
UNIX®
SYSTEM V
Release 4

System Files
and Devices

Reference Manual

for
Motorola Processors

UNIX®
SYSTEM V
Release 4

System Files
and Devices

Reference Manual

@MOTOROLA

for
Motorola Processors

© COPYRIGHT MOTOROLA 1993
ALL RIGHTS RESERVED

Printed in the United States of America.

© Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990 AT&T
© Copyright 1991, 1992 UNIX System Laboratories, Inc.

ALL RIGHTS RESERVED
Printed in the United States of America.

Published by PTR Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

OWNERSHIP
Portions of this documentation product(s) were contributed and copyrighted by Motorola, Inc.

REPRODUCTION/USE/DISCLOSURE
This documentation is copyrighted material. Making unauthorized copies is prohibited by law. No
part of this material may be reproduced or copied in man- or machine-readable form in any tangible
medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic,
mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission
of Motorola, Inc.

NOTICE REGARDING DISCLAIMER OF WARRANTIES
The following does not apply where such provisions are inconsistent with local law; some states do not
allow disclaimers of express or implied warranties in certain transactions - therefore, this statement
may not apply to you. UNLESS OTHERWISE PROVIDED BY WRITTEN AGREEMENT WITH
MOTOROLA, INC., THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

ERRORS/CHANGES (MOTOROLA)
While reasonable efforts have been made to assure the accuracy of this documentation, Motorola, Inc.
assumes no liability resulting from any omissions in this documentation or from the use of the
information contained therein. Motorola reserves the right to revise this documentation and to make
changes from time to time in the content hereof without obligation to notify any person of such revision
or changes.

10987654321

ISBN 0-13-035874-6

IMPORTANT NOTE TO USERS (USL)
While every effort has been made to ensure the accuracy of all information in this documentation, UNIX
System Laboratories, Inc. (USL) assumes no liabilities to any party for any loss or damage caused by
errors or omissions or by statements of any kind in this documentation, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence, accident,
or any other cause. USL further assumes no liability arising out of the application or use of any product
or system described herein, nor any liability for incidental or consequential damages arising from the
use of this documentation. USL disclaims all warranties regarding the information contained herein,
whether expressed, implied, or statutory, including implied warranties of merchantability or fitness for a
particular purpose. USL makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting of any license to make, use or sell equipment constructed in accordance with
such descriptions. USL reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design.

PRODUCT AVAILABILITY
It is possible that this publication may contain reference to, or information about Motorola products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that Motorola intends to announce such
Motorola products, programming, or services in your country.

GNU C COMPILER
The GNU C compiler is a product of the Free Software Foundation, Inc. and is subject to the GNU
General Public License as published by the Free Software Foundation. You should have received a
copy of the GNU General Public License along with the GNU C compiler product; if not, contact:

Free Software Foundation
675 Massachusetts Ave.
Cambridge, Massachusetts 02139
U.S.A.

THIS PROGRAM IS PROVIDED WITHOUT ANY WARRANTY, INCLUDING THE IMPLIED
WARRANTY OF MERCHANT ABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Under the General Public License for GNU C you have the freedom to distribute copies of GNU C,
obtain source code if you want it, change the software, or use pieces of it in new free programs.

The GNU C compiler has been modified by Motorola, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.

MOTOROLA, INC.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

TRADEMARKS
Motorola and the Motorola logo are registered trademarks of Motorola, Inc. in the U.S.A. and in other
countries.
DeltaPRO, DeltaSeries, DeltaSERVER, M88000, SYSTEM V /68, and SYSTEM V /88 are trademarks of
Motorola, Inc. in the U.S.A.
All other marks are trademarks or registered trademarks of their respective holders.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.

OSF /Motif is a trademark of The Open Software Foundation Inc.

GNU C is a trademark of the Free Software Foundation.

Table of Contents

Introduction

File Formats(4) and Special Files(7)

a.out(4) .. ELF (Executable and Linking Format) files
acct(4) ... per-process accounting file format
admin (4) .. installation defaults file
aliases, addresses, forward(4) ... addresses and aliases for sendmail
alp (7) ... Algorithm Pool management module
ar(4) .. archive file format
archives(4) .. device header file
ARP(7) .. Address Resolution Protocol
asyhdlc(7) ... Asynchronous HDLC protocol module
binarsys(4) .. remote system information for the ckbinarsys command
bootparams(4) ... boot parameter data base
cdrom(7) ... CDROM device support
clone(7) .. open any major/minor device pair on a STREAMS driver
compver(4) ... compatible versions file
connld (7) .. line discipline for unique stream connections
conslx7 (7) ... hardware specific console driver for the MVME1X7 family
console(?) .. STREAMS-based console interface
copyright(4) .. copyright information file
core(4) ... core image file
depend(4) .. software dependencies files
device-map (4) ... script for makedev
dfstab (4) .. file containing commands for sharing resources
dir (generic) (4) ... format of directories
dir (s5)(4) .. format of s5 directories
dir (ufs)(4) .. format of ufs directories
dirent(4) ... file system independent directory entry
disk(7) .. disk support
dlce(7) ... Data Link I Common Environment interface
elx7 (7) ... MVME1X7 Local Area Network Interface
/stand/edt_data(4) ... Equipped Device Table (EDT) Data File
enetlx7 (7) ... MVME1X7 Local Area Network Interface
.environ, .pref, .variables(4) .. user-preference variable files for FACE
envmon(7) ... Environment Monitor Board driver
ethers(4) .. Ethernet address to hostname database or domain
/dev /fd(4) .. file descriptor files
filehdr(4) .. file header for common object files

Table of Contents 1

Table of Contents

filesystem (7) ... file system organization
floppy(7) ... floppy support
fs (generic)(4) ... format of a file system volume
fs (bfs)(4) .. format of the bfs file system volume
fs (s5)(4) ... format of s5 file system volume
fs (ufs)(4) ... format of ufs file system volume
fspec (4) .. format specification in text files
fstypes(4) ... file that registers distributed file system packages
group (4) .. group file
holidays (4) ... holiday file
hosts(4) .. host name data base
hosts.equiv, .rhosts(4N) .. trusted hosts by system and by user
ICMP(7) ... Internet Control Message Protocol
if.ignore(4) ... data base of ignored network interfaces
inet (7) .. Internet protocol family
inetd.conf (4) ... Internet servers database
inittab (4) ... script for init
in ode (generic) (4) ... format of an inode
inode (bfs) (4) .. format of a bfs i-node
inode (s5) (4) ... format of an s5 i-node
inode (ufs) (4) ... format of a ufs inode
intro(7) .. introduction to special files
intro(4) .. introduction to file formats
IP(7) .. Internet Protocol
issue(4) .. issue identification file
iuart(7) hardware specific console driver for the MVME141 and MVME181/188
kbd (7) ... generalized string translation module
ldterm(7) ... standard STREAMS terminal line discipline module
limits(4) ... header file for implementation-specific constants
lo (7) .. software loopback network interface
log (7) .. interface to STREAMS error logging and event tracing
loginlog(4) .. log of failed login attempts
Ip lx7 (7) ... line printer device driver
m376(7) .. MVME376 Local Area Network Interface
mailcnfg(4) .. initialization information for mail and rmail
mailsurr(4) ... surrogate commands for routing and transport of mail
master(4) ... master configuration database
mem, kmem(7) .. core memory
memregion(7) .. core memory by region
mnttab(4) .. mounted file system table

2 System Files and Devices Reference Manual

Table of Contents

mt(7) ... tape interface
mvme167 (7) .. MVME167 CPU
mvme181 (7) .. MVME181 CPU
mvme187 (7) .. MVME187 CPU
mvme188(7) .. MVME188 CPU
mvme323(7) ... MVME323 disk controller (For M68K only)
mvme328(7) .. MVME328 SCSI Host Adapter
mvme332xt (7) MVME332XT communication controller STREAMS driver
mvme350(7) ... MVME350 cartridge tape controller (For M68K only)
netconfig(4) ... network configuration database
netmasks(4) ... network mask data base
netrc(4) .. file for ftp remote login data
networks(4) ... network name data base
null(7) ... the null file
nvram(7) ... general non-volatile RAM driver for SYSTEM V
.ott(4) .. FACE object architecture information
passthm (7) .. passthm support
passwd(4) .. password file
pathalias(4) ... alias file for FACE
pckt(7) .. STREAMS Packet Mode module
pkginfo(4) .. package characteristics file
pkgmap (4) ... package contents description file
pkgquest(4) ... package question file
pnch(4) .. file format for card images
ppp(7) .. Point-to-Point Protocol (PPP)
ppphosts(4) ... Point-to-Point Protocol Host name database
prf (7) ... operating system profiler
/proc(4) .. process file system
profile(4) .. setting up an environment at login time
protocols(4) ... protocol name data base
prototype(4) .. package information file
ptem(7) ... STREAMS Pseudo Terminal Emulation module
publickey(4) .. public key database
resolv.conf(4) ... configuration file for name server
rfmaster (4N) ... Remote File Sharing name server master file
routing(4) .. system support for packet network routing
rpc(4) ... rpc program number data base
rt_dptbl(4) ... real-time dispatcher parameter table
SA(7) ... devices administered by System Administration
sad(7) .. STREAMS Administrative Driver

Table of Contents 3

Table of Contents

sccsfile (4) ... format of SCCS file
scsilx7(7) ... SCSI1x7 SCSI host adapter
services (4) ... Internet services and aliases
shadow(4) .. shadow password file
sharetab (4) ... shared file system table
SLIP (7) ... Serial Line IP (SLIP) Protocol
snmpd.comm(4) .. SNMP communities file
snmpd.conf (4) .. SNMP configuration file
snmpd.trap(4) ... SNMP trap communities file
sockio (7) ... ioctls that operate directly on sockets
space(4) .. disk space requirement file
stat(4) ... data returned by stat system call
strcf(4N) ... STREAMS Configuration File for STREAMS TCP /IP
streamio (7) .. STREAMS ioctl commands
strftime(4) .. language specific strings
sxt (7) ... pseudo-device driver
syslog.conf(4) .. configuration file for syslogd system log daemon
system(4) .. system configuration information file
tape(7) .. tape support
TCP (7) ... Internet Transmission Control Protocol
term(4) ... format of compiled term file
terminfo(4) .. terminal capability data base
termio (7) .. general terminal interface
termiox(7) .. extended general terminal interface
ticlts, ticots, ticotsord (7) .. loopback transport providers
timednet.conf(4) .. time daemon network configuration file
timezone (4) .. set default system time zone
timod (7) .. Transport Interface cooperating STREAMS module
tirdwr(7) .. Transport Interface read/write interface STREAMS module
ts_dptbl(4) .. time-sharing dispatcher parameter table
ttcompat(7) .. V7, 4BSD and XENIX STREAMS compatibility module
tty(7) .. controlling terminal interface
ttydefs(4) .. file contains terminal line settings information for ttymon
ttysrch(4) .. directory search list for ttyname
UDP (7) .. Internet User Datagram Protocol
unistd (4) .. header file for symbolic constants
updaters(4) configuration file for Network Information Service (NIS) updating
utmp, wtmp(4) .. utmp and wtmp entry formats
utmpx, wtmpx(4) ... utmpx and wtmpx entry formats
vfstab(4) ... table of file system defaults

4 System Files and Devices Reference Manual

Table of Contents

ypfiles(4) the Network Information Service (NIS) database and directory structure
zero(7) .. source of zeroes

Table of Contents 5

Introduction

Reference Manuals

Description Manual pages provide technical reference information about
the interfaces and execution behavior of each UNIX SYSTEM
V Release 4 component.

Organization The type of component being described is indicated by the
numerical section suffix. Within each section there may be
subsections indicated by a single letter. Related sections are
organized into reference manuals and alphabetized by name.
The following table shows the contents of the reference
manuals and their section suffixes.

Title and Contents Sections
Commands Reference Manual Volumes 1 and 2

General-purpose user commands 1
Basic networking commands lC
Form and Menu Language Interpreter (FMLI) lF
System maintenance commands lM
Enhanced networking commands lN
Miscellaneous reference information related to 5

commands.

System Calls and Library Functions
Reference Manual

System calls 2
BSD system compatibility library 3
Standard C library 3C
Executable and linking format library 3E

Continued on next page

Introduction 1

Reference Manuals, Continued

Contents Sections
System Calls and Library Functions Reference Manual (continued)

General-purpose library 3G
Math library 3M
Networking library 3N
Standard I/0 library 3S
Specialized library 3X
Miscellaneous reference information related to programming. 5

System Files and Devices Reference Manual
System file formats 4
Special files (devices) 7

Device Driver Interface/Driver - Kernel Interface Reference Manual
Driver Data Definitions Dl
Driver Entry Point Routines D2
Kernel Utility Routines D3
Kernel Data Structures D4
Kernel Defines DS

Master Permuted Index
Permuted index of all manual pages All

------·-------~-------·----------------------"-·-----

2 Introduction

Retitled Reference Manuals

Background Four reference manuals for this release have been
restructured and/ or retitled to more accurately describe their
contents. The following table shows these changes.

Previous Titles Current Titles Current
Sections

User's Reference Manual/ Commands Reference Manual 1, lC, lF,
System Administrator's (Volume 1, a - l) lM, lN,
Reference Manual (Volume 2, m - z) 5
(Commands a -1)

(Commands m - z)

Programmer's Reference Manual: System Calls and Library Functions 2,3,3C,
Operating System API Reference Manual 3E,3G,
Part 1: Programming Commands 3M,3N,
and System Calls 3S,3X,5
Part 2: Functions

System Files and Devices Reference System Files and Devices Reference 4, 7
Manual Manual (section 5 removed)
Permuted Index Master Permuted Index All

--- -----

Introduction 3

Manual Page Format

Main
headings
used

Heading
NAME

SYNOPSIS
DESCRIPTION

EXAMPLE
FILES

SEE ALSO

4

----------- ----------------------·------·------ -

All UNIX manual pages have a common format. The
following main headings are used:

Section Contents
Name of the component and brief statement of its purpose
Syntax of the component
General discussion of functionality
Example(s) of usage
File names built into the component
Cross-references to related components

Note: Not all manual pages use all headings.

Introduction

Typographical Conventions

Style and
conventions
used

The following typographical and formatting conventions are
used.

Convention Indicates ...
Constant width a literal that should be entered just as it

appears
Italic a substitutable argument
Square brackets around an argu- an optional argument
ment []

name or file a file name
Ellipses ... previous argument may be repeated
Argument beginning with a flag argument

- minus
+ plus
= equal

Introduction 5

Permuted Index

Definition A permuted index is an alphabetical listing of all the
keywords in the NAME line of a manual page.

Example

Certain common words are not considered keywords and are
not recognized. In the example below, the common words of,
to, and the are not recognized.

The NAME line of the adj t ime(2) manual page appears
below.

adjtime(2)

NAME

adjtime(2)

adj time- correct the time to allow synchronization of the system clock

The adj t ime(2) entries from the permuted index are shown
below. These entries appear in the a, c, and s sections of the
permuted index respectively.

Remainder of NAME line Keyword and NAME line Manual
Page

synchronization of the system/
clock adjtime correct the time to

allow synchronization of the system
synchronization of the/ adjtime
adjtime correct the time to allow

to allow synchronization of the

6

adjtime correct the time to allow
allow synchronization of the system .. .
clock adjtime correct the time to .. .
correct the time to allow
synchronization of the system clock .. .
system clock I correct the time

adjtime(2)
adjtime(2)
adjtime(2)
adjtime(2)
adjtime(2)
adjtime(2)

Continued on next page

Introduction

Permuted Index, Continued

How a
permuted
index is
constructed

The center column lists each keyword followed by all or a
portion of the NAME line, as space permits. The left column
lists the remainder of the NAME line. The right column
indicates the manual page being referenced.

Omitted words are indicated with a slash (I).

Identification Manual page entries are identified with their section suffixes
of entries shown in parentheses.

Master
Permuted
Index

Example: man(l) and man(S)

Section suffixes eliminate confusion caused by duplication of
names among the sections.

Each reference manual has a permuted index for the manual
pages contained in that book.

The Master Permuted Index covers all the manual pages of this
documentation library.

Introduction 7

Request for Comment

Description

Online
versions
of RFCs

8

A Request for Comment (RFC) is a document that describes
some aspect of networking technology. The RFCs cited in the
SEE ALSO section of these manual pages are available in
hard copy for a small fee from:

Network Information System Center
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
415-859-6387 fax: 415-859-6028
email:nisc@nisc. sri. com

Online versions of the RFCs are available by ftp from
nic. ddn. mil.To retrieve an on-line RFC, do the following:

Step Action
1 Connect to the RFC host by entering:

ftp nic.ddn.mil
user name:anonymous
password: guest

2 Retrieve the RFC by entering:
get rfc/rfcnum

where num is the number of the RFC

Exam12le:
get rfc:rfc1171.txt

3 End the ftp session by entering:

quit

Introduction

a.out(4) a.out(4)

NAME
a. out - ELF (Executable and Linking Format) files

SYNOPSIS
#include <elf.h>

DESCRIPTION

10/92

The file name a. out is the default output file name from the link editor, ld(l). The
link editor will make an a. out executable if there were no errors in linking. The
output file of the assembler, as(l), also follows the format of the a. out file
although its default file name is different.

Programs that manipulate ELF files may use the library that elf(3E) describes. An
overview of the file format follows. For more complete information, see the refer­
ences given below.

Link" v· m__g_ 1ew Execution View
ELFheader ELFheader

Program header table Program header table
optional

Section 1 ... Segment 1

Section n ... Segment2
.

Section header table Section header table
cpj:ional

An ELF header resides at the beginning and holds a "road map" describing the
file's organization. Sections hold the bulk of object file information for the linking
view: instructions, data, symbol table, relocation information, and so on. Segments
hold the object file information for the program execution view. As shown, a seg­
ment may contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program
header table; relocatable files do not need one. A section header table contains
information describing the file's sections. Every section has an entry in the table;
each entry gives information such as the section name, the section size, and so on.
Files used during linking must have a section header table; other object files may or
may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has
a fixed position in the file.

When an a. out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitial­
ized, the latter actually being initialized to all O's), and a stack. The text segment is
not writable by the program; if other processes are executing the same a. out file,
the processes will share a single text segment.

Page 1

a.out (4) a.out(4)

The data segment starts at the next maximal page boundary past the last text
address. (If the system supports more than one page size, the "maximal page" is
the largest supported size.) When the process image is created, the part of the file
holding the end of text and the beginning of data may appear twice. The dupli­
cated chunk of text that appears at the beginning of data is never executed; it is
duplicated so that the operating system may bring in pieces of the file in multiples
of the actual page size without having to realign the beginning of the data section
to a page boundary. Therefore, the first data address is the sum of the next maxi­
mal page boundary past the end of text plus the remainder of the last text address
divided by the maximal page size. If the last text address is a multiple of the maxi­
mal page size, no duplication is necessary. The stack is automatically extended as
required. The data segment is extended as requested by the brk(2) system call.

SEE ALSO
as(l), cc(l), ld(l), brk(2), elf(3E).

Page 2 10/92

acct(4) acct(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/types.h>
#include <sys/acct.h>

DESCRIPTION

10/92

Files produced as a result of calling acct(2} have records in the form defined by
sys/acct .h, whose contents are:

typedef ushort cornp_t; I* "floating point" *I
I* 13-bit fraction, 3-bit exponent */

struct acct
{

} ;

char
char
uid_t
gid_t
dev_t
time_t
comp_t
comp_t
comp_t
comp_t
comp_t
comp_t
char

ac_flag;
ac_stat;
ac_uid;
ac_gid;
ac_tty;
ac_btime;
ac_utime;
ac_stime;
ac_etime;
ac_mem;
ac_io;
ac_rw;
ac_comm [8] ;

extern struct acct
extern struct vnode

#define AFORK
#define ASU
#define ACCTF
#define AEXPND

01
02
0300
040

I* Accounting flag */
I* Exit status */
I* Accounting user ID */
I* Accounting group ID */
I* control typewriter */
/* Beginning time */
I* acctng user time in clock ticks */
I* acctng system time in clock ticks */
I* acctng elapsed time in clock ticks */
I* memory usage in clicks */
I* chars trnsfrd by read/write */
I* number of block reads/writes */
I* command name */

acctbuf;
acctp; / vnode of accounting file */

I* has executed fork, but no exec */
I* used super-user privileges */
I* record type: 00 = acct */
/*Expanded Record Type*/

In ac_flag, the AFORK flag is turned on by each fork and turned off by an exec.
The ac_comm field is inherited from the parent process and is reset by any exec.
Each time the system charges the process with a clock tick, it also adds to ac_mem
the current process size, computed as follows:

(data size) + (text size) I (number of in-core processes using text)
The value of ac_mem I (ac_stime + ac_utime) can be viewed as an approximation
to the mean process size, as modified by text sharing.

Page 1

acct (4) acct(4)

The structure tacct, which resides with the source files of the accounting com­
mands, represents the total accounting format used by the various accounting com­
mands:

I*
* total accounting (for acct period), also for day
*I

struct tacct
uid_t ta_uid; I* userid */
char ta_name [8 J ; I* login name *I
float ta_cpu[2]; I* cum. cpu time, p/np (mins)
float ta_kcore[2]; I* cum kcore-minutes, p/np */

*I

float ta_con[2]; I* cum. connect time, p/np, mins
float ta_du; I* cum. disk usage *I
long ta_pc; I* count of processes *I
unsigned short ta_sc; I* count of login sessions *I
unsigned short ta_dc; I* count of disk samples *I
unsigned short ta_fee; I* fee for special services *I

} ;

SEE ALSO

NOTES

Page 2

acct(lM), acctcom(l), acct(2), exec(2), fork(2),

The ac_mem value for a short-lived command gives little information about the
actual size of the command, because ac_mem may be incremented while a different
command (for example, the shell) is being executed by the process.

10/92

*I

admin(4) (Essential Utilities) admin(4)

NAME
admin - installation defaults file

DESCRIPTION

10/92

admin is a generic name for an ASCII file that defines default installation actions by
assigning values to installation parameters. For example, it allows administrators
to define how to proceed when the package being installed already exits on the sys­
tem.

/var I sadm/ install/ admin/ default is the default admin file delivered with Sys­
tem V Release 4.0. The default file is not writable, so to assign values different from
this file, create a new admin file. There are no naming restrictions for admin files.
Name the file when installing a package with the -a option of pkgadd. If the -a
option is not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the
following form:

param=value

Eleven parameters can be defined in an admin file. A file is not required to assign
values to all eleven parameters. If a value is not assigned, pkgadd asks the installer
how to proceed.

The eleven parameters and their possible values are shown below except as noted.
They may be specified in any order. Any of these parameters can be assigned the
value ask, which means that if the situation occurs the installer is notified and
asked to supply instructions at that time.

basedir Indicates the base directory where relocatable packages are to be
installed. The value may contain $PKGINST to indicate a base direc­
tory that is to be a function of the package instance.

mail Defines a list of users to whom mail should be sent following installa­
tion of a package. If the list is empty, no mail is sent. If the parameter
is not present in the admin file, the default value of root is used. The
ask value cannot be used with this parameter.

runlevel Indicates resolution if the run level is not correct for the installation or
removal of a package. Options are:

nocheck Do not check for run level.

quit Abort installation if run level is not met.

conflict Specifies what to do if an installation expects to overwrite a previ­
ously installed file, thus creating a conflict between packages.
Options are:

nocheck

quit

nochange

Do not check for conflict; files in conflict will be
overwritten.

Abort installation if conflict is detected.

Override installation of conflicting files; they will not be
installed.

Page 1

admin (4) (Essential Utilities) admin(4)

Page 2

setuid

action

partial

Checks for executables which will have setuid or setgid bits enabled
after installation. Options are:

nocheck Do not check for setuid executables.

quit Abort installation if setuid processes are detected.

nochange Override installation of setuid processes; processes will
be installed without setuid bits enabled.

Determines if action scripts provided by package developers contain
possible security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may have a negative
security impact.

Checks to see if a version of the package is already partially installed
on the system. Options are:

nocheck Do not check for a partially installed package.

quit Abort installation if a partially installed package exists.

instance Determines how to handle installation if a previous version of the
package (including a partially installed instance) already exists.
Options are:

idepend

list_files

rdepend

quit Exit without installing if an instance of the package
already exists (does not overwrite existing packages).

overwrite Overwrite an existing package if only one instance
exists. If there is more than one instance, but only one
has the same architecture, it overwrites that instance.
Otherwise, the installer is prompted with existing
instances and asked which to overwrite.

unique Do not overwrite an existing instance of a package.
Instead, a new instance of the package is created. The
new instance will be assigned the next available
instance identifier.

Controls resolution if other packages depend on the one to be
installed. Options are:

Do not check package dependencies. nocheck

quit Abort installation if package dependencies are not met.

Controls whether files are listed during processing. Options are:

nocheck Do not list files during processing. Any other value
causes files to be listed.

Controls resolution if other packages depend on the one to be
removed. Options are:

10/92

admin(4) (Essential Utilities) admin(4)

NOTES

space

nocheck Do not check package dependencies.

quit Abort removal if package dependencies are not met.

Controls resolution if disk space requirements for package are not
met. Options are:

nocheck Do not check space requirements (installation fails if it
runs out of space).

quit Abort installation if space requirements are not met.

The value ask should not be defined in an admin file that will be used for non­
interactive installation (since by definition, there is no installer interaction). Doing
so causes installation to fail when input is needed.

EXAMPLE

10/92

basedir=default
runlevel=quit
conflict=quit
setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit

Page 3

aliases(4) (BSD Compatibility Package) aliases(4)

NAME
aliases, addresses, forward- addresses and aliases for sendmail

SYNOPSIS
/usr/ucblib/aliases
/usr/ucblib/aliases.dir
/usr/ucblib/aliases.pag
-/.forward

DESCRIPTION
These files contain mail addresses or aliases, recognized by sendrnail, for the local
host:

I etc/passwd Mail addresses (usernames) of local users.
/usr/ucblib/aliases

Aliases for the local host, in ASCII format. This file can be
edited to add, update, or delete local mail aliases.

/usr/ucblib/aliases. { dir , pag}
The aliasing information from /usr/ucblib/aliases, in
binary, dbm format for use by sendrnail. The program,
newaliases, maintains these files.

I. forward Addresses to which a user's mail is forwarded (see
Automatic Forwarding, below).

In addition, the Network Information Service (NIS) aliases map mail.aliases contains
addresses and aliases available for use across the network.

Addresses
As distributed, sendrnail supports the following types of addresses:

Local Usernames
username

Each local username is listed in the local host's I etc/passwd file.

Local Filenames
pathname

Messages addressed to the absolute pathname of a file are appended to that file.

Commands
I command

If the first character of the address is a vertical bar, (I), sendrnail pipes the mes­
sage to the standard input of the command the bar precedes.

DARPA-standard Addresses

10/92

username@domain

If domain does not contain any'.' (dots), then it is interpreted as the name of a host
in the current domain. Otherwise, the message is passed to a mailhost that deter­
mines how to get to the specified domain. Domains are divided into subdomains
separated by dots, with the top-level domain on the right. Top-level domains
include:

Commercial organizations.

Page 1

aliases(4) (BSD Compatibility Package) aliases(4)

Educational organizations.

Government organizations.

Military organizations.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named j smachine at Podunk University.

uucp Addresses
... [host l J host! username

These are sometimes mistakenly referred to as "Usenet" addresses. uucp provides
links to numerous sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the sendmail
configuration file. See the sendmail(lM) for details. Standard addresses are
recommended.

Aliases
Local Aliases

/usr /ucblib/ aliases is formatted as a series of lines of the form

aliasname: address[, address]

aliasname is the name of the alias or alias group, and address is the address of a reci­
pient in the group. Aliases can be nested. That is, an address can be the name of
another alias group. Because of the way sendmail performs mapping from upper­
case to lower-case, an address that is the name of another alias group must not con­
tain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the preced­
ing alias. Lines beginning with # are comments.

Special Aliases
An alias of the form:

owner- aliasname : address

directs error-messages resulting from mail to aliasname to address, instead of back to
the person who sent the message.

An alias of the form:

aliasname: : include: pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname
alias. This allows a private list to be maintained separately from the aliases file.

NIS Domain Aliases

Page 2

Normally, the aliases file on the master NIS server is used for the mail.aliases NIS
map, which can be made available to every NIS client. Thus, the
/usr/ucblib/aliases* files on the various hosts in a network will one day be
obsolete. Domain-wide aliases should ultimately be resolved into usernames on
specific hosts. For example, if the following were in the domain-wide alias file:

10/92

aliases(4) (BSD Compatibility Package) aliases(4)

jsmith:js@jsmachine

then any NIS client could just mail to j smith and not have to remember the
machine and username for John Smith. If a NIS alias does not resolve to an address
with a specific host, then the name of the NIS domain is used. There should be an
alias of the domain name for a host in this case. For example, the alias:

jsmith:root

sends mail on a NIS client to root@podunk-u if the name of the NIS domain is
podunk-u.

Automatic Forwarding

FILES

When an alias (or address) is resolved to the name of a user on the local host,
sendmail checks for a . forward file, owned by the intended recipient, in that
user's home directory, and with universal read access. This file can contain one or
more addresses or aliases as described above, each of which is sent a copy of the
user's mail.

Care must be taken to avoid creating addressing loops in the . forward file. When
forwarding mail between machines, be sure that the destination machine does not
return the mail to the sender through the operation of any NIS aliases. Otherwise,
copies of the message may "bounce." Usually, the solution is to change the NIS
alias to direct mail to the proper destination.

A backslash before a username inhibits further aliasing. For instance, to invoke the
vacation program, user j s creates a . forward file that contains the line:

\js, "I /usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the
vacation program.

/etc/passwd
/usr/ucblib/aliases
-/.forward

SEE ALSO

NOTES

10/92

newaliases(lM), sendmail(lM), vacation(l), dbm(3X), uucp(lC).

Because of restrictions in dbm a single alias cannot contain more than about 1000
characters. Nested aliases can be used to circumvent this limit.

Page 3

alp(7} alp(7}

NAME
alp - Algorithm Pool management module

DESCRIPTION
The STREAMS module alp maintains a pool of algorithms (in the form of STREAMS­
compatible subroutines) that may be used for processing STREAMS data messages.
Interfaces are defined allowing modules to request and initiate processing by any of
the algorithms maintained in the pool. It is expected to help centralize and stand­
ardize the interfaces to algorithms that now represent a proliferation of similar­
but-different STREAMS modules. Its major use is envisioned as a central registry of
available codeset conversion algorithms or other types of common data­
manipulating routines.

An algorithm pool is a registry (or pool) of available functions; in this case, routines
for performing transformations on STREAMS data messages. Registered functions
may keep information on attached users, which means that algorithms need not be
"stateless", but may maintain extensive state information related to each connec­
tion. An algorithm from the pool is called by another in-kernel module with argu­
ments that are a STREAMS data message and a unique identifier. If a message is
passed back to the caller, it is the algorithm's output, otherwise the algorithm may
store partially convertible input until enough input is received to give back output
on a subsequent call.

This pool is one means for providing a consistent and flexible interface for codeset
conversion within STREAMS modules, especially kbd, but it may also be used to pro­
vide other services that are commonly duplicated by several modules.

The alp module contains some subroutines dealing with its (minor) role as a
module, a data definition for an algorithm list, connection and disconnection rou­
tines, and a search routine for finding registered items. The module interface incor­
porated into alp serves the purpose of providing an ioctl interface, so that users
can find out what algorithms are registered [see alpq(l)].

The programmer of a function for use with alp provides a simple module with a
simple specified interface. The module must have an initialization routine
(xxxinit) which is called at system startup time to register itself with alp, an open
routine, and an interface routine (which actually implements the algorithm).

The registry method of dynamically building the list of available functions obviates
the need for recompiling modules or otherwise updating a list or reconfiguring
other parts of the system to accommodate additions or deletions. To install a new
function module, one merely links it with the kernel in whatever manner is stan­
dard for that system; there is no need for updating or re-configuring any other parts
of the kernel (including alp itself). The remainder of this discussion concerns the
in-kernel operation and use of the module.

Calling Sequence

10/92

An algorithm is called from the pool by first requesting a connection via the alp
connection interface. The alp module returns the function address of an interface
routine, and fills in a unique identifier (id) for the connection. The returned func­
tion address is NULL on failure (and id is undefined). This is a sample of making a
connection to a function managed by alp:

#include <sys/alp.h>

Page 1

alp(7)

/*

*
*/

unsigned char *name;
caddr_t id;
mblk_t *(*func) ();

I* algorithm name *I
/* unique id *I
I* ptr to June ret' ng ptr to mblk_t *I

alp(7)

mblk_t *(*alp_con(unsigned char*, caddr_t)) (mblk_t * caddr_t);

if (func = alp_con(name, (caddr_t) &id))
regular processing;

else
error processing;

Once the connection has been made, the interface routine can be called directly by
the connecting module to process messages:

mblk_t *inp, *outp;
mblk_t *(*func) ();

outp = (*func) (mp, id);
mp = NULL; I* mp cannot be re-used! *I
if (outp)

regular processing;

If the interface routine processed the entire message, then outp is a valid pointer to
the algorithm's output message. If, however, the routine needs more information,
or is buffering something, outp will be a null pointer. In either case, the original
message (mp) may not be subsequently accessed by the caller. The interface routine
takes charge of the message mp, and may free it or otherwise dispose of it (it may
even return the same message). The caller may pass a null message pointer to an
interface routine to cause a flush of any data being held by the routine; this is useful
for end-of-file conditions to insure that all data has been passed through. (Interface
routines must thus recognize a null message pointer and deal with it.)

Synchronization between input and output messages is not guaranteed for all items
in the pool. If one message of input does not produce one message of output, this
fact should be documented for that particular module. Many multibyte codeset
conversion algorithms, to cite one instance, buffer partial sequences, so that if a
multibyte character happens to be spread across more than one message, it may
take two or more output messages to complete translation; in this case, it is only
possible to synchronize when input message boundaries coincide with character
boundaries.

Building an Algorithm for the Pool

Page 2

As mentioned, the modules managed by alp are implemented as simple
modules-not STREAMS modules-each with an initialization routine, an open rou­
tine, and a user-interface routine. The initialization routine is called when the sys­
tem is booted and prior to nearly everything else that happens at boot-time. The
routine takes no arguments and its sole purpose is to register the algorithm with
the alp module, so that it may subsequently accessed. Any other required initiali­
zation may also be performed at that time. A generic initialization routine for a
module called GEN, with prefix gen is as follows:

10/92

alp(7)

10/92

/*
*
*/

#include <sys/alp.h>

static mblk_t *genfunc (); /* interface routine *I
caddr_t genopen();
static struct algo genlogo =

} ;

O , I* in-core *I
(queue_t *) 0 , I* read queue *I
(queue_t *) O, /* write queue *I
genfunc, I* interface routine *I
genopen, I* open/close routine *I
(unsigned char *)"name",
(unsigned char *)"explanation",
(struct algo *)0

int alp_register(struct algo *);

geninit ()
{

int rval; I* return value from registrar *I

rval = alp_register(&genlogo);
if (rval) cmn_err (CE_WARN, "warning message");

alp(7)

The registration routine, alp_register takes one argument and returns zero if suc­
cessful. The argument is a pointer to the structure algo which has members (1) a
pointer to the algorithm's entry point (in this case, the function genfunc), (2) a
pointer to its name, and (3) a pointer to a character string containing a brief expla­
nation. The name should be limited to under 16 bytes, and the explanation to
under 60 bytes, as shown in the following example. Neither the name nor the
explanation need include a newline.

It is possible for a single module to contain several different, related algorithms,
which can each be registered separately by a single init routine.

A module's open routine is called by alp_con when a connection is first requested
by a user (that is, a module that wishes to use it). The open routine takes two argu­
ments. The first argument is an integer; if it is non-zero, the request is an "open"
request, and the second argument is unused. The function should allocate a unique
identifier and return it as a generic address pointer. If the first argument is zero, the
request is a "close'' request, and the second argument is the unique identifier that
was returned by a previous open request, indicating which of (potentially several)
connections is to be closed. The routine does any necessary clean-up and closes the
connection; thereafter, any normal interface requests on that identifier will fail.
This use of unique identifiers allows these modules to keep state information relat­
ing to each open connection; no format is imposed upon the unique identifier, so it
may contain any arbitrary type of information, equivalent in size to a core address;
alp and most callers will treat it as being of type caddr_t, in a manner similar to

Page 3

alp(7)

the private data held by each instantiation of a STREAMS module.

A skeleton for the gen module's open routine is:

caddr_t
genopen(arg, id)

int arg;
caddr_t id;

if (arg) {

}

open processing;
return (unique-id) ;

close processing for id;
return(O);

alp(7)

Once a connection has been made, users may proceed as in the example in the pre­
vious section. When the connection is to be closed (for example, the connecting
module is being popped), a call is made to alp_discon, passing the unique id and
the name:

/*

#include <sys/alp.h>

caddr_t id;
char *name;
mblk_t *mp;

* mblk_t *alp_discon(unsigned char * caddr_t);
*/

mp alp_discon(name, id);
if (mp)

process "left-over" data;

If the disconnect request returns a valid message pointer (mp) then there was unpro­
cessed or partially processed data left in an internal buffer, and it should be dealt
with by the caller (for example, by flushing it or sending it to the neighboring
module).

The ioctl and Query Interfaces

Page 4

A kernel-level query interface is provided in addition to the query interface sup­
ported by the alpq command. The routine alp_query takes a single argument, a
pointer to a name. If the name matches a registered function, alp_query returns a
pointer to the function's explanation string, otherwise it returns a null pointer. A
calling example is:

#include <sys/alp.h>

unsigned char *name, *expl;

10/92

alp(7)

/*
* unsigned char *alp_query(unsigned char*);
*/

if (expl = alp_query(name))
regular processing;

else
error processing;

alp(7)

The ioctl interface provides calls for querying registered functions (for which the
explanation discussed above is necessary); this is supported by the alpq command,
which may be used whenever user-level programs need the associated information.

Uses
The alp module can be used to replace various kernel-resident codeset conversion
functions in international or multi-language environments. The KBD subsystem
(which supplies codeset conversion and keyboard mapping) supports the use of
alp algorithms as processing elements.

Since state information may be maintained, functions may also implement process­
ing on larger or more structured data elements, such as transaction records and net­
work packets. Currently, STREAMS CPU priority is assumed by alp or should be set
individually by interface and open routines.

FUTURE DIRECTIONS
It should also provide a service interface, so that the algorithms registered there
might be used directly by programs running at user-level.

SEE ALSO
alpq(l), kbd(7).

EXAMPLES

10/92

/* Copyright (c) 1989, 1990 AT&T. All Rights Reserved. */
#ident "@(#)dely.c 1.0 AT&T USO PACIFIC 1990/03"

/*
* This is a SAMPLE module that registers with ALP and performs
* a one-message delay.
*I

#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/kmem.h>
#include <sys/alp.h>

static mblk_t *dely();
caddr_t delyopen();

/*
* Our state structure. Keeps its own address and a pointer.
*/

struct dstruct {
caddr_t d_unique;

Page 5

alp(7)

Page 6

mblk_t *d_mp;
} ;

/*
*The name is "Dely". It has an open routine "delyopen"
* and an interface "dely".
*!

static struct algo delyalgo
{

} ;

/*

0, (queue_t *) 0, (queue_t *) 0, dely, delyopen,
(unsigned char *) "Dely",
(unsigned char*) "One Message Delay Buffer",
(struct algo *) 0

* This is the sysinit routine, called when the system is
* being brought up. It registers "Dely" with ALP.
*/

delyinit ()
{

alp(7)

if (alp_register(&delyalgo)) /*then register with ALP*/
printf("DELY: register failed\n");

!*
* This is the interface routine itself.
* Holds onto "mp" and returns whatever it had before.
*!

static mblk_t *
dely(mp, id)

mblk_t *mp;
caddr_t id;

!*

register mblk_t *rp;
register struct dstruct *d;

d = (struct dstruct *) id; /* clarify the situation */
rp = d->d_mp;
d->d_mp = mp;
return(rp); /*return the previous message*/

* The open (and close) routine.
* Use kmem_zalloc() to get a private
* structure for saving state info.
*/

caddr_t
delyopen(arg, id)

10/92

alp(7) alp(7)

/* 1 = open, 0 = close */ int arg;
caddr_t id; /* ignored on open; is unique id on close */

register struct dstruct *d;
register mblk_t *rp;

if (! arg) { /*close processing*/
d = (struct dstruct *) id;
d->d_unique = (caddr_t) -1;
rp = d->d_mp;
kmem_free(d, sizeof(struct dstruct));
return((caddr_t) rp);

/* otherwise, open processing */
d = (struct dstruct *) kmem_zalloc(sizeof(struct dstruct),

KM_NOSLEEP);
d->d_unique = (caddr_t) &d;
return ((caddr_t) d) ;

10/92 Page 7

ar(4) ar(4)

NAME
ar - archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION

10/92

The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link editor ld.

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n"
#define SARMAG 8

I* magic string */
I* length of magic string */

Following the archive magic string are the archive file members. Each file member
is preceded by a file member header which is of the following format:

#define ARFMAG II' \nil

struct ar_hdr I* file member header */
{

char ar_name[16] ;/* '/' terminated file member name*/
char ar_date[12] ;/* file member date*/
char ar_uid[6]; /*file member user identification*/
char ar_gid[6]; /*file member group identification*/
char ar_mode[B]; /*file member mode (octal) */
char ar_size[lO] ;/* file member size*/
char ar_fmag[2]; /*header trailer string*/

} ;

All information in the file member headers is in printable ASCII. The numeric infor­
mation contained in the headers is stored as decimal numbers (except for ar _mode
which is in octal). Thus, if the archive contains printable files, the archive itself is
printable.

If the file member name fits, the ar _name field contains the name directly, and is ter­
minated by a slash (/) and padded with blanks on the right. If the member's name
does not fit, ar _name contains a slash (/) followed by a decimal representation of
the name's offset in the archive string table described below.

The ar _date field is the modification date of the file at the time of its insertion into
the archive. Common format archives can be moved from system to system as long
as the portable archive command ar is used.

Each archive file member begins on an even byte boundary; a newline is inserted
between files if necessary. Nevertheless, the size given reflects the actual size of the
file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

Each archive that contains object files [see a. out(4)] includes an archive symbol
table. This symbol table is used by the link editor ld to determine which archive
members must be loaded during the link edit process. The archive symbol table

Page 1

ar(4)

Page 2

ar(4)

(if it exists) is always the first file in the archive (but is never listed) and is automati­
cally created and/or updated by ar.

The archive symbol table has a zero length name (that is, ar_name [0 J is ' I '),
ar_name [1 J ==' ', and so on). All "words" in this symbol table have four bytes,
using the machine-independent encoding shown below. (All machines use the
encoding described here for the symbol table, even if the machine's "natural" byte
order is different.)

Ox01020304

The contents of this file are as follows:

1. The number of symbols. Length: 4 bytes.

2. The array of offsets into the archive file. Length: 4 bytes * "the number of
symbols".

3. The name string table. Length: ar _size - 4 bytes * ("the number of sym-
bols"+ 1).

As an example, the following symbol table defines 4 symbols. The archive member
at file offset 114 defines name and object. The archive member at file offset 426
defines function and a second version of name.

Offset +O +1
0
4
8

12
16
20
24
28
32
36
40
44

n
\0
e
f
t
\0
e

a
0

c
u
i
n
\0

4
114
114
426
426

+2 +3

m e
b j
t \0
n c
0 n
a m

4 offset entries
name
object
function
name

The number of symbols and the array of offsets are managed with sgetl and
sputl. The string table contains exactly as many null terminated strings as there
are elements in the offsets array. Each offset from the array is associated with the
corresponding name from the string table (in order). The names in the string table
are all the defined global symbols found in the common object files in the archive.
Each offset is the location of the archive header for the associated symbol.

If some archive member's name is more than 15 bytes long, a special archive
member contains a table of file names, each followed by a slash and a new-line.
This string table member, if present, will precede all "normal" archive members.
The special archive symbol table is not a "normal" member, and must be first if it
exists. The ar _name entry of the string table's member header holds a zero length
name ar_name[OJ=='/', followed by one trailing slash (ar_name[l]=='/'),

10/92

ar(4) ar(4)

followed by blanks (ar_name [2 J ==' ', and so on). Offsets into the string table
begin at zero. Example ar _name values for short and long file names appear below.

Offset +O +1 +2 +3 +4 +5 +6 +7 +8 +9
0

10
20
30

f i
s a
n g
m e

MemberName

short-name
file_name_sample
longerf ilenamexarnple

1
m

e
x

e -
p 1
r f
a m

ar_name
short-name/
/0
/18

n
e
i
p

a m e -
I \n 1 0

1 e n a
1 e I \n

Note

Not in string table
Offset 0 in string table
Offset 18 in strin__g_ table

SEE ALSO

NOTES

10/92

ar(l), ld(l), strip(l), sputl(3X), a. out(4)

strip will remove all archive symbol entries from the header. The archive symbol
entries must be restored via the -ts options of the ar command before the archive
can be used with the link editor ld.

Page 3

archives (4) (Essential Utilities) archives (4)

NAME
archives - device header file

DESCRIPTION

10/92

/* Magic numbers */

#define CMN_ASC Ox070701
#define CMN_BIN 070707
#define CMN_BBS 0143561
#define CMN_CRC Ox070702
#define CMS_ASC "070701"
#define CMS_CHR "070707"
#define CMS_CRC "070702"
#define CMS_LEN 6

/* Cpio Magic
!* Cpio Magic
/* Cpio Magic
/* Cpio Magic
/* Cpio Magic
/* Cpio Magic
/* Cpio Magic
/* Cpio Magic

Number
Number
Number
Number
String
String
String
String

for -c header */
for Binary header */
for Byte-Swap header */
for CRC header */
for -c header */
for ode header */
for CRC header */
length*/

/* Various header and field lengths */

#define CHRSZ 76 /* -H ode size minus filename field */
#define ASCSZ 110 /* -c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */

#define HNAMLEN 256 /* max filename length for binary and ode hdrs */
#define EXPNLEN 1024 I* max filename length for -c and CRC headers */
#define HTIMLEN 2 /* length of modification time field *!
#define HSIZLEN 2 /* length of file size field */

/* cpio binary header definition */

struct hdr_cpio {
short h_magic,

h_dev;
ushort h_ino,

h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_Jlltime [HTIMLEN] ,
h_namesize,
h_filesize[HSIZLEN];

char h_name [HNAMLEN] ;
} ;

/* cpio -H ode header format */

struct c_hdr {
char c_magic [CMS_LEN],

c_dev[6],
c_ino [6],
c_mode[6],

/*
!*
/*
/*
/*
/*
/*
/*
/*
/*
/*
!*

magic number field */
file system of file */
inode of file *I
modes of file */
uid of file */
gid of file */
number of links to file */
maj/min numbers for special files */
modification time of file */
length of filename */
size of file */
filename */

Page 1

archives (4) (Essential Utilities)

Page 2

} ;

c_uid[6J,
c_gid[6],
c_nlink[6],
c_rdev[6],
c_mtime[ll],
c_namesz [6],
c_filesz [11],
c_name [HNAMLEN] ;

/* -c and CRC header format */

struct Exp_cpio_hdr {

} ;

char E_magic [CMS_LENJ ,
E_ino [8],
E_mode[8],
E_uid[8],
E_gid[8],
E_nlink [8] ,
E_mtime[8],
E_filesize[8J,
E_maj [8],
E_min[8],
E_rmaj [8],
E_rmin[8],
E_namesize[8],
E_chksum [8 J ,
E_name [EXPNLEN] ;

/* Tar header structure and format */

#define TBLOCK 512 /* length of tar header and data blocks
#define TNAMLEN 100 /*

#define TMODLEN 8 /*

#define TU ID LEN 8 /*
#define TGIDLEN 8 /*

#define TSIZLEN 12 /*

#define TTIMLEN 12 /*

#define TCRCLEN 8 !*

/* tar header definition */

union tblock {
char durnmy[TBLOCK];
struct header {

maximum length for tar file names */

length of mode field */

length of uid field */
length of gid field */

length of size field */

length of modification time field */

length of header checksum field */

char t_name ['INAMLEN];
char t_mode[TMODLEN];
char t_uid[TUIDLEN];
char t_gid[TGIDLEN];

/* name of file */
/*mode of file */

/* uid of file */
/* gid of file */

archives (4)

*/

10/92

archives (4) (Essential Utilities) archives (4)

10/92

char t_size[TSIZLEN]; /* size of file in bytes */

char t_mtime [TTIMLEN] ; /* modification time of file */
char t_chksum[TCRCLEN]; /* checksum of header */
char t_typeflag; /* flag to indicate type of file */
char t_linkname[TNAMLEN]; /* file this file is linked with */
char t_magic[6J; /* magic string always "us tar" */
char t_version[2]; /* version strings always "00" */
char t_uname[32]; /* owner of file in ASCII */
char t_gname[32]; /* group of file in ASCII */
char t_devmajor[8]; /* major number for special files */
char t_devminor[8]; /* minor number for special files */
char t_prefix[l55]; /* pathname prefix*/

tbuf;
};

/* volcopy tape label format and structure */

#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464

struct volcopy_label
char v_magic [VMAGLEN],

v_volume [VVOLLEN] ,
v_reels,
v_reel;

long v_time,

char
long
int

v_length,
v_dens,
v _reelblks,
v_blksize,
v_nblocks;
v_fill [VFILLEN] ;
v_offset;
v_type;

/*
/*
/*

/*
/*

u370 added field */
u370 added field */

u370 added field */

used with -e and -reel options */
does tape have nblocks field? */

Page 3

ARP(7) (Internet Utilities) ARP(7)

NAME
ARP - Address Resolution Protocol

SYNOPSIS
#include <sys/socket.h>
#include <net/if_arp.h>
#include <netinet/in.h>

s = socket (AF_INET, SOCK __ DGRAM, 0);

d = open ("/dev/arp", O_RDWR);

DESCRIPTION

USAGE

ARP is a protocol used to map dynamically between Internet Protocol (IP) and
lOMb/s Ethernet addresses. It is used by all the lOMb/s Ethernet datalink provid­
ers (interface drivers). It is not specific to the Internet Protocol or to the lOMb/s
Ethernet, but this implementation currently supports only that combination. The
STREAMS device I dev I arp is not a Transport Level Interface (TU) transport pro­
vider and may not be used with the TU interface.

ARP caches IP-to-Ethernet address mappings. When an interface requests a map­
ping for an address not in the cache, ARP queues the message that requires the map­
ping and broadcasts a message on the associated network requesting the address
mapping. If a response is provided, the new mapping is cached and any pending
message is transmitted. ARP will queue at most one packet while waiting for a
mapping request to be responded to; only the most recently transmitted packet is
kept.

To facilitate communications with systems which do not use ARP, ioctl requests
are provided to enter and delete entries in the IP-to-Ethernet tables.

#include <sys/sockio.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl request takes the same structure as an argument. SIOCSARP sets an
ARP entry, SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These
ioctl requests may be applied to any Internet family socket descriptors, or to a
descriptor for the ARP device, but only by the privileged user. The arpreq struc­
ture contains:

/*
* ARP ioctl request
*/
struct arpreq {

} ;

struct sockaddr arp_pa;
struct sockaddr arp_ha;
int arp_flags;

/* arp_flags field values */

/* protocol address */
/* hardware address */
/* flags *I

10/92 Page 1

ARP(7) (Internet Utilities) ARP(7)

#define ATF_COM Ox2 /* completed entry (arp_ha valid) */
#define ATF_PERM Ox4 /* pennanent entry */
#define ATF_PUBL Ox8 /*publish (respond for other host) */
#define ATF_USETRAILERS OxlO /* send trailer packets to host */

The address family for the arp_pa sockaddr must be AF _INET; for the arp_ha
sockaddr it must be AF _UNSPEC. The only flag bits that may be written are
ATF _PERM, ATF _PUBL and ATF _USETRAILERS. ATF _PERM makes the entry per­
manent if the ioctl request succeeds. The peculiar nature of the ARP tables may
cause the ioctl request to fail if too many permanent IP addresses hash to the same
slot. ATF _PUBL specifies that the ARP code should respond to ARP requests for the
indicated host coming from other machines. This allows a host to act as an ARP
server, which may be useful in convincing an ARP-only machine to talk to a non­
ARP machine.

ARP is also used to negotiate the use of trailer IP encapsulations; trailers are an alter­
nate encapsulation used to allow efficient packet alignment for large packets
despite variable-sized headers. Hosts that wish to receive trailer encapsulations so
indicate by sending gratuitous ARP translation replies along with replies to IP
requests; they are also sent in reply to IP translation replies. The negotiation is thus
fully symmetrical, in that either or both hosts may request trailers. The
ATF _USETRAILERS flag is used to record the receipt of such a reply, and enables the
transmission of trailer packets to that host.

ARP watches passively for hosts impersonating the local host (that is, a host which
responds to an ARP mapping request for the local host's address).

SEE ALSO

Page 2

arp(lM), ifconfig(lM), if(3N), inet(7)

Plummer, Dave," An Ethernet Address Resolution Protocol -or- Converting Network Pro­
tocol Addresses to 48.bit Ethernet Addresses for Transmission on Ethernet Hardware," RFC
826, Network Information Center, SRI International, Menlo Park, Calif., November
1982

Leffler, Sam, and Michael Karels, "Trailer Encapsulations," RFC 893, Network Infor­
mation Center, SRI International, Menlo Park, Calif., April 1984

10/92

asyhdlc(7) asyhdlc(7)

NAME
asyhdlc - Asynchronous HDLC protocol module

SYNOPSIS
asyhdlc

DESCRIPTION
The asyhdlc module is pushed on a tty stream attached to an asynchronous serial
line so that PPP may use that line to transmit and receive IP datagrams.

A PPP HDLC packet lacks a CRC checksum and uses a "transparent code" for data
transmission. asyhdlc performs the following functions on PPP datagrams:

generates and validates the CRC checksum

encodes and decodes packet data to achieve data transparency - charater
stuffing

generates and strips framing patterns delimiting packet start and end

See ppp(7) for additional information about the PPP implementation.

SEE ALSO
ppp(7)
RFC 1171

10/92 Page 1

binarsys (4) (Essential Utilities) binarsys (4)

NAME
binarsys - remote system information for the ckbinarsys command

DESCRIPTION

FILES

binarsys contains lines of the form:

remote_system_name: val

where val is either Y or N. This line indicates whether that particular remote
system can properly deal with messages having binary content. The
absence of an entry for a particular system or absence of the binarsys file
altogether will imply No.

Blank lines or lines beginning with # are considered comments and ignored.
Should a line of Default=y be encountered, the default condition for missing
entries described in the previous paragraph is reversed to be Yes. Another line of
Default=n will restore the default condition to No.

mail is distributed with the binarsys file containing only a Defaul t=y line.

/etc/mail/binarsys

SEE ALSO
ckbinarsys(lM), mail(l), mailsurr(4).

10/92 Page 1

bootparams (4)

NAME
bootparams - boot parameter data base

SYNOPSIS
/etc/bootparams

DESCRIPTION

bootparams (4)

The bootparams file contains the list of client entries that diskless clients use for
booting. For each diskless client, the entry should contain the following informa­
tion:

name of client
a list of keys, names of servers, and pathnames

The first item of each entry is the name of the diskless client. The subsequent item
is a list of keys, names of servers, and pathnames.

Items are separated by TAB characters.

EXAMPLE

FILES

This is an example of a I etc/bootparams entry:

myclient root=myserver:/nfsroot/myclient\
swap=myserver:/nfsswap/myclient\
dump=myserver:/nfsdump/myclient

/etc/bootparams

SEE ALSO
bootparamd(lM)

10/92

\.

Page 1

cdrom(7) cdrom(7)

NAME
cdrom - CDROM device support

DESRIPTION
CDROM disk drives perform like hard disk drives except for the following:

Read only
CDROM disks are read-only devices. Any attempt to write to a CDROM
disk results in an error (EROFS).

2048 Byte Blocks
CDROM drives are accessed in multiples of 2048 bytes. All raw transfers
must be aligned on 2048-byte boundaries and have a transfer byte count
that is a multiple of 2048 bytes. If either of these conditions is not met, the
1/0 results in an error (EIO).

Slicing If a CDROM disk has a valid Motorola Volume ID, the Volume Table of
Contents (VTOC) reads from the disk. If the CDROM disk does not have a
valid volume ID, the VTOC consists of two slices: slice zero and slice
seven. Slice zero is the first slice on a boot disk which always contains
root. Slice seven represents the whole disk, whether it contains root or
not.

Door Locking
When no process currently has the CDROM drive open and it is being
opened for the first time, the media-eject button on the drive becomes dis­
abled until the last close, if the CDROM drive has a locking door.

Presence of Media
If there is no CDROM in the drive, an open attempt results in an error
(ENXIO).

IOCTL COMMANDS

10/92

CDROMs support several ioctl(2) functions on the character or raw devices.
These functions permit control beyond the normal open(2), close(2), read(2), and
write(2) system calls. All ioctl(2) operations take the form ioctl (jildes, com­
mand, *arg). Any attempt to utilize ioct1(2) functions not listed below cause an
EINVAL error to be returned.

The operations supported by CDROMs are listed below in alphabetical order.

DKGETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The disk is not accessed by this command.

DKGETINFO
Get parameters associated with the disk and store them in the dkblkO struc­
ture referenced by arg. The disk is not accessed by this command.

DKGETSLC
Get the VTOC information for a disk and return the information in a struc­
ture of type struct motorola_vtoc (defined in sys/vtoc.h) referenced
by arg. While the number of supported slices is determined by the number
of slices defined in the ddefs file, all disks are expected to support 16 slices.
The disk is not accessed by this command.

Page 1

cdrom(7) cdrom(7)

Page 2

DKINQUIRY
Return the SCSI INQUIRY data for the device; it is only valid for SCSI
CDROMs. This ioctl can be done on any device that the calling process
has open. The SCSI INQUIRY data for the device is copied into the struct
inquiry structure pointed to by arg. The struct inquiry structure is
defined in sys I dk. h.

DKREADCAP
Return the SCSI READ CAP A CITY data for the device; it is only valid for
SCSI CDROMs. This ioctl can be done on any disk or CDROM device that
the calling process has open. The SCSI READ CAPACITY data for the dev­
ice is copied into the struct readcap structure pointed to by arg. The
struct readcap structure is defined in sys/dk.h. Note that the SCSI
READ CAP A CITY command returns the number of the last logical block on
the media. This ioctl adds one to that number so that it represents the
actual capacity of the device (logical block numbers start at zero).

DKTRAY_OPEN
Cause the CDROM door to open after processing the last close (when no
process has the drive open). The arg parameter is not used.

V_GETSSZ
Return the physical sector size of the CDROM. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The rnernaddr
member of the structure points to the address of an integer which contains
the sector size after a successful operation.

V_PDREAD
Read the Physical Description Area of the disk. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc. h). The sect st and
datasz members of the io_arg structure are ignored. The rnernaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc.h) which contain the requested data upon
successful completion.

V_PDWRITE
Write the Physical Description Area of the disk. This command always
returns EROFS. The arg parameter specifies a structure of type pdinfo
(defined in sys/vtoc .h).

V_PREAD
Read physical sectors. This interface assumes that sectors are 512 bytes in
length so the driver is responsible for mapping the requested block(s) to the
correct portion of the correct sector on the CDROM regardless of the actual
physical sector size. The arg parameter specifies a structure of type io_arg
(defined in sys/vtoc .h). The sect st member of the io_arg structure con­
tains the starting sector number and the datasz member contains the
number of sectors. The rnernaddr member of the io_arg structure points to
the address of a sufficiently large area which contains the requested data
upon successful completion.

10/92

cdrom(7) cdrom(7)

V_PWRITE
Write physical sectors. This command always returns EROFS. The arg
parameter specifies a structure of type io_arg (defined in sys/vtoc .h).

V_RVTOC
Read the VTOC from the disk. The arg parameter specifies a structure of
type io_arg (defined in sys/vtoc .h). The sect st and datasz members of
the io_arg structure are ignored. The memaddr member of the io_arg
structure points to the address of a structure of type vtoc (defined in
sys/vtoc .h) which contains the requested data upon successful comple­
tion.

V_WVTOC
Write the VTOC to the disk. This command always returns EROFS. The arg
parameter specifies a structure of type vtoc (defined in sys /vtoc . h).

SEE ALSO
disk(7), floppy(?), intro(7)

10/92 Page 3

clone(7} (Networking Support Utilities} clone(7}

NAME
clone - open any major/minor device pair on a STREAMS driver

DESCRIPTION
clone is a STREAMS software driver that finds and opens an unused major/minor
device on another STREAMS driver. The major device number passed to clone dur­
ing open corresponds to the clone driver and the minor device number
corresponds to the target driver. Each open results in a separate stream to a previ­
ously unused major/minor device.

The clone driver consists solely of an open function. This open function performs
all of the necessary work so that subsequent system calls [including close(2)]
require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the major/minor
device number provided does not correspond to a valid major/minor device, or if
the driver indicated is not a STREAMS driver.

SEE ALSO
log(7).

NOTES

10/92

Multiple opens of the same major/minor device cannot be done through the clone
interface. Executing stat(2) on the file system node for a cloned device yields a
different result from executing fstat(2) using a file descriptor obtained from open­
ing the node.

Page 1

compver(4) (Essential Utilities) compver(4)

NAME
compver - compatible versions file

DESCRIPTION

NOTES

compver is an ASCII file used to specify previous versions of the associated pack­
age which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with
which the current version is backward compatible.

Since some packages may require installation of a specific version of another
software package, compatibility information is extremely crucial. Consider, for
example, a package called "A" which requires version "1.0" of application "B" as a
prerequisite for installation. If the customer installing "A:' has a newer version of
"B" (1.3), the compver file for "B" must indicate that "1.3" is compatible with ver­
sion "1.0" in order for the customer to install package "A."

The comparison of the version string disregards white space and tabs. It is per­
formed on a word-by-word basis. Thus 1. 3 Enhanced and 1. 3 Enhanced
would be considered the same.

EXAMPLE
A sample compver file is shown below.

1.3
1. 0

SEE ALSO
depend(4)

10/92 Page 1

connld(7) connld(7)

NAME
connld - line discipline for unique stream connections

DESCRIPTION
connld is a STREAMS-based module that provides unique connections between
server and client processes. It can only be pushed [see streamio(7)] onto one end
of a STREAMS-based pipe that may subsequently be attached to a name in the file
system name space. After the pipe end is attached, a new pipe is created internally
when an originating process attempts to open(2) or creat(2) the file system name.
A file descriptor for one end of the new pipe is packaged into a message identical to
that for the ioctl I_SENDFD [see streamio(7)] and is transmitted along the stream
to the server process on the other end. The originating process is blocked until the
server responds.

The server responds to the I_SENDFD request by accepting the file descriptor
through the I_RECVFD ioctl message. When this happens, the file descriptor
associated with the other end of the new pipe is transmitted to the originating pro­
cess as the file descriptor returned from open(2) or creat(2).

If the server does not respond to the I_SENDFD request, the stream that the connld
module is pushed on becomes uni-directional because the server will not be able to
retrieve any data off the stream until the I_RECVFD request is issued. If the server
process exits before issuing the I_RECVFD request, the open(2) or the creat(2) sys­
tem calls will fail and return -1 to the originating process.

When the connld module is pushed onto a pipe, messages going back and forth
through the pipe are ignored by connld.

On success, an open of connld returns 0. On failure, errno is set to the following
values:

EINVAL

EINVAL

EPIPE

ENOMEM

ENXIO

EA GAIN

ENFILE

A stream onto which connld is being pushed is not a pipe or the
pipe does not have a write queue pointer pointing to a stream head
read queue.

The other end of the pipe onto which connld is being pushed is
linked under a multiplexor.

connld is being pushed onto a pipe end whose other end is no
longer there.

An internal pipe could not be created.

An M_HANGUP message is at the stream head of the pipe onto which
connld is being pushed.

Internal data structures could not be allocated.

A file table entry could not be allocated.

SEE ALSO
streamio(7).

10/92 Page 1

cons1x7(7) cons1x7(7)

NAME
conslx7 - hardware specific console driver for the MVME1X7 family

DESCRIPTION

USAGE

This STREAMS-based driver provides console I/O when the system is running on an
MVME1X7 CPU board. This driver is accessable only through the standard console
device special files /dev/console (/dev/conttyOO), /dev/contty
(/dev /conttyOl), /dev/contty02, /dev/contty03, and /dev/conctl.

The device special files eventually access the STREAMS-based console driver which,
when used in conjunction with the STREAMS line discipline module ldterrn, sup­
ports the terrnios(2) and terrnio(7) processing.

The configurable parameter C1X7 _ TXFIFO _MAX has a default of 8 and is located in
the driver master. d file. This parameter describes the maximum number of bytes
which should be written to the CD2400 transmit FIFO each time the FIFO is filled.
Values 1 through 15 inclusive are valid. Increasing this parameter decreases the
number of interrupts taken as a result of any of the serial data lines on the
MVME1X7. The characters may be placed in the FIFO at an interrupt priority and
may slow the response time of the system if large amounts of data are being sent
through the onboard serial lines. If an invalid value is chosen for this parameter, it
is reset to the default value and a warning message is printed to the system console.

In addition to the IOCTLs supported in termio(7), three other IOCTLs are sup­
ported. See the USAGE section for IOCTL details.

STREAM Message Processing

10/92

In addition to the IOCTLs listed in terrnio(7), the following IOCTLs are supported.
The definitions for the IOCTLs are in the file /usr /include/sys/cd2400. h.

M_IOCTL

MSETHWHAND causes the driver to enable out-of-band flow control using
CTS(Clear to Send). This causes character transmission to begin only after
CTS is active(low). If a console port is in aysnchronous mode, then when
CTS goes inactive(high) after transmission has started, the channel stops
transmitting after the current characters in the transmit hold register and
shift register are transmitted. When in synchronous mode and CTS goes
inactive, then the channel stops transmission after the current frame.
Transmission restarts after CTS goes active. Also, MSETHWHAND sets a
receive FIFO threshold of 10 characters. Automatic hardware flow
control(DTR/DSR) activates when the FIFO threshold is reached.

MCLEARWHAND causes the driver to clear the flow controls set by
MSETHWHAND. The hardware then returns to the no flow control state.

MGETHWHAND causes the driver to return the current status of CTS and
DTR/DSR hardware flow control. The driver returns a data structure of
type HWhandshake. HWhandshake is defined in the file
/usr/include/sys/cd2400 .h. HWhandshake.stat will equal
HDFLOW _ENABLED if flow control is on and HDFLOW _DISABLED if it
is off.

Page 1

cons1x7(7) cons1x7(7)

Page 2

An example of code to implement each IOCTL is listed below:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termio.h>
#include <termios.h>
#include <sys/cd2400.h>
#include <stropts.h>

struct strioctl command

int sethwhandshake(int fd)
{

int err=O ;

command.ic_cmd = MSETHWHAND
command.ic_len = 0 ;
command.ic_dp = NULL ;

if (ioctl(fd, I_STR, &command) < 0) {
printf("ioctl error sending command to console driver")
err = -1 ;

return(err)

int clearhwhandshake(int fd)
{

int err=O ;

command.ic_cmd = MCLEARHWHAND
command.ic_len = O ;
command.ic_dp =NULL ;

if (ioctl(fd, I_STR, &command) < 0) {
printf("ioctl error sending command to console driver")
err = -1 ;

return(err)

int gethwhandshake(int fd)
{

int err=D ;

10/92

cons1x7(7)

FILES

HWhandshake shake;

command.ic_cmd = MGETHWHAND
command.ic_len = sizeof(shake)
command.ic_dp = (char *) &shake

if (ioctl(fd, I_STR, &command) < 0) {
printf ("ioctl error sending command to driver")
err = -1 ;

if (shake.stat == HDFLOW_DISABLED)
printf ("Hardware handshake is DISABLED")

if (shake.stat == HDFLOW_ENABLED
printf ("Hardware handshake is ENABLED")

return(err) ;

/dev/console
/dev/contty
I dev I contty??
/dev/conctl
/usr/include/sys/cd2400.h
/usr/include/sys/conslx7.h

SEE ALSO

cons1x7(7)

dcon(lA), mvmecpu(lM), termios(2), console(7), iuart(7), ldterm(7), termio(7).

10/92 Page 3

console(7) console(7)

NAME
console - STREAMS-based console interface

DESCRIPTION

FILES

/dev/console and /dev/conttyOO are synonyms for the system console and refer
to an asynchronous serial data line originating from the system board.

For security reasons, the permissions on I dev I console are set to 620, restricting
writer access by group and other. This will cause applications writing to
/dev/console to fail. If you have such an application, change the permissions on
/dev/console as follows:

/bin/chmod 666 /dev/console

/dev/contty and /dev/conttyOl refer to a second asynchronous serial data line
originating from the system board. /dev/contty02 and /dev/contty03 refer to a
third and fourth serial data line originating from the system board. These serial
data lines are only available on the MVME187 and MVME167 CPU boards.

I dev I conctl is the console control port.

These device special files access the STREAMS-based console driver which, when
used in conjunction with the STREAMS line discipline module ldterm, supports the
termios(2) and termio(7) processing.

/dev/console
/dev/contty
/dev/contty??
/dev/conctl

SEE ALSO

10/92

crash(lM), dcon (lM), mvmecpu(lM), termios(2), conslx7(7), iuart(7),
ldterm(7), termio(7).

Page 1

copyright (4) (Essential Utilities) copyright (4)

NAME
copyright - copyright information file

DESCRIPTION

10/92

copyright is an ASCII file used to provide a copyright notice for a package. The
text may be in any format. The full file contents (including comment lines) is
displayed on the terminal at the time of package installation.

Page 1

core(4) core(4)

NAME
core - core image file

DESCRIPTION

10/92

The UNIX system writes out a core image of a process when it is terminated due to
the receipt of some signals. The core image is called core and is written in the
process's working directory (provided it can be; normal access controls apply). A
process with an effective user ID different from the real user ID will not produce a
core image.

The core file contains all the process information pertinent to debugging: contents
of hardware registers, process status and process data. The format of a core file is
object file specific.

For ELF executable programs [see a. out(4)], the core file generated is also an ELF
file, containing ELF program and file headers. The e_type field in the file header
has type ET_CORE. The program header contains an entry for every loadable and
writeable segment that was part of the process address space, including shared
library segments. The contents of the segments themselves are also part of the core
image.

The program header of an ELF core file also contains a NOTE segment. This segment
may contain the following entries. Each has entry name "CORE" and presents the
contents of a system structure:

prstatus_t The entry containing this structure has a NOTE type of 1. This
structure contains things of interest to a debugger from the
operating system's u-area, such as the general registers, signal
dispositions, state, reason for stopping, process ID and so
forth. The structure is defined in sys/procfs .h.

prpsinfo_t The entry containing this structure has a NOTE type of 3. It
contains information of interest to the ps(l) command, such
as process status, cpu usage, "nice" value, controlling terminal,
user ID, process ID, the name of the executable and so forth.
The structure is defined in sys/procfs. h.

For 68k only COFF executable programs produce core files consisting of two parts:
the first section is a copy of the system's per-user data for the process, including the
general registers. The format of this section is defined in the header files
sys/user.hand sys/reg.h. The remainder of a COFF core image represents the
actual contents of the process data space.

For 88k only COFF executable programs produce core files in the following format
(data structures are defined in sys /ptrace. h):

a struct ptrace_user containing the current status of the process

one struct pt_rnem_desc for each shared memory segment attached to the
process

one struct pt_rnern_desc for each shared library data segment attached to
the process

Page 1

core(4) core(4)

the process's data segment

the process's stack segment

the contents of the shared memory and shared library data segments
referred to by the pt_mem_desc entries

The size of the core file created by a process may be controlled by the user [see
getrlimit(2)].

SEE ALSO
crash(lM), tbx(l), getrlimi t(2), setuid(2), elf(3E), a. out(4), signal(5).

Page 2 10/92

depend(4) (Essential Utilities) depend(4)

NAME
depend - software dependencies files

DESCRIPTION

10/92

depend is an ASCII file used to specify information concerning software dependen­
cies for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of
the package is described after the entry line by giving the package architecture
and/ or version. The format of each entry and subsequent instance definition is:

type pkg name

The fields are:

type

pkg

name

(arch)version

(arch)version
(arch)version

Defines the dependency type. Must be one of the following charac­
ters:

P Indicates a prerequisite for installation, for example, the
referenced package or versions must be installed.

I Implies that the existence of the indicated package or ver­
sion is incompatible.

R Indicates a reverse dependency. Instead of defining the
package's own dependencies, this designates that another
package depends on this one. This type should be used
only when an old package does not have a depend file but
it relies on the newer package nonetheless. Therefore, the
present package should not be removed if the designated
old package is still on the system since, if it is removed, the
old package will no longer work.

Indicates the package abbreviation.

Specifies the full package name.

Specifies a particular instance of the software. A version name can­
not begin with a left parenthesis. The instance specifications, both
arch and version, are completely optional but must each begin on a
new line that begins with white space. A null version set equates to
any version of the indicated package.

Page 1

depend(4) (Essential Utilities)

EXAMPLE
Here is a sample depend file:

Page 2

I msvr M68K Messaging Server
P etc Cartridge Tape Utilities
P dfm Directory and File Management Utilities
P ed Editing Utilities
P ipc Inter-Process Communication Utilities
P lp Line Printer Spooling Utilities
P shell Shell Programming Utilities
P sys System Header Files

Release 3.0
P sysadm System Administration Utilities
P term Terminal Filters Utilities
P terminfo Terminal Information Utilities
P usrenv User Environment Utilities
P uucp Basic Networking Utilities
P x25 X.25 Network Interface

Issue 1 Version 1
Issue 1 Version 2

P windowing AT&T Windowing Utilities
(M68k)Version 1

R ems M68k Call Management System

depend(4)

10/92

device-map (4) device-map (4)

NAME
device-map - script for makedev

DESCRIPTION
The /etc/device-map file controls the assignment of generic device names for sys­
tem administration and generic use.

The /etc/device-map file contains two kinds of lines: comment lines and assign­
ment lines.

1. Any line starting with the # character is assumed to be a comment.

2. An assignment line consists of two fields separated by white space (tab or
space characters). The first field specifies the generic device type (for example,
ctape, disk, ninetrack). The second field contains the controller-specific
name of the device that will be assigned that generic name (for example,
/dev /rmt/m328_c0d0).

The generic device number is assigned automatically, based on the position of the
assignment line relative to other generic assignment of that type.

If the controller-specific device does not exist or is of the incorrect type, the assign­
ment line is ignored. Processing continues on other legal assignment lines.

A partial example of an /etc/device-map file is presented below:

Cartridge tapes devices
ctape/dev/rmt/m328_c0d0
ctape/dev/rmt/m328_c0d4

SEE ALSO
makedev(lM)

10/92 Page 1

dfstab(4) (DFS) dfstab(4)

NAME
dfstab- file containing commands for sharing resources

DESCRIPTION
dfstab resides in directory /etc/dfs and contains commands for sharing
resources across a network. dfstab gives a system administrator a uniform
method of controlling the automatic sharing of local resources.

Each line of the dfstab file consists of a share(lM) command. The dfstab file can
be read by the shell directly to share all resources, or system administrators can
prepare their own shell scripts to execute particular lines from dfstab.

The contents of dfstab are executed automatically when the system enters run
level 3.

SEE ALSO
share(lM), shareall(lM)

10/92 Page 1

dir(4)

NAME
dir (generic) - format of directories

DESCRIPTION

dir(4)

Directory format is entirely FSType-specific. See dir_FSType(4) for information.

SEE ALSO
dir_s5(4), dir_ufs(4).

10/92 Page 1

dir(4) (s5) dir(4)

NAME
dir (s5) - format of s5 directories

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/s5dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the mode word of
its i-node entry [see the s5-specific inode(4)]. The structure of a directory entry as
given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
f

} ;

o_ino_t
char

d_ino; /* s5 inode type */
d_name [DIRSIZ];

By convention, the first two entries in each directory are . for the entry itself and ..
for the parent directory. The meaning of .. is modified for the root directory of the
master file system; there is no parent, so . . has the same meaning as . has.

SEE ALSO
s5_specific inode(4)

10/92 Page 1

dir (4) (UFS) dir (4)

NAME
dir (ufs) - format of ufs directories

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fsdir.h>

DESCRIPTION
A directory consists of some number of blocks of DIRBLKSIZ bytes, where DIRBLK­
SIZ is chosen such that it can be transferred to disk in a single atomic operation (for
example, 512 bytes on most machines).

Each DIRBLKSIZ-byte block contains some number of directory entry structures,
which are of variable length. Each directory entry has a struct direct at the
front of it, containing its inode number, the length of the entry, and the length of
the name contained in the entry. These are followed by the name padded to a 4
byte boundary with null bytes. All names are guaranteed null-terminated. The
maximum length of a name in a directory is MAXNAMLEN.

#define DIRBLKSIZ
#define MAXNAMLEN

DEV_BSIZE
256

struct
u_long
u_short
u_short
char

direct
d_ino;
d_reclen;
d_namlen;
d_name [MAXNAMLEN + 1] ;

/* inode number of entry */
/* length of this record*/
/* length of string in d_name */
/* name must be no longer than this */

} ;

SEE ALSO
ufs-specific fs(4)

10/92 Page 1

dirent(4) dirent(4)

NAME
dirent - file system independent directory entry

SYNOPSIS
#include <dirent.h>

DESCRIPTION
Different file system types may have different directory entries. The dirent struc­
ture defines a file system independent directory entry, which contains information
common to directory entries in different file system types. A set of these structures
is returned by the getdents(2) system call.

The dirent structure is defined below.

struct dirent

} ;

ino_t
off_t
unsigned short
char

d_ino;
d_off;
d_reclen;
d_narne[l];

The d_ino is a number which is unique for each file in the file system. The field
d_off is the offset of that directory entry in the actual file system directory. The
field d_narne is the beginning of the character array giving the name of the directory
entry. This name is null terminated and may have at most MAXNAMLEN characters.
This results in file system independent directory entries being variable length enti­
ties. The value of d_reclen is the record length of this entry. This length is defined
to be the number of bytes between the current entry and the next one, so that the
next structure will be suitably aligned.

SEE ALSO
getdents(2)

10/92 Page 1

disk{7) disk{7)

NAME
disk- disk support

DESCRIPTION
All Motorola disks support dynamic slice sizing. The Volume Table of Contents
(VTOC) contains the slicing information for the disk. Up to 16 slices may be
specified. Therefore, you do not have to configure the size and slicing of a disk into
the driver. You can attach any size disk without changing any configuration infor­
mation.

The raw device nodes /dev/rdsk/prefix_* allow the transfer of a specified
number of bytes in multiples of sector size between the hard disk drive and a loca­
tion in the user's address space. The typical number of bytes in a sector is 512.

Disk devices may be removable or non-removable (fixed).

IOCTL COMMANDS

10/92

Disk drivers support several ioctl(2) functions on the character or raw devices.
These functions permit control beyond the normal open(2), close(2), read(2), and
write(2) system calls. All ioctl(2) operations take the form ioctl (jildes, com­
mand, *arg). Any attempt to utilize ioctl(2) functions not listed below causes an
EINVAL error to be returned.

The operations supported by disks are listed below in alphabetical order.

DKFIXBADSPOT
Lock out a bad spot on the disk based on the information in the dkbadlst
structure referenced by arg. The dkbadlst structure is defined in sys/dk.h.

DKFORMAT
Format a disk. The dkfmt structure is defined in sys I dk. h.

DKGETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The dkconfig structure is defined in sys/dk.h.
The disk is not accessed by this command.

DKGETINFO
Get parameters associated with the disk and store them in the dkblkO struc­
ture referenced by arg. The dkblkO structure is defined in sys/dk.h. The
disk is not accessed by this command.

DKGETSLC
Get the VTOC information for a disk and return the information in a struc­
ture of type struct motorola_ vtoc (defined in sys/vtoc. h) referenced
by arg. While the number of supported slices is determined by the number
of slices defined in the ddefs file, all disks are expected to support 16 slices.
The disk is not accessed by this command.

DKSETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The disk is not accessed by this command.

DKSETINFO
Set parameters associated with the disk based on the values in the dkblkO
structure referenced by arg. The disk is not accessed by this command.

Page 1

disk(7) disk(7)

Page 2

DKSETSLC
Set the VTOC information for a disk and return the information in a struc­
ture of type struct rnotorola_vtoc (defined in sys/vtoc.h) referenced
by arg. The disk is not accessed by this command.

DKINQUIRY
Return the SCSI INQUIRY data for the device; it is only valid for SCSI disks.
This ioctl can be done on any device the calling process has open. The
SCSI INQUIRY data for the device is copied into the struct inquiry
structure pointed to by arg. The struct inquiry structure is defined in
sys/dk.h.

DKREADCAP
Return the SCSI READ CAPACITY data for the device; it is only valid for
SCSI disks. This ioctl can be done on any disk or CDROM device the cal­
ling process has open. The SCSI READ CAP A CITY data for the device is
copied into the struct readcap structure pointed to by arg. The struct
readcap structure is defined in sys/dk.h. Note: the SCSI READ CAPA­
CITY command returns the number of the last logical block on the media.
This ioctl adds one to that number so it represents the actual capacity of
the device. Logical block numbers start at zero.

V_GETSSZ
Return the physical sector size of the CDROM. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The rnernaddr
member of the structure points to the address of an integer containing the
sector size after a successful operation.

V_PDREAD
Read the Physical Description Area of the disk. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The rnernaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc. h) containing the requested data upon
successful completion.

V_PDWRITE
Write the Physical Description Area of the disk. The arg parameter specifies
a structure of type pdinfo (defined in sys/vtoc. h). The sect st and
datasz members of the io_arg structure are ignored. The rnernaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc. h) containing the requested data upon
successful completion.

V_PREAD
Read physical sectors. This interface assumes sectors are 512 bytes in length
so the driver is responsible for mapping the request block to the correct por­
tion of the correct sector on the disk regardless of the actual physical sector
size. The arg parameter specifies a structure of type io_arg (defined in
sys/vtoc. h). The sect st member of the io_arg structure contains the
starting sector number and the datasz member contains the number of sec­
tors. The rnernaddr member of the io_arg structure points to the address of
a sufficiently large area containing the requested data upon successful

10/92

disk(7) disk(7)

completion.

V_PWRITE
Write physical sectors. This interface assumes sectors are 512 bytes in
length so the driver is responsible for mapping the requested block(s) to the
correct portion of the correct sector on the disk regardless of the actual phy­
sical sector size. The arg parameter specifies a structure of type io_arg
(defined in sys/vtoc .h). The sect st member of the io_arg structure con­
tains the starting sector number and the datasz member contains the
number of sectors. The memaddr member of the io_arg structure points to
the address of a sufficiently large area containing the requested data upon
successful completion.

V_RVTOC
Read the VTOC from the disk. The arg parameter specifies a structure of
type io_arg (defined in sys/vtoc .h). The sectst and datasz members of
the io_arg structure are ignored. The memaddr member of the io_arg
structure points to the address of a structure of type vtoc (defined in
sys/vtoc .h) containing the requested data upon successful completion.

V_WVTOC
Write the VTOC to the disk. The arg parameter specifies a structure of type
vtoc (defined in sys/vtoc. h). The sectst and datasz members of the
io_arg structure are ignored. The memaddr member of the io_arg struc­
ture points to the address of a structure of type vtoc (defined in
sys /vtoc. h) containing the requested data upon successful completion.

DINIT CONSIDERATIONS
The utility dinit(lM) initially formats the disk and fixes any new bad spots occur­
ring over time. Although a device driver redirects all future operations away from
new bad spots, any existing data in the bad block is lost. Always use the -s option
to dini t when attempting to fix new bad spots.

DDEFS CONSIDERATIONS

10/92

The utility ddefs defines disk characteristics. The output of the ddefs utility is a
file normally saved in the /etc/dskdefs directory. This file is used as input to the
dinit(lM) utility when it initializes a disk.

A brief description of the important fields follows.

Comment
Identification of the ddefs file to the user.

Disk type
Decimal equivalent of a two-byte field. Upper byte is the SCSI controller
type; lower byte is the peripheral type. This field is not currently used by
the MVME328 and SCSI1X7 drivers. Valid disk types are:

Page 3

disk(7) disk(7)

Page 4

CONTROLLER PERIPHERAL DISK
DISK TYPE TYPE TYPE

mcdcIII Ox13 Ox02 4098
mcdcIV Ox13 Ox02 4866
mcdcV Ox13 Ox02 4866
mcdcVII Ox13 Ox02 4866
mfuj2613 Ox13 Ox02 4866
mfuj2614 Ox13 Ox02 4866
mfuj2624 Ox13 Ox02 4866

Format command
Used by dinit(lM) for formatting. It is set to none for the MVME328 and
SCSI1X7.

Diagnostic tracks
Used by dinit(lM) to write diagnostic tracks on the disk. The default
value for the MVME328 and SCSI1X7 is no.

Bad spot strategy
The MVME328 and SCSI1X7 drivers consider all media as PERFECT.

Maximum number of bad spots
The maximum number of new bad spots that can be added.

Number of sectors
The total number of sectors on the disk.

Sector size
The physical sector size of the disk.

Sectors per track
The number of sectors per track on the disk.

Cylinders
The total number of cylinders on the disk.

Heads
The number of heads on the disk.

The following fields are not used by the MVME328 and SCSI1X7: Precompensation
cylinder, Sector interleave, Spiral offset, Step rate, Starting head number, ECC error
length, Attributes mask, Extended attributes mask, Attributes word, Gap byte 1,
Gap byte 2, Gap byte 3, Gap byte 4, and Unformatted sector size.

Controller Attributes Word
Identifies various characteristics of the disk controller configuration, as
shown in the following table:

10/92

disk(7) disk(7)

DEFINITION

OxOlOOO
OxlOOOO
Ox00800

SET(l) RESET(O)

Don't stop format if p/g list inaccessible Stop format if inaccessible
Don't tum on drive cache Turn on drive cache
Defect management zone = cylinder Defect management zone = track

These are the only flags currently used by the MVME328 and SCSI1X7 device
drivers.

Sector slip count
Indicates the number of spare sectors to be reserved for the defined defect
management zone. Note: changing this value can affect the usable capacity
of the drive.

The following ddefs utility fields are ignored: root file system offset, root file sys­
tem size, /usr file system size, /usr file system slice, swap size, and swap slice.
The following ddefs utility fields have values entered based on how the disk is to
be used: slice count and end-of-disk reserved area.

Alternates
This number is multiplied by the number of heads to determine the number
of spare tracks to be reserved at the end of the drive for defect management.
Note: changing this value can affect the usable capacity of the drive.

SEE ALSO
cdrom(7), floppy(7), intro(7)

10/92 Page 5

dlce(7) (TCP/IP) dlce(7)

NAME
dlce - Data Link I Common Environment interface

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/dlce.h>

fd = open("/dev/dlceO", O_RDWR);

DESCRIPTION

10/92

The dlce is a STREAMS-based cloned software driver used with the MVME374
Ethernet board/driver. The dlce interface conforms to the Data Link Provider
Interface (DLPI).

The dlce driver can be opened directly, or indirectly from the clone device driver.
During the TCP/IP startup, the dlce device is opened and linked to the IP and ARP
STREAMS modules via the slink command. From then on, dlce converts all the
outgoing packets, received from IP I ARP, to the format defined by Common
Environment/BPP interface and passes these packets to the MVME374 driver (which
is currently named MVME37X).

Upon receiving incoming packets from the MVME374 driver, dlce converts these
packets to the STREAMS-based DLPI format messages and passes these packets to
IP/ARP.

When the MVME37X package is installed, the postinstall script in the package
creates the device nodes for the DLCE driver. The name of a device node is com­
posed of the string "dlce" followed by the board number (0 or 1) of the MVME374
which the DLCE driver is associated with. The board number must be the same as
the MVME374's cpu number minus 2 (cpu 0 and 1 are reserved for the Common
Environment and the local cpu). For instance, an MVME374 with cpu 2 (as defined
in the edt_data file), would have a device name of /dev/dlceO.

A dlce node major device number is the major device number of the clone device
driver. A dlce minor device number is the major number of the dlce device, found
in /etc/master.d/dlce, concatenated with the board number corresponding to
this device. See intro(7) for the pictorial representation of the minor device
number as passed to the device driver. For the dlce device driver, the bit fields in
the minor format are defined as:

The BOARD bits define the board device number. Boards are numbered
from 0. The maximum board device number supported is 1.

The MAJOR# bits correspond to the real major number of the dlce device
as specified in the file I etc/master. di dlce.

The device node name is also used as the Ethernet network interface name by
cenet in the network database file /etc/strcf and by ifconfig in the script
/etc/inet/rc.inet.

Each dlce device may have up to four (4) minor devices open simultaneously.
This number is configurable by modifying the #DEV field in I etc/master. d/ dlce.

Page 1

dlce(7) (TCP/IP) dlce(7)

USAGE
STREAM Message Processing

Page 2

The following are the types of STREAMS messages the driver can process:

M_PROTO/M_PCPROTO

M_IOCTL

Four DLPI protocol messages are supported: DL_INFO_REQ,
DL_UNITDATA_REQ, DL_BIND_REQ, and DL_UNBIND_REQ,. Unsupported
message types that are received are ignored and the STREAM message is
freed.

DL_INFO_REQ is a request for driver information. Driver information is
passed back up the stream in a message of type dl_info_ack_t with
dl_primitive set to DL_INFO_ACK. However, if enough memory is not
available for the driver information, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_UNITDATA_REQ is a request to transmit data. The message is in the
dl_unitdata_req_t format. The driver will process this message and
send data to the appropriate destination address. Most errors that can
occur during this message are turned around in the message itself and sent
back up stream in a message with dl_primi ti ve set to DL_UDERROR_IND.
If enough memory is not available for processing, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_BIND_REQ is a request to bind a service access point (SAP) to the minor
device number associated with the current stream. The request message is
of type dl_bind_req_t. Once the stream has been bound, an ack­
nowledgement message type dl_bind_ack_t is sent back up the stream.
Errors generated during the processing of this message that cause an error
message of type dl_error_ack_t to be sent back up the stream are:
stream already bound, bad sap value, and cannot allocate memory for ack­
nowledgement. Currently, the only SAPs supported by dlce are IP _SAP
and ARP _SAP; IEEE802.3 frames are not supported.

DL_UNBIND_REQ is a request to unbind the minor device associated with
the current stream. Errors generated during message processing that cause
an error message of type dl_error_ack_t are: minor device is not bound
and cannot allocate enough memory for acknowledgement. An ack­
nowledgement message of type dl_ok_ack_t is generated when the
stream has been unbound.

ioctl commands are received in messages of type iocblk. Command
data must be stored in a connected message block type M_DATA. Some
commands do not require M_DATA blocks; M_DATA block requirements are
listed. Data passed back upstream is always contained in an M_DATA
block.

A description of user ioctl stream messages can be found under the
I_STR command in streamio(7). A sample code extract can be found in
the STREAMS Mechanism chapter of the STREAMS Programming Guide.

10/92

dlce(7) (TCP/IP) dlce(7)

FILES

M_FLUSH

SIOCGENADDR is a type of request to return the Ethernet address of the
LANCE controller associated with the current queue. This command
requires an M_DATA block of type struct ifreq.

If the command is a read queue flush, the read queue of the driver is
flushed and the message is passed back up stream. If the command is a
write queue flush, the write queue of the driver is flushed.

