

68 DATA BASE MANAGEMENT

In order to avoid deadlock, the DBMS must examine the data requirements
of the process in question and determine if the request is safe. An unsafe
process is placed in a wait queue. When an active process releases its set of
data, all processes on the wait queue are reexamined for safety. Thus, in
addition to the overhead costs associated with maintaining state graphs,
avoidance can cause a process to become permanently blocked. This draw
back could be overcome by attaching a counter to each process that would
indicate the number of times the process has been examined for safety. When
the counter reaches some threshold, no new process would be allowed to lock
data that the blocked process requires. Eventually, the active process causing
the delay would terminate, and the blocked process could continue.

In a low-level locking scheme, the a priori specification of required data is
impossible because access may be required to a set of data whose values
indicate a subsequent set of needed data. The strategy of avoidance, then,
could not be utilized by such low-level locking schemes. A high-level predi
cate locking scheme, however, could use the strategy of avoiding deadlocks
because the predicates provide a mechanism for stating the data requirements
a priori. Also, the state graphs and associated algorithms would no longer be
needed in a predicate locking scheme. Instead, the DBMS would examine the
predicates for possible conflicts and only grant the safe requests. This is
another argument for using predicate locks.

Preventing Deadlock. Deadlock can occur only if all five conditions
exist-concurrency, locking, additional locking, no preemption, and circular
wait. If one or more of those conditions could be obviated, deadlock could be
prevented. The prevention of deadlock can be accomplished through one of
four basic mechanisms: presequencing, preordering, preemption, or pre
claiming.

Reviewing the conditions for deadlock reveals that the locking condition
cannot be overcome without sacrificing data base consistency. The condition
of concurrency could be relieved through the mechanism of presequencing,
which entails the ordering of processes to execute serially. Although this
would solve all problems of concurrency, it would lead to an intolerable level
of inefficiency.

Preordering can prevent the condition of circular wait. This technique
requires that each data granule be ordered in some manner and that requests
for data granules follow the given ordering. Thus, a circular chain of data
requests could not occur, and deadlock would be prevented. Unfortunately,
the characteristics of data make such a strategy difficult to implement. The
major pitfalls of preordering are the need for a means to present the ordering
of data granules to all users, the lack of data independence, and the impracti
cal restriction that the user access data in the specified order.

Another condition for deadlock specifies that no preemption be allowed.
The obvious solution to this condition would be to allow preemption. When
the possibility of a deadlock has been detected, the preemption of needed data
resources could prevent the deadlock from occurring; however, the preemp-

CONCURRENCY IN DBMSs 69

tion of data from a process that has already begun to operate upon that data
would require backing out its changes.

The final condition for deadlock, that of allowing additional locking, can
be relieved by requiring that each process start out by requesting all of its data
at one time (the preclaim strategy). This is difficult, however, since the first
data accessed may determine what data will be needed later.

Another implementation involves breaking down processes into a series of
subprocesses, each with its own data requirements. At the beginning of each
subprocess, the required data is locked; at the end of each subprocess, all data
is released. This technique requires that the processes be broken down in such
a manner that data base consistency and process integrity are preserved.

In all variations of the preclaim strategy, one restriction must be noted.
Never is a sequence of events allowed whereby a process locks data, modifies
the data, and then requests that additional data sets be locked.

The preclaim strategy is similar to the strategy for avoiding deadlock. The
distinction lies in that to avoid deadlock, a process is not allowed to proceed
until a safe state can be guaranteed; the preclaim strategy requires that a
process set all necessary locks before being allowed to proceed. The problem
of a process becoming permanently blocked also exists under the preclaim
strategy and can be solved through the same countermechanism used to avoid
deadlock (attaching counters to each process).

For high-level locks, the preclaim strategy is identical to the strategy
described for avoiding deadlock. Of all strategies for preventing deadlock,
preclaim is the only one that is feasible in a data base environment.

CONCLUSION

Concurrent processes must be controlled in order to maintain process in
tegrity and data base integrity and consistency. Any mechanism for control
ling concurrent processes should have certain features:

• The mechanism should be able to maintain the consistency of the data
base, despite the actions of a process.

• The mechanism should not depend upon external means (e.g., operator
interference or prescheduling of processes).

• The mechanism should not allow a process to become permanently
blocked in order to prevent a possible deadlock or as a result of a
deadlock.

• The mechanism should allow locking at a level of granularity that is
sufficiently fine to provide reasonable efficiency.

In addition, the mechanism should separate the user from the problems of
concurrency. The user should not be responsible for data integrity threatened
by the interaction of concurrent processes; nor should the user be concerned
with the other processes that are executing simultaneously with his.

One of the best mechanisms for specifying and setting locks is predicate
locking. Such a high-level locking scheme sets logical locks that eliminate the
problem of phantom records.

70 DATA BASE MANAGEMENT

Unfortunately, any locking mechanism is faced with the possibility of dead
locks. Of the several approaches to solving the deadlock issue, only detection
and backout, avoidance,· and preclaiming are feasible. It is not yet clear which
of these is optimal.

References

1. Ullman, J. Principles of Dotabase Systems, Potomac MO: Computer Science Press, 1980.
2. Gray, J.N., Putzolu, F., and Traiger, I. "Granularity of Locks and Degrees of Consistency in a Shared Da1a Base." Modeling

in Data Base Management Systems, Amstenlam: North-Holland, 1976,365-394.

Blbliograpby

Date, C.I. An Introduction to Database Systems, 2nded. Reading MA: Addison-Wesley, 1977.

Eswaren, K. P., et aI. "On the Notions of Consistency and Predicate Locks." Communications of the ACM, Vol. 19, No. I
(November 1976), 624-633.

Gray, I.N. "Notes on Data Base Operating Systems," Operating Systems-An Advanced Course, Edited by P. Bsyer, et aI. New
Yod<: Springer-Verlag, 1978, 393-481.

Potier, D., and Leblanc, Ph. "Analysis of Locking Policies in Database Management Systems," Communications of the ACM,
Vol. 23, No. 10 (October 1980), 584-593.

Rico, D.R., and Stonebraker, M.R. "Effects of Locking Granularity in a Data Bsse Management System," ACM Transactions
Data Base Systems, Vol. 2, No.3 (September 1977), 233-246.

Ries, D.R. and Stonebraker, M.R. "Locking Granularity Revisited," ACM Transactions Data Base Systems, Vol. 4, No.2 (June
1979), 210-227.

Scbiso, K., and O.su, T.M. A Survey of Concurrency Control Mechanisms for Centro/ked aod Distributed Data Base •. Ohio
State University Computer and Informstion Science Resesn:h Center, OSU-CISRC-TR-SI-I, February 1981.

Stonebraker, M. and Wong, E. "Access Control in a Relational Data Base Management System by QueI)' Modification."
Proceeding. 1977 ACM Annual Conference, 180-186.

Yannakskis, M., Papndimitriou, C.H., and Kung, H.T. "Locking Policies: Safety and Freedom from Deadlock." ffiEE.
Proceeding. 20th Annual Symposium Foundations of Computer Science, 1979,286-297.

® Administration of Data
Bases in a Distributed
Environment by Bernard K. Plagman

INTRODUCTION

Data bases are generally viewed as centralized, with all data residing
physically in one location under the control of the data base management
system (DBMS). Control over a centralized environment is typically an ad
ministrative function, which includes responsibility over the entire spectrum
of the data resource. This type of control helps ensure the integrity of data that
is shared by a number of applications and users.

In the distributed data base environment, coordination and control are
required among users and programs in physically dispersed locations. Thus, it
may not be desirable, or even possible, for a centralized control group to
perform the data/data base administration (DAIDBA) functions that generally
must be performed in more than one location.

Distribution of data tends to weaken DBMS data integrity mechanisms.
The identical data base concept that when implemented in a centralized envi
ronment brings increased control tends to reduce control in a distributed
environment. Furthermore, distribution of data tends to be most applicable in
organizations with autonomous, decentralized management. This type of
management structure is not conducive to the implementation of a centralized
data administration activity.

The goal is to find an effective balance between the decentralized process
ing and management of data, on the one hand, and the need for centralized
coordination and control of the data resource on the other. This chapter
discusses data/data base administration in a distributed data base environ
ment. The terms used are defined in the following paragraphs.

Data Base Administration. Data base administration is primarily a tech
nical function. Its roots are in the systems programming and applications
development fields, and its evolving role combines aspects of both. Its pur
pose is highly specialized and wedded to the maintenance of the DBMS
software, the data base files, and the applications that maintain and access the
data base files. The DBA is assigned complete responsibility for and authority
over the data base files, their design and integrity, and the specification and

72 DATA BASE MANAGEMENT

management of related ancillary utility functions through the entire applica
tion life cycle. In this way, all technical and implementation problems can be
addressed. Because the DBA role is tied to the DBMS and its facility, it is site
oriented.

Data Administration. Although data administration includes all data base
administration functions, there are some differences. Whereas the DBA role is
traditionally limited to those applications and mes using the DBMS, data
administration encompasses all data in an organization. The DA's job is
usually more conceptual, less technical, and exists at a higher level within the
organization than that of the DBA. In many organizations with a DA function,
the DBA group is subordinate to that function. The DA is more oriented to
users and their business needs than is the DBA, whose users are within the DP
area and whose concerns are more technical. Figure 8-1 shows a typical data
and data base administration organizational relationship.

V.P.
Data
Processing

--u I l~
I I I

Applications
Development Data Administration Operations

I
I I I

DataBase DataBase DataBase
Administration Administration Administration
(Standards) (Design) (Technical Support)

Figure 8-1. Relationship of Data Base Administration to Data Administration

Distributed Processing. Distributed processing, generally speaking, is
the placement of some or all of the following DP functions at physically
dispersed locations:

• Data entry
• Data manipulation
• Data storage
• Data retrieval
• Data display

These locations (nodes) are linked by a telecommunications network.

