
ATs.T

UNIX® SYSTEM V
RELEASE 4

User's Reference Manual

Sys

UNIX Software Operation

Copyright 1990, 1989,1988,1987,1986,1985,1984,1983 AT&T
Copyright 1989, 1988, 1987, 1986 Sun Mlcrosystems, Inc.
Copyright 1985 Regents of the University of California
All Rights Reserved
Printed In USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means--graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­
ing, by any computer or infprmation storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

ACKNOWLEDGEMENT

AT&T gratefully acknowledges the)(fOpen Company Limited for permission to reproduce portions of
its copyrighted X/Open Portability Guide, Issue 3.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state­
ments of any kind in this document, its updates, supplements, or special editions, whether such er­
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu­
ment AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.
AT&T reserves the right to make changes without further notice to any products herein to improve re­
liability, function, or design.

TRADEMARKS

IBM System/370 is a registered trademark of International Business Machines.
PDP-11/45 and VAX-11n50 are registered trademarks of Digital Equipment Corporation.
UNIX is a registered trademark of AT&T. .

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-947037-9

UNIX
PRESS

A Prentice Hall Title

PRE N T C E HAL L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:
Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632.
Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, SA, Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

®
AT&T UNIX System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User's and Administrator's Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIX® System V Release 4 System Administrator's Guide

®
UNIX System V Release 4 System Administrator's Reference Manual
UNIX® System V Release 4 User's Guide
UNIX® System V Release 4 User's Reference Manual

General Programmer's Series

UNIX® System V Release 4 Programmer's Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer's Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer's Guide: Networking Interfaces
UNIX® System V Release 4 Programmer's Guide: POSIX Conformance
UNIX® System V Release 4 Programmer's Guide: System Services

and Application Packaging Tools
UNIX® System V Release 4 Programmer's Reference Manual

System Programmer's Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide
UNIX® System V Release 4 Device Driver Interface / Driver-Kernel

Interface (001/ DKI) Reference Manual
UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer's Guide: STREAMS

Available from Prentice Hall II

Introduction

This User's Reference Manual describes the commands that constitute the basic
software running on the AT&T 3B2 Computer.

Several closely-related documents contain other valuable information:

• The User's Guide presents an overview of the UNIX system and tutorials
on how to use text editors, automate repetitive jobs, and send information
to others.

• The Programmer's Guide presents an overview of the UNIX system pro­
gramming environment and tutorials on various programming tools.

• The Programmer's Reference Manual describes the commands, system calls,
subroutines, libraries, file formats, and miscellaneous information used by
programmers.

• The System Administrator's Guide provides procedures for and explanations
of administrative tasks.

• The System Administrator's Reference Manual describes commands, file for­
mats, and miscellaneous information used by system administrators.

Although the commands are each part of a specific Utilities Package listed
below, they appear in alphabetical order in a single section of this document
called "Commands."

1. BSD Compatibility Guide
2. Basic Networking Utilities
3. C Programming Language Utilities
4. Directory and File Management Utilities
5. Editing Utilities
6. Encryption Utilities (CRYPTI
7. Essential Boot Utilities
8. Essential Utilities
9. Ethernet Media Driver Utilities

10. Extended Software Generation System Utilities
11. Framed Access Command Environment Utilities
12. Inter-Process Communications (IPC) Utilities
13. Internet Utilities
14. Line Printer Spooling Utilities
15. Network File System Utilities
16. Network Support Utilities

Introduction 1

Introduction

17. OPEN LOOl(TM/Graphics Utilities
18. Remote File System Utilities
19. Remote Procedure Call Utilities
20. Spell Utilities
21. System Administration Utilities
22. System Header Files
23. System Performance Analysis Utilities ~SPAU)
24. UPS Utilities
25. User Environment Utilities
26. Windowing Utilities
27. XENIX Compatibility Utilities
28. Terminal Information Utilities
29. Distributed File System Utilities

Security Administration Utilities are expressly provided for U. S. customers.

Section (1): Commands

The entries in Section (1) describe programs intended to be invoked directly by
the user or by command language procedures, as opposed to subroutines, which
are called by the user's programs. Commands generally reside in the directories
/usr/bin and /usr/sbin. In addition, some commands reside in /sbin. These
directories are searched automatically by the command interpreter called the
shell. Also, UNIX systems often have a directory called /usr/lbin, containing
local commands.

Throughout this manual, numbers following a command are intended for easy
cross-reference. A command followed by a (1), (1C), or (1G) usually means that
it is described in this manual. (Section (1) commands appropriate for use by
programmers are located in the Programmer's Reference Manual.) A command
with a (1M), (7), or (8) following it means that the command is in the
corresponding section of the System Administrator's Reference Manual. A com­
mand with a (2) or (3) following it means that the command is in the
corresponding section of the Programmer's Reference Manual. A command with a
(4) or (5) following it usually means that the command is in the corresponding
section of the Programmer's Reference Manual or the System Administrator's Refer­
ence Manual. However, manual pages used only for specialized applications are
co-located with their appropriate Guides. See the Master Permuted Index in the
Product Overview and Master Index.

2 User's Reference Manual

Introduction

Each entry in the Commands section appears under a single name shown at the
upper comers of its page(s). Entries are alphabetized, with the exception of the
intro(1) entry, which is first. Some entries may describe several commands. In
such cases, the entry appears only once, alphabetized under its "primary" name,
the name that appears at the upper comers of the page. The "secondary" com­
mands are listed directly below their associated primary command. To learn
which manual page describes a secondary command, locate its name in the mid­
dle column of the "Permuted Index" and follow across that line to the name of
the manual page listed in the right column.

All entries are presented using the following format (though some of these!
headings might not appear in every entry):

• NAME gives the primary name [and secondary name(s), as the case may
be] and briefly states its purpose.

• SYNOPSIS summarizes the usage of the program being described. A few
explanatory conventions are used, particularly in the SYNOPSIS:

D Constant Width strings are literals and are to be typed just as they
appear.

D Italic strings usually represent substitutable argument and command
names found elsewhere in the manual.

D Square brackets [] around an argument indicate that the argument
is optional. When an argument is given as name or file, it always
refers to a file name.

D Ellipses . . . are used to show that the previous argument may be
repeated.

D A final convention is used by the commands themselves. An argu­
ment beginning with a minus (-), plus (+), or an equal sign (=) is
often taken to be a flag argument, even if it appears in a position
where a file name could appear. Therefore, it is unwise to have files
whose names begin with -, +, or =.

• DESCRIPTION discusses how to use these commands.

• EXAMPLES gives examples of usage, where appropriate.

Introduction 3

Introduction

• FILES contains the file names that are referenced by the program.

• EXIT CODES discusses values set when the command terminates. The
value set is available in the shell environment variable "?" (see sh(1».

• NOTES gives information that may be helpful under the particular cir­
cumstances described.

• SEE ALSO offers pointers to related information.

• DIAGNOSTICS discusses the error messages that may be produced. Mes­
sages that are intended to be self-explanatory are not listed.

Preceding Section 1 are a "Table of Contents" (listing both primary and secon­
dary command entries) and a "Permuted Index." Each line of the "Table of
Contents" contains the name of a manual page (with secondary entries, if they
exist) and an abstract of that page. Each line of the ''Permuted Index"
represents a permutation (or sorting) of a line from the "Table of Contents" into
three columns. Each line is arranged so that a keyword or phrase begins the
middle column. Use the "Permuted Index" by searching this middle column for
a topic or command. When you have found the entry you want, the right
column of that line lists the name of the manual page on which information
corresponding to that keyword may be found. The left column contains the
remainder of the permutation that began in the middle column.

How to Get Started

This discussion provides the basic information you need to get started on the
UNIX system: how to log in and log out, how to communicate through your ter­
minal, and how to run a program. (See the User's Guide for a more complete
introduction to the system.)

Logging In

You must connect to the UNIX system from a full-duplex ASCII terminal. You
must also have a valid login ID, which may be obtained (together with how to
access your UNIX system) from the administrator of your system. Common ter­
minal speeds are 30, 120, 240, 480, 960, 1920, and 3840 characters per second
(300, 1200, 2400, 4800, 9600, 19200, and 38400 baud). Some UNIX systems have
different ways of accessing each available terminal speed, while other systems
offer several speeds through a common access method. In the latter case, there

4 User's Reference Manual

Introduction

is one "preferred" speed; if you access it from a terminal set to a different
speed, you will be greeted by a string of meaningless characters. Keep hitting
the BREAK, INTERRUPT, or ATTENTION key until the login: prompt appears.

Most terminals have a speed switch that should be set to the appropriate speed
and a half-Jfull-duplex switch that should be set to full-duplex. When a con­
nection has been established, the system types login:. You respond by typing
your login ID followed by the RETURN key. If you have a password, the system
asks for it but will not print, or "echo," it on the terminal. After you have
logged in, the RETURN, NEW-LINE, and LINE-FEED keys all have equivalent
meanings.

Make sure you type your login name in lowercase letters. Typing uppercase
letters causes the UNIX system to assume that your terminal can generate only
uppercase letters, and it will treat all letters as uppercase for the remainder of
your login session. The shell will print a $ on your screen when you have
logged in successfully.

When you log in, a message-of-the-day may greet you before you receive your
prompt. For more information, consult login(1), which discusses the login
sequence in more detail, and stty(1), which tells you how to describe your ter­
minal to the system. profile(4) (in the System Administrator's Reference Manual)
explains how to accomplish this last task automatically every time you log in.

Logging Out

There are two ways to log out:

• If you've dialed in, you can simply hang up the phone .

• You can log out by typing an end-of-file indication (ASCII EOT character,
usually typed as CTRL-d) to the shell. The shell will terminate, and the
login: message will appear again.

How to Communicate Through Your Terminal

When you type to the UNIX system, your individual characters are being gath­
ered and temporarily saved. Although they are echoed back to you, these char­
acters will not be given to a program until you type a RETURN (or NEW-LINE)
as described above in "Logging In.''

Introduction 5

Introduction

UNIX system terminal input/output is full duplex. It has full read-ahead, which
means that you can type at any time, even while a program is typing at you.
Of course, if you type during output, your input characters will have output
characters interspersed among them. In any case, whatever you type will be
saved and interpreted in the correct sequence. There is a limit to the amount of
read-ahead, but it is not likely to be exceeded.

The character @ cancels all the characters typed before it on a line, effectively
deleting the line. (@ is called the "line kill" character.) The character # erases
the last character typed. Successive uses of # will erase characters back to, but
not beyond, the beginning of the line; @ and * can be typed as themselves by
preceding them with \ (thus, to erase a \, you need two Is). These default
erase and line kill characters can be changed; see stty(1).

CTRL-s (also known as the ASCII DC3 character) is typed by pressing the CON­
TROL key and the alphabetic s simultaneously; it is used to stop output tem­
porarily. It is useful with CRT terminals to prevent output from disappearing
before it can be read. Output is resumed when a CfRL-q (also known as DCI) is
typed. Thus, if you had typed cat yourfile and the contents of yourfile were
passing by on the screen more rapidly than you could read it, you would type
CfRL-s to freeze the output. Typing CfRL-q would allow the output to resume.
The CfRL-s and CfRL-q characters are not passed to any other program when
used in this manner.

The ASCII DEL (also called "rubout") character is not passed to programs but
instead generates an interrupt signal, just like the BREAK, INTERRUPT, or
ATTENTION signal. This signal generally causes whatever program you are run­
ning to terminate. It is typically used to stop a long printout that you do not
want. Programs, however, can arrange either to ignore this signal altogether or
to be notified and take a specific action when it happens (instead of being ter­
minated). The editor ed(1), for example, catches interrupts and stops what it is
doing, instead of terminating, so an interrupt can be used to halt an editor prin­
tout without losing the file being edited.

Besides adapting to the speed of the terminal, the UNIX system tries to be intelli­
gent as to whether you have a terminal with the NEW-LINE function, or whether
it must be simulated with a CARRIAGE-RETURN and LINE-FEED pair. In the
latter case, all input CARRIAGE-RETURN characters are changed to LINE-FEED
characters (the standard line delimiter), and a CARRIAGE-RETURN and LINE­
FEED pair is echoed to the terminal. If you get into the wrong mode, the
stty(1) command will rescue you.

6 User's Reference Manual

Introduction

Tab characters are used freely in UNIX system source programs. If your termi­
nal does not have the tab function, you can arrange to have tab characters
changed into spaces during output, and echoed as spaces during input. Again,
the stty(1) command will set or reset this mode. The system assumes that tabs
are set every eight character positions. The tabs(l) command will set tab stops
on your terminal, if that is possible.

How to Run a Program

When you have successfully logged into the UNIX system, a program called the
shell is communicating with your terminal. The shell reads each line you type,
splits the line into a command name and its arguments, and executes the com­
mand. A command is simply an executable program. Normally, the shell looks
first in your current directory (see "The Current Directory" below) for the
named program and, if none is there, then in system directories, such as
/usr/bin and /usr/usr/bin. There is nothing special about system-provided
commands except that they are kept in directories where the shell can find
them. You can also keep commands in your own directories and instruct the
shell to find them there. See the manual entry for sh(1), under the sub-heading
"Parameter Substitution," for the discussion of the PATH shell environmental
variable.

The command name is the first word on an input line to the shell; the command
and its arguments are separated from one another by space or tab characters.

When a program terminates, the shell will ordinarily regain control and give
you back your prompt to indicate that it is ready for another command. The
shell has many other capabilities, which are described in detail in sh(1).

The Current Directory

The UNIX system has a file system arranged in a hierarchy of directories. When
you received your login 10, the system administrator also created a directory for
you (ordinarily with the same name as your login 10, and known as your login
or home directory). When you log in, that directory becomes your current or
working directory, and any file name you type is, by default, assumed to be in
that directory. Because you are the owner of this directory, you have full per­
missions to read, write, alter, or remove its contents. Permissions to enter or

Introduction 7

Introduction

modify other directories and files will have been granted or denied to you by
their respective owners or by the system administrator. To change the current
directory, use cd(1).

Path names

To refer to files or directories not in the current directory, you must use a path­
name. Full pathnames begin with I, which is the name of the root directory of
the whole file system. After the slash comes the name of each directory contain­
ing the next subdirectory (followed by a I), until finally the file or directory
name is reached (for example, lusr/ae/filex refers to file filex in directory
ae, while ae is itself a subdirectory of usr, and usr is a subdirectory of the root
directory). Use pwd(1) to print the full pathname of the directory you are work­
ing in. See intro(2) in the Programmer's Reference Manual for a formal definition
of pathname.

If your current directory contains subdirectories, the pathnames of their respec­
tive files begin with the name of the corresponding subdirectory (without a
prefixed /). A pathname may be used anywhere a file name is required.

Important commands that affect files are cp(1), mv, and rm(l), which respectively
copy, move (that is, rename), and remove files. To find out the status of files or
directories, use 1s(1). Use mkdir(l) for making directories and rmdir (see
rm(l)) for removing them.

Text Entry and Display

Almost all text is entered through an editor. Common examples of UNIX system
editors are ed(1) and vi(1). The commands most often used to print text on a
terminal are cat(1), pr(1), and pg(1). The cat command displays the contents
of ASCII text files on the terminal, with no processing at all. The pr command
paginates the text, supplies headings, and has a facility for multi-column output.
The pg command displays text in successive portions no larger than your termi­
nal screen.

8 User's Reference Manual

Introduction

Writing a Program

Once you have entered the text of your program into a file with an editor, you
are ready to give the file to the appropriate language processor. The processor
will accept only files observing the correct naming conventions: all C programs
must end with the suffix . c, and Fortran programs must end with . f. The out­
put of the language processor will be left in a file named a. out in the current
directory, unless you have invoked an option to save it in another file. (Use mv
to rename a. out.) If the program is written in assembly language, you will
probably need to load library subroutines with it (see Id(1) in the Programmer's
Reference Manual).

When you have completed this process without provoking any diagnostics, you
may run the program by giving its name to the shell in response to the $
prompt. Your programs can receive arguments from the command line just as
system programs do; see exec(2) in the Programmer's Reference Manual. For
more information on writing and running" programs, see the Programmer's Guide.

Communicating with Others

Certain commands provide inter-user communication. Even if you do not plan
to use them, it's helpful to learn something about them because someone else
may try to contact you. mail(1) or mailx(l) will leave a message whose pres­
ence will be announced to another user when he or she next logs in and at
periodic intervals during the session. To communicate with another user
currently logged in, use write(1). The corresponding entries in this manual
also suggest how to respond to these two commands if you are their target.

See the tutorials in Chapters 11 and 12 of the User's Guide for more information
on communicating with others.

Introduction 9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I

I

I
I
I
I

Table of Contents

1. Commands

intro(1) ... introduction to commands and application programs
acctcom(l) ... search and print process accounting file(s)
ar(l) ... maintain portable archive or library
at, batch(l) ... execute commands at a later time
atq(1) .. display the jobs queued to run at specified times
atrm(1) ... remove jobs spooled by at or batch
awk(1) .. pattern scanning and processing language
banner(1) .. make posters
basename, dirname(l)•............................. deliver portions of path names
bc (1) ... arbitrary-precision arithmetic language
bdiff(1) .. big diff
bfs(1) .. big file scanner
cal(1) .. print calendar
calendar(1) ... reminder service
cat(1) .. concatenate and print files
cd(1) .. change working directory
chgrp(1) .. change the group ownership of a file
chmod (1) change file mode
chown(1) .. change file owner
clear (1) ... '" clear the terminal screen
cmp(1) ... compare two files
col(1) .. filter reverse line-feeds
comm(1) .. select or reject lines common to two sorted files
compress, uncompress, zcat(1) compress, expand or display expanded files
cp(1) ... copy files
cpio(1) .. copy file archives in and out
crontab(1) .. user crontab file
crypt(1) ... encode/decode
csh(1) .. shell command interpreter with a C-like syntax
csplit(1)•.. context split
ct(1C) ... spawn login to a remote terminal
ctags(1) ... create a tags file for use with vi
cu(1C) ... call another UNIX system
cut(1) ... cut out selected fields of each line of a file
date(1) .. print and set the date
dc(1) ... desk calculator
dd(1M) .. convert and copy a file
deroff(1) ... remove nroff/troff, tbl, and eqn constructs

Table of Contents 1

Table of Contents

df (generic)(lM) .. report number of free disk blocks and files
diff(1) .. differential file comparator
diff3(1) .. 3-way differential file comparison
dircmp(1) ... directory comparison
download(1) ... host resident PostScript font downloader
dpost(1) .. troff postprocessor for PostScript printers
dsconfig(1) .. display data storage device configuration
du(1M) .. summarize disk usage
echo(1) .. echo arguments
ed, red (1) ... text editor
edit(1) .. text editor (variant of ex for casual users)
egrep(1) .. search a file for a pattern using full regular expressions
enable, disable(l) ... enable/disable LP printers
env(1) .. set environment for command execution
ex(1) ... text editor
expr(1) ... evaluate arguments as an expression
exstr(1) .. extract strings from source files
face(1) executable for the Framed Access Command Environment Interface
factor(1) .. obtain the prime factors of a number
fgrep(1) ... search a file for a character string
file(1) ... determine file type
find(1) ... find files
finger (1) ... display information about local and remote users
fmli(1) .. invoke FMLI
fmt(1) ... simple text formatters
fmtmsg(1) .. display a message on stderr or system console
fold(1) ... fold long lines
ftp(1) .. file transfer program
gcore(1) ... get core images of running processes
gencat(1) .. generate a formatted message catalogue
getopt(1) .. parse command options
getopts, getoptcvt(l) .. parse command options
gettxt(1) ... retrieve a text string from a message data base
grep(1) ... search a file for a pattern
groups(1) .. print group membership of user
head(1) .. display first few lines of files
iconv(1) .. code set conversion utility
id(1M) ... print the user name and ID, and group name and ID
ipcrm(1) remove a message queue, semaphore set, or shared memory ID
ipcs(1) ... report inter-process communication facilities status

2 User's Reference Manual

Table of Contents

ismpx(1) ... return windowing terminal state
join(l) .. relational database operator
jterm(1) .. reset layer of windowing terminal
jwin(1) ... print size of layer
kill(1) .. terminate a process by default
ksh, rksh(1) KornShell, a standard/restricted command and programming language
last(1) ... indicate last user or terminallogins
layers(1) ... layer multiplexor for windowing terminals
line(1) .. read one line
listusers(1) ... list user login information
In(1) ... link files
login(1) .. sign on
logname(1) .. get login name
Ip, cancel(1) ... send/cancel requests to an LP print service
Ipstat(1) ... print information about the status of the LP print service
Is(1) .. list contents of directory
machid: pdpll, u3b, u3b2, u3bS, u3blS, vax, u370(1) get processor type truth value
mail, rmail(1) ... read mail or send mail to users
mailalias(1) ... translate mail alias names
mailx(1) .. interactive message processing system
makekey(1) generate encryption key
mesg(1) permit or deny messages
mkdir(1) .. make directories
mkmsgs(1) .. create message files for use by gettxt
more, page(1) ... browse or page through a text file
mv(1) .. move files
nawk(1) .. pattern scanning and processing language
newform(1) ... change the format of a text file
newgrp(1M) .. log in to a new group
news(1) ... print news items
nice(1) ... run a command at low priority
nl(1) .. line numbering filter
nohup(1) ... run a command immune to hangups and quits
notify(1) ... notify user of the arrival of new mail
od(l) ... octal dump
pack, pcat, unpack(1) .. compress and expand files
passwd(1) ... change login password and password attributes
paste(1) merge same lines of several files or subsequent lines of one file
pg(1) ... file perusal filter for CRTs
postdaisy(1) .. PostScript translator for Diablo 630 files

Table of Contents 3

Table of Contents

postdmd(1) ... PostScript translator for DMD bitmap files
postio(1) ... serial interface for PostScript printers
postmd(1) .. matrix display program for PostScript printers
postplot(1) .. PostScript translator for plot(4) graphics files
postprint(1) ... PostScript translator for text files
postreverse(1) .. reverse the page order in a PostScript file
posttek(1) .. PostScript translator for tektronix 4014 files
pr(1) ... print files
printf(l) ... print formatted output
priocntl(1) ... process scheduler control
ps(1) ... report process status
pwd(1) ... working directory name
relogin(1M) ... rename login entry to show current layer
rcp(1) ... remote file copy
rlogin(1) ... remote login
rm, rmdir(1) .. remove files or directories
rsh(1) ... remote shell
ruptime(1) .. show host status of local machines
rwho(1) ... who's logged in on local machines
sag(1) .. system activity graph
sar(1) ... system activity reporter
script(1) .. make typescript of a terminal session
sdiff(1) .. print file differences side-by-side
sed(1) .. stream editor
sh, jsh, rsh(1) shell, the standard, job control, and restricted command interpreter
shl(1) .. shell layer manager
sleep(1) .. suspend execution for an interval
sort (1) .. sort and/or merge files
spell, hashmake, spellin, hashcheck(1) find spelling errors
split(1) .. split a file into pieces
srchtxt(1) display contents of, or search for a text string in, message data bases
strchg, strconf(1) .. change or query stream configuration
strings(1) ... find printable strings in an object file or binary
stty(1) .. set the options for a terminal
su(1M) .. become super-user or another user
sum(1) ... print checksum and block count of a file
sync(1M) ... update the super block
tabs(1) .. set tabs on a terminal
tail(l) ... deliver the last part of a file
talk(l) .. talk to another user

4 User's Reference Manual

Table of Contents

tar(1) ... tape file archiver
tee(1) ... pipe fitting
telnet(1) user interface to a remote system using the TELNET protocol
test (1) ... condition evaluation command
tftp(1) ... trivial file transfer program
time(1) .. time a command
timex(1) .. time a command; report process data and system activity
touch(1) ... update access and modification times of a file
tput(1) ... initialize a terminal or query terminfo database
tr(1) ... translate characters
true, false(1) .. provide truth values
truss(1) ... trace system calls and signals
tty(1) .. get the name of the terminal
umask(l) ... set file-creation mode mask
uname(1) ... print name of current UNIX system
uniq(1) .. report repeated lines in a file
units(1) ... conversion program
uucp, uulog, uuname(1C) ... UNIX-to-UNIX system copy
uuencode, uudecode(1C) encode a binary file, or decode its ASCII representation
uuglist(1C) print the list of service grades that are available on this UNIX system
uustat(lC) ... uucp status inquiry and job control
uuto, uupick(1C) .. public UNIX-to-UNIX system file copy
uux(1C) ... UNIX-to-UNIX system command execution
vacation(1) ... automatically respond to incoming mail messages
vi(l) ... screen-oriented (visual) display editor based on ex
wait(1) .. await completion of process
wc(1) .. word count
who(1) .. who is on the system
whois(1) ... Internet user name directory service
write(1) ... write to another user
xargs(1) .. construct argument listes) and execute command

Table of Contents 5

Permuted Index

diff3
PostScript translator for tektronix

PostScript translator for Diablo
file touch update

face executable for the Framed
acctcom search and print process

accounting file(s)
sag system
sar system

report process data and system
mailalias translate mail

sort sort
intro introduction to commands and

library
language be

ar maintain portable
tar tape file

cpio copy file
command xargs construct

expr evaluate
echo echo

be arbitrary-precision
notify notify user of the

encode a binary file, or decode its
later time

at specified times
batch

change login password and password
mail messages vacation

/ the list of service grades that are
wait

language

a text string from a message data
(visual) display editor

of path names
for a text string in, message data

atrm remove jobs spooled by at or
. time at,

language

su

bdiff
bfs

uuencode, uudecode encode a
strings in an object file or

Permuted Index

3-way differential file comparison diff3(1)
4014 files posttek ... posttek(1)
630 files postdaisy ... postdaisy(1)
access and modification times of a touch(1)
Acoess Command Environment! .. face(1)
accounting file(s) ... acctcom(1)
acctcom search and print process acctcom(1)
activity graph ... sag(1)
activity reporter .. sar(1)
activity timex time a command; .. timex(1)
alias names .. mailalias(1)
and/or merge files ... sort(1)
application programs ... intro(1)
ar maintain portable archive or ... ar(1)
arbitrary-precision arithmetic .. bc(1)
archive or library ... ar(1)
archiver ... tar(l)
archiv~ in and out .. cpio(1)
argument list(s) and execute .. xargs(1)
arguments as an expression .. expr(1)
arguments ... echo(1)
arithmetic language ... be(1)
arrival of new mail ... notify(1)
ASCII representation /uudecode uuencode(1C)
at, batch execute commands at a ... at(1)
atq display the jobs queued to run ... atq(1)
atrm remove jobs spooled by at or atrm(1)
attributes passwd .. yasswd(l)
automatically respond to incoming vacation(1)
available on this UNIX system uuglist(1C)
await completion of process .. wait(1)
awk pattern scanning and processing awk(1)
banner make posters ... banner(1)
base gettxt retrieve gettxt(1)
based on ex vi screen-oriented ... vi(1)
basename, dirname deliver portions basename(1)
bases /contents of, or search ... srchtxt(1)
batch .. atrm(1)
batch execute commands at a later ... at(1)
be arbitrary-precision arithmetic ... bc(1)
bdiff big diff bdiff(1)
become super-user or another user su(1M)
bfs big file scanner bfs(1)
big diff bdiff(1)
big file scanner bfs(1)
binary file, or decode its ASCII/ uuencode(1 C)
binary strings find prin table strings(1)

1

Permuted Index

PostScript translator for DMD
sum print checksum and

sync: update the super
report number of free disk

more, page

dc desk
cal print

cu
truss trace system

LP print service Ip,
edit text editor (variant of ex for

gencat generate a formatted message

2

chmod
chown

attributes passwd
configuration strchg, strconf

newform
file chgrp

cd
fgrep search a file for a

tr translate
sum print

a file

clear
shell command interpreter with a

to two sorted files
/KornShell, a standard/restricted

nice run a
executable for the Framed Access

env set environment for
uux UNIX-ta-UNIX system

nohup run a
job control, and restricted

syntax csh shell
getopt parse

getopts, getoptcvt parse
system activity timex time a

test condition evaluation

bitmap files postdmd .. postdmd(1)
block count of a file ... sum(1)
block ... sync(1M)
blocks and files df (generic) df(1M)
browse or page through a text file moreO)
cal print calendar .. cal(1)
calculator dc(1)
calendar cal (1)
calendar reminder service ... calendar(1)
call another UNIX system ... cu(1 q
calls and signals .. truss(1)
cancel send/cancel requests to an .. Ip(1)
casual users) .. edit(1)
cat concatenate and print files ... cat(1)
catalogue .. gencat(1)
cd change working directory .. cd(1)
change file mode ... chmod(1)
change file owner .. chown(1)
change login password and password passwd(1)
change or query stream ... strchg(1)
change the format of a text file newform(1)
change the group ownership of a chgrp(1)
change working directory .. cd(1)
character string fgrep(1)
characters tr(1)
checksum and block count of a file sum(1)
chgrp change the group ownership of chgrp(1)
chmod change file mode .. chmod(1)
chown change file owner ... chown(1)
clear clear the terminal screen .. clear(1)
clear the terminal screen .. clear(1)
C-like syntax csh .. csh(1)
cmp compare two files .. cmp(1)
col filter reverse line-feeds .. col(1)
comm select or reject lines common comm(1)
command and programming language ksh(1)
command at low priority .. nice(1)
Command Environment Interface face face(1)
command execution .. env(1)
command execution : uux(1C)
command immune to hangups and quits nohup(1)
command interpreter /the standard, sh(1)
command interpreter with a Clike .. csh(1)
command options ... getopt(1)
command options ... getopts(1)
command; report process data and timex(1)
command .. test(1)

