmarking a program, it is desirable to avoid using the King Node 

to ensure that the measurements were not affected by the processing requirements of 

the terminal handler and window manager, 

The King Node can be avoided by using the routine 
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InitiolizeUsForBenchmark(); 

rather than lnitializeUs, and starting the program on some node other than the King 

Node 12. 

Tagging Memories 

Sometimes it is useful to partition the node memories into classes. For example, 

the Allocate and AllocScatterMatrix routines use all of the memories of the machine. 

It may be desirable to limit allocation to a smaller set of memories; for example, only 

the memories of Processor Nodes being used to run a program. 

The routine 

UsSetCloss(proc, class) 

where proc is a physical processor number and class is an int, makes the memory of 

the specified Processor Node a member of the specified class. All memories are 

initially in class 0. 

The allocation routines 

Al locoteC(SizelnBytes, class) 
AllocScotterMotrixC(Processor, SizelnBytes, class) 
AllocoteOnUsProcC(nrows, ncols, element_size, class) 

where class is an int, are similar to Allocate, AllocScatterMatrix, and AllocateOnUsProc, 

differing in that they allocate space only on memories in the specified class. 

ALLocateOnUsProcC will fail if proc is not in class. 

Configuring the Uniform System 

Normally Initialize Us creates a process for its program on every available 

processor in the system, and seizes as much memory as it can obtain from each 

processor node in order to establish the Uniform System globally shared address 

space. 

While this is appropriate in many cases, there are situations which may require 

finer control of the resources used by Uniform System programs. In such situations, 

the routine 

Conf igureUs(Spec, n); 

12Tne -on switch of the run command or the us ut i Ii ty con be used to start a program on 
o non-King node. See Sect ion 5 and the Chrysa I is Programmers~ for detoi .Is. 
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can be used prior to calling InitializeUs to specify values for configuration parameters 

that differ from the values normally used by JnitializeUs. Spec is an array (of int's) 

which specifies the configuration; it contains n parameter specification blocks. Each 

parameter specification block contains a~ integer configuration_code that serves to 

identify the parameter being set followed by one (or more) integer(s) which specify the 

value for the parameter. 

Currently the following configuration_code 's are defined: 

Code 

conf i9Procs 

conf i9MoxSars 

Parameter 

integer - number of processors to include 
in the Uniform System configuration. 

integer • number of segment attribute 
registers (SARs) to use to define 
process address spaces. 

As an example, the code fragment: 

spec [0] • conf igProcs; 
spec [1] • S; 
Conf igureUs (spec, 1); 
In i t i a I i zeUs () ; 

limits the Uniform System program to (a maximum of) 6 processors. 

Clock 

Your program can read the Butterfly clock using the routine 

GetRtc() 

that returns the time since the system was booted in units of 62.5 microseconds. On 

the Butterfly the clock value is the same (plus or minus two ticks) on every processor. 

The front end version of the Uniform System Library uses the real time clock on the 

front end machine to implement GetRtc, and converts to these 62.5 microsecond units. 

If you merely want the clock to measure the speed of your program, see 

"Measuring Your Program" above. 

I/O 

The routines printf and scanf are available for terminal 1/0. The operation of 

these functions is generally the same as that of their Unix counterparts. 

The Chrysalis utility tftp provides means for a user to manually transfer files to 

and from the front end host. Consult the tftp section of the Chrysalis Manual for 

information on how to use this utility. In addit.ion, support for the standard Unix file 
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1/0 functions for files on the front end host is being developed. ·In the interim, a 

simple mechanism, supported by a streams package, has been developed to permit a 

program running on the Butterfly to read and write files on the front end computer . 

. Consult the Chrysalis Manual for deails OJ?. how to use the streams package, 

Building a Generator 13 

The Uniform System Library contains a set of useful generators for a wide range 

of applications. Occasionally it may be necessary, however, to construct a generator 

for a particular application. 

The generator activators supported by the library all make use of the 

"universal" generator activator procedure. This procedure can be called directly by 

application programs, and can be used to build new generator activator procedures: 

ActivateGen(Init, Worker, Final, Arg, Ronge1, Range2, Type, Gen, 
Async, MaxProcsToUse, Abortable, ResultP) 

As above, Jnit, Worker, and Final are routines, Arg is typically a pointer to a data 

structure, and Ranget and Range2 are short's. Type is GENERATOR. Gen is a task 

generation routine you supply to generate the next task (described in more detail 

below). Async is a boolean which specifies whether the generat9r is to be activated 

asynchronously (true) or synchronously (false). MazProcsToUse specifies the number 

of processors to which the generator is to be restricted; as with the "limited" forms of 

the generators, 0 or -1 indicates no limitation, and a positive value ensures that no 

more than that number of processors will be used. A bortable is a boolean which 

specifies whether the generator is to be abortable (true) or not (false). Finally, 

Result? is a pointer that is used if Abor~able is true; it specifies a location where the 

ActivateGen should store the generator "result code" (= genEXHAUSTED if all tasks 

are generated; or the termination code parameter of A bortGen if the generator is 

aborted). 

The Gen task generation routine has the form: 

Gen(TD) 
UsGenDesc •; 

where TD is a pointer to a task descriptor data structure of the form; 

13This is an advanced topic. While the general approach to building generators is not 
likely to change, the details may. 



struct 
I short started: 

short type; 
/• Defined types are: •/ 

#define IDLETASK 1 
fdef ine GOAWAYTASK 2 
fdef ine GENERATOR 4 

short incarnation_number: 
short state; 
/• Defined states are: •/ 

#define ACTIVE 1 
fdef ine INACTIVE 2 

short us_lock; 
short lock: 
int (•i.,it)(): 
int (•call)(}: 
int (•gen)(): 
int (•final)(): 
int org; 
char •currentShare; 
int range; 
int range2: 
OH returnQ: 
int post_pending; 
short MaxProcsToUse; 
int end; 
int obortable; 
short retcode; 
/• Oef ined retcodes are: •/ 

#define genEXHAUSTEO -1 
short endlock; 
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union f long Long; short Short;J index; 
union ·iunsigned long Long: unsigned short Short: I index2; 
short locka[nlocks]: 
short index1a[nlocks]; 
short index2a[nlocks]: 

The task descriptor data structure is declared in the header file usgen.h which you 

must #include with your program when using ActivateGen. The Worker, /nit, Final, Gen, 

Arg, Rangef, Range2, Type, MaxProcsToUse, and Abortable parameters of ActivateGen 

are used to initialize the call, init, final, gen, arg, range, range2, type, 

MaxProcsToUse, and abortable fields of the task descriptor structure. The Lock and 

the lock a array fields of the task. descriptor structure are initialized to 0 and are 

available for use as locks by the Gen routine you supply; and, the index and inde.x2 

fields, and the inde.x1 a and inde.x2a array fields are initialized to 0 and are available 

for use by your Gen routine for bookkeeping associated with generating the tasks. 

ActivateGen uses the remaining fields (started, shareCount, returnQ, etc.) for internal 

bookkeeping. 

An example may help illustrate use of ActivateGen to build a generator. Suppose 

a generator 

GenOnShortlndex(lnit, Worker, Arg. Range) 

is desired which is to be similar to GenOnl, differing in that it takes an /nit routine 



37 

and an Arg parameter, and that the Range is to be restricted to a short. 

CenOnShortlndex could be implemented by calling 

ActivoteGen(Init, Worker, 0, Arg, Range, 0, GENERATOR, GenShortldx, 
folse, 0, folse, 0) 

where CenShortldx is 

GenShortldx(TO) UsGenDesc •TD; 
I register int index; 

register short • p1 s (short •)&TO->( index.Short); 
register short range• TO->ronge; 
register int (•worker)() • TO->cal I; 
register int org • TO->org; 
for(:;) 
I index• Atomic_add(p1,1); /•Generate the next index volue. •/ 

if (index>= range) break; /• Finished if ronge exceeded. •/ 
(•worker) (org, index); /• Otherwise, col I the worker routine. •/ 

ActivateCen initializes a task generator descriptor (TD, a UsCenDesc data structure) 

from its parameters, and makes the descriptor accessible to other processors. The 

processor on which ActivateCen is invoked then calls CenShortldx. That processor, 

along with others as they become free, use the task generator descriptor (TD) and 

CenShortldx to generate and execute tasks. 
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4. Examples 

This section contains several example programs that illustrate use of the Uniform 

System. 

4.1. Multiprocessor "hello world" 

This example illustrates the use of the task generator GenOn/, the variable 

Proc_Node, and the TotalProcsAvailable, PhysProcToUsProc and Share routines. The 

example is a multiprocessor version of the "hello world" program in Kernighan and 

Ritchie's The f Progra,mming Language, and is only a little more complicated. 

The program causes each processor to print out "Hello world from node n" 

exactly once. Figure 5 is the typescript produced by running it on a large Butterfly 

system. The -sars 200 option to run is explained in Section 5. The line 

init1 -- find memory ... is generated by lnitializeUs as a debugging aid, and is likely 

to be eliminated in a future version of the Uniform System. 

The multiprocessor "hello world" program is shown in Figure 6. The program 

uses Allocate to allocate space in globally shared memory for nodecount, a variable 

used for bookkeeping by the processors. Nodecount is initialized with ~he number of 

processors on the machine, a number obtained via TotalProcsAvailable. After using 

Share to propagate the location of nodecount to other processors, the program then 

uses GenOnl to generate tasks to print the "Hello" message from each processor. The 

only tricky part is ensuring that each processor performs exactly one task. Without 

some form of coordination, it is possible, in general, that some processors would get 

more than one task, and others would get none. For this program, the coordination is 

simple. Each processor simply prints its message, atomically decrements a counter 

maintained in globally shared memory (nodecou.nt), and then waits until the counter 

indicates that all messages have been printed. This guarantees that no processor 

finishes its task until all messages have been printed; therefore all tasks are 

generated before any processor finishes. 