/dev/dlce_*
/usr/include/sys/dlpi.h
/usr/include/sys/dlce.h
/usr/include/sys/dlcecommon.h
/usr/include/sys/dlceuser.h

SEE ALSO

10/92

ifconfig(lM), slink(lM), strace(lM), edt_data(4), master(4), strcf(4N),
arp(7), clone(7), intro(7), ip(7), streamio(7)
Programmer's Guide: STREAMS
McGrath, G., A STREAMS-based Data Link Provider Interface (DLPI), Version 1.3,
AT&T Bell Laboratories, Summit, N.J., February 1989

Page 3

e1x7(7) (TCP/IP) e1x7(7)

NAME
elx7 - MVME1X7 Local Area Network Interface

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/macioctl.h>

fd = open("/dev/elx7_c0d0", O_RDWR);

DESCRIPTION

10/92

The MVME1X7 on-board Intel LANC chip (82596CA) is a Local Area Network Con­
troller for Ethernet and IEEE 802.3 compatible networks. The LANC can handle all
IEEE802.3 Medium Access Control and channel interface functions. The elx7 dev­
ice driver supports TCP /IP and OSI protocol stacks.

The elx7 is a STREAMS-based driver used with MVME1X7 cpu boards. The elx7
interface conforms to the Data Link Provider Interface (DLPI). In addition, the
elx7 driver accepts the MAC management commands specified in the MAC Pro­
vider Interface (MPI). To account for possible cpu board expansion, the driver data
structures are designed to accomodate more than one LANC controller on a single
cpu board via changes to the edt_data and master. d files.

The elx7 driver can be opened directly or indirectly from the clone device driver.
During TCP /IP startup, the elx7 device is clone opened and linked to the IP and
ARP STREAMS modules via the slink command. From then on, elx7 converts all
the outgoing packets received from IP I ARP to the format defined by the LANC
controller and then passes these packets to the chip. If the OSI-DP package is
installed on the system and linked into the kernel, the elx7 driver will accept out­
going packets from the DLR (OSI LLCl) module.

Upon receiving incoming packets from the LANC controller, elx7 converts these
packets to STREAMS-based DLPI format messages and passes these packets to the
appropriate user (e.g., ARP, IP, or DLR).

The mvmecpu namer program, creates or deletes the device special files for the elx7
driver at boot time. The device special filenames are composed of the string
elx7 _cydz, where y is the controller number and z is the minor device number.
Controllers are numbered beginning at 0. The device special filename for the first
controller in the system is /dev/elx7_c0d0, for the second controller (if the cpu
board has one) is I dev I elx7 _cld0, and so on.

An elx7 device special file major device number is the major device number of the
clone device driver. An elx7 minor device number is the major number of the
elx7 device, found in I etc/master. d/ enetlx7, concatenated with the board
number corresponding to this device. See intro(7) for the pictorial representation
of the minor device number as passed to the device driver. For the elx7 device
driver, the bit fields in the minor format are defined as:

The BOARD bits define the controller device number. Controllers are
numbered from 0. The maximum controller device number supported is 1,
i.e., two controllers.

The MAJOR# bits correspond to the real (external) major number of the
elx7 device as specified in the file I etc/master. d/ enetlx7.

Page 1

e1x7(7) (TCP/IP) e1x7(7)

USAGE

The device special filename is also used as the Ethernet network interface name by
cenet in the network database file /etc/strcf and by ifconfig in the script
/etc/inet/rc.inet.

Each elx7 device may have up to seven (7) minor devices open simultaneously.

STREAM Message Processing

Page 2

The following are the types of STREAMS messages the driver can process:

M_PROTO/M_PCPROTO
Six DLPI protocol message types are supported: DL_INFO_REQ,
DL_ UNITDATA_REQ DL_BIND _REQ, DL_ UNBIND _REQ,
DL_ENABMULTI_REQ and DL_DISABMULTI_REQ. Unsupported message
types that are received cause an error message of type dl_error_ack_t
with dl_errno set to DL_NOTSUPPORTED to be sent back up the stream.

DL_INFO_REQ is a request for driver information. Driver information is
passed back up the stream in a message of type dl_info_ack_t with
dl_primitive set to DL_INFO_ACK. However, if enough memory is not
available for the driver information, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_UNITDATA_REQ is a request to transmit data. The message is in the
dl_unitdata_req_t format. The driver will process this message and
send data to the appropriate destination address. Most errors that can
occur during this message are turned around in the message itself and sent
back up stream in a message with dl_primitive set to DL_UDERROR_IND.
If enough memory is not available for processing, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_BIND_REQ is a request to bind a service access point (SAP) to the minor
device number associated with the current stream. The request message is
of type dl_bind_req_t. A SAP type, as long as it is valid, is assumed to
be an Ethernet binding if it is not equal to IEEE8023_TYPE. Any Ethernet
type can be used as a binding SAP. Only one stream may use
IEEE8023_TYPE as a SAP. All IEEE802.3 frames will be sent up this stream.
If the OSI-DP package has been installed, the DLR module will bind to this
SAP and will receive all 802.3 frames. Once the stream has been bound, an
acknowledgement message type dl_bind_ack_t is sent back up the
stream. Errors generated during the processing of this message that cause
an error message of type dl_error_ack_t to be sent back up the stream
are: stream already bound, bad sap value, and cannot allocate memory for
acknowledgement.

DL_UNBIND_REQ is a request to unbind the minor device associated with
the current stream. Errors generated during message processing that cause
an error message of type dl_error_ack_t are: minor device is not bound
and cannot allocate enough memory for acknowledgement. An ack­
nowledgement message of type dl_ok_ack_t is generated when the
stream has been unbound.

10/92

e1x7(7)

M_IOCTL

10/92

(TCP/IP) e1x7(7)

DL_ENABMULTI_REQ is a request to enable a multicast address on a per­
stream basis. An individual stream may have a maximum of sixty-four
multicast addresses in its table, subject to the following limitation. There
may be no more than sixty-four unique addresses for all streams associ­
ated with each controller. An acknowledgement message of type
dl_ok_ack_t is generated if the request is valid. A message of type
dl_error_ack_t is generated with dl_primitive set to DL_BADADDR if
the multicast address is invalid or dl_primitive set to DL_TOOMANY if
there is no space left in the controller's multicast table.

DL_DISABMULTI_REQ is a request to disable a multicast address on a per­
stream basis. The driver will not accept frames with this multicast address
even if elx7multi_all is enabled and the LANC is accepting multicast
addresses. An acknowledgement message of type dl_ok_ack_t is gen­
erated if the request is valid. A message of type dl_error_ack_t is gen­
erated with dl_primitive set to DL_BADADDR if the multicast address is
invalid or dl_primitive set to DL_NOTENAB if the requested address is
not currently enabled.

ioctl commands are received in messages of type iocblk. There are
many ioctl commands supported by the driver. Command data must be
stored in a connected message block type M_DATA. Some commands do
not require M_DATA blocks; M_DATA block requirements are listed. Data
passed back upstream is always contained in an M_DATA block. All of the
ioctl #defines used can be found in the file
include/sys/macioctl.h.

A description of user ioctl stream messages can be found under the
I_STR command in streamio(7). A sample code extract can be found in
the STREAMS Mechanism chapter of the STREAMS Programming Guide.

MACDELAMCA is a request to delete all multicast table entries on the con­
troller associated with this stream. This command does not require an
M_DATA block. The driver will not accept any multicast frames even if
elx7multi_all is enabled and the LANC is accepting multicast addresses.

MACDELMCA is a request to delete one multicast address from a multicast
table on a per-stream basis. This command requires an M_DATA block of
type mc_frame. The driver will not accept frames with this multicast
address even if elx7multi_all is enabled and the LANC is accepting mul­
ticast addresses.

MACGETIA is a type of request to return the Ethernet address of the LANC
controller associated with the current queue. This command does not
require an M_DATA block.

MACGETMCA is a request to return the entire multicast table for the con­
troller associated with the current queue. This command does not require
an M_DATA block.

MACGETSTAT is a request to return a statistic the driver has been gather­
ing. A returned value of -1 indicates the statistic was not available. This
command requires an M_DATA block. The data block is an array of struc­
tures. Each structure has the following format (see macioctl. h):

Page 3

e1x7(7)

Page 4

struct macstat
long name ;
long value ;
}

{TCP/IP) e1x7{7)

A table of number defines and their descriptions follow:

MACGETSTAT
Name Description

MACSTAT_DEV _TIMEOUTS total number of device timeouts
MACSTAT_)(MITED number of successful transmits
MACSTAT_XMITED_DEF number of deferred transmits
MACSTAT_XMITED_lCOLL number of transmits with >I =l collision
MA CST AT _COLLISIONS total number of collisions
MACSTAT _NOXMIT _BUFF total number dropped frames because of no

STREAM buffer
MACSTAT _NOXMIT _COLL number of frames dropped due to excess

collisions
MACSTAT_RECVD number of frames successfully received
MACSTAT_RECVD_CKSUM number of CRC errors
MACSTAT _RECVD _ALIGN number of frames with alignment errors
MACSTAT_NORECV _RES number of frames dropped because of

resource lack
MACSTAT_NORECV _LENGTH number of frames dropped because of bad

length
MACSTAT_RECVD_MCAST number of multicast frames received
MACSTAT _XMITED _MCAST number of multicast frames transmitted
MACSTAT_NORECV _MCAST number of multicast frames rejected
MACSTAT_NORECV _TYPE number of frames dropped because

unbound type
MACSTAT_NOXMIT_CARRIER number of times lost carrier
MACSTAT _NOXMIT _ CTS number of times lost CTS
MACSTAT_DMA_ERRORS number of DMA errors
MACSTAT_RECVD_BCAST number broadcast frames received
MACSTAT_OUT_OF_WINDOW number of late collisions
MACSTAT_XMITED_BCAST number of broadcast frames transmitted

MACSETIA is a request to set the Ethernet address for the LANC controller
associated with the current stream. After executing MACSETIA, the net­
working subsystem must be stopped and then restarted. The address is
immediately changed in the LANC and the non-volatile RAM on the cpu

10/92

of

e1x7(7) (TCP/IP) e1x7(7)

M_FLUSH

board.

MACSETMCA is a request to add one multicast address to a multicast table
on a per-stream basis. This command requires an M_DATA block of type
mc_frame. A multicast address must have the least significant bit of
byte[OJ of the Ethernet address set. An individual stream may have a max­
imum of sixty-four multicast addresses in its table, subject to the following
limitation. There may be no more than sixty-four addresses for all streams
associated with each controller.

SIOCGENADDR is a type of request to return the Ethernet address of the
LANC controller associated with the current queue. This command
requires an M_DATA block of type struct ifreq.

If the command is a read queue flush, the read queue of the driver is
flushed and the message is passed back up stream. If the command is a
write queue flush, the write queue of the driver is flushed.

Master.d Parameters

10/92

The driver's master. d file is partitioned into two sections. Section 1 declares data
structure names to be accessed by the driver software, their type, and their initial
value. Section 2 contains the parameter declarations used in section 1 for setting
data structure values. Most data structures are defined as arrays, where the length
of the array is determined by the number of LANC controllers in the Equipped
Device Table. The following table lists the section 1 parameters, their default sec­
tion 2 declaration and value, and their description. Some data structures mention
that certain settings of a data structure may cause networking lock-up due to a
LANC bug. These settings can cause errors when the A-1 step of the LANC chip is
used. The B step of the LANC chip, when released, will correct these errors.

Page 5

e1x7(7) (TCP/IP) e1x7(7)

Master.d Parameters

Parameter Default Description
elx7buf_type STREAM(l) Use local or STREAM buffer control flag.

This parameter is only checked on cpu boards
which can snoop the bus, for example, the 167.
The 187 does not snoop the bus so this
parameter's setting for the 187 is not used. The
driver running on the 187 only allocates
local buffers. The other setting is LOCAL (0).

elx7rcv_nrnrfd RFDS_DEFAULT (16) Number of receive frames that can be pro-
cessed by the LANC before requiring more
cpu resources.

The minimum number of receive frame
descriptors is four. The larger the value the
more system resources may be consumed.

elx7rcv_szbuff RBUFSZ_DEFAULT (1514) The size of a receive buffer in bytes.

Receive buffers can be chained together by
the LANC if a frame larger than a receive
buffer is being processed. The minimum size
for a receive buffer is 60 bytes; the maximum
is 1514 bytes. Receive buffer size must be
even. The larger the value the more system
resources are consumed.

elx7rcv_nmbfdes RBUFDES_DEFAULT (17) The number of receive buffers allocated.

The minimum number allowed is four.
However, due to a bug in the LANC chip,
software must ensure that receive frame descrip-
tors always run out before all of the receive
buffers are used. This means the value for the
number of receive buffers must be >
(number of receive frames * 1514)/receive
buffer size. The larger the value the more
system resources are consumed.

elx7tx_nmcbl NMTXCBL_DEFAULT (16) The number of transmit frames that can be
handled by the LANC.

The minimum number allowed is four. The
larger the value the more system resources
are consumed.

Page 6 10/92

e1x7(7)

Parameter
elx7tx_szbuff

elx7tx_nmbfdes

elx7rcv_fifo

10/92

(TCP/IP) e1x7(7)

Master.cl Parameters :IcontI

Default
TXBUFSIZ_DEFAULT (1514)

TXBUFDES_DEFAULT (20)

FIFO_DEFAULT (5)

DescriE_tion
The size of a local (not stream) transmit
buffer in bytes.

The minimum buffer size is 60; the max­
imum is 1514. However, due to a LANC bug,
the size should be kept at the maximum. If more
than one buffer is used per transmit frame,
networking may at some point lock-up.
This would probably not occur in single­
segment networks but networks with
repeaters may see this error.
The number of transmit buffer descriptors.

Transmit command blocks point to transmit
buffer descriptors which then point to
transmit buffers. With the default setting for
elx7tx_szbuff, each transmit descriptor is
associated with one complete frame.
This is an index into a table of LANC receive
and transmit FIFO threshold values.

The LANC has independent 128 byte receive
and 64 byte transmit FIFOs. The value 8
indicates a transmit threshold of 32 bytes
and a receive threshold of 64 bytes. The
table is listed below:

Value Tx Rx

0 0 128
1 4 120
2 8 112
3 12 104
4 16 96
5 20 88
6 24 80
7 28 72
8 32 64
9 36 56
10 40 48
11 44 40
12 48 32
13 52 24
14 56 16
15 60 8

Page 7

e1x7(7) (TCP/IP) e1x7(7)

Master.cl Parameters IcontI

Parameter Default Descr~ion

elx7bus_ton ON_BUS_THROTL (15) On bus throttle timer in microseconds.

This is the maximum amount of time the
LANC can keep the local bus before releas-
ing it. The maximum value allowed is 30;
the m~imum is one.

elx7bus_tof OFF_BUS_THROTL (1) Off bus throttle timer in microseconds. I
This is the minimum amount of time the
LANC must stay off the local bus after
releasing it. The maximum value allowed is
50; the minimum is one.

elx7dbug_lvl DEBUG_LEVEL (0) Debug level for debugging prints to the sys-
tern console.

LEVEL O indicates debugging is off. The
maximum level is three. Each higher level
will print more detailed debug information.

elx7adpt_szing RESERVED Reserved, must not be changed.
elx7adpt_pkwind RESERVED Reserved, must not be changed.
elx7tdr TDR_ENABLED (1) Time Domain Reflectometry control flag.

The LANC chip can help determine where
and what kind of problems are in the net-
work cabling. If this flag is enabled and if I
the software thinks that there may be a cable
problem, a command will be launched to try
and determine where and what the problem
is. If a problem is found, a warning message

I

is printed on the system console. If this flag
is disabled, TDR_DISABLED (0), then no prob-
lem checking commands will be launched.

elx7savbadframe SVBD_DISABLED (0) Control flag to tell the LANC whether to
pass bad frames it receives to the driver or
throw them away.

Even though they are thrown away, the
LANC keeps statistics on bad frames. The
default state is to throw away bad frames.
Bad frames can be saved by setting this
value to SVBD_ENABLED (1). However, due to
a LANC bug, the SVBD _ENABLED setting may
cause a networking lockup.

Page 8 10/92

e1x7(7) (TCP/IP) e1x7(7)

Master.cl Parameters J_contl

Parameter Default Description
elx7loopback OFF _LOOPBACK (0) Control flag for LANC loopback modes.

This flag must only be changed for hardware
debug purposes. An Intel 82596 User's
Manual is required. Other values are
INT_LOOPBACK (1), NOLPBK_LOOPBACK (2),
WLPBK_LOOPBACK (3).

elx7promiscuous PROM_DISABLED (0) Control flag for enabling/ disabling the
LANC promiscuous mode.

Enabling the mode means the LANC accepts
all packets transmitted on the network.
Disabling the mode means the LANC
accepts only broadcast, multicast, and
specific packets meant for it. It is up to
software layers above the driver to set up
service access points to accept all packet
types when the mode is PROM_ENABLED (1).
This parameter can override the setting of
elx7broadcast.

elx7broadcast ENAB_BROADCAST (0) Control flag to enable/ disable receipt of
broadcast packets.

The default is to receive all broadcast pack-
ets. DISAB_BROADCAST (1) is the other
option.

elx7car_filtwid CARFILTWID_DEFAULT (0) The width required of the Carrier Sense sig-
nal, in bit times, before it is recognized as
being active.

The maximum value is 7. Changes to this
value may be useful in noisy cable environ-
men ts.

elx7car_source EXT_CARSOURCE (0) Control flag to specify internal/external gen-
eration of Carrier Sense.

In external mode, Carrier Sense is fed
through the CRS pin. In internal mode
INT_CARSOURCE(l), presence of the receive
clock is interpreted as Carrier Sense Active.

elx7col_filtwid COLFILTWID_DEFAULT (0) Specifies the width required of CDT, in bit
times, for the LANC to recognize that a colli-
sion has occurred.

The maximum value allowed is 7.

10/92 Page 9

e1x7(7) (TCP/IP) e1x7(7)

Master.cl Parameters j_contl

Parameter Default Description
elx7col_source EXT_COLSOURCE (0) Specifies external/ internal collision detect

source.

External collision detect is fed through the

1
CDT pin. Internal detects the presence of
carrier sense during transmission or the
presence of the receive clock during
transmission as a collision.

elx7multi_all I DJS_MULTIALL (1) Control flag to enable/disable the LANC
from receiving all frames that have a multi-
cast address in the destination address field.

The default is disabled. The other option is
EN_MULTIALL (0).

elx7txqu_quall DIS_QUALL (0) Control flag to enable/disable queuing of all
transmit packets for the driver's write ser-
vice routine.

This flag is for software testing only. The
default setting is disabled. The other option
is EN_QUALL (1).

elx7txqu_drop DIS_DROPALL (0) Control flag to disable/enable dropping of
all transmit packets in the driver's put rou-
tine, i.e., no data is sent out on the cable.

This flag is for protocol stack testing only. The
default setting is disabled. The other option
is EN_DROPALL (1).

elx7tx_lngchk DIS_LENGCHK (1) Control flag to disable/enable receive frame
length checking and transmit frame padding
on the LANC chip.

This cannot be used for Ethernet
software/hardware networks. It can only be
used for IEEE802.3 compliant software and
hardware networks. Also, due to a LANC
bug, setting the flag to EN_LENGCHK may
cause a networking lockup.

Page 10 10/92

e1x7(7) (TCP/IP) e1x7(7)

Debug Aids

FILES

The driver calls the STREAMS logger kernel routine, strlog. These messages are
mostly error messages. A few are only informational. The trace messages are seen
with the strace(lM) command. Additional trace messages can be seen when the
driver is compiled with #define E1X7 _DEBUG.

The module ID for this driver is hexadecimal el 7 or Oxel 7 or 3607 decimal.
There are four sub-IDs and three tracing priority levels. Priority levels are
1-3; level 3 gives the most detail.

Sub-ID Descri}:>tion

3 Interrupt Level Trace

2 Stream Level Trace

1 Initialization Trace

0 Generic Code Trace

Also, as discussed earlier in the Master.d Parameters section, elx7dbug_l vl can be
set to print information to the system console. Note that a level 1 setting will cause
statistics to be printed when all minor devices associated with a controller are
closed.

Also, when the driver has been compiled with #define E1X7_DEBUG, a debugging
subroutine can be called from within KDB, the kernel debugger. The subroutine's
name is elx7debugger.

Note that when the driver is compiled with #define DEBUG, E1X7_DEBUG is
automatically defined.

/dev/elx7_*
/usr/include/sys/dlpi.h
/usr/include/sys/macioctl.h
/usr/include/sys/elx7.h

SEE ALSO

10/92

ifconfig(lM), mvmecpu(lM), slink(lM), strace(lM), edt_data(4), master(4),
strcf(4N), arp(7), clone(7), intro(7), ip(7), streamio(7).
McGrath, G., A STREAMS-based Data Link Provider Interface (DLPI), Version 1.3,
AT&T Bell Laboratories, Summit, N.J., February 1989
LT-610 Programmer Guide, Preliminary version, Retix, Santa Monica, CA, 1991

Page 11

edt_data (4) edt_data (4)

NAME
/stand/edt_data - Equipped Device Table (EDT) Data File

DESCRIPTION
The Equipped Device Table data file describes board and device specific data used
for configuring a kernel. Associated with some boards is an Extended EDT (XEDT)
which describes subdevices of those boards and may be of zero length. The XEDT
can be read by the program via an sysm68k/sysm88k(2) call XGETEDT on the spe­
cial file associated with the board. Note that not all drivers may support this
option.

COMMENTS
An EDT data file may contain comments. A comment begins with the character '#'
and extends to the end of the line.

GENERAL DIRECTIVE INFORMATION
An EDT data file is composed of a collection EDT data file directives.

The template for the directives is:

directive name [options] [cpus(s)]
{

body

directive is the name of the directive.

name specifies the name to be associated with the directive.

options specifies strings which are directive specific.

cpu(s) specifies which CPUs this directive should be limited to. If no cpu(s) are
specified, the directive is associated with all CPUs that the kernel may support.
Valid cpu(s) are "mvmel41", "mvme167", "mvme181", "mvme187", "mvme188", and
"mvme197".

It is possible for some directives to not have a body, in which case the open and
close braces are dropped as well. If the directive does have a body, it is embedded
in the open and close braces and consists of whitespace separated keyword and
value pairs, one per line.

When a number is called for it may be expressed in decimal, octal, or hexadecimal.
Hexadecimal numbers must be preceded with the sting "Ox". Octal number must be
preceded with a leading zero.

THE VECTOR-GROUP DIRECTIVE

10/92

The vector-group directive specifies that group of interrupt vectors should be
assigned a name, be reserved from all but explicit use, and the starting location of
the group.

The template for the vector-group directive is:

vector-group name [ignore] [cpu(s)]

Page 1

edt_data(4) edt_ data (4)

vector-assignment starting-location
number-of-vectors number

If the ignore string is present, the directive will always be ignored (never included
into a kernel).

The number-of-vectors keyword specifies the number of interrupt vectors in the
group.

The vector-assignment keyword specifies the starting location of the group. The
starting-location may be expressed as an:

An absolute vector displacement is defined as the interrupt vector number multi­
plied by4.

The string "any" will allow the vector group to automatically assigned any accept­
able location that is found.

A modulo alignment directive specifies that the group of vectors may be automati­
cally assigned a locatation provided that the vector number of the starting vector of
the group has a remainder of zero when it is divided by the specified number.

The form of this directive is "mod(specified-number)".

THE DRIVER DIRECTIVE

Page 2

The driver directive specifies that a device driver is required to deal with a specific
piece of hardware.

The template for the driver directive is:

driver name [ignore] [probe] [cpu(s)]
{

id
io-address
io-length
memory-address
memory-length
interrupt-level
vector-assignment
number-of-vectors
aux-info

number
number
number

number
number
number

starting-location
number
number number number number

The probe string specifies that this device should be probed for when the system
boots. If this is string is missing, the device and its driver are considered "required"
in order to build a kernel.

The ignore when used with the "required" driver (one that does not have probe

10/92

edt_data (4) edt_ data (4)

specified) it will not be included in the kernel.

Drivers with both probe and ignore are handled differently. If all of the drivers for
a specific type of device are marked ignore they will be excluded from the kernel.
However if only some of the devices are ignored, they may still be included into the
kernel for padding purposes: making sure that the infomration emitted into the ker­
nel for the drivers to use isn't modified by the removal of a device.

The id keyword specifies a unique number that identifes each device that a driver
may utilize.

The io-address keyword specifies the starting address of the short 1/0 area used by
the device. If the device doesn't have a short 1/0 area this keyword may be
dropped.

The io-length keyword specifies the length of the devices short 1/0 area. If the io­
address keyword is present, this keyword must also be present.

The memory-address keyword specifies the starting address of an auxiliary
memory area use by this device. If the device doesn't have an auxiliary memory
area this keyword may be dropped.

The memory-length keyword specifies the length of the devices auxiliary memory
area. If the memory-address keyword is present, this keyword must also be
present.

The interrupt-level keyword specifies the interrupt level that this device should
interrupt with.

The vector-assignment and number-of-vectors keywords function the same as in
their vector-group context, however an additional vector-assignment technique is
possible. This is the indexed reference to a vector group. An indexed reference is
specified by the vector group name followed by the index number embedded in
open and close square brackets.

The aux-info keyword is used to specify driver specific values that the driver may
use in whatever way it sees fit. All four numbers must be present. This keyword is
optional.

THE CPU-IGNORE-INTERRUPT-LEVEL DIRECTIVE

10/92

This directive is used to ignore certain interrupt levels. This is useful when
VMEbus devices are co-resident with UNIX devices and UNIX must not handle the
interrupts associated with those devices.

The template for the ignore-cpu-interrupt-level directive is:

ignore-cpu-interrupt-level none or levels

The keyword none, which is also the default if this directive isn't used, specifies
that all interrupt level should be allowed. Otherwise the levels specify which inter­
rupt levels to ignore, each level being specified by its level number (e.g. interrupt

Page 3

edt_data (4) edt_data(4)

level 5 as the digit 5).

DRIVER WRITER INFORMATION

FILES

Page 4

Each of the keywords in the body of the driver directive causes the cunix program
to automatically generate variables which may be accessed by a driver. These vari­
ables then allow the driver to know how many device of its type are configured
into the kernel, their locations, and characteristics.

Each variable begins with the drivers master.d file prefix, which is denoted by the
string <prefix> below. The generated arrays have the device information stored in
id keyword order.

Variable Data_!YE_e Use
<prefix>_cnt unsigned int Specifies the number of devices configured

into the kernel.
<prefix>_addr array of caddr_t Specifies the starting short I/0 addresses of

each device. Derived from the io-address
keyword.

<prefix>_iolen array of unsigned int Specifies the size (in bytes) of the device's
short 1/0 space. Derived from the io-length
keyword.

<prefix>_maddr array of unsigned int Specifies the starting address of auxiliary
memory area of each device. Derived from
the memory-address keyword.

<prefix>_memlen array of unsigned int Specifies the size (in bytes) of the auxiliary
memory area of each device. Derived from
the memory-length keyword.

<prefix>_nvec unsigned int Specifies the number of vectors per device.
Derived from the number-of-vectors key-
word.

<prefix>_vec array of unsigned int Specifies each devices interrupt vector dis-
placement (the interrupt vector number
multiplied by four). Derived from the
vector-assignment keyword.

<prefix>_ivec array of unsigned int Specifies the interrupt priority level of each
device. Derived from the interrupt-level
keuword.

<prefix>_aux array of unsigned int Specifies the auxiliary information for each
device. Each device's information is a group
of 4 elements. Derived from the aux-info
keyword.

/usr/include/sys/edt.h

10/92

edt_ data (4) edt_data (4)

SEE ALSO
cunix(lM), sysm6Bk(2), sysm88k(2), boot(8), edtp(8)

10/92 Page 5

enet1x7(7) (TCP/IP)

NAME
enetlx7 - MVME1X7 Local Area Network Interface

SEE ALSO
elx7(7)

10/92

enet1x7(7)

Page 1

environ (4) (Framed Access Command Environment Utilities) environ (4)

NAME
. environ, .pref, . variables - user-preference variable files for FACE

DESCRIPTION

10/92

The . environ, .pref, and . variables files contain variables that indicate user
preferences for a variety of operations. The . environ and . variables files are
located under the user's $HOME/pref directory. The .pref files are found under
$HOME/FILECABINET, $HOME/WASTEBASKET, and any directory where preferences
were set via the organize command. Names and descriptions for each variable are
presented below. Variables are listed one per line and are of the form variable=value.

Variables found in . environ include:

LOGINWIN[l-4] Windows that are opened when FACE is initialized

SORTMODE

DISPLAYMODE

WASTEPROMPT

WASTEDAYS

PRINCMD[l-3]

UMASK

Sort mode for file folder listings. Values include the following
hexadecimal digits:

1 sorted alphabetically by name

2 files most recently modified first

8 O O sorted alphabetically by object type

The values above may be listed in reverse order by "ORing" the
following value:

1000 list objects in reverse order. For example, a value of
1002 will produce a folder listing with files least
recently modified displayed first. A value of 1001
would produce a "reverse" alphabetical by name listing
of the folder

Display mode for file folders. Values include the following hex­
adecimal digits:

O file names only

4 file names and brief description

8 file names, description, plus additional information

Prompt before emptying wastebasket (yes/no)?

Number of days before emptying wastebasket

Print command defined to print files.

Holds default permissions that files will be created with.

Variables found in . pref are the following:

SORTMODE which has the same values as the SORTMODE variable described in
. environ above.

DISPMODE which has the same values as the DISPLAYMODE variable described in
. environ above.

Variables found in . variables include:

Page 1

environ (4) (Framed Access Command Environment Utilities)

FILES

Page 2

EDITOR

PSl

Default editor

UNIX shell prompt

$HOME/pref/.environ
$HOME/pref/.variables
$HOME/FILECABINET/.pref
$HOME/WASTEBASKET/.pref

environ(4)

10/92

envmon(7) envmon(7)

NAME
envmon - Environment Monitor Board driver

DESCRIPTION
The envmon driver provides a character-device interface to the Environment Moni­
tor Board (ENVMON). Sometimes this board is also referred to as the EMB. The
ENVMON itself is responsible for the following:

- Monitoring and controlling the state of an external Uninterruptable Power
Supply (UPS). Monitoring of AC-FAIL and Low-Battery conditions is pro­
vided, along with control of AC output from the UPS.

- Monitoring and controlling the state of one to four External Chassis' (typi­
cally 3 plus a UPS). Monitoring of AC-FAIL and Over-Temperature is pro­
vided, along with control of external chassis DC-power.

- Monitoring the state of up to four Internal Chassis temperature sensors.

- Monitoring and controlling the state of the Internal Power Supply (low-
voltage, enable/disable).

- Host notification, via VME Interrupt and VME-accessible status registers, of
any AC-FAIL, Over-Temperature or UPS Low-battery conditions.

- System reset, system power-off or UPS and external chassis power-off under
host program control.

- Automatic power-off of the system and/or UPS and external chassis, upon
persistent Over Temperature condition.

- Transition-module push-buttons and remotable contacts for system Reset and
Abort interrupt.

The envmon driver provides the following:

- Read access (via ioctl(2)) to the ENVMON status registers A and B, for deter­
mining UPS, External Chassis, and Temperature status.

- Indirect or direct write access (via ioctl) to the ENVMON control register, for
generating test interrupts, generating VME SYSRESET, signalling all external
units (including UPS') to turn off their power, or latching off internal and
external power.

- Synchronous notification (via select(2) and poll(2)) of exception conditions
(first failure bit set in Status Register A).

- Interface from uadmin(2) system call to ENVMON control register, to control
system shutdown behavior.

- Handling of ENVMON Abort switch interrupts, by trapping to the
configured debugger (ROM or kdb).

SYSTEM CALL INTERFACES

10/92

The following system calls and semantics are defined for the envmon interface:

Open/Close
Opening the device allows I/O from/to the resultant file descriptor. Only the
super-user may open for write.

Page 1

envmon(7) envmon(7)

Upon success, open(2) returns a file descriptor. On error, -1 is returned, and
errno is set to indicate the error.

[ENO DEV]
The envmon driver is not configured.

[ENXIO]
No envmon board is installed on the system.

[EPERM]
Attempt to open for write by non super-user.

Issuing a close has no effect on the driver or the ENVMON, other than to disas­
sociate the driver from the passed file descriptor.

Read/Write
There is no direct read/write access provided by the driver. Such calls will
return -1, with errno set to [ENODEV].

Ioctl

#include <sys/types.h>
#include <sys/envmon.h>
int ioctl (s, request, arg)
int s, request;
int *arg;

or
ushort *arg;

or
struct emb _stat *arg;

The following table shows the ioctl requests defined for the envmon driver; a
description for each follows the table.

Request Arg Action

EMBGETSTAT struct emb_stat * Get current contents of status registers A & B
EMBXTUOFF NULL Power off all externally connected units
EMBPWRDOWN NULL Latch internal and external power off
EMBTESTINT NULL Generate ENVMON test interrupt
EMBSYSRESET NULL Generate VME SYSRESET
EMBARM int* Setup ENVMON interface to uadmin(2)
EMBDISARM NULL Reset ENVMON interface to uadmin
EMBWRTCMD ushort * Write arbitrary value to Command Register

Page 2

For all commands other than EMBGETSTAT, the device must be open for writing.

EMBGETSTAT
This request retrieves the current values of the A and B status registers
(interrupt cause and external device type) into the emb_stat structure pointed
to by arg. The driver reads register A twice before returning its value, so any
previously latched, but no longer existent failure bits are not presented.

Macros are provided, in envmon.h, to decode the bits of registers A and B.
The macros may be used as booleans, to determine the existence and nature
of any failure conditions present, and/or to identify which devices are

10/92

envmon(7)

10/92

envmon(7)

affected.

EMBXTUOFF
This request causes the ENVMON to send the power-off signal to all
attached external units. If a UPS is attached, this should cause it to disen­
gage its inverter and cease running on batteries, thus powering off the sys­
tem and any other devices attached to the UPS.

There may be no return from this operation. It should only be used on a quiescent
system. It is recommended that this command be issued indirectly, via the
EMBARM interface.

If an attached UPS was not running on batteries, the result of this command
on the UPS is UPS-specific. It may continue to run, until AC power is actu­
ally interrupted, at which time it would likely remove power to the system
immediately.

EMBPWRDOWN
This request causes the ENVMON to turn off the system internal power sup­
ply, and also send the power-off signal to all attached external units. The
board latches itself in this state until physically reset by an operator.

There is no return from this operation. It should only be used on a quiescent system.
It is recommended that this command be issued indirectly, via the EMBARM inter­
face. See the CAVEATS section for other concerns regarding EMBPWR­
DOWN.

EMBTESTINT
This request causes the ENVMON to generate a test interrupt to the system.
This should, in turn, cause any selecting or polling process to be awoken. The
copy of status register A returned by a subsequent EMBGETSTAT, however
will not have the test interrupt bit set, as this will have been cleared by the
interrupt service routine.

EMBSYSRESET
This request causes the ENVMON to generate a VME SYSRESET signal on
the VME bus. There is no return from this operation. It should only be used in
emergencies on a quiescent system.

EMBARM
This request exploits a hook in the uadmin(2) interface in the kernel, causing
it to call the envmon driver with the integer request pointed to by arg, just
prior to entering its infinite loop. This loop is normally entered when a sys­
tem halt is requested with an invocation of the command:

uadmin x 0
(or the equivalent system call uadmin(x, AD_HALT)).

If xis A_SHUTDOWN [2], all processes are killed, and the root filesystem
unmounted before the envmon request is executed. This indirect method of
executing the EMBXTUOFF, EMBPWRDOWN, or EMBSYSRESET com­
mands should be used to ensure that root is umounted prior to system
power-down or reset. It is primarily designed to be used after an automatic
shutdown due to an over-temperature condition, or an AC power failure
(when attached to a UPS).

Page 3

envmon(7) envmon (7)

Page 4

If uadmin issues the EMBXTUOFF command when a UPS is attached (as
indicated in status register B), it waits 10 seconds and then issues an
EMBSYSRESET. This is done in the event that an attached UPS ignores the
power-off signal if AC power has returned.

By default, uadmin is not armed to execute any ENVMON command after an
AD_HALT request, unless the emb_halt_pwrdown master.d parameter has
been set (see the MASTER.D PARAMETERS section).

The EMBARM request has no affect on the uadmin behavior after an
AD_BOOT or AD_IBOOT request. This is controlled by the emb_boot_reset
master.d parameter (see the MASTER.D PARAMETERS section).

EMBDISARM
arg is unused and should be NULL. This request causes uadmin to revert to
the default response to an AD_HALT request, which is controlled by the
emb_halt_pwrdown master.d parameter (see the MASTER.D PARAMETERS
section).

EMBWRTCMD
arg should be a pointer of type ushort. This request writes the value pointed
to by arg to the Command register of the ENVMON.

The value written must include the EMBENACMD bit if ENVMON inter­
rupts are to be enabled.

Upon success, ioctl(2) returns zero. On error, -1 is returned, and errno is set to
indicate the error.

[EB AD Fl
A request other than EMBGETSTAT was made, but the device is not open
for writing.

[ENXIO]
An EMBXTUOFF or EMBPWRDOWN was requested, but the transition
module was not connected.

[EFAULT]
arg points to an invalid or protected part of the process address space.

Select
It is possible to select on an envmon file descriptor for exception conditions. As
long as there are no bits set in Status Register A, select will sleep (the length is
controlled by the timeout argument; see select(2)).

When the ENVMON interrupts due to a power, temperature, or test interrupt,
select will return an FD _SET indicating that the envmon file descriptor has an
exception condition pending, the nature of which can be read with the
EMBGETSTAT ioctl request. Whenever any bit is set in Status register A, select
will return immediately. Thus, select cannot be used to wait for new exception
conditions (one bits), unless all previous exceptions have been cleared (and
Register A has returned to 0). Also, select cannot be used to wait for an excep­
tion condition to be cleared.

Once an exception condition has been raised, it is necessary to poll for status
changes, using EMBGETSTAT.

10/92

envmon(7) envmon (7)

NOTE: On temperature-sensor conditions, the ENVMON can interrupt
thousands of times while a sensor crosses through or hovers near its threshold
temperature. The driver attempts to de-bounce this effect by disabling
ENVMON interrupts for 10 seconds whenever an interrupt is received. It is
possible, however, for a select to return an FD _SET indicating an exception con­
dition, but for that condition to not exist when an EMBGETSTAT is per­
formed, or to exist for random EMBGETSTAT requests. This may continue
indefinitely until the temperature rises sufficiently above the threshold value
to stabilize the register A contents.

Poll
It is also possible to poll an envmon file descriptor for out-of-band data similar
to using select for exception conditions. Use POLLRDBAND as the requested
event.

Driverinfo
The envmon driver includes a driverinfo(D2DK) routine that implements the
DXGETEDT command. Although, strictly speaking, the envmon driver does
not support subdevices, it does report extended EDT information for the dev­
ices connected to the transition module. The "devices" are numbered 1 through
4 corresponding to the connector numbers on the transition module. The dev­
ice types are determined by the state of pins 3 and 4 of the connectors. If pin 3
is grounded then "external-disk-chassis" is returned in the xedt structure; if pin
4 is grounded then "UPS" is returned. If both pins 3 and 4 are grounded then
"problem-with-device" is returned. The number of extended EDT entries is
equal to the number of connected devices that either indicate "external-disk­
chassis", "UPS" or "problem-with-device" based on the state of pins 3, 4 and 5.

MASTER.D PARAMETERS
The following may be set in the /etc/master.d/envmon file.

emb _boot_reset
When set to 1, the EMBSYSRESET command will be sent to the ENVMON
whenever uadmin(lM) or uadmin(2) is invoked to do the BOOT or IBOOT func­
tion. This parameter is set to 1 by default.

emb _halt_pwrdown
When set to 1, the EMBPWRDOWN command will be sent to the ENVMON
whenever uadmin(lM) or uadmin(2) is invoked to do the HALT function. When
set to 0, the ENVMON is not, by default, sent any command in response to the
HALT request. This parameter is set to 0 by default.

The default behavior is overidden by invoking the EMBARM ioctl to specify
the ENVMON command to be sent. Invoking the EMBDISARM ioctl reverts
to the default behavior as controlled by emb_halt_pwrdown.

MESSAGES

10/92

The following messages are printed for the EMBSYSRESET, EMBXTUOFF, and the
EMBPWRDOWN commands:

ENVMON: Asserting VME SYSRESET.
This message is printed when the EMBSYSRESET command is sent to the
ENVMON.

Page 5

envmon(7) envmon(7)

ENVMON: Shutting off external devices.
This message is printed when the EMBXTUOFF command is sent to the
ENVMON.

ENVMON: Shutting off internal power.
This message is printed when the EMBPWRDOWN command is sent to the
ENVMON.

CAVEATS

NOTES

FILES

The driver disables ENVMON interrupts for 10 seconds following any interrupt
(except ABORT). During this 10 second interval all ENVMON interrupts are dis­
abled, including ABORT. The purpose of this delay is to compensate for the lack of
any hysteresis in the temperature sensors.

When executing a EMBPWRDOWN request, the ENVMON logic expects power to
be removed; therefore it also asserts the VME AC-FAIL and SYSRESET lines. Thus,
this command will effect a system reset, even if the ENVMON is not connected to
the internal power-supply or any external units. This command should not be exe­
cuted unless the ENVMON is properly connected to the internal power supply.
Otherwise, the system will reboot automatically with the external power-off signal
asserted (and latched), and any connected disk-drive chassis would be inhibited
from powering up. Also, if a UPS were attached which ignored this signal while
AC was present, it would remove system power immediately, when an AC failure
occured.

Once a UPS power-fail or Over-Temperature condition is raised, there is a finite
amount of time available before the UPS or ENVMON will remove power from the
system. In the case of an AC-failure, the UPS will power down the system when its
batteries are exhausted, or possibly earlier if so programmed. Similarly, the
ENVMON will cut power after a fixed timeout when Over-Temperature occurs.

The AC-fail or Over-Temperature conditions may occur in any order, so user pro­
grams that detect one condition and set a grace-period timer must monitor
ENVMON status during the timing interval, since the Over-Temp and battery life
time constants will differ. If the condition with the smaller timeout occurs second,
the UPS or ENVMON could unexpectedly and ungracefully cause a power-down.

The environmental monitor board is supported on the m88k architecture only.

/dev /envmon_cO
/etc/master.cl/ envmon
/usr/include/sys/envmon.h

SEE ALSO
prtconf(lM), intro(2), po11(2), select(2), sysm88k(2)

Environment Monitor Board Set User Guide (ENVMON/Dl)

Page 6 10/92

ethers(4) (Internet Utilities) ethers(4)

NAME
ethers - Ethernet address to hostname database or domain

DESCRIPTION

FILES

The ethers file contains information regarding the known (48 bit) Ethernet
addresses of hosts on the Internet. For each host on an Ethernet, a single line
should be present with the following information:

Ethernet-address official-host-name

Items are separated by any number of SPACE and/ or TAB characters. A '#' indicates
the beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is x: x: x: x: x: x where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in
network order. Host names may contain any printable character other than a
SPACE, TAB, NEWLINE, or comment character. It is intended that host names in the
ethers file correspond to the host names in the hosts(4) file.

The ether_line routine from the Ethernet address manipulation library,
ethers(3N) may be used to scan lines of the ethers file.

/etc/ethers

SEE ALSO
ethers(3N), hosts(4)

10/92 Page 1

fd(4) fd{4)

NAME
I dev I fd - file descriptor files

DESCRIPTION
These files, conventionally called /dev/fd/0, /dev/fd/1, /dev/fd/2, and so on,
refer to files accessible through file descriptors. If file descriptor n is open, these
two system calls have the same effect:

fd = open("/dev/fd/n",rnode);
fd = dup(n);

On these files creat(2) is equivalent to open, and mode is ignored. As with dup,
subsequent reads or writes on fd fail unless the original file descriptor allows the
operations.

For convenience in referring to standard input, standard output, and standard
error, an additional set of names is provided: /dev/stdin is a synonym for
/dev/fd/0, /dev/stdout for /dev/fd/1, and /dev/stderr for /dev/fd/2.

SEE ALSO
open(2), dup(2)

DIAGNOSTICS
open(2) returns -1 and EBADF if the associated file descriptor is not open.

10/92 Page 1

filehdr{4) filehdr{4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION

10/92

Every common object file begins with a 20-byte header. The following C struct
declaration is used:

struct filehdr
{

unsigned short f_magic ; I* magic number */
unsigned short f_nscns ; I* number of sections *I
long f_timdat ; I* time & date stamp */
long f_symptr ; I* file ptr to symtab */
long f_nsyms ; I* number of symtab entries *I
unsigned short f_opthdr ; I* sizeof(opt and header) *I
unsigned short f_flags ; I* flags *I

f_symptr is the byte offset into the file at which the symbol table can be found. Its
value can be used as the offset in fseek(3S) to position an I/O stream to the symbol
table. The UNIX system optional header is 28 bytes. The valid magic numbers are
given below:

#define MC68MAGIC 0520
#define MCSSMAGIC
#define I386MAGIC
#define WE32MAGIC
#define N3BMAGIC
#define NTVMAGIC

0555
0514
0560
0550
0551

#define VAXWRMAGIC 0570
#define VAXROMAGIC 0575

I* M68000 family of processors */
I* MSSOOO family of processors */
/* i386 Computer */
/* 3B2, 3B5, and 3B15 computers */
/* 3B20 computer */
/* 3B20 computer */

/* VAX. writable text segments */
I* VAX. read only sharable

text segments */

The value in f_timdat is obtained from the time(2) system call. Flag bits currently
defined are:

#define F_RELFLG 0000001 I* relocation entries stripped *I
#define F_EXEC 0000002 I* file is executable */
#define F_LNNO 0000004 I* line numbers stripped */
#define F_LSYMS 0000010 I* local symbols stripped */
#define F_AR16WR 0000200 I* 16-bit DEC host */
#define F_AR32WR 0000400 I* 32-bit DEC host */
#define F_AR32W 0001000 I* non-DEC host */
#define F_BM32ID 0160000 I* WE32000 family ID field */
#define F_BM32B 0020000 I* file contains WE 32100 code *I
#define F_BM32MAU 0040000 I* file reqs MAU to execute */
#define F_BM32RST 0010000 I* file contains restore

work around [3B5/3B2 only] *I

Page 1

filehdr (4) filehdr(4)

SEE ALSO
time(2), fseek(3S).

Page 2 10/92

filesystem (7) filesystem (7)

NAME
filesystem - file system organization

SYNOPSIS
I
/usr

DESCRIPTION

10/92

The System V file system tree is organized for administrative convenience. Distinct
areas within the file system tree are provided for files that are private to one
machine, files that can be shared by multiple machines of a common architecture,
files that can be shared by all machines, and home directories. This organization
allows sharable files to be stored on one machine but accessed by many machines
using a remote file access mechanism such as RFS or NFS. Grouping together simi­
lar files makes the file system tree easier to upgrade and manage.

The file system tree consists of a root file system and a collection of mountable file
systems. The mount(lM) program attaches mountable file systems to the file sys­
tem tree at mount points (directory entries) in the root file system or other previ­
ously mounted file systems. Two file systems, I (the root) and /usr, must be
mounted in order to have a completely functional system. The root file system is
mounted automatically by the kernel at boot time; the /usr file system is mounted
by the I etc/re. boot script, which is run as part of the booting process.

The root file system contains files that are unique to each machine. It contains the
following directories:

/dev

/dev/term

/dev/pts

/dev/xt

/dev/sxt

/etc

/home

/mnt

/opt

/proc

/sbin

Character and block special files. These device files provide
hooks into hardware devices or operating system facilities.
Typically, device files are built to match the kernel and
hardware configuration of the machine.

Terminal devices.

Pseudo-terminal devices.

Devices used by layers .

Shell layers device files used by shl .

Machine-specific administrative configuration files and system
administration databases. I etc may be viewed as the home
directory of a machine, the directory that in a sense defines the
machine's identity. Executable programs are no longer kept in
/etc.

Root of a subtree for user directories.

Temporary mount point for file systems. This is an empty
directory on which file systems may be temporarily mounted.

Root of a subtree for add-on application packages.

Root of a subtree for the process file system.

Essential executables used in the booting process and in
manual system recovery. The full complement of utilities is
available only after /usr is mounted,

Page 1

filesystem (7) filesystem (7)

Page 2

/tmp

/var

/var/adm

/var/cron

/var/mail

/var/opt

/var/preserve

/var/spool

Temporary files; initialized to empty during the boot opera­
tion.

Root of a subtree for varying files. Varying files are files that
are unique to a machine but that can grow to an arbitrary (that
is, variable) size. An example is a log file.

System logging and accounting files.

cron's log file.

Where users' mail is kept.

Top-level directory used by application packages.

Backup files for vi(l) and ex(l).

Subdirectories for files used in printer spooling, mail delivery,
cron(l), at(l), etc.

/var /tmp Transitory files; initialized to empty during the boot operation.

Because it is desirable to keep the root file system small and not volatile, on disk­
based systems larger file systems are often mounted on /home, I opt, /usr, and
/var.

The file system mounted on /usr contains architecture-dependent and
architecture-independent sharable files. The subtree rooted at /usr I share con­
tains architecture-independent sharable files; the rest of the /usr tree contains
architecture-dependent files. By mounting a common remote file system, a group
of machines with a common architecture may share a single /usr file system. A
single /usr/share file system can be shared by machines of any architecture. A
machine acting as a file server may export many different /usr file systems to sup­
port several different architectures and operating system releases. Clients usually
mount /usr read-only so that they don't accidentally change any shared files. The
/usr file system contains the following subdirectories:

/usr/bin

/usr/sbin

/usr/games

/usr/include

/usr/lib

/usr/share

/usr/share/man

/usr/share/lib

/usr/src

/usr/ucb

Most system utilities.

Executables for system administration.

Game binaries and data.

Include header files (for C programs, etc).

Program libraries, various architecture-dependent databases,
and executables not invoked directly by the user (system dae­
mons, etc).

Subtree for architecture-independent sharable files.

Subdirectories for on-line reference manual pages (if present).

Architecture-independent databases.

Source code for utilities and libraries.

Berkeley compatibility package binaries.

/usr /ucbinclude Berkeley compatibility package header files.

10/92

filesystem (7) filesystem (7)

/usr/ucblib Berkeley compatibility package libraries.

A machine with disks may export root file systems, swap files, and /usr file sys­
tems to diskless or partially-disked machines that mount them into the standard
file system hierarchy. The standard directory tree for sharing these file systems
from a server is:

/export The default root of the exported file system tree.

I export I exec I architecture-name
The exported /usr file system supporting architecture­
name for the current release.

I export I exec I architecture-name. release-name

/export/exec/share

The exported /usr file system supporting architecture­
name for System V release-name.

The exported common /usr I share directory tree.

I export I exec I share. release-name
The exported common /usr I share directory tree for
System V release-name.

/export/root/hostname The exported root file system for hostname.

/export/swap/hostname The exported swap file for hostname.

/export/var/hostname The exported /var directory tree for hostname.

SEE ALSO
at(l), fsck(lM), init(lM), intro(4) mknod(lM), mount(lM), sh(l), vi(l).

10/92 Page 3

floppy{7) floppy(7)

NAME
floppy - floppy support

DESCRIPTION
Slice number 15 selects the generic floppy interface. This interface provides BCS
support for PC floppy emulation.

When you opens the generic floppy, the driver determines the geometry of the
diskette in the drive and sets the drive geometry to match. If the device is a SY."
drive, the diskette is assumed to be one of the following formats:

- 320KB PC/XT low-density format with 8 sectors per track
- 360KB PC/XT low-density format with 9 sectors per track
- l.2MB PC/ AT high-density format with 15 sectors per track

If the device is a 3Yi" drive, the diskette is assumed to be one of the following for­
mats:

- 720KB PC/XT high density format with 9 sectors per track
-1.44MB PS/2 high density format with 18 sectors per track
- 2.88MB super high density format with 36 sectors per track

If there is no diskette in the drive, the open still succeeds, but any attempt to read,
write, or format the diskette fails, returning ENXIO. A diskette must be put in and
the drive geometry set via the FL_SET_GEOMETRY or FL_GET_INFO ioctl for the
open to succeed.

IOCTL COMMANDS

10/92

The floppy disks support several ioct1(2) functions on the character or raw dev­
ices. These functions permit control beyond the normal open(2), close(2), read(2),
and write(2) system calls. Any attempt to utilize ioctl(2) functions not listed
below causes an EINVAL error to be returned.

All FL_* commands are defined in sys /pcf 1 io. h.

The operations supported by disks are listed below in alphabetical order.

DKFIXBADSPOT
Lock out a bad spot on the disk based on the information in the dkbadlst
structure referenced by arg. The dkbadlst structure is defined in sys/dk.h.

DKFORMAT
Format a disk. The dkfmt structure is defined in sys I dk. h.

DKGETCFG
Get parameters associated with the disk and store them in the dkconfig
structure referenced by arg. The dkconf ig structure is defined in sys I dk. h.
The disk is not accessed by this command.

DKGETINFO
Get parameters associated with the disk and store them in the dkblkO struc­
ture referenced by arg. The dkblkO structure is defined in sys/dk.h. The
disk is not accessed by this command.

DKGETSLC
Get the Volume Table of Contents (VTOC) information for a disk and return
the information in a structure of type struct motorola_vtoc (defined in
sys /vtoc. h) referenced by arg. While the number of supported slices is
determined by the number of slices defined in the ddefs file, all disks are

Page 1

floppy(7) floppy(7)

Page 2

expected to support 16 slices. The disk is not accessed by this command.
DKSETINFO

Set parameters associated with the disk based on the values in the dkblkO
structure referenced by arg. The disk is not accessed by this command.

DKSETSLC
Set the Volume Table of Contents (VTOC) information for a disk and return
the information in a structure of type struct motorola_vtoc (defined in
sys /vtoc . h) referenced by arg. The disk is not accessed by this command.

DKSETCFG
Get parameters associated with the disk and store them in the config struc­
ture referenced by arg. The disk is not accessed by this command.

DKINQUIRY
Return the SCSI INQUIRY data for the device; it is only valid for SCSI disks.
This ioctl can be done on any device the calling process has open. The
SCSI INQUIRY data for the device is copied into the struct inquiry
structure pointed to by arg. The struct inquiry structure is defined in
sys/dk.h.

DKREADCAP
Return the SCSI READ CAP A CITY data for the device; it is only valid for
SCSI disks. This ioctl can be done on any disk or CDROM device the cal­
ling process has open. The SCSI READ CAPACITY data for the device is
copied into the struct readcap structure pointed to by arg. The struct
readcap structure is defined in sys/dk.h. Note: the SCSI READ CAPA­
CITY command returns the number of the last logical block on the media.
This ioctl adds 1 to that number so it represents the actual capacity of the
device. Logical block numbers start at zero.

FL PC_LEVEL
Return the level of PC floppy emulation support as specified in the BCS PC
floppy emulation support supplement. The level is returned to an integer
pointed to by arg.

FL_SET_GEOMETRY
Set the geometry of the floppy drive, possibly overriding the current actual
geometry of the diskette. The information is taken from the struct
fl_geometry structure pointed to by arg. This function is only valid for the
generic floppy device (slice 15). For any other device (slice number), this
function fails, returning EINVAL. The geometry is selected by passing a
structure containing the number of sectors per track and the number of
cylinders. The driver then determines which of the supported geometries
matches this geometry and sets the drive geometry accordingly.

10/92

floppy(7) floppy(7)

The geometry is selected based on the following table for SY." drives.

nsect ncyl geometry

15
9
8

80
40
40

1.2MB PC/ AT format
360KB PC/XT format
320KB PC/XT format

The geometry is selected based on the following table for 3W' drives.

nsect ncyl geometry

36
18

9

80
80
80

2.88MB SHD format
1.44MB PS/2 format
720KB PC/XT format

If no match is found, the ioctl fails, returning 1 and setting errno to EIN­
VAL. A diskette does not have to be in the drive for this ioctl to succeed.

If the selected geometry does not match the actual geometry of the diskette
in the drive, the results of reading or writing in this state are undetermined.

A subsequent format operation (FL_FORMAT_TRACK or DKFORMAT) uses the
geometry selected by this operation.

FL_GET_INFO
Query the status of a floppy disk drive. The information is returned to the
struct fl_info structure pointed to by arg. This command first deter­
mines if there is a diskette in the drive. If there is, it then determines if the
drive door has been opened since the last open(2) or FL_GET_INFO opera­
tion. If the door has been opened, it determines the current diskette's
geometry and sets the drive geometry accordingly.

If the door has not been opened and closed since the last open(2) or
FL_GET_INFO operation, the command returns the current drive geometry.
Note: this may be different than the current diskette geometry as the result of
a previous FL_SET_GEOMETRY operation.

The arg parameter points to a fl_diskinfo structure filled in by this com­
mand as follows:

fl_stat Give status information for the drive since the last time this
drive was opened or the last time this ioctl was called. Most
of these bits are set as a result of some error condition for a pre­
vious 1/0 operation.

FL_EMPTY Set if there is no diskette in the drive.

FL_OFFLINE Set if the drive is offline. If the drive was online
during the open but has since been discon­
nected, then this bit is set and everything else is
cleared.

FL_WRTLCK Set if a previous write operation failed because
the media is write-protected. It is cleared
before each 1/0 or format operation.

10/92 Page 3

floppy (7) floppy (7)

Page 4

FL_BLANK Set if there is an unformatted diskette in the
drive or if the diskette's geometry is not listed
as being supported.

FL_SOFTERR Set if the previous 1/0 failed with a soft error
(CRC or seek error). It is cleared before any
1/0 or format operation.

FL_HARDERR Set if the previous 1/0 failed due to a media or
drive error. It is cleared before any 1/0 or for­
mat operation.

FL_NOTDONE Set whenever an I/0 or format operation is
sent to the drive and cleared when the opera­
tion completes successfully or with a soft error.
It is not cleared if the operation completes with
a hard error.

fl_type Indicate the type of floppy drive as follows:

fl_type drive type

1 3W' low density
2 3W' high density
3 3W' low /high density
4 SW' low density
S SW' high density
6 SY." low /high density

fl_door Set to 1 if a previous operation failed because of a
UNIT_ATTENTION condition. This means the drive door has
been opened and closed. Note: this ioctl does a SCSI
TEST_UNIT_READY before returning status, which gets the
UNIT_ATTENTION condition if no other I/O has been attempted
since the door was opened. After returning the current value to
the user, this field is cleared. It can also be cleared by the
open(2) system call.

fl_nsect If a diskette is in the drive and its geometry has been deter­
mined, this is the number of sectors per track on the diskette.
Otherwise, it is zero.

fl_cyl If a diskette is in the drive and its geometry has been deter­
mined, this is the total number of cylinders on the diskette.
Otherwise, it is zero.

fl_res This is cleared.

FL_FORMAT_TRACK
Form.at the specified track using the current drive geometry. The arg param­
eter points to an integer containing the track number to format. If the track
number is invalid, the command fails, returning ERANGE.

10/92

floppy(7) floppy (7)

10/92

FL_READ
Read buffered data after an error. This function is not currently supported.
It always returns zero.

V_GETSSZ
Return the physical sector size of the CDROM. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the structure points to the address of an integer containing the
sector size after a sucessful operation.

V_PDREAD
Read the Physical Description Area of the disk. The arg parameter specifies
a structure of type io_arg (defined in sys/vtoc .h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc.h) which contain the requested data upon
successful completion.

V_PDWRITE
Write the Physical Description Area of the disk. The arg parameter specifies
a structure of type pdinfo (defined in sys/vtoc.h). The sectst and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
pdsector (defined in sys/vtoc. h) which contain the requested data upon
successful completion.

V_PREAD
Read physical sectors. This interface assumes sectors are 512 bytes in length
so the driver is responsible from mapping the request block to the correct
portion of the correct sector on the disk regardless of the actual physical sec­
tor size. The arg parameter specifies a structure of type io_arg (defined in
sys/vtoc. h). The sectst member of the io_arg structure contains the
starting sector number and the datasz member contains the number of sec­
tors. The memaddr member of the io_arg structure points to the address of
an sufficiently large area which contain the requested data upon successful
completion.

V_PWRITE
Write physical sectors. This interface assumes sectors are 512 bytes in
length so the driver is responsible from mapping the requested block(s) to
the correct portion of the correct sector on the disk regardless of the actual
physical sector size. The arg parameter specifies a structure of type io_arg
(defined in sys /vtoc. h). The sect st member of the io_arg structure con­
tains the starting sector number and the datasz member contains the
number of sectors. The memaddr member of the io_arg structure points to
the address of an sufficiently large area which contain the requested data
upon successful completion.

V_RVTOC
Read the Volume Table of Contents (VTOC) from the disk. The arg parame­
ter specifies a structure of type io_arg (defined in sys/vtoc. h). The
sectst and datasz members of the io_arg structure are ignored. The
memaddr member of the io_arg structure points to the address of a

Page 5

floppy(7) floppy(7)

structure of type vtoc (defined in sys/vtoc. h) which contain the requested
data upon successful completion.

V_WVTOC
Write the Volume Table of Contents (VTOC) to the disk. The arg parameter
specifies a structure of type vtoc (defined in sys/vtoc .h). The sect st and
datasz members of the io_arg structure are ignored. The memaddr
member of the io_arg structure points to the address of a structure of type
vtoc (defined in sys/vtoc.h) which contain the requested data upon suc­
cessful completion.

DINIT CONSIDERATIONS
The utility dinit(lM) is used to format floppy disks.

DDEFS CONSIDERATIONS
The utility ddefs defines disk characteristics. The output of the ddefs utility is a
file normally saved in the /etc/dskdefs directory. This file is used as input to the
dinit(lM) utility when it initializes a disk.

There are no standards for floppy ddef files.

SEE ALSO
cdrom(7), disk(7), intro(7)

Page 6 10/92

fs (4)

NAME
fs (generic) - format of a file system volume

DESCRIPTION

fs(4)

File system volume format is entirely FSType-specific. See fs_FSType(4) for infor­
mation.

SEE ALSO
fs_s5(4), fs_ufs(4).

10/92 Page 1

fs(4) (bfs) fs(4)

NAME
fs (bfs) - format of the bfs file system volume

SYNOPSIS
#include <sys/types.h>
#include <Sys/fs/bfs.h>

DESCRIPTION
The bfs superblock is stored on sector 0. Its format is:

struct bdsuper
{

} ;

long bdsup_bfsmagic;
off_t bdsup_start;
of f_t bdsup_end;

/*
* Sanity words
*/

/* Magic number */
/* Filesystem data start offset */
!* Filesystem data end offset */

daddr_t bdcp_fromblock; /* "From" block of current transfer */
daddr_t bdcp_toblock; /* "To" block of current transfer */
daddr_t bdcpb_fromblock; /* Backup of "from" block */
daddr_t bdcpb_toblock; /* Backup of "to" block */
long bdsup_filler[l21]; /* Padding */

#define BFS_MAGIC OxBADFACE/* bfs magic number */

The sanity words are used to promote sanity during compaction. They are used by
fsck(lM) to recover from a system crash at any point during compaction. See the
sections on the bfs file system in the Machine and User Management book for a
description of compaction.

SEE ALSO
bfs-specific, inode(4).

10/92 Page 1

fs (4) (s5) fs (4)

NAME
fs (s5) - format of s5 file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs/s5filsys.h>

DESCRIPTION

10/92

Every file system storage volume has a common format for certain vital informa­
tion. Every such volume is divided into a certain number of 512-byte long sectors.
Sector 0 is unused and is available to contain a bootstrap program or other informa­
tion.

Sector 1 is the super-block. The format of a super-block is:

struct
{

filsys

ushort s_isize; /* size in blocks of i-list */
daddr_t s_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE]; /*free block list*/
short s_ninode; /* number of i-nodes in s_inode */
o_ino_t s_inode[NICINOD]; /*free i-node list*/
char s_flock; /* lock during free list */

char
char
char
time_t
short
daddr_t
o_ino_t
char
char
long

long
long

long
} ;

s_ilock;
s_fmod;
s_ronly;
s_time;
s_dinfo[4];
s_tfree;
s_tinode;
s_fname [6 J ;
s_fpack [6 J ;
s_fill [12];

s_state;
s_magic;

s_type;

I* manipulation */
/* lock during i-list manipulation */
/* super block modified flag */
/* mounted read-only flag */
/* last super block update */
/* device information */
I* total free blocks*/
I* total free i-nodes */
I* file system name */
/* file system pack name */
I* ADJUST to make *I
/* sizeof filsys be 512 */
/* file system state */
I* magic number to denote new file
I* system */
I* type of new file system */

#define FsMAGIC Oxfdl87e21 I* s_magic number */

#define Fslb 1 I* 512-byte block */
#define Fs2b 2 I* 1024-byte block */
#define Fs4b 3 I* 2048-byte block */

#define FsOKAY Ox7c269d38 I* s_state: clean */

Page 1

fs(4)

Page 2

#define FsACTIVE
#define FsBAD
#define FsBADBLK

(s5)

Ox5e72d81a
Oxcb096f43
Oxbadbc14b

I*
I*
I*
/*

fs(4)

s - state: active */
s - state: bad root *I
s - state: bad block */
corrupted it *I

s_type indicates the file system type. Currently, three types of file systems are
supported: the original 512-byte logical block, the 1024-byte logical block, and the
2048-byte logical block. s_magic is used to distinguish the s5 file system from
other FSTypes. The s_type field is used to determine the blocksize of the file sys­
tem; 512-bytes, lK, or 2K. The operating system takes care of all conversions from
logical block numbers to physical sector numbers.

s_state indicates the state of the file system. A cleanly unmounted, not damaged
file system is indicated by the FsOKAY state. After a file system has been mounted
for update, the state changes to FsACTIVE. A special case is used for the root file
system. If the root file system appears damaged at boot time, it is mounted but
marked FsBAD. Lastly, after a file system has been unmounted, the state reverts to
FsOKAY.

s_isize is the address of the first data block after the i-list; the i-list starts just after
the super-block, namely in block 2; thus the i-list is s_isize-2 blocks long.
s_fsize is the first block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block numbers; if an "impossible''
block number is allocated from the free list or is freed, a diagnostic is written on the
on-line console. Moreover, the free array is cleared, so as to prevent further alloca­
tion from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free array contains,
in s_free [1 J, ... , s_free [s_nfree-1 J, up to 49 numbers of free blocks.
s_free [0 J is the block number of the head of a chain of blocks constituting the
free list. The first long in each free-chain block is the number (up to 50) of free­
block numbers listed in the next 50 longs of this chain member. The first of these 50
blocks is the link to the next member of the chain. To allocate a block: decrement
s_nfree, and the new block is s_free [s_nfree]. If the new block number is 0,
there are no blocks left, so give an error. If s_nfree became 0, read in the block
named by the new block number, replace s_nfree by its first word, and copy the
block numbers in the next 50 longs into the s_free array. To free a block, check if
s_nfree is 50; if so, copy s_nfree and the s_free array into it, write it out, and set
s_nfree to 0. In any event set s_free [s_nfree] to the freed block's number and
increment s_nfree.

s_tfree is the total free blocks available in the file system.

s_ninode is the number of free i-numbers in the s_inode array. To allocate an i­
node: if s_ninode is greater than 0, decrement it and return s_inode [s_ninode].
If it was 0, read the i-list and place the numbers of all free i-nodes (up to 100) into
the s_inode array, then try again. To free an i-node, provided s_ninode is less
than 100, place its number into s_inode [s_ninode J and increment s_ninode. If
s_ninode is already 100, do not bother to enter the freed i-node into any table. This
list of i-nodes is only to speed up the allocation process; the information as to
whether the i-node is really free or not is maintained in the i-node itself.

10/92

fs (4) (s5) fs(4)

s_tinode is the total free i-nodes available in the file system.

s_flock and s_ilock are flags maintained in the core copy of the file system while
it is mounted and their values on disk are immaterial. The value of s_fmod on disk
is likewise immaterial; it is used as a flag to indicate that the super-block has
changed and should be copied to the disk during the next periodic update of file
system information.

s_ronly is a read-only flag to indicate write-protection.

s_time is the last time the super-block of the file system was changed, and is the
number of seconds that have elapsed since 00:00 Jan. 1, 1970 (UTC). During a
reboot, the s_time of the super-block for the root file system is used to set the
system's idea of the time.

s_fname is the name of the file system and s_fpack is the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes
are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is reserved for the
root directory of the file system, but no other i-number has a built-in meaning.
Each i-node represents one file. For the format of an i-node and its flags, see
inode(4).

SEE ALSO
mount(2).
fsck(lM), fsdb(lM), mkfs(lM), s5-specific inode(4)

10192 Page 3

ts(4) (UFS) ts(4)

NAME
fs (ufs) - format of ufs file system volume

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fs.h>

DESCRIPTION

10/92

Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the cylinder
group blocks. The super-block is critical data and is replicated before each cylinder
group block to protect against catastrophic loss. This is done at rnkfs time; the criti­
cal super-block data does not change, so the copies need not normally be referenced
further.
/*

* Super
*I

#define
#define
#define
#define

struct

block for a file system.

FS_MAGIC
FSACTIVE
FSOKAY
FSBAD

fs {

struct
struct
daddr_t
daddr_t
daddr_t
daddr_t
long
long
time_t
long
long
long
long
long
long

Ox011954
Ox5e72d81a
Ox7c269d38
Oxcb096f43

fs *fs_link;
fs *fs_rlink;
fs_sblkno;
fs_cblkno;
fs_iblkno;
fs_dblkno;
fs_cgoffset;
fs_cgmask;
fs_time;

/* fs_state: mounted */
/* fs_state: clean */
/* fs_state: bad root */

/* linked list of file systems */
/* used for incore super blocks */
/* addr of super-block in filesys */
/* offset of cyl-block in filesys */
/* offset of inode-blocks in filesys */
/* offset of first data after cg */
/* cylinder group offset in cylinder */
/* used to calc mod fs_ntrak */
/* last time written */

fs_size; /* number of blocks in fs */
fs_dsize; /* number of data blocks in fs *I
fs_ncg; /* number of cylinder groups *I
fs_bsize; /* size of basic blocks in fs */
fs_fsize; /* size of frag blocks in fs */
fs_frag; /* number of frags in a block in fs *I

/* these are
long
long
long

configuration parameters */

/* these fields
long
long
long
long

fs_minfree; /* minimum percentage of free blocks */
fs_rotdelay; /* num of ms for optimal next block*/
fs_rps; I* disk revolutions per second *I
can be computed from the others */
fs_bmask; /* ''blkoff'' calc of blk offsets *I
fs_fmask; /* ''fragoff'' calc of frag offsets*/
fs_bshift; /* ''lblkno'' calc of logical blkno */
fs_fshift; /* "numfrags" calc number of frags */

/* these are
long
long

configuration parameters */
fs_maxcontig; /* max number of contiguous blks */
fs_maxbpg; /*max number of blks per cyl group*/

Page 1

fs(4)

Page 2

(UFS) fs(4)

/* these fields can be computed from the others */
long fs_fragshift; /* block to frag shift */
long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs_csshift; /* csum block number */
long fs_nindir; /* value of NINDIR *I
long fs_inopb; /* value of INOPB *I
long fs_nspf; /* value of NSPF */
long fs_optim; /* optimization preference, see below */
long fs_state; /* file system state */
long fs_sparecon[2]; /*reserved for future constants*/

/* a unique id for this filesystem (currently unused and unmaintained) */
long fs_id[2]; /* file system id */

/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */
long fs_ntrak; /* tracks per cylinder *I
long fs_nsect; /* sectors per track *I
long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver slicing */
long fs_ncyl; /* cylinders in file system*/

/* these fields can be computed from the others */
long fs_cpg; /* cylinders per group */
long fs_ipg; /* inodes per group * /
long fs_fpg; /* blocks per group * fs_frag *I

/* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information*/

/* these fields are cleared at mount time */
char
char
char
char
char

/* these fields
long
struct
long

fs_fmod; /* super block modified flag*/
fs_clean; /* file system is clean flag*/
fs_ronly; /* mounted read-only flag */
fs_flags; !* currently unused flag *I
fs_fsmnt [MAXMNTLEN] ; /* name mounted on *I
retain the current block allocation info */
fs_cgrotor; /* last cg searched */
csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers*/
fs_cpc; /* cyl per cycle in postbl *I

short fs_postbl[MAXCPG] [NRPOS];/* head of blocks for each rotation*/
long fs_magic; /* magic number */
u_char fs_rotbl[l]; /*list of blocks for each rotation*/

} ;

/*
* eylinder group block for a file system.
*/

#define CG_MAGIC
struct cg {

struct
struct
time_t
long
short
short

Ox090255

cg *cg_link;
cg *cg_rlink;
cg_ time;
cg_cgx;
cg_ncyl;
cg_niblk;

/* linked list of cyl groups */
/* used for incore cyl groups */
/* time last written */
!* we are the cgx'th cylinder group */
/* number of cyl's this cg */
/* number of inode blocks this cg */

10/92

fs(4)

} ;

SEE ALSO

long
struct
long
long
long
long
long
short
char
long
u_char

(UFS) fs (4)

cg_ndblk; /* number of data blocks this cg */
cswn cg_cs; /* cylinder summary information */
cg_rotor; /* position of last used block */
cg_frotor; /* position of last used frag */
cg_irotor; /* position of last used inode */
cg_frswn[MAXFRAG]; /* counts of available frags */
cg_btot[MAXCPG]; /*block totals per cylinder*/
cg_b[MAXCPG] [NRPOS]; /* positions of free blocks */
cg_iused[MAXIPG/NBBY];/* used inode map*/
cg_magic; I* magic number *I
cg_free [l] ; I* free block map *I

ufs-specific inode(4)

10/92 Page 3

fspec(4) fspec (4)

NAME
fspec - format specification in text files

DESCRIPTION

10/92

It is sometimes convenient to maintain text files on the UNIX system with non­
standard tabs (that is, tabs that are not set at every eighth column). Such files must
generally be converted to a standard format, frequently by replacing all tabs with
the appropriate number of spaces, before they can be processed by UNIX system
commands. A format specification occurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks
and surrounded by the brackets <: and : >. Each parameter consists of a keyletter,
possibly followed immediately by a value. The following parameters are recog­
nized:

ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:

1. a list of column numbers separated by commas, indicating tabs
set at the specified columns

2. a - followed immediately by an integer n, indicating tabs at
intervals of n columns

3. a - followed by the name of a "canned" tab specification

Standard tabs are specified by t-8, or equivalently, tl, 9, 17, 25, and
so on. The canned tabs that are recognized are defined by the tabs(l)
command.

ssize The s parameter specifies a maximum line size. The value of size must
be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mmargin The rn parameter specifies a number of spaces to be prepended to each
line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line
containing the format specification is to be deleted from the converted
file.

e The e parameter takes no value. Its presence indicates that the current
format is to prevail only until another format specification is encoun­
tered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mo. If
the s parameter is not specified, no size checking is performed. If the first line of a
file does not contain a format specification, the above defaults are assumed for the
entire file. The following is an example of a line containing a format specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary to code
the d parameter.

Page 1

fspec(4) fspec(4)

SEE ALSO
ed(l), newform(l), tabs(l).

Page 2 10/92

fstypes(4) (DFS) fstypes(4)

NAME
fstypes - file that registers distributed file system packages

DESCRIPTION
fstypes resides in directory I etc/ dfs and lists distributed file system utilities
packages installed on the system. The file system indicated in the first line of the
file is the default file system. When Distributed File System (DFS) Administration
commands are entered without the option -F fstypes, the system takes the file sys­
tem type from the first line of the fstypes file.

The default package can be changed by editing the fstypes file with any sup­
ported text editor.

SEE ALSO
dfmounts(lM), dfshares(lM), share(lM), shareall(lM), unshare(lM)

10/92 Page 1

group(4) group(4)

NAME
group - group file

DESCRIPTION
The file I etc I group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

group is an ASCII file. The fields are separated by colons; each group is separated
from the next by a new-line.

Because of the encrypted passwords, the group file can and does have general read
permission and can be used, for example, to map numerical group IDs to names.

During user identification and authentication, the supplementary group access list
is initialized sequentially from information in this file. If a user is in more groups
than the system is configured for, {NGROUPS_MAX}, a warning will be given and
subsequent group specifications will be ignored.

SEE ALSO
groups(l), newgrp(lM), passwd(l), getgroups(2), initgroups(3C), unistd(4).

10/92 Page 1

holidays (4) holidays (4)

NAME
holidays - holiday file

DESCRIPTION

10/92

The file /etc/acct/holidays lists holiday and prime-time information. The
accounting system can use this information to give users a discount for non-prime
time system use.

The file I etc/ acct/holidays is a link to the current year's holiday file in the direc­
tory /etc/acct/database. This directory contains several files with the names
holiday .yyyy, where yyyy is the number of a year.

When the system is booted, the file /etc/rc2 .d/S50holiday is executed to link
/etc/acct/holidays to the holiday file for the current year in
/etc/acct/database. If /etc/acct/database has no holiday file for the current
year, /etc/rc2 .d/S50holiday links /etc/acct/holidays to the last file in
/etc/acct/database. If there are no files in /etc/acct/database,
/etc/rc2 .d/S50holiday prints an error message and exits.

The holiday file contains three types of lines:

Comment Lines Any line marked by an asterisk in the first column is treated as a
comment. Comments can appear anywhere in the file.

Year Designation Line
This line must be the first non-comment line in the file and must
appear only once. The line consists of three fields of four digits
each (leading white space is ignored). The first field is the year,
the second the prime time start, and the third the non-prime time
start (prime time end). Prime time start and non-prime time start
are specified with a 24 hour clock.

Holidays Lines These lines contain two fields: a date field and a description field.
The date field is specified as month/day, where month and day are
one or two digit numbers. The description field is commentary
that is not used by the accounting programs.

The following is an example of a holiday file:
* Curr Prime Non-Prime
* Year Start Start
*

1992 0800 1700
*
*
* Memorial Day is the last Monday in May
* Labor Day is the first Monday in September
* Thanksgiving Day is the fourth Thursday in November
*
* only the first column (month/day) is significant.
*
* month/day Company
* Holiday
*
1/1
5/25

New Years Day
Memorial Day

Page 1

holidays (4)

NOTES

7/4
9/7
11/26
11/27
12/24
12/25

Indep. Day
Labor Day
Thanksgiving
day after
Christmas Eve
Christmas Day

holidays (4)

Do not put any blank lines into the holiday file. Blank lines will cause the runacct
command to fail.

FILES
/etc/acct/holidays
/etc/acct/database/*
/etc/rc2.d/S50holiday

SEE ALSO
runacct(lM).

Page 2 10/92

hosts(4) (Internet Utilities) hosts(4)

NAME
hosts - host name data base

SYNOPSIS
/etc/hosts

DESCRIPTION
The hosts file contains information regarding the known hosts on the DARPA Inter­
net. For each host a single line should be present with the following information:

Internet-address official-host-name aliases

Items are separated by any number of SPACE and/or TAB characters. A'#' indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file. This file is normally created from the official host
data base maintained at the Network Information Control Center (NIC), though
local changes may be required to bring it up to date regarding unofficial aliases
and/ or unknown hosts.

Network addresses are specified in the conventional '.' notation using the
inet_addr routine from the Internet address manipulation library, inet(3N). Host
names may contain any printable character other than a field delimiter, NEWLINE,
or comment character.

EXAMPLE
Here is a typical line from the I etc/hosts file:

192.9.1.20 gaia

FILES
/etc/hosts

SEE ALSO
gethostent(3N), inet(3N)

10/92

John Smith

Page 1

hosts.equiv (4N) (TCP/IP) hosts.equiv (4N)

NAME
hosts.equiv, . rhos ts - trusted hosts by system and by user

DESCRIPTION
The /etc/hosts. equiv file contains a list of trusted hosts. When an rlogin(l) or
rsh(l) request is received from a host listed in this file, and when the user making
the request is listed in the /etc/passwd file, then the remote login is allowed with
no further checking. The library routine ruserok (see rcmd(3N)) will make this
verification. In this case, rlogin does not prompt for a password, and commands
submitted through rsh are executed. Thus, a remote user with a local user ID is
said to have equivalent access from a remote host named in this file.

The format of the hosts.equiv file consists of a one-line entry for each host, of the
form:

hostname [username]

The hostname field normally contains the name of a trusted host from which a
remote login can be made. However, an entry consisting of a single '+' indicates
that all known hosts are to be trusted. A hostname must be the official name as
listed in the hosts(4N) database. This is the first name given in the hosts database
entry; hostname aliases are not recognized.

The User .rhosts File

FILES

Whenever a remote login is attempted, the remote login daemon checks for a
. rhosts file in the home directory of the user attempting to log in. A user's
. rhosts file has the same format as the hosts.equiv file, and is used to give or
deny access only for the specific user attempting to log in from a given host. While
an entry in the hosts.equiv file allows remote login access to any user from the
indicated host, an entry in a user's . rhosts file only allows access from a named
host to the user in whose home directory the . rhos ts file appears. When this file is
used, permissions in the user's home directory should allow read and search access
by anyone, so it may be located and read. When a user attempts a remote login, his
. rhos ts file is, in effect, prepended to the hosts.equiv file for permission check­
ing. Thus, if a host is specified in the user's . rhos ts file, login access is allowed.

/etc/hosts.equiv
/etc/passwd
-/.rhosts
/etc

SEE ALSO
rlogin(lN), rsh(lN), hosts(4N), passwd(4)

10/92 Page 1

ICMP(7) (Internet Utilities) ICMP(7)

NAME
ICMP - Internet Control Message Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>

s = socket (AF _INET' SOCK_RAW' pro to) ;

t = t_open (" I dev I icmp" , O_RDWR) ;

DESCRIPTION
ICMP is the error and control message protocol used by the Internet protocol family.
It is used by the kernel to handle and report errors in protocol processing. It may
also be accessed by programs using the socket interface or the Transport Level
Interface (TLI) for network monitoring and diagnostic functions. When used with
the socket interface, a raw socket type is used. The protocol number for ICMP, used
in the proto parameter to the socket call, can be obtained from getprotobyname()
[see getprotoent(3N)]. ICMP file descriptors and sockets are connectionless, and
are normally used with the t_sndudata I t_rcvudata and the sendto () I
recvfrom () calls.

Outgoing packets automatically have an Internet Protocol (IP) header prepended to
them.. Incoming packets are provided to the user with the IP header and options
intact.

ICMP is an datagram. protocol layered above IP. It is used internally by the protcol
code for various purposes including routing, fault isolation, and congestion con­
trol. Receipt of an ICMP redirect message will add a new entry in the routing table,
or modify an existing one. ICMP messages are routinely sent by the protocol code.
Received ICMP messages may be reflected back to users of higher-level protocols
such as TCP or UDP as error returns from system calls. A copy of all ICMP message
received by the system is provided to every holder of an open ICMP socket or TLI
descriptor.

SEE ALSO
send(2), getprotoent(3N), recvfrom(3N), t_rcvudata(3N), t_sndudata(3N),
routing(4), inet(7), ip(7)

Postel, Jon, Internet Control Message Protocol - DARPA Internet Program Protocol
Specification, RFC 792, Network Information Center, SRI International, Menlo Park,
Calif., September 1981

DIAGNOSTICS

10/92

A socket operation may fail with one of the following errors returned:

EISCONN An attempt was made to establish a connection on a socket
which already has one, or when trying to send a datagram.
with the destination address specified and the socket is
already connected.

ENOTCONN An attempt was made to send a datagram, but no destina­
tion address is specified, and the socket has not been con­
nected.

Page 1

ICMP(7) (Internet Utilities) ICMP(7)

NOTES

Page 2

ENOBUFS

EADDRNOTAVAIL

The system ran out of memory for an internal data structure.

An attempt was made to create a socket with a network
address for which no network interface exists.

Replies to ICMP echo messages which are source routed are not sent back using
inverted source routes, but rather go back through the normal routing mechanisms.

10/92

if.ignore (4) STREAMware 2.0 if.ignore (4)

NAME
if. ignore - data base of ignored network interfaces

DESCRIPTION
The if. ignore file allows a system administrator to specify network interfaces
that should be ignored by certain network applications. Use of this file is deter­
mined by the individual application. This file is referenced by the if ignore library
function.

Each line of the file has the following format:

interface [server] [server] ...
Items are separated by any number of blanks and/or tab characters. server names
should be the device or service alias as it appears in the /etc/services file. The
server names are optional and specify network services which should ignore the
given interface. If no server names are supplied on a particular line, the correspond­
ing interface should be ignored by all network services (which consult this file).

EXAMPLES

FILES

The following example illustrates how the if. ignore file might be used:

slO who timed
sll router
pppO

No rwhod or timed packets should be broadcast over the slO or pppO interfaces.
Likewise, no routed packets should be broadcast over the sll or pppO interfaces.
Furthermore, the if ignore() library function will return a non-zero value for all
services requiring the pppO interface and it will return zero for any interfaces other
than pppO, slO, or sll.

/etc/if.ignore

SEE ALSO
routed(lM), rwhod(lM), timed(lM), ifignore(3N), services(4)

10/92 Page 1

inet (7) (Internet Utilities) inet (7)

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

DESCRIPTION
The Internet protocol family implements a collection of protocols which are cen­
tered around the Internet Protocol (IP) and which share a common address format.
The Internet family protocols can be accessed via the socket interface, where they
support the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types, or the Tran­
sport Level Interface (TLI), where they support the connectionless (T_CLTS) and
connection oriented (T_COTS_ORD) service types.

PROTOCOLS
The Internet protocol family comprises the Internet Protocol (IP), the Address Reso­
lution Protocol (ARP), the Internet Control Message Protocol (ICMP), the Transmis­
sion Control Protocol (TCP), and the User Datagram Protocol (UDP).

TCP supports the socket interface's SOCK_STREAM abstraction and TLI's T_COTS_ORD
service type. UDP supports the SOCK_DGRAM socket abstraction and the TLI T_CLTS
service type. See tcp(7) and udp(7). A direct interface to IP is available via both TLI
and the socket interface; See ip(7). ICMP is used by the kernel to handle and report
errors in protocol processing. It is also accessible to user programs; see icrnp(7).
ARP is used to translate 32-bit IP addresses into 48-bit Ethernet addresses; see
arp(7).

The 32-bit IP address is divided into network number and host number parts. It is
frequency-encoded; The most-significant bit is zero in Class A addresses, in which
the high-order 8 bits represent the network number. Class B addresses have their
high order two bits set to 10 and use the high-order 16 bits as the network number
field. Class C addresses have a 24-bit network number part of which the high order
three bits are 110. Sites with a cluster of IP networks may chose to use a single net­
work number for the cluster; This is done by using subnet addressing. The host
number portion of the address is further subdivided into subnet number and host
number parts. Within a subnet, each subnet appears to be an individual network;
Externally, the entire cluster appears to be a single, uniform network requiring only
a single routing entry. Subnet addressing is enabled and examined by the follow­
ing ioctl(2) commands; They have the same form as the SIOCSIFADDR command
[see if(3N)].

SIOCSIFNETMASK

SIOCGIFNETMASK

Set interface network mask. The network mask defines the
network part of the address; If it contains more of the
address than the address type would indicate, then subnets
are in use.

Get interface network mask.

ADDRESSING

10/92

IP addresses are four byte quantities, stored in network byte order. IP addresses
should be manipulated using the byte order conversion routines [see
byteorder(3N)].

Page 1

inet (7) (Internet Utilities) inet (7)

Addresses in the Internet protocol family use the following structure:

struct sockaddr_in {
short sin_family;
u_short sin__port;
struct in_addr sin_addr;
char sin_zero[B];

} ;

Library routines are provided to manipulate structures of this form; See inet(3N).

The sin_addr field of the sockaddr_in structure specifies a local or remote IP
address. Each network interface has its own unique IP address. The special value
INADDR_ANY may be used in this field to effect wildcard matching. Given in a
bind(2) call, this value leaves the local IP address of the socket unspecified, so that
the socket will receive connections or messages directed at any of the valid IP
addresses of the system. This can prove useful when a process neither knows nor
cares what the local IP address is or when a process wishes to receive requests using
all of its network interfaces. The sockaddr_in structure given in the bind(2) call
must specify an in_addr value of either IPADDR_ANY or one of the system's valid IP
addresses. Requests to bind any other address will elicit the error EADDRNOTAVAI.
When a connect(2) call is made for a socket that has a wildcard local address, the
system sets the sin_addr field of the socket to the IP address of the network inter­
face that the packets for that connection are routed via.

The sin__port field of the sockaddr_in structure specifies a port number used by
TCP or UDP. The local port address specified in a bind(2) call is restricted to be
greater than IPPORT_RESERVED (defined in <netinet/in.h>) unless the creating
process is running as the super-user, providing a space of protected port numbers.
In addition, the local port address must not be in use by any socket of same address
family and type. Requests to bind sockets to port numbers being used by other
sockets return the error EADDRINUSE. If the local port address is specified as 0, then
the system picks a unique port address greater than IPPORT_RESERVED. A unique
local port address is also picked when a socket which is not bound is used in a con­
nect(2) or sendto [see send(2)] call. This allows programs which do not care
which local port number is used to set up TCP connections by simply calling
socket(2) and then connect(2), and to send UDP datagrams with a socket(2) call
followed by a sendto(2) call.

Although this implementation restricts sockets to unique local port numbers, TCP
allows multiple simultaneous connections involving the same local port number so
long as the remote IP addresses or port numbers are different for each connection.
Programs may explicitly override the socket restriction by setting the
SO_REUSEADDR socket option with setsockopt [see getsockopt(3N)].

TLI applies somewhat different semantics to the binding of local port numbers.
These semantics apply when Internet family protocols are used via the TLI.

SEE ALSO

Page 2

ioct1(2), send(2), bind(3N), connect(3N), getsockopt(3N), if(3N),
byteorder(3N), gethostent(3N), getnetent(3N), getprotoent(3N),
getservent(3N), socket(3N), arp(7), icmp(7), ip(7), tcp(7), udp(7)

10/92

inet(7)

NOTES

10/92

(Internet Utilities) inet(7)

Network Information Center, DDN Protocol Handbook (3 vols.), Network Informa­
tion Center, SRI International, Menlo Park, Calif., 1985

The Internet protocol support is subject to change as the Internet protocols develop.
Users should not depend on details of the current implementation, but rather the
services exported.

Page 3

inetd.conf (4) (Internet Utilities) inetd.conf (4)

NAME
inetd. conf - Internet servers database

DESCRIPTION

10/92

The inetd. conf file contains the list of servers that inetd(lM) invokes when it
receives an Internet request over a socket. Each server entry is composed of a single
line of the form:

service-name socket-type protocol wait-status uid server-program server-arguments
Fields can be separated by either SPACE or TAB characters. A '#' (pound-sign) indi­
cates the beginning of a comment; characters up to the end of the line are not inter­
preted by routines that search this file.

service-name

socket-type

protocol

wait-status

uid

server-program

server-arguments

The name of a valid service listed in the file /etc/services.
For RPC services, the value of the service-name field consists
of the RPC service name, followed by a slash and either a ver­
sion number or a range of version numbers (for example,
mountd/1).

Can be one of:
stream for a stream socket,
dgram for a datagram socket,
raw for a raw socket,
seqpacket for a sequenced packet socket

Must be a recognized protocol listed in the file
/etc/protocols. For RPC services, the field consists of the
string rpc followed by a slash and the name of the protocol
(for example, rpc/udp for an RPC service using the UDP pro­
tocol as a transport mechanism).

nowai t for all but single-threaded datagram servers -
servers which do not release the socket until a timeout
occurs (such as comsat(lM) and talkd(lM)). These must
have the status wait. Although tftpd(lM) establishes
separate pseudo-connections, its forking behavior can lead
to a race condition unless it is also given the status wait.