User's Reference Manual

time time a
argument list(s) and execute

intro introduction to
at, batch execute

comm select or reject lines
ipcs report inter-process

diff differential file
emp

diff33-way differential file
diremp directory

wait await
pack, peat, unpack

compress, uncompress, zcat
compress, expand or display /

cat
test

display data storage device
strconf change or query stream
a message on stderr or system

execute command xargs
remove nroffjtroff, tbl, and eqn

Is list
string in, message/ srchtxt display

csplit
/jsh, rsh shell, the standard, job

priocntl process scheduler
uustat uucp status inquiry and job

units
iconv code set

dd
dd convert and

cpio
cp

rcp remote file
uulog, uuname UNIX-to-UNIX system

public UNIX-to-UNIX system file
gcore get

sum print checksum and block
wcword

ctags
gettxt mkmsgs

crontab user

pg file perusal filter for

Permuted Index

Permuted Index

command ... time(1)
command xargs construct ... xargs(1)
commands and application programs intro(1)
commands at a later time ... at(1)
common to two sorted files .. comm(1)
communication facilities status .. ipcs(1)
comparator ... diff(1)
compare two files ... emp(1)
comparison ... diff3(1)
comparison ... diremp(1)
completion of process ... wait(1)
compress and expand files .. pack(1)
compress, expand or display / compress(1)
compress, uncompress, zcat .. compress(1)
concatenate and print files .. cat(1)
condition evaluation command .. test(1)
configuration dsconfig ... dsconfig(1)
configuration strchg, strchg(1)
console fmtmsg display ... fmtmsg(1)
construct argument list(s) and ... xargs(1)
constructs deroff .. deroff(1)
contents of directory.. Is(1)
contents of, or search for a text .. srchtxt(1)
context split ... csplit(1)
control, and restricted command/ ... sh(1)
control .. priocntl(1)
control..................................... uustat(1 q
conversion program ... units(1)
conversion utility ... iconv(1)
convert and copy a file .. dd(1M)
copy a file ... dd(1M)
copy file archives in and out ... cpio(1)
copy files ... cp(1)
copy .. rcp(1)
copy uucp, uucp(1 C)
copy uuto, uupick uuto(1 q
core images of running processes gcore(1)
count of a file .. sum(1)
count ... wc(1)
cp copy files ... cp(1)
cpio copy file archives in and out ... cpio(l)
create a tags file for use with vi .. ctags(1)
create message files for use by mkmsgs(1)
crontab file cron tab(1)
crontab user crontab file ... crontab(1)
CRTs .. pg(1)
crypt encode/decode ... crypt(1)

3

Permuted Index

a C-like syntax

with vi

re10gin rename login entry to show
uname print name of

line of a file
line of a file cut

time a command; report process
a text string from a message
for a text string in, message

dsconfig display
join relational

a terminal or query terminfo
date print and set the

4

/uudecode encode a binary file, or
kill terminate a process by

basename, dirname
tail

mesg permit or
eqn constructs

dc
file

dsconfig display data storage
disk blocks and files

postdaisy PostScript translator for
bdiffbig

comparison
sdiff print file

diff
diff3 3-way

mkdirmake
rm, rmdir remove files or

cd change working
dircmp

Is list contents of
pwd working

whois Internet user name
nameS basename,

enable,
df (generic) report number of free

csh shell command interpreter with csh(l)
csplit context split .. csplit(1)
ct spawn login to a remote terminal ct(lq
ctags create a tags file for use .. ctags(1)
cu can another UNIX system ... cu(1 q
current layer ... re1ogin(1M)
current UNIX system .. uname(1)
cut cut out selected fields of each ... cut(1)
cut out selected fields of each .. cut(l)
data and system activity timex .. timex(1)
data base gettxt retrieve ... gettxt(l)
data bases / contents of, or search srchtxt(1)
data storage device configuration dsconfig(l)
database operator .. join(1)
database tput initialize ... tput(l)
date ... date(1)
date print and set the date ... date(1)
dc desk calculator .. dc(1)
dd convert and copy a file .. dd(1M)
decode its ASOI representation uuencode(1 q
default .. kill(1)
deliver portions of path names basename(1)
deliver the last part of a file .. tail(1)
deny messages .. mesg(l)
deroff remove nroff/troff, tbl, and deroff(1)
desk calculator ... dc(l)
determine file type ... file(1)
device configuration .. dsconfig(l)
df (generic) report number of free .. df(1M)
Diablo 630 files ... postdaisy(1)
diff .. bdiff(1)
diff differential file comparator .. diff(l)
diff3 3-way differential file .. diff3(1)
differences side-by-side .. sdiff(1)
differential file comparator .. diff(1)
differential file comparison .. diff3(1)
dircmp directory comparison ... dircmp(1)
directories ... mkdir(1)
directories .. rm(1)
directory .. cd(l)
directory comparison ... dircmp(1)
directory ... 1s(1)
directory name ... pwd(1)
directory service .. whois(1)
dirname deliver portions of path basename(1)
disable enable/disable LP printers enable(1)
disk blocks and files .. df(1M)

User's Reference Manual

du summarize
system console fmtmsg

a text string in, message/ srchtxt
configuration dsconfig

vi screen-oriented (visual)
zcat compress, expand or

head
remote users finger

printers postmd matrix
specified times atq

postdmd PostScript translator for
font downloader

host resident PostScript font
PostScript printers

device configuration

od octal
echo

casual users)
vi screen-oriented (visual) display

ed, red text
ex text

sed stream
users) edit text

using full regular expressions
printers

enable, disable
ASCII/ uuencode, uudecode

crypt
makekey generate

relogin rename login
execution

env set
for the Framed Access Command

deroff remove nroffjtroff, tbl, and
spellin, hash check find spelling

expr
test condition

edit text editor (variant of

(visual) display editor based on
Command Environment Interface face

construct argument list(s) and
at, batch

env set environment for command

Permuted Index

Permuted Index

disk usage .. du(1M)
display a message on stderr or fmtmsg(1)
display contents of, or search for srchtxt(1)
display data storage device .. dsconfig(1)
display editor based on ex ... vi(1)
display expanded files /uncompress, comprE/ss(1)
display first few lines of rues ... head(1)
display information about local and finger(1)
display program for PostScript postmd(1)
display the jobs queued to run at ... atq(1)
DMD bitmap files .. postdmd(l)
download host resident PostScript download(1)
downloader download .. download(1)
dpost troff postprocessor for ... dpost(1)
dsconfig display data storage .. dsconfig(1)
du summarize disk usage ... du(1M)
dump ... od(1)
echo arguments .. echo(1)
echo echo arguments .. echo(1)
ed, red text editor ... ed(1)
edit text editor (variant of ex for ... edit(1)
editor based on ex .. vi(1)
editor ... ed(1)
editor ..•..................... ex(1)
editor .. sed(1)
editor (variant of ex for casual ... edit(1)
egrep search a rue for a pattern .. egrep(1)
enable, disable enable/disable LP enable(1)
enable/disable LP printers ... enable(1)
encode a binary file, or decode its uuencode(1C)
encode/decode ... crypt(1)
encryption key ... makekey(1)
entry to show current layer ... relogin(1M)
env set environment for command .. env(1)
environment for command execution env(1)
Environment Interface /executable face(1)
eqn constructs .. deroff(1)
errors spell, hashmake, ... spell(1)
evaluate arguments as an expression expr(1)
evaluation command .. test(1)
ex for casual users) ... edit(1)
ex text editor .. ex(1)
ex vi screen-oriented .. vi(1)
executable for the Framed Access ... face(1)
execute command xargs .. xargs(1)
execute commands at a later time ... at(1)
execution ... env(1)

5

Permuted Index

sleep suspend
uux UNIX-to-UNIX system command

pack, peat, unpack compress and
/uncompress, zcat compress,

zcat compress, expand or display
expression

expr evaluate arguments as an
for a pattern using full regular

files
exstr

Access Command Environment/
report inter-process communication

a number
factor obtain the prime

true,
head display first

string
cut cut out selected

tar tape
epio copy

change the group ownership of a
diff differential

diff3 3-way differential
rcpremote

uupick public UNIX-to-UNIX system
crontab user crontab

selected fields of each line of a
dd convert and copy a

sdiffprint
fgrep search a
grep search a

regular expressions egrep search a
ctags create a tags

split split a
chmod change

page browse or page through a text
newform change the format of a text

find printable strings in an object
uuencode, uudecode encode a binary

chown change
files or subsequent lines of one

pg
the page order in a PostScript

bfs big
print checksum and block count of a

tail deliver the last part of a

6

execution for an interval ... sleep(1)
execution ... uux(1C)
expand files .. pack(l)
expand or display expanded files compress(1)
expanded files /uncompress, compress(l)
expr evaluate arguments as an ; expr(l)
expression ... expr(1)
expressions egrep search a file .. egrep(l)
exstr extract strings from source .. exstr(l)
extract strings from source files ... exstr(l)
face executable for the Framed .. face(l)
facilities status ipcs ipcs(1)
factor obtain the prime factors of factor(1)
factors of a number ... factor(l)
false provide truth values ... true(l)
few lines of files .. head(l)
fgrep search a file for a character fgrep(1)
fields of each line of a file cut(1)
file archiver .. tar(1)
file archives in and out ... cpio(1)
file chgrp ... chgrp(1)
file comparator ... diff(1)
file comparison .. diff3(l)
file copy ... rep(1)
file copy uuto, .. uuto(10
file ... crontab(1)
file cut cut out ... cut(l)
file .. dd(1M)
file determine file type .. file(1)
file differences side-by-side ... sdiff(l)
file for a character string .. fgrep(1)
file for a pattern ... grep(l)
file for a pattern using full .. egrep(l)
file for use with vi .. ctags(l)
file into pieces ... split(1)
file mode ... chmod(1)
file more, ... more(1)
file ... newform(1)
file or binary strings .. strings(1)
file, or decode its ASCll/ ... uuencode(1 q
file owner .. chown(l)
file /merge same lines of several paste(1)
file perusal filter for CRTs .. pg(1)
file postreverse reverse ... postreverse(1)
file scanner ... bfs(1)
file sum ... sum(1)
file tail (1)

User's Reference Manual

access and modifieation times of a
ftp

tftp trivial
file determine

uniq report repeated lines in a
umask set

search and print process accounting
eat concatenate and print

emp compare two
reject lines common to two sorted

expand or display expanded
cp copy

number of free disk blocks and
exstr extract strings from source

find find
mkmsgs create message

head display first few lines of
In link

mvmove
rm, rmdir remove

paste merge same lines of several
peat, unpack compress and expand

translator for Diablo 630
translator for DMD bitmap

translator for plot(4) graphics
PostScript translator for text
translator for tektronix 4014

pr print
sort sort and/or merge

pg file perusal
nlline numbering

col
find

file or binary strings
spell, hashmake, spellin, hashcheck

local and remote users
tee pipe

fmli invoke

or system console

fold
download host resident PostScript

newform change the
geneat generate a

Permuted Index

Permuted Index

file touch update .. touch(1)
file transfer program .. ftp(1)
file transfer program ... tftp(1)
file type file(1)
file ... uniq(1)
file-creation mode mask ... umask(1)
file(s) acctcom ... acctcom(1)
files .. cat(1)
files ... emp(1)
files comm select or .. comm(1)
files /uncompress, zeat compress, compress(1)
files ... cp(1)
files df (generic) report .. df(1M)
files .. exstr(1)
files .. find(1)
files for use by gettxt ... mkmsgs(1)
files .. head(1)
files .. In(1)
files ... mv(1)
files or directories rm (1)
files or subsequent lines of one/ ... paste(1)
files pack, pack(1)
files postdaisy PostScript ... postdaisy(1)
files postdmd PostScript ... postdmd(1)
files postplot PostScript postplot(1)
files postprint .. postprint(1)
files posttek PostScript ... posttek(1)
files ... pr(l)
files sort(1)
filter for CRTs .. pg(1)
filter nl(1)
filter reverse line-feeds colO)
find files ... find(1)
find find files ... find(1)
find printable strings in an object strings(1)
find spelling errors ... spell(1)
finger display information about finger(1)
fitting tee(1)
FMLI ... fmH(1)
fmli invoke FMLI ... fmH(1)
fmt simple text formatters ... fmt(1)
fmtmsg display a message on stderr fmtmsg(1)
fold fold long lines ... fold(1)
fold long lines ... fold(1)
font downloader .. download(1)
format of a text file ... newform(1)
formatted message catalogue ... gencat(1)

7

Permuted Index

printf print
fmt simple text

Interface face executable for the
df (generic) report number of

search a file for a pattern using
processes
catalogue

catalogue gencat
makekey

disk blocks and files df

getopts,
options

create message files for use by
a message data base

uuglist print the list of service
sag system activity

PostScript translator for plot(4)

groups print
id print the user name and 10, and

newgrp log in to a new
chgrp change the

user
nohup run a command immune to

spell, hashmake, spellin,
spelling errors spell,

files
downloader download

ruptime show

id print the user name and
name and 10, and group name and

semaphore set, or shared memory
group name and 10

gcore get core
nohup run a command

of, or search for a text string
vacation automatically respond to

logins last
users finger display

LP print service lpstat print
listusers lis t user login

terminfo database tput
uustat uucp status

system mailx

8

formatted output ... printf(l)
formatters .. fmt(l)
Framed Access Command Environment face(l)
free disk blocks and files .. df(lM)
ftp file transfer program .. ftp(l)
full regular expressions egrep ... egrep(l)
gcore get core images of running gcore(l)
gencat generate a formatted message gencat(l)
generate a formatted message ... gencat(l)
generate encryption key ... makekey(l)
(generic) report number of free ... df(lM)
getopt parse command options ... getopt(l)
getoptcvt parse command options getopts(l)
getopts, getoptcvt parse command getopts(l)
gettxt mkmsgs mkmsgs(l)
gettxt retrieve a text string from .. gettxt(l)
grades that are available on this/ uuglist(lC)
graph .. sag(l)
graphics files postplot postplot(l)
grep search a file for a pattern ... grep(l)
group membership of user .. groups(l)
group name and 10 id(lM)
group .. newgrp(lM)
group ownership of a file .. chgrp(1)
groups print group membership of groups(l)
hangups and quits ... nohup(1)
hashcheck find spelling errors .. spen(l)
hashmake, spellin, hashcheck find spen(l)
head display first few lines of .. head(1)
host resident PostScript font download(l)
host status of local machines .. ruptime(1)
iconv code set conversion utility .. iconv(1)
ID, and group name and ID .. id(lM)
10 id print the user .. id(lM)
10 ipcrm remove a message queue, ipcrm(l)
id print the user name and ID, and id(1M)
images of running processes ... gcore(1)
immune to hangups and quits .. nohup(1)
in, message data bases /contents srchtxt(l)
incoming mail messages .. vacation(1)
indicate last user or terminal .. last(1)
information about local and remote finger(1)
information about the status of the Ipstat(1)
information listusers(1)
initialize a terminal or query ... tput(1)
inquiry and job control ... uustat(1C)
interactive message processing ... mailx(1)

User's Reference Manual

Framed Access Command Environment
postioserial

the TELNET protocol teInet user
service whois

job control, and restricted command
csh shell command

facilities status ipcs report
sleep suspend execution for an

application programs
application programs intro

fmli
semaphore set, or shared memory ID

communication facilities status
state

news print news
sh, jsh, rsh shell, the stl!Ildard,
uustat uucp status inquiry and

times atq display the
atrm remove

control, and restricted/ sh,
terminal

makekey generate encryption

command and programming/ ksh, rksh
standard/restricted command and/

awk pattern scanning and processing
bc arbitrary-precision arithmetic

command and programming
pattern scanning and processing
at, batch execute commands at a

jwin print size of
shl shell

terminals layers
jterm reset

rename login entry to show current
windowing terminals

ar maintain portable archive or
line read one

nl
cut cut out selected fields of each

col filter reverse
comm select or reject

fold fold long
uniq report repeated

Permuted Index

Permuted Index

Interface face executable for the ... face(1)
interface for PostScript printers ... postio(1)
interface to a remote system using telnet(1)
Internet user name directory .. whois(1)
interpreter /shell, the standard, .. sh(1)
interpreter with a C-like syntax .. csh(1)
inter-process communication .. ipcs(1)
interval sleep(1)
intro introduction to commands and intro(1)
introduction to commands and .. intro(1)
invoke FML! .. frnli(1)
ipcrm remove a message queue, .. ipcrm(1)
ipcs report inter-process .. ipcs(1)
ismpx return windowing terminal ismpx(1)
items ... news(1)
job control, and restricted command/ sh(1)
job control ... uustat(10
jobs queued to run at specified ... atq(1)
jobs spooled by at or batch ... atrm(1)
join relational database operator .. join(1)
jsh, rsh shell, the standard, job ... sh(1)
jterm reset layer of windowing ... jterm(1)
jwin print size of layer .. jwin(1)
key .. makekey(l)
kill terminate a process by default ... kill(1)
KornShell, a standard/restricted .. ksh(I)
ksh, rksh KornShell, a .. ksh(I)
language awk(I)
language .. bc(I)
language /a standard/restricted .. ksh(I)
language nawk .. nawk(I)
later time .. at(1)
layer .. jwin(1)
layer manager ... shl(1)
layer multiplexor for windowing layers(1)
layer of windowing terminal ... jterm(1)
layer relogin .. relogin(1M)
layers layer multiplexor for .. layers(1)
library ... ar(l)
line ... line(1)
line numbering filter .. nl(l)
line of a file cut(I)
line read one line .. line(I)
line-feeds col(1)
lines common to two sorted files comm(I)
lines ... fold(1)
lines in a file uniq(1)

9

Permuted Index

head display first few
of several files or subsequent

subsequent lines/ paste merge same
In
Is

available on/ uuglist print the
listusers

xargs construct argument
information

finger display information about
ruptime show host status of

rwho who's logged in on
newgrp

rwho who's
relogin rename

listusers list user
logname get

attributes passwd change
rlogin remote

ct spawn
last indicate last user or terminal

nice run a command at
an LP print service

cancel send/cancel requests to an
information about the status of the

enable, disable enable/ disable
status of the LP print service

u3blS, vax, u370 get processor/
ruptime show host status of local

rwho who's logged in on local
mailalias translate

automatically respond to incoming
notify user of the arrival of new

mail, rmail read
to users

mail, rmail read mail or send
names

processing system
library ar

10

shl shell layer
umask set file-creation mode

PostScript printers postmd

lines of files .. head(1)
lines of one file /merge same lines paste(1)
lines of several files or .. paste(1)
link files In (1)
list contents of directory .. Is(1)
list of service grades that are ... uuglist(l q
list user login information ... listusers(1)
list(s) and execute command ... xargs(1)
listusers list user login ... listusers(1)
In link files In (1)
local and remote users ... finger(1)
local machines .. ruptime(1)
local machines ... rwho(1)
log in to a new group ... newgrp(1M)
logged in on local machines ... rwho(1)
login entry to show current layer relogin(1M)
login information .. listusers(1)
login name 10gname(1)
login password and password .. passwd(1)
login rlogin(1)
login sign on .. 10gin(1)
login to a remote terminal ... ct(1 q
logins last(1)
logname get login name ... 10gname(1)
low priority ... nice(1)
Ip, cancel send/cancel requests to .. Ip(1)
LP print service Ip, ... Ip(1)
LP print service Ipstat print ... Ipstat(1)
LP printers ... enable(1)
Ipstat print information about the Ipstat(1)
Is list contents of directory .. Is(1)
machid: pdpll, u3b, u3b2, u3bS, machid(1)
machines ... ruptime(1)
machines .. rwho(1)
mail alias names ... mailalias(l)
mail messages vacation .. vacation(1)
mail notify.. notify(1)
mail or send mail to users ... mail(1)
mail, rmail read mail or send mail mail(1)
mail to users ... mail(1)
mailalias translate mail alias .. mailalias(l)
mailx interactive message .. mailx(1)
maintain portable archive or ... ar(1)
makekey generate encryption key............................... makekey(1)
manager shl(1)
mask ... umask(1)
matrix display program for ... postmd(1)

User's Reference Manual

groups print group
queue, semaphore set, or shared

sort sort and/or
or subsequent lines of one/ paste

gencat generate a formatted
retrieve a text string from a

of, or search for a text string in,
mkmsgs create

fmtmsg display a
mailx interactive

shared memory ID ipcrm remove a
mesg permit or deny

respond to incoming mail

by gettxt
chmod change file

umask set file-creation
touch update access and

text file
mv

layers layer

id print the user
the user name and ID, and group

whois Internet user
logname get login

uname print
tty get the

pwd working directory
dirname deliver portions of path

mailalias translate mail alias
processing language

file

news print

hangups and quits
of new mail
mail notify

constructs deroff remove
obtain the prime factors of a

files df (generic) report
nlline

find printable strings in an

Permuted Index

Permuted Index

membership of user .. groups(1)
memory ID ipcrm remove a message ipcrm(1)
merge files , , '" sort(1)
merge same lines of several files ... paste(1)
mesg permit or deny messages ... mesg(1)
message catalogue ... gencat(1)
message data base gettxt .. gettxt(1)
message data bases /contents ... srchtxt(1)
message files for use by gettxt mkmsgs(1)
message on stderr or system console fmtmsg(1)
message processing system ... mailx(1)
message queue, semaphore set, or ipcrm(1)
messages .. mesg(1)
messages vacation automatically vacation(1)
mkdir make directories ... mkdir(1)
mkmsgs create message files for use mkmsgs(1)
mode .. chmod(1)
mode mask umask(1)
modification times of a file .. touch(1)
more, page browse or page through a more(1)
move files .. mv(l)
multiplexor for windowing terminals layers(1)
mv move files ... mv(1)
name and ID, and group name and ID id(1M)
name and ID id print ... id(1M)
name directory service ... whois(1)
name ... 10gname(1)
name of current UNIX system .. uname(1)
name of the terminal .. tty(1)
name .. pwd(1)
names basename, basename(1)
names ... mailalias(1)
nawk pattern scanning and ... nawk(1)
newform change the format of a text newform(1)
newgrp log in to a new group newgrp(1M)
news items ... news(1)
news print news items .. news(1)
nice run a command at low priority nice(1)
nlline numbering filter ... nl(l)
nohup run a command immune to nohup(1)
notify notify user of the arrival .. notify(1)
notify user of the arrival of new .. notify(1)
nroff/troff, tbl, and eqn ... deroff(1)
number factor ... factor(l)
number of free disk blocks and .. df(1M)
numbering filter ... nl(1)
object fIle or binary strings ... strings(l)

11

Permuted Index

number factor
od

message/ srchtxt display contents
join relational database

stty set the
getopt parse command

getopts, getoptcvt parse command
postreverse reverse the page

printf print formatted
chown change file

chgrp change the group
expand files

file more,
postreverse reverse the

more, page browse or
getopt

getopts, getoptcvt
tail deliver the last

password attributes
passwd change login

passwd change login password and
files or subsequent lines of one/

dirname deliver portions of
grep search a file for a

language awk
language nawk

egrep search a file for a
files pack,

u370 get processor type/ machid:
mesg

pg file

12

split split a file into
tee

postplot PostScript translator for
ar maintain

basename, dirname deliver
Diablo 630 files

DMD bitmap files
banner make

PostScript printers
PostScript printers

plot(4) graphics files
text files

printers dpost troff
in a PostScript file

obtain the prime factors of a ... factor(1)
octal dump ... od(1)
od octal dump ... od(1)
of, or search for a text string in, srchtxt(1)
operator .. jOin(1)
options for a terminal .. stty(1)
options•... getopt(1)
options .. getopts(l)
order in a PostScript file .. postreverse(1)
output .. printf(1)
owner ... chown(1)
ownership of a file .. chgrp(1)
pack, peat, unpack compress and .. pack(1)
page browse or page through a text more(1)
page order in a PostScript file postreverse(1)
page through a text file ... more(1)
parse command options .. getopt(1)
parse command options .. getopts(1)
part of a file tail(1)
passwd change login password and passwd(1)
password and password attributes passwd(1)
password attributes ... passwd(l)
paste merge same lines of several paste(1)
path names basename, ... basename(1)
pattern ... grep(1)
pattern scanning and processing '" awk(1)
pattern scanning and processing nawk(1)
pattern using full regular/ .. egrep(1)
peat, unpack compress and expand pack(1)
pdpll, u3b, u3b2, u3b5, u3b15, vax, machid(1)
permit or deny messages mesg(1)
perusal filter for CRTs ... pg(1)
pg file perusal filter for CRTs ... pg(1)
pieces .. split(1)
pipe fitting tee(1)
plot(4) graphics files ... postplot(1)
portable archive or library ... ar(1)
portions of path names ... basename(1)
postdaisy PostScript translator for postdaisy(1)
postdmd PostScript translator for postdmd(1)
posters ... banner(1)
postio serial interface for ... postio(1)
postmd matrix display program for postmd(1)
postplot PostScript translator for postplot(1)
postprint PostScript translator for postprint(1)
postprocessor for PostScript .. dpost(1)
postreverse reverse the page order postreverse(1)

User's Reference Manual

reverse the page order in a
download host resident

dpost troff postprocessor for
postio serial interface for

postmd matrix display program for
630 files postdaisy

bitmap files postdmd
graphics files postplot

4014 files posttek
files postprint

tektronix 4014 files

factor obtain the
date

cal
file sum

sdiff
cat concatenate and

pr
printf

groups
of the LP print service lpstat

uname
news

acctcom search and
send/cancel requests to an LP

about the status of the LP
jwin

that are available on this/ uugIist
group name and 10 id
or binary strings find

troff postprocessor for PostScript
enable, disable enable/disable LP

serial interface for PostScript
display program for PostScript

nice run a command at low
acctcom search and print

kill terminate a
timex time a command; report

priomtl
ps report

wait await completion of
gcore get core images of running

awk pattern scanning and
nawk pattern scanning and

Permuted Index

Permuted Index

PostScript file postreverse .. postreverse(1)
PostScript font downloader ... download(1)
PostScript printers ... dpost(1)
PostScript printers .. postio(1)
PostScript printers ... postmd(1)
PostScript translator for Diablo postdaisy(1)
PostScript translator for DMD postdmd(l)
PostScript translator for plot(4) postplot(l)
PostScript translator for tektronix posttek(1)
PostScript translator for text ... postprint(1)
posttek PostScript translator for posttek(1)
pr print files .. pr(1)
prime factors of a number ... factor(1)
print and set the date .. date(1)
print calendar .. : cal(l)
print checksum and block count of a sum(1)
print file differences side-by-side ... sdiff(1)
print files .. cat(1)
print files ... pr(1)
print formatted output ... printf(1)
print group membership of user groups(1)
print information about the status Ipstat(1)
print name of current UNIX system uname(1)
print news items ... news(1)
print process accounting file(s) acctcom(1)
print service lp, cancel ... Ip(1)
print service /print information .. Ipstat(1)
print size of layer ... jwin(1)
print the list of service grades uuglist(1 q
print the user name and 10, and .. id(1M)
printable strings in an object file strings (1)
printers dpost ... dpost(1)
printers ... enable(1)
printers postio .. postio(1)
printers postmd matrix .. postmd(1)
printf print formatted output .. printf(1)
priocntl process scheduler control priocntl(1)
priority ... nice(1)
process accounting file(s) ... acctcom(l)
process by default .. kill(1)
process data and system activity .. timex(1)
process scheduler control ... priocntl(1)
process status ... ps(1)
process ... wait(1)
processes .. gcore(1)
processing language .. awk(1)
processing language .. nawk(1)

13

Permuted Index

mailx interactive message
u3b2, u3bS, u3bIS, vax, u370 get

postmd matrix display
ftp file transfer

tftp trivial file transfer
units conversion

a standard/restricted command and
to commands and application

to a remote system using the TELNET
true, false

copy uuto, uupick

strchg, strconf change or
tput initialize a terminal or

memory ID ipcrm remove a message
atq display the jobs

run a command immune to hangups and

mail, rmail
line
ed,

a file for a pattern using full
files comm select or

join
current layer

calendar
rep

rlogin
rsh

telnet user interface to a
ct spawn login to a

display information about local and
set, or shared memory ID ipcrm

rm,rmdir
atrm

constructs deroff
layer relogin

uniq report
facilities status ipcs

and files df (generic)
activity timex time a command;

ps
uniq

sar system activity
a binary file, or decode its ASOI

lp, cancel send/cancel

14

processing system .. mailx(1)
processor type truth value /u3b, machid(1)
program for PostScript printers postmd(1)
program ftp(1)
program .. tftp(1)
program .. units(1)
programming language /KornShe11, ksh(1)
programs intro introduction .. intro(1)
protocol telnet user interface .. telnet(1)
provide truth values true(1)
ps report process status ... ps(1)
public UNIX-to-UNIX system file uuto(10
pwd working directory name ... pwd(1)
query stream configuration .. strchg(1)
query terminfo database ... tput(1)
queue, semaphore set, or shared .. ipcrm(1)
queued to run at specified times .. atq(1)
quits nohup .. nohup(1)
rep remote file copy .. rep(1)
read mail or send mail to users .. mail(1)
read one line .. line(1)
red text editor ed(1)
regular expressions egrep search egrep(1)
reject lines common to two sorted comm(1)
relational database operator .. jOin(1)
relogin rename login entry to show relogin(1M)
reminder service ... calendar(1)
remote fue copy ... rcp(1)
remote login ... rlogin(1)
remote shell ... rsh(l)
remote system using the TELNET/ telnet(1)
remote terminal....................... ct(10
remote users finger .. finger(1)
remove a message queue, semaphore ipcrm(1)
remove files or directories .. rm(1)
remove jobs spooled by at or batch atrm(1)
remove nroff/troff, tbl, and eqn .. deroff(1)
rename login entry to show current relogin(1M)
repeated lines in a file .. uniq(1)
report inter-process communication ipcs(1)
report number of free disk blocks .. df(1M)
report process data and system .. timex(1)
report process status ... ps(1)
report repeated lines in a file uniq(1)
reporter sar(1)
representation /uudecode encode uuencode(1C)
requests to an LP print service .. Ip(1)

