UNIX"
SYSTEM V
Release 4

System Files

and Devices
Reference Manual

for

Motorola Processors

@ MOTOROLA




UNIX®
SYSTEM V
Release 4

System Files

and Devices
Reference Manual

" Motorola Processors [
[} ] [] [ ] ] [ ] [}

@ MOTOROLA



© COPYRIGHT MOTOROLA 1993
ALL RIGHTS RESERVED
Printed in the United States of America.

© Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990 AT&T
© Copyright 1991, 1992 UNIX System Laboratories, Inc.
ALL RIGHTS RESERVED
Printed in the United States of America.

= Published by PTR Prentice-Hall, Inc.
= A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

OWNERSHIP
Portions of this documentation product(s) were contributed and copyrighted by Motorola, Inc.

REPRODUCTION/USE/DISCLOSURE
This documentation is copyrighted material. Making unauthorized copies is prohibited by law. No
part of this material may be reproduced or copied in man- or machine-readable form in any tangible
medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic,
mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission
of Motorola, Inc.

NOTICE REGARDING DISCLAIMER OF WARRANTIES
The following does not apply where such provisions are inconsistent with local law; some states do not
allow disclaimers of express or implied warranties in certain transactions - therefore, this statement
may not apply to you. UNLESS OTHERWISE PROVIDED BY WRITTEN AGREEMENT WITH
MOTOROLA, INC., THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

ERRORS/CHANGES (MOTOROLA)
While reasonable efforts have been made to assure the accuracy of this documentation, Motorola, Inc.
assumes no liability resulting from any omissions in this documentation or from the use of the
information contained therein. Motorola reserves the right to revise this documentation and to make
changes from time to time in the content hereof without obligation to notify any person of such revision
or changes.

10987654321

ISBN 0-13-035874-b



IMPORTANT NOTE TO USERS (USL)
While every effort has been made to ensure the accuracy of all information in this documentation, UNIX
System Laboratories, Inc. (USL) assumes no liabilities to any party for any loss or damage caused by
errors or omissions or by statements of any kind in this documentation, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence, accident,
or any other cause. USL further assumes no liability arising out of the application or use of any product
or system described herein, nor any liability for incidental or consequential damages arising from the
use of this documentation. USL disclaims all warranties regarding the information contained herein,
whether expressed, implied, or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of any license to make, use or sell equipment constructed in accordance with
such descriptions. USL reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design.

PRODUCT AVAILABILITY
It is possible that this publication may contain reference to, or information about Motorola products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that Motorola intends to announce such
Motorola products, programming, or services in your country.

GNU C COMPILER
The GNU C compiler is a product of the Free Software Foundation, Inc. and is subject to the GNU
General Public License as published by the Free Software Foundation. You should have received a
copy of the GNU General Public License along with the GNU C compiler product; if not, contact:

Free Software Foundation

675 Massachusetts Ave.
Cambridge, Massachusetts 02139
US.A.

THIS PROGRAM IS PROVIDED WITHOUT ANY WARRANTY, INCLUDING THE IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Under the General Public License for GNU C you have the freedom to distribute copies of GNU C,
obtain source code if you want it, change the software, or use pieces of it in new free programs.

The GNU C compiler has been modified by Motorola, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
()(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
MOTOROLA, INC.
Computer Group
2900 South Diablo Way
Tempe, Arizona 85282



TRADEMARKS
Motorola and the Motorola logo are registered trademarks of Motorola, Inc. in the U.S.A. and in other
countries.
DeltaPRO, DeltaSeries, DeltaSERVER, M88000, SYSTEM V /68, and SYSTEM V /88 are trademarks of
Motorola, Inc. in the U.S.A.
All other marks are trademarks or registered trademarks of their respective holders.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.
OSF/Motif is a trademark of The Open Software Foundation Inc.

GNU C is a trademark of the Free Software Foundation.



Table of Contents

Introduction

File Formats(4) and Special Files(7)

a.out(4)

ELF (Executable and Linking Format) files

acct(4) ........
admin(4) ...

per-process accounting file format
installation defaults file

aliases, addresses, forward (4)

addresses and aliases for sendmail

archive file format

Address Resolution Protocol

.boot parameter data base

....CDROM device support

..... compatible versions file

.copyright information file

core image file

software dependencies files

script for makedev

format of directories

........ format of s5 directories

..... format of ufs directories

disk support

alp(7) Algorithm Pool management module
ar(4) coeeeeveerenne

ATCHIVES (4) 1ovveeerreecrerrceeeiirieiessessssesaesesessesseseses device header file
ARP(7) ...

asyhdlc(7) Asynchronous HDLC protocol module
binarsys(4) remote system information for the ckbinarsys command
bootparams(4)

cdrom(7)

clone(7) .. open any major/minor device pair on a STREAMS driver
compver(4)

connld (7) line discipline for unique stream connections
cons1x7(7) hardware specific console driver for the MVME1X7 family
console(7) STREAMS-based console interface
copyright(4)

core(4) ...

depend (4)

device-map (4)

dfstab(4) file containing commands for sharing resources
dir (generic) (4)

dir (s5)(4)

dir (ufs)(4)

dirent(4) file system independent directory entry
disk(7) ..

dlce(7) Data Link / Common Environment interface
€1XT7(7) weverereereirirnieieistsaserenanns .MVME1X7 Local Area Network Interface
/stand/edt_data(4) ... Equipped Device Table (EDT) Data File
enetlx7(7) MVME1X7 Local Area Network Interface

.environ, .pref, .variables(4) ...

envmon(7)

user-preference variable files for FACE

Environment Monitor Board driver

ethers(4)

Ethernet address to hostname database or domain

/dev/fd(4)
filehdr(4)

file descriptor files
file header for common object files

Table of Contents



Table of Contents

filesystem (7) file system organization
floppy (7) -floppy support
fs (generic) (4) format of a file system volume
£S5 (DES) () euevrvrereereirirereirieeieenesietsesese et se s stssstssssessessasssssssassssns format of the bfs file system volume
fs (s5)(4) ettt ettt aeaen format of s5 file system volume
fs (ufs)(4) ceeeevenenee . reereeeebseneiens format of ufs file system volume
fspec(4) covvuvevnnnen. format specification in text files
fstypes(4) ....... file that registers distributed file system packages
group (4) group file
holidays (4) holiday file
hosts(4) ..... ettt sttt teaes host name data base
hosts.equiv, .Thosts (4N) .....cccovvumrverveivrrnniircisineninns .trusted hosts by system and by user
TICMP(7) et sssessesessenessssssssanss .. Internet Control Message Protocol
if ignore (4) data base of ignored network interfaces
inet(7) . Internet protocol family
inetd.conf(4) . Internet servers database
inittab (4) script for init
inode (generic) (4) .....covvvveemrerrereeencinnnns reeeeeeennenens format of an inode
inode (bfs)(4) ..... .. format of a bfs i-node
inode (s5)(4) ..... format of an s5 i-node
inode (ufs)(4) . format of a ufs inode
intro(7) . introduction to special files
intro(4) introduction to file formats
IP(7) coreeeneeccieeeccinirecreeene . ettt et benene Internet Protocol
ISSUE(4) coveeeeerrerieinierereanesessesnssessssssessannes bttt et aee issue identification file
FLEE:V4 1 (74 RO hardware specific console driver for the MVME141 and MVME181/188
KBA(7) corterreeirieeinieieesie s eens generalized string translation module
Idterm(7) .............. sttt eeenes standard STREAMS terminal line discipline module
limits (4) header file for implementation-specific constants
lo(7) software loopback network interface
log(7) interface to STREAMS error logging and event tracing
loginlog(4) log of failed login attempts
Ip1x7(7) line printer device driver
m376(7) MVME376 Local Area Network Interface
mailenfg (4) .. initialization information for mail and rmail
mailsurr(4) e surrogate commands for routing and transport of mail
master(4) ... . master configuration database
mem, kKmem (7) ...cooeeeereceineerireeereeeeee s core memory
memregion(7) . . core memory by region
INNEEAD (4) oo aes mounted file system table

2 System Files and Devices Reference Manual



Table of Contents

001 (7 TP ... tape interface
IVINELOT (7) oot stessssasssssssssssseasssssssss s ssss e sass s sasessssassssssasssssssssans MVME167 CPU
MVINELBL(7) couveerrriinciriiriieiciissiessssessssessess s sssesse s ssssssesassssesssssssssssssssssssssssssans MVME181 CPU
MVINELB7(7) couvivurriirerieerneiirietcissessssesssasessessssssesssessssssesssssssssssssssssssssssssasssssssssesssans MVME187 CPU
MVINELBB(7) overiremnriiniirriniiresnsissisesmsesss s sss st sssssssse s s emsesssenasecencenconns MVME188 CPU
MVINE323(7) cevrverirreerniniciineniseisssiseessssssessssessasesessssses MVME323 disk controller (For M68K only)
mvme328(7) ..MVME328 SCSI Host Adapter
mvme332xt(7) ..... MVME332XT communication controller STREAMS driver
mvme350(7) MVME350 cartridge tape controller (For M68K only)
NELCONTIG(4) wuvverrrrerritietiinis s network configuration database
netmasks(4) network mask data base
NEEIC(4) oottt en file for ftp remote login data
networks(4) network name data base
null(7) .. . the null file
nvram(7) general non-volatile RAM driver for SYSTEM V
ott(4) ... FACE object architecture information
passthru(7) passthru support
passwd(4) ...password file
pathalias(4) ...... . . ahas file for FACE
PCKE(7) ettt e STREAMS Packet Mode module
pkginfo(4) ... package characteristics file
pkgmap (4) package contents description file
pkgquest(4) package question file
pnch(4) file format for card images
pprp(7) .. Point-to-Point Protocol (PPP)
ppphosts(4) Point-to-Point Protocol Host name database
prf(7) ... operating system profiler
/proc(4) process file system
PIOfile(4) e ...setting up an environment at login time
protocols(4) protocol name data base
prototype(4) package information file
ptem(7) STREAMS Pseudo Terminal Emulation module
publickey (4) .......cc....... public key database
resolv.conf(4) configuration file for name server
rfmaster(4N) Remote File Sharing name server master file
routing(4) system support for packet network routing
rpc(4) ... rpc program number data base
rt_dptbl(4) real-time dispatcher parameter table
SA(7) devices administered by System Administration
sad (7) STREAMS Administrative Driver

Table of Contents



Table of Contents

SCCSTILE(4) wvviveeeeereueeeeereeeee et stseetet e tese s s e s e s se s e e s et aese e e e se e e sesesesaneassanencn format of SCCS file
scsilx7(7) SCSI1x7 SCSI host adapter
SEIVICES(4) wovrvvecrerrvreeureeeenersesenesenseeassenees .Internet services and aliases
shadow (4) shadow password file
sharetab (4) . ...shared file system table
SLIP(7) Serial Line IP (SLIP) Protocol
snmpd.comm(4) ... SNMP communities file
snmpd.conf(4) ......... SNMP configuration file
snmpd.trap (4) SNMP trap communities file
sockio(7) ioctls that operate directly on sockets
SPACE(4) v e disk space requirement file
stat(4) data returned by stat system call
SEICE(AN) oot en e STREAMS Configuration File for STREAMS TCP/IP
streamio (7) STREAMS ioctl commands
strftime(4) language specific strings
sxt(7) pseudo-device driver
SYSlOg.CONE(4) wouveereicinirc e, configuration file for syslogd system log daemon
system(4). system configuration information file
BAPE(7) covrivrrieirir b tape support
TCP(7) Internet Transmission Control Protocol
term(4) ..... format of compiled term file
terminfo (4) ... terminal capability data base
termio(7) general terminal interface
TEITNHOX (7) cevvevenirinrereinisreaenestsseseseesnesesesessesesessssessssseseseseseses extended general terminal interface

ticlts, ticots, ticotsord (7)

timednet.conf (4)

..... loopback transport providers
time daemon network configuration file

timezone (4)

timod (7)

set default system time zone
........ Transport Interface cooperating STREAMS module

tirdwr(7)

Transport Interface read /write interface STREAMS module

ts_dptbl(4)
ttcompat(7)

............................ time-sharing dispatcher parameter table
V7,4BSD and XENIX STREAMS compatibility module

tty (7) ...
ttydefs(4) .

...controlling terminal interface
file contains terminal line settings information for ttymon

ttysrch(4)
UDP(7)

directory search list for ttyname
Internet User Datagram Protocol

unistd (4)

.............. header file for symbolic constants

updaters(4) ..o

utmp, wtmp (4)

configuration file for Network Information Service (NIS) updating
utmp and wtmp entry formats

utmpx, wtmpx (4)
vistab(4)

utmpx and wtmpx entry formats
....... table of file system defaults

System Files and Devices Reference Manual



Table of Contents

ypfiles(4) the Network Information Service (NIS) database and directory structure
ZELO(7) wovreeuerriencrniereresieeaeieieeseeseseesens e e et st nen source of zeroes

Table of Contents 5






Introduction

Reference Manuals

Description

Organization

Manual pages provide technical reference information about
the interfaces and execution behavior of each UNIX SYSTEM
V Release 4 component.

The type of component being described is indicated by the
numerical section suffix. Within each section there may be
subsections indicated by a single letter. Related sections are
organized into reference manuals and alphabetized by name.
The following table shows the contents of the reference
manuals and their section suffixes.

Title and Contents Sections

Commands Reference Manual Volumes 1 and 2
General-purpose user commands 1
Basic networking commands 1C
Form and Menu Language Interpreter (FMLI) 1F
System maintenance commands M
Enhanced networking commands 1IN
Miscellaneous reference information related to 5

commands.

System Calls and Library Functions

Reference Manual
System calls 2
BSD system compatibility library 3
Standard C library 3C
Executable and linking format library 3E

Introduction

Continued on next page



Reference Manuals, Continued

Contents Sections
System Calls and Library Functions Reference Manual (continued)
General-purpose library 3G
Math library 3M
Networking library 3N
Standard I/0O library 35
Specialized library 3X

Miscellaneous reference information related to programming. | 5

System Files and Devices Reference Manual
System file formats 4
Special files (devices) 7

Device Driver Interface/Driver - Kernel Interface Reference Manual

Driver Data Definitions D1

Driver Entry Point Routines D2

Kernel Utility Routines D3

Kernel Data Structures D4

Kernel Defines D5
Master Permuted Index

Permuted index of all manual pages All

2 Introduction



Retitled Reference Manuals

Background  Four reference manuals for this release have been
restructured and/or retitled to more accurately describe their

contents. The following table shows these changes.

Previous Titles Current Titles Current
Sections
User’s Reference Manual/ Commands Reference Manual 1,1C, 1F,
System Administrator’s (Volume 1,a-1) 1M, 1N,
Reference Manual (Volume 2, m - z) 5
(Commands a -1)
(Commands m - z)
Programmer’s Reference Manual: System Calls and Library Functions 2,3,3C,
Operating System API Reference Manual 3E, 3G,
Part 1: Programming Commands 3M, 3N,
and System Calls 3S,3X,5
Part 2: Functions
System Files and Devices Reference | System Files and Devices Reference 4,7
Manual Manual (section 5 removed)
Permuted Index Master Permuted Index All
Introduction 3




Manual Page Format

Main All UNIX manual pages have a common format. The
headings following main headings are used:
used
Heading Section Contents

NAME Name of the component and brief statement of its purpose

SYNOPSIS Syntax of the component

DESCRIPTION | General discussion of functionality

EXAMPLE Example(s) of usage

FILES File names built into the component

SEE ALSO Cross-references to related components

Note: Not all manual pages use all headings.

4 Introduction



Typographical Conventions

Style and The following typographical and formatting conventions are
conventions ~ used.
used
Convention Indicates ...
Constant width a literal that should be entered just as it
appears
Italic a substitutable argument
Square brackets around an argu- | an optional argument
ment [ ]
name or file a file name
Ellipses ... previous argument may be repeated
Argument beginning with a flag argument
- minus
+ plus
= equal

Introduction 5



Permuted Index

Definition A permuted index is an alphabetical listing of all the

keywords in the NAME line of a manual page.

Certain common words are not considered keywords and are
not recognized. In the example below, the common words of,
to, and the are not recognized.

Example The NAME line of the adjtime(2) manual page appears

below.

adjtime(2)

NAME
adjtime- correct the time to allow synchronization of the system clock

adjtime(2)

The adjtime(2) entries from the permuted index are shown
below. These entries appear in the a, ¢, and s sections of the
permuted index respectively.

Remainder of NAME line Keyword and NAME line Manual
Page

synchronization of the system/  adjtime correct the time to allow. ... .. adjtime(2)
clock adjtime correct the time to  allow synchronization of the system. .. adjtime(2)
allow synchronization of the system clock adjtime correct the timeto. .. adjtime(2)
synchronization of the/ adjtime correct the timetoallow.............. adjtime(2)
adjtime correct the time to allow  synchronization of the system clock.. .. adjtime(2)

to allow synchronization of the  system clock / correct the time. ... .. adjtime(2)

Continued on next page

Introduction




Permuted Index, Continued

How a
permuted
index is
constructed

Identification
of entries

Master
Permuted
Index

Introduction

The center column lists each keyword followed by all or a
portion of the NAME line, as space permits. The left column
lists the remainder of the NAME line. The right column
indicates the manual page being referenced.

Omitted words are indicated with a slash ( /).

Manual page entries are identified with their section suffixes
shown in parentheses.

Example: man(1) and man(5)

Section suffixes eliminate confusion caused by duplication of
names among the sections.

Each reference manual has a permuted index for the manual
pages contained in that book.

The Master Permuted Index covers all the manual pages of this
documentation library.




Request for Comment

Description

Online

versions
of RFCs

A Request for Comment (RFC) is a document that describes
some aspect of networking technology. The RFCs cited in the
SEE ALSO section of these manual pages are available in
hard copy for a small fee from:

Network Information System Center
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025

415-859-6387 fax: 415-859-6028
emailinisc@nisc.sri.com

Online versions of the RFCs are available by ftp from
nic.ddn.mil.To retrieve an on-line RFC, do the following:

Step

Action

1

Connect to the RFC host by entering:

ftp nic.ddn.mil
user name: anonymous
password: guest

Retrieve the RFC by entering;:
get rfc/rfcnum

where num is the number of the RFC

Example:
get rfc:rfcll71.txt

End the ftp session by entering:

quit

Introduction




a.out(4) a.out(4)

NAME

a.out - ELF (Executable and Linking Format) files

SYNOPSIS

#include <elf.h>

DESCRIPTION

10/92

The file name a.out is the default output file name from the link editor, 1d(1). The
link editor will make an a.out executable if there were no errors in linking. The
output file of the assembler, as(l), also follows the format of the a.out file
although its default file name is different.

Programs that manipulate ELF files may use the library that e1£(3E) describes. An
overview of the file format follows. For more complete information, see the refer-
ences given below.

Linking View Execution View
ELF header ELF header
Program header table Program header table

optional
Sec.t on 1 Segment 1
Sec.tl'o.n n Segment 2
Section header table Section header table
optional

An ELF header resides at the beginning and holds a “road map’’ describing the
file’s organization. Sections hold the bulk of object file information for the linking
view: instructions, data, symbol table, relocation information, and so on. Segments
hold the object file information for the program execution view. As shown, a seg-
ment may contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program
header table; relocatable files do not need one. A section header table contains
information describing the file’s sections. Every section has an entry in the table;
each entry gives information such as the section name, the section size, and so on.
Files used during linking must have a section header table; other object files may or
may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has
a fixed position in the file.

When an a. out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitial-
ized, the latter actually being initialized to all 0’s), and a stack. The text segment is
not writable by the program; if other processes are executing the same a.out file,
the processes will share a single text segment.

Page 1



a.out(4) a.out(4)

The data segment starts at the next maximal page boundary past the last text
address. (If the system supports more than one page size, the “‘maximal page” is
the largest supported size.) When the process image is created, the part of the file
holding the end of text and the beginning of data may appear twice. The dupli-
cated chunk of text that appears at the beginning of data is never executed; it is
duplicated so that the operating system may bring in pieces of the file in multiples
of the actual page size without having to realign the beginning of the data section
to a page boundary. Therefore, the first data address is the sum of the next maxi-
mal page boundary past the end of text plus the remainder of the last text address
divided by the maximal page size. If the last text address is a multiple of the maxi-
mal page size, no duplication is necessary. The stack is automatically extended as
required. The data segment is extended as requested by the brk(2) system call.

SEE ALSO

Page 2

as(1), cc(1), 1d(1), brk(2), e1 £(3E).

10/92



acct(4) acct(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/types.h>
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form defined by
sys/acct .h, whose contents are:

typedef ushort comp_t; /% "floating point" */
/% 13-bit fraction, 3-bit exponent #*/

struct acct

{
char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
uid_t ac_uid; /* Accounting user ID */
gid_t ac_gid; /* Accounting group ID */
dev_t ac_tty; /* control typewriter */
time_t ac_btime; /* Beginning time */
comp_t ac_utime; /* acctng user time in clock ticks */
comp_t ac_stime; /% acctng system time in clock ticks */
comp_t ac_etime; /* acctng elapsed time in clock ticks #*/
comp_t ac_mem; /% memory usage in clicks */
comp_t ac_io; /* chars trnsfrd by read/write */
comp_t ac_rw; /% number of block reads/writeg */
char ac_comm[8]; /* command name */
Yi
extern struct acct acctbuf;
extern struct vnode *acctp; /* vnode of accounting file */
#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /* record type: 00 = acct */
#define AEXPND 040 /*Expanded Record Type*/

In ac_flag, the AFORK flag is turned on by each fork and turned off by an exec.
The ac_comm field is inherited from the parent process and is reset by any exec.
Each time the system charges the process with a clock tick, it also adds to ac_mem
the current process size, computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem/ (ac_stime+ac_utime) can be viewed as an approximation
to the mean process size, as modified by text sharing.

10/92 Page 1



acct (4)

acct(4)

The structure tacct, which resides with the source files of the accounting com-
mands, represents the total accounting format used by the various accounting com-

/*
/*
/*
/%
/*
/%
/*
/%
/%
/*

userid */

login name */

cum. cpu time, p/np (mins) */
cum kcore-minutes, p/np */

cum. connect time, p/np, mins */
cum. disk usage */

count of processes */

count of login sessions */

count of disk samples */

fee for special services */

mands:
/%
* total accounting (for acct period), also for day
*/
struct tacct {
uid_t ta_uid;
char ta_name(8];
float ta_cpul2];
float ta_kcore[2];
float ta_con(2];
float ta_du;
long ta_pc;
unsigned short ta_sc;
unsigned short ta_dc;
unsigned short ta_fee;
}i
SEE ALSO

NOTES

Page 2

acct(1M), acctcom(l), acct(2), exec(2), fork(2),

The ac_mem value for a short-lived command gives little information about the
actual size of the command, because ac_mem may be incremented while a different
command (for example, the shell) is being executed by the process.

10/92



admin (4) (Essential Utilities) admin(4)

NAME
admin - installation defaults file

DESCRIPTION
admin is a generic name for an ASCII file that defines default installation actions by
assigning values to installation parameters. For example, it allows administrators
to define how to proceed when the package being installed already exits on the sys-
tem.

/var/sadm/install/admin/default is the default admin file delivered with Sys-
tem V Release 4.0. The default file is not writable, so to assign values different from
this file, create a new adnmin file. There are no naming restrictions for admin files.
Name the file when installing a package with the -a option of pkgadd. If the -a
option is not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the
following form:

param=value

Eleven parameters can be defined in an admin file. A file is not required to assign
values to all eleven parameters. If a value is not assigned, pkgadd asks the installer
how to proceed.

The eleven parameters and their possible values are shown below except as noted.
They may be specified in any order. Any of these parameters can be assigned the
value ask, which means that if the situation occurs the installer is notified and
asked to supply instructions at that time.

basedir Indicates the base directory where relocatable packages are to be
installed. The value may contain $SPKGINST to indicate a base direc-
tory that is to be a function of the package instance.

mail Defines a list of users to whom mail should be sent following installa-
tion of a package. If the list is empty, no mail is sent. If the parameter
is not present in the admin file, the default value of root is used. The
ask value cannot be used with this parameter.

runlevel Indicates resolution if the run level is not correct for the installation or
removal of a package. Options are:

nocheck Do not check for run level.
quit Abort installation if run level is not met.

conflict  Specifies what to do if an installation expects to overwrite a previ-
ously installed file, thus creating a conflict between packages.
Options are:

nocheck Do not check for conflict; files in conflict will be
overwritten.
quit Abort installation if conflict is detected.

nochange  Override installation of conflicting files; they will not be
installed.

10/92 Page 1



admin (4)

Page 2

setuid

action

partial

instance

idepend

list_files

rdepend

(Essential Utilities) admin (4)

Checks for executables which will have setuid or setgid bits enabled
after installation. Options are:

nocheck Do not check for setuid executables.
quit Abort installation if setuid processes are detected.

nochange  Override installation of setuid processes; processes will
be installed without setuid bits enabled.

Determines if action scripts provided by package developers contain
possible security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may have a negative
security impact.

Checks to see if a version of the package is already partially installed

on the system. Options are:

nocheck Do not check for a partially installed package.

quit Abort installation if a partially installed package exists.

Determines how to handle installation if a previous version of the
package (including a partially installed instance) already exists.
Options are:

quit Exit without installing if an instance of the package
already exists (does not overwrite existing packages).

overwrite Overwrite an existing package if only one instance
exists. If there is more than one instance, but only one
has the same architecture, it overwrites that instance.
Otherwise, the installer is prompted with existing
instances and asked which to overwrite.

unique Do not overwrite an existing instance of a package.
Instead, a new instance of the package is created. The
new instance will be assigned the next available
instance identifier.

Controls resolution if other packages depend on the one to be
installed. Options are:

nocheck Do not check package dependencies.
quit Abort installation if package dependencies are not met.

Controls whether files are listed during processing. Options are:

nocheck Do not list files during processing. Any other value
causes files to be listed.

Controls resolution if other packages depend on the one to be
removed. Options are:

10/92



admin (4) (Essential Utilities) admin (4)

nocheck Do not check package dependencies.
quit Abort removal if package dependencies are not met.
space Controls resolution if disk space requirements for package are not

met. Options are:

nocheck Do not check space requirements (installation fails if it
runs out of space).

quit Abort installation if space requirements are not met.

NOTES
The value ask should not be defined in an admin file that will be used for non-
interactive installation (since by definition, there is no installer interaction). Doing
so causes installation to fail when input is needed.

EXAMPLE
basedir=default
runlevel=quit
conflict=quit
setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit

10/92 Page 3



aliases (4) (BSD Compatibility Package) aliases (4)

NAME

aliases, addresses, forward - addresses and aliases for sendmail
SYNOPSIS

/usr/ucblib/aliases

/usr/ucblib/aliases.dir

/usr/ucblib/aliases.pag

~/ . forward
DESCRIPTION
These files contain mail addresses or aliases, recognized by sendmail, for the local
host:
/etc/passwd Mail addresses (usernames) of local users.

/usr/ucblib/aliases
Aliases for the local host, in ASCII format. This file can be
edited to add, update, or delete local mail aliases.

/usr/ucblib/aliases. { dir , pag}
The aliasing information from /usr/ucblib/aliases, in
binary, dom format for use by sendmail. The program,
newaliases, maintains these files.

"/ .forward Addresses to which a user's mail is forwarded (see
Automatic Forwarding, below).

In addition, the Network Information Service (NIS) aliases map mail.aliases contains
addresses and aliases available for use across the network.

Addresses
As distributed, sendmail supports the following types of addresses:

Local Usernames
username
Each local username is listed in the local host’s /etc/passwd file.
Local Filenames
pathname
Messages addressed to the absolute pathname of a file are appended to that file.
Commands
| command
If the first character of the address is a vertical bar, (| ), sendmail pipes the mes-
sage to the standard input of the command the bar precedes.
DARPA-standard Addresses
username@domain

If domain does not contain any ‘.” (dots), then it is interpreted as the name of a host
in the current domain. Otherwise, the message is passed to a mailhost that deter-
mines how to get to the specified domain. Domains are divided into subdomains
separated by dots, with the top-level domain on the right. Top-level domains
include:

Commercial organizations.

10/92 Page 1



aliases(4) (BSD Compatibility Package) aliases (4)

Educational organizations.
Government organizations.
Military organizations.
For example, the full address of John Smith could be:
js@jsmachine.Podunk-U.EDU
if he uses the machine named jsmachine at Podunk University.

uucp Addresses
... [host ! 1 host | username

These are sometimes mistakenly referred to as “Usenet” addresses. uucp provides
links to numerous sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the sendmail
configuration file. See the sendmail(lM) for details. Standard addresses are
recommended.

Aliases
Local Aliases
/usr/ucblib/aliases is formatted as a series of lines of the form

aliasname : address[, address]

aliasname is the name of the alias or alias group, and address is the address of a reci-
pient in the group. Aliases can be nested. That is, an address can be the name of
another alias group. Because of the way sendmail performs mapping from upper-
case to lower-case, an address that is the name of another alias group must not con-
tain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the preced-
ing alias. Lines beginning with # are comments.

Special Aliases
An alias of the form:

owner- aliasname : address

directs error-messages resulting from mail to aliasname to address, instead of back to
the person who sent the message.

An alias of the form:
aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname
alias. This allows a private list to be maintained separately from the aliases file.

NIS Domain Aliases
Normally, the aliases file on the master NIS server is used for the mail.aliases NIS
map, which can be made available to every NIS client. Thus, the
/usr/ucblib/aliases* files on the various hosts in a network will one day be
obsolete. Domain-wide aliases should ultimately be resolved into usernames on
specific hosts. For example, if the following were in the domain-wide alias file:

Page 2 10/92



aliases (4) (BSD Compatibility Package) aliases (4)

jsmith:js@jsmachine

then any NIS client could just mail to jsmith and not have to remember the
machine and username for John Smith. If a NIS alias does not resolve to an address
with a specific host, then the name of the NIS domain is used. There should be an
alias of the domain name for a host in this case. For example, the alias:

jsmith:root

sends mail on a NIS client to root@podunk-u if the name of the NIS domain is
podunk-u.

Automatic Forwarding

When an alias (or address) is resolved to the name of a user on the local host,
sendmail checks for a .forward file, owned by the intended recipient, in that
user’s home directory, and with universal read access. This file can contain one or
more addresses or aliases as described above, each of which is sent a copy of the
user’s mail.

Care must be taken to avoid creating addressing loops in the . forward file. When
forwarding mail between machines, be sure that the destination machine does not
return the mail to the sender through the operation of any NIS aliases. Otherwise,
copies of the message may ““bounce.” Usually, the solution is to change the NIS
alias to direct mail to the proper destination.

A backslash before a username inhibits further aliasing. For instance, to invoke the
vacation program, user js creates a . forward file that contains the line:

\js, "Il/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the
vacation program.

FILES
/etc/passwd
/usr/ucblib/aliases
/. forward
SEE ALSO
newaliases(1M), sendmail(1M), vacation(1l), dom(3X), uucp(1C).
NOTES
Because of restrictions in dom a single alias cannot contain more than about 1000
characters. Nested aliases can be used to circumvent this limit.
10/92 Page 3



alp(7) alp(7)

NAME
alp - Algorithm Pool management module

DESCRIPTION

The STREAMS module alp maintains a pool of algorithms (in the form of STREAMS-
compatible subroutines) that may be used for processing STREAMS data messages.
Interfaces are defined allowing modules to request and initiate processing by any of
the algorithms maintained in the pool. It is expected to help centralize and stand-
ardize the interfaces to algorithms that now represent a proliferation of similar-
but-different STREAMS modules. Its major use is envisioned as a central registry of
available codeset conversion algorithms or other types of common data-
manipulating routines.

An algorithm pool is a registry (or pool) of available functions; in this case, routines
for performing transformations on STREAMS data messages. Registered functions
may keep information on attached users, which means that algorithms need not be
“‘stateless’’, but may maintain extensive state information related to each connec-
tion. An algorithm from the pool is called by another in-kernel module with argu-
ments that are a STREAMS data message and a unique identifier. If a message is
passed back to the caller, it is the algorithm’s output, otherwise the algorithm may
store partially convertible input until enough input is received to give back output
on a subsequent call.

This pool is one means for providing a consistent and flexible interface for codeset
conversion within STREAMS modules, especially kbd, but it may also be used to pro-
vide other services that are commonly duplicated by several modules.

The alp module contains some subroutines dealing with its (minor) role as a
module, a data definition for an algorithm list, connection and disconnection rou-
tines, and a search routine for finding registered items. The module interface incor-
porated into alp serves the purpose of providing an ioct1l interface, so that users
can find out what algorithms are registered [see alpq(1)].

The programmer of a function for use with alp provides a simple module with a
simple specified interface. The module must have an initialization routine
(xxxinit) which is called at system startup time to register itself with alp, an open
routine, and an interface routine (which actually implements the algorithm).

The registry method of dynamically building the list of available functions obviates
the need for recompiling modules or otherwise updating a list or reconfiguring
other parts of the system to accommodate additions or deletions. To install a new
function module, one merely links it with the kernel in whatever manner is stan-
dard for that system; there is no need for updating or re-configuring any other parts
of the kernel (including alp itself). The remainder of this discussion concerns the
in-kernel operation and use of the module.

Calling Sequence
An algorithm is called from the pool by first requesting a connection via the alp
connection interface. The alp module returns the function address of an interface
routine, and fills in a unique identifier (1d) for the connection. The returned func-
tion address is NULL on failure (and id is undefined). This is a sample of making a
connection to a function managed by alp:

#include <sys/alp.h>

10/92 Page 1



alp(7) alp(7)

unsigned char *name; /* algorithm name */
caddr_t id; /* uniqueid */
mblk_t *(*func) () ; /* ptr to func ret'ng ptr to mblk_t */
/ *
* mblk_t *(*alp_con(unsigned char *, caddr_t)) (mblk_t *, caddr_t);
*/

if (func = alp_con(name, (caddr_t) &id))
regular processing;

else
error processing ;

Once the connection has been made, the interface routine can be called directly by
the connecting module to process messages:

mblk_t *inp, *outp;
mblk_t *(*func) ();

outp = (*func) (mp, id);
mp = NULL;  /* mp cannot be re-used! */
if (outp)

regular processing;

If the interface routine processed the entire message, then outp is a valid pointer to
the algorithm’s output message. If, however, the routine needs more information,
or is buffering something, outp will be a null pointer. In either case, the original
message (mp) may not be subsequently accessed by the caller. The interface routine
takes charge of the message mp, and may free it or otherwise dispose of it (it may
even return the same message). The caller may pass a null message pointer to an
interface routine to cause a flush of any data being held by the routine; this is useful
for end-of-file conditions to insure that all data has been passed through. (Interface
routines must thus recognize a null message pointer and deal with it.)

Synchronization between input and output messages is not guaranteed for all items
in the pool. If one message of input does not produce one message of output, this
fact should be documented for that particular module. Many multibyte codeset
conversion algorithms, to cite one instance, buffer partial sequences, so that if a
multibyte character happens to be spread across more than one message, it may
take two or more output messages to complete translation; in this case, it is only
possible to synchronize when input message boundaries coincide with character
boundaries.

Building an Algorithm for the Pool

As mentioned, the modules managed by alp are implemented as simple
modules—not STREAMS modules—each with an initialization routine, an open rou-
tine, and a user-interface routine. The initialization routine is called when the sys-
tem is booted and prior to nearly everything else that happens at boot-time. The
routine takes no arguments and its sole purpose is to register the algorithm with
the alp module, so that it may subsequently accessed. Any other required initiali-
zation may also be performed at that time. A generic initialization routine for a
module called GEN, with prefix gen is as follows:

Page 2 10/92



alp(7)

10/92

alp(7)

#include <sys/alp.h>

static mblk_t *genfunc(); /* interface routine */

caddr_t genopen() ;

static struct algo genlogo = {
0, /* in-core */
(queue_t *)0, /* read queue */
(queue_t *)O0, /* write queue */
genfunc, /* interface routine */
genopen, /* open/close routine */
(unsigned char *)"name",
(unsigned char *) "explanation",
(struct algo *)0

}i

/*
* int alp_register (struct algo *);
*/

geninit ()

{

int rval; /* returnvalue from registrar */

rval = alp_register (&genlogo) ;
if (rval) cmn_err (CE_WARN, "“warning message") ;
}

The registration routine, alp_register takes one argument and returns zero if suc-
cessful. The argument is a pointer to the structure algo which has members (1) a
pointer to the algorithm’s entry point (in this case, the function genfunc), (2) a
pointer to its name, and (3) a pointer to a character string containing a brief expla-
nation. The name should be limited to under 16 bytes, and the explanation to
under 60 bytes, as shown in the following example. Neither the name nor the
explanation need include a newline.

It is possible for a single module to contain several different, related algorithms,
which can each be registered separately by a single init routine.

A module’s open routine is called by alp_con when a connection is first requested
by a user (that is, a module that wishes to use it). The open routine takes two argu-
ments. The first argument is an integer; if it is non-zero, the request is an “open”
request, and the second argument is unused. The function should allocate a unique
identifier and return it as a generic address pointer. If the first argument is zero, the
request is a ““close’’ request, and the second argument is the unique identifier that
was returned by a previous open request, indicating which of (potentially several)
connections is to be closed. The routine does any necessary clean-up and closes the
connection; thereafter, any normal interface requests on that identifier will fail.
This use of unique identifiers allows these modules to keep state information relat-
ing to each open connection; no format is imposed upon the unique identifier, so it
may contain any arbitrary type of information, equivalent in size to a core address;
alp and most callers will treat it as being of type caddr_t, in a manner similar to

Page 3



alp(7) alp(7)

the private data held by each instantiation of a STREAMS module.
A skeleton for the gen module’s open routine is:

caddr_t

genopen (arg, id)
int arg;
caddr_t id;

if (arg ) {
open processing ;
return( unique-id );
}
close processing for 1d;
return(0) ;

}

Once a connection has been made, users may proceed as in the example in the pre-
vious section. When the connection is to be closed (for example, the connecting
module is being popped), a call is made to alp_discon, passing the unique id and
the name:

#include <sys/alp.h>

caddr_t id;

char *name;

mblk_t *mp;
/*
* mblk_t *alp_discon(unsigned char *, caddr_t);
*/

mp = alp_discon(name, id);
if (mp)
process ““left-over’” data ;

If the disconnect request returns a valid message pointer (mp) then there was unpro-
cessed or partially processed data left in an internal buffer, and it should be dealt
with by the caller (for example, by flushing it or sending it to the neighboring
module).

The ioctl and Query Interfaces
A kernel-level query interface is provided in addition to the query interface sup-
ported by the alpg command. The routine alp_query takes a single argument, a
pointer to a name. If the name matches a registered function, alp_query returns a
pointer to the function’s explanation string, otherwise it returns a null pointer. A
calling example is:

#include <sys/alp.h>

unsigned char *name, *expl;

Page 4 10/92



alp(7) alp(7)

/ *
* unsigned char *alp_query (unsigned char *);
x/
if (expl = alp_query (name))
regular processing;
else
error processing;

The ioctl interface provides calls for querying registered functions (for which the
explanation discussed above is necessary); this is supported by the alpg command,
which may be used whenever user-level programs need the associated information.

Uses
The alp module can be used to replace various kernel-resident codeset conversion
functions in international or multi-language environments. The KBD subsystem
(which supplies codeset conversion and keyboard mapping) supports the use of
alp algorithms as processing elements.

Since state information may be maintained, functions may also implement process-
ing on larger or more structured data elements, such as transaction records and net-
work packets. Currently, STREAMS CPU priority is assumed by alp or should be set
individually by interface and open routines.

FUTURE DIRECTIONS
It should also provide a service interface, so that the algorithms registered there
might be used directly by programs running at user-level.

SEE ALSO
alpq(1), kbd(7).

EXAMPLES
/* Copyright (c) 1989, 1990 AT&T. All Rights Reserved. */
#ident "@(#)dely.c 1.0 AT&T USO PACIFIC 1990/03"

/*

* This is a SAMPLE module that registers with ALP and performs
* a one-message delay.

*/

#include <sys/types.h>

#include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/kmem.h>

#include <sys/alp.h>

static mblk_t *dely();
caddr_t delyopen() ;

/*
* OQur state structure. ZKeeps its own address and a pointer.
*/
struct dstruct {
caddr_t d_unique;

10/92 Page 5



alp(7)

Page 6

alp(7)
mblk_t *d_mp;
}i
/*
* The name is "Dely". It has an open routine "delyopen"
* and an interface "dely".
*/
static struct algo delyalgo =
{
0, (queue_t *) 0, (queue_t *) 0, dely, delyopen,
(unsigned char *) "Dely",
(unsigned char *) "One Message Delay Buffer",
(struct algo *) 0
}i
/*
* This is the sysinit routine, called when the system is
* being brought up. It registers "Dely" with ALP.
*/
delyinit ()
{
if (alp_register(&delyalgo)) /* then register with ALP */
printf ("DELY: register failed\n");
}
/*
* This is the interface routine itself.
* Holds onto "mp" and returns whatever it had before.
*/
static mblk_t *
dely (mp, id)
mblk_t *mp;
caddr_t id;
{
register mblk_t *rp;
register struct dstruct *d;
d = (struct dstruct *) id; /* clarify the situation */
rp = d->d_mp;
d->d_mp = mp;
return(rp) ; /* return the previous message */
}
/7\'
* The open (and close) routine.
* Use kmem zalloc() to get a private
* structure for saving state info.
*/
caddr_t
delyopen (arg, id)
10/92



alp(7) alp(7)

int arg; /* 1 = open, 0 = close */
caddr_t id; /* ignored on open; is unique id on close */
{
register struct dstruct *d;
register mblk_t *rp;
if (! arg) { /* close processing */
d = (struct dstruct *) id;
d->d_unique = (caddr_t) -1;
rp = d->d_mp;
kmem_free(d, sizeof (struct dstruct));
return((caddr_t) rp);
}
/* otherwise, open processing */
d = (struct dstruct *) kmem_zalloc(sizeof (struct dstruct),
KM_NOSLEEP) ;
d->d_unique = (caddr_t) &d;
return((caddr_t) d);
}

10/92 Page 7



ar(4) ar(4)

NAME
ar - archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor 1d.