The user ID under which the server should run. This allows
servers to run with access privileges other than those for
root.

Either the pathname of a server program to be invoked by
inetd to perform the requested service, or the value inter­
nal if inetd itself provides the service.

If a server must be invoked with command-line arguments,
the entire command line (including argument 0) must
appear in this field (which consists of all remaining words in
the entry). If the server expects inetd to pass it the address
of its peer (for compatibility with 4.2BSD executable dae­
mons), then the first argument to the command should be
specified as '%A'.

Page 1

inetd.conf (4)

FILES
/etc/inetd.conf
/etc/services
/etc/protocols

SEE ALSO

(Internet Utilities) inetd.conf (4)

rlogin(l), rsh(l), comsat(lM), inetd(lM), talkd(lM), tftpd(lM), services(4)

Page 2 10/92

inittab (4) inittab (4)

NAME
inittab- script for init

DESCRIPTION

10/92

The file /etc/inittab controls process dispatching by init. The processes most
typically dispatched by ini t are daemons.

The ini t tab file is composed of entries that are position dependent and have the
following format:

id : rstate: action : process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters per entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sh(l). There are no limits (other than maximum entry size) imposed
on the number of entries in the ini t tab file. The entry fields are:

id This is one to four characters used to uniquely identify an entry.

rstate This defines the run level in which this entry is to be processed. Run­
levels effectively correspond to a configuration of processes in the system.
That is, each process spawned by ini t is assigned a run level or run levels
in which it is allowed to exist. The run levels are represented by a number
ranging from 0 through 6. As an example, if the system is in run level 1,
only those entries having a 1 in the rstate field are processed. When ini t
is requested to change run levels, all processes that do not have an entry in
the rstate field for the target run level are sent the warning signal SIGTERM
and allowed a 5-second grace period before being forcibly terminated by
the kill signal SIGKILL. The rstate field can define multiple run levels for a
process by selecting more than one run level in any combination from 0
through 6. If no run level is specified, then the process is assumed to be
valid at all run levels 0 through 6. There are three other values, a, band c,
which can appear in the rstate field, even though they are not true run lev­
els. Entries which have these characters in the rstate field are processed
only when an init or telinit process requests them to be run (regard­
less of the current run level of the system). See init(lM). They differ
from run levels in that init can never enter run level a, b or c. Also, a
request for the execution of any of these processes does not change the
current run level. Furthermore, a process started by an a, b or c command
is not killed when ini t changes levels. They are killed only if their line in
inittab is marked off in the action field, their line is deleted entirely from
inittab, or init goes into single-user state.

action Key words in this field tell ini t how to treat the process specified in the
process field. The actions recognized by ini t are as follows:

re spawn If the process does not exist, then start the process; do not
wait for its termination (continue scanning the inittab
file), and when the process dies, restart the process. If the
process currently exists, do nothing and continue scanning
the inittab file.

Page 1

inittab (4) inittab (4)

wait When init enters the run level that matches the entry's
rstate, start the process and wait for its termination. All
subsequent reads of the ini t tab file while ini t is in the
same run level cause init to ignore this entry.

once When init enters a run level that matches the entry's
rstate, start the process, do not wait for its termination.
When it dies, do not restart the process. If ini t enters a
new run level and the process is still running from a previ­
ous run level change, the program is not restarted.

boot The entry is to be processed only at init's boot-time read
of the inittab file. init is to start the process, not wait
for its termination; and when it dies, not restart the pro­
cess. In order for this instruction to be meaningful, the
rstate should be the default or it must match init's run
level at boot time. This action is useful for an initialization
function following a hardware reboot of the system.

bootwai t The entry is to be processed the first time ini t goes from
single-user to multi-user state after the system is booted.
(If ini tdefaul t is set to 2, the process runs right after the
boot.) init starts the process, waits for its termination
and, when it dies, does not restart the process.

powerfail Execute the process associated with this entry only when
ini t receives a power fail signal, SIGPWR [see signal(2)].

powerwai t Execute the process associated with this entry only when
init receives a power fail signal, SIGPWR, and wait until it
terminates before continuing any processing of ini t tab.

off If the process associated with this entry is currently run­
ning, send the warning signal SIGTERM and wait 5 seconds
before forcibly terminating the process with the kill signal
SIGKILL. If the process is nonexistent, ignore the entry.

ondemand This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is given
a different keyword in order to divorce its association with
run levels. This instruction is used only with the a, b or c
values described in the rstate field.

initdefault An entry with this action is scanned only when init is ini­
tially invoked. ini t uses this entry, if it exists, to deter­
mine which run level to enter initially. It does this by tak­
ing the highest run level specified in the rstate field and
using that as its initial state. If the rstate field is empty, this
is interpreted as 0123456 and init therefore enters run
level 6. Additionally, if init does not find an initde­
fault entry in inittab, it requests an initial run level
from the user at reboot time.

Page 2 10/92

inittab(4) inittab(4)

sysinit Entries of this type are executed before init tries to access
the console (that is, before the Console Login: prompt).
It is expected that this entry will be only used to initialize
devices on which ini t might try to ask the run level ques­
tion. These entries are executed and waited for before con­
tinuing.

process This is a command to be executed. The entire process field is prefixed
with exec and passed to a forked sh as sh -c 'exec command'. For this
reason, any legal sh syntax can appear in the process field.

SEE ALSO
init(lM), ttymon(lM), sh(l), who(l). exec(2), open(2), signal(2).

10/92 Page 3

inode(4)

NAME
inode (generic) - format of an inode

DESCRIPTION

inode(4)

Inode format is entirely FSType-specific. See inode_FSType(4) for information.

SEE ALSO
inode_s5(4), inode_ufs(4).

10/92 Page 1

inode (4) (bfs)

NAME
inode (bfs) - format of a bfs i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/bfs.h>

DESCRIPTION
struct bf s_dirent
{

};

ushort d_ino;
daddr_t d_sblock;
daddr_t d_eblock;
daddr_t d_eoffset;
struct bfsvattr d_fattr;

inode(4)

/* inode nwnber */
/* Start block */
/* End block */
/* EOF disk offset (absolute) */
/* File attributes */

For the meaning of the defined type daddr_t see types(S). The bfsvattr struc­
ture appears in the header file sys/fs/bfs .h.

SEE ALSO
fs_bfs(4), types(S).

10/92 Page 1

inode(4)

NAME
inode (s5) - format of an s5 i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/fs/s5ino.h>

DESCRIPTION

(s5) inode(4)

An i-node for a plain file or directory in an s4 file system has the following struc­
ture defined by sys Ifs Is 5 ino . h.

I* Inode structure as it appears on a disk block. */

struct di node
{

o_mode - t di_mode; I* mode and type of file *I
o_nlink_t di _nlink; I* number of links to file *I
o_uid_t di _uid; I* owner's user id *I
o_gid_t di _gid; I* owner's group id *I
off - t di _size; I* number of bytes in file *I
char di _addr[39J; I* disk block addresses *I
unsigned char di _gen; I* file generation number *I
time _t di _atime; I*
time_ t di _mtime; I*
time - t di _ctime; I*

} ;

I*
* Of the 40 address bytes:
* 39 are used as disk addresses
* 13 addresses of 3 bytes each
* and the 40th is used as a
* file generation number
*I

time last accessed *I
time last modified *I
time status last changed

For the meaning of the defined types off_t and time_t see types(5).

SEE ALSO
stat(2), 13tol(3C), fs_s5(4), types(5).

10/92

*/

Page 1

inode(4) (UFS) inode(4)

NAME
inode (ufs) - format of a ufs inode

SYNOPSIS
#include <sys/param.h>
#include <sys/types.h>
#include <sys/vnode.h>
#include <sys/fs/ufs_inode.h>

DESCRIPTION

10/92

The I node is the focus of all local file activity in UNIX. There is a unique inode
allocated for each active file, each current directory, each mounted-on file, each
mapping, and the root. An inode is 'named' by its dev /inumber pair. Data in
icommon is read in from permanent inode on the actual volume.

#define EFT_MAGIC Ox90909090
#define NDADDR 12
#define NIADDR 3

/*magic cookie for EFT */
/*direct addresses in inode */
/* indirect addresses in inode */

struct inode
struct
struct
struct
u_short
dev_t
ino_t
off_t
struct
struct
short
short
short
daddr_t
struct
struct
ulong
ulong

inode *i_chain[2] ;/*must be first */
vnode i_vnode; /* vnode associated with this inode */
vnode *i_devvp; /* vnode for block I/0 */
i_flag;
i_dev;
i_number;
i_diroff;
fs *i_fs;
dquot *i_dquot;
i_ovmer;
i_count;
i_rwowner;
i_nextr;

inode * i_freef;
inode **i_freeb;

i_vcode;
i_mapcnt;

int *i_map;
struct icommon {

o_mode_t ic_smode;
short ic_nlink;
o_uid_t ic_suid;
o_gid_t ic_sgid;
quad ic_size;

/* device where inode resides */
/* i number, 1-to-1 with device address */
/* offset in dir, where we found last entry */
/* file sys associated with this inode */
/* quota structure controlling this file */
/* proc index of process locking inode */
/* number of inode locks for i_owner */
/* proc index of process holding rwlock */
/* next byte read offset (read-ahead) */
/* free list forward */
/* free list back */
/* version code attribute */
/* mappings to file pages */
/* block list for the corresponding file */

/* 0: mode and type of file */
/* 2: number of links to file*/
/* 4: owner's user id */
/* 6: owner's group id */

/* 8: number of bytes in file */
#ifdef _KERNEL

struct
struct
struct

timeval ic_atime; /* 16: time last accessed */

#else

#endif

time_t
long
time_t
long
time_t
long

timeval ic_mtime; /*
timeval ic_ctime; /*

ic_atime; /*
ic_atspare;
ic_mtime; /*
ic_mtspare;
ic_ctime; /*
ic_ctspare;

24: time
32: last

16: time

24: time

32: last

last modified */
time inode changed */

last accessed */

last modified */

time inode changed */

Page 1

inode(4)

daddr_t
daddr_t
long
long
long
mode_t
uid_t
gid_t
ulong

i _ic;
} ;

struct dinode {

union {

struct
char

di_un;
} ;

SEE ALSO
ufs-specific fs(4)

Page 2

ic_clb [NDADDR] ;
ic_ib [NIADDR] ;
ic_flags;
ic_blocks;
ic_gen;
ic_mode;
ic_uid;
ic_gid;
ic_eftflag;

(UFS)

/*
/*
/*
/*
/*
/*
/*
/*
/*

40: disk block addresses */
88: indirect blocks */
100: status, currently unused */
104: blocks actually held */
108: generation nwnber */
112: EFT version of mode*/
116: EFT version of uid */
120: EFT version of gid */
124: indicate EFT version*/

icommon di _icom;
di _size[128];

inode(4)

10/92

intro (7) intro (7)

NAME
intro - introduction to special files

DEVICE NAMING CONVENTIONS

10/92

This section describes various special files that refer to specific hardware peri­
pherals and system device drivers. STREAMS [see intro(2)] software drivers,
modules, and the STREAMS-generic set of ioct1(2) system calls are also described.

The names of the entries for hardware related files are generally derived from
names for the hardware, as opposed to the names of the special files themselves.
Characteristics of both the hardware device and the corresponding UNIX system
device driver are discussed where applicable.

Device specific special files take the form prefix_cXdYsuffix, where prefix uniquely
defines the type of device, X specifies the controller number (starting from zero) of
the stated device type, Y specifies the logical device number (starting from zero) for
the device attached to the stated controller, and suffix specifies device-dependent
information.

In addition to the device-specific special files, the system also provides generic spe­
cial files. These special files simplify the access to commonly used devices by pro­
viding device-independent aliases (for example, ctapel) for the first cartridge tape
drive.

Device prefixes:

Prefix Descr!£j:ion

m187 MVME187 CPU SCSI host adapter; M88K only
m167 MVME167 CPU SCSI host adapter; M68K only
m328 MVME328 SCSI host ad~er; M68K and M88K

Hard disk, floppy, and CDROM suffixes:

Suffix Descri tion

sZ Z specifies the slice on the device

Cartridge tape suffixes:

The variable mode suffixes will exist only if the device is capable of supporting
variable mode.

Suffix Descr!E_tion

<NULL> operate in fixed block size mode, rewind on close
n operate in fixed block size mode, no rewind on close
f operate in fixed block size mode, rewind on close
fn operate in fixed block size mode, no rewind on close
v operate in variable block size mode, rewind on close
vn CT_erate in variable block size mode, no rewind on close

Page 1

intro(7) intro (7)

Page 2

Nine-track tape suffixes:

The fixed block size mode suffixes will exist only if the device is capable of support­
ing fixed block mode.

Suffix ~eed Densitt_ Rewind on close Variable/Fixed Mode

<NULL> high 3 yes variable
n high 3 no variable
f high 3 yes fixed
fn high 3 no fixed
v high 3 yes variable
vn high 3 no variable
lOf low 0 yes fixed
lOfn low 0 no fixed
lOv low 0 yes variable
lOvn low 0 no variable
hOf high 0 yes fixed
hOfn high 0 no fixed
hOv high 0 yes variable
hOvn high 0 no variable
llf low 1 yes fixed
llfn low 1 no fixed
llv low 1 yes variable
llvn low 1 no variable
hlf high 1 yes fixed
hlf n high 1 no fixed
hlv high 1 yes variable
hlvn high 1 no variable
12f low 2 yes fixed
12fn low 2 no fixed
12v low 2 yes variable
12vn low 2 no variable
h2f high 2 yes fixed
h2fn high 2 no fixed
h2v high 2 yes variable
h2vn high 2 no variable
13f low 3 yes fixed
13fn low 3 no fixed
13v low 3 yes variable
13vn low 3 no variable
h3f high 3 yes fixed
h3fn high 3 no fixed
h3v high 3 yes variable
h3vn hi_g_h 3 no variable

10/92

intro(7) intro (7)

Generic device names:

The N specifies the generic device number; suffix is the device dependent suffix
appended to the generic device name.

Name DescrjQ_tion

ctapeNsuffix cartridge tapes
ninetrackNsu.ffix 9-track tapes
diskN the whole disk slice of the disk
cdromN the whole disk slice of the CDROM
floppyNsuffix flopey_ disk drives

The disk, floppy, and CDROM device specific files are located in the /dev/{r}dsk
directories; tape specific files are located in the I dev I rmt directory.

The generic disk, floppy, and CDROM device special files are located in the
/dev/{r}SA directories; tape specific files are located in the /dev/rmt and
I dev I rSA directories.

NETWORKING INFORMATION
The following policy applies to new or enhanced network device drivers (for exam­
ple m3 7 6). A network TCP /IP node major device number is
the major device number of the clone device driver. A network minor device
number is the major number of the real device driver found in /etc/master .d,
concatenated with the board number to which this device corresponds. Following
is a pictorial representation of the minor device number as passed to the device
driver.

Network TCP/IP Node Minor Device Number
The driver interprets the minor number as follows:

MINOR DEVICE#

bit 117 16 1s l 14 } 13 12 11 10 9 s 7 6 s 4 3 2 1 o J
l BOARD l RESRV l MAJOR#]

where:

• The BOARD bits define the board device number. Boards are numbered
from 0. The maximum board device number supported depends on the par­
ticular device.

• The RESRV bit must be set. This bit indicates to the clone driver that the
entire minor device number must be passed to the cloned device driver.

• The MAJOR# bits correspond to the real major number of the network dev­
ice as specified in the file /etc/master .d.

The device node name is also used as the Ethernet network interface name by
cenet in the network database file I etc/ strcf.

SCSl-1 HOST ADAPTER COMMON MINOR FORMAT
All SCSI-1 host adapters utilize the following common device minor format.

10/92 Page 3

intro(7) intro (7)

MAJOR MINOR

bit 31-18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCSI TBD SCSI SCSI SCSI TBD DEVICE

LUN CTRL BUS ADDR INFO

As indicated in the preceding table, the controller number is located in the high­
order bits of the minor format. This allows for support of more than eight controll­
ers in the future. Each device driver should support a minimum of eight controllers
where applicable. The driver info bits in the minor format are defined as follows:

Device Bits Descr!r_tion

disks 0-3 slice number (0-f)
4 reserved

all tapes 0 rewind/no rewind
1 fixed/variable block mode

streaming tapes 2-4 no operation
(archive, exab_Y!e,etc.)
start/stop tapes 2 low /high speed
(9-track) 3-4 density_ selection

SCSl-2/3 HOST ADAPTER COMMON MINOR FORMAT
All SCSI-2/3 host adapters utilize the following common device minor format.

MAJOR MINOR

bit 31-18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBD SCSI SCSI SCSI TBD DEVICE

CTRL ADDR LUN INFO

As indicated in the previous table, the controller number is located in the high­
order bits of the minor format. This allows for support of more controllers in the
future. The driver info bits in the minor format are defined as follows:

Device Bits Descr!r_tion

disks 0-3 slice number (0-f)
4 reserved

all tapes 0 rewind/no rewind
1 fixed/variable block mode

streaming tapes 2-4 no operation
(archive, exab_Y!e,etc.)
start/stop tapes 2 low /high speed
(9-track) 3-4 density selection

SEE ALSO
cdrom(7), disk(7), floppy(7), tape(7)

Page 4 10/92

intro(4) intro(4)

NAME
intro - introduction to file formats

DESCRIPTION

10/92

This section outlines the formats of various files. The C structure declarations for
the file formats are given where applicable. Usually, the header files containing
these structure declarations can be found in the directories /usr/include or
/usr/include/sys. For inclusion in C language programs, however, the syntax
#include <fUename.h> or #include <sys/filename.h> should be used.

Because the UNIX operating system now allows the existence of multiple file sys­
tem types, there are several instances of multiple manual pages with the same
name. These pages all display the name of the FSType to which they pertain cen­
tered and in parentheses at the top of the page.

Page 1

IP(7) (Internet Utilities) IP(7)

NAME
IP - Internet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s socket (AF _INEI', SOCK_RAW, proto) ;

t = t_open ("/dev/rawip", o_RDWR);

d = open ("/dev/ip", o_RDWR);

DESCRIPTION

10/92

IP is the internetwork datagram delivery protocol that is central to the Internet pro­
tocol family. Programs may use IP through higher-level protocols such as the
Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), or may
interface directly to IP. See tcp(7) and udp(7). Direct access may be via the socket
interface (using a raw socket) or the Transport Level Interface (TLI). The protocol
options defined in the IP specification may be set in outgoing datagrams.

The STREAMS driver /dev/rawip is the TLI transport provider that provides raw
access to IP. The device I dev I ip is the multiplexing STREAMS driver that imple­
ments the protocol processing of IP. The latter connects below to datalink providers
[interface drivers, see if(3N)], and above to transport providers such as TCP and
UDP.

Raw IP sockets are connectionless and are normally used with the sendto () and
recvfrorn () calls, [(see send(2) and recv(2)] although the connect(2) call may
also be used to fix the destination for future datagrams [in which case the read(2)
or recv(2) and wri te(2) or send(2) calls may be used]. If proto is zero, the default
protocol, IPPROTO_RAW, is used. If proto is non-zero, that protocol number will be
set in outgoing datagrams and will be used to filter incoming datagrams. An IP
header will be generated and prepended to each outgoing datagram; received
datagrams are returned with the IP header and options intact.

A single socket option, IP _OPTIONS, is supported at the IP level. This socket option
may be used to set IP options to be included in each outgoing datagram. IP options
to be sent are set with setsockopt () [see getsockopt(2)]. The getsockopt(2)
call returns the IP options set in the last setsockopt () call. IP options on received
datagrams are visible to user programs only using raw IP sockets. The format of IP
options given in setsockopt () matches those defined in the IP specification with
one exception: the list of addresses for the source routing options must include the
first-hop gateway at the beginning of the list of gateways. The first-hop gateway
address will be extracted from the option list and the size adjusted accordingly
before use. IP options may be used with any socket type in the Internet family.

At the socket level, the socket option SO_DONTROUTE may be applied. This option
forces datagrams being sent to bypass the routing step in output. Normally, IP
selects a network interface to send the datagram, and possibly an intermediate
gateway, based on an entry in the routing table. See routing(4). When
so_DONTROUTE is set, the datagram will be sent using the interface whose network
number or full IP address matches the destination address. If no interface matches,
the error ENETUNRCH will be returned.

Page 1

IP(7) (Internet Utilities) IP(7)

Raw IP datagrams can also be sent and received using the TLI connectionless primi­
tives.

Datagrams flow through the IP layer in two directions: from the network up to user
processes and from user processes down to the network. Using this orientation, IP is
layered above the network interface drivers and below the transport protocols such
as UDP and TCP. The Internet Control Message Protocol (ICMP) is logically a part of
IP. See icrnp(7).

IP provides for a checksum of the header part, but not the data part of the
datagram. The checksum value is computed and set in the process of sending
datagrams and checked when receiving datagrams. IP header checksumming may
be disabled for debugging purposes by patching the kernel variable ipcksurn to
have the value zero.

IP options in received datagrams are processed in the IP layer according to the pro­
tocol specification. Currently recognized IP options include: security, loose source
and record route (LSRR), strict source and record route (SSRR), record route, stream
identifier, and internet timestamp.

The IP layer will normally forward received datagrams that are not addressed to it.
Forwarding is under the control of the kernel variable ipforwarding: if ipforwarding
is zero, IP datagrams will not be forwarded; if ipforwarding is one, IP datagrams will
be forwarded. ipforwarding is usually set to one only in machines with more than
one network interface (internetwork routers). This kernel variable can be patched
to enable or disable forwarding.

The IP layer will send an ICMP message back to the source host in many cases when
it receives a datagram that can not be handled. A time exceeded ICMP message will
be sent if the time to live field in the IP header drops to zero in the process of for­
warding a datagram. A destination unreachable message will be sent if a datagram
can not be forwarded because there is no route to the final destination, or if it can
not be fragmented. If the datagram is addressed to the local host but is destined for
a protocol that is not supported or a port that is not in use, a destination unreach­
able message will also be sent. The IP layer may send an ICMP source quench mes­
sage if it is receiving datagrams too quickly. ICMP messages are only sent for the
first fragment of a fragmented datagram and are never returned in response to
errors in other ICMP messages.

The IP layer supports fragmentation and reassembly. Datagrams are fragmented on
output if the datagram is larger than the maximum transmission unit (MTU) of the
network interface. Fragments of received datagrams are dropped from the
reassembly queues if the complete datagram is not reconstructed within a short
time period.

Errors in sending discovered at the network interface driver layer are passed by IP
back up to the user process.

SEE ALSO

Page 2

read(2), wri te(2), connect(3N), getsockopt(3N), recv(3N), send(3N),
routing(4), icmp(7), inet(7) tcp(7), udp(7)

Postel, Jon, Internet Protocol - DARPA Internet Program Protocol Specification, RFC 791,
Network Information Center, SRI International, Menlo Park, Calif., September 1981

10/92

IP(7) (Internet Utilities) IP(7)

DIAGNOSTICS

NOTES

10/92

A socket operation may fail with one of the following errors returned:

EACCESS A IP broadcast destination address was specified and the
caller was not the privileged user.

EISCONN

EMSGSIZE

ENETUNREACH

ENOTCONN

ENOBUFS

An attempt was made to establish a connection on a socket
which already had one, or to send a datagram with the desti­
nation address specified and the socket was already con­
nected.

An attempt was made to send a datagram that was too large
for an interface, but was not allowed to be fragmented (such
as broadcasts).

An attempt was made to establish a connection or send a
datagram, where there was no matching entry in the routing
table, or if an ICMP destination unreachable message was
received.

A datagram was sent, but no destination address was
specified, and the socket had not been connected.

The system ran out of memory for fragmentation buffers or
other internal data structure.

EADDRNOTAVAIL An attempt was made to create a socket with a local address
that did not match any network interface, or an IP broadcast
destination address was specified and the network interface
does not support broadcast.

The following errors may occur when setting or getting IP options:

EINVAL An unknown socket option name was given.

EINVAL The IP option field was improperly formed; an option field
was shorter than the minimum value or longer than the
option buffer provided.

Raw sockets should receive ICMP error packets relating to the protocol; currently
such packets are simply discarded.

Users of higher-level protocols such as TCP and UDP should be able to see received
IP options.

Page 3

issue(4) issue(4)

NAME
issue - issue identification file

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a
login prompt. issue is an ASCII file that is read by program getty and then writ­
ten to any terminal spawned or respawned from the lines file.

FILES
/etc/issue

SEE ALSO
login(l).

10/92 Page 1

iuart(7) iuart(7)

NAME
iuart - hardware specific console driver for the MVME141 and MVME181/188

DESCRIPTION

FILES

This STREAMS-based driver provides console 1/0 when the system is running on an
MVME141, MVME181 or MVME188 CPU board. This driver is accessable only
through the standard console device special files /dev/console (/dev/conttyOO),
/dev/contty (/dev/conttyOl), and /dev/conctl.

The device special files eventually access the STREAMS-based console driver which,
when used in conjunction with the STREAMS line discipline module ldtenn, sup­
ports the tennios(2) and tennio(7) processing.

/dev/console
/dev/contty
/dev/contty??
/dev/conctl

SEE ALSO

10/92

dcon(lA), mvmecpu(lM), tennios(2), conslx7(7), console(7), ldtenn(7), ter­
mio(7).

Page 1

kbd(7) kbd(7)

NAME
kbd - generalized string translation module

DESCRIPTION

10/92

The STREAMS module kbd is a programmable string translation module. It can per­
form two types of operations on an input stream: the first type is simple byte­
swapping via a lookup table, the second is string translation. It is useful for codeset
conversion and compose-key or dead-key character production on terminals and pro­
duction of overstriking sequences on printers. It may also be used for minor types
of key-rebinding, expansion of abbreviations, and keyboard re-arrangement (an
example of the latter would be swapping the positions of the Y and Z keys,
required for German keyboards, or providing Dvorak keyboard emulation for
QWERTY keyboards). The manual entry kbdcomp(lM) discusses table construction,
the input language, and contains sample uses. This document is intended mainly
to aid administrators in configuring the module on a particular system; the user
interface to the module is solely through the commands kbdload and kbdset.

The kbd module works by modifying an input stream according to instructions
embodied in tables. It has no built in "default" tables. Some tables may be loaded
when the system is first brought up by pushing the module and loading standard
or often-used tables [see kbdload(lM)] which are retained in main-memory across
invocations and made available to all users. These are called public tables. Users
may also load private tables at any time-these do not remain resident.

With the kbdset command, users may query the module for a list of available and
attached tables, attach various tables, and set the optional per-user hot-key, hot-key
mode, and verbose string for their particular invocation.

When a user attaches more than one table, the user's hot-key may be used to cycle to
the next table in the list. If only one table is specified, the hot-key may be used to
toggle translation on and off. When multiple tables are in use, the hot-key may be
used to cycle through the list of tables [see kbdset(l) for a description of the avail­
able modes].

In its initial state, kbd scans input for occurrences of bytes beginning a translation
sequence. Upon receiving such a byte, it attempts to match subsequent bytes of the
input to programmed sequences. Input is buffered beginning with the byte which
caused the state change and is released if a match is not found. When a match fails,
the first byte of the invalid sequence is sent upstream, the buffered input is
"shifted," and the scan begins again with the resulting input sequence. If the
current table contains an error entry, its value (one or more bytes) is substituted
for the offending input byte. When a sequence is found to be valid, the entire
sequence is replaced with the result string specified for it.

The kbd may be used in either the read or write directions, or both simultaneously.
Maps and hot-keys may be specified independently for input and output.

The kbd also supports the use of external kernel-resident functions as if they were
tables; once declared and attached (via kbdload and kbdset respectively) they
may be used as simple tables or members of composites. To accomplish this, kbd
understands the registration functions of the alp module and can access any func­
tion registered with that module. Further information on external functions and
their definition is contained in alp(7). External functions are especially useful in
supporting multi-byte codeset conversions that would be difficult or impossible

Page 1

kbd(7} kbd(7}

with normal kbd tables.

LIMITATIONS
It is not an error to attach multiple tables without defining a hot-key (but the tables
will not all be accessible). It is recommended that the user's hot-key be set before
loading and attaching tables to avoid unpleasant side effects when an unfamiliar
arrangement is first loaded.

Each user has a limitation on the amount of memory that may be used for private
and attached tables. This "quota" is controlled by the kbd_wnem variable
described below. When a user that is not the super-user attempts to load a table or
create a composite table, the quota is checked, and the load will fail if it would cause
the quota to be exceeded. When a composite table is attached, the space for attach­
ment (which requires more space than the composite table itself) is charged against
this quota (attachment of simple tables is not charged against the quota). The quota
is enforced only when loading new tables. Detaching temporarily from un-needed
composite tables may reduce the current allocation enough to load a table that
would otherwise fail due to quota enforcement. To minimize chances of failure
while loading tables, it is advisable to load all required tables and make all required
composite tables before attaching any of them.

CONFIGURATION PARAMETERS
The master (or space. c) file contains some configurable parameters.

NKBDU is the maximum number of tables that may be attached by a single user. The
number should be enough to cover uncommon cases, but must be at least 2.
Default: 6.

ZUMEM, from which the variable kbd_wnem is assigned, is the maximum number of
bytes that a user (other than the super user) may have allocated to private tables
(i.e., the quota). Default: 4096.

KBDTIME is the default timer value for timeout mode. It is the number of clock ticks
allowed before timing out. The value of one "clock tick" depends on the hardware,
but is usually 1/100 or 1/60 of a second. A timeout value of 20 is 1/5 second at
100Hz; with a 60Hz clock, a value of 12 produces a 1/5 second timeout.) Values
from 5 to 400 inclusive are allowed by the module; if the value set for KBDTIME is
outside this range, the module forces it to the nearest limit. (This value is only a
default; users may change their particular Stream to use a different value depend­
ing on their own preferences, terminal baud-rate, and typing speed.)

CAVEATS
NULL characters may not be used in result or input strings, because they are used as
string delimiters.

One should be able to obtain information on timeout values of currently attached
tables, and be able to reset values more easily.

EXAMPLE

Page 2

The shell script below installs the kbd STREAMS module into a stream and attaches
two example mapping tables to the input side of the stream. The example mapping
tables are assumed to be included in the BOS binary distribution. The Dvorak table
maps the keyboard as if it were arranged in the Dvorak style, and the Deutsche
table just transposes keys Y and Z.

10/92

kbd(7) kbd(7)

The small C program generates an escape sequence needed by the example. Build
and run it first.
The script assumes your session was started by an rlogin to the machine. You
may have to modify it if your stream is not the same as the one expected below.
Use strconf to check your stream.
After running the script, the Dvorak map will be enabled. Entering the hot key,
control-underbar C_), will change to the Deutche map. Entering the hot key again
will change to a clear keyboard with no mapp~.
begin example script

current_tty_settings=" 'stty -g'"
current_tty_streams_modules="'strconf'"

streams_modules_i_know_of="ttcompat
ldterm
pt em
pts"

if ["$current_tty_streams_modules"
then

#pop off ttcompat and ldterm
strchg -p
strchg -p

"$streams_modules_i_know_of"]

#push kbd and put ldterm and ttcompat back
strchg -h kbd,ldterm,ttcompat

else

fi

#restore the stty settings
stty $current_tty_settings

echo "Sorry. I only know about default pty stream modules."
exit 255

load the two maps and attach them to the input side of the stream
kbdload /usr/lib/kbd/Dvorak
kbdload /usr/lib/kbd/Deutsche
kbdset -a Dvorak -a Deutsche

#set the hot key to control-underbar and mode 1 (see kbdset(l))
include a string to use for verbose map changes with the hot key
kbdset -k 'A ' -m 1 -v 'cat Ver.Set.Str'

#end example script

/* This program creates the file Ver.Set.Str containing the escape
* sequence string needed in the kbd module usage example.
* Build and run it once before running the example script.
*/ #include <stdio.h> #include <sys/types.h>

10/92 Page 3

kbd(7)

FILES

/* save cursor, goto-status-line, clear-to-end-of-line,
* (%n), restore cursor
*I

char str[]

main() {
FILE *fid;

Oxlb, '7',
Oxlb, ' [' , ' ? ' , ' j ' ,
Oxlb, ' [' , 'K' ,
I(' I '%'I Int I I) I I
Oxlb, '8'
} i

fid = fopen ("Ver. Set. Str", "w") ;
fwrite(str, sizeof(char), 15, fid);
fclose(fid); }

/usr/lib/kbd directory containing system standard table files.

/usr/lib/kbd/* .map source for some system table files.

SEE ALSO
kbdcomp(lM), kbdload(lM), kbdset(l), alp(7).

Page 4

kbd(7)

10/92

ldterm(7) ldterm(7)

NAME
ldterm - standard STREAMS terminal line discipline module

DESCRIPTION
ldterm is a STREAMS module that provides most of the termio(7) terminal inter­
face. This module does not perform the low-level device control functions
specified by flags in the c_cflag word of the termio/termios structure or by the
IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of the
termio/termios structure; those functions must be performed by the driver or by
modules pushed below the ldterm module. All other termio/termios functions
are performed by ldterm; some of them, however, require the cooperation of the
driver or modules pushed below ldterm and may not be performed in some cases.
These include the IXOFF flag in the c_iflag word and the delays specified in the
c_oflag word.

ldterm also handles EUC and multi-byte characters.

The remainder of this section describes the processing of various STREAMS mes­
sages on the read- and write-side.

Read-side Behavior

10/92

Various types of STREAMS messages are processed as follows:

M_BREAK When this message is received, either an interrupt signal is generated or
the message is treated as if it were an M_DATA message containing a sin­
gle ASCII NUL character, depending on the state of the BRKINT flag.

M_DATA

M_CTL

This message is normally processed using the standard termio input
processing. If the ICANON flag is set, a single input record ("line'') is
accumulated in an internal buffer and sent upstream when a line­
terminating character is received. If the ICANON flag is not set, other
input processing is performed and the processed data are passed
upstream.

If output is to be stopped or started as a result of the arrival of charac­
ters (usually CNTRL-Q and CNTRL-S), M_STOP and M_START messages
are sent downstream. If the IXOFF flag is set and input is to be stopped
or started as a result of flow-control considerations, M_STOPI and
M_STARTI messages are sent downstream.

M_DATA messages are sent downstream, as necessary, to perform echo­
ing.

If a signal is to be generated, an M_FLUSH message with a flag byte of
FLUSHR is placed on the read queue. If the signal is also to flush output,
an M_FLUSH message with a flag byte of FLUSHW is sent downstream.

If the size of the data buffer associated with the message is the size of
struct iocblk, ldterm will perform functional negotiation to deter­
mine where the termio(7) processing is to be done. If the command
field of the iocblk structure (ioc_cmd) is set to MC_NO_CANON, the
input canonical processing normally performed on M_DATA messages is
disabled and those messages are passed upstream unmodified; this is
for the use of modules or drivers that perform their own input process­
ing, such as a pseudo-terminal in TIOCREMOTE mode connected to a
program that performs this processing. If the command is

Page 1

ldterm (7) ldterm (7)

MC_DO_CANON, all input processing is enabled. If the command is
MC_PART_CANON, then an M_DATA message containing a termios struc­
ture is expected to be attached to the original M_CTL message. The
ldterm module will examine the iflag, oflag, and lflag fields of
the termios structure and from then on will process only those flags
which have not been turned ON. If none of the above commands are
found, the message is ignored; in any case, the message is passed
upstream.

M_FLUSH The read queue of the module is flushed of all its data messages and all
data in the record being accumulated are also flushed. The message is
passed upstream.

M_IOCACK The data contained within the message, which is to be returned to the
process, are augmented if necessary, and the message is passed
upstream.

All other messages are passed upstream unchanged.

Write-side Behavior

IOCTLS

Page 2

Various types of STREAMS messages are processed as follows:

M_FLUSH The write queue of the module is flushed of all its data messages and
the message is passed downstream.

M_IOCTL The function of this ioctl is performed and the message is passed
downstream in most cases. The TCFLSH and TCXONC ioctls can be per­
formed entirely in the ldterm module, so the reply is sent upstream
and the message is not passed downstream.

M_DATA If the OPOST flag is set, or both the XCASE and ICANON flags are set, out­
put processing is performed and the processed message is passed
downstream along with any M_DELAY messages generated. Otherwise,
the message is passed downstream without change.

All other messages are passed downstream unchanged.

The following ioctls are processed by the ldterm module. All others are passed
downstream. EUC_WSET and EUC_WGET are I_STR ioctl calls whereas other
ioctls listed here are TRANSPARENT ioctls.

TCGETS/TCGETA
The message is passed downstream; if an acknowledgment is seen, the
data provided by the driver and modules downstream are augmented
and the acknowledgement is passed upstream.

TCSETS/TCSETSW/TCSETSF/TCSETA/TCSETAW/TCSETAF
The parameters that control the behavior of the ldterm module are
changed. If a mode change requires options at the stream head to be
changed, an M_SETOPTS message is sent upstream. If the ICANON flag is
turned on or off, the read mode at the stream head is changed to
message-nondiscard or byte-stream mode, respectively. If the TOSTOP
flag is turned on or off, the tostop mode at the stream head is turned on
or off, respectively.

10/92

ldterm (7) ldterm (7)

TCFLSH If the argument is 0, an M_FLUSH message with a flag byte of FLUSHR is
sent downstream and placed on the read queue. If the argument is 1,
the write queue is flushed of all its data messages and an M_FLUSH mes­
sage with a flag byte of FLUSHW is sent upstream and downstream. If
the argument is 2, the write queue is flushed of all its data messages and
an M_FLUSH message with a flag byte of FLUSHRW is sent downstream
and placed on the read queue.

TCXONC If the argument is 0 and output is not already stopped, an M_STOP mes­
sage is sent downstream. If the argument is 1 and output is stopped, an
M_START message is sent downstream. If the argument is 2 and input is
not already stopped, an M_STOPI message is sent downstream. If the
argument is 3 and input is stopped, an M_STARTI message is sent down­
stream.

TCSBRK The message is passed downstream, so the driver has a chance to drain
the data and then send and an M_IOCACK message upstream.

EUC_WSET This call takes a pointer to an eucioc structure, and uses it to set the
EUC line discipline's local definition for the code set widths to be used
for subsequent operations. Within the stream, the line discipline may
optionally notify other modules of this setting via M_CTL messages.

EUC_WGET This call takes a pointer to an eucioc structure, and returns in it the
EUC code set widths currently in use by the EUC line discipline.

SEE ALSO
termios(2), console(7), ports(7), termio(7).

10/92 Page 3

limits(4) limits(4)

NAME
limits - header file for implementation-specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION

10/92

The header file limits.his a list of minimal magnitude limitations imposed by a
specific implementation of the operating system.
CHAR_ BIT
CHAR_MllX
CHAR_MIN
CHILD_Ml\X
CLK_TCK
DBL_DIG
DBL_MllX
DBL_ MIN
FCHR_MllX
FLT_DIG
FLT_Ml\X
FLT_MIN
INT_MAX
INT_MIN
LINK_Ml\X
LOGNAME_Ml\X
LCNG_BIT
LCNG_Ml\X
LCNGj!IN
MllX_CANON

MllX_INPUT
MB_LEN_Ml\X

NAME_Ml\X
NGROUPSj!l\X
NL_ARGMllX

NL_LANGMl\X
NL_MSGMl\X
NL_NMl\X

NL_SETMAX
NL_TEXTMllX
NZ ERO
OPEN_MllX

PASS_MAX
PATH_Ml\X
PID_MllX
PIPE_BUF
PIPE;_MllX

8
127
128
25
100

/* max # of bits in a 11 char 11 */
!• max value of a "char" •/
I* min value of a "char" */
!• max # of processes per user id •/
I* clock ticks per second */

15 /* digits of precision of a "double" •/
1. 7976931348623157E+308 /* max decimal value of a "double"*/
2.2250738585072014E-308 /*min decimal value of a "double"*/
1048576 /* max size of a file in bytes */
6
3.40282347e+38F
1.17549435E-38F
2147483647
(-2147483647-1)
1024
8
32
2147483647
(-2147483647-1)
255

512
5

14
16
9

14
32767
1

255
255
20
25

8
1024
30000
5120
5120

/* digits of precision of a "float" */
/* max decimal value of a "float" •/
I* min decimal value of a "float" *I
I* max value of an "int" */
I* min value of an 11 int" */
!• max # of links to a single file */
!• max # of characters in a login name */
I* # of bits in a "long" •/
/* max value of a "long int" */
/* min value of a "long int 11 */
/* max bytes in a line for canonical
processing */
• max size of a char input buffer •/
/* max # of bytes in a multibyte
character */
/* max # of characters in a file name •/
/* max # of groups for a user •/
/* max value of "digit" in calls to the
NLS printf() and scanf() •/
!• max # of bytes in a LANG name •/
I* max message number •/
I* max # of bytes in N-to-1 mapping
characters •/
I* max set number *I
/* max # of bytes in a message string •/
/* default process priority •/
I* max # of files a process can have
open •/
/* max # of characters in a password */
!• max # of characters in a path name •/
/* max value for a process ID •/
!• max # bytes atomic in write to a pipe •/
!• max # bytes written to a pipe

Page 1

limits(4) limits(4)

Page 2

SCHAR_MAX
SCHAR_MIN
SHRT_J1AX
SHRTJ<!IN
STD_BLK
SYSJJMLN

SYSPID_MAX
UCHAR_MAX
UID_MAX
UINT_MAX
ULONG_MAX
USHRT_MAX
USI_MAX
WORD_BIT

127
(-128)
32767
(-32768)
1024
256

1
255
60002
4294967295
4294967295
65535
4294967295
32

in a write •/
I* max value of a "signed char" •/
I* min value of a "signed char" •!
!• max value of a "short int" •/
!• min value of a "short int" •/
!• # bytes in a physical I/O block •/
!• 4. 0 size of utsname elements *I
!• also defined in sys/utsname.h •/
/* max pid of system processes •/
!• max value of an "unsigned char" •!
I* max value for a user or group ID •/
!• max value of an "unsigned int" •/
!• max value of an "unsigned long int" •/
!• max value of an "unsigned short int" */
I* max decimal value of an 11 unsigned" */
I* # of bits in a 11 word" or "int 11 */

The following POSIX definitions are the most restrictive values to be used by a POSIX
conformant application. Conforming implementations shall provide values at least
this large.

_POSIX_ARG_MAX 4096 !• max length of arguments to exec •/
_POSIX_CHILD_MAX 6 !• max# of processes per user ID •/
_POSIX_LINK_MAX 8 !• max# of links to a single file •/
_POSIX_MAX_CANON 255 I* max# of bytes in a line of input •/
_POSIX_MAX_INPUT 255 !• max# of bytes in terminal

input queue •/
_POSIJLNAMEJ1AX 14 I* # of bytes in a filename *I
_POSI:x_NGROUPS_J1AX 0 I* max # of groups in a process *I
_POSIX_OPEN_MAX 16 I* max # of files a process can have open •/
_POSIJLPATH_MAX 255 I* max # of characters in a pathname •!
_POSIX_PIPE_BUF 512 I* max # of bytes atomic in write

to a pipe •/

10/92

lo(7) (Internet Utilities) lo(7)

NAME
lo - software loopback network interface

SYNOPSIS
d = open ("/dev/loop", o_RDWR);

DESCRIPTION
The loopback device is a software datalink provider (interface driver) that returns
all packets it receives to their source without involving any hardware devices. It is
a STREAMS device conforming to the datalink provider interface (DLPI). See if(7)
for a general description of network interfaces.

The loopback interface is used to access Internet services on the local machine.
Because it is available on all machines, including those with no hardware network
interfaces, programs can use it for guaranteed access to local servers. A typical
application is .the comsat(lM) server which accepts notification of mail delivery
from a local--Client. The loopback interface is also used for performance analysis
and testing.

By convention, the name of the loopback interface is loO, and it is configured with
Internet address 127.0.0.1. This address may be changed with the
SIOCSIFADDR ioctl () .

SEE ALSO
comsat(lM), if(7), inet(7)

10/92 Page 1

log (7) (Networking Support Utilities) log(7)

NAME
log - interface to STREAMS error logging and event tracing

DESCRIPTION
log is a STREAMS software device driver that provides an interface for console log­
ging and for the STREAMS error logging and event tracing processes (strerr(lM),
strace(lM)). log presents two separate interfaces: a function call interface in the
kernel through which STREAMS drivers and modules submit log messages; and a
subset of ioctl(2) system calls and STREAMS messages for interaction with a user
level console logger, an error logger, a trace logger, or processes that need to submit
their own log messages.

Kernel Interface
log messages are generated within the kernel by calls to the function strlog:

strlog(mid, sid, level, flags, fmt, argl, ...)
short mid, sid;
char level;
ushort flags;
char *fmt;
unsigned argl;

Required definitions are contained in sys/strlog.h, sys/log.h, and
sys/syslog .h. mid is the STREAMS module id number for the module or driver
submitting the log message. sid is an internal sub-id number usually used to iden­
tify a particular minor device of a driver. level is a tracing level that allows for selec­
tive screening out of low priority messages from the tracer. flags are any combina­
tion of SL_ERROR (the message is for the error logger), SL_TRACE (the message is for
the tracer), SL_CONSOLE (the message is for the console logger), SL_FATAL (advisory
notification of a fatal error), and SL_NOTIFY (request that a copy of the message be
mailed to the system administrator). fmt is a printf (3S) style format string,
except that %s, %e, %E, %g, and %G conversion specifications are not handled. Up
to NLOGARGS (currently 3) numeric or character arguments can be provided.

User Interface

10/92

log is opened via the clone interface, /dev/log. Each open of /dev/log obtains a
separate stream to log. In order to receive log messages, a process must first notify
log whether it is an error logger, trace logger, or console logger via a STREAMS
I_STR ioctl call (see below). For the console logger, the I_STR ioctl has an
ic_cmd field of I_CONSLOG, with no accompanying data. For the error logger, the
I_STR ioctl has an ic_cmd field of I_ERRLOG, with no accompanying data. For
the trace logger, the ioctl has an ic_cmd field of I_TRCLOG, and must be accom­
panied by a data buffer containing an array of one or more struct trace_ids ele­
ments. Each trace_ids structure specifies an mid, sid, and level from which mes­
sage will be accepted. strlog will accept messages whose mid and sid exactly
match those in the trace_ids structure, and whose level is less than or equal to the
level given in the trace_ids structure. A value of -1 in any of the fields of the
trace_ids structure indicates that any value is accepted for that field.

Once the logger process has identified itself via the ioctl call, log will begin send­
ing up messages subject to the restrictions noted above. These messages are
obtained via the getmsg (2) system call. The control part of this message contains
a log_ctl structure, which specifies the mid, sid, level, flags, time in ticks since boot

Page 1

log(7) (Networking Support Utilities) log (7)

that the message was submitted, the corresponding time in seconds since Jan. 1,
1970, a sequence number, and a priority. The time in seconds since 1970 is provided
so that the date and time of the message can be easily computed, and the time in
ticks since boot is provided so that the relative timing of log messages can be
determined.

The priority is comprised of a priority code and a facility code, found in
<sys/syslog.h>. If SL_CONSOLE is set inflags, the priority code is set as follows.
If SL_WARN is set, the priority code is set to LOG_WARNING. If SL_FATAL is set, the
priority code is set to LOG_CRIT. If SL_ERROR is set, the priority code is set to
LOG_ERR. If SL_NOTE is set, the priority code is set to LOG_NOTICE. If SL_TRACE is
set, the priority code is set to LOG_DEBUG. If only SL_CONSOLE is set, the priority
code is set to LOG_INFO. Messages originating from the kernel have the facility
code set to LOG_KERN. Most messages originating from user processes will have the
facility code set to LOG_USER.

Different sequence numbers are maintained for the error and trace logging streams,
and are provided so that gaps in the sequence of messages can be determined (dur­
ing times of high message traffic some messages may not be delivered by the logger
to avoid hogging system resources). The data part of the message contains the
unexpanded text of the format string (null terminated), followed by NLOGARGS
words for the arguments to the format string, aligned on the first word boundary
following the format string.

A process may also send a message of the same structure to log, even if it is not an
error or trace logger. The only fields of the log_ctl structure in the control part of
the message that are accepted are the level, flags, and pri fields; all other fields are
filled in by log before being forwarded to the appropriate logger. The data portion
must contain a null terminated format string, and any arguments (up to NLOGARGS)
must be packed one word each, on the next word boundary following the end of
the format string.

ENXIO is returned for I_TRCLOG ioctls without any trace_ids structures, or for
any unrecognized I_STR ioctl calls. Incorrectly formatted log messages sent to
the driver by a user process are silently ignored (no error results).

Processes that wish to write a message to the console logger may direct their output
to I dev I cons log, using either wri te(2) or putmsg(2).

EXAMPLES
Example of I_ERRLOG notification.

struct strioctl ioc;

ioc.ic_cmd = I_ERRLOG;
ioc.ic_timout = O; /*default timeout (15 secs.) */
ioc.ic_len = O;
ioc.ic_dp =NULL;

ioctl(log, I_STR, &ioc);

Example of I_TRCLOG notification.

Page 2 10/92

log (7)

FILES

(Networking Support Utilities)

struct trace_ids tid[2];

tid[OJ .ti_mid = 2;
tid[OJ .ti_sid = 0;
tid[OJ .ti_level = l;

tid[l] .ti_mid = 1002;
tid[l] .ti_sid = -1; /* any sub-id will be allowed */
tid[l] .ti_level = -1; /* any level will be allowed */

ioc.ic_cmd = I_TRCLOG;
ioc.ic_timout = O;
ioc.ic_len = 2 * sizeof(struct trace_ids);
ioc.ic_dp = (char *)tid;

ioctl(log, I_STR, &ioc);

Example of submitting a log message (no arguments).

struct strbuf ctl, dat;
struct log_ctl le;
char *message = "Don't forget to pick up some milk

on the way home" ;

ctl.len
ctl.buf

ctl.maxlen = sizeof(lc);
(char *)≤

dat.len dat.maxlen strlen(message);
dat.buf

le.level
le. flags

message;

O;
SL_ERRORISL_NOTIFY;

putmsg(log, &ctl, &dat, O);

/dev/log
/dev/conslog
<sys/log.h>
<sys/strlog.h>
<sys/syslog.h>

log (7)

SEE ALSO
strace(lM), strerr(lM), intro(2), getmsg(2), putmsg(2), write(2), clone(7).

10/92 Page 3

loginlog (4) login log (4)

NAME
loginlog - log of failed login attempts

DESCRIPTION

FILES

After five unsuccessful login attempts, all the attempts are logged in the file
/var I adm/ loginlog. This file contains one record for each failed attempt. Each
record contains the login name, tty specification, and time.

This is an ASCII file. Each field within each entry is separated from the next by a
colon. Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable logging, the
log file must be created with read and write permission for owner only. Owner
must be root and group must be sys.

/var/adm/loginlog

SEE ALSO
login(l), passwd(l).

10/92 Page 1

lp1x7(7) lp1x7(7)

NAME
lplx7 - line printer device driver

DESCRIPTION

10/92

lplx7 provides an interface to any of the standard Printronix- or Centronics-type
parallel line printers using the parallel port on the MVME187 and MVME167 CPU
boards.

Printers under System V Release 4 must appear as write-only terminals and are
configured using a terminal type in tenninfo(4). The lpadmin(lM) command is
used to configure the printer.

If printing to the raw device, stty(l) settings can be changed, altering the output.
If printing using the lp(l) subsystem, the STREAMS module ldterm will be pushed
onto the stream automatically and will handle all canonical processing.

The ioctl(2) system calls available are a subset of those available to terminals and
are discussed in depth in the termio(7) and termios(7) manpages. Because
printers appear as write-only terminals, modifying the input flags for any of these
ioctls has no effect on the driver. A list of the supported calls and a brief descrip­
tion follows.

EUC_JV[SAVE,EUC_MREST,EUC_IXLOFF,EUC_IXLON,EUC_OXLOFF,EUC_OXLON
These ioctls are for international character handling and will be utilized in
the future. They are simply acknowledged. For more information about the
proper handling of these ioctls, refer to the STREAMS Programming Guide.

TCGETS
The argument is a pointer to a termios structure. The current printer parame­
ters are retrieved and stored in that structure.

TC SETS
The argument is a pointer to a tennios structure. The current printer parame­
ters are set from the values stored in that structure. The change is immediate.

'I'CSETSW
The argument is a pointer to a termios structure. The current printer parame­
ters are set from the values stored in that structure. The change occurs after all
characters queued for output have been transmitted. This form should be used
when changing parameters that affect output.

TCSETSF
The argument is a pointer to a termios structure. The current terminal param­
eters are set from the values stored in that structure. The change occurs after
all characters queued for output have been transmitted; all characters queued
for input are discarded and the change occurs. Because there are no input
characters from a printer, this command has the same effect as the TCSETSW
command.

TCGETA
The argument is a pointer to a termio structure. The current terminal parame­
ters are retrieved and parameters that can be stored in a termio structure are
stored in that structure.

Page 1

lp1x7(7) lp1x7(7)

FILES

TC SETA
The argument is a pointer to a termio structure. Those terminal parameters
that can be stored in a termio structure are set from the values stored in that
structure. The change is immediate.

TCSETAW
The argument is a pointer to a termio structure. Those terminal parameters
that can be stored in a termio structure are set from the values stored in that
structure. The change occurs after all characters queued for output have been
transmitted. This form should be used when changing parameters that affect
output.

TCSETAF
The argument is a pointer to a termio structure. Those terminal parameters
that can be stored in a termio structure are set from the values stored in that
structure. The change occurs after all charaders queued for output have been
transmitted; all characters queued for input are discarded and the change
occurs. Because there are no input characters from a printer, this command has
the same effect as the TCSETAW command.

TCSBRK
This command is acknowledged but no action takes place.

TC FLUSH
This command is transformed by ldterm into the STREAMS message M_FLUSH.
The transformation only takes place if ldterm has been pushed onto the
stream either by the lp subsystem or by the user.

TCXONC
This command is transformed by ldterm into a STREAMS message, M_START or
M_STOP, depending on which message is appropriate. The transformation
only takes place if ldterm has been pushed onto the stream either by the lp
subsystem or by the user.

For more information about the above ioctls and error messages generated by
them, see termio(7).

/dev/xedt/lp187_c0
on the MVME187 CPU.

/dev/printer/lp187_c0d0
on the MVME187CPU

/dev/xedt/lp167_c0
on the MVME167 CPU

/dev/printer/lp167_c0d0
on the MVME167 CPU

SEE ALSO

Page 2

lp(l), stty(l), lpadmin(lM), ioctl(2), terminfo(4), ldterm(7), mvmel87(7),
mvmel67(7), termio(7), termios (7) .

10/92

m376(7) (TCP/IP) m376(7)

NAME
m3 7 6 - MVME376 Local Area Network Interface

SYNOPSIS
#include <sys/dlpi.h>
#include <sys/macioctl.h>

fd = open ("/dev/m376_c0", O_RDWR);

DESCRIPTION

10/92

The MVME376 is a VMEbus Local Area Network Controller for Ethernet and IEEE
802.3 compatible networks. The MVME376 utilizes the on-board combination of an
Am7990 Local Area Network Controller (LANCE), an Am7992B Serial Interface
Adapter (SIA), and 256Kbytes of dual ported RAM. The m376 device driver sup­
ports TCP /IP and OSI protocol stacks. A maximum of 4 (four) boards may be
configured in a single system.

The m3 7 6 is a STREAMS-based software driver used with the MVME376 Ethernet
board. The m3 7 6 interface conforms to the Data Link Provider Interface (DLPI). In
addition, the m3 7 6 driver accepts the MAC management commands specified in the
MAC Provider Interface (MPI).

The m376 driver can be opened directly, or indirectly from the clone device driver.
During the TCP/IP startup, the m376 device is clone opened and linked to the IP
and ARP STREAMS modules via the slink command. From then on, m376 con­
verts all the outgoing packets received from IP I ARP to the format defined by the
MVME376 board and then passes these packets to the board. If the OSI-DP pack­
age is installed on the system and linked into the kernel, the m3 7 6 driver will accept
outgoing packets from the DLR (OSI LLCl) module.

Upon receiving incoming packets from the MVME376 board, m3 7 6 converts these
packets to the STREAMS-based DLPI format messages and passes these packets to
the appropriate user (e.g., ARP, IP, or DLR).

The mvme3 7 6 namer program, creates or deletes the device special files for the m3 7 6
driver at boot time. The device special filenames are composed of the string
m3 7 6_cy, where y is the controller number. Controllers are numbered beginning at
0. The device special filename for the first controller in the system is
/dev/m376_c0, for the second controller (if the system has one) is /dev/m376_cl,
and soon.

An m3 7 6 node major device number is the major device number of the clone device
driver. An m376 minor device number is the major number of the m376 device,
found in /etc/master.d/mvme376, concatenated with the board number
corresponding to this device. See intro(7) for the pictorial representation of the
minor device number as passed to the device driver. For the m376 device driver, the
bit fields in the minor format are defined as:

The BOARD bits define the board device number. Boards are numbered
from 0. The maximum board device number supported is 3.

The MAJOR# bits correspond to the real major number of the m3 7 6 device
as specified in the file /etc/master .d/mvme376.

Page 1

m376(7) (TCP/IP) m376(7)

USAGE

The device node name is also used as the Ethernet network interface name by
cenet in the network database file /etc/strcf and by ifconfig in the script
/etc/inet/rc.inet.

Each m3 7 6 device may have up to seven (7) minor devices open simultaneously.

STREAM Message Processing

Page 2

The following are the types of STREAMS messages the driver can process:

M_PROTO/M_PCPROTO
Six DLPI protocol message types are supported: DL_INFO_REQ
DL_UNITDATA_REQ, DL_BIND_REQ, DL_UNBIND_REQ,
DL_ENABMULTI_REQ, and DL_DISABMULTI_REQ. Unsupported message
types that are received cause an error message of type dl_error_ack_t
with dl_errno set to DL_NOTSUPPORTED to be sent back up the stream.

DL_INFO_REQ is a request for driver information. Driver information is
passed back up the stream in a message of type dl_info_ack_t with
dl_primitive set to DL_INFO_ACK. However, if enough memory is not
available for the driver information, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_UNITDATA_REQ is a request to transmit data. The message is in the
dl_unitdata_req__t format. The driver will process this message and
send data to the appropriate destination address. Most errors that can
occur during this message are turned around in the message itself and sent
back up stream in a message with dl_primi ti ve set to DL_UDERROR_IND.
If enough memory is not available for processing, an error message of type
dl_error_ack_t is sent back up the stream with dl_primitive set to
DL_ERROR_ACK.

DL_BIND_REQ is a request to bind a service access point (SAP) to the minor
device number associated with the current stream. The request message is
of type dl_bind_req__t. A SAP type, as long as it is valid, is assumed to
be an Ethernet binding if it is not equal to IEEE8023_TYPE. Any Ethernet
type can be used as a binding SAP. Only one stream may use
IEEE8023_TYPE as a SAP. All IEEE802.3 frames will be sent up this stream.
If the OSI-DP package has been installed, the DLR module will bind to this
SAP and will receive all 802.3 frames. Once the stream has been bound, an
acknowledgement message type dl_bind_ack_t is sent back up the
stream. Errors generated during the processing of this message that cause
an error message of type dl_error_ack_t to be sent back up the stream
are: stream already bound, bad sap value, and cannot allocate memory for
acknowledgement.

DL_UNBIND_REQ is a request to unbind the minor device associated with
the current stream. Errors generated during message processing that cause
an error message of type dl_error_ack_t are: minor device is not bound
and cannot allocate enough memory for acknowledge,ment. An ack­
nowledgement message of type dl_ok_ack_t is generated when the
stream has been unbound.

10/92

m376(7)

M_IOCTL

10/92

(TCP/IP) m376(7)

DL_ENABMULTI_REQ is a request to enable a multicast address on a per­
stream basis. An individual stream may have a maximum of sixty-four
multicast addresses in its table, subject to the following limitation. There
may be no more than sixty-four unique addresses for all streams associ­
ated with each controller. An acknowledgement message of type
dl_ok_ack_t is generated if the request is valid. A message of type
dl_error_ack_t is generated with dl_primitive set to DL_BADADDR if
the multicast address is invalid or dl_primitive set to DL_TOOMANY if
there is no space left in the controller's multicast table.

DL_DISABMULTI_REQ is a request to disable a multicast address on a per­
stream basis. An acknowledgement message of type dl_ok_ack_t is gen­
erated if the request is valid. A message of type dl_error_ack_t is gen­
erated with dl_primitive set to DL_BADADDR if the multicast address is
invalid or dl_primitive set to DL_NOTENAB if the requested address is
not currently enabled.

ioctl commands are received in messages of type iocblk. There are
many ioctl commands supported by the driver. Command data must be
stored in a connected message block type M_DATA. Some commands do
not require M_DATA blocks; M_DATA block requirements are listed. Data
passed back upstream is always contained in an M_DATA block. All of the
ioctl #defines used can be found in the file
include/sys/macioctl.h.

A description of user ioctl stream messages can be found under the
I_STR command in streamio(7). A sample code extract can be found in
the STREAMS Mechanism chapter of the STREAMS Programming Guide.

MACDELAMCA is a request to delete all multicast table entries on the con­
troller associated with this stream. This command does not require an
M_DATA block.

MACDELMCA is a request to delete one multicast address from a multicast
table on a per-stream basis. This command requires an M_DATA block of
type mc_f5~e.

MACGETIA is a type of request to return the Ethernet address of the
LANCE controller associated with the current queue. This command does
not require an M_DATA block.

MACGETMCA is a request to return the entire multicast table for the con­
troller associated with the current queue. This command does not require
an M_DATA block.

MACGETSTAT is a request to return a statistic the driver has been gather­
ing. A returned value of -1 indicates the statistic was not available. This
command requires an M_DATA block. The data block is an array of struc­
tures. Each structure has the following format (see macioctl. h):

struct macstat
long name ;
long value ;
}

Page 3

m376{7)

Page 4

(TCP/IP) m376{7)

A table of number defines and their descriptions follow:

MACGETSTAT

Name Descr.!:E_tion
MACSTAT_DEV _TIMEOUTS total number of device timeouts
MACSTAT _XMITED number of successful transmits
MACSTAT_XMITED_DEF number of deferred transmits
MACSTAT_xMITED_lCOLL number of transmits with >I =l collision
MACSTAT_ COLLISIONS total number of collisions
MACSTAT_NOXMIT_BUFF total number dropped frames because of no

STREAM buffer
MACSTAT _NOXMIT _COLL number of frames dropped due to excess

collisions
MACSTAT_RECVD number of frames successfully received
MACSTAT_RECVD_CKSUM number of CRC errors
MACSTAT _RECVD _ALIGN number of frames with alignment errors
MACSTAT _NORECV _RES number of frames dropped because of

resource lack
MACSTAT_NORECV _LENGTH number of frames dropped because of bad

length
MACSTAT _RECVD _MCAST number of multicast frames received
MACSTAT_XMITED_MCAST number of multicast frames transmitted
MACSTAT_NORECV _MCAST number of multicast frames rejected
MACSTAT_NORECV _TYPE number of frames dropped because

unbound type
MACSTAT _NOXMIT _CARRIER number of times lost carrier
MACSTAT _NOXMIT _CTS number of times lost CTS
MACSTAT_DMA_ERRORS number of DMA errors
MACSTAT _RECVD _BCAST number broadcast frames received
MACSTAT_OUT_OF_WINDOW number of late collisions
MACSTAT_XMITED_BCAST number of broadcast frames transmitted

MACSETIA is a request to set the Ethernet address for the LANCE controller
associated with the current stream. After executing MACSETIA, the net­
working subsystem must be stopped and then restarted. The address is
immediately changed in the LANCE and the non-volatile RAM on the cpu
board.

MACSETMCA is a request to add one multicast address to a multicast table
on a per-stream basis. This command requires an M_DATA block of type
mc_frame. A multicast address must have the least significant bit of
byte[O] of the Ethernet address set. An individual stream may have a

10/92

of

m376(7) (TCP/IP) m376(7)

FILES

M_FLUSH

maximum of sixty-four multicast addresses in its table, subject to the fol­
lowing limitation. There may be no more than sixty-four addresses for all
streams associated with each controller.

SIOCGENADDR is a type of request to return the Ethernet address of the
LANCE controller associated with the current queue. This command
requires an M_DATA block of type struct ifreq.

If the command is a read queue flush, the read queue of the driver is
flushed and the message is passed back up stream. If the command is a
write queue flush, the write queue of the driver is flushed.

/dev/m376_*
/usr/include/sys/dlpi.h
/usr/include/sys/macioctl.h
/usr/include/sys/mvme376.h

SEE ALSO

10/92

ifconfig(lM), mvme376(1M), slink(lM), strace(lM), edt_data(4), master(4),
strcf(4N), arp(7), clone(7), intro(7), ip(7), streamio(7).
McGrath, G., A STREAMS-based Data Link Provider Interface (DLPI), Version 1.3,
AT&T Bell Laboratories, Summit, N.J., February 1989
LT-610 Programmer Guide, Preliminary version, Retix, Santa Monica, CA, 1991

Page 5

mai lcnfg { 4) {Essential Utilities) mailcnfg { 4)

NAME
mailcnfg - initialization information for mail and rmail

DESCRIPTION
The /etc/mail/mailcnfg file contains initialization information for the mail and
rmail commands. Each entry in mailcnfg consists of a line of the form

Keyword =Value

Leading whitespace, whitespace surrounding the equal sign, and trailing white­
space is ignored. Keyword may not contain embedded whitespace, but whitespace
may appear within Value. Undefined keywords or badly formed entries are silently
ignored.

Keyword Definitions
DEBUG Takes the same values as the -x invocation option of mail.

This provides a way of setting a system-wide debug/ tracing
level. Typically DEBUG is set to a value of 2, which provides
minimal diagnostics useful for debugging mail and rmail
failures. The value of the -x mail invocation option will
override any specification of DEBUG in mailcnfg.

CLUSTER

FAILSAFE

10/92

To identify a closely coupled set of systems by one name to
all other systems, set Value to the cluster name. This string is
used to supply the ... remote from ... information on the
From header line rather than the system nodename returned
by uname(2).

In the event that the /var /mail directory is accessed via
RPS or NFS within a cluster (see CLUSTER above), provisions
must be made to allow for the directory not being available
when local mail is to be delivered (remote system crash, RPS
or NFS problems, and so on). Value is a string that indicates
where to forward the current message for delivery. Typi­
cally this is the remote system that actually owns /var /mail.
In this way, the message is queued for delivery to that sys­
tem when it becomes available. For example, assume a clus­
ter of systems (sysa, sysb, sysc) where /var /mail is physi­
cally mounted on sysc and made available to the other
machines via RPS or NFS. If sysc were to crash, the
RPS/NFS-accessible /var /mail would become unavailable
and local deliveries of mail would go to /var/mail on the
local system. When /var /mail is re-mounted via RPS/NFS,
all messages deposited in the local directory would be hid­
den and essentially lost. To prevent this, if FAILSAFE is
defined in mailcnfg, mail and rmail check for the
existence of /var /mail/: saved, a required subdirectory. If
this subdirectory does not exist, mail assumes that the
RPS/NFS-accessible /var /mail is not available and invokes
the failsafe mechanism of automatically forwarding the mes­
sage to Value. In this example Value would be sysc ! %n. The
%n keyword is expanded to be the recipient name [see
mail(l) for details] and thus the message would be for­
warded to sysc!recipient_name. Because sysc is not

Page 1

mailcnfg (4) (Essential Utilities) mailcnfg (4)

FILES

DEL_EMPTY_MFILE

DOMAIN

SMARTERHOST

%mailsurr _keyword

available, the message remains on the local system until
sysc is available, and then sent there for delivery.

If not specified, the default action of mail and nnail is to
delete empty mailfiles if the permissions are 0660 and to
retain empty mailfiles if the permissions are anything else. If
Value is yes, empty mailfiles are always deleted, regardless
of file permissions. If Value is no, empty mailfiles are never
deleted.

This string is used to supply the system domain1 name in
place of the domain name returned by getdomainame(3).

This string may be set to a smarter host which may be refer­
enced within the mail surrogate file via %X.

As described in mailsurr(4), certain pre-defined single
letter keywords are textually substituted in surrogate com­
mand fields before they are executed. While none of the
predefined keywords may be changed in meaning, new ones
may be defined to provide a shorthand notation for long
strings (such as /usr/lib/mail/surrcmd) which may
appear repeatedly within the mailsurr file. Upper case
letters are reserved for future use and will be ignored if
encountered here.

_/

/etc/mail/mailcnfg
/etc/mail/mailsurr
/var/mail/:saved
/usr/lib/mail/surrcmd

SEE ALSO

NOTES

Page 2

mail(l) uname(2), getdomainame(3), mailsurr(4).

If /var /mail is accessed via RFS or NFS and the subdirectory /var /mail/: saved
is not removed from the local system, the FAILSAFE mechanism will be subverted.

10/92

mailsurr (4} (Essential Utilities} mailsurr(4}

NAME
mailsurr - surrogate commands for routing and transport of mail

DESCRIPTION
The mailsurr file contains routing and transport surrogate commands used by the
mail command. Each entry in mailsurr has three whitespace-separated, single
quote delimited fields:

'sender' 'recipient' 'command'

or a line that begins

Defaults:

Entries and fields may span multiple lines, but leading whitespace on field con­
tinuation lines is ignored. Fields must be less than 1024 characters long after expan­
sion (see below).

The sender and recipient fields are regular expressions. If the sender and recipient
fields match those of the message currently being processed, the associated com­
mand is invoked.

The command field may have one of the following five forms:

A[ccept]
D[eny]
T[ranslate] R=[I]string
< S= ... ;C= ... ;F= ..• ; command
>command

Regular Expressions
The sender and recipient fields are composed of regular expressions (REs) which
are digested by the regexp(5) compile and advance procedures in the C library.
The regular expressions matched are those from ed(l), with simple parentheses ()
playing the role of \ (\) and the addition of the + and ? operators from egrep(l).
Any single quotes embedded within the REs must be escaped by prepending them
with a backslash or the RE is not interpreted properly.

The mail command prepends a circumflex (A) to the start and appends a dollar sign
($)to the end of each RE so that it matches the entire string. Therefore it would be
an error to use ARE$ in the sender and recipient fields. To provide case insensi­
tivity, all REs are converted to lower case before compilation, and all sender and
recipient information is converted to lower case before comparison. This conver­
sion is done only for the purposes of RE pattern matching; the information con­
tained within the message's header is not modified.

The sub-expression pattern matching capabilities of regexp may be used in the
command field, that is, (...) , where 1 :::;; n :::;; 9. Any occurrences of \ \n in the
replacement string are themselves replaced by the corresponding (...) substring in
the matched pattern. The sub-expression fields from both the sender and recipient
fields are accessible, with the fields numbered 1 to 9 from left to right.

Accept and Deny Commands

10/92

Accept instructs rmail to continue its processing with the mailsurr file, but to
ignore any subsequent matching Deny. That is, unconditionally accept this mes­
sage for delivery processing. Deny instructs rmail to stop processing the mailsurr
file and to send a negative delivery notification to the originator of the message.

Page 1

mailsurr (4) (Essential Utilities) mailsurr (4)

Whichever is encountered first takes precedence.

Translate Command
Translate allows optional on-the-fly translation of recipient address information.
The recipient replacement string is specified as R=string.

For example, given a command line of the form

'.+' '([A!]+)@(.+)\.EUO\.ATT\.com' 'Translate R=attmail!\\2!\\1'

and a recipient address of rob@sysa. EUO. ATT. COM the resulting recipient address
would be attmail ! sys a! rob.

Should the first character after the equal sign be a ' I ', the remainder of the string is
taken as a command line to be directly executed by rmail. If any sh(l) syntax is
required (metacharacters, redirection, and so on), then the surrogate command
must be of the form:

sh -c "shell command line . .. "

Special care must be taken to escape properly any embedded back-slashes and sin­
gle or double quotes, since rmail uses double quoting to group whitespace delim­
ited fields that are meant to be considered as a single argument to execl(2). It is
assumed that the executed command will write one or more replacement strings on
stdout, one per line. If more than one line is returned, each is assumed to be a
different recipient for the message. This mechanism is useful for mailing list expan­
sions. As stated above, any occurrences of\ \n are replaced by the appropriate sub­
string before the command is executed. If the invoked command does not return at
least one replacement string (no output or just a newline), the original string is not
modified. For example, the command line

'.+' '(.+)' 'Translate R=l/usr/bin/findpath \\l'

allows local routing decisions to be made.

If the recipient address string is modified, mailsurr is rescanned from the begin­
ning with the new address(es), and any prior determination of Accept (see above)
is discarded.

<command
The intent of a < command is that it is invoked as part of the transport and delivery
mechanism, with the ready-for-delivery message available to the command at its
standard input. As such, there are three conditions possible when the command
exits:

Success The command successfully delivered the message. What actu­
ally constitutes successful delivery may be different within the
context of different surrogates. The rmail process assumes that
no more processing is required for the message for the current
recipient.

Continue The command performed some function (logging remote mes­
sage traffic, for example) but did not do what would be con­
sidered message delivery. The rmail process continues to scan
the mailsurr file looking for some other delivery mechanism.

Page 2 10/92

mailsurr(4) (Essential Utilities) mailsurr (4)

10/92

Failure The command encountered some catastrophic failure. The
rmail process stops processing the message and sends to the
originator of the message a non-delivery notification that
includes any stdout and stderr output generated by the com­
mand.

The semantics of the< command field in the mailsurr file allow the specification
of exit codes that constitute success, continue, and failure for each surrogate com­
mand individually. The syntax of the exit state specification is:

< WS [exit_state_id=ec[, ec[, . ..]] ;][exit_state_id=ec[,ec[, .. .]] ;
[...]]] WS surrogate_cmd_line

WS is whitespace. exit_state_id can have the value s, c, or F. exit_state_ids can be
specified in any order. ec can be:

any integer 0:::; n:::; 255 [Negative exit values are not possible. See exit(2)
and wait(2).]

a range of integers of the form lower _limit-upper _limit where the limits are ~
0 and:::; 255, and

*,which implies anything
For example, a command field of the form:

'< S=l-5,99;C=0,12;F=*; command %R'

indicates that exit values of 1 through 5, and 99, are to be considered success,
values of 0 (zero) and 12 indicate continue, and that anything else implies failure.
If not explicitly supplied, default settings are S=O; C=*; .

It may be possible for ambiguous entries to exist if two exit states have the same
value, for example, 8=12, 23; C=*; F=23, 52; or S=*; C=9; F=*;. To account for this,
rmail looks for explicit exit values (that is, not 11*11) in order of success, continue,
failure. Not finding an explicit match, rmail then scans for"*" in the same order.

It is possible to eliminate an exit state completely by setting that state's value to an
impossible number. Since exit values must be between 0 and 255 (inclusive), a
value of 256 is a good one to use. For example, if you had a surrogate command
that was to log all message traffic, a mailsurr entry of

'(.+)' '(.+)' '<S=256;C=*; /usr/lib/mail/surrcmd/logger \\1 \\2'

would always indicate continue.

Surrogate commands are executed by rmail directly. If any shell syntax is required
(metacharacters, redirection, and so on), then the surrogate command must be of
the form:

sh -c "shell command line . .. "
Special care must be taken to properly escape any embedded back-slashes and
other characters special to the shell as stated in the "Translate'' section above.

If there are no matching < commands, or all matching < commands exit with a con­
tinue indication, rmai 1 attempts to deliver the message itself by assuming that the
recipient is local and delivering the message to /var /mail/recipient.

Page 3

mailsurr(4) (Essential Utilities) mailsurr (4)

>command
The intent of a > command is that it is invoked after a successful delivery to do any
post-delivery processing that may be required. Matching >commands are executed
only if some < command indicates a successful delivery (see the previous section)
or local delivery processing is successful. The mailsurr file is rescanned and all
matching > commands, not just those following the successful < command, are exe­
cuted in order. The exit status of an >command is ignored.

Defaults: Line
The default settings may be redefined by creating a separate line in the mailsurr
file of the form

Defaults: [S= ... ;][C= ... ;][F= ... ;]

Defaults: lines are honored and the indicated default values redefined when the
line is encountered during the normal processing of the mailsurr file. Therefore,
to redefine the defaults globally, the Defaults: line should be the first line in the
file. It is possible to have multiple Defaults: lines in the mailsurr file, where
each subsequent line overrides the previous one.

Surrogate Command Keyword Replacement.

Page 4

Certain special sequences are textually-substituted in surrogate commands before
they are invoked:

%n the recipient's full name.
%R the full return path to the originator (useful for sending replies,

delivery failure notifications, and so on)
%c value of the Content-Type: header line if present.
%C "text" or "binary", depending on an actual scan of the con­

tent. This is independent of the value of any Content-Type
header line encountered (useful when calling ckbinarsys.)

%S the value of the Subject: header line, if present.
%1 value of the Content-Length: header line.
%L the local system name. This will be either CLUSTER from

mailcnfg or the value returned by uname.
%U the local system name, as returned by uname.
%X the value of SMARTERHOST in mailcnfg.
%D the local domain name. This will be either DOMAIN from

mailcnfg, or the value returned by getdomainame.
\ \n as described above, the corresponding (...) substring in the

matched patterns. This implies that the regexp limitation of 9
substrings is applied to the sender and recipient REs collec­
tively.

%keywords Other keywords as specified in /etc/mail/mailcnfg. See
mailcnfg(4).

The sequences %L, %U, %D, and %keywords are permitted within the sender and reci­
pient fields as well as in the command fields.

An example of the mailsurr entry that replaces the uux "built-in" of previous ver­
sions of rmail is:

10/92

mailsurr (4) (Essential Utilities) mailsurr (4)

'.+' '([A@!]+)!(.+)' '< /usr/bin/uux - \\l!rmail (\\2)'

Mail Surrogate Examples

10192

Some examples of mail surrogates include the distribution of message-waiting
notifications to LAN-based recipients and lighting Message-Waiting Lamps, the
ability to mail output to printers, and the logging of all rmail requests between
remote systems (messages passing through the local system). The following is a
sample mailsurr file:

Some corrmon remote mail surrogates follow. To activate any
or all of them, remove the '#' (corrment indicators) from
the beginning of the appropriate lines. Remember that they
will be tried in the order they are encountered in the file,
so put preferred surrogates first.

Prevent all shell meta-characters
' . +' ' . * [' ; & I A<> () l . * ' 'Deny'

Map all names of the form local-machine!user -> user
'.+' '%L!(.+)' 'Translate R=\l'

Map all names of the form uname!user -> user
Must be turned on when using mail in a cluster environment.
#' .+' '%U! (.+)' 'Translate R=\1'

Map all names of the form user@host -> host!user
'.+' , ([A!@]+)@(.+), 'Translate R=\2! \1'

Map all names of the form host.uucp!user -> host!user
'.+' ' ([A!@]+) \.uucp! (.+)' 'Translate R=\1! \2'

Map all names of the form host.local-domain!user -> host!user
DOMAIN= within /etc/mail/mailcnfg will override getdomainame(3).
'.+' , ([A!@]+)%D! (.+)' 'Translate R=\1! \2'

Allow access to 'attmail' from remote system 'sysa'
'sysa!. *' 'attmail! .+' 'Accept'

Deny access to 'attmail' from all other remotes
I.+!.+' 'attmail! .+' 'Deny'

Send mail for 'laser' to attached laser printer
Make certain that failures are reported via return mail.
' • + ' ' laser' '< S=O;F=*; lp -dlaser'

Run all local names through the mail alias processor

'Translate R=l/usr/bin/mailalias %n'

For remote mail via nusend

Page 5

mailsurr (4) (Essential Utilities) mailsurr (4)

#'.+' '(['!]+)!(.+)' '< /usr /bin/nusend -d \ \1 -s -e - ! "rmail \ \2"

For remote mail via usend
'.+' ' ([' ! l +) ! (. +)'

'< /usr/bin/usend -s -d\\1 -uNoLogin -!"rmail \\2" - '

For remote mail via uucp
'.+' '(['!@]+) ! .+' '<S=256;C=0;

/usr/lib/mail/surrcmd/ckbinarsys -t %C -s \\l'
'.+' '(['!@]+)!(.+)' '< /usr/bin/uux - \\l!rmail (\\2)'

For remote mail via smtp
#'.+' '(['!@]+)!(.+)' '< /usr/lib/mail/surrcmd/smtpqer %R %n'

If none of the above work, then let a router change the address.
#'.+' '.*[!@].*' 'Translate R=I /usr/lib/mail/surrcmd/smail -A %n'

If none of the above work, then ship remote mail off to a smarter host.
Make certain that SMARTERHOST= is defined within /etc/mail/mailcnfg.
#'.+' '.*[!@].*' 'Translate R=%X!%n'

Log successful message deliveries
'(.+)' '(.+)' '>/usr/lib/mail/surrcmd/logger \1 \2'

Note that invoking mail to read mail does not involve the mailsurr file or any
surrogate processing.

Security
Surrogate commands execute with the permissions of rmail (user ID of the invoker,
group ID of mail). This allows surrogate commands to validate themselves, check­
ing that their effective group ID was mail at invocation time. This requires that all
additions to mailsurr be scrutinized before insertion to prevent any unauthorized
access to users' mail files. All surrogate commands are executed with the path
/usr/lib/mail/surrcmd:/usr/bin.

Debugging New mailsurr Entries

FILES

Page 6

To debug mailsurr files, use the -T option of the mail command. The -T option
requires an argument that is taken as the pathname of a test mailsurr file. If null
(as in -T ""),the systemmailsurr file is used. Enter

mai 1 -T test _file recipient
and some trivial message (like "testing"), followed by a line with either just a dot
(". ") or a cntl-D. The result of using the -T option is displayed on standard output
and shows the inputs and resulting transformations as mailsurr is processed by
the mail command for the indicated recipient.

Mail messages will never be sent or delivered when using the -T option.

/etc/mail/mailsurr

10/92

mailsurr(4) (Essential Utilities) mailsurr (4)

/usr /lib/mail I surrcmd/ * surrogate commands
/etc/mail/mailcnfg initialization information for mail

SEE ALSO

NOTES

10/92

ckbinarsys(lM), ed(l), egrep(l), mail(l), sh(l), uux(l), exec(2), exit(2), wait(2),
getdomainname(3) popen(3), mailcnfg(4), regexp(S).

It would be unwise to install new entries into the system mailsurr file without
verifying at least their syntactical correctness via 'mail -T ... 'as described above.

Page 7

master(4) master(4)

NAME
master - master configuration database

DESCRIPTION
The master configuration database is a collection of files. Each file contains
configuration information for a device or module that may be included in the sys­
tem. A file is named with the module name to which it applies. This collection of
files is maintained in a directory called /etc/master .d. Each file has an identical
format. For convenience, this collection of files will be referred to as the master
file, as though it were a single file. Treating the master file as a single file allows a
reference to the master file to be understood to mean the individual file in the
master. d directory that corresponds to the name of a device or module. The file is
used by the mkboot(lM) program to obtain device information to generate the dev­
ice driver and configurable module files. It is also used by the sysdef(lM) pro­
gram to obtain the names of supported devices. master consists of two parts; they
are separated by a line with a dollar sign ($) in column 1. Part 1 contains device
information for both hardware and software devices, and loadable modules. Part 2
contains parameter declarations used in Part 1. Any line with an asterisk (*) in
column 1 is treated as a comment.

Part 1. Description

10/92

Hardware devices, software drivers and loadable modules are defined with a line
containing the following information. Field 1 must begin in the left-most position
on the line. Fields are separated by white space (tab or blank).

Field 1: element characteristics:
o specify only once
r required device
b block device
c character device
h hardware driver
d dispatch driver
j file-system driver
n new-style device driver
e executable-type driver
t initialize cdevsw [] . d_ttys
s software driver
f STREAMS driver
m STREAMS module
M multi-threaded driver or module
[0-9 J processor number for a staticly bound driver or

module
x not a driver; a loadable module
none no flags for this driver or module

Note: A streams device or module which has no M flag or processor number
in Field 1, will be staticly bound to the boot processor. For other drivers, the
module will be allowed to float between processors, but will only execute
on one processor at a time.

Page 1

master(4) master(4)

Field 2:
Field 3:

Field 4:
Field5:

handler prefix (4 characters maximum)
hardware/software driver external major number; "-" if not a
software/hardware driver, or to be assigned during execution of
drvins tal 1 (lM)
number of sub-devices per device; " - " if none
dependency list (optional); this is a comma-separated list of
other drivers or modules that must be present in the
configuration if this module is to be included

For each module, two classes of information are required by mkboot: external rou­
tine references and variable definitions. Routine and variable definition lines begin
with white space and immediately follow the initial module specification line.
These lines are free form, thus they may be continued arbitrarily between non­
blank tokens as long as the first character of a line is white space.

Part 1. Routine Reference Lines
If the UNIX system kernel or other dependent module contains external references
to a module, but the module is not configured, then these external references would
be undefined. Therefore, the routine reference lines are used to provide the infor­
mation necessary to generate appropriate dummy functions at boot time when the
driver is not loaded. The format of a routine reference is as follows:

routine_name ()action

The valid actions and their meanings are:
{} routine_name () {}
{nosys} {return nosys();
{nodev} {return nodev() ;}
{false} {return O;}
{true} {return 1;}
{nopkg} {return nopkg() ;}
{noreach} panic the system

Part 1. Variable Definition Lines

Page 2

Variable definition lines are used to generate all variables required by the module.
The variable generated may be of arbitrary size, be initialized or not, or be arrays
containing an arbitrary number of elements. Variable references are defined as fol­
lows:

Field 1:

Field 2:

Field 3:

variable_name

[expr J - optional field used to indicate array size

(length) - required field indicating the size of the variable

Field 4: = { expr, . . . } - optional field used to initialize individual ele­
ments of a variable

The length field is mandatory. It is an arbitrary sequence of length specifiers, each
of which may be one of the following:

%i an integer
%1 a long integer
% s a short integer

10/92

master(4) master(4)

10/92

%c a single character
%number a field which is number bytes long
%number c a character string which is number bytes long

For example, the length field

(%8c %1 %0x58 %1 %c %c)

could be used to identify a variable consisting of a character string 8-bytes long, a
long integer, a Ox58 byte structure of any type, another long integer, and two char­
acters. Appropriate alignment of each % specification is performed (%number
is word-aligned) and the variable length is rounded up to the next word boundary
during processing.

The expressions for the optional array size and initialization are infixed expressions
consisting of the usual operators for addition, subtraction, multiplication, and divi­
sion: +, -, *, and /. Multiplication and division have the higher precedence, but
parentheses may be used to override the default order. The builtin functions min
and max accept a pair of expressions, and return the appropriate value. The
operands of the expression may be any mixture of the following:

&name

#name

#C

address of name, where name is any symbol defined by the kernel,
any module loaded, or any variable definition line of any module
loaded

sizeof name where name is any variable name defined by a variable
definition for any module loaded; the size is that of the individual
variable-not the size of an entire array

number of controllers present; this number is determined by the EDT
for hardware devices, or by the number provided in the system file
for non-hardware drivers or modules

#C (name) number of controllers present for the module name; this number is
determined by the EDT for hardware devices, or by the number pro­
vided in the system file for non-hardware drivers or modules

#D number of devices per controller taken directly from the current
master file entry

D (name) number of devices per controller taken directly from the master file
entry for the module name

#M

#M(name)

name

number

string

the internal major number assigned to the current module if it is a
device driver; zero of this module is not a device driver

the internal major number assigned to the module name if it is a dev­
ice driver: zero if that module is not a device driver

value of a parameter as defined in the second part of master

arbitrary number (octal, decimal, or hex allowed)

a character string enclosed within double quotes (all of the character
string conventions supported by the C language are allowed); this
operand has a value which is the address of a character array con­
taining the specified string

Page 3

master(4) master(4)

When initializing a variable, one initialization expression should be provided for
each %i, %1, %s, or %c of the length field. The only initializers allowed for a %number
c are either a character string (the string may not be longer than number), or an
explicit zero. Initialization expressions must be separated by commas, and variable
initialization proceeds element by element. Note that %number specification cannot
be initialized-they are set to zero. Multiple elements of an array may be initial­
ized; uninitialized elements are set to zero. If there are more initializers than size
specifications, it is an error and execution of the mkboot program is aborted. In the
case of an array, mkboot will report an error only if the array's dimension is a literal.
C UNIX will report an error if the dimension is a symbol or expression and too
many initializers are given. If there are fewer initializations than size specifications,
zeros will be used to pad the variable. For example:

={ "V2.Ll", #C*#D, max(lO,#D), #C(OTHER), #M(OTHER) }

would be a possible initialization of the variable whose length field was given in
the preceding example.

Part 2. Description
Parameter declarations may be used to define a value symbolically. Values can be
associated with identifiers and these identifiers may be used in the variable definition
lines. Parameters are defined as follows:

identifier = value
The identifier may have a maximum of 8 characters. The value may be a number
(decimal, octal, or hex) or a string.

EXAMPLE

Page 4

A sample master file for a tty device driver would be named atty if the device
appeared in the EDT as ATTY. The driver is a character device, the driver prefix is
at. In addition, another driver named ATLOG is necessary for the correct operation
of the software associated with this device.

*FLAG PREFIX SOFT #DEV DEPENDENCIES/VARIABLES
tea at 2 ATLOG

$
ATID = "fred"
ATMAX = 6

atpoint (){false}
at_tty[#C*#D] (%0x58)
at_cnt(%i) ={ #C*#D }
at_logmaj (%i) ={ #M(ATLOG)
at_id(%8c) ={ ATID }
at_table(%i%1%31%s)

={ max(#C,ATMAX),
&at_tty,
#C }

This master file causes a routine named atpoint to be generated by the boot pro­
gram if the ATTY driver is not loaded, and there is a reference to this routine from
any other module loaded. When the driver is loaded, the variables at_tty,
at_cnt, at_logmaj, at_id, and at_table are allocated and initialized as specified.
Because of the t flag, the d_ttys field in the character device switch table is initial­
ized to point to at_tty (the first variable definition line contains the variable

10/92

master(4) master(4)

whose address will be stored in d_ttys). The ATTY driver would reference these
variables by coding:

FILES

extern struct tty at_tty[];
extern int at_cnt;
extern int at_logmaj;
extern char at_id[B];
extern struct {

int rnemberl;
struct tty *rnember2;
char junk[31];
short rnember3;
} at_table;

/etc/master.di*

SEE ALSO
drvinstall(lM), rnkboot(lM), sysdef(lM), systern(4).

10/92 Page 5

mem(7) mem(7)

NAME
mem, kmem - core memory

DESCRIPTION

FILES

NOTES

10/92

The file I dev /mem is a special file that is an image of the core memory of the com­
puter. It may be used, for example, to examine, and even to patch the system.
Byte addresses in /dev/mem are interpreted as memory addresses. References to
non-existent locations cause errors to be returned.
Examining and patching device registers is likely to lead to unexpected results
when read-only or write-only bits are present.

The file /dev/kmem is the same as /dev/mem except that kernel virtual memory
rather than physical memory is accessed.

/dev/mem
/dev/kmem

Some of I dev /kmem cannot be read because of write-only addresses or unequipped
memory addresses.