Distributed Data Base. CODASYL defines data base environment as one
that includes a data base, a DBMS, a data base definition (schema), and a user
schema. Placing data base management functions at one or more locations in a

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT 73

distributed processing environment produces a distributed data base environ
ment.

To be effective, a DBMS must control all data base activity. In fact, the
one characteristic that generally differentiates a data base environment from a
non-data-base environment is that, in the fonner, all data file activity is
handled and coordinated through a DBMS.

In a distributed data base environment (see Figure 8-2), whether the data
bases are partitioned or replicated, the DBMS functions must be perfonned as
if the data at the dispersed locations were logically one integrated unit. This
implies the ability to organize, control, and provide access to data base data
wherever it is located and to maintain its integrity regardless of how or by
whom it is updated. The mechanics of data location and integrity maintenance
are handled by the network data base management system (NDBMS).

Location 1

• NAP Network Access Process Location 3

Figure 8·2. Distributed Data Base Environment

Distributed Administration of Data. In a distributed data base environ
ment, the DA/DBA function controls, designs, and defines the data base from
an administrative viewpoint. The geographically dispersed (local) administra
tion functions are handled by local DA/DBAs whose activities should be
coordinated across the network (see Figure 8-3).

SYSTEMS DEVELOPMENT AND DATA BASE DESIGN
CONSIDERATIONS

Each distributed data base location is autonomous and under the control of
a local designer, who addresses local problems. Taken together, there is a
multiplicity of activity that, unless coordinated or controlled, leads to incom
patability of design methodology and design and thus to complications in the
interlocation communications process.

74 DATA BASE MANAGEMENT

Figure 8-3. Distributed Data/Data Base Administration Environment

Between any two nodes there is a single interface; however, as nodes are
added to the network, the interfaces proliferate (see Figure 84). Resolution of
access and update among nodes is handled by the NDBMS. The NDBMS
represents the functions, over and above those of the DBMS, that are neces
sary to support internodal use of data. The NDBMS must provide support for
each of the following possibilities for each data base me:

• A partitioned data base, with pieces stored at different nodes
• A replicated data base, with multiple copies stored at multiple nodes
• A combination of replicated and partitioned data bases

Although it may be technically feasible to provide an NDBMS to support
such distribution, the coordination function becomes increasingly complex.
Because of changing local needs, the modi operandi of nodes tend to drift
further and further apart. Should that evolution proceed unchecked, it could
negate the distributed data base environment and supplant it with a group of
totally autonomous data base environments. If distribution of function is to be
effective, this evolutionary drift must be controlled.

Alternative Strategies and Guidelines

To control this drifting and to provide a basis for communication among
nodes, a DAiDBA equivalent of the NDBMS should be created. This function
would provide the organizational interface mechanism between the local DAf
DBA groups. This interface function should address the areas indicated in the
following sections.

A Common or Standard Systems Development Life Cycle
(SDLC). This provides the mechanism for a common development interface
and identifies those points at which distributed data base considerations must
be addressed from a global viewpoint. In addition, an SDLe should provide a
common method of documentation that can promote better internodal commu
nication.

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT

Two Nodes
One Interface

M
~

Three Nodes-Three Interfaces

Four Nodes-Six Interfaces Five Nodes-Ten Interfaces

Figure 8-4. Interface Multiplication

75

Data Base Design Methodology. The coordinating DBA uses the data
base design methodology to distribute and coordinate the data base design
efforts at each location in much the same way as the DBA controls the
integration of data base design at a single location. This centralized function
has primary, or at least coordinative, responsibility for the design of interfaces
among nodes in the distributed environment and primary control over data
changes in all locations. In addition, this function addresses problems of
integrity and design or definitional changes that occur at one node and are also
needed at other nodes. The local DAIDBA handles any intralocation design
efforts.

In addition, a common design methodology for data bases in a distributed
environment can help ensure that distribution alternatives for data are consid
ered, based on a set of commonly understood and accepted design criteria.
This topic is discussed later in this chapter.

The Data Dictionary/Directory System (DO/OS). The OOIDS in a dis
tributed environment can be divided into central and local functions. The
central OOIDS would maintain definitional and locater information on all
distributed data. The local OOIDS would maintain the local metadata and
transmit through the central OOIDS those changes that should be propagated
through the network. The central OOIDS in a distributed environment may
contain many variants of metadata as a result of the local evolutionary pro
cess. It acts as the catalyst for data translation whenever data is transferred
from one location to another and incompatibility is recognized. Update con
trol and the total definition of the data bases are maintained through the DOl
OS.

76 DATA BASE MANAGEMENT

The Design of Distributed Data Bases

Only from a global vantage point can the following distributed data base
decisions be made:

• To distribute or maintain data bases centrally
• To replicate or partition data bases
• To distribute the DDIDS or maintain it centrally (or some combination

thereof)
• To determine who has what responsibility and authority

These distribution decisions must be made centrally to ensure maximum
global-level balance in perfonnance and integrity. Nonetheless, each decision
has an impact on each node. Thus, although processing of the distributed data
is perfonned locally and responsibility for this processing resides locally,
distribution decisions should be made centrally.

This dilemma is further complicated by the desire of local personnel to
design their own data bases. The issue is where the distribution decision
making should end and local data base design should begin. While managers
at local nodes may have been led to believe the distribution of data would lead
to greater autonomy in decision making, the centrally made distribution deci
sions may be more constraining than anticipated. The solution to this diffi
culty is the specification and use of a carefully procedurized data base design
methodology for distributed data bases.

As the technology of distributed data bases evolves, this decision-making
dilemma could worsen. Consider, for example, when the NDBMS and DDt
DS allow dynamic replication and partitioning of data bases, contingent on
access patterns and processing requirements. This movement and placement
of data must be controlled. Heavy reliance on the NDBMS and the DDIDS to
maintain the distributed network must be closely coordinated with DAtDBA
design activities at the nodes to ensure compatibility among nodes.

The complexity of the environment requires more technical expertise on
the part of the designers and greater administrative control on the part of the
respective DAIDBA staffs. More emphasis must be placed on the higher-level
conceptual design efforts that will coordinate activities across nodes. Related
SDLC standards must be created.

The designer can no longer address the local environment in isolation. He
or she must be aware of the environment beyond the interface. The local node
is part of a whole; it is both dependent on and independent of the whole.
Recognizing this, the designer must examine the impact of all design deci
sions beyond the immediate local environment.

OPERATIONS AND PRODUCTION CONSIDERATIONS

The distributed data base environment poses additional operational and
production considerations that the DAtDBA charged with the control and
coordination of the environment must address. The solutions are administra
tive in nature. Although technical implementation features are a part of the

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT 77

NDBMS facilities, the DA/DBA is responsible for specifying parameters and
procedures that properly govern production.

Administration and Control

Whether there are few or many locations or few or many DnMSs in the
distributed environment, procedures must enable a coordinated and integrated
functioning of the entire data base network. These procedures must ensure
that all locations are synchronized from the data base point of view as well as
from the viewpoints of the dictionaries, directories, operations, and documen
tation. In addition, because of the heavy dependence on data base software,
all version and release updates must be coordinated and propagated through
the network on a timely basis.

The control and coordination procedures must extend through the mainte
nance of application programs that process the data base. Procedures for
applying changes must be reflected in all components.

Restart and Recovery Considerations

The greater complexity of restart and recovery in the distributed environ
ment is caused by both the necessity to synchronize the process across nodes
and by a correspondingly greater number of recovery options. Operational
procedures must be carefully established, taking into account the coordination
and synchronization of recovery activities at each node in the network. All
nodes must be able to recover to the same point in time. This is difficult
because of computer clock synchronization; it is even more difficult when the
operational schedules of the nodes differ because of location in different time
zones.

Each possible type of location or network failure must be identified and
analyzed. The state of the data at each node must be accurately determined as
a precondition to each recovery operation.

Unlike the centralized data base environment in which the recovery opera
tion is either successful or not, it is conceivable that in a distributed environ
ment some nodal recoveries may succeed, while others fail. Sufficient backup
must be maintained to ensure that recovery can be achieved at all nodes and
that individual nodes can continue processing despite failures at other nodes.
Partitioned data bases must be examined after recovery to ensure that the
node-to-node linkages are all intact. Replicated data bases must be compared
to ensure synchronization or must be redistributed if possible.

Because distributed data bases are physically separate but logically con
nected and data location is transparent to the end user, failure at one location
may affect other locations. It may be difficult, however, to determine quickly
exactly where the data base physically failed when irregularities are reported
by end users. Note that local recovery procedures should include global user
notification, just as local recovery includes global verification and validation.

78 DATA BASE MANAGEMENT

Access Control Considerations

The DBMS operating on individual nodes of a network provides intranodal
security requirements in much the same way as a central-site DBMS provides
data base security needs. The administration of the access control mechanism
of the NDBMS relates to the specification of security profiles that span nodes
on the network. The major consideration involves authorization of a process
initiated at one node to access data at another. This procedure is referred to as
delegation.

In a distributed environment in which internodal data access is transparent
to the user, the security profile must be carefully specified and maintained by
the DA/DBA to ensure that the transfer of data and requests from one node to
another does not result in unauthorized access of data. This can only be
accomplished with a global view of the network and its distributed data base
design. Maintenance of the distributed security profile must also be centrally
coordinated by the DAIDBA; a change to security profiles must not adversely
affect processing patterns or allow inadvertent delegation of authority to ac
cess data at another node.

Access control for the distributed data base environment is not only a data
base technology issue; communications technology can and should also pro
vide for the implementation of security needs. Access control to executing
processes, operational terminals, and/or lines should augment the access con
trol mechanism implemented in the DBMS and the NDBMS. Data in trans
mission can also be encrypted. It is the responsibility of the DAIDBA to
coordinate these activities on an ongoing basis.