Each archive begins with the archive magic string.

#define ARMAG " l<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string */

Following the archive magic string are the archive file members. Each file member
is preceded by a file member header which is of the following format:

#define ARFMAG "*\n"

struct ar_hdr /* file member header */

{
char ar_name[16];/%* '/’ terminated file member name */
char ar_date[12];/* file member date */
char ar_uid[6]; /% file member user identification #*/
char ar_gid[6]; /* file member group identification */
char ar_mode([8]; /* file member mode (octal) */
char ar_size[10];/* file member size */
char ar_fmag([2]; /* header trailer string */

};

All information in the file member headers is in printable ASCIL. The numeric infor-
mation contained in the headers is stored as decimal numbers (except for ar_mode
which is in octal). Thus, if the archive contains printable files, the archive itself is
printable.

If the file member name fits, the ar_name field contains the name directly, and is ter-
minated by a slash (/) and padded with blanks on the right. If the member’s name
does not fit, ar_name contains a slash (/) followed by a decimal representation of
the name’s offset in the archive string table described below.

The ar_date field is the modification date of the file at the time of its insertion into
the archive. Common format archives can be moved from system to system as long
as the portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. Nevertheless, the size given reflects the actual size of the
file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

Each archive that contains object files [see a.out(4)] includes an archive symbol
table. This symbol table is used by the link editor 1d to determine which archive
members must be loaded during the link edit process. The archive symbol table

10/92 Page 1



ar(4)

Page 2

ar(4)

(if it exists) is always the first file in the archive (but is never listed) and is automati-
cally created and /or updated by ar.

The archive symbol table has a zero length name (that is, ar_name[0] is ' /'),
ar_name[1l]==" ', and so on). All “words” in this symbol table have four bytes,
using the machine-independent encoding shown below. (All machines use the

encoding described here for the symbol table, even if the machine’s “natural” byte
order is different.)

0 1 2 3
0x01020304 01 02 03 04

The contents of this file are as follows:
1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes * “the number of
symbols”.

3. The name string table. Length: ar_size - 4 bytes * (“the number of sym-
bols” + 1).

As an example, the following symbol table defines 4 symbols. The archive member
at file offset 114 defines name and object. The archive member at file offset 426
defines function and a second version of name.

Offset +0 +1 +2 +3

0 4 4 offset entries
4 114 name
8 114 object
12 426 function
16 426 name
20 n a m e
24 \0 o b j
28 e c t \O
32 f u n c
36 t i o n
40 \0 n a m
44 e \O

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there
are elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string table
are all the defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated symbol.

If some archive member’s name is more than 15 bytes long, a special archive
member contains a table of file names, each followed by a slash and a new-line.
This string table member, if present, will precede all “normal” archive members.
The special archive symbol table is not a “normal”” member, and must be first if it
exists. The ar_name entry of the string table’s member header holds a zero length
name ar_name[0]=='/’, followed by one trailing slash (ar_name[1]=='/"),

10/92



ar(4)

ar(4)

followed by blanks (ar_name[2]==' -, and so on). Offsets into the string table
begin at zero. Example ar_name values for short and long file names appear below.

Offset +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 f i 1 e _ n a m e _
10 s a m o) 1 e / \n 1 o
20 n g e r f i 1 e n a
30 m e X a m o) 1 e / \n
Member Name ar_name Note
short-name short-name/ Not in string table
file_name_sample /0 Offset 0 in string table
longerfilenamexample /18 Offset 18 in string table

SEE ALSO

ar(1), 1d(1), strip(1), sput1(3X), a.out(4)

NOTES

strip will remove all archive symbol entries from the header. The archive symbol
entries must be restored via the -ts options of the ar command before the archive
can be used with the link editor 1d.

10/92

Page 3



archives(4) (Essential Utilities) archives (4)

NAME
archives - device header file

DESCRIPTION

/* Magic numbers */

#define CMN_ASC 0x070701 /* Cpio Magic Number for -c header */
#define CMN_BIN 070707 /* Cpio Magic Number for Binary header */
#define CMN_BBS 0143561 /* Cpio Magic Number for Byte-Swap header */
#define CMN_CRC 0x070702 /* Cpio Magic Number for CRC header */
#define CMS_ASC "070701" /* Cpio Magic String for -c header */
#define CMS_CHR "070707" /* Cpio Magic String for odc header */
#define CMS_CRC "070702" /* Cpio Magic String for CRC header */
#define CMS_LEN 6 /* Cpio Magic String length */

/* Various header and field lengths */

#define CHRSZ 76 /* -H odc size minus filename field */

#define ASCSZ 110 /* -c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */

#define HNAMLEN 256 /* max filename length for binary and odc hdrs */
#define EXPNLEN 1024 /* max filename length for -c and CRC headers */
#define HTIMLEN 2 /* length of modification time field */

#define HSIZLEN 2 /* length of file size field */

/* cpio binary header definition */

struct hdr_cpio {

short h_magic, /* magic number field */
h_dev; /* file system of file */
ushort h_ino, /* inode of file */
h_mode, /* modes of file */
h_uid, /* uid of file */
h_gid; /* gid of file */
short h_nlink, /* number of links to file */
h_rdev, /* maj/min numbers for special files */
h_mtime [HTIMLEN], /* modification time of file */
h_namesize, /* length of filename */
h_filesize[HSIZLEN] ; /* size of file */
char h_name [HNAMLEN] ; /* filename */

Yo
/* cpio -H odc header format */

struct c_hdr {
char c_magic[CMS_LEN],
c_dev(6],
c_ino(6],
c_mode[6],

10/92 Page 1



archives (4)

Page 2

c_uid[6],
c_gid[6],
c_nlink[6],
c_rdev[6],
¢ mtime(11],
Cc_namesz[6],
c_filesz[11],
c_name [HNAMLEN] ;
Yo

/* -c and CRC header format */

struct Exp_cpio_hdr {
char E_magic[CMS_LEN],

E_ino[8],
E_mode[8],
E_uid[8],
E_gid[8],
E nlink([8],
E mtime[8],
E filesizel[8],
E maj[8],
E_min[8],
E_rmaj[8],
E_rmin(8],
E_namesize[8],
E_chksum[8],
E_name [EXPNLEN] ;

/* Tar header structure and format

#define TBLOCK 512 /*

#define TNAMLEN 100 /*

#define TMODLEN 8 /* length
#define TUIDLEN 8 /* length
#define TGIDLEN 8 /* length
#define TSIZLEN 12 /* length
#define TTIMLEN 12 /* length
#define TCRCLEN 8 /* length

/* tar header definition */

union tblock {
char dummy [TBLOCK] ;
struct header ({
char t_name[TNAMLEN] ;
char t_mode [TMODLEN] ;
char t_uid[TUIDLEN];
char t_gid[TGIDLEN];

*/

of
of
of
of
of
of

(Essential Utilities)

length of tar header and data blocks */
maximum length for tar file names */

mode field */

uid field */

gid field */

size field */
modification time field */
header checksum field */

/*
/*
/*
/*

name of file */
mode of file */
uid of file */
gid of file */

archives (4)

10/92



archives(4)

char
char
char
char
char
char
char
char
char
char
char
char

} tbuf;

i

(Essential Utilities) archives(4)

t_size[TSIZLEN] ;
t_mtime [TTIMLEN] ;
t_chksum[TCRCLEN] ;
t_typeflag;
t_linkname [TNAMLEN] ;
t_magic[6];
t_version(2];
t_uname[32];
t_gname[32];
t_devmajor(8];
t_devminor[8];
t_prefix[155];

/*
/*
/*
/*

size of file in bytes */
modification time of file */
checksum of header */

flag to indicate type of file */

/* file this file is linked with */
/* magic string always "ustar" */

/* version strings always "00" */

/* owner of file in ASCII */

/* group of file in ASCII */

/* major number for special files */
/* minor number for special files */
/* pathname prefix */

/* volcopy tape label format and structure */

#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464

struct volcopy_label {

char

long

char
long
int

10/92

v_magic [VMAGLEN] ,
v_volume [VVOLLEN] ,
v_reels,
v_reel;
v_time,

v_length,
v_dens,
v_reelblks,
v_blksize,
v_nblocks;
v_£fill [VFILLEN] ;
v_offset;
v_type;

/*
/*
/*

/*
/*

u370 added field */
u370 added field */
u370 added field */

used with -e and -reel options */
does tape have nblocks field? */

Page 3



ARP(7) (Internet Utilities) ARP(7)

NAME
ARP - Address Resolution Protocol
SYNOPSIS
#include <sys/socket.h>
#include <net/if_arp.h>
#include <netinet/in.h>
s = socket (AF_INET, SOCK_DGRAM, O0);
d = open ("/dev/arp", O_RDWR) ;
DESCRIPTION
ARP is a protocol used to map dynamically between Internet Protocol (IP) and
10Mb/s Ethernet addresses. It is used by all the 10Mb/s Ethernet datalink provid-
ers (interface drivers). It is not specific to the Internet Protocol or to the 10Mb/s
Ethernet, but this implementation currently supports only that combination. The
STREAMS device /dev/arp is not a Transport Level Interface (TLI) transport pro-
vider and may not be used with the TLI interface.
ARP caches IP-to-Ethernet address mappings. When an interface requests a map-
ping for an address not in the cache, ARP queues the message that requires the map-
ping and broadcasts a message on the associated network requesting the address
mapping. If a response is provided, the new mapping is cached and any pending
message is transmitted. ARP will queue at most one packet while waiting for a
mapping request to be responded to; only the most recently transmitted packet is
kept.
To facilitate communications with systems which do not use ARP, ioctl requests
are provided to enter and delete entries in the IP-to-Ethernet tables.
USAGE
#include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr_t)&arpreq);
joctl (s, SIOCGARP, (caddr_t)&arpreq);
ioctl (s, SIOCDARP, (caddr_t)&arpreq);
Each ioctl request takes the same structure as an argument. SIOCSARP sets an
ARP entry, STOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These
ioctl requests may be applied to any Internet family socket descriptor s, or to a
descriptor for the ARP device, but only by the privileged user. The arpreq struc-
ture contains:
/ *
* ARP ioctl request
*/
struct arpreqg {
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */
bi
/* arp_flags field values */
10/92 Page 1



ARP(7) (Internet Utilities) ARP(7)

#define ATF_COM 0x2 /* completed entry (arp_ha valid) */
#define ATF_PERM 0x4 /* permanent entry */
#define ATF_PUBL 0x8 /* publish (respond for other host) */

#define ATF_USETRAILERS 0x10 /* send trailer packets to host */

The address family for the arp_pa sockaddr must be AF_INET; for the arp_ha
sockaddr it must be AF_UNSPEC. The only flag bits that may be written are
ATF_PERM, ATF_PUBL and ATF_USETRAILERS. ATF_PERM makes the entry per-
manent if the ioctl request succeeds. The peculiar nature of the ARP tables may
cause the ioct1 request to fail if too many permanent IP addresses hash to the same
slot. ATF_PUBL specifies that the ARP code should respond to ARP requests for the
indicated host coming from other machines. This allows a host to act as an ARP
server, which may be useful in convincing an ARP-only machine to talk to a non-
ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alter-
nate encapsulation used to allow efficient packet alignment for large packets
despite variable-sized headers. Hosts that wish to receive trailer encapsulations so
indicate by sending gratuitous ARP translation replies along with replies to IP
requests; they are also sent in reply to IP translation replies. The negotiation is thus
fully symmetrical, in that either or both hosts may request trailers. The
ATF_USETRAILERS flag is used to record the receipt of such a reply, and enables the
transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host which
responds to an ARP mapping request for the local host’s address).

SEE ALSO

Page 2

arp(1M), ifconfig(1M), i £(3N), inet(7)

Plummer, Dave, ““ An Ethernet Address Resolution Protocol -or- Converting Network Pro-
tocol Addresses to 48.bit Ethernet Addresses for Transmission on Ethernet Hardware,” RFC
826, Network Information Center, SRI International, Menlo Park, Calif., November
1982

Leffler, Sam, and Michael Karels, ““ Trailer Encapsulations,” RFC 893, Network Infor-
mation Center, SRI International, Menlo Park, Calif., April 1984

10/92



asyhdlc(7) asyhdic (7)

NAME

asyhdlc - Asynchronous HDLC protocol module
SYNOPSIS

asyhdlc
DESCRIPTION

The asyhdlc module is pushed on a tty stream attached to an asynchronous serial
line so that PPP may use that line to transmit and receive IP datagrams.

A PPP HDLC packet lacks a CRC checksum and uses a ““transparent code’ for data
transmission. asyhdlc performs the following functions on PPP datagrams:

generates and validates the CRC checksum

encodes and decodes packet data to achieve data transparency - charater
stuffing

generates and strips framing patterns delimiting packet start and end
See ppp(7) for additional information about the PPP implementation.

SEE ALSO

ppp(7)
RFC 1171

10/92 Page 1



binarsys (4) (Essential Utilities) binarsys (4)

NAME

binarsys - remote system information for the ckbinarsys command

DESCRIPTION

FILES

binarsys contains lines of the form:
remote_system_name:val

where val is either Y or N. This line indicates whether that particular remote
system can properly deal with messages having binary content. The
absence of an entry for a particular system or absence of the binarsys file
altogether will imply No.

Blank lines or lines beginning with # are considered comments and ignored.
Should a line of Default=y be encountered, the default condition for missing
entries described in the previous paragraph is reversed to be Yes. Another line of
Default=n will restore the default condition to No.

mail is distributed with the binarsys file containing only a Default=y line.

/etc/mail/binarsys

SEE ALSO

10/92

ckbinarsys(1M), mail(1l), mailsurr(4).

Page 1



bootparams (4) bootparams (4)

NAME
bootparams - boot parameter data base
SYNOPSIS
/etc/bootparams
DESCRIPTION
The bootparams file contains the list of client entries that diskless clients use for

booting. For each diskless client, the entry should contain the following informa-
tion:

name of client
a list of keys, names of servers, and pathnames

The first item of each entry is the name of the diskless client. The subsequent item
is a list of keys, names of servers, and pathnames.
Items are separated by TAB characters.
EXAMPLE
This is an example of a /etc/bootparams entry:

myclient  root=myserver:/nfsroot/myclient\
swap=myserver: /nfsswap/myclient\
dump=nmyserver: /nfsdump/myclient
FILES
/etc/bootparams
SEE ALSO
bootparamd(1M)

10/92 Page 1



cdrom(7) cdrom(7)

NAME

cdrom - CDROM device support

DESRIPTION

CDROM disk drives perform like hard disk drives except for the following:

Read only
CDROM disks are read-only devices. Any attempt to write to a CDROM
disk results in an error (EROFS).

2048 Byte Blocks
CDROM drives are accessed in multiples of 2048 bytes. All raw transfers
must be aligned on 2048-byte boundaries and have a transfer byte count
that is a multiple of 2048 bytes. If either of these conditions is not met, the
1/0 results in an error (EI0).

Slicing If a CDROM disk has a valid Motorola Volume ID, the Volume Table of
Contents (VTOC) reads from the disk. If the CDROM disk does not have a
valid volume ID, the VTOC consists of two slices: slice zero and slice
seven. Slice zero is the first slice on a boot disk which always contains
root. Slice seven represents the whole disk, whether it contains root or
not.

Door Locking
When no process currently has the CDROM drive open and it is being
opened for the first time, the media-eject button on the drive becomes dis-
abled until the last close, if the CDROM drive has a locking door.

Presence of Media
If there is no CDROM in the drive, an open attempt results in an error
(ENXTO).

IOCTL COMMANDS

10/92

CDROMs support several ioctl(2) functions on the character or raw devices.
These functions permit control beyond the normal open(2), close(2), read(2), and
write(2) system calls. All ioct1(2) operations take the form ioctl (fildes, com-
mand, *arg). Any attempt to utilize ioct1(2) functions not listed below cause an
EINVAL error to be returned.

The operations supported by CDROMs are listed below in alphabetical order.

DKGETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The disk is not accessed by this command.

DKGETINFO
Get parameters associated with the disk and store them in the dkb1k0 struc-
ture referenced by arg. The disk is not accessed by this command.

DKGETSLC
Get the VTOC information for a disk and return the information in a struc-
ture of type struct motorola_vtoc (defined in sys/vtoc.h) referenced
by arg. While the number of supported slices is determined by the number
of slices defined in the ddefs file, all disks are expected to support 16 slices.
The disk is not accessed by this command.

Page 1



cdrom(7) cdrom(7)

Page 2

DKINQUIRY
Return the SCSI INQUIRY data for the device; it is only valid for SCSI
CDROMs. This ioctl can be done on any device that the calling process
has open. The SCSI INQUIRY data for the device is copied into the struct
inquiry structure pointed to by arg. The struct inquiry structure is
defined in sys/dk.h.

DKREADCAP

Return the SCSI READ CAPACITY data for the device; it is only valid for
SCSI CDROMs. This ioctl can be done on any disk or CDROM device that
the calling process has open. The SCSI READ CAPACITY data for the dev-
ice is copied into the struct readcap structure pointed to by arg. The
struct readcap structure is defined in sys/dk.h. Note that the SCSI
READ CAPACITY command returns the number of the last logical block on
the media. This ioctl adds one to that number so that it represents the
actual capacity of the device (logical block numbers start at zero).

DKTRAY_OPEN
Cause the CDROM door to open after processing the last close (when no
process has the drive open). The arg parameter is not used.

V_GETSSZ
Return the physical sector size of the CDROM. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the structure points to the address of an integer which contains
the sector size after a successful operation.

V_PDREAD
Read the Physical Description Area of the disk. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the 1o_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc.h) which contain the requested data upon
successful completion.

V_PDWRITE
Write the Physical Description Area of the disk. This command always
returns EROFS. The arg parameter specifies a structure of type pdinfo
(defined in sys/vtoc.h).

V_PREAD

Read physical sectors. This interface assumes that sectors are 512 bytes in
length so the driver is responsible for mapping the requested block(s) to the
correct portion of the correct sector on the CDROM regardless of the actual
physical sector size. The arg parameter specifies a structure of type io_arg
(defined in sys/vtoc.h). The sectst member of the io_arg structure con-
tains the starting sector number and the datasz member contains the
number of sectors. The memaddr member of the io_arg structure points to
the address of a sufficiently large area which contains the requested data
upon successful completion.

10/92



cdrom(7) cdrom(7)

V_PWRITE
Write physical sectors. This command always returns EROFS. The arg
parameter specifies a structure of type io_arg (defined in sys/vtoc.h).

V_RVTOC
Read the VTOC from the disk. The arg parameter specifies a structure of
type io_arg (defined in sys/vtoc.h). The sectst and datasz members of
the io_arg structure are ignored. The memaddr member of the io_arg
structure points to the address of a structure of type vtoc (defined in
sys/vtoc.h) which contains the requested data upon successful comple-
tion.

V_WVTOC
Write the VTOC to the disk. This command always returns EROFS. The arg
parameter specifies a structure of type vtoc (defined in sys/vtoc.h).

SEE ALSO
disk(7), £loppy(7), intro(7)

10/92 Page 3



clone(7) (Networking Support Utilities) clone(7)

NAME

clone - open any major/minor device pair on a STREAMS driver

DESCRIPTION

clone is a STREAMS software driver that finds and opens an unused major/minor
device on another STREAMS driver. The major device number passed to clone dur-
ing open corresponds to the clone driver and the minor device number
corresponds to the target driver. Each open results in a separate stream to a previ-
ously unused major/minor device.

The clone driver consists solely of an open function. This open function performs
all of the necessary work so that subsequent system calls [including close(2)]
require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the major/minor
device number provided does not correspond to a valid major/minor device, or if
the driver indicated is not a STREAMS driver.

SEE ALSO

NOTES

10/92

log(7).

Multiple opens of the same major/minor device cannot be done through the clone
interface. Executing stat(2) on the file system node for a cloned device yields a
different result from executing fstat(2) using a file descriptor obtained from open-
ing the node.

Page 1



compver(4) (Essential Utilities) compver(4)

NAME
compver - compatible versions file

DESCRIPTION
compver is an ASCII file used to specify previous versions of the associated pack-
age which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with
which the current version is backward compatible.

Since some packages may require installation of a specific version of another
software package, compatibility information is extremely crucial. Consider, for
example, a package called ““A’”” which requires version “1.0” of application “B” as a
prerequisite for installation. If the customer installing “A’” has a newer version of
“B” (1.3), the compver file for “B” must indicate that “1.3” is compatible with ver-
sion “1.0” in order for the customer to install package “A.”

NOTES
The comparison of the version string disregards white space and tabs. It is per-
formed on a word-by-word basis. Thus 1.3 Enhanced and 1.3 Enhanced
would be considered the same.

EXAMPLE
A sample compver file is shown below.

1.3
1.0

SEE ALSO
depend(4)

10/92 Page 1



connld(7) connld(7)

NAME

connld - line discipline for unique stream connections

DESCRIPTION

connld is a STREAMS-based module that provides unique connections between
server and client processes. It can only be pushed [see streamio(7)] onto one end
of a STREAMS-based pipe that may subsequently be attached to a name in the file
system name space. After the pipe end is attached, a new pipe is created internally
when an originating process attempts to open(2) or creat(2) the file system name.
A file descriptor for one end of the new pipe is packaged into a message identical to
that for the 1octl I_SENDFD [see streamio(7)] and is transmitted along the stream
to the server process on the other end. The originating process is blocked until the
server responds.

The server responds to the I_SENDFD request by accepting the file descriptor
through the I_RECVFD ioctl message. When this happens, the file descriptor
associated with the other end of the new pipe is transmitted to the originating pro-
cess as the file descriptor returned from open(2) or creat(2).

If the server does not respond to the I_SENDFD request, the stream that the connld
module is pushed on becomes uni-directional because the server will not be able to
retrieve any data off the stream until the I_RECVFD request is issued. If the server
process exits before issuing the I_RECVFD request, the open(2) or the creat(2) sys-
tem calls will fail and return -1 to the originating process.

When the connld module is pushed onto a pipe, messages going back and forth
through the pipe are ignored by connld.

On success, an open of connld returns 0. On failure, errno is set to the following
values:

EINVAL A stream onto which connld is being pushed is not a pipe or the
pipe does not have a write queue pointer pointing to a stream head
read queue.

EINVAL The other end of the pipe onto which connld is being pushed is
linked under a multiplexor.

EPIPE connld is being pushed onto a pipe end whose other end is no
longer there.

ENOMEM An internal pipe could not be created.

ENXIO An M_HANGUP message is at the stream head of the pipe onto which
connld is being pushed.

EAGAIN Internal data structures could not be allocated.
ENFILE A file table entry could not be allocated.

SEE ALSO

10/92

streamio(7).

Page 1



cons1x7(7) cons1x7(7)

NAME

cons1x7 - hardware specific console driver for the MVME1X7 family

DESCRIPTION

USAGE

This STREAMS-based driver provides console I/O when the system is running on an
MVME1X7 CPU board. This driver is accessable only through the standard console
device  special files /dev/console (/dev/contty00), /dev/contty
(/dev/contty01), /dev/contty02, /dev/contty03, and /dev/conctl.

The device special files eventually access the STREAMS-based console driver which,
when used in conjunction with the STREAMS line discipline module 1dterm, sup-
ports the termios(2) and termio(7) processing.

The configurable parameter C1X7_TXFIFO_MAX has a default of 8 and is located in
the driver master.d file. This parameter describes the maximum number of bytes
which should be written to the CD2400 transmit FIFO each time the FIFO is filled.
Values 1 through 15 inclusive are valid. Increasing this parameter decreases the
number of interrupts taken as a result of any of the serial data lines on the
MVMEL1X?7. The characters may be placed in the FIFO at an interrupt priority and
may slow the response time of the system if large amounts of data are being sent
through the onboard serial lines. If an invalid value is chosen for this parameter, it
is reset to the default value and a warning message is printed to the system console.

In addition to the IOCTLs supported in termio(7), three other [OCTLs are sup-
ported. See the USAGE section for IOCTL details.

STREAM Message Processing

10/92

In addition to the IOCTLs listed in termio(7), the following IOCTLs are supported.
The definitions for the IOCTLs are in the file /usr/include/sys/cd2400.h.

M_IOCTL

MSETHWHAND causes the driver to enable out-of-band flow control using
CTS(Clear to Send). This causes character transmission to begin only after
CTS is active(low). If a console port is in aysnchronous mode, then when
CTS goes inactive(high) after transmission has started, the channel stops
transmitting after the current characters in the transmit hold register and
shift register are transmitted. When in synchronous mode and CTS goes
inactive, then the channel stops transmission after the current frame.
Transmission restarts after CTS goes active. Also, MSETHWHAND sets a
receive FIFO threshold of 10 characters. Automatic hardware flow
control(DTR/DSR) activates when the FIFO threshold is reached.

MCLEARWHAND causes the driver to clear the flow controls set by
MSETHWHAND. The hardware then returns to the no flow control state.

MGETHWHAND causes the driver to return the current status of CTS and
DTR/DSR hardware flow control. The driver returns a data structure of
type HWhandshake. HWhandshake is defined in the file
/usr/include/sys/cd2400.h. HWhandshake.stat ~ will  equal
HDFLOW_ENABLED if flow control is on and HDFLOW_DISABLED if it
is off.

Page 1



cons1x7(7) cons1x7(7)

An example of code to implement each IOCTL is listed below:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termio.h>
#include <termios.h>
#include <sys/cd2400.h>
#include <stropts.h>

struct strioctl command ;

int sethwhandshake (int £d)
{

int err=0 ;

command.ic_cmd = MSETHWHAND ;
command.ic_len = 0 ;
command.ic_dp = NULL ;

if ( ioctl(fd, I_STR, &command) < 0 ) {
printf("ioctl error sending command to console driver") ;
err = -1 ;

}

return(err) ;

}

int clearhwhandshake (int £d)

{
int err=0 ;
command.ic_cmd = MCLEARHWHAND ;
command.ic_len = 0 ;
command.ic_dp = NULL ;
if ( ioctl(fd, I_STR, &command) < 0 ) {
printf("ioctl error sending command to console driver") ;
err = -1 ;
}
return(err) ;
}

int gethwhandshake (int fd)
{

int err=0 ;

Page 2 10/92



consix7(7)
HWhandshake shake;
command.ic_cmd = MGETHWHAND ;
command.ic_len = sizeof (shake) ;
command.ic_dp = (char *) &shake ;
if ( ioctl(fd, I_STR, &command) < 0 ) {
printf("ioctl error sending command to driver")
err = -1 ;
}
if (shake.stat == HDFLOW_DISABLED )
printf ("Hardware handshake is DISABLED")
if (shake.stat == HDFLOW_ENABLED )
printf ("Hardware handshake is ENABLED")
return (err) ;
}
FILES
/dev/console
/dev/contty
/dev/contty??
/dev/conctl

/usr/include/sys/cd2400.h
/usr/include/sys/conslx7.h

SEE ALSO
dcon(1A), mvmecpu(1M), termios(2), console(7), ivart(7), 1dterm(7), termio(7).

10/92

cons1x7(7)

’

Page 3



console(7) console(7)

NAME
console - STREAMS-based console interface

DESCRIPTION
/dev/console and /dev/contty00 are synonyms for the system console and refer
to an asynchronous serial data line originating from the system board.
For security reasons, the permissions on /dev/console are set to 620, restricting
writer access by group and other. This will cause applications writing to
/dev/console to fail. If you have such an application, change the permissions on
/dev/console as follows:

/bin/chmod 666 /dev/console

/dev/contty and /dev/contty01 refer to a second asynchronous serial data line
originating from the system board. /dev/contty02 and /dev/contty03 refer to a
third and fourth serial data line originating from the system board. These serial
data lines are only available on the MVME187 and MVME167 CPU boards.
/dev/conctl is the console control port.
These device special files access the STREAMS-based console driver which, when
used in conjunction with the STREAMS line discipline module 1dterm, supports the
termios(2) and termio(7) processing.

FILES
/dev/console
/dev/contty
/dev/contty??
/dev/conctl

SEE ALSO
crash(IM), dcon(1M), mvmecpu(IM), termios(2), conslx7(7), iuart(7),
ldterm(7), termio(7).

10/92 Page 1



copyright (4) (Essential Utilities) copyright (4)

NAME
copyright - copyright information file

DESCRIPTION
copyright is an ASCII file used to provide a copyright notice for a package. The
text may be in any format. The full file contents (including comment lines) is
displayed on the terminal at the time of package installation.

10/92 Page 1



core(4) core(4)

NAME

core - core image file

DESCRIPTION

10/92

The UNIX system writes out a core image of a process when it is terminated due to
the receipt of some signals. The core image is called core and is written in the
process’s working directory (provided it can be; normal access controls apply). A
process with an effective user ID different from the real user ID will not produce a
core image.

The core file contains all the process information pertinent to debugging: contents
of hardware registers, process status and process data. The format of a core file is
object file specific.

For ELF executable programs [see a.out(4)], the core file generated is also an ELF
file, containing ELF program and file headers. The e_type field in the file header
has type ET_CORE. The program header contains an entry for every loadable and
writeable segment that was part of the process address space, including shared
library segments. The contents of the segments themselves are also part of the core
image.

The program header of an ELF core file also contains a NOTE segment. This segment
may contain the following entries. Each has entry name "CORE" and presents the
contents of a system structure:

prstatus_t The entry containing this structure has a NOTE type of 1. This
structure contains things of interest to a debugger from the
operating system’s u-area, such as the general registers, signal
dispositions, state, reason for stopping, process ID and so
forth. The structure is defined in sys/procfs.h.

prpsinfo_t The entry containing this structure has a NOTE type of 3. It
contains information of interest to the ps(1) command, such
as process status, cpu usage, "nice" value, controlling terminal,
user ID, process ID, the name of the executable and so forth.
The structure is defined in sys/procfs.h.

For 68k only COFF executable programs produce core files consisting of two parts:
the first section is a copy of the system’s per-user data for the process, including the
general registers. The format of this section is defined in the header files
sys/user.h and sys/reg.h. The remainder of a COFF core image represents the
actual contents of the process data space.

For 88k only COFF executable programs produce core files in the following format
(data structures are defined in sys/ptrace.h):

a struct ptrace_user containing the current status of the process

one struct pt_mem_desc for each shared memory segment attached to the
process

one struct pt_mem_desc for each shared library data segment attached to
the process

Page 1



core(4) core(4)

the process’s data segment
the process’s stack segment

the contents of the shared memory and shared library data segments
referred to by the pt_mem_desc entries

The size of the core file created by a process may be controlled by the user [see
getrlimit(2)].

SEE ALSO
crash(IM), tbx(1), getrlimit(2), setuid(2), e1£(3E), a.out(4), signal(b).

Page 2 10/92



depend (4) (Essential Utilities) depend (4)

NAME
depend - software dependencies files

DESCRIPTION
depend is an ASCII file used to specify information concerning software dependen-
cies for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of
the package is described after the entry line by giving the package architecture
and/or version. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version
The fields are:
type Defines the dependency type. Must be one of the following charac-
ters:

P Indicates a prerequisite for installation, for example, the
referenced package or versions must be installed.

I Implies that the existence of the indicated package or ver-
sion is incompatible.

R Indicates a reverse dependency. Instead of defining the
package’s own dependencies, this designates that another
package depends on this one. This type should be used
only when an old package does not have a depend file but
it relies on the newer package nonetheless. Therefore, the
present package should not be removed if the designated
old package is still on the system since, if it is removed, the
old package will no longer work.

pkg Indicates the package abbreviation.
name Specifies the full package name.

(arch)version  Specifies a particular instance of the software. A version name can-
not begin with a left parenthesis. The instance specifications, both
arch and version, are completely optional but must each begin on a
new line that begins with white space. A null version set equates to
any version of the indicated package.

10/92 Page 1



depend (4)

EXAMPLE
Here is a sample depend file:

Page 2

' 'd 'd ‘U U ‘g o H

‘U ‘U 'u ‘U 0 o

(Essential Utilities)

msvr M68K Messaging Server
ctc Cartridge Tape Utilities
dfm Directory and File Management Utilities
ed Editing Utilities
ipc Inter-Process Communication Utilities
1lp Line Printer Spooling Utilities
shell Shell Programming Utilities
sys System Header Files
Release 3.0
sysadm System Administration Utilities
term Terminal Filters Utilities
terminfo Terminal Information Utilities
usrenv User Environment Utilities
uucp Basic Networking Utilities
x25 X.25 Network Interface
Issue 1 Version 1
Issue 1 Version 2
windowing AT&T Windowing Utilities
(M68k)Version 1
cms M68k Call Management System

depend (4)

10/92



device-map (4) device-map (4)

NAME
device-map - script for makedev
DESCRIPTION

The /etc/device-map file controls the assignment of generic device names for sys-

tem administration and generic use.

The /etc/device-map file contains two kinds of lines: comment lines and assign-

ment lines. \

1. Any line starting with the # character is assumed to be a comment.

2. An assignment line consists of two fields separated by white space (tab or
space characters). The first field specifies the generic device type (for example,
ctape, disk, ninetrack). The second field contains the controller-specific
name of the device that will be assigned that generic name (for example,
/dev/rmt /m328_c0d0).

The generic device number is assigned automatically, based on the position of the

assignment line relative to other generic assignment of that type.

If the controller-specific device does not exist or is of the incorrect type, the assign-

ment line is ignored. Processing continues on other legal assignment lines.

A partial example of an /etc/device-map file is presented below:

# Cartridge tapes devices

ctape /dev/rmt/m328_c0d40

ctape /dev/rmt/m328_c0d4
SEE ALSO

makedev(1M)

10/92 Page 1



dfstab (4) (DFS) distab(4)

NAME
dfstab - file containing commands for sharing resources

DESCRIPTION
dfstab resides in directory /etc/dfs and contains commands for sharing
resources across a network. dfstab gives a system administrator a uniform
method of controlling the automatic sharing of local resources.
Each line of the dfstab file consists of a share(1M) command. The dfstab file can
be read by the shell directly to share all resources, or system administrators can
prepare their own shell scripts to execute particular lines from dfstab.
The contents of dfstab are executed automatically when the system enters run
level 3.

SEE ALSO
share(1M), shareall(1M)

10/92 Page 1






dir(4) dir(4)

NAME
dir (generic) - format of directories
DESCRIPTION
Directory format is entirely FSType-specific. See dir_FSType(4) for information.

SEE ALSO
dir_s5(4), dir_ufs(4).

10/92 Page 1



dir(4) (s5) dir(4)

NAME
dir (s5) - format of s5 directories

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/s5dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the mode word of

its i-node entry [see the s5-specific inode(4)]. The structure of a directory entry as
given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{,
o_ino_t d_ino; /* s5 inode type */
char d_name [DIRSIZ] ;
}i
By convention, the first two entries in each directory are . for the entry itself and ..
for the parent directory. The meaning of . . is modified for the root directory of the
master file system; there is no parent, so . . has the same meaning as . has.

SEE ALSO
s5_specific inode(4)

10/92 Page 1



dir(4) (UFS) dir(4)

NAME
dir (ufs) - format of ufs directories

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fsdir.h>

DESCRIPTION
A directory consists of some number of blocks of DIRBLKSIZ bytes, where DIRBLK-
S1Z is chosen such that it can be transferred to disk in a single atomic operation (for
example, 512 bytes on most machines).

Each DIRBLKSIZ-byte block contains some number of directory entry structures,
which are of variable length. Each directory entry has a struct direct at the
front of it, containing its inode number, the length of the entry, and the length of
the name contained in the entry. These are followed by the name padded to a 4
byte boundary with null bytes. All names are guaranteed null-terminated. The
maximum length of a name in a directory is MAXNAMLEN.

#define DIRBLKSIZ DEV_BSIZE
#define MAXNAMLEN 256

struct direct {
u_long d_ino; /* inode number of entry */
u_short d_reclen; /* length of this record */
u_short d_namlen; /* length of string in d_name */
char d_name [MAXNAMLEN + 1]; /* name must be no longer than this */
};
SEE ALSO

ufs-specific £s(4)

10/92 Page 1



dirent(4) dirent(4)

NAME
dirent - file system independent directory entry
SYNOPSIS
#include <dirent.h>
DESCRIPTION
Different file system types may have different directory entries. The dirent struc-
ture defines a file system independent directory entry, which contains information
common to directory entries in different file system types. A set of these structures
is returned by the getdents(2) system call.
The dirent structure is defined below.
struct dirent {
ino_t d_ino;
off t d_off;
unsigned short d_reclen;
char d_name([1];
}i
The d_ino is a number which is unique for each file in the file system. The field
d_off is the offset of that directory entry in the actual file system directory. The
field d_name is the beginning of the character array giving the name of the directory
entry. This name is null terminated and may have at most MAXNAMLEN characters.
This results in file system independent directory entries being variable length enti-
ties. The value of d_reclen is the record length of this entry. This length is defined
to be the number of bytes between the current entry and the next one, so that the
next structure will be suitably aligned.
SEE ALSO
getdents(2)
10/92 Page 1



disk(7) disk(7)

NAME

disk - disk support

DESCRIPTION

All Motorola disks support dynamic slice sizing. The Volume Table of Contents
(VTOC) contains the slicing information for the disk. Up to 16 slices may be
specified. Therefore, you do not have to configure the size and slicing of a disk into
the driver. You can attach any size disk without changing any configuration infor-
mation.

The raw device nodes /dev/rdsk/prefix_x allow the transfer of a specified
number of bytes in multiples of sector size between the hard disk drive and a loca-
tion in the user’s address space. The typical number of bytes in a sector is 512.

Disk devices may be removable or non-removable (fixed).

I0CTL COMMANDS

10/92

Disk drivers support several ioct1(2) functions on the character or raw devices.
These functions permit control beyond the normal open(2), close(2), read(2), and
write(2) system calls. All ioctl(2) operations take the form ioctl (fildes, com-
mand, *arg). Any attempt to utilize ioct1(2) functions not listed below causes an
EINVAL error to be returned.

The operations supported by disks are listed below in alphabetical order.

DKFIXBADSPOT
Lock out a bad spot on the disk based on the information in the dkbadlst
structure referenced by arg. The dkbadlst structure is defined in sys/dk.h.

DKFORMAT
Format a disk. The dkfmt structure is defined in sys/dk.h.

DKGETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The dkconfig structure is defined in sys/dk.h.
The disk is not accessed by this command.

DKGETINFO
Get parameters associated with the disk and store them in the dkb1k0 struc-
ture referenced by arg. The dkblk0 structure is defined in sys/dk.h. The
disk is not accessed by this command.

DKGETSLC
Get the VTOC information for a disk and return the information in a struc-
ture of type struct motorola_vtoc (defined in sys/vtoc.h) referenced
by arg. While the number of supported slices is determined by the number
of slices defined in the ddefs file, all disks are expected to support 16 slices.
The disk is not accessed by this command.

DKSETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The disk is not accessed by this command.

DKSETINFO
Set parameters associated with the disk based on the values in the dkb1k0
structure referenced by arg. The disk is not accessed by this command.

Page 1



disk(7)

disk (7)

DKSETSLC

Set the VTOC information for a disk and return the information in a struc-
ture of type struct motorola_vtoc (defined in sys/vtoc.h) referenced
by arg. The disk is not accessed by this command.

DKINQUIRY

Return the SCSI INQUIRY data for the device; it is only valid for SCSI disks.
This ioctl can be done on any device the calling process has open. The
SCSI INQUIRY data for the device is copied into the struct inquiry
structure pointed to by arg. The struct inquiry structure is defined in
sys/dk.h.

DKREADCAP

Return the SCSI READ CAPACITY data for the device; it is only valid for
SCSI disks. This ioctl can be done on any disk or CDROM device the cal-
ling process has open. The SCSI READ CAPACITY data for the device is
copied into the struct readcap structure pointed to by arg. The struct
readcap structure is defined in sys/dk.h. Note: the SCSI READ CAPA-
CITY command returns the number of the last logical block on the media.
This ioctl adds one to that number so it represents the actual capacity of
the device. Logical block numbers start at zero.

V_GETSSZ

Return the physical sector size of the COROM. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the structure points to the address of an integer containing the
sector size after a successful operation.

V_PDREAD

Read the Physical Description Area of the disk. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc.h) containing the requested data upon
successful completion.

V_PDWRITE

Write the Physical Description Area of the disk. The arg parameter specifies
a structure of type pdinfo (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc.h) containing the requested data upon
successful completion.