User's Reference Manual

jterrn
download host

vacation automatically
/the standard, job control, and

message data base gettxt
ismpx

col filter
Pos~ptfile postreverse

standard/restricted command/ ksh,

directories
users mail,

rm,

control, and restricted/ sh, jsh,
nice

quits nohup
atq display the jobs queued to

gcore get core images of
machines
machines

bfs big file
awk pattern

nawk pattern
priocntl process

clear clear the terminal
editor based on ex vi

terminal session
side-by-side
string fgrep

grep
full regular expressions egrep

file(s) acctcom
srchtxt display contents of, or

two sorted files comm
file cut cut out

ipcrm remove a message queue,
mail, rmail read mail or

service Ip, cancel
printers postio

calendar reminder
on this/ uuglist print the list of

send/ cancel requests to an LP print
about the status of the LP print

Permuted Index

Permuted Index

reset layer of windowing terminal jterm(1)
resident PostScript font downloader download(1)
respond to incoming mail messages vacation(1)
restricted command interpreter .. sh(1)
retrieve a text string from a .. gettxt(1)
return windowing terminal state ismpx(1)
reverse line-feeds .. col(1)
reverse the page order in a....................................... postreverse(1)
rksh KornShell, a ... ksh(1)
rlogin remote login ... rlogin(1)
rm, rmdir remove files or ... rm(1)
rmail read mail or send mail to .. mail(1)
rmdir remove files or directories ... rm(1)
rsh remote shell .. rsh(1)
rsh shell, the standard, job ... sh(1)
run a command at low priority ... nice(1)
run a command immune to hangups and nohup(1)
run at specified times .. atq(1)
running processes .. gcore(1)
ruptime show host status of local ruptime(1)
rwho who's logged in on local .. rwho(1)
sag system activity graph .. sag(1)
sar system activity reporter .. sar(1)
scanner ... bfs(1)
scanning and processing language awk(1)
scanning and processing language nawk(1)
scheduler control ... priocntl(1)
screen clear(1)
screen-oriented (visual) display ... vi(1)
script make typescript of a....................................... script(1)
sdiff print file differences ... sdiff(1)
search a file for a character .. fgrep(1)
search a file for a pattern ... grep(1)
search a file for a pattern using egrep(1)
search and print process accounting acctcom(1)
search for a text string in,! ... srchtxt(1)
sed stream editor ... sed(1)
select or reject lines common to ... comm(1)
selected fields of each line of a .. cut(1)
semaphore set, or shared memory ID ipcrm(1)
send mail to users .. mail(1)
send/cancel requests to an LP print .. Ip(1)
serial interface for PostScript ... postio(1)
service ... calendar(1)
service grades that are available uuglist(10
service lp, cancel... Ip(1)
service Ipstat print information ... Ipstat(1)

15

Permuted Index

whois Internet user name directory
make typescript of a terminal

iconv code
execution env

umask
remove a message queue, semaphore

tabs
date prin~ and

stty
of one/ paste merge same lines of

job control, and res~cted/
a message queue, semaphore set, or

. C-like syntax csh
shl

rsh remote
and restricted/ sh, jsh, rsh

re10gin rename login entry to
ruptime

sdiff print file differences
login

truss trace system calls and
fInt

jwin print
interval

sort

or reject lines common to two
ct

display the jobs queued to run at
finfi spelling errors

errors spell, hashmake,
hashmake, spellin, hashcheck find

split
csplit context

atrm remove jobs
search for a text string in,!

restricted/ sh, jsh, rsh shell, the
programming/ ksh, rksh KornShell, a

uustat uucp
communication facilities

ruptime show host
Ipstat print information about the

ps report process
fmtmsg display a message on

dsconfig display data

16

service ... whois(1)
session script ... script(l)
set conversion utility ,.. iconv(l)
set environment for command ... env(l)
set file-creation mode mask ... umask(1)
set, or shared memory ID ipcrm ipcrm(1)
set tabs on a terminal .. tabs (1)
set the date .. date(1)
set the options for a terminal ... stty(1)
several files or subsequent lines .. paste(1)
sh, jsh, rsh shell, the standard, .. sh(l)
shared memory ID ipcrm remove ipcrm(1)
shell command interpreter with a .. csh(l)
shell layer manager .. shl(1)
shell .. rsh(1)
shell, the standard, job control, ... sh(1)
shl shell layer manager ... shl(1)
show current layer .. re1ogin(lM)
show host status of local machines ruptime(l)
side-by-side ... sdiff(1)
sign on .. 10gin(1)
signals truss(l)
simple text formatters ... fInt(l)
size of layer ... jwin(1)
sleep suspend execution for an .. sleep(1)
sorland/or merge files ... sort(1)
sort sort and/or merge files ... sortO)
sorted files comm select ... comm(1)
spawn login to a remote terminal .. ct(l q
specified ·times atq .. atq(1)
spell, hashmake, spellin, hashcheck spelI(l)
spellin, hashcheck find spelling .. spell(1)
spelling errors spell, .. spe1I(1)
split a file into pieces spli t(1)
split ... csplit(l)
split split a file into pieces ... split(1)
spooled by at or batch ... atrm(l)
srchtxt display contents of, or ... srchtxt(1)
standard, job control, and .. sh(1)
standiu'd/restricted command and .. ksh(l)
status inquiry and job control... uustat(1 C)
status ipcs report inter-process ... ipcs(1)
status of local machines ... ruptime(1)
status of the LP print service ... Ipstat(1)
status ~.. ps(1)
stderr or system console ... fmtmsg(1)
storage device configuration .. dsconfig(1)

User's Reference Manual

stream configuration
configuration strchg,

strchg, strconf change or query
sed

fgrep search a me for a charactei'
gettxt retrieve a text

/ contents of, or search for a text
an object me or binary

exstr extract
strings find printable

user
same lines of several mes or

ofame
du

sync update the
su become

sleep

command interpreter with a C-like
sag
sar

a command; report process data and
truss trace

uux UNIX-to-UNIX
display a message on stderr or

uucp, uulog, uuname UNlX-to-UNIX
cu Can another UNlX

uuto, uupick public UNlX-to-UNIX
interactive message processing

uname print name of current UNlX
telnet user interface to a remote
that are available on this UNlX

who who is on the
tabs set

ctags create a
me

talk
tar

deroff remove nroff/troff,

posttek PostScript translator for
to a remote system using the

system using the TELNET protocol

Permuted Index

Permuted Index

strchg, strconf change or query ... strchg(l)
strconf change or query stream ... strchg(1)
stream configuration .. strchg(1)
stream editor .. sed(1)
string .. fgrep(l)
string from a message data base .. gettxt(1)
string in, message data bases .. srchtxt(l)
strings find printable strings in .. strings(l)
strings from source mes .. exstr(l)
strings in an object me or binary...................................... strings(1)
stty set the options for a terminal .. stty(1)
su become super-user or another ... su(1M)
subsequent lines of one me /merge paste(l)
sum print checksum and block count sum(l)
summarize disk usage ... du(1M)
super block .. sync(1M)
sUper-user or another user .. su(1M)
Suspend execution for an interval sleep(l)
sync update the super block .. sync(lM)
syntax csh shell ... csh(l)
system activity graph .. sag(1)
system activity reporter .. sar(1)
system activity timex time .. timex(1)
system calls and signals .. truss(1)
system command execution ... uux(1C)
system console fmtmsg .. fmtmsg(l)
system copy.. uucp(10
system ... cu(l C)
system me copy .. uuto(10
system mailx ... mailx(1)
system .. uname(1)
system using the TELNET protocol telnet(l)
system /the list of service grades uuglist(10
system .. who(1)
tabs on a terminal .. tabs(l)
tabs set tabs on a terminal .. tabs(1)
tags me for use with vi ... ctags(1)
tail deliver the last part of a .. tail(l)
talk talk to another user .. talk(l)
talk to another user .. talk(1)
tape me archiver ... tar(1)
tar tape me archiver ... tar(1)
tbl, and eqn constructs ... deroff(1)
tee pipe fitting ... tee(1)
tektronix 4014 mes ; .. posttek(1)
TELNET protocol/user interface telnet(1)
teInet user.interface to a remote ... teInet(1)

17

Permuted Index

ct spawn login to a remote
jterm reset layer of windowing

last indicate last user or
tput initialize a

clear clear the
script make typescript of a

ismpx return windowing
stty set the options for a

tabs set tabs on a
tty get the name of the

layer multiplexor for windowing
kill

tput initialize a terminal or query

ed,red
ex

casual users) edit
more, page browse or page through a

newform change the format of a
postprint PostScript translator for

fmt simple
base gettxt retrieve a

/contents of, or search for a

the jobs queued to run at specified
update access and modification

process data and system activity
modification times of a file

terminfo database

truss
ftpfile

tftp trivial file
tr

mailalias
postdaisy PostScript
postdmd PostScript

files postplot PostScript
posttek PostScript

postprint PostScript
tftp

printers dpost

signals
u3b15, vax, u370 get processor type

true, false provide

18

terminal ... ct(10
terminal .. jterm(l)
terminallogins ... last(l)
terminal or query terminfo database tput(l)
terminal screen .. clear(1)
terminal session ... script(l)
terminal state ... ismpx(1)
terminal ... stty(l)
terminal .. tabs(l)
terminal tty(l)
termin81s layers .. layers(l)
terminate a process by default .. kill(l)
terminfo database ... tput(l)
test condition evaluation command test(l)
text editor ... ed(l)
text editor ex(l)
text editor (variant of ex for ... edit(1)
text file .. more(1)
text file ... newform(1)
text files ... postprint(1)
text formatters .. fmt(1)
text string from a message data ... gettxt(l)
text string in, message data bases srchtxt(1)
tftp trivial file transfer program tftp(1)
times atq display .. atq(l)
times of a file touch ... touch(l)
timex time a command; report•................. timex(l)
touch update access and .. touch(l)
tput initialize a terminal or query ... tput(1)
tr translate characters ... tr(1)
trace system calls and signals ... truss(1)
transfer program ... ftp(1)
transfer program ... tftp(l)
translate characters ... tr(l)
translate mail alias names .. mailalias(1)
translator for Diablo 630 files postdaisy(1)
translator for DMD bitmap files postdmd(1)
translator for plot(4) graphics ... postplot(l)
translator for tektronix 4014 files posttek(l)
translator for text files .. postprint(1)
trivial file transfer program ... tftp(l)
troff postprocessor for PostScript dpost(1)
true, false provide truth values ... true(1)
truss trace system calls and .. truss(l)
truth value /u3b, u3b2, u3b5, ... machid(l)
truth values ... true(l)
tty get the name of the terminal .. tty(1)

User's Reference Manual

file determine file
u3bIS, vax, u370 get processor

script make
/pdpll, u3b, u3b2, u3bS, u3bIS, vax,
get processor type/ machid: pdpll,

machid: pdpll, u3b, u3b2, u3bS,
processor type/ machid: pdpll, u3b,

machid: pdpll, u3b, u3b2,

system
or display expanded/ compress,

file

cu call another
uname print name of current

grades that are available on this
execution uux

uucp, uulog, uuname
uuto, uupick public

pack, peat,
times of a file touch

sync
du summarize disk

mkmsgs create message files for
ctags create a tags file for

crontab
groups print group membership of
using the TELNET protocol teInet

listusers list
and ID id print the

whois Internet
notify notify

last indica te last
su become super-user or another

talk talk to another
write write to another

editor (variant of ex for casual
information about local and remote

rmail read mail or send mail to
egrep search a file for a pattern

user interface to a remote system
iconv code set conversion

uustat
system copy

decode its ASOI! uuencode,
file, or decode its ASCII/

grades that are available on this/

Permuted Index

Permuted Index

type ... file(1)
type truth value /u3b, u3b2, u3bS, machid(1)
typescript of a terminal session .. script(1)
u370 get processor type truth value machid(1)
u3b, u3b2, u3bS, u3bIS, vax, u370 machid(1)
u3bIS, vax, u370 get processor type/ machid(1)
u3b2, u3bS, u3bIS, vax, u370 get machid(1)
u3bS, u3bIS, vax, u370 get/ ... machid(1)
umask set file-creation mode mask umask(1)
uname print name of current UNIX uname(1)
uncompress, zcat compress, expand compress(1)
uniq report repeated lines in a ... uniq(1)
units conversion program ... units(1)
UNIX system ... cu(1 C)
UNIX system .. uname(1)
UNIX system /the list of service uuglist(10
UNIX-to-UNIX system command uux(1 C)
UNIX-to-UNIX system copy .. uucp(1 C)
UNIX-to-UNIX system file copy .. uuto(10
unpack compress and expand files pack(1)
update access and modification .. touch(1)
update the super block ... sync(1M)
usage du(1M)
use by gettxt .. mkmsgs(1)
use with vi ctags(1)
user crontab file .. crontab(l)
user .. groups(1)
user interface to a remote system telnet(1)
user login information ... listusers(1)
user name and ID, and group name id(1M)
user name directory service .. whois(1)
user of the arrival of new mail ... notify(1)
user or terminallogins ... last(1)
user su(1M)
user .. talk(1)
user ... write(1)
users) edit text ... edit(1)
users finger display ... finger(1)
users mail, .. mail(1)
using full regular expressions ... egrep(1)
using the TELNET protocol teInet telnet(1)
utility iconv(1)
uucp status inquiry and job control............................... uustat(10
uucp, uulog, uuname UNIX-to-UNIX uucp(10
uudecode encode a binary file, or uuencode(10
uuencode, uudecode encode a binary..................... uuencode(1 C)
uuglist print the list of service uuglist(10

19

Permuted Index

copy uucp,
uucp, uulog,

file copy uuto,
control

system file copy
execution

incoming mail messages
vax, u370 get processor type truth

true, false provide truth
edit text editor

/pdpll, u3b, u3b2, u3b5, u3b15,
create a tags file for use with

editor based on ex
vi screen-oriented

service
rwho

jterm reset layer of
ismpx return

layers layer multiplexor for
wc

cd change
pwd

write

and execute command
expanded/ compress, uncompress,

20

uulog, uuname UNIX-to-UNIX system uucp(1C)
uuname UNIX-to-UNIX system copy uucp(1C)
uupick public UNIX-to-UNIX system uuto(1q
uustat uucp status inquiry and job uustat(1Q
uuto, uupick public UNIX-to-UNIX uuto(1Q
uux UNIX-to-UNIX system command uux(1C)
vacation automatically respond to vacation(1)
value /u3b, u3b2, u3b5, u3b15, machid(1)
values true(1)
(variant of ex for casual users) ... edit(1)
vax, u370 get processor type truth/ machid(1)
vi ctags ctags(1)
vi screen-oriented (visual) display .. vi(1)
(visual) display editor based on ex ... vi(1)
wait await completion of process ... wait(1)
wc word count .. wc(1)
whois Internet user name directory whois(1)
who's logged in on local machines rwho(1)
windowing terminal .. jterm(1)
windowing terminal state ... ismpx(1)
windowing terminals ... layers(1)
word count .. wc(1)
working directory................................... cd(1)
working directory name pwd(1)
write to another user ... write(1)
write write to another user ... write(1)
xargs construct argument list(s) .. xargs(1)
zcat compress, expand or display compress(1)

User's Reference Manual

intro (1) intro (1)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands available for the AT&T
3B2 Computer. Certain distinctions of purpose are made in the headings.

The following Utility packages are delivered with the computer:

BSD Compatibility Package
Basic Networking Utilities
C Programming Language Utilities
Directory and File Management Utilities
Distributed File Systems Utilities
Editing Utilities
Encryption Utilities (CRYPT)
Essential Boot Utilities
Essential Utilities
Ethernet Media Driver Utilities
Extended Software Generation System Utilities
Framed Access Command Environment (FACE) Utilities
Inter-Process Communication (IPC) Utilities
Internet Utilities
Line Printer Spooling Utilities
Network File System Utilities
Networking Support Utilities
OPEN LOOKTM /Graphics Utilities
Remote File System Utilities
Remote Procedure Call Utilities
Spell Utilities
System Administration Utilities
System Header Files
System Performance Analysis Utilities (SP AU)
Terminal Information Utilities
UPS Utilities
User Environment Utilities
Windowing Utilities
XENIX Compatibility Package

Manual Page Command Syntax

10/89

Unless otherwise noted, commands described in the SYNOPSIS section of a manual
page accept options and other arguments according to the following syntax and
should be interpreted as explained below.

name I-option ...] Icmdarg ...]
where:

I] Surround an option or cmdarg that is not required.

Indicates multiple occurrences of the option or cmdarg.

Page 1

intro (1)

name
option

noargletter

argletter

optarg

The name of an executable file.

(Always preceded by a "-".)
noargletter ... or,
argletter optarg[, ... J

intro (1)

A single letter representing an option without an option-argument.
Note that more than one noargletter option can be grouped after
one "_" (Rule 5, below).

A single letter representing an option requiring an option­
argument.

An option-argument (character string) satisfying a preceding
argletter. Note that groups of optargs following an argletter must be
separated by commas, or separated by white space and quoted
(Rule 8, below).

cmdarg Path name (or other command argument) not beginning with "_",
or "_" by itself indicating the standard input.

Command Syntax Standard: Rules
These command syntax rules are not followed by all current commands, but all
new commands will obey them. getopts(1) should be used by all shell pro­
cedures to parse positional parameters and to check for legal options. It supports
Rules 3-10 below. The enforcement of the other rules must be done by the com­
mand itself.

1. Command names (name above) must be between two and nine char-
acters long.

2. Command names must include only lower-case letters and digits.

3. Option names (option above) must be one character long.

4. All options must be preceded by "-".

5. Options with no arguments may be grouped after a single "_".

6. The first option-argument (optarg above) following an option must
be preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be
separated by commas or separated by white space and quoted (e.g.,
-0 xxx, z, yy or -0 "xxx z yy").

9. All options must precede operands (cmdarg above) on the command
line.

10. " __ " may be used to indicate the end of the options.

11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their
significance in ways determined by the command with which they
appear.

Page 2 10/89

intro (1) intro (1)

13. "_" preceded and followed by white space should only be used to
mean standard input.

SEE ALSO
getopts(1).
exit(2), wait(2), getopt(3Q in the Programmer's Reference Manual.
How to Get Started, at the front of this document.

DIAGNOSTICS
Upon termination, each command returns two bytes of status, one supplied by
the system and giving the cause for termination, and (in the case of "normal" ter­
mination) one supplied by the program [see wait(2) and exit(2)]. The former
byte is 0 for normal termination; the latter is customarily 0 for successful execu­
tion and non-zero to indicate troubles such as erroneous parameters, or bad or
inaccessible data. It is called variously "exit code", "exit status", or " return
code", and is described only where special conventions are involved.

WARNINGS

10/89

Some commands produce unexpected results when processing files containing
null characters. These commands often treat text input lines as strings and there­
fore become confused upon encountering a null character (the string terminator)
within a line.

Page 3

acctcom(1) acctcom(1)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [options 1 [file . .. 1

DESCRIPTION

10/89

acctcom reads file, the standard input, or /var/adm/pacct, in the form described
by acct(4) and writes selected records to the standard output. Each record
represents the execution of one process. The output shows the COMMAND NAME,
USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE
(K), and optionally, F (the fork/exec flag: 1 for fork without exec), STAT (the
system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS TRNSFD, and
BLOCKS READ (t,otal blocks read and written).

A I is prepended to the command name if the command was executed with
superuser privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a terminal or
/dev/null (as is the case when using & in the shell), /var/adm/pacct is read;
otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each file
is normally read forward, i.e., in chronological order by process completion time.
The file /var/adm/pacct is usually the current file to be examined; a busy sys­
tem may need several such files of which all but the current file are found in
/var/adm/pacctincr.

The options are:

-a

-b

-f

-h

-i
-k
-m
-r
-t
-v
-1 line
-u user

Show some average statistics about the processes selected. The
statistics will be printed after the output records.
Read backwards, showing latest commands first. This option has no
effect when the standard input is read.
Print the fork/exec flag and system exit status columns in the out­
put. The numeric output for this option will be in octal.
Instead of mean memory size, show the fraction ()f total available
CPU time consumed by the process during its execution. This "hog
factor" is computed as (total CPU time)/(elapsed time).
Print columns containing the I/O counts in the output.
Instead of memory size, show total kcore-minutes.
Show mean core size (the default).
Show CPU factor (user-time/(system-time + user-time».
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes belonging to terminal /dev/term/line.
Show only processes belonging to user that may be specified by: a
user ID, a login name that is then converted to a user ID, a I, which
designates only those processes executed with superuser privileges,
or ?, which designates only those processes associated with
unknown user IDs.

Page 1

acctcom(1) acctcom(1)

FILES

-g group

-s time

-e time
-s time
-E time

-n pattern

-q

-oofile

-Hfactor

-0 sec
-c sec

-I chars

Show only processes belonging to group. The group may be desig­
nated by either the group ID or group name.
Select processes existing at or after time, given in the format
hr[:min[:secll.
Select processes existing at or before time.
Select processes starting at or after time.
Select processes ending at or before time. Using the same time for
both -s and -E shows the processes that existed at time.
Show only commands matching pattern that may be a regular
expression as in regcnp(3G), except + means one or more
occurrences.
Do not print any output records, just print the average statistics as
with the -a option.
Copy selected process records in the input data format to ofile;
suppress printing to standard output.
Show only processes that exceed factor, where factor is the "hog fac­
tor" as explained in option -h above.
Show only processes with CPU system time exceeding sec seconds.
Show only processes with total CPU time (system-time + user-time)
exceeding sec seconds.
Show only processes transferring more characters than the cutoff
number given by chars.

/ete/passwd
/var/ adm/paeetincr
/ete/group

SEE ALSO

NOTES

Page 2

ps(l), su(1).
aeet(2), regcnp(3G) in the Programmer's Reference Manual.
aeet(1M), aectcms(1M), aeeteon(1M), acctmerg(1M),
aeetsh(1M), fwtnp(1M), runaeet(1M), aeet(4), utnp(4)
Administrator's Reference Manual.

acctpre(lM),
in the System

aeeteom reports only on processes that have terminated; use ps(1) for active
processes.

If time exceeds the present time, then time is interpreted as occurring on the pre­
vious day.

10/89

8r(1) 8r(1)

NAME
ar - maintain portable archive or library

SYNOPSIS
ar [-v] - key [arg] [posname] afi1e [name . ..

DESCRIPTION

10/89

The ar command maintains groups of files combined into a single archive file.
Its main use is to create and update library files. However, it can be used for any
similar purpose. The magic string and the file headers used by ar consist of
printable ASOI characters. If an archive is composed of printable files, the entire
archive is printable.

When ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure are described in detail in
ar(4). The archive symbol table [described in ar(4)] is used by the link editor ld
to effect multiple passes over libraries of object files in an efficient manner. An
archive symbol table is only created and maintained by ar when there is at least
one object file in the archive. The archive symbol table is in a specially named
file that is always the first file in the archive. This file is never mentioned or
accessible to the user. Whenever the ar command is used to create or update the
contents of such an archive, the symbol table is rebuilt. The s option described
below will force the symbol table to be rebuilt.

The -v option causes ar to print its version number on standard error.

Unlike command options, the key is a required part of the ar command line. The
key is formed with one of the following letters: drqtpmx. Arguments to the key,
alternatively, are made with one of more of the following set: vuaibcls. posname
is an archive member name used as a reference point in positioning other files in
the archive. afi1e is the archive file. The names are constituent files in the archive
file. The meanings of the. key characters are as follows:

d

r

q

t

p

m

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u is
used with r, then only those files with dates of modification later than the
archive files are replaced. If an optional positioning character from the set
abi is used, then the posname argument must be present and specifies that
new files are to be placed after (a) or before (b or i) posname. Otherwise
new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are already in the archive. This option is useful to
avoid quadratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files
in the archive are listed. If names are given, only those files are listed.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character
is present, then the posname argument must be present and, as in r,
specifies where the files are to be moved.

Page 1

ar(1) ar(1)

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v Give a verbose file-by-file description of the making of a new archive file
from the old archive and the constituent files. When used with t, give a
long listing of all information about the files. When used with x, print the
filename preceding each extraction.

c Suppress the message that is produced by default when afile is created.

1 This option is obsolete. It is recognized, but ignored, and will be removed
in the next release.

s Force the regeneration of the archive symbol table even if ar(l) is not
invoked with a command which will modify the archive contents. This
command is useful to restore the archive symbol table after the strip(l)
command has been used on the archive.

SEE ALSO

NOTES

Page 2

1d(1), lorder(l), strip(l), a.out(4), ar(4).

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

Since the archiver no longer uses temporary files, the -1 option is obsolete and
will be removed in the next release.

By convention, archives are suffixed with the characters . a.

10/89

at (1) at(1)

NAME
at, batch - execute commands at a later time

SYNOPSIS
at [-f script] [-m] time [date] [+ increment]
at -1 [job •..]
at -r job .••
batch

DESCRIPTION

10/89

at and batch read commands from standard input to be executed at a later time.
at allows you to specify when the commands should be executed, while jobs
queued with batch will execute when system load level permits. at may be used
with the following options:

-f script Reads commands to be executed from the named script file.

-1 [job] Reports all jobs scheduled for the invoking user, or just the jobs

-In

-r job

specified.

Sends mail to the user after the job has been completed, indicating that
the job is finished, even if the job produces no output. Mail is sent
only if the job has not already generated a mail message.

Removes specified jobs previously scheduled using at.

Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory, umask,
and ulimit are retained when the commands are executed. Open file descriptors,
traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/sbin/cron.d/at.allow. If that file does not exist, the file
/usr / sbin/ cron. d/ at. deny is checked to determine if the user should be
denied access to at. If neither file exists, only root is allowed to submit a job. If
only at. deny exists and is empty, global usage is permitted. The ~llow / deny
files consist of one user name per line. These files can only be modified by the
privileged user.

If the DATEMSK environment variable is set, it points to a template file that at will
use to determine the valid time and date values instead of the values described
below. For more information about using DATEMSK" see the last paragraph of the
DESCRIPTION section.

time may be specified as follows, where h is hours and m is minutes: h, hh, hhmm,
h:m, h:mm, hh:m, hh:mm. A 24-hour clock is assumed, unless am or pm is
appended to time. If zulu is appended to time, it means Greenwich Mean Time
(GMn. time can also take on the values: noon, midnight, and now. at now
responds with the error message too late; use now with the increment argument,
such as: at now + 1 minute.

An optional date may be specified as either a month name followed by a day
number (and possibly a year number preceded by a comma) or a day of the
week. (Both the month name and the day of the week may be spelled out or
abbreviated to three characters.) Two special "days", today and tomorrow are

Page 1

at (1) at (1)

recognized. If no date is given, today is assumed if the given hour is greater than
the current hour and toxoorrow is assumed if it is less. If the given month is less
than the current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.) The modifier next may precede the increment; it means "+ 1."

Thus valid commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at now next day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

at -r removes jobs previously scheduled by at or batch. The job number is the
number returned to you previously by the at or batch command. You can also
get job numbers by typing at -1. You can only remove your own jobs unless
you are the privileged user.

If the environment variable DATEMSK is set, at will use its value as the full path
name of a template file containing format strings. The strings consist of field
descriptors and text characters and are used to provide a richer set of allowable
date formats in different languages by appropriate settings of the environment
variable LANG or LC_TIME (see environ(5)). (See getdate(3C) for the allowable list
of field descriptors; this list is a subset of the descriptors allowed by calendar(1)
that are listed on the date(1) manual page.) The formats described above for the
time and date arguments, the special names noon, midnight, now, next, today,
tomorrow, and the increment argument are not recognized when DATEMSK is set.

EXAMPLES

Page 2

The at and batch commands read from standard input the commands to be exe­
cuted at a later time. sh(l) provides different ways of specifying standard input.
Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:

batch
sort filename > outfile
<control-D> (hold down 'control' and depress 'd')

This sequence, which shows redirecting standard error to a pipe, is useful in a
shell procedure (the sequence of output redirection specifications is significant):

batch «!
sort filename 2>&1 > outfile I mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by
including code similar to the following within the shell file:

10/89

at(1)

FILES

at (1)

echo "sh shellfile" I at 1900 thursday next week

The following example shows the possible contents of a template file AT. TEMPL in
/var/trrp.