ORGANIZATIONAL ISSUES

Those organizations that have migrated to a distributed processing environ
ment have found effective DP strategies in support of decentralized manage
ment. Control of development and operations is thus passed to local sites. The
trends toward autonomy, as evidenced by user organizational structures, ex
tend to the DP departments that service those structures.

Simultaneously, these same organizations have started to use data base
technology for their application systems-one of the strongest centralization
forces in DP today. This paradox of centralization because of data base as
opposed to decentralization as a result of distribution must be addressed by
management and data/data base administrators, who must resolve the inherent
conflict between their data base needs and the needs of the distributed pro
cessing environment.

An Alternative Strategy

A division of functions, some local and some global, has resulted as the
role of the DA/DBA in a distributed environment has evolved. The global
(network-wide) functions are organization-wide and thus corporate in nature.
The local functions fall within the domain of local management.

ADMINISTRATION IN A DISTRIBUTED ENVIRONMENT 79

One way to handle this situation is to divide responsibilities along the lines
of the distributed processing itself (see Figures 8-5 and 8-6). That is, the local
DA/DBA function, which must operate within the guidelines and procedures
specified by the corporate DA/DBA, would deal with local development and
operations. The strictly local portions of the data base would, of course, be
fully controlled locally.

Local Management

t
Data/Data --- Corporate I

OataIData Base
Base Administration
Adminis-
tration

Software Data Recovery Communi· Data
DataBase Base Data Security Program- Dictionary Restart cations Analysts P~ogram- (local) ming (local) (local) (local) mmg

Figure 8-5. Local DatalData Base Administration Organization

Corporate
Data/Data
Base
Adminis-
tration

Global Software
Standards Data Restart! Commun-- Evaluation Data

& Dictionary Recovery icalians & Security
Procedures (global) (global) (globaQ Recommen- (global)

dation

Figure 8-6. Corporate Data/Data Base Administration Organization

The corporate DA/DBA functions would address network maintenance
and the data communications aspect of internodal data base access. The
corporate DA/DBA would have primary responsibility for planning and coor
dinating global recovery (including problem extent determination), recovery
scheduling, and global validation after recovery. The actual recovery opera
tions would be executed and handled at the affected nodes. In addition, the
corporate unit would have overall responsibility to coordinate network change
control, with documentation maintenance to ensure that all nodes receive
change information. They would also resolve conflicts among nodes as they
pertain to data base use and modification. The corporate unit would also have
to make DBMS software decisions that maintain the global compatibility of
the data base environment.

There are many potential political conflicts between corporate and local
functions. The autonomy intended by the distribution of processing is par-

80 DATA BASE MANAGEMENT

tially negated by the requirements of the data base environment. This conflict
must be well understood and resolved.

CONCLUSION

The distributed data base environment must evolve; it cannot be imposed.
Before attempting migration from a centralized organization, there should be
careful planning. Before implementation, procedures, standards, and controls
must be developed, accepted by all parties, and tested. Local and corporate
management responsibilities must be clearly delineated.

In addition, all DAIDBA staff members must thoroughly understand the
environment. Extensive training may be required to provide technical and
conceptual understanding at all levels.

Bibliography

Canning, R.G. "Disttibu1ed Data Systems." EDP Analyzer. Vol. 14, No.7 (June 1976).

Canning, R.G. "N-..rlc Structures for Disttibu1ed Systems." EDP Analyzer, Vol. 14, No.7 (July 1976).

Csshing, P.G. "Data Base Interworking." Network Systems and Software. Maidenhead, England: Infotech Jnternational Ltd.,
1975.

Comba, P.G. "Needed: Disttibu1ed Control." Proceedings of the International Cmiference on Ve". I.o.rge DakJ Base •. New
YOlk NY: Associatinn for Computing Machinety, 1975.

Davis, G.B. Management Information Systems. New YOlk: McGraw-Hili, 1974.

Lowenthsl, Eugene I. "The Disttibu1ed Data Management Function." Proceedings of 1M NOlional Computer Cmiference.
Montvale NJ: AFlPS Press, 1974.

"The Data Base Administrator." GUIDE Infonnation Msnagement Group, November 1972.

® Distributed Data
Bases on Unlike
Computers

INTRODUCTION

by Grayce Booth

A distributed data base exists when related data elements are stored at two
or more processors within a distributed system. When applied to the elements
of a distributed data base, the term related is quite flexible; the relationship
can be either very close and require a great deal of coordination among the
processors or can be very loose and require only minimal coordination. In any
case, the existence of this relationship distinguishes a distributed data base
from multiple independent data bases.

Distributed data bases can be partitioned or replicated. A partitioned data
base exists when each part or segment contains unique data elements. Al
ternatively, the segments can contain partially or entirely redundant data
elements, forming a replicated data base. Combinations of partitioning and
replication are also possible.[I]

Unlike Computers

When the need arises to expand a centralized system, an organization is
likely to acquire a number of minicomputers, place them in point-of
transaction locations, and distribute some of the processing and data base(s) to
those locations. Often there are good business and/or technical reasons for
acquiring the minis_from someone other than the mainframe vendor; in such
situations the probability of differences between the minis and the mainframe
is great. Even if the minicomputers are from the vendor who supplied the
central processor, they may be incompatible with that computer. Therefore, a
hierarchically distributed system [2] (see Figure 9-1) involves some degree of
difference between the host processor and the satellite processors.

A distributed data base can involve different kinds of computers when two
previously independent processors are linked to form a distributed system.
These computers may have served different divisions or departments or even
different companies now combined through merger or acquisition. Because
each system was selected by a different organization and, perhaps, for differ
ent uses, the type of computer may differ in each case. The result is a
horizontally distributed system [2] (see Figure 9-2).

82 DATA BASE MANAGEMENT

T T T

Figure 9-1. Hierarchically Distributed System

T T T T T T T T

Figure 9-2. Horizontally Distributed System

This type of system might also be used because a single organizational
entity requires two or more types of computers for different pwposes. For
example, a specialized scientific processor and a specialized time-sharing
processor might be used in an engineering organization. These computers
might require access to common data; in that case, a distributed data base
would be established to provide shared data access.

A major technical challenge associated with the use of distributed data
bases is how to provide access to remotely stored data. For example, how can
a user whose terminal is attached to one processor obtain data stored at
another? The same problem exists when a program executing (or submitted
for execution) at one processor needs data stored at another processor. The
remote-access problem can be solved by program migration (moving the
program to the data) and data migration (moving the data to the program).
This chapter describes the methods of locating data elements, the two remote
access strategies, the various differences that may be encountered, how these
differences affect the access strategy chosen, and how to resolve (or avoid)
the problems in each case. To simplify the discussion, the following sections
assume that only two computers are involved (the same situations would exist
regardless of the number of computers in the distributed system).

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 83

LOCATING DATA ELEMENTS

When a tenninal user or an application program requires access to data
elements that are part of a distributed data base, logic must be provided to
determine where the required elements are stored, regardless of whether the
program or the data will be moved to provide access. Much or all of this logic
is either included in the application programs or supplied by the terminal
users. In the longer tenn, the logic will move into the system software, using
one or more of the methods outlined.

The Schema

In the CODASYL approach to data bases (and in most modem data base
software systems), a description of the data base structure and formats is
stored with the data base (rather than in the accessing programs). This de
scription is called a schema.

In a schema-based DBMS, each access to the data base is interpretive, and
the schema is used to determine how to accomplish each access (see Figure
9-3).

A distributed data base can be described by a global schema that defmes all
elements and relationships of the entire data base. If the global schema is
stored at each computer within the distributed system, access requests can be
mapped against it, regardless of where the requested data element(s) is stored.

There is no reason why a single global schema cannot describe data base
segments with different data structures. In fact, the Honeywell implementa
tion of the CODASYL recommendations, Integrated Data Store/II (IDS/II),
allows a single schema to describe indexed and network/hierarchical struc
tures as part of one data base. The only restriction is that indexed structures
and network/hierarchical structures must be in different areas of the data base.
Area is a concept that allows the data base administrator (DBA) to separate the
logical data base into subdivisions to be mapped independently onto physical
storage. In fact, the area concept can be easily extended to the distributed data
base environment.

Conceptually, a distributed data base is a single logical data base, seg
ments of which are partitioned and/or replicated and associated with two or
more computers. For the long-tenn development of a distributed DBMS, the
use of global schemas and the association of one or more areas with each
computer seems logical.

The use of the global schema can be considered if each computer in the
distributed system supports a schema-based DBMS. The schema at each
location can describe local and remote area(s), although the local DBMS will
not have access to the remote data. Of course, differences in data formats and/
or structures must be considered when attempting to set up a global schema;
and if the differences are significant, schema use may be impractical. If
feasible, however, this approach allows compilation of applications and/or
end-user procedures that access local as well as remote data elements.

84

Catalogs

Data Base

Input
Data

Data Base
Definition

Application
Program
Source

Output

DATA BASE MANAGEMENT

Schema

Figure 9-3. SChema-Based Data Base Management

Data elements in a distributed data base can also be located by using
catalogs to indicate where specific data sets are stored. Catalogs usually
maintain infonnation at the data set, fIle, or area level rather than at the data
element level as schemas do.

A global catalog can list remotely accessed data sets, indicating where each
resides. If a copy of the global catalog is maintained at each computer, the
location of all globally accessible data elements can always be determined.
The main difficulty with this approach is that all copies of the global catalog
must be kept current (this same problem applies to global schemas). In prac
tice, however, catalog updates will probably occur infrequently, thus
minimizing the difficulty of keeping all copies synchronized.

It may be practical to extend an existing catalog facility so that it can
perform global catalog functions. If this can be done, the amount of data
location logic required in application programs and/or in terminal user proce
dures will be minimized.