V_PREAD

Page 2

Read physical sectors. This interface assumes sectors are 512 bytes in length
so the driver is responsible for mapping the request block to the correct por-
tion of the correct sector on the disk regardless of the actual physical sector
size. The arg parameter specifies a structure of type io_arg (defined in
sys/vtoc.h). The sectst member of the io_arg structure contains the
starting sector number and the datasz member contains the number of sec-
tors. The memaddr member of the io_arg structure points to the address of
a sufficiently large area containing the requested data upon successful

10/92



disk(7) disk(7)

completion.

V_PWRITE

Write physical sectors. This interface assumes sectors are 512 bytes in
length so the driver is responsible for mapping the requested block(s) to the
correct portion of the correct sector on the disk regardless of the actual phy-
sical sector size. The arg parameter specifies a structure of type io_arg
(defined in sys/vtoc.h). The sectst member of the io_arg structure con-
tains the starting sector number and the datasz member contains the
number of sectors. The memaddr member of the io_arg structure points to
the address of a sufficiently large area containing the requested data upon
successful completion.

V_RVTOC
Read the VTOC from the disk. The arg parameter specifies a structure of
type io_arg (defined in sys/vtoc.h). The sectst and datasz members of
the io_arg structure are ignored. The memaddr member of the io_arg
structure points to the address of a structure of type vtoc (defined in
sys/vtoc.h) containing the requested data upon successful completion.

V_WVTOC
Write the VTOC to the disk. The arg parameter specifies a structure of type
vtoc (defined in sys/vtoc.h). The sectst and datasz members of the
io_arg structure are ignored. The memaddr member of the io_arg struc-
ture points to the address of a structure of type vtoc (defined in
sys/vtoc.h) containing the requested data upon successful completion.

DINIT CONSIDERATIONS
The utility dinit(1M) initially formats the disk and fixes any new bad spots occur-
ring over time. Although a device driver redirects all future operations away from
new bad spots, any existing data in the bad block is lost. Always use the -s option
to dinit when attempting to fix new bad spots.

DDEFS CONSIDERATIONS
The utility ddefs defines disk characteristics. The output of the ddefs utility is a
file normally saved in the /etc/dskdefs directory. This file is used as input to the
dinit(1M) utility when it initializes a disk.
A brief description of the important fields follows.

Comment
Identification of the ddefs file to the user.

Disk type
Decimal equivalent of a two-byte field. Upper byte is the SCSI controller

type; lower byte is the peripheral type. This field is not currently used by
the MVME328 and SCSI1X7 drivers. Valid disk types are:

10/92 Page 3



disk(7) disk(7)

CONTROLLER | PERIPHERAL | DISK

DISK TYPE TYPE TYPE
medclll 0x13 0x02 4098
mcdclV 0x13 0x02 4866
mcdcV 0x13 0x02 4866
mcdcVII 0x13 0x02 4866
mfuj2613 0x13 0x02 4866
mfuj2614 0x13 0x02 4866
mfuj2624 0x13 0x02 4866

Format command
Used by dinit(1M) for formatting. It is set to none for the MVME328 and
SCSI1X7.

Diagnostic tracks
Used by dinit(1M) to write diagnostic tracks on the disk. The default
value for the MVME328 and SCSI1X7 is no.

Bad spot strategy
The MVME328 and SCSI1X7 drivers consider all media as PERFECT.

Maximum number of bad spots
The maximum number of new bad spots that can be added.

Number of sectors
The total number of sectors on the disk.

Sector size
The physical sector size of the disk.

Sectors per track

The number of sectors per track on the disk.
Cylinders

The total number of cylinders on the disk.

Heads
The number of heads on the disk.

The following fields are not used by the MVME328 and SCSI1X7: Precompensation
cylinder, Sector interleave, Spiral offset, Step rate, Starting head number, ECC error
length, Attributes mask, Extended attributes mask, Attributes word, Gap byte 1,
Gap byte 2, Gap byte 3, Gap byte 4, and Unformatted sector size.

Controller Attributes Word
Identifies various characteristics of the disk controller configuration, as
shown in the following table:

Page 4 10/92



disk(7) disk(7)

DEFINITION SET(1) RESET(0)

0x01000 Don’t stop format if p/g list inaccessible | Stop format if inaccessible
0x10000 Don’t turn on drive cache Turn on drive cache

0x00800 Defect management zone = cylinder Defect management zone = track

These are the only flags currently used by the MVME328 and SCSI1X7 device
drivers.

Sector slip count
Indicates the number of spare sectors to be reserved for the defined defect
management zone. Note: changing this value can affect the usable capacity
of the drive.

The following ddefs utility fields are ignored: root file system offset, root file sys-
tem size, /usr file system size, /usr file system slice, swap size, and swap slice.
The following ddefs utility fields have values entered based on how the disk is to
be used: slice count and end-of-disk reserved area.

Alternates
This number is multiplied by the number of heads to determine the number
of spare tracks to be reserved at the end of the drive for defect management.
Note: changing this value can affect the usable capacity of the drive.

SEE ALSO

10/92

cdrom(7), £loppy(7), intro(7)

Page 5



dice(7) (TCP/IP) dice(7)

NAME

dlce - Data Link / Common Environment interface

SYNOPSIS

#include <sys/dlpi.h>
#include <sys/dlce.h>

fd = open("/dev/dlceO", O_RDWR) ;

DESCRIPTION

10/92

The dlce is a STREAMS-based cloned software driver used with the MVME374
Ethernet board/driver. The dlce interface conforms to the Data Link Provider
Interface (DLPI).

The dlce driver can be opened directly, or indirectly from the clone device driver.
During the TCP/IP startup, the dlce device is opened and linked to the IP and ARP
STREAMS modules via the slink command. From then on, dlce converts all the
outgoing packets, received from IP/ARP, to the format defined by Common
Environment/BPP interface and passes these packets to the MVME374 driver (which
is currently named MVME37X).

Upon receiving incoming packets from the MVME374 driver, dlce converts these
packets to the STREAMS-based DLPI format messages and passes these packets to
IP/ARP.

When the MVME37X package is installed, the postinstall script in the package
creates the device nodes for the DLCE driver. The name of a device node is com-
posed of the string ““dlce’” followed by the board number (0 or 1) of the MVME374
which the DLCE driver is associated with. The board number must be the same as
the MVME374’s cpu number minus 2 (cpu 0 and 1 are reserved for the Common
Environment and the local cpu). For instance, an MVME374 with cpu 2 (as defined
in the edt_data file), would have a device name of /dev/dlce0.

A dlce node major device number is the major device number of the clone device
driver. A dlce minor device number is the major number of the d1ce device, found
in /etc/master.d/dlce, concatenated with the board number corresponding to
this device. See intro(7) for the pictorial representation of the minor device
number as passed to the device driver. For the dlce device driver, the bit fields in
the minor format are defined as:

The BOARD bits define the board device number. Boards are numbered
from 0. The maximum board device number supported is 1.

The MAJOR # bits correspond to the real major number of the dlce device
as specified in the file /etc/master.d/dlce.

The device node name is also used as the Ethernet network interface name by
cenet in the network database file /etc/strcf and by ifconfig in the script
/etc/inet/rc.inet.

Each dlce device may have up to four (4) minor devices open simultaneously.
This number is configurable by modifying the #DEV field in /etc/master.d/dlce.

Page 1



dice(7) (TCP/IP) dice(7)

USAGE
STREAM Message Processing
The following are the types of STREAMS messages the driver can process:

M_PROTO/M_PCPROTO
Four DLPI protocol messages are supported: DL_INFO_REQ,
DL_UNITDATA_REQ, DL_BIND_REQ, and DL_UNBIND_REQ,. Unsupported
message types that are received are ignored and the STREAM message is
freed.

DL_INFO_REQ is a request for driver information. Driver information is
passed back up the stream in a message of type dl_info_ack_t with
dl_primitive set to DL_INFO_ACK. However, if enough memory is not
available for the driver information, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_UNITDATA_REQ is a request to transmit data. The message is in the
dl_unitdata_req_t format. The driver will process this message and
send data to the appropriate destination address. Most errors that can
occur during this message are turned around in the message itself and sent
back up stream in a message with d1_primitive set to DL_UDERROR_IND.
If enough memory is not available for processing, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_BIND_REQ is a request to bind a service access point (SAP) to the minor
device number associated with the current stream. The request message is
of type dl_bind reqg t. Once the stream has been bound, an ack-
nowledgement message type dl_bind_ack_t is sent back up the stream.
Errors generated during the processing of this message that cause an error
message of type dl_error_ack_t to be sent back up the stream are:
stream already bound, bad sap value, and cannot allocate memory for ack-
nowledgement. Currently, the only SAPs supported by dlce are IP_SAP
and ARP_SAP; IEEE802.3 frames are not supported.

DL_UNBIND_REQ is a request to unbind the minor device associated with
the current stream. Errors generated during message processing that cause
an error message of type dl_error_ack_t are: minor device is not bound
and cannot allocate enough memory for acknowledgement. An ack-
nowledgement message of type dl_ok_ack_t is generated when the
stream has been unbound.

M_IOCTL
ioctl commands are received in messages of type iocblk. Command
data must be stored in a connected message block type M_DATA. Some
commands do not require M_DATA blocks; M_DATA block requirements are
listed. Data passed back upstream is always contained in an M_DATA
block.

A description of user ioctl stream messages can be found under the
I_STR command in streamio(7). A sample code extract can be found in
the STREAMS Mechanism chapter of the STREAMS Programming Guide.

Page 2 10/92



dice(7) (TCP/IP) dice(7)

SIOCGENADDR is a type of request to return the Ethernet address of the
LANCE controller associated with the current queue. This command
requires an M_DATA block of type struct ifreq.

M_FLUSH
If the command is a read queue flush, the read queue of the driver is
flushed and the message is passed back up stream. If the command is a
write queue flush, the write queue of the driver is flushed.

FILES
/dev/dlce_x*
/usr/include/sys/dlpi.h
/usr/include/sys/dlce.h
/usr/include/sys/dlcecommon.h
/usr/include/sys/dlceuser.h

SEE ALSO
ifconfig(1M), slink(IM), strace(IM), edt_data(4), master(4), strcf(4N),
arp(7), clone(7), intro(7), ip(7), streamio(7)
Programmer’s Guide: STREAMS
McGrath, G., A STREAMS-based Data Link Provider Interface (DLPI), Version 1.3,
AT&T Bell Laboratories, Summit, N.J., February 1989

10/92 Page 3



e1x7(7) (TCP/IP) e1x7(7)

NAME

elx7 - MVME1X7 Local Area Network Interface

SYNOPSIS

#include <sys/dlpi.h>
#include <sys/macioctl.h>

fd = open("/dev/elx7_c0d0", O_RDWR) ;

DESCRIPTION

10/92

The MVME1X7 on-board Intel LANC chip (82596CA) is a Local Area Network Con-
troller for Ethernet and IEEE 802.3 compatible networks. The LANC can handle all
IEEE802.3 Medium Access Control and channel interface functions. The elx7 dev-
ice driver supports TCP/IP and OSI protocol stacks.

The e1x7 is a STREAMS-based driver used with MVME1X7 cpu boards. The elx7
interface conforms to the Data Link Provider Interface (DLPI). In addition, the
elx7 driver accepts the MAC management commands specified in the MAC Pro-
vider Interface (MPI). To account for possible cpu board expansion, the driver data
structures are designed to accomodate more than one LANC controller on a single
cpu board via changes to the edt_data and master.d files.

The elx7 driver can be opened directly or indirectly from the clone device driver.
During TCP/IP startup, the e1x7 device is clone opened and linked to the IP and
ARP STREAMS modules via the s1ink command. From then on, e1x7 converts all
the outgoing packets received from IP/ARP to the format defined by the LANC
controller and then passes these packets to the chip. If the OSI-DP package is
installed on the system and linked into the kernel, the e1x7 driver will accept out-
going packets from the DLR (OSI LLC1) module.

Upon receiving incoming packets from the LANC controller, e1x7 converts these
packets to STREAMS-based DLPI format messages and passes these packets to the
appropriate user (e.g., ARP, IP, or DLR).

The mvmecpu namer program, creates or deletes the device special files for the e1x7
driver at boot time. The device special filenames are composed of the string
elx7_cydz, where y is the controller number and z is the minor device number.
Controllers are numbered beginning at 0. The device special filename for the first
controller in the system is /dev/elx7_c0d0, for the second controller (if the cpu
board has one) is /dev/elx7_c1d0, and so on.

An elx7 device special file major device number is the major device number of the
clone device driver. An elx7 minor device number is the major number of the
elx7 device, found in /etc/master.d/enetlx7, concatenated with the board
number corresponding to this device. See intro(7) for the pictorial representation
of the minor device number as passed to the device driver. For the elx7 device
driver, the bit fields in the minor format are defined as:

The BOARD bits define the controller device number. Controllers are
numbered from 0. The maximum controller device number supported is 1,
i.e., two controllers.

The MAJOR # bits correspond to the real (external) major number of the
elx7 device as specified in the file /etc/master.d/enet1x7.

Page 1



e1x7(7)

(TCP/IP) e1x7(7)

The device special filename is also used as the Ethernet network interface name by
cenet in the network database file /etc/strcf and by ifconfig in the script
/etc/inet/rc.inet.

Each el1x7 device may have up to seven (7) minor devices open simultaneously.

USAGE

STREAM Message Processing
The following are the types of STREAMS messages the driver can process:

M_PROTO/M_PCPROTO

Page 2

Six DLPI protocol message types are supported: DL_INFO_REQ,
DL_UNITDATA_REQ, DL_BIND_REQ, DL_UNBIND_REQ,
DL_ENABMULTI_REQ, and DL_DISABMULTI_REQ. Unsupported message
types that are received cause an error message of type dl_error_ack_t
with d1_errno set to DL_NOTSUPPORTED to be sent back up the stream.

DL_INFO_REQ is a request for driver information. Driver information is
passed back up the stream in a message of type dl_info_ack_t with
dl_primitive set to DL_INFO_ACK. However, if enough memory is not
available for the driver information, an error message of type
dl_error_ack_t is sent back up the stream with d1_primitive set to
DL_ERROR_ACK.

DL_UNITDATA_REQ is a request to transmit data. The message is in the
dl_unitdata_req t format. The driver will process this message and
send data to the appropriate destination address. Most errors that can
occur during this message are turned around in the message itself and sent
back up stream in a message with d1_primitive set to DL_UDERROR_IND.
If enough memory is not available for processing, an error message of type
dl_error_ack_t is sent back up the stream with d1_primitive set to
DL_ERROR_ACK.

DL_BIND_REQ is a request to bind a service access point (SAP) to the minor
device number associated with the current stream. The request message is
of type dl_bind_req_t. A SAP type, as long as it is valid, is assumed to
be an Ethernet binding if it is not equal to IEEE8023_TYPE. Any Ethernet
type can be used as a binding SAP. Only one stream may use
IEEE8023_TYPE as a SAP. All IEEE802.3 frames will be sent up this stream.
If the OSI-DP package has been installed, the DLR module will bind to this
SAP and will receive all 802.3 frames. Once the stream has been bound, an
acknowledgement message type dl_bind_ack_t is sent back up the
stream. Errors generated during the processing of this message that cause
an error message of type dl_error_ack_t to be sent back up the stream
are: stream already bound, bad sap value, and cannot allocate memory for
acknowledgement.

DL_UNBIND_REQ is a request to unbind the minor device associated with
the current stream. Errors generated during message processing that cause
an error message of type dl_error_ack_t are: minor device is not bound
and cannot allocate enough memory for acknowledgement. An ack-
nowledgement message of type dl_ok_ack_t is generated when the
stream has been unbound.

10/92



el1x7(7)

M_IOCTL

10/92

(TCP/P) e1x7(7)

DL_ENABMULTI_REQ is a request to enable a multicast address on a per-
stream basis. An individual stream may have a maximum of sixty-four
multicast addresses in its table, subject to the following limitation. There
may be no more than sixty-four unique addresses for all streams associ-
ated with each controller. An acknowledgement message of type
dl_ok_ack_t is generated if the request is valid. A message of type
dl_error_ack_t is generated with d1_primitive set to DL_BADADDR if
the multicast address is invalid or d1_primitive set to DL_TOOMANY if
there is no space left in the controller’s multicast table.

DL_DISABMULTI_REQ is a request to disable a multicast address on a per-
stream basis. The driver will not accept frames with this multicast address
even if elx7multi_all is enabled and the LANC is accepting multicast
addresses. An acknowledgement message of type d1_ok_ack_t is gen-
erated if the request is valid. A message of type dl_error_ack_t is gen-
erated with d1_primitive set to DL_BADADDR if the multicast address is
invalid or d1_primitive set to DL_NOTENAB if the requested address is
not currently enabled.

ioctl commands are received in messages of type iocblk. There are
many ioctl commands supported by the driver. Command data must be
stored in a connected message block type M_DATA. Some commands do
not require M_DATA blocks; M_DATA block requirements are listed. Data
passed back upstream is always contained in an M_DATA block. All of the
loctl #defines used can be found in the file
include/sys/macioctl.h.

A description of user ioctl stream messages can be found under the
I_STR command in streamio(7). A sample code extract can be found in
the STREAMS Mechanism chapter of the STREAMS Programming Guide.

MACDELAMCA is a request to delete all multicast table entries on the con-
troller associated with this stream. This command does not require an
M_DATA block. The driver will not accept any multicast frames even if
elx7multi_all is enabled and the LANC is accepting multicast addresses.

MACDELMCA is a request to delete one multicast address from a multicast
table on a per-stream basis. This command requires an M_DATA block of
type mc_frame. The driver will not accept frames with this multicast
address even if elx7multi_all is enabled and the LANC is accepting mul-
ticast addresses.

MACGETIA is a type of request to return the Ethernet address of the LANC
controller associated with the current queue. This command does not
require an M_DATA block.

MACGETMCA is a request to return the entire multicast table for the con-
troller associated with the current queue. This command does not require
an M_DATA block.

MACGETSTAT is a request to return a statistic the driver has been gather-
ing. A returned value of -1 indicates the statistic was not available. This
command requires an M_DATA block. The data block is an array of struc-
tures. Each structure has the following format (see macioctl.h):

Page 3



e1x7(7)

Page 4

(TCP/IP)

struct macstat {
long name ;
long value ;

e1x7(7)

}
A table of number defines and their descriptions follow:

MACGETSTAT

Name

Description

MACSTAT_DEV_TIMEOUTS

total number of device timeouts

MACSTAT_XMITED

number of successful transmits

MACSTAT_XMITED_DEF

number of deferred transmits

MACSTAT_XMITED_1COLL

number of transmits with >/=1 collision

MACSTAT_COLLISIONS

total number of collisions

MACSTAT_NOXMIT_BUFF

total number dropped frames because of no
STREAM bulffer

MACSTAT_NOXMIT_COLL

number of frames dropped due to excess
collisions

MACSTAT_RECVD

number of frames successfully received

MACSTAT_RECVD_CKSUM

number of CRC errors

MACSTAT_RECVD_ALIGN

number of frames with alignment errors

MACSTAT_NORECV_RES

number of frames dropped because of
resource lack

MACSTAT_NORECV_LENGTH

number of frames dropped because of bad
length

MACSTAT_RECVD_MCAST

number of multicast frames received

MACSTAT_XMITED_MCAST

number of multicast frames transmitted

MACSTAT_NORECV_MCAST

number of multicast frames rejected

MACSTAT_NORECV_TYPE

number of frames dropped because of
unbound type

MACSTAT_NOXMIT_CARRIER

number of times lost carrier

MACSTAT_NOXMIT_CTS

number of times lost CTS

MACSTAT_DMA_ERRORS

number of DMA errors

MACSTAT_RECVD_BCAST

number broadcast frames received

MACSTAT_OUT_OF_WINDOW

number of late collisions

MACSTAT_XMITED_BCAST

number of broadcast frames transmitted

MACSETIA is a request to set the Ethernet address for the LANC controller
associated with the current stream. After executing MACSETIA, the net-
working subsystem must be stopped and then restarted. The address is
immediately changed in the LANC and the non-volatile RAM on the cpu

10/92




e1x7(7) (TCP/IP) e1x7(7)

board.

MACSETMCA is a request to add one multicast address to a multicast table
on a per-stream basis. This command requires an M_DATA block of type
mc_frame. A multicast address must have the least significant bit of
byte[0] of the Ethernet address set. An individual stream may have a max-
imum of sixty-four multicast addresses in its table, subject to the following
limitation. There may be no more than sixty-four addresses for all streams
associated with each controller.

SIOCGENADDR is a type of request to return the Ethernet address of the
LANC controller associated with the current queue. This command
requires an M_DATA block of type struct ifredq.

M_FLUSH
If the command is a read queue flush, the read queue of the driver is
flushed and the message is passed back up stream. If the command is a
write queue flush, the write queue of the driver is flushed.

Master.d Parameters

10/92

The driver's master.d file is partitioned into two sections. Section 1 declares data
structure names to be accessed by the driver software, their type, and their initial
value. Section 2 contains the parameter declarations used in section 1 for setting
data structure values. Most data structures are defined as arrays, where the length
of the array is determined by the number of LANC controllers in the Equipped
Device Table. The following table lists the section 1 parameters, their default sec-
tion 2 declaration and value, and their description. Some data structures mention
that certain settings of a data structure may cause networking lock-up due to a
LANC bug. These settings can cause errors when the A-1 step of the LANC chip is
used. The B step of the LANC chip, when released, will correct these errors.

Page 5



e1x7(7)

(TCP/IP)

e1x7(7)

Master.d Parameters

Parameter

Default

Description

elx7buf_type

STREAM (1)

Use local or STREAM bulffer control flag.

This parameter is only checked on cpu boards
which can snoop the bus, for example, the 167.
The 187 does not snoop the bus so this
parameter’s setting for the 187 is not used. The
driver running on the 187 only allocates
local buffers. The other setting is LOCAL (0).

elx7rcv_nmrfd

RFDS_DEFAULT (16)

Number of receive frames that can be pro-
cessed by the LANC before requiring more
cpu resources.

The minimum number of receive frame
descriptors is four. The larger the value the
more system resources may be consumed.

elx7rcv_szbuff

RBUFSZ_DEFAULT (1514)

The size of a receive buffer in bytes.

Receive buffers can be chained together by
the LANC if a frame larger than a receive
buffer is being processed. The minimum size
for a receive buffer is 60 bytes; the maximum
is 1514 bytes. Receive buffer size must be
even. The larger the value the more system
resources are consumed.

elx7rcv_nmbfdes

RBUFDES_DEFAULT (17)

The number of receive buffers allocated.

The minimum number allowed is four.
However, due to a bug in the LANC chip,
software must ensure that receive frame descrip-
tors always run out before all of the receive
buffers are used. This means the value for the
number of receive buffers must be >
(number of receive frames * 1514)/receive
buffer size. The larger the value the more
system resources are consumed.

elx7tx_nmcbl

NMTXCBL_DEFAULT (16)

The number of transmit frames that can be
handled by the LANC.

The minimum number allowed is four. The
larger the value the more system resources
are consumed.

Page 6

10/92




e1x7(7) (TCP/IP)

e1x7(7)

Master.d Parameters (cont.)

Parameter Default

Description

elx7tx_szbuff TXBUFSIZ_DEFAULT (1514)

The size of a local (not stream) transmit
buffer in bytes.

The minimum buffer size is 60; the max-
imum is 1514. However, due to a LANC bug,
the size should be kept at the maximum. If more
than one buffer is used per transmit frame,
networking may at some point lock-up.
This would probably not occur in single-
segment networks but networks with
repeaters may see this error.

elx7tx_nmbfdes | TXBUFDES_DEFAULT (20)

|

The number of transmit buffer descriptors.

Transmit command blocks point to transmit
buffer descriptors which then point to
transmit buffers. With the default setting for
elx7tx_szbuff, each transmit descriptor is
associated with one complete frame.

elx7rcv_fifo l FIFO_DEFAULT (5)

This is an index into a table of LANC receive
and transmit FIFO threshold values.

The LANC has independent 128 byte receive
and 64 byte transmit FIFOs. The value 8
indicates a transmit threshold of 32 bytes
and a receive threshold of 64 bytes. The
table is listed below:

Value Tx Rx

0 128
4 120

XN WN—RO
]
o
x
[e5]

10/92

Page 7




e1x7(7)

(TCP/IP)

e1x7(7)

Master.d Parameters (cont.)

Parameter Default

Description

elx7bus_ton ON_BUS_THROTL (15)

On bus throttle timer in microseconds.

This is the maximum amount of time the
LANC can keep the local bus before releas-
ing it. The maximum value allowed is 30;
the minimum is one.

elx7bus_tof OFF_BUS_THROTL (1)

Off bus throttle timer in microseconds.

This is the minimum amount of time the
LANC must stay off the local bus after
releasing it. The maximum value allowed is
50; the minimum is one.

elx7dbug_lvl DEBUG_LEVEL (0)

Debug level for debugging prints to the sys-
tem console.

LEVEL 0 indicates debugging is off. The
maximum level is three. Each higher level
will print more detailed debug information.

elx7adpt_szing RESERVED Reserved, must not be changed.
elx7adpt_pkwind | RESERVED Reserved, must not be changed.
elx7tdr | TDR_ENABLED (1) Time Domain Reflectometry control flag.

The LANC chip can help determine where
and what kind of problems are in the net-
work cabling. If this flag is enabled and if
the software thinks that there may be a cable
problem, a command will be launched to try
and determine where and what the problem
is. If a problem is found, a warning message
is printed on the system console. If this flag
is disabled, TDR_DISABLED (0), then no prob-
lem checking commands will be launched.

elx7savbadframe | SVBD_DISABLED (0)

Control flag to tell the LANC whether to
pass bad frames it receives to the driver or
throw them away.

Even though they are thrown away, the
LANC keeps statistics on bad frames. The
default state is to throw away bad frames.
Bad frames can be saved by setting this
value to SVBD_ENABLED (1). However, due to
a LANC bug, the SVBD_ENABLED setting may
cause a networking lockup.

Page 8

10/92




e1x7(7)

(TCPIP)

e1x7(7)

Master.d Parameters (cont.)

Parameter

Default

Description

elx7loopback

OFF_LOOPBACK (0)

Control flag for LANC loopback modes.

This flag must only be changed for hardware
debug purposes. An Intel 82596 User’s
Manual is required. Other values are
INT_LOOPBACK (1), NOLPBK_LOOPBACK (2),
WLPBK_LOOPBACK (3).

elx7promiscuous

PROM_DISABLED (0)

Control flag for enabling/disabling the
LANC promiscuous mode.

Enabling the mode means the LANC accepts
all packets transmitted on the network.
Disabling the mode means the LANC
accepts only broadcast, multicast, and
specific packets meant for it. It is up to
software layers above the driver to set up
service access points to accept all packet
types when the mode is PROM_ENABLED (1).
This parameter can override the setting of
elx7broadcast.

elx7broadcast

ENAB_BROADCAST (0)

Control flag to enable/disable receipt of
broadcast packets.

The default is to receive all broadcast pack-
ets. DISAB_BROADCAST (1) is the other
option.

elx7car_filtwid

CARFILTWID_DEFAULT (0)

The width required of the Carrier Sense sig-
nal, in bit times, before it is recognized as
being active.

The maximum value is 7. Changes to this
value may be useful in noisy cable environ-
ments.

elx7car_source

EXT_CARSOURCE (0)

Control flag to specify internal/external gen-
eration of Carrier Sense.

In external mode, Carrier Sense is fed
through the CRS pin. In internal mode
INT_CARSOURCE(1), presence of the receive
clock is interpreted as Carrier Sense Active.

elx7col_filtwid

1
COLFILTWID_DEFAULT (0)

Specifies the width required of CDT, in bit
times, for the LANC to recognize that a colli-
sion has occurred.

The maximum value allowed is 7.

10/92

Page 9




e1x7(7)

(TCP/IP) e1x7(7)

Master.d Parameters (cont.)

Parameter

Default

Description

elx7col_source

EXT_COLSOURCE (0)

Specifies external/internal collision detect
source.

External collision detect is fed through the
CDT pin. Internal detects the presence of
carrier sense during transmission or the
presence of the receive clock during
transmission as a collision.

elx7multi_all

DIS_MULTIALL (1)

Control flag to enable/disable the LANC
from receiving all frames that have a multi-
cast address in the destination address field.
The default is disabled. The other option is
EN_MULTIALL (0).

elx7txqu_quall

DIS_QUALL (0)

Control flag to enable/disable queuing of all
transmit packets for the driver’'s write ser-
vice routine.

This flag is for software testing only. The
default setting is disabled. The other option
is EN_QUALL (1).

elx7txqu_drop

DIS_DROPALL (0)

Control flag to disable/enable dropping of
all transmit packets in the driver’s put rou-
tine, i.e., no data is sent out on the cable.

This flag is for protocol stack testing only. The
default setting is disabled. The other option
is EN_DROPALL (1).

elx7tx_lngchk

DIS_LENGCHK (1)

Control flag to disable/enable receive frame
length checking and transmit frame padding
on the LANC chip.

This cannot be wused for Ethernet
software /hardware networks. It can only be
used for IEEE802.3 compliant software and
hardware networks. Also, due to a LANC
bug, setting the flag to EN_LENGCHK may
cause a networking lockup.

Page 10

10/92




e1x7(7) (TCP/IP) e1x7(7)

Debug Aids
The driver calls the STREAMS logger kernel routine, strlog. These messages are
mostly error messages. A few are only informational. The trace messages are seen
with the strace(IM) command. Additional trace messages can be seen when the
driver is compiled with #define E1X7_DEBUG.

The module ID for this driver is hexadecimal e17 or 0xel7 or 3607 decimal.
There are four sub-IDs and three tracing priority levels. Priority levels are
1-3; level 3 gives the most detail.

Sub-ID Description
3 Interrupt Level Trace
2 Stream Level Trace
1 Initialization Trace
0 Generic Code Trace

Also, as discussed earlier in the Master.d Parameters section, elx7dbug_1v1 can be
set to print information to the system console. Note that a level 1 setting will cause
statistics to be printed when all minor devices associated with a controller are
closed.

Also, when the driver has been compiled with #define E1X7_DEBUG, a debugging
subroutine can be called from within KDB, the kernel debugger. The subroutine’s
name is elx7debugger.

Note that when the driver is compiled with #define DEBUG, E1X7_DEBUG is
automatically defined.

FILES
/dev/elxT_x*
/usr/include/sys/dlpi.h
/usr/include/sys/macioctl.h
/usr/include/sys/elx7.h
SEE ALSO
ifconfig(1M), mvmecpu(1M), slink(IM), strace(IM), edt_data(4), master(4),
strcf(4N), arp(7), clone(7), intro(7), ip(7), streamio(7).
McGrath, G., A STREAMS-based Data Link Provider Interface (DLPI), Version 1.3,
AT&T Bell Laboratories, Summit, N.J., February 1989
LT-610 Programmer Guide, Preliminary version, Retix, Santa Monica, CA, 1991

10/92 Page 11



edt_data(4) edt_data (4)

NAME

/stand/edt_data - Equipped Device Table (EDT) Data File

DESCRIPTION

The Equipped Device Table data file describes board and device specific data used
for configuring a kernel. Associated with some boards is an Extended EDT (XEDT)
which describes subdevices of those boards and may be of zero length. The XEDT
can be read by the program via an sysm68k/sysm88k(2) call XGETEDT on the spe-
cial file associated with the board. Note that not all drivers may support this
option.

COMMENTS

An EDT data file may contain comments. A comment begins with the character '#
and extends to the end of the line.

GENERAL DIRECTIVE INFORMATION

An EDT data file is composed of a collection EDT data file directives.
The template for the directives is:

directive name [options] [cpus(s)]

{
}

directive is the name of the directive.

body

name specifies the name to be associated with the directive.
options specifies strings which are directive specific.

cpu(s) specifies which CPUs this directive should be limited to. If no cpu(s) are
specified, the directive is associated with all CPUs that the kernel may support.
Valid cpu(s) are "'mvmel41”, "mvmel67", "mvmel81", "mvmel87", "mvmel88", and
"mvmel97".

It is possible for some directives to not have a body, in which case the open and
close braces are dropped as well. If the directive does have a body, it is embedded
in the open and close braces and consists of whitespace separated keyword and
value pairs, one per line.

When a number is called for it may be expressed in decimal, octal, or hexadecimal.
Hexadecimal numbers must be preceded with the sting "0x". Octal number must be
preceded with a leading zero.

THE VECTOR-GROUP DIRECTIVE

10/92

The vector-group directive specifies that group of interrupt vectors should be
assigned a name, be reserved from all but explicit use, and the starting location of
the group.

The template for the vector-group directive is:

vector-group name [ignore] [cpu(s)]

Page 1



edt_data(4) edt_data(4)

vector-assignment starting-location
number-of-vectors number

}

If the ignore string is present, the directive will always be ignored (never included
into a kernel).

The number-of-vectors keyword specifies the number of interrupt vectors in the
group.

The vector-assignment keyword specifies the starting location of the group. The
starting-location may be expressed as an:

An absolute vector displacement is defined as the interrupt vector number multi-
plied by 4.

The string "any" will allow the vector group to automatically assigned any accept-
able location that is found.

A modulo alignment directive specifies that the group of vectors may be automati-
cally assigned a locatation provided that the vector number of the starting vector of
the group has a remainder of zero when it is divided by the specified number.

The form of this directive is "mod(specified-number)".

THE DRIVER DIRECTIVE
The driver directive specifies that a device driver is required to deal with a specific
piece of hardware.

The template for the driver directive is:

driver name [ignore] [probe] [cpu(s)]

{

id number
io-address number
io-length number
memory-address number
memory-length number
interrupt-level number

vector-assignment starting-location
number-of-vectors number
aux-info number number number number

The probe string specifies that this device should be probed for when the system
boots. If this is string is missing, the device and its driver are considered "required”
in order to build a kernel.

The ignore when used with the "required" driver (one that does not have probe

Page 2 10/92



edt_data(4) edt_data(4)

specified) it will not be included in the kernel.

Drivers with both probe and ignore are handled differently. If all of the drivers for
a specific type of device are marked ignore they will be excluded from the kernel.
However if only some of the devices are ignored, they may still be included into the
kernel for padding purposes: making sure that the infomration emitted into the ker-
nel for the drivers to use isn't modified by the removal of a device.

The id keyword specifies a unique number that identifes each device that a driver
may utilize.

The io-address keyword specifies the starting address of the short I/O area used by
the device. If the device doesn’t have a short I/O area this keyword may be
dropped.

The io-length keyword specifies the length of the devices short I/O area. If the io-
address keyword is present, this keyword must also be present.

The memory-address keyword specifies the starting address of an auxiliary
memory area use by this device. If the device doesn’'t have an auxiliary memory
area this keyword may be dropped.

The memory-length keyword specifies the length of the devices auxiliary memory
area. If the memory-address keyword is present, this keyword must also be
present.

The interrupt-level keyword specifies the interrupt level that this device should
interrupt with.

The vector-assignment and number-of-vectors keywords function the same as in
their vector-group context, however an additional vector-assignment technique is
possible. This is the indexed reference to a vector group. An indexed reference is
specified by the vector group name followed by the index number embedded in
open and close square brackets.

The aux-info keyword is used to specify driver specific values that the driver may
use in whatever way it sees fit. All four numbers must be present. This keyword is
optional.

THE CPU-IGNORE-INTERRUPT-LEVEL DIRECTIVE

10/92

This directive is used to ignore certain interrupt levels. This is useful when
VMEDbus devices are co-resident with UNIX devices and UNIX must not handle the
interrupts associated with those devices.

The template for the ignore-cpu-interrupt-level directive is:
ignore-cpu-interrupt-level none or levels

The keyword none, which is also the default if this directive isn’t used, specifies

that all interrupt level should be allowed. Otherwise the levels specify which inter-
rupt levels to ignore, each level being specified by its level number (e.g. interrupt

Page 3



edt_data(4)

FILES

Page 4

level 5 as the digit 5).
DRIVER WRITER INFORMATION

edt_data(4)

Each of the keywords in the body of the driver directive causes the cunix program
to automatically generate variables which may be accessed by a driver. These vari-
ables then allow the driver to know how many device of its type are configured
into the kernel, their locations, and characteristics.

Each variable begins with the drivers master.d file prefix, which is denoted by the
string <prefix> below. The generated arrays have the device information stored in

id keyword order.

Variable

Data type

Use

<prefix>_cnt

unsigned int

Specifies the number of devices configured
into the kernel.

<prefix>_addr

array of caddr_t

Specifies the starting short /0O addresses of
each device. Derived from the io-address
keyword.

<prefix>_iolen

array of unsigned int

Specifies the size (in bytes) of the device’s

" short I/O space. Derived from the io-length

keyword.

<prefix> maddr

array of unsigned int

Specifies the starting address of auxiliary
memory area of each device. Derived from
the memory-address keyword.

<prefix>_memlen

array of unsigned int

Specifies the size (in bytes) of the auxiliary
memory area of each device. Derived from
the memory-length keyword.

<prefix>_nvec

unsigned int

Specifies the number of vectors per device.
Derived from the number-of-vectors key-
word.

<prefix>_vec

array of unsigned int

Specifies each devices interrupt vector dis-
placement (the interrupt vector number
multiplied by four). Derived from the
vector-assignment keyword.

<prefix>_ivec

array of unsigned int

Specifies the interrupt priority level of each
device. Derived from the interrupt-level
keuword.

<prefix>_aux

array of unsigned int

Specifies the auxiliary information for each
device. Each device’s information is a group
of 4 elements. Derived from the aux-info
keyword.

/usr/include/sys/edt.h

10/92




edt_data (4) edt_data (4)

SEE ALSO
cunix(1M), sysm68k(2), sysm88k(2), boot(8), edtp(8)

10/92 Page 5



enet1x7(7) (TCP/IP) enet1x7(7)

NAME
enetlx7 - MVME1X7 Local Area Network Interface

SEE ALSO
elx7(7)

10/92 Page 1



environ (4) (Framed Access Command Environment Utilities) environ (4)

NAME

.environ, .pref, .variables - user-preference variable files for FACE

DESCRIPTION

10/92

The .environ, .pref, and .variables files contain variables that indicate user
preferences for a variety of operations. The .environ and .variables files are
located under the user’s SHOME/pref directory. The .pref files are found under
$HOME/FILECABINET, $HOME/WASTEBASKET, and any directory where preferences
were set via the organize command. Names and descriptions for each variable are
presented below. Variables are listed one per line and are of the form variable=value.

Variables found in . environ include:
LOGINWIN[1-4] Windows that are opened when FACE is initialized

SORTMODE Sort mode for file folder listings. Values include the following
hexadecimal digits:

1 sorted alphabetically by name
2 files most recently modified first
800  sorted alphabetically by object type

The values above may be listed in reverse order by "ORing" the
following value:

1000 list objects in reverse order. For example, a value of
1002 will produce a folder listing with files least
recently modified displayed first. A value of 1001
would produce a "reverse" alphabetical by name listing

of the folder
DISPLAYMODE Display mode for file folders. Values include the following hex-
adecimal digits:
0 file names only
4 file names and brief description
8 file names, description, plus additional information
WASTEPROMPT Prompt before emptying wastebasket (yes/no)?
WASTEDAYS Number of days before emptying wastebasket
PRINCMD[1-3] Print command defined to print files.
UMASK Holds default permissions that files will be created with.

Variables found in .pref are the following:

SORTMODE ~ which has the same values as the SORTMODE variable described in
.environ above.

DISPMODE  which has the same values as the DISPLAYMODE variable described in
.environ above.

Variables found in .variables include:

Page 1



environ (4) (Framed Access Command Environment Utilities)

FILES

Page 2

EDITOR Default editor
psl UNIX shell prompt

SHOME /pref/.environ
SHOME/pref/.variables
SHOME/FILECABINET/ .pref
SHOME /WASTEBASKET/ .pref

environ (4)

10/92



envmon (7) envmon (7)

NAME
envmon - Environment Monitor Board driver
DESCRIPTION
The envmon driver provides a character-device interface to the Environment Moni-

tor Board (ENVMON). Sometimes this board is also referred to as the EMB. The
ENVMON itself is responsible for the following:

— Monitoring and controlling the state of an external Uninterruptable Power
Supply (UPS). Monitoring of AC-FAIL and Low-Battery conditions is pro-
vided, along with control of AC output from the UPS.

— Monitoring and controlling the state of one to four External Chassis’ (typi-
cally 3 plus a UPS). Monitoring of AC-FAIL and Over-Temperature is pro-
vided, along with control of external chassis DC-power.

— Monitoring the state of up to four Internal Chassis temperature sensors.

— Monitoring and controlling the state of the Internal Power Supply (low-
voltage, enable/disable).

— Host notification, via VME Interrupt and VME-accessible status registers, of
any AC-FAIL, Over-Temperature or UPS Low-battery conditions.

— System reset, system power-off or UPS and external chassis power-off under
host program control.

— Automatic power-off of the system and/or UPS and external chassis, upon
persistent Over Temperature condition.

— Transition-module push-buttons and remotable contacts for system Reset and
Abort interrupt.

The envmon driver provides the following:

— Read access (via ioctl(2)) to the ENVMON status registers A and B, for deter-
mining UPS, External Chassis, and Temperature status.