%I %p, the %est of %B of the year %Y run the following job
%I %p, the %end of %B of the year %Y run the following job
%I %p, the %erd of %B of the year %Y run the following job
%I %p, the %eth of %B of the year %Y run the following job
%d/%m/%y
%H:%M:%S
%I:%M%p

The following are examples of valid invocations if the environment variable
DATEMSK is set to /var/trrp/AT.TEMPL.

at 2 PM, the 3rd of July of the year 2000 run the following job
at 3/4/99
at 10:30:30
at 2:30PM

/usr/sbin/cron.d
/usr/sbin/cron.d/at.allow
/usr/sbin/cron.d/at.deny
/usr/sbin/cron.d/queuedefs
/var/spool/cron/atjobs

main cron directory
list of allowed users
list of denied users
scheduling information
spool area

SEE ALSO
atq(1), atrm(l), calendar(1),
ps(1), sh(1), sort(1).

crontab(1), date(1), kill(1), mail(1), nice(1),

cron(1M), environ(S), in the System Administrator's Reference Manual.
getdate(3C) in the Programmer's Reference Manual.

DIAGNOSTICS
Complains about various syntax errors and times out of range.

10/89 Page 3

atq (1) atq (1)

NAME
atq - display the jobs queued to run at specified times

SYNOPSIS
atq [-c 1 [-n 1 [username ... 1

DESCRIPTION

FILES

atq displays the current user's queue of jobs submitted with at to be run at a
later date. If invoked by the privileged user, atq will display all jobs in the
queue.

If no options are given, the jobs are displayed in chronological order of execution.

When a privileged user invokes atq without specifying username, the entire queue
is displayed; when a username is specified, only those jobs belonging to the named
user are displayed.

The atq command can be used with the following options:

-c Display the queued jobs in the order they were created (that is, the time
that the at command was given).

-n Display only the total number of jobs currently in the queue.

/var/spool/cron spool area

SEE ALSO
at(1), atrm(l).
cron(1M) in the System Administrator's Reference Manual.

10/89 Page 1

atrm(1) atrll1 (1)

NAME
atrm - remove jobs spooled by at or batch

SYNOPSIS
atrm [-afi] arg ...

DESCRIPTION

FILES

atrm removes delayed-execution jobs that were created with the at(1) command,
but not yet executed. The list of these jobs and associated job numbers can be
displayed by using atq(1).

arg a user name or job-number. atrm removes each job-number you specify,
and/or all jobs belonging to the user you specify, provided that you own the
indicated jobs.

Jobs belonging to other users can only be removed by the privileged user.

The atrm command can be used with the following options:

-a All. Remove all unexecuted jobs that were created by the current user. If
invoked by the privileged user, the entire queue will be flushed.

-f Force. All information regarding the removal of the specified jobs is
suppressed.

-i Interactive. atrm asks if a job should be removed. If you respond with a
y, the job will be removed.

/var/spool/cron spool area

SEE ALSO
at(1), atq(1).
cron(1M) in the System Administrator's Reference Manual.

10/89 Page 1

awk(1) awk(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc 1 [prog 1 [parameters 1 [files 1

DESCRIPTION

10/89

awk scans each input file for lines that match any of a set of patterns specified in
prog. With each pattern in prog there can be an associated action that will be per­
formed when a line of a file matches the pattern. The set of patterns may appear
literally as prog, or in a file specified as -f file. The prog string should be
enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern por­
tion of every pattern-action statement; the associated action is performed for each
matched pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS; see below). The fields are denoted $1, $2, ... ; $0 refers to
the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An
action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement 1 ... }
variable = expression
print [expression-list 1 >expression
printf format [, expression-list 1 [>expression
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, I, %, and concate­
nation (indicated by a blank). The C operators ++, --, +=, -=, *=, 1=, and %= are
also available in expressions. Variables may be scalars, array elements (denoted
xli]) or fields. Variables are initialized to the null string. Array subscripts may
be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (").

Page 1

awk(1) awk(1)

The print statement prints its arguments on the standard output (or on a file if
>expr is present), separated by the current output field separator, and terminated
by the output record separator. The printf statement formats its expression list
according to the format [see printf(3S) in the Programmer's Reference Manual].

The built-in function length returns the length of its argument taken as a string, or
of the whole line if no argument. There are also built-in functions exp, log,
sqrt, and int. The last truncates its argument to an integer; substr(s, m, n)
returns the n-character substring of s that begins at position m. The function
sprintf(fmt , expr ,expr, ...) formats the expressions according to the
printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of regu.,.
lar expressions and relational expressions. Regular expressions must be sur­
rounded by slashes and are as in egrep(1). Isolated regular expressions in a pat­
tern apply to the entire line. Regular expressions may also occur in relational
expressions. A pattern may consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the first pat­
tern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either -
(for contains) or ! - (for does not contain). A conditional is an arithmetic expres­
sion, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the
first input line is read and after the last. BEGIN must be the first pattern, END the
last.

A single character c may be used to separate the fields by starting the program
with:

BEGIN { FS = c }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of fields in
the current record; NR, the ordinal number of the current record; FILENAME, the
name of the current input file; OF'S, the output field separator (default blank); DRS,
the output record separator (default new-line); and OFMT, the output format for
numbers (default %. 6g).

EXAMPLES

Page 2

Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

10/89

awk(1)

Add up first column, print sum and average:

{s+=$l}
END {print "sum is", s, .. average is", s/NR·}

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print}

command line: awk -f program n=5 input

SEE ALSO
grep(l), nawk(1), sed(l).
lex(l), printf(3S) i~ the Programmer's Reference Manual.

NOTES
Input white space is not preserved on output if fields are involved.

awk(1)

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string (" ,,) to it.

10/89 Page 3

banner(1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

banner (1)

banner prints its arguments (each up to 10 characters long) in large letters on the
standard output.

SEE ALSO
echo(1).

10/89 Page 1

basenam, (1) basename (1)

NAME
basename, dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from
string, and prints the result on the standard output. It is normally used inside
substitution marks (, ,) within shell procedures. The suffix is a pattern as
defined on the ed(l) manual page.

dirQame delivers all but the last level of the path name in string.
EXAMPLES

The following example, invoked with the argument /hane/sms/personal/mail
sets the environment variable NAME to the file named mail and the environment
variable MYMAILPATH to the string /hane/sms/personal.

NAME='basename $HaME/personal/mail'
MYMAILPATH=' dirname $HOME/personal/mail'

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles
the named file and moves the output to cat in the current directory:

cc.$1
mv a.out 'basename $1 .c'

SEE ALSO
ed(l), sh(1).

10/89 Page 1

bc(1} bc(1}

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [-e 1 [-1 1 [file ... 1

DESCRIPTION

10/89

be is an interactive processor for a language that resembles C but provides unlim­
ited precision arithmetic. It takes input from any files given, then reads the stan­
dard input. be is actually a preprocessor for the desk calculator program de,
which it invokes automatically unless the -e option is present. In this case the de
input is sent to the standard output instead. The options are as follows:

-e Compile only. The output is sent to the standard output.

-1 Argument stands for the name of an arbitrary precision math library.

The syntax for be programs is as follows: L means letter a- z, E means expres­
sion, 5 means statement.

Comments
are enclosed in / * and * / .

Names
simple variables: L
array elements: L [E 1
the words ibase, abase,and scale

Other operands
arbitrarily long numbers with optional sign and decimal point
(E)
sqrt (E)

length (E)

scale (E)
L(E, ... ,E)

Operators

number of significant decimal digits
number of digits right of decimal point

+ * / %
(% is remainder; " is power)

++ (prefix and postfix; apply to names)

Statements
E

<= >= != < >
=+ =* =/ =% ="

(5; ... ;5)
if(E)5
while (E) 5
for (E; E ; E) 5
null statement
break
quit

Page 1

bc(1)

Function definitions
define L (L , ... , L)

auto L , ... , L
S i ... S
return (E)

Functions in -1 math library

s (x)
e(x)
e (x)
1 (x)
a(x)
j (n, x)

sine
cosine
exponential
log
arctangent
Bessel function

All function arguments are passed by value.

bc(1)

The value of a statement that is an expression is printed unless the main operator
is an assignment. Either semkolons or new-lines may separate statements.
Assignment to scale influences the number of digits to be retained on arithmetic
operations in the manner of de. Assignments to ibase or obase set the input
and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simul­
taneously. All variables are global to the program. auto variables are pushed
down during function calls. When using arrays as function arguments or
defining them as automatic variables, empty square brackets must follow the
array name.

EXAMPLE

Page 2

scale = 20
define e(x){

auto a, b, e, i, s
a = 1
b = 1
s = 1
for (i=li l==li i++){

a = a*x
b = b*i
e = alb
if(e == 0) return(s)
s = s+e

defines a function to compute an approximate value of the exponential function
and

for (i=li i<=10i i++) e(i)

prints approximate values of the exponential function of the first ten integers.

10/89

bc(1)

FILES
/usr/lib/lib.b
/usr/bin/de

mathematical library
desk calculator proper

SEE ALSO

NOTES

10/89

de(1).

The be command does not recognize the logical operators && and 1 I.
The for statement must have all three expressions (E's).

The quit statement is interpreted when read, not when executed.

bc(1)

Page 3

bdiff(1) bdiff (1)

NAME
bdiff - big diff

SYNOPSIS
bdiff file1 file2 [n 1 [-51

DESCRIPTION

FILES

bdiff is used in a manner analogous to diff to find which lines in file1 and file2
must be changed to bring the files into agreement. Its purpose is to allow pro­
cessing of files too large for diff. If file1 (file2) is -, the standard input is read.

Valid options to bdiff are:

n The number of line segments. The value of n is 3500 by default. If the
optional third argument is given and it is numeric, it is used as the value
for n. This is useful in those cases in which 3500-line segments are too
large for diff, causing it to fail.

-8 Specifies that no diagnostics are to be printed by bdiff (silent option).
Note, however, that this does not suppress possible diagnostic messages
from diff, which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder of
each file into n-line segments, and invokes diff on corresponding segments. If
both optional arguments are specified, they must appear in the order indicated
above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the files had
been processed whole). Note that because of the segmenting of the files, bdiff
does not necessarily find a smallest sufficient set of file differences.

/tnp/bd?????

SEE ALSO
diff(1), help(1)

DIAGNOSTICS
Use help for explanations.

10/89 Page 1

bfs(1) bfs (1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [- 1 file

DESCRIPTION

10/89

The bfs command is similar to ed except that it is read-only and processes much
larger files. Files can be up to 1024K bytes and 321< lines, with up to 512 charac­
ters, including new-line, per line (255 for 16-bit machines). bfs is usually more
efficient than ed for scanning a file, since the file is not copied to a buffer. It is
most useful for identifying sections of a large file where the cspUt command
can be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file
written with the w command. The optional - suppresses printing of sizes. Input
is prompted with * if P and a carriage return are typed, as in ed. Prompting can
be turned off again by inputting another P and carriage return. Messages are
given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
expressions may be surrounded with two symbols besides / and ?: > indicates
downward search without wrap-around, and < indicates upward search without
wrap-around. There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed.
Commands such as --, +++-, +++=, -12, and +4p are accepted. Note that 1, lOp
and 1,10 both print the first ten lines. The f command only prints the name of
the file being scanned; there is no remembered file name. The w command is
independent of output diversion, truncation, or crunching (see the xo, xt, and xc
commands, below). The following additional commands are available:

xf file
Further commands are taken from the named file. When an end-of-file
is reached, an interrupt signal is received or an error occurs, reading
resumes with the file containing the xf. The xf commands may be
nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).

xo[filel
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666 (readable and
writable by everyone), unless your urnask setting dictates otherwise;
see urnask(1). If file is missing, output is diverted to the standard out­
put. Note that each diversion causes truncation or creation of the file.

label
This positions a label in a command file. The label is terminated by
new-line, and blanks between the : and the start of the label are
ignored. This command may also be used to insert comments into a
command file, since labels need not be referenced.

Page 1

bfs(1)

Page 2

bfs(1)

(. , • hw/regular expression/lilbel
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in
the specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to lilbel.
This command is the only one that does not issue an error message on
bad addresses, so it may be used to test whether addresses are bad
before other commands are executed. Note that the command

xb/"/ label

is an unconditional jump.

The xb command is allowed only if it is read from someplace other
than a terminal. If it is read from a pipe only a downward jump is
possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit 1 [spaces 1 [value 1
The variable name is the specified digit following the xv. The com­
mands xv5100 or xv5 100 both assign the value 100 to the variable
5. The command xv61, lOOp assigns the value 1, lOOp to the vari­
able 6. To reference a variable, put a % in front of the variable name.
For example, using the above assignments for variables 5 and 6:

l,%5p
1,%5
%6

all print the first 100 lines.

g/%5/p

globally searches for the characters 100 and prints each line contain­
ing a match. To escape the special meaning of %, a \ must precede
it.

g/".*\%[cds]/p

could be used to match and list lines containing a printf of charac­
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a UNIX system command can be stored into a variable. The
only requirement is that the first character of value be an !. For
example:

10/89

bfs(1) bfs(1)

SEE ALSO

.w junk
xv5 ! cat junk
Inn junk
!echo "%5"
xv6!expr %6 + 1

puts the current line into variable 5, prints it, and increments the
variable 6 by one. To escape the special meaning of! as the flrst
character of value, precede it with a \.

xv7\!date

stores the value I date into variable 7.

xbz label

xbn label
These two commands test the last saved return code from the execu­
tion of a UNIX system command (! command) or nonzero value,
respectively, to the specifled label. The two examples below both
search for the next five lines containing the string size.

xc [switch)

xv55
: 1
Isizel
xv5!expr %5 - 1
lif 0%5 !- 0 exit 2
xbn 1
xv45
: 1
Isizel
xv4!expr %4 - 1
!if 0%4 - 0 exit 2
xbzl

If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch. Ini­
tially switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.

cspUt(1), ed(l), \.UlIask(1).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

10/89 Page 3

cal(1) cal (1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also specified, a calen­
dar just for that month is printed. If neither is specified, a calendar for the
present month is printed. The month is a number between 1 and 12. The year
can be between 1 and 9999. The calendar produced is that for England and the
United States.

NOTES·

10/89

An unusual calendar is printed for September 1752. That is the month 11 days
were skipped to make up for lack of leap year adjustments. To see this calendar,
type: cal 9 1752 .

The command cal 83 refers to the year 83, not 1983.

The year is always considered to start in January even though this is historically
naive.

Page 1

calendar (1) calendar (1)

NAME
calendar - reminder service

SYNOPSIS
calendar [- ~

DESCRIPTION
calendar consults the file calendar in the current directory and prints out lines
that contain today's or tomorrow's date anywhere in the line, Most reasonable
month-rlay dates such as Aug, 24, august 24, 8/24, etc" are recognized, but not
24 August or 2V8, On weekends "tomorrow" extends through Monday.
calendar can be invoked regularly by using the crontab(l) or at(1) commands.

When an argument is present, calendar does its job for every user who has a file
calendar in his or her login directory and sends them any positive results by
mail(1). Normally this is done daily by facilities in the UNIX operating system
(see cron(1M».

If the environment variable DATEMSK is set, calendar will use its value as the full
path name of a template file containing format strings, The string$ consi$t of
field descriptors and text characters and llre used to provide a richer set of allow­
able date formats in different languages by appropriate settings of the environ­
ment variable LANG or LC TIME (see environ(S». (See date(1) for the allowable
list of field descriptors.) -

EXAMPLES

FILES

The following example shows the possible contents of a template:

%B %eth of the year %Y

%B represents the full month name, %e the day of month and %Y the year (4
digits).

If DATEMSK is set to this template, the following calendar file would be valid:

March 7th of the year 1989 < Reminder>

/usr/lib/calprog program used to figure out today's and tomorrow's dates
/etc/passwd
/tnp/cal*

SEE ALSO

NOTES

10/89

at(l), date(1), crontab(l), mail(1).
cron(1M), environ(S) in the System Administrator's Reference Manual.

Appropriate lines beginning with white spa~e will not be printed.
Your calendar must be public information for you to get reminder service.
calendar's extended idea of "tomorrow" does not account for holidays.

Page 1

cat (1) cat (1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-U] [-8] [-v [-t] [-e)) file ...

DESCRIPTION
cat reads each file in sequence and writes it on the standard output. Thus:

cat file
prints file on your terminal, and:

cat filel file2 >file3

concatenates filei and file2, and Writes the reSults in file3.
If no input file is given, or if the argument - is encountered, cat reads from the
standard input file.

The following options apply to cat:
-u The output is not buffered. (The default is buffered output.)

-8 eat is silent about· non-existent files.

-v Causes non-printing characters (with the exception of tabs, new-lines and
form-reeds) to be printed visibly. . ASOI control characters (octal 000 -
037) are printed as "'n, where ~ is. the corresponding ASCII character in the
range octal 100 - 137 (@, Ai B, C, ... ,. X, Y, Z, [, \ J, A, and Jj the DEL
character (octal 0177) is printed "'? Other non-printable characters are
printed as M-X, where x is the ASCII character specified by the low-order
seven bits.

When used With the -v option, the following options may be used:

-t Causes tabs to be printed as "'I's and formfeeds to be printed as "'L's.

-e Causes a $ character to be printed at the end of each line (prior to the
new-line).

The -t and -e options are ignored if the -v option is not specified.

SEE ALSO

NOTES

10/89

cp(1), pg(1), pr(1).

Redirecting the output of cat onto~one of the files being read will cause the loss
of the data originally in the file being read. For example,

cat filel file2 >filel
causes the original data in filel to be lost.

Page 1

cd(1) cd(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory 1

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the new
working directory. If directory specifies a complete path starting with /, ., or .. ,
directory becomes the new working directory. If neither case applies, cd tries to
find the designated directory relative to one of the paths specified by the $CDPATH
shell variable. $CDPATH has the same syntax as, and similar semantics to, the
$PATH shell variable. cd must have execute (search) permission in directory.

Because a new process is created to execute each command, cd would be ineffec­
tive if it were written as a normal command; therefore, it is recognized by and is
internal to the shell.

SEE ALSO
pwd(l), sh(1).
chdir(2) in the Programmer's Reference Manual.

10/89 Page 1

chgrp (1) chgrp(1)

NAME
chgrp - change the group ownership of a file

SYNOPSIS
chgrp [-R] [-h] group file ...

DESCRIPTION

FILES

chgrp changes the group ID of the files given as arguments to group. The group
may be either a decimal group ID or a group name found in the group ID file,
/ etc/group.

You must be the owner of the file, or be the super-user to use this command.

The operating system has a configuration option LPOSIX_CHOWN_RESTRICTED},
to restrict ownership changes. When this option is in effect, the owner of the file
may change the group of the file only to a group to which the owner belongs.
Only the super-user can arbitrarily change owner IDs whether this option is in
effect or not.

chgrp has one option:

-R Recursive. chgrp descends through the directory, and any subdirectories,
setting the specified group ID as it proceeds. When symbolic links are
encountered, they are traversed.

-h If the file is a symbolic link, change the group of the symbolic link.
Without this option, the group of the file referenced by the symbolic link
is changed.

/etc/group

SEE ALSO

NOTES

10/89

chIood(1), chown(1), id(1M)
chown(2) in the Programmer's Reference Manual.
group(4), passwd(4) in the System Administrator's Reference Manual.

In a Remote File Sharing environment, you may not have the permissions that the
output of the ls -1 command leads you to believe. For more information see
the Network User's and Administrator's Guide.

Page 1

chmod(1) chmod(1)

NAME
chm:xi - change file mode

SYNOPSIS
chm:xi [-R] mode file ...
chm:xi [ugoa H + I - I = H rwxlstugo] file ...

DESCRIPTION

10/89

chm:xi changes or assigns the mode of a file. The mode of a file specifies its per­
missions and other attributes. The mode may be absolute or symbolic.

An absolute mode is specified using octal numbers:

chm:xi nnnn file ...

where n is a number from 0 to 7. An absolute mode is constructed from the OR
of any of the following modes:

4000 Set user ID on execution.
20#0 Set group ID on execution if # is 7, 5,3, or 1.

Enable mandatory locking if # is 6, 4, 2, or O.
This bit is ignored if the file is a directory; it may be set or

1000
0400
0200
0100
0070
0007

cleared only using the symbolic mode.
Tum on sticky bit [(see chm:xi(2)].
Allow read by owner.
Allow write by owner.
Allow execute (search in directory) by owner.
Allow read, write, and execute (search) by group.
Allow read, write, and execute (search) by others.

A symbolic mode is specified in the following format:

chm:xi [who] operator [permission(s») file ...
who is zero or more of the characters u, 9, 0, and a specifying whose permissions
are to be changed or assigned:

u user's permissions
9 group's permissions
o others' permissions
a all permissions (user, group, and other)

If who is omitted, it defaults to a.

operator is one of +, -, or =, signifying how permissions are to be changed:

+ Add permissions.
Take away permissions.
Assign permissions absolutely.

Unlike other symbolic operations, - has an absolute effect in that it resets all
other bits. Omitting permission(s) is useful only with = to take away all permis­
sions.

permission(s) is any compatible combination of the following letters:

Page 1

chmod (1) chmod (1)

r read permission
w write permission
x execute permission
8 user or group set-ID
t sticky bit
1 mandatory locking
u, g, 0 indicate that permission is to be taken from the current user,

group or other mode respectively.

Permissions to a file may vary depending on your user identification number
(UID) or group identification number (GID). Permissions are described in three
sequences each having three characters:

User Group Other

rwx rwx rwx

This example (user, group, and others all have permission to read, write, and exe­
cute a given file) demonstrates two categories for granting permissions: the access
class and the permissions themselves.

Multiple symbolic modes separated by commas may be given, though no spaces
may intervene between these modes. Operations are performed in the order
given. Multiple symbolic letters following a single operator cause the
corresponding operations to be performed simultaneously.

The letter 8 is only meaningful with u or g, and t only works with u.

Mandatory file and record locking (1) refers to a file's ability to have its reading
or writing permissions locked while a program is accessing that file. It is not
possible to permit group execution and enable a file to be locked on execution at
the same time. In addition, it is not possible to turn on the set-group-ID bit and
enable a file to be locked on execution at the same time. The following examples,
therefore, are invalid and elicit error messages:

chIood g+x, +1 file
chIood g+8, +l file

Only the owner of a file or directory (or the super-user) may change that file's or
directory's mode. Only the super-user may set the sticky bit on a non-directory
file. If you are not super-user, chiood will mask the sticky-bit but will not return
an error. In order to turn on a file's set-group-ID bit, your own group ID must
correspond to the file's and group execution must be set.

The -R option recursively descends through directory arguments, setting the
mode for each file as described above.

EXAMPLES
Deny execute permission to everyone:

chIood a-x file

Page 2 10/89

chmod(1) chmod(1)

Allow read permission to everyone:

chIood 444 file

Make a file readable and writable by the group and others:

chIood 90+rw file
chIood 066 file

Cause a file to be locked during access:

chIood +1 file

Allow everyone to read, write, and execute the file and turn on the set group-ID.

chIood =rwx, 9+S file
chIood 2777 file

Absolute changes don't work for the set-group-ID bit of a directory. You must
use 9+S or 9-s.

SEE ALSO
Is(1).

NOTES

10/89

chIood(2) in the Programmer's Reference Manual

chIood permits you to produce useless modes so long as they are not illegal (e.g.,
making a text file executable). chIood does not check the file type to see if man­
datory locking is available.

Page 3

chown(1} chown(1}

NAME
chown - change file owner

SYNOPSIS
chow [-R] [-h] owner file ...

DESCRIPTION

FILES

chow changes the owner of the files to owner. The owner may be either a decimal
user ID or a login name found in /etc/passwd file.

If chow is invoked by other than the super-user, the set-user-ID bit of the file
mode, 04000, is cleared.

Only the owner of a file (or the super-user) may change the owner of that file.

Valid options to chow are:

-R Recursive. chow descends through the directory, and any subdirectories,
setting the ownership ID as it proceeds. When symbolic links are encoun­
tered, they are traversed.

-h If the file is a symbolic link, change the owner of. the symbolic link.
Without this option, the owner of the file referenced by the symbolic link
is changed.

The operating system has a configuration option LPOSIX_CHOWN_RESTRICTED},
to restrict ownership changes. When this option is in effect the owner of the file
is prevented· from changing the owner ID of the file. Only the super-user can
arbitrarily change owner IDs whether this option is in effect or not.

/etc/passwd

SEE ALSO

NOTES

10/89

ehqrp(l), chJood(1)

chown(2) in the Programmer's Reference Manual
passwd(4) in the System Administrator's Reference Manual.

In a Remote File Sharing environment, you may not have the permissions that the
output of the ls -1 command leads you to believe. For more information see
the "Mapping Remote Users" section of the Remote File Sharing chapter of the
System Administrator's Guide.

Page 1

clear (1)

NAME
clear - clear the terminal screen

SYNOPSIS
clear

DESCRIPTION

clear (1)

clear clears your screen if this is possible. It looks in the environment for the
terminal type and then in the terminfo database to figure out how to clear the
screen.

SEE ALSO
tput(l)

10/89 Page 1

cmp(1) cmp(1)

NAME
C1tp - compare two files

SYNOPSIS
C1tp [-1 1 [-8 1 filel fi1e2

DESCRIPTION
The tWo files are compared. (If fi1el is -, the standard input is used.) Under
default options, C1tp makes no comment if the files are the same; if they differ, it
announces the byte and line number at which the difference occurred. If one file
is an initial subsequence of the other, that fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-8 Print nothing for differing files; return codes only.

SEE ALSO
corm(l), diff(l).

DIAGNOSTICS

10/89

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inac­
cessible or missing argument.

Page 1

col(1) col(1)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [-b] [-f] [-x] [-p]

DESCRIPTION
col reads from the standard input and writes onto the standard output. It per­
forms the line overlays implied by reverse line feeds (AsOI code ESC-7), and by
forward and reverse half-line-feeds (ESC-9 and ESC-8). col is particularly useful
for filtering multicolumn output made with the . rt command of nroff and out­
put resulting from use of the tbl(1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capable
of backspacing. In this case, if two or more characters are to appear in the same
place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit
them on output. Instead, text that would appear between lines is moved to the
next lower full-line boundary. This treatment can be suppressed by the -f (fine)
option; in this case, the output from col may contain forward half-line-feeds
(ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ASCII control characters SO ('lJ17) and 51 ('lJ16) are assumed by col to start
and end text in an alternate character set. The character set to which each input
character belongs is remembered, and on output 51 and SO characters are gen­
erated as appropriate to ensure that each character is printed in the correct char­
acter set.

On input, the only control characters accepted are space, backspace, tab, return,
new-line, 51, SO, VT ('lJ13), and ESC followed by 7, 8, or 9. The VT character is an
alternate form of full reverse line-feed, included for compatibility with some ear­
lier programs of this type. All other non-printing characters are ignored.

Normally, col will ignore any escape sequences unknown to it that are found in
its input; the -p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The use of
this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

SEE ALSO
ascii(S)

NOTES

10/89

nroff(1), tbl(1) in the DOCUMENTER'S WORKBENCH Software Technical Discussion
and Reference Manual .

The input format accepted by col matches the output produced by nroff with
either the -T37 or -TIp options. Use -T37 (and the -f option of col) if the ulti­
mate disposition of the output of col will be a device that can interpret half-line
motions, and -TIp otherwise.

Page 1

col(1}

Page 2

col (1)

col cannot back up more than 128 lines or handle more than BOO characters per
line.

Local vertical motions that would result in backing up over the first line of the
document are ignored. As a result, the first line must not have any superscripts.

10/89

comm(1) comm(1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123 1 1 filel file2

DESCRIPTION
comm reads filel and file2, which should be ordered in ASOI collating sequence
[see sort(1)]' and produces a three-column output: lines only in filel; lines only
in file2; and lines in both files. The file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comn -12
prints only the lines common to the two files; comm -23 prints only lines in the
first file but not in the second; comm -123 prints nothing.

SEE ALSO
cnp(1), diff(1), sort(1), uniq(1).

10/89 Page 1

compress (1) compress (1)

NAME
conpress, unconpress, zcat - compress, expand or display expanded files

SYNOPSIS
conpress [-cfv 1 [-b bits 1 [filename ...
unconpress [-cv 1 [filename ... 1
zcat [filename. .. 1

DESCRIPTION
conpress reduces the size of the named files using adaptive Lempel-Ziv coding.
Whenever possible, each file is replaced by one with a . Z, extension. The owner­
ship modes, access time and modification time will stay the same. If no files are
specified, the standard input is compressed to the standard output.

The amount of compression obtained depends on the size of the input, the
number of bits per code, and the distribution of common substrings. Typically,
text such as source code or English is reduced by 50-60%. Compression is gen­
erally much better than that achieved by Huffman coding [as used in pack(1)l,
and takes less time to compute. The bits parameter specified during compression
is encoded within the compressed fIle, along with a magic number to ensure that
neither decompression of random data nor recompression of compressed data is
subsequently allowed.