Page 1

memregion (7) memregion (7)

NAME
rnernregion - core memory by region

DESCRIPTION

FILES

NOTES

The special files in the directory I dev /rnernregion provide access to individual
memory regions defined in the system's edt_data file. Each memory region has at
least one entry named /dev/rnernregion/N, where N is the id specified in the
edt_data file. Each region can also have an additional alias in the directory.

Offsets in a I dev /rnernregion file correspond to byte offsets from the start of the
associated memory region, not to physical addresses within the region.

/dev/rnernregion/*

The special file /dev/rnern corresponds to the union of all files in /dev/rnernregion.
Offsets in I dev /rnern correspond to physical addresses, so there will be "holes" if
the memory regions are not contiguous.

SEE ALSO
edt_data(4), rnern(7).

10/92 Page 1

mnttab(4) mnttab(4)

NAME
nmttab - mounted file system table

SYNOPSIS
#include <sys/nmttab.h>

DESCRIPTION
The file /etc/nmttab contains information about devices that have been mounted
by the mount command. The information is in the following structure, defined in
sys/nmttab.h:

struct nmttab {
char *nmt_special;
char *nmt_rnountp;
char *nmt_fstype;
char *nmt_nmtopts;
char *nmt_tirne;

} ;

The fields in the mount table are space-separated and show the block special dev­
ice, the mount point, the file system type of the mounted file system, the mount
options, and the time at which the file system was mounted.

SEE ALSO
rnount(lM), getnmtent(lM), setnmt(lM).

10/92 Page 1

mt(7) mt(7)

NAME
mt - tape interface

DESCRIPTION

FILES

The files /dev/rmt/ctape? refer to cartridge tape controllers (eTC) and associated
tape drives. The files /dev/rmt/ninetrack? refer to nine-track tape controllers
and associated tape drives. These special device files and the /dev/rSA/ctape?
and /dev/rSA/ninetrack? special files are linked to the respective controller
specific names in the I dev I rmt directory.

The finc(lM), frec(lM), and labeli t(lM) commands require the ctape magnetic
tape filenames to work correctly with the ere. No other ere commands require
these filenames.

/dev/rmt/ctape*
/dev/rmt/ninetrack*
/dev/rSA/ctape*
/dev/rSA/ninetrack*

SEE ALSO
finc(lM), frec(lM), labeli t(lM)

10/92 Page 1

mvme167(7) mvme167(7)

NAME
mvmel67 - MVME167 CPU

DESCRIPTION
The mvmel67 is a CPU platform with an MC68040 MPU, 16, 32, 40, 48, or 64 MB of
dual-ported onboard (mezzanine) memory, 8 KB of battery backup static RAM, 128
Kb of volatile static RAM, a time-of-day clock/calendar, an Ethernet transceiver
interface (Intel 82596CA), four EIA-232-D serial com.m.unication ports (Cirrus Logic
CD2400/2401), a SCSI-2 bus interface (NCR 53C710), a Centronics-compatible
parallel printer port, configurable local and VMEbus address maps, four tick timers,
and four ROM sockets of which two contain the MVME167BUG Debugger and
Diagnostic Package.

SPECIAL CONSIDERATIONS

10/92

The mvmel67 uses three integrated circuits for controlling the VMEbus interface
(vmechip2), peripheral interrupts (pccchip2), and local memory (memc040).
Unless otherwise specified, the configurable registers which control the memory,
peripheral, or VMEbus interfaces are unchanged from what is described in the
MVME167BUG User's Manual. This section describes those registers which are
different from the ROM debugger settings.

The vmechip2 provides a mechanism for mapping onboard memory to the
VMEbus (VMEbus accesses to this memory are issued on the local bus) and it pro­
vides mechanisms for mapping VMEbus addresses to the local bus (local bus
accesses are issued on the VMEbus). All mappings are mapped one-to-one (a local
bus access of OxBOOOOOOO is always converted to a VMEbus access of OxBOOOOOOO
and vice versa). The following two tables describe how these mappings are set.

Local to VMEbus Mappings:

Memory_ Descr!E_tion Attributes
Local Memory (0 .. DRAMSIZE -1) A32, A24, Write Postil)g

A32 v LocalSRAM(OxFFFEOOOO .. OxFFElFFFF)

VMEbus to Local Mappings:

Memory Descr~ion Attributes
General A32 VMEbus Memory (DRAMSIZE .. OxEDFFFFFF) A32, D32
General A24 VMEbus Memory (OxEEOOOOOO .. OxEEFFFFFF) A24,D32
General A32 VMEbus Memory (OxEFOOOOOO .. OxEFFFFFFF) A32, D32
A24 F-Page Memory (OxFOOOOOOO .. OxFOFFFFFF) A24,D32
A32 F-Page Memory (OxFlOOOOOO .. OxFF7FFFFF) A32, D32
VMEbus Short 1/0 (OxFFFFOOOO .. OxFFFFFFFF) A16, D16

Both the F-Page and the Short 1/0 map decoders are enabled.

The vmechip2 controls the local bus to VMEbus requester. It is set so that VMEbus
FAIR mode arbitration is used, the VMEbus is released when the transaction is
completed, and the VMEbus request level has the value configured in the mvmecpu
master. d file. The bus grant timeout timer is enabled, VMEbus access timeout
value is set to 32 milliseconds, the VMEbus global timeout value is set to 256
microseconds, and the local bus timeout value is set to 8 microseconds.

Page 1

mvme167(7) mvme167(7)

FILES

The vrnechip2 also controls various 1/0 related operations including DMA, a set of
general purpose timers, and various local and VMEbus interrupts. All DMA regis­
ters are set to zero. Both timers' registers on the vrnechip2 are initialized to zero
and timer 1 is set up as a free running clock. The board control register is cleared,
and the VMEbus control register word (OxFFF40048) has the MCLR bit (bit 11) set
to 1 and all other bits reset to zero. The RESET button, ABORT, ACFAIL, write
posting, parity, and all VMEbus interrupt levels are enabled. VMEbus interrupt
request levels 1 through 7 are mapped to local interrupt request levels 1 through 7.
The VMEX and VMEY interrupt vectors (used for interrupts generated by the
vrnechip2 itself) are set based on the interrupt vector values in the VMEX and
VMEY entries of the edt_data file.

The pccchip2 controls all onboard peripherals. The high order 4 bits of the inter­
rupt vector used by each of the onboard devices is set based on the interrupt vector
level specified for the PCC2 module in the edt_data file. The two timers on the
pcchip2 are initialized to an OFF state. Timer 1 is used by the operating system as
a time base and is reinitialized when the system clock is started. General purpose
1/0 interrupts are disabled.

Each memory mezzanine is controlled by an memc040. Each of these has the bus
clock register initialized based on the MPU speed and has parity detection and par­
ity interrupts enabled.

/dev/conctl
/dev/console
/dev/contty
/dev/contty??
/dev/dsk/ml67_c0d?s?
/dev/elx7_c0d0
/dev/generic/ml67_c0d?
/det/nvr*
/dev/printer/lpl67_cOdO
/dev/rdsk/ml67_c0d?s?
/dev/rmt/ml67_c0d?
/dev/xedt/lplx7_c0
/dev/xedt/scsilx7_c0

SEE ALSO

Page 2

dcon(lM), mvrnecpu(lM), scsilx7(1M), console(7), conslx7(7), elx7(7),
enetlx7(7), lplx7(7), nvram(7), scsilx7(7).

10/92

mvme181 (7) mvme181 (7)

NAME
mvme181 - MVME181 CPU

DESCRIPTION
The mvme181 is a CPU platform with an MC88100 MPU, two MC88200 CMMUs,
two RS-232C serial communications ports driven by a 68692 DUART, a battery
backup real-time clock/calendar, 8 MB of dual-ported onboard DRAM, and 512 KB
of firmware containing the MVME181BUG Debugger and Diagnostic Package.

SPECIAL CONSIDERATIONS

FILES

The timer on the 68682 DUART is used as the system time base.

/dev/conctl
/dev/console
/dev/contty
/dev/contty??

SEE ALSO

10/92

dcon(lM), mvmecpu(lM), console(7)
MVME181BUG Debugging Package User's Manual
MVME181 VMEmodule RISC Microcomputer User's Manual

Page 1

mvme187(7) mvme187(7)

NAME
rnvme187 - MVME187 CPU

DESCRIPTION
The rnvme187 is a CPU platform with an MC88100 MPU, two MC88200 CMMUs, 32,
40, 48, or 64 MB of dual-ported onboard (mezzanine) memory, 8 KB of battery
backup static RAM, 128 Kb of volatile static RAM, a time-of-day clock/calendar, an
Ethernet transceiver interface (Intel 82596CA), four EIA-232-D serial communica­
tion ports (Cirrus Logic CD2400/2401), a SCSI-2 bus interface (NCR 53C710), a
Centronics-compatible parallel printer port, configurable local and VMEbus
address maps, four tick timers, and four ROM sockets of which two contain the
MVME187BUG Debugger and Diagnostic Package.

SPECIAL CONSIDERATIONS

10/92

The rnvme187 uses three integrated circuits for controlling the VMEbus interface
(vmechip2), peripheral interrupts (pccchip2), and local memory (rnernc040).
Unless otherwise specified, the configurable registers which control the memory,
peripheral, or VMEbus interfaces are unchanged from what is described in the
MVME187BUG User's Manual. This section describes those registers which are
different from the ROM debugger settings.

The vmechip2 provides a mechanism for mapping onboard memory to the
VMEbus (VMEbus accesses to this memory are issued on the local bus) and it pro­
vides mechanisms for mapping VMEbus addresses to the local bus (local bus
accesses are issued on the VMEbus). All mappings are mapped one-to-one (a local
bus access of OxBOOOOOOO is always converted to a VMEbus access of OxBOOOOOOO
and vice versa). The following two tables describe how these mappings are set.

Local to VMEbus Mappings:

Mem~ Descr!E_tion Attributes
Local Memory (0 .. DRAMSIZE - 1) A32, A24, Write Posting
LocalSRAM(OxFFFEOOOO .. OxFFElFFFF) A32

VMEbus to Local Mappings:

Memo~ Descr!E_tion Attributes
General A32 VMEbus Memory (DRAMSIZE .. OxEDFFFFFF) A32,D32
General A24 VMEbus Memory (OxEEOOOOOO .. OxEEFFFFFF) A24,D32
General A32 VMEbus Memory (OxEFOOOOOO .. OxEFFFFFFF) A32,D32
A24 F-Page Memory (OxFOOOOOOO .. OxFOFFFFFF) A24,D32
A32 F-Page Memory (OxFlOOOOOO .. OxFF7FFFFF) A32,D32
VMEbus Short 1/0 (OxFFFFOOOO .. OxFFFFFFFF) A16,D16

Both the F-Page and the Short 1/0 map decoders are enabled.

The vmechip2 controls the local bus to VMEbus requester. It is set so that VMEbus
FAIR mode arbitration is used, the VMEbus is released when the transaction is
completed, and the VMEbus request level has the value configured in the rnvmecpu
master. d file. The bus grant timeout timer is enabled, VMEbus access timeout
value is set to 32 milliseconds, the VMEbus global timeout value is set to 256
microseconds, and the local bus timeout value is set to 8 microseconds.

Page 1

mvme187(7) mvme1ll7(7)

FILES

The vrnechip2 also controls various 1/0 related operations including OMA, a set of
general purpose timers, and various local and VMEbus interrupts. All OMA regis­
ters are set to zero. Both timers' registers on the vrnechip2 are initialized to zero
and timer 1 is set up as a free running clock. The board control register is cleared,
and the VMEbus control register word (OxFFF40048) has the MCLR bit (bit 11) set
to 1 and all other bits reset to zero. The RESET button, ABORT, ACFAIL, write
posting, parity, and all VMEbus interrupt levels are enabled. VMEbus interrupt
request levels 1 through 7 are mapped to local interrupt request levels 1 through 7.
The VMEX and VMEY interrupt vectors (used for interrupts generated by the
vrnechip2 itself) are set based on the interrupt vector values in the VMEX and
VMEY entries of the edt_data file.

The pccchip2 controls all onboard peripherals. The high order 4 bits of the, inter­
rupt vector used by each of the onboard devices is set based on the interrupt vector
level specified for the PCC2 module in the edt_data file. The two timers on the
pcchip2 are initialized to an OFF state. Timer 1 is used by the operating system as
a time base and is reinitialized when the system clock is started. General purpose
I/ 0 interrupts are disabled.

Each memory mezzanine is controlled by an memc040. Each of these has the bus
clock register initialized based on the MPU speed and has parity detection and par­
ity interrupts enabled.

/dev/conctl
/dev/console
/dev/contty
/dev/contty??
/dev/dsk/m187_c0d?s?
/dev/elx7_c0d0
/dev/generic/m187_c0d?
/dev/nvr*
/dev/printer/lp187_c0d0
/dev/rdsk/m187_c0d?s?
/dev/rmt/m187_c0d?
/dev/xedt/lplx7_c0
/dev/xedt/scsilx7_c0

SEE ALSO

Page 2

dcon(lM), mvrnecpu(lM), scsilx7(1M), console(7), conslx7(7), elx7(7),
enetlx7(7), lplx7(7), nvram(7), scsilx7(7).

10/92

mvme18B(7) mvme188(7)

NAME
mvmelBB - MVME188 CPU

DESCRIPTION
The mvmelBB is a CPU platform which consists of: one, two, or four MC88100
MPUs, two, four, or eight MC88200 CMMUs, between 16 MB and 128 MB of dual­
ported onboard DRAM, 2 KB of battery backup RAM, configurable local and
VMEbus address maps, two RS-232C serial communications ports driven by a
68692 DUART, four programmable timers, a battery backup real-time
clock/calendar, and 512 KB of firmware containing the MVME188BUG Debugger
and Diagnostic Package.

SPECIAL CONSIDERATIONS

FILES

The bus snooper(s) and data/code CMMU parity detection are enabled. The timer
on the 68682 DU ART is used as the system time base.

/dev/conctl
/dev/console
/dev/contty
/dev/contty??
/dev/nvr*

SEE ALSO

10/92

dcon(lM), mvmecpu(lM), console(7), nvram(7)
MVME188BUG Debugging Package User's Manual
MVME188 VMEmodule RISC Microcomputer User's Manual

Page 1

mvme323(7) mvme323(7)

NAME
mvme323 - MVME323 disk controller (For M68K only)

DESCRIPTION
mvme3 2 3 is a driver that provides a general interface to the MVME323 VMEbus disk
controller module. The MVME323 controller supports up to four ESDI disks. The
mvme3 2 3 driver supports up to eight MVME323 controllers per system.

Each disk connected to the MVME323 has the same major device number. Disks
with up to 16 slices are supported.

MVME323 IOCTLS

FILES

The following ioctl commands are supported:

M323FMTT format track; arg must be a pointer to a struct m323ctl

M323GET

M323SET

M323RST

M323CLRF

M323VRFY

M323COFF

M323CON

M323MPT

M323MPS

M323RFMT

RDMFRLIST

get configuration; arg must be a pointer to a struct conf ig

set configuration; arg must be a pointer to a struct config

restore drive

clear fault

verify track

cache off

cache on

map alternate track; arg must be a pointer to a struct m323ctl

map track with sector slip

reformat track, saving alternates

read manufacturer's defect list from disk; arg must be a pointer to
a struct m323mlargs

/usr/include/sys/m323.h
/usr/include/sys/m323drv.h
/dev/dsk/m323_*
/dev/rdsk/m323_*

ERRORS
The mvme323 driver generates many different error messages, which are displayed
on the console to help the operator diagnose problems.

SEE ALSO
mvme323(1M) (For M68K only), intro(7)

10/92 Page 1

mvme328(7) mvme328(7)

NAME
mvme328 - MVME328 SCSI Host Adapter

DESCRIPTION
The MVME328 driver controls up to a total of 8 MVME328 SCSI host adapters.
Each MVME328 SCSI host adapter can have one or two SCSI buses, with each SCSI
bus supporting up to seven SCSI devices.

Assuming the necessary system resources are available, the MVME328 driver will
send each command to the controller as soon as it receives the command from an
application.

The MVME328 driver does not have to wait for a command to complete before
sending a command for another device.

SUPPORT DEVICES
Disk Drives

10/92

Disk drives currently supported are:

DESCRIPTION ddefs_Q.MJ_ FILE TYPE

lSOMB CDC 94161 Wren III mcdclll Hard
300MB CDC 94171 Wren IV mcdcIV Hard
600MB CDC 94181 Wren V mcdcV Hard
l.2GB CDC 94601 Wren VII mcdcVII Hard
135MB FUJITSU M2613S mfuj2613 Hard
180MB FUJITSU M2614S mfuj2614 Hard
330MB FUJITSU M2622S mfuj2622 Hard
525MB FUJITSU M2624S mfuj2624 Hard
1.75GB FUJITSU M2652S mfuj2652 Hard
Toshiba XM3201B CDROM none CD ROM
l.2MB TEAC SY. inch FC-1 see next table Floppy
2.88MB TEAC 3Y. inch FC-1 see next table Flo...EEY_

Note that in all tables, each entry in the ddefs(lM} FILE column is the name of a
file that defines the characteristics of the disk in the /etc/dskdefs directory. Each
entry in the BLOCKS column is the number of specified blocks when making a file
system with mkfs(lM).

The types of floppy diskettes currently supported are listed in the following two
tables.

SY. INCH DISKETTES
ddefs(lM) MEDIA

DESCRIPTION FILE BLOCKS TYPE SLICE

Double density Motorola format mdsdd5 1276 MFD-2DD 0
Single density PC/XT 8 sect./ track mpcxt8 640 MFD-2DD 12
Single density PC/XT 9 sect./ track mpcxt9 720 MFD-2DD 9
Double densi!Y_ PC/ AT m_J>_cat 2400 MF2-HD 8

Page 1

mvme328(7) mvme328(7)

3Y, INCH DISKETTES

ddefs(lM) MEDIA
DESCRIPTION FILE BLOCKS TYPE SLICE

Double density PC/XT 9 sect./track mpcxt9_3 1440 MFD-2DD 13
Double density PS/2 mps2 2880 MF2-HD 10
S~er H!g_h Dens!!Y_ (2.88MB formatted) mshd 5760 PMF2-ED 11

Tape Drives
Tape drives currently supported by the MVME328 host adapter are:

DESCRIPTION FORMAT TYPE

Archive 2150S QIC24, QIC120, QIC150 Streaming
Archive 2525 QIC24, QIC120, QIC150 Streaming
Archive Python DAT Streaming
Exabyte EXB-8200 8mm Streaming
Kennedy 9660 9-track Start/Stop
M4Data 9914 9-track Start/StC>E_

MINOR NUMBERS
The MVME328 device driver interprets the minor number of a device using the
standard SCSI-1 minor mapping.

DISK SUPPORT

Page 2

During system initialization, the MVME328 device driver will spin-up any disks
that are strapped to spin-up.

The hard disk drives supported by the MVME328 handle all defects internally. A
list of known defective locations is recorded on the medium. During format, any
data that would normally be loaded into these locations are automatically assigned
alternate locations. Also during format, the drive is checked for defects in addition
to those on the known list. If any additional defective locations are found, any data
that would be stored there are assigned alternate locations.

The MVME328 device driver complies with the disk support standard specified on
the disk(7) man page with the following exceptions:

DKGETCFG ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKGETINFO ioctl command
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKSETCFG ioctl command
The MVME328 driver sets only the parameters that are relevant to the
MVME328 driver and controller.

DKSETINFOioctlcommand
The MVME328 driver sets only the parameters that are relevant to the
MVME328 driver and controller.

10/92

mvme328(7) mvme328(7)

DKFORMATioctlconunand
The SCSI FORMAT comm.and is used to format the device. The argument arg
is not used. Because the bad block strategy is perfect, no defect list is passed to
the drive. By turning on a bit in the controller attribute word of the disk
definition file passed to dini t, the drive can be told to ignore the grown defect
list on the disk. Refer to the description of the controller attribute word on the
disk{7) man page for more information.

TAPE SUPPORT
The MVME328 device driver complies with the tape support standard specified on
the tape(7) man page with no exceptions.

FLOPPY DISK SUPPORT

10/92

The MVME328 supported floppy drives provide level one support as defined by
the 88open PC Floppy Emulation Supplement to the Binary Compatibility Standard.
The MVME328 device driver complies with the floppy disk support standard
specified on the floppy(7) manual page with the following exceptions:

DKFIXBADSPOT ioctlconunand
This command always returns EINVAL.

DKGETCFG ioctlconunand
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKGETINFO ioctlconunand
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKSETCFG ioctlconunand
This comm.and performs no operation; it returns with no effect and no error.

DKSETINFO ioctlcommand
This comm.and performs no operation; it returns with no effect and no error.

DKSETSLC ioctlconunand
This comm.and performs no operation; it returns with no effect and no error.

FL_PC_LEVEL ioctlconunand
The MVME328 driver currently only supports level 1, so the integer pointed to
by arg is always set to 1 by this call.

Slicing
Floppy diskettes do not have volume ID blocks or Volume Table of Contents
{VTOC). A floppy drive can be thought of as a hard disk with a single slice.
The slice bits of the minor number select the drive geometry as described later in
this manual page.

V_PDREAD ioctlcommand
This command always returns EINVAL.

V_PDWRITE ioctlcommand
This command always returns EINVAL.

V_RVTOC ioctlcommand
This comm.and always returns EINVAL.

Page 3

mvme328(7) mvme328(7)

V_WVTOC ioctl command
This command always returns EINVAL.

dinit/ddef
The ddef files for floppy disks are treated as placeholders. Although they are
required for dini t(lM) to work, the information is not used. The flormat of
the diskette is determined via the slice number of the device. Please refer to
the supported floppy tables at the beginning of this man page for more infor­
mation.

Bad blocks may not be mapped out on a floppy disk. A bad block on a floppy disk
make the entire floppy unacceptable.

CDROM SUPPORT
The MVME328 device driver will not spin-up CDROM devices at system initializa­
tion time.

The MVME328 device driver complies with the CDROM support standard
specified on the cdrom(7) manual page with the following exceptions:

DKGETCFG ioctlcommand
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKGETINFO ioctlcommand
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

DKGETCFG ioctlcommand
The MVME328 driver returns only the parameters that are relevant to the
MVME328 driver and controller.

PASSTHRU SUPPORT
The MVME328 device driver complies with the passthru support standard
specified on the passthru(7) man page with no exceptions.

ERROR MESSAGES

Page 4

The MVME328 device driver prints error messages to the system console. Many of
these messages print a unit number to indicate which device was being accessed at
the time of the error. The following table can help to interpret the unit number.

10/92

mvme328(7) mvme328(7)

BRD

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

10/92

UNIT UNIT
BUS DEVICE LUN # BRD BUS DEVICE LUN #

0 0 0-7 0-7 1 0 0 0-7 128-135

0 1 0-7 8-15 1 0 1 0-7 136-143

0 2 0-7 16-23 1 0 2 0-7 144-151

0 3 0-7 24-31 1 0 3 0-7 152-159

0 4 0-7 32-39 1 0 4 0-7 160-167

0 5 0-7 40-47 1 0 5 0-7 168-175

0 6 0-7 48-55 1 0 6 0-7 176-183

0 7 0-7 56-63 1 0 7 0-7 184-191

1 0 0-7 64-71 1 1 0 0-7 192-199

1 1 0-7 72-79 1 1 1 0-7 200-207

1 2 0-7 80-87 1 1 2 0-7 208-215

1 3 0-7 87-95 1 1 3 0-7 216-223

1 4 0-7 96-103 1 1 4 0-7 224-231

1 5 0-7 104-111 1 1 5 0-7 232-239

1 6 0-7 112-119 1 1 6 0-7 240-247

1 7 0-7 120-127 1 1 7 0-7 248-255

The MVME328 driver will print the following messages on the system console if an
error occurs during system initialization:

rnvrne328: Board failed powerup diagnostics
There may be a problem with the MVME328 or its firmware.

rnvrne328: Unable to Initialize Controller
The MVME328 failed to initialize properly. Devices on the MVME328 are inac­
cessible.

Unable to Start Queued Mode
The MVME328 failed to initialize queued (or interrupt) mode of operation.
Devices on the MVME328 are inaccessible.

rnvrne328: cache inhibited SG pages not allocated
The driver failed to allocate cache-inhibited memory for internal data struc­
tures. Devices on the MVME328 are inaccessible.

mvrne328: Unit unit_number not ready
A device is present but not ready.

mvrne328: Unknown SCSI device type on unit unit_number
Unit unit_number is an unrecognized SCSI device.

The MVME328 driver will print an error message of the following format to the sys­
tem console whenever a disk device returns fatal error status:

FATAL ERROR (mvme328_error_message) on mvme328 unit
unit_number blk blkno
mvme328: Unit=unit_number Cmd=cmd SCSI Cmd=scsi
Status=status
mvrne328: Unit=unit_number sense key=key
(sense_msg)

Page 5

mvme328{7) mvme328{7)

Page 6

The MVME328 driver will print an error message of the following format to the sys­
tem console whenever a tape device returns fatal error status:

FATAL ERROR (mvme328_error_message) on mvrne328 tape unit
unit_number
mvrne328: Unit=unit_number Cmd=cmd SCSI Cmd=scsi
Status=status
mvrne328: Unit=unit_number sense key=key
(sense_msg)

Fatal error status means that the drive was not able to complete the command suc­
cessfully.

Recovered errors are printed in the same format, but begin with RECOVERED ERROR.
Recovered error status means that the drive was able to complete the command
successfully after some recovery action.

Two of the more useful values from these error messages are the SCSI command
and the sense key. The following tables list some of the more common SCSI com­
mands and sense keys.

SCSI COMMAND CODES
Code Descr!£_tion

OxOO Test Unit Ready
OxOl Rewind
Ox04 Format Unit
Ox06 Format Track
Ox OS Read
OxOA Write
OxlO Write Filemarks
Oxll Space
Oxl2 Inquiry
Ox15 Mode Select
OxlA Mode Sense
Ox2F Veri!Y_

SCSI SENSE KEYS
Code Descri.2_tion

OxO Good Status
Oxl Recovered Error
Ox2 Unit Not Ready
Ox3 MediaError
Ox4 Hardware Error
Ox5 Illegal command
Ox6 Unit Attention
Ox7 Write-protected Media
Ox8 Read Blank Media
OxE Data Miscom__01.re

10/92

mvme328(7) mvme328(7)

Refer to the ANSI SCSI specification for a complete list of SCSI command codes
and sense keys.

MASTER.D PARAMETERS
The following parameters affect the operation of the MVME328 device driver. The
following are parameters listed under the MVME328 description:

m328_max_spl
This parameter sets the maximum number of concurrent special commands.
The default value is 8. Special commands are all SCSI commands except reads
or writes. Most ioctl() commands are special commands, and special com­
mands are used during open() and close() processing. If this number is too
low, some processes will sleep waiting for resources when doing special com­
mands.

m328_max_raw_bufs
This parameter specifies the number of 64K byte buffers that will be allocated if
any MVME328 host adapters have revision XAM firmware. The default
number is 1. These buffers are used to work around a problem in the firmware
that affect raw 1/0. Tuning this parameter higher when XAM firmware is
present will result in improved raw 1/0 performance, however, the tuning is
no replacement for obtaining a firmware upgrade.

m328_max_sglists
This parameter specifies the number of special scatter/gather lists that are
available for use within the driver. It should be set to at least the number of
processors plus 2; the default number is 8.

m328_starve_size
This parameter specifies the maximum length of a disk, floppy, or CDROM
1/0 queue that will be sorted before beginning another queue.

m328_vme_to
This parameter specifies the VMEBUS transfer time out in 32 millisecond ticks.

m328_vme_cnt
This parameter specifies the VMEBUS burst transfer count. On systems with a
large number of disks and/ or MVME328 host adapters this number may have
to be lowered to avoid DMA problems.

m328_noisy_disk_open
This parameter controls the printing of error messages on the console when
disk devices do not have valid Motorola identification in them. If this parame­
ter is non-zero, messages will be printed; zero, no messages will be printed.

SPECIAL CONSIDERATIONS

10/92

When an error occurs while writing or reading a tape, the best course of action in
this case is to rewind the tape and repeat the operation.

Removing a cartridge tape during an MTBSF operation hangs the tape drive.

An incorrect transfer count may be returned by the MVME328 device driver when
using variable mode tape devices (e.g. 9-tracks, EXABYTE) in variable mode. This
is due to a BUG in the XAM firmware and it is not found in any later firmware.

Page 7

mvme328(7) mvme328(7)

FILES

The problem shows itself when an odd length read is used to read a tape that con­
tains even length records. The returned transfer count will be one less than it
should be. The work-around is to read tapes with even length reads equal to or
larger than the maximum size of the records found on the tape.

The longest I/O operation which MVME328 host adapters can allow to occur on a
tape device operating in variable mode depends on two factors. If the MVME328
host adapter is using revision XAM firmware, the maximum length is 65535 bytes.
For all other boards and firmware combinations, the maximum length will vary
from a minimum of 252K bytes (worst case page alignment) to 256K bytes (page
aligned). The actual maximum length may be either larger or smaller than the
MVME328 host adapter may support. Refer to the device's documentation for more
information.

/dev/dsk/m328_*
/dev/rdsk/m328_*
/dev/rmt/m328_*
/dev/generic/m328_*
/etc/dskdefs/m*
/usr/include/sys/dk.h
/usr/include/sys/mtio.h
/usr/include/sys/m328scsi.h
/usr/include/sys/m328sio.h
/usr/include/sys/m328space.h
/usr/include/sys/mvme328.h
/usr/include/sys/pcflio.h

SEE ALSO

Page 8

mt(l), ddefs(lM), dinit(lM), close(2), ioct1(2), open(2), read(2), write(2),
cdrom(7), disk(7), floppy(7), intro(7), mvme323(7) (For M68K only), mvme350(7)
(For M68K only), tape(7) passthru(7)

10/92

mvme332xt (7) mvme332xt (7)

NAME
mvme332xt - MVME332XT communication controller STREAMS driver

DESCRIPTION
mvme3 3 2xt is a STREAMS-based driver that provides a general interface to the
MVME332XT VMEbus communication controller module. The MVME332XT con­
troller supports up to eight asynchronous serial communication ports and one
Centronics-compatible printer port. The mvme332xt driver supports up to eight
MVME332XT controllers per system.

Each peripheral device connected to the MVME332XT has the same major device
number. The MVME332XT firmware presents a generic serial and printer device
interface to the driver, which distinguishes a serial device from the printer device
by its device unit number. Device numbers 0-7 are allocated for the eight serial
devices, and the printer is designated unit 8. The least significant 4 bits in the
minor device field are interpreted as the device unit number. Therefore, 16 minor
device numbers are required per MVME332XT controller. The next highest four
bits of the minor device number are interpreted as the controller number.

When the mvme332xt driver is used with the STREAMS line discipline module -
ldterm(7), behavior on all communications ports is as described in UNIX System
V /68 or V /88 Release 4 termio(7).

MVME332XT IOCTLS

10/92

In addition to supporting the standard ioct1(2) commands as specified by ter­
mio(7), the mvme332xt supports hardware flow control and downloading of object
code and data to the MVME332XT.

The following MVME332XT-specific ioctl system calls have the form:

ioctl(fildes, command, arg)
int fildes, command;
struct dl_info *arg;

The dl_info structure is defined in /usr/include/sys/mvme332xt. hand has the
following format:

struct

} ;

TCGETDL

dl_info {
unsigned long
unsigned long
unsigned long
unsigned long
unsigned short

hostaddr;
ipcaddr;
count;
wrkO;
wrkl;

/* host (user) address */

/* to be transferred */

Get download information from the MVME332XT. arg is a pointer to a user
buffer large enough to contain a dl_info structure. The base address of the
downloadable area is returned in the ipcaddr field of this structure, and the
size in bytes of the downloadable area is returned in the count field.

TCDLOAD
Download object code or data to the MVME332XT. arg is a pointer to a user
buffer containing a dl_info structure. The hostaddr field points to a user
buffer containing the object code or data to be downloaded. The ipcaddr
field points to the base address of the downloadable area in MVME332XT

Page 1

mvme332xt (7) mvme332xt (7)

Page 2

local RAM. The count field specifies the number of bytes to be down­
loaded.

TCGETSYM
Get symbol table from the MVME332XT. arg is a pointer to a user buffer
containing a dl_info structure. The hostaddr field points to a user buffer
into which the symbol information will be copied. The size of this buffer in
bytes is specified by the count field. The ipcaddr field should be set to 0
for the first call to TCGETSYM to indicate the beginning of the symbol table.
It is updated by the MVME332XT for subsequent TCGETSYM commands. At
the end of the symbol table, the MVME332XT returns EOF in the ipcaddr
field. On completion, the count field specifies the number of bytes returned
by the MVME332XT.

TCWHAT

TCLINE

TC EXEC

This command performs exactly the same function as the TCGETSYM com­
mand, except that it returns a list of the firmware files with SCCS version
numbers. arg is a pointer to a user buffer containing a dl_info structure.
The hostaddr field points to a user buffer into which the SCCS information
will be copied. The size of this buffer in bytes is specified by the count
field. The ipcaddr field should be set to 0 for the first call to indicate the
start of the TCWHAT command. It is updated by the MVME332XT for subse­
quent TCWHAT commands. At the end of the SCCS information, the
MVME332XT returns EOF in the ipcaddr field. On completion, the count
field specifies the number of bytes returned by the MVME332XT.

Load line discipline table, previously downloaded by TCDLOAD, into the
MVME332XT's internal table. arg points to a user buffer containing a
dl_info structure. The ipcaddr field points to a user buffer containing the
linesw table. The count field specifies the number of lines in the linesw
table. The MVME332XT linesw table is defined as follows:

struct linesw
{

int (*l_open) ();
int (*l_read) () ;
int (*l_write) ();
int (*l_close) ();
int (*l_ctl) ();
int (*l_gate) ();

} ;

Execute a user function that has been downloaded by a previous TCDLOAD
command. arg points to a user buffer containing a dl_info structure. The
ipcaddr field specifies the execution function address.

The following MVME332XT-specific ioctl system call has the form:

10/92

mvme332xt (7) mvme332xt (7)

ioctl(fildes, command, arg)
int fildes, command;
int arg;

TCSETHW
Set hardware flow control option. If arg is 1, enable hardware flow control
using the RTS/CTS signal pairs; if arg is 0, disable hardware flow control.

The following MVME332XT-specific ioctl system calls have the form:

ioctl(fildes, command, arg)
int fildes, command;
int *arg;

TCGETHW
Return hardware flow control status. If the specified serial port has
hardware flow control enabled, 1 is returned to the arg integer location; oth­
erwise, O is returned.

TCGETVR
Return MVME332XT firmware and driver version and revision numbers in
the integer pointed to by arg. The driver version number is returned in the
most significant byte, the driver revision number is in the second most
significant byte, the firmware revision number is in the third byte, and the
firmware revision number is in the least significant byte.

TCGETDS
Return the current status of a device's hardware signals, such as DCD, CTS,
DSR, PR_FAULT, PR_POUT and PR_SELECT, in the integer pointed to by
arg. The following status values are defined in
/usr/include/sys/mvme332xt.h:

E_DCD, E_LOST_CDC
E_DSR, E_LOST_DSR
E_CTS, E_LOST_CTS
E_pR_FAULT, E_PR_POUT, E_pR_SELECT

The following MVME332XT-specific ioctl system calls have the form:

ioctl(fildes, command, arg)
int fildes, command;
struct termios *arg;

TCSETDF
Set the default termios parameters. arg is a pointer to a user-supplied ter­
mios structure.

TCGETDF
Get the default termios parameters. arg is a pointer to a user buffer large
enough to contain a termios structure.

CONFIGURATION ISSUES

10/92

Currently, the MVME332XT operates in a canonical state which handles only the
most basic of features (breaks and interrupts). Remaining functionality is left to the
ldterm(7) module. The ldterm(7) module may be pushed on the STREAM via the
autopush(lM) or when beginning a ttymon(lM) directly from the /etc/inittab

Page 3

mvme332xt (7) mvme332xt (7)

FILES

file. [See init(lM)].

/usr/include/sys/mvme332xt.h
/dev/term/??,/dev/printer/lp?,/dev/port/m332_c?d?

ERRORS
The mvme332xt driver generates many different error messages, which are
displayed on the console in order to help the operator to diagnose problems. The
error messages displayed have the following format:

MVME332xt: controller X, unit Y - MESSAGE

where Xis the controller number, Y is the unit number, and MESSAGE is one of the
following:

Create channel error - disabled
The driver must establish a communication channel with the MVME332XT
before any commands can be dispatched. This error indicates that the chan­
nel between the driver and the MVME332XT was not successfully created,
and typically indicates a configuration problem or malfunction. The con­
troller is marked as bad by the driver and further access attempts are disal­
lowed.

Initialization error, disabled
An error was reported by the MVME332XT controller when the driver sent
an initialization command to it. This condition will result if the driver
attempts to size one of the MVME332XT read/write rings to a non-base-2
value.

Unknown interrupt
An interrupt occurred from a MVME332XT controller that was marked
nonexistent or bad.

Corrupt envelopes - disabled
This indicates channel corruption in the MVME332XT shared RAM.

PRINTER is de-selected
This message indicates that the printer is de-selected. Check the printer
select switch.

PRINTER is out of paper
This indicates that the printer is out of paper. Check the printer paper sup­
ply.

PRINTER fault for unknown reason
This indicates a printer error other than the paper out or the de-selected
error conditions. Check the printer connections or refer to the printer
manufacturer's user manual.

SEE ALSO
autopush(lM), mvme332xt(1M), ttymon(lM), termio(7), ldterm(7).

Page 4 10/92

mvme350(7) mvme350(7)

NAME
mvme350 - MVME350 cartridge tape controller (For M68K only)

DESCRIPTION
mvme3 5 0 is a driver that provides a general interface to the MVME350 VMEbus tape
controller module. The MVME350 controller supports one cartridge tape. The
mvme350 driver supports up to eight MVME350 controllers per system.

Each tape connected to the MVME350 has the same major device number.

MVME350 IOCTLS

FILES

The following ioctl commands are supported:

M350REWIND rewind tape

M350ERASE

M350RETENSION

M350WRTFM

M350RDFM

M350SETDMA

M350GETDMA

M350BYTESWAP

erase tape

retension tape

write filemark

read filemark

set DMA buffer size

get DMA buffer size

set/reset byteswapping

/usr/include/sys/mvme350.h
/dev/rmt/m350_*

ERRORS
The mvme350 driver generates many different error messages, which are displayed
on the console to help the operator diagnose problems.

SEE ALSO
mvme350(1M) (For M68K only), intro(7)

10/92 Page 1

netconfig (4) (Networking Support Utilities) netconfig (4)

NAME
netconfig- network configuration database

SYNOPSIS
#include <netconfig.h>

DESCRIPTION

10/92

The network configuration database, /etc/netconfig, is a system file used to
store information about networks connected to the system and available for use.
The netconfig database and the routines that access it [see getnetconfig(3N)]
are part of the UNIX System V Network Selection component. The Network Selec­
tion component also includes the environment variable NETPATH and a group of
routines that access the netconfig database using NETPATH components as links to
the netconfig entries. NETPATH is described in sh(l); the NETPATH access routines
are discussed in getnetpath(3N).

netconfig contains an entry for each network available on the system. Entries are
separated by newlines. Fields are separated by whitespace and occur in the order
in which they are described below. Whitespace can be embedded as "\blank" or
"\tab." Backslashes may be embedded as"\\". Each field corresponds to an ele­
ment in the struct netconfig structure. struct netconfig and the identifiers
described on this manual page are defined in /usr I include/netconfig. h.

network ID
A string used to uniquely identify a network. network ID consists of non­
null characters, and has a length of at least 1. No maximum length is
specified. This namespace is locally significant and the local system
administrator is the naming authority. All network IDs on a system must be
unique.

semantics

flag

The semantics field is a string identifying the "semantics" of the network,
that is, the set of services it supports, by identifying the service interface it
provides. The semantics field is mandatory. The following semantics are
recognized.

tpi_cl ts Transport Provider Interface, connectionless

tpi_cots Transport Provider Interface, connection oriented

tpi_cots_ord Transport Provider Interface, connection oriented, sup-
ports orderly release.

tpi_raw Transport Provider Interface, raw

The flag field records certain two-valued ("true" and "false") attributes of
networks. flag is a string composed of a combination of characters, each of
which indicates the value of the corresponding attribute. If the character is
present, the attribute is "true." If the character is absent, the attribute is
"false." " - " indicates that none of the attributes is present. Only one char­
acter is currently recognized:

v Visible ("default") network. Used when the environment variable
NETPATH is unset.

Page 1

netconfig (4) (Networking Support Utilities) netconfig (4)

Page 2

b Enable RPC broadcast.

protocol family
The protocol family and protocol name fields are provided for protocol-specific
applications.

The protocol family field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as those for network IDs,
that is, the string consists of non-null characters; it has a length of at least 1;
and there is no maximum length specified. A 11 - 11 in the protocol family field
indicates that no protocol family identifier applies, that is, the network is
experimental. The following are examples:

loopback Loopback (local to host).
inet Internetwork: UDP, TCP, and so on
implink ARPANET imp addresses
pup PUP protocols: for example, BSP
chaos MIT CHAOS protocols
ns XEROX NS protocols
nbs NBS protocols
ecma European Computer Manufacturers Association
dataki t DATAKIT protocols
ccitt CCITI protocols, X.25, and so on
sna IBMSNA
decnet DECNET
dli Direct data link interface
lat LAT
hy link NSC Hyperchannel
appletalk Apple Talk
nit Network Interface Tap
ieee802 IEEE 802.2; also ISO 8802
osi Umbrella for all families used by OSI (for example,

x25
osinet
go sip

protocol name

protosw lookup)
CCITT X.25 in particular
AFI = 47, IDI = 4
U.S. Government OSI

The protocol name field contains a string that identifies a protocol. The proto­
col name identifier follows the same rules as those for network IDs, that is, the
string consists of non-NULL characters; it has a length of at least 1; and there
is no maximum length specified. The following protocol names are recog­
nized. A 11 - 11 indicates that none of the names listed applies.

tcp Transmission Control Protocol

udp User Datagram Protocol

icmp Internet Control Message Protocol

network device
The network device is the full pathname of the device used to connect to the
transport provider. Typically, this device will be in the /dev directory. The
network device must be specified.

10/92

netconfig (4) (Networking Support Utilities) netconfig (4)

FILES

directory lookup libraries
The directory lookup libraries support a "directory service" (a name-to­
address mapping service) for the network. This service is implemented by
the UNIX System V Name-to-Address Mapping feature. If a network is not
provided with such a library, the netdir feature will not work. A "-" in this
field indicates the absence of any lookup libraries, in which case name-to­
address mapping for the network is non-functional. The directory lookup
library field consists of a comma-separated list of full pathnames to dynam­
ically linked libraries. Commas may be embedded as "\, "; backslashs as
"\\".

Lines in /etc/netconfig that begin with a sharp sign(#) in column 1 are treated
as comments.

The struct netconfig structure includes the following members corresponding
to the fields in in the netconfig database entries:

char * nc_netid Network ID, including NULL terminator

unsigned long nc_semantics

unsigned long nc_flag

char * nc_protofmly

char * nc_proto

char * nc_device

unsigned long nc_nlookups

char ** nc_lookups

unsigned long nc_unused[9]

Semantics

Flags

Protocol family

Protocol name

Full pathname of the network device

Number of directory lookup libraries

Full pathnames of the directory lookup
libraries themselves

Reserved for future expansion (not advertised
to user level)

The nc_semantics field takes the following values, corresponding to the semantics
identified above:

NC_TPI_CLTS
NC_TPI_COTS
NC_TPI_COTS_ORD
NC_TPI_RAW

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAG indicates the absence of any
attributes.

NC_ VISIBLE

/etc/netconfig
/usr/include/netconfig.h

SEE ALSO

10/92

getnetconfig(3N), getnetpath(3N), icmp(7), ip(7), netconfig(4),
netdir_getbyname() [see netdir (3N)]

Page 3

netmasks (4) (Internet Utilities) netmasks (4)

NAME
netmasks - network mask data base

DESCRIPTION

FILES

The netmasks file contains network masks used to implement IP standard subnet­
ting. For each network that is subnetted, a single line should exist in this file with
the network number, any number of SPACE or TAB characters, and the network
mask to use on that network. Network numbers and masks may be specified in the
conventional IP '.' notation (like IP host addresses, but with zeroes for the host
part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight bits of
subnet field and eight bits of host field, in addition to the standard sixteen bits in
the network field.

/etc/netmasks

SEE ALSO
ifconfig(lM)

10/92

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950, Network
Information Center, SRI International, Menlo Park, Calif., August 1985

Page 1

netrc(4) (Internet Utilities) netrc(4)

NAME
netrc - file for ftp remote login data

DESCRIPTION
The . netrc file contains data for logging in to a remote host over the network for
file transfers by ftp(l). This file resides in the user's home directory on the machine
initiating the file transfer. Its permissions should be set to disallow read access by
group and others [see chmod(l)].

The following tokens are recognized; they may be separated by SPACE, TAB, or NEW­
LINE characters:

machine name
Identify a remote machine name. The auto-login process searches the
. netrc file for a machine token that matches the remote machine specified
on the ftp command line or as an open command argument. Once a match
is made, the subsequent . netrc tokens are processed, stopping when the
EOF is reached or another machine token is encountered.

login name
Identify a user on the remote machine. If this token is present, the auto­
login process will initiate a login using the specified name.

password string
Supply a password. If this token is present, the auto-login process will sup­
ply the specified string if the remote server requires a password as part of
the login process. Note: if this token is present in the . netrc file, ftp will
abort the auto-login process if the . netrc is readable by anyone besides the
user.

account string
Supply an additional account password. If this token is present, the auto­
login process will supply the specified string if the remote server requires an
additional account password, or the auto-login process will initiate an ACCT
command if it does not.

macdef name
Define a macro. This token functions as the ftp macdef command func­
tions. A macro is defined with the specified name; its contents begin with
the next .netrc line and continue until a NULL line (consecutive NEWLINE
characters) is encountered. If a macro named init is defined, it is automati­
cally executed as the last step in the auto-login process.

EXAMPLE

FILES

10/92

A . netrc file containing the following line:

machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password
mypassword.

-/.netrc

Page 1

netrc(4) (Internet Utilities) netrc(4)

SEE ALSO
chmod(l), ftp(l), ftpd(lM)

Page 2 10/92

networks (4) (Internet Utilities) networks (4)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which
comprise the DARPA Internet. For each network a single line should be present
with the following information:

official-network-name network-number aliases

Items are separated by any number of SPACE and/ or TAB characters. A '#' indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file. This file is normally created from the official net­
work data base maintained at the Network Information Control Center (NIC),
though local changes may be required to bring it up to date regarding unofficial
aliases and/or unknown networks.

Network number may be specified in the conventional '.' notation using the
inet_network routine from the Internet address manipulation library, inet(7).
Network names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

/etc/networks

SEE ALSO

NOTES

getnetent(3N), inet(7)

A name server should be used instead of a static file. A binary indexed file format
should be available for fast access.

10/92 Page 1

null (7)

NAME
null - the null file

DESCRIPTION
Data written on the null special file, /dev/null, is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

10/92

null(7)

Page 1

nvram{7) nvram{7)

NAME
nvram - general non-volatile RAM driver for SYSTEM V

DESCRIPTION

10/92

The nvram driver provides an interface from SYSTEM V to the non-volatile RAM
device and to character devices.

The non-volatile RAM is a collection of eight slices. Each slice is associated with a
minor device number and a size. The nvram slice sizes are static and cannot be
changed by the user. The following tables show the 2 KB and 8 KB slice
configurations for nvram.

2 KB Slice Configuration for SYSTEM V/68
Minor Device Size
(slice) Number Functionality (in bytes) Device Name

0 available to user 1024 /dev/nvr/user
1 networking 64 /dev/nvr/net
2 unused 0
3 operating system 440 /dev/nvr/os
4 unused 0
5 BUG 512 /dev/nvr/bug
6 unused 0
7 total nvram 2040 /dev/nvr/nvr

2 KB Slice Configuration for SYSTEM V/88
Minor Device Size
(slice) Number Functionality (in bytes) Device Name

0 available to user 1024 /dev/nvr/user
1 networking 64 /dev/nvr/net
2 unused 0
3 operating system 440 /dev/nvr/os
4 unused 0
5 BUG 512 /dev/nvr/bug
6 CONFIG 256 /dev/nvr/config
7 total nvram 2040 /dev/nvr/nvr

Page 1

nvram(7) nvram(7)

8 KB Slice Configuration for SYSTEM V/68 and V/88
Minor Device Size
(slice) Number Functionality (in bytes) Device Name

0 available to user 4096 /dev/nvr/user
1 networking 256 /dev/nvr/net
2 unused 0
3 operating system 1528 /dev/nvr/os
4 unused 0
5 BUG 2048 /dev/nvr/bug
6 CONFIG 256 /dev/nvr/config
7 total nvrarn 8184 /dev/nvr/nvr

Superuser privileges are required to write nvrarn slices having a minor device
number greater than 0. Read access on slices 1 through 7 (inclusive) and read/write
access on slice 0 are defined by the file permissions on the associated device file.

NVRAM BASE ADDRESS
MVME187 - OxfffcOOOO
MVME167 - OxfffcOOOO
MVME188 - Oxfff80000
MVME197- OxfffcOOOO

ERRORS

FILES

If failure occurs, the NVRAM driver generates the following error messages:

ENXIO invalid device minor number

EPERM invalid access permission

EFAULT data transfer failed or an illegal accesss to memory occurred

EINVAL boundary violation

/dev/nvr/bug
/dev/nvr/config
/dev/nvr/net
/dev/nvr/nvr
/dev/nvr/os
/dev/nvr/user

SEE ALSO
close(2), lseek(2), open(2), read(2), and wri te(2)

Page 2 10/92

Ott (4) (Framed Access Command Environment Utilities) ott(4)

NAME
. ot t - FACE object architecture information

DESCRIPTION

FILES

10/92

The FACE object architecture stores information about object-types in an ASCII file
named .ott (object type table) that is contained in each directory. This file
describes all of the objects in that directory. Each line of the . ott file contains
information about one object in pipe-separated fields. The fields are (in order):

name the name of the actual UNIX System file.

dname the name that should be displayed to the user, or a dot if it is
the same as the name of the file.

description

object-type
flags
mod time

object information

the description of the object, or a dot if the description is the
default (the same as object-type).

the FACE internal object type name.

object specific flags.

the time that FACE last modified the object. The time is given
as number of seconds since 1/1/1970, and is in hexadecimal
notation.

an optional field, contains a set of semi-colon separated
name=value fields that can be used by FACE to store any other
information necessary to describe this object.

. ot t is created in any directory opened by FACE.

Page 1

passthru (7) passthru (7)

NAME
passthru - passthru support

DESCRIPTION
All Motorola SCSI controllers provide passthru support via the DKP ASSTHRU
ioctl command. This function permits any scsi command specified by a device
manufacturer to be passed directly to the device for processing. This command
requires superuser permissions.

IOCTL COMMANDS

10/92

All DKPASSTHRU ioct1(2) operations take the form ioctl (fildes, DKPASSTHRU,
*arg), where *arg is a pointer to a scsi_pass structure. The scsi_pass structure is
defined in <sys I dk.h>.

You must set up the scsi_pass structure before issuing this ioctl. The following is a
list of the fields in the scsi_pass structure and their functions:

flags
This field contains the size of the SCSI command descriptor block (CDB) in bits
4-7 (bit four is the low order bit). These bits are defined by the mask
SPT_CDB_LEN in <sys/dk.h>. The only valid values for this sub-field
are 6, 10, and 12. If this sub-field contains any other value, the ioctl fails,
returning -1 and setting ermo to ERANGE. Another bit is defined by the
SPT_READ mask defined in <sys/dk.h>. This bit must be set if the direction of
data transfer for this CDB is from the device to the host system. If this bit
is set incorrectly, the ioctl fails, returning -1 and setting ermo to EIO and
error_info to SPTERR_CTLR (controller error).

Only one other bit is currently defined. This last bit is defined by the
SPT_LONG_TIMEOUT mask defined in <sys/dk.h>. If this bit is set, it tells the
driver that the SCSI command takes a long time (e.g., FORMAT UNIT), and so
the command timeout should be long enough to compensate. The MVME328
device driver currently does not specify a timeout for commands (the timeout
is infinite), so it ignores this bit.

All other flags bits are currently reserved and should be zero. If any reserved
bit is set, the ioctl fails, returning EINVAL.

xfer_len
This field contains the number of bytes that are to be transferred to or from the
device. The direction of transfer is determined by the SPT_READ bit in the
flags field. If this field is zero, no data transfer is attempted. Note that the set­
ting of this field depends on the SCSI command. The xfer_len count must be
an even number. If the transfer length in the CDB is an odd number, xfer_len
must be rounded up to be even. The buffer must of course be large enough to
allow this adjustment. If the transfer count is odd, the ioctl fails, returning -1
and setting ermo to EINVAL.

Note that this restriction only applies to MVME328 thru-hole boards. If the
firmware revision number for the MVME328 is XAM, the residual is -1 as a
result of this adjustment. Later revisions of the firmware have the correct resi­
dual count (with respect to the transfer count in the CDB). Surface mount ver­
sions of the MVME328 will not have this restriction. Also note that for

Page 1

passthru (7) passthru (7)

Page 2

MVME328 controllers with firm.ware revision XAM, the transfer length is lim­
ited to MACSI_SG_RSIZE (65535) bytes. This is the size of the buffers in the
MVME328 driver because this is the maximum value for each scatter/gather
register.

If xfer_len is zero when the CDB is set up to transfer data, the ioctl fails, return­
ing -1 and setting ermo to EIO and error_info to SPTERR_CTLR (controller
error). If xfer_len is not equal to the number of bytes the SCSI command
defined by the CDB transfers, it could cause a SCSI bus hang.

data
This field points to a buffer of size xfer_len in the caller's address space. The
buffer must be page-aligned (use the NBPP define in <sys/immu.h>). If the
SPT_READ bit in the flags field is clear (0), the buffer contains data to be sent
as part of the command (for example, a defect list sent as part of a FORMAT
UNIT command). If this bit is set (1), it indicates that the buffer will receive the
data returned from the device as a result of executing the command.

res id
This field points to an integer in the caller's address space. This integer is set to
the number of bytes that were not transferred as a result of the SCSI command.
This is the difference between the value of xfer_len and the number of bytes
that were successfully transferred to or from the device. If this integer is set to
zero after a command completes, xfer_len bytes were successfully transferred.
If it is equal to xfer_len, no bytes were successfully transferred. This field may
not be valid if ermo is EFAULT.

If this field contains a bad pointer (e.g., NULL), the ioctl fails when it attempts
to set this field, retuming-1 and setting ermo to EFAULT.

sense_data
This field is a pointer to a structure of type struct ext_sense in the caller's
address space that is used to accept SCSI sense data in the event of a SCSI
error. This structure is defined in <sys/dk.h>. If there is a SCSI error while
executing the command, and the status is Ox02 (SCSI Check Condition}, the
error_info field is set to SPTERR_SCSI and the sense data is copied to this
buffer. Note that this buffer is only modified by this command in the event of a
SCSI error with Check Condition status.. Therefore, the caller should clear this
buffer before executing this ioctl.

If this field contains a bad pointer (e.g., NULL} and there is a SCSI Check Con­
dition status while executing the command, the ioctl fails, returning-1 and set­
ting errno to EFAULT.

cdb
This field is an array of 12 bytes that contains the SCSI CDB that is to be passed
to the device. Only the number of bytes specified in bits 4-7 of the flags field
are actually copied out of this array into the IOPB that is passed to the device.
The device driver does no checking of the contents of the CDB. It simply
passes it to the device.

10/92

passthru (7) passthru (7)

status
This field is a pointer to a byte that is used to accept the SCSI status byte in the
case of a SCSI error. This field is valid in the case of a SCSI or controller error
(when error_info is set to SPTERR_SCSI or SPTERR_CTLR), and it is not
updated if the command completes successfully or with a driver error.

If this field contains a bad pointer (e.g., NULL) and there is a SCSI error or a
controller error while executing the command, the ioctl fails when it tries to
copy the status out to the user's address space, returning -1 and setting errno
to EFAULT. Note that some status values are never returned by the MVME328
device driver because they are handled by the controller (e.g., busy). See the
ANSI SCSI specification for a list of status codes.

error_info
This field is a pointer to an unsigned integer in the caller's address space that is
used to indicate the resulting status of the ioctl. This field is always updated,
even if no error occurs. If the command fails (ioctl returns -1), this field indi­
cates what type of error occured. The valid values for this field are defined in
<sys/dk.h>.

If the unsigned integer pointed to by error_info is set to SPTERR_DRIVER, it
means that an error occured while setting up the command before sending it to
the device. In this case, errno should be examined to determine the cause of
the failure. Note that some values of errno can be caused by one of several
different error conditions (EINVAL and EFAULT, for instance). If it is set to
SPTERR_SCSI or SPTERR_CTLR, then the byte pointed to by the status field
contains the SCSI status byte. If this status byte is set to Ox02 (SCSI Check
Condition), the sense data for the device is copied into the buffer pointed to by
the sense_ data field. For this case, errno is set to EIO.

If this field contains a bad pointer (e.g., NULL), the ioctl fails, returning -1 and
setting errno to EFAULT.

ctlr_code
This field is used to return the controller-specific error code in the case of a
SCSI or driver error. This field is only modified if an error occurs and the
error_info field is either SPTERR_SCSI or SPTERR_CTLR.

If this field contains a bad pointer (e.g., NULL), the ioctl fails, returning -1 and
setting errno to EFAULT. See the MVME328 SCSI Host Adapter User's Guide
for a list of valid controller codes.

ERRORS

FILES

10/92

If the passthru command can access too may memory regions the command will be
terminated and ENXIO will be returned.

If the passthru command fails for any other reason the error results returned by the
driver will be returned to the calling program.

/usr/include/sys/dk.h

Page 3

passthru (7) passthru (7)

SEE ALSO
ioctl{2), mvme328{7), scsilx7{7)

Page 4 10/92

passwd(4) passwd(4)

NAME
passwd - password file

SYNOPSIS
/etc/passwd

DESCRIPTION

10/92

/etc/passwd is an ASCII file that contains basic information about each user's
account. This file contains a one-line entry for each authorized user, of the form:

username : password : uid : gid : comment : home-dir : login-shell
where:

username

password

uid

gid

comment

home-dir

login-shell

is the user's login name. This field contains no uppercase charac­
ters, and must not be more than eight characters in length.

contains the character x. This field remains only for compatibility
reasons. Password information is contained in the file
/etc/shadow; see shadow(4). If this field is empty, login(l} does
not request a password before logging the user in.

is the user's numerical ID for the system, which must be unique.
uid is generally a value between 0 and 32767.

is the numerical ID of the group that the user belongs to. gid is
generally a value between 0 an 32767.

is the user's real name, along with information to pass along in a
mail-message heading. An ampersand (&}in this field stands for
the login name (in cases where the login name appears in a user's
real name).

is the pathname to the directory in which the user is initially posi­
tioned upon logging in.

is the user's initial shell program. If this field is empty, the default
shell is /usr /bin/ sh.

Fields are separated by a colon, and each user from the next by a NEWLINE. Com­
ment lines (lines preceded by the pound character (#) are not allowed in the
/etc/passwd file. passwd also contains information used by the NIS package.
These options are available only if the NIS package is installed.

/etc/passwd has general read permission on all systems, and can be used by rou­
tines that map numerical user IDs to names. The passwd file can also have lines
beginning with a plus sign (+) which means to incorporate entries from the Net­
work Information Service (NIS). There are three styles of + entries in this file: by
itself, + means to insert the entire contents of the NIS password file at that point; +
name means to insert the entry (if any) for name from the NIS service at that point;
+@ netgroup means to insert the entries for all members of the network group net­
group at that point. If a + name entry has a non-NULL password, comment, home-dir,
or login-shell field, the value of that field overrides what is contained in the NIS ser­
vice. The uid and gid fields cannot be overridden.

The passwd file can also have lines beginning with a minus sign (-) which means to
disallow entries from the NIS service. There are two styles of - entries in this file: -
name means to disallow any subsequent entries (if any) for name (in this file or in the
NIS service);-@ netgroup means to disallow any subsequent entries for all members

Page 1

passwd(4) passwd(4)

of the network group netgroup.
EXAMPLES

FILES

Here is a sample passwd file:

root:x:O:lO:God:/:/bin/csh
fred:x:508:10:& Fredericks:/usr2/fred:/bin/csh
+john:
+@documentation:no-login:
+::::Guest

In this example, there are specific entries for users root and fred, to assure that
they can log in even when the system is running standalone. The user john will
have his password entry in the NIS service incorporated without change; anyone in
the netgroup documentation will have their password field disabled, and anyone
else will be able to log in with their usual password, shell, and home directory, but
with a comment field of Guest.

/etc/passwd
/etc/shadow

SEE ALSO

Page 2

login(l), passwd(l), pwconv(lM), useradd(lM), usermod(lM), userdel(lM),
a641(3C), getpwent(3C), putpwent(3C), shadow(4), group(4), and unistd(4).

10/92

pathalias (4) (Framed Access Command Environment Utilities) pathalias (4)

NAME
pathalias - alias file for FACE

DESCRIPTION

NOTES

FILES

10/92

The pathalias files contain lines of the form alias=path where path can be one or
more colon-separated directories. Whenever a FACE user references a path not
beginning with a /1 /",this file is checked. If the first component of the pathname
matches the left-hand side of the equals sign, the right-hand side is searched much
like $PATH variable in the UNIX System. This allows users to reference the folder
$HOME/FILECABINET by typing filecabinet.

There is a system-wide pathalias file called $VMSYS/pathalias, and each user
can also have local alias file called $HOME/pref/pathalias. Settings in the user
alias file override settings in the system-wide file. The system-wide file is shipped
with several standard FACE aliases, such as filecabinet, wastebasket, prefer­
ences, other_users, and so on.

Unlike command keywords, partial matching of a path alias is not permitted, how­
ever, path aliases are case insensitive. The name of an alias should be alphabetic,
and in no case can it contain special characters like /1 /",

11
\", or 11=". There is no

particular limit on the number of aliases allowed. Alias files are read once, at login,
and are held in core until logout. Thus, if an alias file is modified during a session,
the change will not take effect until the next session.

$HOME/pref/pathalias
$VMSYS/pathalias

Page 1

pckt(7) pckt(7)

NAME
pckt - STREAMS Packet Mode module

DESCRIPTION
pckt is a STREAMS module that may be used with a pseudo terminal to packetize
certain messages. The pckt module should be pushed [see I_PUSH, streamio(7)]
onto the master side of a pseudo terminal.

Packetizing is performed by prefixing a message with an M_PROTO message. The
original message type is stored in the 4 byte data portion of the M_PROTO message.

On the read-side, only the M_PROTO' M_PCPROTO' M_STOP' M_START' M_STOPI'
M_STARTI, M_IOCTL, M_DATA, M_FLUSH, and M_READ messages are packetized.
All other message types are passed upstream unmodified.

Since all unread state information is held in the master's stream head read queue,
flushing of this queue is disabled.

On the write-side, all messages are sent down unmodified.

With this module in place, all reads from the master side of the pseudo terminal
should be performed with the getmsg(2) or getpmsg() system call. The control part
of the message contains the message type. The data part contains the actual data
associated with that message type. The onus is on the application to separate the
data into its component parts.

SEE ALSO
crash(lM), getmsg(2), ioct1(2), ldterm(7), ptem(7), streamio(7), termio(7).

10/92 Page 1

pkginfo(4) (Essential Utilities) pkginfo(4)

NAME
pkginfo - package characteristics file

DESCRIPTION

10/92

pkginfo is an ASCII file that describes the characteristics of the package along with
information that helps control the flow of installation. It is created by the software
package developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter in
the following form:

PARAM= "value"

There is no required order in which the parameters must be specified within the file.
Each parameter is described below. Only fields marked with an asterisk are man­
datory.

PKG* PKG is the parameter to which you assign an abbreviation for the
name of the package being installed. The abbreviation must be a
short string (no more than nine characters long) and it must con­
form to file naming rules. All characters in the abbreviation must
be alphanumeric and the first may not be numeric. install,
new, and all are reserved abbreviations.

The package name you assign to PKG is also used in the instance
name (pkginst) for the package in question. pkginst is composed
of one or two parts: pkg (the same string you assigned to PKG)
and, if more than one instance of that package exists, pkg plus
inst (an instance identifier). (The term "package instance'' is used
loosely: it refers to all instantiations of pkginst, even those that do
not include instance identifiers.)

The package name abbreviation (pkg) is the mandatory part of
pkginst. To create such an abbreviation, assign it with the PKG
parameter. For example, to assign the abbreviation sds to the
Software Distribution Service package, enter PKG=sds.

The second part (inst), which is required only if you have more
than one instance of the package in question, is a suffix that
identifies the instance. This suffix is either a number (preceded
by a period) or any short mnemonic string you choose. If you
don't assign your own instance identifier when one is required,
the system assigns a numeric one by default. For example, if you
have three instances of the Software Distribution Service package
and you don't create your own mnemonic identifiers (such as
old and beta), the system adds the suffixes . 2 and . 3 to the
second and third packages, automatically.

To indicate all instances of a package, specify inst.*· (When
using this format, enclose the command line in single quotes to
prevent the shell from interpreting the * character.) Use the
token all to refer to all packages available on the source
medium.

Page 1

pkginfo(4)

Page 2

NAME*

ARCH

VERSION*

CATEGORY*

DESC

VENDOR

HOTLINE

EMAIL

VS TOCK

CLASSES

ISTATES

RSTATES

BASEDIR

ULIMIT

(Essential Utilities) pkginfo(4)

Text that specifies the package name.

A comma-separated list of alphanumeric tokens that indicate the
architecture (for example, ARCH=m68k,m88k) associated with the
package. The pkgmk tool may be used to create or modify this
value when actually building the package. The maximum length
of a token is 16 characters and it cannot include a comma. ARCH
is not a mandatory field. Therefore, if it is not specified or if it is
specified as NULL, it is ignored.

Text that specifies the current version associated with the
software package. The maximum length is 256 ASCII characters
and the first character cannot be a left parenthesis. The pkgmk
tool may be used to create or modify this value when actually
building the package.

A comma-separated list of categories under which a package
may be displayed. A package must at least belong to the system
or application category. Categories are case-insensitive and may
contain only alphanumerics. Each category is limited in length to
16 characters.

Text that describes the package.

Used to identify the vendor that holds the software copyright
(maximum length of 256 ASCII characters).

Phone number and/or mailing address where further informa­
tion may be received or bugs may be reported (maximum length
of 256 ASCII characters).

An electronic address where further information is available or
bugs maybe reported (maximum length of 256 ASCII characters).

The vendor stock number, if any, that identifies this product
(maximum length of 256 ASCII characters).

A space-separated list of classes defined for a package. The order
of the list determines the order in which the classes are installed.
Classes listed first will be installed first (on a media by media
basis). This parameter may be modified by the request script.

A list of allowable run states for package installation (for exam­
ple, "s s 1 ").

A list of allowable run states for package removal (for example,
"S s 1").

The pathname to a default directory where "relocatable" files
may be installed. If blank, the package is not relocatable and any
files that have relative pathnames will not be installed. An
administrator can override the default directory.

If set, this parameter is passed as an argument to the ulimit
command, which establishes the maximum size of a file during
installation.

10/92

pkginfo(4) (Essential Utilities) pkginfo(4)

ORDER

MAXIN ST

PST AMP

INTONLY

PREDEPEND

A list of classes defining the order in which they should be put
on the medium. Used by pkgmk in creating the package. Classes
not defined in this field are placed on the medium using the stan­
dard ordering procedures.

The maximum number of package instances that should be
allowed on a machine at the same time. By default, only one
instance of a package is allowed. This parameter must be set in
order to have multiple instances of a package.

Production stamp used to mark the pkgmap file on the output
volumes. Provides a means for distinguishing between produc­
tion copies of a version if more than one is in use at a time. If
PSTAMP is not defined, the default is used. The default consists of
the UNIX system machine name followed by the string
"YYMMDDHHMM" (year, month, date, hour, minutes).

Indicates that the package should only be installed interactively
when set to any non-NULL value.

Used to maintain compatibility with dependency checking on
packages delivered earlier than System V Release 4. Pre-Release
4 dependency checks were based on whether or not the name file
for the required package existed in the /usr/options directory.
This directory is not maintained for Release 4 packages because
the depend file is used for checking dependencies. However,
entries can be created in this directory
to maintain compatibility. Setting the PREDEPEND parameter to y
or yes creates a /usr I options entry for the package. (Packages
new for Release 4 do not need to use this parameter.)

EXAMPLES

NOTES

10/92

Here is a sample pkginfo:

PKG="oam"
NAME="OAM Installation Utilities"
VERSION="3"
VENDOR="AT&T"
HOTLINE="l-800-ATT-BUGS"
EMAIL="attunix!olsen"
VSTOCK="0122c3f5566"
CATEGORY="system.essential"
ISTATES="S 2"
RSTATES="S 2"

Developers may define their own installation parameters by adding a definition to
this file. A developer-defined parameter must begin with a capital letter, followed
by lowercase letters.

Page 3

pkgmap(4) (Essential Utilities) pkgmap(4)

NAME
pkgmap - package contents description file

DESCRIPTION

10/92

pkgmap is an ASCII file that provides a complete listing of the package contents. It
is automatically generated by pkgrnk(l) using the information in the prototype file.

Each entry in pkgmap describes a single "deliverable object file." A deliverable
object file includes shell scripts, executable objects, data files, directories, and so on.
The entry consists of several fields of information, each field separated by a space.
The fields are described below and must appear in the order shown.

part An optional field designating the part number in which the object
resides. A part is a collection of files, and is the atomic unit by which a
package is processed. A developer can choose the criteria for grouping
files into a part (for example, based on class). If no value is defined in
this field, part 1 is assumed.

ftype A one-character field that indicates the file type. Valid values are:

f a standard executable or data file
e a file to be edited upon installation or removal
v volatile file (one whose contents are expected to change)
d directory
x an exclusive directory
1 linked file
p namedpipe
c character special device
b block special device
i installation script or information file
s symbolic link

class The installation class to which the file belongs. This name must contain
only alphanumeric characters and be no longer than 12 characters. It is
not specified if the ftype is i (information file).

pathname The pathname where the object will reside on the target machine, such
as /usr /bin/mail. Relative pathnames (those that do not begin with a
slash) indicate that the file is relocatable.

major

For linked files (ftype is either 1 ors), pathname must be in the form of
path1=path2, with pathl specifying the destination of the link and path2
specifying the source of the link.

pathname may contain variables which support relocation of the file. A
$parameter may be embedded in the pathname structure. $BASEDIR can
be used to identify the parent directories of the path hierarchy, making
the entire package easily relocatable. Default values for parameter and
BASEDIR must be supplied in the pkg info file and may be overridden at
installation.

The major device number. The field is only specified for block or char­
acter special devices.

Page 1

pkgmap(4) (Essential Utilities) pkgmap(4)

minor The minor device number. The field is only specified for block or char­
acter special devices.

mode The octal mode of the file (for example, 0664). A question mark (?) indi­
cates that the mode will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
files, packaging information files or non-installable files.

owner The owner of the file (for example, bin or root). The field is limited to
14 characters in length. A question mark(?) indicates that the owner
will be left unchanged, implying that the file already exists on the target
machine. This field is not used for linked files or non-installable files. It
is used optionally with a package information file. If used, it indicates
with what owner an installation script will be executed.

Can be a variable specification in the form of $[A-Z]. Will be resolved at
installation time.

group The group to which the file belongs (for example, "bin" or "sys"). The
field is limited to 14 characters in length. A question mark(?) indicates
that the group will be left unchanged, implying that the file already
exists on the target machine. This field is not used for linked files or
non-installable files. It is used optionally with a package information
file. If used, it indicates with what group an installation script will be
executed.

Can be a variable assignment in the form of$ [A-ZJ. Will be resolved at
installation time.

size The actual size of the file in bytes. This field is not specified for named
pipes, special devices, directories or linked files.

cksum The checksum of the file contents. This field is not specified for named
pipes, special devices, directories or linked files.

modtime The time of last modification, as reported by the stat(2) function call.
This field is not specified for named pipes, special devices, directories or
linked files.

Each pkgmap must have one line that provides information about the number and
maximum size (in 512-byte blocks) of parts that make up the package. This line is
in the following format:

: number _of_parts maximum_part_size

Lines that begin with "#" are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are nor­
mally just copied to a temporary pathname. However, for files whose mode
includes execute permission (but which are not editable), the existing version is
linked to a temporary pathname and the original file is removed. This allows
processes which are executing during installation to be overwritten.

EXAMPLES
The following is an example of a pkgmap file.

Page 2 10/92

pkgmap(4)

NOTES

(Essential Utilities) pkgmap(4)

:2 500
1 i pkginfo 237 1179 541296672
1 b class! /dev/rmt/ctape 17 134 0644 root other
1 c class! /dev/rmt/ctape 17 134 0644 root other
1 d none bin 0755 root bin
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
1 1 none bin/UNINSTALL=bin/REMOVE
1 f none bin/cmda 0755 root bin 3580 60325 541295567
1 f none bin/cmdb 0755 root bin 49107 51255 541438368
1 f classl bin/cmdc 0755 root bin 45599 26048 541295599
1 f classl bin/cmdd 0755 root bin 4648 8473 541461238
1 f none bin/cmde 0755 root bin 40501 1264 541295622
1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574
1 f none bin/cmdg 0755 root bin 41185 47653 541461242
2 d class2 data 0755 root bin
2 p classl data/apipe 0755 root other
2 d none log 0755 root bin
2 v none log/logfile 0755 root bin 41815 47563 541461333
2 d none save 0755 root bin
2 d none spool 0755 root bin
2 d none tmp 0755 root bin

The pkgmap file may contain only one entry per unique pathname.

10/92 Page 3

pkgquest (4) (Essential Utilities) pkgquest (4)

NAME
pkgquest - package question file

DESCRIPTION

10/92

pkgquest is an ASCII file that defines questions (and resulting parameters) for
packages which require user input during an installation or upgrade. It is created
by the software package developer.

Each entry in the pkgquest file is a series of lines that define a prompt for the user
to provide a parameter input. The following are the definitions of the lines:

N parameter _name
H header _line
B body_line
F footer _line
? help _message _line
RI [lower _bound upper _bound]
RS [regular _expression]
RC
RY

One each and only one each of the N and R lines is required and allowed; however,
at least one of the others is necessary to give some indication of what is requested.
The lines must be arranged in the order listed. The R lines have a response type
specified by I, s, C or Y which indicate that an integer, a string, a character or
yes/no, respectively, are expected. Integer responses have an optional range
specified, helpful for menus as well as parameters requiring integer values. String
response may have a regular expression used to verify correct responses. The fol­
lowing defines how the lines appear on the terminal:

package_name Package Query #1
zero to ten header lines
zero or more body lines (split into pages if all won't fit on display)
zero to ten footer lines

The help lines are displayed only if requested and appear on the terminal as fol­
lows:

package_name Package Query #1 Help
one or more help lines, as many as necessary
Press RETURN to return to the package_name Package Query #1
screen.

If no help lines are specified, a default message stating that no help is available is
presented. If the help lines cannot all be displayed on the screen at once, they will
be split into pages.

A package cannot request input containing ASCII codes OxOO to Oxlf or Ox7f to Oxff,
since those are reserved for pkgquest(l). In addition, when the user enters ? fol­
lowed by a newline, the help message will be displayed.

There is no required order in which the questions must be specified within the file,
except they will be displayed as ordered.

Page 1

pkgquest (4) (Essential Utilities) pkgquest (4)

EXAMPLES

NOTES

FILES

Here is a sample pkgquest (for the package nsu):

NPTNUM
F Enter the nwnber of pseudo-terminal devices
F to configure on your system.
? NOTE: since each pseudo-terminal device configured
? allocates memory and streams buffers, choose only
? the nwnber of terminals you really require.
RI 0 256

The header and body sections are provided for those packages wishing to provide
long messages to the user relevant to the question at hand. It is probably better to
put such information into the help section with a statement noting that help is
available.

/var/sadm/pkg/*/install/questions

SEE ALSO

location of pkgquest file

pkgask(l), pkgquest(l).

Page 2 10/92

pnch(4) pnch(4)

NAME
pnch - file format for card images

DESCRIPTION

10/92

The PNCH format is a convenient representation for files consisting of card images
in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record consists of a
single control byte followed by a variable number of data bytes. The control byte
specifies the number (which must lie in the range 0-80) of data bytes that follow.
The data bytes are 8-bit codes that constitute the card image. If there are fewer than
80 data bytes, it is understood that the remainder of the card image consists of trail­
ing blanks.

Page 1

ppp(7) ppp(7)

NAME
PPP - Point-to-Point Protocol (PPP)

SYNOPSIS
PPP

DESCRIPTION
The Point-to-Point protocol (PPP) is a method for transmitting datagrams over
point-to-point serial links. The protocol and configuration information is described
in RFC 1171 and RFC 1172. PPP is not IP specific like SLIP, but the current imple­
mentation only supports transmission of IP datagrams over serial links. The Point­
to-Point protocol is implemented as a multiplexing STREAMS driver (PPPSM) that
is linked beneath IP when intemetworking is started. The PPPSM manages the
routing of IP datagrams between the interfaces presented to IP and the physical
links to remote hosts (PPC). It also performs PPP specific operations concerned
with negotiating PPP operating parameters when PPCs are established and tearing
down PPCs when they are no longer needed.

The interfaces presented to IP are specified in /etc/strcf and are created and
marked up when slink(lM) is started. The PPC links are NOT established to
remote hosts until a pending datagram intended for a known remote host is
detected by the PPPSM. The interfaces presented to IP are marked as point-to­
point interfaces and as such have a known destination IP address. There may be a
number of different physical links available that can be used to reach the destina­
tion host. The PPC links are described in the PPP and UUCP configuration files.

When a PPP data request (IP datagram) is detected, the PPSM will notify the
Point-to-Point Connection Information Daemon (PPCID), in.pppd [see pppd(lM)]
that a pending datagram exists for a specific destination IP address. in. pppd will
then check it's configuration files for information on how to reach the remote host.
Using that information, in.pppd performs a uucp(l) style login to the remote host
and negotiates the line characteristics at both the local and remote hosts. Once the
negotiation has finished and the PPC is established, the tty representing the link is
linked beneath the PPPSM and the PPPSM is given information about the link. The
PPPSM now uses the link for its IP datagram traffic. The PPC will continue to exist
under the PPPSM until a pre-set count-down timer measuring continuous link
inactivity has expired, or the link is broken by administrator command, that is,
using ifconfig(lM) to mark the interface down.

SEE ALSO

10/92

ifconfig(lM), slink(lM), ppp(l), pppd(lM), strcf(4), hosts(S), ppphosts(S)
RFC 1171, RFC 1172

Page 1

ppphosts (4) ppphosts (4)

NAME
ppphosts - Point-to-Point Protocol Host name database

SYNOPSIS
/etc/inet/ppphosts

DESCRIPTION
The /etc/inet/ppphosts file contains information about known PPP hosts. This
file contains a single-line entry for each PPP host with the following information:

Remote host name or alias

Inactivity timeout in minutes (optional, default= "forever")

Tty name for direct connection (optional)

Uucp system name for this remote host

Timeout per PPP protocol request (optional, default= 10 seconds)

Maximum number of retries per PPP protocol request (optional, default= 3)

These data items should be separated by "white space''. A'#' indicates the begin­
ning of a comment; characters appearing after '#' are ignored.

This file should be created and maintained by the Network Administrator. These
guidelines should be followed in creating I etc/ inet /ppphosts:

The host name should have a corresponding entry in /etc/hosts [see
hosts(4)]

Optional parameters may be defaulted by using the'-' place-holder

The tty name (if other than '-') should have a corresponding entry in
/usr/lib/uucp/Devices

The uucp system name should have a corresponding entry in
/usr/lib/uucp/Systems

The contents of this file will be used by the pppd daemon [see pppd(lM)].

EXAMPLES

10/92

Example 1 - Typical /usr/inet/ppphosts File

#Host
#name

homer_ppp
bart_ppp

Inactivity
timeout
(minutes)

5

Tty name
(direct
connect)

ttyOl

UUCP
system
name

homer
bart

ACK
timeout
(seconds)

ACK
retries

5

The guidelines shown in Network File System Administration, show how typical data
in the /etc/inet/ppphosts, /usr/lib/uucp/Systems, and
/usr /lib/uucp/Devices files could be used for reaching a PPP host.

Page 1

ppphosts { 4) ppphosts { 4)

Example 2 - A Direct Line between PPP Hosts

ppphosts: bart_ppp 5 ttyOl bart
hosts: 128.2.129.2 bart_ppp
Devices: Direct ttyOl 9600
Systems: bart Any Direct 9600
Password: PPP_password

direct
login:

The special user_name nppp will initiate the remote login session; also note that fol­
lowing four network-dependent data items in the above table entries must match:
bart_ppp, bart, ttyOl, and Direct.

Example 3 - A Dial-up Line between PPP Hosts

ppphosts:
hosts:
Systems:
Password:

homer_ppp 5 homer
28.2.129.5 homer_ppp
homer Any ACU 2400
PPP_password

555-1234 login: nppp

USER CONSIDERATIONS

FILES

The Network Administrator should ensure consistent entries in the
/etc/inet/ppphosts, /usr/lib/uucp/Systems,and /usr/lib/uucp/Devices
for the PPP hosts. The remote login request needs to specify \&nppp as its
user_name. PPP creates /usr /lib/ppp/named_ppp with uid nppp. The remote
login must use this uid to communicate through the named pipe to pppd.

/etc/hosts
/etc/inet/ppphosts
/usr/lib/uucp/Systems
/usr/lib/uucp/Devices

SEE ALSO
uucp(l), pppd(lM), host(4).

Page 2 10/92

prf (7) (System Performance Analysis Utilities) prf(7)

NAME
prf - operating system profiler

DESCRIPTION

FILES

NOTES

The special file /dev/prf provides access to activity information in the operating
system. Writing the file loads the measurement facility with text addresses to be
monitored. Reading the file returns these addresses and a set of counters indicative
of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the program
counter at line frequency. Samples that catch the operating system are matched
against the stored text addresses and increment corresponding counters for later
processing.

The file I dev /prf is a pseudo-device with no associated hardware.

/dev/prf

By default, the prf device is not configured into the kernel for Motorola processors.
To turn it on, you must edit the /stand/system file, and add the prf modules to
the list of included modules.

SEE ALSO
prof iler(lM)

10/92 Page 1

proc(4) proc(4)

NAME
/proc - process file system.

DESCRIPTION

10/92

/proc is a file system. that provides access to the image of each active process in the
system.. The name of each entry in the /proc directory is a decimal number
corresponding to the process ID. The owner of each "file'' is determined by the
process's user-ID.

Standard system. call interfaces are used to access /proc files: open, close, read,
write, and ioctl. An open for reading and writing enables process control; a
read-only open allows inspection but not control. As with ordinary files, more than
one process can open the same /proc file at the same time. Exclusive open is pro­
vided to allow controlling processes to avoid collisions: an open for writing that
specifies O_EXCL fails if the file is already open for writing; if such an exclusive
open succeeds, subsequent attempts to open the file for writing, with or without
the O_EXCL flag, fail until the exclusively-opened file descriptor is closed. (Excep­
tion: a super-user open that does not specify O_EXCL succeeds even if the file is
exclusively opened.) There can be any number of read-only opens, even when an
exclusive write open is in effect on the file.

Data may be transferred from. or to any locations in the traced process's address
space by applying lseek to position the file at the virtual address of interest fol­
lowed by read or write. The PIOCMAP operation can be applied to determine the
accessible areas (mappings) of the address space. A contiguous area of the address
space may appear as multiple mappings due to varying read/write/execute per­
missions. 1/0 transfers may span contiguous mappings. An 1/0 request extending
into an unmapped area is truncated at the boundary.

Information and control operations are provided through ioctl. These have the
form.:

#include <sys/types.h>
#include <sys/signal.h>
#include <sys/fault.h>
#include <sys/syscall.h>
#include <sys/procfs.h>
void *p;
retval = ioctl(fildes, code, p);

The argument p is a generic pointer whose type depends on the specific ioctl
code. Where not specifically mentioned below, its value should be zero.
sys/procfs .h contains definitions of ioctl codes and data structures used by the
operations. Certain operations can be performed only if the process file is open for
writing; these include all operations that affect process control.

Process information and control operations involve the use of sets of flags. The set
types sigset_t, fltset_t, and sysset_t correspond, respectively, to signal, fault,
and system. call enumerations defined in sys/signal.h, sys/fault.h, and
sys/syscall .h. Each set type is large enough to hold flags for its own enumera­
tion. Although they are of different sizes, they have a comm.on structure and can be
manipulated by these macros:

Page 1

proc(4) proc(4)

prfillset(&set); /*turn on all flags in set*/
premptyset(&set); /*turn off all flags in set*/
praddset(&set, flag); /*turn on the specified flag*/
prdelset(&set, flag); /* turn off the specified flag*/
r = prismember(&set, flag); /* != 0 iff flag is turned on */

One of prfillset or premptyset must be used to initialize set before it is used in
any other operation. flag must be a member of the enumeration corresponding to
set.

The allowable ioctl codes follow. Those requiring write access are marked with
an asterisk (*). Except where noted, an ioctl to a process that has terminated eli­
cits the error ENOENT.

PIOCSTATUS

Page 2

This returns status information for the process; p is a pointer to a prstatus struc­
ture which is defined in the header <sys/procfs.h>. The pr_status structure
contains at least the following fields, but not necessarily in this order.

typedef struct prstatus {
long pr_flags; /* Process flags */
short pr_why;
short pr_what;

/*Reason for process stop (if stopped) */
/*More detailed reason*/

struct siginfo pr_info;
exblk_t pr_exblks[NDMPBL];

/* Info associated with signal or fault */
/* Exception blks for machine exceptions */

(For m88k only)
short pr_cursig; /* Current signal */
sigset_t pr_sigpend; /* Set of other pending signals */
sigset_t pr_sighold; /* Set of held signals */
struct sigaltstack pr_altstack;/* Alternate signal stack info*/
struct sigaction pr_action;
pid_t pr_pid;
pid_t pr_ppid;
pid_t pr_pgrp;
pid_t pr_sid;
timestruc_t pr_utime;
timestruc_t pr_stime;
timestruc_t pr_cutime;
timestruc_t pr_cstime;
char pr_clname[8];
long pr_filler[20];
long pr_instr;
gregset_t pr_reg;
prstatus_t;

/* Signal action for current signal */
/* Process id */
/* Parent process id */
/* Process group id */
/* Session id */
/* Process user cpu time */
/* Process system cpu time */
/* Sum of children's user times */
/* Sum of children's system times */
/* Scheduling class name */
/* Filler area for future expansion */
/* Current instruction */
/* General registers */

pr_flags is a bit-mask holding these flags:

PR_STOPPED
PR_ I STOP
PR_DSTOP
PR_ASLEEP

process is stopped
process is stopped on an event of interest (see PIOCSTOP)
process has a stop directive in effect (see PIOCSTOP)
process is in an interruptible sleep within a system call

10/92

proc(4) proc(4)

10/92

PR_ FORK
PR_RLC
PR_PTRACE
PR_PCINVAL
PR_ISSYS

process has its inherit-on-fork flag set (see PIOCSFORK)
process has its run-on-last-close flag set (see PIOCSRLC)
process is being traced via ptrace
process program counter refers to an invalid address
process is a system process (see PIOCSTOP)

pr_why and pr_what together describe, for a stopped process, the reason that the
process is stopped. Possible values of pr_why are:

PR_REQUESTED indicates that the process stopped because PIOCSTOP was
applied; pr_what is unused in this case.

PR_SIGNALLED indicates that the process stopped on receipt of a signal (see
PIOCSTRACE); pr_what holds the signal number that caused
the stop (for a newly-stopped process, the same value is in
pr_cursig).

PR_FAULTED indicates that the process stopped on incurring a hardware
fault (see PIOCSFAULT); pr_what holds the fault number that
caused the stop.

PR_SYSENTRY and PR_SYSEXIT
indicate a stop on entry to or exit from a system call (see
PIOCSENTRY and PIOCSEXIT); pr_what holds the system call
number.

PR_JOBCONTROL indicates that the process stopped due to the default action
of a job control stop signal (see sigaction); pr_what holds
the stopping signal number.

pr_info, when the process is in a PR_SIGNALLED or PR_FAULTED stop, contains
additional information pertinent to the particular signal or fault (see
sys/siginfo.h).

pr_exblks exists only for the M88000 family of processors. This field contains the
exception blocks generated when the machine exception occurred. The exception
blocks will be valid only when the signal in pr_info is the result of a machine
exception. The SI_MACHINEXCEP macro (found in sys I siginfo. h) detects
whether a given pr_info is the result of a machine exception. The number of valid
exception blocks is contained in the _ncodes field of the pr_info structure. Note
that the _exblks pointer in the pr_info structure will not be valid.

pr_cursig names the current signal-that is, the next signal to be delivered to the
process. pr_sigpend identifies any other pending signals. pr_sighold identifies
those signals whose delivery is being delayed if sent to the process.

pr_altstack contains the alternate signal stack information for the process (see
sigaltstack). pr_action contains the signal action information pertaining to the
current signal (see sigaction); it is undefined if pr_cursig is zero.

pr_pid, pr_ppid, pr_pgrp, and pr_sid are, respectively, the process id, the id of
the process's parent, the process's process group id, and the process's session id.

pr_utime, pr_stime, pr_cutime, and pr_cstime are, respectively, the user and
system time consumed by the process, and the cumulative user and system time
consumed by the process's children, in seconds and nanoseconds.

Page 3

proc(4) proc(4)

pr_clname contains the name of the process's scheduling class.

The pr_filler area is reserved for future use.

pr_instr contains the machine instruction to which the program counter refers.
The amount of data retrieved from the process is machine-dependent. On the
M88000 family of processors it is 4 bytes. In general, the size is that of the
machine's smallest instruction. If the program counter refers to an invalid address,
PR_PCINVAL is set and pr_instr is undefined.

pr_reg is an array holding the contents of the general registers. On the M88000
family of processors the predefined constants R_R3 l R_PSR R_XIP, R_NIP, and
R_FIP can be used as indices to refer to the corresponding registers.

PIOCSTOP*,PIOCWSTOP
PIOCSTOP directs the process to stop and waits until it has stopped; PIOCWSTOP
simply waits for the process to stop. These operations complete when the process
stops on an event of interest, immediately if already so stopped. If pis non-zero it
points to an instance of prstatus_t to be filled with status information for the
stopped process.

An "event of interest" is either a PR_REQUESTED stop or a stop that has been
specified in the process's tracing flags (set by PIOCSTRACE, PIOCSFAULT,
PIOCSENTRY, and PIOCSEXIT). A PR_JOBCONTROL stop is specifically not an event
of interest. (A process may stop twice due to a stop signal, first showing
PR_SIGNALLED if the signal is traced and again showing PR_JOBCONTROL if the pro­
cess is set running without clearing the signal.) If the process is controlled by
ptrace, it comes to a PR_SIGNALLED stop on receipt of any signal; this is an event
of interest only if the signal is in the traced signal set. If PIOCSTOP is applied to a
process that is stopped, but not on an event of interest, the stop directive takes
effect when the process is restarted by the competing mechanism; at that time the
process enters a PR_REQUESTED stop before executing any user-level code.

ioctls are interruptible by signals so that, for example, an alarm can be set to
avoid waiting forever for a process that may never stop on an event of interest. If
PIOCSTOP is interrupted, the stop directive remains in effect even though the ioctl
returns an error.