[0] run -sors 200 Hello 
loading Hello from VAX ... 

init1 ~ find memory 
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init2 ~map memory 

There are 123 nodes on this machine 

Hello world from node #0 (• hardware node #0) 
Hello world from node #3 (•hardware node #6) 
Hello world from node #2 (• hardware node #4) 
Hello world from node #4 (•hardware node #8) 
Hello world from node #5 (•hardware node #a) 
Hello world from node #1 (•hardware node #2) 
Hello world from node #6 (•hardware node #c) 
Hello world from node #7 ~- hardware node #e) 
Hello world from node #8 (• hardware node #10) 
Hello world from node #9 {•hardware node #12) 

Hel o world from node #79 (• hardware node #a2) 
Hel o world from node #72 (•hardware node #94) 
He o world from node #46 (• hardware node #Se) 
He o world from node #44 (•hardware node #Sa) 
He o world from node #49 (• hardware node #64) 
He o world from node #60 (• hardware node #7c) 
He o world from node #58 (•hardware node #78) 
He o world from node #113 (• hardware node #eB) 
He o world from node #85 (•hardware node foe) 
He o world from node #76 (•hardware node #9c) 
He o world from node #65 (•hardware node #86) 
He o world from node #81 (•hardware node #a6) 
He o world from node #25 (• hardware node #32) 
He o world from node #66 (•hardware node #88) 
Hel o world from node #120 (•hardware node ff6) 
Hel o world from node #59 (•hardware node #7a) 
Hel o world from node #82 (• hardware node #08) 
Hel o world from node #41 (•hardware node #54) 
Hel o world from node #47 (•hardware node #60) 
Hel o world from node #108 (• hardware node #de) 
Hel o world from node #53 (•hardware node #Se) 
Hel o world from node #86 (•hardware node #b0) 
Hel o world from node #24 (• hardware node #30) 
Hel o world from node #118 (• hardware node #f2) 
Hel o world from node #107 (• hardware node #de) 
Hel o wor d from node #29 (• hardware node #3a) 
Hel o wor d from node #32 (• hardware node #40) 
Hel o wor d from node #90 (• hardware node #b8) 
Hel o wor d from node #104 (• hardware node #d4) 
Hel o wor d from node #95 (• hardware node #c2} 
Hel o wor d from node #91 (• hardware node fba) 
Hel o wor d from node #64 (• hardware node #84) 
Hel o wor d from node #22 (• hardware node f2c) 
Hel o wor d from node #48 (• hardware node #62} 
Hel o wor d from node #61 (•hardware node #7e} 
Hel o wor d from node #96 (• hardware node #c4} 
Hel o wor d from node #112 {• hardware node #e6} 
[0] 

init3 ~ start processors 

Figure 5: Typescript from the multiprocessor "Hello world" program. 
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1 /• Mu It i processor 0 He 11 o" program •/ 
2 
3 #include <us.h> 
4 
5 short • nodecount; 
6 
7 PrintHel lo(dummy, index} 
8 int dummy, index; 
9 printf{"Hello world from node f%d (•hardware node #%x}\n°, 

10 PhysProcToUsProc(Proc_Node}, Proc_Node}; 
11 Atomic_odd(nodecount, -1); 
12 while (•nodecount I• 0) UsWoit(0); 
13 
14 
15 main() 
16 l InitializeUs(): 
17 nodecount •(short•) Allocote(sizeof(short)); 
18 • nodecount • TotolProcsAvoilable(); 
19 printf( 0 \nThere are %d nodes on this mochine\n\n", •nodecount); 
20 Share(tnodecount): 
21 GenOnl(PrintHello, •nodecount); 
22 

Figure 6: The multiprocessor "Hello world" program. 
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4.2. Matrix Multiplication 

This example illustrates use of the AllocScatterMatrix storage allocator, the 

GenOnA task generator, and the routines JnitializeUs, Share, TimeTest, and 

Time Te stPrint. 

The example is an unoptimized program that multiplies two matrices. The 

program computes the matrix a = b * c. Recall that the product (a) of two matrices 

(b and c} is the matrix whose (i,j)th component is the sum of the products of the 

corresponding elements (the dot product) of the ith row of b and the jth column of c. 

The program is written to run on a set of processor configurations specified 

from the keyboard. Figure 7 is a typescript produced by running the matrix example 

program on a small Butterfly system. The line please enter start ... is used to gather 

specification of the processor configurations to be used for the run. It is output by 

the TimeTest routine; see the discussion of TimeTest in Section 3 for an explanation of 

the start, del and end parameters. The line [8] time = 12657 ... is output by 

TimeTestPrint. It indicates that the matrix example program took 12657 ticks or .79 

seconds on 8 processors, and that it achieved a speedup of 7 .8 over 1 processor 

( = 7 .8 effective processors}, utilizing the 8 processors with 98.70 3 efficiency. 

The program itself is shown in Figure 8. It parallelizes matrix multiplication by 

computing the individual elements of the product matrix a in parallel. Each element is 

the dot product of a row of matrix b and a column of matrix c. 

The program has 6 routines 14: 

1. JnitProblemOnce. As its name suggests, this is an initialization routine called 
once per invocation of the program. JnitProblemOnce allocates space in 
globally shared memory for the result matrix a, and the two operand 
matrices b and c, using the Uniform System allocator ALlocScatterMatri:r. 
Note that the variables a, b, and c are C globals and, hence, process 
private. Next, JnitProblemOnce uses Share to make copies of a., b, and c 
available to any processors used in tasks generated to do the matrix 
multiplication. Finally: it initializes the b and c matrices (with dummy data) 
using nested for loops. Since matrix b will be accessed by row, and matrix 
c will be accessed by column, b is scattered by row and c is scattered by 
column. That is, b[i][j] is the element in row i, column j of b, whereas c[i)(j] 
is the element in row j, column i of c. 

2. JnitPerRun. This is an initialization routine called before each run of the 
matrix multiplication code on a given configuration of processors. It simply 

14Chrysal is starts the program by cal ling the routine main on a single processor. 



[0] run -sars 200 MotrixExample 
loading MatrixExample from VAX ... 
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init1 ~find memory init2 ~map m~mory 

Starting Matrix Multiply 
Matrix Size: 20 

init3 ~start processors 

please enter start. del(0-exp). and end for time test: 1 0 8 

using start • 1 • de I ta • 0, end • 8 
a row 0 0. 60. 120. 180. 240. 300. 
a row 1 3. 63. 123. 183. 24~. 303. 
a row 2 6. 66. 126. 186. 246. 306. 
a row 3 9. 69. 129. 189. 249. 309. 
0 row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195. 255. 315. 
[ 1) time • 99944 ticks• 6.24 sec: ep • 0.9; eff • 0.9999 
a row 0 0. 60. 120. 180. 240. 300. 
0 row 1 3. 63. 123. 183. 243. 303. 
a row 2 6. 66. 126. 186. 246. 306. 
a row 3 9. 69. 129. 189. 249. 309. 
0 row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195. 255. 315. 
[2] time• 50204 ticks• 3.13 sec: ep • 1.9; eff • .9953 
0 row e 0. 60. 120. 180. 240. 300. 
a row 1 3. 63. 123. 183. 243. 303. 
0 row 2 6. 66. 126. 186. 246. 306. 
a row_ 3 9. 69. 129. 189. 249. 309. 
0 row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195~ 255. 315. 
[4] time• 25079 ticks• 1 .56 sec; ep • 3.9; ef f • .9962 
0 row 0 0. 60. 120. 180. 240. 300. 
a row 1 3. 63. 123. 183. 243. 303. 
0 row 2 6. 66. 126. 186. 246. 306. 
a row 3 9. 69. 129. 189. 249. 309. 
0 row 4 12. 72. 132. 192. 252. 312. 
a row 5 15. 75. 135. 195. 255. 315. 
[8] time= 12657 ticks= .79 sec; ep -= 7.8; eff = .9870 
[0] 

Figure 7: Typescript of the matrix example program. 
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1 /• Matrix multiply - unoptimized example program •/ 
2 
3 #include <us.h> 
4 
5 int Size; 
6 float ••o,••b,••c; 

·7 
lnitProblemOnce() 
i int t.J; . 

8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

a• (float ••)Al locScatterMatrix{Size,Size,sizeof(float)); 
b • (f loot ••)Al locScatterMatrix(Size.Size,sizeof(float)): 
c • (float ••)Al locScatterMatrix(Size,Size,sizeof(float)): 
Share(ta): Share(tb); Share(tc): 
for ( i•0: i<Size: i++) 

for (j•0: j<Size; j++) 
I if {i--j) b[i][j) • 3.; else b[i)[j) • 0.; 

c[i][j] •Size• i + j: 
l 

21 lnitPerRun() 
22 { int i , j; 
23 for ( i •0; i <Size; i ++) 
24 for {j-0; j<Size; j++) 
25 a[i)[j] • 0.: 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

DotProduct{dummy,i,j) 
int dummy, i ,j: 
int k; float •bb, •cc, temp; 
temp• 0.0; bb • b[i]; cc• c[j); 
for (k•0; k<Size; k++) 

temp -+-- •bb++ • •cc++; 
a[ i ][j] • temp; 

Body() 
t GenOnA(DotProduct, Size. Size); 
I 

PrintAnswer(time,procs.speedup) 
int time,procs; f loot speedup: 
int i. j; 
for ( i•0: i<6; i++) 
I print f ("\no row ~d ". i); 

for ( j-0: j<6; j++) 
printf ("~d. ", (int) a(i](j]); 

I 
TimeTestPrint{time,procs,speedup); 

main() 
I lnitializeUs(); 

printf("\nStarting Matrix Multiply\nt.Catrix 
Shore(.tSize); 
lnitProblernOnce(): 
TimeTest(InitPerRun, Body, PrintAnswer); 

Size: ") : scan f ( "%d" , l:S i ze) ; 

Figure 8: The matrix example program. 
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zeros the answer matrix a 15. Note that the rows of the matrix could be 
zeroed in parallel if the matrix was very big. 