— Indirect or direct write access (via ioctl) to the ENVMON control register, for
generating test interrupts, generating VME SYSRESET, signalling all external
units (including UPS’) to turn off their power, or latching off internal and
external power.

— Synchronous notification (via select(2) and poll(2)) of exception conditions
(first failure bit set in Status Register A).

— Interface from uadmin(2) system call to ENVMON control register, to control
system shutdown behavior.

— Handling of ENVMON Abort switch interrupts, by trapping to the
configured debugger (ROM or kdb).
SYSTEM CALL INTERFACES
The following system calls and semantics are defined for the envmon interface:

Open/Close
Opening the device allows I/O from/to the resultant file descriptor. Only the
super-user may open for write.

10/92 Page 1



envmon (7) envmon(7)

Upon success, open(2) returns a file descriptor. On error, -1 is returned, and
errno is set to indicate the error.

[ENODEV]
The envmon driver is not configured.

[ENXIO]
No envmon board is installed on the system.

[EPERM]
Attempt to open for write by non super-user.

Issuing a close has no effect on the driver or the ENVMON, other than to disas-
sociate the driver from the passed file descriptor.

Read/Write
There is no direct read /write access provided by the driver. Such calls will
return -1, with errno set to [ENODEV].

Toctl

#include <sys/types.h> .
#include <sys/envmon.h>
int ioctl (s, request, arg)
int s, request;
int *arg;

or
ushort *arg;

or
struct emb_stat *arg;

The following table shows the ioct] requests defined for the envmon driver; a
description for each follows the table.

Request Arg Action
EMBGETSTAT struct emb_stat * | Get current contents of status registers A & B
EMBXTUOFF NULL Power off all externally connected units
EMBPWRDOWN | NULL Latch internal and external power off
EMBTESTINT NULL Generate ENVMON test interrupt
EMBSYSRESET NULL Generate VME SYSRESET
EMBARM int* Setup ENVMON interface to uadmin(2)
EMBDISARM NULL Reset ENVMON interface to uadmin
EMBWRTCMD ushort * Write arbitrary value to Command Register

For all commands other than EMBGETSTAT, the device must be open for writing.

EMBGETSTAT
This request retrieves the current values of the A and B status registers
(interrupt cause and external device type) into the emb_stat structure pointed
to by arg. The driver reads register A twice before returning its value, so any
previously latched, but no longer existent failure bits are not presented.

Macros are provided, in envmon.h, to decode the bits of registers A and B.
The macros may be used as booleans, to determine the existence and nature
of any failure conditions present, and/or to identify which devices are

Page 2 10/92



envmon(7)

10/92

envmon(7)

affected.

EMBXTUOFF
This request causes the ENVMON to send the power-off signal to all
attached external units. If a UPS is attached, this should cause it to disen-
gage its inverter and cease running on batteries, thus powering off the sys-
tem and any other devices attached to the UPS.

There may be no return from this operation. It should only be used on a quiescent
system. It is recommended that this command be issued indirectly, via the
EMBARM interface.

If an attached UPS was not running on batteries, the result of this command
on the UPS is UPS-specific. It may continue to run, until AC power is actu-
ally interrupted, at which time it would likely remove power to the system
immediately.

EMBPWRDOWN
This request causes the ENVMON to turn off the system internal power sup-
ply, and also send the power-off signal to all attached external units. The
board latches itself in this state until physically reset by an operator.

There is no return from this operation. It should only be used on a quiescent system.
It is recommended that this command be issued indirectly, via the EMBARM inter-
face. See the CAVEATS section for other concerns regarding EMBPWR-
DOWN.

EMBTESTINT
This request causes the ENVMON to generate a test interrupt to the system.
This should, in turn, cause any selecting or polling process to be awoken. The
copy of status register A returned by a subsequent EMBGETSTAT, however
will not have the test interrupt bit set, as this will have been cleared by the
interrupt service routine.

EMBSYSRESET
This request causes the ENVMON to generate a VME SYSRESET signal on
the VME bus. There is no return from this operation. It should only be used in
emergencies on a quiescent system.

EMBARM
This request exploits a hook in the uadmin(2) interface in the kernel, causing
it to call the envmon driver with the integer request pointed to by arg, just
prior to entering its infinite loop. This loop is normally entered when a sys-
tem halt is requested with an invocation of the command:

uadmin x 0
(or the equivalent system call uadmin(x, AD_HALT)).

If x is A_SHUTDOWN [2], all processes are killed, and the root filesystem
unmounted before the envmon request is executed. This indirect method of
executing the EMBXTUOFF, EMBPWRDOWN, or EMBSYSRESET com-
mands should be used to ensure that root is umounted prior to system
power-down or reset. It is primarily designed to be used after an automatic
shutdown due to an over-temperature condition, or an AC power failure
(when attached to a UPS).

Page 3



envmon (7) envmon(7)

Page 4

If uadmin issues the EMBXTUOFF command when a UPS is attached (as
indicated in status register B), it waits 10 seconds and then issues an
EMBSYSRESET. This is done in the event that an attached UPS ignores the
power-off signal if AC power has returned.

By default, uadmin is not armed to execute any ENVMON command after an
AD_HALT request, unless the emb_halt_pwrdown master.d parameter has
been set (see the MASTER.D PARAMETERS section).

The EMBARM request has no affect on the uadmin behavior after an
AD_BOOT or AD_IBOOT request. This is controlled by the emb_boot_reset
master.d parameter (see the MASTER.D PARAMETERS section).

EMBDISARM
arg is unused and should be NULL. This request causes uadmin to revert to
the default response to an AD_HALT request, which is controlled by the
emb_halt_pwrdown master.d parameter (see the MASTER.D PARAMETERS
section).

EMBWRTCMD
arg should be a pointer of type ushort. This request writes the value pointed
to by arg to the Command register of the ENVMON.

The value written must include the EMBENACMD bit if ENVMON inter-
rupts are to be enabled.

Upon success, ioctl(2) returns zero. On error, -1 is returned, and errno is set to
indicate the error.

[EBADF]
A request other than EMBGETSTAT was made, but the device is not open
for writing.

[ENXIO]
An EMBXTUOFF or EMBPWRDOWN was requested, but the transition
module was not connected.

[EFAULT]
arg points to an invalid or protected part of the process address space.

Select

It is possible to select on an envmon file descriptor for exception conditions. As
long as there are no bits set in Status Register A, select will sleep (the length is
controlled by the timeout argument; see select(2)).

When the ENVMON interrupts due to a power, temperature, or test interrupt,
select will return an FD_SET indicating that the envmon file descriptor has an
exception condition pending, the nature of which can be read with the
EMBGETSTAT ioct! request. Whenever any bit is set in Status register A, select
will return immediately. Thus, select cannot be used to wait for new exception
conditions (one bits), unless all previous exceptions have been cleared (and
Register A has returned to 0). Also, select cannot be used to wait for an excep-
tion condition to be cleared.

Once an exception condition has been raised, it is necessary to poll for status
changes, using EMBGETSTAT.

10/92



envmon (7) envmon(7)

NOTE: On temperature-sensor conditions, the ENVMON can interrupt
thousands of times while a sensor crosses through or hovers near its threshold
temperature. The driver attempts to de-bounce this effect by disabling
ENVMON interrupts for 10 seconds whenever an interrupt is received. It is
possible, however, for a select to return an FD_SET indicating an exception con-
dition, but for that condition to not exist when an EMBGETSTAT is per-
formed, or to exist for random EMBGETSTAT requests. This may continue
indefinitely until the temperature rises sufficiently above the threshold value
to stabilize the register A contents.

Poll
It is also possible to poll an envmon file descriptor for out-of-band data similar
to using select for exception conditions. Use POLLRDBAND as the requested
event.

Driverinfo

The envmon driver includes a driverinfo(D2DK) routine that implements the
DXGETEDT command. Although, strictly speaking, the envmon driver does
not support subdevices, it does report extended EDT information for the dev-
ices connected to the transition module. The "devices" are numbered 1 through
4 corresponding to the connector numbers on the transition module. The dev-
ice types are determined by the state of pins 3 and 4 of the connectors. If pin 3
is grounded then "external-disk-chassis" is returned in the xedt structure; if pin
4 is grounded then "UPS" is returned. If both pins 3 and 4 are grounded then
"problem-with-device" is returned. The number of extended EDT entries is
equal to the number of connected devices that either indicate "external-disk-
chassis", "UPS" or "problem-with-device" based on the state of pins 3, 4 and 5.

MASTER.D PARAMETERS
The following may be set in the /etc/master.d/envmon file.

emb_boot_reset
When set to 1, the EMBSYSRESET command will be sent to the ENVMON
whenever uadmin(1M) or uadmin(2) is invoked to do the BOOT or IBOOT func-
tion. This parameter is set to 1 by default.

emb_halt_pwrdown
When set to 1, the EMBPWRDOWN command will be sent to the ENVMON
whenever uadmin(1M) or uadmin(2) is invoked to do the HALT function. When
set to 0, the ENVMON is not, by default, sent any command in response to the
HALT request. This parameter is set to 0 by default.

The default behavior is overidden by invoking the EMBARM ioct! to specify
the ENVMON command to be sent. Invoking the EMBDISARM ioct! reverts
to the default behavior as controlled by emb_halt_pwrdown.

MESSAGES
The following messages are printed for the EMBSYSRESET, EMBXTUOFF, and the
EMBPWRDOWN commands:

ENVMON: Asserting VME SYSRESET.
This message is printed when the EMBSYSRESET command is sent to the
ENVMON.

10/92 Page 5



envmon(7) envmon (7)

ENVMON: Shutting off external devices.
This message is printed when the EMBXTUOFF command is sent to the
ENVMON.

ENVMON: Shutting off internal power.
This message is printed when the EMBPWRDOWN command is sent to the
ENVMON.

CAVEATS

NOTES

FILES

The driver disables ENVMON interrupts for 10 seconds following any interrupt
(except ABORT). During this 10 second interval all ENVMON interrupts are dis-
abled, including ABORT. The purpose of this delay is to compensate for the lack of
any hysteresis in the temperature sensors.

When executing a EMBPWRDOWN request, the ENVMON logic expects power to
be removed; therefore it also asserts the VME AC-FAIL and SYSRESET lines. Thus,
this command will effect a system reset, even if the ENVMON is not connected to
the internal power-supply or any external units. This command should not be exe-
cuted unless the ENVMON is properly connected to the internal power supply.
Otherwise, the system will reboot automatically with the external power-off signal
asserted (and latched), and any connected disk-drive chassis would be inhibited
from powering up. Also, if a UPS were attached which ignored this signal while
AC was present, it would remove system power immediately, when an AC failure
occured.

Once a UPS power-fail or Over-Temperature condition is raised, there is a finite
amount of time available before the UPS or ENVMON will remove power from the
system. In the case of an AC-failure, the UPS will power down the system when its
batteries are exhausted, or possibly earlier if so programmed. Similarly, the
ENVMON will cut power after a fixed timeout when Over-Temperature occurs.

The AC-fail or Over-Temperature conditions may occur in any order, so user pro-
grams that detect one condition and set a grace-period timer must monitor
ENVMON status during the timing interval, since the Over-Temp and battery life
time constants will differ. If the condition with the smaller timeout occurs second,
the UPS or ENVMON could unexpectedly and ungracefully cause a power-down.

The environmental monitor board is supported on the m88k architecture only.

/dev /envmon_c0
/etc/master.d/envmon
/usr/include/sys/envmon.h

SEE ALSO

Page 6

prtconf(1M), intro(2), poll(2), select(2), sysm88k(2)
Environment Monitor Board Set User Guide (ENVMON/D1)

10/92



ethers (4) (Internet Utilities) ethers (4)

NAME
ethers - Ethernet address to hostname database or domain

DESCRIPTION
The ethers file contains information regarding the known (48 bit) Ethernet
addresses of hosts on the Internet. For each host on an Ethernet, a single line
should be present with the following information:

Ethernet-address official-host-name

Items are separated by any number of SPACE and/or TAB characters. A ‘#’ indicates
the beginning of a comment extending to the end of line.
The standard form for Ethernet addresses is x:x:x:x:x:x where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in
network order. Host names may contain any printable character other than a
SPACE, TAB, NEWLINE, or comment character. It is intended that host names in the
ethers file correspond to the host names in the hosts(4) file.
The ether_line routine from the Ethernet address manipulation library,
ethers(3N) may be used to scan lines of the ethers file.

FILES
/etc/ethers

SEE ALSO
ethers(3N), hosts(4)

10/92 Page 1



fd(4) fd(4)

NAME
/dev/£d - file descriptor files

DESCRIPTION
These files, conventionally called /dev/£d/0, /dev/£d/1, /dev/£d/2, and so on,
refer to files accessible through file descriptors. If file descriptor n is open, these
two system calls have the same effect:

fd = open("/dev/fd/n",mode) ;
fd = dup(n);

On these files creat(2) is equivalent to open, and mode is ignored. As with dup,
subsequent reads or writes on £d fail unless the original file descriptor allows the
operations.
For convenience in referring to standard input, standard output, and standard
error, an additional set of names is provided: /dev/stdin is a synonym for
/dev/£d/0, /dev/stdout for /dev/£d/1, and /dev/stderr for /dev/£d/2.

SEE ALSO
open(2), dup(2)

DIAGNOSTICS
open(2) returns -1 and EBADF if the associated file descriptor is not open.

10/92

Page 1



filehdr (4)

NAME

filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION

Every common object file begins with a 20-byte

declaration is used:

struct filehdr
{
unsigned short
unsigned short
long
long
long
unsigned short
unsigned short
Yo

f_magic ;
f _nscns ;

f_timdat ;
f_symptr ;

f_nsyms ;

f_opthdr ;

f_flags ;

filehdr (4)

header. The following C struct

/%
/*
/¥
/*
/%
/%
/%

magic number */

number of sections */

time & date stamp */

file ptr to symtab */
number of symtab entries */
sizeof (opt and header) #*/
flags */

f_symptr is the byte offset into the file at which the symbol table can be found. Its
value can be used as the offset in fseek(3S) to position an I/O stream to the symbol
table. The UNIX system optional header is 28 bytes. The valid magic numbers are

given below:

#define
#define
#define
#define
#define
#define

#define
#define

MC68MAGIC
MC88MAGIC
I386MAGIC
WE32MAGIC
N3BMAGIC
NTVMAGIC

VAXWRMAGIC
VAXROMAGIC

0520
0555
0514
0560
0550
0551

0570
0575

/*
/%
/*
/¥
/%
/%

/*
/¥

M68000 family
M88000 family
1386 Computer
3B2, 3B5, and
3B20 computer
3B20 computer

of processors */
of processors */
*/
3B15 computers */
*/
*/

VAX writable text segments */
VAX read only sharable

text segments

*/

The value in £_timdat is obtained from the time(2) system call. Flag bits currently

defined are:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

10/92

F_RELFLG
F_EXEC
F_LNNO
F_LSYMS
F_AR16WR
F_AR32WR
F_AR32W
F_BM32ID
F_BM32B
F_BM32MAU
F_BM32RST

0000001
0000002
0000004
0000010
0000200
0000400
0001000
0160000
0020000
0040000
0010000

/%
/%
/%
/*
/*
/%
/*
/%
/*
/%
/%

relocation

16-bit DEC
32-bit DEC

entries stripped #*/

file is executable */
line numbers stripped */
local symbols stripped */

host */
host */

non-DEC host */

WE32000 family ID field */
file contains WE 32100 code */
file regs MAU to execute */
file contains restore

work around [3B5/3B2 only] */

Page 1



filehdr (4) filehdr(4)

SEE ALSO
time(2), £seek(3S).

Page 2 10/92



filesystem(7) filesystem(7)

NAME

filesystem- file system organization

SYNOPSIS

/
/usr

DESCRIPTION

10/92

The System V file system tree is organized for administrative convenience. Distinct
areas within the file system tree are provided for files that are private to one
machine, files that can be shared by multiple machines of a common architecture,
files that can be shared by all machines, and home directories. This organization
allows sharable files to be stored on one machine but accessed by many machines
using a remote file access mechanism such as RFS or NFS. Grouping together simi-
lar files makes the file system tree easier to upgrade and manage.

The file system tree consists of a root file system and a collection of mountable file
systems. The mount(1M) program attaches mountable file systems to the file sys-
tem tree at mount points (directory entries) in the root file system or other previ-
ously mounted file systems. Two file systems, / (the root) and /usr, must be
mounted in order to have a completely functional system. The root file system is
mounted automatically by the kernel at boot time; the /usr file system is mounted
by the /etc/rc.boot script, which is run as part of the booting process.

The root file system contains files that are unique to each machine. It contains the
following directories:

/dev Character and block special files. These device files provide
hooks into hardware devices or operating system facilities.
Typically, device files are built to match the kernel and
hardware configuration of the machine.

/dev/term Terminal devices.

/dev/pts Pseudo-terminal devices.

/dev/xt Devices used by layers.

/dev/sxt Shell layers device files used by shl.

/etc Machine-specific administrative configuration files and system

administration databases. /etc may be viewed as the home
directory of a machine, the directory that in a sense defines the
machine’s identity. Executable programs are no longer kept in

/etc.
/home Root of a subtree for user directories.
/mnt Temporary mount point for file systems. This is an empty
directory on which file systems may be temporarily mounted.
/opt Root of a subtree for add-on application packages.
/proc Root of a subtree for the process file system.
/sbin Essential executables used in the booting process and in

manual system recovery. The full complement of utilities is
available only after /usr is mounted,

Page 1



filesystem(7) filesystem(7)

Page 2

/tmp Temporary files; initialized to empty during the boot opera-
tion.
/var Root of a subtree for varying files. Varying files are files that

are unique to a machine but that can grow to an arbitrary (that
is, variable) size. An example is a log file.

/var/adm System logging and accounting files.

/var/cron cron’s log file.

/var/mail Where users’ mail is kept.

/var/opt Top-level directory used by application packages.

/var/preserve Backup files for vi(1) and ex(1).

/var/spool Subdirectories for files used in printer spooling, mail delivery,
cron(1), at(1), etc.

/var/tmp Transitory files; initialized to empty during the boot operation.

Because it is desirable to keep the root file system small and not volatile, on disk-
based systems larger file systems are often mounted on /home, /opt, /usr, and
/var.

The file system mounted on /usr contains architecture-dependent and
architecture-independent sharable files. The subtree rooted at /usr/share con-
tains architecture-independent sharable files; the rest of the /usr tree contains
architecture-dependent files. By mounting a common remote file system, a group
of machines with a common architecture may share a single /usr file system. A
single /usr/share file system can be shared by machines of any architecture. A
machine acting as a file server may export many different /usr file systems to sup-
port several different architectures and operating system releases. Clients usually
mount /usr read-only so that they don’t accidentally change any shared files. The
/usr file system contains the following subdirectories:

/usr/bin Most system utilities.

/usr/sbin Executables for system administration.

/usr/games Game binaries and data.

/usr/include Include header files (for C programs, etc).

/usr/lib Program libraries, various architecture-dependent databases,
and executables not invoked directly by the user (system dae-
mons, etc).

/usr/share Subtree for architecture-independent sharable files.

/usr/share/man  Subdirectories for on-line reference manual pages (if present).
/usr/share/1ib  Architecture-independent databases.

/usr/src Source code for utilities and libraries.

/usr/ucb Berkeley compatibility package binaries.

/usr/ucbinclude Berkeley compatibility package header files.

10/92



filesystem(7) filesystem(7)

/usr/ucblib Berkeley compatibility package libraries.

A machine with disks may export root file systems, swap files, and /usr file sys-
tems to diskless or partially-disked machines that mount them into the standard
file system hierarchy. The standard directory tree for sharing these file systems
from a server is:

/export The default root of the exported file system tree.

/export /exec/architecture-name
The exported /usr file system supporting architecture-
name for the current release.

/export /exec/architecture-name . release-name
The exported /usr file system supporting architecture-
name for System V release-name.

/export/exec/share The exported common /usr/share directory tree.

/export /exec/share.release-name
The exported common /usr/share directory tree for
System V release-name.

/export/root/hostname The exported root file system for hostname.
/export/swap/hostname  The exported swap file for hostname.
/export /var/hostname  The exported /var directory tree for hostname.

SEE ALSO

10/92

at(1), £sck(1M), init(1M), intro(4) mknod(1M), mount (1M), sh(1), vi(1).

Page 3



floppy (7) floppy (7)

NAME
floppy - floppy support

DESCRIPTION
Slice number 15 selects the generic floppy interface. This interface provides BCS
support for PC floppy emulation.

When you opens the generic floppy, the driver determines the geometry of the
diskette in the drive and sets the drive geometry to match. If the device is a 5/4"
drive, the diskette is assumed to be one of the following formats:

- 320KB PC/XT low-density format with 8 sectors per track
- 360KB PC/XT low-density format with 9 sectors per track
- 1.2MB PC/AT high-density format with 15 sectors per track

If the device is a 34" drive, the diskette is assumed to be one of the following for-
mats:

- 720KB PC/XT high density format with 9 sectors per track
- 1.44MB PS/2 high density format with 18 sectors per track
- 2.88MB super high density format with 36 sectors per track

If there is no diskette in the drive, the open still succeeds, but any attempt to read,
write, or format the diskette fails, returning ENXTO. A diskette must be put in and
the drive geometry set via the FL_SET_GEOMETRY or FL_GET_INFO ioctl for the
open to succeed.

IOCTL COMMANDS
The floppy disks support several ioct1(2) functions on the character or raw dev-
ices. These functions permit control beyond the normal open(2), close(2), read(2),
and write(2) system calls. Any attempt to utilize ioct1(2) functions not listed
below causes an EINVAL error to be returned.

All FL_* commands are defined in sys/pcflio.h.
The operations supported by disks are listed below in alphabetical order.

DKFIXBADSPOT
Lock out a bad spot on the disk based on the information in the dkbadlst
structure referenced by arg. The dkbadlst structure is defined in sys/dk.h.

DKFORMAT
Format a disk. The dkfmt structure is defined in sys/dk.h.

DKGETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The dkconfig structure is defined in sys/dk.h.
The disk is not accessed by this command.

DKGETINFO
Get parameters associated with the disk and store them in the dkb1k0 struc-
ture referenced by arg. The dkblk0 structure is defined in sys/dk.h. The
disk is not accessed by this command.

DKGETSLC
Get the Volume Table of Contents (VTOC) information for a disk and return
the information in a structure of type struct motorola_vtoc (defined in
sys/vtoc.h) referenced by arg. While the number of supported slices is
determined by the number of slices defined in the ddefs file, all disks are

10/92 Page 1



floppy (7) floppy (7)

Page 2

expected to support 16 slices. The disk is not accessed by this command.

DKSETINFO
Set parameters associated with the disk based on the values in the dkblk0
structure referenced by arg. The disk is not accessed by this command.

DKSETSLC
Set the Volume Table of Contents (VTOC) information for a disk and return
the information in a structure of type struct motorola_vtoc (defined in
sys/vtoc.h) referenced by arg. The disk is not accessed by this command.

DKSETCFG
Get parameters associated with the disk and store them in the config struc-
ture referenced by arg. The disk is not accessed by this command.

DKINQUIRY
Return the SCSI INQUIRY data for the device; it is only valid for SCSI disks.
This ioctl can be done on any device the calling process has open. The
SCSI INQUIRY data for the device is copied into the struct inquiry
structure pointed to by arg. The struct inquiry structure is defined in
sys/dk.h.

DKREADCAP

Return the SCSI READ CAPACITY data for the device; it is only valid for
SCSI disks. This ioctl can be done on any disk or CDROM device the cal-
ling process has open. The SCSI READ CAPACITY data for the device is
copied into the struct readcap structure pointed to by arg. The struct
readcap structure is defined in sys/dk.h. Note: the SCSI READ CAPA-
CITY command returns the number of the last logical block on the media.
This ioct1 adds 1 to that number so it represents the actual capacity of the
device. Logical block numbers start at zero.

FL,_PC_LEVEL
Return the level of PC floppy emulation support as specified in the BCS PC
floppy emulation support supplement. The level is returned to an integer
pointed to by arg.

FL_SET_ GEOMETRY

Set the geometry of the floppy drive, possibly overriding the current actual
geometry of the diskette. The information is taken from the struct
f1_geometry structure pointed to by arg. This function is only valid for the
generic floppy device (slice 15). For any other device (slice number), this
function fails, returning EINVAL. The geometry is selected by passing a
structure containing the number of sectors per track and the number of
cylinders. The driver then determines which of the supported geometries
matches this geometry and sets the drive geometry accordingly.

10/92



floppy (7)

floppy (7)

The geometry is selected based on the following table for 574" drives.

nsect | ncyl geometry

15 80 1.2MB PC/AT format
9 40 360KB PC/XT format
8 40 320KB PC/XT format

The geometry is selected based on the following table for 3/4" drives.

nsect | ncyl geometry

36 80 2.88MB SHD format
18 80 1.44MB PS/2 format
9 80 720KB PC/XT format

If no match is found, the ioct1 fails, returning 1 and setting errno to EIN-
VAL. A diskette does not have to be in the drive for this ioct1 to succeed.

If the selected geometry does not match the actual geometry of the diskette
in the drive, the results of reading or writing in this state are undetermined.

A subsequent format operation (FL_FORMAT_TRACK or DKFORMAT) uses the
geometry selected by this operation.

FL_GET_INFO

10/92

Query the status of a floppy disk drive. The information is returned to the
struct f£l_info structure pointed to by arg. This command first deter-
mines if there is a diskette in the drive. If there is, it then determines if the
drive door has been opened since the last open(2) or FL_GET_INFO opera-
tion. If the door has been opened, it determines the current diskette’s
geometry and sets the drive geometry accordingly.

If the door has not been opened and closed since the last open(2) or
FL_GET_INFO operation, the command returns the current drive geometry.
Note: this may be different than the current diskette geometry as the result of
a previous FL_SET_GEOMETRY operation.

The arg parameter points to a £1_diskinfo structure filled in by this com-
mand as follows:

f1_stat  Give status information for the drive since the last time this
drive was opened or the last time this ioct1 was called. Most
of these bits are set as a result of some error condition for a pre-
vious I/O operation.

FL_EMPTY Set if there is no diskette in the drive.

FL_OFFLINE Set if the drive is offline. If the drive was online
during the open but has since been discon-
nected, then this bit is set and everything else is
cleared.

FL_WRTLCK  Set if a previous write operation failed because
the media is write-protected. It is cleared
before each I/O or format operation.

Page 3



floppy (7)

fl_type

f1_door

fl_nsect

£1_cyl

fl_res
FIL,_FORMAT_ TRACK

floppy (7)

FL_BLANK Set if there is an unformatted diskette in the
drive or if the diskette’s geometry is not listed
as being supported.

FL_SOFTERR Set if the previous I/O failed with a soft error
(CRC or seek error). It is cleared before any
1/0 or format operation.

FL__HARDERR Set if the previous I1/0O failed due to a media or
drive error. It is cleared before any I/O or for-
mat operation.

FL_NOTDONE Set whenever an I/O or format operation is
sent to the drive and cleared when the opera-
tion completes successfully or with a soft error.
It is not cleared if the operation completes with
a hard error.

Indicate the type of floppy drive as follows:
£1_type drive type

3" low density

3%" high density

3%" low/high density
5%" low density

5%" high density

5%" low /high density

QU WN -

Set to 1 if a previous operation failed because of a
UNIT_ATTENTION condition. This means the drive door has
been opened and closed. Note: this ioctl does a SCSI
TEST_UNIT_READY before returning status, which gets the
UNIT_ATTENTION condition if no other I/O has been attempted
since the door was opened. After returning the current value to
the user, this field is cleared. It can also be cleared by the
open(2) system call.

If a diskette is in the drive and its geometry has been deter-
mined, this is the number of sectors per track on the diskette.
Otherwise, it is zero.

If a diskette is in the drive and its geometry has been deter-
mined, this is the total number of cylinders on the diskette.
Otherwise, it is zero.

This is cleared.

Format the specified track using the current drive geometry. The arg param-
eter points to an integer containing the track number to format. If the track
number is invalid, the command fails, returning ERANGE.

Page 4

10/92



floppy (7) floppy (7)

10/92

FL_READ
Read buffered data after an error. This function is not currently supported.
It always returns zero.

V_GETSSZ
Return the physical sector size of the CDROM. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the structure points to the address of an integer containing the
sector size after a sucessful operation.

V_PDREAD
Read the Physical Description Area of the disk. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc.h) which contain the requested data upon
successful completion.

V_PDWRITE
Write the Physical Description Area of the disk. The arg parameter specifies
a structure of type pdinfo (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc.h) which contain the requested data upon
successful completion.

V_PREAD

Read physical sectors. This interface assumes sectors are 512 bytes in length
so the driver is responsible from mapping the request block to the correct
portion of the correct sector on the disk regardless of the actual physical sec-
tor size. The arg parameter specifies a structure of type io_arg (defined in
sys/vtoc.h). The sectst member of the io_arg structure contains the
starting sector number and the datasz member contains the number of sec-
tors. The memaddr member of the io_arg structure points to the address of
an sufficiently large area which contain the requested data upon successful
completion.

V_PWRITE

Write physical sectors. This interface assumes sectors are 512 bytes in
length so the driver is responsible from mapping the requested block(s) to
the correct portion of the correct sector on the disk regardless of the actual
physical sector size. The arg parameter specifies a structure of type io_arg
(defined in sys/vtoc.h). The sectst member of the io_arg structure con-
tains the starting sector number and the datasz member contains the
number of sectors. The memaddr member of the io_arg structure points to
the address of an sufficiently large area which contain the requested data
upon successful completion.

V_RVTOC
Read the Volume Table of Contents (VTOC) from the disk. The arg parame-
ter specifies a structure of type io_arg (defined in sys/vtoc.h). The
sectst and datasz members of the io_arg structure are ignored. The
memaddr member of the io_arg structure points to the address of a

Page 5



floppy (7) floppy (7)

structure of type vtoc (defined in sys/vtoc.h) which contain the requested
data upon successful completion.

V_WVTOC
Write the Volume Table of Contents (VTOC) to the disk. The arg parameter
specifies a structure of type vtoc (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
vtoc (defined in sys/vtoc.h) which contain the requested data upon suc-
cessful completion.

DINIT CONSIDERATIONS
The utility dinit(1M) is used to format floppy disks.

DDEFS CONSIDERATIONS
The utility ddefs defines disk characteristics. The output of the ddefs utility is a
file normally saved in the /etc/dskdefs directory. This file is used as input to the
dinit(IM) utility when it initializes a disk.

There are no standards for floppy ddef files.

SEE ALSO
cdron(7), disk(7), intro(7)

Page 6 10/92






fs(4) fs(4)

NAME
fs (generic) - format of a file system volume
DESCRIPTION

File system volume format is entirely FSType-specific. See f£s_FSType(4) for infor-
mation.

SEE ALSO
fs_s5(4), fs_ufs(4).

10/92 Page 1



fs(4) (bfs) fs(4)

NAME
fs (bfs) - format of the bfs file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/bfs.h>

DESCRIPTION
The bfs superblock is stored on sector 0. Its format is:

struct bdsuper

{

long bdsup_ bfsmagic; /* Magic number */
off_t bdsup_start; /* Filesystem data start offset */
off_t bdsup_end; /* Filesystem data end offset */

/*

* Sanity words

*/
daddr_t bdcp_fromblock; /* "From" block of current transfer */
daddr_t bdcp_toblock; /* "To" block of current transfer */

daddr_t bdcpb_fromblock; /* Backup of "from" block */
daddr_t bdcpb_toblock; /* Backup of "to" block */
long bdsup_filler[121]; /* Padding */

}i

#define BFS_MAGIC OxXxBADFACE/* bfs magic number */

The sanity words are used to promote sanity during compaction. They are used by
fsck(IM) to recover from a system crash at any point during compaction. See the
sections on the bfs file system in the Machine and User Management book for a
description of compaction.

SEE ALSO
bfs-specific, inode(4).

10/92 Page 1



fs(4)

NAME

(s5)

fs(4)

£s (s5) - format of s5 file system volume

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>

#include <sys/fs/s5filsys.h>

DESCRIPTION

Every file system storage volume has a common format for certain vital informa-
tion. Every such volume is divided into a certain number of 512-byte long sectors.
Sector 0 is unused and is available to contain a bootstrap program or other informa-

tion.

Sector 1 is the super-block. The format of a super-block is:

struct filsys
{
ushort s_isize; /%
daddr_t s_fsize; /%
short s_nfree; /*
daddr_t s_free[NICFREE]; /*
short s_ninode; /%
o_ino_t s_inode[NICINOD]; /*
char s_flock; /¥
/%
char s_ilock; /%
char s_fmod; /*®
char s_ronly; /*
time_t s_time; /%
short s_dinfo[4]; /*
daddr_t s_tfree; /%
o_ino_t s_tinode; /*
char s_fname[6]; /¥
char s_fpack([6]; /*
long s_fill[12]; VA
/%
long s_state; /*
long s_magic; /*
/%
long s_type; /*
}i
#define FsMAGIC 0xfd187e21
#define Fslb 1
#define Fs2b 2
#define Fs4b 3
#define FsOKAY 0x7c269d38

10/92

size in blocks of i-list */

size in blocks of entire volume */
number of addresses in s_free */
free block list */

number of i-nodes in s_inode */
free i-node list */

lock during free list */
manipulation */

lock during i-list manipulation */
super block modified flag */
mounted read-only flag */

last super block update */
device information */

total free blocks*/

total free i-nodes */

file system name */

file system pack name */

ADJUST to make */

sizeof filsys be 512 #*/

file system state */

magic number to denote new file
system */

type of new file system */

/*

/%
/*
/%

/%

s_magic number */

512-byte block */
1024-byte block */
2048-byte block */

s_state: clean */

Page 1



fs(4)

Page 2

(s5) fs(4)

#define FsACTIVE 0x5e72d8la /* s_state: active */

#define FsBAD 0xcb096f43 /* g_state: bad root */

#define FsBADBLK Oxbadbcldb /* s_state: bad block #*/
/* corrupted it */

s_type indicates the file system type. Currently, three types of file systems are
supported: the original 512-byte logical block, the 1024-byte logical block, and the
2048-byte logical block. s_magic is used to distinguish the s5 file system from
other FSTypes. The s_type field is used to determine the blocksize of the file sys-
tem; 512-bytes, 1K, or 2K. The operating system takes care of all conversions from
logical block numbers to physical sector numbers.

s_state indicates the state of the file system. A cleanly unmounted, not damaged
file system is indicated by the FSOKAY state. After a file system has been mounted
for update, the state changes to FSACTIVE. A special case is used for the root file
system. If the root file system appears damaged at boot time, it is mounted but
marked FsBAD. Lastly, after a file system has been unmounted, the state reverts to
FsOKAY.

s_isizeis the address of the first data block after the i-list; the i-list starts just after
the super-block, namely in block 2; thus the i-list is s_isize-2 blocks long.
s_fsize is the first block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block numbers; if an “impossible”
block number is allocated from the free list or is freed, a diagnostic is written on the
on-line console. Moreover, the free array is cleared, so as to prevent further alloca-
tion from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free array contains,
in s_free[l], ..., s_free[s_nfree-1], up to 49 numbers of free blocks.
s_free[0] is the block number of the head of a chain of blocks constituting the
free list. The first long in each free-chain block is the number (up to 50) of free-
block numbers listed in the next 50 longs of this chain member. The first of these 50
blocks is the link to the next member of the chain. To allocate a block: decrement
s_nfree, and the new block is s_free[s_nfree]. If the new block number is 0,
there are no blocks left, so give an error. If s_nfree became 0, read in the block
named by the new block number, replace s_nfree by its first word, and copy the
block numbers in the next 50 longs into the s_free array. To free a block, check if
s_nfree is 50; if so, copy s_nfree and the s_free array into it, write it out, and set
s_nfree to 0. In any event set s_free[s_nfree] to the freed block’s number and
increment s_nfree.

s_tfree is the total free blocks available in the file system.

s_ninode is the number of free i-numbers in the s_inode array. To allocate an i-
node: if s_ninode is greater than 0, decrement it and return s_inode [s_ninode].
If it was 0, read the i-list and place the numbers of all free i-nodes (up to 100) into
the s_inode array, then try again. To free an i-node, provided s_ninode is less
than 100, place its number into s_inode[s_ninode] and increment s_ninode. If
s_ninode is already 100, do not bother to enter the freed i-node into any table. This
list of i-nodes is only to speed up the allocation process; the information as to
whether the i-node is really free or not is maintained in the i-node itself.

10/92



fs(4)

(s5) fs(4)

s_tinode is the total free i-nodes available in the file system.

s_flock and s_ilock are flags maintained in the core copy of the file system while
it is mounted and their values on disk are immaterial. The value of s_fmod on disk
is likewise immaterial; it is used as a flag to indicate that the super-block has
changed and should be copied to the disk during the next periodic update of file
system information.

s_ronly is a read-only flag to indicate write-protection.

s_time is the last time the super-block of the file system was changed, and is the
number of seconds that have elapsed since 00:00 Jan. 1, 1970 (UTC). During a
reboot, the s_time of the super-block for the root file system is used to set the
system’s idea of the time.

s_£fname is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes
are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is reserved for the
root directory of the file system, but no other i-number has a built-in meaning.
Each i-node represents one file. For the format of an inode and its flags, see
inode(4).

SEE ALSO

10/92

mount(2).
fsck(1M), £sdb(1M), mk£s(1M), s5-specific inode(4)

Page 3



fs(4) (UFS) fs(4)

NAME
fs (ufs) - format of ufs file system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fs.h>

DESCRIPTION
Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the cylinder
group blocks. The super-block is critical data and is replicated before each cylinder
group block to protect against catastrophic loss. This is done at mkfs time; the criti-
cal super-block data does not change, so the copies need not normally be referenced

10/92

further.

/ *

* Super block for a file system.

*/

#define FS_MAGIC 0x011954

#define FSACTIVE 0x5e72d81a /* fs_state: mounted */

#define FSOKAY 0x7¢c269d38 /* fs_state: clean */

#define FSBAD 0xcb096£43 /* fs_state: bad root */

struct fs {
struct fs *fs_link; /* linked list of file systems */
struct fs *fs_rlink; /* used for incore super blocks */
daddr_t fs_sblkno; /* addr of super-block in filesys */
daddr_t fs_cblkno; /* offset of cyl-block in filesys */
daddr_t fs_iblkno; /* offset of inode-blocks in filesys */
daddr_t fs_dblkno; /* offset of first data after cg */
long fs_cgoffset; /* cylinder group offset in cylinder */
long fs cgmask; /* used to calc mod fs_ntrak */
time_t fs_time; /* last time written */
long fs_size; /* number of blocks in fs */
long fs_dsize; /* number of data blocks in fs */
long fs_ncg; /* number of cylinder groups */
long fs_bsize; /* size of basic blocks in fs */
long fs_fsize; /* size of frag blocks in fs */
long fs_frag; /* number of frags in a block in fs */

/* these are configuration parameters */

long fs_minfree; /* minimum percentage of free blocks */
long fs_rotdelay; /* num of ms for optimal next block */
long fs_rps; /* disk revolutions per second */

/* these fields can be computed from the others */

long fs_lmask; /* ‘'blkoff’’ calc of blk offsets */

long fs_fmask; /* +'fragoff’’ calc of frag offsets */
long fs_bshift; /* **1blkno’’ calc of logical blkno */
long fs_fshift; /* ‘'‘numfrags’’ calc number of frags */

/* these are configuration parameters */

long
long

fs_maxcontig;
fs_maxbpg;

/* max number of contiguous blks */
/* max number of blks per cyl group */

Page 1



1s(4) (UFS) fs(4)

/* these fields can be computed from the others */

long fs_fragshift; /* block to frag shift */

long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block */

long fs_csmask; /* csum block offset */

long fs_csshift; /* csum block number */

long fs_nindir; /* value of NINDIR */

long fs_inopb; /* value of INOPB */

long fs_nspf; /* value of NSPF */

long fs_optim; /* optimization preference, see below */
long fs_state; /* file system state */

long fs_sparecon|2]; /* reserved for future constants */

/* a unique id for this filesystem (currently unused and unmaintained) */
long fs_id[2]; /* file system id */

/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */
long fs_ntrak; /* tracks per cylinder */
long fs_nsect; /* sectors per track */
long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver slicing */
long fs_ncyl; /* cylinders in file system */

/* these fields can be computed from the others */
long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group */
long fs_fpg; /* blocks per group * fs_frag */

/* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */

/* these fields are cleared at mount time */
char fs_fmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */

char fs_fsmnt [MAXMNTLEN]; /* name mounted on */
/* these fields retain the current block allocation info */

long fs_cgrotor; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */
long fs_cpc; /* cyl per cycle in postbl */
short fs_postbl [MAXCPG] [NRPOS] ; /* head of blocks for each rotation */
long fs_magic; /* magic number */
u_char fs_rotbl[1]; /* list of blocks for each rotation */

Yi

/*

* Cylinder group block for a file system.