A system process (indicated by the PR_ISSYS flag) never executes at user level, has
no user-level address space visible through /proc, and cannot be stopped. Apply­
ing PIOCSTOP or PIOCWSTOP to a system process elicits the error EBUSY.

PIOCRUN*

Page 4

The traced process is made runnable again after a stop. If pis non-zero it points to
a prrun structure describing additional actions to be performed:

10/92

proc(4) proc(4)

typedef struct prrun {
long pr_flags;
sigset_t pr_trace;
sigset_t pr_sighold;
fltset_t pr_fault;
caddr_t pr_vaddr;
long pr_filler[SJ;
prrun_t;

/* Flags */
/* Set of signals to be traced */
/* Set of signals to be held */
/* Set of faults to be traced*/
/*Virtual address at which to resume */
/* Filler area for future expansion */

pr_flags is a bit-mask describing optional actions; the remainder of the entries are
meaningful only if the appropriate bits are set in pr_flags. pr_filler is reserved
for future use; this area must be filled with zeros by the user's program. Flag
definitions:

PRCSIG clears the current signal, if any (see PIOCSSIG)

PRCFAULT clears the current fault, if any (see PIOCCFAULT)

PRSTRACE sets the traced signal set to pr_trace (see PIOCSTRACE)

PRSHOLD sets the held signal set to pr_sighold (see PIOCSHOLD)

PRSFAULT sets the traced fault set to pr_faul t (see PIOCSFAULT)

PRSVADDR sets the address at which execution resumes to pr_ vaddr

PRSTEP directs the process to single-step - that is, to run and to execute
a single machine instruction. On completion of the instruction, a
hardware trace trap occurs. If FLTTRACE is being traced, the pro­
cess stops, otherwise it is sent SIGTRAP; if SIGTRAP is being
traced and not held, the process stops. This operation requires
hardware support and may not be implemented on all proces­
sors.

PRSABORT is meaningful only if the process is in a PR_SYSENTRY stop or is
marked PR_ASLEEP; it instructs the process to abort execution of
the system call (see PIOCSENTRY, PIOCSEXIT).

PRSTOP directs the process to stop again as soon as possible after resum­
ing execution (see PIOCSTOP). In particular if the process is
stopped on PR_SIGNALLED or PR_FAULTED, the next stop will
show PR_REQUESTED, no other stop will have intervened, and the
process will not have executed any user-level code.

PIOCRUN fails (EBUSY) if applied to a process that is not stopped on an event of
interest. Once PIOCRUN has been applied, the process is no longer stopped on an
event of interest even if, due to a competing mechanism, it remains stopped.

PIOCSTRACE*

10/92

This defines a set of signals to be traced: the receipt of one of these signals causes
the traced process to stop. The set of signals is defined via an instance of sigset_t
addressed by p. Receipt of SIGKILL cannot be traced.

If a signal that is included in the held signal set is sent to the traced process, the
signal is not received and does not cause a process stop until it is removed from the
held signal set, either by the process itself or by setting the held signal set with
PIOCSHOLD or the PRSHOLD option of PIOCRUN.

Page 5

proc(4) proc(4)

PIOCGTRACE
The current traced signal set is returned in an instance of sigset_t addressed by p.

PIOCSSIG*
The current signal and its associated signal information are set according to the
contents of the siginfo structure addressed by p (see sys/ siginfo. h). If the
specified signal number is zero or if p is zero, the current signal is cleared. The
semantics of this operation are different from those of kill or PIOCKILL in that the
signal is delivered to the process immediately after execution is resumed (even if it
is being held) and an additional PR_SIGNALLED stop does not intervene
even if the signal is traced. Setting the current signal to SIGKILL terminates the
process immediately, even if it is stopped.

PIOCKILL*
A signal is sent to the process with semantics identical to those of kill; p points to
an int naming the signal. Sending SIGKILL terminates the process immediately.

PIOCUNKILL*
A signal is deleted, that is, it is removed from the set of pending signals; the current
signal (if any) is unaffected. p points to an int naming the signal. It is an error to
attempt to delete SIGKILL.

PIOCGHOLD,PIOCSHOLD*
PIOCGHOLD returns the set of held signals (signals whose delivery will be delayed if
sent to the process) in an instance of sigset_t addressed by p. PIOCSHOLD
correspondingly sets the held signal set but does not allow SIGKILL or SIGSTOP to
beheld.

PIOCMAXSIG,PIOCACTION
These operations provide information about the signal actions associated with the
traced process (see sigaction). PIOCMAXSIG returns, in the int addressed by p,
the maximum signal number understood by the system. This can be used to allo­
cate storage for use with the PIOCACTION operation, which returns the traced
process's signal actions in an array of sigaction structures addressed by p. Signal
numbers are displaced by 1 from array indices, so that the action for signal number
n appears in position n-1 of the array.

PIOCSFAULT*

Page 6

This defines a set of hardware faults to be traced: on incurring one of these faults
the traced process stops. The set is defined via an instance of fltset_t addressed
by p. Fault names are defined in sys/fault.hand include the following. Some of
these may not occur on all processors; there may be processor-specific faults in
addition to these.

FLT ILL
FLTPRIV
FLTBPT
FLTTRACE
FLTACCESS
FLTBOUNDS
FLTIOVF

illegal instruction
privileged instruction
breakpoint trap
trace trap
memory access fault
memory bounds violation
integer overflow

10/92

proc(4) proc(4)

FLTIZDIV
FLTFPE
FLT STACK
FLTPAGE

integer zero divide
floating-point exception
unrecoverable stack fault
recoverable page fault

When not traced, a fault normally results in the posting of a signal to the process
that incurred the fault. If the process stops on a fault, the signal is posted to the
process when execution is resumed unless the fault is cleared by PIOCCFAULT or by
the PRCFAULT option of PIOCRUN. FLTPAGE is an exception; no signal is posted.
There may be additional processor-specific faults like this. pr_info in
the prstatus structure identifies the signal to be sent and contains machine­
specific information about the fault.

PIOCGFAULT
The current traced fault set is returned in an instance of fl tset_t addressed by p.

PIOCCFAULT*
The current fault (if any) is cleared; the associated signal is not sent to the process.

PIOCSENTRY*, PIOCSEXIT*
These operations instruct the process to stop on entry to or exit from specified sys­
tem calls. The set of syscalls to be traced is defined via an instance of sysset_t
addressed by p.

When entry to a system call is being traced, the traced process stops after having
begun the call to the system but before the system call arguments have been
fetched from the process. When exit from a system call is being traced, the traced
process stops on completion of the system call just prior to checking for signals and
returning to user level. At this point all return values have been stored into the
traced process's saved registers.

If the traced process is stopped on entry to a system call (PR_SYSENTRY) or when
sleeping in an interruptible system call (PR_ASLEEP is set), it may be instructed to
go directly to system call exit by specifying the PRSABORT flag in a PIOCRUN request.
Unless exit from the system call is being traced the process returns to user level
showing error EINTR.

PIOCGENTRY, PIOCGEXIT
These return the current traced system call entry or exit set in an instance of
sysset_t addressed by p.

PIOCSFORK*, PIOCRFORK*
PIOCSFORK sets the inherit-on-fork flag in the traced process: the process's tracing
flags are inherited by the child of a fork. PIOCRFORK turns this flag off: child
processes start with all tracing flags cleared.

PIOCSRLC*, PIOCRRLC*

10/92

PIOCSRLC sets the run-on-last-close flag in the traced process: when the last writ­
able /proc file descriptor referring to the traced process is closed, all of the
process's tracing flags are cleared, any outstanding stop directive is canceled, and if
the process is stopped, it is set running as though PIOCRUN had been applied to it.
PIOCRRLC turns this flag off: the process's tracing flags are retained and the process
is not set running when the process file is closed.

Page 7

proc(4) proc(4)

PIOCGREG, PIOCSREG*
These operations respectively get and set the saved process registers into or out of
an array addressed by p; the array has type gregset_t. Register contents are acces­
sible using a set of predefined indices (see PIOCSTATUS). Only certain bits of the
processor-status word (PSW) can be modified by PIOCSREG. On the M88000 family
of processors these include the Serial Mode, Carry, Byte Order and Misaligned
Access Enable bits. Other privileged registers cannot be modified at all. PIOCSREG
fails (EBUSY) if applied to a process that is not stopped on an event
of interest. Currently on the M88000 family of processors no floating point registers
are available via this ioctl.

PIOCGFPREG, PIOCSFPREG*
These operations respectively get and set the saved process floating-point registers
into or out of a structure addressed by p; the structure has type fpregset_t. An
error (EINVAL) is returned if there is no floating-point hardware on the machine.
PIOCSFPREG fails (EBUSY) if applied to a process that is not stopped on an event of
interest.

PIOCNICE*
The traced process's nice priority is incremented by the amount contained in the
int addressed by p. Only the super-user may better a process's priority in this way,
but any user may make the priority worse.

PIOCPSINFO

Page 8

This returns miscellaneous process information such as that reported by ps(l). pis
a pointer to a prpsinfo structure containing at least the following fields:

typedef struct prpsinf o {
char pr_state;
char pr_sname;
char pr_zomb;
char pr_nice;
u_long pr_flag;
uid_t pr_uid;
gid_t pr__gid;
pid_t pr__pid;
pid_t pr__ppid;
pid_t pr__pgrp;
pid_t pr_sid;
caddr_ t pr_addr;
long pr_size;
long pr_rssize;
caddr_t pr_wchan;
timestruc_ t pr_start;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

numeric process state (see pr_sname) */
printable character representing pr_state */
!=0: process terminated but not waited for */
nice for cpu usage */
process flags */
real user id */
real group id */
unique process id */
process id of parent */
pid of process group leader */
session id */
physical address of process */
size of process image in pages */
resident set size in pages */
wait addr for sleeping process */
process start time, sec+nsec since epoch */

timestruc_t pr_time; /* usr+sys cpu time for this process */
long pr__pri; /* priority, high value is high priority */
char pr_oldpri; /* pre-System V Release 4.0, low value is high priority */
char
dev_t
char
char
char
long

pr_cpu;
pr_ttydev;

/* pre-System V release 4.0, cpu usage for scheduling */
/* controlling tty device (PRNODEV if none) */

pr_clname[B]; /*Scheduling class name*/
pr_fname[l6]; /*last component of execed pathname*/
pr__psargs[PRARGSZ]; /*initial characters of arg list*/
pr_filler[20]; /*for future expansion*/

10/92

proc(4) proc(4)

} prpsinfo_t;

Some of the entries in prpsinfo, such as pr_state and pr_flag, are system­
specific and should not be expected to retain their meanings across different ver­
sions of the operating system. pr_addr is a vestige of the past and has no real
meaning in current systems.

PIOCPSINFO can be applied to a zombie process (one that has terminated but
whose parent has not yet performed await on it).

PIOCNMAP,PIOCMAP
These operations provide information about the memory mappings (virtual
address ranges) associated with the traced process. PIOCNMAP returns, in the int
addressed by p, the number of mappings that are currently active. This can be used
to allocate storage for use with the PIOCMAP operation, which returns the list of
currently active mappings. For PIOCMAP, p addresses an array of elements of type
pnnap_t; one array element (one structure) is returned for each mapping, plus an
additional element containing all zeros to mark the end of the list.

typedef struct prrnap {
caddr_t pr_vaddr; /* Virtual address base */
u_long
off_t
long
long
prrnap_t;

pr_size;
pr_off;
pr_mflags;
pr_filler[4];

/* Size of mapping in bytes */
/* Offset into mapped object, if any */
/* Protection and attribute flags */
/* Filler for future expansion */

pr_vaddr is the virtual address base (the lower limit) of the mapping within the
traced process and pr_size is its size in bytes. pr_off is the offset within the
mapped object (if any) to which the address base is mapped.

pr_mflags is a bit-mask of protection and attribute flags:

MA_READ mapping is readable by the traced process
MA_WRITE mapping is writable by the traced process
MA_EXEC mapping is executable by the traced process
MA_SHARED mapping changes are shared by the mapped object
MA_BREAK mapping is grown by the brk system call
MA_STACK mapping is grown automatically on stack faults

PIOCOPENM
The return value retval provides a read-only file descriptor for a mapped object
associated with the traced process. If pis zero the traced process's execed file (its
a. out file) is found. This enables a debugger to find the object file symbol table
without having to know the path name of the executable file. If p is non-zero it
points to a caddr_t containing a virtual address within the traced process and the
mapped object, if any, associated with that address is found; this can be used to get
a file descriptor for a shared library that is attached to the process. On error
(invalid address or no mapped object for the designated address), -1 is returned.

PIOCCRED

10/92

Fetch the set of credentials associated with the process. p points to an instance of
prcred_t, which is filled by the operation:

Page 9

proc(4) proc(4)

typedef struct prcred
uid_t pr_euid; I* Effective user id */
uid_t pr_ruid; /* Real user id*/
uid_t pr_suid; /* Saved user id (from exec) */
uid_t pr_egid; /* Effective group id */
uid_t pr_rgid; /* Real group id *I
uid_t pr_sgid; /* Saved group id (from exec) */
u_int pr_ngroups; /* Number of supplementary groups */

prcred_t;

PIOCGROUPS
Fetch the set of supplementary group IDs associated with the process. p points to
an array of elements of type uid_t, which will be filled by the operation. PIOCCRED
can be applied beforehand to determine the number of groups (pr_ngroups) that
will be returned and the amount of storage that should be allocated to hold them.

PIOCGETPR,PIOCGETU

NOTES

These operations copy, respectively, the traced process's proc structure and user
area into the buffer addressed by p. They are provided for completeness but it
should be unnecessary to access either of these structures directly since relevant
status information is available through other control operations. Their use is
discouraged because a program making use of them is tied to a particular version
of the operating system.

PIOCGETPR can be applied to a zombie process (see PIOCPSINFO).

Each operation (ioctl or I/O) is guaranteed to be atomic with respect to the traced
process, except when applied to a system process.

For security reasons, except for the super-user, an open of a /proc file fails unless
both the user-ID and group-ID of the caller match those of the traced process and
the process's object file is readable by the caller. Files corresponding to setuid and
setgid processes can be opened only by the super-user. Even if held by the super­
user, an open process file descriptor becomes invalid if the traced process performs
an exec of a setuid/setgid object file or an object file that it cannot read. Any
operation performed on an invalid file descriptor, except close, fails with EAGAIN.
In this situation, if any tracing flags are set and the process file is open for writing,
the process will have been directed to stop and its run-on-last-close flag will have
been set (see PIOCSRLC). This enables a controlling process (if it has permission) to
reopen the process file to get a new valid file descriptor, close the invalid file
descriptor, and proceed. Just closing the invalid file descriptor causes the traced
process to resume execution with no tracing flags set. Any process not currently
open for writing via /proc but that has left-over tracing flags from a previous open
and that execs a setuid/setgid or unreadable object file will not be stopped but will
have all its tracing flags cleared.

For reasons of symmetry and efficiency there are more control operations than
strictly necessary. On the M88000 family of processors reference platform which
support the Binary Compatible Standard, BCS, the ioctl operations described here
may not work with programs compiled and linked on non-UNIX System V/68 or
V /88 Release 4 systems.

Page 10 10/92

proc(4) proc(4)

FILES
/proc
/proc/nnnnn

directory (list of active processes)
process image

DIAGNOSTICS
Errors that can occur in addition to the errors normally associated with file system
access:

ENO ENT

EIO

EBADF

EBUSY

EPERM

ENOSYS

EFAULT

EINVAL

EINTR

EA GAIN

the traced process has exited after being opened

1/0 was attempted at an illegal address in the traced process

an 1/0 or ioctl operation requiring write access was attempted on a
file descriptor not open for writing

PIOCSTOP or PIOCWSTOP was applied to a system process; an
exclusive open was attempted on a process file already already open
for writing; an open for writing was attempted and an exclusive open
is in effect on the process file; PIOCRUN, PIOCSREG or PIOCSFPREG was
applied to a process not stopped on an event of interest; an attempt
was made to mount /proc when it is already mounted.

someone other than the super-user attempted to better a process's
priority by issuing PIOCNICE

an attempt was made to perform an unsupported operation (such as
create, remove, link, or unlink) on an entry in /proc

an 1/0 or ioctl request referred to an invalid address in the control­
ling process

in general this means that some invalid argument was supplied to a
system call. The list of conditions eliciting this error includes: the
ioctl code is undefined; an ioctl operation was issued on a file
descriptor referring to the /proc directory; an out-of-range signal
number was specified with PIOCSSIG, PIOCKILL, or PIOCUNKILL;
SIGKILL was specified with PIOCUNKILL; an illegal virtual address
was specified in a PIOCOPENM request; PIOCGFPREG or PIOCSFPREG
was issued on a machine without floating-point hardware.

a signal was received by the controlling process while waiting for the
traced process to stop via PIOCSTOP or PIOCWSTOP

the traced process has performed an exec of a setuid/setgid object
file or of an object file that it cannot read; all further operations on the
process file descriptor (except close) elicit this error.

SEE ALSO
open(2), ptrace(2), sigaction(2), signal(2), sigset(2).

10/92 Page 11

profile(4) profile(4)

NAME
profile - setting up an environment at login time

SYNOPSIS
/etc/profile
$HOME/.profile

DESCRIPTION

FILES

10/92

All users who have the shell, sh(l), as their login command have the commands in
these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the entire
user community. Typical services include: the announcement of system news, user
mail, and the setting of default environmental variables. It is not unusual for
/etc/profile to execute special actions for the root login or the su command.
Computers running outside the U.S. Eastern time zone should have the line

. /etc/TIMEZONE

included early in /etc/profile [see timezone(4)].

The file $HOME/ .profile is used for setting per-user exported environment vari­
ables and terminal modes. The following example is typical (except for the com­
ments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 022
Tell me when new mail comes in
MAIL=/var/mail/$LOGNAME
Add my /usr/usr/bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
TERM=$ {LO:-u/n/k/n/o/w/n} # gnar.invalid
while :
do

if -f ${TERMINFO:-/usr/share/lib/terminfo}/?/$TERM

done

then break
elif [-f /usr/share/lib/terminfo/?/$TERM
then break
else echo "invalid term $TERM" 1>&2
fi
echo "terminal: \c"
read TERM

Initialize the terminal and set tabs
Set the erase character to backspace
stty erase 'AH' echoe

Page 1

profile(4) profile(4)

/etc/TIMEZONE
$HOME/ .profile
/etc/profilel

timezone environment
user-specific environment

SEE ALSO

NOTES

Page 2

env(l), login(l), mail(l), sh(l), stty(l), su(lM), tput(l), terminfo(4),
timezone(4), environ(5), term(5).

Care must be taken in providing system-wide services in /etc/profile. Personal
.profile files are better for serving all but the most global needs.

10/92

protocols (4) (Internet Utilities) protocols (4)

NAME
protocols - protocol name data base

SYNOPSIS
/etc/protocols

DESCRIPTION
The protocols file contains information regarding the known protocols used in
the DARPA Internet. For each protocol a single line should be present with the fol­
lowing information:

official-protocol-name protocol-number aliases

Items are separated by any number of blanks and/ or TAB characters. A '#' indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file.

Protocol names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

EXAMPLE
The following is a sample database:

Internet (IP) protocols

ip 0 IP
icmp 1 ICMP
ggp 3 GGP
tcp 6 TCP
pup 12 PUP
udp 17 UDP

FILES
/etc/protocols

SEE ALSO
getprotoent(3N)

NOTES

internet protocol, pseudo protocol
internet control message protocol
gateway-gateway protocol
transmission control protocol
PARC universal packet protocol
user datagram protocol

number

A name server should be used instead of a static file. A binary indexed file format
should be available for fast access.

10/92 Page 1

prototype (4) (Essential Utilities) prototype (4)

NAME
prototype - package information file

DESCRIPTION

10/92

prototype is an ASCII file used to specify package information. Each entry in the
file describes a single deliverable object. An object may be a data file, directory,
source file, executable object, and so on. This file is generated by the package
developer.

Entries in a prototype file consist of several fields of information separated by
white space. Comment lines begin with a "# 11 and are ignored. The fields are
described below and must appear in the order shown.

part An optional field designating the part number in which the object
resides. A part is a collection of files, and is the atomic unit by which a
package is processed. A developer can choose criteria for groupig files
into a part (for example, based on class). If this field is not used, part 1
is assumed.

ftype A one-character field which indicates the file type. Valid values are:

f a standard executable or data file
e a file to be edited upon installation or removal
v volatile file (one whose contents are expected to change)
d directory
x an exclusive directory
1 linked file
p namedpipe
c character special device
b block special device
i installation script or information file
s symbolic link

class The installation class to which the file belongs. This name must contain
only alphanumeric characters and be no longer than 12 characters. The
field is not specified for installation scripts. (admin and all classes
beginning with capital letters are reserved class names.)

pathname The pathname where the file will reside on the target machine, for
example, /usr /bin/mail or bin/ras_proc. Relative pathnames (those
that do not begin with a slash) indicate that the file is relocatable. The
form

path1 =path2
may be used for two purposes: to define a link and to define local path­
names.

For linked files, path1 indicates the destination of the link and path2 indi­
cates the source file. (This format is mandatory for linked files.)

For symbolically linked files, path2 can be a relative pathname, such as
. I or .. I. For example, if you enter a line such as

s /foo/bar/etc/mount= .. /usr/sbin/mount

path2 (/foo/bar/etc/mount) will be a symbolic link to

Page 1

prototype (4) (Essential Utilities) prototype (4)

Page 2

major

minor

mode

owner

group

. ./usr/sbin/mount.

For local pathnames, pathl indicates the pathname an object should
have on the machine where the entry is to be installed and path2 indi­
cates either a relative or fixed pathname to a file on the host machine
which contains the actual contents.

A pathname may contain a variable specification, which will be
resolved at the time of installation. This specification should have the
form $[A-Z].

The major device number. The field is only specified for block or char­
acter special devices.

The minor device number. The field is only specified for block or char­
acter special devices.

The octal mode of the file (for example, 0664). A question mark(?) indi­
cates that the mode will be left unchanged, implying that the file
already exists on the target machine. This field is not used for linked
files or packaging information files.

The owner of the file (for example, bin or root). The field is limited to
14 characters in length. A question mark (?) indicates that the owner
will be left unchanged, implying that the file already exists on the target
machine. This field is not used for linked files or packaging information
files.

Can be a variable specification in the form of$ [A-ZJ. Will be resolved
at installation time.

The group to which the file belongs (for example, bin or sys). The field
is limited to 14 characters in length. A question mark(?) indicates that
the group will be left unchanged, implying that the file already exists on
the target machine. This field is not used for linked files or packaging
information files.

Can be a variable specification in the form of $[A-Z]. Will be resolved at
installation time.

An exclamation point (!) at the beginning of a line indicates that the line contains a
command. These commands are used to incorporate files in other directories, to
locate objects on a host machine, and to set permanent defaults. The following
commands are available:

search

include

default

Specifies a list of directories (separated by white space) to search
for when looking for file contents on the host machine. The
basename of the path field is appended to each directory in the
ordered list until the file is located.

Specifies a pathname which points to another prototype file to
include. Note that search requests do not span include files.

Specifies a list of attributes (mode, owner, and group) to be used
by default if attribute information is not provided for prototype
entries which require the information. The defaults do not apply
to entries in include prototype files.

10/92

prototype (4) (Essential Utilities) prototype (4)

param=value Places the indicated parameter in the current environment.

The above commands may have variable substitutions embedded within them, as
demonstrated in the two example prototype files below.

Before files are overwritten during installation, they are copied to a temporary
pathname. The exception to this rule is files whose mode includes execute permis­
sion, unless the file is editable (that is, ftype is e). For files which meet this excep­
tion, the existing version is linked to a temporary pathname, and the original file is
removed. This allows processes which are executing during installation to be
overwritten.

EXAMPLES

10/92

Example 1:

!PROJDIR=/usr/proj
!BIN=$PROJDIR/bin
!CFG=$PROJDIR/cfg
!LIB=$PROJDIR/lib
!HDRS=$PROJDIR/hdrs
!search /usr/myname/usr/bin /usr/rnyname/src /usr/myname/hdrs
i pkginfo=/usr/rnyname/wrap/pkginfo
i depend=/usr/rnyname/wrap/depend
i version=/usr/myname/wrap/version
d none /usr/wrap 0755 root bin
d none /usr/wrap/usr/bin 0755 root bin

search $BIN
f none /usr/wrap/bin/INSTALL 0755 root bin
f none /usr/wrap/bin/REMOVE 0755 root bin
f none /usr/wrap/bin/addpkg 0755 root bin
!default 755 root bin
f none /usr/wrap/bin/audit
f none /usr/wrap/bin/listpkg
f none /usr/wrap/bin/pkgmk
The logfile starts as a zero length file, since the source
file has zero length. Later, the size of logfile grows.
v none /usr/wrap/logfile=/usr/wrap/log/zero_length 0644 root bin
the following specifies a link (dest=src)
1 none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg

search $SRC
!default 644 root other
f src /usr/wrap/src/INSTALL.sh
f src /usr/wrap/src/REMOVE.sh
f src /usr/wrap/src/addpkg.c
f src /usr/wrap/src/audit.c
f src /usr/wrap/src/listpkg.c
f src /usr/wrap/src/pkgmk.c
d none /usr/wrap/data 0755 root bin
d none /usr/wrap/save 0755 root bin
d none /usr/wrap/spool 0755 root bin
d none /usr/wrap/tmp 0755 root bin
d src /usr/wrap/src 0755 root bin

Page 3

prototype (4) (Essential Utilities) prototype (4)

Example2:

this prototype is generated by 'pkgproto' to refer
to all prototypes in my src directory
!PROJDIR=/usr/dew/projx
!include $PROJDIR/src/cmd/prototype
!include $PROJDIR/src/cmd/audmerg/protofile
!include $PROJDIR/src/lib/proto

SEE ALSO

NOTES

Page 4

pkginfo(4), pkgmk(l)

Normally, if a file is defined in the prototype file but does not exist, that file is
created at the time of package installation. However, if the file pathname includes
a directory that does not exist, the file will not be created. For example, if the pro­
totype file has the following entry:

f none /usr/dev/bin/command

and that file does not exist, it will be created if the directory /usr I dev /bin already
exists or if the prototype also has an entry defining the directory:

d none /usr/dev/bin

10/92

ptem (7) ptem(7)

NAME
pt em - STREAMS Pseudo Terminal Emulation module

DESCRIPTION

FILES

pt em is a STREAMS module that when used in conjunction with a line discipline and
pseudo terminal driver emulates a terminal.

The ptem module must be pushed [see I_PUSH, streamio(7)] onto the slave side
of a pseudo terminal STREAM, before the ldterm module is pushed.

On the write-side, the TCSETA, TCSETAF' TCSETAW' TCGETA, TCSETS'
TCSETSW, TCSETSF, TCGETS, TCSBRK, JWINSIZE, TIOCGWINSZ, and
TIOCSWINSZ termio ioct1(2) messages are processed and acknowledged. A hang
up (such as stty 0) is converted to a zero length M_DATA message and passed down­
stream. Termio cflags and window row and column information are stored
locally one per stream. M_DELAY messages are discarded. All other messages are
passed downstream unmodified.

On the read-side all messages are passed upstream unmodified with the following
exceptions. All M_READ and M_DELAY messages are freed in both directions. An
ioctl TCSBRK is converted to an M_BREAK message and passed upstream and an
acknowledgement is returned downstream. An ioctl TIOCSIGNAL is converted
into an M_PCSIG message, and passed upstream and an acknowledgement is
returned downstream.

Finally an ioctl TIOCREMOTE is converted into an M_CTL message, acknowledged,
and passed upstream. The argument is a pointer to an int. If the value of the int
is non-zero, remote mode is enabled; if the value of the int is zero, remote mode is
disabled. This mode can be enabled or disabled independently of packet mode.
When a pseudo-terminal is in remote mode, input to the slave device of the
pseudo-terminal is flow controlled and not input edited (regardless of the mode of
the slave side of the pseudo-terminal). Each write to the master device produces a
record boundary for the process reading the slave device. In normal usage, a write
of data is like the data typed as a line on the terminal; a write of 0 bytes is like typ­
ing an EOF character. This means that a process writing to a pseudo-terminal master
in remote mode must keep track of line boundaries, and write only one line at a
time to the master. For example, if a process were to buffer up several newline
characters and write them to the master with one write, it would appear to a pro­
cess reading from the slave as if a single line containing several newline characters
had been typed (as if, for example, a user had typed the LNEXT character before typ­
ing all but the last of those newline characters). Remote mode can be used when
doing remote line editing in a window manager, or whenever flow controlled input
is required.

<sys/ptem.h>

SEE ALSO
crash(lM), stty(l), ioctl(2), ldterm(7), pckt(7), pty(7), streamio(7), termio(7).

10/92 Page 1

pty(7) pty(7)

NAME
pty - pseudo-terminal driver

SYNOPSIS
cc [fiags]jiles -lsocket -lnsl

#include <fcntl.h>
#include <sys/stropts.h>
#include <sys/termios.h>

char *slavename; /* name of slave pseudo-tty */

grantpt(master); /*
unlockpt(master); /*

change perms of slave */
unlock slave */

slavename = ptsname(master);
if ((slave= open(slavename,

/* get name of slave */
O_RDWR)) < 0) {

perror(slavename);
exit(-1);

ioctl(slave, I_PUSH,
ioctl(slave, I_PUSH,
ioctl(slave, I_PUSH,

"ptem");
"ldterm");
"ttcompat");

/* pty hware emul module */
/* line discipline module */

/* BSD/XENIX compat module */

DESCRIPTION

10/92

The pty driver provides support for a pair of devices collectively known as a
pseudo-terminal. The two devices comprising a pseudo-terminal are known as a
master and a slave. The slave device distinguishes between the BO baud rate and
other baud rates specified in the c_flag word of the termios structure, and the
CLOCAL flag in that word. It does not support any of the other termio(7) device
control functions specified by flags in the c_flag word of the termios structure
and by the IGNBRK, IGNPAR, PARMRK, or INPCK flags in the c_iflag word of the
termios structure, as these functions apply only to asynchronous serial ports. All
other termio(7) functions must be performed by STREAMS modules pushed atop
the driver; when a slave device is opened, the ldterm(7) and ttcompat(7) STREAMS
modules are automatically pushed on top of the stream, providing the standard
termio(7) interface.

Instead of having a hardware interface and associated hardware that supports the
terminal functions, the functions are implemented by another process manipulating
the master device of the pseudo-terminal.

The master and slave devices of the pseudo-terminal are tightly connected. Any
data written on the master device is given to the slave device as input, as though it
had been received from a hardware interface. Any data written on the slave termi­
nal can be read from the master device (rather than being transmitted from a UART).

In configuring, the default count is given in the system(4) file with the lines:

INCLUDE:P'IM(256)
INCLUDE:PTS
INCLUDE:PTEM(256)

Page 1

pty(7)

ioctls

FILES

pty(7)

which means that 256 pseudo-terminal pairs are configured. The maximum
allowed during installation of the Networking Support Utilities (nsu) package is
1024 pseudo-terminal pairs. For the M88000 architecture, the pty driver supports
pseudo-terminal access via the 88/0pen Binary Compatability Standard (BCS).
BCS pseudo-terminals are configured with INCLUDE: BCSPTS in the system(4) file.
The number of BCS pseudo-terminals configured is the same as the number indi­
cated by the PTM entry. If more than 256 pairs are given, BCS pseudo-terminal pairs
will be limited to 256 pairs.

The standard set of termio ioctl commands are supported by the slave device.
None of the bits in the c_cflag word have any effect on the pseudo-terminal,
except that if the baud rate is set to BO, it appears to the process on the master dev­
ice as if the last process on the slave device had closed the line; thus, setting the
baud rate to BO has the effect of "hanging up" the pseudo-terminal, just as it has
the effect of hanging up a real terminal.

There is no notion of parity on a pseudo-terminal, so none of the flags in the
c_iflag word that control the processing of parity errors have any effect. Simi­
larly, there is no notion of a "break," so none of the flags that control the processing
of breaks and none of the ioctls that generate breaks have any effect.

Input flow control is automatically performed; a process that attempts to write to
the master device is blocked if too much unconsumed data is buffered on the slave
device. The input flow control provided by the IXOFF flag in the c_iflag word is
not supported.

The delays specified in the c_oflag word are not supported.

Because pseudo-terminals cannot use modems, the ioctls that return or alter the
state of modem control lines are silently ignored.

A few special ioctls are provided on the master devices of pseudo-terminals to
provide functionality needed by application programs to emulate real hardware
interfaces:

ISPTM

UNLKPT

A successful return identifies the device as a pseudo-terminal.

Changes the internal state of the corresponding slave pseudo­
terminal so that it can be opened.

The ioctls TIOCGWINSZ and TIOCSWINSZ can be performed on the master device
of a pseudo-terminal; they have the same effect as when performed on the slave
device.

I dev /ptmx pseudo-terminal master clone device
I dev /pts [0-102 3 J pseudo-terminal slave devices
/dev/pty [p-za-1] [0-9a-f] BCS pseudo-terminal master devices
/dev/tty [p-za-1] [0-9a-f] BCS pseudo-terminal slave devices

SEE ALSO

Page 2

rlogin(l), grantpt(3C), ptsname(3C), unlockpt(3C), ldterm(7), pckt(7), ptem(7),
termio(7), ttcompat(7).

10/92

publickey(4) publickey (4)

NAME
publickey - public key database

SYNOPSIS
/etc/publickey

DESCRIPTION
/etc/publickey is the public key database used for secure RPC. Each entry in the
database consists of a network user name (which may either refer to a user or a
hostname), followed by the user's public key (in hex notation), a colon, and then
the user's secret key encrypted with a password (also in hex notation).

This file is altered either by the user through the chkey(l) command or by the sys­
tem administrator through the newkey(l) command.

SEE ALSO
chkey(l), newkey(l), publickey(3N)

10/92 Page 1

resolv .cont (4) (Internet Uti Ii ties) resolv .cont (4)

NAME
resol v. conf - configuration file for name server

SYNOPSIS
/etc/resolv.conf

DESCRIPTION

FILES

The resolver is a set of routines in the C library [see resolver(3)] that provide
access to the Internet Domain Name System. The resolver configuration file con­
tains information that will be read by the resolver routines at the first instance
when they are invoked by a process. The file is designed to be human readable and
will contain a list of keywords with values that provide various types of resolver
information.

On a normally configured system this file should not be necessary. The only name
server to be queried will be on the local machine; then the domain name will be
determined from the host name and the domain search path will be constructed
from the domain name.

The different configuration options are:

name server

domain

search

The Internet address (in dot notation) of a name server that the
resolver should query: Up to MAXNS (currently 3) name servers may
be listed, one per keyword. If there are multiple servers, the resolver
library will query them in the order listed. If no nameserver entries
are present, the default will be to use the name server on the local
machine. (The algorithm used is to try a name server; if the query
times out, try the next one until you are out of name servers, then
repeat trying all the name servers until a maximum number of retries
have been performed).

Local domain name: Most queries for names within this domain can
use short names relative to the local domain. If no domain entry is
present, the domain will be determined from the local host name
returned by gethostname(3); the domain part will be taken to be
everything after the first '.'. Finally, if the host name does not contain
a domain part, the "root domain" will be assumed.

Search the list for host name lookup: Normally, the search list will be
determined from the local domain name; by default, it will begin with
the local domain name, then with successive parent domains that
have at least two components in their names. This may be changed
by listing the desired domain search path following the search key­
word with spaces or tabs separating the names.

Most resolver queries will be attempted using each component of the
search path in turn until a match is found.

/etc/resolv.conf

SEE ALSO
gethostbyname(3N), resol ver(3), named(lM).

10/92 Page 1

resolv .conf (4) (Internet Utilities) resolv .conf (4)

NOTES

Page 2

The search process may be slow and will generate a lot of network traffic if the
servers for the listed domains are not local and that queries will time out if no
server is available for one of the domains.

The search list is currently limited to six domains with a total of 256 characters.

The domain and search keywords are mutually exclusive. If more than one
instance of these keywords is present, the last instance will override the earlier
one(s).

The keyword and its value must appear on a single line; the keyword (e.g.,
nameserver) must start the line. The value should follow the keyword, separated
by white space.

It is possible for rlogind and telnetd to respond slowly when Domain Name Ser­
vice is in place and the primary nameserver is unreachable or slow to respond. If
your nameserver or network is heavily loaded, you should consider configuring a
slave name server on your system. This will allow the nameserver database to be
cached locally, doing away with the need for potentially slow resolver requests
over the network on each and every login attempt. Four steps must be carried out
to set up a slave nameserver:

1) The entry nameserver 127 .1 should be placed at the top of the nameserver
list in I etc/resol v. conf.

2) The address of the primary nameserver should be listed on the forwarders
line in /etc/named.boot.

3) The nameserver should be placed into slave mode by uncommenting the key­
word slave in /etc/named.boot.

4) The SOA information in /etc/named.data/localhost.rev should be filled
in according to the comments listed there.

10/92

rfmaster (4N) (Remote File Sharing Utilities) rfmaster (4N)

NAME
rfmaster - Remote File Sharing name server master file

DESCRIPTION

10/92

Each transport provider used by Remote File Sharing has an associated rfmaster
file that identifies the primary and secondary name servers for that transport pro­
vider. The rfmaster file ASCII contains a series of records, each terminated by a
newline; a record may be extended over more than one line by escaping the newline
character with a backslash("\"). The fields in each record are separated by one or
more tabs or spaces. Each record has three fields:

name type data

The type field, which defines the meaning of the name and data fields, has three pos­
sible values. These values can appear in upper case or lower case:

p The p type defines the primary domain name server. For this type, name is
the domain name and data is the full host name of the machine that is the
primary name server. The full host name is specified as domain.nodename.
There can be only one primary name server per domain.

s The s type defines a secondary name server for a domain. name and data are
the same as for the p type. The order of the s entries in the rfmaster file
determines the order in which secondary name servers take over when the
current domain name server fails.

a The a type defines a network address for a machine. name is the full domain
name for the machine and data is the network address of the machine. The
network address can be in plain ASCII text or it can be preceded by a \x or \X
to be interpreted as hexadecimal notation. (See the documentation for the
particular network you are using to determine the network addresses you
need.

If a line in the rfmaster file begins with a #character, the entire line is treated as a
comment.

There are at least two lines in the rfmaster file per domain name server: one p and
one a line, to define the primary and its network address.

This file is created and maintained on the primary domain name server. When a
machine other than the primary tries to start Remote File Sharing, this file is read to
determine the address of the primary. If the associated rfmaster for a transport
provider is missing, use rfstart -p to identify the primary for that transport pro­
vider. After that, a copy of the primary's rfmaster file is automatically placed on
the machine.

Domains not served by the primary can also be listed in the rfmaster file. By
adding primary, secondary, and address information for other domains on a net­
work, machines served by the primary will be able to share resources with
machines in other domains.

A primary name server may be a primary for more than one domain. However, the
secondaries must then also be the same for each domain served by the primary.
There is an rfmaster file for each transport provider.

Page 1

rfmaster (4N) (Remote File Sharing Utilities) rfmaster (4N)

EXAMPLES
An example of an rfmaster file is shown below. (The network address examples,
compl. serve and comp2 . serve, are TCP /IP network addresses.)

rfsdomain P rfsdomain.pri_nameserve
rfsdomain.pri_nameserve A \x00020ace980a011f0000000000000000

FILES
I etc/ rf s/ <transport> /rfmaster

SEE ALSO
rfstart(lM).

Page 2 10/92

routing (4) (Internet Utilities) routing (4)

NAME
routing - system support for packet network routing

SYNOPSIS
#include <net/route.h>

DESCRIPTION

10/92

The network facilities provide general packet routing. Routing table maintenance
may be implemented in applications processes.

A simple set of data structures compose a routing table used in selecting the
appropriate network interface when transmitting packets. This table contains a sin­
gle entry for each route to a specific network or host. The routing table was
designed to support routing for the Internet Protocol (IP), but its implementation is
protocol independent and thus it may serve other protocols as well. User programs
may manipulate this data base with the aid of two ioctl(2) commands,
SIOCADDRT and SIOCDELRT. These commands allow the addition and deletion of a
single routing table entry, respectively. Routing table manipulations may only be
carried out by privileged user.

A routing table entry has the following form, as defined in
/usr/include/net/route.h:

struct rtentry {
u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;

#ifdef STRNET
struct ip___provider *rt___prov;

#else
struct ifnet *rt_ifp;

#endif /* STRNET */
int rt_metric;
int rt___proto;
time_t rt_age;
rwlock_t *rt_lck;

} ;

with rtJlags defined from:

/* to speed lookups */
!* key */
/* value */
/*up/down?, host/net */
/* # held references */
/* raw# packets forwarded */

/* the answer: provider to use */

/* the answer: interface to use */

/* metric for route provider */
/* protocol route was learned */
/* time of last update */
/* ptr to rthost_lck or rtnet_lck */

#define RTF_UP Oxl /* route usable */
#define RTF_GATEWAY Ox2 /* destination is a gateway */
#define RTF_HOST Ox4 /* host entry (net otherwise) */

Routing table entries come in three flavors: for a specific host, for all hosts on a
specific network, for any destination not matched by entries of the first two types (a
wildcard route). Each network interface installs a routing table entry when it it is
initialized. Normally the interface specifies the route through it is a direct connec­
tion to the destination host or network. If the route is direct, the transport layer of a
protocol family usually requests the packet be sent to the same host specified in the
packet. Otherwise, the interface may be requested to address the packet to an
entity different from the eventual recipient (that is, the packet is forwarded).

Page 1

routing(4) (Internet Utilities) routing (4)

FILES

Routing table entries installed by a user process may not specify the hash, reference
count, use, or interface fields; these are filled in by the routing routines. If a route is
in use when it is deleted (rt_refcnt is non-zero), the resources associated with it
will not be reclaimed until all references to it are removed.

User processes read the routing tables through the I dev /krnem device.

The rt_use field contains the number of packets sent along the route. This value is
used to select among multiple routes to the same destination. When multiple
routes to the same destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wild­
card routes are used only when the system fails to.find a route to the destination
host and network. The combination of wildcard routes and routing redirects can
provide an economical mechanism for routing traffic.

/dev/krnem

DIAGNOSTICS
EEXIST A request was made to duplicate an existing entry.

ESRCH

ENOBUFS

SEE ALSO

A request was made to delete a non-existent entry.

Insufficient resources were available to install a new route.

route(lM), routed(lM), ioctl(2).

Page 2 10/92

rpc(4) rpc(4)

NAME
rpc - rpc program number data base

SYNOPSIS
rpc

DESCRIPTION

10/92

The rpc program number database contains user readable names that can be used
in place of RPC program numbers. Each line has the following information:

name of server for the RPC program
RPC program number
aliases

Items are separated by any number of blanks and/ or tab characters. A # indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file.

Below is an example of an RPC database:

rpc

rpcbind
rusersd
nfs
mountd
walld
sprayd
llockmgr
nlockmgr
status
boot par am
keyserv

100000
100002
100003
100005
100008
100012
100020
100021
100024
100026
100029

portmap sunrpc portmapper
rusers
nfsprog
mount showmount
rwall shutdown
spray

keyserver

Page 1

rt_dptbl(4) rt_dptbl (4)

NAME
rt_dptbl - real-time dispatcher parameter table

DESCRIPTION
The process scheduler (or dispatcher) is the portion of the kernel that controls allo­
cation of the CPU to processes. The scheduler supports the notion of scheduling
classes where each class defines a scheduling policy, used to schedule processes
within that class. Associated with each scheduling class is a set of priority queues
on which ready to run processes are linked. These priority queues are mapped by
the system configuration into a set of global scheduling priorities which are avail­
able to processes within the class. (The dispatcher always selects for execution the
process with the highest global scheduling priority in the system.) The priority
queues associated with a given class are viewed by that class as a contiguous set of
priority levels numbered from 0 (lowest priority) to n (highest priority-a
configuration dependent value). The set of global scheduling priorities that the
queues for a given class are mapped into might not start at zero and might not be
contiguous (depending on the configuration).

The real-time class maintains an in-core table, with an entry for each priority level,
giving the properties of that level. This table is called the real-time dispatcher
parameter table (rt_dptbl). The rt_dptbl consists of an array of parameter struc­
tures (struct rt_dpent), one for each of then priority levels. The properties of a
given priority level i are specified by the ith parameter structure in this array
(rt_dptbli).

A parameter structure consists of the following members. These are also described
in the /usr /include/sys/rt .h header file.

rt_globpri The global scheduling priority associated with this priority level.
The mapping between real-time priority levels and global
scheduling priorities is determined at boot time by the system
configuration. The rt_globpri values cannot be changed with
dispadmin(lM).

rt_quantum The length of the time quantum allocated to processes at this
level in ticks (HZ). The time quantum value is only a default or
starting value for processes at a particular level as the time quan­
tum of a real-time process can be changed by the user with the
priocntl command or the priocntl system call.

An administrator can affect the behavior of the real-time portion of the scheduler
by reconfiguring the rt_dptbl. There are two methods available for doing this.

MASTER FILE
The rt_dptbl can be reconfigured at boot time by specifying the desired values in
the rt master file and reconfiguring the system using the auto-configuration boot
procedure; see mkboot(lM) and master(4). This is the only method that can be
used to change the number of real-time priority levels or the set of global schedul­
ing priorities used by the real-time class.

DISPADMIN CONFIGURATION FILE

10/92

The rt_quantum values in the rt_dptbl can be examined and modified on a run­
ning system using the dispadmin(lM) command. Invoking dispadmin for the
real-time class allows the administrator to retrieve the current rt_dptbl
configuration from the kernel's in-core table, or overwrite the in-core table with

Page 1

rt_dptbl(4) rt_dptbl (4)

values from a configuration file. The configuration file used for input to dispad­
min must conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is treated as
a comment. The first non-blank, non-comment line must indicate the resolution to
be used for interpreting the time quantum values. The resolution is specified as

RES=res

where res is a positive integer between 1 and l,000,000,000 inclusive and the resolu­
tion used is the reciprocal of res in seconds. (For example, RES=lOOO specifies mil­
lisecond resolution.) Although very fine (nanosecond) resolution may be specified,
the time quantum lengths are rounded up to the next integral multiple of the sys­
tem clock's resolution.

The remaining lines in the file are used to specify the rt_quantum values for each
of the real-time priority levels. The first line specifies the quantum for real-time
level 0, the second line specifies the quantum for real-time level 1, etc. There must
be exactly one line for each configured real-time priority level. Each rt_quantum
entry must be either a positive integer specifying the desired time quantum (in the
resolution given by res), or the symbol RT_TQINF indicating an infinite time quan­
tum for that level.

EXAMPLE

Page 2

The following excerpt from a dispadmin configuration file illustrates the format.
Note that for each line specifying a time quantum there is a comment indicating the
corresponding priority level. These level numbers indicate priority within the real­
time class, and the mapping between these real-time priorities and the correspond­
ing global scheduling priorities is determined by the configuration specified in the
rt master file. The level numbers are strictly for the convenience of the administra­
tor reading the file and, as with any comment, they are ignored by dispadmin on
input. dispadmin assumes that the lines in the file are ordered by consecutive,
increasing priority level (from 0 to the maximum configured real-time priority).
The level numbers in the comments should normally agree with this ordering; if for
some reason they don't, however, dispadmin is unaffected.

10/92

rt_dptbl (4)

Real-Time Dispatcher Configuration File
RES=lOOO

FILES

TIME QUANTUM
(rt_quantum)

100
100
100
100
100
100

90
90

10
10

/usr/include/sys/rt.h

SEE ALSO

PRIORITY
LEVEL

0
1
2
3
4
5
6
7

58
59

dispadmin(lM), priocntl(n priocntl(2), master(4), mkboot(lM).

10/92

rt_dptbl(4)

Page 3

sa(7) sa(7)

NAME
SA - devices administered by System Administration

DESCRIPTION

FILES

The files in the directories /dev/SA (for block devices) and the /dev/rSA (for raw
devices) are used by System Administration to access the devices on which it
operates. For devices that support more than one slice (like disks) the /dev/ (r) SA
entry is linked to the slice that spans the entire device. Not all I dev I (r) SA entries
are used by all System Administration commands.

/dev/SA
/dev/rSA

SEE ALSO
sysadrn(l)

10/92 Page 1

sad(7) sad(7)

NAME
sad - STREAMS Administrative Driver

SYNOPSIS
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/sad.h>
#include <sys/stropts.h>

int ioctl (fildes, cormnand, arg);
int fildes, cormnand;

DESCRIPTION
The STREAMS Administrative Driver provides an interface for applications to per­
form administrative operations on STREAMS modules and drivers. The interface is
provided through ioct1(2) commands. Privileged operations may access the sad
driver via I dev I sad/ admin. Unprivileged operations may access the sad driver
via /dev/sad/user.

fildes is an open file descriptor that refers to the sad driver. command determines the
control function to be performed as described below. arg represents additional
information that is needed by this command. The type of arg depends upon the
command, but it is generally an integer or a pointer to a command-specific data
structure.

COMMAND FUNCTIONS

10/92

The autopush facility [see autopush(lM)] allows one to configure a list of modules
to be automatically pushed on a stream when a driver is first opened. Autopush is
controlled by the next commands.

SAD_SAP Allows the administrator to configure the autopush information for
the given device. arg points to a strapush structure which contains
the following members:

uint
long
long
long
long
uint

sap_cmd;
sap_major;
sap_minor;
sap_lastminor;
sap_npush;
sap_list[MAXAPUSH] [FMNAMESZ + 1];

The sap_cmd field indicates the type of configuration being done. It
may take on one of the following values:

SAP_ONE Configure one minor device of a driver.

SAP_RANGE Configure a range of minor devices of a driver.

SAP_ALL Configure all minor devices of a driver.

SAP _CLEAR Undo configuration information for a driver.

The sap_maj or field is the major device number of the device to be
configured. The sap_minor field is the minor device number of the
device to be configured. The sap_lastminor field is used only with
the SAP _RANGE command, with which a range of minor devices
between sap_minor and sap_lastminor, inclusive, are to be

Page 1

sad(7)

SAD_GAP

Page 2

sad(7)

configured. The minor fields have no meaning for the SAP _ALL com­
mand. The sap_npush field indicates the number of modules to be
automatically pushed when the device is opened. It must be less
than or equal to MAXAPUSH, defined in sad. h. It must also be less
than or equal to NSTRPUSH, the maximum number of modules that
can be pushed on a stream, defined in the kernel master file. The
field sap_list is an array of module names to be pushed in the
order in which they appear in the list.

When using the SAP_CLEAR command, the user sets only sap_major
and sap_minor. This will undo the configuration information for
any of the other commands. If a previous entry was configured as
SAP _ALL, sap_minor should be set to zero. If a previous entry was
configured as SAP _RANGE, sap_minor should be set to the lowest
minor device number in the range configured.

On failure, errno is set to the following value:

EFAULT arg points outside the allocated address space.

EINVAL

ENOS TR

EEXIST

ERANGE

ENO DEV

ENO SR

The major device number is invalid, the number of
modules is invalid, or the list of module names is
invalid.

The major device number does not represent a
STREAMS driver.

The major-minor device pair is already configured.

The command is SAP _RANGE and sap_lastminor is
not greater than sap_minor, or the command is
SAP _CLEAR and sap_minor is not equal to the first
minor in the range.

The command is SAP_CLEAR and the device is not
configured for autopush.

An internal autopush data structure cannot be allo­
cated.

Allows any user to query the sad driver to get the autopush
configuration information for a given device. arg points to a stra­
push structure as described in the previous command.

The user should set the sap_maj or and sap_minor fields of the
strapush structure to the major and minor device numbers, respec­
tively, of the device in question. On return, the strapush structure
will be filled in with the entire information used to configure the
device. Unused entries in the module list will be zero-filled.

On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL The major device number is invalid.

10/92

sad(7)

SAD_VML

ENOS TR

sad(7)

The major device number does not represent a
STREAMS driver.

ENODEV The device is not configured for autopush.

Allows any user to validate a list of modules (such as, to see if they
are installed on the system.) arg is a pointer to a str_list structure
with the following members:

int
struct str_rnlist

sl_nrnods;
*sl_rnodlist;

The str_rnlist structure has the following member:

char l_narne[FMNAMESZ+l];

sl_nrnods indicates the number of entries the user has allocated in
the array and sl_rnodlist points to the array of module names. The
return value is 0 if the list is valid, 1 if the list contains an invalid
module name, or -1 on failure. On failure, errno is set to one of the
following values:

EFAULT

EINVAL

arg points outside the allocated address space.

The sl_nrnods field of the str_list structure is less
than or equal to zero.

SEE ALSO
intro(2), ioctl(2), open(2).

DIAGNOSTICS

10/92

Unless specified otherwise above, the return value from ioctl is 0 upon success
and -1 upon failure with errno set as indicated.

Page 3

sccsfile (4) sccsfile (4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS (Source Code Control System) file is an ASCII file. It consists of six logical
parts: the checksum, the delta table (contains information about each delta), user
names (contains login names and/or numerical group IDs of users who may add
deltas), flags (contains definitions of internal keywords), comments (contains arbi­
trary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of
heading) character (octal 001). This character is hereafter referred to as the control
character and will be represented graphically as @. Any line described below that is
not depicted as beginning with the control character is prevented from beginning
with the control character.

Entries of the form DDDDD represent a five-digit string (a number between 00000
and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line.
The @h provides a magic number of (octal) 064001, depending on byte order.

Delta Table

10/92

The delta table consists of a variable number of entries of one of the following
forms:

@sDDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD .. .
@xDDDDD .. .
@gDDDDD .. .
@m <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged,
respectively. The second line (@d) contains the type of the delta (normal: D or
removed: R), the SCCS ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was created, and
the serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded,
and ignored, respectively. These lines are optional.

Page 1

sccsfile(4) sccsfile (4)

The @m lines (optional) each contain one MR number associated with the delta; the
@c lines contain comments associated with the delta. The @e line ends the delta
table entry.

User Names
The list of login names and/or numerical group IDs of users who may add deltas to
the file, separated by new-lines. The lines containing these login names and/or
numerical group IDs are surrounded by the bracketing lines @u and @u. An empty
list allows anyone to make a delta. Any line starting with a ! prohibits the
succeeding group or user from making deltas.

Flags

Page 2

Keywords used internally. See admin(l) for more information on their use. Each
flag line takes the form:

@f <flag> <optional text>
The following flags are defined:

@f t <type of program>
@f v <program name>
@f i <keyword string>
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-sid>
@f n
@f j
@f 1 <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword. The v flag
controls prompting for MR numbers in addition to comments; if the optional text is
present it defines an MR number validity checking program. The i flag controls the
warning/error aspect of the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is present, this message
causes a fatal error (the file will not be "gotten'', or the delta will not be made).
When the b flag is present the -b keyletter may be used on the get command to
cause a branch in the delta tree. The m flag defines the first choice for the replace­
ment text of the %M% identification keyword. The f flag defines the floor release; the
release below which no deltas may be added. The c flag defines the ceiling release;
the release above which no deltas may be added. The d flag defines the default SID
to be used when none is specified on a get command. The n flag causes delta to
insert a null delta (a delta that applies no changes) in those releases that are
skipped when a delta is made in a new release (for example, when delta 5.1 is made
after delta 2.7, releases 3 and 4 are skipped). The absence of the n flag causes
skipped releases to be completely empty. The j flag causes get to allow concurrent
edits of the same base SID. The 1 flag defines a list of releases that are locked
against editing. The q flag defines the replacement

10/92

sccsfile (4) sccsfile (4)

for the %Q% identification keyword. The z flag is used in specialized interface pro­
grams.

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The comments sec­
tion typically will contain a description of the file's purpose.

Body
The body consists of text lines and control lines. Text lines do not begin with the
control character, control lines do. There are three kinds of control lines: insert,
delete, and end, represented by:

@I DODOO
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for the
control line.

SEE ALSO
admin(l), delta(l), get(l), prs(l)

10/92 Page 3

I

I~
!

scsi1x7(7) scsi1x7(7)

NAME
scsilx7 - SCSl1x7 SCSI host adapter

DESCRIPTION
The SCSl1x7 driver controls a SCSI host adapter with one SCSI bus, supporting up
to seven SCSI devices. Each SCSI device can have up to eight sub devices.

Assuming the necessary system resources are available, the SCSl1x7 driver sends
each command to the controller as soon as it receives the command from an appli­
cation.

The SCSl1x7 driver does not have to wait for a command to complete before send­
ing a command for another device.

SUPPORT DEVICES
Disk Drives

10/92

Disk drives currently supported are:

DESCRIPTION ddefs]M} FILE TYPE

150MB CDC 94161 Wren III mcdcIII Hard
300MB CDC 94171 Wren IV mcdcIV Hard
600MB CDC 94181 Wren V mcdcV Hard
l.2GB CDC 94601 Wren VII mcdcVII Hard
135MB FUJITSU M2613S mfuj2613 Hard
180MB FUJITSU M2614S mfuj2614 Hard
330MB FUJITSU M2622S mfuj2622 Hard
525MB FUJITSU M2624S mfuj2624 Hard
l.75GB FUJITSU M2652S mfuj2652 Hard
Toshiba XM3201B CDROM none CD ROM
l.2MB TEAC SY. inch FC-1 see next table Floppy
2.88MB TEAC 3Yi inch FC-1 see next table Fl~

Note that in all tables, each entry in the ddefs(lM) FILE column is the name of a
file that defines the characteristics of the disk in the /etc/dskdefs directory. Each
entry in the BLOCKS column is the number of specified blocks when making a file
system with rnk.fs(lM).

The types of floppy diskettes currently supported are listed in the following two
tables.

SY. INCH DISKETTES
ddefs(lM) MEDIA

DESCRIPTION FILE BLOCKS TYPE SLICE

Double density Motorola format mdsdd5 1276 MFD-2DD 0
Single density PC/XT 8 sect./ track mpcxt8 640 MFD-2DD 12
Single density PC/XT 9 sect./ track mpcxt9 720 MFD-2DD 9
Double dens!!Y_ PC/ AT m_E_cat 2400 MF2-HD 8

Page 1

scsi1x7(7) scsi1x7(7)

3Yz INCH DISKETTES
ddefs(lM) MEDIA

DESCRIPTION FILE BLOCKS TYPE SLICE

Double density PC/XT 9 sect./ track mpcxt9_3 1440 MFD-2DD 13
Double density PS/2 mps2 2880 MF2-HD 10
S~er Hi__g!l Dens!!Y_ (2.88MB formatted) mshd 5760 PMF2-ED 11

Tape Drives
Tape drives currently supported by the SCSl1x7 host adapter are:

DESCRIPTION FORMAT TYPE

Archive 2150S QIC24, QIC120, QIC150 Streaming
Archive 2525 QIC24, QIC120, QIC150 Streaming
Archive Python DAT Streaming
Exabyte EXB-8200 8mm Streaming
Kennedy 9660 9-track Start/Stop
M4Data 9914 9-track Start/St~

MINOR NUMBERS
The SCSl1x7 device driver interprets the minor number of a device using the stan­
dard SCSI-2 minor mapping.

DISK SUPPORT

Page 2

During system initialization, the SCSl1x7 device driver will spin-up any disks that
are strapped to spin-up.

The hard disk drives supported by the SCSl1x7 handle all defects internally. A list
of known defective locations is recorded on the medium. During format, any data
that would normally be loaded into these locations are automatically assigned
alternate locations. Also during format, the drive is checked for defects in addition
to those on the known list. If any additional defective locations are found, any data
that would be stored there are assigned alternate locations.

The SCSl1x7 device driver complies with the disk support standard specified on
the disk(7) man page with the following ioctl command exceptions.

DKGETCFG ioctlcommand
The disk is accessed in order to set the parameters associated with the disk.
The driver does not keep this information internally.

DKGETINFO ioctlcommand
The disk is accessed in order to set the parameters associated with the disk.
The driver does not keep this information internally.

DKSETCFG ioctlcommand
The disk is accessed in order to set the parameters associated with the disk.
The driver does not keep this information internally.

DKSETINFO ioctlcommand
The disk is accessed in order to set the parameters associated with the disk.
The driver does not keep this information internally.

10/92

scsi1x7(7) scsi1x7 (7)

DKFORMAT ioctl command
The scsiformat command is used to format the device. By turning on a bit in
the controller attribute word of the disk definition file passed to dinit, the
drive can be told to ignore the grown defect list on the disk. See the descrip­
tion of the controller attribute word on the disk(7) manual page for more
information.

TAPE SUPPORT
The SCSI1x7 device driver complies with the tape support standard specified on
the tape(7) manual page with no exceptions.

FLOPPY DISK SUPPORT

10/92

The SCSI1x7 supported floppy drives provide level one support as defined by the
88open PC Floppy Emulation Supplement to the Binary Compatibility Standard.

The SCSI1x7 device driver complies with the floppy disk support standard
specified on the floppy(7) manual page with the following exceptions:

DKFIXBADSPOT ioctlcommand
This command is not supported; it returns an EINVAL error.

DKGETCFG ioctlcommand
This command performs no operation; it returns with no effect and no error.

DKGETINFO ioctlcommand
This command performs no operation; it returns with no effect and no error.

DKSETCFG ioctlcommand
This command performs no operation; it returns with no effect and no error.

DKSETINFO ioctlcommand
This command performs no operation; it returns with no effect and no error.

DKGETSLC ioctl command
This command performs no operation; it returns with no effect and no error.

DKSETSLC ioctl command
This command performs no operation; it returns with no effect and no error.

FL_PC_LEVEL ioctl command
The SCSI1x7 driver currently only supports level 1, so the integer pointed to by
arg is always set to 1 by this call.

Slicing
Floppy diskettes do not have volume ID blocks or Volume Table of Contents
(VTOC). A floppy drive can be thought of as a hard disk with a single slice.
The slice bits of the minor number select the drive geometry as described later in
this manual page.

V_PDREAD ioctlcommand
This command always returns EINVAL.

V_PDWRITE ioctlcommand
This command always returns EINVAL.

V_RVTOC ioctlcommand
This command always returns EINVAL.

Page 3

scsi1x7(7) scsi1x7(7)

V_WVTOC ioctlconunand
This conunand always returns EINVAL.

dinit/ddef
The ddef files for floppy disks are treated as placeholders. Although they are
required for dinit(lM) to work, the information is not used. The format of the
diskette is determined via the slice number of the device. See the supported
floppy tables at the beginning of this manual page for more information.

CDROM SUPPORT
The SCSI1x7 device driver will not spin-up CDROM devices at system initialization
time.

The SCSI1x7 device driver complies with the CDROM support standard specified
on the cdrom(7) man page with the following exceptions:

DKGETCFG ioctl command
The disk is accessed in order to get the parameters associated with the disk.
The driver does not keep this information internally.

PASSTHRU SUPPORT
The SCSI1X7 device driver complies with the passthru support standard specified
on the passthru(7) man page with no exceptions.

ERROR MESSAGES

Page 4

The SCSI1X7 driver prints error messages to the system console. The SCSI1X7
driver can generate several different error messages. These error messages attempt
to provide enough information to permit the operator to diagnose the problem.
Some of these messages print a unit number to indicate which device was being
accessed at the time of the error. The following table can help to interpret the unit
number.

UNIT
BUS DEVICE LUN #

0 0 0-7 0-7
0 1 0-7 8-15
0 2 0-7 16-23
0 3 0-7 24-31
0 4 0-7 32-39
0 5 0-7 40-47
0 6 0-7 48-55
0 7 0-7 56-63

Most error messages start with a line that prints out the drive, controller, and slice
that has the error. If the error is non-recoverable (fatal), the following is the first
line of the error message for disks:

ERROR on device at MVME187 SCSI bus address x, slice y
For tapes, the following is the first line:

FATAL ERROR on MVME187 SCSI ctlx, Tape drivey

10/92

scsi1x7(7) scsi1x7(7)

The following is the next line of the error message:

MVME187 SCSI error on device at SCSI address x

where device is one of disk, floppy, tape, or CDROM.

The next line of the error message gives the SCSI Driver Library command that
encountered the error. It is of the form:

SDL cmd command failed

There will be up to one additional line describing each of the four types of error
codes described above: SCSI Sense Key, SCSI status, SIOP status, and SDL status.
If any of these status codes indicate a non-error status, its line will be printed.

The following error messages are associated with streaming tape:

Controller timeout
The MVME187 controller timed out while executing a command. This usually
means that the SCSI controller attached to the MVME187 could not be
accessed. Check cables and power.

Tape not ready
There may be a problem with the streaming tape cartridge. Check to see
whether the cartridge is defective or not in place.

End of media
During write operation, ran off the end of the tape. The last file written to the
tape is incomplete and needs to be written to another tape.

End of data
During read operation, tried to read past the last filemark on the tape.

Write protected
Attempted to write to a write protected tape. Remove the tape cartridge from
the drive and check the cartridge.

Illegal request
Attempted to execute commands that make no logical sense such as trying to
erase the tape beginning in the middle.

Other error codes may indicate serious defects. Report the error code to Motorola
Field Service Division/Customer Support.

Miscellaneous Error Messages

10/92

Timeout on device at MVME187 SCSI bus address x, slice y
A request sent to SCSI bus address x, drive y was not returned to the driver
within the allotted time. This could indicate a software or hardware problem
that needs further attention.

Other error codes may indicate serious defects. Report them to Motorola Field Ser­
vice Division/Customer Support.

There are four types of error codes returned by the MVME187 driver: SCSI Sense
Key, SCSI status, SIOP status, and SDL status.

Page 5

scsi1x7(7) scsi1x7(7)

SCSI Sense KEJ18
SCSI Sense Descri12_tion

OxOO No sense data available.
OxOl Recovered error: command was successfully retried.
Ox02 Not ready: device had not spun up before command was issued.
Ox03 Medium error, bad spot: incorrect or unformatted media used.
Ox04 Hardware error: controller reporting a hardware problem.
Ox05 Illegal request: command issued has illegal parameter.
Ox06 Unit attention: removable media changed.
Ox07 Data protect: device is write protected.
Ox08 Blank check: blank spot encountered on tape.
Ox09 Vendor-specfic error.
OxOA Copy aborted.
OxOB Aborted command.
OxOC Equal.
OxOD Volume overflow.
OxOE Miscompare.
Ox20 Illegal length.
Ox40 End of Media: encountered end of tape media.
Ox80 File Mark: encountered a t~e file mark.

SCSI Status B_yte Values
SCSI Status E~lanation

OxOO Good completion.
Ox02 Check condition.
Ox04 Condition met good.
Ox08 Busy.
OxlO Intermediate good.
Ox14 Intermediate condition met good.
Ox18 Reservation conflict.
Ox22 Command terminated.
Ox28 Queue full.

Page 6 10/92

scsi1x7(7) scsi1x7 (7)

SIOP Status Values
SIOP Status Explanation

OxOO Good status.
OxOl No operation bits were set.
Ox02 Command aborted due to SCSI bus reset.
Ox03 Command aborted due to SCSI device reset.
Ox04 Command aborted due to abort message.
Ox OS Command aborted due to abort tag message.
Ox06 Command aborted due to clear queue message.
Ox07 Data overflow - too much data from device.
Ox08 Data underrun - not enough data from device.
Ox09 Clock faster than 50 MHz.
OxOA Bad clock parameter.
Ox OB Queue depth too large.
OxOC Selection timeout - device did not respond.
OxOD Reselection timeout - device did not respond.
OxOE Bus error during data phase.
OxOF Bus error during non-data phase.
OxlO Illegal NCR script.
Oxll Command aborted due to unexpected disconnect.
Ox12 Command aborted due to unexpected phase change.
Ox13 SCSI bus hang during command.
Ox14 Data phase not expected by user.
Ox15 Data phase in wrong direction.
Ox16 Incorrect phase following select.
Ox17 Incorrect phase following msg-out.
Ox18 Incorrect phase following data.
Ox19 Incorrect phase following command.
OxlA Incorrect phase following status.
OxlB Incorrect phase following rptr message.
OxlC Incorrect phase following sdptr message.
OxlD No identify message after re-selection.
OxlE SIOP failed durin_g_ scr~t_i::_atchin_£

10/92 Page 7

scsi1x7(7) scsi1x7(7)

SDL Status Values
SDL Status Explanation

OxOO Good status.
OxOl Early termination with good status.
Ox02 Check condition on request sense command.
Ox03 Illegal retry condition.
Ox04 Unsupported status code.
Ox OS Undefined sense key.
Ox06 Illegal mode parameter page.
Ox07 Attempted access with block mismatch.
Ox08 Maximum block size of CDB exceeded.
Ox09 Unsupported build function.
OxOA Insufficient inquiry data count.
Ox OB Logical unit has not been attached.
OxOC Variable block size maximum transfer count exceeded.

Refer to the ANSI SCSI specification for a complete list of SCSI command codes
and sense keys.

MASTER.D PARAMETERS

Page 8

The following parameters affect the operation of the SCSI1x7 device driver. The
following are parameters listed under the SCSI1x7 description:

scsi_host_address
This parameter specifies the SCSI bus address occupied by the host (ncr53c710)
SCSI chip.

scsi_bus_reset_delay
This parameter specifies the delay after a SCSI bus reset before issuing com­
mands to any device.

sd_max_cmd_queue_size
This parameter specifies the number of sdl_cmd structures allocated per dev­
ice. It places an upper limit on the number of simultaneous commands sent to
the SCSI Driver Library for a disk device.

sd_default_cmd_queue_size
This parameter specifies the default maximum number of simultaneous com­
mands sent to the SCSI Driver Library for a disk device.

scsi_tape_maxbsize
This parameter specifies the maximum double buffer size for tape transfers.

scsi_len_sglists
This parameter specifies the number of entries in the scatter/gather lists The
maximum transfer size to the device is scsi_len_sglists pages when going
through the raw I/O interface.

scsi_rescan
This parameter determines if a rescan of the device will be done at open time.
If a 0, no rescan will be done; otherwise a rescan will be done.

10/92

scsi1x7(7) scsi1x7(7)

scsi_max_spl
This parameter sets the maximum number of concurrent special commands.
The default value is 8. Special commands are all SCSI commands except reads
or writes. Most ioctl() commands are special commands, and special com­
mands are used during open() and close() processing. If this number is too
low, some processes will sleep waiting for resources when doing special com­
mands.

scsi_starvsize
This parameter specifies the maximum length of a disk, floppy, or CDROM
1/0 queue that will be sorted before beginning another queue.

scsi_spdkeepsize
This parameter specifies the maximum number of SCSI private areas that the
driver keeps for each hard and cdrom disk device. Each SCSI private area is
currently 7 bytes. This parameter is used to keep the driver from deadlocking
the system when there is no free memory available.

SPECIAL CONSIDERATIONS

FILES

10/92

When an error occurs while writing or reading a tape, the best course of action in
this case is to rewind the tape and repeat the operation.

Removing a cartridge tape during an MTBSF operation hangs the tape drive.

The longest I/ 0 operation which SCSI1x7 host adapters can allow to occur on a
tape device operating in variable mode depends on the master. d parameter
scsi_len_sglists.

/dev/dsk/m187_-*
/dev/rdsk/m187_-*
/dev/rmt/m187_-*
/dev/generic/m187_-*
/etc/dskdefs/m*
/usr/include/sys/dk.h
/usr/include/sys/mtio.h
/usr/include/sys/dsk.h
/usr/include/sys/scsi.h
/usr/include/sys/scsi_cdisk.h
/usr/include/sys/scsi_disk.h
/usr/include/sys/scsi_fdisk.h
/usr/include/sys/scsi_hdisk.h
/usr/include/sys/scsi_tape.h
/usr/include/sys/scsi_space.h
/usr/include/sys/scd_space.h
/usr/include/sys/sfd_space.h
/usr/include/sys/shd_space.h
/usr/include/sys/sot_space.h
/usr/include/sys/st_space.h
/usr/include/sys/pcflio.h
/usr/include/sys/scsi/sbc_scsi/incl/ncr.h
/usr/include/sys/scsi/sbc_scsi/incl/ncr710.h
/usr/include/sys/scsi/sbc_scsi/incl/ncr710db.h
/usr/include/sys/scsi/sbc_scsi/incl/scsi.h

Page 9

scsi1x7(7)

/usr/include/sys/scsi/sbc_scsi/incl/scsi_dbg.h
/usr/include/sys/scsi/sbc_scsi/incl/scsi_err.h
/usr/include/sys/scsi/sbc_scsi/incl/sdl.h
/usr/include/sys/scsi/sbc_scsi/incl/sdl_cnfg.h
/usr/include/sys/scsi/sbc_scsi/incl/sdldb.h

SEE ALSO

scsl1x7(7)

mt(l), ddefs(lM), dinit(lM), close(2), ioctl(2), open(2), read(2), write(2),
cdrom(7), disk(7), floppy(7), intro(7), tape(7) passthru(7)

Page 10 10/92

services (4) (Internet Utilities) services (4)

NAME
services - Internet services and aliases

DESCRIPTION

FILES

The services file contains an entry for each service available through the DARPA
Internet. Each entry consists of a line of the form:

service-name port I protocol aliases
service-name
port I protocol

aliases

This is the official Internet service name.

This field is composed of the port number and protocol
through which the service is provided (for instance,
512/tcp).

This is a list of alternate names by which the service might
be requested.

Fields can be separated by any number of SPACE and/or TAB characters. A '#'
(pound-sign) indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

/etc/services

SEE ALSO
getservent(3N), inetd. conf(4)

NOTES
A name server should be used instead of a static file.

10/92 Page 1

shadow(4) shadow(4)

NAME
shadow - shadow password file

DESCRIPTION

FILES

I etc/ shadow is an access-restricted ASCII system file. The fields for each user entry
are separated by colons. Each user is separated from the next by a new-line. Unlike
the /etc/passwd file, /etc/shadow does not have general read permission.

Here are the fields in /etc/shadow:

username The user's login name (ID).

password A 13-character encrypted password for the user, a lock string to
indicate that the login is not accessible, or no string to show that
there is no password for the login.

lastchanged The number of days between January 1, 1970, and the date that the
password was last modified.

minimum The minimum number of days required between password
changes.

maximum The maximum number of days the password is valid.

warn The number of days before password expires that the user is
warned.

inactive The number of days of inactivity allowed for that user.

expire An absolute date specifying when the login may no longer be
used.

flag Reserved for future use, set to zero. Currently not used.

The encrypted password consists of 13 characters chosen from a 64-character alpha­
bet (.,I, 0-9, A-Z, a-z).

To update this file, use the passwd, useradd, usermod, or userdel commands.

/etc/shadow

NOTES
If the /etc/passwd file contains any+ entries, similar entries should also exist in
this file in order to allow logins for users in the NIS database.

SEE ALSO

10/92

login(l), passwd(l), useradd(lM), usermod(lM), userdel(lM), getspent(3C),
putspent(3C), and passwd(4).

Page 1

sharetab (4) (DFS) sharetab (4)

NAME
sharetab - shared file system table

DESCRIPTION
sharetab resides in directory /etc/dfs and contains a table of local resources
shared by the share command.

Each line of the file consists of the following fields:

pathname resource fstype specific _options description

where

pathname Indicates the pathname of the shared resource.

resource Indicates the symbolic name by which remote systems can
access the resource.

fstype Indicates the file system type of the shared resource.

specific_options Indicates file-system-type-specific options that were given to
the share command when the resource was shared.

description Is a description of the shared resource provided by the sys­
tem administrator when the resource was shared.

SEE ALSO
share(lM)

10/92 Page 1

slip(7) slip(7)

NAME
SLIP - Serial Line IP (SLIP) Protocol

DESCRIPTION

IOCTLS

The Serial Line IP (SLIP) protocol is a very simple protocol which allows two
machines to communicate via TCP /IP over a serial line. This protocol simply
defines the octets necessary for framing and escaping octets in an IP packet. At the
sending end, all octets in the IP packet that should be preceded by an "escape"
character, will be "escaped" before sending this packet; this packet transmission
will end with a FRAME_END octet. At the receiving end, the octets will be gathered
and any "escaped" octets will be transposed (as necessary), until a FRAME_END is
received for this packet; then the resulting packet will be passed up to IP.

The following ioctl calls can be used to adjust the behavior of the SLIP module.

NOTE: The S_MTU ioctl is the only ioctl call which needs a parameter value, an
integer.

S_COMPRESSON

S_COMPRESSOFF

Turn on TCP /IP header compression.

Turn off TCP /IP header compression.

s_COMPRESSAON Turn on automatic detection of TCP /IP header compression
(start using compression when peer system does).

S_COMPRESSAOFF Turn off automatic detection of TCP /IP header compression.

S_NOICMP Don't allow ICMP packets out on the wire.

S_ICMP Allow ICMP packets out on the wire.

S_MTU Set the "maximum transmission unit" (MTU) value for this
interface. This request requires an integer as a parameter value
to indicate the new MTU size.

SEE ALSO
slattach(lM)
RFC 1144

10/92 Page 1

snmpd.comm (4)

NAME
snmpd. cormn - SNMP communities file

SYNOPSIS
/etc/snmp.d/snmpd.cormn

DESCRIPTION

snmpd.comm (4)

I etc/ snmp. d/ snmpd. cormn contains the definitions for the communities which will
be supported by the SNMP agent/server daemon, snmpd(lM). The file contains
lines which consist of three items: a session or community name, an IP address in
dot notation, and the priviledges to be associated with that communitiy and IP
address pair. The priviledges should be one of READ, WRITE, or NONE. NONE is used
to lock out specific communities or hosts. Lines which begin with '#' are ignored.

EXAMPLE

FILES

testl 128.212.64.99 READ
test2 128.212.64.15 WRITE
test3 128.212.64.15 READ
test4 0.0.0.0 READ
public 0.0.0.0 READ
interop 0.0.0.0 READ

/etc/snmp.d/snmpd.cormn

SEE ALSO
snmpd(lM)
RFC 1066, RFC 1067

10/92 Page 1

snmpd.conf { 4) snmpd.conf { 4)

NAME
snmpd. conf - SNMP configuration file

SYNOPSIS
/etc/snmp.d/snmpd.conf

DESCRIPTION
/etc/snmp.d/snmpd.conf is used to configure some portions of the MIB being
supported by snmpd(lM). The file contains lines which consist of a keyword and a
value to be associated with the MIB element corresponding to that keyword. The
keywords are treated as case insensitive. Lines which begin with '#' are ignored.

Currently, two initializers are supported. They are used to initialize the sysDescr
and sysObjectID elements of the system group of the MIB. The keywords associ­
ated with these elements are DESCR and OBJID, respectively.

EXAMPLE

FILES

descr=Generic SNMPD Version 1.1
obj id=UTK_UNIX_agent.1.1

/etc/snmp.d/snmpd.conf

SEE ALSO
snmpd(lM)
RFC 1065, RFC 1066

10/92 Page 1

snmpd.trap (4) snmpd.trap (4)

NAME
snrnpd. trap - SNMP trap communities file

SYNOPSIS
/etc/snrnp.d/snrnpd.trap

DESCRIPTION
I etc I srunp. d/ snrnpd. trap contains the definitions for the hosts which will be sent
a TRAP PDU by the SNMP agent/server daemon, snrnpd (lM). The file contains
lines which consist of three items: a session or community name, an IP address in
dot notation, and the IP port number to send the TRAP PDU to. Lines which begin
with '#' are ignored.

Currently, two TRAP PDU's are generated by snrnpd. They are the coldStart and
authenticationFailure trap types. The coldStart trap is generated when
snrnpd is started. The authenticationFailure trap is generated when an authen­
tication error occurs.

EXAMPLE

FILES

test2 192.9.200.99 162
test2 192.9.200.15 162

/etc/snrnp.d/snrnpd.trap

SEE ALSO
snrnpd(lM)
RFC 1066, RFC 1067

NOTICE
The port number specified should always be equal to 162 according to RFC 1067.

10/92 Page 1

sockio(7) sockio(7)

NAME
sockio - ioctls that operate directly on sockets

SYNOPSIS
#include <sys/sockio.h>

DESCRIPTION
The ioctls listed in this manual page apply directly to sockets, independent of any
underlying protocol. The setsockopt call (see getsockopt(3N)) is the primary
method for operating on sockets, rather than on the underlying protocol or network
interface. ioctls for a specific network interface or protocol are documented in the
manual page for that interface or protocol.

SIOCSPGRP,FIOSETOWN
The argument is a pointer to an int. Set the process-group
ID that will subsequently receive SIGIO or SIGURG signals
for the socket referred to by the descriptor passed to ioctl
to the value of that int. For the M88000 architecture, BSD
semantics are provided; if the int argument is less than zero
then it refers to a process-group ID which is the absolute
value of the argument. If the argument is greater than zero
refers to a process ID .

SIOCGPGRP,FIOGETOWN

SIOCCATMARK

The argument is a pointer to an int. Set the value of that
int to the process-group ID that is receiving SIGIO or
SIGURG signals for the socket referred to by the descriptor
passed to ioctl. For the M88000 architecture, BSD seman­
tics are provided; if the int argument is less than zero then it
refers to a process-group ID which is the absolute value of
the argument. If the argument is greater than zero refers to a
process ID.

The argument is a pointer to an int. Set the value of that
int to 1 if the read pointer for the socket referred to by the
descriptor passed to ioctl points to a mark in the data
stream for an out-of-band message. Set the value of that int
to 0 if the read pointer for the socket referred to by the
descriptor passed to ioctl does not point to a mark in the
data stream for an out-of-band message.

SEE ALSO
ioctl(2), getsockopt(2), filio(4)

10/92 Page 1

space(4) (Essential Utilities) space(4)

NAME
space - disk space requirement file

DESCRIPTION
space is an ASCII file that gives information about disk space requirements for the
target environment. It defines space needed beyond that which is used by objects
defined in the prototype file-for example, files which will be installed with the
installf command. It should define the maximum amount of additional space
which a package will require.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for the fields are as follows:

pathname Specifies a directory name which may or may not be the mount point
for a filesystem. Names that do not begin with a slash(/) indicate relo­
catable directories. Components of the pathname may be installation
parameters.

blocks Defines the number of disk blocks required for installation of the files
and directory entries contained in the pathname (using a 512-byte block
size).

inodes Defines the number of inodes required for installation of the files and
directory entries contained in the pathname.

EXAMPLE
extra space required by conf ig data which is
dynamically loaded onto the system
data 500 1

SEE ALSO
installf(lM), prototype(4)

10/92 Page 1

stat (4) (XENIX Compatibility Package) stat (4)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

10/92

The system calls stat, lstat and fstat return data in a stat structure, which is
defined in stat. h for the M88000 family of processors reference platform:

struct stat
{

} ;

dev_t
lang
ino_t
mode_t
nlink_t
uid_t
gid_t
dev_t
lang
of f_t
lang
timestruct_t
timestruct_t
timestruct_t
lang
lang
char
mang

st_dev;
st_pad1[3];
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_pad2[2];
st_size;
st_pad3;
st_atime;
st_mtime;
st_ctime;
st_blksize;
st_blocks;
st_fstype [_ST_FSTYPSZ];
st_pad4[8];

The constants used in the st_mode field are also defined in this file:

#define S_IFMT OxFOOO I* type of file *I
#define S_IAMB OxlFF I* access mode bits *I
#define S_IFIFO OxlOOO /*fifo*/
#define S_IFCHR Ox2000 I* character special *I
#define S_IFDIR Ox4000 I* directory *I
#define S_IFNAM Ox5000 I* XENIX special named file *I
#define S_INSEM Oxl I* XENIX semaphore subtype of IFNAM *I
#define S_INSMD Ox2 I* XENIX shared data subtype of IFNAM *I
#define S_IFBLK Ox6000 I* block special *I
#define S_IFREG Ox8000 I* regular *I
#define S_IFLNK OxAOOO I* symbolic link *I
#define S_SFSOCK OxCOOO /*Socket*/
#define S_ISUID OxBOO I* set user id on execution *I

Page 1

I

I~

I

I
I

stat (4) (XENIX Compatibility Package) stat (4)

#define S_ISGID Ox400 I* set group id on execution *I
#define s - ISVTX Ox200 I* save swapped text even after use *I
#define S_IREAD 00400 I* read permission, owner *I
#define S_IWRITE 00200 I* write permission, owner *I
#define S_IEXEC 00100 I* execute I search permission, owner *I
#define S_ENFMT S_ISGID I* record locking enforcement flag *I
#define S_IRWXU 00700 I* read, write, execute: owner *I
#define S_IRUSR 00400 I* read permission: owner *I
#define S_IWUSR 00200 I* write permission: owner *I
#define S_IXUSR 00100 I* execute permission: owner *I
#define S_IRWXG 00070 I* read, write, execute: group *I
#define S_IRGRP 00040 I* read permission: group *I
#define S_IWGRP 00020 I* write permission: group *I
#define S_IXGRP 00010 /* execute permission: group *I
#define S_IRWXO 00007 /*read, write, execute: other *I
#define S_IROTH 00004 /* read permission: other *I
#define S_IWOTH 00002 /* write permission: other *I
#define S_IXOTH 00001 /*execute permission: other* I

SEE ALSO
stat(2), types(5)

Page 2 10/92

strcf{4N) {TCP/IP) strcf{4N)

NAME
strcf - STREAMS Configuration File for STREAMS TCP /IP

DESCRIPTION

10/92

/etc/strcf contains the script that is executed by slink(lM) to perform the
STREAMS configuration operations required for STREAMS TCP /IP.

The standard /etc/strcf file contains several functions that perform various
configuration operations, along with a sample boot function. Normally, only the
boot function must be modified to customize the configuration for a given installa­
tion. In some cases, however, it may be necessary to change existing functions or
add new functions.

The following functions perform basic linking operations:

The tp function is used to set up the link between a transport provider, such as
TCP, and IP.

tp - configure transport provider (i.e. tcp, udp, icmp)
usage: tp devname

tp {

p = open $1
ip = open /dev/ip
link p ip

The linkint function links the specified streams and does a sifname operation
with the given name.

linkint - link interface to ip or arp
usage: linkint top bottom ifname

linkint {

x = link $1 $2
sifname $1 x $3

The aplinkint function performs the same function as linkint for an interface
that uses the app module.

aplinkint - like linkint, but app is pushed on dev
usage: aplinkint top bottom ifname

aplinkint {

push $2 app
linkint $1 $2 $3

The following functions are used to configure different types of Ethernet interfaces:

Page 1

strcf(4N) (TCP/IP) strcf(4N)

Page 2

The uenet function is used to configure an Ethernet interface for a cloning device
driver that uses the unit select ioctl to select the desired interface. The interface
name is constructed by concatenating the supplied prefix and the unit number.

uenet - configure ethernet-type interface for cloning
driver using unit select

usage: uenet ip-fd devname ifprefix unit

uenet {
ifname = strcat $3 $4
dev = open $2
unitsel dev $4
aplinkint $1 dev ifname
dev = open $2
unitsel dev $4
arp = open /dev/arp
linkint arp dev ifname

The denet function performs the same function as uenet, except that DL_ATTACH is
used instead of unit select.

denet - configure ethernet-type interface for cloning
driver using DL_ATTACH

usage: denet ip-fd devname ifprefix unit

denet {

ifname = strcat $3 $4
dev = open $2
dlattach dev $4
aplinkint $1 dev ifname
dev = open $2
dlattach dev $4
arp = open /dev/arp
linkint arp dev ifname

The cenet function is used to configure an Ethernet interface for a cloning device
driver that uses a different major number for each interface. The device name is
formed by concatenating the supplied device name prefix and the unit number.
The interface name is formed in a similar manner using the interface name prefix.

cenet - configure ethernet-type interface for cloning
driver with one major per interface

usage: cenet ip-fd devprefix ifprefix unit

cenet {
devname = strcat $2 $4
ifname = strcat $3 $4
dev = open devname

10/92

strcf (4N) (TCP/IP) strcf(4N)

10/92

aplinkint $1 dev ifnarne
dev = open devnarne
arp = open /dev/arp
linkint arp dev ifnarne

The senet function is used to configure an Ethernet interface for a non-cloning
device driver. Two different device nodes must be specified for IP and ARP.

senet - configure ethernet-type interface for non-cloning
driver

usage: senet ip-fd ipdevnarne arpdevnarne ifnarne

senet {
dev = open $2
aplinkint $1 dev $4
dev = open $3
arp = open /dev/arp
linkint arp dev $4

The senetc function is like senet, except that it allows the specification of a con­
vergence module to be used with the ethernet driver.

senetc - configure ethernet-type interface for non-cloning
driver using convergence module

usage: senetc ip-fd convergence ipdevnarne arpdevnarne ifnarne

senetc {
dev = open $3
push dev $2
aplinkint $1 dev $5
dev = open $4
push dev $2
arp = open /dev/arp
linkint arp dev $5

The loopback function is used to configure the loopback interface.

loopback - configure loopback device
usage: loopback ip-fd

loopback

dev = open /dev/loop
linkint $1 dev loO

The slip function is used to configure a SLIP interface. This function is not nor­
mally executed at boot time. Rather, the slattach(lM) command runs slink
specifying slip on the command line.

Page 3

strcf (4N) (TCP/IP) strcf(4N)

FILES

slip - configure slip interface
usage: slip unit

slip

ip = open /dev/ip
s = open /dev/slip
ifname = strcat sl $1
unitsel s $1
linkint ip s ifname

The boot function is called by default when slink is executed. Normally, only the
interfaces section and possibly the queue params section will have to be customized
for a given installation. Examples are provided for the various Ethernet driver
types.

boot - boot time configuration

boot {

queue params

initqp /dev/udp rq 8192 40960
initqp /dev/ip muxrq 8192 40960 rq 8192 40960

transport

tp /dev/tcp
tp /dev/udp
tp /dev/icmp
tp /dev/rawip

/etc/strcf

SEE ALSO
slattach(lM), slink(lM)

Page 4 10/92

streamio (7) streamio (7)

NAME
streamio - STREAMS ioctl commands

SYNOPSIS
#include <sys/types.h>
#include <stropts.h>

int ioctl (int fildes, int cormnand, ... /* arg */);

DESCRIPTION
STREAMS [see intro{2)] ioctl commands are a subset of the ioctl(2) system calls
which perform a variety of control functions on streams.

fildes is an open file descriptor that refers to a stream. command determines the con­
trol function to be performed as described below. arg represents additional infor­
mation that is needed by this command. The type of arg depends upon the com­
mand, but it is generally an integer or a pointer to a command-specific data struc­
ture. The command and arg are interpreted by the stream head. Certain combina­
tions of these arguments may be passed to a module or driver in the stream.

Since these STREAMS commands are a subset of ioctl, they are subject to the errors
described there. In addition to those errors, the call will fail with errno set to EIN­
VAL, without processing a control function, if the stream referenced by fildes is
linked below a multiplexor, or if command is not a valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors. In
this case, the module or driver sends an error message to the stream head contain­
ing an error value. This causes subsequent system calls to fail with errno set to
this value.

COMMAND FUNCTIONS

10/92

The following ioctl commands, with error values indicated, are applicable to all
STREAMS files:

I_PUSH

I_POP

Pushes the module whose name is pointed to by arg onto the top of
the current stream, just below the stream head. If the stream is a
pipe, the module will be inserted between the stream heads of both
ends of the pipe. It then calls the open routine of the newly-pushed
module. On failure, errno is set to one of the following values:

EINVAL Invalid module name.