3. DotProduct. This is a worker routine called by the GenOnA task generator. 
It computes the vector dot product of row i of the b matrix and column j of 
the c matrix and stores the result in element a[i](j) of the result matrix. It 
uses a for loop to accumulate the individual products in a temporary 
variable, which it then stores in the result matrix. The variable bb is a 
pointer to row i of matrix b and variable cc is a pointer to column j of 
matrix c. Since matrix b is scattered by row and matrix c is scattered by 
column, successive elements of the ith row of b and the jth column of c can 
be accessed by incrementing and de-referencing the bb and cc pointers. 
Using *bb rather than b[i)(j) avoids accessing b[i] .(which is constant since i 
doesn't change) in each iteration of the for loop. This helps avoid 
contention for the memory that holds the b vector of pointers. A similar 
comment applies to the use of cc. 

4. Body. This is the routine that computes the matrix product. It uses the 
CenOnA task generator to spawn tasks that execute in parallel to compute 
the individual dot products that make up the result matrix. The generator 
ensures that DotProduct is called for all combinations of i and j for 
0 < = i < Size and 0 < = i < Size. 

5. PrintAnswer. This is the display routine called by TimeTest. It prints out 
part of the result matrix and then calls TimeTestPrint to print the runtime, 
number of processors, and the speedup obtained over 1 processor by a 
particular processor configuration. 

6. main. The program starts in main. After initializing the Uniform System, 
main asks the user to supply the size of the matrices (square matrices are 
assumed) and stores the reply in the C global, process private variable Size. 
Next, it calls Share to make a copy of the value of Size in all processors 
that execute any tasks subsequently generated. It then calls 
lnitProblemOnce to allocate and initialize the a, b, and c matrices. Finally, 
it calls TimeTest to run the matrix multiplication on the range of processor 
configurations specified by the user. The routines lnitPerRun, Body, and 
PrintAnswer are called in order by TimeTest on each processor 
configuration, and. Body is timed for each configuration. 

4.3. Convolution 

This example illustrates use of the CenOn/Full task generator and the Chrysalis 

block transfer operation. 

The example is an unoptimized program that performs a convolution operation on 

an input image to produce a new output image. Each pixel in the output image is the 

weighted sum of the corresponding pixel in the input imag.e and pixels adjacent to it. 

The weighting is specified by a mask. For the example program a specific 

15strictly speaking, since every element of a is written during the matrix multiplication, 
it is not necessary to zero them between runs. They are zeroed here only to illustrate the 
use of an "init 11 routine for TimeTest. 



3 pixel x 3 pixel mask is used: 

_, _, _, 
_, 8 -1 
-1 _, -1 
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The value of each pixel in the output image is 8 times the value of the corresponding 

pixel in the input image minus the values of each of the 8 adjacent input image pixels. 

Figure 9 is a typescript from running the program on a small Butterfly 

configuration. The convolution program is shown in Figure 10. 

The program parallelizes the convolution operation by computing rows of pixels 

in the output image in parallel. The GenOnlFull task generator is called with a Range 

parameter equal to the number of input image rows minus 2 to generate the tasks 16. 

The program has six routines: 

1. JnitProblemOnce. This routine allocates space in globally shared memory for 
the input (im) and output (an) images (square images of dimension N x N are 
assumed). The images are scattered by row across the memories of the 
machine. It then generates pixel values for the input image. Next, it uses 
Share to make copies of N, im, and an available to processors used in tasks 
generated to do the convolution. 

2. Jnitf or Proc. This is the "init" routine passed to GenOnlFuLl. It is called once 
on each processor that executes tasks generated by GenOnIFull before any 
of the tasks themselves are. lnitforProc allocates process private space, to 
be used by DoConvol, for four rows of image pixels: row, row_m1, row_p1, 
and row_ans. 

3. DoConvol. This routine computes one row of the output image. Calls to it 
are generated by the GenOnJFull task generator. Before computing output 
pixels, DoConvol makes local copies in process private memory of the pixel 
values it needs using the Chrysalis Do_bt block transfer operation. Each 
iteration of the for loop computes one pixel of the output image. As their 
values are computed, the output pixels are accumulated in process private 
memory in row_ans. After all have been computed, row_ans is copied to the 
output image by means of block transfer. 

The four block transfer operations are motivated by two performance 
considerations. First, when referencing a large number of contiguous items, 
it is more efficient to first use block transfer to make a local copy of them 
and then reference the copied values locally, than it is to reference the 
items one at a time through the switch. After a small amount of setup, the 
block transfer occurs at the full 32 Mbit/second rate of the Butterfly 
switch, whereas the individual remote references do not, since setup 
overhead must be incurred for each remote reference. Using the block 
transfer operation to put frequently referenced data in local memory is the 

16The top and bottom rows. and the left and right columns are not convolved because they 
ore on the edge of the image, and therefore have insufficient adjacent pixels. 



[0] run -sars 200 convolve 
loading convolve from VAX ... 

46 

init1 -- find memory init2 -- mop memory 

Image size = 256 

init3 - start processors 

please enter start, del(0-exp), and end for time test: 1 0 8 

using start• 1, del to • 0, end • 8 
[1] time• 147647 ticks= 9 .22 sec: ep = 0.9; ef f = 0.9999 
[2] time• 73397 ticks• 4.58 sec: ep • 2.0; eff -1.0058 
[4] time • 36786 ticks 2.29 3ec; ep • 4.0; eff • 1.0034 
[8] time • 18498 ticks • 1. 15 sec; ep .. 7.9; ef f - .9977 
[0] 

Figure 9: Typescript from the convolution program. 
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1 /• Image convolution - unoptimized example program •/ 
2 
3 #include <us.h> 
4 
5 #define true· 
6 fdef ine false 0 
7 
8 int N, End; 
9 int • • im, • •on; 

10 int • row. • row_m1. • row_p1 • • row_ ans: 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

lnitProblemOnce () 
l int i , j; 

im-(int • •)Al locScotterMotrix(N, 
on-(int • •)AllocScotterMotrix(N, 
for (i •0; i <N; i++) 

for (j • 0;. j < N; j++) 
im[i)[j) • i % 2: 

Shore(l:N); Shore(tim); Shore(ton); 

lnitforProc(dummy} 
int dummy; 
End • N - 1; 

N, sizeof(int)); 
N, sizeof(int)): 

row• (int •) mol loc (N•sizeof(int)): 
row_m1 •(int•) molloc (N•sizeof(int)); 
row_p1 •(int•) molloc (N•sizeof(int)); 
row_ans • (int •) mol loc (N•sizeof(int)); 

OoConvol(dummy ,r) 
int dummy, r; 
int c: 
if (r I: 1) 

r • N-r-2; 
Do_bt (im[r++], row_m1, N•sizeof(int)); 
Do_bt (im[r++], row, N•sizeof (int)); 
Oo_bt (im[r--], row_p1, N•sizeof(int)); 
for (c = 1; c <End; c++) 

row_ans[c] • -row[c-1] + (row[c] << 3) - row[c+1) 
-row_m1[c-1] - row_m1[c] - row_m1[c+1] 
-row_p1 [ c-1] - row_p1 [c] - row_p1 [ c+1]: 

Oo_bt (row_ons, on[r], N•sizeof(int)); 

46 FinalforProc () 
47 I free (row); 
48 free (row_m1); 
49 free (row_p1); 
50 free (row_ons): 
51 
52 
53 
54 
55 
56 
57 
56 
59 
60 
61 
62 
63 

Body() 
I GenOnlFul l(lnitforProc. OoConvol, FinolforProc, 0, N-2, e, false); 
I 

main() 
I int TimeTestPrint(); 

I n i ti a I i zeUs () : 
printf("\nlmoge size• 11

); sconf("%d", ~); 
lnitProbtentOnce(); 
TimeTest(e, Body, TimelestPrint); 

Figure 10: The convolution example program. 
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Butterfly analogy to using register variables in C to hold data in faster 
memory. The second performance consideration is that potential 
multiprocessor contention for the memory holding the pixel values is 
reduced, since the single block tr an sf er ties up the memory for less time 
than the individual remote references. 

The if statement that changes r when it is odd is also motivated by memory 
contention considerations. Since each instance of DoConvol references three 
rows of the input image, processors working on adjacent rows need to 
access two rows in common. To reduce the contention that could occur 
when the processors attempt to block transfer copies of the same rows, 
processors that are passed an even r index use the index directly as a row 
index whereas those with an odd r index use the index as an offset from the 
bottom of the image 17. This tends to spread the processors out on the 
image; processors start both at the top of the image and work down on even 

·rows, and at the bottom of the image and work up on odd rows 18 . 

4. FinalforProc. This is the "final" routine passed to GenOn/Full. It is called 
on each processor used for tasks generated by GenOnJFull after the last 
such task has been executed on the processor. Final! orProc deallocates the 
space for row, row_mt, row_p 1, and row_ans. 

5. Body. This is the routine timed by TimeTest. It uses GenOn/Full to generate 
the tasks that compute rows of output image pixels in parallel. 

6. main. The program starts with main. Main simply initializes the Uniform 
System, obtains the size of the image to be convolved from the user, and 
times the parallel convolution on the processor configurations specified by 
the user. 

17As written, the program assumes that N is even. 

18This scheme assumes that GenOnlFuLL generates index values in sequence, which, in fact, 
it does. Note that there is still a potential for contention with this approach since, for 
example, the processors working on rows 2 and 4 both access row 3. A slightly more complex 
scheme would eliminate this contention. 
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5. Running and Tuning Uniform System Programs 

This section presents information needed to run programs that use the Uniform 

System. In. addition, it offers a few suggestions for tuning the multiprocessor 

performance of Uniform System programs. 