*/

#define CG_MAGIC 0x090255

struct cg {
struct c¢g *cg_link; /* linked list of cyl groups */
struct cg *cg_rlink; /* used for incore cyl groups */
time_t cg_time; /* time last written */
long Cg_CgX; /* we are the cgx’th cylinder group */
short  cg_ncyl; /* number of cyl’s this cg */
short cg_niblk; /* number of inode blocks this cg */

Page 2 . 10/92



fs(4)

number of data blocks this cg */
cylinder summary information */
position of last used block */
position of last used frag */
position of last used inode */
counts of available frags */
block totals per cylinder */
positions of free blocks */

cg_iused [MAXIPG/NBBY] ; /* used inode map */

fs(4) (UFS)
long cg_ndblk; /*
struct csum cg_cs; /*
long cg_rotor; /*
long cg_frotor; /*
long cg_irotor; /*
long cg_frsum[MAXFRAG] ; /*
long cg_btot [MAXCPG] ; /*
short cg_b[MAXCPG] [NRPOS]; /*
char
long cg_magic; /*
u_char cg_free[l]; /*
Yi
SEE ALSO
ufs-specific inode(4)
10/92

magic number */
free block map */

Page 3



fspec(4) fspec(4)

NAME

fspec - format specification in text files

DESCRIPTION

10/92

It is sometimes convenient to maintain text files on the UNIX system with non-
standard tabs (that is, tabs that are not set at every eighth column). Such files must
generally be converted to a standard format, frequently by replacing all tabs with
the appropriate number of spaces, before they can be processed by UNIX system
commands. A format specification occurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks
and surrounded by the brackets <: and :>. Each parameter consists of a keyletter,
possibly followed immediately by a value. The following parameters are recog-
nized:

ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following;:

1. alist of column numbers separated by commas, indicating tabs
set at the specified columns

2. a - followed immediately by an integer n, indicating tabs at
intervals of n columns

3. a - followed by the name of a “canned” tab specification

Standard tabs are specified by t-8, or equivalently, t1,9,17,25, and
so on. The canned tabs that are recognized are defined by the tabs(1)
command.

ssize The s parameter specifies a maximum line size. The value of size must
be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mmargin  The m parameter specifies a number of spaces to be prepended to each
line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line
containing the format specification is to be deleted from the converted
file.

e The e parameter takes no value. Its presence indicates that the current
format is to prevail only until another format specification is encoun-
tered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and m0. If
the s parameter is not specified, no size checking is performed. If the first line of a
file does not contain a format specification, the above defaults are assumed for the
entire file. The following is an example of a line containing a format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code
the d parameter.

Page 1



fspec(4) fspec(4)

SEE ALSO
ed(1), newform(l), tabs(l).

Page 2 10/92



fstypes (4) (DFS) fstypes(4)

NAME
fstypes - file that registers distributed file system packages

DESCRIPTION
fstypes resides in directory /etc/dfs and lists distributed file system utilities
packages installed on the system. The file system indicated in the first line of the
file is the default file system. When Distributed File System (DFS) Administration
commands are entered without the option -F fstypes, the system takes the file sys-
tem type from the first line of the f£stypes file.

The default package can be changed by editing the fstypes file with any sup-
ported text editor.

SEE ALSO
dfmounts(1M), dfshares(1M), share(1M), shareall(1M), unshare(1M)

10/92 Page 1



group (4) group (4)

NAME
group - group file
DESCRIPTION
The file /etc/group contains for each group the following information:

group name

encrypted password

numerical group ID

comma-separated list of all users allowed in the group

group is an ASCII file. The fields are separated by colons; each group is separated
from the next by a new-line.

Because of the encrypted passwords, the group file can and does have general read
permission and can be used, for example, to map numerical group IDs to names.

During user identification and authentication, the supplementary group access list
is initialized sequentially from information in this file. If a user is in more groups
than the system is configured for, {NGROUPS_MAX}, a warning will be given and
subsequent group specifications will be ignored.

SEE ALSO
groups(1), newgrp(1M), passwd(1l), getgroups(2), initgroups(3C), unistd(4).

10/92 Page 1



holidays (4) holidays (4)

NAME

holidays - holiday file

DESCRIPTION

10/92

The file /etc/acct/holidays lists holiday and prime-time information. The
accounting system can use this information to give users a discount for non-prime
time system use.

The file /etc/acct/holidays is a link to the current year’s holiday file in the direc-
tory /etc/acct/database. This directory contains several files with the names
holiday.yyyy, where yyyy is the number of a year.

When the system is booted, the file /etc/rc2.d/S50holiday is executed to link
/etc/acct/holidays to the holiday file for the current year in
/etc/acct/database. If /etc/acct/database has no holiday file for the current
year, /etc/rc2.d/S50holiday links /etc/acct/holidays to the last file in
/etc/acct/database. If there are no files in /etc/acct/database,
/etc/rc2.d/S50holiday prints an error message and exits.

The holiday file contains three types of lines:

Comment Lines Any line marked by an asterisk in the first column is treated as a
comment. Comments can appear anywhere in the file.

Year Designation Line
This line must be the first non-comment line in the file and must
appear only once. The line consists of three fields of four digits
each (leading white space is ignored). The first field is the year,
the second the prime time start, and the third the non-prime time
start (prime time end). Prime time start and non-prime time start
are specified with a 24 hour clock.

Holidays Lines These lines contain two fields: a date field and a description field.
The date field is specified as month/day, where month and day are
one or two digit numbers. The description field is commentary
that is not used by the accounting programs.

The following is an example of a holiday file:

* Curr Prime Non-Prime
* Year Start Start
*
1992 0800 1700
*
*
* Memorial Day is the last Monday in May
* Labor Day 1s the first Monday in September
* Thanksgiving Day is the fourth Thursday in November
*
* only the first column (month/day) is significant.
*
* month/day Company
* Holiday
*
1/1 New Years Day
5/25 Memorial Day

Page 1



holidays (4) holidays (4)

7/4 Indep. Day
9/7 Labor Day
11/26 Thanksgiving
11/27 day after
12/24 Christmas Eve
12/25 Christmas Day

NOTES
Do not put any blank lines into the holiday file. Blank lines will cause the runacct
command to fail.

FILES
/etc/acct/holidays
/etc/acct/database/*
/etc/rc2.d/S50holiday
SEE ALSO
runacct(1M).

Page 2 10/92



hosts (4) (Internet Utilities) hosts (4)

NAME
hosts - host name data base

SYNOPSIS
/etc/hosts

DESCRIPTION
The hosts file contains information regarding the known hosts on the DARPA Inter-
net. For each host a single line should be present with the following information:

Internet-address official-host-name aliases

Items are separated by any number of SPACE and/or TAB characters. A ‘#’ indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file. This file is normally created from the official host
data base maintained at the Network Information Control Center (NIC), though
local changes may be required to bring it up to date regarding unofficial aliases
and/or unknown hosts.
Network addresses are specified in the conventional ‘.’ notation using the
inet_addr routine from the Internet address manipulation library, inet(3N). Host
names may contain any printable character other than a field delimiter, NEWLINE,
or comment character.

EXAMPLE
Here is a typical line from the /etc/hosts file:

192.9.1.20 gaia # John Smith

FILES
/etc/hosts

SEE ALSO
gethostent(3N), inet(3N)

10/92 Page 1



hosts.equiv (4N) (TCP/IP) hosts.equiv (4N)

NAME

hosts.equiv, .rhosts - trusted hosts by system and by user

DESCRIPTION

The /etc/hosts.equiv file contains a list of trusted hosts. When an rlogin(1) or
rsh(l) request is received from a host listed in this file, and when the user making
the request is listed in the /etc/passwd file, then the remote login is allowed with
no further checking. The library routine ruserok (see rcmd(3N)) will make this
verification. In this case, rlogin does not prompt for a password, and commands
submitted through rsh are executed. Thus, a remote user with a local user ID is
said to have equivalent access from a remote host named in this file.

The format of the hosts.equiv file consists of a one-line entry for each host, of the
form:

hostname [username]

The hostname field normally contains the name of a trusted host from which a
remote login can be made. However, an entry consisting of a single ‘+” indicates
that all known hosts are to be trusted. A hostname must be the official name as
listed in the hosts(4N) database. This is the first name given in the hosts database
entry; hostname aliases are not recognized.

The User .rhosts File

Whenever a remote login is attempted, the remote login daemon checks for a
.rhosts file in the home directory of the user attempting to log in. A user’s
.rhosts file has the same format as the hosts.equiv file, and is used to give or
deny access only for the specific user attempting to log in from a given host. While
an entry in the hosts.equiv file allows remote login access to any user from the
indicated host, an entry in a user’s .rhosts file only allows access from a named
host to the user in whose home directory the . rhosts file appears. When this file is
used, permissions in the user’s home directory should allow read and search access
by anyone, so it may be located and read. When a user attempts a remote login, his
.rhosts file is, in effect, prepended to the hosts.equiv file for permission check-
ing. Thus, if a host is specified in the user’s . rhosts file, login access is allowed.

FILES
/etc/hosts.equiv
/etc/passwd
~/.rhosts
/etc
SEE ALSO
rlogin(1N), rsh(1N), hosts(4N), passwd(4)
10/92 Page 1



ICMP(7) (Internet Utilities) ICMP(7)

NAME

ICMP - Internet Control Message Protocol

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>

s = socket (AF_INET, SOCK_RAW, proto);
t = t_open("/dev/icmp", O_RDWR) ;

DESCRIPTION

ICMP is the error and control message protocol used by the Internet protocol family.
It is used by the kernel to handle and report errors in protocol processing. It may
also be accessed by programs using the socket interface or the Transport Level
Interface (TLI) for network monitoring and diagnostic functions. When used with
the socket interface, a raw socket type is used. The protocol number for ICMP, used
in the proto parameter to the socket call, can be obtained from getprotobyname()
[see getprotoent(3N)]. ICMP file descriptors and sockets are connectionless, and
are normally used with the t_sndudata / t_rcvudata and the sendto() /
recvirom( ) calls.

Outgoing packets automatically have an Internet Protocol (IP) header prepended to
them. Incoming packets are provided to the user with the IP header and options
intact.

ICMP is an datagram protocol layered above IP. It is used internally by the protcol
code for various purposes including routing, fault isolation, and congestion con-
trol. Receipt of an ICMP redirect message will add a new entry in the routing table,
or modify an existing one. ICMP messages are routinely sent by the protocol code.
Received ICMP messages may be reflected back to users of higher-level protocols
such as TCP or UDP as error returns from system calls. A copy of all ICMP message
received by the system is provided to every holder of an open ICMP socket or TLI
descriptor.

SEE ALSO

send(2), getprotoent(3N), recvirom(3N), t_rcvudata(3N), t_sndudata(3N),
routing(4), inet(7), ip(7)

Postel, Jon, Internet Control Message Protocol — DARPA Internet Program Protocol
Specification , RFC 792, Network Information Center, SRI International, Menlo Park,
Calif., September 1981

DIAGNOSTICS

10/92

A socket operation may fail with one of the following errors returned:

EISCONN An attempt was made to establish a connection on a socket
which already has one, or when trying to send a datagram
with the destination address specified and the socket is
already connected.

ENOTCONN An attempt was made to send a datagram, but no destina-
tion address is specified, and the socket has not been con-
nected.

Page 1



ICMP (7) (Internet Utilities) ICMP(7)

ENOBUFS The system ran out of memory for an internal data structure.
EADDRNOTAVAIL An attempt was made to create a socket with a network
address for which no network interface exists.
NOTES

Replies to ICMP echo messages which are source routed are not sent back using
inverted source routes, but rather go back through the normal routing mechanisms.

Page 2 10/92



if.ignore (4) STREAMware 2.0 if.ignore (4)

NAME

if.ignore - data base of ignored network interfaces

DESCRIPTION

The if.ignore file allows a system administrator to specify network interfaces
that should be ignored by certain network applications. Use of this file is deter-
mined by the individual application. This file is referenced by the ifignore library
function.

Each line of the file has the following format:
interface [ server | [ server]. ..

Items are separated by any number of blanks and/or tab characters. server names
should be the device or service alias as it appears in the /etc/services file. The
server names are optional and specify network services which should ignore the
given interface. If no server names are supplied on a particular line, the correspond-
ing interface should be ignored by all network services (which consult this file).

EXAMPLES

FILES

The following example illustrates how the if.ignore file might be used:

s10 who timed
sll router
ppp0

No rwhod or timed packets should be broadcast over the sl0 or ppp0 interfaces.
Likewise, no routed packets should be broadcast over the s11 or ppp0 interfaces.
Furthermore, the ifignore() library function will return a non-zero value for all
services requiring the ppp0 interface and it will return zero for any interfaces other
than ppp0, s10, or s11.

/etc/if.ignore

SEE ALSO

10/92

routed(1M), rwhod(1M), timed(1M), i fignore(3N), services(4)

Page 1



inet(7) (Internet Utilities) inet(7)

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

DESCRIPTION
The Internet protocol family implements a collection of protocols which are cen-
tered around the Internet Protocol (IP) and which share a common address format.
The Internet family protocols can be accessed via the socket interface, where they
support the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types, or the Tran-
sport Level Interface (TLI), where they support the connectionless (T_CLTS) and
connection oriented (T_COTS_ORD) service types.

PROTOCOLS
The Internet protocol family comprises the Internet Protocol (IP), the Address Reso-
lution Protocol (ARP), the Internet Control Message Protocol (ICMP), the Transmis-
sion Control Protocol (TCP), and the User Datagram Protocol (UDP).

TCP supports the socket interface’s SOCK_STREAM abstraction and TLI’s T_COTS_ORD
service type. UDP supports the SOCK_DGRAM socket abstraction and the TLI T_CLTS
service type. See tcp(7) and udp(7). A direct interface to IP is available via both TLI
and the socket interface; See ip(7). ICMP is used by the kernel to handle and report
errors in protocol processing. It is also accessible to user programs; see icmp(7).
ARP is used to translate 32-bit IP addresses into 48-bit Ethernet addresses; see
arp(7).

The 32-bit IP address is divided into network number and host number parts. It is
frequency-encoded; The most-significant bit is zero in Class A addresses, in which
the high-order 8 bits represent the network number. Class B addresses have their
high order two bits set to 10 and use the high-order 16 bits as the network number
field. Class C addresses have a 24-bit network number part of which the high order
three bits are 110. Sites with a cluster of IP networks may chose to use a single net-
work number for the cluster; This is done by using subnet addressing. The host
number portion of the address is further subdivided into subnet number and host
number parts. Within a subnet, each subnet appears to be an individual network;

Externally, the entire cluster appears to be a single, uniform network requiring only

a single routing entry. Subnet addressing is enabled and examined by the follow-

ing ioct1(2) commands; They have the same form as the STOCSIFADDR command

[see 1£(3N)].

STOCSIFNETMASK Set interface network mask. The network mask defines the
network part of the address; If it contains more of the
address than the address type would indicate, then subnets
are in use.

SIOCGIFNETMASK Get interface network mask.

ADDRESSING
IP addresses are four byte quantities, stored in network byte order. IP addresses
should be manipulated using the byte order conversion routines [see
byteorder(3N)].

10/92 Page 1



inet(7) (Internet Utilities) inet(7)

Addresses in the Internet protocol family use the following structure:

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];
};
Library routines are provided to manipulate structures of this form; See inet(3N).

The sin_addr field of the sockaddr_in structure specifies a local or remote IP
address. Each network interface has its own unique IP address. The special value
INADDR_ANY may be used in this field to effect wildcard matching. Given in a
bind(2) call, this value leaves the local IP address of the socket unspecified, so that
the socket will receive connections or messages directed at any of the valid IP
addresses of the system. This can prove useful when a process neither knows nor
cares what the local IP address is or when a process wishes to receive requests using
all of its network interfaces. The sockaddr_in structure given in the bind( 2) call
must specify an in_addr value of either ITPADDR_ANY or one of the system’s valid IP
addresses. Requests to bind any other address will elicit the error EADDRNOTAVAL.
When a connect(2) call is made for a socket that has a wildcard local address, the
system sets the sin_addr field of the socket to the IP address of the network inter-
face that the packets for that connection are routed via.

The sin_port field of the sockaddr_in structure specifies a port number used by
TCP or UDP. The local port address specified in a bind(2) call is restricted to be
greater than IPPORT_RESERVED (defined in <netinet/in.h>) unless the creating
process is running as the super-user, providing a space of protected port numbers.
In addition, the local port address must not be in use by any socket of same address
family and type. Requests to bind sockets to port numbers being used by other
sockets return the error EADDRINUSE. If the local port address is specified as 0, then
the system picks a unique port address greater than TPPORT RESERVED. A unique
local port address is also picked when a socket which is not bound is used in a con-
nect(2) or sendto [see send(2)] call. This allows programs which do not care
which local port number is used to set up TCP connections by simply calling
socket(2) and then connect(2), and to send UDP datagrams with a socket(2) call
followed by a sendto(2) call.

Although this implementation restricts sockets to unique local port numbers, TCP
allows multiple simultaneous connections involving the same local port number so
long as the remote IP addresses or port numbers are different for each connection.
Programs may explicitly override the socket restriction by setting the
SO_REUSEADDR socket option with setsockopt [see getsockopt(3N)].

TLI applies somewhat different semantics to the binding of local port numbers.
These semantics apply when Internet family protocols are used via the TLIL

SEE ALSO

Page 2

ioctl(2), send(2), bind(3N), connect(3N), getsockopt(3N), 1 £(3N),
byteorder(3N), gethostent(3N), getnetent(3N), getprotoent (3N),
getservent(3N), socket(3N), arp(7), icmp(7), ip(7), tcp(7), udp(7)

10/92



inet(7) (Internet Utilities) inet(7)

Network Information Center, DDN Protocol Handbook (3 vols.), Network Informa-
tion Center, SRI International, Menlo Park, Calif., 1985

NOTES
The Internet protocol support is subject to change as the Internet protocols develop.
Users should not depend on details of the current implementation, but rather the
services exported.

10/92 Page 3



inetd.conf(4)

NAME

(Internet Utilities) inetd.conf(4)

inetd.conf - Internet servers database

DESCRIPTION

The inetd.conf file contains the list of servers that inetd(1M) invokes when it
receives an Internet request over a socket. Each server entry is composed of a single

line of the form:

service-name socket-type protocol wait-status uid server-program server-arguments

Fields can be separated by either SPACE or TAB characters. A “# (pound-sign) indi-
cates the beginning of a comment; characters up to the end of the line are not inter-
preted by routines that search this file.

service-name

socket-type

protocol

wait-status

uid

server-program

server-arguments

10/92

The name of a valid service listed in the file /etc/services.
For RPC services, the value of the service-name field consists
of the RPC service name, followed by a slash and either a ver-
sion number or a range of version numbers (for example,
mountd/1).

Can be one of:

stream for a stream socket,
dgram for a datagram socket,
raw for a raw socket,

segpacket for a sequenced packet socket

Must be a recognized protocol listed in the file
/etc/protocols. For RPC services, the field consists of the
string rpc followed by a slash and the name of the protocol
(for example, rpc/udp for an RPC service using the UDP pro-
tocol as a transport mechanism).

nowait for all but single-threaded datagram servers —
servers which do not release the socket until a timeout
occurs (such as comsat(lM) and talkd(1M)). These must
have the status wait. Although tftpd(1M) establishes
separate pseudo-connections, its forking behavior can lead
to a race condition unless it is also given the status wait.

The user ID under which the server should run. This allows
servers to run with access privileges other than those for
root.

Either the pathname of a server program to be invoked by
inetd to perform the requested service, or the value inter-
nal if inetd itself provides the service.

If a server must be invoked with command-line arguments,
the entire command line (including argument 0) must
appear in this field (which consists of all remaining words in
the entry). If the server expects inetd to pass it the address
of its peer (for compatibility with 4.2BSD executable dae-
mons), then the first argument to the command should be
specified as “$2’".

Page 1



inetd.conf(4) (Internet Utilities) inetd.conf(4)

FILES
/etc/inetd.conf
/etc/services
/etc/protocols
SEE ALSO
rlogin(l), rsh(1), comsat(1M), inetd(1M), talkd(1M), tftpd(1M), services(4)

Page 2 10/92



inittab (4)

NAME

DESCRIPTION

10/92

inittab (4)

inittab - script for init

The file /etc/inittab controls process dispatching by init. The processes most
typically dispatched by init are daemons.

The inittab file is composed of entries that are position dependent and have the
following format:

id : rstate : action : process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sh(1). There are no limits (other than maximum entry size) imposed
on the number of entries in the inittab file. The entry fields are:

id
rstate

action

This is one to four characters used to uniquely identify an entry.

This defines the run level in which this entry is to be processed. Run-
levels effectively correspond to a configuration of processes in the system.
That is, each process spawned by init is assigned a run level or run levels
in which it is allowed to exist. The run levels are represented by a number
ranging from 0 through 6. As an example, if the system is in run level 1,
only those entries having a 1 in the rstate field are processed. When init
is requested to change run levels, all processes that do not have an entry in
the rstate field for the target run level are sent the warning signal STGTERM
and allowed a 5-second grace period before being forcibly terminated by
the kill signal SIGKILL. The rstate field can define multiple run levels for a
process by selecting more than one run level in any combination from 0
through 6. If no run level is specified, then the process is assumed to be
valid at all run levels 0 through 6. There are three other values, a, b and ¢,
which can appear in the rstate field, even though they are not true run lev-
els. Entries which have these characters in the rstate field are processed
only when an init or telinit process requests them to be run (regard-
less of the current run level of the system). See init(1M). They differ
from run levels in that init can never enter run level a, b or c. Also, a
request for the execution of any of these processes does not change the
current run level. Furthermore, a process started by an a, b or ¢ command
is not killed when init changes levels. They are killed only if their line in
inittab is marked off in the action field, their line is deleted entirely from
inittab, or init goes into single-user state.

Key words in this field tell init how to treat the process specified in the
process field. The actions recognized by init are as follows:

respawn If the process does not exist, then start the process; do not
wait for its termination (continue scanning the inittab
file), and when the process dies, restart the process. If the
process currently exists, do nothing and continue scanning
the inittab file.

Page 1



inittab (4)

Page 2

wait

once

boot

bootwait

powerfail

powerwait

off

ondemand

initdefault

inittab (4)

When init enters the run level that matches the entry’s
rstate, start the process and wait for its termination. All
subsequent reads of the inittab file while init is in the
same run level cause init to ignore this entry.

When init enters a run level that matches the entry’s
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If init enters a
new run level and the process is still running from a previ-
ous run level change, the program is not restarted.

The entry is to be processed only at init’s boot-time read
of the inittab file. init is to start the process, not wait
for its termination; and when it dies, not restart the pro-
cess. In order for this instruction to be meaningful, the
rstate should be the default or it must match init’s run
level at boot time. This action is useful for an initialization
function following a hardware reboot of the system.

The entry is to be processed the first time init goes from
single-user to multi-user state after the system is booted.
(If initdefault is set to 2, the process runs right after the
boot.) init starts the process, waits for its termination
and, when it dies, does not restart the process.

Execute the process associated with this entry only when
init receives a power fail signal, SIGPWR [see signal(2)].

Execute the process associated with this entry only when
init receives a power fail signal, SIGPWR, and wait until it
terminates before continuing any processing of inittab.

If the process associated with this entry is currently run-
ning, send the warning signal SIGTERM and wait 5 seconds
before forcibly terminating the process with the kill signal
SIGKILL. If the process is nonexistent, ignore the entry.

This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given
a different keyword in order to divorce its association with
run levels. This instruction is used only with the a, b or c
values described in the rstate field.

An entry with this action is scanned only when init is ini-
tially invoked. init uses this entry, if it exists, to deter-
mine which run level to enter initially. It does this by tak-
ing the highest run level specified in the rstate field and
using that as its initial state. If the rstate field is empty, this
is interpreted as 0123456 and init therefore enters run
level 6. Additionally, if init does not find an initde-
fault entry in inittab, it requests an initial run level
from the user at reboot time.

10/92



inittab (4) inittab (4)

sysinit Entries of this type are executed before init tries to access
the console (that is, before the Console Login: prompt).
It is expected that this entry will be only used to initialize
devices on which init might try to ask the run level ques-
tion. These entries are executed and waited for before con-
tinuing.
process  This is a command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh -c “exec command’. For this
reason, any legal sh syntax can appear in the process field.

SEE ALSO
init(1M), ttymon(IM), sh(1), who(1). exec(2), open(2), signal(2).

10/92 Page 3






inode (4) inode (4)

NAME
inode (generic) - format of an inode

DESCRIPTION
Inode format is entirely FSType-specific. See inode_FSType(4) for information.

SEE ALSO
inode_s5(4), inode_ufs(4).

10/92 Page 1



inode (4) (bfs)

NAME
inode (bfs) - format of a bfs i-node
SYNOPSIS

#include <sys/types.h>
#include <sys/fs/bfs.h>

DESCRIPTION
struct bfs_dirent

{

ushort d_ino; /*
daddr_t d_sblock; /*
daddr_t d_eblock; /*
daddr_t d_eoffset; /*
struct bfsvattr d_fattr; /*

Yi

inode(4)

inode number */

Start block */

End block */

EOF disk offset (absolute) */
File attributes */

For the meaning of the defined type daddr_t see types(5). The bfsvattr struc-

ture appears in the header file sys/fs/bfs.h.

SEE ALSO
fs_bfs(4), types(5).

10/92

Page 1



inode (4) (s5)

NAME
inode (s5) - format of an s5 i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/s5ino.h>

DESCRIPTION

inode (4)

An i-node for a plain file or directory in an s4 file system has the following struc-

ture defined by sys/fs/s5ino.h.

/% Inode structure as it appears on a disk block. #*/

struct dinode

{
o_mode_t di_mode; /*
o_nlink_t di_nlink; /%
o_uid_t di_uid; /*
o_gid_t di_gid; /*
off_t di_size; /%
char di_addr([39]; /*
unsigned char di_gen; /*
time_t di_atime; /*
time_t di_mtime; /*
time_t di_ctime; /¥
}i
/%
* Of the 40 address bytes:
* 39 are used as disk addresses
* 13 addresses of 3 bytes each
* and the 40th is used as a
* file generation number
*/

mode and type of file */
number of links to file %/
owner’s user id */

owner’s group id #*/

number of bytes in file */
disk block addresses */
file generation number */
time last accessed */

time last modified #*/

time status last changed #*/

For the meaning of the defined types off_t and time_t see types(5).

SEE ALSO
stat(2), 13tol(3C), £s_s5(4), types(5).

10/92

Page 1



inode (4) (UFS) inode (4)

NAME

inode (ufs) - format of a ufs inode

SYNOPSIS

#include <sys/param.h>
#include <sys/types.h>
#include <sys/vnode.h>
#include <sys/fs/ufs_inode.h>

DESCRIPTION

10/92

The I node is the focus of all local file activity in UNIX. There is a unique inode
allocated for each active file, each current directory, each mounted-on file, each
mapping, and the root. An inode is ‘named’ by its dev/inumber pair. Data in
icommon is read in from permanent inode on the actual volume.

#define EFT _MAGIC 0x90909090 /* magic cookie for EFT */
#define NDADDR 12 /* direct addresses in inode */
#define NIADDR 3 /* indirect addresses in inode */

struct inode {
struct inode *i_chain{2];/* must be first */
struct  vnode i_vnode; /* vnode associated with this inode */
struct  vnode *i_devvp; /* vnode for block I/0 */
u_short i_flag;

dev_t i_dev; /* device where inode resides */
ino_t i_number; /* 1 number, 1-to-1 with device address */
off_t i_diroff; /* offset in dir, where we found last entry */
struct fs *i_fs; /* file sys associated with this inode */
struct  dguot *i_dquot; /* quota structure controlling this file */
short i_owner; /* proc index of process locking inode */
short i_count; /* number of inode locks for i_owner */
short i_rwowner; /* proc index of process holding rwlock */
daddr_t 1i_nextr; /* next byte read offset (read-ahead) */
struct inode *i_freef; /* free list forward */
struct inode **i_freeb; /* free list back */
ulong i_vcode; /* version code attribute */
ulong i_mapcnt; /* mappings to file pages */
int *i_map; /* block list for the corresponding file */
struct  icommon {

o_mode_t ic_smode; /* 0: mode and type of file */

short ic_nlink; /* 2: number of links to file */

o_uld_t ic_suid; /* 4: owner’s user id */

o_gid t ic_sgid; /* 6: owner’s group id */

quad ic_size; /* 8: number of bytes in file */

#ifdef _KERNEL
struct timeval ic_atime; /* 16: time last accessed */
struct timeval ic_mtime; /* 24: time last modified */
struct timeval ic_ctime; /* 32: last time inode changed */

#else
time_t ic_atime; /* 16: time last accessed */
long ic_atspare;
time t ic_mtime; /* 24: time last modified */
long ic_mtspare;
time_t ic_ctime; /* 32: last time inode changed */
long ic_ctspare;

#endif

Page 1



inode (4)

daddr_t
daddr_t
long
long
long
mode_t
uid t
gid t
ulong

Y i_dc;

}i

struct dinode {

union {
struct
char
} di_un;
};
SEE ALSO

Page 2

ufs-specific £s(4)

(UFS)
ic_db[NDADDR]; /*
ic_ib[NIADDR]; /* 88:
ic_flags; /* 100:
ic_blocks; /* 104:
ic_gen; /* 108:
ic_mede; /* 112:
ic_uid; /* 116:
ic_gid; /* 120:
ic_eftflag; /* 124:

icommon di_icom;
di_size([128];

40: disk block addresses */

indirect blocks */

status, currently unused */
blocks actually held */
generation number */

EFT version of mode*/

EFT version of uid */

EFT version of gid */
indicate EFT version*/

inode (4)

10/92



intro(7) intro (7)

NAME
intro - introduction to special files

DEVICE NAMING CONVENTIONS
This section describes various special files that refer to specific hardware peri-
pherals and system device drivers. STREAMS [see intro(2)] software drivers,
modules, and the STREAMS-generic set of 1oct1(2) system calls are also described.

The names of the entries for hardware related files are generally derived from
names for the hardware, as opposed to the names of the special files themselves.
Characteristics of both the hardware device and the corresponding UNIX system
device driver are discussed where applicable.

Device specific special files take the form prefix_cXdYsuffix, where prefix uniquely
defines the type of device, X specifies the controller number (starting from zero) of
the stated device type, Y specifies the logical device number (starting from zero) for
the device attached to the stated controller, and suffix specifies device-dependent
information.

In addition to the device-specific special files, the system also provides generic spe-
cial files. These special files simplify the access to commonly used devices by pro-
viding device-independent aliases (for example, ctapel) for the first cartridge tape
drive.

Device prefixes:

Prefix Description

ml187 | MVME187 CPU SCSI host adapter; M88K only
ml67 | MVME1L67 CPU SCSI host adapter; M68K only
m328 MVME328 SCSI host adapter; M68K and M88K

Hard disk, floppy, and CDROM suffixes:

Suffix Description
sZ Z specifies the slice on the device
Cartridge tape suffixes:

The variable mode suffixes will exist only if the device is capable of supporting
variable mode.

Suffix Description
<NULL> | operate in fixed block size mode, rewind on close
n operate in fixed block size mode, no rewind on close
f operate in fixed block size mode, rewind on close
fn operate in fixed block size mode, no rewind on close
v operate in variable block size mode, rewind on close
vn operate in variable block size mode, no rewind on close

10/92 Page 1



intro(7)

Page 2

Nine-track tape suffixes:

intro (7)

The fixed block size mode suffixes will exist only if the device is capable of support-

ing fixed block mode.

Suffix Speed | Density | Rewind on close | Variable/Fixed Mode
<NULL> | high 3 yes variable
n high 3 no variable
i high 3 yes fixed
fn high 3 no fixed
v high 3 yes variable
vn high 3 no variable
10£ low 0 yes fixed
10fn low 0 no fixed
10v low 0 yes variable
10vn low 0 no variable
hof high 0 yes fixed
hOfn high 0 no fixed
hOv high 0 yes variable
hOvn high 0 no variable
11f low 1 yes fixed
11fn low 1 no fixed
11lv low 1 yes variable
1lvn low 1 no variable
hlf high 1 yes fixed
hlfn high 1 no fixed
hlv high 1 yes variable
hlvn high 1 no variable
12f low 2 yes fixed
12fn low 2 no fixed
12v low 2 yes variable
12vn low 2 no variable
h2f high 2 yes fixed
h2fn high 2 no fixed
h2v high 2 yes variable
h2vn high 2 no variable
13f low 3 yes fixed
13fn low 3 no fixed
13v low 3 yes variable
13vn low 3 no variable
h3f high 3 yes fixed
h3fn high 3 no fixed
h3v high 3 yes variable
h3vn high 3 no variable

10/92



intro(7) intro(7)

Generic device names:

The N specifies the generic device number; suffix is the device dependent suffix
appended to the generic device name.

Name Description
ctapeNsuffix cartridge tapes
ninetrackNsuffix | 9-track tapes
diskN the whole disk slice of the disk
cdromN the whole disk slice of the CDROM
floppy Nsuffix floppy disk drives

The disk, floppy, and CDROM device specific files are located in the /dev/{r}dsk
directories; tape specific files are located in the /dev/rmt directory.

The generic disk, floppy, and CDROM device special files are located in the
/dev/{r}SA directories; tape specific files are located in the /dev/rmt and
/dev/rSA directories.

NETWORKING INFORMATION

The following policy applies to new or enhanced network device drivers (for exam-
ple m376). A network TCP/IP node major device number is
the major device number of the clone device driver. A network minor device
number is the major number of the real device driver found in /etc/master.d,
concatenated with the board number to which this device corresponds. Following
is a pictorial representation of the minor device number as passed to the device
driver.

Network TCP/IP Node Minor Device Number
The driver interprets the minor number as follows:

MINOR DEVICE #
bit | 171615 | 14 |131211109876543210
BOARD | RESRV MAJOR #
where:
. The BOARD bits define the board device number. Boards are numbered

from 0. The maximum board device number supported depends on the par-
ticular device.

o The RESRYV bit must be set. This bit indicates to the clone driver that the
entire minor device number must be passed to the cloned device driver.

. The MAJOR # bits correspond to the real major number of the network dev-
ice as specified in the file /etc/master.d.

The device node name is also used as the Ethernet network interface name by
cenet in the network database file /etc/strcf.

SCSI-1 HOST ADAPTER COMMON MINOR FORMAT
All SCSI-1 host adapters utilize the following common device minor format.

10/92 Page 3



intro(7)
MAJOR MINOR
bit 31-18 17 16 15 14 1312 11 10 987 6543210
SCSI TBD SCSI SCSI SCSI TBD DEVICE
LUN CTRL BUS | ADDR INFO

intro(7)

As indicated in the preceding table, the controller number is located in the high-
order bits of the minor format. This allows for support of more than eight controll-
ers in the future. Each device driver should support a minimum of eight controllers
where applicable. The driver info bits in the minor format are defined as follows:

Device Bits Description
disks 0-3 | slice number (0-f)
4 reserved
all tapes 0 rewind /no rewind
1 fixed /variable block mode
streaming tapes 2-4 | no operation
(archive, exabyte,etc.)
start/stop tapes 2 low /high speed
(9-track) 3-4 | density selection

SCSI-2/3 HOST ADAPTER COMMON MINOR FORMAT

Al SCSI-2/3 host adapters utilize the following common device minor format.

MAJOR MINOR
bt 31-18 17 1615 | 1413121110 {987 | 65 | 43210
TBD SCSI SCsI SCSI | TBD | DEVICE
CTRL ADDR LUN INFO

As indicated in the previous table, the controller number is located in the high-
order bits of the minor format. This allows for support of more controllers in the
future. The driver info bits in the minor format are defined as follows:

SEE ALSO

Device Bits Description
disks 0-3 | slice number (0-f)
4 reserved
all tapes 0 rewind/no rewind
1 fixed /variable block mode
streaming tapes 2-4 | no operation
(archive, exabyte etc.)
start/stop tapes 2 low /high speed
(9-track) 3-4 | density selection

cdrom(7), disk(7), £loppy(7), tape(7)

Page 4

10/92



intro (4) intro (4)

NAME

intro - introduction to file formats

DESCRIPTION

10/92

This section outlines the formats of various files. The C structure declarations for
the file formats are given where applicable. Usually, the header files containing
these structure declarations can be found in the directories /usr/include or
/usr/include/sys. For inclusion in C language programs, however, the syntax
#include <filename.h>or #include <sys/filename.h> should be used.

Because the UNIX operating system now allows the existence of multiple file sys-
tem types, there are several instances of multiple manual pages with the same
name. These pages all display the name of the FSType to which they pertain cen-
tered and in parentheses at the top of the page.

Page 1



IP(7)

NAME

(Internet Utilities) IP(7)

IP - Internet Protocol

SYNOPSIS

#include <sys/socket.h>
#include <netinet/in.h>

S

11

socket (AF_INET, SOCK_RAW, proto);
t = t_open ("/dev/rawip", O_RDWR) ;
d = open ("/dev/ip", O_RDWR);

DESCRIPTION

10/92

IP is the internetwork datagram delivery protocol that is central to the Internet pro-
tocol family. Programs may use IP through higher-level protocols such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), or may
interface directly to IP. See tcp(7) and udp(7). Direct access may be via the socket
interface (using a raw socket) or the Transport Level Interface (TLI). The protocol
options defined in the IP specification may be set in outgoing datagrams.

The STREAMS driver /dev/rawip is the TLI transport provider that provides raw
access to IP. The device /dev/ip is the multiplexing STREAMS driver that imple-
ments the protocol processing of IP. The latter connects below to datalink providers
[interface drivers, see 1£(3N)], and above to transport providers such as TCP and
UDP.

Raw IP sockets are connectionless and are normally used with the sendto () and
recvfrom() calls, [(see send(2) and recv(2)] although the connect(2) call may
also be used to fix the destination for future datagrams [in which case the read(2)
or recv(2) and write(2) or send(2) calls may be used]. If proto is zero, the default
protocol, IPPROTO_RAV, is used. If proto is non-zero, that protocol number will be
set in outgoing datagrams and will be used to filter incoming datagrams. An IP
header will be generated and prepended to each outgoing datagram; received
datagrams are returned with the IP header and options intact.

A single socket option, IP_OPTIONS, is supported at the IP level. This socket option
may be used to set IP options to be included in each outgoing datagram. IP options
to be sent are set with setsockopt () [see getsockopt(2)]. The getsockopt(2)
call returns the IP options set in the last setsockopt () call. IP options on received
datagrams are visible to user programs only using raw IP sockets. The format of IP
options given in setsockopt () matches those defined in the IP specification with
one exception: the list of addresses for the source routing options must include the
first-hop gateway at the beginning of the list of gateways. The first-hop gateway
address will be extracted from the option list and the size adjusted accordingly
before use. IP options may be used with any socket type in the Internet family.

At the socket level, the socket option SO_DONTROUTE may be applied. This option
forces datagrams being sent to bypass the routing step in output. Normally, IP
selects a network interface to send the datagram, and possibly an intermediate
gateway, based on an entry in the routing table. See routing(4). When
SO_DONTROUTE is set, the datagram will be sent using the interface whose network
number or full IP address matches the destination address. If no interface matches,
the error ENETUNRCH will be returned.

Page 1



IP(7)

(Internet Utilities) IP(7)

Raw IP datagrams can also be sent and received using the TLI connectionless primi-
tives.

Datagrams flow through the IP layer in two directions: from the network up to user
processes and from user processes down to the network. Using this orientation, IP is
layered above the network interface drivers and below the transport protocols such
as UDP and TCP. The Internet Control Message Protocol (ICMP) is logically a part of
IP. See icmp(7).

IP provides for a checksum of the header part, but not the data part of the
datagram. The checksum value is computed and set in the process of sending
datagrams and checked when receiving datagrams. IP header checksumming may
be disabled for debugging purposes by patching the kernel variable ipcksum to
have the value zero.

IP options in received datagrams are processed in the IP layer according to the pro-
tocol specification. Currently recognized IP options include: security, loose source
and record route (LSRR), strict source and record route (SSRR), record route, stream
identifier, and internet timestamp.

The IP layer will normally forward received datagrams that are not addressed to it.
Forwarding is under the control of the kernel variable ipforwarding: if ipforwarding
is zero, IP datagrams will not be forwarded; if ipforwarding is one, IP datagrams will
be forwarded. ipforwarding is usually set to one only in machines with more than
one network interface (internetwork routers). This kernel variable can be patched
to enable or disable forwarding.

The IP layer will send an ICMP message back to the source host in many cases when
it receives a datagram that can not be handled. A time exceeded ICMP message will
be sent if the time to live field in the IP header drops to zero in the process of for-
warding a datagram. A destination unreachable message will be sent if a datagram
can not be forwarded because there is no route to the final destination, or if it can
not be fragmented. If the datagram is addressed to the local host but is destined for
a protocol that is not supported or a port that is not in use, a destination unreach-
able message will also be sent. The IP layer may send an ICMP source quench mes-
sage if it is receiving datagrams too quickly. ICMP messages are only sent for the
first fragment of a fragmented datagram and are never returned in response to
errors in other ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented on
output if the datagram is larger than the maximum transmission unit (MTU) of the
network interface. Fragments of received datagrams are dropped from the
reassembly queues if the complete datagram is not reconstructed within a short
time period.

Errors in sending discovered at the network interface driver layer are passed by IP
back up to the user process.