Compressed files can be restored to their original form using unconpress.

zcat produces uncompressed output on the standard output, but leaves the
compressed . Z file intact.

OPTIONS

FILES

-c Write to the standard output; no files are changed. The nondestructive
behavior of zcat is identical to that of 'unconpress -c'.

-f Force compression, even if the file does not actually shrink, or the
corresponding . Z file already exists. Except when running in the back­
ground (under /usr/bin/sh), if -f is not given, prompt to verify whether
an existing . Z file should be overwritten.

-v Verbose. Display the percentage reduction for each fIle compressed.

-b bits
Set the upper limit (in bits) for common substring codes. bits must be
between 9 and 16 (16 is the default). Lowering the number of bits will
result in larger, less compressed fIles.

/usr/bin/sh

SEE ALSO
pack(1)

A Technique for High Performance Data Compression, Terry A. Welch, IEEE Com­
puter, vol. 17, no. 6 (June 1984), pp. 8-19.

DIAGNOSTICS

10/89

Exit status is normally O. If the last file was not compressed because it became
larger, the status is 2. If an error occurs, exit status is 1.

Page 1

compress (1) compress (1)

NOTES

Page 2

Usage: conpress [-fvc] [-b maxbits] [filename ...]
Invalid options were specified on the command line.

Missing maxbits
Maxbits must follow -b.

filename: not in conpressed format
The file specified to unconpress has not been compressed.

filename: C01tpressed with xxbits, can only handle yybits
filename was compressed by a program that could deal with more bits
than the compress code on this machine. Recompress the file with
smaller bits.

filename: already has .Z suffix -- no change
The file is assumed to be already compressed. Rename the file and try
again.

filename: already exists; do you wish to overwrite (y or n)?
Respond y if you want the output file to be replaced; n if not.

uncompress: corrupt input
A SIGSEGV violation was detected, which usually means that the input
file is corrupted.

Conpression: xx.xx%
Percentage of the input saved by compression. (Relevant only for -v.)

- - not a reqular file: unchanged
When the input file is not a regular file, (such as a directory), it is left
unaltered.

has xx other links: unchanged
The input file has links; it is left unchanged. See In(1) for more infor­
mation.

- - file unchanged
No savings are achieved by compression. The input remains
uncompressed.

Although compressed files are compatible between machines with large memory,
-b12 should be used for file transfer to architectures with a small process data
space (64KB or less).

conpress should be more flexible about the existence of the . Z suffix.

10/89

cp(1) cp{1)

NAME
cp - copy files

SYNOPSIS
cp [-i J [-p J [-r J filel [file2 ... J target

DESCRIPTION

NOTES

The cp command copies filen to target. filen and target may not have the same
name. (Care must be taken when using sh(l) metacharacters.) If target is not a
directory, only one file may be specified before it; if it is a directory, more than
one file may be specified. If target does not exist, cp creates a file named target.
If target exists and is not a directory, its contents are overwritten. If target is a
directory, the fileCs) are copied to that directory.

The following options are recognized:

-i cp will prompt for confirmation whenever the copy would overwrite an
existing target. A y answer means that the copy should proceed. Any
other answer prevents cp from overwriting target.

-p cp will duplicate not only the contents of fi1en, but also preserves the
modification time and permission modes.

-r If fi1en is a directory, cp will copy the directory and all its files, including
any subdirectories and their files; target must be a directory.

If filen is a directory, target must be a directory in the same physical file system.
target and fi1en do not have to share the same parent directory.

If fi1en is a file and target is a link to another file with links, the other links remain
and target becomes a new file.

If target does not exist, cp creates a new file named target which has the same
mode as filen except that the sticky bit is not set unless the user is a privileged
user; the owner and group of target are those of the user.

If target is a file, its contents are overwritten, but the mode, owner, and group
associated with it are not changed. The last modification time of target and the
last access time of fi1en are set to the time the copy was made.

If target is a directory, then for each file named, a new file with the same mode is
created in the target directory; the owner and the group are those of the user
making the copy.

A -- permits the user to mark the end of any command line options explicitly,
thus allowing cp to recognize filename arguments that begin with a -. If a -­
and a - both appear on the same command line, the second will be interpreted as
a filename.

SEE ALSO
chrnod(1), cpio(1), rm(1).

10/89 Page 1

cpio(1) cpio(1)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -i [bBcdfkmrsStuvV6] [-c size] [-E file] [-H hdr] [-I file [-M message]]

[-R IDll [pattern ...]

cpio -0 [aABcLvV] [-C size] [-H hdrl [-0 file [-M messagell

cpio -p [adlLmuvV] [-R ID]] directory

DESCRIPTION

10/89

The -i, -0, and -p options select the action to be performed. The following list
describes each of the actions (which are mutually exclusive).

cpio -i (copy in) extracts files from the standard input, which is assumed to be
the product of a previous cpio -0. Only files with names that match patterns are
selected. patterns are regular expressions given in the filename-generating nota­
tion of sh(1). In patterns, meta-characters ?, *, and [...] match the slash (f) char­
acter, and backslash (\) is an escape character. A ! meta-character means not.
(For example, the !abc* pattern would exclude all files that begin with abc.)
Multiple patterns may be specified and if no patterns are specified, the default for
patterns is * (Le., select all files). Each pattern must be enclosed in double quotes;
otherwise, the name of a file in the current directory might be used. Extracted
files are conditionally created and copied into the current directory tree based on
the options described below. The permissions of the files will be those of the pre­
vious cpio -0. Owner and group permissions will be the same as the current
user unless the current user is super-user. If this is true, owner and group per­
missions will be the same as those resulting from the previous cpio -0.

NOTE: If cpio -i tries to create a file that already exists and the existing file is
the same age or younger (newer), cpio will output a warning message and not
replace the file. (The -u option can be used to overwrite, unconditionally, the
existing file.)

cpio -0 (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information. Output is padded to a 512-byte boundary by default or to the user
specified block size (with the -B or -C options) or to some device-dependent
block size where necessary (as with the ere tape).

cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree based
on the options described below.

The meanings of the available options are

-a

-A

Reset access times of input files after they have been copied. Access times
are not reset for linked files when cpio -pIa is specified (mutually
exclusive with -ro).

Append files to an archive. The -A option requires the -0 option. Valid
only with archives that are files, or that are on floppy diskettes or hard
disk partitions.

Page 1

cpio(1)

-b

-B

cpio(1)

Reverse the order of the bytes within each word. (Use only with the -i
option.)

Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the -c options are not used. (-B
does not apply to the pass option; -B is meaningful only with data
directed to or from a character special device, e.g. /dev/rmt/Om.)

-e Read or write header information in ASOI character form for portability.
Always use this option (or the -H option) when the origin and the desti­
nation machines are different types (mutually exclusive with -H and -6).
(The -c option implies expanded device numbers.)

-C bufsize
Input/output is to be blocked bufsize bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 512 bytes when
this and -B options are not used. (-c does not apply to the pass option;
-C is meaningful only with data directed to or from a character special
device, e.g. /dev/rmt/Om.)

-d Directories are to be created as needed.

-E file Specify an input file (file) that contains a list of filenames to be extracted
from the archive (one filename per line).

-f Copy in all files except those in patterns. (See the paragraph on epio -i
for a description of patterns.)

-H hdr Read or write header information in hdr format. Always use this option
or the -c option when the origin and the destination machines are dif­
ferent types (mutually exclusive with -c and -6). Valid values for hdr are:
ere or CRC - ASOI header with expanded device numbers and an addi­
tional per-file checksum
ustar or USTAR - IEEE/P1003 Data Interchange Standard header and for­
mat
tar or TAR - tar header and format
ode - ASOI header with small device numbers

-I file Read the contents of file as an input archive. If file is a character special
device, and the current medium has been completely read, replace the
medium and press RETURN to continue to the next medium. This option
is used only with the -i option.

-k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is corrupted
or out of sequence, this option lets you read only those files with good
headers. (For epio archives that contain other epio archives, if an error is
encountered epio may. terminate prematurely. epio will find the next
good header, which may be one for a smaller archive, and terminate when
the smaller archive's trailer is encountered.) Used only with the -i
option.

Page 2 10/69

cpio(1) cpio(1)

10/89

-1

-L
-m

Whenever possible, link files rather than copying them. (Usable only with
the -p option.)

Follow symbolic links. The default is not to follow symbolic links.

Retain previous file modification time. This option is ineffective on direc­
tories that are being copied (mutually exclusive with -a).

-M message
Define a message to use when switching media. When you use the --0 or
- I options and specify a character special device, you can use this option
to define the message that is printed when you reach the end of the
medium. One %d can be placed in message to print the sequence number
of the next medium needed to continue.

--0 file Direct the output of epio to file. If file is a character special device and
the current medium is full, replace the medium and type a carriage return
to continue to the next medium. Use only with the -0 option.

-r Interactively rename files. If the user types a carriage return alone, the file
is skipped. If the user types a "." the original pathname will be retained.
(Not available with epio -p.)

-R ID Reassign ownership and group information for each file to user ID (ID
must be a valid login ID from /etc/passwd). This option is valid only for
the super-user.

-s Swap bytes within each half word.

-S Swap halfwords within each word.

-t Print a table of contents of the input. No files are created (mutually
exclusive with -V).

-u Copy unconditionally (normally, an older file will not replace a newer file
with the same name).

-v Verbose: causes a list of file names to be printed. When used with the -t
option, the table of contents looks like the output of an ls -1 command
[see ls(1)].

-V Special Verbose: print a dot for each file read or written. Useful to assure
the user that epio is working without printing out all file names.

-6 Process a UNIX System Sixth Edition archive format file. Use only with
the -i option (mutually exclusive with -c and -H».

NOTE: epio assumes four-byte words.

If, when writing to a character device (-0) or reading from a character device
(-i), epio reaches the end of a medium (such as the end of a diskette), and the
--0 and -I options aren't used, epio will print the following message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device
name Udev/rdiskette for example) and press RETURN. You may want to con­
tinue by directing epio to use a different device. For example, if you have two
floppy drives you may want to switch between them so epio can proceed while

Page 3

cpio(1) cpio (1)

you are changing the floppies. (Simply pressing RETURN causes the epio process
to exit.)

EXAMPLES
The following examples show three uses of epio.

When standard input is directed through a pipe to epio -0, it groups the files so
they can be directed (» to a single file (. ./newfile). The -e option insures that
the file will be portable to other machines (as would the -H option). Instead of
Is(1), you could use find(1), eeho(1), cat(1), and so on, to pipe a list of names
to epio. You could direct the output to a device instead of a file.

Is I epio -oc > .. /newfile

epio -i uses the output file of epio -0 (directed through a pipe with cat in the
example below), extracts those files that match the patterns (mexoo/al, mexoo/b*),
creates directories below the current directory as needed (--d option), and places
the files in the appropriate directories. The -c option is used if the input file was
created with a portable header. If no patterns were given, all files from newfile
would be placed in the directory.

cat newfile I epio -ied "mexoo/ al" "mexoo/b*"

epio -p takes the file names piped to it and copies or links (-1 option) those
files to another directory (newdir in the example below). The -d option says to
create directories as needed. The -m option says retain the modification time. (It
is important to use the --depth option of find(1) to generate path names for
epio. This eliminates problems epio could have trying to create files under
read-only directories.) The destination directory, newdir, must exist.

find . -depth -print I epio -pd~ newdir

Note that when you use epio in conjunction with find, if you use the -L option
with epio then you must use the -follow option with find and vice versa. Oth­
erwise there will be undesirable results.

SEE ALSO

NOTES

Page 4

ar(1), cat(1), eeho(1), find(1), Is(1), tar(1).
arehives(4) in the System Administrators Reference Manual.

An archive created with the -c option on a Release 4.0 system cannot be read on
System V Release 3.2 systems, or earlier. The -H ode header in Release 4.0 is
equivalent to the -c header in earlier System V Releases.

System V Releases prior to Release 4.0 do not understand symbolic links. The
result of copying in a symbolic link on an older release will be a regular file that
contains the pathname of the referenced file.

Path names are restricted to 256 characters for the binary (the default) and
-H ode header formats. Otherwise, path names are restricted to 1024 characters.

Only the super-user can copy special files.

Blocks are reported in 512-byte quantities.

10/89

cpio(1) cpio(1)

10/89

If a file has 000 permissions, contains more than 0 characters of data, and the
user is not root, the file will not be saved or restored.

Page 5

crontab(1) crontab(1)

NAME
crontab - user crontab file

SYNOPSIS
crontab [file]
crontab -e [username]
crontab -r [username]
crontab -1 [username]

DESCRIPTION

10/89

crontab copies the specified file, or standard input if no file is specified, into a
directory that holds all users' crontabs. The -e option edits a copy of the current
user's crontab file, or creates an empty file to edit if crontab does not exist.
When editing is complete, the file is installed as the user's crontab file. If a user­
name is given, the specified user's crontab file is edited, rather than the current
user's crontab file; this may only be done by a privileged user. The environment
variable EDITOR determines which editor is invoked with the -e option. The
default editor is vi(1). The -r option removes a user's crontab from the crontab
directory. crontab -1 will list the crontab file for the invoking user. Only a
privileged user can specify a username following the -r or -1 options to remove
or list the crontab file of the specified user.

Users are permitted to use crontab if their names appear in the file
/usr/ shin/ cron. d/ cron . allow. If that file does not exist, the file
/usr/sbin/cron.d/cron.deny is checked to determine if the user should be
denied access to crontab. If neither file exists, only root is allowed to submit a
job. If cron.allow does not exist and cron.deny exists but is empty, global
usage is permitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by
spaces or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0--23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a
list of elements separated by commas. An element is either a number or two
numbers separated by a minus sign (meaning an inclusive range). Note that the
specification of days may be made by two fields (day of the month and day of
the week). If both are specified as a list of elements, both are adhered to. For
example, 0 0 1, 15 * 1 would run a command on the first and fifteenth of each
month, as well as on every Monday. To specify days by only one field, the other
field should be set to * (for example, 0 0 * * 1 would run a command only on
Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at
the specified times. A percent character in this field (unless escaped by \) is
translated to a new-line character. Only the first line (up to a % or end of line) of

Page 1

crontab(1) crontab(1)

FILES

the command field is executed by the shell. The other lines are made available to
the command as standard input.

Any line beginning with a * is a comment and will be ignored.

The shell is invoked from your $Ha£ directory with an argO of sh. Users who
desire to have their . profile executed must explicitly do so in the crontab file.
cron supplies a default environment for every shell, defining HOME, LOGNAME,
SHELL (=/bin/sh), and PATH(=:/bin:/usr/bin:/usr/lbin}.

If you do not redirect the standard output and standard error of your commands,
any generated output or errors will be mailed to you.

/usr/sbin/cron.d
/var/spool/cron/crontabs
/usr/sbin/cron.d/log
/usr/sbin/cron.d/cron.allow
/usr/sbin/cron.d/cron.deny

main cron directory
spool area
accounting information
list of allowed users
list of denied users

SEE ALSO

NOTES

Page 2

atq(l), atz:m(l), sh(1), su(1), vi(1).
cron(1M) in the System Administrator's Reference Manual.

If you inadvertently enter the crontab command with no argument(s), do not
attempt to get out with a CONTROL-D. This will cause all entries in your cron­
tab file to be removed. Instead, exit with a DEL.

If a privileged user modifies another user's crontab file, resulting behavior may
be unpredictable. Instead, the privileged user should first su(1M) to the other
user's login before making any changes to the crontab file."

10/89

crypt (1) crypt (1)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]
crypt [-k]

DESCRIPTION

FILES

crypt reads from the standard input and writes on the standard output. The
password is a key that selects a particular transformation. If no argument is given,
crypt demands a key from the terminal and turns off printing while the key is
being typed in. If the -k option is used, crypt will use the key assigned to the
environment variable CRYFTKEY. crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

Files encrypted by crypt are compatible with those treated by the editors ed(1),
edit(1), ex(1), and vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve; direct search of the key space must be infeasible; "sneak
paths" by which keys or clear text can become visible must be minimized.

crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are
known, but not widely; moreover the amount of work required is likely to be
large.

The transformation of a key into the internal settings of the machine is deli­
berately designed to be expensive, i.e., to take a substantial fraction of a second to
compute. However, if keys are restricted to (say) three lower-case letters, then
encrypted files can be read by expending only a substantial fraction of five
minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to users
executing ps(1) or a derivative. The choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

NOTES

10/89

ed(1), edit(l), ex(1), makekey(1), nroff(1), pg(l), ps(1), stty(l), vi(1).

This command is provided with the Security Administration Utilities, which is
only available in the United States. If two or more files encrypted with the same
key are concatenated and an attempt is made to decrypt the result, only the con­
tents of the first of the original files will be decrypted correctly.

If output is piped to nroff and the encryption key is not given on the command
line then do not pipe crypt through pg(1) or any other program that changes the
tty settings. Doing so may cause crypt to leave terminal modes in a strange
state [see stty(1)].

Page 1

csh(1) csh(1)

NAME
cah - shell command interpreter with a C-like syntax

SYNOPSIS
cah [-bcefinstvVxX] [argument. ..]

DESCRIPTION
csh, the C shell, is a command interpreter with a syntax reminiscent of the C
language. It provides a number of convenient features for interactive use that are
not available with the standard (Bourne) shell, including filename completion,
command aliasing, history substitution, job control, and a number of built-in com­
mands. As with the standard shell, the C shell provides variable, command and
filename substitution.

Initialization and Termination
When first started, the C shell normally performs commands from the . cshrc file
in your home directory, provided that it is readable and you either own it or
your real group ID matches its group ID. If the shell is invoked with a name that
starts with '-', as when started by 10gin(1), the shell runs as a login shell. In
this case, after executing commands from the . cshrc file, the shell executes com­
mands from the . login file in your home directory; the same permission checks
as those for . cshrc are applied to this file. Typically, the .10gin file contains
commands to specify the terminal type and environment.

As a login shell terminates, it performs commands from the . logout file in your
home directory; the same permission checks as those for . cahrc are applied to
this file.

Interactive Operation
After startup processing is complete, an interactive C shell begins reading com­
mands from the terminal, prompting with hostname% (or hostnamet for the
privileged user). The shell then repeatedly performs the following actions: a line
of command input is read and broken into words. This sequence of words is
placed on the history list and then parsed, as described under USAGE, below.
Finally, the shell executes each command in the current line.

Noninteractive Operation

10/89

When running noninteractively, the shell does not prompt for input from the ter­
minal. A noninteractive C shell can execute a command supplied as an argument
on its command line, or interpret commands from a script.

The following options are available:

-b Force a break from option processing. Subsequent command-line argu­
ments are not interpreted as C shell options. This allows the passing of
options to a script without confusion. The shell does not run a set-user-ID
script unless this option is present.

-c Read commands from the first filename argument (which must be present).
Remaining arguments are placed in argv, the argument-list variable.

-e Exit if a command terminates abnormally or yields a nonzero exit status.

Page 1

csh(1) csh(1)

USAGE

-f

-i

-n

-s

-t

-v

-v
-x

-x

Fast start. Read neither the . cshrc file, nor the . login file (if a login
shell) upon startup.

Forced interactive. Prompt for command-line input, even if the standard
input does not appear to be a terminal (character-special device).

Parse (interpret), but do not execute commands. This option can be used
to check C shell scripts for syntax errors.

Take commands from the standard input.

Read and execute a single command line. A '\' (backslash) can be used to
escape each newline for continuation of the command line onto subse­
quent input lines.

Verbose. Set the verbose predefined variable; command input is echoed
after history substitution (but before other substitutions) and before execu­
tion.

Set verbose before reading . cshrc.

Echo. Set the echo variable; echo commands after all substitutions and
just before execution.

Set echo before reading . cshrc.

Except with the options -c, -i, -s or -t, the first nonoption argument is taken to
be the name of a command or script. It is passed as argument zero, and subse­
quent arguments are added to the argument list for that command or script.

Filename Completion
When enabled by setting the variable fHec, an interactive C shell can complete a
partially typed filename or user name. When an unambiguous partial filename is
followed by an ESC character on the terminal input line, the shell fills in the
remaining characters of a matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as CTRL-d),
the shell lists all filenames that match. It then prompts once again, supplying the
incomplete command line typed in so far.

When the last (partial) word begins with a tilde (-), the shell attempts completion
with a user name, rather than a file in the working directory.

The terminal bell signals errors or multiple matches; this can be inhibited by set­
ting the variable nobeep. You can exclude files with certain suffixes by listing
those suffixes in the variable fignore. If, however, the only possible completion
includes a suffix in the list, it is not ignored. !ignore does not affect the listing of
filenames by the EOF character.

Lexical Structure

Page 2

The shell splits input lines into words at space and tab characters, except as noted
below. The characters &, I, i, <, >, (, and) form separate words; if paired, the
pairs form single words. These shell metacharacters can be made part of other
words, and their special meaning can be suppressed by preceding them with a '\'
(backslash). A newline preceded by a \ is equivalent to a space character.

10/89

csh(1) csh(1)

In addition, a string enclosed in matched pairs of single-quotes ('), double­
quotes (..), or backquotes ('), forms a partial wordj metacharacters in such a
string, including any space or tab characters, do not form separate words. Within
pairs of backquote (') or double-quote (..) characters, a newline preceded by a
'\' (backslash) gives a true newline character. Additional functions of each type
of quote are described, below, under Variable Substitution, COIll1\CUld Sub­
stitution, and Filename Substitution.

When the shell's input is not a terminal, the character t introduces a comment
that continues to the end of the input line. Its special meaning is suppressed
when preceded by a \ or enclosed in matching quotes.

Command Line Parsing
A simple command is composed of a sequence of words. The first word (that is
not part of an I/O redirection) specifies the command to be executed. A simple
command, or a set of simple commands separated by I or I & characters, forms a
pipeline. With I, the standard output of the preceding command is redirected to
the standard input of the command that follows. With I &, both the standard
error and the standard output are redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case they are executed
sequentially. Pipelines that are separated by && or I I form conditional sequences
in which the execution of pipelines on the right depends upon the success or
failure, respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses '()' to form a simple
command that can be a component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously, or in the background by
appending an '&'j rather than waiting for the sequence to finish before issuing a
prompt, the shell displays the job number (see Job Control, below) and associ­
ated process IDs, and prompts immediately.

History Substitution
History substitution allows you to use words from previous command lines in
the command line you are typing. This simplifies spelling corrections and the
repetition of complicated commands or arguments. Command lines are saved in
the history list, the size of which is controlled by the history variable. The most
recent command is retained in any case. A history substitution begins with a !
(although you can change this with the histchars variable) and may occur any­
where on the command linej history substitutions do not nest. The ! can be
escaped with \ to suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being
expanded, but before any other substitutions take place or the command gets exe­
cuted.

Event Designators

10/89

An event designator is a reference to a command-line entry in the history list.
! Start a history substitution, except when followed by a space char­

acter, tab, newline, = or (.

Page 3

csh(1) csh(1)

! ! Refer to the previous command. By itself, this substitution repeats
the previous command.

!n Refer to command-line n.
!-n Refer to the current command-line minus n.
! str Refer to the most recent command starting with str.
! ?str[?]

Refer to the most recent command containing str.
! { ... } Insulate a history reference from adjacent characters (if necessary).

Word Designators
A ':' (colon) separates the event specification from the word designator. It can be
omitted if the word designator begins with a A, $, *, - or %. If the word is to be
selected from the previous command, the second ! character can be omitted
from the event specification. For instance, !!: 1 and !: 1 both refer to the first
word of the previous command, while ! ! $ and ! $ both refer to the last word in
the previous command. Word deSignators include:

t The entire command line typed so far.
o The first input word (command).
n The n'th argument.
A The first argument, that is, l.
$ The last argument.
% The word matched by (the most recent) ?s search.
x-y A range of words; -y abbreviates O-y.
* All the arguments, or a null value if there is just one word in the

event.
x* Abbreviates x-So
x- Like x" but omitting word $.

Modifiers

Page 4

After the optional word designator, you can add a sequence of one or more of
the following modifiers, each preceded by a :.

h Remove a trailing pathname component, leaving the head.
r Remove a trailing suffix of the form '. xxx, leaving the basename.
e Remove all but the suffix.
s/l/r[/]

'- Substitute r for I.
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
9 Apply the change to the first occurrence of a match in each word,

by prefixing the above (for example, 9&).
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Like q, but break into words at each space character, tab or new­

line.

Unless preceded by a 9, the modification is applied only to the first string that
matches I; an error results if no string matches.

10189

csh(1) csh(1)

The left-hand side of substitutions are not regular expressions, but character
strings. Any character can be used as the delimiter in place of /. A backslash
quotes the delimiter character. The character &, in the right hand side, is replaced
by the text from the left-hand-side. The & can be quoted with a backslash. A null 1
uses the previous string either from a Z or from a contextual scan string 5 from
! ?5. You can omit the rightmost delimiter if a newline immediately follows r; the
rightmost? in a context scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous
command, or to a previous history reference on the command line (if any).

Quick Substitution
"Z"r["]

This is equivalent to the history substitution: !: s"Z"r["].

Aliases
The C shell maintains a list of aliases that you can create, display, and modify
using the alias and unalias commands. The shell checks the first word in each
command to see if it matches the name of an existing alias. If it does, the com­
mand is reprocessed with the alias definition replacing its name; the history sub­
stitution mechanism is made available as though that command were the previ­
ous input line. This allows history substitutions, escaped with a backslash in the
definition, to be replaced with actual command-line arguments when the alias is
used. If no history substitution is called for, the arguments remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another
alias. Nested aliases are expanded before any history substitutions is applied.
This is useful in pipelines such as

alias 1m 'Is -1 \!* more

which when called, pipes the output of 1s(1 V) through more(1).

Except for the first word, the name of the alias may not appear in its definition,
nor in any alias referred to by its definition. Such loops are detected, and cause
an error message.

1/0 Redirection

10/89

The following metacharacters indicate that the subsequent word is the name of a
file to which the command's standard input, standard output, or standard error is
redirected; this word is variable, command, and filename expanded separately
from the rest of the command.

< Redirect the standard input.

«word Read the standard input, up to a line that is identical with word,
and place the resulting lines in a temporary file. Unless word is
escaped or quoted, variable and command substitutions are per­
formed on these lines. Then, invoke the pipeline with the tem­
porary file as its standard input. word is not subjected to vari­
able, filename, or command substitution, and each line is com­
pared to it before any substitutions are performed by the shell.

Page 5

csh(1)

> >! >& >&!

csh(1)

Redirect the standard output to a file. If the file does not exist, it
is created. If it does exist, it is overwritten; its previous contents
are lost.

When set, the variable noclobber prevents destruction of exist­
ing files. It also prevents redirection to terminals and
!dev!null, unless one of the ! forms is used. The & fonns
redirect both standard output and the the standard error (diag­
nostic output) to the file.

» »& »! »&!
Append the standard output. Like >, but places output at the
end of the file rather than overwriting it. If noclobber is set, it
is an error for the file not to exist, unless one of the! forms is
used. The & forms append both the standard error and standard
output to the file.

Variable Substitution

Page 6

The C shell maintains a set of variables, each of which is composed of a name and
a value. A variable name consists of up to 20 letters and digits, and starts with a
letter (the underscore is considered a letter). A variable's value is a space­
separated list of zero or more words.

To refer to a variable's value, precede its name with a '$'. Certain references
(described below) can be used to select specific words from the value, or to
display other information about the variable. Braces can be used to insulate the
reference from other characters in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are
resolved, and I/O redirections are applied. Exceptions to this are variable refer­
ences in I/O redirections (substituted at the time the redirection is made), and
backquoted strings (see Command Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except
within double-quotes where it always occurs. Variable substitution is suppressed
inside of single-quotes. A $ is escaped if followed by a space character, tab or
newline.

Variables can be created, displayed, or destroyed using the set and unset com­
mands. Some variables are maintained or used by the shell. For instance, the
argv variable contains an image of the shell's argument list. Of the variables
used by the shell, a number are toggles; the shell does not care what their value
is, only whether they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in). With
numeric operations, an empty value is considered to be zero; the second and sub­
sequent words of multiword values are ignored. For instance, when the verbose
variable is set to any value (including an empty value), command input is echoed
on the terminal.

Command and filename substitution is subsequently applied to the words that
result from the variable substitution, except when suppressed by double-quotes,
when noglob is set (suppressing filename substitution), or when the reference is
quoted with the : q modifier. Within double-quotes, a reference is expanded to

10/89

csh(1) csh(1)

form (a portion of) a quoted string; multiword values are expanded to a string
with embedded space characters. When the : q modifier is applied to the refer­
ence, it is expanded to a list of space-separated words, each of which is quoted to
prevent subsequent command or filename substitutions.

Except as noted below, it is an error to refer to a variable that is not set.

$var
$ {vaT} These are replaced by words from the value of var, each

separated by a space character. If var is an environment variable,
its value is returned (but ':' modifiers and the other forms given
below are not available).