Running Uniform System Programs 

When a program uses the Uniform System, it has access to a large globally 

shared region of memory. Implementation of the shared memory region requires use of 

more hardware mapping registers (called sars for Segment Attribute Registers) than 

the Butterfly shell (bshell) load and run commands normally use for application 

programs. Therefore, the bshell must be instructed to use the required number of 

sars for Uniform System programs via the -sars option of the load or run command: 

load -sars 200 program 
run -sars 200 program 

or via the us utility: 

us program 

The us utility is equivalent to run -sars 200; it also starts the program on a non­

King node, sets the switch timeout to a val~e appropriate for Uniform System 

programs, (see discussion below) and enables alternate switch paths, if any (see 

discussion below). 

If the us utility is not used, then it is often advisable to use the Chrysalis toset 

and alten utilities prior to running Uniform System programs, as described in the 

following paragraphs. 

Chrysalis manages the value of a timeout controlling the length of time processor 

nodes will try to get a message (e.g .. a request to read or write a remote memory 

location) through the Butterfly switch. Transmission of a message may fail for a 

variety of reasons: contention within the switch or at a memory, failure of a 

switching element, software or hardware failure of the destination processor node, and 

so forth. When an attempt to send a message fails, the sending node repeatedly 

retransmits the message until either the message is successfully transmitted or the 

timeout period elapses. If the timeout elapses before the message is successfully 

transmitted, Chrysalis signals an exception condition to the application program by 

means of a "throw"19. Chrysalis uses 10 milliseconds as a default timeout period. 

19see the Chrysalis Programmers~ or the appendix of the Butterfly Parallel Processor 
Overview for a discussion of the throw mechoniSRI. 
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Experience has shown that this is too small for many programs on moderately sized 

and larger machines (>= 16 processors). The toset utility may be used to change the 

switch timeout to a larger value. A value of 4 seconds works well; 

toset 4000 

The switches for larger Butterfly systems (> 16 processors) are typically 

configured with alternate paths. Unless it is explicitly told to do so, Chrysalis will not 

use the alternate paths. The alten utility may be used to enable the use of alternate 

paths; 

a I ten 2 

enables the use of two paths between source and destination. 

Performance Tlining 

Programs are often developed in two stages. The first stage focuses on getting 

the program to function correctly, and the second stage focuses on achieving an 

acceptable level of performance by tuning the correctly functioning program. 

We recommend this two stage approach to multiprocessor programs: first, get 

the program to work, and then tune its performance. Although this section -is 

concerned with tuning a program's multiprocessor behavior, the uniprocessor behavior 

should, of course, also be tuned. 

For Uniform System programs, multiprocessor performance bottlenecks may occur 

for several reasons. Performance bottlenecks can occur if: 

1. There are insufficient tasks; 

2. The tasks are too small; 

3. There is memory contention. 

The following paragraphs briefly considers each of these. 

If there are insufficient tasks, processor starvation occurring as task generators 

finish up can limit program performance. For example, assuming that there are 128 

processors, consider the simple case of an application with 129 tasks, each of which 

takes about T time units to perform. One processor will perform 2 tasks and the 

remaining 127 processors a single task. Therefore, the time to run on 128 processors 

will be 

2 T 
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and the maximum speedup attainable over running on a single processor is 

Mox speedup - (Time on 1 proc) / (Time on 1~8 procs) 
- 129 T I 2 T 
- 64.5 

which results in a processor utilization of only 50 3. 

On a speedup plot (a plot of actual processors versus effective processes) 

processor starvation effects will show up as a periodic "saw tooth" superimposed on a 

generally monotonically increasing curve. 

The obvious way to remedy this situation is to increase the number of tasks20. 

In some cases, this is straightforward. For example, if it were necessary to increase 

the number of tasks in the convolution example of Section 4, the number of tasks 

could be doubled by having each task process only half of an image row. 

When the tasks are too short, poor performance may be due to two factors: 

1. If task generation time is a significant fraction of total run time, the 
overhead of the task generator may be unacceptably high. Speedup curves 
will often be linear in this situation. 

2. Task generators typically contain an internal "critical" region through which 
processors must proceed one at a time. For example, GenOnlnde:c must 
atomically increment a counter to step through the Range parameter (see 
"Building a Generator" in Section 3). Critical regions in task generation may 
limit the number of processors that can be used efficiently. To _see this, let 
T be the time it takes to execute a task. T includes the time to generate 
the task (Tgen) and the time to p·erform the task computation (Twork). 

T • Tgen + Twork 

Tgen is made up of time spent in the critical region Tcrit and in the 
noncritical region (Tnoncrit); hence, 

T • Tcrit + Tnoncrit + Twork 

Letting Trest be the sum of Tnoncrit and Twork gives 

T • Tcrit +Trest. 

Since processors must proceed through the critical region serially, the 

maximum number of processors that can be fully utilized21 is: 

20 1n a large application, witH many generators active at once. having a -relatively smal I 
number of tasks for some generators need not be a concern. 

21 That is. used without waiting to proceed though the critical region. 
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Mox I procs • T / Tcrit-= (Tcrit +Trest)/ Tcrit 

... Trest / Tcrit for Trest >> Tcrit. 

For example, if the critical region is half the total task time, only two 
processors can be fully utilized. 

This effect will usually manifest itself as a flattening of the speedup curve, 
asymptotically approaching T / Tcrit effective processors. 

The effects of both factors can be minimized by increasing task length. The 

convolution example in Section 4 is an intermediate version in a sequence that led to 

an optimized program. An earlier version parallelized the convolution by computing 

single pixels in the output image in parallel. That task took about 45 microseconds 

and was far too small, since the critical region in the GenOnArray task generator used 

was about 10 microseconds. 

Finally, if there is significant memory contention, processors are forced to 

proceed serially as they contend for "hot" memory. Hot spots typically show as a 

flattening of the speedup curve. If the hot spot is severe, the curve may turn down 

or oscillate. The remedy for this situation is to remove the hot spot. In practice this 

is usually a two step process: detecting the hot spot, and then removing it. 

In some cases hot spots can be identified by studying the code. In other cases 

the hot spots are not so obvious. In such cases, the Butterfly program profiling 

utility can be used to determine where, if at all, there is significant memory 

contention. Consult the Chrysalis Manual for detailed information on using the 

profiler. 

After hot spots are identified, they must be eliminated. Eliminating them is 

usually application dependent. However, a few general guidelines can be offered: 

1. Distribute the program's data across the machine. AllocScatterMatri.% can be 
used to do this. 

2. Make local copies of frequently accessed data items. Share and 
ShareScatterMa.triz, or more specialized code in the per processor 
initialization routines of task generators can be used to do this. 

3. Distribute references to frequently accessed data across multiple copies of 
the data. In some cases it may neither be necessary nor practical to have 
a copy of frequently accessed data on every processor. In many cases, a 

few copies are sufficient22. Of course, if the copied data changes as the 
computation proceeds and multiple processors need to see the changes, 

22If there ore n copies, processor p would access copy (p mod n). 
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managing the copies can become complex. 

4. Make local cache copies of data structures before referencing them, as in 
the convolution example in Section 4. Do_bt can be used to do this. 
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I. Append~x 

Compiling. Loading •. and Running Programs 

This appendix gives step by step instructions for compiling, linking and running 

Uniform System programs on the Butterfly Parallel Processor. The Butterfly Parallel 

Processor Tutorial and the Chrysalis Programmers Manual should be consulted for 

more detailed information on the mechanics of using the Butterfly system. 

The instructions below refer to various directories. header files. tools, etc. 

These all come on Butterfly software distribution tapes. Instructions for installing 

software distribution tapes on your front end host can be found 'in the Chrysalis 

Programmers Manual. 

STEP 1: 

STEP 2: 

Set up search paths on the Unix front end machine. You will need 
to access several directories besides the one containing your 
sources. To do this you will have to edit your .profile file (if a 
bourne shell user} or your .login file (if a cshell user}. 

The- changes for the borne shell are: 

1. Add BFlyDir /bin to your Unix search path, where BFlyDir 
is the root Butterfly directory (usually /usr /butterfly}. 

2. Add to your .profile file the lines: 

' 
CHRYS-SFlyOir/chrys/release 
8_PATH=:.:$CHRYS/tools:$CHRYS/net-tools:$CHRYS 
export B_PATH CHRYS 

where BFlyDir is the root Butterfly directory (usually 
/usr /butterfly). 

The changes for the cshell are: 

1. Add BFlyDir /bin to your Unix search path, where BFlyDir 
is the root Butterfly directory (usually /usr /butterfly). 

2. The changes to your . login file for the cshell are: 

setenv CHRYS BFlyOir/chrys/release 
setenv B_PATH .:$CHRYS/tools:$CHRYS/net-tools:f$CHRYSI 

where BFlyDir is the root Butterfly directory (usually 
/usr /butterfly}. 

Set up your directory. Make a directory on the front end machine 
in which to build your program. 



STEP 3: 

STEP 4: 

STEP 5: 

STEP 6: 

STEP 7: 

STEP 8: 

STEP 9: 

NOTE: 
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Construct with your favorite editor both a source file (extension . c) 
and a makefile for your program. We strongly recommend that you 

start with an existing template for both of these files 23: Figure 8, 
the matrix multiply example program, and Figure 11 are suitable to 
serve as templates. (These templates may be found in the directory 
$(CHRYS)/us in the file·s MatrixExample. c and us-prog.makefile.) 

Customize your makefile. Edit the first line in the makefile template 
replacing name with the name of your program. If your program is 
named prog. c, the line should be: 

MINE • prog 

If your program requires several files to be linked together, you will 
need to change one of the "rules" in the makefile template - consult 
the Unix documentation for make. 

You are now ready to edit, compile, and run programs. Construct 
your source file. It must be in the directory you just created, and 
it must have extension . c. At the start of the file, add the line: 

#include <us.h> 

This incorporates a few definitions that allow compilation of the 
same program for both the Butterfly and the front end without 
modification. 

Compile your file. To compile for the front end, make prog. out. To 
compile for the Butterfly, make prog.68. 

Debug your program on the front end machine'. Make prog. out 
creates the usual front end .executable version of your program; 
debug it using whatever techniques you prefer. 

Go to a Butterfly console terminal. 