SEE ALSO

Page 2

read(2), write(2), connect(3N), getsockopt(3N), recv(3N), send(3N),
routing(4), icmp(7), inet(7) tcp(7), udp(7)

Postel, Jon, Internet Protocol - DARPA Internet Program Protocol Specification, RFC 791,
Network Information Center, SRI International, Menlo Park, Calif., September 1981

10/92



IP(7)

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

NOTES

10/92

EACCESS

EISCONN

EMSGSIZE

ENETUNREACH

ENOTCONN

ENOBUF'S

EADDRNOTAVATL

(Internet Utilities) IP(7)

A TP broadcast destination address was specified and the
caller was not the privileged user.

An attempt was made to establish a connection on a socket
which already had one, or to send a datagram with the desti-
nation address specified and the socket was already con-
nected.

An attempt was made to send a datagram that was too large
for an interface, but was not allowed to be fragmented (such
as broadcasts).

An attempt was made to establish a connection or send a
datagram, where there was no matching entry in the routing
table, or if an ICMP destination unreachable message was
received.

A datagram was sent, but no destination address was
specified, and the socket had not been connected.

The system ran out of memory for fragmentation buffers or
other internal data structure.

An attempt was made to create a socket with a local address
that did not match any network interface, or an IP broadcast
destination address was specified and the network interface
does not support broadcast.

The following errors may occur when setting or getting IP options:

EINVAL
EINVAL

An unknown socket option name was given.

The IP option field was improperly formed; an option field
was shorter than the minimum value or longer than the
option buffer provided.

Raw sockets should receive ICMP error packets relating to the protocol; currently
such packets are simply discarded.

Users of higher-level protocols such as TCP and UDP should be able to see received

IP options.

Page 3



issue (4) issue (4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a
login prompt. issue is an ASCII file that is read by program getty and then writ-
ten to any terminal spawned or respawned from the lines file.

FILES
/etc/issue

SEE ALSO
login(1).

10/92 Page 1



juart(7) iuart(7)

NAME

iuart - hardware specific console driver for the MVME141 and MVME181/188

DESCRIPTION

FILES

This STREAMS-based driver provides console I/O when the system is running on an
MVME141, MVME181 or MVME188 CPU board. This driver is accessable only
through the standard console device special files /dev/console (/dev/contty00),
/dev/contty (/dev/contty01), and /dev/conctl.

The device special files eventually access the STREAMS-based console driver which,
when used in conjunction with the STREAMS line discipline module 1dterm, sup-
ports the termios(2) and termio(7) processing.

/dev/console
/dev/contty
/dev/contty??
/dev/conctl

SEE ALSO

10/92

dcon(lA), mvmecpu(1M), termios(2), conslx7(7), console(7), ldterm(7), ter-

mio(7).

Page 1



kbd (7) kbd (7)

NAME
kbd - generalized string translation module

DESCRIPTION

The STREAMS module kbd is a programmable string translation module. It can per-
form two types of operations on an input stream: the first type is simple byte-
swapping via a lookup table, the second is string translation. It is useful for codeset
conversion and compose-key or dead-key character production on terminals and pro-
duction of overstriking sequences on printers. It may also be used for minor types
of key-rebinding, expansion of abbreviations, and keyboard re-arrangement (an
example of the latter would be swapping the positions of the Y and Z keys,
required for German keyboards, or providing Dvorak keyboard emulation for
QWERTY keyboards). The manual entry kbdcomp(1M) discusses table construction,
the input language, and contains sample uses. This document is intended mainly
to aid administrators in configuring the module on a particular system; the user
interface to the module is solely through the commands kbdload and kbdset.

The Xkbd module works by modifying an input stream according to instructions
embodied in tables. It has no built in ““default” tables. Some tables may be loaded
when the system is first brought up by pushing the module and loading standard
or often-used tables [see kbdload(1M)] which are retained in main-memory across
invocations and made available to all users. These are called public tables. Users
may also load private tables at any time—these do not remain resident.

With the kbdset command, users may query the module for a list of available and
attached tables, attach various tables, and set the optional per-user hot-key, hot-key
mode, and verbose string for their particular invocation.

When a user attaches more than one table, the user’s hot-key may be used to cycle to
the next table in the list. If only one table is specified, the hot-key may be used to
toggle translation on and off. When multiple tables are in use, the hot-key may be
used to cycle through the list of tables [see kbdset(1) for a description of the avail-
able modes].

In its initial state, kbd scans input for occurrences of bytes beginning a translation
sequence. Upon receiving such a byte, it attempts to match subsequent bytes of the
input to programmed sequences. Input is buffered beginning with the byte which
caused the state change and is released if a match is not found. When a match fails,
the first byte of the invalid sequence is sent upstream, the buffered input is
“’shifted,”” and the scan begins again with the resulting input sequence. If the
current table contains an error entry, its value (one or more bytes) is substituted
for the offending input byte. When a sequence is found to be valid, the entire
sequence is replaced with the result string specified for it.

The kbd may be used in either the read or write directions, or both simultaneously.
Maps and hot-keys may be specified independently for input and output.

The kbd also supports the use of external kernel-resident functions as if they were
tables; once declared and attached (via kbdload and kbdset respectively) they
may be used as simple tables or members of composites. To accomplish this, kbd
understands the registration functions of the alp module and can access any func-
tion registered with that module. Further information on external functions and
their definition is contained in alp(7). External functions are especially useful in
supporting multi-byte codeset conversions that would be difficult or impossible

10/92 Page 1



kbd (7) kbd (7)

with normal kbd tables.

LIMITATIONS
It is not an error to attach multiple tables without defining a hot-key (but the tables
will not all be accessible). It is recommended that the user’s hot-key be set before
loading and attaching tables to avoid unpleasant side effects when an unfamiliar
arrangement is first loaded.

Each user has a limitation on the amount of memory that may be used for private
and attached tables. This “‘quota” is controlled by the kbd_umem variable
described below. When a user that is not the super-user attempts to load a table or
create a composite table, the quota is checked, and the load will fail if it would cause
the quota to be exceeded. When a composite table is attached, the space for attach-
ment (which requires more space than the composite table itself) is charged against
this quota (attachment of simple tables is not charged against the quota). The quota
is enforced only when loading new tables. Detaching temporarily from un-needed
composite tables may reduce the current allocation enough to load a table that
would otherwise fail due to quota enforcement. To minimize chances of failure
while loading tables, it is advisable to load all required tables and make all required
composite tables before attaching any of them.

CONFIGURATION PARAMETERS
The master (or space.c) file contains some configurable parameters.

NKBDU is the maximum number of tables that may be attached by a single user. The
number should be enough to cover uncommon cases, but must be at least 2.
Default: 6.

ZUMEM, from which the variable kbd_umem is assigned, is the maximum number of
bytes that a user (other than the super user) may have allocated to private tables
(i.e., the quota). Default: 4096.

KBDTIME is the default timer value for timeout mode. It is the number of clock ticks
allowed before timing out. The value of one “clock tick” depends on the hardware,
but is usually 1/100 or 1/60 of a second. A timeout value of 20 is 1/5 second at
100Hz; with a 60Hz clock, a value of 12 produces a 1/5 second timeout.) Values
from 5 to 400 inclusive are allowed by the module; if the value set for KBDTIME is
outside this range, the module forces it to the nearest limit. (This value is only a
default; users may change their particular Stream to use a different value depend-
ing on their own preferences, terminal baud-rate, and typing speed.)

CAVEATS
NULL characters may not be used in result or input strings, because they are used as
string delimiters.

One should be able to obtain information on timeout values of currently attached
tables, and be able to reset values more easily.

EXAMPLE
The shell script below installs the kbd STREAMS module into a stream and attaches
two example mapping tables to the input side of the stream. The example mapping
tables are assumed to be included in the BOS binary distribution. The Dvorak table
maps the keyboard as if it were arranged in the Dvorak style, and the Deutsche
table just transposes keys Y and Z.

Page 2 10/92



kbd (7) kbd (7)

10/92

The small C program generates an escape sequence needed by the example. Build
and run it first.

The script assumes your session was started by an rlogin to the machine. You
may have to modify it if your stream is not the same as the one expected below.
Use strconf to check your stream.

After running the script, the Dvorak map will be enabled. Entering the hot key,
control-underbar ("_), will change to the Deutche map. Entering the hot key again
will change to a clear keyboard with no mapping.

# begin example script

current_tty_settings="‘stty -g‘"
current_tty_ streams_modules="‘'strconf’"

streams_modules_i_know_of="ttcompat
ldterm

ptem

pts"

if [ "Scurrent_tty streams_modules" = "Sstreams_modules_i_know_of" ]
then
#pop off ttcompat and ldterm
strchg -p
strchg -p

#push kbd and put ldterm and ttcompat back
strchg -h kbd, ldterm, ttcompat

#restore the stty settings
stty Scurrent_tty_settings
else
echo "Sorry. I only know about default pty stream modules."
exit 255
fi

# load the two maps and attach them to the input side of the stream
kbdload /usr/lib/kbd/Dvorak

kbdload /usr/lib/kbd/Deutsche

kbdset -a Dvorak -a Deutsche

# set the hot key to control-underbar and mode 1 (see kbdset (1))
# include a string to use for verbose map changes with the hot key
kKbdset -k '"_’ -m 1 -v ‘cat Ver.Set.Str’

#end example script
/* This program creates the file Ver.Set.Str containing the escape
* sequence string needed in the kbd module usage example.

* Build and run it once before running the example script.
*/ #include <stdio.h> #include <sys/types.h>

Page 3



kbd (7) kbd (7)

/* save cursor, goto-status-line, clear-to-end-of-line,
* (%n), restore cursor
*/

char str([] = { Oxlb, 7',
Ox1lb, '[’, '?', 'J',
Ox1lb, "[’, 'K',
,(,I ,%’I ,nll ,),l
0x1lb, '8’
}i

main() {
FILE *fid;

fid = fopen("Ver.Set.Str", "w");
fwrite(str, sizeof(char), 15, fid);
fclose(fid); }

FILES
/usr/1lib/kbd directory containing system standard table files.
/usr/lib/kbd/*.map source for some system table files.

SEE ALSO

kbdcomp(1M), kbdload(1M), kbdset(1), alp(7).

Page 4 10/92



Idterm(7) Idterm (7)

NAME

ldterm - standard STREAMS terminal line discipline module

DESCRIPTION

ldterm is a STREAMS module that provides most of the termio(7) terminal inter-
face. This module does not perform the low-level device control functions
specified by flags in the c_cflag word of the termio/termios structure or by the
IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of the
termio/termios structure; those functions must be performed by the driver or by
modules pushed below the 1dterm module. All other termio/termios functions
are performed by ldterm; some of them, however, require the cooperation of the
driver or modules pushed below ldterm and may not be performed in some cases.
These include the IXOFF flag in the c_iflag word and the delays specified in the
c_oflag word.

ldterm also handles EUC and multi-byte characters.

The remainder of this section describes the processing of various STREAMS mes-
sages on the read- and write-side.

Read-side Behavior

10/92

Various types of STREAMS messages are processed as follows:

M _BREAK When this message is received, either an interrupt signal is generated or
the message is treated as if it were an M_DATA message containing a sin-
gle ASCII NUL character, depending on the state of the BRKINT flag.

M_DATA  This message is normally processed using the standard termio input
processing. If the ICANON flag is set, a single input record (“line”) is
accumulated in an internal buffer and sent upstream when a line-
terminating character is received. If the ICANON flag is not set, other
input processing is performed and the processed data are passed
upstream.

If output is to be stopped or started as a result of the arrival of charac-
ters (usually CNTRL-Q and CNTRL-S), M_STOP and M_START messages
are sent downstream. If the IXOFF flag is set and input is to be stopped
or started as a result of flow-control considerations, M_STOPI and
M_STARTI messages are sent downstream.

M_DATA messages are sent downstream, as necessary, to perform echo-
ing.

If a signal is to be generated, an M_FLUSH message with a flag byte of
FLUSHR is placed on the read queue. If the signal is also to flush output,
anM_FLUSH message with a flag byte of FLUSHW is sent downstream.

M_CTL If the size of the data buffer associated with the message is the size of
struct iocblk, ldterm will perform functional negotiation to deter-
mine where the termio(7) processing is to be done. If the command
field of the iocblk structure (ioc_cmd) is set to MC_NO_CANON, the
input canonical processing normally performed on M_DATA messages is
disabled and those messages are passed upstream unmodified; this is
for the use of modules or drivers that perform their own input process-
ing, such as a pseudo-terminal in TIOCREMOTE mode connected to a
program that performs this processing. If the command is

Page 1



Idterm (7)

IOCTLS

Page 2

M_FLUSH

M_TOCACK

Idterm(7)

MC_DO_CANON, all input processing is enabled. If the command is
MC_PART_CANON, then an M_DATA message containing a termios struc-
ture is expected to be attached to the original M_CTL message. The
ldterm module will examine the iflag, oflag, and 1flag fields of
the termios structure and from then on will process only those flags
which have not been turned ON. If none of the above commands are
found, the message is ignored; in any case, the message is passed
upstream.

The read queue of the module is flushed of all its data messages and all
data in the record being accumulated are also flushed. The message is
passed upstream.

The data contained within the message, which is to be returned to the
process, are augmented if necessary, and the message is passed
upstream.

All other messages are passed upstream unchanged.

Write-side Behavior
Various types of STREAMS messages are processed as follows:

M_FLUSH

M_IOCTL

M_DATA

The write queue of the module is flushed of all its data messages and
the message is passed downstream.

The function of this ioctl is performed and the message is passed
downstream in most cases. The TCFLSH and TCXONC ioctls can be per-
formed entirely in the 1dterm module, so the reply is sent upstream
and the message is not passed downstream.

If the OPOST flag is set, or both the XCASE and ICANON flags are set, out-
put processing is performed and the processed message is passed
downstream along with any M_DELAY messages generated. Otherwise,
the message is passed downstream without change.

All other messages are passed downstream unchanged.

The following ioctls are processed by the 1dterm module. All others are passed
downstream. EUC_WSET and EUC_WGET are I_STR ioctl calls whereas other
ioctls listed here are TRANSPARENT ioctls.

TCGETS/TCGETA

The message is passed downstream; if an acknowledgment is seen, the
data provided by the driver and modules downstream are augmented
and the acknowledgement is passed upstream.

TCSETS/TCSETSW/TCSETSF/TCSETA/TCSETAW/TCSETAF

The parameters that control the behavior of the ldterm module are
changed. If a mode change requires options at the stream head to be
changed, an M_SETOPTS message is sent upstream. If the ICANON flag is
turned on or off, the read mode at the stream head is changed to
message-nondiscard or byte-stream mode, respectively. If the TOSTOP
flag is turned on or off, the tostop mode at the stream head is turned on
or off, respectively.

10/92



Idterm(7)

TCFLSH

TCXONC

TCSBRK

EUC_WSET

EUC_WGET

SEE ALSO

Idterm(7)

If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is
sent downstream and placed on the read queue. If the argument is 1,
the write queue is flushed of all its data messages and an M_FLUSH mes-
sage with a flag byte of FLUSHW is sent upstream and downstream. If
the argument is 2, the write queue is flushed of all its data messages and
an M_FLUSH message with a flag byte of FLUSHRW is sent downstream
and placed on the read queue.

If the argument is 0 and output is not already stopped, an M_STOP mes-
sage is sent downstream. If the argument is 1 and output is stopped, an
M_START message is sent downstream. If the argument is 2 and input is
not already stopped, an M_STOPI message is sent downstream. If the
argument is 3 and input is stopped, an M_STARTI message is sent down-
stream.

The message is passed downstream, so the driver has a chance to drain
the data and then send and an M_TOCACK message upstream.

This call takes a pointer to an eucioc structure, and uses it to set the
EUC line discipline’s local definition for the code set widths to be used
for subsequent operations. Within the stream, the line discipline may
optionally notify other modules of this setting via M_CTL messages.

This call takes a pointer to an eucioc structure, and returns in it the
EUC code set widths currently in use by the EUC line discipline.

termios(2), console(7), ports(7), termio(7).

10/92

Page 3



limits (4) limits (4)

NAME

limits - header file for implementation-specific constants
SYNOPSIS

#include <limits.h>

DESCRIPTION
The header file 1imits.h is a list of minimal magnitude limitations imposed by a
specific implementation of the operating system.

CHAR_BIT 8 /* max # of bits in a "char" */

CHAR_MAX 127 /* max value of a "char" */

CHAR_MIN 128 /% min value of a "char" */

CHILD_MAX 25 /* max # of processes per user id */

CLK_TCK 100 /* clock ticks per second */

DBL_DIG 15 /* digits of precision of a "double" */

DBL_MAX 1.7976931348623157E+308 /* max decimal value of a "double"#*/

DBL_MIN 2.2250738585072014E-308 /* min decimal value of a "double"x/

FCHR_MAX 1048576 /* max size of a file in bytes */

FLT _DIG 6 /* digits of precision of a "float" */

FLT_MAX 3.40282347e+38F /* max decimal value of a "float" */

FLT_MIN 1.17549435E-38F /* min decimal value of a "float" */

INT_MAX 2147483647 /% max value of an "int" */

INT_MIN (-2147483647-1) /* min value of an "int" */

LINK_MAX 1024 /* max # of links to a single file */

LOGNAME_MAX 8 /* max # of characters in a login name */

LONG_BIT 32 /* # of bits in a "long" */

LONG_MAX 2147483647 /* max value of a "long int" */

LONG_MIN (-2147483647-1) /* min value of a "long int" */

MAX_CANON 255 /* max bytes in a line for canonical
processing */

MAX_INPUT 512 * max size of a char input buffer */

MB_LEN_MAX 5 /* max # of bytes in a multibyte
character */

NAME,_MAX 14 /* max # of characters in a file name */

NGROUPS_MAX 16 /* max # of groups for a user */

NL_ARGMAX 9 /* max value of "digit" in calls to the
NLS printf() and scanf() */

NL_LANGMAX 14 /* max # of bytes in a LANG name */

NL_MSGMAX 32767 /* max message number */

NIL_NMAX 1 /* max # of bytes in N-to-1 mapping
characters */

NL_SETMAX 255 /* max set number */

NL_TEXTMAX 255 /* max # of bytes in a message string */

NZERO 20 /% default process priority */

OPEN_MAX 25 /* max # of files a process can have
open */

PASS_MAX 8 /* max # of characters in a password */

PATH_MAX 1024 /* max # of characters in a path name */

PID_MAX 30000 /* max value for a process ID */

PIPE_BUF 5120 /* max # bytes atomic in write to a pipe */

PIPE_MAX 5120 /* max # bytes written to a pipe

10/92 Page 1



limits (4)

Page 2

SCHAR_MAX
SCHAR_MIN
SHRT_MAX
SHRT_MIN
STD_BLK
SYS_NMLN

SYSPID_MAX
UCHAR_MAX
UID_MAX
UINT_MAX
ULONG_MAX
USHRT_MAX
USI_MAX
WORD_BIT

127
(-128)
32767
(-32768)
1024
256

1

255

60002
4294967295
4294967295
65535
4294967295
32

limits (4)

in a write */

/*
/*
/%
/%
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*

max
min
max
min

value of a "signed char" */
value of a "signed char" */
value of a "short int" */
value of a "short int" */

# bytes in a physical I/O block */

4.0

size of utsname elements */

also defined in sys/utsname.h */

max

max

pid of system processes */

value of an "unsigned char" */
value for a user or group ID */
value of an "unsigned int" */
value of an "unsigned long int" */
value of an "unsigned short int" */
decimal value of an "unsigned" #*/

# of bits in a "word" or "int" */

The following POSIX definitions are the most restrictive values to be used by a POSIX
conformant application. Conforming implementations shall provide values at least

this large.

_POSIX_ARG_MAX 4096
_POSIX_CHILD_MAX 6
_POSTX_LINK_MAX 8
_POSIX_MAX_CANON 255
_POSIX_MAX_INPUT 255
_POSIX_NAME_MAX 14
_POSIX_NGROUPS_MAX 0
_POSIX_OPEN_MAX 16
_POSIX_PATH_MAX 255
_POSIX_PIPE_BUF 512

/*
/*
/*
/*
/*

max length of arguments to exec */
max # of processes per user ID */
max # of links to a single file */
max # of bytes in a line of input */
max # of bytes in terminal

input queue */
/% # of bytes in a filename */

/%
/%
/%
/%
to

max # of groups in a process */

max # of files a process can have open */
max # of characters in a pathname */

max # of bytes atomic in write

a pipe */

10/92



lo(7) (Internet Utilities) lo(7)

NAME
1o - software loopback network interface

SYNOPSIS
d = open ("/dev/loop", O_RDWR) ;

DESCRIPTION
The loopback device is a software datalink provider (interface driver) that returns
all packets it receives to their source without involving any hardware devices. It is
a STREAMS device conforming to the datalink provider interface (DLPI). See 1£(7)
for a general description of network interfaces.

The loopback interface is used to access Internet services on the local machine.
Because it is available on all machines, including those with no hardware network
interfaces, programs can use it for guaranteed access to local servers. A typical
application is the comsat(1M) server which accepts notification of mail delivery
from a local’Client. The loopback interface is also used for performance analysis
and testing.

By convention, the name of the loopback interface is 100, and it is configured with
Internet address 127.0.0.1. This address may be changed with the
SIOCSIFADDR ioctl().

SEE ALSO
comsat(1M), 1£(7), inet(7)

10/92 Page 1



log(7) (Networking Support Utilities) log(7)

NAME
log - interface to STREAMS error logging and event tracing

DESCRIPTION

log is a STREAMS software device driver that provides an interface for console log-
ging and for the STREAMS error logging and event tracing processes (strerr(1M),
strace(IM)). log presents two separate interfaces: a function call interface in the
kernel through which STREAMS drivers and modules submit 1og messages; and a
subset of ioct1(2) system calls and STREAMS messages for interaction with a user
level console logger, an error logger, a trace logger, or processes that need to submit
their own log messages.

Kernel Interface
log messages are generated within the kernel by calls to the function strlog:

strlog (mid, sid, level, flags, fmt, argl, ...)
short mid, sid;

char level;

ushort flags;

char *fmt;

unsigned argl;

Required definitions are contained in sys/strlog.h, sys/log.h, and
sys/syslog.h. mid is the STREAMS module id number for the module or driver
submitting the 1og message. sid is an internal sub-id number usually used to iden-
tify a particular minor device of a driver. level is a tracing level that allows for selec-
tive screening out of low priority messages from the tracer. flags are any combina-
tion of SL,_ERROR (the message is for the error logger), SL_TRACE (the message is for
the tracer), SL_CONSOLE (the message is for the console logger), SL_FATAL (advisory
notification of a fatal error), and SL_NOTIFY (request that a copy of the message be
mailed to the system administrator). fmt is a printf(3sS) style format string,
except that %s, %e, %E, %g, and %G conversion specifications are not handled. Up
to NLOGARGS (currently 3) numeric or character arguments can be provided.

User Interface

log is opened via the clone interface, /dev/log. Each open of /dev/log obtains a
separate stream to 1og. In order to receive 1og messages, a process must first notify
log whether it is an error logger, trace logger, or console logger via a STREAMS
I_STR ioctl call (see below). For the console logger, the I_STR ioctl has an
ic_cmd field of I_CONSLOG, with no accompanying data. For the error logger, the
I_STR ioctl has an ic_cmd field of I_ERRLOG, with no accompanying data. For
the trace logger, the ioctl has an ic_cmd field of I_TRCLOG, and must be accom-
panied by a data buffer containing an array of one or more struct trace_ids ele-
ments. Each trace_ids structure specifies an mid, sid, and level from which mes-
sage will be accepted. strlog will accept messages whose mid and sid exactly
match those in the trace_ids structure, and whose level is less than or equal to the
level given in the trace_ids structure. A value of -1 in any of the fields of the
trace_ids structure indicates that any value is accepted for that field.

Once the logger process has identified itself via the ioctl call, log will begin send-
ing up messages subject to the restrictions noted above. These messages are
obtained via the getmsg (2) system call. The control part of this message contains
a log_ctl structure, which specifies the mid, sid, level, flags, time in ticks since boot

10/92 Page 1



log(7)

(Networking Support Utilities) log(7)

that the message was submitted, the corresponding time in seconds since Jan. 1,
1970, a sequence number, and a priority. The time in seconds since 1970 is provided
so that the date and time of the message can be easily computed, and the time in
ticks since boot is provided so that the relative timing of log messages can be
determined.

The priority is comprised of a priority code and a facility code, found in
<sys/syslog.h>. If SI._CONSOLE is set in flags, the priority code is set as follows.
If SI_WARN is set, the priority code is set to LOG_WARNING. If SL_FATAL is set, the
priority code is set to LOG_CRIT. If SL_ERROR is set, the priority code is set to
LOG_ERR. If SI_NOTE is set, the priority code is set to LOG_NOTICE. If SL_TRACE is
set, the priority code is set to LOG_DEBUG. If only SL_CONSOLE is set, the priority
code is set to LOG_INFO. Messages originating from the kernel have the facility
code set to LOG_KERN. Most messages originating from user processes will have the
facility code set to LOG_USER.

Different sequence numbers are maintained for the error and trace logging streams,
and are provided so that gaps in the sequence of messages can be determined (dur-
ing times of high message traffic some messages may not be delivered by the logger
to avoid hogging system resources). The data part of the message contains the
unexpanded text of the format string (null terminated), followed by NLOGARGS
words for the arguments to the format string, aligned on the first word boundary
following the format string.

A process may also send a message of the same structure to 1og, even if it is not an
error or trace logger. The only fields of the 1og_ct1 structure in the control part of
the message that are accepted are the level, flags, and pri fields; all other fields are
filled in by log before being forwarded to the appropriate logger. The data portion
must contain a null terminated format string, and any arguments (up to NLOGARGS)
must be packed one word each, on the next word boundary following the end of
the format string.

ENXIO is returned for I_TRCLOG ioctls without any trace_ids structures, or for
any unrecognized I_STR ioctl calls. Incorrectly formatted 1og messages sent to
the driver by a user process are silently ignored (no error results).

Processes that wish to write a message to the console logger may direct their output
to /dev/conslog, using either write(2) or putmsg(2).

EXAMPLES

Page 2

Example of I_ERRLOG notification.

struct strioctl ioc;

ioc.ic_cmd = I_ERRLOG;

ioc.ic_timout = 0; /* default timeout (15 secs.) */
ioc.ic_len = 0;

ioc.ic_dp = NULL;

ioctl(log, I_STR, &ioc);

Example of I_TRCLOG notification.

10/92



log(7) (Networking Support Utilities) log(7)

struct trace_ids tid[2];

tid[0] .ti_mid = 2;
tid[0].ti_sid = 0;
tid[0].ti_level =

tid[1].ti_mid = 1002;
tid[1].ti_sid = -1; /* any sub-id will be allowed */
tid[1l].ti_level = -1; /* any level will be allowed */

ioc.ic_cmd = I_TRCLOG;

ioc.ic_timout = 0;

ioc.ic_len = 2 * gizeof (struct trace_ids);
ioc.ic_dp = (char *)tid;

ioctl(log, I_STR, &ioc);
Example of submitting a 1og message (no arguments).

struct strbuf ctl, dat;

struct log_ctl lc;

char *message = "Don’t forget to pick up some milk
on the way home";

ctl.len = ctl.maxlen = sizeof(lc);

ctl.buf = (char *)&lc;
dat.len = dat.maxlen = strlen(message) ;
dat .buf = message;

lc.level = 0;
lc.flags SL_ERROR | SL_NOTIFY;

putmsg(log, &ctl, &dat, 0);
FILES
/dev/log
/dev/conslog
<sys/log.h>
<sys/strlog.h>
<sys/syslog.h>
SEE ALSO
strace(IM), strerr(1M), intro(2), getmsg(2), putmsg(2), write(2), clone(7).

10/92 Page 3



loginlog (4) loginlog (4)

NAME
loginlog - log of failed login attempts

DESCRIPTION
After five unsuccessful login attempts, all the attempts are logged in the file
/var/adm/loginlog. This file contains one record for each failed attempt. Each
record contains the login name, tty specification, and time.
This is an ASCII file. Each field within each entry is separated from the next by a
colon. Each entry is separated from the next by a new-line.
By default, loginlog does not exist, so no logging is done. To enable logging, the
log file must be created with read and write permission for owner only. Owner
must be root and group must be sys.

FILES
/var/adm/loginlog

SEE ALSO
login(1), passwd(1).

10/92 Page 1



Ip1x7(7) Ip1x7(7)

NAME
1plx7 - line printer device driver

DESCRIPTION
1plx7 provides an interface to any of the standard Printronix- or Centronics-type
parallel line printers using the parallel port on the MVME187 and MVME167 CPU
boards.

Printers under System V Release 4 must appear as write-only terminals and are
configured using a terminal type in terminfo(4). The lpadmin(IM) command is
used to configure the printer.

If printing to the raw device, stty(1) settings can be changed, altering the output.
If printing using the 1p(1) subsystem, the STREAMS module 1dterm will be pushed
onto the stream automatically and will handle all canonical processing.

The ioct1(2) system calls available are a subset of those available to terminals and
are discussed in depth in the termio(7) and termios(7) manpages. Because
printers appear as write-only terminals, modifying the input flags for any of these
ioctls has no effect on the driver. A list of the supported calls and a brief descrip-
tion follows.

EUC_MSAVE, EUC_MREST, EUC_IXLOFF, EUC_IXLON, EUC_OXLOFF, EUC_OXLON
These ioctls are for international character handling and will be utilized in
the future. They are simply acknowledged. For more information about the
proper handling of these ioct1s, refer to the STREAMS Programming Guide.

TCGETS
The argument is a pointer to a termios structure. The current printer parame-
ters are retrieved and stored in that structure.

TCSETS
The argument is a pointer to a termios structure. The current printer parame-
ters are set from the values stored in that structure. The change is immediate.

TCSETSW
The argument is a pointer to a termios structure. The current printer parame-
ters are set from the values stored in that structure. The change occurs after all
characters queued for output have been transmitted. This form should be used
when changing parameters that affect output.

TCSETSF
The argument is a pointer to a termios structure. The current terminal param-
eters are set from the values stored in that structure. The change occurs after
all characters queued for output have been transmitted; all characters queued
for input are discarded and the change occurs. Because there are no input
characters from a printer, this command has the same effect as the TCSETSW
command.

TCGETA
The argument is a pointer to a termio structure. The current terminal parame-
ters are retrieved and parameters that can be stored in a termio structure are
stored in that structure.

10/92 Page 1



Ip1x7(7)

Ip1x7(7)

TCSETA
The argument is a pointer to a termio structure. Those terminal parameters
that can be stored in a termio structure are set from the values stored in that
structure. The change is immediate.

TCSETAW
The argument is a pointer to a termio structure. Those terminal parameters
that can be stored in a termio structure are set from the values stored in that
structure. The change occurs after all characters queued for output have been
transmitted. This form should be used when changing parameters that affect
output.

TCSETAF
The argument is a pointer to a termio structure. Those terminal parameters
that can be stored in a termio structure are set from the values stored in that
structure. The change occurs after all characters queued for output have been
transmitted; all characters queued for input are discarded and the change
occurs. Because there are no input characters from a printer, this command has
the same effect as the TCSETAW command.

TCSBRK
This command is acknowledged but no action takes place.

TCFLUSH
This command is transformed by 1dterm into the STREAMS message M_FLUSH.
The transformation only takes place if 1dterm has been pushed onto the
stream either by the 1p subsystem or by the user.

TCXONC
This command is transformed by 1dterm into a STREAMS message, M_START or
M_STOP, depending on which message is appropriate. The transformation
only takes place if 1dterm has been pushed onto the stream either by the 1p
subsystem or by the user.

For more information about the above ioctls and error messages generated by
them, see termio(7).

FILES

/dev/xedt/1pl87_c0

on the MVME187 CPU.

/dev/printer/1pl87_c0d0

on the MVME187 CPU

/dev/xedt/1pl67_c0

on the MVME167 CPU

/dev/printer/1pl67_c0d0

on the MVME167 CPU

SEE ALSO
1p(1), stty(1l), lpadmin(lM), ioctl(2), terminfo(4), ldterm(7), mvmel87(7),
mvmel67(7), termio(7), termios (7) .

Page 2

10/92



m376(7) (TCP/P) m376(7)

NAME

m376 - MVME376 Local Area Network Interface

SYNOPSIS

#include <sys/dlpi.h>
#include <sys/macioctl.h>

fd = open("/dev/m376_c0", O_RDWR) ;

DESCRIPTION

10/92

The MVME376 is a VMEbus Local Area Network Controller for Ethernet and IEEE
802.3 compatible networks. The MVME376 utilizes the on-board combination of an
Am7990 Local Area Network Controller (LANCE), an Am7992B Serial Interface
Adapter (SIA), and 256Kbytes of dual ported RAM. The m376 device driver sup-
ports TCP/IP and OSI protocol stacks. A maximum of 4 (four) boards may be
configured in a single system.

The m376 is a STREAMS-based software driver used with the MVME376 Ethernet
board. The m376 interface conforms to the Data Link Provider Interface (DLPI). In
addition, the m376 driver accepts the MAC management commands specified in the
MAC Provider Interface (MPI).

The m376 driver can be opened directly, or indirectly from the clone device driver.
During the TCP/IP startup, the m376 device is clone opened and linked to the IP
and ARP STREAMS modules via the slink command. From then on, m376 con-
verts all the outgoing packets received from IP/ARP to the format defined by the
MVME376 board and then passes these packets to the board. If the OSI-DP pack-
age is installed on the system and linked into the kernel, the m376 driver will accept
outgoing packets from the DLR (OSI LLC1) module.

Upon receiving incoming packets from the MVME376 board, m376 converts these
packets to the STREAMS-based DLPI format messages and passes these packets to
the appropriate user (e.g., ARP, IP, or DLR).

The mvme376 namer program, creates or deletes the device special files for the m376
driver at boot time. The device special filenames are composed of the string
m376_cy, where y is the controller number. Controllers are numbered beginning at
0. The device special filename for the first controller in the system is
/dev/m376_c0, for the second controller (if the system has one) is /dev/m376_c1,
and so on.

An m376 node major device number is the major device number of the clone device
driver. An m376 minor device number is the major number of the m376 device,
found in /etc/master.d/mvme376, concatenated with the board number
corresponding to this device. See intro(7) for the pictorial representation of the
minor device number as passed to the device driver. For the m376 device driver, the
bit fields in the minor format are defined as:

The BOARD bits define the board device number. Boards are numbered
from 0. The maximum board device number supported is 3.

The MAJOR # bits correspond to the real major number of the m376 device
as specified in the file /etc/master.d/mvme376.

Page 1



m376(7)

(TCP/IP) m376(7)

The device node name is also used as the Ethernet network interface name by
cenet in the network database file /etc/strcf and by ifconfig in the script
/etc/inet/rc.inet.

Eachm376 device may have up to seven (7) minor devices open simultaneously.

USAGE

STREAM Message Processing
The following are the types of STREAMS messages the driver can process:

M_PROTO/M_PCPROTO

Page 2

Six DLPI protocol message types are supported: DL_INFO_REQ,
DL_UNITDATA_REQ, DL_BIND_REQ, DL_UNBIND_REQ,
DL_ENABMULTI_REQ, and DL_DISABMULTI_REQ. Unsupported message
types that are received cause an error message of type dl_error_ack_t
with d1_errno set to DL_NOTSUPPORTED to be sent back up the stream.

DL_INFO_REQ is a request for driver information. Driver information is
passed back up the stream in a message of type dl_info_ack_t with
dl_primitive set to DL_INFO_ACK. However, if enough memory is not
available for the driver information, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_UNITDATA_REQ is a request to transmit data. The message is in the
dl_unitdata_req_ t format. The driver will process this message and
send data to the appropriate destination address. Most errors that can
occur during this message are turned around in the message itself and sent
back up stream in a message with d1_primitive set to DL_UDERROR_IND.
If enough memory is not available for processing, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_BIND_REQ is a request to bind a service access point (SAP) to the minor
device number associated with the current stream. The request message is
of type d1_bind_req_t. A SAP type, as long as it is valid, is assumed to
be an Ethernet binding if it is not equal to IEEE8023_TYPE. Any Ethernet
type can be used as a binding SAP. Only one stream may use
IEEE8023_TYPE as a SAP. All IEEE802.3 frames will be sent up this stream.
If the OSI-DP package has been installed, the DLR module will bind to this
SAP and will receive all 802.3 frames. Once the stream has been bound, an
acknowledgement message type dl_bind ack_t is sent back up the
stream. Errors generated during the processing of this message that cause
an error message of type dl_error_ack_t to be sent back up the stream
are: stream already bound, bad sap value, and cannot allocate memory for
acknowledgement.

DL_UNBIND_REQ is a request to unbind the minor device associated with
the current stream. Errors generated during message processing that cause
an error message of type dl_error_ack_t are: minor device is not bound
and cannot allocate enough memory for acknowledgement. An ack-
nowledgement message of type dl_ok_ack_t is generated when the
stream has been unbound.

10/92



m376(7)

M_IOCTL

10/92

(TCP/P) m376(7)

DL_ENABMULTIL REQ is a request to enable a multicast address on a per-
stream basis. An individual stream may have a maximum of sixty-four
multicast addresses in its table, subject to the following limitation. There
may be no more than sixty-four unique addresses for all streams associ-
ated with each controller. An acknowledgement message of type
dl_ok_ack_t is generated if the request is valid. A message of type
dl_error_ack_t is generated with d1_primitive set to DL_BADADDR if
the multicast address is invalid or d1_primitive set to DL_TOOMANY if
there is no space left in the controller’s multicast table.

DL_DISABMULTI_REQ is a request to disable a multicast address on a per-
stream basis. An acknowledgement message of type dl_ok_ack_t is gen-
erated if the request is valid. A message of type dl_error_ack_t is gen-
erated with d1_primitive set to DL_BADADDR if the multicast address is
invalid or d1_primitive set to DL_NOTENAB if the requested address is
not currently enabled.

ioctl commands are received in messages of type iocblk. There are
many ioctl commands supported by the driver. Command data must be
stored in a connected message block type M_DATA. Some commands do
not require M_DATA blocks; M_DATA block requirements are listed. Data
passed back upstream is always contained in an M_DATA block. All of the
ioctl #defines used <can be found in the file
include/sys/macioctl.h.

A description of user ioctl stream messages can be found under the
I_STR command in streamio(7). A sample code extract can be found in
the STREAMS Mechanism chapter of the STREAMS Programming Guide.

MACDELAMCA is a request to delete all multicast table entries on the con-
troller associated with this stream. This command does not require an
M_DATA block.

MACDELMCA is a request to delete one multicast address from a multicast
table on a per-stream basis. This command requires an M_DATA block of
type mc_£ rame.

MACGETIA is a type of request to return the Ethernet address of the
LANCE controller associated with the current queue. This command does
not require an M_DATA block.

MACGETMCA is a request to return the entire multicast table for the con-
troller associated with the current queue. This command does not require
an M_DATA block.

MACGETSTAT is a request to return a statistic the driver has been gather-
ing. A returned value of -1 indicates the statistic was not available. This
command requires an M_DATA block. The data block is an array of struc-
tures. Each structure has the following format (see macioctl.h):

struct macstat {
long name ;
long value ;

}

Page 3



m376(7)

Page 4

(TCP/IP)

m376(7)

A table of number defines and their descriptions follow:

MACGETSTAT

Name

Description

MACSTAT_DEV_TIMEOUTS

total number of device timeouts

MACSTAT_XMITED

number of successful transmits

MACSTAT_XMITED_DEF

number of deferred transmits

MACSTAT_XMITED_1COLL

number of transmits with >/=1 collision

MACSTAT_COLLISIONS

total number of collisions

MACSTAT_NOXMIT_BUFF

total number dropped frames because of no
STREAM buffer

MACSTAT_NOXMIT_COLL

number of frames dropped due to excess
collisions

MACSTAT_RECVD

number of frames successfully received

MACSTAT_RECVD_CKSUM

number of CRC errors

MACSTAT_RECVD_ALIGN

number of frames with alignment errors

MACSTAT_NORECV_RES

number of frames dropped because of
resource lack

MACSTAT_NORECV_LENGTH

number of frames dropped because of bad
length

MACSTAT_RECVD_MCAST

number of multicast frames received

MACSTAT_XMITED_MCAST

number of multicast frames transmitted

MACSTAT_NORECV_MCAST

number of multicast frames rejected

MACSTAT_NORECV_TYPE

number of frames dropped because of
unbound type

MACSTAT_NOXMIT_CARRIER

number of times lost carrier

MACSTAT_NOXMIT_CTS

number of times lost CTS

MACSTAT_DMA_ERRORS

number of DMA errors

MACSTAT_RECVD_BCAST

number broadcast frames received

MACSTAT_OUT_OF_WINDOW

number of late collisions

MACSTAT_XMITED_BCAST

number of broadcast frames transmitted

MACSETIA is a request to set the Ethernet address for the LANCE controller
associated with the current stream. After executing MACSETIA, the net-
working subsystem must be stopped and then restarted. The address is
immediately changed in the LANCE and the non-volatile RAM on the cpu

board.

MACSETMCA is a request to add one multicast address to a multicast table
on a per-stream basis. This command requires an M_DATA block of type
mc_frame. A multicast address must have the least significant bit of
byte[0] of the Ethernet address set. An individual stream may have a

10/92




m376(7) (TCP/IP) m376(7)

maximum of sixty-four multicast addresses in its table, subject to the fol-
lowing limitation. There may be no more than sixty-four addresses for all
streams associated with each controller.