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 85

Data Dictionary

The use of a global data dictionary is another way to keep track of data
elements in a distributed data base. A data dictionary serves many of the same
purposes as does a schema in describing the data base structure and formats
and also supplies "where used" information (i.e., which application(s) uses
each data element). The data dictionary, however, is a DBA aid that is used to
manage data base content and use, while the schema is used directly by the
DBMS software to access the data base.

A good data dictionary system can probably accommodate descriptions for
both local and remote data elements; thus, the distributed data base and its use
can be controlled through the single data dictionary. Unlike the global schema
and global catalog, the data dictionary does not automate the process of
dynamically finding data in a distributed data base. A single data dictionary,
however, can assist the DBA in overall management of that data base.

PROGRAM MIGRATION

In a distributed system, a terminal user or an application program associ
ated with one computer may require access to distributed data base elements
associated with another. As shown in Figure 9-4, a user at terminal At can
easily be provided with access to data base segment A. If, however, the user
requires access to data base segment B, the situation is more complex. One
way to provide the needed access is through program migration. In program
migration, the data base access program is sent and executed where the
required data e1ement(s) resides, and some or all of the output produced is
then returned to the other location.

Figure 9·4. Access to Remote Data.

Object or Source Migration

Program migration between computers can occur in object or source form.
If the program is sent in object- form, it can be placed in execution immedi-

86 DATA BASE MANAGEMENT

ately upon receipt. If sent in source form, the program must be compiled
before being executed.

The degree of difference between computers affects program migration. It
is often difficult to move a program in object form between unlike computers.
If host A supports a cross-compiler for host B, it can generate object code
suitable for that system, allowing object-form program migration between
unlike computers.

Of course, object-code compatibility is only one of the points to be consid
ered. In many computers a program requires such further processing as link
ing to library routines and/or editing for correct loading format before it is
ready for execution. If the target computer (the one on which the moved
program is to be executed) requires this type of program preparation, it must
be provided either before or after program migration.

Movement of the program in, source rather than object form decreases
compatibility problems because source programs are more likely to be com
patible than are object programs. Complete compatibility, however, cannot be
assumed and must be planned for carefully.

In assessing program compatibility, it is important to ensure that capabili
ties with the same name are, in fact, identical. For example, the fact that most
computers support COBOL does not guarantee compatibility and transferabil
ity for COBOL programs.

The industry-standard definition of COBOL is updated periodically, and a
specific computer mayor may not support the most recent version. In addi
tion, COBOL is defined in terms of a language nucleus plus a series of
modules (e.g., table handling, sequential 110, sort/merge). The nucleus con
sists of a low-level portion that provides basic internal operations and a high
level portion for more extensive options. Some of the language modules also
have low and high options. Therefore, to determine the level of compatibility
between two COBOL compilers, it is necessary to determine:

• The version of the language standard supported
• Which modules are implemented
• Which level of each module is provided
• Whether any nonstandard extensions have been included

While this determination may seem complex, COBOL has well-defined
formal standards that can be used as the basis for comparison. For many other
languages and DBMSs, there are no such guidelines, thereby complicating the
determination of program compatibility.

Dynamic or Static Migration

Program migratiQn, in either object or source form, can be dynamic or
static. In the dynamic mode, the program is moved when data access is
requested. In the static mode, the need for program migration is recognized
during system design, and a copy of the program is established at the desired

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 87

location prior to the need for its use. Although the latter case might not be
considered program migration, the result is the same.

Dynamic Program Movement. This movement involves sending the
equivalent of a job to the remote computer for execution. If the program is
sent in object form, the job consists of the object program (possibly prelinked
and/or link edited), the required JCL, and any input data needed. If the
program is sent in source form, the job consists of the source program with
JCL requesting compilation followed by execution and input data.

Obviously, an extremely fast response cannot be expected in either pro
gram migration method. Dynamic program movement is best suited to spe
cific situations. For example, dynamic program movement is useful when an
expert programmer is using a terminal to browse through a distributed data
base, preparing the programs needed for remote access as browsing pro
gresses. The dynamic mode is also useful when large amounts of remote data
are required to complete an unanticipated report. Therefore, in any situation
that requires remote access to large volumes of data but does not require rapid
response, dynamic program migration can be used.

Static Program Migration. This form of migration allows time for pre
planning because the program is moved and established at the remote location
prior to its use. When access is actually required, only a program-initiation
request and any needed input data are sent.

If fast response is needed, however, the static migration mode is more
suitable than the dynamic mode. In both modes the differences between the
computers involved must be fully explored.

Secondary Data Migration

Even though the strategy chosen to provide access to remotely stored data
is program migration, data migration often results. In Figure 9-4, the basic
problem is to provide the user at terminal Al with access to data base segment
B. Presumably, the user will want some of the data obtained to be returned to
terminal AI, thereby causing data movement. In addition, in order to deter
mine which data elements are required from segment B, it will probably be
necessary to send input data to the remote location. Thus, program migration
problems as well as data migration problems must be solved by the system
designer.

DATA MIGRATION

Data migration depends on sending a data access (and possibly update)
request to some program at the remote location that will perform the required
operation and return the desired result. The program at the remote location
may be an application routine written specifically for this putpOse. This
routine is called a surrogate process or server process. Alternatively, the

88 DATA BASE MANAGEMENT

remote program may be the DBMS if it can accept access requests from
remote locations.

Format and Structural Differences

When data ~lements are moved between unlike computers, the data must
be meaningful to, and usable by, the receiving application or user. Transla
tions may be needed to convert between unlike data fonnats, as well as to
resolve differences in the structures of the two data base segments. The
required translations can be very simple or extremely complex.

Dynamic or Static Migration

Data migration, like program migration, can be either dynamic or static.

Dynamic Data Migration. This migration occurs at the time the access is
requested and is most often used to obtain small amounts of remotely stored
data. Online transaction processing or time-sharing users or programs are
most likely to generate this type of request. Even when data migration re
quests and responses occur dynamically, the data movement must be pre
planned. The necessary surrogate application or server DBMS must be estab
lished at the remote location and must be available to respond to data base
access requests when received.

Static Data Migration. This migration can be used for access to a large
volume of data. If it is known that a definable set of data elements will be
accessed, the entire set of data can be moved to the location where the data is
needed. The data can then be accessed, and if it has been updated, the revised
version can be moved back to the original location.

Static data migration is shown in Figure 9-5. When payroll checks must be
printed for office A, the pay records for that office are moved from the host
processor to the satellite processor at office A. The paycheck application is
run against that data set, producing the checks as output. In this case, since no
updates have been perfonned, there is probably no need to return the data to
headquarters. If, however, the data is updated, the data set can be returned to
the host to replace the earlier data copy.

The key to successful static data migration is to avoid concurrent updating
of the master copy of the data and the temporary copy at the remote location.
Updating two or more copies of the same data concurrently causes a very
complex data reconciliation problem for which there are no general
solutions-these can only be fonnulated within the framework of the specific
application.

Independent updating is manageable, however, if different fields or
records are involved. For example, a remote copy of an inventory data base
might be updated to reflect changes in current stock balances at the same time
the master is being updated to reflect price changes. Reconciling the two
versions then involves using descriptive infonnation from the master and

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS

Payroll
Data Base

Figure 9-5. Static Data Migration

89

balance infonnation from the copy. Data migration is clearly more complex if
the remote access involves updating. To minimize complications, update
during data migration should be avoided whenever possible.

DATA FORMAT DIFFERENCES

Data migration between unlike computers almost always involves data
conversion because of the differences between the respective computers'
hardware and software. Program migration may also trigger data migration,
again causing conversion.

Conversion routines must deal with data fonnat differences as well as data
base structural differences. Data fonnats can vary widely because of inherent
differences in computer hardware or because of the software approaches
chosen.

Code Sets

The code sets used to store the segments of the distributed data base may
be different. The most commonly used code sets for data storage are ASCII
and EBCDIC. Some computer systems, however, use other codes, and even
though two computers may both use the ASCII code set, for example, one
may use a fuller set of the possible codes.

Converting data from one code set to another is basically a straightforward
process, but provision must be made for handling characters or codes that
occur in one set but not in the other. Some convention must be adopted for
coping with these unmappable codes.

If unmappable codes do not require conversion, they can be translated into
space or null characters. Occasionally, for example, printer-control codes are

90 DATA BASE MANAGEMENT

carried in stored data for quick output to hard-copy devices. Because these
types of codes are device specific, they do not have to be translated when
moving the data to another computer system. If unmappable codes must be
carried, each code can be converted to a 2-character sequence in the target
code set. The first of the two codes is an "escape" or "flag" character, and
the second indicates which unmappable code is represented. This flexible
approach allows a larger code set to be mapped to a smaller code set, without
any data loss.

Word, Field, or Record Size

Data movement may also be affected by differences in the word, field,
and/or record sizes on each computer. As in the case of code sets, the diffi
culty arises when one computer has a larger maximum size than the other.

Word- and field-size differences are usually a problem when binary data is
stored. A binary field may be limited to one or two computer words in length
(e.g., 32 or 64 bits in a computer whose word size is 32 bits). The movement
of binary data can therefore pose a problem. For example, in moving binary
data from a 36-bit-word-size computer to a 32-bit machine, either data preci
sion may be lost or the data must be expanded to 64 bits for storage.

If this situation exists in a distributed data base, three methods are possible
for handling the binary data. First, all data can be carried in character or
packed decimal form rather than binary. This approach, however, can waste
storage space and cause conversions to/from binary when the data must be
used in calculations. Second, extra space can be allocated in the smaller
computer to accommodate the data from the larger computer. In the case of
variable-length byte-size fields, this is the best approach. If binary data must
be stored in full-word increments, however, this method wastes storage
space. Finally, the computer that supports a larger word, field, or record can
be arbitrarily constrained to support the same size as the other computer.
Although this may waste some storage capacity of the larger computer, it may
avoid complex translations and/or wasteful space use on the smaller com
puter. In the total system context, therefore, this may be the best choice.