Type ctl-c. If you don't get a prompt, consult your local Butterfly 
system expert. You are now talking to USD; a very simple minded 

ROM-based loader/ debugger program24. 

Type T (capitals matter), then return. You should now be speaking 
to the front end. Log out if necessary, then log in and change 
directory to the one that contains your program. 

You can get to the front end whenever you want by typing ctl-c and 
T. If you wish, you can edit and compile while connected to the 
front end in this manner. 

23Alternotively. you might choose to use the genmake utility to construct your makefile. 
Consult the Chrysalis Progronners Manual for details. 

24There ore several variations to the scenario described in this step and steps 9 through 
13~ Consult the Butterfly Porat tel Processor Tutorial for details. 



STEP 10: 

STEP 11: 

STEP 12: 

STEP 13: 

STEP 14: 

STEP 15: 

STEP 16: 
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Decide whether you want to reload Chrysalis. Usually you won't 
need to. If you need to reload Chrysalis, reenter the front end and 
execute: 

bid chrys.68 

Start Chrysalis. Return to the Butterfly by typing ctl-c, then type 
G. 

Configure the machine. Chrysalis will tell you which processors are 
available, and which you are currently using. It will then ask if you 
want to change things around. The dialog is self explanatory. 
Usually, it is fine to use all of the processors that are available. 

When Chrysalis asks you for the terminal type you are using, answer 
it. After you respond, Chrysalis will clear your screen and print a 
prompt of the form "[n]" where n is the number of the processor 
node that your terminal happens to be connected to. At this point, 
you are talking to to the Butterfly Shell (bshell) command 
interpreter. The commands that the bshell will execute are 
documented in the Chrysalis Programmers Manual. Only the bare 
minimum are given below. 

To run your program, type the line: 

us prog 

where prog is the name of your program25. Your program ·will now 
be in control. If it executes correctly, you are done and you may 
logout. 

If your program doesn't execute eorrectly, it will hang, print forever, 
or print some error message. You have a couple of options at this 
point. If you do not care to learn more about the detailed workings 
of the Butterfly, you must use printf's (the standard C programmer's 
fallback). Otherwise, you can learn to read the information that 
appears in the error messages, and you can learn about the 
debugging tools. 

The surest and simplest way to regain control of the machine is to 
type ctl-c. After that, you can type G to restart Chrysalis. There 
are less catastrophic ways to stop the machine26 which will save you 
time in the compile/ edit/ debug cycle (restarting Chrysalis is not a 
quick operation). Typing ctl-g k will terminate your program and 
return you to bshell. At this point you can return to the front end 
by typing ctl-g h. After editing and recompiling your program you 
can return to the Butterfly by typing ctl-g %, where % is any 
character other than ctl-g; to send ctl-g to the front end, type 

25The u.s utility provides a simple way for starting Uniform System programs which is 
adequate for many situations. See Section 5 for a discussion of other ways to start a 
Uniform System program. 

26see the Butterfly Parallel Processor Tutorial for details. 
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ctl-g ctl-g. To run your program again, you should first remove the 
old version by typing 

rm prog 

to the bshell. Now you can run the new version of your program by 
going back to STEP 14. 

You should now be able to go through the compile/edit/debug cycle. 



tJ.INE 
BF' 
VER 
CHRYS 
u 
IOIR 
I FLAGS 
x 
h 

name 
Butterfly root directory 
release 
$(BF)/chrys/$(VER) 

= $(CHRYS)/us 
$(CHRYS)/include 
-I$(IDIR) 
$(CHRYS)/chrys.68 
$(CHRYS)/include 

• $(BF')/bin/bcc 
-0 -DBF'LY 
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CC68 
CC68FLAGS 
LNK68LIBS 
CF' LAGS 
LF'LAGS 
pref ix 
sys 

• $(CHRYS)/lib/libcs.a $(CHRYS)/lib/libtools.a 
• -c -Im -g 
• -Im -g 
• $(CHRYS)/lib/boss.o68 
• $x ${pref ix) ${LNK68LIBS) 

hdrs • $h/public.h $h/stdio.h $h/us.h 

al I: $(MINE).68 ${MINE) 

#Object file dependencies 

$(MINE).68: 
$(MINE).out: 

$(sys) $(MINE).o68 
$u/us.o $(MINE).o 

I Source file dependencies· 

$(MINE).o68: $(hdrs) 

. SUFFIXES: 

.SUFFIXES: .out .o 

.SUFFIXES: .68 .068 .a68 .s68 .c68 .c 

I Source file suffixes: 
I .c68 - C source code file 
# .068 - assembler source code file 

#Intermediate file suffixes: 
# .068 - relocatable output of assembler {butterfly) 
# .o - relocatable output of assembler (vox) 
I Executable file suffixes: 
I .68 - executable 68000 file in a.out format (stable version) 

.c68.o68: 

.c.068: 

.068.68: 

.c.o: 

.o.out: 

rm -f $•.168; $(CC68) $(IF'LAGS} $(CC68F'LAGS) -c $•.c68 
rm -f $•.168; $(CC68) $(1F'LAGS} $(CC68FLAGS) -c $•.c 
$(CC68} -o $0 $•.068 $(LNK68LIBS): splitsyms $0 
rm -f $•.o: cc -I$(u) $(CFLAGS} -0 $•.c 
cc -o $• $•.o $u/us.o $(LF'LAGS): touch $•.out 

Figure 11: "Makefile" template for Uniform System programs. 
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II. Appendix 

Uniform System Library Routines 

This appendix documents each of the operations supported by the Uniform 

System Library. The operations are ordered alphabetically. The page references refer 

to the narrative descriptions for the various operations in Section 3. 

o AbortGen 

AbortGen(GenHandle, code) 
UsGenOesc • GenHandle; 
int code; 

page 23 

Abort the active task generator specified by GenHandle by preventing the 
generation of new tasks. Any tasks in progress will run to completion. The 
value of code is returned as the result code for the generator. If AbortGen 
is called more than once for a given generator, the smallest code is 
returned as the generator result code. 

GenHa,ndle must specify an abortable generator. 

o ActivateGen 

UsGenDesc • 
ActivateGen(lnit, Worker, Final, Arg, Range1. Range2, Type 

Gen, Asyne, MaxProcsToUse Abortable, ResultP) 
int (• !nit)(), (•Worker)(), (• final)(); 
int Arg, Ronge1, Ronge2, Type; 
int (• Gen)(); 
int Asyne, MaxProcsToUse, Abortable, • ResultP; 

page 35 

ActivateGen is the "universal" generator activator procedure. It is called by 
all of the GenOn ... generator activator procedures. Activa,teGen may be used 
directly by application programs to construct new generators. 

As with the generators described elsewhere in this appendix, lnit, Worker, 
and Final are respectively, the per processor initialization routine, the task 
worker routine, and the per processor post processing routine; Arg is a 
pointer to a data structure, which is passed to the /nit, Worker, and Final 
routines. Type must be GENERATOR, and Range1 and Range2 are integers. 
Gen is a task generation routine described in more detail below. Async is a 
boolean that specifies if the generator is synchronous (true) or 
asynchronous false. Ma:tProcsToUse specifies the processor limit for the 
generator; 0 or -1 indicates no processor limitation; a positive values 
indicates the maximum number of processors to be used on the generator. 
A borta.ble is a boolean which indicates whether the generator is to be 
abortable. Finally, ResultP is a pointer used when Aborta.ble is true; it 
specifies a location where the generator "result code" should be stored if 
the generator is aborted (so that the generator activator routine can find 
it). 

The task generation routine is of the form: 



Gen(TD); 
UsGenDesc • TD; 
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where TD is a pointer to a task descriptor data structure in globally shared 
memory of the form (the type UsCenDesc is defined in usgen.h an #include 
file which must be used when ActivciteCen is used): 

struct 
I short started; 

short type; 
/• Oef ined types ore: •/ 

#define IDLETASK 1 
fdef ine GOAWAYTASK 2 
fdef ine GENERATOR 4 

short incornotion_number; 
short state; 
/• Defined states ore: •/ 

#define ACTIVE 1 
#define INACTIVE 2 

short us_lock; 
short lock; 
int {•init)(); 
int (•coll)(): 
int (•gen)(); 
int (•final)(); 
int arg; 
char •currentShore: 
int range; 
int ronge2; 
OH returnQ; 
int post_pending; 
short MaxProcsToUse; 
int end; 
int abortable; 
short retcode; 
/• Defined retcodes ore: •/ 

#define genEXHAUSTED -1 
short endlock; 
union llong Long; short Short;J index; 
union Junsigned long Long; unsigned short Short;J index2; 
short locka[nlocks]; 
short index1o[nlocks]; 
short index2a[nlocks]; 

The Worker, /nit, Final, Gen, Arg, Ranget. Range2, Type, MazProcsToUse, and 
Abortable parameters of ActivateGen are used to initialize the call, init, 
final, gen, arg, range, range2, type, MazProcsToUse, and abortable fields of 
the task descriptor data structure. The lock and the locka array fields are 
initialized to 0 and are available for use as locks by the Gen routine; and, 
the index and incte:c2 fields, and the incte:ct a and incte:c2a array fields of the 
task descriptor data structure are initialized to 0 and are available for use 
by the Gen routine for bookkeeping associated with generating the tasks. 
The remaining fields (e.g., started, state, shareCount, returnQ, etc.) are used 
by ActivateGen for internal bookkeeping. 