$var[index]
$ {var[index] }

$ #name
$ {#name}

$0

$n
${n}

$*

These select only the indicated words from the value of var.
Variable substitution is applied to index, which may consist of
(or result in) a either single number, two numbers separated by a
'-', or an asterisk. Words are indexed starting from 1; a '*'
selects all words. If the first number of a range is omitted (as
with $argv[-2]), it defaults to 1. If the last number of a range
is omitted (as with $argv[l-]), it defaults to $lvar (the word
count). It is not an error for a range to be empty if the second
argument is omitted (or within range).

These give the number of words in the variable.

This substitutes the name of the file from which command input
is being read. An error occurs if the name is not known.

Equivalent to $argv[n].

Equivalent to $argv [*] .

The modifiers :e, :11, :q, :r, :t and :x can be applied (see History Substitu­
tion), as can :g11, :gt and : gr. If { } (braces) are used, then the modifiers
must appear within the braces. The current implementation allows only one such
modifier per expansion.

The follOWing references may not be modified with : modifiers.

$?var
${?var}

Substitutes the string 1 if var is set or 0 if it is not set.

$?O Substitutes 1 if the current input filename is known, or 0 if it is not.

$$ Substitute the process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a C shell script.

Command and Filename Substitutions

10189

Command and filename substitutions are applied selectively to the arguments of
built-in commands. Portions of expressions that are not evaluated are not
expanded. For non-built-in commands, filename expansion of the command

Page 7

csh(1) csh(1)

name is done separately from that of the argument list; expansion occurs in a
subshell, after I/O redirection is performed.

Command SUbstitution
A command enclosed by backquotes (, ... ') is performed by a subshell. Its stan­
dard output is broken into separate words at each space character, tab and new­
line; null words are discarded. This text replaces the backquoted string on the
current command line. Within double-quotes, only newline characters force new
words; space and tab characters are preserved. However, a final newline is
ignored. It is therefore possible for a command substitution to yield a partial
word.

Filename Substitution
Unquoted words containing any of the characters *, ?, [or (, or that begin with
-, are expanded (also known as globbing) to an alphabetically sorted list of
filenames, as follows:

*
?

[••• J

(str, str, •..

-[

}

Match any (zero or more) characters.

Match any single character.

Match any single character in the enclosed list(s) or range(s). A
list is a string of characters. A rallge is two characters separated
by a minus-sign (-), and includes all the characters in between in
the ASCII collating sequence [see ascH(7)].

Expand to each string (or filename-matching pattern) in the
comma-separated list. Unlike the pattern-matching expressions
above, the expansion of this construct is not sorted. For instance,
(b, a} expands to 'b' 'a', (not 'a' 'b'). AS'special cases, the char-
acters (and }, along with the string (}, are passed undisturbed.

user] Your home directory, as indicated by the value of the vari­
able home, or that of user, as indicated by the password entry for
user.

Only the patterns *, ? and [... J imply pattern matching; an error results if no
filename matches a pattern that contains them. The'.' (dot character), when it is
the first character in a filename or pathname component, must be matched expli­
citly .. The I (slash) must also be matched explicitly.

Expressions and Operators

Page 8

A number of C shell built-in commands accept expressions, in which the opera­
tors are similar to those of C and have the same precedence. These expressions
typically appear in the @, exit, if, set and while commands, and are often used
to regulate the flow of control for executing commands. Components of an
expressipn are sep~rated by white space.

Null or missing values are considered O. The result of all expressions are strings,
which may represent decimal numbers.

The following C shell operators are grouped in order of precedence:

10/89

csh(1)

10/89

(...)

* /

+
« »
< >

&

&&
I I

!=

%

<=

grouping
one's complement
logical negation

csh(1)

multiplication, division, remainder (These are right
associative, which can lead to unexpected results.
Group combinations explicitly with parentheses.)
addition, subtraction (also right associative)
bitwise shift left, bitwise shift right

>= less than, greater than, less than or equal to, greater
than or equal to

!-
equal to, not equal to, filename-substitution pattern
match (described below), filename-substitution pat­
tern mismatch
bitwise AND
bitwise XOR (exclusive or)
bitwise inclusive OR
logical AND
logical OR

The operators: -, ! =, =-, and ! - compare their arguments as strings; other
operators use numbers. The operators =- and ! - each check whether or not a
string to the left matches a filename substitution pattern on the right. This
reduces the need for switch statements when pattern-matching between strings is
all that is required.

Also available are file inquiries:
-r filename Return true, or 1 if the user has read access. Otherwise it

returns false, or O.
-w filename True if the user has write access.
-x filename True if the user has execute permission (or search permis-

-e filename
-0 filename
-z filename
-f filename
-dfilename

sion on a directory).
True if file exists.
True if the user owns file.
True if file is of zero length (empty).
True if file is a plain file.
True if file is a directory.

If file does not exist or is inaccessible, then all inquiries return false.

An inquiry as to the success of a command is also available:

{command } If command runs successfully, the expression evaluates to
true, 1. Otherwise it evaluates to false o. (Note that, con­
versely, command itself typically returns 0 when it runs suc­
cessfully, or some other value if it encounters a problem. If
you want to get at the status directly, use the value of the
status variable rather than this expression).

Page 9

csh(1) csh(1)

Control Flow
The shell contains a number of commands to regulate the flow of control in
scripts, and within limits, from the terminal. These commands operate by forcing
the shell either to reread input (to loop), or to skip input under certain conditions
(to branch).

Each occurrence of a foreach, switch, while, if ... then and else built-in must
appear as the first word on its own input line.

If the shell's input is not seekable and a loop is being read, that input is buffered.
The shell performs seeks within the internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows, backward goto commands
will succeed on nonseekable inputs.)

Command EXElcution
If the command is a C shell built-in, the shell executes it directly. Otherwise, the
shell searches for a file by that name with execute access. If the command-name
contains a I, the shell takes it as a pathname, and searches for it. If the
command-name does not contain a I, the shell attempts to resolve it to a path­
name, searching each directory in the path variable for the command. To speed
the search, the shell uses its hash table (see the rehash built-in) to eliminate
directories that have no applicable files. This hashing can be disabled with the -c
or -t, options, or the unhash built-in.

As a special case, if there is no I in the name of the script and there is an alias for
the word shell, the expansion of the shell alias is prepended (without
modification), to the command line. The system attempts to execute the first word
of this special (late-occurring) alias, which should be a full pathname. Remaining
words of the alias's definition, along with the text of the input line, are treated as
arguments.

When a pathname is found that has proper execute permissions, the shell forks a
new process and passes it, along with its arguments to the kernel (using the
execve(2) system call). The kernel then attempts to overlay the new process with
the desired program. If the file is an executable binary (in a.out(4) format) the
kernel succeeds, and begins executing the new process. If the file is a text file,
and the first line begins with I!, the next word is taken to be the pathname of a
shell (or command) to interpret that script. Subsequent words on the first line
are taken as options for that shell. The kernel invokes (overlays) the indicated
shell, using the name of the script as an argument.

If neither of the above conditions holds, the kernel cannot overlay the file (the
execve(2) call fails); the C shell then attempts to execute the file by spawning a
new shell, as follows:

• If the first character of the file is a I, a C shell is invoked.

• Otherwise, a standard (Bourne) shell is invoked.

Signal Handling
The shell normally ignores QUIT signals. Background jobs are immune to signals
generated from the keyboard, including hangups (HUP). Other signals have the
values that the C shell inherited from its environment. The shell's handling of
interrupt and terminate signals within scripts can be controlled by the onintr

Page 10 10/89

csh(1) csh(1)

built-in. Login shells catch the TERM signal; otherwise this signal is passed on to
child processes. In no case are interrupts allowed when a login shell is reading
the . logout file.

Job Control
The shell associates a numbered job with each command sequence, to keep track
of those commands that are running in the background or have been stopped
with TSTP signals (typically CTRL-z). When a command, or command sequence
(semicolon separated list), is started in the background using the & metacharacter,
the shell displays a line with the job number in brackets, and a list of associated
process numbers:

[1] 1234
To see the current list of jobs, use the jobs built-in command. The job most
recently stopped (or put into the background if none are stopped) is referred to
as the current job, and is indicated with a '+'. The previous job is indicated with
a '-'; when the current job is terminated or moved to the foreground, this job
takes its place (becomes the new current job).
To manipulate jobs, refer to the bq, fq, kill, stop and % built-ins.

A reference to a job begins with a '%'. By itself, the percent-sign refers to the
current job.

% %+ %%
%-
%j

%?string

The current job.
The previous job.
Refer to job j as in: 'kill -9 %j'. j can be a job number, or a
string that uniquely specifies the command-line by which it was
started; 'fq %vi' might bring a stopped vi job to the foreground,
for instance.
Specify the job for which the command-line uniquely contains
string.

A job running in the background stops when it attempts to read from the termi­
nal. Background jobs can normally produce output, but this can be suppressed
using the Istty tostop' command.

Status Reporting
While running interactively, the shell tracks the status of each job and reports
whenever a finishes or becomes blocked. It normally displays a message to this
effect as it issues a prompt, so as to avoid disturbing the appearance of your
input. When set, the notify variable indicates that the shell is to report status
changes immediately. By default, the notify command marks the current pro­
cess; after starting a background job, type notify to mark it.

Built-In Commands

10/89

Built-in commands are executed within the C shell. If a built-in command occurs
as any component of a pipeline except the last, it is executed in a subshell.

Null command. This command is interpreted, but performs no action.

Page 11

csh(1) csh(1)

alias [name [de!]]
Assign de! to the alias name. de! is a list of words that may contain
escaped history-substitution metasyntax. name is not allowed to be
alias or unalias. If de! is omitted, the alias name is displayed along
with its current definition. If both name and de! are omitted, all aliases
are displayed.

bg [%job] ...
Run the current or specified jobs in the background.

break Resume execution after the end of the nearest enclosing foreach or
while loop. The remaining commands on the current line are exe­
cuted. This allows multilevel breaks to be written as a list of break
commands, all on one line.

breaksw Break from a switch. resuming after the endsw.

case label:
A label in a switch statement.

cd [dir]
chdir [dir]

Change the shell's working directory to directory dir. If no argument
is given, change to the home directory of the user. If dir is a relative
pathname not found in the current directory, check for it in those
directories listed in the cdpath variable. If dir is the name of a shell
variable whose value starts with a I, change to the directory named by
that value.

continue Continue execution of the nearest enclosing while or foreach.

default: Labels the default case in a switch statement. The default should
come after all case labels. Any remaining commands on the com­
mand line are first executed.

dirs [-1]
Print the directory stack, most recent to the left; the first directory
shown is the current directory. With the -1 argument, produce an
unabbreviated printout; use of the - notation is suppressed.

echo [-n] list
The words in list are written to the shell's standard output, separated
by space characters. The output is terminated with a newline unless
the -n option is used.

eval argument ...
Reads the arguments as input to the shell, and executes the resulting
command(s). This is usually used to execute commands generated as
the result of command or variab~ubstitution, since parsing occurs
before these substitutions. See tset(1) for. an example of how to use
eval.

exec command
Execute command in place of the current shell, which terminates.

Page 12 10/89

csh(1)

10/89

csh(1)

exit [(expr) 1
The shell exits, either with the value of the Sf ATUS variable, or with
the value of the specified by the expression expr.

fg % [job 1
Bring the current or specified job into the foreground.

foreach var (wordlist)

end The variable var is successively set to each member of wordlist. The
sequence of commands between this command and the matching end
is executed for each new value of var. (Both foreach and end must
appear alone on separate lines.)

The built-in command continue may be used to continue the loop
prematurely and the built-in command break to terminate it prema­
turely. When this command is read from the terminal, the loop is read
up once prompting with? before any statements in the loop are exe­
cuted.

glob wordlist
Perform filename expansion on wordlist. Like echo, but no \ escapes
are recognized. Words are delimited by NULL characters in the output.

goto label The specified label is filename and command expanded to yield a label.
The shell rewinds its input as much as possible and searches for a line
of the form label: possibly preceded by space or tab characters. Execu­
tion continues after the indicated line. It is an error to jump to a label
that occurs between a while or for built-in, and its corresponding
end.

hashstat Print a statistics line indicating how effective the internal hash table
has been at locating commands (and avoiding execs). An exec is
attempted for each component of the path where the hash function
indicates a possible hit, and in each component that does not begin
with a 'I'.

history [-hr] [n 1
Display the history list; if n is given, display only the n most recent
events.

-r Reverse the order of printout to be most recent first rather than
oldest first.

-h Display the history list without leading numbers. This is used
to produce files suitable for sourcing using the -h option to
source.

if (expr) command
If the specified expression evaluates to true, the single command with
arguments is executed. Variable substitution on command happens
early, at the same time it does for the rest of the if command. com­
mand must be a simple command, not a pipeline, a command list, or a
parenthesized command list. Note: I/O redirection occurs even if
expr is false, when command is not executed (this is a bug).

Page 13

csh(1} csh(1}

if (expr) then

else if (expr2) then

else

endif If expr is true, commands up to the first else are executed. Other­
wise, if expr2 is true, the commands between the else if and the
second else are executed. Otherwise, commands between the else
and the endif are executed. Any number of else if pairs are
allowed, but only one else. Only one endif is needed, but it is
required. The words else and endif must be the first nonwhite char­
acters on a line. The if must appear alone on its input line or after an
else.)

jobs[-1]
List the active jobs under job control.

-1 List process IDs, in addition to the normal information.

kill [-sig] [pid] [%job] ...
kill -1 Send the TERM (terminate) signal, by default, or the signal specified,

to the specified process ID, the job indicated, or the current job. Signals
are either given by number or by name. There is no default. Typing
kill does not send a signal to the current job. If the signal being sent
is TERM (terminate) or HUP (hangup), then the job or process is sent a
CONT (continue) signal as well.

-1 List the signal names that can be sent.

limit [-h] [resource [max-use] 1
Limit the consumption by the current process or any process it
spawns, each not to exceed max-use on the specified resource. If max­
use is omitted, print the current limit; if resource is omitted, display all
limits.

-h Use hard limits instead of the current limits. Hard limits
impose a ceiling on the values of the current limits. Only the
privileged user may raise the hard limits.

resource is one of:

cputime
filesize
datasize

stacksize
coredunpsize

Maximum CPU seconds per process.
Largest single file allowed.
Maximum data size (including stack) for
the process.
Maximum stack size for the process.
Maximum size of a core dump (file).

max-use is a number, with an optional scaling factor, as follows:

Page 14 10/89

csh(1)

10/89

csh(1)

nh Hours (for cput:ilne).
nk
nm
mm:ss

n kilobytes. This is the default for all but cput:ilne.
n megabytes or minutes (for cput:ilne).
Minutes and seconds (for cput:ilne).

login [username l-p]
Terminate a login shell and invoke login(1). The .logout file is not
processed. If username is omitted, login prompts for the name of a
user.

-p Preserve the current environment (variables).

logout Terminate a login shell.

nice [+n I-n] [command]
Increment the process priority value for the shell or for command by n.
The higher the priority value, the lower the priority of a process, and
the slower it runs. When given, command is always run in a subshelI­
and the restrictions placed on commands in simple if commands
apply. If command is omitted, nice increments the value for the
current shell. If no increment is specified, nice sets the process prior­
ity value to 4. The range of process priority values is from - 20 to 20.
Values of n outside this range set the value to the lower, or to the
higher boundary, respectively.

+n Increment the process priority value by n.
-n Decrement by n. This argument can be used only by the

privileged user.

nohup [command]
Run command with HUPs ignored. With no arguments, ignore HUPs
throughout the remainder of a script. When given, command is always
run in a subshell, and the restrictions placed on commands in simple
if commands apply. All processes detached with & are effectively
nohup'd.

notify [%job) ...
Notify the user asynchronously when the status of the current, or of
specified jobs, changes.

onintr [- I label]
Control the action of the shell on interrupts. With no arguments,
onintr restores the default action of the shell on interrupts. (The shell
terminates shell scripts and returns to the terminal command input
level). With the - argument, the shell ignores all interrupts. With a
label argument, the shell executes a goto label when an interrupt is
received or a child process terminates because it was interrupted.

popd [+n) Pop the directory stack, and cd to the new top directory. The elements
of the directory stack are numbered from 0 starting at the top.

+n Discard the n'th entry in the stack.

Page 15

csh(1) csh(1)

pushd [+n I dir]
Push a directory onto the directory stack. With no arguments,
exchange the top two elements.

+n Rotate the n'th entry to the top of the stack and cd to it.
dir Push the current working directory onto the stack and change

to dir.

rehash Recompute the internal hash table of the contents of directories listed
in the path variable to account for new commands added.

repeatcountcmn~nd
Repeat command count times. command is subject to the same restric­
tions as with the one-line if statement.

set [var [= value]]
set var[n] = word

With no arguments, set displays the values of all shell variables.
Multiword values are displayed as a parenthesized list. With the var
argument alone, set assigns an empty (null) value to the variable var.
With arguments of the form var = value set assigns value to var,
where value is one of:

word
(wordlist)

A single word (or quoted string).
A space-separated list of words enclosed in
parentheses.

Values are command and filename expanded before being assigned.
The form set var[n] = word replaces the n'th word in a multiword
value with word.

setenv [V AR [word]]
With no arguments, setenv displays all environment variables. With
the V AR argument sets the environment variable V AR to have an empty
(null) value. (By convention, environment variables are normally
given upper-case names.) With both V AR and word arguments setenv
sets the environment variable NAME to the value word, which must be
either a single word or a quoted string. The most commonly used
environment variables, USER. TERM, and PATH, are automatically
imported to and exported from the esh variables user, term, and
path; there is no need to use setenv for these. In addition, the shell
sets the PWD environment variable from the esh variable ewd whenever
the latter changes.

shift [variable]
The components of argy, or variable, if supplied, are shifted to the left,
discarding the first component. It is an error for the variable not to be
set, or to have a null value.

Page 16 10/89

csh(1)

10189

csh(1)

source [-h] name
Reads commands from r/June. source commands may be nested, but
if they are nested too deeply the shell may run out of file descriptors.
An error in a sourced file at any level terminates all nested source
commands.

-h Place commands from the the file name on the history list
without executing them.

stop [%job] ...
Stop the current or specified background job.

suspend Stop the shell in its tracks, much as if it had been sent a stop signal
with "'z. This is most often used to stop shells started by suo

switch (string)
case label:

breaksw

default:

breaksw
endsw Each label is successively matched, against the specified string, which is

first command and filename expanded. The file metacharacters *, ?
and [... J may be used in the case labels, which are variable expanded.
If none of the labels match before a default label is found, execution
begins after the default label. Each case statement and the default
statement must appear at the beginning of a line. The command
breaksw continues execution after the endsw. Otherwise control falls
through subsequent case and default statements as with C. If no
label matches and there is no default, execution continues after the
endsw.

time [command]
With no argument, print a summary of time used by this C shell and
its children. With an optional command, execute command and print a
summary of the time it uses.

umask [value]
Display the file creation mask. With value set the file creation mask.
value is given in octal, and is XORed with the permissions of 666 for
files and 777 for directories to arrive at the permissions for new files.
Common values include 002, giving complete access to the group, and
read (and directory search) access to others, or 022, giving read (and
directory search) but not write permission to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases
are removed by unalias *.

Page 17

csh(1) csh(1)

unhash Disable the internal hash table.

unlimi t [-h] [resource]
Remove a limitation on resource. If no resource is specified, then all
resource limitations are removed. See the description of the limit
command for the list of resource names.

-h Remove corresponding hard limits. Only the privileged user
may do this.

unset pattern
Remove variables whose names match (filename substitution) pattern.
All variables are removed by 'unset *' j this has noticeably distasteful
side-effects.

unsetenv variable
Remove variable from the environment. Pattern matching, as with
unset is not performed.

wait Wait for background jobs to finish (or for an interrupt) before prompt­
ing.

while (apr)

end While expr is true (evaluates to non-zero), repeat commands between
the while and the matching end statement. break and continue may
be .used to terminate or continue the loop prematurely. The while
and end must appear alone on their input lines. If the shell's input is
a terminal, it prompts for commands with a question-mark until the
end command is entered and then performs the commands in the
loop.

% [job] [&]
Bring the current or indicated job to the foreground. With the amper­
sand, continue running job in the background.

@ [var ==expr]
@ [var[n] =expr]

Page 18

With no arguments, display the values for all shell variables. With
arguments, the variable var, or the n'th word in the value of var, to
the value that expr evaluates to. (If [n] is supplied, both var and its
n'th component must already exist.)

If the expression contains the characters >, <, & or I, then at least this
part of expr must be placed within parentheses.

The operators *"., +==, etc., are available as in C. The space separating
the name from the assignment operator is optional. Spaces are, how­
ever, mandatory in separating components of expr that would other­
wise be single words.

Special postfix operators, ++ and -- increment or decrement name,
respectively.

10/89

csh(1) csh (1)

Environment Variables and Predefined Shell Variables

10/89

Unlike the standard sheIl, the C shell maintains a distinction between environ­
ment variables, which are automatically exported to processes it invokes, and
shell variables, which are not. Both types of variables are treated similarly under
variable substitution. The shell sets the variables argy, cwd, home, path, pronpt,
shell, and status upon initialization. The shell copies the environment variable
USER into the shell variable user, TERM into tenn, and HOME into home, and copies
each back into the respective environment variable whenever the shell variables
are reset. PATH and path are similarly handled. You need only set path once in
the . cshre or . login file. The environment variable PM> is set from cwd when­
ever the latter changes. The following shell variables have predefined meanings:

argv

cdpath

cwd

echo

fignore

fHee

hardpaths

histchars

history

home

ignoreeof

Argument list. Contains the list of command line arguments
supplied to the current invocation of the shell. This variable
determines the value of the positional parameters $1, $2, and
so on.

Contains a list of directories to be searched by the cd., chdir,
and popd commands, if the directory argument each accepts
is not a subdirectory of the current directory.

The full pathname of the current directory.

Echo commands (after substitutions), just before execution.

A list of filename suffixes to ignore when attempting filename
completion. Typically the single word '.0'.

Enable filename completion, in which case the CTRL-d charac­
ter CTRL-d) and· the ESC character have special significance
when typed in at the end of a terminal input line:

EOT Print a list of all filenames that start with the preced­
ing string.

ESC Replace the preceding string with the longest unambi-
guous extension.

If set, pathnames in the directory stack are resolved to contain
no symbolic-link components.

A two-character string. The first character replaces ! as the
history-substitution character. The second replaces the carat
(A) for quick.substitutions.

The number of lines saved in the history list. A very large
number may use up all of the C shell's memory. If not set,
the C shell saves only the most recent command.

The user's home directory. The filename expansion of -
refers to the value of this variable.

If set, the shell ignores EOF from terminals. This protects
against accidentally killing a C shell by typing a crRL-d.

Page 19

csh(1)

mail

nobeep

noclobber

noqlob

nonanatch

notify

path

pronpt

savehist

shell

status

Page 20

csh(1)

A list of files where the C shell checks for mail. If the first
word of the value is a number, it specifies a mail checking
interval in seconds (default 5 minutes).

Suppress the bell during command completion when asking
the C shell to extend an ambiguous filename.

Restrict output redirection so that existing files are not des­
troyed by accident. > redirections can only be made to new
files. »redirections can only be made to existing files.

Inhibit filename substitution. This is most useful in shell
scripts once filenames (if any) are obtained and no further
expansion is desired.

Returns the filename substitution pattern, rather than an
error, if the pattern is not matched. Malformed patterns still
result in errors.

If set, the shell notifies you immediately as jobs are com­
pleted, rather than waiting until just before issuing a prompt.

The list of directories in which to search for commands. path
is initialized from the environment variable PATH, which the C
shell updates whenever path changes. A null word specifies
the current directory. The default is typically: (. /usr/ucb
/usr/bin). If path becomes unset only full pathnames will
execute. An interactive C shell will normally hash the con­
tents of the directories listed after reading . cshrc, and when­
ever path is reset. If new commands are added, use the
rehash command to update the table.

The string an interactive C shell prompts with. Noninterac­
tive shells leave the pronpt variable unset. Aliases and other
commands in the . cshrc file that are only useful interac­
tively, can be placed after the following test: 'if ($?proopt
= 0) exit', to reduce startup time for noninteractive shells.
A ! in the pronpt string is replaced by the current event
number. The default prompt is hostname% for mere mortals,
or hostnamet for the privileged user.

The number of lines from the history list that are saved in
-/ . history when the user logs out. Large values for
savehist slow down the C shell during startup.

The file in which the C shell resides. This is used in forking
shells to interpret files that have execute bits set, but that are
not executable by the system.

The status returned by the most recent command. If that
command terminated abnormally, 0200 is added to the status.
Built-in commands that fail return exit status 1, all other
built-in commands set status to o.

10/89

csh(1)

FILES

time

verbose

-I.cshrc
-I. login
-I. logout
-I.history
lusr/bin/sh
Itnp/sh*
letc/passwd

csh(1)

Control automatic timing of commands. Can be supplied
with one or two values. The first is the reporting threshold in
CPU seconds. The second is a string of tags and text indicat­
ing which resources to report on. A tag is a percent sign (%)
followed by a single upper-case letter (unrecognized tags print
as text):

%0

%E
%F
%I
%K

%M

%0
%P

%8

%U

Average amount of unshared data space used
in Kilobytes.
Elapsed (wallclock) time for the command.
Page faults.
Number of block input operations.
Average amount of unshared stack space used
in Kilobytes.
Maximum real memory used during execution
of the process.
Number of block output operations.
Total CPU time - U (user) plus S (system) -
as a percentage of E (elapsed) time.
Number of seconds of CPU time consumed by
the kernel on behalf of the user's process.
Number of seconds of CPU time devoted to the
user's process.

%W Number of swaps.
%X Average amount of shared memory used in

Kilobytes.

The default summary display outputs from the %U, %8, %E, %P,
%X, %0, %I, %0, %F and %W tags, in that order.

Display each command after history substitution takes place.

Read at beginning of execution by each shell.
Read by login shells after . cshrc at login.
Read by login shells at logout.
Saved history for use at next login.
Standard shell, for shell scripts not starting with a'.'.
Temporary file for '«.
Source of home directories for -name'.

SEE ALSO
login(1), sh(l)
access(2), exec(2), fork(2), pipe(2) in the Programmer's Reference Manual.
a.out(4), environ(4), termio(4), ascii(S) in the System Administrator's Reference
Manual.

DIAGNOSTICS

10/89

You have stopped jobs.
You attempted to exit the C shell with stopped jobs under job control. An
immediate second attempt to exit will succeed, terminating the stopped
jobs.

Page 21

csh(1)

NOTES

csh(1)

Words can be no longer than 1024 characters. The system limits argument lists to
1,048,576 characters. However, the maximum number of arguments to a com­
mand for which filename expansion applies is 1706. Command substitutions may
expand to no more characters than are allowed in the argument list. To detect
looping, the shell restricts the number of alias substitutions on a single line to
20.

When a command is restarted from a stop, the shell prints the directory it started
in if this is different from the current directory; this can be misleading (that is,
wrong) as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the
form a ; b ; c are also not handled gracefully when stopping is attempted. If
you suspend b, the shell never executes c. This is especially noticeable if the
expansion results from an alias. It can be avoided by placing the sequence in
parentheses to force it into a subshell.

Control over terminal output after processes are started is primitive; use the Sun
Window system if you need better output control.

Multiline shell procedures should be provided, as they are with the standard
(Bourne) shell.

Commands within loops, prompted for by?, are not placed in the history list.

Control structures should be parsed rather than being recognized as built-in com­
mands. This would allow control commands to be placed anywhere, to be com­
bined with I, and to be used with & and ; meta syntax.

It should be possible to use the : modifiers on the output of command substitu­
tions. There are two problems with : modifier usage on variable substitutions:
not all of the modifiers are available, and only one modifier per substitution is
allowed.

The 9 (global) flag in history substitutions applies only to the first match in each
word, rather than all matches in all words. The the standard text editors con­
sistently do the latter when given the 9 flag in a substitution command.

Quoting conventions are confusing. Overriding the escape character to force vari­
able substitutions within double quotes is counterintuitive and inconsistent with
the Bourne shell.

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

'set path' should remove duplicate pathnames from the pathname list. These
often occur because a shell script or a .cshrc file does something like 'set
path= (/usr/local /usr/hosts $path) , to ensure that the named directories
are in the pathname list.

The only way to direct the standard output and standard error separately is by
invoking a subshell, as follows:

exarrple% (command > outfile) >& errorfile

Page 22 10/89

csh(1)

10/89

csh(1)

Although robust enough for general use, adventures into the esoteric periphery of
the C shell may reveal unexpected quirks.

Page 23

cspllt(1) cspJit (1)

NAME
csplit - context split

SYNOPSIS
csplit [-sl [-kl [-f prefix] file argl [... argn]

DESCRIPTION

10/89

csplit reads file and separates it into n+1 sections, defined by the arguments
argl ... argn. By default the sections are placed in xxOO ... xxn (n may not be
greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by
argl.

01: ~rom the line referenced by argl up to the line referenced by Ilrg2.

n: From the line referenced by argn to the end of file.

If the file argument is a -, then standard input is used.

The options to csplit are:

-s csplit normally prints the character counts for each file created. If
the -s option is present, ¢split suppresses the printing of all char­
acter counts.

-k csplit normally removes created files if an error occurs. If the -k
option is present, csplit leaves previously created files intact.

-f prefix If the -f option is used, the created files are named
prefixOO . • • prefixn. The default is xxOO ... xXn.