All of these format differences-code set, word size, field size, and record
length-can be handled quite easily. If the data base formats used in each
segment of the distributed data base are fully documented, mapping or con
version routines can be easily devised for data translation.

If the distributed data base is in the process of being designed, there is
considerable flexibility in constructing formats that require minimal conver
sion. For example, as noted earlier, in the case of two different word sizes, it
may be most efficient to use only part of the capability of the larger computer,
thereby ensuring compatibility with the smaller one. If, however, the distrib
uted data base is being formed from two existing separate data bases that are
independently designed, there is less flexibility in constructing formats. The
problems of accommodation, therefore, will be more complex.

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS 91

STRUCTURAL DIFFERENCES

While differences in data fonnats are easy to manage, a distributed data
base established on unlike computers can also involve structuml differences.
These differences are typically more difficult to handle.

Structures and Access Methods

Structuml differences involve the interrecord data relationships of the data
base. For example, in an indexed-sequential structure, the records are stored
semisequentially and accessed through one or more indexes. Access methods
for this structure involve requesting a record through its identifying field(s).
The DBMS then uses the indexes as necessary to obtain the requested record,
which is then passed to the requesting program (and perhaps through that
program to a terminal user).

Another implementation of an indexed structure might use a different
number of indexes and/or might physically place records on the storage me
dium using a different storage strategy. Nevertheless, the same access request
could be fulfilled in this second implementation, without the differences being
apparent to a terminal user or to the application program developer.

There are, however, structuml differences that are difficult to map. For
example, the CODASYL model of data storage assumes that the user or
programmer is a "navigator" [3] moving through the data base, seeking
specific items of interest.

Figure 9-6 shows a network data structure consistent with the CODASYL
data model. In this structure, logically related records are associated into sets.
For each set, one type of record is the set owner, and one or more other record
types are set members. For example, in a customer-order data base, each

/· ... -s;~-;-",
I Owner \
(Record Type 1 I
\ Member I
\. Record Type 2 //

'..... ,,/ ------

.,.,.----..........
// Set 1-3 ,

/ Owner '\
(Record Type 1 1

Member /
\ Record Type 3 / , .,,-

....... --------,...,.
..",-------..,

/' Set 3-4 , '--_.-----'
/ Owner \
I Record Type 3 \
, Member I'
'\ Record Type 4 / __ -'--_-, ,-

................ _----'/

Figure 9-6. CODASYL Data Base Structure

92 DATA BASE MANAGEMENT

customer record might be the owner of a set, while order records are members
of the set. To obtain data from this type of network data structure, the
programmer writes such statements as FIND NEXT RECORD-NAME
WITHIN SET-NAME, FIND PRIOR RECORD-NAME WITHIN SET
NAME, and so on. These access requests are li~ed to the data model used
in this case, a network consisting of owner/member record sets. Thus, it is
somewhat difficult to map these same access requests onto a different struc
ture; attempting to execute a FIND NEXT RECORD-NAME WITHIN SET
NAME command against an indexed-sequential structure is meaningless
since the data structure model does not include the concept of sets.

Structural differences cause difficulty because of the desirability of provid
ing common access methods, despite the use of different structures. This is
true regardless of whether the access strategy chosen is to migrate the data or
the program.

Structure-Independent Access Methods

As might be expected, access methods that are independent of the data
structure are most easily mapped to different structures. The trade-off, how
ever, is that these methods may also be relatively costly in terms of the
computer resources used.

Approaches most often encountered with relational data bases [4] tend to
be very structure independent. LINUS (Logicalloquiry and Update System)
software, available for use with Honeywell's Multics Relational Data Store,
allows the user to formulate such queries as SELECT NUMBER FROM
PHONE BOOK WHERE NAME = "SMITH JOHN C." With this type of
access method, the user formulating the query need have no knowledge of the
data base except that it contains certain data elements. How these elements are
stored and any interelement relationships need not be apparent to the user.

It is theoretically possible to map a structure-independent access request to·
many different structures. The efficiency and response speed achieved depend
on both the complexity of the mapping and the particular implementation.
Because of these factors, performance can range from excellent to unaccepta
ble.

Mapping Structure-Dependent Access Methods

Structure-dependent access requests can be mapped onto a data structure
different than that envisioned in the access request. One way to accomplish
this is through multilevel mapping, as shown in Figure 9-7.

By choosing a conceptual or reference data model (perhaps a relational
structure, although not all researchers agree that this is the correct data
model), it should be possible to map any actual data model to/from that
conceptual model. It should also be possible to map any type of access request
to the conceptual data model and thus to any real data structure. Although a
very neat diagram of this approach can be drawn, its practicality remains to be

DISTRIBUTED DATA BASES ON UNLIKE COMPUTERS

Access Access
Request Request
Type 1 Type 2

'\ M +. Mapping applng

Access
Request
Type 3

I
Mapping

Conceptual
(or Reference)
Data Model

Mapping

Actual
Data
Model 1

Mapping

Actual
Data
Model 2

Figure 9-7. Mapping Data Models and Access Requests

93

proven. Even if logical feasibility is established, it may be difficult to provide
an implementation with acceptable perfonnance and response. Realistically,
such a general mapping currently belongs to the realm of theory rather than of
practice. In mapping access requests onto different structures, the most practi
cal approach today is to use a structure-independent access method similar to
LINUS or "Query by Example" (QBE)[5]. Although these are relatively easy
to translate to different structures, doing so while providing an adequately fast
response can present a challenge.

DISTRIBUTED DATA BASE TRANSPARENCY

As noted earlier, data format and/or structure conversion will be necessary
in most cases where a distributed data base is established on unlike comput
ers, regardless of whether program or data migration is used to access remote
data elements.

Where the necessary conversion takes place has a considerable impact on
application and user independence from the distributed data base. This con
cept of independence is called transparency. If the requesting application
program or terminal user must perform the data or structural conversions, data
base changes can affect the program or user. In addition; the procedures for
data base access can be more cumbersome and inconvenient for (presumably)
multiple users and/or programs.

It is more advantageous to perform the conversion in the server application
or DBMS, if possible. This centralizes the conversion routines so that it
changes are required, only one set of software is affected. The conversion
process will also be transparent to the terminal users or application programs.

94 DATA BASE MANAGEMENT

Transparency is also affected by how the required data elements are lo
cated within the distributed data base. If the application program or terminal
user must manually determine where elements are located, transparency is
low, and any movement of data will affect people and programs. If data
elements are located by the system through the use of global schemata and/or
global catalogs, transparency is improved.

CONCLUSION

Providing access for users and applications at the different computers to
the various segments of the distributed data base requires careful planning so
that the differences involved do not make data base access unacceptably
difficult. The choice between program and data migration should be based on
minimizing transmission volume (and therefore cost). The different possibili
ties must be analyzed in the context of the specific application, and the one
that requires the lowest volume of data transmission should be chosen.

If program migration is selected, program differences must be resolved. If
data migration is chosen, data format and/or structural differences must be
resolved. Often both types of differences must, in practice, be handled, re
gardless of which strategy is chosen.

Straightforward translation methods are adequate to resolve data differ
ences. Differences in data base structures, however, are more complex to
handle. While some elegant theoretical approaches can be considered, in
practice, remote access between radically different data structures is quite
difficult to achieve. Rather than considering a generic "ideal" solution, a
translation method that can handle the specific structures involved should be
used.

Since ease of use and flexibility for change are important aspects of any
distributed system, transparency should be an objective in every distributed
data base implementation.

I. Booth, a.M. "Distributed Data Bases in Distributed Processing." Infotech State of the Art Report, Vol. 2 Maidenhead UK:
Infotech International Ltd. 1977.

2. Booth, a.M. "Distributed Infonnation Systems." Proceedings of the 1976 NaJiotlill Computer Conference, Montvale NJ.
3. Bachman, C.W. "The Programmer as Navigator." Turing Lecture in CACM, Vol. 16, No. II (November 1973), 653-658.
4. Codd, E.F. "A Relational Model of Data for Large Shared Data Banks." CACM, Vol. 13, No.6 (June 1970), 377-387.
5. Zloof, M.M. "Query-By-Example--Operations on Hierarchical Data Bases." Proceedings of the 1976 NatiOtlilI Computer

Co'lference, Montvale NJ.

~@ IMS/VS
Implementation
Case Study

INTRODUCTION

by Myles E. Walsh

This case study involves the implementation of IMS/vS at a large, central
ized data center. The data center is a corporate facility that processes the
computerized applications of several divisions of a $4 billion per year corpo
ration. In the spring of 1980, the equipment configuration of the data center
included three large-scale mM computers, more than 180 spindles of direct
access storage (DASD), approximately 30 magnetic tape drives, and a mag
netic tape library containing nearly 30,000 reels of tape. The facility sup
ported a telecommunications network of more than 250 lines with 1,800
terminals of various types connected to them. The data center was processing
about 250,000 transactions a day against the online files and data bases and
was turning around approximately 120,000 batch jobs per month. These
configuration and production statistics include the equipment requirements
and the activity of the applications using the data base management system.
The DP environment had not always been like this.

In 1976, when the corporate data processing department decided to investi
gate data base management, the data center housed computers that had only
25 percent of the computing power of the 1980 configurations and less than
one-half of the DASDs. Online transaction volumes were also less than one
half: there were 150 telecommunications lines and about 800 terminals. Con
current with the plunge into data base management was a commitment on the
part of corporate D P to increased computer processing capabilities via virtual
storage technology, time sharing for applications development, and computer
networking.

The divisional DP director, committed to developing an application that
would use a data base and the DBMS, began the design and development
work simultaneously with the corporate study on the various DBMS products.
By the time the corporate study was completed, the overall design work was
also almost completed, and a significant portion of the elements that were to
be included in the application's data base had been defined and documented
(see Figure 10-1). The latter task had been assigned to an individual who had
been appointed as the divisional data base administrator (DBA).