After ActivateGen initializes the task descriptor data structure, i_t makes the 
descriptor accessible to other processors. If Async is true,, ActivateGen 
then returns control to its caller along with a pointer to the task 
descriptor data structure; otherwise, the processor on :which Activa.teGen is 
invoked calls the Gen task generation procedure. That processor, and 
others as they become free, use the task generator descriptor (TD) and the 
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Gen task generation procedure to generate and execute calls on the Worker 
procedure. 

o Allocate 

char • Al locate(size) 
int size; 

page 17 

Allocate· a block of storage of size bytes in globally shared memory. The 
block is allocated from the memory with the most free space. 

o AllocateC 

char • Al locateC(size, cJass) 
int size, class; 

page 33 

Allocate a block of storage of size bytes in globally shared memory. The 
block is allocated from the memory in the class specified with the most free 
space. See also UsSetClass. 

o AllocateLocal 

char •Al locatelocol(size) 
int size; 

page 17 

Allocate from the memory of the local processor a block of globally shared 
storage of size bytes. 

o AllocateOnPhysProc 

char • Al locateOnPhysProc(physproc, size) 
int physproe, size; 

page 17 

Allocate from the memory of the processor whose hardware processor 
number is physproc a block of globally shared storage of size bytes. 

o AllocateOnUsProc 

char • Al locateOnUsProe(proc, size) 
int proc, size; 

page 17 

Allocate from the memory of the processor whose Uniform System processor 
number is proc a block of globally shared storage of size bytes. 

o AllocateOnUsProcC 

char• AllocoteOnUsProcC(proe, size, class) 
int proc, size, class: 

page 33 

Similar to AllocateOnUsProc, differing in that the block of memory will be 
allocated only if the processor is in the specified class; otherwise, it fails. 
See also UsSetClass. 

o AllocScatterMatrix 

char•• AllocScatterMotrix(nrows, ncolumns, element_size) 
int nrows, ncolumns, element_size: 

page 18 
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Allocate a matrix that is scatted by row over the memories of the machine. 
A vector of pointers nrows long is allocated, and nrows separate vectors, 
each containing ncols items of size element_size bytes. The vectors are 
allocated in separate memories. The vector of pointers, a pointer to which 
is returned to the caller, is filled in with pointers to the scattered row 
vectors. Elements of an array A alfocated in this ·way can be referenced 
using standard C array notation: 

A[ i )[ j] 

o AllocScatterMatrixC 

char • • Al locScotterMatrixC(nrows, ncolumns, 
element_size, class} 

int nrows, ncolumns, element_size; 

page 33 

Similar to AllocScatterMatriz, differing in that only memories of the machine 
that are in the specified class are used to hold the scattered rows of the 
matrix and the vector of row pointers. See also ALLocScatterMatriz and 
U sS etCla,ss. 

o AsyncGenOnA 

UsGenDesc • 
AsyncGenOnA(Worker, Range1, Range2) 
int (• Worker)(); 
int Range1, Range2~ 

Asynchronous version of GenOnA. AsyncGenOnA is equivalent to 

AsyncGenOnAFu11(0, Worker, 0, 0, Ronge1, Range2, 0, false) 

o AsyncGenOnAAbortable 

UsGenDesc • 
AsyncGenOnAAbortable(Worker, Ronge1, Ronge2) 
int (• Worker)(); 
int Ronge1, Ronge2; 

page 27 

page 27 

Asynchronous version of GenOnAA bortable. A.syncGenOnAA bortable is 
equivalent to 

AsyncGenOnAFu11(0, Worker, 0, 0, Range1, Range2, 0, true) 

o AsyncGenOnAFull 

UsGenOesc • 
AsyncGenOnAFull(lnit, Worker, Final, Arg, Ronge1, Range2, 

Limited, Abortable) 
int (•lnit)(), (•Worker)(), (• Final)(); 
int Arg, Range1, Ronge2, Limited, Abortable; 

po9e 27 

Asynchronous version of GenOnAFull. AsyncGenOnAFull returns to the caller 
as soon as the task generator is activated, enabling the caller to work on 
other things while the tasks are executed. AsyncGenOnAFull returns a 
generator handle that can be used with 'WorkOn or 'WaitForTasksToFinish. 
See the description of GenOnAFull for an explanation of the parameters. 

o AsyncGenOnALimited 
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UsGenDesc • 
AsyncGenOnALimited(Worker, Ronge1, Ronge2, MoxProcsToUse) 
int (•Worker)(); 
int Ronge1, Range2, MaxProcsToUse; 

page 27 

Asynchronous version of GenOnALim.ited. AsyncGenOnALim.ited is equivalent to 

AsyncGenOnAFull(0, Worker, 0, 0, Ronge1, Ronge2, MaxProcsToUse, false) 

o AsyncGenOnHA 

UsGenDesc • 
AsyncGenOnHA(Worker, Ronge1, Ronge2) 
int (• Worker)(): 
int Ronge1, Range2: 

page 27 

Asynchronous version of GenOnHA. AsyncGenOnHA is equivalent to 

AsyncGenOnHAFul 1(0, Worker, 0, 0, Ronge1, Ronge2, 0, false) 

o AsyncGenOnHAAbortable 

UsGenDesc • 
AsyncGenOnHAAbortoble(Worker, Range1, Ronge2) 
int (• Worker){): 
int Range1, Ronge2; 

page 27 

Asynchronous version of GenOnHAAbortable. AsyncGenOnHAAbortable is 
equivalent to 

AsyncGen0nHAFu11(0, Worker, 0, 0, Ronge1, Ronge2, 0, true) 

o AsyncGenOnHAFull 

UsGenDesc • 
AsyncGenOnHAFull(lnit, Worker, Final, Arg, Range1, Ronge2, 

Limited, Abortoble) 
int (• lnit)(), (•Worker)(), (• Final)(); 
int Arg, Ronge1, Ronge2, Limited, Abortable; 

page 27 

Asynchronous version of GenOnHAFull. AsyncCenOnHAFull returns to the 
caller as soon as the task generator is activated, enabling the caller to 
work on other things while the tasks are executed. It returns a generator 
handle that can be used with WorkOn or WaitForTasksToFinish. See the 
description of CenOnHAFull for an explanation of the parameters. 

o UsGenDesc • AsyncGenOnHALimited 

AsyncGenOnHALimited(Worker, Range1, Ronge2, MaxProcsToUse) 
int (• Worker)(); 
int Range1, Range2, MaxProcsToUse: 

poge 27 

Asynchronous version of GenOnHALim.ited. AsyncGenOnHALimited is equivalent 
to 

AsyncGenOnHAFul 1(0, Worker, 0, 0, Range1, Range2, MaxProcsToUse. false) 

o AsyncGenOnl 
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AsyncGenOnl(Worker. Range) 
int (• Worker)(); 
int Range; 
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Asynchronous version of GenOnl. AsyncGenOnl is equivalent to 

AsyncGenOnIFul 1(0. Worker. 0. 0. Range, 0. false) 

o AsyncGenOnlAbortable 

UsGenOesc • 
AsyncGenOnlAbortable(Worker. Range) 
int (• Worker}(): 
int Range; 

page 27 

page 27 

Asynchronous version of GenOnlA bortable. AsyncGenOnlA bortable is 
equivalent to 

AsyncGen0nIFu11(0. Worker. 0. 0. Range. 0. true) 

o AsyncGenOnIFull 

UsGenDesc • 
AsyncGenOnIFull(lnit. Worker. Final. Arg. Range. 

Limited. Abortable} 
int (• Init}(). (• Worker)(). (• Final)(); 
int Arg. Range. Limited. Abortable; 

page 27 

Asynchronous version of GenOnJFull. AsyncGenOnlFull returns to the caller 
as soon as the task generator is activated, enabling the caller to work on 
other things while the tasks are executed. It returns a generator handle 
that can be used with WorkOn or WaitForTasksToFinish. See the description 
of GenOnJFull for an explanation of the parameters. 

o AsyncGenOnILimited 

UsGenDesc • 
AsyncGenOnILimited(Worker, Range. MaxProcsToUse) 
int (• Worker}(): 
int Range, MaxProcsToUse; 

page 27 

Asynchronous version of GenOnJLimited. AsyncGenOnJLimited is equivalent to 

AsyncGen0nIFull(0, Worker, 0. 0. Range. MaxProcsToUse. false) 

o Atomic_add_long 

Atomic_add_long(loc. val) 
int • toe. val: 

page 12 

Atomically add val to the location pointed to by Loe. Atomic_add_Long is 
similar to the Chrysalis 16 bit Atomic_add operation; it differs in that it 
operates on 32 bit quantities and does not support the "fetch" part of the 
"fetch and add" functionality provided by Atomic_add. 

It is also important to note that in its current implementation 
Atomic_add_long is atomic only with respect to other Atomic_add_long calls. 
In particular, ii is possible for the execution of a read operation to be 
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interleaved with an Atomic_add_long operation in a way that returns an 
inconsistent result to the read. This can occur if the high order 16 bits 
returned by the read are obtained after the low order 16 bits are 
incremented by the Atomic_a.dd_long, but before the carry (if any) is 
propagated to the higher order bits. 

o BEGIN_SHARED_DECL 

BEGIN_SHAREO_OECL page 30 

normal C declarations; 

ENO_SHARED_DECL; 

BEGIN_SHARED_DECL is a macro. It is used with END_SHARED_DECL to 
delimit' the declaration of variables that e.re to be globally she.red among all 
of the processors. Variables declared in this way e.re referenced using the 
SHARED prefix. Space for variables declared in this way must be allocated 
via Ma.keSha.redVa.riables after Jnitia.lizeUs is called and before they are 
referenced. 

Only one BEGIN-.SHARED_DECL/END_SHARED_DECL declaration can appear in 
a Uniform System program. 

All of the variables declared via BEGIN_SHARED_DECL/END_SHARED_DECL 
are allocated on the same physical memory. In some situations this may 
lead to memory contention. 

o ConfigureUs 

Conf igureUs(Spec, n) 
int • Spec, n; 

page 33 

Configur:eUs can be used prior to calling JnitializeUs to specify values for 
configuration parameters that differ from the values normally used by 
JnitializeUs. Spec is an array (of int's) which specifies the configuration; it 
contains n parameter specification blo.cks. Each parameter specification 
block contains an integer configuration_code that serves to identify the 
parameter being set followed by one (or more) integer(s) which specify the 
value for the parameter. 