The arguments (argl ... argn) to caplit can be a combination of the following:

/ rexp / A file is to be created for the section from the current line up to (but
not including) the line containing the regular expression rexp. The
current line becomes the line containing rexp. This argument may
be followed by an optional + or - some number of lines (e.g.,
/Page/-S). See ed(1) for a description of how to specify a regular
expression.

%rexp% This argument is the same as /rexp/, except that no file is created
for the section.

lnno A file is to be created from the current line up to (but not including)
lnno. The current line becomes lnno.

{num} Repeat argument. This argument may follow any of the above argu­
ments. If it follows a rexp type argument, that argument is applied
num more tiineS. If it follows lnno, the file will be split every lnno
lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaning­
ful to the shell in the appropriate quotes. Regular expressions may not contain
embedded new-lines. csplit does not affect the original file; it is the user's
responsibility to remove it if it is no longer wanted.

Page 1

csplit (1) csplit (1)

EXAMPLES
csplit -f cobol file '/procedure division/' /parS./ /par16./

This example creates four files, cobolOO ... cobol03. After editing the "split"
files, they can be recombined as follows:

cat cobolO[O-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example splits the fIle at every 100 lines, up to 10,000 lines. The -k option
causes the created files to be retained if there are less than 10,000 lines; however,
an error message would still be printed.

csplit -k prog.c '%main(%' '/~}/+1' {20}

If prog. c follows the normal C coding convention (the last line of a routine con­
sists only of a } in the first character position), this example creates a file for each
separate C routine (up to 21) in prog. c.

SEE ALSO
ed(l), sh(1).

DIAGNOSTICS

Page 2

Self-explanatory except for:
arg - out of range

which means that the given argument did not reference a line between the
current position and the end of the file.

10/89

ct(1C) ct(1C)

NAME
ct - spawn login to a remote terminal

SYNOPSIS
ct [options] telno ...

DESCRIPTION

FILES

10/89

ct dials the telephone number of a modem that is attached to a terminal and
spawns a login process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. (The set of legal characters for telno is 0 through 9, -, =, .. , and #. The
maximum length telno is 31 characters). If more than one telephone number is
specified, ct will try each in succession until one answers; this is useful for speci­
fying alternate dialing paths.

ct will try each line listed in the file / etc/uucp/Devices until it finds an avail­
able line with appropriate attributes, or runs out of entries. ct uses the following
options:

-h

-sspeed

Normally, ct will hang up the current line so that it can be l,lsed to
answer the incoming call. The -h option will prevent this action.
The -h option will also wait for the termination of the specified ct
process before returning control to the user's terminal.

The data rate may be set with the -s option. speed is expressed in
baud rates. The default baud rate is 1200.

-v If the -v (verbose) option is used, ct will send a running narrative
to the standard error output stream.

-wn If there are no free lines ct will ask if it should wait for one, and if
so, for how many minutes it should wait before it gives up. ct will
continue to try to open the dialers at one-minute intervals until the
specified limit is exceeded. This dialogue may be overridden by
specifying the -wn option. n is the maximum number of minutes
that ct is to wait for a line.

-xn This option is used for debugging; it produces a detailed output of
the program execution on stderr. n is a single number between 0
and 9. As n increases to 9, more detailed debugging information is
given.

After the user on the destination terminal logs out, there are two things that
could occur depending on what type of port monitor is monitoring the port. In
the case of no port monitor, ct prompts: Reconnect? If the response begins with
the letter n, the line will be dropped; otherwise, ttymon will be started again and
the login: prompt will be printed. In the second case, where a port monitor is
monitoring the port, the port monitor reissues the login: prompt.

The user should log out properly before disconnecting.

/etc/uucp/Devices
/var/adm/ctlog

Page.1

ct(1C) ct(1C)

SEE ALSO

NOTES

Page 2

cu(1C), loqin(1), uucp(lC).
ttytrOn(1M) in the System Administrator's Reference Manual.

The ct program will not work with a DATAKIT Multiplex interface.

For a shared port, one used for both dial-in and dial-out, the ttymon program
running on the line must have the ~r and -b options specified (see ttymon(1M».

10/89

ctags(1} ctags(1 }

NAME
ctags - create a tags file for use with vi

SYNOPSIS
ctags [-aBFtuvwx 1 [-f tagsfile 1 filename ...

DESCRIPTION

10/89

ctags makes a tags file for ex(1) from the specified C, Pascal, FORTRAN, YACC,
and LEX sources. A tags file gives the locations of specified objects (in this case
functions and typedefs) in a group of files. Each line of the tags file contains the
object name, the file in which it is defined, and an address specification for the
object definition. Functions are searched with a pattern, typedefs with a line
number. Specifiers are given in separate fields on the line, separated by SPACE or
TAB characters. Using the tags file, ex can quickly find these objects definitions.

Normally ctags places the tag descriptions in a file called tags; this may be
overridden with the -f option.

Files with names ending in . c or . h are assumed to be C source files and are
searched for C routine and macro definitions. Files with names ending in . yare
assumed to be YACC source files. Files with names ending in .1 are assumed to
be LEX files. Others are first examined to see if they contain any Pascal or FOR­
TRAN routine definitions; if not, they are processed again looking for C
definitions.

The tag main is treated specially in C programs. The tag formed is created by
prepending M to filename, with a trailing . c removed, if any, and leading path­
name components also removed. This makes use of ctags practical in directories
with more than one program.

The following options are available:

-a Append output to an existing tags file.

-8

-F
-t

-u

-v

-w

-x

Use backward searching patterns (1 ... 1).

Use forward searching patterns C/ ... /) (default).

Create tags for typedefs.

Update the specified files in tags, that is, all references to them are
deleted, and the new values are appended to the file. Beware: this option
is implemented in a way which is rather slow; it is usually faster to sim­
ply rebuild the tags file.

Produce on the standard output an index listing the function name, file
name, and page number (assuming 64 line pages). Since the output will
be sorted into lexicographic order, it may be desired to run the output
through sort -f.

Suppress warning diagnostics.

Produce a list of object names, the line number and file name on which
each is defined, as well as the text of that line and prints this on the stan­
dard output. This is a simple index which can be printed out as an off­
line readable function index.

Page 1

ctags (1) ctags(1)

FILES

USAGE

tags output tags file

The -v option is mainly used with vgrind which will be part of the optional BSD
Compatibility Package.

SEE ALSO

NOTES

Page 2

ex(l), vgrind(l), vi(l)

Recognition of functions, subroutines and procedures for FORTRAN and Pas­
cal is done is a very simpleminded way. No attempt is made to deal with block
structure; if you have two Pascal procedures in different blocks with the same
name you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions
is a hack.

ctags does not know about tifdefs.

ctags should know about Pascal types. Relies on the input being well formed to
detect typedefs. Use of -tx shows only the last line of typedefs.

10/89

cu(1C) cu (1C)

NAME
eu - call another UNIX system

SYNOPSIS
eu [options 1 [destination 1

DESCRIPTION
eu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It
manages an interactive conversation with possible transfers of files. It is con­
venient to think of eu as operating in two phases. The first phase is the connec­
tion phase in which the connection is established. eu then enters the conversation
phase. The -d option is the only one that applies to both phases.

-d Causes diagnostic traces to be printed.

Connection Phase

10/89

eu uses the same mechanism that uucp does to establish a connection. This
means that it will use the uucp control files /ete/uucp/Deviees and
/ete/uucp/Systems. This gives cu the ability to choose from several different
media to establish the connection. The possible media include telephone lines,
direct connections, and local area networks (LAN). The Devices file contains a
list of media that are available on your system. The Systems file contains infor­
mation for connecting to remote systems, but it is not generally readable.

The destination parameter from the command line is used to tell eu what system
you wish to connect to. destination can be blank, a telephone number, a system
name, or a LAN specific address. A telephone number is a string consisting of
the tone dial characters (the digits 0 through 9, *, and t) plus the special charac­
ters = and -. The equal sign designates a secondary dial tone and the minus
sign creates a 4 second delay. A system name is the name of any computer that
uuep can call; the uuname command prints a list of these names. The documenta­
tion for your LAN will show the form of the LAN specific address.

If eu's default behavior is invoked (not using the -e or -1 options), eu will use
destination to determine which medium to use. If destination is a telephone
number, eu will assume that you wish to use a telephone line and it will select an
automatic call unit (ACU). If the destination is not a telephone number, then eu
will assume that it is a system name. eu will follow the uucp calling mechanism
and use the Systems and Devices files to obtain the best available connection.
Since eu will choose a speed that is appropriate for the medium that it selects,
you may not use the -s option when destination is a system name.

The -e and -1 options modify this default behavior. -c is most often used to
select a LAN by specifying a Type field from the Devices file. Here, destination is
assumed to be a system name. If the connection attempt to system name fails, a
connection will be attempted using destination as a LAN specific address. The-1
option is used to specify a device associated with a direct connection. If the con­
nection is truly a direct connection to the remote machine, then there is no need
to specify a destination. This is the only case where a blank destination is allowed.
On the other hand, there may be cases in which the specified device connects to a
dialer, so it is valid to specify a telephone number as a destination. The -c and -1
options should not be specified on the same command line.

Page 1

cu(1C) CU(1C)

Page 2

cu accepts many options. The -c, -1, and -s options play a part in selecting the
medium; the remaining options are used in configuring the line.

-sspeed Specifies the transmission speed (300, 1200, 2400, 4800, 9600). The
default value is "Any" speed which will depend on the order of the
lines in the /etc/uucp/Devices file. Most modems are either 300,
1200, or 2400 baud. Directly connected lines may be set to a speed
higher than 2400 baud.

-ctype

-lline

-bn

-e

-h

-n

-0

-t

The first field in the Devices file is the ''Type'' field. The -c option
forces cu to only use entries in the ''Type'' field that match the user
specified type. The specified type is usually the name of a local area
network.

Specifies a device name to use as the communication line. This can
be used to override the search that would otherwise take place for
the first available line having the right speed. When the -1 option is
used without the -s option, the speed of a line is taken from the
Devices file record in which line matches the second field (the Line
field). When the -1 and -s options are both used together, cu will
search the Devices file to check if the requested speed for the
requested line is available. If so, the connection will be made at the
requested speed, otherwise, an error message will be printed and the
call will not be made. In the general case where a specified device is
a directly connected asynchronous line (e.g., /dev/term/ab), a tele­
phone number (telno) is not required. The specified device need not
be in the /dev directory. If the specified device is associated with
an auto dialer, a telephone number must be provided. If destination
is used with this option, it must be a telephone number.

Forces n to be the number of bits processed on the line. n is either 7
or 8. This allows connection between systems with different charac­
ter sizes. By default, the character size of the line is set to the same
as the current local terminal.

Set an EVEN data parity. This option designates that EVEN parity
is to be generated for data sent to the remote system.

Set communication mode to half-duplex. This option emulates the
local echo(1) command in order to support calls to other computer
systems that expect terminals to be set to half-duplex mode.

Request user prompt for telephone number. For added security, this
option will prompt the user to provide the telephone number to be
dialed, rather than taking it from the command line.

Set an ODD data parity. This option designates that ODD parity is
to be generated for data sent to the remote system.

Used to dial a terminal which has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return-line-feed
pairs is set.

10/89

cU(1C) cu(1C)

Conversation Phase

10/89

After making the connection, eu runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with -, passes it to
the remote system; the receive process accepts data from the remote system and,
except for lines beginning with -, passes it to the standard output. Normally, an
automatic DC3/DCl protocol is used to control input from the remote so the
buffer is not overrun. Lines beginning with - have special meanings.

The transmit process interprets the following user initiated commands:

-. terminate the conversation.

- ! escape to an interactive shell on the local system.

- ! cmd . . . run cmd on the local system (via sh -c).

-$cmd. . . run cmd locally and send its output to the remote system.

-%ed change the directory on the local system. Note: -! cd will
cause the command to be run by a sub-shell, probably not
what was intended.

-%take from [to 1 copy file from (on the remote system) to file to on the local
system. If to is omitted, the from argument is used in both
places.

-%put from [to] copy file from (on local system) to file to on remote system.

-- line

-%break

-%debug

-t

-1

-Ufe

-%ofe

-%divert

-%old

If to is omitted, the from argument is used in both places.

send the line - line to the remote system.

transmit a BREAK to the remote system (which can also be
specified as -%b).

toggles the -d debugging option on or off (which can also
be specified as -%d).

prints. the values of the termio structure variables for the
user's terminal (useful for debugging).

prints the values of the termio structure variables for the
remote communication line (useful for debugging).

toggles between DC3/DCl input control protocol and no
input control. This is useful when the remote system does
not respond properly to the DC3 and DCl characters. (can
also be specified as -%nostop).

toggles the output flow control setting. When enabled, out­
going data may be flow controlled by the remote host (can
also be specified as -%noostop).

allow/disallow unsolicited diversions. That is, diversions
not specified by -%take.

allow / disallow old style syntax for received diversions.

Page 3

cu(1C) CU(1C)

The receive process normally copies data from the remote system to the standard
output of the local system. It may also direct the output to local files.

The use of -%put requires stty(1) and cat(1) on the remote side. It also
requires that the current erase and kill characters on the remote system be identi­
cal to these current control characters on the local system. Backslashes are
inserted at appropriate places.

The use of -%take requires the existence of echo(1) and cat(1) on the remote
system. Also, tabs mode (See stty(l» should be set on the remote system if tabs
are to be copied without expansion to spaces.

When eu is used on system X to connect to system Y and subsequently used on
system Y to connect to system Z, commands on system Y can be executed by
using --. Executing a tilde command reminds the user of the local system uname.
For example, uname can be executed on Z, X, and Y as follows:

uname
Z
-[X]!uname
X
--[Y]!uname
Y

In general, - causes the command to be executed on the original machine.
causes the command to be executed on the next machine in the chain.

EXAMPLES

Page 4

To dial a system whose telephone number is 9 1 201 555 1234 using 1200 baud
(where dialtone is expected after the 9):

cu -s1200 9=12015551234

If the speed is not specified, "Any" is the default value.

To login to a system that is on a Datakit ves local area network, but which has
not been defined by your administrator (i.e. is not entered in the
/ete/uucp/systems file(s»:

cu -c DK address

DK is the name of the Datakit local area network, and address is the Datakit
address which is of the form, /area/exchange/machine.

To login to a system connected by a direct line:

cu -1 /dev/term/XX

or
cu -1 term/XX

To dial a system with a specific line and speed:

cu -s1200 -1 term/XX

10/89

cu(1C) cu(1C)

FIL~S

To dial a system using a specific line associated with an auto dialer:

cu -1 culXX 9=12015551234

To use a system name:
cu systemname

/ etc/uucp /Sysfiles
/ etc/uucp /Systems
/ etc/uucp /Devices
/var/spool/locks/*

SEE ALSO
cat(1), ct(1C), echo(l), ~tty(l), uucp(lC), uname(l), uuname(1).
System Administrator's Guide.

DIAGNOSTICS

NOTES

10/89

Exit code is zero for normal exit, otherwise, one.

The eu command does not do any integrity checking on data it transfers. Data
fields with special eu characters may not be transmitted properly. Depending on
the interconnection hardware, it may be necessary to use a -. to terminate the
conversion, eVen if stty 0 has been used. Non-printing characters are not
dependably transmitted using either the -%put or -%talce commands. ell.
between an IMBR1 and a PENRlL modem, will not return a login prompt
immediately upon connection. A carriage return will return the prompt.

-%put and -%take cannot be used over multiple links. Files must be moved one
link at a tim~.

There is an artificial slowing of transmission by cu during thE! -%put operation
so that loss of data i~ unlikely. Files transferred using -%take or ;'%put mlist
contain a trailing newline, otherwise, the operation will hang. Entering a CTRL-<i
command usually clears the hang condition.

Page 5

cut (1) cut (1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]
cut -flist [-dchar] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data
base parlance, it implements the projection of a relation. The fields as specified
by list can be fixed length, i.e., character positions as on a punched card (-c
option) or the length can vary from line to line and be marked with a field delim­
iter character like tab (-f option). cut can be used as a filter; if no files are given,
the standard input is used. In addition, a file name of "-" explicitly refers to
standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order),
with optional - to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field)].

-clist The list following -c (no space) specifies character positions (e.g.,
-c1-72 would pass the first 72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the file
by a delimiter character (see -d); e.g., -f1, 7 copies the first and seventh
field only. Lines with no field delimiters will be passed through intact
(useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only).
Default is tab. Space or other characters with speciid meaning to the
shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Either the -c or -f option must be specified.

Use grep(l) to make horizontal "cuts" (by context) through a file, or paste(1) to
put files together column-wise (Le., horizontally). To reorder columns in a table,
use cut and paste.

EXAMPLES
cut -d: -fl,5 /etc/passwd mapping of user IDs to names

name='who am i I cut -f1 -d" ", to set name to current login name.

DIAGNOSTICS
I "ERROR: line too long"

A line can have no more than 1023 characters or fields, or
there is no new-line character.

"ERROR: bad list for c / f option"
Missing -c or -f option or incorrectly specified list. No
error occurs if a line has fewer fields than the list calls for.

10/89 Page 1

cut (1) cut (1)

"ERROR: no fields"
The list is empty.

"ERROR: no delimeter"
Missing char on -d option.

"ERROR: cannot handle multiple adjacent backspaces"
Adjacent backspaces cannot be processed correctly.

"WARNING: cannot open <filenaxre>"
Either filename cannot be read or does not exist. If multiple
filenames are present, prcessing continues.

SEE ALSO
grep(l), paste(1).

Page 2 10/89

date (1) date (1)

NAME
date - print and set the date

SYNOPSIS
date [-u] [+ format]
date [-a [-] sss.fff] [-u] [[mmdd] HHMM I mmddHHMM [cc] yy]

DESCRIPTION

10/89

If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the current date is set (only by super-user).

-a [-] sss.fff
Slowly adjust the time by sss.fff seconds (fff represents fractions of a
second). This adjustment can be positive or negative. The system's
clock will be sped up or slowed down until it has drifted by the
number of seconds specified.

-u Display (or set) the date in Greenwich Mean Time (GMT-universal
time), bypassing the normal conversion to (or from) local time.

mm is the month number

dd is the day number in the month

HH is the hour number (24 hour system)

MM is the minute number

cc is the century minus one

yy is the last 2 digits of the year number

+ format

The month, day, year, and century may be omitted; the current
values are C I pplied as defaults. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default
because no year is supplied. The system operates in GMT. date
takes care of the conversion to and from local standard and daylight
time. Only the super-user may change the date. After successfully
setting the date and time, date displays the new date according to
the default format. The date command uses TZ to determine the
correct time zone information (see environ(5».

If the argument begins with +, the output of date is under the con­
trol of the user. Each Field Descriptor, described below, is preceded
by % and is replaced in the output by its corresponding value. A
single % is encoded by %%. All other characters are copied to the
output without change. The string is always terminated with a
new-line character. If the argument contains embedded blanks it
must be quoted (see the EXAMPLE section).

Specifications of native language translations of month and weekday names are
supported. The month and weekday names used for a language are based on the
locale specified by the environment variables LC_TlME and LANG (see environ(5».

Page 1

date(1) date (1)

The month and weekday names used for a language are taken from a file whose
format is specified in strftime(4). This file also defines country-specific date and
time formats such as %c, which specifies the default date format. The following
form is the default for %c:

%a %b %e %T %Z %Y
e.g.J Fri Dec 2310:10:42 EST 1988

Field Descriptors (must be preceded by a %):
a abbreviated weekday name
A full weekday name
b abbreviated month name
B full month name
c country-specific date and time format
d day of month - 01 to 31
D date as %m/%d/%y
e day of month - 1 to 31 (single digits are preceded by a blank)
h abbreviated month name (alias for %b)
H hour - 00 to 23
I hour - 01 to 12
j day of year - 001 to 366
m month of year - 01 to 12
M minute - 00 to 59
n insert a new-line character
p string containing ante-meridiem or post-meridiem indicator (by default,

AM or PM)
r time as %I: %M: %S %p
R time as %H:%M
S second - 00 to 61, allows for leap seconds
t insert a tab character
T time as %H:%M:%S
U week number of year (Sunday as the first day of the week) - 00 to 53
w day of week - Sunday = 0
w week number of year (Monday as the first day of the week) - 00 to 53
x Country-specific date format
X Country-specific time format
y year within century - 00 to 99
Y year as ccyy (4 digits)
Z timezone name

EXAMPLE

Page 2

The command

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates as output:

DATE: 08/01/76
TIME: 14:45:05

10/89

date(1} date (1 }

DIAGNOSTICS

NOTES

No pel:!lli.ssion You are not the super-user and you try to change the date.
bad conversion The date set is syntactically incorrect.

Should you need to change the date while the system is running multi-user, use
the datetime command of sysadm(lM).

If you attempt to set the current date to one of the dates that the standard and
alternate time zones change (for example, the date that daylight time is starting
or ending), and you attempt to set the time to a time in the interval between the
end of standard time and the beginning of the alternate time (or the end of the
alternate time and the beginning of standard time), the results are unpredictable.

SEE ALSO

10/89

sysadllllM), strftime(4), environ(5) in the System Administrator's Reference
Manual.

Page 3

dc(1) dc(1)

NAME
de - desk calculator

SYNOPSIS
de [file]

DESCRIPTION
. de is an arbitrary precision arithmetic package. Ordinarily it operates on decimal

integers, but one may specify an input base, output base, and a number of frac­
tional digits to be maintained. [be is a preprocessor for de that provides infix
notation and a C-like syntax that implements functions. be also provides reason­
able control structures for programs. See be(1).] The overall structure of de is a
stacking (reverse Polish) calculator. If an argument is given, input is taken from
that file until its end, then from the standard input. The following constructions
are recognized:

10fl!9

number
The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0-9. It may be preceded by an underscore U to input
a negative number. Numbers may contain.decimal points.

+ - / * % A

The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (/), remaindered (%), or exponentiated (A). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x
may be any character. If the s is capitalized, x is treated as a stack and the
value is pushed on it.

lx The· value in register :r is pushed on' the stack. The register x is not
altered, . AU registers start with zero value. If the 1 is capitalized, register
x is treated as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

p ~nterprets the. top of the stack as· an ASCII string, removes it, and prints it.

f All values on the stack are. printed.

q Exits the program. . If executing a string, the recursion level is popped by
two.

Q Exits the program. The top value on the stack is popped and the string
execution level is popped by that value. .

x Treats thetop element of the stack as a character string and executes it as a
string of de;: commands.

X Replaces the number on the top of the stack with its scale factor.

[...]
Puts the bracketed ASOI string onto the top of the stack.

Page 1

dc(1) dc(1)

<x >x =x

v

c

i

o

o
k

z

Z

?

The top two elements of the stack are popped and compared. Register x is
evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

Int~rprets the rest of the line as a UNIX system command.

All values on the stack are popped.

The top value on the stack is popped and used as the number radix for
further input. I Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

Pushes the output qase on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
tnaintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable if
all are changed together.

The stilck level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) ilnd
executeQ.

are used by be(t) for arTay operations.
EXAMPLE

This example prints the first ten values of n!:

[lal+dsa*plalO>y]sy
Osal
lyx

SEE ALSQ
be(1).

DIAGNOSTICS

Page 2

x is unimplemented: x is an octal number.

stack enpty: not enough elements Qn the stack to do what was asked.

Out of space: the free list is exhausted (too many digits).

Out of headers: too many numbers being kept around.

Out of pushdown: too many items on the stack.

Nesting Depth: too many levels of nested execution.

10/89

dd(1M) dd(1M)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value) ".

DESCRIPTION

10/89

dd copies the specified input file to the specified output with possible conver­
sions. The standard input and, output are used by default. The input and output
block sizes may be specified to take advantage of raw physical I/O.
option
H=file
of=file
i1:>s=n
obs=n
bs=n

cbs=n
files=n

skip--n

iseek=n

oseek=n
seek=n
count=n
conv=ascii

ebcdic
ibm
block
unblock

lease
ucase
swab
noerror

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size n bytes (default 512)
set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, preserve the input
block size instead of packing short blocks into the output
buffer (this is particularly efficient since no in-core copy
need be done)
conversion buffer size (lOgical record length)
copy and concatenate n input files before terminating (makes
sense only where input is a magnetic tape or similar device)
skip n input blocks before starting copy (appropriate for
magnetic tape, where iseek is undefined)
seek n blocks from beginning of input file before copying
(appropriate for disk files, where skip can be incredibly slow)
seek n blocks from beginning of output file before copying
identical to oseek; retained for backward compatibility
copy only n input blocks
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASOI to EBCDIC
convert new-line terminated ASOI records to fixed length
convert fixed length ASCII records to new-line terminated
records
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error (limit of 5 consecutive
errors)

sync pad every input block to ibs
. . . , several comma-sepatated conversions

Where sizes are specified, a number of bytes Is expected. A number may. end
with k, b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair of
numbers may be separated by x to indicate multiplication.

Page 1

dd (1 M) dd (1M)

cbs is used only if ascii, !Jnblock, ebcdic, ibm, or block conversion is specified. In
the first two cases, cbs characters are copied into the conversion buffer, any
specified character mapping is done, trailing blanks are trimmed and a new-line
is added before sending the line to the output. In the latter three cases, charac­
ters are read into the conversion buffer and blanks are added to make up an out­
put record of size cbs. If cbs is unspecified or zero, the ascii, ebcdic, and ibm
options convert the character set without changing the block structure of the
input file; the unblock and block options become a simple file copy.

After completion, dd reports the number of whole and partial input and output
blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images
per tape block into the ASCII file x:

dd if=/dev/r.mt(Oh of=x ibs=800 obs=8k cbs=80 conv=ascii,lcase

Note the use of raw magnetic tape. dd is especially suited to I/O on the raw
physical devices because it allows reading and writing in arbitrary block sizes.

SEE ALSO
cp(1)

NOTES
Do not use dd to copy files between filesystems having different block sizes.

Using a blocked device to copy a file will result in extra nulls being added to the
file to pad the final block to the block boundary.

DIAGNOSTICS
f+p records in(out) numbers of full and partial blocks read(written)

Page 2 10/89

deroff(1) deroff(1)

NAME
deroff - remove nroffjtroff, tbl, and eqn constructs

SYNOPSIS
deroff [-mx] [_] [files]

DESCRIPTION
deroff reads each of the files in sequence and removes all troff(l) requests,
macro calls, backslash constructs, eqn(1) constructs (between .EQ and .EN lines,
and between delimiters), and tbl(l) descriptions, perhaps replacing them with
white space (blanks and blank lines), and writes the remainder of the file on the
standard output. deroff follows chains of included files (.80 and . nx troff
commands)j if a file has already been included, a .80 naming that file is ignored
and a . nx naming that file terminates execution. If no input file is given, deroff
reads the standard input.

The -m option may be followed by an m, 8, or 1. The -IIII\ option causes the mac­
ros to be interpreted so that only running text is output (Le., no text from macro
lines.) The -ml option forces the -mn option and also causes deletion of lists asso­
ciated with the mn macros.

If the -w option is given, the output is a word list, one "word" per line, with all
other characters deleted. Otherwise, the output follows the original, with the
deletions mentioned above. In text, a "word" is any string that contains at least
two letters and is composed of letters, digits, ampersands (&), and apostrophes
(')j in a macro call, however, a "word" is a string that begins with at least two
letters and contains a total of at least three letters. Delimiters are any characters
other than letters, digits, apostrophes, and ampersands. Trailing apostrophes and
ampersands are removed from "words."

SEE ALSO

NOTES

10/89

eqn(1), nroff(1), tbl(1), troff(1) in the DOCUMENTER'S WORKBENCH
Software Technical Discussion and Reference Manual.

deroff is not a complete troff interpreter, so it can be confused by subtle con­
structs. Most such errors result in too much rather than too little output.

The -ml option does not handle nested lists correctly.

Page 1

df(1M} df(1M}

NAME
df (generic) - report number of free disk blocks and files

SYNOPSIS
df [-F FSType] [-begklntV] [current_options] [-0 specific_options] [directory I spe­
cial I resource ...]

DESCRIPTION

10/89

df prints the allocation portions of the generic superblock for mounted or
unmounted file systems, directories or mounted resources. directory represents a
valid directory name. If directory is specified df reports on the device that con­
tains the directory. special represents a special device (e.g., /dev/dsk/cldOs8).
resource is an RFS/NFS resource name. If arguments to df are pathnames, df
produces a report on the file system containing the named file.

current_options are options supported by the sS-specific module of df. Other
FSTypes do not necessarily support these options. specific _options indicate subop­
tions specified in a comma-separated list of suboptions and/or keyword-attribute
pairs for interpretation by the FSType-specific module of the command.

The options are:

-F Specify the FSType on which to operate. This is only needed if the file
system is unmounted. The FSType should be specified here or be
determinable from /etc/vfstab by matching the mountyoint, special,
or resource with an entry in the table.

-b Print only the number of kilobytes free.

-e

-g

-k

-1

-n

-t

-v

-0

Print only the number of files free.

Print the entire statvfs structure. Used only for mounted file sys­
tems. Can not be used with current_options or with the -0 option.
This option will override the -b, --e, -k, -n, and -t options.