96

Task

Decision to investigate ..
DBMS Environment I"

Study group met

First application designed

IMSNS support group es-
tablished

First project team formed

Rudimentary IMSNS
batch processing system
implemented

Online and data communi
cations features imple
mented; 0010 became
theJirst application to run
online

Other divisions show inter
est; additional project
teams set up for assist
ance

Accounts receivable appli
cation placed into pro
duction mode

Two small applications de
veloped

New IMSNS released and
installed

Sample tracking system
placed into production
mode in test control re
gion

Master catalog application.
placed into production
mode

First large application
placed into production
mode

Another small application
placed into production
mode

1976

•
• -
•

•

1977

..
01 CD
c E
1: E
D, :::I
tntn

DATA BASE MANAGEMENT

•

1978

..
01 CD
C E
1: E
D,:::I
tntn

-•
•

•

1979

..
01 CD
c E
·c E
D, :::I
tntn

•
•

1980

Figure 10-1. Time Phases of the ProJect

IMSNS CASE STUDY 97

1976 1977 1978 1979 1980

Task
.. QGI .. Q GI .. Q GI .. QGI .. Q

.! c E GI C E GI C E GI C E .! c ·c E .. ·c E .. ·c E .. ·c E ·c c = c iii
c 1i c 1i .5 i r::L :::lI 1\1 .- r::L :::lI i r::L :::lI i r::L:::lI r::L

t/)t/) II..~ t/)t/) II.. t/)t/) II.. t/)t/) II..~ t/)

Resolution of problems -• with local computers

Installation of local com- • puter application

Excellent performance of • local computer applica-
tion

Figure 10-1. (Cont)

At the time, the title data base administrator was quite fluid. It was used to
describe everything from a corporate executive who was to be responsible for
the corporation's data resource to a technical/clerical person who was to
document data descriptions. The divisional DBA had, at this point, listed
nearly every data element for the new application and the characteristics and
attributes of each and had begun to define the relationships that existed among
the elements. It was these relationships that would transfonn the collection of
data elements into a divisional data base for the application.

The application itself had been segregated into two systems: an order
entry, order inquiry, billing, and shipping system and an accounts receivable
and cash application system. The two, although separate, had common inter
faces on several of the files (Le., some of the mes were used by both sys
tems). Each of the systems had an online and a batch facility. The online
facilities were to be available 10 hours a day, from 8:00 A.M. unti16:00 P.M.,
and the batch facilities were to be run between 6:00 P.M. and 8:00 A.M. These
parameters were established by September 1976, when the project team was
fonned.

Having selected the IMS/vS data base management system (DBMS) one
month earlier, the corporate DP department fonned an organization to support
it. Two separate groups were set up. One was a systems software program
ming group that was responsible for the installation, support, enhancement,
and troubleshooting of all data-base-related software products. The other
group was a technical support group that was initially responsible for assisting
divisions in data base design and reconciling the divisional data base require
ments with the data center capacity. This latter aspect of the technical support
group's responsibility required a high degree of both technical and political
skill. The individuals in this group were also given the title of data base
administrator. By September, the two groups consisted oftwo DBAs, a direc
tor of technical services, one systems software programmer, and a director of
data base systems. All five became part of a project team.

98 DATA BASE MANAGEMENT

The Project Team

The function of the project team was to periodically bring together those
individuals involved with the details of the design, implementation, and oper
ation of the application. Members of the project team included a nucleus of
individuals who attended 'every meeting and several other individuals whose
attendance was required from time to time. The nucleus included individuals
representing the following functions:

• Divisional DBA
• Corporate DBA
• Systems programmer
• Applications project manager
• Auditor

Other functions from which representation was required frequently, but not
always, included:

• Divisional DP director
• Director of technical services
• Director of data base systems
• Divisional operations supervisor
• Corporate operations supervisor
• Director of systems software
• Various application programmers
• IBM systems engineer

In addition to the project team, there was a steering committee consisting of
individuals higher up in the divisional and corporate organizations. This com
mittee included:

• Corporate vice president of DP
• Divisional DP director
• Various divisional directors (the management of those functions that

were to use the system in its operational state)
• Corporate operations director

On some occasions, members of the project team would attend steering com
mittee meetings, thereby maintaining communications between the two
groups.

THE PRELIMINARY STAGES

By the end of 1976, several project team meeting~ had been held, and a
rudimentary IMS/vS batch processing system had been generated and was in
use. It had been determined that several additional data-base-related software
products were needed. The most pressing. need was for a data dictionary
system. Of secondary importance was the need for a product that would
facilitate the testing of online transactions by simulation in a batch processing
environment. Both products were ordered before the end of 1976. The simula
tor, an IBM product known as the Batch Terminal Simulator (BTS), was set
up first, simply because it was easy to install. It was operational almost
immediately. Implementing the data dictionary product was somewhat more
complicated.

IMSNS CASE STUDY 99

The need for a data dictionary was agreed upon by everyone involved with
the project because the idea of someone trying to keep field, record, file, and
data base information up to date and synchronized, with copies distributed to
all individuals who needed them, was judged an impossible task. The sugges
tion of a centralized computer file containing all the required information,
available on an inquiry basis, appealed to everyone.

Several products were evaluated, and the IBM data dictionary/directory
(DD/D) was selected. It was then decided that the DD/D should become the
first application to use the IMS/vS system within the data center environ
ment, especially because it could serve as an ideal test vehicle for the online
IMS/vS and the data communications facilities.

In April 1977 , the online and data communications feature of IMS/vS was
generated, and the DD/D became the first application to run online. The test
was successful, and in less than a month it was possible to begin testing online
transactions for the divisional applications.

During the remainder of 1977 and in early 1978, several significant factors
became apparent:

• Separate test and production facilities were needed.
• Other divisions were interested in DBMS.
• Staffing needs were increasing.
• Training was going to be expensive.
• Interfacing with other software would add to the complexity of required

support.

After the online facilities testing began, it became apparent that testing and
production could not be run on the same system. The architecture of the IMS/
VS online feature is such that it has a single control region performing all I/O
operations, while application transactions execute in separate regions, known
as message-processing regions. An individual transaction is executed in a
specific message-processing region, and the liD activities of the transaction
are channeled through the control region. In a testing environment, it is
expected that some transactions will process erroneously and abnormally
terminate (abend), creating extra work for the control region. Thus, produc
tion transactions, which are supposed to execute quickly, would be slowed if
they were executing while a test transaction was abending. Because one of the
data center's objectives was to provide an environment in which production
transactions could execute quickly, it was determined that separate facilities
would be required for testing and production. The result was a forecasted need
for twice the amount of resources Originally estimated.

In the spring of 1977, several other divisions began inquiring about the
capabilities of data base management, in general, and IMS/vS in particular.
To assist DP personnel in these divisions, project teams were set up similar to
those established in the fall of 1976. The experience gained by those already
involved was shared with those making the inquiries.

The inquiries were from divisions that had small applications in mind. For
example, one division wanted to put a master catalog of its products, cross-

100 DATA BASE MANAGEMENT

referenced with other material, into a data base system. Another division
wished to put up a sample tracking system using online IMS/vS facilities.
Both of these applications involved relatively small files and a small volume
of transactions. The project teams began initial analysis and design work.

It became apparent immediately that more people were needed in cOlporate
technical services and in data base systems software support and that a signifi
cant amount of IMS/vS education was required, especially in the area of data
base systems software. Therefore, two systems software specialists were
added during 1977, and in early 1978, two OBAs were added on the cotpOrate
side.

At that time, the IMS/VS online and data communications facilities and the
DOlO online feature were relatively new products. Consequently, no one was
experienced in their use or support. It was necessary to train both the data base
systems software specialists and the OBAs from the ground up. Divisional
OBAs and application programming personnel also required training. It was
estimated that training over a two-year period for cotpOrate OP and four
divisions could cost as much as $100,000. Since that time, IBM has dropped
many of the courses and has replaced them with self-study programs that are
somewhat less expensive. Table 10-1 contains a list of recommended courses,
arranged by job (costs are subject to change). Other vendors have developed
courses to fill the void left by IBM.

Other Technologies. IMS/VS and the DOlO were not the only complex
technologies that had to be dealt with in this implementation. Virtual storage
technology, more sophisticated computers, and a more complicated operating
system were very much a part of this, as were computer networks and tele
communications.

The whole idea of access methods had also changed. Access methods such
as BSAM, QSAM, BOAM, ISAM, and BTAM, which contain th~ program
modules necessary to transfer data between peripheral devices and computer
storage, were giving way to VSAM and VTAM. VSAM, although referred to
as an access method, is actually a complete data management facility capable
of cataloging and keeping statistics on data sets stored on direct-access storage
devices. VTAM is a complete telecommunications network facility that can
support computer-to-computer communications and multiple systems access
for terminals throughout the network.