SIOCGENADDR is a type of request to return the Ethernet address of the
LANCE controller associated with the current queue. This command
requires an M_DATA block of type struct ifreq.

M_FLUSH
If the command is a read queue flush, the read queue of the driver is
flushed and the message is passed back up stream. If the command is a
write queue flush, the write queue of the driver is flushed.

FILES
/dev/m376_*
/usr/include/sys/dlpi.h
/usr/include/sys/macioctl.h
/usr/include/sys/mvme376.h

SEE ALSO
ifconfig(IM), mvme376(1M), slink(1M), strace(1M), edt_data(4), master(4),
strcf(4N), arp(7), clone(7), intro(7), ip(7), streamio(7).
McGrath, G., A STREAMS-based Data Link Provider Interface (DLPI), Version 1.3,
AT&T Bell Laboratories, Summit, N.J., February 1989
LT-610 Programmer Guide, Preliminary version, Retix, Santa Monica, CA, 1991

10/92 Page 5



mailcnfg (4)

NAME

Keyword Definitions

10/92

(Essential Utilities) mailcnfg (4)

mailcnfg - initialization information formail and rmail

DESCRIPTION
The /etc/mail/mailcnfg file contains initialization information for the mail and
rmail commands. Each entry in mailcnfg consists of a line of the form

Keyword = Value

Leading whitespace, whitespace surrounding the equal sign, and trailing white-
space is ignored. Keyword may not contain embedded whitespace, but whitespace
may appear within Value. Undefined keywords or badly formed entries are silently

ignored.

DEBUG

CLUSTER

FATLSAFE

Takes the same values as the -x invocation option of mail.
This provides a way of setting a system-wide debug/tracing
level. Typically DEBUG is set to a value of 2, which provides
minimal diagnostics useful for debugging mail and rmail
failures. The value of the -x mail invocation option will
override any specification of DEBUG in mailcnfg.

To identify a closely coupled set of systems by one name to
all other systems, set Value to the cluster name. This string is
used to supply the ...remote from... information on the
From header line rather than the system nodename returned
by uname(2).

In the event that the /var/mail directory is accessed via
RFS or NFS within a cluster (see CLUSTER above), provisions
must be made to allow for the directory not being available
when local mail is to be delivered (remote system crash, RFS
or NFS problems, and so on). Value is a string that indicates
where to forward the current message for delivery. Typi-
cally this is the remote system that actually owns /var/mail.
In this way, the message is queued for delivery to that sys-
tem when it becomes available. For example, assume a clus-
ter of systems (sysa, sysb, sysc) where /var/mail is physi-
cally mounted on sysc and made available to the other
machines via RFS or NFS. If sysc were to crash, the
RFS/NFS-accessible /var/mail would become unavailable
and local deliveries of mail would go to /var/mail on the
local system. When /var/mail is re-mounted via RFS/NFS,
all messages deposited in the local directory would be hid-
den and essentially lost. To prevent this, if FAILSAFE is
defined in mailcnfg, mail and rmail check for the
existence of /var/mail/:saved, a required subdirectory. If
this subdirectory does not exist, mail assumes that the
RFS/NFS-accessible /var/mail is not available and invokes
the failsafe mechanism of automatically forwarding the mes-
sage to Value. In this example Value would be sysc!%n. The
%n keyword is expanded to be the recipient name [see
mail(l) for details] and thus the message would be for-
warded to sysclrecipient_name. Because sysc is not

Page 1



mailenfg (4)

FILES

NOTES

Page 2

DEL_EMPTY MFILE

DOMAIN
SMARTERHOST

smailsurr_keyword

/etc/mail/mailcnfg
/etc/mail/mailsurr
/var/mail/:saved

(Essential Utilities) mailcnfg (4)

available, the message remains on the local system until
sysc is available, and then sent there for delivery.

If not specified, the default action of mail and rmail is to
delete empty mailfiles if the permissions are 0660 ‘and to
retain empty mailfiles if the permissions are anything else. If
Value is yes, empty mailfiles are always deleted, regardless
of file permissions. If Value is no, empty mailfiles are never
deleted.

This string is used to supply the system domain’name in
place of the domain name returned by getdomainame(3).

This string may be set to a smarter host which may be refer-
enced within the mail surrogate file via $X.

As described in mailsurr(4), certain pre-defined single
letter keywords are textually substituted in surrogate com-
mand fields before they are executed. While none of the
predefined keywords may be changed in meaning, new ones
may be defined to provide a shorthand nofation for long
strings (such as /usr/lib/mail/surrcmd) which may
appear repeatedly within the mailsurr file. Upper case
letters are reserved for future use and will be ignored if
encogtered here.

/usr/lib/mail/surrcmd )

SEE ALSO
mail(l) uname(2), getdomainame(3), mailsurr(4).

If /var/mail is accessed via RFS or NFS and the subdirectory /var/mail/:saved
is not removed from the local system, the FATLSAFE mechanism will be subverted.

10/92



mailsurr(4) (Essential Utilities) mailsurr(4)

NAME
mailsurr - surrogate commands for routing and transport of mail

DESCRIPTION
The mailsurr file contains routing and transport surrogate commands used by the
mail command. Each entry in mailsurr has three whitespace-separated, single
quote delimited fields:
' sender’ " recipient’ " command’
or a line that begins
Defaults:
Entries and fields may span multiple lines, but leading whitespace on field con-

tinuation lines is ignored. Fields must be less than 1024 characters long after expan-
sion (see below).

The sender and recipient fields are regular expressions. If the sender and recipient
fields match those of the message currently being processed, the associated com-
mand is invoked.

The command field may have one of the following five forms:

Alccept]

D[eny]

T[ranslate] R=[|]string

< S=. . .;C=. . .;F=. . .; command
> command

Regular Expressions
The sender and recipient fields are composed of regular expressions (REs) which
are digested by the regexp(5) compile and advance procedures in the C library.
The regular expressions matched are those from ed(1), with simple parentheses ()
playing the role of \ (\) and the addition of the + and ? operators from egrep(1).
Any single quotes embedded within the REs must be escaped by prepending them
with a backslash or the RE is not interpreted properly.

Themail command prepends a circumflex (") to the start and appends a dollar sign
($) to the end of each RE so that it matches the entire string. Therefore it would be
an error to use "RES in the sender and recipient fields. To provide case insensi-
tivity, all REs are converted to lower case before compilation, and all sender and
recipient information is converted to lower case before comparison. This conver-
sion is done only for the purposes of RE pattern matching; the information con-
tained within the message’s header is not modified.

The sub-expression pattern matching capabilities of regexp may be used in the
command field, that is, (. ..), where 1 < n < 9. Any occurrences of \\7 in the
replacement string are themselves replaced by the corresponding (. ..) substring in
the matched pattern. The sub-expression fields from both the sender and recipient
fields are accessible, with the fields numbered 1 to 9 from left to right.

Accept and Deny Commands
Accept instructs rmail to continue its processing with the mailsurr file, but to
ignore any subsequent matching Deny. That is, unconditionally accept this mes-
sage for delivery processing. Deny instructs rmail to stop processing the mailsurr
file and to send a negative delivery notification to the originator of the message.

10/92 Page 1



mailsurr (4) (Essential Utilities) mailsurr (4)

Whichever is encountered first takes precedence.

Translate Command

Translate allows optional on-the-fly translation of recipient address information.
The recipient replacement string is specified as R=string.

For example, given a command line of the form
"o+ " ([71]1+)@(.+)\.EUO\.ATT\.com’ ’‘Translate R=attmail!\\2!\\1’

and a recipient address of rob@sysa.EUO.ATT.COM the resulting recipient address
would be attmail!sysa!rob.

Should the first character after the equal sign be a ’|’, the remainder of the string is
taken as a command line to be directly executed by rmail. If any sh(l) syntax is
required (metacharacters, redirection, and so on), then the surrogate command
must be of the form:

sh -c "shell command line. . ."

Special care must be taken to escape properly any embedded back-slashes and sin-
gle or double quotes, since rmail uses double quoting to group whitespace delim-
ited fields that are meant to be considered as a single argument to execl(2). It is
assumed that the executed command will write one or more replacement strings on
stdout, one per line. If more than one line is returned, each is assumed to be a
different recipient for the message. This mechanism is useful for mailing list expan-
sions. As stated above, any occurrences of \\n are replaced by the appropriate sub-
string before the command is executed. If the invoked command does not return at
least one replacement string (no output or just a newline), the original string is not
modified. For example, the command line

".+’ ‘' (.+)" 'Translate R=|/usr/bin/findpath \\1’
allows local routing decisions to be made.

If the recipient address string is modified, mailsurr is rescanned from the begin-
ning with the new address(es), and any prior determination of Accept (see above)
is discarded.

< command

Page 2

The intent of a < command is that it is invoked as part of the transport and delivery
mechanism, with the ready-for-delivery message available to the command at its
standard input. As such, there are three conditions possible when the command
exits:

Success  The command successfully delivered the message. What actu-
ally constitutes successful delivery may be different within the
context of different surrogates. The rmail process assumes that
no more processing is required for the message for the current
recipient.

Continue The command performed some function (logging remote mes-
sage traffic, for example) but did not do what would be con-
sidered message delivery. The rmail process continues to scan
the mailsurr file looking for some other delivery mechanism.

10/92



mailsurr(4) (Essential Utilities) mailsurr(4)

10/92

Failure = The command encountered some catastrophic failure. The
rmail process stops processing the message and sends to the
originator of the message a non-delivery notification that
includes any stdout and stderr output generated by the com-
mand.

The semantics of the < command field in the mailsurr file allow the specification
of exit codes that constitute success, continue, and failure for each surrogate com-
mand individually. The syntax of the exit state specification is:

< WS [exit_state_id=ec[, ec[,. . .]]; llexit_state_id=ec[ ec,. . .]];
[.. .11 WS surrogate_cmd_line

WS is whitespace. exit_state_id can have the value S, C, or F. exit_state_ids can be
specified in any order. ec can be:

any integer 0 < n < 255 [Negative exit values are not possible. See exit(2)
and wait(2).]
a range of integers of the form lower_limit-upper_limit where the limits are >
0 and <255, and
*, which implies anything

For example, a command field of the form:
‘< 8=1-5,99;C=0,12;F=%; command %R’

indicates that exit values of 1 through 5, and 99, are to be considered success,

values of 0 (zero) and 12 indicate continue, and that anything else implies failure.
If not explicitly supplied, default settings are S=0; C=%;.

It may be possible for ambiguous entries to exist if two exit states have the same
value, for example, S=12,23;C=#;F=23,52; or S=%;C=9;F=%;. To account for this,
rmail looks for explicit exit values (that is, not “’+”’) in order of success, continue,
failure. Not finding an explicit match, rmail then scans for “/+”" in the same order.

It is possible to eliminate an exit state completely by setting that state’s value to an
impossible number. Since exit values must be between 0 and 255 (inclusive), a
value of 256 is a good one to use. For example, if you had a surrogate command
that was to log all message traffic, amailsurr entry of

"(.+)" " (.4)' '<S=256;C=*; /usr/lib/mail/surrcmd/logger \\1 \\2’
would always indicate continue.

Surrogate commands are executed by rmail directly. If any shell syntax is required
(metacharacters, redirection, and so on), then the surrogate command must be of
the form:

sh -c "shell command line. . ."

Special care must be taken to properly escape any embedded back-slashes and
other characters special to the shell as stated in the “Translate’” section above.

If there are no matching < commands, or all matching < commands exit with a con-
tinue indication, rmail attempts to deliver the message itself by assuming that the
recipient is local and delivering the message to /var/mail/recipient.

Page 3



mailsurr (4) (Essential Utilities) mailsurr (4)

> command
The intent of a > command is that it is invoked after a successful delivery to do any
post-delivery processing that may be required. Matching > commands are executed
only if some < command indicates a successful delivery (see the previous section)
or local delivery processing is successful. The mailsurr file is rescanned and all
matching > commands, not just those following the successful < command, are exe-
cuted in order. The exit status of an > command is ignored.

Defaults: Line
The default settings may be redefined by creating a separate line in the mailsurr
file of the form

Defaults: [S=...;][C=...;][F=...;]

Defaults: lines are honored and the indicated default values redefined when the
line is encountered during the normal processing of the mailsurr file. Therefore,
to redefine the defaults globally, the Defaults: line should be the first line in the
file. It is possible to have multiple Defaults: lines in the mailsurr file, where
each subsequent line overrides the previous one.

Surrogate Command Keyword Replacement.
Certain special sequences are textually-substituted in surrogate commands before
they are invoked:

%n the recipient’s full name.

%R the full return path to the originator (useful for sending replies,
delivery failure notifications, and so on)

%c value of the Content-Type: header line if present.

%C “text” or “binary’’, depending on an actual scan of the con-

tent. This is independent of the value of any Content-Type
header line encountered (useful when calling ckbinarsys.)

%S the value of the Subject : header line, if present.

%1 value of the Content-Length: header line.

SL the local system name. This will be either CLUSTER from
mailcnfg or the value returned by uname.

sU the local system name, as returned by uname.

%X the value of SMARTERHOST in mailcnfg.

%D the local domain name. This will be either DOMAIN from
mailcnfg, or the value returned by getdomainame.

\\n as described above, the corresponding (. . .) substring in the

matched patterns. This implies that the regexp limitation of 9
substrings is applied to the sender and recipient REs collec-
tively.
skeywords Other keywords as specified in /etc/mail/mailcnfg. See
mailcenfg(4).
The sequences %L, 3U, %D, and %keywords are permitted within the sender and reci-
pient fields as well as in the command fields.

An example of the mailsurr entry that replaces the uux “‘built-in" of previous ver-
sions of rmail is:

Page 4 10/92



mailsurr(4) (Essential Utilities) mailsurr (4)

10/92

fo+r r([r@lIH) (L) "< Jusr/bin/uux - \\1l!rmail (\\2)’

Mail Surrogate Examples
Some examples of mail surrogates include the distribution of message-waiting
notifications to LAN-based recipients and lighting Message-Waiting Lamps, the
ability to mail output to printers, and the logging of all rmail requests between
remote systems (messages passing through the local system). The following is a

sample mailsurr file:

#

# Some common remote mail surrogates follow. To activate any
# or all of them, remove the ‘#’ (comment indicators) from

# the beginning of the appropriate lines. Remember that they
# will be tried in the order they are encountered in the file,
# so put preferred surrogates first.

# Prevent all shell meta-characters

A R T RS O B 'Deny’

# Map all names of the form local-machinel!user -> user

Tut 0 IBLI(L+) ‘Translate R=\1"

# Map all names of the form uname!user -> user

# Must be turned on when using mail in a cluster environment.
#7047 TUN (L) 'Translate R=\1’

# Map all names of the form user@host -> host!user

fo+r (el e(.+) 'Translate R=\2!\1"

# Map all names of the form host.uucpl!user -> host!user

fo+’ P ([71@]+) \.uucp! (.+)’  ‘Translate R=\1!\2'

# Map all names of the form host.local-domain!user -> host!user
# DOMAIN= within /etc/mail/mailcnfg will override getdomainame(3).
fo+r T ([T1@]+) %D (L) ! 'Translate R=\1!\2"

# Allow access to ‘attmail’ from remote system ‘sysa’
'‘sysal.*’ rattmail! .+’ ' Accept’

# Deny access to ‘attmail’ from all other remotes

N ‘attmail! .+’ 'Deny’

# Send mail for ‘laser’ to attached laser printer

# Make certain that failures are reported via return mail.
.+’ ’laser’ '< 8=0;F=*; 1lp -dlaser’

# Run all local names through the mail alias processor

#

Lo+ T[T el+ 'Translate R=|/usr/bin/mailalias %n’

# For remote mail via nusend

Page 5



mailsurr (4) (Essential Utilities) mailsurr(4)

o+ ([T (L) ‘< /usr/bin/nusend -d \\1 -s -e -!"rmail \\2" -’
# For remote mail via usend
Tt CTEIR) )

‘< /usr/bin/usend -s -d\\1 -uNoLogin -!"rmail \\2" - -’

# For remote mail via uucp
o+ RIS R '<S5=256;C=0;
/usr/lib/mail/surrcmd/ckbinarsys -t %C -s \\1’
e A R S N S I ‘< /usr/bin/uux - \\1l!rmail (\\2)’
# For remote mail via smtp
#0040 T ([T1@QYIH) (L) '< /usr/lib/mail/surrcmd/smtpger %R %$n’
# If none of the above work, then let a router change the address.
#0470 roR[1@] L * ‘Translate R=| /usr/lib/mail/surrcmd/smail -A %n’
# If none of the above work, then ship remote mail off to a smarter host.
# Make certain that SMARTERHOST= is defined within /etc/mail/mailcnfg.
#0470 rox[1@]L* 'Translate R=%X!%n’
# Log successful message deliveries
F(.4)" " (.+) " '>/usr/lib/mail/surrcmd/logger \1 \2’

Note that invoking mail to read mail does not involve the mailsurr file or any
surrogate processing.

Security

Surrogate commands execute with the permissions of rmail (user ID of the invoker,
group ID of mail). This allows surrogate commands to validate themselves, check-
ing that their effective group ID was mail at invocation time. This requires that all
additions to mailsurr be scrutinized before insertion to prevent any unauthorized
access to users’ mail files. All surrogate commands are executed with the path
/usr/lib/mail/surrcmd: /usr/bin.

Debugging New mailsurr Entries

FILES

Page 6

To debug mailsurr files, use the -T option of the mail command. The -T option
requires an argument that is taken as the pathname of a test mailsurr file. If null
(asin -T ""), the system mailsurr file is used. Enter

mail -T test_file recipient

and some trivial message (like “testing”), followed by a line with either just a dot
(".”) or a cntl-D. The result of using the -T option is displayed on standard output
and shows the inputs and resulting transformations as mailsurr is processed by
themail command for the indicated recipient.

Mail messages will never be sent or delivered when using the -T option.

/etc/mail/mailsurr

10/92



mailsurr (4) (Essential Utilities) mailsurr (4)

/usr/lib/mail/surrcmd/* surrogate commands
/etc/mail/mailcenfg initialization information for mail
SEE ALSO
ckbinarsys(1IM), ed(1), egrep(1), mail(1), sh(1), uux(l), exec(2), exit(2), wait(2),
getdomainname(3) popen(3), mailcnfg(4), regexp(5).
NOTES

It would be unwise to install new entries into the system mailsurr file without
verifying at least their syntactical correctness via ‘mail -T..." as described above.

10/92 Page 7



master (4) master(4)

NAME

master - master configuration database

DESCRIPTION

The master configuration database is a collection of files. Each file contains
configuration information for a device or module that may be included in the sys-
tem. A file is named with the module name to which it applies. This collection of
files is maintained in a directory called /etc/master.d. Each file has an identical
format. For convenience, this collection of files will be referred to as the master
file, as though it were a single file. Treating the master file as a single file allows a
reference to the master file to be understood to mean the individual file in the
master.d directory that corresponds to the name of a device or module. The file is
used by the mkboot (1IM) program to obtain device information to generate the dev-
ice driver and configurable module files. It is also used by the sysdef(1IM) pro-
gram to obtain the names of supported devices. master consists of two parts; they
are separated by a line with a dollar sign ($) in column 1. Part 1 contains device
information for both hardware and software devices, and loadable modules. Part 2
contains parameter declarations used in Part 1. Any line with an asterisk (*) in
column 1 is treated as a comment.

Part 1. Description

10/92

Hardware devices, software drivers and loadable modules are defined with a line
containing the following information. Field 1 must begin in the left-most position
on the line. Fields are separated by white space (tab or blank).

Field 1:  element characteristics:

specify only once

required device

block device

character device

hardware driver

dispatch driver

file-system driver

new-style device driver

executable-type driver

initialize cdevswl[] .d_ttys

software driver

STREAMS driver

STREAMS module

multi-threaded driver or module
0-91 processor number for a staticly bound driver or

module

x not a driver; a loadable module
none  no flags for this driver or module

Note: A streams device or module which has no M flag or processor number
in Field 1, will be staticly bound to the boot processor. For other drivers, the
module will be allowed to float between processors, but will only execute
on one processor at a time.

—REmn o BuQaraoR O

Page 1



master (4) master (4)

Field2:  handler prefix (4 characters maximum)

Field 3:  hardware/software driver external major number; if not a
software/hardware driver, or to be assigned during execution of
drvinstall(1M)

Field 4: number of sub-devices per device; if none

Field 5:  dependency list (optional); this is a comma-separated list of
other drivers or modules that must be present in the
configuration if this module is to be included

non

non

For each module, two classes of information are required by mkboot: external rou-
tine references and variable definitions. Routine and variable definition lines begin
with white space and immediately follow the initial module specification line.
These lines are free form, thus they may be continued arbitrarily between non-
blank tokens as long as the first character of a line is white space.

Part 1. Routine Reference Lines

If the UNIX system kernel or other dependent module contains external references
to a module, but the module is not configured, then these external references would
be undefined. Therefore, the routine reference lines are used to provide the infor-
mation necessary to generate appropriate dummy functions at boot time when the
driver is not loaded. The format of a routine reference is as follows:

routine_name () action
The valid actions and their meanings are:

{} routine_name () {}
{nosys} {return nosys();
{nodev} {return nodev () ;}
{false} {return 0;}
{true} {return 1;}

{nopkg} {return nopkg();}
{noreach} panic the system

Part 1. Variable Definition Lines

Page 2

Variable definition lines are used to generate all variables required by the module.
The variable generated may be of arbitrary size, be initialized or not, or be arrays
containing an arbitrary number of elements. Variable references are defined as fol-
lows:

Field 1: variable_name

Field 2: [ expr ] - optional field used to indicate array size

Field 3: (length) - required field indicating the size of the variable
Field 4: ={expr, ... } -optional field used to initialize individual ele-

ments of a variable

The length field is mandatory. It is an arbitrary sequence of length specifiers, each
of which may be one of the following:

%1 an integer
%1 a long integer
%s a short integer

10/92



master (4) master(4)

10/92

c a single character
number a field which is number bytes long
number ¢ a character string which is number bytes long

0P 0P oe

For example, the length field
( %8c %1 %0x58 %1 %c %c )

could be used to identify a variable consisting of a character string 8-bytes long, a
long integer, a 0x58 byte structure of any type, another long integer, and two char-
acters. Appropriate alignment of each % specification is performed ($number
is word-aligned) and the variable length is rounded up to the next word boundary
during processing.

The expressions for the optional array size and initialization are infixed expressions
consisting of the usual operators for addition, subtraction, multiplication, and divi-
sion: +, -, *, and /. Multiplication and division have the higher precedence, but
parentheses may be used to override the default order. The builtin functions min
and max accept a pair of expressions, and return the appropriate value. The
operands of the expression may be any mixture of the following:

&name address of name, where name is any symbol defined by the kernel,
any module loaded, or any variable definition line of any module
loaded

#name sizeof name where name is any variable name defined by a variable

definition for any module loaded; the size is that of the individual
variable—not the size of an entire array

#C number of controllers present; this number is determined by the EDT
for hardware devices, or by the number provided in the system file
for non-hardware drivers or modules

#C (name) number of controllers present for the module name; this number is
determined by the EDT for hardware devices, or by the number pro-
vided in the system file for non-hardware drivers or modules

#D number of devices per controller taken directly from the current
master file entry

#D (name) number of devices per controller taken directly from the master file
entry for the module name

#M the internal major number assigned to the current module if it is a
device driver; zero of this module is not a device driver

#M(name) the internal major number assigned to the module name if it is a dev-
ice driver: zero if that module is not a device driver

name value of a parameter as defined in the second part of master
number arbitrary number (octal, decimal, or hex allowed)

string a character string enclosed within double quotes (all of the character
string conventions supported by the C language are allowed); this
operand has a value which is the address of a character array con-
taining the specified string

Page 3



master(4) master (4)

When initializing a variable, one initialization expression should be provided for
each %1, %1, %s, or %c of the length field. The only initializers allowed for a $number
c are either a character string (the string may not be longer than number), or an
explicit zero. Initialization expressions must be separated by commas, and variable
initialization proceeds element by element. Note that $number specification cannot
be initialized—they are set to zero. Multiple elements of an array may be initial-
ized; uninitialized elements are set to zero. If there are more initializers than size
specifications, it is an error and execution of the mkboot program is aborted. In the
case of an array, mkboot will report an error only if the array’s dimension is a literal.
C UNIX will report an error if the dimension is a symbol or expression and too
many initializers are given. If there are fewer initializations than size specifications,
zeros will be used to pad the variable. For example:

={ "V2.Ll1", #C#*#D, max(10,#D), #C(OTHER), #M(OTHER) }

would be a possible initialization of the variable whose length field was given in
the preceding example.

Part 2. Description
Parameter declarations may be used to define a value symbolically. Values can be
associated with identifiers and these identifiers may be used in the variable definition
lines. Parameters are defined as follows:

identifier = value

The identifier may have a maximum of 8 characters. The wvalue may be a number
(decimal, octal, or hex) or a string.

EXAMPLE
A sample master file for a tty device driver would be named atty if the device
appeared in the EDT as ATTY. The driver is a character device, the driver prefix is
at. In addition, another driver named ATLOG is necessary for the correct operation
of the software associated with this device.

#* FLAG PREFIX SOFT #DEV DEPENDENCIES/VARIABLES

tca at - 2 ATLOG
atpoint () {false}
at_tty [#Cx#D] (%0x58)
at_cnt (%1) ={ #C*#D }
at_logmaj (%i) ={ #M(ATLOG) }
at_1d(%8c) ={ ATID }
at_table(%$1%1%31%s)

={ max (#C, ATMAX) ,

&at_tty,
#C }

$

ATID = "fred"

ATMAX = 6

This master file causes a routine named atpoint to be generated by the boot pro-
gram if the ATTY driver is not loaded, and there is a reference to this routine from
any other module loaded. When the driver is loaded, the variables at_tty,
at_cnt,at_logmaj,at_id, and at_table are allocated and initialized as specified.
Because of the t flag, the d_ttys field in the character device switch table is initial-
ized to point to at_tty (the first variable definition line contains the variable

Page 4 10/92



master(4) master (4)

whose address will be stored in d_ttys). The ATTY driver would reference these
variables by coding:

extern struct tty at_ttyl]l;
extern int at_cnt;
extern int at_logmaj;
extern char at_id[8];
extern struct ({

int memberl;

struct tty *member2;

char junk([31];

short member3;

} at_table;

FILES
/etc/master.d/*

SEE ALSO
drvinstall(1M), mkboot(1M), sysdef(1M), system(4).

10/92 Page 5



mem (7) mem(7)

NAME

mem, kmem - core memory

DESCRIPTION

FILES

NOTES

10/92

The file /dev/mem is a special file that is an image of the core memory of the com-
puter. It may be used, for example, to examine, and even to patch the system.

Byte addresses in /dev/mem are interpreted as memory addresses. References to
non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results
when read-only or write-only bits are present.

The file /dev/kmem is the same as /dev/mem except that kernel virtual memory
rather than physical memory is accessed.

/dev/mem
/dev/kmem

Some of /dev/kmem cannot be read because of write-only addresses or unequipped
memory addresses.

Page 1



memregion(7) memregion (7)

NAME
memregion - core memory by region

DESCRIPTION
The special files in the directory /dev/memregion provide access to individual
memory regions defined in the system’s edt_data file. Each memory region has at
least one entry named /dev/memregion/N, where N is the id specified in the
edt_data file. Each region can also have an additional alias in the directory.

Offsets in a /dev/memregion file correspond to byte offsets from the start of the
associated memory region, not to physical addresses within the region.
FILES
/dev/memregion/*
NOTES
The special file /dev/mem corresponds to the union of all files in /dev/memregion.

Offsets in /dev/mem correspond to physical addresses, so there will be “holes” if
the memory regions are not contiguous.

SEE ALSO
edt_data(4), mem(7).

10/92 Page 1



mnttab (4) mnttab (4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <sys/mnttab.h>

DESCRIPTION
The file /etc/mnttab contains information about devices that have been mounted
by the mount command. The information is in the following structure, defined in
sys/mnttab.h:

struct mnttab {

char *mnt_special;
char *mnt_mountp;
char *mnt_fstype;
char *mnt_mntopts;
char *mnt_time;

}i

The fields in the mount table are space-separated and show the block special dev-
ice, the mount point, the file system type of the mounted file system, the mount
options, and the time at which the file system was mounted.

SEE ALSO
mount (1M), getmntent (1M), setmnt(1M).

10/92 Page 1



mt(7) mt(7)

NAME
mt - tape interface

DESCRIPTION
The files /dev/rmt /ctape? refer to cartridge tape controllers (CTC) and associated
tape drives. The files /dev/rmt/ninetrack? refer to nine-track tape controllers
and associated tape drives. These special device files and the /dev/rSA/ctape?
and /dev/rSA/ninetrack? special files are linked to the respective controller
specific names in the /dev/rmt directory.

The £inc(1M), frec(1M), and labelit(1M) commands require the ctape magnetic
tape filenames to work correctly with the CTC. No other CTC commands require
these filenames.

FILES
/dev/rmt/ctape*
/dev/rmt /ninetrack*
/dev/rSA/ctape*
/dev/rSA/ninetrack*

SEE ALSO
finc(IM), frec(1M), labelit(1M)

10/92 Page 1



mvme167 (7) mvme167(7)

NAME

mvmel67 - MVME167 CPU

DESCRIPTION

The mvme167 is a CPU platform with an MC68040 MPU, 16, 32, 40, 48, or 64 MB of
dual-ported onboard (mezzanine) memory, 8 KB of battery backup static RAM, 128
Kb of volatile static RAM, a time-of-day clock/calendar, an Ethernet transceiver
interface (Intel 82596CA), four EIA-232-D serial communication ports (Cirrus Logic
CD2400/2401), a SCSI-2 bus interface (NCR 53C710), a Centronics-compatible
parallel printer port, configurable local and VMEbus address maps, four tick timers,
and four ROM sockets of which two contain the MVME167BUG Debugger and
Diagnostic Package.

SPECIAL CONSIDERATIONS

10/92

The mvme167 uses three integrated circuits for controlling the VMEbus interface
(vmechip2), peripheral interrupts (pccchip2), and local memory (memc040).
Unless otherwise specified, the configurable registers which control the memory,
peripheral, or VMEbus interfaces are unchanged from what is described in the
MVME167BUG User's Manual. This section describes those registers which are
different from the ROM debugger settings.

The vmechip2 provides a mechanism for mapping onboard memory to the
VMEbus (VMEbus accesses to this memory are issued on the local bus) and it pro-
vides mechanisms for mapping VMEbus addresses to the local bus (local bus
accesses are issued on the VMEbus). All mappings are mapped one-to-one (a local
bus access of 0xB0000000 is always converted to a VMEbus access of 0xB0000000
and vice versa). The following two tables describe how these mappings are set.

Local to VMEbus Mappings:

Memory Description Attributes
Local Memory (0 .. DRAMSIZE - 1) A32, A24, Write Posting
Local SRAM (0xFFFEQ000 .. OxFFE1FFFF) | A32 "
VMEDbus to Local Mappings:
Memory Description Attributes

General A32 VMEbus Memory (DRAMSIZE .. OXEDFFFFFF) | A32, D32
General A24 VMEbus Memory (OXEE000000 .. OXEEFFFFFF) | A24, D32
General A32 VMEbus Memory (0XEF000000 .. OXEFFFFFFF) | A32, D32

A24 F-Page Memory (0xF0000000 .. OXFOFFFFFF) A24,D32
A32 F-Page Memory (0xF1000000 .. OXFF7FFFFF) A32,D32
VMEbus Short I/O (0xFFFF0000 .. 0OXFFFFFFEF) Al6,D16

Both the F-Page and the Short I/O map decoders are enabled.

The vmechip2 controls the local bus to VMEbus requester. It is set so that VMEbus
FAIR mode arbitration is used, the VMEbus is released when the transaction is
completed, and the VMEbus request level has the value configured in the mvmecpu
master.d file. The bus grant timeout timer is enabled, VMEbus access timeout
value is set to 32 milliseconds, the VMEbus global timeout value is set to 256
microseconds, and the local bus timeout value is set to 8 microseconds.

Page 1



mvme167(7) mvme167(7)

The vmechip?2 also controls various I/O related operations including DMA, a set of
general purpose timers, and various local and VMEbus interrupts. All DMA regis-
ters are set to zero. Both timers’ registers on the vmechip2 are initialized to zero
and timer 1 is set up as a free running clock. The board control register is cleared,
and the VMEbus control register word (0xFFF40048) has the MCLR bit (bit 11) set
to 1 and all other bits reset to zero. The RESET button, ABORT, ACFAIL, write
posting, parity, and all VMEbus interrupt levels are enabled. VMEbus interrupt
request levels 1 through 7 are mapped to local interrupt request levels 1 through 7.
The VMEX and VMEY interrupt vectors (used for interrupts generated by the
vmechip? itself) are set based on the interrupt vector values in the VMEX and
VMEY entries of the edt_data file.

The pcechip2 controls all onboard peripherals. The high order 4 bits of the inter-
rupt vector used by each of the onboard devices is set based on the interrupt vector
level specified for the PCC2 module in the edt_data file. The two timers on the
pcchip? are initialized to an OFF state. Timer 1 is used by the operating system as
a time base and is reinitialized when the system clock is started. General purpose
I/0 interrupts are disabled.

Each memory mezzanine is controlled by an memc040. Each of these has the bus
clock register initialized based on the MPU speed and has parity detection and par-
ity interrupts enabled.

FILES
/dev/conctl
/dev/console
/dev/contty
/dev/contty??
/dev/dsk/ml167_c0d?s?
/dev/elx7_c0d0
/dev/generic/ml67_c0d?
/ded/nvr*
/dev/printer/1pl67_c0d0
/dev/rdsk/ml67_c0d?s?
/dev/rmt/ml67_c0d?
/dev/xedt/1plx7_c0
/dev/xedt/scsilx7_c0

SEE ALSO

Page 2

dcon(IM), mvmecpu(lM), scsilx7(IM), console(7), conslx7(7), elx7(7),
enet1x7(7), lp1x7(7), nvram(7), scsilx7(7).

10/92



mvme181(7) mvme181(7)

NAME
mvmel81 - MVME181 CPU

DESCRIPTION
The mvme181 is a CPU platform with an MC88100 MPU, two MC88200 CMMUs,
two RS-232C serial communications ports driven by a 68692 DUART, a battery
backup real-time clock/calendar, 8 MB of dual-ported onboard DRAM, and 512 KB
of firmware containing the MVME181BUG Debugger and Diagnostic Package.

SPECIAL CONSIDERATIONS
The timer on the 68682 DUART is used as the system time base.

FILES
/dev/conctl
/dev/console
/dev/contty
/dev/contty??
SEE ALSO
dcon(1M), mvmecpu(1M), console(7)
MVME181BUG Debugging Package User’s Manual
MVME181 VMEmodule RISC Microcomputer User’s Manual

10/92 Page 1



mvme187(7) mvme187(7)

NAME

mvmel87 - MVME187 CPU

DESCRIPTION

The mvme187 is a CPU platform with an MC88100 MPU, two MC88200 CMMUs, 32,
40, 48, or 64 MB of dual-ported onboard (mezzanine) memory, 8 KB of battery
backup static RAM, 128 Kb of volatile static RAM, a time-of-day clock/calendar, an
Ethernet transceiver interface (Intel 82596CA), four EIA-232-D serial communica-
tion ports (Cirrus Logic CD2400/2401), a SCSI-2 bus interface (NCR 53C710), a
Centronics-compatible parallel printer port, configurable local and VMEbus
address maps, four tick timers, and four ROM sockets of which two contain the
MVME187BUG Debugger and Diagnostic Package.

SPECIAL CONSIDERATIONS

10/92

The mvme187 uses three integrated circuits for controlling the VMEbus interface
(vmechip2), peripheral interrupts (pccchip2), and local memory (memc040).
Unless otherwise specified, the configurable registers which control the memory,
peripheral, or VMEbus interfaces are unchanged from what is described in the
MVME187BUG User's Manual. This section describes those registers which are
different from the ROM debugger settings.

The vmechip2 provides a mechanism for mapping onboard memory to the
VMEbus (VMEbus accesses to this memory are issued on the local bus) and it pro-
vides mechanisms for mapping VMEbus addresses to the local bus (local bus
accesses are issued on the VMEbus). All mappings are mapped one-to-one (a local
bus access of 0xB0000000 is always converted to a VMEbus access of 0xB0000000
and vice versa). The following two tables describe how these mappings are set.

Local to VMEbus Mappings:
Memory Description Attributes
Local Memory (0 .. DRAMSIZE - 1) A32, A24, Write Posting
Local SRAM (0xFFFE0000 .. OXFFE1FFFF) | A32
VMEDbus to Local Mappings:
Memory Description Attributes

General A32 VMEbus Memory (DRAMSIZE .. OXEDFFFFFF) | A32, D32
General A24 VMEbus Memory (OxEE000000 .. OXEEFFFFFF) | A24, D32
General A32 VMEbus Memory (0xEF000000 .. OxEFFFFFFF) A32,D32

A24 F-Page Memory (0xF0000000 .. 0OXFOFFFEFFF) A24,D32
A32 F-Page Memory (0xF1000000 .. OxFF7FFFFF) A32,D32
VMEDbus Short 1/0 (0xFFFF0000 .. OXFFFFFFFF) Ale, D16

Both the F-Page and the Short I/O map decoders are enabled.

The vmechip2 controls the local bus to VMEbus requester. It is set so that VMEbus
FAIR mode arbitration is used, the VMEbus is released when the transaction is
completed, and the VMEbus request level has the value configured in the mvmecpu
master.d file. The bus grant timeout timer is enabled, VMEbus access timeout
value is set to 32 milliseconds, the VMEbus global timeout value is set to 256
microseconds, and the local bus timeout value is set to 8 microseconds.

Page 1



mvme187(7) mvme187(7)

The vmechip2 also controls various I/O related operations including DMA, a set of
general purpose timers, and various local and VMEbus interrupts. All DMA regis-
ters are set to zero. Both timers’ registers on the vmechip2 are initialized to zero
and timer 1 is set up as a free running clock. The board control register is cleared,
and the VMEbus control register word (0xFFF40048) has the MCLR bit (bit 11) set
to 1 and all other bits reset to zero. The RESET button, ABORT, ACFAIL, write
posting, parity, and all VMEbus interrupt levels are enabled. VMEbus interrupt
request levels 1 through 7 are mapped to local interrupt request levels 1 through 7.
The VMEX and VMEY interrupt vectors (used for interrupts generated by the
vmechip? itself) are set based on the interrupt vector values in the VMEX and
VMEY entries of the edt_data file.

The pccchip2 controls all onboard peripherals. The high order 4 bits of the inter-
rupt vector used by each of the onboard devices is set based on the interrupt vector
level specified for the PCC2 module in the edt_data file. The two timers on the
pcchip2 are initialized to an OFF state. Timer 1 is used by the operating system as
a time base and is reinitialized when the system clock is started. General purpose
I/0 interrupts are disabled.

Each memory mezzanine is controlled by an memc040. Each of these has the bus
clock register initialized based on the MPU speed and has parity detection and par-
ity interrupts enabled.

FILES
/dev/conctl
/dev/console
/dev/contty
/dev/contty??
/dev/dsk/m187_c0d?s?
/dev/elx7_c0d0
/dev/generic/ml187_c0d?
/dev/nvr*
/dev/printer/1pl87_c0d0
/dev/rdsk/ml187_c0d?s?
/dev/rmt/ml187_c0d?
/dev/xedt/1plx7_c0
/dev/xedt/scsilx7_c0

SEE ALSO

Page 2

dcon(1M), mvmecpu(1M), scsilx7(1M), console(7), conslx7(7), elx7(7),
enet1x7(7), 1p1x7(7), nvram(7), scsilx7(7).

10/92



mvme188(7) mvme188(7)

NAME

mvmel88 - MVME188 CPU

DESCRIPTION

The mvmel188 is a CPU platform which consists of: one, two, or four MC88100
MPUs, two, four, or eight MC88200 CMMUs, between 16 MB and 128 MB of dual-
ported onboard DRAM, 2 KB of battery backup RAM, configurable local and
VMEbus address maps, two RS-232C serial communications ports driven by a
68692 DUART, four programmable timers, a battery backup real-time
clock/calendar, and 512 KB of firmware containing the MVME188BUG Debugger
and Diagnostic Package.

SPECIAL CONSIDERATIONS

FILES

The bus snooper(s) and data/code CMMU parity detection are enabled. The timer
on the 68682 DUART is used as the system time base.

/dev/conctl
/dev/console
/dev/contty
/dev/contty??
/dev/nvr*

SEE ALSO

10/92

dcon(1M), mvmecpu(1M), console(7), nvram(7)
MVMEI188BUG Debugging Package User’s Manual
MVME188 VMEmodule RISC Microcomputer Uset’s Manual

Page 1



mvme323(7)

NAME

mvme323(7)

mvme323 - MVME323 disk controller (For M68K only)

DESCRIPTION

mvme323 is a driver that provides a general interface to the MVME323 VMEbus disk
controller module. The MVME323 controller supports up to four ESDI disks. The
mvme323 driver supports up to eight MVME323 controllers per system.