The following configuration_ co de 's are currently defined: 

Code 

conf igProcs 

conf igMaxSars 

o DistinctMemoriesAvailable 

OistinctMemoriesAvai table() 

Parameter 

integer • number of processors to include 
in Uniform System configuration. 

integer • number of segment attribute 
registers {SARs) to use to define 
process address spaces. 

page 1e 

Return an integer which is the number of memories available for use ·by the 
application program. This number is usually the same as 
TotaLProcsAvaiLable, but there are cases where it will be a smaller number 
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because memory cannot be obtained on a particular processor node. 

o END_SHARED_DECL page 30 

END_SHARED_DECL is a macro used with BEGJN_SHARED_DECL to delimit the 
declaration of variables that are to· be globally shared. 

o FreeAll 

FreeA 11 () 

Deallocate all globally allocated storage. 

o GenOnA 

GenOnA(Worker, Rangel, Range2) 
int (•Worker)(); 
int Rangel, Range2; 

page 18 

page 25 

Generate tasks that cause Worker{O, indext, index2) to be executed in 
parallel for all combinations of indext and index2 for 0 <= indcxt < Range 1 
and 0 <= index2 < Range2. The processor that invokes GenOnA, and 
possibly other processors, will be used to execute the tasks generated. 
When GenOnA returns, all of the tasks generated will have been completed. 

o GenOnAAbortable 

GenOnAAbortoble{Worker, Rangel, Range2) 
int (• Worker)(); 
int Rangel, Range2: 

page 25 

Abortable version of GenOnA. The tasks generated are calls of the form 
Worker{O, indext, index2, GenHandle), where GenHandle is an identifier for 
the task generator that can be used with A bortGen to abort it. 
CenOnAA bortable is equivalent to 

GenOnAFul 1(0, Worker, 0, 0, Rangel, Range2, 0, true) 

Note that GenOnAAbortable returns a value which indicate whether AbortGen 
was used to abort the generator. 

o Gen OnAFull 

GenOnAFull(Init, Worker, Final, Arg, Rangel, Ronge2) 
Limited, Abortable) 

int (• lnit)(), (•Worker)(), (• Final)(): 
int Arg, Rangel, Range2, Limited, Abortable; 

page 24 

Generate tasks that cause Worker( Arg, indext, index2) (if Abortable is false) 
or Worker( Arg, indext, index2, GenHandle) (if Abortable is true) to be 
executed in parallel for all combinations of indext and index2 for 
0 <= indext < Ranget and 0 <= index2 < Range2. The processor that 
invokes GenOnAFuLl, and possibly other processors, will be used to execute 
the tasks generated. 

The routine Jnit( Arg) ·fs called on each processor used to execute the tasks 
generated before the Worker routine is called for the first time on the 
processor. The routine Final(Arg} is called on each processor used to 
execute the tasks generated after the Worker routine is called for the last 
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time on the processor. The Limited parameter is used to control the number 
of processors used by the generator; if Limited is 0 or -1 there is no 
limitation on the number of processors; a positive value limits the 
processors used to that number or fewer. 

When GenOnAFull returns, either: ail of the tasks generated will have been 
completed in which case GenOnAFull returns the value genEXHAUSTED; or 
the A bortable parameter was true, the generator was aborted, and some of 
the tasks may not have been performed, in which case GenOnAFull returns 
the code passed to A bortGen when it was aborted .. 

o GenOnALimited 

GenOnALimited{Worker, Ronge1, Ronge2, MoxProcsToUse) 
int (•Worker)(); 
int Ronge1, Ronge2, MaxProcsToUse; 

"Limited" version of GenOn.A. GenOnALimited is equivalent to 

page 25 

GenOnAFul 1(0, Worker, 0, 0, Range1, Range2, MaxProcsToUse, false) 

o GenOnHA 

GenOnHA{Worker, Range1, Range2) 
int (•Worker)(): 
int Ronge1, Ronge2: 

page 25 

Generate tasks that cause Worker(Arg, indexf, index2) to be executed in 
parallel for combinations of index 1 and index2 that span the "half" array 
beneath the diagonal of a Range 1 x Range2 array as follows: 

index2 - 0, 
i ndex2 • 1, 

index1 • 1, .•. ,{Range1-1) 
index1 • 2, ...• {Ronge1-1) 

index2 • R-2. index1 c (R-1), ... ,(Ronge1-1) 

where R • min(Ronge1, Range2) 

The processor that invokes GenOnHA. and possibly other processors, will be 
used to execute the tasks generated. When GenOnHA returns, all of the 
tasks generated will have been completed. 

o GenOnHAAbortable 

GenOnHAAbortable(Worker, Range1, Range2) 
int (•Worker)(); 
int Range1, Ronge2; 

page 25 

Abortable version of GenOnH A. The tasks generated are calls of the form 
Jf'orker(O, index1, index2, GenHandle), where GenHandle is an identifier for 
the task generator that can be used with AbortGen to abort it. 
GenOnHAAbortable is equivalent to 

Gen0nAFull(0, Worker, 0, 0, Range1, Range2. 0, true) 

Note that GenOnHAAbortable returns a value which indicate whether AbortGen 
was used to abort the generator. 

o Gen OnHAFull 



68 

GenOnHAFul l(Init. Worker. Final. Arg. Range1. Range2. 
Limited, Abortoble) 

int (• lnit)(). (•Worker)(). (•Final)(); 
int Arg. Ronge1. Ronge2, Limited. Abortable; 

page 25 

Generate tasks that cause Worker( A"rg, indext, index2) (if A bortable is false) 
or Worker(Arg, indext, index2, GenHandle) (if Abortable is true) to be 
executed in parallel for combinations of indext and index2 that span the 
"half" array beneath the diagonal of a Range 1 x Range2 array as follows: 

index2•0. 
index2•1. 

index1•1 •...• (Range1-1) 
index1•2 •...• (Ronge1-1) 

index2-R-2. index1•(R-1) •...• (Ronge1-1) 

where R • min(Ronge1. Range2) 

The processor that invokes GenOnHAFull, and possibly other processors, will 
be used to execute the tasks generated. 

The routine /nit( Arg) is called on each processor used to execute the tasks 
generated before the Worker routine is called for the first time on the 
processor. The routine Final( Arg} is called on each processor used to 
execute the tasks generated after the Worker routine is called for the last 
time on the processor. The Limited parameter is used to control the number 
of processors used by the generator; if Limited is 0 or -1 no limitation is 
placed on the number of processors; a positive value limits the processors 
used to that number or fewer. 

When GenOnHAFull returns, either: all of the tasks generated will have· been 
completed in which case GenOnHAFull returns the value genEXHAUSTED; or 
the Abortable parameter was true, the generator was aborted, and some of 
the tasks may not have been performed, in which case GenOnHAFull returns 
the code passed to A bortGen when it was aborted .. 

o GenOnHALimited 

GenOnHALimited(Worker. Ronge1, Range2~ MaxProcsToUse) 
int (•Worker)(); 
int Rangel, Range2, MaxProcsToUse; 

"Limited" version of GenOnHA. GenOnHALimited is equivalent to 

Gen0nAFull(0. Worker, 0, 0. Rangel. Range2. MaxProcsToUse. true) 

o GenOnl 

GenOnl(Worker. Range} 
int (• Worker)(); 
int Range; 

page 25 

page 24 

Generate tasks that cause Worker(O, index) to be executed in parallel for all 
values. of index in the range 0 <= index < Range. The processor that 
invokes GenOnl, and possibly other processors, will be used to execute the 
tasks generated. When GenOn/ returns, all of the tasks generated will have · 
been completed. 

o GenOnIAbortable 
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int (•Worker)(); 
int Range; 
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page 24 

Abortable version of GenOnl. The tasks generated are calls of the form 
Worker(O, index, GenHandle), where· GenHandle is an identifier for the task 
generator that can be used with A bortGen to abort it. GenOnlA bortable is 
equivalent to 

GenOnIFul 1(0, Worker, e. 0, Range, 0, true) 

Note that GenOn/Abortable returns a value which indic~te whether AbortGen 
was used to abort the generator. 

o GenOnIFull 

GenOnIFurl(Init, Worker, Final, Arg, Range, 
Limited, Abortable) 

int (• lnit)(), (•Worker)(), (• Final)(); 
int Arg, Range, Limited, Abortoble; 

page 22 

Generate tasks that cause Worker(O, index) (if Abortable is false) or 
Worker(Arg, index, GenHandle) (if Abortable is true) to be executed in 
parallel for all values of index in the range 0 <= index < Range. The 
processor that invokes GenOn/Full, and possibly other processors, will be 
used to execute the tasks generated. 

The routine lnit( Arg) is called on each processor used to execute the tasks 
generated before the Worker routine is called for the first time on the-. 
processor. The routine Final(Arg) is called on each processor used to 
execute the tasks generated after the 'Worker routine is called for the last 
time on the processor. The Limited parameter is used to control the number 
of processors used by the generator; if Limited is 0 or -1 there is no 
limitation on the number of processors; a positive value limits the 
processors used to that number or fewer. 

When GenOn/Full returns either: all of the tasks generated will have been 
completed in which case GenOn/Full returns the value genEXHAUSTED; or the 
A bortable parameter was true, the generator was aborted, and some of the 
tasks may not have been performed, in which case GenOn/Full returns the 
code passed to A bortGen when it was aborted. 

o GenOnILimited 

GenOnllimited(Worker, Range, MoxProcsToUse) 

"Limited" version of GenOn/. GenOn/Limited is equivalent to 

Gen0n1Full(0, Worker, e, e, Range, MaxProcsToUse, false) 

o GenTaskForEachProc 

GenTaskForEaehProe(Worker. Arg) 
int (•Worker)(); 
int Arg; 

page 24 

page 26 

Generate exactly one task of the form Worker( Arg) for every processor. 

o GenTaskForEachProcLimited 
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GenToskForEochProclimited(Worker, Arg, NProcs) 
int (•Worker)(); 
int Arg, NProcs; 

page 26 

Generate exactly one task of the form Worker( Arg) for each of NProcs 
processor. 