In addition, the need for master terminal operations (MTO) support was
recognized. Another feature of the IMS/vS online data communications facil
ity is the master terminal. This function acts as IMS/vS system monitor,
controller, and troubleshooter. Each IMS/vS data base requires a dedicated
master terminal, with both a CRT terminal and a typewriter terminal. The
typewriter records all messages in hard-copy form; the master terminal opera
tor monitors and controls the system through the CRT terminal. The operator
participates in the starting and stopping of telecommunications lines and
terminals, displays system status, participates in recovery and restart opera
tions, and is the focal point for responding to user questions in a production

Table 10-1. Training Courses for IMSNS Implementation

Cost Systems Software
Course $ Managers Technicians
James Martin Seminar 1,150 X
Data Base Design and Administration 700 X
Leo Cohen Seminar 850 X
IMSNS Concepts and Facilities 0 X X
IMSNS Functions for Application Program- 410

ming
*IMSNS Data Base Implementation I 869 X
*IMSNS Data Base Implementation II 1,000 X
IMSNS Master Terminal Operations 345 X X
IMSNS Data Base Performance and Tun- 1,105 X

ing
IMSNS Data Communications Implementa- 1,530 X

tion
* DUI Application Programming 1,806 X
*IMSNS DC Application Programming 500 X
*IMSNS Message Format Service 325 X
IMSNS DC Performance Analysis 902 X

*IMSNS Systems Control 557 X
IMSNS-SNA Implementation 775 X

*VSAM Coding for OS/MVS 357 X
VSAM for Systems Programmers 709 X

* DB/DC Data Dictionary 571 X X

• Self-study courses

Application
DBAs Programmers

X X

X X
X X

X
X

X

X X
X X
X X

X

Operations
Personnel

X

X

~
C/)

<:
C/)

~
C/)
m
C/)
--I
C
o
-<

......
o

102 DATA BASE MANAGEMENT

environment. Concurrent with the recognition of the importance of this func
tion came an awareness of another software product, Control IMS Realtime,
from Boole and Babbage. It proved to be an extremely good investment
because it provided a window into the IMSIVS online and data communica
tions system.

Application Installation

By early 1978, the IMSIVS system was fairly well established, and the first
application, the accounts receivable and cash application system, was put into
production. The original intention had been to put everything in together
order entry, billing, shipping, and so on-but not all of the components were
ready. Special programs and procedures had to be created to compensate for
the fact that the newly installed accounts receivable and cash application
system had to interface with an existing non-IMSIVS system, rather than with
the planned IMSIVS system, which also was not ready. After a few initial
difficulties, however, the system: ran quite well.

During the remainder of 1978, the two smaller systems that were being
developed by the other divisions approached completion, and a new release of
IMSIVS was generated and installed. In addition, the order entry, billing, and
shipping application was postponed a few more times. Because of such de
lays, a peculiar situation began to develop.

When a problem is explained up the line in large organizations, there is a
tendency for distortions to creep in. IMSIVS and data base management were
starting to get a bad name; however, few of the reasons for the postponements
had anything to do with data base technology or IMSIVS. The problems were
those of magnitude; the proposed system was very large, both in terms of
transaction volume and file size. In addition, it became clear that the applica~
tion would require more than 24 hours to complete its daily processing cycle
whenever a significant problem occurred. Basically, the application had an
online requirement of 10 hours a day, 8:00 A.M. to 6:00 P.M., and a batch
requirement of 7 or 8 more hours. When the online portion of the system was
brought down in the evening, it was necessary to spend approximately four
hours in IMSIVS housekeeping, backing up data bases, consolidating log
files, and preparing performance statistics. Because these tasks required a
total of21 to 22 hours, only 2 hours were left to handle recovery and restart in
the event of problems. This led to what could be called an interesting political
climate.

In 1978, one of the key data base software technicians resigned to take a
better position outside the company. This was the first turnover on the corpo
rate side since the two groups had been established. (There was no further
turnover until the spring of 1980, when another data base software technician
was given a better position within another division of the company.) The
resigning individual was replaced by the second in command within the
group, and two more technicians were recruited from within the company,
bringing the data base systems software support complement to four: a man-

IMSNS CASE STUDY 103

ager and three systems software technicians. The corporate technical services
group had also added two more technicians, so now there were four DBAs.

The previously mentioned sample tracking system was put into production
in December 1978. This was the first system having a user located in another
city. The single biggest difficulty with this system's installation had been the
number of groups working on it. In addition to technical services and data
base system software, there were two application development teams that
participated in its implementation. The user division had a team involved, and
so did corporate DP. A few misunderstandings about who was to do what
occurred, and some premature commitments were made to the user. Based on
these commitments, the user cut over to production in October. In doing so,
the user had burned his bridges, so there was no going back. This system ran
"in production" from the user's point of view in the IMS/vS test control
region. This also caused political friction. By December, however, the misun
derstandings were overcome, and the application went into normal produc
tion. It processed between 10,000 and 15,000 transactions a day and had a
small batch processing cycle that ran overnight. Aside from the typical tele
communications problems that occasionally occur in applications using inter
state communications facilities, the application was trouble free.

In March 1979, the other division's master catalog application went into
production. The problems with that system were minimal and primarily re
lated to the user's lack of experience in data base and data communications
technology. Once those hurdles were cleared, the system functioned quite
well.

Another Major Thrust

By the spring of 1979, then, there were four small- to moderate-sized IMS/
VS applications in production: the DOlO, the accounts receivable/cash appli
cation system, the sample tracking system, and the master catalog system.
After a couple of postponements, the large order entry, billing, and shipping
system was being primed for another attempt at production in May 1979. At
the same time, still another division was preparing applications for produc
tion.

In 1978, this fourth division had made some preliminary investigations into
data base technology and IMS/VS and subsequently had made major commit
ments to use it. The commitments involved planning, data gathering, pilot
application development, and major application development. The division
reorganized its DP department and hired a number of new people. Planning
was begun, data gathering commenced, and the pilot application was started.
Several smaller applications were scheduled to begin after the planning and
data gathering were completed. The major application was contracted to IBM
for design, development, and implementation.

One of the small applications-a client, product, production, and shipping
status system-is essentiillly an inquiry system. The data bases are rather
small and transaction volume low. The one new difficulty with this system

104 DATA BASE MANAGEMENT

was the introduction of distributed intelligence. When originally conceived,
the application was somewhat larger; thus, a decision was made to implement
it in stages.

Tenninals using the application were to be located in four sites around the
country. These terminals were to be part of a local computer configuration,
which, in tum, would communicate to the host in the centrally located data
center. Support for these local computers was to be the responsibility of the
division; however, it was not that simple.

Specific software products were required in the data center's host computer
to support the local computers. At the time, no one at the data center had
experience with, or even the most basic training in, support of these devices.
Most of the problems associated with the implementation of this application
revolved around lack of experience in this area. As time passed, knowledge
was gained, but it was a slow and sometimes painful process. It is to the credit
of the project manager that, with all these difficulties, the delay in the installa
tion schedule was less than two months. This application went into production
in June 1979.

Thus, by June 1979, there were five IMS/VS applications in production,
six project teams were meeting, and a seventh was about to be formed because
another division expressed interest in IMS/vS. There were project teams for:

• The order entry, billing, and shipping application
• The client, product, production, and shipping status application
• A forecasting application, building on the master catalog application
• A financial commitments and disbursements application
• A second accounts receivable/cash application system for another divi

sion, using much of the first division's system
• A marketing data base system
• A circulation revenue information system

Of these, the marketing data base system represented the most significant
development (except for the order entry, billing, and shipping application,
which had been postponed again and rescheduled for October 1979). This
system was scheduled for partial implementation in late summer, 1980.

During the spring of 1979, both data base system software and technical
services added one staff member. There were then five DBAs and five sys
tems software programmers. Of the systems software programmers, one was
a manager.

By late summer on979, technical services, data base software, and other
technical support functions at the data center were spending an inordinate
amount of time attempting to resolve problems concerning the local comput
ers used in the client, product, production, and shipping-status system. At
tempting to identify the source of the problem was a frustrating part of the
problem-solving effort. Technicians from different disciplines are often too
busy with problems that have already been defined to collaborate in isolating a
problem that may be someone else's.

The autumn of 1979 was a time of tremendous activity because the post
poned order entry, billing, and shipping system was readied for implementa-

IMSNS CASE STUDY 105

tion. Procedures were developed for the conversion, for the production sys
tem, and for Plan B, the procedure for going back to the old system if the new
system malfunctioned. After a week of day and night activity, however, the
system did not work. The -online data communications portion of the system
worked reasonably well, but several batch programs did not, and there was
not enough time in the day to finish the cycle. Plan B went into effect, and the
existing system was reactivated. After frustration levels began to decline, a
new target date was set for late January 1980.

In situations such as the one just described, a certain amount of animosity
builds up at all levels of an organization; a we/they mentality can develop.
November and December 1979 were spent regrouping and getting ready for
the January target date. Tempers subsided, and recriminations and accusa
tions died down. This situation had become so tense that cooperation between
divisional and corporate personnel was superficial and rather grudgingly
achieved. Because of the tension, hard work, long hours, second guessing,
and misunderstandings, individuals on each side were working in survival
mode.

In January 1980, however, a second attempt worked. It took all of Febru
ary and most of March for the system to settle down, but it eventually did. By
June 1980, it was actually performing better in some respects than had origi
nally been anticipated.

WHAT WAS LEARNED

In the four years since data base and data base management systems were
proposed, experience has provided some important insights. The project has
also shown that some of the concerns about data base technology receive far
too much attention at the expense of other important issues.

Planning Considerations. There is a great deal of discussion and litera
ture dealing with the relative merits of data bases, hierarchical structures, and
networks. Much of this is esoteric and primarily for the enlightenment of
those who can understand it; it actually has little significance in the real-world
situations in which DBMSs are found. Other factors, however, are of greater
significance.

The advantages of one DBMS over another is another subject that is
terribly overworked. The applications for the proposed DBMS and the operat
ing environment into which it must be integrated, for example, represent two
much more important considerations in selecting a DBMS. Discussing the
relative merits of TOTAL, IMS/vS, SYSTEM 2000, and IDMS, without
having a particular application in mind, is somewhat like discussing the
relative athletic capabilities of Reggie Jackson, Johnny Bench, Steve Carlton,
and Pete Rose. All are recognized and proven, but the application to which
they are assigned is an important evaluation factor.