Each disk connected to the MVME323 has the same major device number. Disks
with up to 16 slices are supported.

MVME323 IOCTLS

The following ioctl commands are supported:

M323FMTT
M323GET
M323SET
M323RST
M323CLRF
M323VRFY
M323COFF
M323CON
M323MPT
M323MPS
M323REFMT
RDMFRLIST

FILES

format track; arg must be a pointer to a struct m323ctl

get configuration; arg must be a pointer to a struct config
set configuration; arg must be a pointer to a struct config
restore drive

clear fault

verify track

cache off

cache on

map alternate track; arg must be a pointer to a struct m323ctl
map track with sector slip

reformat track, saving alternates

read manufacturer’s defect list from disk; arg must be a pointer to
a struct m323mlargs

/usr/include/sys/m323.h
/usr/include/sys/m323drv.h
/dev/dsk/m323_*
/dev/rdsk/m323_*

ERRORS

The mvme323 driver generates many different error messages, which are displayed
on the console to help the operator diagnose problems.

SEE ALSO

mvme323(1M) (For M68K only), intro(7)

10/92

Page 1



mvme328(7) mvme328(7)

NAME
mvme328 - MVME328 SCSI Host Adapter

DESCRIPTION
The MVME328 driver controls up to a total of 8 MVME328 SCSI host adapters.
Each MVME328 SCSI host adapter can have one or two SCSI buses, with each SCSI
bus supporting up to seven SCSI devices.
Assuming the necessary system resources are available, the MVME328 driver will
send each command to the controller as soon as it receives the command from an
application.

The MVME328 driver does not have to wait for a command to complete before
sending a command for another device.

SUPPORT DEVICES

Disk Drives
Disk drives currently supported are:

DESCRIPTION ddefs(1M) FILE TYPE
150MB CDC 94161 Wren III | mcdclIl Hard
300MB CDC 94171 WrenIV | mcdcIV Hard
600MB CDC 94181 Wren V mcdcV Hard
1.2GB CDC 94601 Wren VII mcdcVII Hard
135MB FUJITSU M2613S mfuj2613 Hard
180MB FUJITSU M2614S mfuj2614 Hard
330MB FUJITSU M2622S mfuj2622 Hard
525MB FUJITSU M2624S mfuj2624 Hard
1.75GB FUJITSU M2652S mfuj2652 Hard
Toshiba XM3201B CDROM none CDROM
1.2MB TEAC 5% inch FC-1 see next table Floppy
2.88MB TEAC 3% inch FC-1 | seenext table Floppy

Note that in all tables, each entry in the ddefs(1M) FILE column is the name of a
file that defines the characteristics of the disk in the /etc/dskdefs directory. Each
entry in the BLOCKS column is the number of specified blocks when making a file

system with mkfs(1M).

The types of floppy diskettes currently supported are listed in the following two

tables.

5% INCH DISKETTES
ddets(IM) MEDIA
DESCRIPTION FILE BLOCKS TYPE SLICE

Double density Motorola format mdsdd5 1276 MFD-2DD | 0
Single density PC/XT 8 sect./track | mpcxt8 640 MFD-2DD | 12
Single density PC/XT 9 sect./track | mpcxt9 720 MFD-2DD | 9
Double density PC/AT mpcat 2400 MF2-HD 8

10/92 Page 1



mvme328(7) mvme328 (7)
3% INCH DISKETTES
ddefs(1M) MEDIA
DESCRIPTION FILE BLOCKS TYPE SLICE
Double density PC/XT 9 sect. /track mpcxt9_3 1440 MFD-2DD | 13
Double density PS/2 mps2 2880 MF2-HD 10
Super High Density (2.88MB formatted) | mshd 5760 PMF2-ED | 11
Tape Drives
Tape drives currently supported by the MVME328 host adapter are:
DESCRIPTION FORMAT TYPE
Archive 21505 QIC24, QIC120, QIC150 | Streaming
Archive 2525 QIC24, QIC120, QIC150 | Streaming
Archive Python DAT Streaming
Exabyte EXB-8200 | 8mm Streaming
Kennedy 9660 9-track Start/Stop
M4 Data 9914 9-track Start/Stop

MINOR NUMBERS
The MVME328 device driver interprets the minor number of a device using the
standard SCSI-1 minor mapping.

DISK SUPPORT
During system initialization, the MVME328 device driver will spin-up any disks
that are strapped to spin-up.

The hard disk drives supported by the MVME328 handle all defects internally. A
list of known defective locations is recorded on the medium. During format, any
data that would normally be loaded into these locations are automatically assigned
alternate locations. Also during format, the drive is checked for defects in addition
to those on the known list. If any additional defective locations are found, any data
that would be stored there are assigned alternate locations.

The MVME328 device driver complies with the disk support standard specified on
the disk(7) man page with the following exceptions:

DKGETCFG ioctl command
The MVMEB328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKGETINFO ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKSETCFG ioctl command
The MVME328 driver sets only the parameters that are relevant to the
MVME328 driver and controller.

DKSETINFO ioctl command
The MVME328 driver sets only the parameters that are relevant to the
MVME328 driver and controller.

Page 2 10/92



mvme328(7) mvme328(7)

DKFORMAT ioctl command
The SCSI FORMAT command is used to format the device. The argument arg
is not used. Because the bad block strategy is perfect, no defect list is passed to
the drive. By turning on a bit in the controller attribute word of the disk
definition file passed to dinit, the drive can be told to ignore the grown defect
list on the disk. Refer to the description of the controller attribute word on the
disk(7) man page for more information.

TAPE SUPPORT

The MVME328 device driver complies with the tape support standard specified on
the tape(7) man page with no exceptions.

FLOPPY DISK SUPPORT

10/92

The MVME328 supported floppy drives provide level one support as defined by
the 88open PC Floppy Emulation Supplement to the Binary Compatibility Standard.

The MVME328 device driver complies with the floppy disk support standard
specified on the floppy(7) manual page with the following exceptions:

DKFIXBADSPOT ioctl command
This command always returns EINVAL.

DKGETCFG ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVMEB328 driver and controller.

DKGETINFO ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKSETCFG ioctl command
This command performs no operation; it returns with no effect and no error.

DKSETINFO ioctl command
This command performs no operation; it returns with no effect and no error.

DKSETSLC ioctl command
This command performs no operation; it returns with no effect and no error.

FL_PC_LEVEL ioctl command
The MVME328 driver currently only supports level 1, so the integer pointed to
by arg is always set to 1 by this call.

Slicing
Floppy diskettes do not have volume ID blocks or Volume Table of Contents
(VTOC). A floppy drive can be thought of as a hard disk with a single slice.
The slice bits of the minor number select the drive geometry as described later in
this manual page.

V_PDREAD ioctl command
This command always returns EINVAL.

V_PDWRITE ioctl command
This command always returns EINVAL.

V_RVTOC ioctl command
This command always returns EINVAL.

Page 3



mvme328(7) mvme328(7)

V_WVTOC ioctl command
This command always returns EINVAL.

dinit/ddef
The ddef files for floppy disks are treated as placeholders. Although they are
required for dinit(1M) to work, the information is not used. The flormat of
the diskette is determined via the slice number of the device. Please refer to
the supported floppy tables at the beginning of this man page for more infor-
mation.

Bad blocks may not be mapped out on a floppy disk. A bad block on a floppy disk
make the entire floppy unacceptable.

CDROM SUPPORT
The MVME328 device driver will not spin-up CDROM devices at system initializa-
tion time.

The MVME328 device driver complies with the CDROM support standard
specified on the cdrom(7) manual page with the following exceptions:

DKGETCFG ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKGETINFO ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKGETCFG ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVMEB328 driver and controller.

PASSTHRU SUPPORT
The MVME328 device driver complies with the passthru support standard
specified on the passthru(7) man page with no exceptions.

ERROR MESSAGES
The MVME328 device driver prints error messages to the system console. Many of
these messages print a unit number to indicate which device was being accessed at
the time of the error. The following table can help to interpret the unit number.

Page 4 10/92



mvme328(7) mvme328(7)
UNIT UNIT
BRD BUS DEVICE LUN # BRD BUS DEVICE LUN #

0 0 0 0-7 0-7 1 0 0 0-7 128-135
0 0 1 0-7 8-15 1 0 1 0-7 136-143
0 0 2 0-7 16-23 1 0 2 0-7 144-151
0 0 3 0-7 24-31 1 0 3 0-7 152-159
0 0 4 0-7 32-39 1 0 4 0-7 160-167
0 0 5 0-7 40-47 1 0 5 0-7 168-175
0 0 6 0-7 48-55 1 0 6 0-7 176-183
0 0 7 0-7 56-63 1 0 7 0-7 184-191
0 1 0 0-7 64-71 1 1 0 0-7 192-199
0 1 1 0-7 72-79 1 1 1 0-7 200-207
0 1 2 0-7 80-87 1 1 2 0-7 208-215
0 1 3 0-7 87-95 1 1 3 0-7 216-223
0 1 4 0-7 96-103 1 1 4 0-7 224-231
0 1 5 0-7 104-111 1 1 5 0-7 232-239
0 1 6 0-7 112119 1 1 6 0-7 240-247
0 1 7 0-7 120-127 1 1 7 0-7 248-255

10/92

The MVME328 driver will print the following messages on the system console if an

error occurs during system initialization:

mvme328: Board failed powerup diagnostics
There may be a problem with the MVME328 or its firmware.

mvme328: Unable to Initialize Controller
The MVME328 failed to initialize properly. Devices on the MVME328 are inac-
cessible.

Unable to Start Queued Mode
The MVME328 failed to initialize queued (or interrupt) mode of operation.
Devices on the MVME328 are inaccessible.

mvme328: cache inhibited SG pages not allocated
The driver failed to allocate cache-inhibited memory for internal data struc-
tures. Devices on the MVME328 are inaccessible.

mvme328: Unit unit_number not ready
A device is present but not ready.

mvme328: Unknown SCSI device type on unit unit_number
Unit unit_number is an unrecognized SCSI device.

The MVME328 driver will print an error message of the following format to the sys-
tem console whenever a disk device returns fatal error status:

FATAL ERROR (mume328_error_message) on mvme328 unit
unit_number blk blkno

mvme328: Unit=unit_number Cmd=cmd SCSI Cmd=scsi
Status=status

mvme328: Unit=unit_number sense key=key

(sense_msg)

Page 5



mvme328(7) mvme328(7)

Page 6

The MVME328 driver will print an error message of the following format to the sys-
tem console whenever a tape device returns fatal error status:

FATAL ERROR (muvme328_error_message) on mvme328 tape unit
unit_number

mvme328: Unit=unit_number Cmd=cmd SCSI Cmd=scsi
Status=status

mvme328: Unit=unit_number sense key=key

(sense_msg)

Fatal error status means that the drive was not able to complete the command suc-
cessfully.

Recovered errors are printed in the same format, but begin with RECOVERED ERROR.
Recovered error status means that the drive was able to complete the command
successfully after some recovery action.

Two of the more useful values from these error messages are the SCSI command
and the sense key. The following tables list some of the more common SCSI com-
mands and sense keys.

SCSI COMMAND CODES
Code Description

0x00 Test Unit Ready
0x01 Rewind

0x04 Format Unit
0x06 Format Track

0x08 Read

0x0A Write

0x10 Write Filemarks
0x11 Space

0x12 Inquiry
0x15 Mode Select
Ox1A Mode Sense
0x2F Verify

SCSI SENSE KEYS
Code | Description

0x0 Good Status

0x1 Recovered Error

0x2 Unit Not Ready

0x3 Media Error

0x4 Hardware Error

0x5 Illegal command

0x6 Unit Attention

0x7 Write-protected Media
0x8 Read Blank Media

OxE Data Miscompare

10/92



mvme328(7) mvme328(7)

Refer to the ANSI SCSI specification for a complete list of SCSI command codes
and sense keys.

MASTER.D PARAMETERS
The following parameters affect the operation of the MVME328 device driver. The
following are parameters listed under the MVME328 description:

m328_max_spl
This parameter sets the maximum number of concurrent special commands.
The default value is 8. Special commands are all SCSI commands except reads
or writes. Most ioct1() commands are special commands, and special com-
mands are used during open() and close() processing. If this number is too
low, some processes will sleep waiting for resources when doing special com-
mands.

m328_max_raw_bufs
This parameter specifies the number of 64K byte buffers that will be allocated if
any MVME328 host adapters have revision XAM firmware. The default
number is 1. These buffers are used to work around a problem in the firmware
that affect raw I/O. Tuning this parameter higher when XAM firmware is
present will result in improved raw I/O performance, however, the tuning is
no replacement for obtaining a firmware upgrade.

m328_max_sglists
This parameter specifies the number of special scatter/gather lists that are
available for use within the driver. It should be set to at least the number of
processors plus 2; the default number is 8.

m328_starve_size
This parameter specifies the maximum length of a disk, floppy, or CDROM
1/0 queue that will be sorted before beginning another queue.

m328_vme_to
This parameter specifies the VMEBUS transfer time out in 32 millisecond ticks.

m328_vme_cnt
This parameter specifies the VMEBUS burst transfer count. On systems with a
large number of disks and/or MVME328 host adapters this number may have
to be lowered to avoid DMA problems.

m328_noisy_disk_open
This parameter controls the printing of error messages on the console when
disk devices do not have valid Motorola identification in them. If this parame-
ter is non-zero, messages will be printed; zero, no messages will be printed.

SPECIAL CONSIDERATIONS
When an error occurs while writing or reading a tape, the best course of action in
this case is to rewind the tape and repeat the operation.

Removing a cartridge tape during an MTBSF operation hangs the tape drive.

An incorrect transfer count may be returned by the MVME328 device driver when
using variable mode tape devices (e.g. 9-tracks, EXABYTE) in variable mode. This
is due to a BUG in the XAM firmware and it is not found in any later firmware.

| 10/92 Page 7



mvme328(7) mvme328(7)

FILES

The problem shows itself when an odd length read is used to read a tape that con-
tains even length records. The returned transfer count will be one less than it
should be. The work-around is to read tapes with even length reads equal to or
larger than the maximum size of the records found on the tape.

The longest 1/O operation which MVME328 host adapters can allow to occur on a
tape device operating in variable mode depends on two factors. If the MVME328
host adapter is using revision XAM firmware, the maximum length is 65535 bytes.
For all other boards and firmware combinations, the maximum length will vary
from a minimum of 252K bytes (worst case page alignment) to 256K bytes (page
aligned). The actual maximum length may be either larger or smaller than the
MVME328 host adapter may support. Refer to the device’s documentation for more
information.

/dev/dsk/m328_*
/dev/rdsk/m328_*

/dev/rmt /m328_*
/dev/generic/m328_*
/etc/dskdefs/m*
/usr/include/sys/dk.h
/usr/include/sys/mtio.h
/usr/include/sys/m328scsi.h
/usr/include/sys/m328sio.h
/usr/include/sys/m328space.h
/usr/include/sys/mvme328.h
/usr/include/sys/pcflio.h

SEE ALSO

Page 8

mt(1l), ddefs(1M), dinit(1M), close(2), ioctl(2), open(2), read(2), write(2),
cdrom(7), disk(7), £loppy(7), intro(7), mvme323(7) (For M68K only), mvme350(7)
(For M68K only), tape(7) passthru(7)

10/92



mvme332xt(7) mvme332xt (7)

NAME
mvme332xt - MVME332XT communication controller STREAMS driver

DESCRIPTION
mvme332xt is a STREAMS-based driver that provides a general interface to the
MVME332XT VMEbus communication controller module. The MVME332XT con-
troller supports up to eight asynchronous serial communication ports and one
Centronics-compatible printer port. The mvme332xt driver supports up to eight
MVMEB332XT controllers per system.

Each peripheral device connected to the MVME332XT has the same major device
number. The MVME332XT firmware presents a generic serial and printer device
interface to the driver, which distinguishes a serial device from the printer device
by its device unit number. Device numbers 0-7 are allocated for the eight serial
devices, and the printer is designated unit 8. The least significant 4 bits in the
minor device field are interpreted as the device unit number. Therefore, 16 minor
device numbers are required per MVME332XT controller. The next highest four
bits of the minor device number are interpreted as the controller number.

When the mvme332xt driver is used with the STREAMS line discipline module -
ldterm(7), behavior on all communications ports is as described in UNIX System
V/68 or V/88 Release 4 termio(7).

MVME332XT IOCTLS
In addition to supporting the standard ioct1(2) commands as specified by ter-

mio(7), the mvme332xt supports hardware flow control and downloading of object
code and data to the MVME332XT.

The following MVME332XT-specific 1oct1 system calls have the form:

ioctl(fildes, command, arg)
int fildes, command;
struct dl_info *arg;

The d1_info structure is defined in /usr/include/sys/mvme332xt.h and has the
following format:

struct dl_info {

unsigned long hostaddr; /* host (user) address */
unsigned long ipcaddr;
unsigned long count; /* to be transferred */
unsigned long wrkO0;
unsigned short  wrkl;
}i
TCGETDL

Get download information from the MVME332XT. arg is a pointer to a user
buffer large enough to contain a d1_info structure. The base address of the
downloadable area is returned in the ipcaddr field of this structure, and the
size in bytes of the downloadable area is returned in the count field.

TCDLOAD
Download object code or data to the MVMES332XT. arg is a pointer to a user
buffer containing a d1_info structure. The hostaddr field points to a user
buffer containing the object code or data to be downloaded. The ipcaddr
field points to the base address of the downloadable area in MVME332XT

10/92 Page 1



mvme332xt(7) mvme332xt(7)

Page 2

local RAM. The count field specifies the number of bytes to be down-
loaded.

TCGETSYM

Get symbol table from the MVME332XT. arg is a pointer to a user buffer
containing a d1_info structure. The hostaddr field points to a user buffer
into which the symbol information will be copied. The size of this buffer in
bytes is specified by the count field. The ipcaddr field should be set to 0
for the first call to TCGETSYM to indicate the beginning of the symbol table.
It is updated by the MVME332XT for subsequent TCGETSYM commands. At
the end of the symbol table, the MVME332XT returns EOF in the ipcaddr
field. On completion, the count field specifies the number of bytes returned
by the MVME332XT.

TCWHAT

This command performs exactly the same function as the TCGETSYM com-
mand, except that it returns a list of the firmware files with SCCS version
numbers. arg is a pointer to a user buffer containing a d1_info structure.
The hostaddr field points to a user buffer into which the SCCS information
will be copied. The size of this buffer in bytes is specified by the count
field. The ipcaddr field should be set to 0 for the first call to indicate the
start of the TCWHAT command. It is updated by the MVME332XT for subse-
quent TCWHAT commands. At the end of the SCCS information, the
MVME332XT returns EOF in the ipcaddr field. On completion, the count
field specifies the number of bytes returned by the MVME332XT.

TCLINE

Load line discipline table, previously downloaded by TCDLOAD, into the
MVME332XT’s internal table. arg points to a user buffer containing a
dl_info structure. The ipcaddr field points to a user buffer containing the
linesw table. The count field specifies the number of lines in the 1inesw
table. The MVME332XT 1inesw table is defined as follows:

struct linesw

{

int (*1_open) () ;
int (*¥1_read) () ;
int (*1_write) () ;
int (*¥1_close) () ;
int (*1_ctl) ();
int (*1_gate) () ;

}i

TCEXEC

Execute a user function that has been downloaded by a previous TCDLOAD
command. arg points to a user buffer containing a d1_info structure. The
ipcaddr field specifies the execution function address.

The following MVME332XT-specific ioct1 system call has the form:

10/92



mvme332xt(7) mvme332xt(7)

ioctl(fildes, command, arg)
int fildes, command;
int arg;

TCSETHW
Set hardware flow control option. If arg is 1, enable hardware flow control
using the RTS/CTS signal pairs; if arg is 0, disable hardware flow control.

The following MVME332XT-specific ioct] system calls have the form:

ioctl(fildes, command, arg)
int fildes, command;
int *arg;

TCGETHW
Return hardware flow control status. If the specified serial port has
hardware flow control enabled, 1 is returned to the arg integer location; oth-
erwise, 0 is returned.

TCGETVR
Return MVME332XT firmware and driver version and revision numbers in
the integer pointed to by arg. The driver version number is returned in the
most significant byte, the driver revision number is in the second most
significant byte, the firmware revision number is in the third byte, and the
firmware revision number is in the least significant byte.

TCGETDS
Return the current status of a device’s hardware signals, such as DCD, CTS,
DSR, PR_FAULT, PR_POUT and PR_SELECT, in the integer pointed to by
arg. The following status values are defined in
/usr/include/sys/mvme332xt.h:

E_DCD, E_LOST_CDC

E_DSR, E_LOST_DSR

E_CTS, E_LOST_CTS

E_PR_FAULT, E_PR_POUT, E_PR_SELECT

The following MVME332XT-specific ioct1 system calls have the form:

ioctl(fildes, command, arg)
int fildes, command;
struct termios *arg;

TCSETDF
Set the default termios parameters. arg is a pointer to a user-supplied ter-
mios structure.

TCGETDF
Get the default termios parameters. arg is a pointer to a user buffer large
enough to contain a termios structure.

CONFIGURATION ISSUES

10/92

Currently, the MVME332XT operates in a canonical state which handles only the
most basic of features (breaks and interrupts). Remaining functionality is left to the
ldterm(7) module. The 1dterm(7) module may be pushed on the STREAM via the
autopush(1IM) or when beginning a ttymon(IM) directly from the /etc/inittab

Page 3



mvme332xt(7) mvme332xt(7)

file. [See init(IM)].

FILES
/usr/include/sys/mvme332xt.h
/dev/term/??, /dev/printer/lp?, /dev/port/m332_c?d?
ERRORS
The mvme332xt driver generates many different error messages, which are
displayed on the console in order to help the operator to diagnose problems. The
error messages displayed have the following format:
MVME332xt: controller X, unitY - MESSAGE
where X is the controller number, Y is the unit number, and MESSAGE is one of the
following:
Create channel error - disabled
The driver must establish a communication channel with the MVME332XT
before any commands can be dispatched. This error indicates that the chan-
nel between the driver and the MVME332XT was not successfully created,
and typically indicates a configuration problem or malfunction. The con-
troller is marked as bad by the driver and further access attempts are disal-
lowed.
Initialization error, disabled
An error was reported by the MVME332XT controller when the driver sent
an initialization command to it. This condition will result if the driver
attempts to size one of the MVME332XT read /write rings to a non-base-2
value.
Unknown interrupt
An interrupt occurred from a MVME332XT controller that was marked
nonexistent or bad.
Corrupt envelopes - disabled
This indicates channel corruption in the MVME332XT shared RAM.
PRINTER is de-selected
This message indicates that the printer is de-selected. Check the printer
select switch.
PRINTER is out of paper
This indicates that the printer is out of paper. Check the printer paper sup-
ply.
PRINTER fault for unknown reason
This indicates a printer error other than the paper out or the de-selected
error conditions. Check the printer connections or refer to the printer
manufacturer’s user manual.
SEE ALSO

Page 4

autopush(1M), mvme332xt(1M), ttymon(1M), termio(7), 1dterm(7).

10/92




mvme350(7) mvme350(7)

NAME
nmvme350 - MVME350 cartridge tape controller (For M68K only)

DESCRIPTION
mvme350 is a driver that provides a general interface to the MVME350 VMEbus tape
controller module. The MVME350 controller supports one cartridge tape. The
mvme350 driver supports up to eight MVME350 controllers per system.

Each tape connected to the MVME350 has the same major device number.

MVME350 IOCTLS
The following ioctl commands are supported:

M350REWIND rewind tape
M350ERASE erase tape
M350RETENSION  retension tape
M350WRTFM write filemark
M350RDFM read filemark
M350SETDMA set DMA bulffer size
M350GETDMA get DMA buffer size

M350BYTESWAP set/reset byteswapping

FILES
/usr/include/sys/mvme350.h
/dev/rmt /m350_*

ERRORS
The mvme350 driver generates many different error messages, which are displayed
on the console to help the operator diagnose problems.

SEE ALSO
mvme350(1M) (For M68K only), intro(7)

10/92 Page 1



netconfig(4) (Networking Support Utilities) netconfig (4)

NAME

netconfig - network configuration database
SYNOPSIS

#include <netconfig.h>
DESCRIPTION

10/92

The network configuration database, /etc/netconfig, is a system file used to
store information about networks connected to the system and available for use.
The netconfig database and the routines that access it [see getnetconfig(3N)]
are part of the UNIX System V Network Selection component. The Network Selec-
tion component also includes the environment variable NETPATH and a group of
routines that access the netconfig database using NETPATH components as links to
the netconfig entries. NETPATH is described in sh(1); the NETPATH access routines
are discussed in getnetpath(3N).

netconfig contains an entry for each network available on the system. Entries are
separated by newlines. Fields are separated by whitespace and occur in the order
in which they are described below. Whitespace can be embedded as ““\blank” or
“\tab.” Backslashes may be embedded as “\\”’. Each field corresponds to an ele-
ment in the struct netconfig structure. struct netconfig and the identifiers
described on this manual page are defined in /usr/include/netconfig.h.

network ID
A string used to uniquely identify a network. network ID consists of non-
null characters, and has a length of at least 1. No maximum length is
specified. This namespace is locally significant and the local system
administrator is the naming authority. All network IDs on a system must be
unique.

semantics
The semantics field is a string identifying the “semantics” of the network,
that is, the set of services it supports, by identifying the service interface it
provides. The semantics field is mandatory. The following semantics are

recognized.
tpi_clts Transport Provider Interface, connectionless
tpi_cots Transport Provider Interface, connection oriented

tpi_cots_ord Transport Provider Interface, connection oriented, sup-
ports orderly release.

tpi_raw Transport Provider Interface, raw

flag The flag field records certain two-valued (“‘true’” and ““false’”) attributes of
networks. flag is a string composed of a combination of characters, each of
which indicates the value of the corresponding attribute. If the character is
present, the attribute is ““true.” If the character is absent, the attribute is
“false.”” “-"" indicates that none of the attributes is present. Only one char-
acter is currently recognized:

v Visible (“default’”’) network. Used when the environment variable
NETPATH is unset.

Page 1



netconfig (4) (Networking Support Utilities) netconfig (4)

b Enable RPC broadcast.

protocol family
The protocol family and protocol name fields are provided for protocol-specific
applications.

The protocol family field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as those for network IDs,
that is, the string consists of non-null characters; it has a length of at least 1;
and there is no maximum length specified. A ““-"" in the protocol family field
indicates that no protocol family identifier applies, that is, the network is
experimental. The following are examples:

loopback Loopback (local to host).

inet Internetwork: UDP, TCP, and so on

implink ARPANET imp addresses

pup PUP protocols: for example, BSP

chaos MIT CHAOS protocols

ns XEROX NS protocols

nbs NBS protocols

ecma European Computer Manufacturers Association

datakit DATAKIT protocols

ccitt CCITT protocols, X.25, and so on

sna IBM SNA

decnet DECNET

dli Direct data link interface

lat LAT

hylink NSC Hyperchannel

appletalk Apple Talk

nit Network Interface Tap

ieee802 IEEE 802.2; also ISO 8802

osi Umbrella for all families used by OSI (for example,
protosw lookup)

x25 CCITT X.25 in particular

osinet AFI=47,1IDI=4

gosip U.S. Government OSI

protocol name
The protocol name field contains a string that identifies a protocol. The proto-
col name identifier follows the same rules as those for network IDs, that is, the
string consists of non-NULL characters; it has a length of at least 1; and there
is no maximum length specified. The following protocol names are recog-
nized. A “-” indicates that none of the names listed applies.

tcp  Transmission Control Protocol
udp  User Datagram Protocol
icmp Internet Control Message Protocol

network device
The network device is the full pathname of the device used to connect to the
transport provider. Typically, this device will be in the /dev directory. The
network device must be specified.

Page 2 10/92



netconfig (4) (Networking Support Utilities) netconfig (4)

FILES

directory lookup libraries

The directory lookup libraries support a “directory service’” (a name-to-
address mapping service) for the network. This service is implemented by
the UNIX System V Name-to-Address Mapping feature. If a network is not
provided with such a library, the netdir feature will not work. A “-”" in this
field indicates the absence of any lookup libraries, in which case name-to-
address mapping for the network is non-functional. The directory lookup
library field consists of a comma-separated list of full pathnames to dynam-
ically linked libraries. Commas may be embedded as ““\,”’; backslashs as
‘o \ \ rr .

Lines in /etc/netconfig that begin with a sharp sign (#) in column 1 are treated
as comments.

The struct netconfig structure includes the following members corresponding
to the fields in in the netconfig database entries:

char * nc_netid Network ID, including NULL terminator
unsigned long nc_semantics Semantics

unsigned long nc_flag Flags

char * nc_protofmly Protocol family

char * nc_proto Protocol name

char * nc_device Full pathname of the network device
unsigned long nc_nlookups Number of directory lookup libraries

char ** nc_lookups Full pathnames of the directory lookup

libraries themselves

unsigned long nc_unused[9] Reserved for future expansion (not advertised
to user level)

The nc_semantics field takes the following values, corresponding to the semantics
identified above:

NC_TPI_CLTS
NC_TPI_COTS
NC_TPI_COTS_ORD
NC_TPI_RAW

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAG indicates the absence of any
attributes.

NC_VISIBLE

/etc/netconfig
/usr/include/netconfig.h

SEE ALSO

10/92

getnetconfig(3N), getnetpath(3N), icmp(7), ip(7), netconfig(4),
netdir_getbyname() [see netdir (3N) ]

Page 3



netmasks (4) (Internet Utilities) netmasks (4)

NAME

netmasks - network mask data base

DESCRIPTION

FILES

The netmasks file contains network masks used to implement IP standard subnet-
ting. For each network that is subnetted, a single line should exist in this file with
the network number, any number of SPACE or TAB characters, and the network
mask to use on that network. Network numbers and masks may be specified in the

conventional IP “.” notation (like IP host addresses, but with zeroes for the host
part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight bits of
subnet field and eight bits of host field, in addition to the standard sixteen bits in
the network field.

/etc/netmasks

SEE ALSO

10/92

ifconfig(1M)

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950, Network
Information Center, SRI International, Menlo Park, Calif., August 1985

Page 1



netrc (4) (Internet Utilities) netrc (4)

NAME

netrc - file for ftp remote login data

DESCRIPTION

The .netrc file contains data for logging in to a remote host over the network for
file transfers by £tp(1). This file resides in the user’s home directory on the machine
initiating the file transfer. Its permissions should be set to disallow read access by
group and others [see chmod(1)].

The following tokens are recognized; they may be separated by SPACE, TAB, or NEW-
LINE characters:

machine name
Identify a remote machine name. The auto-login process searches the
.netrc file for a machine token that matches the remote machine specified
on the ftp command line or as an open command argument. Once a match
is made, the subsequent .netrc tokens are processed, stopping when the
EOF is reached or another machine token is encountered.

login name
Identify a user on the remote machine. If this token is present, the auto-
login process will initiate a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will sup-
ply the specified string if the remote server requires a password as part of
the login process. Note: if this token is present in the .netrc file, ftp will
abort the auto-login process if the .netrc is readable by anyone besides the
user.

account string
Supply an additional account password. If this token is present, the auto-
login process will supply the specified string if the remote server requires an
additional account password, or the auto-login process will initiate an ACCT
command if it does not.

macdef name
Define a macro. This token functions as the ftp macdef command func-
tions. A macro is defined with the specified name; its contents begin with
the next .netrc line and continue until a NULL line (consecutive NEWLINE
characters) is encountered. If a macro named init is defined, it is automati-
cally executed as the last step in the auto-login process.

EXAMPLE

FILES

10/92

A .netrc file containing the following line:
machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password
mypassword.

~/ .netrc

Page 1



netrc(4) (Internet Utilities) netrc(4)

SEE ALSO
chmod(1), f£tp(1), £tpd(1M)

Page 2 10/92



networks (4) (Internet Utilities) networks (4)

NAME

networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which
comprise the DARPA Internet. For each network a single line should be present
with the following information:

official-network-name network-number aliases

Items are separated by any number of SPACE and /or TAB characters. A ‘#’ indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file. This file is normally created from the official net-
work data base maintained at the Network Information Control Center (NIC),
though local changes may be required to bring it up to date regarding unofficial
aliases and/or unknown networks.

Network number may be specified in the conventional ‘.” notation using the
inet_network routine from the Internet address manipulation library, inet(7).
Network names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

/etc/networks

SEE ALSO

NOTES

10/92

getnetent(3N), inet(7)

A name server should be used instead of a static file. A binary indexed file format
should be available for fast access.

Page 1




null (7) null(7)

NAME
null - the null file

DESCRIPTION
Data written on the null special file, /dev/null, is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

10/92 Page 1



nvram(7) nvram(7)

NAME
nvram - general non-volatile RAM driver for SYSTEM V
DESCRIPTION
The nvram driver provides an interface from SYSTEM V to the non-volatile RAM
device and to character devices.
The non-volatile RAM is a collection of eight slices. Each slice is associated with a
minor device number and a size. The nvram slice sizes are static and cannot be
changed by the user. The following tables show the 2 KB and 8 KB slice
configurations for nvram.
2 KB Slice Configuration for SYSTEM V/68
Minor Device Size
(slice) Number Functionality (in bytes) Device Name
0 available to user 1024 /dev/nvr/user
1 networking 64 /dev/nvr /net
2 unused 0
3 operating system 440 /dev/nvr/os
4 unused 0
5 BUG 512 /dev/nvr/bug
6 unused 0
7 total nvram 2040 /dev/nvr/nvr
2 KB Slice Configuration for SYSTEM V/88
Minor Device Size
(slice) Number Functionality (in bytes) Device Name
0 available to user 1024 /dev/nvr/user
1 networking 64 /dev/nvr/net
2 unused 0
3 operating system 440 /dev/nvr/os
4 unused 0
5 BUG 512 /dev/nvr/bug
6 CONFIG 256 /dev/nvr/config
7 total nvram 2040 /dev/nvr/nvr
10/92 Page 1



nvram(7)

nvram(7)

8 KB Slice Configuration for SYSTEM V/68 and V/88

Minor Device Size

(slice) Number Functionality (in bytes) Device Name
0 available to user 4096 /dev/nvr/user
1 networking 256 /dev/nvr/net
2 unused 0
3 operating system 1528 /dev/nvr/os
4 unused 0
5 BUG 2048 /dev/nvr/bug
6 CONFIG 256 /dev/nvr/config
7 total nvram 8184 /dev/nvr/nvr

Superuser privileges are required to write nvram slices having a minor device
number greater than 0. Read access on slices 1 through 7 (inclusive) and read /write
access on slice 0 are defined by the file permissions on the associated device file.

NVRAM BASE ADDRESS
MVMEI187 - 0xfffc0000
MVME167 - 0x£ffc0000
MVME188 - 0x£ff80000
MVME197 - 0xfffc0000

ERRORS

If failure occurs, the NVRAM driver generates the following error messages:

ENXIO
EPERM
EFAULT
EINVAL

FILES
/dev/nvr/bug
/dev/nvr/config
/dev/nvr/net
/dev/nvr/nvr
/dev/nvr/os
/dev/nvr/user

SEE ALSO

invalid device minor number

invalid access permission

boundary violation

close(2), 1seek(2), open(2), read(2), and write(2)

Page 2

data transfer failed or an illegal accesss to memory occurred

10/92



ott(4) (Framed Access Command Environment Utilities) ott(4)

NAME
.ott - FACE object architecture information

DESCRIPTION
The FACE object architecture stores information about object-types in an ASCII file
named .ott (object type table) that is contained in each directory. This file
describes all of the objects in that directory. Each line of the .ott file contains
information about one object in pipe-separated fields. The fields are (in order):

name the name of the actual UNIX System file.

dname the name that should be displayed to the user, or a dot if it is
the same as the name of the file.

description the description of the object, or a dot if the description is the
default (the same as object-type).

object-type the FACE internal object type name.

flags object specific flags.

mod time the time that FACE last modified the object. The time is given
as number of seconds since 1/1/1970, and is in hexadecimal
notation.

object information ~ an optional field, contains a set of semi-colon separated
name=value fields that can be used by FACE to store any other
information necessary to describe this object.

FILES
.ott is created in any directory opened by FACE.

10/92 Page 1



passthru(7) passthru(7)

NAME

passthru - passthru support

DESCRIPTION

All Motorola SCSI controllers provide passthru support via the DKPASSTHRU
ioctl command. This function permits any scsi command specified by a device
manufacturer to be passed directly to the device for processing. This command
requires superuser permissions.

IOCTL COMMANDS

10/92

All DKPASSTHRU ioct1(2) operations take the form ioctl (fildes, DKPASSTHRU,
*arg), where *arg is a pointer to a scsi_pass structure. The scsi_pass structure is
defined in <sys/dk.h>.

You must set up the scsi_pass structure before issuing this ioctl. The following is a
list of the fields in the scsi_pass structure and their functions:

flags

This field contains the size of the SCSI command descriptor block (CDB) in bits
4-7 (bit four is the low order bit). These bits are defined by the mask
SPT_CDB_LEN in <sys/dk.h>. The only valid values for this sub-field
are 6, 10, and 12. If this sub-field contains any other value, the ioctl fails,
returning -1 and setting errno to ERANGE. Another bit is defined by the
SPT_READ mask defined in <sys/dk.h>. This bit must be set if the direction of
data transfer for this CDB is from the device to the host system. If this bit
is set incorrectly, the ioctl fails, returning -1 and setting errno to EIO and
error_info to SPTERR_CTLR (controller error).

Only one other bit is currently defined. This last bit is defined by the
SPT_LONG_TIMEOUT mask defined in <sys/dk.h>. If this bit is set, it tells the
driver that the SCSI command takes a long time (e.g., FORMAT UNIT), and so
the command timeout should be long enough to compensate. The MVME328
device driver currently does not specify a timeout for commands (the timeout
is infinite), so it ignores this bit.

All other flags bits are currently reserved and should be zero. If any reserved
bit is set, the ioctl fails, returning EINVAL.

xfer_len

This field contains the number of bytes that are to be transferred to or from the
device. The direction of transfer is determined by the SPT_READ bit in the
flags field. If this field is zero, no data transfer is attempted. Note that the set-
ting of this field depends on the SCSI command. The xfer_len count must be
an even number. If the transfer length in the CDB is an odd number, xfer_len
must be rounded up to be even. The buffer must of course be large enough to
allow this adjustment. If the transfer count is odd, the ioctl fails, returning -1
and setting errno to EINVAL.

Note that this restriction only applies to MVME328 thru-hole boards. If the
firmware revision number for the MVME328 is XAM, the residual is -1 as a
result of this adjustment. Later revisions of the firmware have the correct resi-
dual count (with respect to the transfer count in the CDB). Surface mount ver-
sions of the MVME328 will not have this restriction. Also note that for

Page 1



passthru(7) passthru(7)

Page 2

MVMES328 controllers with firmware revision XAM, the transfer length is lim-
ited to MACSI_SG_RSIZE (65535) bytes. This is the size of the buffers in the
MVME328 driver because this is the maximum value for each scatter/gather
register.

If xfer_len is zero when the CDB is set up to transfer data, the ioctl fails, return-
ing -1 and setting errno to EIO and error_info to SPTERR_CTLR (controller
error). If xfer_len is not equal to the number of bytes the SCSI command
defined by the CDB transfers, it could cause a SCSI bus hang.

data
This field points to a buffer of size xfer_len in the caller’s address space. The
buffer must be page-aligned (use the NBPP define in <sys/immu.h>). If the
SPT_READ bit in the flags field is clear (0), the buffer contains data to be sent
as part of the command (for example, a defect list sent as part of a FORMAT
UNIT command). If this bit is set (1), it indicates that the buffer will receive the
data returned from the device as a result of executing the command.

resid

This field points to an integer in the caller’s address space. This integer is set to
the number of bytes that were not transferred as a result of the SCSI command.
This is the difference between the value of xfer_len and the number of bytes
that were successfully transferred to or from the device. If this integer is set to
zero after a command completes, xfer_len bytes were successfully transferred.
If it is equal to xfer_len, no bytes were successfully transferred. This field may
not be valid if errno is EFAULT.

If this field contains a bad pointer (e.g., NULL), the ioctl fails when it attempts
to set this field, returning -1 and setting errno to EFAULT.

sense_data

This field is a pointer to a structure of type struct ext_sense in the caller’s
address space that is used to accept SCSI sense data in the event of a SCSI
error. This structure is defined in <sys/dk.h>. If there is a SCSI error while
executing the command, and the status is 0x02 (SCSI Check Condition), the
error_info field is set to SPTERR_SCSI and the sense data is copied to this
buffer. Note that this buffer is only modified by this command in the event of a
SCSI error with Check Condition status.. Therefore, the caller should clear this
buffer before executing this ioctl.

If this field contains a bad pointer (e.g., NULL) and there is a SCSI Check Con-
dition status while executing the command, the ioctl fails, returning -1 and set-
ting errno to EFAULT.

cdb
This field is an array of 12 bytes that contains the SCSI CDB that is to be passed
to the device. Only the number of bytes specified in bits 4-7 of the flags field
are actually copied out of this array into the IOPB that is passed to the device.
The device driver does no checking of the contents of the CDB. It simply
passes it to the device.

10/92
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>