WARNING: If ProcslnUse() is less than NProcs: this call will hang. 

o GenTasksFromList 

GenTosksFromlist(Routine_List, Arg_List, n) 
int • (• RoutineList)(); 
int • Arg_List; 
int n; 

page 26 

Routine_List is a list of n routines. rt,. .. ,rn, and Arg_List is a list of n 
arguments, arg 1, ... , argn. GenTasksFromList generates n tasks, where the ith 
task is of the form ;i( argi}. 

o GetRtc 

GetRtc() page 34 

Return the time since the system was booted in units of 62.5 microseconds. 

o lnitializeUs 

In i t i a I i z eUs () page 10 ·. 

Initialize the Uniform System. This includes creating and starting a Uniform 
System process on every available processor. setting up the memory that is 
globally shared among all Uniform System processes, and initializing the 
Uniform System storage allocator. lnitializeUs must be called before using 
any other Uniform System routine, and it should be called only once. 

o InitializeUsForBenchMark 

lnitiolizeUsForBenehMork() page 10 

Initialize the Uniform System. Similar to lnitializeUs. differing in that the 
King Node will not be used by the program if the program is started on a 
non-King node (via the -on switch of the run command or the us utility). 
This is useful when benchmarking a program, where it is desirable that the 
measurements not be affected by the processing requirements of the 
terminal handler and window manager which run on the King Node. 

o LOCK 

LOCK( I ock. n) 
short • lock; 
int n; 

page 12 

Set the "lock" specified by lock. The short pointed to by lock is assumed to 
have been initialized. in the unset state to the value 0. LOCK implements a 
"busy wait" type of lock. The int n specifies the time to wait in tens of 
microseconds between attempts to set the lock. Using zero for n forces use 
of a def a ult which is about 1 millisecond. LOCK does not return until it has 
set the lock. {See UNLOCK.) 
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o MakeSharedVariables 

MakeSharedVariables; page 30 

This is a macro. It allocates space .in globally shared memory for variables 
declared as globally shared (via BEGIN_SHARED_DECL and 
END_SHARED_DECL) and makes the location of the variables known to other 
processors. MakeSharedVariables should be called after JnitializeUs, and 
only if BEGIN_SHARED_DECL and END_SHARED_DECL have been used. 

o MemoriesAvailable 

MemoriesAvailable() page 10 

Return an integer that is the amount of memory available to the application 
program. The value returned is in units of 64 KBytes. 

o PhysProcToUsProc 

PhysProcToUsProc(PhysProc) 
int PhysProc; 

page 11 

Return the Uniform System processor number corresponding to the physical 
processor number PhysProc. 

o ProcslnUse 

ProcslnUse() page 10. 

Return an integer which is the number of 'processors available to an 
application program. The value returned will not count any processors 
which have been removed by the TimeTest or TimeTestFull routines. 

o Share 

Share(N) 
int • N; 

page 28 

Pass the value pointed to by N to all processors used to execute tasks 
generated subsequently. N must point to a variable allocated in process 
private memory and declared to be a global or a static. In addition, the 
variable pointed to by N must be 4 bytes in size. Share causes the value 
pointed to by N (in the processor invoking Share at the time Share is 
invoked) to be copied into the location specified by N in each processor 
used to perform tasks generated by task generators activated subsequent to 
the call of Share. 

o ShareBlk 

ShareBlk(X, size) 
int • X; 
int size; 

page 28 

Pass the block of data of size bytes pointed to by X to all processors used 
to execute tasks generated subsequently. X must point to a variable 
allocated in process private memory and declared to be a global or a static. 
ShareBlk causes the block of data pointed to by X (in the processor 
invoking ShareBlk at the time ShareBlk is invoked) to be copied into the 
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location beginning at X in each processor used to perform tasks generated 
by task generators activated subsequent to the call of ShareBlk. 

o SHARED page 31 

SHARED is a macro. It is used as a prefix to access variables which have 
been declared as globally shared using 
BEGIN_SHARED_DECL/END_SHARED_DECL. For example, if N has been 
declared in this way, it may be referenced as SHARED N: 

SHARED N • SHARED N ~ 7: 

WARNING: before such a variable can be referenced, it must space for it 
must be allocated using MakeSharedVariables. 

o SharePtrAndBlk 

SharePtrAndBlk(P, size) 
int • • P: 
int size: 

page 28 

Pass the pointer pointed to by P and the block of data of size bytes to 
which it points to all processors used to execute tasks generated 
subsequently. P must point to a pointer variable allocated in process 
private memory and declared to be a global or a static. SharePtrAndBlk 
causes a copy of the pointer pointed to by P and the block of data to which 
it points (in the processor invoking SharePtrAndBlk at the time 
SharePtrAndBlk is invoked) to be made for each processor used to perform 
tasks generated by task generators activated subsequent to the call of · 
SharePtrAndBLk as follows: A block of storage is allocated in the memory of 
the processor and the block of data pointed to by the pointer pointed to by 
P is copied into the newly allocated storage block; a pointer to the newly 
allocated storage block is stored in the location pointed to by P. 

o ShareScatterMatrix 

ShareScatterMotrix(P, nrows) 
int • • • P; 
int nrows: 

P points to a global or static variable allocated by 

AllocScotterMatrix(nrows, ncols, element_size) 

poge 28 

ShareScatterMatrix makes a copy of the vector of row pointers allocated by 
ALLocScatterMatrix in the memory of each processor used to 'execute tasks 
generated subsequently. It then sets the location pointed to by P to point 
to that copy. ShareScatterMatri:r: is functionally equivalent to 
SharePtrAndBlk, but operates much faster, since it is careful to make its 
copies from other copies as well as from the original. 

o TimeTest 

TimeTest(Init, Execute, PrintResults) poge 31 
int (• !nit)(), (•Execute)(), (• PrintResults)(); 

Time execution of the routine Execute on various processor configurations 
as specified by the user from the keyboard. TimeTest runs the routines Jnit, 
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Execute, and PrintResutls in sequence on each of the processor 
configurations specified. It times only the Execute routine, and passes the 
execution time, the number of processors, and the effective number of 
processors to the specified PrintResults routine: 

PrintResults(time, procs, effprocs) 
int time, procs; 
float effprocs; 

The effective number of processors is a float equal to · 
(time l proc} / (time n procs). This is a good measure of the speedup the 
Execute routine achieves over one processor when n processors are used. If 
the first test run uses more than one ( =k) processors, then th.e effective 
number of processors is (time k proc} / (k • (time n procs)). 

The PrintResults routine is specified by the application program. The 
Uniform System Library contains a routine (see TimeTestPrint below) that 
can be used for this purpose, or the user can supply his own routine. 

TimeTest asks the user to specify the processor configurations to be used by 
specifying a start configuration, a step (delta), and an end configuration. 
The first run uses start processors, the next uses start + delta processors, 
and so forth, up to the final run which uses end processors. If start (or 
end} is zero, the test is run from (to) the end of the range of available 
processors. In particular, it is run for the limiting processor case whether 
or not it is in the normal progression specified by delta. If delta is 
specified to be zero, the number of processors used increases by powers of 
two (1, 2, 4, 8, etc). The rules for start and end still apply. 

o TimeTestFull 

TimeTestFul l(Init, Execute, PrintResults, start, delta, end) 
int (• Init)(), (•Execute)(), (• PrintResults)(); 
int start, delta, end; 

page 32 

TimeTestFull is similar to TimeTest (see above). It differs only in that it 
accepts the start, delta, and end parameters that specify the processor 
configurations to be timed, rather than asking for them from the keyboard. 
If the delta specified is negative, TimeTestFull asks the user to supply values 
for start, delta, and end at the start of the run. 

o TimeTestPrint 

TimeTestPrint(runtime, procs, effprocs) 
int runtime, procs; 
float effprocs; 

page 32 

Used with TimeTest or TimeTestFull to print the timing results for a 
particular processor configuration. It prints the execution time, the number 
of processors used, the effective number of processors utilized (= speedup 
achieved over 1 processor), and the efficiency with which processors were 
used for the given processor configuration. TimeTestPrint outputs this 
information in the format: 

[procs] time• runtime ticks• S sec; ep • effprocs; eff •.E 

where E • ef fprocs / procs. 

(See TimeTest and TimeTestFull.) 
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o TotalProcsAvailable 

TotalProcsAvailable() page 10 

Return the total number of processors available to the application program. 
The value returned includes any processors that may have been removed by 
TimeTest or TimeTestFull. 

o UNLOCK 

UNLOCK(lock) page 12 
short • lock; 

Clear the lock specified by lock. (See LOCK.) 

o UsProcToPhysProc 

UsProcToPhysProc(UsProc) 
int UsProc; 

page 11 

Return the physical processor number corresponding to the Uniform System 
processor number UsProc. 

o UsSetClass 

UsSetClass(proe, class) 
int proc, class; 

page 33 

Add the memory of the specified Processor Node .to the specified class.·· 
Initially all memories are in class 0. See also Alloca.teC, AllocSca.tterMa.trixC, 
A LlocateOnU sProc C. 

o UsWait 

UsWait(n) 
int n; 

page 13 

Wait for 10 * n microseconds. Using zero for n forces use of a default 
which is about 1 millisecond. Us'Wa.it is a "busy wait". · 

o WaitForTasksToFinish 

WaitForTasksToFinish(GenHandle) 
UsGenOesc • GenHandle; 

page 27 

Wait for the task generator specified by GenHandle to complete. GenHandle 
must specify an asynchronous generator activated by the calling process. 
'WaitForTasksToFinish returns a value (the result code for the generator), 
which indicates whether the generator ran to completion or was aborted by 
AbortGen. 

o WorkOn 

WorkOn(GenHandle) 
UsGenOese • GenHandle; 

page 26 

Work on tasks generated by the task generator specified by GenHa.ndle. 
GenHa.ndle must specify an asynchronous generator activated by the calling 
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process. WorkOn returns a value (the result code for the generator), which 
indicates whether the generator ran to completion or was aborted by 
AbortGen. 
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