Staffing and Training. Once IMS/VS had been selected as the appropriate
DBMS, the first concern was that of staffmg. Skilled people of three types

106 DATA BASE MANAGEMENT

were needed: systems software technicians, file and data base designers, and
application programmers. The latter, as it turned out, required less training
than anticipated and were productive within a couple of months. An IMS/VS
Concepts and Facilities course, a three-day course called Application- Pro
gramming in an IMS/vS DB Environment, a two-day course called Applica
tion Programming in an IMS/vS DC environment, and another two-day
course in IMS/vS Message Fonnat Services (MFS) were all that were neces
sary for application programmer training. These four courses offered an over
view of the concept and facilities of IMS/vS; illustrated how to write Data
Language/I (DLlI) instructions that were integrated into PLlI, COBOL, or
Assembler language programs; and taught how to prepare display formats for
mM 3270 CRT terminals. (DLlI, the IMS/vS I/O language, facilitates the
transfer of data elements, called segments, between auxiliary storage devices
and computer memory. MFS, a utility feature of IMS/vS, acts as an editor/
interface between messages appearing in application programs and displays
appearing on terminal devices.) Within two months of taking these courses
and after using what they had been taught, programmers were producing
executable IMS/vS application programs.

The data base administrators and systems programmers eventually at
tended these courses, also. The DBAs took a few more courses initially and
the system programmers took several more over an I8-month period so that
training was accomplished both in the classroom and on the job. Members of
both groups functioned on the job while they were learning. The courses
taught the practical realities of using IMS/vS, the DDID, and several other
data base management productivity aids and support products and their inte
gration into the daily data center operation. When individuals were added to
the staffs, they received the same training as did their predecessors.

Job Functions. Sketchy job descriptions had been written initially but
only because the personnel department required them so as to determine job
levels and salaries. Over time, however, these jobs began to include specific
functions. The application programmer job description was affected the least;
it was modified slightly to require DL/I and MFS experience. Other job
descriptions were completely rewritten. For example, the DBA function in
cluded experience in:

• DLiI and MFS
• File and data base design
• Data base definition (DBD)
• Program specification block (PSB)
• Data dictionary/directory (DD/D)
• Data base system standards
• Data base system product evaluation
• Generation of DBD and PSB control blocks
• Data base reorganization
• Interface between divisional and corporate personnel
• Data base design review

IMSNS CASE STUDY 107

As the DBAs developed, they gained a wide range of technical and political
skills.

The data base systems software technicians evolved into a highly valuable
group of individuals. Their skills included:

• Data base system generations (GENS)
• Troubleshooting
• Supporting related data base system products
• Perfonnance measuring and tuning
• Interfacing with data center operations
• Answering technical questions from various sources
• Assisting with application implementation
• Maintaining data base integrity (recovery and restart procedures)
• Assisting with data base reorganization
• Assisting with data base backup operations
• Enhancing data base systems software
• Handling the telecommunications software interface
• Handling the security software interface
• Handling the operating systems software interface

The corporate DBAs and the data base system software technicians serve in
support roles. The DBA primarily functions in the design and development
stages of a project; this role diminishes, however, as implementation ap
proaches. The role of the system software technician, on the other hand, is
minor during design and development; his or her involvement increases dur
ing implementation. Note that individuals from both groups belonged to the
several project teams that were functioning during a given time interval.

Standards. Because a cooperative effort between the two groups was
required, a set of internal data base and data dictionary standards was formu
lated. These standards were issued piecemeal but were ultimately published,
about a year after IMS/vS was installed, as an internal standards manual.
This manual is periodically modified; Table 10-2 shows the manual's table of
contents.

Installation. DBAs and systems programmers had to address other situa
tions that arose after the commitment to DBMS. These situations, which are
described in the following paragraphs, are concerned with the installation of
IMS/vS, the DDID, and related products in the corporate data order de
scribed earlier.

Integrating a DBMS into an existing environment probably involves in
stalling at least two generations: one for testing and development work, one
for production. In organizations having multiple divisional users of the
DBMS, more than two generations are needed if the existing resource billing
system is unable to separate the various users.

As DBMS applications are developed, several sets of fIles or data bases
may be needed (e.g., a complete set for the production systems, a separate

108 DATA BASE MANAGEMENT

Table 10-2. Standards Manual Table of Contents

Section Description
1. Naming Conventions Complete naming convention

requirements for alllMS applications.
2. DUI Programming Techniques DUI coding standards and guidelines for

better performance of programs under
IMS.

3. IMS PU1 Programming Techniques PU1 coding standards and guidelines to
be used for alllMS PU1 applications.

4. MFS Standards/Guidelines Message Formatting Services standards
and guidelines required to efficiently
map IMS messages with devices.

5. Library Organization and Application Complete list of test and production
Procedures library names to be used for alllMS

applications; IMS application PROCs
for divisional use.

6. User Application Code in IMS Control Information about user-written routines
Region for data base maintenance and

available .IMS data communications
exits, as well as standards for using
each feature.

7. Broadcasting Messages and IMS
System Commands for Divisional Use

Identification of broadcast messages
and switches and a list of commands
that can be entered by divisional users
ofiMS.

8. DLIERROR User documentation for the IMS Status
Code Analyzer, DLIERROR, which
must be included in alllMS programs
developed in or for the organization.

9. System Trouble Sheets The Data Center System Trouble Sheet
forms and instructions for reporting
IMS computer system problems.

10. System Resource and Transaction The data center forms and instructions
Security Forms needed to transmit system resources

and transaction security requirements
to the IMS software staff.

11. Data Dictionary/Directory Standards Forms and instructions designed for use
by the systems/programming user or
divisional DBA to define data to the
DO/D. AIlIMS-related information to be
defined must be entered into the
DO/D.

12. Glossary of Standard Abbreviations of Construction of standard abbreviated
Business Keywords for PU1 Data keywords (commonly used business
Names terms), along with standards and rules

for constructing PU1 data names for

13. Sparse Index Routines and Customized
use in IMS applications.

Divisional testing and implementation
Randomizer Routines procedures for IMS Sparse Index

routines, as well as customized IMS
Randomizer routines.

14. IMS Maintenance Procedures Information concerning data dictionary
updates, Division News Data Sets,
ACBGEN schedules, IMS production
maintenance checklist form, batch to
online test steps, and online test to
production steps.

15. IMS Restart/Recovery Applications requirements to take
advantage of the IMS backup and

16. Unusual Abend Conditions and
recovery s(stem.

Collection 0 unusual abend conditions
Inefficient Processing encountered using IMS; also,

inefficient processing techniques to
avoid.

!MSNS CASE STUDY 109

subset for systems or volume testing, another subset for batch and unit test
ing). Careful attention should be given to direct-access storage device
(DASD) estimates. Experience has shown that DASD requirements are often
underestimated.

DBMSs in a data center environment either use or interface with the
facilities of other software that is often equally if not more complex than the
DBMS software itself. For example, in an IBM equipment configuration,
interfaces must be established to such products as VSAM and VTAM. IMS/
VS also uses the facilities of MVS (a sophisticated operating system). Some
knowledge of each of these facilities is necessary for the DBAs and systems
software technicians.

In addition to the support for the DBMS package itself, support is required
for other related products. Included in this group is the already mentioned
DO/D. There may also be a requirement for a report writer like MCAUTO's
MRCS. Some users request any package that appears to facilitate their appli
cations development work. Batch Terminal Simulator (BTS) is a package that
tests online programs in a batch environment. IMSMAP is a productivity aid
that produces graphic representations of logical data base schemas and sub
schemas. DB PROTOTYPE aids in testing various data base structures to
evaluate alternatives. These are just a few of many.

Within IMS/VS-DC there is a feature known as the master terminal. A
master terminal operator (MTO) who is, from an operations perspective, the
owner/caretaker of the systems is required. This function is staffed with an
individual who can respond to unexpected situations. This person must also
act as the interpersonal communications interface for all IMS/vS users. The
MTO is the first line of defense. When something goes wrong, the MTO is
generally the first person on the corporate side to know about it, either
through a message on the master terminal or a phone call from a user.

There are some aspects of IMS/vS where timing is very important. Al
though they seem almost too obvious to state, they are sometimes overlooked
by overly optimistic application developers. Recoveries of large-scale data
bases, for example, can be elaborate and time-consuming. The longest outage
during the last four years was a recovery situation that took three days from
the occurrence of the error to the point of restoring the data bases to usable
condition. Although the system had indicated a probable error, it was decided
to run a day's work online. When checked at end of day, it was found that a
major data base had been damaged. Several hours were spent planning recov
ery, several more executing it, and several more checking the results. That
was an extreme case, however; most recoveries are completed within min
utes, while some take an hour or two.

Reorganization of a large-scale data base often takes several hours. In
theory, reorganization should not be required often if data bases are designed
properly. In practice, however, parameters change, users think of new ideas,
and the data bases, as designed, are no longer adequate. Thus, reorganization
should be anticipated. For applications requiring most of a 20-hour day to
process, reorganizations must be scheduled on weekends.

110 DATABASE MANAGEMENT

Data bases must be backed up periodically. A dynamic data base, one that
is updated frequently, should be backed up daily. Although this is time
consuming, it must be planned as part of the daily schedule. Waiting longer
saves daily processing time, but the trade-off is that recovery, when needed,
may be substantially longer and more complex.

People are not machines. Every attempt should be made to spread respon
sibilities for critical tasks among as many individuals as possible. Too much
responsibility can cause individuals to make mistakes, become ill, or resign.
Each of these consequences is undesirable.

CONCLUSION

IMSIVS is a complex system, especially when run as a multiple-user
system in a multiple-machine, multiple-user environment. Implementation
time, amount of training, training costs, and so on often exceed original
estimates.

Some generalizations can be gleaned from the experience of IMSIVS im
plementation. Speed of retrieval is traded for simplicity of function. Retrieval
is quick, but file maintenance can be appreciably slower than with conven
tional files. Although data redundancy is reduced, processing complexity is
increased (this is the old space/processing trade-off). Data independence, the
isolation of data files from programs, creates more productive application
programming and less complex maintenance of both files and programs. The
primary trade-off, however, is the creation of a whole new technical
specialization-data base administration-with a high . price tag.