EFAULT

ENXIO

ENXIO

arg points outside the allocated address space.

Open routine of new module failed.

Hangup received on fildes.
Removes the module just below the stream head of the stream
pointed to by fildes. To remove a module from a pipe requires that
the module was pushed on the side it is being removed from. arg
should be 0 in an I_POP request. On failure, errno is set to one of
the following values:

EINVAL No module present in the stream.

Page 1

streamio (7)

I_LOOK

I_FLUSH

I_FLUSHBAND

streamio (7)

ENXIO Hangup received on fildes.

Retrieves the name of the module just below the stream head of the
stream pointed to by fildes, and places it in a null terminated charac­
ter string pointed at by arg. The buffer pointed to by arg should be at
least FMNAMESZ+l bytes long. A #include <sys/conf .h> declara­
tion is required. On failure, errno is set to one of the following
values:

EFAULT arg points outside the allocated address space.

EINVAL No module present in stream.

This request flushes all input and/or output queues, depending on
the value of arg. Legal arg values are:

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the read queue
of the stream head on either end is flushed depending on the value
of arg.
If FLUSHR is set and fildes is a pipe, the read queue for that end of the
pipe is flushed and the write queue for the other end is flushed. If
fildes is a FIFO, both queues are flushed.

If FLUSHW is set and fildes is a pipe and the other end of the pipe
exists, the read queue for the other end of the pipe is flushed and the
write queue for this end is flushed. If fildes is a FIFO, both queues of
the FIFO are flushed.

If FLUSHRW is set, all read queues are flushed, that is, the read queue
for the FIFO and the read queue on both ends of the pipe are flushed.

Correct flush handling of a pipe or FIFO with modules pushed is
achieved via the pipemod module. This module should be the first
module pushed onto a pipe so that it is at the midpoint of the pipe
itself.

On failure, errno is set to one of the following values:

ENOSR Unable to allocate buffers for flush message due to
insufficient STREAMS memory resources.

EINVAL Invalid arg value.

ENXIO Hangup received on fildes.

Flushes a particular band of messages. arg points to a bandinfo
structure that has the following members:

unsigned char bi_pri;
int bi_flag;

The bi_flag field may be one of FLUSHR, FLUSHW, or FLUSHRW as
described earlier.

Page 2 10/92

streamio (7)

I_SETSIG

10/92

streamio (7)

Informs the stream head that the user wishes the kernel to issue the
SIGPOLL signal [see signal(2)] when a particular event has occurred
on the stream associated with fildes. I_SETSIG supports an asyn­
chronous processing capability in STREAMS. The value of arg is a bit­
mask that specifies the events for which the user should be signaled.
It is the bitwise-OR of any combination of the following constants:

S_INPUT

S_RDNORM

S_RDBAND

S_HIPRI

S_OUTPUT

S_WRNORM

S_WRBAND

S_MSG

S_ERROR

S_HANGUP

Any message other than an M_PCPROTO has arrived on
a stream head read queue. This event is maintained
for compatibility with prior UNIX System V releases.
This is set even if the message is of zero length.

An ordinary (non-priority) message has arrived on a
stream head read queue. This is set even if the mes­
sage is of zero length.

A priority band message (band > 0) has arrived on a
stream head read queue. This is set even if the mes­
sage is of zero length.

A high priority message is present on the stream head
read queue. This is set even if the message is of zero
length.

The write queue just below the stream head is no
longer full. This notifies the user that there is room on
the queue for sending (or writing) data downstream.

This event is the same as s_OUTPUT.

A priority band greater .than 0 of a queue downstream
exists and is writable. This notifies the user that there
is room on the queue for sending (or writing) priority
data downstream.

A STREAMS signal message that contains the SIGPOLL
signal has reached the front of the stream head read
queue.

An M_ERROR message has reached the stream head.

An M_HANGUP message has reached the stream head.

S_BANDURG When used in conjunction with S_RDBAND, SIGURG
is generated instead of SIGPOLL when a priority mes­
sage reaches the front of the stream head read queue.

A user process may choose to be signaled only of high priority mes­
sages by setting the arg bitmask to the value S_HIPRI.

Processes that wish to receive SIGPOLL signals must explicitly regis­
ter to receive them using I_SETSIG. If several processes register to
receive this signal for the same event on the same stream, each pro­
cess will be signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered and
will not receive further SIGPOLL signals. On failure, errno is set to
one of the following values:

Page 3

~
I

streamio (7)

I_GETSIG

I_FIND

I_PEEK

Page 4

EINVAL

EAGAIN

streamio(7)

arg value is invalid or arg is zero and process is not
registered to receive the SIGPOLL signal.

Allocation of a data structure to store the signal
request failed.

Returns the events for which the calling process is currently
registered to be sent a SIGPOLL signal. The events are returned as a
bitmask pointed to by arg, where the events are those specified in the
description of I_SETSIG above. On failure, errno is set to one of the
following values:

EINVAL Process not registered to receive the SIGPOLL signal.

EFAULT arg points outside the allocated address space.

Compares the names of all modules currently present in the stream
to the name pointed to by arg, and returns 1 if the named module is
present in the stream. It returns 0 if the named module is not
present. On failure, errno is set to one of the following values:

EFAULT arg points outside the allocated address space.

EINVAL arg does not contain a valid module name.

Allows a user to retrieve the information in the first message on the
stream head read queue without taking the message off the queue.
I_PEEK is analogous to getmsg(2) except that it does not remove the
message from the queue. arg points to a strpeek structure which
contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;
long flags;

The maxlen field in the ctlbuf and databuf strbuf structures [see
getmsg(2)] must be set to the number of bytes of control information
and/or data information, respectively, to retrieve. flags may be set
to RS_HIPRI or 0. If RS_HIPRI is set, I_PEEK will look for a high
priority message on the stream head read queue. Otherwise, I_PEEK
will look for the first message on the stream head read queue.

I_PEEK returns 1 if a message was retrieved, and returns 0 if no mes­
sage was found on the stream head read queue. It does not wait for
a message to arrive. On return, ctlbuf specifies information in the
control buffer, databuf specifies information in the data buffer, and
flags contains the value RS_HIPRI or 0. On failure,
errno is set to the following value:

EFAULT arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

EBADMSG

EINVAL

Queued message to be read is not valid for I_PEEK

Illegal value for flags.

10/92

streamio (7) streamio (7)

10/92

I_SRDOPT Sets the read mode [see read(2)] using the value of the argument
arg. Legal arg values are:

RNORM Byte-stream mode, the default.

RMS GD Message-discard mode.

RMSGN Message-nondiscard mode.

In addition, treatment of control messages by the stream head may
be changed by setting the following flags in arg:

RPROTNORM Fail read() with EBADMSG if a control message is at the
front of the stream head read queue. This is the
default behavior.

RPROTDAT Deliver the control portion of a message as data when
a user issues read().

RPROTDIS Discard the control portion of a message, delivering
any data portion, when a user issues a read().

On failure, errno is set to the following value:

EINVAL arg is not one of the above legal values.

I_GRDOPT Returns the current read mode setting in an int pointed to by the
argument arg. Read modes are described in read(2). On failure,
errno is set to the following value:

EFAULT arg points outside the allocated address space.

I_NREAD Counts the number of data bytes in data blocks in the first message
on the stream head read queue, and places this value in the location
pointed to by arg. The return value for the command is the number
of messages on the stream head read queue. For example, if zero is
returned in arg, but the ioctl return value is greater than zero, this
indicates that a zero-length message is next on the queue. On
failure, errno is set to the following value:

EFAULT arg points outside the allocated address space.

I_FDINSERT Creates a message from user specified buffer(s), adds information
about another stream and sends the message downstream. The mes­
sage contains a control part and an optional data part. The data and
control parts to be sent are distinguished by placement in separate
buffers, as described below.

arg points to a strfdinsert structure which contains the following
members:

struct strbuf
struct strbuf
long
int
int

ctlbuf;
databuf;
flags;
fildes;
offset;

The len field in the ctlbuf strbuf structure [see putmsg(2)] must
be set to the size of a pointer plus the number of bytes of control
information to be sent with the message. fildes in the strfdinsert

Page 5

streamio(7)

Page 6

streamio (7)

structure specifies the file descriptor of the other stream. offset,
which must be word-aligned, specifies the number of bytes beyond
the beginning of the control buffer where I_FDINSERT will store a
pointer. This pointer will be the address of the read queue structure
of the driver for the stream corresponding to fildes in the strfdin­
sert structure. The len field in the databuf strbuf structure must
be set to the number of bytes of data information to be sent with the
message or zero if no data part is to be sent.

flags specifies the type of message to be created. An ordinary
(non-priority) message is created if flags is set to 0, a high priority
message is created if flags is set to RS_HIPRI. For normal mes­
sages, I_FDINSERT will block if the stream write queue is full due to
internal flow control conditions. For high priority messages,
I_FDINSERT does not block on this condition. For normal messages,
I_FDINSERT does not block when the write queue is full and
O_NDELAY or O_NONBLOCK is set. Instead, it fails and sets errno to
EAGAIN.

I_FDINSERT also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks, regardless
of priority or whether O_NDELAY or O_NONBLOCK has been specified.
No partial message is sent. On failure, errno is set to one of the fol­
lowing values:

EAGAIN

ENO SR

EFAULT

EINVAL

ENXIO

ERANGE

A non-priority message was specified, the O_NDELAY
or O_NONBLOCK flag is set, and the stream write queue
is full due to internal flow control conditions.

Buffers could not be allocated for the message that
was to be created due to insufficient STREAMS
memory resources.

arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

One of the following: fildes in the strfdinsert
structure is not a valid, open stream file descriptor;
the size of a pointer plus offset is greater than the
len field for the buffer specified through ctlptr;
offset does not specify a properly-aligned location
in the data buffer; an undefined value is stored in
flags.

Hangup received on fildes of the ioctl call or
fildes in the strfdinsert structure.

The len field for the buffer specified through data­
buf does not fall within the range specified by the
maximum and minimum packet sizes of the topmost
stream module, or the len field for the buffer
specified through databuf is larger than the max­
imum configured size of the data part of a message, or
the len field for the buffer specified through ctlbuf
is larger than the maximum configured size of the

10/92

streamio (7)

I_STR

10/92

streamio (7)

control part of a message.

I_FDINSERT can also fail if an error message was received by the
stream head of the stream corresponding to fildes in the strfdin­
sert structure. In this case, errno will be set to the value in the
message.

Constructs an internal STREAMS ioctl message from the data pointed
to by arg, and sends that message downstream.

This mechanism is provided to send user ioctl requests to down­
stream modules and drivers. It allows information to be sent with
the ioctl, and will return to the user any information sent upstream
by the downstream recipient. I_STR blocks until the system
responds with either a positive or negative acknowledgement mes­
sage, or until the request "times out" after some period of time. If the
request times out, it fails with errno set to ETIME.

At most, one I_STR can be active on a stream. Further I_STR calls
will block until the active I_STR completes at the stream head. The
default timeout interval for these requests is 15 seconds. The
O_NDELAY and O_NONBLOCK [see open(2)] flags have no effect on this
call.

To send requests downstream, arg must point to a strioctl struc­
ture which contains the following members:

int ic_cmd;
int ic_timout;
int ic_len;
char *ic_dp;

ic_cmd is the internal ioctl command intended for a downstream
module or driver and ic_timout is the number of seconds (-1 =
infinite, 0 = use default, >0 = as specified) an I_STR request will wait
for acknowledgement before timing out. The default timeout is
infinite. ic_len is the number of bytes in the data argument and
ic_dp is a pointer to the data argument. The ic_len field has two
uses: on input, it contains the length of the data argument passed in,
and on return from the command, it contains the number of bytes
being returned to the user (the buffer pointed to by ic_dp should be
large enough to contain the maximum amount of data that any
module or the driver in the stream can return).

The stream head will convert the information pointed to by the
strioctl structure to an internal ioctl command message and
send it downstream. On failure, errno is set to one of the following
values:

ENO SR

EFAULT

Unable to allocate buffers for the ioctl message due
to insufficient STREAMS memory resources.

arg points, or the buffer area specified by ic_dp and
ic_len (separately for data sent and data returned)
is, outside the allocated address space.

Page 7

streamio (7)

I_SWROPT

I_GWROPT

I_SENDFD

Page 8

EINVAL

ENXIO

ETIME

streamio (7)

ic_len is less than 0 or ic_len is larger than the
maxim.um configured size of the data part of a mes-
sage or ic_tirnout is less than -1.

Hangup received onfildes.

A downstream ioctl timed out before acknowledge­
ment was received.

An I_STR can also fail while waiting for an acknowledgement if a
message indicating an error or a hangup is received at the stream
head. In addition, an error code can be returned in the positive or
negative acknowledgement message, in the event the ioctl command
sent downstream fails. For these cases, I_STR will fail with errno
set to the value in the message.

Sets the write mode using the value of the argument arg. Legal bit
settings for arg are:

SNDZERO Send a zero-length message downstream when a
write of 0 bytes occurs.

To not send a zero-length message when a write of 0 bytes occurs,
this bit must not be set in arg.
On failure, errno may be set to the following value:

EINVAL arg is the the above legal value.

Returns the current write mode setting, as described above, in the
int that is pointed to by the argument arg.
Requests the stream associated with fildes to send a message, con­
taining a file pointer, to the stream head at the other end of a stream
pipe. The file pointer corresponds to arg, which must be an open file
descriptor.

I_SENDFD converts arg into the corresponding system file pointer. It
allocates a message block and inserts the file pointer in the block.
The user id and group id associated with the sending process are
also inserted. This message is placed directly on the read queue [see
intro(2)] of the stream head at the other end of the stream pipe to
which it is connected. On failure, errno is set to one of the follow­
ing values:

EAGAIN The sending stream is unable to allocate a message
block to contain the file pointer.

EA GAIN

EBADF

EINVAL

ENXIO

The read queue of the receiving stream head is full
and cannot accept the message sent by I_SENDFD.

arg is not a valid, open file descriptor.

fildes is not connected to a stream pipe.

Hangup received on fildes.

10/92

streamio (7)

I_RECVFD

!_LIST

10/92

streamio (7)

Retrieves the file descriptor associated with the message sent by an
I_SENDFD ioctl over a stream pipe. arg is a pointer to a data buffer
large enough to hold an strrecvfd data structure containing the
following members:

int fd;
uid_t uid;
gid_t gid;
char fill[8];

fd is an integer file descriptor. uid and gid are the user id and
group id, respectively, of the sending stream.

ff O_NDELAY and O_NONBLOCK are clear [see open(2)], I_RECVFD will
block until a message is present at the stream head. ff O_NDELAY or
O_NONBLOCK is set, I_RECVFD will fail with errno set to EAGAIN if no
message is present at the stream head.

ff the message at the stream head is a message sent by an I_SENDFD,
a new user file descriptor is allocated for the file pointer contained in
the message. The new file descriptor is placed in the fd field of the
strrecvfd structure. The structure is copied into the user data
buffer pointed to by arg. On failure, errno is set to one of the fol­
lowing values:

EAGAIN A message is not present at the stream head read
queue, and the O_NDELAY or O_NONBLOCK flag is set.

EBADMSG The message at the stream head read queue is not a
message containing a passed file descriptor.

EFAULT arg points outside the allocated address space.

EMFILE NOFILES file descriptors are currently open.

ENXIO Hangup received on fildes.

EOVERFLOW uid or gid is too large to be stored in the structure
pointed to by arg.

Allows the user to list all the module names on the stream, up to and
including the topmost driver name. ff arg is NULL, the return value is
the number of modules, including the driver, that are on the stream
pointed to by fildes. This allows the user to allocate enough space for
the module names. If arg is non-NULL, it should point to an
str_list structure that has the following members:

int sl_nmods;
struct str_mlist *sl_Jllodlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+l];

sl_nmods indicates the number of entries the user has allocated in
the array and on return, sl_modlist contains the list of module
names. The return value indicates the number of entries that have
been filled in. On failure, errno may be set to one of the following
values:

Page 9

streamio (7)

I_ATMARK

EINVAL

EAGAIN

The sl_nmods member is less than 1.

Unable to allocate buffers

streamio (7)

Allows the user to see if the current message on the stream head read
queue is "marked" by some module downstream. arg determines
how the checking is done when there may be multiple marked mes­
sages on the stream head read queue. It may take the following
values:

ANYMARK Check if the message is marked.

LASTMARK Check if the message is the last one marked on the
queue.

The return value is 1 if the mark condition is satisfied and 0 other­
wise. On failure, errno may be set to the following value:

EINVAL Invalid arg value.

I_CKBAND Check if the message of a given priority band exists on the stream
head read queue. This returns 1 if a message of a given priority
exists, or -1 on error. arg should be an integer containing the value of
the priority band in question. On failure, errno may be set to the
following value:

EINVAL Invalid arg value.

I_GETBAND Returns the priority band of the first message on the stream head
read queue in the integer referenced by arg. On failure, errno may
be set to the following value:

ENODATA No message on the stream head read queue.

I_CANPUT Check if a certain band is writable. arg is set to the priority band in
question. The return value is 0 if the priority band arg is flow con­
trolled, 1 if the band is writable, or -1 on error. On failure, errno
may be set to the following value:

I_SETCLTIME

I_GETCLTIME

EINVAL Invalid arg value.

Allows the user to set the time the stream head will delay when a
stream is closing and there are data on the write queues. Before clos­
ing each module and driver, the stream head will delay for the
specified amount of time to allow the data to drain. If, after the
delay, data are still present, data will be flushed. arg is a pointer to
the number of milliseconds to delay, rounded up to the nearest legal
value on the system. The default is fifteen seconds. On failure,
errno may be set to the following value:

EINVAL Invalid arg value.

Returns the close time delay in the long pointed by arg.
The following four commands are used for connecting and disconnecting multi­
plexed STREAMS configurations.

Page 10 10/92

streamio (7)

I_LINK

I_UNLINK

10/92

streamio (7)

Connects two streams, where fildes is the file descriptor of the stream
connected to the multiplexing driver, and arg is the file descriptor of
the stream connected to another driver. The stream designated by
arg gets connected below the multiplexing driver. I_LINK requires
the multiplexing driver to send an acknowledgement message to the
stream head regarding the linking operation. This call returns a mul­
tiplexor ID number (an identifier used to disconnect the multiplexor,
see I_UNLINK) on success, and a -1 on failure. On failure, errno is
set to one of the following values:

ENXIO Hangup received on fildes.

ETIME

EA GAIN

ENO SR

EBADF

EINVAL

EINVAL

EINVAL

EINVAL

Time out before acknowledgement message was
received at stream head.

Temporarily unable to allocate storage to perform the
I_LINK.

Unable to allocate storage to perform the I_LINK due
to insufficient STREAMS memory resources.

arg is not a valid, open file descriptor.

fildes stream does not support multiplexing.

arg is not a stream, or is already linked under a multi­
plexor.

The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given driver is
linked into a multiplexing configuration in more than
one place.

fildes is the file descriptor of a pipe or FIFO.

An I_LINK can also fail while waiting for the multiplexing driver to
acknowledge the link request, if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement
message. For these cases, I_LINK will fail with errno set to the
value in the message.

Disconnects the two streams specified by fildes and arg. fildes is the
file descriptor of the stream connected to the multiplexing driver.
arg is the multiplexor ID number that was returned by the I_LINK. If
arg is -1, then all Streams which were linked to fildes are discon­
nected. As in I_LINK, this command requires the multiplexing
driver to acknowledge the unlink. On failure, errno is set to one of
the following values:

ENXIO Hangup received on fildes.

ETIME

ENO SR

Time out before acknowledgement message was
received at stream head.

Unable to allocate storage to perform the I_UNLINK
due to insufficient STREAMS memory resources.

Page 11

f

I

streamio(7)

Page 12

EINVAL

EINVAL

streamio (7)

arg is an invalid multiplexor ID number or fildes is not
the stream on which the I_LINK that returned arg was
performed.

fildes is the file descriptor of a pipe or FIFO.

An I_UNLINK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error or a
hangup is received at the stream head of fildes. In addition, an error
code can be returned in the positive or negative acknowledgement
message. For these cases, I_UNLINK will fail with errno set to the
value in the message.

Connects two streams, where fildes is the file descriptor of the stream
connected to the multiplexing driver, and arg is the file descriptor of
the stream connected to another driver. The stream designated by
arg gets connected via a persistent link below the multiplexing
driver. I_PLINK requires the multiplexing driver to send an ack­
nowledgement message to the stream head regarding the linking
operation. This call creates a persistent link which can exist even if
the file descriptor fildes associated with the upper stream to the mul­
tiplexing driver is closed. This call returns a multiplexor ID number
(an identifier that may be used to disconnect the multiplexor, see
I_PUNLINK) on success, and a -1 on failure. On failure, errno may
be set to one of the following values:

ENXIO Hangup received on fildes.

ETIME

EA GAIN

EBADF

EINVAL

EINVAL

EINVAL

EINVAL

Time out before acknowledgement message was
received at the stream head.

Unable to allocate STREAMS storage to perform the
I_PLINK.

arg is not a valid, open file descriptor.

fildes does not support multiplexing.

arg is not a stream or is already linked under a multi­
plexor.

The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given stream
head is linked into a multiplexing configuration in
more than one place.

fildes is the file descriptor of a pipe or FIFO.

An I_PLINK can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error on
a hangup is received at the stream head of fildes. In addition, an
error code can be returned in the positive or negative acknowledge­
ment message. For these cases, I_PLINK will fail with errno set to
the value in the message.

10/92

streamio (7) streamio (7)

I_PUNLINK Disconnects the two streams specified by fildes and arg that are con­
nected with a persistent link. fildes is the file descriptor of the stream
connected to the multiplexing driver. arg is the multiplexor ID
number that was returned by I_PLINK when a stream was linked
below the multiplexing driver. If arg is MUXID_ALL then all streams
which are persistent links to fildes are disconnected. As in I_PLINK,
this command requires the multiplexing driver to acknowledge the
unlink. On failure, errno may be set to one of the following values:

ENXIO Hangup received on fildes.
ETIME

EA GAIN

EINVAL

EINVAL

Time out before acknowledgement message was
received at the stream head.

Unable to allocate buffers for the acknowledgement
message.

Invalid multiplexor ID number.

fildes is the file descriptor of a pipe or FIFO.

An I_PUNLINK can also fail while waiting for the multiplexing
driver to acknowledge the link request if a message indicating an
error or a hangup is received at the stream head of fildes. In addition,
an error code can be returned in the positive or negative ack­
nowledgement message. For these cases, I_PUNLINK will fail with
errno set to the value in the message.

SEE ALSO
close(2), fcntl(2), getmsg(2), intro(2), ioctl(2), open(2), poll(2), putmsg(2),
read(2), signal(2), write(2), signal(S).

DIAGNOSTICS

10/92

Unless specified otherwise above, the return value from ioctl is 0 upon success
and -1 upon failure with errno set as indicated.

Page 13

strftime (4) strftlme (4)

NAME
strftime - language specific strings

DESCRIPTION
There can exist one printable file per locale to specify its date and time formatting
information. These files must be kept in the directory
/usr/lib/locale/docale>/LC_TIME. The contents of these files are:

1. abbreviated month names (in order)

2. month names (in order)

3. abbreviated weekday names (in order)

4. weekday names (in order)

5. default strings that specify formats for locale time (%X) and locale date (%x).

6. default format for cftime, if the argument for cftime is zero or null.

7. AM (ante meridian) string

8. PM (post meridian) string

Each string is on a line by itself. All white space is significant. The order of the
strings in the above list is the same order in which they must appear in the file.

EXAMPLE
/usr/lib/locale/C/LC_TIME

FILES

Jan
Feb

January
February

Sun
Mon

Sunday
Monday

%H:%M:%S
%m/%d/%y
%a %b %d %T %Z %Y
AM
PM

/usr /lib/locale/ docale>/LC_TIME

SEE ALSO
ctime(3C), setlocale(3C), strftime(3C)

10/92 Page 1

sxt(7) sxt(7)

NAME
sxt - pseudo-device driver

DESCRIPTION
The special file I dev I sxt is a pseudo-device driver that interposes a discipline
between the standard tty line disciplines and a real device driver. The standard
disciplines manipulate virtual tty structures (channels) declared by the /dev/sxt
driver. I dev I sxt acts as a discipline manipulating a real tty structure declared by a
real device driver. The /dev/sxt driver is currently only used by the shl(l) com­
mand.

Virtual ttys are named by inodes in the subdirectory I dev I sxt and are allocated in
groups of up to eight. To allocate a group, a program should exclusively open a file
with a name of the form /dev/sxt/??0 (channel 0) and then execute a SXTIOCLINK
ioctl call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from the keyboard at a
time; others attempting to read will be blocked.

There are two groups of ioct1(2) commands supported by sxt. The first group
contains the standard ioctl commands described in te:nnio(7), with the addition
of the following:

TIOCEXCL

TIOCNXCL

Set exclusive use mode: no further opens are permitted until
the file has been closed.

Reset exclusive use mode: further opens are once again per­
mitted.

The second group are commands to sxt itself. Some of these may only be executed
on channel 0.

SXTIOCLINK

SXTIOCSWTCH

Allocate a channel group and multiplex the virtual ttys onto
the real tty. The argument is the number of channels to allo­
cate. This command may only be executed on channel 0.
Possible errors include:

EINVAL The argument is out of range.

ENOTTY The command was not issued from a real tty.

ENXIO linesw is not configured with sxt.

EBUSY An SXTIOCLINK command has already been
issued for this real tty.

ENOMEM There is no system memory available for allocat-
ing the virtual tty structures.

EBADF Channel 0 was not opened before this call.

Set the controlling channel. Possible errors include:

EINVAL An invalid channel number was given.

EPERM The command was not executed from channel 0.

10/92 Page 1

sxt(7)

SXTIOCWF

SXTIOCUBLK

SXTIOCSTAT

SXTIOCTRACE

SXTIOCNOTRACE

FILES

sxt (7)

Cause a channel to wait until it is the controlling channel.
This command will return the error, EINVAL, if an invalid
channel number is given.

Turn off the loblk control flag in the virtual tty of the indi­
cated channel. The error EINVAL will be returned if an
invalid number or channel 0 is given.

Get the status (blocked on input or output) of each channel
and store in the sxtblock structure referenced by the argu­
ment. The error EFAULT will be returned if the structure can­
not be written.

Enable tracing. Tracing information is written to the console.
This command has no effect if tracing is not configured.

Disable tracing. This command has no effect if tracing is not
configured.

I dev I sxt I?? [0-7 J Virtual tty devices

SEE ALSO
shl(l), stty(l) ioct1(2), open(2), tennio(7).

Page 2 10/92

syslog.conf (4) (BSD Compatibility Package) syslog.conf (4)

NAME
sys log. conf - configuration file for syslogd system log daemon

SYNOPSIS
/etc/syslog.conf

DESCRIPTION

10/92

The file /etc/syslog. conf contains information used by the system log daemon,
syslogd(lM), to forward a system message to appropriate log files and/or users.
syslog preprocesses this file through m4(1) to obtain the correct information for
certain log files.

A configuration entry is composed of two TAB-separated fields:

"selector action"

The selector field contains a semicolon-separated list of priority specifications of the
form:

facility . level [; facility . level]

where facility is a system facility, or comma-separated list of facilities, and level is an
indication of the severity of the condition being logged. Recognized values for
facility include:

user Messages generated by user processes. This is the default priority for
messages from programs or facilities not listed in this file.

kern Messages generated by the kernel.

mail The mail system.

daemon System daemons, such as ftpd(lM), routed(lM), and so on.

auth The authorization system: login(l), su(lM), getty(lM), and so on.

lpr The line printer spooling system: lpr(l), lpc(lM), lpd(lM), and so on.

news Reserved for the USENET network news system.

uucp Reserved for the UUCP system; it does not currently use the syslog
mechanism.

cron The cron /at facility; crontab(l), at(l), cron(lM), and so on.

local0-7 Reserved for local use.

mark For timestamp messages produced internally by syslogd.

* An asterisk indicates all facilities except for the mark facility.

Recognized values for level are (in descending order of severity):

emerg

alert

For panic conditions that would normally be broadcast to all users.

crit

err

For conditions that should be corrected immediately, such as a
corrupted system database.

For warnings about critical conditions, such as hard device errors.

For other errors.

Page 1

I:

syslog.conf (4) (BSD Compatibility Package) syslog.conf (4)

warning For warning messages.

not ice For conditions that are not error conditions, but may require special
handling.

info Informational messages.

debug For messages that are normally used only when debugging a program.

none Do not send messages from the indicated facility to the selected file. For
example, a selector of

*.debug;mail.none

will send all messages except mail messages to the selected file.

The action field indicates where to forward the message. Values for this field can
have one of four forms:

A filename, beginning with a leading slash, which indicates that messages
specified by the selector are to be written to the specified file. The file will be
opened in append mode.

The name of a remote host, prefixed with an@, as with: @server, which indi­
cates that messages specified by the selector are to be forwarded to the
syslogd on the named host.

A comma-separated list of usernames, which indicates that messages
specified by the selector are to be written to the named users if they are
logged in.

An asterisk, which indicates that messages specified by the selector are to be
written to all logged-in users.

Blank lines are ignored. Lines for which the first nonwhite character is a '#' are
treated as comments.

EXAMPLE

Page 2

With the following configuration file:

*.notice;mail.info
*.crit
kern,mark.debug
kern.err
*.emerg
*.alert
*.alert;auth.warning

/var/log/notice
/var/log/critical
/dev/console
@server
*
root,operator
/var /log/auth

syslogd will log all mail system messages except debug messages and all notice
(or higher) messages into a file named /var /log /notice. It logs all critical
messages into /var/log/critical, and all kernel messages and 20-minute marks
onto the system console.

Kernel messages of err (error) severity or higher are forwarded to the machine
named server. Emergency messages are forwarded to all users. The users root and
operator are informed of any alert messages. All messages from the authorization
system of warning level or higher are logged in the file /var /log I au th.

10/92

syslog.conf (4)

FILES
/etc/syslog.conf
/var/log/notice
/var/log/critical
/var/log/auth

SEE ALSO

(BSD Compatibility Package)

logger(l), lpr(l), syslogd(lM), syslog(3)

syslog.conf (4)

at(l), cron(lM), crontab(l), getty(lM), login(l), lp(l), m4(1), su(lM).

10/92 Page 3

system(4) system(4)

NAME
system - system configuration information file

DESCRIPTION

10/92

The system file is used during the configuration of a new operating system to
obtain configuration information that cannot be obtained from the Equipped Dev­
ice Table (EDT). The system file is /stand/system.

The system file generally contains a list of software drivers to include in the new
bootable operating system, the assignment of system devices such as swapdev and
rootdev, and instructions for excluding drivers from the configuration process.

The parser for the system file is case-sensitive. All upper case strings in the syntax
below should be upper case in the system file as well. Nonterminal symbols are
enclosed in angle brackets<>, whereas optional arguments are enclosed in square
brackets [J . Ellipses (. . .) indicate optional repetition of the argument for that
line.

The symbols in the syntax description below are interpreted as follows:

<fname> .. - pathname
<string> .. - driver file name from /boot or EDT entry name
<device> .. - special device name I DEV (<major>,<minor>)
<major> .. - <number>
<minor> .. - <number>
<number> .. - decimal, octal or hex literal

The lines listed below may appear in any order. Blank lines may be inserted at any
point. Comment lines must begin with an asterisk. Entries for EXCLUDE and
INCLUDE are cumulative. For all other entries, the last line to appear in the file is
used-any earlier entries are ignored.

BOOT: <fname>
Specifies the KERNEL object file to be used to build the bootable operating
system; if <fname> is the keyword DEFAULT, the configuration program
takes the KERNEL file from whatever boot directory it is using. For example,
if the user types cunix -b /my_boot_directory and the system file contains
the DEFAULT keyword for the BOOT directive, then the KERNEL file used is
/my_boot_directory/KERNEL. If no -b option is used then cunix searches
/boot by default; see cunix(lM).

EXCLUDE: <string> ...
Specifies drivers to exclude from the configuration even if the device is
found in the EDT.

INCLUDE: <string>[(<number>)] ...
Specifies software drivers or loadable modules to be included in the
configuration. The optional <number> (parentheses required) specifies the
number of devices to be controlled by the driver (defaults to 1). This
number corresponds to the builtin variable #C which may be referred to by
expressions in part one of the master file.

ROOTDEV: <device>
Identifies the device containing the root file system.

Page 1

system(4) system(4)

FILES

SWAPDEV: <device> <number> <number>
Identifies the device to be used as swap space. The <device> in this case
may be a special device file name or a regular file. The <number>s
correspond to the block number the swap space starts at and the number of
swap blocks available.

ICDDEV: <fname>
Specifies the regular special file containing an s5 file system image to be
used for the In-Core Disk by the new operating system. cunix(lM) will call
icdpatch(lM) to open and read the file if this field has a valid file name,
<fname>.

/stand/system

SEE ALSO

Page 2

crash(lM), cunix(lM), icdpatch(lM), and mkboot(lM),
master(4)

10/92

tape{7) tape{7)

NAME
tape - tape support

DESCRIPTION
Only the character (raw) interface is supported for tape drives.

The raw device nodes /dev/rmt/prefix_* allow the transfer of a specified number
of bytes between the tape drive and a location in the user's address space.

Tape devices may be accessed using fixed or variable block sizes. When operating
in fixed mode, tapes must be accessed using buffers in multiples of the configured
block size, typically 512 bytes. Exabyte tapes use 1024 bytes. Variable block mode
allows records to be any size from 1 byte to the device maximum length, typically
64 KB. However, not all tape devices support variable mode.

Attempts to access a tape in fixed mode with a block size not a multiple of the
configured block size results in an error (EIO).

By default, the generic device nodes for cartridge tapes are configured for fixed
block mode, and 9-track tape devices are configured for variable mode.

You can only write streaming tapes when the tape is positioned at beginning-of­
tape (BOT) or end-of-data (EOD). You may not overwrite a streaming tape in the
middle. To overwrite a streaming tape, you must rewind the tape before starting to
write data. To append a streaming tape, you must either perform an MTEND tape
ioctl operation before starting to write data or read until you reach EOD, and then
close and re-open the tape for writing.

Drivers return EIO when you attempt to read past the end of data, attempt to for­
ward space a record (MTFSR), or backward space a record (MTBSR) across an end-of­
file mark.

When an end-of-file mark is encountered while reading a tape, a zero-length or par­
tial read is returned. If a zero-length read is returned, the tape is positioned at the
end-of-media side of the end-of-file mark. If a partial read is returned, the tape is
positioned at the beginning-of-media side of the end-of-file mark, and the next read
succeeds with zero bytes returned. After the zero-length read, additional attempts
to read the tape return ENXIO.

Attempting to open a write-protected tape for writing fails and return EIO.

IMPORTANT INFORMATION
When dealing with tapes that contain multiple files or images, it is important to
understand how the forward-space-file (fsf) and back-space-file (bsf) commands
work. These commands move the tape by counting end-of-file marks actually
past over and therefore position the tape to the beginning-of-tape and end-of­
medium side of the last file mark skipped, respectively.

In order to get back to the beginning of the file just read you must rewind the tape
if the file is the first file on the tape. If the file is second or later on the tape, issue
the back-space-file (bsf) command twice followed by a single forward-space-file
(fsf) command.

IOCTL COMMANDS

10/92

Tapes support several ioctl(2) functions on the character or raw devices. These
functions permit control beyond the normal open(2), close(2), read(2), and
write(2) system calls. Any attempt to utilize ioctl(2) functions not listed in the

Page 1

tape(7) tape(7)

Page 2

following table causes an EINVAL error to be returned. This table gives an overview
of the available calls and their syntax, listed alphabetically and with descriptions.

MTIOCTOP

CALL SYNTAX

MI'IOCTOP

MI'IOCGET

mtget *arg;

ioctl (jildes, MTIOCTOP, *arg) struct mtop *arg;
The mt op structure and the value MI'IOCTOP

are defined in sys/mtio .h.

Valid operation codes are:
MI'BSF, MTBSR, MTCEOM, MI'END, MI'ERA,

MI'FSF, MI'FSR, M:I'NOP, MTOFFL, MI'REW,

MTTEN, and MTWEOF.

ioctl (jildes, MTIOCGET, *arg) struct

The mtget structure and the value MTIOCGET

are defined in sys/mtio.h.

The mtop structure is defined in sys/mtio. h. The operation this command
performs depends on the value of the mt_op and mt_count fields. The fol­
lowing values for the mt_op field are supported:

MTBSF Moves the tape backward past mt_count filemarks. The tape is
positioned at the beginning-of-medium side of the filemark. This
function is not supported by all tape drives. If it is not sup­
ported, the operation fails, returning ENXIO. If it is supported, it
will not fail if the operation is attempted before beginning-of­
tape.

MTBSR Moves the tape backward past mt_count records. For streaming
tapes, the record size is always the logical block size (512 bytes
default, 1024 bytes for Exabyte). This function is not supported
by all tape drives. Whenever it is not supported, the operation
fails, returning ENXIO.

MTCEOM Clears the end-of-media indicator.

MTEND Spaces forward to the end-of-data. For 9-track tapes, it spaces
forward two sequential filemarks and positions the tape between
them.

MTERA Erases the tape. The tape is rewound, erased, and rewound
again.

MTFSF Moves the tape forward past mt_count filemarks. The tape is
positioned at the end-of-medium side of the filemark. If this
operation is attempted while the tape is positioned at end-of­
data, it fails with EIO.

MTFSR Moves the tape forward past mt_count records. For streaming
tapes, the record size is always the logical block size (512 bytes
default, 1024 bytes for Exabyte). This function is not supported
by all tape drives. Whenever it is not supported, the operation
fails, returning ENXIO.

10/92

I

tape(7) tape(7)

MTNOP No operation.

MTOFFL Rewinds the tape and puts the drive offline. For some devices,
this may just rewind the tape. Note: operations normally done
during close (such as rewinding or writing filemarks) will not be
attempted if the drive is put offline.

MTREW Rewinds the tape.

MTTEN Retensions the tape. This operation is not supported by all tape
drives. Whenever it is not supported, the tape is rewound
instead.

MTWEOF Writes an end-of-file record. An end-of-file can be used only
after data has been written with the write(2) system call.

MTIOCGET

Returns status information about the tape drive. The mt_type field is set to
the appropriate value defined in sys/mtio. h. Bits in the mt_dsreg field
are set to indicate whether the tape is write protected or if the drive is
offline. Note: if there is no tape in the drive, it is considered both offline and
write-protected.

SEE ALSO
intro(7)

10/92 Page 3

TCP(7) (Internet Utilities) TCP(7)

NAME
TCP - Internet Transmission Control Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

t = t_open("/dev/tcp", O_RDWR);

DESCRIPTION

10/92

TCP is the virtual circuit protocol of the Internet protocol family. It provides reli­
able, flow-controlled, in order, two-way transmission of data. It is a byte-stream
protocol layered above the Internet Protocol (IP), the Internet protocol family's
internetwork datagram delivery protocol.

Programs can access TCP using the socket interface as a SOCK_STREAM socket type,
or using the Transport Level Interface (TLI) where it supports the connection­
oriented (T_COTS_ORD) service type.

TCP uses IP's host-level addressing and adds its own per-host collection of port
addresses. The endpoints of a TCP connection are identified by the combination of
an IP address and a TCP port number. Although other protocols, such as the User
Datagram Protocol (UDP), may use the same host and port address format, the port
space of these protocols is distinct. See inet(7) for details on the common aspects
of addressing in the Internet protocol family.

Sockets utilizing TCP are either active or passive. Active sockets initiate connec­
tions to passive sockets. Both types of sockets must have their local IP address and
TCP port number bound with the bind(2) system call after the socket is created. By
default, TCP sockets are active. A passive socket is created by calling the listen(2)
system call after binding the socket with bind () . This establishes a queueing
parameter for the passive socket. After this, connections to the passive socket can
be received with the accept(2) system call. Active sockets use the connect(2) call
after binding to initiate connections.

By using the special value INADDR_ANY, the local IP address can be left unspecified
in the bind () call by either active or passive TCP sockets. This feature is usually
used if the local address is either unknown or irrelevant. If left unspecified, the
local IP address will be bound at connection time to the address of the network
interface used to service the connection.

Once a connection has been established, data can be exchanged using the read(2)
and write(2) system calls.

TCP supports one socket option which is set with setsockopt () and tested with
getsockopt(2). Under most circumstances, TCP sends data when it is presented.
When outstanding data has not yet been acknowledged, it gathers small amounts
of output to be sent in a single packet once an acknowledgement is received. For a
small number of clients, such as window systems that send a stream of mouse
events which receive no replies, this packetization may cause significant delays.
Therefore, TCP provides a boolean option, TCP_NODELAY (defined in
/usr/include/netinet/tcp.h), to defeat this algorithm. The option level for

Page 1

TCP(7) (Internet Utilities) TCP(7)

the setsockopt () call is the protocol number for TCP, available from
getprotobyname () [see getprotoent(3N)].

Options at the IP level may be used with TCP; See ip(7).

TCP provides an urgent data mechanism, which may be invoked using the out-of­
band provisions of send(2). The caller may mark one byte as urgent with the
MSG_OOB flag to send(2). This sets an urgent pointer pointing to this byte in the TCP
stream. The receiver on the other side of the stream is notified of the urgent data by
a SIGURG signal. The SIOCATMARK ioctl () request returns a value indicating
whether the stream is at the urgent mark. Because the system never returns data
across the urgent mark in a single read(2) call, it is possible to advance to the
urgent data in a simple loop which reads data, testing the socket with the SIOCAT­
MARK ioctl () request, until it reaches the mark.

Incoming connection requests that include an IP source route option are noted, and
the reverse source route is used in responding.

A checksum over all data helps TCP implement reliability. Using a window-based
flow control mechanism that makes use of positive acknowledgements, sequence
numbers, and a retransmission strategy, TCP can usually recover when datagrams
are damaged, delayed, duplicated or delivered out of order by the underlying com­
munication medium.

If the local TCP receives no acknowledgements from its peer for a period of time, as
would be the case if the remote machine crashed, the connection is closed and an
error is returned to the user. If the remote machine reboots or otherwise loses state
information about a TCP connection, the connection is aborted and an error is
returned to the user.

SEE ALSO
read(2), write(2), accept(3N), bind(3N), connect(3N), getprotoent(3N),
getsockopt(3N), listen(3N), send(3N), inet(7), ip(7)

Postel, Jon, Transmission Control Protocol - DARPA Internet Program Protocol
Specification, RFC 793, Network Information Center, SRI International, Menlo Park,
Calif., September 1981

DIAGNOSTICS

Page 2

A socket operation may fail if:

EISCONN A connect () operation was attempted on a socket on
which a connect () operation had already been performed.

ETIMEDOUT

ECONNRESET

ECONNREFUSED

EADDRINUSE

A connection was dropped due to excessive retransmissions.

The remote peer forced the connection to be closed (usually
because the remote machine has lost state information about
the connection due to a crash).

The remote peer actively refused connection establishment
(usually because no process is listening to the port).

A bind () operation was attempted on a socket with a net­
work address/port pair that has already been bound to
another socket.

10/92

TCP(7)

EADDRNOTAVAIL

EACCES

ENOBUFS

10/92

(Internet Utilities) TCP(7)

A bind () operation was attempted on a socket with a net­
work address for which no network interface exists.

A bind () operation was attempted with a reserved port
number and the effective user ID of the process was not the
privileged user.

The system ran out of memory for internal data structures.

Page 3

term(4) term(4)

NAME
term - format of compiled term file

SYNOPSIS
/usr/share/lib/terminfo/?/*

DESCRIPTION

10/92

Compiled terminfo(4) descriptions are placed under the directory
/usr/share/lib/terminfo. In order to avoid a linear search of a huge UNIX sys­
tem directory, a two-level scheme is used: /usr I share/lib/terminfo/ c/name
where name is the name of the terminal, and c is the first character of name. Thus,
att4425 can be found in the file /usr/share/lib/terminfo/a/att4425.
Synonyms for the same terminal are implemented by multiple links to the same
compiled file.

The format has been chosen so that it is the same on all hardware. An 8-bit byte is
assumed, but no assumptions about byte ordering or sign extension are made.
Thus, these binary terminfo files can be transported to other hardware with 8-bit
bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least
significant 8 bits of the value, and the second byte contains the most significant 8
bits. (Thus, the value represented is 256*second+first.) The value -1 is represented
by 0377, 0377, and the value -2 is represented by 0376, 0377; other negative
values are illegal. The -1 generally means that a capability is missing from this ter­
minal. The -2 means that the capability has been cancelled in the terminfo source
and also is to be considered missing.

The compiled file is created from the source file descriptions of the terminals (see
the - I option of infocmp) by using the terminfo compiler, tic, and read by the
routine setupterm [see curses(3X).] The file is divided into six parts in the
following order: the header, terminal names, boolean flags, numbers, strings, and
string table.

The header section begins the file. This section contains six short integers in the for­
mat described below. These integers are (1) the magic number (octal 0432); (2) the
size, in bytes, of the names section; (3) the number of bytes in the boolean section;
(4) the number of short integers in the numbers section; (5) the number of offsets
(short integers) in the strings section; (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first line of the terminfo
description, listing the various names for the terminal, separated by the bar (I)
character (see term(S)). The section is terminated with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is
present or absent. The value of 2 means that the flag has been cancelled. The capa­
bilities are in the same order as the file <term. h>.

Between the boolean section and the number section, a null byte is inserted, if
necessary, to ensure that the number section begins on an even byte offset. All
short integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capability takes
up two bytes, and is stored as a short integer. If the value represented is -1 or -2,
the capability is taken to be missing.

Page 1

term(4) term(4)

Page 2

The strings section is also similar. Each capability is stored as a short integer, in the
format above. A value of -1 or - 2 means the capability is missing. Otherwise, the
value is taken as an offset from the beginning of the string table. Special characters
in 'X or \c notation are stored in their interpreted form, not the printing representa­
tion. Padding information ($<nn>) and parameter information (%x) are stored
intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilities
referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than
are actually present in the file. Either the database may have been updated since
setupterm has been recompiled (resulting in extra unrecognized entries in the file)
or the program may have been recompiled more recently than the database was
updated (resulting in missing entries). The routine setupterm must be prepared
for both possibilities - this is why the numbers and sizes are included. Also, new
capabilities must always be added at the end of the lists of boolean, number, and
string capabilities.

As an example, here is terminal information on the AT&T Model 37 KSR terminal as
output by the infocmp - I tty3 7 command:

371tty371AT&T model 37 teletype,
he, os, xon,
bel='G, cr=\r, cubl=\b, cudl=\n, cuul=\E7, hd=\E9,
hu=\E8, ind=\n,

And here is an octal dump of the term file,
/usr I share/lib/terminfo/t/tty3 7 command:

0000000 032 001 \0 032 \0 013 \0 021
0000020 t y 3 7 I A T & T
0000040 3 7 t e 1 e t y
0000060 \0 \0 \0 001 \0 \0 \0 \0 \0
0000100 001 \0 \0 \0 \0 \0 377 377 377
0000120 377 377 377 377 377 377 377 377 377
0000140 \0 377 377 377 377 377 377 377
0000160 377 377 \0 377 377 377 377 (
0000200 377 377 0 \0 377 377 377 377 377
0000220 377 377 377 377 377 377 377 377 377

*

produced by the od

001 3
m

P e
\0 \0

377 377
377 377
377 377

\0 377
377 377
377 377

\0
0

\0
001
377
377
377
377
377
377

3 7
d e

\0 \0
\0 \0

377 377
377 377
377 377
377 377

\0
377 377

-c

I
1

\0
\0

377
&

377
377
377
377

t

\0
\0

377
\0

377
377
377
377

0000520 377 377 377 377 377 377 377 377 377 377 377 377 377 377 $ \0
0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 * \0
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*
0001160
0001200
0001220
0001240
0001260
0001261

377 377 377 377 377 377 377 377 377 377 377 377 377 377 3
I t t y 3 7 I A T & T m o d
1 3 7 t e 1 e t y p e \0 \r

\n \0 \n \0 007 \0 \b \0 033 8 \0 033 9 \0 033
\0 \0

10/92

7
e

\0
7

term(4) term(4)

Some limitations: total compiled entries cannot exceed 4096 bytes; all entries in the
name field cannot exceed 128 bytes.

FILES
/usr I share/lib/terminfo/? I *compiled terminal description database
/usr /include/term.h terminfo header file

SEE ALSO
curses(3X).
infocmp(lM), terminfo(4), term(5)

10/92 Page 3

term info (4) (Terminal Information Utilities) terminfo (4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/share/lib/terminfo/?/*

DESCRIPTION

10/92

terminfo is a database produced by tic that describes the capabilities of devices
such as terminals and printers. Devices are described in terminfo source files by
specifying a set of capabilities, by quantifying certain aspects of the device, and by
specifying character sequences that effect particular results. This database is often
used by screen oriented applications such as vi and curses programs, as well as by
some UNIX system commands such as ls and more. This usage allows them to
work with a variety of devices without changes to the programs.

terminfo source files consist of one or more device descriptions. Each description
consists of a header (beginning in column 1) and one or more lines that list the
features for that particular device. Every line in a terminfo source file must end in
a comma (,). Every line in a terminfo source file except the header must be
indented with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped by
using a backslash. The following example shows the format of a terminfo source
file.

alias 1 I alias 2 I ... I aliasn I longname,
<white space> am, lines #24,
<white space> home=\Eeh,

The first line, commonly referred to as the header line, must begin in column one
and must contain at least two aliases separated by vertical bars. The last field in the
header line must be the long name of the device and it may contain any string.
Alias names must be unique in the terminfo database and they must conform to
UNIX system file naming conventions [see tic(lM)]; they cannot, for example,
contain white space or slashes.

Every device must be assigned a name, such as "vtlOO." Device names (except the
long name) should be chosen using the following conventions. The name should
not contain hyphens because hyphens are reserved for use when adding suffixes
that indicate special modes.

These special modes may be modes that the hardware can be in, or user preferences.
To assign a special mode to a particular device, append a suffix consisting of a
hyphen and an indicator of the mode to the device name. For example, the -w
suffix means "wide mode"; when specified, it allows for a width of 132 columns
instead of the standard 80 columns. Therefore, if you want to use a vtlOO device set
to wide mode, name the device "vtlOO-w." Use the following suffixes where possi­
ble.

Page 1

I

11
I

I'

terminfo (4) (Terminal Information Utilities) termi nfo (4)

Suffix Meaning Example

-w Wide mode (more than 80 columns) 5410-w
-am With auto. margins (usually default) vtlOO-arn
-narn Without automatic margins vtlOO-narn
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) clOO-na
-np Number of pages of memory cl00-4p
-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections: "Device Capa­
bilities" and "Printer Capabilities."

PART 1: DEVICE CAPABILITIES
Capabilities in terminfo are of three types: Boolean capabilities (which show that
a device has or does not have a particular feature), numeric capabilities (which
quantify particular features of a device), and string capabilities (which provide
sequences that can be used to perform particular operations on devices).

In the following table, Variable is the name by which a C programmer accesses a
capability (at the terminfo level). Capname is the short name for a capability
specified in the terminfo source file. It is used by a person updating the source file
and by the tput command. Termcap Code is a two-letter sequence that
corresponds to the termcap capability name. (Note that termcap is no longer sup­
ported.)

Capability names have no real length limit, but an informal limit of five characters
has been adopted to keep them short. Whenever possible, capability names are
chosen to be the same as or similar to those specified by the ANSI X3.64-1979 stan­
dard. Semantics are also intended to match those of the ANSI standard.

All string capabilities listed below may have padding specified, with the exception
of those used for input. Input capabilities, listed under the Strings section in the
following tables, have names beginning with key_. The # i symbol in the descrip­
tion field of the following tables refers to the ith parameter.

Booleans
Cap- Termcap

Variable name Code Description

auto_lef t_margin bw bw cubl wraps from column 0 to
last column

auto_right_margin am am Terminal has automatic margins
back_color_erase bee be Screen erased with background color
can_change CCC cc Terminal can re-define existing color
ceol_standout_glitch xhp XS Standout not erased by overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for hpa/mhpa caps
cpi_changes_res cpix YF Changing character pitch changes

resolution
cr_cancels_micro_mode crxm YB Using er turns off micro mode

Page 2 10/92

terminfo (4) (Terminal Information Utilities) terminfo (4)

Cap- Termcap
Variable name Code Description

eat_newline_glitch xenl xn Newline ignored after 80 columns
(Concept)

erase_overstrike eo eo Can erase overstrikes with a blank
generic_ type gn gn Generic line type (for example, dialup, switch) I

hard_ copy he he Hardcopy terminal !t
hard_ cursor ch ts HC Cursor is hard to see

I has_meta_key km km Has a meta key (shift, sets parity bit)
has_print_wheel daisy YC Printer needs operator to change

character set
has_status_line hs hs Has extra "status line"
hue_lightness_saturation hls hl Terminal uses only HLS color

notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch changes resolution
memory _above da da Display may be retained above the screen
memory_below db db Display may be retained below the screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode ms gr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won't work, xon/xoff required
no_esc_ctlc xsb xb Beehive (fl=escape, f2=ctrl C)
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
no__pad_char npc NP Pad character doesn't exist
over_strike OS OS Terminal overstrikes on hard-copy

terminal
prtr_silent mc5i Si Printer won't echo on screen
row_addr_glitch xvpa YD Only positive motion for vpa/mvpa caps
semi_auto_right_margin sam YE Printing in last column causes er
status_line_esc_ok eslok es Escape can be used on the status line
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)
tilde__glitch hz hz Hazeltine; can't print tilde n
transparent_underline ul ul Underline character overstrikes
xon_xof f xon XO Terminal uses xon/xoff handshaking

Numbers
Cap- Termcap

Variable name Code Description

buffer_capacity bufsz Ya Number of bytes buffered before printing
columns cols co Number of columns in a line
dot_vert_spacing spinv Yb Spacing of pins vertically in pins per inch
dot_horz_spacing Spinh Ye Spacing of dots horizontally in dots per inch
init_tabs it it Tabs initially every# spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label

I.
1.

10/92 Page 3 I

terminfo (4) (Terminal Information Utilities) terminfo (4)

Variable

lines
lines_of_memory

magic_cookie_glitch

max_ colors
max_micro_address

max_micro_jump

max_pairs

micro col_size

micro_line_size

no_color_video

number_of_pins
num_labels
output_res_char
output_res_line

output_res_horz_inch

output_res_vert_inch

padding_baud_rate

virtual_ terminal
wide_char_size

width_status_line

Strings

Page 4

Variable

acs_chars

alt_scancode_esc

back_ tab

bell
bit_image_repeat

bit_image_newline

bit_image_carriage_return

carriage_return

change_char_pitch
change_line_pitch
change_res_horz

change_res_vert

change_scroll_region
char_padding

Cap-
name

lines

lm
xmc

colors
maddr
mjump

pairs

mes
mls
ncv

npins

nlab
ore
orl
or hi

orvi

pb

vt
wides

wsl

Termcap
Code Description

li Number of lines on a screen or a page
lm Lines of memory if> lines; 0 means varies
sg Number of blank characters left by

smso or rmso

Co Maximum number of colors on the screen
Yd Maximum value inmicro_ ... _address

Ye Maximum value inparm_ ... _micro
pa Maximum number of color-pairs on the

screen
Yf Character step size when in micro mode
Yg Line step size when in micro mode
NC Video attributes that can't be used

with colors
Yh Number of pins in print-head
Nl Number of labels on screen (start at 1)
Yi Horizontal resolution in units per character
Yj Vertical resolution in units per line
Yk Horizontal resolution in units per inch
Yl Vertical resolution in units per inch
pb Lowest baud rate where padding needed
vt Virtual terminal number (UNIX system)
Yn Character step size when in double

wide mode
ws Number of columns in status line

Cap- Termcap
name Code Description

acsc ac Graphic charset pairs aAbBcC
scesca S8 Alternate escape for scancode emulation

(default is for vtlOO)
cbt bt Back tab
bel bl Audible signal (bell)
bi rep Zy Repeat bit-image cell #1 #2 times (use tparm)
bin el Zz Move to next row of the bit image (use tparm)
bier Yv Move to beginning of same row (use tparm)
er er Carriage return
cpi ZA Change number of characters per inch
lpi ZB Change number of lines per inch
chr zc Change horizontal resolution
cvr ZD Change vertical resolution
csr cs Change to lines #1 through #2 (vtlOO)
rmp rP Like ip but when in replace mode

10/92

terminfo (4) (Terminal Information Utilities) terminfo (4)

Cap- Termcap

Variable name Code Description

char_set_names cs nm Zy List of character set names

clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear all margins (top, bottom,

and sides)
clear_screen clear cl Clear screen and home cursor
clr_bol ell cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of <lisp lay
code_set_init cs in ci Init sequence for multiple codesets
color_narnes colornm Yw Give name for color #1

colurnn_address hpa ch Horizontal position absolute
command_ character cmdch cc Terminal settable cmd character

in prototype
cursor_address cup cm Move to row #1 col #2

cursor_down cudl do Down one line
cursor_home home ho Home cursor (if no cup)

cursor_invisible civis vi Make cursor invisible
cursor_left cubl le Move left one space.
cursor_mem_address mrcup CM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal

(undo vs/vi)
cursor_right cu fl nd Non-destructive space (cursor or

carriage right)
cursor_to_ll 11 11 Last line, first column (if no cup)

cursor_up cuul up Up line (cursor up)
cursor_ visible cvvis vs Make cursor very visible
define_bit _image_region defbi Yx Define rectangular bit-image region

(use tparm)
def ine_char defc ZE Define a character in a character set t

delete_character dchl de Delete character

delete_line dll dl Delete line

device_ type devt dv Indicate language/codeset support
dis_status_line dsl ds Disable status line
display_pc_char dispc Sl Display PC character
down_half_line hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region (use tparm)

enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Tum on automatic margins
enter_blink_mode blink mb Tum on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode

I

10/92 Page 5

terminfo (4) (Terminal Information Utilities) term info (4)

Cap- Termcap

Variable name Code Description

enter doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrf q ZG Set draft quality print
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_leftward_mode slm ZI Enable leftward carriage motion
enter_micro_mode smicm ZJ Enable micro motion capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis rnk Turn on blank mode

(characters invisible)
enter_shadow_mode sshm ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode
enter_subscript_rnode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm zo Enable superscript printing
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion
enter_xon_mode srnxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exi t_al t_charset _mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode sgrO me Turn off all attributes
exit_ca_Jllode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode nnir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion
exit_micro_mode rmicm ZT Disable micro motion capabilities
exit_pc_charset_mode rmpch S3 Disable PC character display mode
exit_scancode_mode rmsc SS Disable PC scancode mode
exit_shadow_mode rshm zu Disable shadow printing
exit_standout_mode rmso se End standout mode
exit_subscript_mode rsubm zv Disable subscript printing
exit_superscr1pt_mode rsupm zw Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward_mode rum zx Enable downward (normal)

carriage motion
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)

Page 6 10/92

terminfo(4) (Terminal Information Utilities) term info (4)

Cap- Termcap

Variable name Code Description

form_feed ff ff Hardcopy terminal page eject

from status line fsl fs Return from status line -
init _lstring isl il Terminal or printer initialization string

init _2string is2 is Terminal or printer initialization string

init _3string is3 i3 Terminal or printer initialization string

init file if if Name of initialization file -
init_prog iprog iP Path name of program for initialization

initialize_color initc Ic Initialize the definition of color

initialize_pair initp Ip Initialize color-pair

insert character ichl ic Insert character -
insert line ill al Add new blank line -
insert__padding ip ip Insert pad after character inserted

The "key_" strings are sent by specific keys. The "key_" descriptions include the
macro, defined in curses. h, for the code returned by the curses routine get ch
when the key is pressed [see curs_getch(3X)].

key_al kal Kl KEY_ Al, upper left of keypad

key_a3 ka3 K3 KEY_A3, upper right of keypad

key_b2 kb2 K2 KEY_B2, center of keypad

key_backspace kbs kb KEY_BACKSPACE, sent by backspace key

key_beg kbeg @l KEY_BEG, sent by beg(inning) key

key_btab kcbt kB KEY_BTAB, sent by back-tab key
key_cl kcl K4 KEY_Cl, lower left of keypad

key_c3 kc3 KS KEY_C3, lower right of keypad
key_cancel kc an @2 KEY_CANCEL, sent by cancel key

key_catab ktbc ka KEY_CATAB, sent by clear-all-tabs key

key_clear kclr kC KEY_ CLEAR, sent by dear-screen or

erase key
key_close kc lo @3 KEY_ CLOSE, sent by close key

key_command kcmd @4 KEY_ COMMAND, sent by cmd (command)

key
key_copy kcpy @5 KEY_COPY, sent by copy key

key_create kc rt @6 KEY_ CREATE, sent by create key

key_ctab kc tab kt KEY_CTAB, sent by clear-tab key

key_dc kdchl kD KEY_DC, sent by delete-character key

key_dl kdll kL KEY_DL, sent by delete-line key

key_down kcudl kd KEY_DOWN, sent by terminal
I down-arrow key

key_eic krmir kM KEY_EIC, sent by rmir or smir in
I insert mode

key_end kend @7 KEY_END, sent by end key

key_enter kent @8 KEY_ENTER, sent by enter/send key

key_eol kel kE KEY_EOL, sent by clear-to-end-of-line

10/92 Page 7

terminfo (4) (Terminal Information Utilities) term info (4)

Cap- Termcap
Variable name Code Description

key
key_eos ked kS KEY_EOS, sent by clear-to-end-of-screen

key
key_exit kext @9 KEY_EXIT, sent by exit key
key_fO kfO kO KEY_F (0), sent by function key fO
key_fl kfl kl KEY_F (1), sent by function key fl
key_f2 kf2 k2 KEY_F (2), sent by function key f2
key_f3 kf3 k3 KEY_F (3), sent by function key f3
key_f4 kf4 k4 KEY_F (4), sent by function key f4
key_f5 kf5 k5 KEY_F (5), sent by function key f5
key_f6 kf6 k6 KEY_F (6), sent by function key f6
key_f7 kf7 k7 KEY_F (7), sent by function key f7
key_f8 kf8 k8 KEY_F (8), sent by function key f8
key_f9 kf9 k9 KEY_F (9) , sent by function key f9
key_flO kflO k· KEY_F (10), sent by function key flO
key_fll kfll Fl KEY_F (11), sent by function key fll
key_f12 kf12 F2 KEY_F (12), sent by function key f12
key_f13 kf13 F3 KEY_F (13) , sent by function key f13
key_f14 kf14 F4 KEY_F (14), sent by function key f14
key_f15 kf15 FS KEY_F (15), sent by function key f15
key_f16 kf16 F6 KEY_F (16), sent by function key f16
key_fl 7 kf17 F7 KEY_F (1 7) , sent by function key f17
key_f18 kf18 F8 KEY_F (18), sent by function key f18
key_f19 kf19 F9 KEY_F (19), sent by function key f19
key_f20 kf20 FA KEY_F (20), sent by function key f20
key_f21 kf21 FB KEY_F (21), sent by function key f21
key_f22 kf22 FC KEY_F (22), sent by function key f22
key_f23 kf23 FD KEY_F (23), sent by function keyf23
key_f24 kf24 FE KEY_F (2 4) , sent by function key f24
key_f25 kf25 FF KEY_F (2 5), sent by function key f25
key_f26 kf26 FG KEY_F (2 6), sent by function key f26
key_f27 kf27 FH KEY_F (27), sent by function key f27
key_f28 kf28 FI KEY_F (2 8) , sent by function key f28
key_f29 kf29 FJ KEY_F (2 9), sent by function key f29
key_f30 kf30 FK KEY_F (3 0) , sent by function key f30
key_f31 kf31 FL KEY_F (31) , sent by function key f31
key_f32 kf32 FM KEY_F (32), sent by function key f32
key_f33 kf33 FN KEY_F (13), sent by function key f13
key_f34 kf34 FO KEY_F (3 4) , sent by function key f34
key_f35 kf35 FP KEY_F (3 5) , sent by function key f35
key_f36 kf36 FQ KEY_F (3 6) , sent by function key f36
key_f37 kf37 FR KEY_F (3 7) , sent by function key f37
key_f38 kf38 FS KEY_F (3 8) , sent by function key f38
key_f39 kf39 FT KEY_F (3 9) , sent by function key f39

Page 8 10/92

terminfo(4) (Terminal Information Utilities) terminfo(4)

Cap- Termcap
Variable name Code Description

key_f40 kf40 FU KEY_F (40), sent by function key f40
key_f41 kf41 FV KEY_F (41), sent by function key f41 '

key_f42 kf42 FW KEY_F (42), sent by function key f42 I
key_f43 kf43 FX KEY_F (43), sent by function key f43

I• key_f44 kf44 FY KEY_F (44), sent by function key f44
key_f45 kf45 FZ KEY_F (45), sent by function key f45 I
key_f46 kf46 Fa KEY_F (46), sent by function key f46

I key_f47 kf47 Fb KEY_F (4 7), sent by function key f47
key_f48 kf48 Fe KEY_F (48), sent by function key f48 I

I
key_f49 kf49 Fd KEY_F (49), sent by function key f49

I key_f50 kf50 Fe KEY_F (50), sent by function key f50
key_f51 kf51 Ff KEY_F (51), sent by function key f51
key_f52 kf52 Fg KEY_F (52), sent by function key f52
key_f53 kf53 Fh KEY_F (53), sent by function key f53
key_f54 kf54 Fi KEY_F (54), sent by function key f54
key_f55 kf55 Fj KEY_F (55), sent by function key f55
key_f56 kf56 Fk KEY_F (56), sent by function key f56
key_f57 kf57 Fl KEY_F (57), sent by function key f57
key_f58 kf58 Fm KEY_F (5 8) , sent by function key f58
key_f59 kf 59 Fn KEY_F (59), sent by function key f59
key_f60 kf60 Fo KEY_F (60), sent by function key f60
key_f61 kf61 Fp KEY_F (61), sent by function key f61
key_f62 kf62 Fq KEY_F (62), sent by function key f62
key_f63 kf63 Fr KEY_F (63), sent by function key f63
key_find kfnd @O KEY_FIND, sent by find key
key_help khlp %1 KEY_HELP, sent by help key
key_llome khome kh KEY_HOME, sent by home key
key_ic kichl kI KEY_IC, sent by ins-char /enter

ins-mode key
key_il kill kA KEY_IL, sent by insert-line key
key_left kcubl kl KEY_LEFT, sent by terminal left-arrow

key
key_ll kll kH KEY_LL, sent by home-down key
key_;nark Janrk %2 KEY_MARK, sent by mark key
key_;nessage kmsg %3 KEY_MESSAGE, sent by message key
key_move kmov %4 KEY_MOVE, sent by move key
key_next knxt %5 KEY_NEXT, sent by next-object key
key_Jlpage knp kN KEY_NPAGE, sent by next-page key
key_open kopn %6 KEY_OPEN, sent by open key
key_aptions kopt %7 KEY_OPTIONS, sent by options key
key__ppage kpp kP KEY_PPAGE, sent by previous-page key
key __previous kprv %8 KEY_PREVIOUS, sent by previous-object

key
key__print kprt %9 KEY_PRINT, sent by print or copy key

10/92 Page 9

term info (4) (Terminal Information Utilities) terminfo (4)

Cap- Termcap

Variable name Code Description

key_redo krdo %0 KEY_REDO, sent by redo key

key_reference kref &1 KEY_REFERENCE, sent by ref(erence) key

key_refresh krfr &2 KEY_REFRESH, sent by refresh key

key_replace krpl &3 KEY_REPLACE, sent by replace key

key_restart krst &4 KEY_RESTART, sent by restart key
key_resume kres &5 KEY_RESUME, sent by resume key

key_right kcufl kr KEY_RIGHT, sent by terminal

right-arrow key
key_save ksav &6 KEY_SAVE, sent by save key

key_sbeg kBEG &9 KEY_SBEG, sent by shifted beginrtlng key

key_scancel kCAN &0 KEY_SCANCEL, sent by shifted cancel key

key _scomma.nd kCMD *l KEY_5COMMAND, sent by shifted

command key
key_scopy kCPY *2 KEY_SCOPY, sent by shifted copy key

key_screate kCRT *3 KEY_5CREATE, sent by shifted create key

key_sdc kDC *4 KEY_5DC, sent by shifted delete-char key
key_sdl kDL *5 KEY_5DL, sent by shifted delete-line key

key_select kslt *6 KEY_SELECT, sent by select key

key_send kEND *7 KEY_SEND, sent by shifted end key

key_seol kEOL *8 KEY_SEOL, sent by shifted clear-line key

key_sexit kEXT *9 KEY_SEXIT, sent by shifted exit key

key_sf kind kF KEY_SF, sent by scroll-forward/ down

key

key_sfind kFND *O KEY_SFIND, sent by shifted find key
key_shelp kHLP #1 KEY_SHELP, sent by shifted help key

key_shome kHOM #2 KEY_SHOME, sent by shifted home key

key_sic kIC #3 KEY_SIC, sent by shifted input key
key_sleft kLFT #4 KEY_5LEFT, sent by shifted left-arrow

key

key_smessage kMSG %a KEY_SMESSAGE, sent by shifted message

key

key_smove kMOV %b KEY_SMOVE, sent by shifted move key

key_snext kNXT %c KEY_SNEXT, sent by shifted next key
key_soptions kOPT %d KEY_SOPTIONS, sent by shifted options

key
key_sprevious kPRV %e KEY_SPREVIOUS, sent by shifted prev

key
key_sprint kPRT %f KEY_SPRINT, sent by shifted print key

key_sr kri kR KEY_SR, sent by scroll-backward/up

key
key_sredo kRDO %g KEY_SREDO, sent by shifted redo key

key_sreplace kRPL %h KEY_SREPLACE, sent by shifted replace

key

key_sright kRIT %i KEY_SRIGHT,sentbyshifted

Page 10 10/92

termi nfo (4) (Terminal Information Utilities) terminfo(4)

Cap- Termcap
Variable name Code Description

right-arrow key
key_srsurne kRES %j KEY_8RSUME, sent by shifted resume

key
key_ssave kSAV !1 KEY_SSAVE, sent by shifted save key
key_ssuspend kSPD !2 KEY_SSUSPEND, sent by shifted suspend

key
key_stab khts kT KEY_8TAB, sent by set-tab key
key_sundo kUND !3 KEY_8UNDO, sent by shifted undo key
key_suspend kspd &7 KEY_8USPEND,sentby

suspend key
key_undo kund &8 KEY_UNDO, sent by undo key
key_up kcuul ku KEY_UP, sent by terminal up-arrow key
keypad_local rmkx ke Out of "keypad-transmit" mode
keypad_xrnit srnkx ks Put terminal in "keypad-transmit" mode
lab_fO HO 10 Labels on function key fO if not fO
lab_fl lfl 11 Labels on function key fl if not fl
lab_f2 lf2 12 Labels on function key f2 if not f2
lab_f3 lf3 13 Labels on function key f3 if not f3
lab_f4 lf4 14 Labels on function key f4 if not f4
lab_f 5 lf5 15 Labels on function key £5 if not f5
lab_f6 lf6 16 Labels on function key f6 if not f6
lab_f7 lf7 17 Labels on function key fl if not fl
lab_f 8 lf8 18 Labels on function key f8 if not f8
lab_f9 lf9 19 Labels on function key f9 if not f9
lab_flO lflO la Labels on function key flO if not flO
label_off nnln LF Turn off soft labels
label_ on smln LO Turn on soft labels
meta_of f rmm mo Turn off "meta mode"
meta_ on smm mm Turn on "meta mode" (8th bit)
micro_column_address rnhpa ZY Like column_address for micro

adjustment
micro_down mcudl zz Like cursor_down for micro adjustment
micro_left mcubl Za Like cursor_left for micro adjustment
micro_right mcufl Zb Like cursor_right for micro

adjustment
micro_row_address mvpa Zc Like row_address for micro adjustment
micro_up mcuul Zd Like cursor_up for micro adjustment
newline nel nw Newline (behaves like er followed

bylf)
order_of__pins po rd er Ze Matches software bits to print-head pins
orig_colors oc oc Set all color(-pair)s to the original ones
orig__pair op op Set default color-pair to the original one
pad_ char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars

10/92 Page 11

terminfo (4) (Terminal Information Utilities) terminfo (4)

Cap- Termcap
Variable name Code Description

pann_delete_line dl DL Delete #1 lines
parm_down_cursor cud DO Move down #1 lines.
parm_down_micro mcud Zf Like pann_down_cursor for micro

adjust.
pann_ich ich IC Insert #1 blank chars
parm_index indn SF Scroll forward #1 lines.
parm_insert_line il AL Add #1 new blank lines
pann_left_cursor cub LE Move cursor left #1 spaces
pann_lef t_micro mcub Zg Like pann_left_cursor for micro

adjust.
parm_right_cursor cuf RI Move right #1 spaces.
parm_right_micro mcuf Zh Like pann_right_cursor for micro

adjust.
parm_rindex rin SR Scroll backward #1 lines.
parm_up_cursor cuu UP Move cursor up #1 lines.
parm_up_micro mcuu Zi Like pann_up_cursor for micro adjust.
pc_tenn_opLi.ons pct rm S6 PC terminal options
pkey_key pf key pk Prog funct key #1 to type string #2
pkey_local pfloc pl Prog funct key #1 to execute string #2
pkey__plab pfxl xl Prog key #1 to xmit string #2 and show string #3
pkey_xmit pfx px Prog funct key #1 to xm.it string #2
plab_nonn pln pn Prog label #1 to show string #2
print_screen mcO ps Print contents of the screen
prtr_non mc5p pO Tum on the printer for #1 bytes
prtr_off mc4 pf Tum off the printer
prtr_on mc5 po Tum on the printer
repeat_char rep rp Repeat char #1 #2 times
req_f or_input rfi RF Send next input char (for ptys)
reset_lstring rsl rl Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes
reset file rf rf Name of file containing reset string
restore_ cursor re re Restore cursor to position of last sc
row_address vpa CV Vertical position absolute
save_ cursor SC SC Save cursor position
scancode_escape scesc S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
setO_des_seq sOds so Shift into codeset 0 (EUC set 0, ASCII)
setl_des_seq slds sl Shift into codeset 1
set2_des_seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3
set_a_background set ab AB Set background color using ANSI escape

Page 12 10/92

terminfo(4) (Terminal Information Utilities) term info (4)

Variable

set_a_f oreground
set_attributes
set_background
set_bottom_margin
set_bottom_margin_pann

set_color_band
set_color_pair
set_f oreground
set_lef t_margin
set_lef t_margin_pann
set_lr_margin
set_page_length
set_right_margin
set_right_margin_pann
set_tab
set_tb_margin
set_top_margin
set_top_margin_pann
set_ window
start_bit_image
start_char_set_def
stop_bi t_image
stop_char_set_def
subscript_characters
superscript_characters
tab
these_ cause_ er
to_status_line
underline_char
up_half_line
xoff_character
xon_character
zero_motion

Termcap Cap­
name Code Description

setaf AF
sgr sa
setb Sb
smgb Zk
smgbp Zl

setcolor Yz
Sep Sp

setf Sf
smgl ML

smglp Zm

smglr ML

slines YZ
smgr MR

smgrp Zn
hts st
smgtb MT

smgt Zo
smgtp Zp
wind wi
sbim Zq
scsd Zr
rbim Zs
rcsd Zt
subcs
supcs
ht
doer
tsl
UC

hu
xoffc
xonc
zerom

Zu
zv
ta
zw
ts
UC

hu
XF

XN

Zx

Set foreground color using ANSI escape
Define the video attributes #1-#9
Set current background color
Set bottom margin at current line
Set bottom margin at line #1 or #2
lines from bottom
Change to ribbon color #1
Set current color-pair
Set current foreground colorl
Set left margin at current line
Set left (right) margin at column #1 (#2)
Sets both left and right margins
Set page length to #1 lines (use tparm)
Set right margin at current column
Set right margin at column #1
Set a tab in all rows, current column
Sets both top and bottom margins
Set top margin at current line
Set top (bottom) margin at line #1 (#2)
Current window is lines #1-#2 cols #3-#4
Start printing bit image graphics
Start definition of a character set
End printing bit image graphics
End definition of a character set
List of "subscript-able" characters
List of "superscript-able" characters
Tab to next 8-space hardware tab stop
Printing any of these chars causes er
Go to status line, col #1
Underscore one char and move past it
Half-line up (reverse 1/2 linefeed)
X-off character
X-on character
No motion for the subsequent character

Sample Entry

10/92

The following entry, which describes the AT&T 610 terminal, is among the more
complex entries in the terminfo file as of this writing.

610 I 610bct I ATT610 I att610 I AT&T 610; 80 column; 98key keyboard
am, eslok, hs, mir, msgr, xenl, xon,
cols#SO, it#8, lh#2, lines#24, lw#S, nlab#8, wsl#SO,
acsc=''aaffggjjkkllrnmnnooppqqrrssttuuvvwwxxyyzz{{I I}}--,
bel=AG, blink=\E[5m, bold=\E[lm, cbt=\E[Z,
civis=\E[?251, clear=\E[H\E[J, cnorm=\E[?25h\E[?121,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%d.D, cubl=\b,
cud=\E[%p1%dB, cudl=\E[B, cuf=\E[%p1%dC, cufl=\E[C,
cup=\E[%i%p1%d;%p2%dH, CUU=\E[%p1%dA, cuul=\E[A,

Page 13

~
I
I

I

I

I
I

i ~

J
I
f

I

terminfo (4) (Terminal Information Utilities) terminfo (4)

cvvis=\E[?12;25h, dch=\E[%p1%dP, dchl=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dll=\E[M, ed=\E[J, el=\E[K, ell=\E[lK,
flash=\E[?5h$<200>\E[?51, fsl=\ES, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, ill=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[Sm,
isl=\E[S;O I \E[?3;4;5;13;151\E[13;201\E[?7h\E[12h\E(B\E)O,
is2=\E[OmAO, is3=\E(B\E)O, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=AH, kcbt=\E[Z, kclr=\E[2J, kcubl=\E[D, kcudl=\E[B,
kcufl=\E[C, kcuul=\E[A, kfl=\EOc, kflO=\ENp,
kfll=\ENq, kfl2=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EOd,
kf3=\E0e, kf4=\EOf, kf5=\E0g, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%p1%d;%p2%1%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%pl%d;O;O;Oq%p2%:-16.16s, rc=\ES, rev=\E[7m,
ri=\EM, rmacs=AO, rmir=\E[41, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?31, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;

%?%p3%p1% I %t;7%;%?%p7%t;8%;rn%?%p9%t~N%eAO%;,
sgrO=\E[mAO, smacs=AN, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of terminfo capabilities
listed: Boolean, numeric, and string. All capabilities specified in the terminfo
source file must be followed by commas, including the last capability in the source
file. In terminfo source files, capabilities are referenced by their capability names
(as shown in the previous tables).

Boolean capabilities are specified simply by their comma separated cap names.

Numeric capabilities are followed by the character '#' and then a positive integer
value. Thus, in the sample, cols (which shows the number of columns available
on a device) is assigned the value 80 for the AT&T 610. (Values for numeric capa­
bilities may be specified in decimal, octal, or hexadecimal, using normal C program­
ming language conventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are
listed by a two- to five-character capname, an '=', and a string ended by the next
occurrence of a comma. A delay in milliseconds may appear anywhere in such a
capability, preceded by$ and enclosed in angle brackets, as in el=\EK$<3>. Pad­
ding characters are supplied by tput. The delay can be any of the following: a
number, a number followed by an asterisk, such as 5*, a number followed by a
slash, such as 5 I, or a number followed by both, such as 5 *I. A '* ' shows that the
padding required is proportional to the number of lines affected by the operation,
and the amount given is the per-affected-unit padding required. (In the case of
insert characters, the factor is still the number of lines affected. This is always 1
unless the device has in and the software uses it.) When a '*' is specified, it is
sometimes useful to give a delay of the form 3 . 5 to specify a delay per unit to
tenths of milliseconds. (Only one decimal place is allowed.)

Page 14 10/92

termi nfo (4) (Terminal Information Utilities) termi nfo (4)

A'/' indicates that the padding is mandatory. If a device has xon defined, the pad­
ding information is advisory and will only be used for cost estimates or when the
device is in raw mode. Mandatory padding will be transmitted regardless of the
setting of xon. If padding (whether advisory or mandatory) is specified for bel or
flash, however, it will always be used, regardless of whether xon is specified.

terminfo offers notation for encoding special characters. Both \E and \e map to
an ESCAPE character, Ax maps to a control x for any appropriate x, and the
sequences\n, \1, \r, \t, \b, \f,and\sgiveanewline,linefeed,retum,tab,
backspace, formfeed, and space, respectively. Other escapes include: \A for caret
('); \ \ for backslash(\); \,for comma (,); \: for colon(:); and \0 for null. (\0 will
actually produce \200, which does not terminate a string but behaves as a null
character on most devices, providing CS7 is specified. [See stty(l).] Finally, char­
acters may be given as three octal digits after a backslash (for example, \ 123).

Sometimes individual capabilities must be commented out. To do this, put a
period before the capability name. For example, see the second ind in the example
above. Note that capabilities are defined in a left-to-right order and, therefore, a
prior definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a device description is by imitating the descrip­
tion of a similar device in terminfo and building up a description gradually, using
partial descriptions with vi to check that they are correct. Be aware that a very
unusual device may expose deficiencies in the ability of the terminfo file to
describe it or the inability of vi to work with that device. To test a new device
description, set the environment variable TERMINFO to the pathname of a directory
containing the compiled description you are working on and programs will look
there rather than in /usr/share/lib/terminfo. To get the padding for insert-line
correct (if the device manufacturer did not document it) a severe test is to comment
out xon, edit a large file at 9600 baud with vi, delete 16 or so lines from the middle
of the screen, and then press the u key several times quickly. If the display is cor­
rupted, more padding is usually needed. A similar test can be used for insert­
character.

Section 1-1 : Basic Capabilities

10/92

The number of columns on each line for the device is given by the cols numeric
capability. If the device has a screen, then the number of lines on the screen is
given by the lines capability. If the device wraps around to the beginning of the
next line when it reaches the right margin, then it should have the am capability. If
the terminal can clear its screen, leaving the cursor in the home position, then this is
given by the clear string capability. If the terminal overstrikes (rather than clear­
ing a position when a character is struck over) then it should have the os capability.
If the device is a printing terminal, with no soft copy unit, specify both he and os.
If there is a way to move the cursor to the left edge of the current row, specify this
as er. (Normally this will be carriage return, control M.) If there is a way to pro­
duce an audible signal (such as a bell or a beep), specify it as bel. If, like most dev­
ices, the device uses the xon-xoff flow-control protocol, specify xon.

If there is a way to move the cursor one position to the left (such as backspace), that
capability should be given as cubl. Similarly, sequences to move to the right, up,
and down should be given as cufl, cuul, and cudl, respectively. These local cur­
sor motions must not alter the text they pass over; for example, you would not

Page 15

terminfo (4) (Terminal Information Utilities) terminfo (4)

normally use cufl=\s because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in tenninfo
are undefined at the left and top edges of a screen terminal. Programs should never
attempt to backspace around the left edge, unless bw is specified, and should never
attempt to go up locally off the top. To scroll text up, a program goes to the bottom
left comer of the screen and sends the ind (index) string.

To scroll text down, a program goes to the top left comer of the screen and sends
the ri (reverse index) string. The strings ind and ri are undefined when not on
their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These versions
have the same semantics as ind and ri, except that they take one parameter and
scroll the number of lines specified by that parameter. They are also undefined
except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when
text is output, but this does not necessarily apply to a cufl from the last column.
Backward motion from the left edge of the screen is possible only when bw is
specified. In this case, cubl will move to the right edge of the previous row. If bw
is not given, the effect is undefined. This is useful for drawing a box around the
edge of the screen, for example. If the device has switch selectable automatic mar­
gins, am should be specified in the tenninfo source file. In this case, initialization
strings should tum on this option, if possible. If the device has a command that
moves to the first column of the next line, that command can be given as nel (new­
line). It does not matter if the command clears the remainder of the current line, so
if the device has no er and lf it may still be possible to craft a working nel out of
one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T 5320 hardcopy terminal is described as follows:

53201att53201AT&T 5320 hardcopy tenninal,
am, he, os,
cols#132,
bel=AG, cr=\r, cubl=\b, cndl=\n,
dchl=\E[P, dll=\E[M,
ind=\n,

while the Lear Siegler ADM-3 is described as

adm3 I lsi adm3,
am, bel=AG, clear=AZ, cols#80, cr=AM, cubl=AH,
cudl=AJ, ind=AJ, lines#24,

Section 1-2: Parameterized Strings
Cursor addressing and other strings requmng parameters are described by a
parameterized string capability, with printf-like escapes (%x) in it. For example,
to address the cursor, the cup capability is given, using two parameters: the row
and column to address to. (Rows and columns are numbered from zero and refer to
the physical screen visible to the user, not to any unseen memory.) If the terminal
has memory relative cursor addressing, that can be indicated by mrcup.

Page 16 10/92

termi nfo (4) (Terminal Information Utilities) terminfo (4)

10/92

The parameter mechanism uses a stack and special % codes to manipulate the stack
in the manner of Reverse Polish Notation (postfix). Typically a sequence will push
one of the parameters onto the stack and then print it in some format. Often more
complex operations are necessary. Operations are in postfix form with the
operands in the usual order. That is, to subtract 5 from the first parameter, one
would use %p1%{5}%-.

The % encodings have the following meanings:

%% outputs '%'

% [[: Jflags][width[.precision]][doxXs]
asinprintf,flagsare [-+#]and space

%c print pop gives %c
%p[l-9]

push ith parm
%P[a-z]

set dynamic variable [a-z] to pop
%g[a-z]

get dynamic variable [a-z] and push it
%P[A-Z]

set static variable [a-z] to pop
%g[A-Z]

%'C'

%{nn}

%1

%+ %-

%& %1

get static variable [a-z] and push it

push char constant c
push decimal constant nn
push strlen(pop)

%* %/ %m
arithmetic (%mis mod): push(pop integer2 op pop integer 1)

%A

bit operations: push(pop integer2 op pop integer1)

%= %> %<
logical operations: push(pop integer2 op pop integer 1)

%A %0 logical operations: and, or

% ! %- unary operations: push(op pop)

%i (for ANSI terminals) add 1 to first parm, if one parm present, or first two
parms, if more than one parm present

% ? expr %t thenpart %e elsepart % ;
if-then-else, %e elsepart is optional; else-if's are possible ala Algol 68: %? c1
%t b1 %e _c2 %t b2 %e c;>. %t b3 %e c4 %t b4 %e b5%;
ci are conditions, bi are boa1es.

If the"-" flag is used with "%[doxXs]", then a colon(:) must be placed between
the "%" and the "-" to differentiate the flag from the binary"%-" operator, for
example,"%: -16 .16s".

Page 17

I

terminfo (4) (Terminal Information Utilities) terminfo(4)

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to
be sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column are zero-padded as two
digits. Thus its cup capability is:

cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a AT,
with the row and column simply encoded in binary, "cup=AT%p1%c%p2%c"~ Dev­
ices that use "%c" need to be able to backspace the cursor (cubl), and to move the
cursor up one line on the screen (cuul). This is necessary because it is not always
safe to transmit \n, AD, and \r, as the system may change or discard them. (The
library routines dealing with tenninfo set tty modes so that tabs are never
expanded, so \ t is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus "cup=\E=%p1%'\s'%+%c%p2%'\s'%+%c". After sending "\E=",
this pushes the first parameter, pushes the ASCII value for a space (32), adds them
(pushing the sum on the stack in place of the two previous values), and outputs
that value as a character. Then the same is done for the second parameter. More
complex arithmetic is possible using the stack.

Section 1-3: Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left comer of
screen) then this can be given as home; similarly a fast way of getting to the lower
left-hand corner can be given as 11; this may involve going up with cuul from the
home position, but a program should never do this itself (unless 11 does) because it
can make no assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the top left comer
of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard termi­
nals cannot be used for home without losing some of the other features on the ter­
minal.)

If the device has row or column absolute-cursor addressing, these can be given as
single parameter capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes these are shorter than the more general two­
parameter sequence (as with the Hewlett-Packard 2645) and can be used in prefer­
ence to cup. If there are parameterized local motions (for example, move n spaces
to the right) these can be given as cud, cub, cuf, and cuu with a single parameter
indicating how many spaces to move. These are primarily useful if the device does
not have cup, such as the Tektronix 4025.

If the device needs to be in a special mode when running a program that uses these
capabilities, the codes to enter and exit this mode can be given as smcup and nncup.
This arises, for example, from terminals, such as the Concept, with more than one
page of memory. If the device has only memory relative cursor addressing and not
screen relative cursor addressing, a one screen-sized window must be fixed into the
device for cursor addressing to work properly. This is also used for the Tektronix
4025, where smcup sets the command character to be the one used by tenninfo. If
the smcup sequence will not restore the screen after an nncup sequence is output (to
the state prior to outputting nncup), specify nrnnc.

Page 18 10/92

terminfo(4) (Terminal Information Utilities) terminfo (4)

Section 1-4: Area Clears
If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el. If the terminal can clear from the
beginning of the line to the current position inclusive, leaving the cursor where it is,
this should be given as ell. If the terminal can clear from the current position to
the end of the display, then this should be given as ed. ed is only defined from the
first column of a line. (Thus, it can be simulated by a request to delete a large
number of lines, if a true ed is not available.)

Section 1-5: Insert/Delete Line
If the terminal can open a new blank line before the line where the cursor is, this
should be given as ill; this is done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal can delete the line which
the cursor is on, then this should be given as dll; this is done only from the first
position on the line to be deleted. Versions of ill and dll which take a single
parameter and insert or delete that many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VTlOO) the com­
mand to set this can be described with the csr capability, which takes two parame­
ters: the top and bottom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the effect of insert or
delete line using this command - the sc and re (save and restore cursor) com­
mands are also useful. Inserting lines at the top or bottom of the screen can also be
done using ri or ind on many terminals without a true insert/delete line, and is
often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non­
destructive scrolling regions, create a scrolling region in the middle of the screen,
place data on the bottom line of the scrolling region, move the cursor to the top line
of the scrolling region, and do a reverse index (ri) followed by a delete line (dll) or
index (ind). If the data that was originally on the bottom line of the scrolling
region was restored into the scrolling region by the dll or ind, then the terminal
has non-destructive scrolling regions. Otherwise, it has destructive scrolling
regions. Do not specify csr if the terminal has non-destructive scrolling regions,
unless ind, ri, indn, rin, dl, and dll all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all com­
mands affect, it should be given as the parameterized string wind. The four param­
eters are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

Section 1-6: Insert/Delete Character

10/92

There are two basic kinds of intelligent terminals with respect to insert/ delete char­
acter operations which can be described using terminfo. The most common
insert/delete character operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can

Page 19

I:

terminfo (4) (Terminal Information Utilities) terminfo (4)

determine the kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type "abc def" using local cursor motions (not
spaces) between the abc and the def. Then position the cursor before the abc and
put the terminal in insert mode. If typing characters causes the rest of the line to
shift rigidly and characters to fall off the end, then your terminal does not distin­
guish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the capability in,
which stands for "insert null." While these are two logically separate attributes
(one line versus multiline insert mode, and special treatment of untyped spaces) we
have seen no terminals whose insert mode cannot be described with the single attri­
bute.

terminfo can describe both terminals that have an insert mode and terminals
which send a simple sequence to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as rmir the sequence to leave
insert mode. Now give as ichl any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode will not give
ichl; terminals that send a sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually preferable to ichl. Do not give
both unless the terminal actually requires both to be used in combination.) If post­
insert padding is needed, give this as a number of milliseconds padding in ip (a
string option). Any other sequence which may need to be sent after an insert of a
single character may also be given in ip. If your terminal needs both to be placed
into an 'insert mode' and a special code to precede each inserted character, then
both smir /rmir and ichl can be given, and both will be used. The ich capability,
with one parameter, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this
as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete charac­
ters on the same line (for example, if there is a tab after the insertion position). If
your terminal allows motion while in insert mode you can give the capability mir
to speed up inserting in this case. Omitting mir will affect only speed. Some termi­
nals (notably Datamedia's) must not have mir because of the way their insert mode
works.

Finally, you can specify dchl to delete a single character, dch with one parameter,
n, to delete n characters, and delete mode by giving smdc and rmdc to enter and exit
delete mode (any mode the terminal needs to be placed in for dchl to work).

A command to erase n characters (equivalent to outputting n blanks without mov­
ing the cursor) can be given as ech with one parameter.

Section 1-7: Highlighting, Underlining, and Visible Bells
Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be available: a
blinking screen (blink), bold or extra-bright characters (bold), dim or half-bright
characters (dim), blanking or invisible text (invis), protected text (prot), a
reverse-video screen (rev), and an alternate character set (smacs to enter this mode
and rmacs to exit it). (If a command is necessary before you can enter alternate
character set mode, give the sequence in enacs or "enable alternate-character-set"

Page 20 10/92

terminfo (4) (Terminal Information Utilities) terminfo (4)

10/92

mode.) Turning on any of these modes singly may or may not tum off other modes.

sgrO should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some capabilities,
such as dim or blink.

You should choose one display method as standout mode [see curses(3X)] and use it
to highlight error messages and other kinds of text to which you want to draw
attention. Choose a form of display that provides strong contrast but that is easy
on the eyes. (We recommend reverse-video plus half-bright or reverse-video
alone.) The sequences to enter and exit standout mode are given as smso and rmso,
respectively. If the code to change into or out of standout mode leaves one or even
two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xmc
should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and
rmul , respectively. If the device has a sequence to underline the current character
and to move the cursor one space to the right (such as the Micro-Term MIME), this
sequence can be specified as uc.

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when
they receive mode-setting sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a new line or the cur­
sor is addressed. Programs using standout mode should exit standout mode before
moving the cursor or sending a newline, unless the msgr capability, asserting that it
is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as flash; it must not move the cursor. A good
flash can be done by changing the screen into reverse video, pad for 200 ms, then
return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the bot­
tom line (to make, for example, a non-blinking underline into an easier to find block
or blinking underline) give this sequence as cvvis. The boolean chts should also
be given. If there is a way to make the cursor completely invisible, give that as
civis. The capability cnorm should be given which undoes the effects of either of
these modes.

If your terminal generates underlined characters by using the underline character
(with no special sequences needed) even though it does not otherwise overstrike
characters, then you should specify the capability ul. For devices on which a char­
acter overstriking another leaves both characters on the screen, specify the capabil­
ity os. If overstrikes are erasable with a blank, then this should be indicated by
specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given
as sgr (set attributes), taking nine parameters. Each parameter is either O or non­
zero, as the corresponding attribute is on or off. The nine parameters are, in order:
standout, underline, reverse, blink, dim, bold, blank, protect, alternate character set.
Not all modes need to be supported by sgr; only those for which corresponding
separate attribute commands exist should be supported. For example, let's assume
that the terminal in question needs the following escape sequences to turn on vari­
ous modes.

Page 21

~
I
I

terminfo (4) (Terminal Information Utilities) terminfo (4)

tparm
Parameter Attribute Escape Sequence

none \E[Om
pl standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[O;Sm
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 in vis \E[0;8m
p8 protect not available
p9 altcharset "O (off) "N (on)

Note that each escape sequence requires a Oto turn off other modes before turning
on its own mode. Also note that, as suggested above, standout is set up to be the
combination of reverse and dim. Also, because this terminal has no bold mode, bold is
set up as the combination of reverse and underline. In addition, to allow combina­
tions, such as underline+blink, the sequence to use would be \E [O; 3; Sm. The termi­
nal doesn't have protect mode, either, but that cannot be simulated in any way, so
p8 is ignored. The altcharset mode is different in that it is either "O or "N, depending
on whether it is off or on. If all modes were to be turned on, the sequence would be
\E[0;3;4;5;7;8m"N.

Now look at when different sequences are output. For example, ; 3 is output when
either p2 or p6 is true, that is, if either underline or bold modes are turned on. Writ­
ing out the above sequences, along with their dependencies, gives the following:

Sequence When to Output terminfo Translation

\E[O always \E[O
; 3 ifp2 orp6 %?%p2%p6%\%t;3%;
;4 if pl orp3 orp6 %?%p1%p3%l%p6%1%t;4%;
;5 if p4 %?%p4%t;5%;
;7 if pl orp5 %?%p1%p5%1%t;7%;
;8 if p7 %?%p7%t;8%;
m always m
"N or "O if p9 "N, else "O %?%p9%t"'N%e"'O%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%1%t;3%;%?%p1%p3%1%p6%
\%t;4%;%?%p5%t;5%;%?%p1%p5%
1%t;7%;%?%p7%t;8%;m%?%p9%t"'N%e"'O%;,

Remember that sgr and sgrO must always be specified.

Section 1-8: Keypad
If the device has a keypad that transmits sequences when the keys are pressed, this
information can also be specified. Note that it is not possible to handle devices
where the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit,
specify these sequences as smkx and rmkx. Otherwise the keypad is assumed to
always transmit.

Page 22 10/92

termi nfo (4) (Terminal Information Utilities) terminfo (4)

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as kcubl, kcufl, kcuul, kcudl, and khorne, respectively. If
there are function keys such as fO, fl, ... , f63, the sequences they send can be
specified as kfO, kfl, ... , kf63. If the first 11 keys have labels other than the
default fO through £10, the labels can be given as lfO, lfl, ... , lflO. The
codes transmitted by certain other special keys can be given: kll (home down),
kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column),
kclr (clear screen or erase key), kdchl (delete character), kdll (delete line), krrnir
(exit insert mode), kel (clear to end of line), ked (clear to end of screen), kichl
(insert character or enter insert mode), kill (insert line), knp (next page), kpp (pre­
vious page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab
stop in this column). In addition, if the keypad has a 3 by 3 array of keys including
the four arrow keys, the other five keys can be given as kal, ka3, kb2, kcl, and kc3.
These keys are useful when the effects of a 3 by 3 directional pad are needed.
Further keys are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A
string to program screen labels should be specified as pln. Each of these strings
takes two parameters: a function key identifier and a string to program it with.
pfkey causes pressing the given key to be the same as the user typing the given
string; pfloc causes the string to be executed by the terminal in local mode; and
pfx causes the string to be transmitted to the computer. The capabilities nlab, lw
and lh define the number of programmable screen labels and their width and
height. If there are commands to turn the labels on and off, give them in srnln
and rrnln. srnln is normally output after one or more pln sequences to make sure
that the change becomes visible.

Section 1-9: Tabs and Initialization

10/92

If the device has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control I). A "backtab" command that moves leftward to
the next tab stop can be given as cbt. By convention, if tty modes show that tabs
are being expanded by the computer rather than being sent to the device, programs
should not use ht or cbt (even if they are present) because the user may not have
the tab stops properly set. If the device has hardware tabs that are initially set
every n spaces when the device is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is normally used by tput
init [see tput(l)] to determine whether to set the mode for hardware tab expan­
sion and whether to set the tab stops. If the device has tab stops that can be saved
in nonvolatile memory, the terrninfo description can assume that they are prop­
erly set. If there are commands to set and clear tab stops, they can be given as tbc
(clear all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: isl, is2, and is3, initialization strings for the device;
iprog, the path name of a program to be run to initialize the device; and if, the
name of a file containing long initialization strings. These strings are expected to
set the device into modes consistent with the rest of the terrninfo description.
They must be sent to the device each time the user logs in and be output in the fol­
lowing order: run the program iprog; output isl; output is2; set the margins
using rngc, srngl and srngr; set the tabs using tbc and hts; print the file if; and
finally output is3. This is usually done using the init option of tput.

Page 23

terminfo (4) (Terminal Information Utilities) terminfo (4)

Most initialization is done with is2. Special device modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in
isl and is3. Sequences that do a reset from a totally unknown state can be given
as rsl, rs2, rf, and rs3, analogous to isl, is2, is3, and if. (The method using
files, if and rf, is used for a few terminals, from /usr/share/lib/tabset/*;
however, the recommended method is to use the initialization and reset strings.)
These strings are output by tput reset, which is used when the terminal gets into a
wedged state. Commands are normally placed in rsl, rs2, rs3, and rf only if they
produce annoying effects on the screen and are not necessary when logging in. For
example, the command to set a terminal into 80-column mode would normally be
part of is2, but on some terminals it causes an annoying glitch on the screen and is
not normally needed because the terminal is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by using
tbc and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify com­
mands to set and clear margins, see "Margins" below under "Printer Capabilities.")

Section 1-10: Delays
Certain capabilities control padding in the tty driver. These are primarily needed
by hard-copy terminals, and are used by tput init to set tty modes appropriately.
Delays embedded in the capabilities er, ind, cubl, ff, and tab can be used to set
the appropriate delay bits to be set in the tty driver. If pb (padding baud rate) is
given, these values can be ignored at baud rates below the value of pb.

Section 1-11 : Status Lines
If the terminal has an extra "status line'' that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom
line, into which one can cursor address normally (such as the Heathkit h19's 25th
line, or the 24th line of a VTlOO which is set to a 23-line scrolling region), the capa­
bility hs should be given. Special strings that go to a given column of the status
line and return from the status line can be given as tsl and fsl. (fsl must leave
the cursor position in the same place it was before tsl. If necessary, the sc and re
strings can be included in tsl and fsl to get this effect.) The capability tsl takes
one parameter, which is the column number of the status line the cursor is to be
moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl. If the terminal has com­
mands to save and restore the position of the cursor, give them as sc and re. The
status line is normally assumed to be the same width as the rest of the screen, for
example, cols. If the status line is a different width (possibly because the terminal
does not allow an entire line to be loaded) the width, in columns, can be indicated
with the numeric parameterwsl.

Section 1-12: Line Graphics
If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc. The definition of this string is based on the alter­
nate character set used in the DEC VTlOO terminal, extended slightly with some
characters from the AT&T 4410vl terminal.

Page 24 10/92

term info (4) (Terminal Information Utilities) term info (4)

vtlOO+
Glyph Name Character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block 0
lantern symbol I
arrow pointing up
diamond
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right comer k
upper left comer 1
lower left corner m
plus n
scan line 1 0

horizontal line q
scan line 9 s
left tee(~) t
right tee (-J) u
bottom tee (1) v
top tee (T) w
vertical line x
bullet

The best way to describe a new device's line graphics set is to add a third column to
the above table with the characters for the new device that produce the appropriate
glyph when the device is in the alternate character set mode. For example,

vtlOO+ New tty
Glyph Name char char

upper left corner 1 R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q
vertical line x

Now write down the characters left to right, as in /1 acsc=lRmFkTj Gq\, x. ".

In addition, terminfo allows you to define multiple character sets. See Section 2-5
for details.

Section 1-13: Color Manipulation

10/92

Let us define two methods of color manipulation: the Tektronix method and the
HP method. The Tektronix method uses a set of N predefined colors (usually 8)
from which a user can select "current" foreground and background colors. Thus a
terminal can support up to N colors mixed into N*N color-pairs to be displayed on

Page 25

I

1-

terminfo (4) (Terminal Information Utilities) terminfo (4)

the screen at the same time. When using an HP method the user cannot define the
foreground independently of the background, or vice-versa. Instead, the user must
define an entire color-pair at once. Up to M color-pairs, made from 2*M different
colors, can be defined this way. Most existing color terminals belong to one of
these two classes of terminals.

The numeric variables colors and pairs define the number of colors and color­
pairs that can be displayed on the screen at the same time. If a terminal can change
the definition of a color (for example, the Tektronix 4100 and 4200 series terminals),
this should be specified with ccc (can change color). To change the definition of a
color (Tektronix 4200 method), use ini tc (initialize color). It requires four argu­
ments: color number (ranging from 0 to colors-1) and three RGB (red, green, and
blue) values or three HLS colors (Hue, Lightness, Saturation). Ranges of RGB and
HLS values are terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean vari­
able hls; that would instruct the curses init_color routine to convert its RGB
arguments to HLS before sending them to the terminal. The last three arguments to
the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different
from RGB and HLS, a mapping to either RGB or HLS must be developed.

To set current foreground or background to a given color, use setaf (set ANSI fore­
ground) and setab (set ANSI background). They require one parameter: the
number of the color. To initialize a color-pair (HP method), use initp (initialize
pair). It requires seven parameters: the number of a color-pair (range=O to
pairs-1), and six RGB values: three for the foreground followed by three for the
background. (Each of these groups of three should be in the order RGB.) When
ini t c or ini t p are used, RGB or HLS arguments should be in the order "red, green,
blue" or "hue, lightness, saturation"), respectively. To make a color-pair current, use
scp (set color-pair). It takes one parameter, the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas of
the screen with current background color. In such cases, bee (background color
erase) should be defined. The variable op (original pair) contains a sequence for
setting the foreground and the background colors to what they were at the terminal
start-up time. Similarly, oc (original colors) contains a control sequence for setting
all colors (for the Tektronix method) or color-pairs (for the HP method) to the
values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-to-one
correspondence between the nine least significant bits of that variable and the
video attributes. The following table depicts this correspondence.

Page 26 10/92

term info (4) (Terminal Information Utilities) term info (4)

Bit Decimal
Attribute Position Value

A_STANDOUT 0 1
A_ UNDERLINE 1 2
A_REVERSE 2 4
A_BLINK 3 8
A_DIM 4 16
A_BOLD 5 32
A_INVIS 6 64
A_ PROTECT 7 128
A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the correspond­
ing ncv bit should be set to 1; otherwise it should be set to zero. To determine the
information to pack into the ncv variable, you must add together the decimal
values corresponding to those attributes that cannot coexist with colors. For exam­
ple, if the terminal uses colors to simulate reverse video (bit number 2 and decimal
value 4) and bold (bit number 5 and decimal value 32), the resulting value for ncv
will be 36 (4 + 32).

Section 1-14: Miscellaneous

10192

If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal does
not have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters) this can be indicated with
the parameterized string rep. The first parameter is the character to be repeated
and the second is the number of times to repeat it. Thus, tparm (repeat_char,
'x' , 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025, this
can be indicated with cmdch. A prototype command character is chosen which is
used in all capabilities. This character is given in the cmdch capability to identify it.
The following convention is supported on some UNIX systems: If the environment
variable cc exists, all occurrences of the prototype character are replaced with the
character in cc.
Terminal descriptions that do not represent a specific kind of known terminal, such
as switch, dialup, patch, and network, should include the gn (generic) capability so
that programs can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for which the escape
sequences are known.) If the terminal is one of those supported by the UNIX sys­
tem virtual terminal protocol, the terminal number can be given as vt. A line-turn­
around sequence to be transmitted before doing reads should be specified in rfi.

Page 27

i!

I

I

I

terminfo (4) (Terminal Information Utilities) term info (4)

If the device uses xon/xoff handshaking for flow control, give xon. Padding infor­
mation should still be included so that routines can make better decisions about
costs, but actual pad characters will not be transmitted. Sequences to turn on and
off xon/xoff handshaking may be given in smxon and rmxon. If the characters used
for handshaking are not As and AQ, they may be specified with xonc and xoffc.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings exist to
turn this "meta mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with lm. A value of lm#O indicates that
the number of lines is not fixed, but that there is still more memory than fits on the
screen.

Media copy strings which control an auxiliary printer connected to the terminal can
be given as mcO: print the contents of the screen, mc4: turn off the printer, and mc5:
turn on the printer. When the printer is on, all text sent to the terminal will be sent
to the printer. A variation, mc5p, takes one parameter, and leaves the printer on for
as many characters as the value of the parameter, then turns the printer off. The
parameter should not exceed 255. If the text is not displayed on the terminal screen
when the printer is on, specify mc5i (silent printer). All text, including mc4, is tran­
sparently passed to the printer while an me Sp is in effect.

Section 1-15: Special Cases
The working model used by terminfo fits most terminals reasonably well. How­
ever, some terminals do not completely match that model, requiring special sup­
port by terminfo. These are not meant to be construed as deficiencies in the termi­
nals; they are just differences between the working model and the actual hardware.
They may be unusual devices or, for some reason, do not have all the features of the
terminfo model implemented.

Terminals that cannot display tilde n characters, such as certain Hazeltine termi­
nals, should indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept
100, should indicate xenl. Those terminals whose cursor remains on the right-most
column until another character has been received, rather than wrapping immedi­
ately upon receiving the right-most character, such as the VTlOO, should also indi­
cate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it),
xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that it is
not possible to position the cursor on top of a "magic cookie." Therefore, to erase
standout mode, it is necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or control-C
characters, should specify xsb, indicating that the fl key is to be used for escape
and the f2 key for control C.

Page 28 10/92

term info { 4) {Terminal Information Utilities) terminfo { 4)

Section 1-16: Similar Terminals
If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the name
of the similar terminal. The capabilities given before use override those in the ter­
minal type invoked by use. A capability can be canceled by placing xx@ to the left
of the capability definition, where xx is the capability. For example, the entry

att4424-21Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capabili­
ties, and hence cannot do highlighting. This is useful for different modes for a ter­
minal, or for different user preferences. More than one use capability may be given.

PART 2: PRINTER CAPABILITIES
The terminfo database allows you to define capabilities of printers as well as ter­
minals. To find out what capabilities are available for printers as well as for termi­
nals, see the two lists under "Device Capabilities" that list capabilities by variable
and by capability name.

Section 2-1: Rounding Values
Because parameterized string capabilities work only with integer values, we recom­
mend that terminfo designers create strings that expect numeric values that have
been rounded. Application designers should note this and should always round
values to the nearest integer before using them with a parameterized string capabil­
ity.

Section 2-2: Printer Resolution

10/92

A printer's resolution is defined to be the smallest spacing of characters it can
achieve. In general printers have independent resolution horizontally and verti­
cally. Thus the vertical resolution of a printer can be determined by measuring the
smallest achievable distance between consecutive printing baselines, while the hor­
izontal resolution can be determined by measuring the smallest achievable distance
between the left-most edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and
vertical resolution. The view of printing that terminfo currently presents is one of
printing inside a uniform matrix: All characters are printed at fixed positions rela­
tive to each "cell" in the matrix; furthermore, each cell has the same size given by
the smallest horizontal and vertical step sizes dictated by the resolution. (The cell
size can be changed as will be seen later.)

Many printers are capable of "proportional printing," where the horizontal spacing
depends on the size of the character last printed. terminfo does not make use of
this capability, although it does provide enough capability definitions to allow an
application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizon­
tal and vertical resolutions suggest, but also of "moving'' to a position an integral
multiple of the smallest distance away from a previous position. Thus printed
characters can be spaced apart a distance that is an integral multiple of the smallest
distance, up to the length or width of a single page.

Page 29

I

I ~

termi nfo (4) (Terminal Information Utilities) term info (4)

Some printers can have different resolutions depending on different "modes." In
"normal mode," the existing terminfo capabilities are assumed to work on
columns and lines, just like a video terminal. Thus the old lines capability would
give the length of a page in lines, and the cols capability would give the width of a
page in columns. In "micro mode," many terminfo capabilities work on incre­
ments of lines and columns. With some printers the micro mode may be concomi­
tant with normal mode, so that all the capabilities work at the same time.

Section 2-3: Specifying Printer Resolution
The printing resolution of a printer is given in several ways. Each specifies the
resolution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps
orhi Steps per inch horizontally
orvi Steps per inch vertically
ore Steps per column
orl Steps perline

When printing in normal mode, each character printed causes movement to the
next column, except in special cases described later; the distance moved is the same
as the per-column resolution. Some printers cause an automatic movement to the
next line when a character is printed in the rightmost position; the distance moved
vertically is the same as the per-line resolution. When printing in micro mode,
these distances can be different, and may be zero for some printers.

Specification of Printer Resolution
Automatic Motion after Printing

Normal Mode:
ore Steps moved horizontally
orl Steps moved vertically

Micro Mode:
mes Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a
wide character is printed in normal mode may be different from when a regular
width character is printed. The distance moved when a wide character is printed in
micro mode may also be different from when a regular character is printed in micro
mode, but the differences are assumed to be related: If the distance moved for a
regular character is the same whether in normal mode or micro mode (mcs=orc),
then the distance moved for a wide character is also the same whether in normal
mode or micro mode. This doesn't mean the normal character distance is neces­
sarily the same as the wide character distance, just that the distances don't change
with a change in normal to micro mode. However, if the distance moved for a reg­
ular character is different in micro mode from the distance moved in normal mode
(mcs<orc), the micro mode distance is assumed to be the same for a wide character
printed in micro mode, as the table below shows.

Page 30 10/92

term info { 4) {Terminal Information Utilities) terminfo { 4)

10/92

Specification of Printer Resolution
Automatic Motion after Printing Wide Character
Normal Mode or Micro Mode (mes= ore):
wides Steps moved horizontally

Micro Mode (mes< ore):
mes Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If these
are used, the resolution of the printer changes, but the type of change depends on
the printer:

Specification of Printer Resolution
Changing the Character /Line Pitches

epi Change character pitch
epix If set, epi changes orhi, otherwise changes ore

lpi Change line pitch
lpix If set, lpi changes orvi, otherwise changes orl

ehr Change steps per column
evr Change steps per line

The epi and lpi string capabilities are each used with a single argument, the pitch
in columns (or characters) and lines per inch, respectively. The ehr and evr string
capabilities are each used with a single argument, the number of steps per column
and line, respectively.

Using any of the control sequences in these strings will imply a change in some of
the values of ore, orhi, orl, and orvi. Also, the distance moved when a wide
character is printed, wides, changes in relation to ore. The distance moved when a
character is printed in micro mode, mes, changes similarly, with one exception: if
the distance is 0 or 1, then no change is assumed (see items marked with tin the
following table).

Programs that use epi, lpi, ehr, or evr should recalculate the printer resolution
(and should recalculate other values see "Effect of Changing Printing Resolution"
under "Dot-Mapped Graphics").

Specification of Printer Resolution
Effects of Changing the Character /Line Pitches

Before After
Using epi with epix clear:
orhi'

ore'

Using epi with epix set:

or hi
or hi orc=--
Vcpz

Page 31

I

I

I

I

'
11,

i l
!

terminfo (4) (Terminal Information Utilities) terminfo (4)

orhi' orhi=orc· v cpl
,

ore ore

Using lpi with lpix clear:
orvi' orvi

orl'
orvi

orl=--
Vzp,

Using lpi with lpix set:
orvi' orvi=orl·V1p;

orl' orl

Using chr:
orhi' or hi
ore vchr

Using cvr:
orvi' orvi
orl' Vcvr

Using cpi or chr:

wides' ·a ·a , ore Wl CS=Wl CS--,
ore

mes
, mcs=mcs' ore,

ore

Vcpi' Vzp11 Vch" and Vcvr are the arguments used with cpi, lpi, chr, and cvr, respec­
tively. The prime marks (') indicate the old values.

Section 2-4: Capabilities that Cause Movement
In the following descriptions, "movement" refers to the motion of the "current
position." With video terminals this would be the cursor; with some printers this is
the carriage position. Other printers have different equivalents. In general, the
current position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for control
sequences that cause movement a number of smallest steps.

Page 32

String Capabilities for Motion
mcubl Move 1 step left
mcufl Move 1 step right
mcuul Move 1 step up
mcudl Move 1 step down

mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down

10/92

term info (4) (Terminal Information Utilities)

mhpa
mvpa

Move N steps from the left
Move N steps from the top

The latter six strings are each used with a single argument, N.

terminfo (4)

Sometimes the motion is limited to less than the width or length of a page. Also,
some printers don't accept absolute motion to the left of the current position. ter­
minfo has capabilities for specifying these limits.

mjump
maddr

xhpa
xvpa

Limits to Motion
Limit on use of mcubl, mcufl, mcuul, mcudl
Limit on use of mhpa, mvpa

If set, hpa and mhpa can't move left
If set, vpa and mvpa can't move up

If a printer needs to be in a "micro mode" for the motion capabilities described
above to work, there are string capabilities defined to contain the control sequence
to enter and exit this mode. A boolean is available for those printers where using a
carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode
smicm Enter micro mode
rmicm Exit micro mode

crxm Using er exits micro mode

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the next
line, others move to the beginning of the same line. terminfo has boolean capabili­
ties for describing all three cases.

What Happens After Character
Printed in Rightmost Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for left­
ward or upward motion, because those capabilities can be built from the motion
reversal capability and the rightward or downward motion capabilities. It is best to
leave it up to an application to build the leftward or upward capabilities, though,
and not enter them in the terminfo database. This allows several reverse motions
to be strung together without intervening wasted steps that leave and reenter
reverse mode.

Entering/Exiting Reverse Modes
s lm Reverse sense of horizontal motions
r lm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

10/92 Page 33

Ii

Ii
l

terminfo (4) (Terminal Information Utilities) terminfo (4)

While sense of horizontal motions reversed:
mcubl Move 1 step right
mcuf 1 Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cubl Move 1 column right
cu fl Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuul Move 1 step down
mcudl Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuul Move 1 line down
cudl Move 1 line up
cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse the
action of the line "wrapping" that occurs when a character is printed in the right­
most position. Thus printers that have the standard terminfo capability am
defined should experience motion to the beginning of the previous line when a
character is printed in the right-most position under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is
not defined; thus, programs must exit reverse motion modes before using other
motion capabilities.

Two miscellaneous capabilities complete the list of new motion capabilities. One of
these is needed for printers that move the current position to the beginning of a line
when certain control characters, such as "line-feed" or "form-feed," are used. The
other is used for the capability of suspending the motion that normally occurs after
printing a character.

Miscellaneous Motion Strings
doer List of control characters causing er
zerom Prevent auto motion after printing next single character

Margins
terminfo provides two strings for setting margins on terminals: one for the left
and one for the right margin. Printers, however, have two additional margins, for
the top and bottom margins of each page. Furthermore, some printers require not
using motion strings to move the current position to a margin and then fixing the
margin there, but require the specification of where a margin should be regardless
of the current position. Therefore terminfo offers six additional strings for
defining margins with printers.

Page 34 10/92

term info (4) (Terminal Information Utilities) term info (4)

smgl
smgr
smgb
smgt

smgbp
smglp
smgrp
smgtp

Setting Margins
Set left margin at current column
Set right margin at current column
Set bottom margin at current line
Set top margin at current line

Set bottom margin at line N
Set left margin at column N
Set right margin at column N
Set top margin at line N

The last four strings are used with one or more arguments that give the position of
the margin or margins to set. If both of smglp and smgrp are set, each is used with
a single argument, N, that gives the column number of the left and right margin,
respectively. If both of smgtp and smgbp are set, each is used to set the top and bot­
tom margin, respectively: smgtp is used with a single argument, N, the line number
of the top margin; however, smgbp is used with two arguments, N and M, that give
the line number of the bottom margin, the first counting from the top of the page
and the second counting from the bottom. This accommodates the two styles of
specifying the bottom margin in different manufacturers' printers. When coding a
terminfo entry for a printer that has a settable bottom margin, only the first or
second parameter should be used, depending on the printer. When writing an
application that uses smgbp to set the bottom margin, both arguments must be
given.

If only one of smglp and smgrp is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only one of
smgtp and smgbp is set, then it is used with two arguments that give the top and
bottom margins, in that order, counting from the top of the page. Thus when cod­
ing a terminfo entry for a printer that requires setting both left and right or top
and bottom margins simultaneously, only one of smglp and smgrp or smgtp and
smgbp should be defined; the other should be left blank. When writing an applica­
tion that uses these string capabilities, the pairs should be first checked to see if
each in the pair is set or only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the left­
most column. A zero value for the second argument with smgbp means the bottom
line of the page.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts

10/92

Five new sets of strings are used to describe the capabilities printers have of
enhancing printed text.

sshm
rshm

sitm

Enhanced Printing
Enter shadow-printing mode
Exit shadow-printing mode

Enter italicizing mode

Page 35

I

I

I

terminfo (4) (Terminal Information Utilities)

ritm

swidm
rwidm

ssupm
rsupm
supcs

ssubm
rsubm
subcs

Exit italicizing mode

Enter wide character mode
Exit wide character mode

Enter superscript mode
Exit superscript mode
List of characters available as superscripts

Enter subscript mode
Exit subscript mode
List of characters available as subscripts

terminfo (4)

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a control
sequence in sshm but none in rshm should use the sshm control sequence before
every character to be shadow-printed; otherwise, the sshm control sequence should
be used once before the set of characters to be shadow-printed, followed
by rshm. The same is also true of each of the sitm/ritm, swidm/rwidm,
ssupm/rsupm, and ssubm/ rsubm pairs.

Note that terminfo also has a capability for printing emboldened text (bold).
While shadow printing and emboldened printing are similar in that they "darken"
the text, many printers produce these two types of print in slightly different ways.
Generally, emboldened printing is done by overstriking the same character one or
more times. Shadow printing likewise usually involves overstriking, but with a
slight movement up and/or to the side so that the character is "fatter."

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a
wide character should be given in wides.

If only a subset of the printable ASCII characters can be printed as superscripts or
subscripts, they should be listed in supcs or subcs strings, respectively. If the
ssupm or ssubm strings contain control sequences, but the corresponding supcs or
subcs strings are empty, it is assumed that all printable ASCII characters are avail­
able as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be
the same as for regular characters. Thus, for example, printing any of the following
three examples will result in equivalent motion:

Bi B Bi

Note that the existing msgr boolean capability describes whether motion control
sequences can be used while in "standout mode." This capability is extended to
cover the enhanced printing modes added here. msgr should be set for those
printers that accept any motion control sequences without affecting shadow, itali­
cized, widened, superscript, or subscript printing. Conversely, if msgr is not set, a
program should end these modes before attempting any motion.

Page 36 10/92

terminfo (4) (Terminal Information Utilities) term info (4)

Section 2-5: Alternate Character Sets

10/92

In addition to allowing you to define line graphics (described in Section 1-12), ter­
minfo lets you define alternate character sets. The following capabilities cover
printers and terminals with multiple selectable or definable character sets.

scs

scsd
defc
rcsd

Alternate Character Sets
Select character set N

Start definition of character set N, M characters
Define character A, B dots wide, descender D
End definition of character set N

csnm List of character set names

daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a number from
0 to 63 that identifies the character set. The scsd string is also used with the argu­
ment N and another, M, that gives the number of characters in the set. The defc
string is used with three arguments: A gives the ASCII code representation for the
character, B gives the width of the character in dots, and Dis zero or one depending
on whether the character is a "descender" or not. The defc string is also followed
by a string of "image-data" bytes that describe how the character looks (see below).

Character set 0 is the default character set present after the printer has been initial­
ized. Not every printer has 64 character sets, of course; using scs with an argu­
ment that doesn't select an available character set should cause a null result from
tparm.

If a character set has to be defined before it can be used, the scsd control sequence
is to be used before defining the character set, and the rcsd is to be used after.
They should also cause a null result from tparm when used with an argument N
that doesn't apply. If a character set still has to be selected after being defined, the
scs control sequence should follow the rcsd control sequence. By examining the
results of using each of the scs, scsd, and rcsd strings with a character set number
in a call to tparm, a program can determine which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define
each character. To print any character on printers covered by terminfo, the ASCII
code is sent to the printer. This is true for characters in an alternate set as well as
"normal" characters. Thus the definition of a character includes the ASCII code
that represents it. In addition, the width of the character in dots is given, along
with an indication of whether the character should descend below the print line
(such as the lower case letter "g' in most character sets). The width of the character
in dots also indicates the number of image-data bytes that will follow the defc
string. These image-data bytes indicate where in a dot-matrix pattern ink should
be applied to "draw" the character; the number of these bytes and their form are
defined below under "Dot-Mapped Graphics."

It's easiest for the creator of terminfo entries to refer to each character set by
number; however, these numbers will be meaningless to the application developer.
The csnm string alleviates this problem by providing names for each number.

Page 37

I

I~
I
I
I

terminfo (4) (Terminal Information Utilities) terminfo (4)

When used with a character set number in a call to tparm, the csnm string will pro­
duce the equivalent name. These names should be used as a reference only. No
naming convention is implied, although anyone who creates a terminfo entry for a
printer should use names consistent with the names found in user documents for
the printer. Application developers should allow a user to specify a character set
by number (leaving it up to the user to examine the csnm string to determine the
correct number), or by name, where the application examines the csnm string to
determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are
not available, the strings should not be defined. For printers that have manually
changed print-wheels or font cartridges, the boolean daisy is set.

Section 2-6: Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing "raster-graphics"
images. Three new numeric capabilities and three new string capabilities can
help a program draw raster-graphics images independent of the type of dot-matrix
printer or the number of pins or dots the printer can handle at one time.

npins
spinv
spinh
porder
sbim
rbim

Dot-Matrix Graphics
Number of pins, N, in print-head
Spacing of pins vertically in pins per inch
Spacing of dots horizontally in dots per inch
Matches software bits to print-head pins
Start printing bit image graphics, B bits wide
End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the
technique used for most dot-matrix printers: each pass of the printer's print-head is
assumed to produce a dot-matrix that is N dots high and B dots wide. This is typi­
cally a wide, squat, rectangle of dots. The height of this rectangle in dots will vary
from one printer to the next; this is given in the npins numeric capability. The size
of the rectangle in fractions of an inch will also vary; it can be deduced from the
spinv and spinh numeric capabilities. With these three values an application can
divide a complete raster-graphics image into several horizontal strips, perhaps
interpolating to account for different dot spacing vertically and horizontally.

The sbim and rbim strings are used to start and end a dot-matrix image, respec­
tively. The sbim string is used with a single argument that gives the width of the
dot-matrix in dots. A sequence of "image-data bytes" are sent to the printer after
the sbim string and before the rbim string. The number of bytes is a integral multi­
ple of the width of the dot-matrix; the multiple and the form of each byte is deter­
mined by the porder string as described below.

The porder string is a comma separated list of pin numbers optionally followed by
an numerical offset. The offset, if given, is separated from the list with a semicolon.
The position of each pin number in the list corresponds to a bit in an 8-bit data byte.
The pins are numbered consecutively from 1 to npins, with 1 being the top pin.
Note that the term "pin'' is used loosely here; "ink-jet" dot-matrix printers don't
have pins, but can be considered to have an equivalent method of applying a single
dot of ink to paper. The bit positions in porder are in groups of 8, with the first
position in each group the most significant bit and the last position the least

Page 38 10/92

term info (4) (Terminal Information Utilities) terminfo (4)

significant bit. An application produces 8-bit bytes in the order of the groups in
porder.

An application computes the "image-data bytes" from the internal image, mapping
vertical dot positions in each print-head pass into 8-bit bytes, using a 1 bit where
ink should be applied and 0 where no ink should be applied. This can be reversed
(0 bit for ink, 1 bit for no ink) by giving a negative pin number. If a position is
skipped in porder, a 0 bit is used. If a position has a lower case 'x' instead of a pin
number, a 1 bit is used in the skipped position. For consistency, a lower case 'o' can
be used to represent a 0 filled, skipped bit. There must be a multiple of 8 bit posi­
tions used or skipped in porder; if not, 0 bits are used to fill the last byte in the
least significant bits. The offset, if given, is added to each data byte; the offset can
be negative.

Some examples may help clarify the use of the porder string. The AT&T 470, AT&T
475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are identified
top to bottom by the 8 bits in a byte, from least significant to most. The porder
strings for these printers would be 8, 7 , 6, 5, 4, 3 , 2 , 1. The AT & T 478 and AT & T
479 printers also provide eight pins for graphics. However, the pins are identified
in the reverse order. The porder strings for these printers would be
l, 2, 3, 4, 5, 6, 7, 8. The AT&T 5310, AT&T 5320, DEC LAlOO, and DEC LN03
printers provide six pins for graphics. The pins are identified top to bottom by the
decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low six bits in an 8-bit
byte, although the decimal values are further offset by the value 63. The porder
string for these printers would be , , 6, 5, 4, 3, 2, 1; 63, or alternately
o,o,6,5,4,3,2,1;63.

Section 2-7: Effect of Changing Printing Resolution

10/92

If the control sequences to change the character pitch or the line pitch are used, the
pin or dot spacing may change:

Dot-Matrix Graphics
Changing the Character/Line Pitches
cpi Change character pitch
cpix If set, cpi changes spinh

lpi Change line pitch
lpix If set, lpi changes spinv

Programs that use cpi or lpi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

Before After
Using cpi with cpix clear:

spinh'

Using cpi with cpix set:

spinh'

spinh

. h . h' orhi spm =spm ·--.-,
or ht

Page 39

terminfo (4) (Terminal Information Utilities)

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

Before After
Using lpi with lpix clear:

spinv'

Using lpi with lpix set:

spinv'

Using chr:

spinh'

Using cvr:

spinv

spinv

. . , orhi
spmv=spmv · orhi'

spinh

spinv

terminfo (4)

orhi' and orhi are the values of the horizontal resolution in steps per inch, before
using cpi and after using cpi, respectively. Likewise, orvi' and orvi are the values
of the vertical resolution in steps per inch, before using lpi and after using lpi,
respectively. Thus, the changes in the dots per inch for dot-matrix graphics follow
the changes in steps per inch for printer resolution.

Section 2-8: Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce near
"letter quality" printing or "draft quality'' printing. Usually it is important to be
able to choose one or the other because the rate of printing generally falls off as the
quality improves. There are three new strings used to describe these capabilities.

Print Quality
snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn't have
all three levels, one or two of the strings should be left blank as appropriate.

Section 2-9: Printing Rate and Buffer Size
Because there is no standard protocol that can be used to keep a program synchron­
ized with a printer, and because modern printers can buffer data before printing it,
a program generally cannot determine at any time what has been printed. Two
new numeric capabilities can help a program estimate what has been printed.

Print Rate/Buffer Size
cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this
value is not given, the rate should be estimated at one-tenth the prevailing baud
rate. bufsz is the maximum number of subsequent characters buffered before the
guaranteed printing of an earlier character, assuming proper flow control has been
used. If this value is not given it is assumed that the printer does not buffer charac­
ters, but prints them as they are received.

Page 40 10/92

terminfo (4) (Terminal Information Utilities) term info (4)

FILES

As an example, if a printer has a 1000-character buffer, then sending the letter "a"
followed by 1000 additional characters is guaranteed to cause the letter "a" to print.
If the same printer prints at the rate of 100 characters per second, then it should
take 10 seconds to print all the characters in the buffer, less if the buffer is not full.
By keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate a few
pages of text, count the number of printable characters, and then see how long it
takes to print the text.

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably
print at close to the advertised print rate and probably faster than the rate in cps.
Graphics data with a lot of control sequences, or very long lines of text, will print at
well below the advertised rate and below the rate in cps. If the application is using
cps to decide how long it should take a printer to print a block of text, the applica­
tion should pad the estimate. If the application is using cps to decide how much
text has already been printed, it should shrink the estimate. The application will
thus err in favor of the user, who wants, above all, to see all the output in its correct
place.

/usr I share/lib I terminfo I? I* compiled terminal description database

/usr/share/lib/ .COREterm/?/* subset of compiled terminal description
database

/usr/share/lib/tabset/* tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs)

SEE ALSO

NOTES

10/92

curses(3X), ls(l), pg(l), printf(3S), stty(l), tic(lM), tput(l), tty(l), vi(l)

The most effective way to prepare a terminal description is by imitating the descrip­
tion of a similar terminal in terminfo and to build up a description gradually,
using partial descriptions with a screen oriented editor, such as vi, to check that
they are correct. To easily test a new terminal description the environment variable
TERMINFO can be set to the pathname of a directory containing the compiled
description, and programs will look there rather than in
/usr/share/lib/terminfo.

Page 41

termio (7) termio (7)

NAME
termio - general terminal interface

SYNOPSIS
#include <termio.h>

ioctl(int fildes, int request, struct termio *arg);
ioctl(int fildes, int request, int arg);

#include <termios.h>

ioctl(int fildes, int request, struct termios *arg);

DESCRIPTION
System V supports a general interface for asynchronous communications ports that
is hardware-independent. The user interface to this functionality is via function
calls (the preferred interface) described in termios(2) or ioctl commands
described in this section. This section also discusses the common features of the
terminal subsystem which are relevant with both user interfaces.

When a terminal file is opened, it normally causes the process to wait until a con­
nection is established. In practice, users' programs seldom open terminal files; they
are opened by the system and become a user's standard input, output, and error
files. The very first terminal file opened by the session leader, which is not already
associated with a session, becomes the controlling terminal for that session. The
controlling terminal plays a special role in handling quit and interrupt signals, as
discussed below. The controlling terminal is inherited by a child process during a
fork(2). A process can break this association by changing its session using set­
sid(2).

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters may be typed at any time, even while output is occurring, and
are only lost when the character input buffers of the system become completely full,
which is rare (for example, if the number of characters in the line discipline buffer
exceeds {MAX_CANON} and IMAXBEL [see below] is not set), or when the user has
accumulated {MAX_INPUT} number of input characters that have not yet been read
by some program. When the input limit is reached, all the characters saved in the
buffer up to that point are thrown away without notice.

Session Management (Job Control)

10/92

A control terminal will distinguish one of the process groups in the session associ­
ated with it to be the foreground process group. All other process groups in the
session are designated as background process groups. This foreground process
group plays a special role in handling signal-generating input characters, as dis­
cussed below. By default, when a controlling terminal is allocated, the controlling
process's process group is assigned as foreground process group.

Background process groups in the controlling process's session are subject to a job
control line discipline when they attempt to access their controlling terminal. Pro­
cess groups can be sent signals that will cause them to stop, unless they have made
other arrangements. An exception is made for members of orphaned process
groups. These are process groups which do not have a member with a parent in
another process group that is in the same session and therefore shares the same
controlling terminal. When a member's orphaned process group attempts to access
its controlling terminal, errors will be returned. since there is no process to

Page 1

termio(7) termio(7)

continue it if it should stop.

If a member of a background process group attempts to read its controlling termi­
nal, its process group will be sent a SIGTTIN signal, which will normally cause the
members of that process group to stop. If, however, the process is ignoring or hold­
ing SIGTTIN, or is a member of an orphaned process group, the read will fail with
errno set to EIO, and no signal will be sent.

If a member of a background process group attempts to write its controlling termi­
nal and the TOSTOP bit is set in the c_lflag field, its process group will be sent a
SIGTTOU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding SIGTTOU, the write will
succeed. If the process is not ignoring or holding SIGTTOU and is a member of an
orphaned process group, the write will fail with errno set to EIO, and no signal
will be sent.

If TOSTOP is set and a member of a background process group attempts to ioctl its
controlling terminal, and that ioctl will modify terminal parameters (for example,
TCSETA, TCSETAW' TCSETAF, or TIOCSPGRP), its process group will be sent a
SIGTTOU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding SIGTTOU, the ioctl will
succeed. If the process is not ignoring or holding SIGTTOU and is a member of an
orphaned process group, the write will fail with errno set to EIO, and no signal
will be sent.

Canonical Mode Input Processing

Page 2

Normally, terminal input is processed in units of lines. A line is delimited by a
newline (ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of-line
character. This means that a program attempting to read will be suspended until
an entire line has been typed. Also, no matter how many characters are requested
in the read call, at most one line will be returned. It is not necessary, however, to
read a whole line at once; any number of characters may be requested in a read,
even one, without losing information.

During input, erase and kill processing is normally done. The ERASE character (by
default, the character #) erases the last character typed. The WERASE character (the
character control-W) erases the last "word" typed in the current input line (but not
any preceding spaces or tabs). A "word" is defined as a sequence of non-blank
characters, with tabs counted as blanks. Neither ERASE nor WERASE will erase
beyond the beginning of the line. The KILL character (by default, the character @)
kills (deletes) the entire input line, and optionally outputs a newline character. All
these characters operate on a key stroke basis, independent of any backspacing or
tabbing that may have been done. The REPRINT character (the character control-R)
prints a newline followed by all characters that have not been read. Reprinting also
occurs automatically if characters that would normally be erased from the screen
are fouled by program output. The characters are reprinted as if they were being
echoed; consequencely, if ECHO is not set, they are not printed.

The ERASE and KILL characters may be entered literally by preceding them with the
escape character (\). In this case, the escape character is not read. The erase and
kill characters may be changed.

10/92

termio(7) termio(7)

Non-canonical Mode Input Processing
In non-canonical mode input processing, input characters are not assembled into
lines, and erase and kill processing does not occur. The MIN and TIME values are
used to determine how to process the characters received.

MIN represents the minimum number of characters that should be received when
the read is satisfied (that is, when the characters are returned to the user). TIME is a
timer of 0.10-second granularity that is used to timeout bursty and short-term data
transmissions. The values for MIN and TIME should be set by the programmer in
the termios or termio structure. The four possible values for MIN and TIME and
their interactions are described below.

Case A: MIN> 0, TIME > 0
In this case, TIME serves as an intercharacter timer and is activated after the first
character is received. Since it is an intercharacter timer, it is reset after a charac­
ter is received. The interaction between MIN and TIME is as follows: as soon as
one character is received, the intercharacter timer is started. If MIN characters
are received before the intercharacter timer expires (note that the timer is reset
upon receipt of each character}, the read is satisfied. If the timer expires before
MIN characters are received, the characters received to that point are returned to
the user. Note that if TIME expires, at least one character will be returned
because the timer would not have been enabled unless a character was received.
In this case (MIN > 0, TIME > 0), the read sleeps until the MIN and TIME mechan­
isms are activated by the receipt of the first character. If the number of charac­
ters read is less than the number of characters available, the timer is not reac­
tivated and the subsequent read is satisfied immediately.

Case B: MIN> 0, TIME = 0
In this case, since the value of TIME is zero, the timer plays no role and only MIN
is significant. A pending read is not satisfied until MIN characters are received
(the pending read sleeps until MIN characters are received). A program that
uses this case to read record based terminal I/0 may block indefinitely in the
read operation.

Case C: MIN= 0, TIME> 0
In this case, since MIN = 0, TIME no longer represents an intercharacter timer: it
now serves as a read timer that is activated as soon as a read is done. A read is
satisfied as soon as a single character is received or the read timer expires. Note
that, in this case, if the timer expires, no character is returned. If the timer does
not expire, the only way the read can be satisfied is if a character is received. In
this case, the read will not block indefinitely waiting for a character; if no char­
acter is received within TIME*.10 seconds after the read is initiated, the read
returns with zero characters.

Case D: MIN= 0, TIME = 0
In this case, return is immediate. The minimum of either the number of charac­
ters requested or the number of characters currently available is returned
without waiting for more characters to be input.

Comparison of the Different Cases of MIN, TIME Interaction
Some points to note about MIN and TIME:

10/92 Page 3

termio (7) termio (7)

1. In the following explanations, note that the interactions of MIN and TIME are
not symmetric. For example, when MIN > 0 and TIME = 0, TIME has no effect.
However, in the opposite case, where MIN= 0 and TIME > 0, both MIN and TIME
play a role in that MIN is satisfied with the receipt of a single character.

2. Also note that in case A (MIN > 0, TIME > 0), TIME represents an intercharacter
timer, whereas in case C (TIME = 0, TIME > 0), TIME represents a read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and
B, where MIN > 0, exist to handle burst mode activity (for example, file transfer pro­
grams), where a program would like to process at least MIN characters at a time. In
case A, the intercharacter timer is activated by a user as a safety measure; in case B,
the timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are
readily adaptable to screen-based applications that need to know if a character is
present in the input queue before refreshing the screen. In case C, the read is timed,
whereas in case D, it is not.

Another important note is that MIN is always just a minimum. It does not denote a
record length. For example, if a program does a read of 20 bytes, MIN is 10, and 25
characters are present, then 20 characters will be returned to the user.

Writing Characters
When one or more characters are written, they are transmitted to the terminal as
soon as previously written characters have finished typing. Input characters are
echoed as they are typed if echoing has been enabled. If a process produces charac­
ters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue is drained down to some threshold, the
program is resumed.

Special Characters
Certain characters have special functions on input. These functions and their
default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates a SIGINT signal. SIGINT is sent to all
frequent processes associated with the controlling terminal. Normally,
each such process is forced to terminate, but arrangements may be made
either to ignore the signal or to receive a trap to an agreed upon loca­
tion. [See signal(S)].

QUIT (CTRL-1 or ASCII FS) generates a SIGQUIT signal. Its treatment is identi­
cal to the interrupt signal except that, unless a receiving process has
made other arrangements, it will not only be terminated but a core
image file (called core) will be created in the current working directory.

ERASE (#)erases the preceding character. It does not erase beyond the start of a
line, as delimited by a NL, EOF, EOL, or EOL2 character.

WERASE (CTRL-W or ASCII ETX) erases the preceding "word". It does not erase
beyond the start of a line, as delimited by a NL, EOF, EOL, or EOL2 charac­
ter.

KILL (@) deletes the entire line, as delimited by a NL, EOF, EOL, or EOL2 char­
acter.

Page 4 10/92

termio(7) termio(7)

REPRINT (CTRL-R or ASCII DC2) reprints all characters, preceded by a newline,
that have not been read.

EOF (CTRL-D or ASCII EOT) may be used to generate an end-of-file from a ter­
minal. When received, all the characters waiting to be read are immedi­
ately passed to the program, without waiting for a newline, and the EOF
is discarded. Thus, if no characters are waiting (that is, the EOF occurred
at the beginning of a line) zero characters are passed back, which is the
standard end-of-file indication. The EOF character is not echoed unless
it is escaped or ECHOCTL is set. Because EOT is the default EOF charac­
ter, this prevents terminals that respond to EOT from hanging up.

NL (ASCII LF) is the normal line delimiter. It cannot be changed or escaped.

EOL (ASCII NULL) is an additional line delimiter, like NL. It is not normally
used.

EOL2 is another additional line delimiter.

SWTCH (CTRL-Z or ASCII EM) is used only when shl layers is invoked.

SUSP (CTRL-Z or ASCII SUB) generates a SIGTSTP signal. SIGTSTP stops all
processes in the foreground process group for that terminal.

DSUSP (CTRL-Y or ASCII EM) It generates a SIGTSTP signal as SUSP does, but the
signal is sent when a process in the foreground process group attempts
to read the DSUSP character, rather than when it is typed.

STOP (CTRL-S or ASCII DC3) can be used to suspend output temporarily. It is
useful with CRT terminals to prevent output from disappearing before it
can be read. While output is suspended, STOP characters are ignored
and not read.

START (CTRL-Q or ASCII DCl) is used to resume output. Output has been
suspended by a STOP character. While output is not suspended, START
characters are ignored and not read.

DISCARD (CTRL-0 or ASCII SI) causes subsequent output to be discarded. Output
is discarded until another DISCARD character is typed, more input
arrives, or the condition is cleared by a program.

LNEXT (CTRL-V or ASCII SYN) causes the special meaning of the next character
to be ignored. This works for all the special characters mentioned
above. It allows characters to be input that would otherwise be inter­
preted by the system (for example, KILL, QUIT).

The character values for INTR, QUIT, ERASE, WERASE, KILL, REPRINT, EOF, EOL, EOL2,
SWTCH, SUSP, DSUSP, STOP, START, DISCARD, and LNEXT may be changed to suit
individual tastes. If the value of a special control character is _POSIX_ VDISABLE (0),
the function of that special control character is disabled. The ERASE, KILL, and EOF
characters may be escaped by a preceding \ character, in which case no special
function is done. Any of the special characters may be preceded by the LNEXT char­
acter, in which case no special function is done.

Modem Disconnect

10/92

When a modem disconnect is detected, a SIGHUP signal is sent to the terminal's
controlling process. Unless other arrangements have been made, these signals
cause the process to terminate. If SIGHUP is ignored or caught, any subsequent read

Page 5

termio(7) termio(7)

returns with an end-of-file indication until the terminal is closed.

If the controlling process is not in the foreground process group of the terminal, a
SIGTSTP is sent to the terminal's foreground process group. Unless other arrange­
ments have been made, these signals cause the processes to stop.

Processes in background process groups that attempt to access the controlling ter­
minal after modem disconnect while the terminal is still allocated to the session
will receive appropriate SIGTTOU and SIGTTIN signals. Unless other arrangements
have been made, this signal causes the processes to stop.

The controlling terminal will remain in this state until it is reinitialized with a suc­
cessful open by the controlling process, or deallocated by the controlling process.

Terminal Parameters

Page 6

The parameters that control the behavior of devices and modules providing the
tennios interface are specified by the tennios structure defined by tennios . h.
Several ioctl(2) system calls that fetch or change these parameters use this struc­
ture that contains the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc [NCCS]; /* control chars *I

The special control characters are defined by the array c_cc. The symbolic name
NCCS is the size of the control-character array and is also defined by tennios . h.
The relative positions, subscript names, and typical default values for each function
are as follows:

0 VINTR
1 VQUIT
2 VERASE
3 VKILL
4 VEOF
5 VEOL
6 VEOL2
7 VSWTCH
8 VSTRT
9 VSTOP
10 VSUSP
11 VDSUSP
12 VREPRINT
13 VDISCRD
14 VWERASE
15 VLNEXT
16-19 reserved

DEL
FS

@

EOT
NUL
NUL
NUL
DCl
DC3
SUB
EM
DC2
SI
ETB
SYN

For the non-canonical mode the positions of VEOF and VEOL are shared by VMIN
and VTIME:

4
5

VMIN
VTIME

used to set the value of MIN
used to set the value of TIME

10/92

I

termio(7) termio(7)

Input Modes

10/92

The c_iflag field describes the basic terminal input control:

IGNBRK Ignore break condition.
BRKINT Signal interrupt on break.
IGNPAR Ignore characters with parity errors.
PARMRK Mark parity errors.
INPCK Enable input parity check.
ISTRIP Strip character.
INLCR Map NL to CR on input.
IGNCR Ignore CR.
ICRNL Map CR to NL on input.
IUCLC Map upper-case to lower-case on input.
IXON Enable start/stop output control.
IXANY Enable any character to restart output.
IXOFF Enable start/stop input control.
IMAXBEL Echo BEL on input line too long.

If IGNBRK is set, a break condition (a character framing error with data all zeros)
detected on input is ignored, that is, not put on the input queue and therefore not
read by any process. If IGNBRK is not set and BRKINT is set, the break condition
shall flush the input and output queues and if the terminal is the controlling termi­
nal of a foreground process group, the break condition generates a single SIGINT
signal to that foreground process group. If neither IGNBRK nor BRKINT is set, a
break condition is read as a single ASCII NULL character ('\O'), or if PARMRK is set, as
'\377', '\O', '\O'.

If IGNPAR is set, a byte with framing or parity errors (other than break) is ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other
than break) is given to the application as the three-character sequence: '\377', '\O',
X, where Xis the data of the byte received in error. To avoid ambiguity in this case,
if ISTRIP is not set, a valid character of '\377' is given to the application as '\377',
'\377'. If neither IGNPAR nor PARMRK is set, a framing or parity error (other than
break) is given to the application as a single ASCII NULL character ('\O').

If INPCK is set, input parity checking is enabled. If lNPCK is not set, input parity
checking is disabled. This allows output parity generation without input parity
errors. Note that whether input parity checking is enabled or disabled is indepen­
dent of whether parity detection is enabled or disabled. If parity detection is
enabled but input parity checking is disabled, the hardware to which the terminal
is connected will recognize the parity bit, but the terminal special file will not check
whether this is set correctly or not.

If ISTRIP is set, valid input characters are first stripped to seven bits, otherwise all
eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is
set, a received CR character is ignored (not read). Otherwise, if ICRNL is set, a
received CR character is translated into a NL character.

If IUCLC is set, a received upper case, alphabetic character is translated into the
corresponding lower case character.

Page 7

termio(7) termio(7)

If IXON is set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output. The STOP and
START characters will not be read, but will merely perform flow control functions.
If IXANY is set, any input character restarts output that has been suspended.

If IXOFF is set, the system transmits a STOP character when the input queue is
nearly full, and a START character when enough input has been read so that the
input queue is nearly empty again.

If IMAXBEL is set, the ASCII BEL character is echoed if the input stream overflows.
Further input is not stored, but any input already present in the input stream is not
disturbed. If IMAXBEL is not set, no BEL character is echoed, and all input present in
the input queue is discarded if the input stream overflows.

The initial input control value is BRKINT, ICRNL, IXON, ISTRIP.

Output Modes

Page 8

The c_oflag field specifies the system treatment of output:

OPOST Post-process output.
OLCUC Map lower case to upper on output.
ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NULL.
NLDLY Select newline delays:

NLO
NLl

CRDLY
CRO
CRl
CR2
CR3

TABDLY
TABO
TABl
TAB2
TAB3
XTABS

BSDLY
BSO
BSl

VTDLY
VTO
VTl

FFDLY
FFO
FFl

Select carriage-return delays:

Select horizontal tab delays:
or tab expansion:

Expand tabs to spaces.
Expand tabs to spaces.
Select backspace delays:

Select vertical tab delays:

Select form feed delays:

10/92

termio(7) termio (7)

If OPOST is set, output characters are post-processed as indicated by the remaining
flags; otherwise, characters are transmitted without change.

If OLCUC is set, a lower case alphabetic character is transmitted as the corresponding
upper case character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL
is set, the CR character is transmitted as the NL character. If ONOCR is set, no CR
character is transmitted when at column 0 (first position). If ONRET is set, the NL
character is assumed to do the carriage-return function; the column pointer is set to
0 and the delays specified for CR are used. Otherwise, the NL character is assumed
to do just the line-feed function; the column pointer remains unchanged. The
column pointer is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0
indicates no delay. If OFILL is set, fill characters are transmitted for delay instead
of a timed delay. This is useful for high baud rate terminals that need only a
minimal delay. If OFDEL is set, the fill character is DEL; otherwise it is NULL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays
are used instead of the newline delays. If OFILL is set, two fill characters are
transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is
about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1
transmits two fill characters, and type 2 transmits four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is
about 0.10 seconds. Type 3 specifies that tabs are to be expanded into spaces. If
OFILL is set, two fill characters are transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is
transmitted.

The actual delays depend on line speed and system load.

The initial output control value is OPOST, ONLCR, TAB3.

Control Modes
The c_cflag field describes the hardware control of the terminal:

CBAUD Baud rate:
BO Hangup
B50 50baud
B75 75 baud
BllO 110 baud
B13 4 134 baud
Bl50 150 baud
B2 0 o 200 baud
B3 0 O 300 baud
B600 600 baud
B12 0 0 1200 baud
B1800 1800 baud
B2400 2400 baud

10/92 Page 9

termio (7) termio(7)

B4800
B9600
B19200
EXTA
B38400
EXTB

CSIZE
css
CS6
CS7
CS8

CSTOPB
CREAD
PARENB
PARODD
HUPCL
CLO CAL
CIBAUD
PAREXT

4800baud
9600baud
19200baud
External A
38400baud
External B

Character size:
5 bits
6 bits
7bits
8 bits

Send two stop bits, else one
Enable receiver
Parity enable
Odd parity, else even
Hang up on last close
Local line, else dial-up
Input baud rate, if different from output rate
Extended parity for mark and space parity

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the
connection. If BO is specified, the data-terminal-ready signal is not asserted. Nor­
mally, this disconnects the line. If the CIBAUD bits are not zero, they specify the
input baud rate, with the CBAUD bits specifying the output baud rate; otherwise, the
output and input baud rates are both specified by the CBAUD bits. The values for
the CIBAUD bits are the same as the values for the CBAUD bits, shifted left IBSHIFT
bits. For any particular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception.
This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are
used; otherwise, one stop bit is used. For example, at 110 baud, two stops bits are
required.

If PARENB is set, parity generation and detection is enabled, and a parity bit is
added to each character. If parity is enabled, the PARODD flag specifies odd parity if
set; otherwise, even parity is used.

If CREAD is set, the receiver is enabled. Otherwise, no characters are received.

If HUPCL is set, the line is disconnected when the last process with the line open
closes it or terminates. That is, the data-terminal-ready signal is not asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem
control; otherwise, modem control is assumed.

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

Local Modes
The c_lflag field of the argument structure is used by the line discipline to control
terminal functions. The basic line discipline provides the following:

Page 10 10/92

!

!j
I

I

I

11

termio (7) termio(7)

10/92

ISIG
I CANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH
TO STOP
ECHOCTL
ECHOPRT
ECHO KE
FLUSHO
PEND IN
IEXTEN

Enable signals.
Canonical input (erase and kill processing).
Canonical upper/lower presentation.
Enable echo.
Echo erase character as BS-SP-BS.
Echo NL after kill character.
Echo NL.
Disable flush after interrupt or quit.
Send SIGTTOU for background output.
Echo control characters as Achar, delete as A?.
Echo erase character as character erased.
BS-SP-BS erase entire line on line kill.
Output is being flushed.
Retype pending input at next read or input character.
Enable extended (implementation-defined) functions.

If ISIG is set, each input character is checked against the special control characters
INTR, QUIT, SWTCH, SUSP, STATUS, and DSUSP. If an input character matches one of
these control characters, the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus, these special input functions are possi­
ble only if ISIG is set.

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit
functions, and the assembly of input characters into lines delimited by NL, EOF, EOL,
and EOL2. If ICANON is not set, read requests are satisfied directly from the input
queue. A read is not satisfied until at least MIN characters have been received or the
timeout value TIME has expired between characters. This allows fast bursts of
input to be read efficiently while still allowing single character input. The time
value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper case letter is accepted on input by
preceding it with a \ character, and is output preceded by a \ character. In this
mode, the following escape sequences are generated on output and accepted on
input:

for: use:
\,

\ !
\A

{ \ (
} \)

\ \\

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible.

1. If ECHO and ECHOE are set, and ECHOPRT is not set, the ERASE and WERASE char­
acters are echoed as one or more ASCII BS SP BS, which clears the last
character(s) from a CRT screen.

Page 11

termio (7) termio (7)

2. If ECHO and ECHOPRT are set, the first ERASE and WERASE character in a
sequence echoes as a backslash (\), followed by the characters being erased.
Subsequent ERASE and WERASE characters echo the characters being erased, in
reverse order. The next non-erase character causes a slash (/) to be typed
before it is echoed. ECHOPRT should be used for hard copy terminals.

3. If ECHOKE is set, the kill character is echoed by erasing each character on the
line from the screen (using the mechanism selected by ECHOE and ECHOPRT).

4. If ECHOK is set, and ECHOKE is not set, the NL character is echoed after the kill
character to emphasize that the line is deleted. Note that an escape character
(\) or an LNEXT character preceding the erase or kill character removes any
special function.

5. If ECHONL is set, the NL character is echoed even if ECHO is not set. This is use-
ful for terminals set to local echo (so called half-duplex).

If ECHOCTL is set, all control characters (characters with codes between 0 and 37
octal) other than ASCII TAB, ASCII NL, the START character, and the STOP character,
ASCII CR, and ASCII BS are echoed as AX, where x is the character given by adding
100 octal to the code of the control character (so that the character with octal code 1
is echoed as AA), and the ASCII DEL character, with code 177 octal, is echoed as A?.

If NOFLSH is set, the normal flush of the input and output queues associated with
the INTR, QUIT, and SUSP characters is not done. This bit should be set when res­
tarting system calls that read from or write to a terminal [see sigaction(2)].

If TOSTOP is set, the signal SIGTTOU is sent to a process that tries to write to its con­
trolling terminal if it is not in the foreground process group for that terminal. This
signal normally stops the process. Otherwise, the output generated by that process
is output to the current output stream. Processes that are blocking or ignoring
SIGTTOU signals are excepted and allowed to produce output, if any.

If FLUSHO is set, data written to the terminal is discarded. This bit is set when the
FLUSH character is typed. A program can cancel the effect of typing the FLUSH
character by clearing FLUSHO.

If PENDIN is set, any input that has not yet been read is reprinted when the next
character arrives as input.

If IEXTEN is set, the following implementation-defined functions are enabled: spe­
cial characters (WERASE' REPRINT' DISCARD, and LNEXT) and local flags (TOSTOP'
ECHOCTL' ECHOPRT' ECHOKE' FLUSHO, and PEND IN).

The initial line-discipline control value is ISIG' I CANON' ECHO' ECHOK.

Terminal Size
The number of lines and columns on the terminal's display is specified in the win­
size structure defined by sys/termios .hand includes the following members:

Page 12 10/92

I~
I

termio(7) termio (7)

unsigned short
unsigned short
unsigned short
unsigned short

ws_row; /* rows, in characters */
ws_col; /* columns, in characters */
ws_xpixel;/* horizontal size, in pixels */
ws_ypixel;/* vertical size, in pixels */

termio Structure
The System V terrnio structure is used by some ioctls; it is defined by
sys /terrnio. hand includes the following members:

unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NCC]; /*control chars*/

The special control characters are defined by the array c_cc. The symbolic name
NCC is the size of the control-character array and is also defined by terrnio. h. The
relative positions, subscript names, and typical default values for each function are
as follows:

0 VINTR
1 VQUIT
2 VERASE
3 VKILL
4 VEOF
5 VEOL
6 VEOL2
7 reserved

DEL
FS

@

EOT
NUL
NUL

For the non-canonical mode the positions VEOF and VEOL are shared by VMIN
and VTIME:

4 VMIN
5 VTIME

used to set the value of MIN
used to set the value of TIME

The calls that use the terrnio structure only affect the flags and control characters
that can be stored in the terrnio structure; all other flags and control characters are
unaffected.

Modem Lines

10/92

On special files representing serial ports, the modem control lines supported by the
hardware can be read, and the modem status lines supported by the hardware can
be changed. The following modem control and status lines may be supported by a
device; they are defined by sys I terrnios . h:

TIOCM_LE line enable
TIOCM_DTR data terminal ready
TIOCM_RTS request to send
TIOCM_ST secondary transmit
TIOCM_SR secondary receive
TIOCM_CTS clear to send
TIOCM_CAR carrier detect
TIOCM_RNG ring
TIOCM_DSR data set ready

Page 13

termio(7) termio(7)

ioctls

TIOCM_CD is a synonym for TIOCM_CAR, and TIOCM_RI is a synonym for
TIOCM_RNG. Not all of these are necessarily supported by any particular device;
check the manual page for the device in question.

The ioctls supported by devices and STREAMS modules providing the termios
interface are listed below. Some calls may not be supported by all devices or
modules. The functionality provided by these calls is also available through the
preferred function call interface specified on termios(2).

TCGETS The argument is a pointer to a termios structure. The current ter­
minal parameters are fetched and stored into that structure.

TC SETS

TCSETSW

TCSETSF

TCGETA

TC SETA

TCSETAW

TCSETAF

TCSBRK

The argument is a pointer to a termios structure. The current ter­
minal parameters are set from the values stored in that structure.
The change is immediate.

The argument is a pointer to a termios structure. The current ter­
minal parameters are set from the values stored in that structure.
The change occurs after all characters queued for output have
been transmitted. This form should be used when changing
parameters that affect output.

The argument is a pointer to a termios structure. The current ter­
minal parameters are set from the values stored in that structure.
The change occurs after all characters queued for output have
been transmitted; all characters queued for input are discarded
and then the change occurs.

The argument is a pointer to a termio structure. The current ter­
minal parameters are fetched, and those parameters that can be
stored in a termio structure are stored into that structure.

The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change is immediate.

The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted. This form
should be used when changing parameters that affect output.

The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted; all characters
queued for input are discarded and then the change occurs.

The argument is an int value. Wait for the output to drain. If the
argument is 0, then send a break (zero valued bits for 0.25
seconds).

Page 14 10/92

'

I~

I

l . .i
lj
1t

termio(7)

TCXONC

TC FL SH

TIOCGPGRP

TIOCSPGRP

TIOCGSID

TIOCGWINSZ

TIOCSWINSZ

TIOCMBIS

TIOCMBIC

TIOCMGET

TIOCMSET

FILES

termio(7)

Start/stop control. The argument is an int value. If the argument
is 0, suspend output; if 1, restart suspended output; if 2, suspend
input; if 3, restart suspended input.

The argument is an int value. If the argument is 0, flush the input
queue; if 1, flush the output queue; if 2, flush both the input and
output queues. On some controllers, if the argument is 0, input
flow control characters will be flushed, causing the unflushed out­
put queue to overflow a busy output device.

The argument is a pointer to a pid_t. Set the value of that pid_t
to the process group ID of the foreground process group associ­
ated with the terminal. See termios(2) for a description or
TCGETPGRP.

The argument is a pointer to a pid_t. Associate the process group
whose process group ID is specified by the value of that pid_t
with the terminal. The new process group value must be in the
range of valid process group ID values. Otherwise, the error
EPERM is returned. See termios(2) for a description of TCSETPGRP.

The argument is a pointer to a pid_t. The session ID of the termi­
nal is fetched and stored in the pid_t.

The argument is a pointer to a winsize structure. The terminal
driver's notion of the terminal size is stored into that structure.

The argument is a pointer to a winsize structure. The terminal
driver's notion of the terminal size is set from the values specified
in that structure. If the new sizes are different from the old sizes, a
SIGWINCH signal is set to the process group of the terminal.

The argument is a pointer to an int whose value is a mask con­
taining modem control lines to be turned on. The control lines
whose bits are set in the argument are turned on; no other control
lines are affected.

The argument is a pointer to an int whose value is a mask con­
taining modem control lines to be turned off. The control lines
whose bits are set in the argument are turned off; no other control
lines are affected.

The argument is a pointer to an int. The current state of the
modem status lines is fetched and stored in the int pointed to by
the argument.

The argument is a pointer to an int containing a new set of
modem control lines. The modem control lines are turned on or
off, depending on whether the bit for that mode is set or clear.

files in or under I dev

SEE ALSO
fork(2), ioctl(2), setsid(2), signal(2), termios(2), strearnio(7)

10/92 Page 15

termiox(7) termiox(7)

NAME
termiox - extended general terminal interface

DESCRIPTION
The extended general terminal interface supplements the termio(7) general termi­
nal interface by adding support for asynchronous hardware flow control, isochro­
nous flow control and clock modes, and local implementations of additional asyn­
chronous features. Please refer to the device specific man pages of the device being
utilized to determine whether hardware flow control is supported. Some systems
may not support all of these capabilities because of either hardware or software
limitations. Other systems may not permit certain functions to be disabled. In
these cases the appropriate bits will be ignored. See termiox. h for your system to
find out which capabilities are supported.

Hardware Flow Control Modes
Hardware flow control supplements the termio(7) IXON, IXOFF, and IXANY charac­
ter flow control. Character flow control occurs when one device controls the data
transfer of another device by the insertion of control characters 1n the data stream
between devices. Hardware flow control occurs when one device controls the data
transfer of another device using electrical control signals on wires (circuits) of the
asynchronous interface. Isochronous hardware flow control occurs when one dev­
ice controls the data transfer of another device by asserting or removing the
transmit clock signals of that device. Character flow control and hardware flow
control may be simultaneously set.

In asynchronous, full duplex applications, the use of the Electronic Industries
Association's EIA-232-D Request To Send (RTS) and Clear To Send (CTS) circuits is
the preferred method of hardware flow control. An interface to other hardware
flow control methods is included to provide a standard interface to these existing
methods.

The EIA-232-D standard specified only uni-directional hardware flow control - the
Data Circuit-terminating Equipment or Data Communications Equipment (DCE)
indicates to the Data Terminal Equipment (DTE) to stop transmitting data. The
termiox(7) interface allows both uni-directional and bi-directional hardware flow
control; when bi-directional flow control is enabled, either the DCE or DTE can indi­
cate to each other to stop transmitting data across the interface. Note: It is assumed
that the asynchronous port is configured as a DTE. If the connected device is also a
DTE and not a DCE, then DTE to DTE (for example, terminal or printer connected to
computer) hardware flow control is possible by using a null modem to interconnect
the appropriate data and control circuits.

Clock Modes

10/92

Isochronous communication is a variation of asynchronous communication
whereby two communicating devices may provide transmit and/or receive clock to
each other. Incoming clock signals can be taken from the baud rate generator on
the local isochronous port controller, from CCITT V.24 circuit 114, Transmitter Sig­
nal Element Timing - DCE source (EIA-232-D pin 15), or from CCITT V.24 circuit 115,
Receiver Signal Element Timing - DCE source (EIA-232-D pin 17). Outgoing clock
signals can be sent on CCITT V.24 circuit 113, Transmitter Signal Element Timing -
DTE source (EIA-232-D pin 24), on CCITT V.24 circuit 128, Receiver Signal Element
Timing - DTE source (no EIA-232-D pin), or not sent at all.

Page 1

11
I

termiox(7) termiox(7)

In terms of clock modes, traditional asynchronous communication is implemented
simply by using the local baud rate generator as the incoming transmit and receive
clock source and not outputting any clock signals.

Terminal Parameters

Page 2

The parameters that control the behavior of devices providing the termiox inter­
face are specified by the termiox structure, defined in the sys /termiox. h header
file. Several ioctl(2) system calls that fetch or change these parameters use this
structure:

#define NFF 5
struct termiox

} ;

unsigned short

unsigned short
unsigned short
unsigned short

x_hflag; /* hardware flow control
modes */

x_cflag; /* clock modes */
x_rflag[NFFJ;/* reserved modes*/
x_sflag; /* spare local modes */

The x_hflag field describes hardware flow control modes:

RTSXOFF
CTSXON
DTRXOFF
CDXON
ISXOFF

0000001 Enable RTS hardware flow control on input.
0000002 Enable CTS hardware flow control on output.
0000004 Enable DTR hardware flow control on input.
0000010 Enable CD hardware flow control on output.
0000020 Enable isochronous hardware flow control on input.

The EIA-232-D DTR and CD circuits are used to establish a connection between two
systems. The RTS circuit is also used to establish a connection with a modem.
Thus, both DTR and RTS are activated when an asynchronous port is opened. If DTR
is used for hardware flow control, then RTS must be used for connectivity. If CD is
used for hardware flow control, then CTS must be used for connectivity. Thus, RTS
and DTR (or CTS and CD) cannot both be used for hardware flow control at the same
time. Other mutual exclusions may apply, such as the simultaneous setting of the
termio(7) HUPCL and the termiox(7) DTRXOFF bits, which use the DTE ready line
for different functions.

Variations of different hardware flow control methods may be selected by setting
the the appropriate bits. For example, bi-directional RTS/CTS flow control is
selected by setting both the RTSXOFF and CTSXON bits and bi-directional DTR/CTS
flow control is selected by setting both the DTRXOFF and CTSXON. Modem control or
uni-directional CTS hardware flow control is selected by setting only the CTSXON
bit.

As previously mentioned, it is assumed that the local asynchronous port (for exam­
ple, computer) is configured as a DTE. If the connected device (for example,
printer) is also a DTE, it is assumed that the device is connected to the computer's
asynchronous port via a null modem that swaps control circuits (typically RTS and
CTS). The connected DTE drives RTS and the null modem swaps RTS and CTS so
that the remote RTS is received as CTS by the local DTE. In the case that CTSXON is
set for hardware flow control, printer's lowering of its RTS would cause CTS seen by
the computer to be lowered. Output to the printer is suspended

10/92

termiox(7) termiox(7)

until the printer's raising of its RTS, which would cause CTS seen by the computer
to be raised.

If RTSXOFF is set, the Request To Send (RTS) circuit (line) will be raised, and if the
asynchronous port needs to have its input stopped, it will lower the Request To
Send (RTS) line. If the RTS line is lowered, it is assumed that the connected device
will stop its output until RTS is raised.

If CTSXON is set, output will occur only if the Clear To Send (CTS) circuit (line) is
raised by the connected device. If the CTS line is lowered by the connected device,
output is suspended until CTS is raised.

If DTRXOFF is set, the DTE Ready (DTR) circuit (line) will be raised, and if the asyn­
chronous port needs to have its input stopped, it will lower the DTE Ready (DTR)
line. If the DTR line is lowered, it is assumed that the connected device will stop its
output until DTR is raised.

If CDXON is set, output will occur only if the Received Line Signal Detector (CD) cir­
cuit (line) is raised by the connected device. If the CD line is lowered by the con­
nected device, output is suspended until CD is raised.

If ISXOFF is set, and if the isochronous port needs to have its input stopped, it will
stop the outgoing clock signal. It is assumed that the connected device is using this
clock signal to create its output. Transit and receive clock sources are programmed
using the x_cflag fields. If the port is not programmed for external clock genera­
tion, ISXOFF is ignored. Output isochronous flow control is supported by
appropriate clock source programming using the x_cflag field and enabled at the
remote connected device.

The x_cflag field specifies the system treatment of clock modes.

XMTCLK 0000007 Transmit clock source:
XCIBRG 0000000 Get transmit clock from internal baud rate

generator.
XCTSET 0000001 Get transmit clock from transmitter signal

element timing (DCE source) lead, CCITT
V.24 circuit 114, EIA-232-D pin 15.

XCRSET 0000002 Get transmit clock from receiver signal
element timing (DCE source) lead, CCITT
V.24 circuit 115, EIA-232-D pin 17.

RCVCLK 0000070 Receive clock source:
RCIBRG 0000000 Get receive clock from internal baud rate

generator.
RCTSET 0000010 Get receive clock from transmitter signal

element timing (DCE source) lead, CCITT
V.24 circuit 114, EIA-232-D pin 15.

RCRSET 0000020 Get receive clock from receiver signal
element timing (DCE source) lead, CCITT
V.24 circuit 115, EIA-232-D pin 17.

TSETCLK 0000700 Transmitter signal element timing (DTE source)
lead, CCITT V.24 circuit 113, EIA-232-D
pin 24, clock source:

TSETCOFF 0000000 TSET clock not provided.

10/92 Page 3

I

I

I I~

termiox(7) termiox(7)

Page 4

TSETCRBRG 0000100 Output receive baud rate generator on
circuit 113.

TSETCTBRG 0000200 Output transmit baud rate generator on
circuit 113.

TSETCTSET 0000300 Output transmitter signal element timing
(DCE source) on circuit 113.

TSETCRSET 0000400 Output receiver signal element timing
(DCE source) on circuit 113.

RSETCLK 0007000 Receiver signal element timing (DTE source)
lead, CCITT V.24 circuit 128, no EIA-232-D
pin, clock source:

RSETCOFF 0000000 RSET clock not provided.
RSETCRBRG 0001000 Output receive baud rate generator on

circuit 128.
RSETCTBRG 0002000 Output transmit baud rate generator on

circuit 128.
RSETCTSET 0003000 Output transmitter signal element timing

(DCE source) on circuit 128.
RSETCRSET 0004000 Output receiver signal element timing

(DCE) on circuit 128.

If the XMTCLK field has a value of XCIBRG the transmit clock is taken from the
hardware internal baud rate generator, as in normal asynchronous transmission. If
XMTCLK = XCTSET the transmit clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If XMTCLK = XCRSET the transmit clock is taken from
the Receiver Signal Element Timing (DCE source) circuit.

If the RCVCLK field has a value of RCIBRG the receive clock is taken from the
hardware Internal Baud Rate Generator, as in normal asynchronous transmission.
If RCVCLK = RCTSET the receive clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If RCVCLK = RCRSET the receive clock is taken from the
Receiver Signal Element Timing (DCE source) circuit.

If the TSETCLK field has a value of TSETCOFF the Transmitter Signal Element Tim­
ing (DTE source) circuit is not driven. If TSETCLK = TSETCRBRG the Transmitter Sig­
nal Element Timing (DTE source) circuit is driven by the Receive Baud Rate Genera­
tor. If TSETCLK = TSETCTBRG the Transmitter Signal Element Timing (DTE source)
circuit is driven by the Transmit Baud Rate Generator. If TSETCLK = TSETCTSET the
Transmitter Signal Element Timing (DTE source) circuit is driven by the Transmitter
Signal Element Timing (DCE source). If TSETCLK = TSETCRBRG the Transmitter Sig­
nal Element Timing (DTE source) circuit is driven by the Receiver Signal Element
Timing (DCE source).

If the RSETCLK field has a value of RSETCOFF the Receiver Signal Element Timing
(DTE source) circuit is not driven. If RSETCLK = RSETCRBRG the Receiver Signal Ele­
ment Timing (DTE source) circuit is driven by the Receive Baud Rate Generator. If
RSETCLK = RSETCTBRG the Receiver Signal Element Timing (DTE source) circuit is
driven by the Transmit Baud Rate Generator. If RSETCLK = RSETCTSET the Receiver
Signal Element Timing (DTE source) circuit is driven by the Transmitter Signal Ele­
ment Timing (DCE source). If RSETCLK = RSETCRBRG the Receiver Signal Element
Timing (DTE source) circuit is driven by the Receiver Signal Element Timing (DCE
source).

10/92

termiox(7) termiox(7)

I OCT LS

FILES

The x_rflag is reserved for future interface definitions and should not be used by
any implementations. The x_sflag may be used by local implementations wishing
to customize their terminal interface using the tenniox(7) ioctl system calls.

The ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termiox *arg;

The commands using this form are:

TCGETX The argument is a pointer to a termiox structure. The current
terminal parameters are fetched and stored into that structure.

TCSETX The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that struc­
ture. The change is immediate.

TCSETXW The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that struc­
ture. The change occurs after all characters queued for output
have been transmitted. This form should be used when chang­
ing parameters that will affect output.

TCSETXF The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that struc­
ture. The change occurs after all characters queued for output
have been transmitted; all characters queued for input are dis­
carded and then the change occurs.

/dev/*

SEE ALSO
stty(l), ioct1(2), terrnio(7)

10/92 Page 5

!~

ticlts (7) ticlts (7)

NAME
ticlts, ticots, ticotsord- loopback transport providers

SYNOPSIS
#include <sys/ticlts.h>
#include <sys/ticots.h>
#include <sys/ticotsord.h>

DESCRIPTION

USAGE

10/92

The devices known as ticlts, ticots, and ticotsord are "loopback transport
providers," that is, stand-alone networks at the transport level. Loopback transport
providers are transport providers in every sense except one: only one host (the
local machine) is "connected to" a loopback network. Loopback transports present
a TPI (STREAMS-level) interface to application processes and are intended to be
accessed via the TLI (application-level) interface. They are implemented as clone
devices and support address spaces consisting of "flex-addresses," that is, arbitrary
sequences of octets, of length> 0, represented by a netbuf structure.

ticlts is a datagram-mode transport provider. It offers (connectionless) service of
type T_CLTS. Its default address size is TCL_DEFAULTADDRSZ. ti cl ts prints the
following error messages (see t_rcvuderr(3N)):

TCL_BADADDR
TCL_BADOPT
TCL_NOPEER
TCL_PEERBADSTATE

bad address specification
bad option specification
bound
peer in wrong state

ticots is a virtual circuit-mode transport provider. It offers (connection-oriented)
service of type T_COTS. Its default address size is TCO_DEFAULTADDRSZ. ticots
prints the following disconnect messages (see t_rcvdis(3N)):

TCO_NOPEER
TCO_PEERNOROOMONQ
TCO_PEERBADSTATE
TCO_PEERINITIATED
TCO_PROVIDERINITIATED

no listener on destination address
peer has no room on connect queue
peer in wrong state
peer-initiated disconnect
provider-initiated disconnect

ticotsord is a virtual circuit-mode transport provider, offering service of type
T_COTS_ORD (connection-oriented service with orderly release). Its default address
size is TCOO_DEFAULTADDRSZ. ticotsord prints the following disconnect mes­
sages (see t_rcvdis(3N)):

TCOO_NOPEER
TCOO_PEERNOROOMONQ
TCOO_PEERBADSTATE
TCOO_PEERINITIATED
TCOO_PROVIDERINITIATED

no listener on destination address
peer has no room on connect queue
peer in wrong state
peer-initiated disconnect
provider-initiated disconnect

Loopback transports support a local IPC mechanism through the TLI interface.
Applications implemented in a transport provider-independent manner on a
client-server model using this IPC are transparently transportable to networked
environments.

Page 1

ticlts (7) ticlts(7)

FILES

Page 2

Transport provider-independent applications must not include the header files
listed in the synopsis section above. In particular, the options are (like all transport
provider options) provider dependent.

ticlts and ticots support the same service types (T_CLTS and T_COTS) sup­
ported by the OSI transport-level model. The use of ticlts and ticots is
encouraged.

ticotsord supports the same service type (T_COTSORD) supported by the TCP/IP
model. The use of ticotsord is discouraged except for reasons of compatibility.

/dev/ticlts
/dev/ticots
/dev/ticotsord

10/92

I

I

I~
I

1,

I

I

I

I

I

I,
1,,
J
I'
I~

timednet.conf (4) timednet.conf (4)

NAME
timednet. conf - time daemon network configuration file.

SYNOPSIS
/etc/timednet.conf

DESCRIPTION
I etc/timednet. conf describes the configuration of a site's time daemon network.
It is examined by the startup script /etc/init .d/timed to determine if and in
what manner in. timed should be started.

EXAMPLE

10/92

The following example describes the format of /etc/timednet. conf:

#Fl F2 F3 F4 F5

jibboo yes master
raygun yes master testnet
charm YES slave testnet
neptune no slave netA:netB

Field 1:
The hostname of the host that this entry pertains to.

Field 2:
Determines whether are not a time daemon should be started on the host
whose name appears in field 1. Legal values are yes, YES, and no. If the field
contains YES then in. timed will be started in trace mode.

Field 3:
Determines whether in. timed will be started in master or slave mode. Legal
values are master or slave.

Field 4:
A list of networks (see I etc/networks) that in. timed will exclusively moni­
tor (see the -n option of in. timed). If more than one network appears in the
list, each network must be separated by a colon (:)with no intervening white
space between the colon and the network names. If there are no networks to
monitor, then the field must contain a dash(-).

Field 5:
A list of networks (see /etc/networks) that in. timed will ignore (see the -i
option of in. timed). If more than one network appears in the list, each net­
work must be separated by a colon (:) with no intervening white space
between the colon and the network names. If there are no networks to ignore,
then the field must contain a dash(-).

Lines beginning with a pound sign (#) will be treated as comments and ignored.

Page 1

timednet.conf (4} timednet.conf (4}

NOTES
Network interfaces specified in /etc/if. ignore will also be ignored by in. timed.
Whether both files, either file, or neither file exist on a system, it is the system
administrator's responsibility to ensure a appropriate configuration.

SEE ALSO
date(l), in. tirned(lM), tirnedc(lM), if. ignore(4).

Page 2 10/92

timezone (4)

NAME
timezone - set default system time zone

SYNOPSIS
/etc/TIMEZONE

DESCRIPTION
This file sets and exports the time zone environmental variable TZ.

This file is "dotted" into other files that must know the time zone.

EXAMPLES
/etc/TIMEZONE for the east coast:

Time Zone
TZ=ESTSEDT
export TZ

SEE ALSO
rc2(1M), ctime(3C), profile(4), environ(S).

10/92

timezone (4)

Page 1

timod(7) (Networking Support Utilities) timod (7)

NAME
timod-Transport Interface cooperating STREAMS module

DESCRIPTION

10/92

timod is a STREAMS module for use with the Transport Interface (TI) functions of
the Network Services library. The timod module converts a set of ioctl(2) calls
into STREAMS messages that may be consumed by a transport protocol provider
which supports the Transport Interface. This allows a user to initiate certain TI
functions as atomic operations.

The timod module must be pushed onto only a stream terminated by a transport
protocol provider which supports the Tl.

All STREAMS messages, with the exception of the message types generated from the
ioctl commands described below, will be transparently passed to the neighboring
STREAMS module or driver. The messages generated from the following ioctl
commands are recognized and processed by the timod module. The format of the
ioctl call is:

#include <sys/stropts.h>

struct strioctl strioctl;

strioctl.ic_cmd = cmd;
strioctl.ic_timeout = INFTIM;
strioctl. ic_len = size;
strioctl.ic_dp = (char *)buf
ioctl(fildes, I_STR, &strioctl);

Where, on issuance, size is the size of the appropriate TI message to be sent to the
transport provider and on return size is the size of the appropriate TI message from
the transport provider in response to the issued TI message. buf is a pointer to a
buffer large enough to hold the contents of the appropriate TI messages. The TI
message types are defined in sys/tihdr. h. The possible values for the cmd field
are:

TI_BIND

TI_ UNBIND

TI_GETINFO

Bind an address to the underlying transport protocol provider.
The message issued to the TI_BIND ioctl is equivalent to the TI
message type T_BIND_REQ and the message returned by the suc­
cessful completion of the ioctl is equivalent to the TI message
type T_BIND_ACK.

Unbind an address from the underlying transport protocol pro­
vider. The message issued to the TI_UNBIND ioctl is equivalent
to the TI message type T_UNBIND_REQ and the message returned
by the successful completion of the ioctl is equivalent to the TI
message type T_OK_ACK.

Get the TI protocol specific information from the transport proto­
col. provider. The message issued to the TI_GETINFO ioctl is
equivalent to the TI message type T_INFO_REQ and the message

Page 1

I

!t
I,

timod (7)

FILES

TI_OPTMGMT

sys/timod.h
sys/tiuser.h
sys/tihdr.h
sys I errno. h

SEE ALSO
tirdwr(7).

DIAGNOSTICS

(Networking Support Utilities) timod(7)

returned by the successful completion of the ioctl is equivalent
to the TI message type T_INFO_ACK.

Get, set or negotiate protocol specific options with the transport
protocol provider. The message issued to the TI_OPTMGMT ioctl
is equivalent to the TI message type T_OPTMGMT_REQ and the mes­
sage returned by the successful completion of the ioctl is
equivalent to the TI message type T_OPTMGMT_ACK.

If the ioctl system call returns with a value greater than 0, the lower 8 bits of the
return value will be one of the TI error codes as defined in sys/tiuser .h. If the TI
error is of type TSYSERR, then the next 8 bits of the return value will contain an
error as defined in sys/errno .h [see intro(2)].

Page 2 10/92

tirdwr(7) (Networking Support Utilities) tirdwr(7)

NAME
tirdwr -Transport Interface read/write interface STREAMS module

DESCRIPTION

10/92

tirdwr is a STREAMS module that provides an alternate interface to a transport
provider which supports the Transport Interface (Tl) functions of the Network Ser­
vices library (see Section 3N). This alternate interface allows a user to communicate
with the transport protocol provider using the read(2) and write(2) system calls.
The putmsg(2) and getmsg(2) system calls may also be used. However, putmsg
and getmsg can only transfer data messages between user and stream.

The tirdwr module must only be pushed [see I_PUSH in streamio(7)] onto a
stream terminated by a transport protocol provider which supports the TL After
the tirdwr module has been pushed onto a stream, none of the Transport Interface
functions can be used. Subsequent calls to TI functions will cause an error on the
stream. Once the error is detected, subsequent system calls on the stream will
return an error with errno set to EPROTO.

The following are the actions taken by the tirdwr module when pushed on the
stream, popped [see I_POP in streamio(7)] off the stream, or when data passes
through it.

push When the module is pushed onto a stream, it will check any existing data
destined for the user to ensure that only regular data messages are present.
It will ignore any messages on the stream that relate to process manage­
ment, such as messages that generate signals to the user processes associ­
ated with the stream. If any other messages are present, the I_PUSH will
return an error with errno set to EPROTO.

write The module will take the following actions on data that originated from a
write system call:

All messages with the exception of messages that contain control
portions (see the putmsg and getmsg system calls) will be trans­
parently passed onto the module's downstream neighbor.

Any zero length data messages will be freed by the module and they
will not be passed onto the module's downstream neighbor.

Any messages with control portions will generate an error, and any
further system calls associated with the stream will fail with errno
set to EPROTO.

read The module will take the following actions on data that originated from
the transport protocol provider:

All messages with the exception of those that contain control
portions (see the putmsg and getmsg system calls) will be trans­
parently passed onto the module's upstream neighbor.

The action taken on messages with control portions will be as
follows:

Page 1

It

tirdwr (7) (Networking Support Utilities) tirdwr(7)

Messages that represent expedited data will generate an error.
All further system calls associated with the stream will fail with
errno set to EPROTO.

Any data messages with control portions will have the control
portions removed from the message prior to passing the
message on to the upstream neighbor.

Messages that represent an orderly release indication from the
transport provider will generate a zero length data message,
indicating the end of file, which will be sent to the reader of the
stream. The orderly release message itself will be freed by the
module.

Messages that represent an abortive disconnect indication from
the transport provider will cause all further write and putmsg
system calls to fail with errno set to ENXIO. All further read
and getmsg system calls will return zero length data (indicating
end of file) once all previous data has been read.

With the exception of the above rules, all other messages with
control portions will generate an error and all further system
calls associated with the stream will fail with errno set to
EPROTO.

Any zero length data messages will be freed by the module and they
will not be passed onto the module's upstream neighbor.

pop When the module is popped off the stream or the stream is closed, the
module will take the following action:

If an orderly release indication has been previously received, then an
orderly release request will be sent to the remote side of the tran­
sport connection.

SEE ALSO

Page 2

getmsg(2), intro(2), putmsg(2), read(2), write(2), intro(3), streamio(7),
timod(7).

10/92

ts_dptbl(4) ts_dptbl (4)

NAME
ts_dptbl - time-sharing dispatcher parameter table

DESCRIPTION

10/92

The process scheduler (or dispatcher) is the portion of the kernel that controls allo­
cation of the CPU to processes. The scheduler supports the notion of scheduling
classes where each class defines a scheduling policy, used to schedule processes
within that class. Associated with each scheduling class is a set of priority queues
on which ready to run processes are linked. These priority queues are mapped by
the system configuration into a set of global scheduling priorities which are avail­
able to processes within the class. (The dispatcher always selects for execution the
process with the highest global scheduling priority in the system.) The priority
queues associated with a given class are viewed by that class as a contiguous set of
priority levels numbered from 0 (lowest priority) to n (highest priority-a
configuration-dependent value). The set of global scheduling priorities that the
queues for a given class are mapped into might not start at zero and might not be
contiguous (depending on the configuration).

Processes in the time-sharing class which are running in user mode (or in kernel
mode before going to sleep) are scheduled according to the parameters in a time­
sharing dispatcher parameter table (ts_dptbl). (Time-sharing processes running
in kernel mode after sleeping are run within a special range of priorities reserved
for such processes and are not affected by the parameters in the ts_dptbl until
they return to user mode.) The ts_dptbl consists of an array of parameter struc­
tures (struct ts_dpent), one for each of then priority levels used by time-sharing
processes in user mode. The properties of a given priority level i are specified by
the ith parameter structure in this array (ts_dptbli).

A parameter structure consists of the following members. These are also described
in the /usr/include/sys/ts. h header file.

ts_globpri The global scheduling priority associated with this priority level.

ts_quantum

ts_tqexp

ts_slpret

ts_maxwait

The mapping between time-sharing priority levels and global
scheduling priorities is determined at boot time by the system
configuration. ts_globpri is the only member of the ts_dptbl
which cannot be changed with dispadmin(lM).

The length of the time quantum allocated to processes at this
level in ticks (HZ).

Priority level of the new queue on which to place a process run­
ning at the current level if it exceeds its time quantum. Normally
this field links to a lower priority time-sharing level that has a
larger quantum.

Priority level of the new queue on which to place a process, that
was previously in user mode at this level, when it returns to user
mode after sleeping. Normally this field links to a higher priority
level that has a smaller quantum.

A per process counter, ts_dispwait is initialized to zero each
time a time-sharing process is placed back on the dispatcher
queue after its time quantum has expired or when it is awakened
(ts_dispwait is not reset to zero when a process is preempted
by a higher priority process). This counter is incremented once

Page 1

:~
I"

ts_dptbl (4) ts_dptbl (4)

per second for each process on the dispatcher queue. If a
process's ts_dispwait value exceeds the ts_maxwait value for
its level, the process's priority is changed to that indicated by
ts_lwait. The purpose of this field is to prevent starvation.

ts_lwait Move a process to this new priority level if ts_dispwait is
greater than ts_maxwai t.

An administrator can affect the behavior of the time-sharing portion of the
scheduler by reconfiguring the ts_dptbl. There are two methods available for
doing this.

MASTER FILE
The ts_dptbl can be reconfigured at boot time by specifying the desired values in
the ts master file and reconfiguring the system using the auto-configuration boot
procedure; see mkboot(lM) and master(4). This is the only method that can be
used to change the number of time-sharing priority levels or the set of global
scheduling priorities used by the time-sharing class.

DISPADMIN CONFIGURATION FILE
With the exception of ts_globpri all of the members of the ts_dptbl can be
examined and modified on a running system using the dispadmin(lM) command.
Invoking dispadmin for the time-sharing class allows the administrator to retrieve
the current ts_dptbl configuration from the kernel's in-core table, or overwrite the
in-core table with values from a configuration file. The configuration file used for
input to dispadmin must conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is treated as
a comment. The first non-blank, non-comment line must indicate the resolution to
be used for interpreting the ts_quanturn time quantum values. The resolution is
specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the resolu­
tion used is the reciprocal of res in seconds (for example, RES=lOOO specifies mil­
lisecond resolution). Although very fine (nanosecond) resolution may be specified,
the time quantum lengths are rounded up to the next integral multiple of the sys­
tem clock's resolution.

The remaining lines in the file are used to specify the parameter values for each of
the time-sharing priority levels. The first line specifies the parameters for time­
sharing level 0, the second line specifies the parameters for time-sharing level 1, etc.
There must be exactly one line for each configured time-sharing priority level.

EXAMPLE

Page 2

The following excerpt from a dispadmin configuration file illustrates the format.
Note that for each line specifying a set of parameters there is a comment indicating
the corresponding priority level. These level numbers indicate priority within the
time-sharing class, and the mapping between these time-sharing priorities and the
corresponding global scheduling priorities is determined by the configuration
specified in the ts master file. The level numbers are strictly for the convenience of
the administrator reading the file and, as with any comment, they are ignored by
dispadmin. dispadmin assumes that the lines in the file are ordered by consecu­
tive, increasing priority level (from 0 to the maximum configured time-sharing
priority). The level numbers in the comments should normally agree with this

10/92

ts_dptbl(4) ts_dptbl (4)

FILES

NOTES

ordering; if for some reason they don't, however, dispaclmin is unaffected.

Time-Sharing Dispatcher Configuration File
RES=lOOO

ts_quantum
500
500
500
500
500
500
450
450

50
50

ts_tqexp
0
0
1
1
2
2
3
3

48
49

/usr/include/sys/ts.h

ts_slpret
10
11
12
13
14
15
16
17

59
59

ts_maxwait
5
5
5
5
5
5
5
5

5
5

ts_lwait
10
11
12
13
14
15
16
17

59
59

PRIORITY
0
1
2
3
4
5
6
7

58
59

LEVEL

dispaclmin does some limited sanity checking on the values supplied in the
configuration file. The sanity checking is intended to ensure that the new
ts_dptbl values do not cause the system to panic. The sanity checking does not
attempt to analyze the effect that the new values will have on the performance of
the system. Unusual ts_dptbl configurations may have a dramatic negative
impact on the performance of the system.

No sanity checking is done on the ts_dptbl values specified in the ts master file.
Specifying an inconsistent or nonsensical ts_dptbl configuration through the ts
master file could cause serious performance problems and/ or cause the system to
panic.

SEE ALSO
dispaclmin(lM), mkboot(lM), priocntl(l), priocntl(2), master(4).

10/92 Page 3

I

11
I

I

1· t
I.

I

''!

I "

il

ttcompat (7) ttcompat (7)

NAME
ttcompat - V7, 4BSD and XENIX STREAMS compatibility module

SYNOPSIS
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ttcompat.h>
#include <sys/ttold.h>

ioctl (fd, I_PUSH, "ttcompat") ;

DESCRIPTION

10/92

ttcompat is a STREAMS module that translates the ioctl calls supported by the
older Version 7, 4BSD and XENIX terminal drivers into the ioctl calls supported by
the terrnio interface [see terrnio(7)]. All other messages pass through this module
unchanged; the behavior of read and write calls is unchanged, as is the behavior
of ioctl calls other than the ones supported by ttcompat.

This module can be automatically pushed onto a stream using the autopush
mechanism when a terminal device is opened; it does not have to be explicitly
pushed onto a stream. This module requires that the terrnios interface be sup­
ported by the modules and the application can push the driver downstream. The
TCGETS, TCSETS, and TCSETSF ioctl calls must be supported; if any information
set or fetched by those ioctl calls is not supported by the modules and driver
downstream, some of the V7 /4BSD/XENIX functions may not be supported. For
example, if the CBAUD bits in the c_cflag field are not supported, the functions
provided by the sg_ispeed and sg_ospeed fields of the sgttyb structure (see
below) will not be supported. If the TCFLSH ioctl is not supported, the function
provided by the TIOCFLUSH ioctl will not be supported. If the TCXONC ioctl is
not supported, the functions provided by the TIOCSTOP and TIOCSTART ioctl
calls will not be supported. If the TIOCMBIS and TIOCMBIC ioctl calls are not sup­
ported, the functions provided by the TIOCSDTR and TIOCCDTR ioctl calls will not
be supported.

The basic ioctl calls use the sgttyb structure defined by sys/ioctl .h:

struct sgttyb
char sg_ispeed;

sg_ospeed; char
char sg_erase;
char sg_kill;
int sg_flags;

} ;

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the
device, and reflect the values in the c_cflag field of the terrnios structure. The
sg_erase and sg_kill fields of the argument structure specify the erase and kill
characters respectively, and reflect the values in the VERASE and VKILL members of
the c_cc field of the terrnios structure.

The sg_flags field of the argument structure contains several flags that determine
the system's treatment of the terminal. They are mapped into flags in fields of the
terminal state, represented by the terrnios structure.

Page 1

ttcompat (7) ttcompat (7)

Page 2

Delay type 0 is always mapped into the equivalent delay type 0 in the c_oflag
field of the termios structure. Other delay mappings are performed as follows:

sg_flags c_oflag

BSl BSl
FFl VTl
CRl CR2
CR2 CR3
CR3 not supported
TABl TABl
TAB2 TAB2
XTABS TAB3
NLl ONLRETICRl
NL2 NLl

If previous TIOCLSET or TIOCLBIS ioctl calls have not selected LITOUT or PASS8
mode, and if RAW mode is not selected, the !STRIP flag is set in the c_iflag field of
the termios structure, and the EVENP and ODDP flags control the parity of charac­
ters sent to the terminal and accepted from the terminal:

Parity is not to be generated on output or checked on input:

The character size is set to CS8 and the flag is cleared in the c_cflag
field of the termios structure.

Even parity characters are to be generated on output and accepted on input:

The flag is set in the c_iflag field of the termios structure, the charac­
ter size is set to CS7 and the flag is set in the c_cflag field of the
termios structure.

Odd parity characters are to be generated on output and accepted on input:

The flag is set in the c_iflag field, the character size is set to CS7 and
the and flags are set in the c_cflag field of the termios structure.

Even parity characters are to be generated on output and characters of either
parity are to be accepted on input:

The flag is cleared in the c_iflag field, the character size is set to CS7
and the flag is set in the c_cflag field of the termios structure.

The RAW flag disables all output processing (the OPOST flag in the c_oflag field,
and the XCASE flag in the c_lflag field, are cleared in the termios structure) and
input processing (all flags in the c_iflag field other than the IXOFF and IXANY
flags are cleared in the termios structure). 8 bits of data, with no parity bit, are
accepted on input and generated on output; the character size is set to CS8 and the
PARENB and PARODD flags are cleared in the c_cflag field of the termios structure.
The signal-generating and line-editing control characters are disabled by clearing
the !SIG and !CANON flags in the c_lflag field of the termios structure.

The CRMOD flag turns input RETURN characters into NEWLINE characters, and out­
put and echoed NEWLINE characters to be output as a RETURN followed by a
LINEFEED. The ICRNL flag in the c_iflag field, and the OPOST and ONLCR flags in
the c_oflag field, are set in the termios structure.

10/92

l

ttcompat (7) ttcompat (7)

10/92

The LCASE flag maps upper-case letters in the ASCII character set to their lower-case
equivalents on input (the IUCLC flag is set in the c_iflag field), and maps lower­
case letters in the ASCII character set to their upper-case equivalents on output (the
OLCUC flag is set in the c_oflag field). Escape sequences are accepted on input,
and generated on output, to handle certain ASCII characters not supported by older
terminals (the XCASE flag is set in the c_lflag field).

Other flags are directly mapped to flags in the termios structure:

sg_flags flags in termios structure

CBREAK complement of ICANON in c_lflag field
ECHO ECHO in c_lflag field
TANDEM IXOFF in c_iflag field

Another structure associated with each terminal specifies characters that are special
in both the old Version 7 and the newer 4BSD terminal interfaces. The following
structure is defined by sys I ioctl . h:

struct tchars
char t_intrc; /* interrupt */
char t_quitc; /* quit */
char t _startc; /* start output */
char t _stopc; /* stop output */
char t_eofc; /* end-of-file */
char t_brkc; I* input delimiter (like nl) *I

} ;

XENIX defines the tchar structure as tc. The characters are mapped to members of
the c_cc field of the termios structure as follows:

tchars

t_intrc
t_quitc
t_startc

c_cc index

VINTR
VQUIT
VSTART

t_stopc VSTOP
t_eof c VEOF
t_brkc VEOL

Also associated with each terminal is a local flag word, specifying flags supported
by the new 4BSD terminal interface. Most of these flags are directly mapped to flags
in the termios structure:

local flags

LCRTBS
LPRTERA
LCRTERA
LTILDE
LTOSTOP
LFLUSHO
LNOHANG

flags in termios structure

not supported
ECHOPRT in the c_lflag field
ECHOE in the c_lflag field
not supported
TOSTOP in the c_lflag field
FLUSHO in the c_lflag field
CLOCAL in the c_cflag field

Page 3

ttcompat (7) ttcompat (7)

ioctls

Page 4

LCRTKIL
LCTLECH
LP END IN
LDECCTQ
LNOFLSH

ECHOKE in the c_lflag field
CTLECH in the c_lflag field
PENDIN in the c_lflag field
complement of IXANY in the c_iflag field
NOFLSH in the c_lflag field

Another structure associated with each terminal is the 1 tchars structure which
defines control characters for the new 4BSD terminal interface. Its structure is:

struct ltchars {

char t_suspc; /* stop process signal */
char t_dsuspc; /* delayed stop process signal *I
char t_rprntc; /* reprint line */
char t_flushc; /* flush output (toggles) */
char t_werasc; /* word erase */
char t_lnextc; /* literal next character */

} ;

The characters are mapped to members of the c_cc field of the termios structure
as follows:

ltchars c_ccindex

t_suspc VSUSP
t_dsuspc VD SU SP
t_rprntc VREPRINT
t_flushc VDISCARD
t_werasc VWERASE
t_lnextc VLNEXT

ttcompat responds to the following ioctl calls. All others are passed to the
module below.

TIOCGETP The argument is a pointer to an sgttyb structure. The current termi­
nal state is fetched; the appropriate characters in the terminal state are
stored in that structure, as are the input and output speeds. The
values of the flags in the sg_flags field are derived from the flags in
the terminal state and stored in the structure.

TIOCEXCL Set "exclusive-use" mode; no further opens are permitted until the
file has been closed.

TIOCNXCL Turn off "exclusive-use'' mode.

TIOCSETP The argument is a pointer to an sgttyb structure. The appropriate
characters and input and output speeds in the terminal state are set
from the values in that structure, and the flags in the terminal state
are set to match the values of the flags in the sg_flags field of that
structure. The state is changed with a TCSETSF ioctl so that the
interface delays until output is quiescent, then throws away any
unread characters, before changing the modes.

TIOCSETN The argument is a pointer to an sgttyb structure. The terminal state
is changed as TIOCSETP would change it, but a TCSETS ioctl is used,
so that the interface neither delays nor discards input.

10/92

I

ttcompat (7) ttcompat (7)

TIOCHPCL The argument is ignored. The HUPCL flag is set in the c_cflag word
of the terminal state.

TIOCFLUSH The argument is a pointer to an int variable. If its value is zero, all
characters waiting in input or output queues are flushed. Otherwise,
the value of the int is treated as the logical OR of the FREAD and
FWRITE flags defined by sys/file. h; if the FREAD bit is set, all char­
acters waiting in input queues are flushed, and if the FWRITE bit is set,
all characters waiting in output queues are flushed.

TIOCBRK The argument is ignored. The break bit is set for the device.

TIOCCBRK The argument is ignored. The break bit is cleared for the device.

TIOCSDTR The argument is ignored. The Data Terminal Ready bit is set for the
device.

TIOCCDTR The argument is ignored. The Data Terminal Ready bit is cleared for
the device.

TIOCSTOP The argument is ignored. Output is stopped as if the STOP character
had been typed.

TIOCSTART The argument is ignored. Output is restarted as if the START character
had been typed.

TIOCGETC The argument is a pointer to a tchars structure. The current terminal
state is fetched, and the appropriate characters in the terminal state
are stored in that structure.

TIOCSETC The argument is a pointer to a tchars structure. The values of the
appropriate characters in the terminal state are set from the characters
in that structure.

TIOCLGET The argument is a pointer to an int. The current terminal state is
fetched, and the values of the local flags are derived from the flags in
the terminal state and stored in the int pointed to by the argument.

TIOCLBIS The argument is a pointer to an int whose value is a mask containing
flags to be set in the local flags word. The current terminal state is
fetched, and the values of the local flags are derived from the flags in
the terminal state; the specified flags are set, and the flags in
the terminal state are set to match the new value of the local flags
word.

TIOCLBIC The argument is a pointer to an int whose value is a mask containing
flags to be cleared in the local flags word. The current terminal state
is fetched, and the values of the local flags are derived from the flags
in the terminal state; the specified flags are cleared, and the flags in
the terminal state are set to match the new value of the local flags
word.

TIOCLSET The argument is a pointer to an int containing a new set of local
flags. The flags in the terminal state are set to match the new value of
the local flags word.

10/92 Page 5

ttcompat (7) ttcompat (7)

TIOCGLTC The argument is a pointer to an 1 tchars structure. The values of the
appropriate characters in the terminal state are stored in that struc­
ture.

TIOCSLTC The argument is a pointer to an ltchars structure. The values of the
appropriate characters in the terminal state are set from the characters
in that structure.

FIORDCHK FIORDCHK returns the number of immediately readable characters.
The argument is ignored.

FIONREAD FIONREAD returns the number of immediately readable characters in
the int pointed to by the argument.

LDSMAP

LDGMAP

LDNMAP

Calls the function emsetmap (tp, mp) if the function is configured in
the kernel.

Calls the function emgetmap (tp, mp) if the function is configured in
the kernel.

Calls the function emunmap (tp, mp) if the function is configured in
the kernel.

The following ioctls are returned as successful for the sake of compatibility.
However, nothing significant is done (that is, the state of the terminal is not
changed in any way).

TIOCSETD
TIOCGETD
DIOCSETP
DIOCSETP
DIIOGETP

LDOPEN
LDC LOSE
LDC HG
LDSETT
LDGETT

SEE ALSO

NOTES

Page 6

ioctl(2), termios(2), termio(7), ldterm(7)

TIOCBRK and TIOCCBRK should be handled by the driver. FIONREAD and FIORDCHK
are handled in the stream head.

10/92

I~
I

\

I~
ii
l

tty(7) tty (7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file I dev It ty is, in each process, a synonym for the control terminal associated
with the process group of that process, if any. It is useful for programs or shell
sequences that wish to be sure of writing messages on the terminal no matter how
output has been redirected. It can also be used for programs that demand the name
of a file for output, when typed output is desired and it is tiresome to find out what
terminal is currently in use.

/dev/tty
/dev/tty*

SEE ALSO
console(7), ports(7)

10/92 Page 1

ttydefs(4) ttydefs(4)

NAME
ttydefs - file contains terminal line settings information for ttymon

DESCRIPTION
/etc/ttydefs is an administrative file that contains information used by ttymon
to set up the speed and terminal settings for a TTY port.

The ttydefs file contains the following fields:

ttylabel The string ttymon tries to match against the TTY port's ttylabel

initial-flags

final-flags

autobaud

next label

field in the port monitor administrative file. It often describes the
speed at which the terminal is supposed to run, for example, 1200.

Contains the initial termio(7) settings to which the terminal is to
be set. For example, the system administrator will be able to
specify what the default erase and kill characters will be. initial­
flags must be specified in the syntax recognized by the stty com­
mand.

final-flags must be specified in the same format as initial-flags.
ttymon sets these final settings after a connection request has been
made and immediately prior to invoking a port's service.

If the autobaud field contains the character 'A:, autobaud will be
enabled. Otherwise, autobaud will be disabled. t tymon deter-
mines what line speed to set the TTY port to by analyzing the car­
riage returns entered. If autobaud has been disabled, the hunt
sequence is used for baud rate determination.

If the user indicates that the current terminal setting is not
appropriate by sending a BREAK, ttymon searchs for a ttydefs
entry whose ttylabel field matches the nextlabel field. If a match is
found, ttymon uses that field as its ttylabel field. A series of speeds
is often linked together in this way into a closed set called a hunt
sequence. For example, 4800 may be linked to 1200, which in
turn is linked to 2400, which is finally linked to 4800.

SEE ALSO
sttydefs(lM), ttymon(lM).

10/92 Page 1

I

I

I;
I'.
I~
I
i
1

ttysrch(4) ttysrch(4)

NAME
t tysrch - directory search list for ttyname

DESCRIPTION

10/92

ttysrch is an optional file that is used by the ttyname library routine. This file
contains the names of directories in I dev that contain terminal and terminal-related
device files. The purpose of this file is to improve the performance of t tyname by
indicating which subdirectories in I dev contain terminal-related device files and
should be searched first. These subdirectory names must appear on separate lines
and must begin with /dev. Those path names that do not begin with /dev will be
ignored and a warning will be sent to the console. Blank lines (lines containing
only white space) and lines beginning with the comment character "#" will be
ignored. For each file listed (except for the special entry /dev), ttyname will recur­
sively search through subdirectories looking for a match. If I dev appears in the
t tysrch file, the I dev directory itself will be searched but there will not be a recur­
sive search through its subdirectories.

When ttyname searches through the device files, it tries to find a file whose
major/minor device number, file system identifier, and inode number match that of
the file descriptor it was given as an argument. If a match is not found, it will settle
for a match of just major/minor device and file system identifier, if one can be
found. However, if the file descriptor is associated with a cloned device (see
clone(7)), this algorithm does not work efficiently because the inode number of the
device file associated with a clonable device will never match the inode number of
the file descriptor that was returned by the open of that clonable device. To help
with these situations, entries can be put into the /etc/ttysrch file to improve per­
formance when cloned devices are used as terminals on a system (for example, for
remote login). However, this is only useful if the minor devices related to a cloned
device are put into a subdirectory. (It is important to note that device files need not
exist for cloned devices and if that is the case, ttyname will eventually fail.) For
example if /dev/tcp is a cloned device, there could be a subdirectory /dev/inet
that contains files tcpOOO, tcpOOl, tcp002, etc. that correspond to the minor dev­
ices of the starlan driver. An optional second field is used in the I etc It tysrch file
to indicate the matching criteria. This field is separated by white space (any combi­
nation of blanks or tabs). The letter M means major/minor device number, F means
file system identifier, and I means inode number. If this field is not specified for an
entry, the default is MFI which means try to match on all three. For cloned devices
the field should be MF, which indicates that it is not necessary to match on the inode
number.

There is another option called A which means alias. This option is immediately fol­
lowed by the full path name (must also begin with /dev) of the alias for the device.
After finding a device name (matching MFI), if the option A is present, ttyname
appends the minor device number of the found device to the provided alias to form
a new name. Then it checks the aliased device to make sure it is the same as the
found device and returns the new name. For example, if /dev/ptsO is hard linked
to /dev/pts/0 and the alias option is present, ttyname () returns /dev/ptsO.

Without the /etc/ttysrch file, ttyname will search the /dev directory by first
looking in the directories /dev/term, /dev/pts, and /dev/xt. If a system has ter­
minal devices installed in directories other than these, it may help performance if
the t tysrch file is created and contains that list of directories.

Page 1

ttysrch (4) ttysrch (4)

The command ps(l) maintains a database of terminal device names. If
/etc/ttysrch is modified, the database file /etc/ps_data should be removed.
Removing the database causes it to be automatically rebuilt.

EXAMPLE

FILES

A sample I etc/ttysrch file follows:

/dev/tenn MFI
/dev/pts MFI
/dev/xt MFI
/dev/inet MF

This file tells ttyname that it should first search through those directories listed and
that when searching through the I dev I inet directory, if a file is encountered
whose major/minor devices and file system identifier match that of the file descrip­
tor argument to t tyname, this device name should be considered a match.

A sample I etc/ttysrch file for the alias option follows:

/dev/term MFI
/dev/pts A/dev/pts
/dev/xt MFI
/dev/inet MF

The second line in this file tells ttyname to return /dev/ptsO for /dev/pts/0,
/dev/ptsl for /dev/pts/1 etc.

/etc/ps_data,/etc/ttysrch

SEE ALSO
ps(l), ttyname(3C), clone(7)

Page 2 10/92

I

!.
!f
I
I

UDP(7) (Internet Utilities) UDP(7)

NAME
UDP - Internet User Datagram Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

s = socket (AF _INET' SOCK_DGRAM, 0) ;

t = t_open ("/dev/udp", O_RDWR);

DESCRIPTION
UDP is a simple datagram protocol which is layered directly above the Internet Pro­
tocol (IP). Programs may access UDP using the socket interface, where it supports
the SOCK_DGRAM socket type, or using the Transport Level Interface (TLI), where it
supports the connectionless (T_CLTS) service type.

Within the socket interface, UDP is normally used with the sendto () , sendmsg () ,
recvfrom () , and recvmsg () calls [see send(2) and recv(2)]. If the connect(2)
call is used to fix the destination for future packets, then the recv(2) or read(2) and
send(2) or wri te(2) calls may be used.

UDP address formats are identical to those used by the Transmission Control Proto­
col (TCP). Like TCP, UDP uses a port number along with an IP address to identify
the endpoint of communication. The UDP port number space is separate from the
TCP port number space (that is, a UDP port may not be connected to a TCP port).
The bind(2) call can be used to set the local address and port number of a UDP
socket. The local IP address may be left unspecified in the bind () call by using the
special value INADDR_ANY. If the bind () call is not done, a local IP address and
port number will be assigned to the endpoint when the first packet is sent. Broad­
cast packets may be sent (assuming the underlying network supports this) by using
a reserved broadcast address. This address is network interface dependent. Broad­
casts may only be sent by the privileged user.

Options at the IP level may be used with UDP; see ip(7).

There are a variety of ways that a UDP packet can be lost or corrupted, including a
failure of the underlying communication mechanism. UDP implements a checksum
over the data portion of the packet. If the checksum of a received packet is in error,
the packet will be dropped with no indication given to the user. A queue of
received packets is provided for each UDP socket. This queue has a limited capa­
city. Arriving datagrams which will not fit within its high-water capacity are
silently discarded.

UDP processes Internet Control Message Protocol (ICMP) error messages received in
response to UDP packets it has sent. See icmp(7). ICMP source quench messages are
ignored. ICMP destination unreachable, time exceeded and parameter problem
messages disconnect the socket from its peer so that subsequent attempts to send
packets using that socket will return an error. UDP will not guarantee that packets
are delivered in the order they were sent. As well, duplicate packets may be gen­
erated in the communication process.

SEE ALSO

10/92

read(2), write(2), bind(3N), connect(3N), recv(3N), send(3N), icmp(7), inet(7),
ip(7), tcp(7)

Page 1

UDP(7) (Internet Uti I ities) UDP(7)

Postel, Jon, User Datagram Protocol, RFC 768, Network Information Center, SRI Inter­
national, Menlo Park, Calif., August 1980

DIAGNOSTICS

Page 2

A socket operation may fail if:

EISCONN A connect () operation was attempted on a socket on
which a connect () operation had already been performed,
and the socket could not be successfully disconnected before
making the new connection.

EISCONN A sendto () or sendmsg () operation specifying an address
to which the message should be sent was attempted on a
socket on which a connect () operation had already been
performed.

ENOTCONN

EADDRINUSE

EADDRNOTAVAIL

EINVAL

EACCES

ENOBUFS

A send () or write () operation, or a sendto () or
sendmsg () operation not specifying an address to which
the message should be sent, was attempted on a socket on
which a connect () operation had not already been per­
formed.

A bind () operation was attempted on a socket with a net­
work address/port pair that has already been bound to
another socket.

A bind () operation was attempted on a socket with a net­
work address for which no network interface exists.

A sendmsg () operation with a non-NULL msg_accrights
was attempted.

A bind () operation was attempted with a reserved port
number and the effective user ID of the process was not the
privileged user.

The system ran out of memory for internal data structures.

10/92

!

I

unistd(4) unistd (4)

NAME
uni std - header file for symbolic constants

SYNOPSIS
#include <unistd.h>

DESCRIPTION

10/92

The uni std. h header file defines the symbolic constants and structures not already
defined or declared in some other header file. The contents of this file are shown
below.

The following symbolic constants are defined for the access function [see
access(2)]:

R_OK
W_OK
X_OK
F_OK

Test for read permission.
Test for write permission.
Test for execute (search) permission.
Test for existence of file.

The constants F _OK, R_OK, W_OK and X_OK and the expressions R_OK I W_OK,
R_OK I X_OK and R_OK I W_OK I X_OK all have distinct values.

Declares the constant

NULL null pointer

The following symbolic constants are defined for the lockf function [see
lockf(3C)]:

F _ULOCK Unlock a previously locked region.
F _LOCK Lock a region for exclusive use.
F _TLOCK Test and lock a region for exclusive use.
F _TEST Test a region for other processes locks.

The following symbolic constants are defined for the lseek [see lseek(2)] and
fcntl [see fcntl(2)] functions (they have distinct values):

SEEK_SET Set file offset to offset.
SEEK_CUR Set file offset to current plus offset.
SEEK_END Set file offset to EOF plus offset.

The following symbolic constants are defined (with fixed values):

_POSIX_VERSION Integer value indicating version of the POSIX
standard.

_XOPEN_VERSION Integer value indicating version of the XPG to
which system is compliant.

The following symbolic constants are defined to indicate that the option is present:

_POSIX_JOB_CONTROL Implementation supports job control.
_POSIX_SAVED_IDS The exec functions [see exec(2)] save the

effective user and group.
_POSIX_VDISABLE Terminal special characters defined in

termios. h [see termio(7)] can be disabled
using this character.

Page 1

unistd(4) unistd (4)

NOTES

The following symbolic constants are defined for sysconf [see sysconf(3C)]:

_SC_ARG_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_LOGNAME_MAX
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PASS_MAX
_SC_SAVED_IDS
SC VERSION
_SC_XOPEN_VERSION

The following symbolic constants are defined for pathconf [see fpathconf(2)]:

_PC_CHOWN_RESTRICTED
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX
_PC_PIPE_BUF
_PC_VDISABLE

The following symbolic constants are defined for file streams:

STDIN_FILENO File number of stdin. It is 0.
STDOUT_FILENO File number of stout. It is 1.
STDERR_FILENO File number of stderr. It is 2.

The following pathnames are defined:

GF_PATH
PF_PATH

Pathname of the group file.
Pathname of the passwd file.

The following values for constants are defined for this release of System V:

_POSIX_VERSION 198808L
_XOPEN_VERSION 3

SEE ALSO

Page 2

access(2), exec(2), fcntl(2), fpathconf(2), lseek(2), termios(2), sysconf(3C),
group(4), passwd(4), termio(7)

10/92

updaters (4) updaters (4)

NAME
updaters - configuration file for Network Information Service (NIS) updating

SYNOPSIS
/var/yp/updaters

DESCRIPTION

FILES

The file /var /yp/updaters is a makefile [see make(l)] which is used for updating
NIS databases. Databases can only be updated in a secure network, that is, one that
has a publickey(4) database. Each entry in the file is a make target for a particular
NIS database. For example, if there is a NIS database named publickey. byname
that can be updated, there should be a make target named publickey. byname in
the updaters file with the command to update the file.

The information necessary to make the update is passed to the update command
through standard input. The information passed is described below (all items are
followed by a NEWLINE, except for the actual bytes of key and actual bytes of date).

network name of client wishing to make the update (a string)

kind of update (an integer)

number of bytes in key (an integer)

actual bytes of key

number of bytes in data (an integer)

actual bytes of data

After getting this information through standard input, the command to update the
particular database should decide whether the user is allowed to make the change.
If not, it should exit with the status YPERR_ACCESS. If the user is allowed to make
the change, the command should make the change and exit with a status of zero. If
there are any errors that may prevent the updater from making the change, it
should exit with the status that matches a valid NIS error code described in
<rpcsvc/ypclnt.h>.

/var/yp/updaters

SEE ALSO
make(l), ypupdated(lM), ypupdate(3), publickey(4)

10/92 Page 1

utmp(4) utmp(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <utmp.h>

DESCRIPTION

10/92

These files, which hold user and accounting information for such commands as
who, write, and login, have the following structure, defined in utmp.h for the
M88000 family of processors reference platform:

#define UTMP_FILE
#define WTMP_FILE
#define ut_name

struct exit_status
{

"/var/adm/utmp"
"/var/adm/wtmp"
ut_user

short e_termination
short e_exit

I* Process termination status */
I* Process exit status */

} ;

/* user login name */
struct

char
char

utmp {
ut_user[SJ;
ut_id[4]; I* /etc/inittab id (created by */

char ut_line[l2];
/* process that puts entry in utmp) */
I* device name (console, lnxx) */

pid_t ut__pid;
short ut_type;

#ifdef m88k
short ut__pad ;

#endif /* m88k */

I* process id */
I* type of entry */

I* BCS 10.1 */

struct exit_status ut_exit; /* exit status of a process
* marked as DEAD_PROCESS
*I

time t ut_time;
#ifdef m88k

char ut_host[24];
#endif /* m88k */
} ;

I* Definitions for

#define EMPTY
#define RUN_LVL
#define BOOT_TIME
#define OLD_TIME
#define NEW_TIME
#define INIT_PROCESS

ut_type

0
1
2
3
4
5

#define LOGIN_PROCESS 6

I* time entry was made */

I* hostname, if remote(BCS) */

*I

I* process spawned by 11 init" *I
I* a "getty" process waiting for login */

Page 1

I

~
I

I,
I

1,
'>

utmp(4) utmp(4)

FILES

#define USER_PROCESS
#define DEAD_PROCESS
#define ACOUNTING
#ifdef m88k

7
8
9

#define FTP 128
#define REMOTE_LOGIN 129
#define REMOTE_PROCESS 130
#endif /* m88k */

I* a user process */

#ifdef m88k
#define UTMAXTYPE
#endif /* m88k */
#ifdef m68k
#define UTMAXTYPE
#endif /* m68k */

REMOTE_PROCESS /* Largest legal value of ut_type */

ACCOUNTING /* Largest legal value of ut_type */

I*
I*
I*
I*

Below are special strings or formats used in the "ut_line"
field when accounting for something other than a process.
No string for the ut_line field can be more than 11 chars +
a null character in length. */

#define RUNLVL_MSG
#define BOOT_MSG
#define OTIME_MSG
#define NTIME_MSG

/var/adm/utmp
/var/adm/wtmp

"run-level %c 11

"system boot"
"old time"
"new time 11

*I
*I
*I

SEE ALSO

Page 2

login(l), who(l), wri te(l),
getut(3C)

10/92

utmpx{4) utmpx{4)

NAME
utmpx, wtmpx - utmpx and wtmpx entry formats

SYNOPSIS
#include <utmpx.h>

DESCRIPTION
utmpx(4) is an extended version of utmp(4).

These files, which hold user and accounting information for such commands as
who, write, and login, have the following structure as defined by utmpx. h:

10/92

#define UTMPX_FILE "/var/adm/utmpx"
#define WTMPX_FILE "/var/adm/wtmpx"
#define
#define

ut_name
ut_xtime

struct utmpx
char ut_user[32];
char ut_id [4 J ;
char ut_line[32];
pid_t ut_pid;
short ut_type;

ut_user
ut_tv. tv_sec

/* user login name */
/* inittab id */
/* device name (console, lnxx) */
/* process id */
/* type of entry *I

struct exit_status ut_exit;
struct timeval ut_tv;

/* process termination/exit status */
/* time entry was made */

long ut_session;
long pad[5J;

/* session ID, used for windowing */
/* reserved for future use */

short ut_syslen; /* significant length of ut_host */
/* including terminating null */

char ut_host[257];
} ;

/* Definitions for ut_type

#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_ TIME 4
#define INIT_PROCESS 5

/* remote host name */

*/

/* Process spawned by 11 init 11 */
#define LCGIN_PROCESS 6 /* A "getty" process waiting for login */
#define USER_ PROCESS 7 /* A user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9

#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type

/* Below are special strings or formats used in the "ut_line" */
/* field when accounting for something other than a process. */
/* No string for the ut_line field can be more than 11 chars + */
/* a null character in length. */

#define RUNLVL_MSG "run-level %c 11

#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG 11 new time"
#define MOD_WIN 10

*I

Page 1

1
I

I

I

utmpx(4)

FILES
/var/adm/utmpx
/var/adm/wtmpx

SEE ALSO
login(l), who(l), write(l) getutx(3C)

Page 2

utmpx(4)

10/92

vfstab(4) vfstab(4)

NAME
vfstab- table of file system defaults

SYNOPSIS
#include <sys/fstyp.h>
#include <sys/param.h>
#include <sys/vfstab.h>

DESCRIPTION

10/92

The file /etc/vfstab describes defaults for each file system.

There are seven whitespace-separated fields in this table. Each field is described
below.

The first field contains the block special device for mounting a local file system, a
resource description if an RFS resource is to be mounted, or a remote directory (in
the form host:directory-name) if an NFS mount is desired.

The second field should contain the character special device corresponding to the
block special device in the first field if a local file system mount is specified, or a '-'
if an RFS or NFS mount is specified.

The third field specifies the absolute path name of the mount directory.

The fourth field specifies the the file system type. For local file systems, this field
should contain 'sS', 'ufs', or 'bfs' for fast file system (UFS), system five file system
(sS), and boot file system (BFS) mounts respectively. This field should contain the
string 'rfs' or 'nfs' for RFS and NFS remote mounts respectively.

The fifth field specifies the fsck pass number. This field should contain a '-' for
RFS and NFS mounts. Local mount requests may be grouped into passes, with all
mounts in a given pass being checked by fsck before the next pass is performed.
The pass numbers should start with one, and increase by one.

The sixth field specifies whether the mount request should be automatically ini­
tiated at boot time. This field should contain the string 'yes' or 'no'.

The seventh field specifies the mount options appropriate for the type of mount
requested. Typically this field contains the string 'rw', which allows reading and
writing of the mount, or 'ro', which specifies that the mount is read-only. Other
values for this field are possible; for more information please refer to the appropri­
ate mount man page listed in the "SEE ALSO" section below.

Empty lines and lines containing a '#' in the first column are ignored.

Each field in this file is also associated with a structure, defined in sys/vfstab. h:

struct vfstab {
char *vfs_special;
char *vfs_fsckdev;
char *vfs_mountp;
char *vfs_fstype;
char *vfs_fsckpass;
char *vfs_automnt;
char *vfs_mntopts;

} ;

Page 1

l

vfstab(4) vfstab(4)

The getvfsent(3C) family of routines are used to read and write to / etc/vfstab.

SEE ALSO

Page 2

fsck(lM), rnount(lM), setrnnt(lM), rnountall(lM), rnount_ufs(lM),
rnount_s5(1M), rnount_bfs(lM), rnount_rfs(lM), rnount_nfs(lM), getvfsent(3C).

10/92

ypfiles(4) ypfiles(4)

NAME
ypfiles - the Network Information Service (NIS) database and directory structure

DESCRIPTION

10/92

The NIS network lookup service uses a distributed, replicated database of dbm files
contained in the /var /yp directory hierarchy on each NIS server. A dbm database
consists of two files, one has the filename extension . pag and the other has the
filename extension . dir. For instance, the database named publickey, is imple­
mented by the pair of files publickey .pag and publickey .dir.

A dbm database served by the NIS is called a NIS map. ANIS ypdomain is a subdirec­
tory of /var /yp containing a set of NIS maps. Any number of NIS domains can
exist. Each may contain any number of maps.

No maps are required by the NIS lookup service itself, although they may be
required for the normal operation of other parts of the system. There is no list of
maps which NIS serves - if the map exists in a given domain, and a client asks
about it, the NIS will serve it. For a map to be accessible consistently, it must exist
on all NIS servers that serve the domain. To provide data consistency between the
replicated maps, an entry to run ypxfr periodically should be made in the
privileged user's crontab file on each server. More information on this topic is in
ypxfr(lM).

NIS maps should contain two distinguished key-value pairs. The first is the key
YP_LAST_MODIFIED, having as a value a ten-character ASCII order number. The
order number should be the system time in seconds when the map was built. The
second key is YP_MASTER_NAME, with the name of the NIS master server as a value.
makedbm(lM) generates both key-value pairs automatically. A map that does not
contain both key-value pairs can be served by the NIS, but the ypserv process will
not be able to return values for "Get order number" or "Get master name" requests.
See ypserv(lM). In addition, values of these two keys are used by ypxfr when it
transfers a map from a master NIS server to a slave. If ypxfr cannot figure out
where to get the map, or if it is unable to determine whether the local copy is more
recent than the copy at the master, extra command line switches must be set when
it is run.

NIS maps must be generated and modified only at the master server. They are
copied to the slaves using ypxfr(lM) to avoid potential byte-ordering problems
among NIS servers running on machines with different architectures, and to minim­
ize the amount of disk space required for the dbm files. The NIS database can be ini­
tially set up for both masters and slaves by using ypini t(lM).

After the server databases are set up, it is probable that the contents of some maps
will change. In general, some ASCII source version of the database exists on the
master, and it is changed with a standard text editor. The update is incorporated
into the NIS map and is propagated from the master to the slaves by running
/var /yp/Makefile, see ypmake(lM). All default maps have entries in
/var /yp/Makefile; if a NIS map is added, edit this file to support the new map.
The makefile uses makedbm(lM) to generate the NIS map on the master, and
yppush(lM) to propagate the changed map to the slaves. yppush is a client of the
map ypservers, which lists all the NIS servers. For more information on this topic,
see yppush(lM).

Page 1

I

I~
I

I

ypfiles (4)

FILES
/var/yp
/var/yp/aliases
/var/yp/Makefile

SEE ALSO

ypfiles(4)

makedbm(lM), ypinit(lM), ypmake(lM), yppoll(lM), yppush(lM), ypserv(lM),
ypxfr(lM), dbm(3), publickey(4)

Page 2 10/92

zero(7) zero(7)

NAME
zero - source of zeroes

DESCRIPTION

FILES

A zero special file is a source of zeroed unnamed memory.

Reads from a zero special file always return a buffer full of zeroes. The file is of
infinite length.

Writes to a zero special file are always successful, but the data written is ignored.

Mapping a zero special file creates a zero-initialized unnamed memory object of a
length equal to the length of the mapping and rounded up to the nearest page size
as returned by sysconf. Multiple processes can share such a zero special file object
provided a common ancestor mapped the object MAP _SHARED.

/dev/zero

SEE ALSO
fork(2), sysconf(3C), mmap(2)

10/92 Page 1

,.
I

Permuted Index

dlce Data Link
compatibility module ttcompat V7,

acct per-process
format

mvme328 MVME328 SCSI Host
scsilx7 SCSI1x7 SCSI host

ARP
domain ethers Ethernet

aliases, addresses, forward
aliases for sendmail aliases,

Administration SA devices
SA devices administered by System

sad STREAMS
alp

pathalias
addresses and aliases for sendmail
addresses, forward addresses and

services Internet services and
module

Format) files

.ott FACE object
ar

elx7 MVME1X7 Local
enetlx7 MVME1X7 Local

m376 MVME376 Local

module
asyhdlc

loginlog log of failed login
bootparams boot parameter data

hosts host name data
netmasks network mask data
networks network name data

if.ignore data
protocols protocol name data
rpc rpc program number data

terminfo terminal capability data
fs (bfs) format of the

in ode
volume fs

inode (bfs) format of a
for the ckbinarsys command

envmon Environment Monitor
bootparams

Permuted Index

I Common Environment interface .. dlce(7)
4BSD and XENIX STREAMS ... ttcompat(7)
accounting file format ... acct(4)
acct per-process accounting file .. acct(4)
Adapter ... mvme328(7)
adapter .. scsi(7)
Address Resolution Protocol .. ARP(7)
address to hostname database or ... ethers(4)
addresses and aliases for sendmail aliases(4)
addresses, forward addresses and aliases(4)
admin installation defaults file .. admin(4)
administered by System ... SA(7)
Administration ... SA(7)
Administrative Driver ... sad(7)
Algorithm Pool management module alp(7)
alias file for FACE .. pathalias(4)
aliases, addresses, forward ... aliases(4)
aliases for sendmail aliases, .. aliases(4)
aliases services(4)
alp Algorithm Pool management .. alp(7)
a.out ELF (Executable and Linking .. a.out(4)
ar archive file format .. ar(4)
architecture information ... ott(4)
archive file format ... ar(4)
archives device header file .. archives(4)
Area Network Interface ... e(7)
A•ea Network Interface ... enet(7)
Area Network Interface ... m376(7)
ARP Address Resolution Protocol ARP(7)
asyhdlc Asynchronous HDLC protocol asyhdlc(7)
Asynchronous HDLC protocol module asyhdlc(7)
attempts ... loginlog(4)
base .. bootparams(4)
base ... hosts(4)
base ... netmasks(4)
base ... networks(4)
base of ignored network interfaces if.ignore(4)
base ... protocols(4)
base .. rpc(4)
base .. terminfo(4)
bfs file system volume .. fs(4)
(bfs) format of a bfs i-node .. inode(4)
(bfs) format of the bfs file system ... fs(4)
bfs i-node .. inode(4)
binarsys remote system information binarsys(4)
Board driver envmon(7)
boot parameter data base .. bootparams(4)

Permuted Index

stat data returned by stat system
terminfo terminal

pnch file format for
only) mvme350 MVME350

cdrom
pkginfo package

remote system information for the
pair on a STREAMS driver

information for the ckbinarsys
of mail mailsurr surrogate

dfstab file containing
streamio STREAMS ioctl

dlce Data Link I
filehdr file header for

driver mvme332xt MVME332XT
snmpd.comm SNMP

snmpd.trap SNMP trap
ttcompat V7, 4BSD and XENIX STREAMS

compver
term format of

master master
netconfig network

resolv.conf
Information Service (NIS)/ updaters

TCP /IP strcf STREAMS
system log daemon syslog.conf

snmpd.conf SNMP
timednet.conf time daemon network

system system
line discipline for unique stream

stream connections
driver for the MVME1X7 family

iuart hardware specific
family conslx7 hardware specific

console STREAMS-based
interface

file for implementation-specific
unistd header file for symbolic

resources dfstab file
information for I ttydefs file

pkgmap package
ICMP Internet

TCP Internet Transmission
mvme323 MVME323 disk

2

bootparams boot parameter data base bootparams(4)
call ... stat(4)
capability data base .. terminfo(4)
card images ... pnch(4)
cartridge tape controller (For M68K mvme350(7)
cdrom CDROM device support ... cdrom(7)
CDROM device support .. cdrom(7)
characteristics file ... pkginfo(4)
ckbinarsys command binarsys .. binarsys(4)
clone open any major /minor device clone(7)
command binarsys remote system binarsys(4)
commands for routing and transport mailsurr(4)
commands for sharing resources ... dfstab(4)
commands .. streamio(7)
Common Environment interface ... dlce(7)
common object files .. filehdr(4)
communication controller STREAMS mvme332xt(7)
communities file .. snmpd.comm(4)
communities file .. snmpd.trap(4)
compatibility module .. ttcompat(7)
compatible versions file .. compver(4)
compiled term file .. term(4)
compver compatible versions file compver(4)
configuration database .. master(4)
configuration database .. netconfig(4)
configuration file for name server resolv.conf(4)
configuration file for Network ... updaters(4)
Configuration File for STREAMS ... strcf(4N)
configuration file for syslogd syslog.conf(4)
configuration file ... snmpd.conf(4)
configuration file .. timednet.conf(4)
configuration information file ... system(4)
connections connld ... connld(7)
connld line discipline for unique .. connld(7)
conslx7 hardware specific console ... cons(7)
console driver for the MVME141 and/ iuart(7)
console driver for the MVME1X7 .. cons(7)
console interface .. console(?)
console STREAMS-based console console(?)
constants limits header .. limits(4)
constants .. unistd(4)
containing commands for sharing dfstab(4)
contains terminal line settings ... ttydefs(4)
contents description file ... pkgmap(4)
Control Message Protocol ICMP(7)
Control Protocol .. TCP(7)
controller (For M68K only) ... mvme323(7)

System Files and Devices Reference Manual

I~

I

1.

I

i

I
1:

I,
I

mvme350 MVME350 cartridge tape
mvme332xt MVME332XT communication

tty
timod Transport Interface

file
copyright

core
memregion

mem,kmem
mvme167 MVME167
mvme181 MVME181
mvme187 MVME187
mvmel88 MVME188

timednet.conf time
file for syslogd system log

bootparams boot parameter
hosts host name

netmasks network mask
networks network name

interfaces if.ignore
protocols protocol name
rpc rpc program number

terminfo terminal capability
Equipped Device Table (EDT)

interface dice
netrc file for ftp remote login

stat
/Network Information Service (NIS)

inetd.conf Internet servers
master master configuration

netconfig network configuration
ethers Ethernet address to hostname

Point-to-Point Protocol Host name
publickey public key

UDP Internet User
timezone set

admin installation
vfstab table of file system

depend software
pkgmap package contents

I dev I fd file

lplx7 line printer
archives

clone open any major /minor

Permuted Index

Permuted Index

controller (For M68K only) ... mvme350(7)
controller STREAMS driver .. mvme332xt(7)
controlling terminal interface .. tty(7)
cooperating STREAMS module .. timod(7)
copyright copyright information copyright(4)
copyright information file ... copyright(4)
core core image file ... core(4)
core image file .. core(4)
core memory by region ... memregion(7)
core memory ... mem(7)
CPU .. mvme(7)
CPU .. mvme(7)
CPU .. mvme(7)
CPU .. mvme(7)
daemon network configuration file timednet.conf(4)
daemon syslog.conf configuration syslog.conf(4)
data base ... bootparams(4)
data base .. hosts(4)
data base .. netmasks(4)
data base .. networks(4)
data base of ignored network .. if.ignore(4)
data base .. protocols(4)
data base ... rpc(4)
data base ... terminfo(4)
Data File /stand/edt_data /stand/edt_data(4)
Data Link I Common Environment .. dlce(7)
data ... netrc(4)
data returned by stat system call .. stat(4)
database and directory structure ... ypfiles(4)
database .. inetd.conf(4)
database .. master(4)
database ... netconfig(4)
database or domain ... ethers(4)
database ppphosts .. ppphosts(4)
database .. publickey(4)
Datagram Protocol ... UDP(7)
default system time zone ... timezone(4)
defaults file ... admin(4)
defaults .. vfstab(4)
depend software dependencies files depend(4)
dependencies files ... depend(4)
description file .. pkgmap(4)
descriptor files .. /dev /fd(4)
I dev I fd file descriptor files ... I dev I fd(4)
device driver .. lp(7)
device header file ... archives(4)
device pair on a STREAMS driver ... clone(7)

3

Permuted Index

cdromCDROM
/stand/edt_data Equipped

Administration SA
sharing resources

sockio ioctls that operate
dir (generic) format of

dir (s5) format of s5
dir (ufs) format ofufs

dirent file system independent
ttysrch

Service (NIS) database and
directory entry

connections connld line
standard STREAMS terminal line

mvme323 MVME323

space
disk

rt_dptbl real-time
ts_dptbl time-sharing

fstypes file that registers
Environment interface

address to hostname database or
device pair on a STREAMS

envmon Environment Monitor Board
nvram general non-volatile RAM

iuart hardware specific console
conslx7 hardware specific console

lplx7 line printer device
communication controller STREAMS

sad STREAMS Administrative
sxt pseudo-device

Interface
Equipped Device Table

files a.out
ptem STREAMS Pseudo Terminal

Interface
file system independent directory

utmp, wtmp utmp and wtmp
utmpx, wtmpx utmpx and wtmpx
user-preference variable files for I

profile setting up an
dice Data Link I Common

4

device support ... cdrom(7)
Device Table (EDT) Data File /stand/edt_data(4)
device-map script for makedev device-map(4)
devices administered by System SA(7)
dfstab file containing commands for dfstab(4)
dir (generic) format of directories .. dir(4)

I
I,

!1
I

dir (s5) format of s5 directories ... dir(4)
dir (ufs) format of ufs directories ... dir(4)
directly on sockets ... sockio(7)
directories dir(4)
directories dir(4)
directories dir(4)
directory entry .. dirent(4)
directory search list for ttyname ... ttysrch(4)
directory structure /Information ypfiles(4)
dirent file system independent ... dirent(4)
discipline for unique stream .. connld(7)
discipline module ldterm .. ldterm(7)
disk controller (For M68K only) mvme323(7)
disk disk support ... disk(7)
disk space requirement file ... space(4)
disk support disk(7)
dispatcher parameter table .. rt_dptbl(4)
dispatcher parameter table .. ts_dptbl(4)
distributed file system packages ... fstypes(4)
dice Data Link I Common .. dlce(7)
domain ethers Ethernet ... ethers(4)
driver clone open any major /minor clone(7)
driver .. envmon(7)
driver for SYSTEM V nvram(7)
driver for the MVMEl 41 and/ .. iuart(7)
driver for the MVME1X7 family .. cons(7)
driver ... lp(7)
driver mvme332xt MVME332XT mvme332xt(7)
Driver .. sad(7)
driver .. sxt(7)
elx7 MVME1X7 Local Area Network .. e(7)
(EDT) Data File /stand/edt_data /stand/edt_data(4)
ELF (Executable and Linking Format) a.out(4)
Emulation module .. ptem(7)
enetlx7 MVME1X7 Local Area Network enet(7)
entry dirent .. dirent(4)
entry formats .. utmp(4)
entry formats ... utmpx(4)
.environ, .pref, .variables ... environ(4)
environment at login time .. profile(4)
Environment interface .. dlce(7)

System Files and Devices Reference Manual

envmon
driver

File /stand/edt_data
log interface to STREAMS

database or domain ethers
database or domain

to STREAMS error logging and
files a.out ELF

termiox
user-preference variable files for

information .ott
pathalias alias file for

loginlog log of
console driver for the MVME1X7

inet Internet protocol
admin installation defaults

archives device header
compver compatible versions

sharing resources dfstab
settings information for I ttydefs
copyright copyright information

core core image
/dev/fd

pathalias alias
netrc

constants limits header
resolv.conf configuration

Service/ updaters configuration
strcf STREAMS Configuration

unistd header
syslog.conf configuration

acct per-process accounting
ar archive

pnch
intro introduction to

group group
filehdr

holidays holiday
issue issue identification

null the null
passwd password

pkginfo package characteristics
pkgmap package contents description

pkgquestpackage question
prototype package information

File Sharing name server master
sccsfile format of SCCS

Permuted Index

Permuted Index

Environment Monitor Board driver envmon(7)
envmon Environment Monitor Board envmon(7)
Equipped Device Table (EDT) Data /stand/edt_data(4)
error logging and event tracing log(7)
Ethernet address to hostname ... ethers(4)
ethers Ethernet address to hostname ethers(4)
event tracing log interface ... log(7)
(Executable and Linking Format) ... a.out(4)
extended general terminal interface termiox(7)
FACE /.pref, .variables .. environ(4)
FACE object architecture .. ott(4)
FACE ... pathalias(4)
failed login attempts ... loginlog(4)
family conslx7 hardware specific ... cons(7)
family .. inet(7)
file ... admin(4)
file ... archives(4)
file .. compver(4)
file containing commands for ... dfstab(4)
file contains terminal line ... ttydefs(4)
file ... copyright(4)
file" core(4)
file descriptor files ... /dev /fd(4)
file for FACE .. pathalias(4)
file for ftp remote login data .. netrc(4)
file for implementation-specific .. limits(4)
file for name server ... resolv.conf(4)
file for Network Information .. updaters(4)
File for STREAMS TCP /IP .. strcf(4N)
file for symbolic constants ... unistd(4)
file for syslogd system log daemon syslog.conf(4)
file format .. acct(4)
file format .. ar(4)
file format for card images ... pnch(4)
file formats ... intro(4)
file .. group(4)
file header for common object files filehdr(4)
file ... holidays(4)
file .. issue(4)
file null(7)
file ... passwd(4)
file ... pkginfo(4)
file ... pkgmap(4)
file .. pkgquest(4)
file prototype(4)
file rfmaster Remote .. rfmaster(4N)
file .. sccsfile(4)

5

Permuted Index

shadow shadow password
file rfmaster Remote

snmpd.comm SNMP communities
snmpd.conf SNMP configuration

snmpd.trap SNMP trap communities
space disk space requirement

Equipped Device Table (EDT) Data
vfstab table of

entry dirent
filesystem

file that registers distributed
/proc process

mnttab mounted
sharetab shared

fs (bfs) format of the bfs
fs (generic) format of a

fs (s5) format of s5
fs (ufs) format of ufs

system configuration information
term format of compiled term
file system packages fstypes

time daemon network configuration
object files

ELF (Executable and Linking Format)
depend software dependencies

I dev I fd file descriptor
file header for common object

user-preference variable
fspec format specification in text

intro introduction to special

floppy
mvme323 MVME323 disk controller
MVME350 cartridge tape controller

acct per-process accounting file
ar archive file

a.out ELF (Executable and Linking

6

pnchfile
inode (bfs)
fs (generic)
inode (ufs)

inode (generic)
inode (s5)

term
dir (generic)

dir (s5)

file .. shadow(4)
File Sharing name server master rfmaster(4N)
file ... snmpd.comm(4)
file ... snmpd.conf(4)
file ... snmpd.trap(4)
file ... space(4)
File /stand/edt_data .. /stand/edt_data(4)
file system defaults .. vfstab(4)
file system independent directory .. dirent(4)
file system organization .. filesystem(7)
file system packages fstypes .. fstypes(4)
file system .. /proc(4)
file system table .. mnttab(4)
file system table ... sharetab(4)
file system volume ... fs(4)
file system volume ... fs(4)
file system volume ... fs(4)
file system volume ... fs(4)
file system .. system(4)
file .. term(4)
file that registers distributed .. fstypes(4)
file timednet.conf ... timednet.conf(4)
filehdr file header for common .. filehdr(4)
files a.out .. a.out(4)
files ... depend(4)
files .. /dev/fd(4)
files filehdr .. filehdr(4)
files for FACE /.variables .. environ(4)
files .. fspec(4)
files .. intro(7)
filesystem file system organization filesystem(7)
floppy floppy support .. floppy(7)
floppy support ... floppy(7)
(For M68K only) .. mvme323(7)
(For M68K only) mvme350 ... mvme350(7)
format ... acct(4)
format .. ar(4)
Format) files .. a.out(4)
format for card images ... pnch(4)
format of a bfs i-node ... inode(4)
format of a file system volume ... fs(4)
format of a ufs inode .. inode(4)
format of an inode .. inode(4)
format of an s5 i-node .. inode(4)
format of compiled term file .. term(4)
format of directories .. dir(4)
format of s5 directories ... dir(4)

System Files and Devices Reference Manual

fs (s5)
sccsfile

volume fs (bfs)
dir (ufs)

fs (ufs)
fspec

intro introduction to file
utmp, wtmp utmp and wtmp entry

utmpx, wtmpx utmpx and wtmpx entry
sendmail aliases, addresses,

system volume
system volume

volume
volume

files
distributed file system packages

netrc file for
SYSTEM V nvram

termio
termiox extended

module kbd
volume fs

in ode
dir

group

for the MVME141 and/ iuart
for the MVME1X7 family conslx7

asyhdlc Asynchronous
archives device

implementation-specific/ limits
unistd

filehdr file
holidays

mvme328 MVME328 SCSI
scsilx7 SCSI1x7 SCSI

hosts
ppphosts Point-to-Point Protocol

ethers Ethernet address to
hosts.equiv, .rhosts trusted

by system and by user
Protocol

issue issue
network interfaces

if.ignore data base of

Permuted Index

Permuted Index

format of s5 file system volume .. fs(4)
format of SCCS file .. sccsfile(4)
format of the bfs file system ... fs(4)
format of ufs directories dir(4)
format of ufs file system volume .. fs(4)
format specification in text files ... fspec(4)
formats ... intro(4)
formats .. utmp(4)
formats .. utmpx(4)
forward addresses and aliases for aliases(4)
fs (bfs) format of the bfs file ... fs(4)
fs (generic) format of a file ... fs(4)
fs (s5) format of s5 file system ... fs(4)
fs (ufs) format of ufs file system .. fs(4)
fspec format specification in text ... fspec(4)
fstypes file that registers fstypes(4)
ftp remote login data ... netrc(4)
general non-volatile RAM driver for nvram(7)
general terminal interface ... termio(7)
general terminal interface ... termiox(7)
generalized string translation .. kbd(7)
(generic) format of a file system ... fs(4)
(generic) format of an inode ... inode(4)
(generic) format of directories .. dir(4)
group file .. group(4)
group group file ... group(4)
hardware specific console driver .. iuart(7)
hardware specific console driver ... cons(7)
HDLC protocol module ... asyhdlc(7)
header file .. archives(4)
header file for limits(4)
header file for symbolic constants unistd(4)
header for common object files .. filehdr(4)
holiday file .. holidays(4)
holidays holiday file ... holidays(4)
Host Adapter ... mvme328(7)
host adapter ... scsi(7)
host name data base .. hosts(4)
Host name database .. ppphosts(4)
hostname database or domain .. ethers(4)
hosts by system and by user hosts.equiv(4N)
hosts host name data base hosts(4)
hosts.equiv, .rhosts trusted hosts hosts.equiv(4N)
ICMP Internet Control Message .. ICMP(7)
identification file .. issue(4)
if.ignore data base of ignored .. if.ignore(4)
ignored network interfaces .. if.ignore(4)

7

Permuted Index

core core
pnch file format for card

limits header file for
dirent file system

database
copyright copyright

prototype package
system system configuration

mailcnfg initialization
command binarsys remote system

contains terminal line settings
.ott FACE object architecture

and directory I ypfiles the Network
/configuration file for Network

inittab script for
and rmail mailcnfg

inode (bfs) format of a bfs
inode (generic) format of an

inode (s5) format of an s5
inode (ufs) format of a ufs

admin
console STREAMS-based console

module timod Transport
Data Link I Common Environment

elx7 MVME1X7 Local Area Network
enetlx7 MVME1X7 Local Area Network

lo software loopback network
m376 MVME376 Local Area Network

mt tape
STREAMS module tirdwr Transport

Transport Interface read/write
termio general terminal

termiox extended general terminal
and event tracing log

tty controlling terminal
data base of ignored network

ICMP
inet

IP
inetd.conf

services

8

image file ... core(4)
images .. pnch(4)
implementation-specific constants limits(4)
independent directory entry .. dirent(4)
inet Internet protocol family .. inet(7)
inetd.conf Internet servers .. inetd.conf(4)
information file .. copyright(4)
information file .. prototype(4)
information file ... system(4)
information for mail and rmail .. mailcnfg(4)
information for the ckbinarsys .. binarsys(4)
informationforttymon /file .. ttydefs(4)
information .. ott(4)
Information Service (NIS) database ypfiles(4)
Information Service (NIS) updating updaters(4)
init .. inittab(4)
initialization information for mail mailcnfg(4)
inittab script for init .. inittab(4)
inode (bfs) format of a bfs i-node .. inode(4)
inode (generic) format of an inode .. inode(4)
i-node .. inode(4)
inode .. inode(4)
i-node .. inode(4)
inode .. inode(4)
inode (s5) format of an s5 i-node ... inode(4)
inode (ufs) format of a ufs inode ... inode(4)
installation defaults file ... admin(4)
interface ... console(?)
Interface cooperating STREAMS .. timod(7)
interface dice dlce(7)
Interface e(7)
Interface ... enet(7)
interface ... lo(7)
Interface .. m376(7)
interface ... mt(7)
Interface read/write interface .. tirdwr(7)
interface STREAMS module tirdwr tirdwr(7)
interface .. termio(7)
interface .. termiox(7)
interface to STREAMS error logging ... log(7)
interface .. tty(7)
interfaces if.ignore ... if.ignore(4)
Internet Control Message Protocol ICMP(7)
Internet protocol family .. inet(7)
Internet Protocol .. IP(7)
Internet servers database .. inetd.conf(4)
Internet services and aliases ... services(4)

System Files and Devices Reference Manual

Protocol TCP
UDP

intro
intro

streamio STREAMS
sockets sockio

SLIP Serial Line
issue

driver for the MVME141 and/
module

publickey public
mem,

strftime
line discipline module

implementation-specific constants
connections connld

ldterm standard STREAMS terminal
SLIP Serial

lplx7
ttydefs file contains terminal

interface dlce Data
a.out ELF (Executable and

ttysrch directory search
interface

elx7 MVME1X7
enetlx7 MVME1X7

m376 MVME376
file for syslogd system

logging and event tracing
loginlog

log interface to STREAMS error
loginlog log of failed

netrc file for ftp remote
setting up an environment at

attempts
lo software

ticlts, ticots, ticotsord

Interface
MVME323 disk controller (For

cartridge tape controller (For
initialization information for

for routing and transport of

Permuted Index

Permuted Index

Internet Transmission Control ... TCP(7)
Internet User Datagram Protocol .. UDP(7)
intro introduction to file formats .. intro(4)
intro introduction to special files .. intro(7)
introduction to file formats .. intro(4)
introduction to special files .. intro(7)
ioctl commands streamio(7)
ioctls that operate directly on ... sockio(7)
IP Internet Protocol IP(7)
IP (SLIP) Protocol ... SLIP(7)
issue identification file .. issue(4)
issue issue identification file .. issue(4)
iuart hardware specific console .. iuart(7)
kbd generalized string translation kbd(7)
key database ... publickey(4)
kmem core memory .. mem(7)
language specific strings ... strftime(4)
ldterm standard STREAMS terminal ldterm(7)
limits header file for ... limits(4)
line discipline for unique stream .. connld(7)
line discipline module ... ldterm(7)
Line IP (SLIP) Protocol SLIP(7)
line printer device driver lp(7)
line settings information for I .. ttydefs(4)
Link I Common Environment dke(7)
Linking Format) files ... a.out(4)
list for ttyname .. ttysrch(4)
lo software loop back network .. lo(7)
Local Area Network Interface .. e(7)
Local Area Network Interface .. enet(7)
Local Area Network Interface .. m376(7)
log daemon /configuration ... syslog.conf(4)
log interface to STREAMS error ... log(7)
log of failed login attempts .. loginlog(4)
logging and event tracing .. log(7)
login attempts ... loginlog(4)
login data ... netrc(4)
login time profile ... profile(4)
loginlog log of failed login loginlog(4)
loop back network interface ... lo(7)
loopback transport providers .. ticlts(7)
Ip lx7 line printer device driver .. lp(7)
m376 MVME376 Local Area Network m376(7)
M68K only) mvme323 .. mvme323(7)
M68K only) mvme350 MVME350 mvme350(7)
mail and rmail mailcnfg .. mailcnfg(4)
mail mailsurr surrogate commands mailsurr(4)

9

Permuted Index

for mail and rmail
routing and transport of mail

STREAMS driver clone open any
device-map script for

alp Algorithm Pool
netmasks network

master
Remote File Sharing name server

database

memregion core
mem, kmem core

ICMP Internet Control

pckt STREAMS Packet
alp Algorithm Pool management

asyhdlc Asynchronous HDLC protocol
kbd generalized string translation
STREAMS terminal line discipline

pckt STREAMS Packet Mode
STREAMS Pseudo Terminal Emulation

Interface cooperating STREAMS
read/write interface STREAMS

and XENIX STREAMS compatibility
envmon Environment

mnttab

specific console driver for the
mvme167

mvme181

console driver for the MVME141 and
mvme187

10

mvme188

specific console driver for the
Interface elx7

Interface enetlx7
only) mvme323
(For M68K only)

mvme328
STREAMS driver mvme332xt

controller STREAMS driver

mailcnfg initialization information mailcnfg(4)
mailsurr surrogate commands for mailsurr(4)
major /minor device pair on a .. clone(7)
makedev .. device-map(4)
management module ... alp(7)
mask data base ... netmasks(4)
master configuration database .. master(4)
master file rfmaster .. rfmaster(4N)
master master configuration .. master(4)
mem, kmem core memory .. mem(7)
memory by region ... memregion(7)
memory ... mem(7)
memregion core memory by region memregion(7)
Message Protocol .. ICMP(7)
mnttab mounted file system table mnttab(4)
Mode module ... pckt(7)
module .. alp(7)
module .. asyhdlc(7)
module ... kbd(7)
module ldterm standard ... ldterm(7)
module .. pckt(7)
module ptem .. ptem(7)
module timod Transport .. timod(7)
module tirdwr Transport Interface tirdwr(7)
module ttcompat V7, 4BSD .. ttcompat(7)
Monitor Board driver .. envmon(7)
mounted file system table .. mnttab(4)
mt tape interface .. mt(7)
MVME141 andMVME181/188 /hardware iuart(7)
MVME167 CPU ... mvme(7)
mvme167 MVME167 CPU .. mvme(7)
MVME181 CPU ... mvme(7)
mvme181 MVME181 CPU .. mvme(7)
MVME181/188 /hardware specific iuart(7)
MVME187 CPU ... mvme(7)
mvme187 MVME187 CPU .. mvme(7)
MVME188 CPU ... mvme(7)
mvme188 MVME188 CPU .. mvme(7)
MVME1X7 family conslx7 hardware cons(7)
MVME1X7 Local Area Network .. e(7)
MVME1X7 Local Area Network .. enet(7)
MVME323 disk controller (For M68K mvme323(7)
mvme323 MVME323 disk controller mvme323(7)
mvme328 MVME328 SCSI Host Adapter mvme328(7)
MVME328 SCSI Host Adapter mvme328(7)
MVME332XT communication controller mvme332xt(7)
mvme332xt MVME332XT communication mvme332xt(7)

System Files and Devices Reference Manual I·

I

(For M68K only) mvme350
controller (For M68K only)

Interface m376
hosts host

networks network
protocols protocol

Point-to-Point Protocol Host
rfmaster Remote File Sharing

resolv.conf configuration file for
database

data
netconfig

timednet.conf time daemon
database and directory I ypfiles the

updaters configuration file for
elx7 MVME1X7Local Area

enetlx7 MVME1X7 Local Area
lo software loopback

m376 MVME376 Local Area
if.ignore data base of ignored

netmasks
networks

routing system support for packet

I the Network Information Service
for Network Information Service

V nvram general
null the

rpc rpc program
driver for SYSTEM V

.ottFACE
filehdr file header for common

MVME323 disk controller (For M68K
cartridge tape controller (For M68K

a STREAMS driver clone
sockio ioctls that

prf
filesystem file system

information
pkginfo

pkgmap
prototype
pkgquest

registers distributed file system
pckt STREAMS

Permuted Index

Permuted Index

MVME350 cartridge tape controller mvme350(7)
mvme350 MVME350 cartridge tape mvme350(7)
MVME376 Local Area Network .. m376(7)
name data base ... hosts(4)
name data base ... networks(4)
name data base ... protocols(4)
name database ppphosts .. ppphosts(4)
name server master file .. rfmaster(4N)
name server .. resolv.conf(4)
netconfig network configuration netconfig(4)
netmasks network mask data base netmasks(4)
netrc file for ftp remote login .. netrc(4)
network configuration database netconfig(4)
network configuration file timednet.conf(4)
Network Information Service (NIS) ypfiles(4)
Network Information Service (NIS)/ updaters(4)
Network Interface ... e(7)
Network Interface ... enet(7)
network interface lo(7)
Network Interface ... m376(7)
network interfaces ... if.ignore(4)
network mask data base ... netmasks(4)
network name data base ... networks(4)
network routing ... routing(4)
networks network name data base networks(4)
(NIS) database and directory I ... ypfiles(4)
(NIS) updating /configuration file updaters(4)
non-volatile RAM driver for SYSTEM nvram(7)
null file null(7)
null the null file .. null(7)
number data base .. rpc(4)
nvram general non-volatile RAM nvram(7)
object architecture information ... ott(4)
object files ... filehdr(4)
only) mvme323 .. mvme323(7)
only) mvme350 MVME350 ... mvme350(7)
open any major /minor device pair on clone(7)
operate directly on sockets .. sockio(7)
operating system profiler ... prf(7)
organization ... filesystem(7)
.ott FACE object architecture ... ott(4)
package characteristics file ... pkginfo(4)
package contents description file pkgmap(4)
package information file .. prototype(4)
package question file ... pkgquest(4)
packages fstypes file that .. fstypes(4)
Packet Mode module .. pckt(7)

11

Permuted Index

routing system support for
clone open any major /minor device

bootparams boot
rt_dptbl real-time dispatcher

ts_dptbl time-sharing dispatcher

passthru

passwd
shadow shadow

acct
file
file

database ppphosts

PPP
alp Algorithm

PPP Point-to-Point Protocol
Host name database

user-preference variable/ .environ,

lplx7 line

/proc
at login time

prf operating system
rpc rpc

ARP Address Resolution
inet Internet

ppphosts Point-to-Point
ICMP Internet Control Message

IP Internet
asyhdlc Asynchronous HDLC

protocols
ppp Point-to-Point

SLIP Serial Line IP (SLIP)
TCP Internet Transmission Control

UDP Internet User Datagram

12

ticotsord loopback transport
ptem STREAMS

sxt

packet network routing .. routing(4)
pair on a STREAMS driver .. clone(7)
parameter data base ... bootparams(4)
parameter table .. rt_dptbl(4)
parameter table .. ts_dptbl(4)
passthru passthru support .. passthru(7)

I
I.

~
passthru support ... passthru(7)
passwd password file ... passwd(4)
password file .. passwd(4)
password file ... shadow(4)
pathalias alias file for FACE .. pathalias(4)
pckt STREAMS Packet Mode module pckt(7)
per-process accounting file format ... acct(4)
pkginfo package characteristics ... pkginfo(4)
pkgmap package contents description pkgmap(4)
pkgquest package question file pkgquest(4)
pnch file format for card images ... pnch(4)
Point-to-Point Protocol Host name ppphosts(4)
Point-to-Point Protocol (PPP) .. ppp(7)
Pool management module .. alp(7)
ppp Point-to-Point Protocol (PPP) ... ppp(7)
(PPP) ppp(7)
ppphosts Point-to-Point Protocol ppphosts(4)
.pref, .variables .. environ(4)
prf operating system profiler .. prf(7)
printer device driver ... lp(7)
/proc process file system .. /proc(4)
process file system .. /proc(4)
profile setting up an environment profile(4)
profiler prf(7)
program number data base ... rpc(4)
Protocol ... ARP(7)
protocol family ... inet(7)
Protocol Host name database .. ppphosts(4)
Protocol ... ICMP(7)
Protocol ... IP(7)
protocol module .. asyhdlc(7)
protocol name data base ... protocols(4)
Protocol (PPP) ... ppp(7)
Protocol ... SLIP(7)
Protocol ... TCP(7)
Protocol UDP(7)
protocols protocol name data base protocols(4)
prototype package information file prototype(4)
providers ticlts, ticots, ... ticlts(7)
Pseudo Terminal Emulation module ptem(7)
pseudo-device driver sxt(7)

System Files and Devices Reference Manual

Emulation module
publickey

pkgquest package
nvram general non-volatile

tirdwr Transport Interface
table rt_dptbl

memregion core memory by
packages fstypes file that

master file rfmaster
netrc file for ftp

ckbinarsys command binarsys
space disk space

ARP Address
name server

containing commands for sharing
stat data

server master file
by user hosts.equiv,

information for mail and
mailsurr surrogate commands for

system support for packet network
network routing

rpc

parameter table
dir (s5) format of
fs (s5) format of

in ode
dir

volume fs
inode (s5) format of an

Administration

sccsfile format of

inittab
device-map

mvme328 MVME328
scsilx7 SCSI1x7

scsilx7

ttysrch directory
forward addresses and aliases for

SLIP
rfmaster Remote File Sharing name

configuration file for name

Permuted Index

Permuted Index

ptem STREAMS Pseudo Terminal ptem(7)
public key database .. publickey(4)
publickey public key database publickey(4)
question file ... pkgquest(4)
RAM driver for SYSTEM V ... nvram(7)
read/write interface STREAMS module tirdwr(7)
real-time dispatcher parameter .. rt_dptbl(4)
region memregion(7)
registers distributed file system .. fstypes(4)
Remote File Sharing name server rfmaster(4N)
remote login data ... netrc(4)
remote system information for the binarsys(4)
requirement file ... space(4)
Resolution Protocol .. ARP(7)
resolv.conf configuration file for resolv.conf(4)
resources dfstab file ... dfstab(4)
returned by stat system call ... stat(4)
rfmaster Remote File Sharing name rfmaster(4N)
.rhosts trusted hosts by system and hosts.equiv(4N)
rmail mailcnfg initialization ... mailcnfg(4)
routing and transport of mail ... mailsurr(4)
routing routing ... routing(4)
routing system support for packet routing(4)
rpc program number data base .. rpc(4)
rpc rpc program number data base ... rpc(4)
rt_dptbl real-time dispatcher .. rt_dptbl(4)
s5 directories dir(4)
s5 file system volume .. fs(4)
(sS) format of an s5 i-node .. inode(4)
(sS) format of s5 directories ... dir(4)
(sS) format of s5 file system ... fs(4)
s5 i-node .. inode(4)
SA devices administered by System SA(7)
sad STREAMS Administrative Driver sad(7)
secs file .. sccsfile(4)
sccsfile format of SCCS file .. sccsfile(4)
script for init ... inittab(4)
script for makedev .. device-map(4)
SCSI Host Adapter ... mvme328(7)
SCSI host adapter ... scsi(7)
SCSI1x7 SCSI host adapter ... scsi(7)
scsilx7 SCSI1x7 SCSI host adapter ... scsi(7)
search list for ttyname ... ttysrch(4)
sendmail aliases, addresses, aliases(4)
Serial Line IP (SLIP) Protocol SLIP(7)
server master file .. rfmaster(4N)
server resolv.conf .. resolv.conf(4)

13

Permuted Index

inetd.conf Internet
ypfiles the Network Information

I file for Network Information
services Internet

aliases
timezone

time profile
ttydefs file contains terminal line

shadow

sharetab

rfmaster Remote File
dfstab file containing commands for

SLIP Serial Line IP

snmpd.comm
snmpd.conf
snmpd.trap

file
ioctls that operate directly on

on sockets
depend

lo
zero

space disk
intro introduction to

MVME141 and/ iuart hardware
MVME1X7 family conslx7 hardware

strftime language
fspec format

discipline module ldterm
Table (EDT) Data File

call
stat data returned by

for STREAMS TCP /IP
connld line discipline for unique

sad
ttcompat V7, 4BSD and XENIX

STREAMS TCP /IP strcf
any major /minor device pair on a

MVME332XT communication controller
tracing log interface to

14

servers database .. inetd.conf(4)
Service (NIS) database and/ .. ypfiles(4)
Service (NIS) updating .. updaters(4)
services and aliases services(4)
services Internet services and .. services(4) i4
set default system time zone ... timezone(4)
setting up an environment at login profile(4)

I

!

settings information for ttymon .. ttydefs(4)
shadow password file .. shadow(4)
shadow shadow password file .. shadow(4)
shared file system table .. sharetab(4)
sharetab shared file system table sharetab(4)
Sharing name server master file rfmaster(4N)
sharing resources ... dfstab(4)
(SLIP) Protocol SLIP(7)
SLIP Serial Line IP (SLIP) Protocol SLIP(7)
SNMP communities file ... snmpd.comm(4)
SNMP configuration file .. snmpd.conf(4)
SNMP trap communities file snmpd.trap(4)
snmpd.comm SNMP communities file snmpd.comm(4)
snmpd.conf SNMP configuration file snmpd.conf(4)
snmpd.trap SNMP trap communities snmpd.trap(4)
sockets sockio ... sockio(7)
sockio ioctls that operate directly .. sockio(7)
software dependencies files .. depend(4)
software loopback network interface .. lo(7)
source of zeroes zero(7)
space disk space requirement file .. space(4)
space requirement file .. space(4)
special files intro(7)
specific console driver for the .. iuart(7)
specific console driver for the .. cons(7)
specific strings ... strftime(4)
specification in text files ... fspec(4)
standard STREAMS terminal line ldterm(7)
/stand/edt_data Equipped Device /stand/edt_data(4)
stat data returned by stat system .. stat(4)
stat system call .. stat(4)
strcf STREAMS Configuration File strcf(4N)
stream connections ... connld(7)
streamio STREAMS ioctl commands streamio(7)
STREAMS Administrative Driver .. sad(7)
STREAMS compatibility module ttcompat(7)
STREAMS Configuration File for ... strcf(4N)
STREAMS driver clone open .. clone(7)
STREAMS driver mvme332xt mvme332xt(7)
STREAMS error logging and event ... log(7)

System Files and Devices Reference Manual

streamio
Transport Interface cooperating

Interface read/write interface
pckt

module ptem
STREAMS Configuration File for

module ldterm standard
console

kbd generalized
strftime language specific

(NIS) database and directory
cdrom CDROM device

disk disk
floppy floppy

routing system
passthru passthru

tape tape
transport of mail mailsurr

unistd header file for
syslogd system log daemon

syslog.conf configuration file for
SA devices administered by

.rhosts trusted hosts by
stat data returned by stat

file system
vfstab table of file

dirent file
ckbinarsys command binarsys remote

configuration file for syslogd
filesystem file

that registers distributed file
/proc process file

prf operating
routing routing
information file

mnttab mounted file
sharetab shared file

timezone set default
general non-volatile RAM driver for

fs (bfs) format of the bfs file
fs (generic) format of a file

fs (s5) format of s5 file
fs (ufs) format of ufs file

/stand/edt_data Equipped Device
mnttab mounted file system

Permuted Index

Permuted Index

STREAMS ioctl commands ... streamio(7)
STREAMS module timod ... timod(7)
STREAMS module tirdwr Transport tirdwr(7)
STREAMS Packet Mode module ... pckt(7)
STREAMS Pseudo Terminal Emulation ptem(7)
STREAMS TCP /IP strcf ... strcf(4N)
STREAMS terminal line discipline ldterm(7)
STREAMS-based console interface console(7)
strftime language specific strings strftime(4)
string translation module kbd(7)
strings .. strftime(4)
structure I Inform a ti on Service ypfiles(4)
support cdrom(7)
support .. disk(7)
support .. floppy(7)
support for packet network routing routing(4)
support .. passthru(7)
support .. tape(7)
surrogate commands for routing and mailsurr(4)
sxt pseudo-device driver .. sxt(7)
symbolic constants .. unistd(4)
syslog.conf configuration file for syslog.conf(4)
syslogd system log daemon .. syslog.conf(4)
System Administration .. SA(7)
system and by user hosts.equiv, hosts.equiv(4N)
system call .. stat(4)
system configuration information system(4)
system defaults ... vfstab(4)
system independent directory entry dirent(4)
system information for the .. binarsys(4)
system log daemon syslog.conf syslog.conf(4)
system organization ... filesystem(7)
system packages fstypes file .. fstypes(4)
system ... /proc(4)
system profiler ... prf(7)
system support for packet network routing(4)
system system configuration ... system(4)
system table .. mnttab(4)
system table .. sharetab(4)
system time zone ... timezone(4)
SYSTEM V nvram ... nvram(7)
system volume ... fs(4)
system volume ... fs(4)
system volume ... fs(4)
system volume ... fs(4)
Table (EDT) Data File .. /stand/edt_data(4)
table .. mnttab(4)

15

Permuted Index

vfstab
real-time dispatcher parameter

sharetab shared file system
time-sharing dispatcher parameter

mvme350 MVME350 cartridge
mt

tape

Protocol
Configuration File for STREAMS

term format of compiled

terminfo
ptem STREAMS Pseudo

termio general
termiox extended general

tty controlling
ldterm standard STREAMS

for ttymon ttydefs file contains
base

interface
fspec format specification in

transport providers
transport providers ticlts,

providers ticlts, ticots,
configuration file

table ts_ dptbl
zone

cooperating STREAMS module
read/write interface STREAMS/

to STREAMS error logging and event
kbd generalized string

TCP Internet
STREAMS module timod

interface STREAMS module tirdwr
surrogate commands for routing and

ticlts, ticots, ticotsord loopback
snmpd.trap SNMP
hosts.equiv, .rhosts

parameter table

16

compatibility module

settings information for ttymon
line settings information for

ttysrch directory search list for
ttyname

,.
I'

table of file system defaults ... vfstab(4)
table rt_dptbl ... rt_dptbl(4)
table sharetab(4)
table ts_dptbl ... ts_dptbl(4)
tape controller (For M68K only) mvme350(7)
tape interface .. rnt(7)
tape support ... tape(7)
tape tape support .. tape(7)
TCP Internet Transmission Control .. TCP(7)
TCP /IP strcf STREAMS ... strcf(4N)
term file .. term(4)
term format of compiled term file .. term(4)
terminal capability data base ... terminfo(4)
Terminal Emulation module ... ptem(7)
terminal interface termio(7)
terminal interface ... termiox(7)
terminal interface ... tty(7)
terminal line discipline module .. ldterm(7)
terminal line settings information ttydefs(4)
terminfo terminal capability data terminfo(4)
termio general terminal interface termio(7)
termiox extended general terminal termiox(7)
text files .. fspec(4)
ticlts, ticots, ticotsord loopback ... ticlts(7)
ticots, ticotsord loopback .. ticlts(7)
ticotsord loopback transport .. ticlts(7)
timednet.conf time daemon network timednet.conf(4)
time-sharing dispatcher parameter ts_dptbl(4)
timezone set default system time timezone(4)
timod Transport Interface .. timod(7)
tirdwr Transport Interface ... tirdwr(7)
tracing log interface log(7)
translation module .. kbd(7)
Transmission Control Protocol TCP(7)
Transport Interface cooperating ... timod(7)
Transport Interface read/write .. tirdwr(7)
transport of mail mailsurr ... mailsurr(4)
transport providers .. ticlts(7)
trap communities file .. snmpd.trap(4)
trusted hosts by system and by user hosts.equiv(4N)
ts_dptbl time-sharing dispatcher ts_dptbl(4)
ttcompat V7, 4BSD and XENIX STREAMS ttcompat(7)
tty controlling terminal interface .. tty(7)
ttydefs file contains terminal line .. ttydefs(4)
ttymon /file contains terminal .. ttydefs(4)
ttyname ... ttysrch(4)
ttysrch directory search list for .. ttysrch(4)

System Files and Devices Reference Manual

dir (ufs) format of
fs (ufs) format of

in ode
dir

volume fs
inode (ufs) format of a

connld line discipline for
constants

Network Information Service (NIS) I
Network Information Service (NIS)

UDP Internet
trusted hosts by system and by

.environ, .pref, .variables
utmp,wtmp

formats
utmpx, wtmpx

formats
non-volatile RAM driver for SYSTEM

compatibility module ttcompat
.variables user-preference

variable files/ .environ, .pref,
compver compatible

defaults
(bfs) format of the bfs file system
(generic) format of a file system

fs (s5) format of s5 file system
fs (ufs) format of ufs file system

utmp, wtmp utmp and
utmp,

utmpx, wtmpx utmpx and
utmpx,

ttcompat V7, 4BSD and
Service (NIS) database and/

zero source of
timezone set default system time

Permuted Index

Permuted Index

UDP Internet User Datagram Protocol UDP(7)
ufs directories ... dir(4)
ufs file system volume .. fs(4)
(ufs) format of a ufs inode ... inode(4)
(ufs) format of ufs directories .. dir(4)
(ufs) format of ufs file system .. fs(4)
ufs inode ... inode(4)
unique stream connections connld(7)
unistd header file for symbolic ... unistd(4)
updaters configuration file for ... updaters(4)
updating /configuration file for updaters(4)
User Datagram Protocol ... UDP(7)
user hosts.equiv, .rhosts ... hosts.equiv(4N)
user-preference variable files for/ environ(4)
utmp and wtmp entry formats .. utmp(4)
utmp, wtmp utmp and wtmp entry utmp(4)
utmpx and wtmpx entry formats .. utmpx(4)
utmpx, wtmpx utmpx and wtmpx entry utmpx(4)
V nvram general .. nvram(7)
V7, 4BSD and XENIX STREAMS ttcompat(7)
variable files for FACE /.pref, .. environ(4)
.variables user-preference ... environ(4)
versions file .. compver(4)
vfstab table of file system ... vfstab(4)
volume fs ... fs(4)
volume fs ... fs(4)
volume ... fs(4)
volume ... fs(4)
wtmp entry formats ... utmp(4)
wtmp utmp and wtmp entry formats utmp(4)
wtmpx entry formats ... utmpx(4)
wtmpx utmpx and wtmpx entry formats utmpx(4)
XENIX STREAMS compatibility module ttcompat(7)
ypfiles the Network Information ... ypfiles(4)
zero source of zeroes zero(7)
zeroes zero(7)
zone ... timezone(4)

17

~
!
i

I

I

I

®MOTOROLA .

The reference manual set for UNIX System V Release 4 for Motorola Processors
is the definitive source for complete and detailed specifications for all System V
interfaces. Retitled arid reorganized, this edition makes finding the manual
page you need fast and easy. The following table reflects these changes.

Commands Reference Manual Volumes 1 and 2

• General-purpose user commands
• Basic networking commands
• Form and Menu Language Interpreter

(FMLI)

• System maintenance commands
• Enhanced networking commands
• Miscellaneous reference information

related to commands

System Files and Devices Referen ce Manual

• System file formats
• Special files (devices)

Device Driver Interface/Driver-Kernel
Interface Reference Manual

• Driver Data Definitions
• Driver Entry Point Routines
• Kernel Utility Routines
• Kernel Data Structures
• Kernel Defines

Motorola and @ are registered
trademarks of Motorola, Inc.

UNIX
PRESS

A Prentice Hall Title

\

System Calls and Library Functions Reference.
Manual

• System calls
• BSD system compatibility library
• Standard C library
• Executable and Linking format library
• General-purpose library
• Math library
• Networking·Jibrary :
• Standard 1/0 library
• Specialized library
• Miscellaneous reference information

related to programming

Master Permuted Index

• Permuted index of all manual pages

ISBN 0-13-035874-6

9 78013 358745