Print allocation in kilobytes. This option should be invoked by itself
because its output format is different from that of the other options.

Report on local file systems only. Used only for mounted file systems.
Can not be used with current _options or with the -0 option.

Print only the FSType name. Invoked with no arguments this option
prints a list of mounted file system types. Used only for mounted file
systems. Can not be used with current _options or with the -0 option.

Print full listings with totals. This option will override the -b, -e, and
-n options.

Echo the complete command line, but do not execute the command.
The command line is generated by using the options and arguments
provided by the user and adding to them information derived from
/etc/mnttab or /etc/vfstab. This option should be used to verify
and validate the command line.

Specify FSType-specific options.

Page 1

df{1M)

NOTES

FILES

df{1M)

If no arguments or options are specified, the free space on all local and remotely
mounted file systems is printed.

The -F option is intended for use with unmounted file systems.

This command may not be supported for all FSTypes.

/dev/dsk/*
/etc/mnttab
/etc/vfstab

mount table
list of default parameters for each file system

SEE ALSO

Page 2

mount(1M), mnttab(4), vfstab(4).
statvfs(2) in the Programmer's Reference Manual.
Manual pages for the FSType-specific modules of df.

10/89

diff (1) dlff (1)

NAME
diff - differential file comparator

SYNOPSIS
diff [-bitw] [-c I -e I -f I -h I -n] filenamel filenameZ
diff [-bitw] [-c number] filenamel filenameZ
diff [-bitw] [-0 string] filenamel filenameZ
diff [-bitw] [-c I-e I -f I-h I-n] [-1] [-r] [-s] [-s name] diredoryl direc­
toryZ

DESCRIPTION

10/89

diff tells what lines must be changed in two files to bring them into agreement.
If filenamel (filenameZ) is -, the standard input is used. If filenamel (filenameZ) is a
directory, then a file in that directory with the name filenameZ (filenamel) is used.
The normal output contains lines of these forms:

nl a n3,n4
nl,nZ d n3
nl,nZ c n3,n4

These lines resemble ed commands to convert filenamel into filenameZ. The
numbers after the letters pertain to filename2. In fact, by exchanging a for d and
reading backward one may ascertain equally how to convert filenameZ into
filenamel. As in ed, identical pairs, where nl = nZ or n3 = n4, are abbreviated as
a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by>.

-b Ignores trailing blanks (spaces and tabs) and treats other strings of blanks
as equivalent.

-i Ignores the case of letters; for example, 'A will compare equal to 'a'.

-t Expands TAB characters in output lines. Normal or -c output adds
character(s) to the front of each line that may adversely affect the indenta­
tion of the original source lines and make the output lines difficult to
interpret. This option will preserve the original source's indentation.

-w Ignores all blanks (SPACE and TAB characters) and treats all other strings
of blanks as equivalent; for example, 'if (a == b)' will compare equal
to'if(a==b)'.

The following options are mutually exclusive:

-c Produces a listing of differences with three lines of context. With this
option output format is modified slightly: output begins with
identification of the files involved and their creation dates, then each
change is separated by a line with a dozen *'s. The lines removed from
filenamel are marked with '-'; those added to filenameZ are marked' +'.
Lines that are changed from one file to the other are marked in both files
with' !'.

Page 1

diff(1)

FILES

diff (1)

-c number
Produces a listing of differences identical to that produced by -c with
number lines of context.

-e Produces a script of a,c, and d commands for the editor ed, which will
recreate filename2 from filenamel. In connection with -e, the following
shell program may help maintain multiple versions of a file. Only an
ancestral file ($1) and a chain of version-to-version ed scripts ($2,$3, ...)
made by diff need be on hand. A "latest version" appears on the stan­
dard output.

(shift; cat $*; echo 'l,$p') I ed - $1

Except in rare circumstances, <iiff finds a smallest sufficient set of file differ­
ences.

-f Produces a similar script, not useful with ed, in the opposite order.

-h Does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length.
Options -e and -f are unavailable with -h.

-n Produces a script similar to -e, but in the opposite order and with a count
of changed lines on each insert or delete command.

-D string
Creates a merged version of filenamel and filename2 with C preprocessor
controls included so that a compilation of the result without defining
string is equivalent to compiling filenamel, while defining string will yield
filename2.

The following options are used for comparing directories:

-1 Produce output in long format. Before the <iiff, each text file is piped
through pr(1) to paginate it. Other differences are remembered and sum­
marized after all text file differences are reported.

-r Applies diff recursively to common subdirectories encountered.

-s Reports files that are the identical; these would not otherwise be men-
tioned.

-s name
Starts a directory diff in the middle, beginning with the file name.

/trrp/d?????
/usr/1ib/<iiffh for -h
/usr/bin/pr

SEE ALSO
bdiff(1), crrp(1), comm(l), ed(1), pr(1).

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Page 2 10/89

diff (1)

NOTES

10/89

diff (1)

Editing scripts produced under the -e or -f option are naive about creating lines
consisting of a single period (.).

Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are dif­
ferent, they will be flagged and output; although the output will seem to indicate
they are the same.

Page 3

diff3 (1) diff3 (1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-exEX3 1 filel file2 file3

DESCRIPTION

FILES

diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

=1

=2

=3

all three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

f : nl a Text is to be appended after line number nl in file I,
where I = 1, 2, or 3.

I : nl , n2 c Text is to be changed in the range line nl to line n2. If
nl = n2, the range maybe abbreviated to n1.

The original contents of the range follows immediately after a c indication. When
the contents of two files are identical, the contents of the lower-numbered file is
suppressed.

-e Produce a script for the editor ed(1) that will incorporate into filel all
changes between file2 and file3, i.e., the changes that normally would be
flagged = and 3.

-x Produce a script to incorporate only changes flagged =.

-3 Produce a script to incorporate only changes flagged =3.

-E Produce a script that will incorporate all changes between file2 and file3,
but treat overlapping changes (that is, changes that would be flagged with
= in the normal listing) differently. The overlapping lines from both
files will be inserted by the edit script, bracketed by ««« and »>>>>
lines.

-x Produce a script that will incorporate only changes flagged =, but treat
these changes in the manner of the -E option.

The following command will apply the resulting script to filel.

(cat script; echo 'l,$p') I ed - filel

/tnp/d3*
/usr/lib/diff3prog

SEE ALSO
diff(1).

10/89 Page 1

diff3(1}

NOTES

Page 2

Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes will not work.

dlff3 (1)

10/89

dircmp(1) dircmp (1)

NAME
dircnp - directory comparison

SYNOPSIS
dircnp [-d 1 [-8 1 [-wn 1 dirl dir2

DESCRIPTION
dircnp examines dirl and dir2 and generates various tabulated information about
the contents of the directories. Listings of files that are unique to each directory
are generated for all the options. If no option is entered, a list is output indicat­
ing whether the file names common to both directories have the same contents.

-d Compare the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them
into agreement. The list format is described in diff(1).

-8 Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width is
72.

SEE ALSO
crrp(1), diff(l).

10/89 Page 1

download (1) download (1)

NAME
download - host resident PostScript font downloader

SYNOPSIS
download [options] [files]

DESCRIPTION
download prepends host resident fonts to files and writes the results on the stan­
dard output. If no files are specified, or if - is one of the input files, the standard
input is read. download assumes the input files make up a single PostScript job
and that requested fonts can be included at the start of each input file. The fol­
lowing options are understood:

-f Force a complete scan of each input file. In the absence of an
explicit comment pointing download to the end of the file, the
default scan stops immediately after the PostScript header com­
ments.

-p printer

-mname

-Hdir

Check the list of printer-resident fonts in
/ etc/lp/printers/printer / resident fonts before download-
ing.

Use name as the font map table. A name that begins with / is
the full pathname of the map table and is used as is. Otherwise
name is appended to the pathname of the host font directory.

Use dir as the host font directory. The default is
/usr/lib/lp/postscript.

Requested fonts are named in a comment (marked with %%DocumentFonts:) in
the input files. Available fonts are the ones listed in the map table selected using
the -m option.

The map table consists of fontname-filename pairs. The fontname is the full
name of the PostScript font, exactly as it would appear in a %%DocumentFonts:
comment. The filename is the pathname of the host resident font. A filename
that begins with a / is used as is. Otherwise the pathname is relative to the host
font directory. Comments are introduced by % (as in PostScript) and extend to
the end of the line.

The only candidates for downloading are fonts listed in the map table that point
download to readable files. A font is downloaded once, at most. Requests for
unlisted fonts or inaccessible files are ignored. All requests are ignored if the
map table can't be read.

EXAMPLES

10/89

The following map table could be used to control the downloading of the Book­
man font family:

%

% The first string is the full PostScript font name. The second string
% is the file name - relative to the host font directory unless it begins
% with a /.
%

Page 1

download(1) download (1)

Bookman-Light
Bookman-Light Italio
Bookman-Demi
Bookman-DemiItalio

bookman/light
bookman/lightitalio
bookman/demi
bookman/demiitalio

Using the file myprinter/map (in the default host font directory) as the map
table, you could download fonts by issuing the following command:

download ~ myprinter/map file
DIAGNOSTICS

NOTES

An exit status of 0 is returned if files were successfully processed.

The download program should be part of a more general program.

download does not look for %%PaqeFonts: comments and there iii no way to
force multiple downloads of a particular font.

We do not recommend the use of full pathnames in either map tables or the
names of map tables.

SEE ALSO

Page 2

dpost(1), postdaisy(l), postdm:l(1), postio(l), postJJd(l), postprint(1),
posttek(1).

10189

dpost(1) dpost(1)

NAME
dpost - troff postprocessor for PostScript printers

SYNOPSIS
dpost [options] [files]

DESCRIPTION

10189

dpost translates files created by troff(l) into PostScript and writes the results on
the standard output. If no files are specified, or if - is one of the input files, the
standard input is read. The following options are understood:

-cnum

-enum

-mnum

-nnum

-0 list

-p mode

-wnum

-xnum

-ynum

-F dir

-Hdir

Print num copies of each page. By default only one copy is
printed.

Sets the text encoding level to num. The recognized choices are
0, 1, and 2. The size of the output file and print time should
decrease as num increases. Level 2 encoding will typically be
about 20 percent faster than level 0, which is the default and
produces output essentially identical to previous versions of
dpost.

Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin, which is located near the upper left
corner of each page. The default magnification is 1.0.

Print num logical pages on each piece of paper, where num can
be any positive integer. By default, num is set to 1.

Print those pages for which numbers are given in the comma­
separated list. The list contains single numbers N and ranges
Nl- N2. A missing Nl means the lowest numbered page, a
missing N2 means the highest.

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

Set the line width used to implement troft graphics commands
to num points, where a point is approximately 1/72 of an inch.
By default, num is set to 0.3 points.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed near the upper
left corner of the page, with positive x to the right and positive
y down the page. Positive num moves everything right. The
default offset is 0 inches.

Translate the origin num inches along the positive y axis. Posi­
tive num moves text up the page. The default offset is O.

Use dir as the font directory. The default dir is /usr/llb/font,
and dpost reads binary font files from directory
/usr/llb/font/devpost.

Use dir as the host resident font directory. Files in this direc­
tory should be complete PostScript font descriptions, and must
be assigned a name that corresponds to the appropriate two­
character troff font name. Each font file is copied to the

Page 1

dPost(1) dpost(1)

-L file

-0

-T name

output file only when needed and at most once during each job.
There is no default directory.

Use file as the PostScript prologue which, by default, is
/usr/lib/postscript/dpost.ps.

Disables PostScript picture inclusion. A recommended option
whendpost is run by a spooler in a networked environment.

Use funt files for. dElVice 7IIlme .as the best description of available
PostScript fonts. By default, name is Set to post and clpOst
reads binary files from /usr/lib/font/devpost.

The files should be prepared by . troff. The default font files in
/usr/lib/font/devpost produce the best and most efficient output. They
assUine.a resolution. of 720 dpi, and can be used to format files by adding the
-Tpost . option to. the troff· call. Older versions of the. eqn and pic preproces­
sors need to know the resolution that trOff will be using to format the files. If
those are the versions installed on your system, use the :"'r720 option with eqn
and -T720 with pic.

dpost makes no assumptions about resolutions. The first x res command sets
the resolution used to translate the input files, the DESC. out file, usually
/usr/lib/font/deVpost/DESC.out, defines the resolution used in the binary
font files, and the PostScript prologue is responsible for setting up an appropriate
user coordinate system.

EXAMPLES

NOTES

Page 2

If the old versions of eqn and pic are installed on your system, you can obtain
the best possible looking output by issuing a command line such as the following:

pic -T720 file I tbl I eqn -r720 I troff -min -Tpost I dpost

OtherwiSe,
pic file I tbl eqn troff -mn -Tpost I dpost

should give the best results.

Output files often do not conform to Adobe's file structuring conventions. Piping
the output of dpost through postreverse should produce a minimally conform:·
ing PostScript file.

Although dpost can handle files formatted for any device, emulation is expensive
and can easily double the print time and the size of the output file. No attempt
has been made to implement the character sets or fonts available on all devices
supported by troff.. Missing characters will be replaced by white space, and
unrecognized fonts will usually default to one of the Times fonts (that is, R, I, B,
or BI).

An x res command must precede the first x init command, and all the input
files should have been prepared for the same output device.

Use of the -T option is not· encouraged. Its only purpose is to enable the use of
other PostScript font and device description files, that perhaps use different reso­
lutions, character sets, or fonts.

10/89

dpost(1) dpost(1)

Although level 0 encoding is the only scheme that has been thoroughly tested,
level 2 is fast and may be worth a try.

DIAGNOSTICS

FILES

An exit status of 0 is returned if files have been translated successfully, while 2
often indicates a syntax error in the input files.

/usr/lib/font/devpost/*.out
/usr/lib/font/devpost/charlib/*
/usr/lib/postscript/dpost.ps
/usr/lib/postscript/color.ps
/usr/lib/postscript/draw.ps
/usr/lib/postscript/forms.ps
/usr/lib/postscript/ps.requests
/usr/lib/macros/pictures
/usr/lib/macros/color

SEE ALSO

10/89

download(1), postdaisy(l), postdn"d(1), postio(1), postIOO.(l), postprint(1),
postreverse(1), posttek(1), troff(1) devpost(5), troff(5).

Page 3

dsconfig (1)

NAME
dsconfig - display data storage device configQration

SYNOPSIS
/usr/bin/ dsconfig [simple_administration _device_name 1

DESCRIPTION

dsconflg (1)

The dsconfig command produces the mapping of the simple administration
names for data storage devices found in /dev/rSA to the device names found in
/dev/rdsk or /dev/rrm:. and prints the physical location of the associated peri­
pheral on the machine. The dsconfig command with no arguments prints the
mapping for every entry in /dev/rSA.

EXAMPLE

10/89

dsconfig diskl disk6

SA: diskl
device: /dev/rdsk/cldOs6
configuration: Integral Disk Drive 0

SA: disk6
device: /dev/rdsk/cltSd2s6
configuration: Slot 1 Target Controller 5 Drive 2

Page 1

du(1M} du(1M}

NAME
du - summarize disk usage

SYNOPSIS
du [-sar] [name ...]

DESCRIPTION

NOTES

The du command reports the number of blocks contained in all files and (recur­
sively) directories within each directory and file specified. The block count
includes the indirect blocks of the file. If no names are given, the current direc­
tory is used.

The optional arguments are as follows:

-s causes only the grand total (for each of the specified names) to be given.

-a causes an output line to be generated for each file.

If . neither -s or -a is specified, an output line is generated for each directory
only.

-r will cause du to generate messages about directories that cannot be be
read, files that cannot be opened, etc., rather than being silent (the
default).

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not listed.

If there are links between files in different directories where the directories are on
separate branches of the file system hierarchy, du will count the excess files more
than once.

Files with holes in them will get an incorrect block count.
SEE ALSO

The FileSystem Administration chapter in the System Administrator's Guide.

10/89 Page 1

echo(1) echo(1)

NAME
echo - echo arguments

SYNOPSIS
echo [arg 1 ...
echo [-n][arg 1

DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on
the standard output.

The /usr/bin/sh version understands the following C-like escape conventions;
beware of conflicts with the shell's use of \:

\ b backspace
\ c print line without new-line
\ f form-feed
\n new-line
\ r carriage return
\ t tab
\ v vertical tab
\ \ backs lash
\ On where n is the 8-bit character whose ASOI code is the 1-, 2- or 3-

digit octal number representing that character.

The following option is available to /usr/bin/sh users only if /usr/ucb pre­
cedes /usr/bin in the user's PATH. It is available to /usr/csh users, regardless
of PATH:

-n Do not add the newline to the output.

echo is useful for producing diagnostics in command files, for sending known
data into a pipe, and for displaying the contents of environment variables.

SEE ALSO
sh(1).

NOTES

10/89

The -n option is a transition aid for BSD applications, and may not be supported
in future releases.

When representing an 8-bit character by using the escape convention \ On, the n
must always be preceded by the digit zero (0).

For exam pIe, typing: echo 'WARNING: \ 07' will print the phrase WARNING: and
sound the "bell" on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the "Y' that precedes the "07".

Following the \ 0, up to three digits are used in constructing the octal output
character. If, following the \ On, you want to echo additional digits that are not
part of the octal representation, you must use the full 3-digit n. For example, if
you want to echo "ESC 7" you must use the three digits "033" rather than just
the two digits "33" after the \ o.

Page 1

echo(1) echo(1)

Page 2

2 digits Incorrect: echo n\0337 n od -xc
produces: dfOa (hex)

337 (ascii)

3 digits Correct: echo n\00337 n od -xc
produces: lb37 OaOO (hex)

033 7 (ascii)

For the octal equivalents of each character, see ascii(5), in the System
Administrator's Reference Manual.

10/89

ed(1) ed(1)

NAME
ed, red - text editor

SYNOPSIS
ed [-s] [-p string] [-x] [-C] [file]

red [-s] [-p string] [-x] [-c] [file]

'JESCRIPTION

10/89

ed is the standard text editor. If the file argument is given, ed simulates an e
command (see below) on the named file; that is to say, the file is read into ed's
buffer so that it can be edited.

-8 Suppresses the printing of character counts bye, r, and w commands, of
diagnostics from e and q commands, and of the ! prompt after a
! shell command.

-p Allows the user to specify a prompt string.

-x Encryption option; when used, ed simulates an X command and prompts
the user for a key. This key is used to encrypt and decrypt text using the
algorithm of crypt(1). The X command makes an educated guess to
determine whether text read in is encrypted or not. The temporary buffer
file is encrypted also, using a transformed version of the key typed in for
the -x option. See crypt(1). Also, see the NOTES section at the end of
this manual page.

-C Encryption option; the same as the -x option, except that ed simulates a C
command. The C command is like the X command, except that all text
read in is assumed to have been encrypted.

ed operates on a copy of the file it is editing; changes made to the copy have no
effect on the file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer. There is only one buffer.

red is a restricted version of ed. It will only allow editing of files in the current
directory. It prohibits executing shell commands via !shell command. Attempts to
bypass these restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including a
format specification as the first line of file and invoking ed with your terminal in
stty -tabs or stty tab3 mode [see stty(l)], the specified tab stops will
automatically be used when scanning file. For example, if the first line of a file
contained:

<:t5,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed. NOTE: when you are entering text into the file, this format is
not in effect; instead, because of being in stty -tabs or stty tab3 mode, tabs
are expanded to every eighth column.

Commands to ed have a simple and regular structure: zero, one, or two addresses
followed by a single-character command, possibly followed by parameters to that
command. These addresses specify one or more lines in the buffer. Every com­
mand that requires addresses has default addresses, so that the addresses can
very often be omitted.

Page 1

ed (1)

Page 2

ed(1)

In general, only one command may appear on a line. Certain commands allow
the input of text. This text is placed in the appropriate place in the buffer. While
ed is accepting text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Leave input mode by typing a period
(.) at the beginning of a line, followed immediately by a carriage return.

ed supports a limited form of regular expression notation; regular expressions are
used in addresses to specify lines and in some commands (e.g., s) to specify por­
tions of a line that are to be substituted. A regular expression (RE) specifies a set
of character strings. A member of this set of strings is said to be matched by the
RE. The REs allowed by ed are constructed as follows:

The following one-cho.racter RE s match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one­
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that
matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear within
square brackets ([] ; see 1.4 below).

b. "(caret or circumflex), which is special at the beginning of an entire RE
(see 4.1 and 4.3 below), or when it immediately follows the left of a
pair of square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire RE (see 4.2
below).

d. The character used to bound (Le., delimit) an entire RE, which is special
for that RE (for example, see how slash (f) is used in the g command,
below.)

1.3 A period (.) is a one-character RE that matches any character except new­
line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one­
character RE that matches anyone character in that string. If, however, the
first character of the string is a circumflex (,,), the one-character RE matches
any character except new-line and the remaining characters in the string.
The " has this special meaning only if it occurs first in the string. The
minus (-) may be used to indicate a range of consecutive characters; for
example, [0-9] is equivalent to [0123456789]. The - loses this special
meaning if it occurs first (after an initial ", if any) or last in the string. The
right square bracket (]) does not terminate such a string when it is the first
character within it (after an initial", if any); e.g., [] a-f) matches either a
right square bracket (]) or one of the ASCII letters a through f inclusive.
The four characters listed in 1.2.a above stand for themselves within such a
string of characters.

The following rules may be used to construct RE s from one-character REs:

10/89

ed(1) ed(1)

10/89

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (*) is aRE that matches zero or
more occurrences of the one-character RE. If there is any choice, the longest
leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \ { m \ }, \ { m, \ }, or \ { m,n \} is a RE that
matches a range of OCcurrences of the one-character RE. The values of m
and n must be non-negative integers less than 256; \{m\} matches exactly
m occurrences; \Im,\} matches at least m occurrences; \{m,n\} matches
any number of occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed petween the character sequences \ (and \) is a RE that
matches whatever the unadol"J\ed RE matches.

2.6 The expression \n II\atches the same string of characters as was matched by
an expression enclosed between \ (and \) earlier in the same RE. Here n is
a digit; the sub-expression specified is that beginning with the n-th
occurrence of \ (counting from the left. For example, the expression
A\ (. *\) \1$ matches a line conSisting of two repeated appearances of the
same string.

A RE may be constrained to match words.

3.1 \< ~onstrains a RE to match the beginning of a string or to follow a charac­
ter that is not a digit, underscore,or letter. The first character matching the
RE must be a digit, underscore, or letter.

3.2 \> constrains a. RE to match the end of a string or to precede a character
that is not a digit, underscore, or letter.

An entire RE may be constrained to match only an initial segment or final seg­
ment ofa line (or both).

4.1 A circumflex (A) at the beginning of an entire RE constrains that RE to match
an initial segment of a line.

4.2 A dollar sign ($) at the end of an entire RE constrains that RE to match a
final segment of a line.

4.3 The construction Aentire RE $ constrains the entire RE to match the entire
line. . .

The null RE (e.g., / /) is equivalent to the last RE encountered. See also the last
paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
currentline. Generally speaking, the current line is the last line affected by a com­
mand; the exact effect on the, current line is discusseQ under the de~ription of
each command. Addresses are constructed as follows:

Page 3

ed(1) ed(1)

Page 4

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which must
be an ASCII lower-case letter (a- z). Lines are marked with the k command
described below.

5. A RE enclosed by slashes U) addresses the first line found by searching for­
ward from the line following the current line toward the end of the buffer
and stopping at the first line containing a string matching the RE. If neces­
sary, the search wraps around to the beginning of the buffer and continues
up to and including the current line, so that the entire buffer is searched.
See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by
searching backward from the line preceding the current line toward the begin­
~ing of the buffer and stopping at the first line containing a string matching
the RE. If necessary, the search wraps around to the end of the buffer and
continues up to and including the current line. See also the last paragraph
before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the indi­
cated number of lines. A shorthand for .+5 is .5.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; e.g, -5 is understood to mean . -5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of Rule 8, immedi­
ately above, the address - refers to the line preceding the current line. (To
maintain compatibility with earlier versions of the editor, the character " in
addresses is entirely equivalent to -.) Moreover, trailing + and - characters
have a cumulative effect, so -- refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1, $, while a
semicolon (;) stands for the pair . , $.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept
one or two addresses assume default addresses when an insufficient number of
addresses is given; if more addresses are given than such a command requires,
the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may
also be separated by a semicolon (;). In the latter case, the first address is calcu­
lated, the current line (.) is set to that value, and then the second address is calcu­
lated. This feature can be used to determine the starting line for forward and
backward searches (see Rules 5 and 6, above). The second address of any two­
address sequence must correspond to a line in the buffer that follows the line
corresponding to the first address.

10/89

ed(1)

10/89

ed(1)

In the following list of ed commands, the parentheses shown prior to the com­
mand are not part of the address; rather they show the default address(es) for the
command.

It is generally illegal for more than one command to appear on a line. However,
any command (except e, f, r, or w) may be suffixed by 1, n, or p in which case
the current line is either listed, numbered or printed, respectively, as discussed
below under the 1, n, and p commands.

(•)a
<text>

(•)c
<text>

c

The append command accepts zero or more lines of text and appends it
after the addressed line in the buffer. The current line (.) is left at the last
inserted line, or, if there were none, at the addressed line. Address 0 is
legal for this command: it causes the "appended" text to be placed at the
beginning of the buffer. The maximum number of characters that may be
entered from a terminal is 256 per line (including the new-line chilracter).

The change command deletes the addressed lines from the buffer, then
accepts zero or more lines of text that replaces these lines in the buffer.
The current line (.) is left at the last line input, or, if there were none, at
the first line that was not deleted.

Same as the X command, described later, except that ed assumes all text
read in for the e and r commands is encrypted unless a null key is typed
in.

(. , •)d

e file

The delete command deletes the addressed lines from the bqffer. The line
after the last ·line deleted becomes the current line; if the lines deleted
were originally at the end of the buffer, the new last line becomes the
current line.

The edit command deletes the entire contents of the buffer anq then reads
the contents of file into the buffer. The current line (,) is set to the last
line of the buffer. If file is not given, the currently remempered file name,
if any, is used (see the f command). The number of characters read in is
printed; file is remembered for possible use as a defawt file name in subse­
quent e, r, anci w commands. If file is replaced by !, the rest of the line is
taken to be a shell [sh(1)] command whose output is to be read in. Such
a shell command is not remembere<:t as· the CulT!'!nt file name. See also
DIAGNOSTICS below. .

Page 5

ed(1)

Page 6

E file

f file

ed(1)

The Edit command is like e, except that the editor does not check to see if
any changes have been made to the buffer since the last w command.

If file is given, the file-name command changes the currently remembered
file name to file; otherwise, it prints the currently remembered file name.

(1, $) g/RE/command list
In the global command, the first step is to mark every line that matches
the given RE. Then, for every such line, the given command list is executed
with the current line (.) initially set to that line. A single command or the
first of a list of commands appears on the same line as the global com­
mand. All lines of a multi-line list except the last line must be ended with
a \; a, i, and c commands and associated input are permitted. The . ter­
minating input mode may be omitted if it would be the last line of the
command list. An empty command . list is equivalent to the pcommand.
The g, G, v, and V commands are not permitted in the command list. See
also the NOTES and the last paragraph before FILES below.

(1, $)G/RE/ '

h

H

(.) i
<text>

In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is printed, the
current line (.) is changed to that line, and anyone command (other than
one of the a, c, i, 9, G, v, and V commands) may be input and is executed.
After the execution of that command, the next marked line is printed, and
so on; a new-line acts as a null command; an & causes the re-execution of
the most recent command executed within the curre~ invocation of G.
Note that the commands input as part of the execution Of the G .. command
may address and affect any lines in the buffer. The G command can be
terminated by an interrupt signal (ASOI DEL or BREAK).

The help command gives a short error message that explains the reason
for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error messages are
printed for all subsequent ? diagnostics. It will also explain the. previous
? if there was one. The H command alternately turns this mode on and
off; it is initially off.

The insert command accepts zero or more lines of text and inserts it
before the addressed line in the buffer. The current .line (.) is left at the
last inserted line, or, if there were none, at the addressed line. This com­
mand differs from the a command only in the placem~nt of the input text.
Address 0 is not legal for this command. The maximum number of char­
acters that may be entered from a terminal is 256 per line (including the
new-line character).

10/89

ed(1)

10/89

ed(1)

(.,.+1)j

(•)Jcx

The Jom command joins contiguous lines by removing the appropriate
new-line characters. If exactly one address is given, this command does
nothing.

The mark command marks the addressed line with name x, which must
be an ASCII lower-case letter (a-z). The address 'x then addresses this
line; the current line (.) is unchanged.

(. , .) 1
The list command prints the addressed lines in an unambiguous way: a
few non-printing characters (e.g., tab, backspace) are represented by visu­
ally mnemonic overstrikes. All other non-printing characters are printed
in octal, and long lines are folded. An 1 command may be appended to
any command other than e, f, r, or w.

(• , •)ma

The IOOve command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed line(s)
to be moved to the beginning of the file. It is an error if address a falls
within the range of moved lines; the current line (.) is left at the last line
moved.

(• , •)n
The number command prints the addressed lines, preceding each line by
its line number and a tab character; the current line (.) is left at the last
line printed. The n command may be appended to any command other
than e, f, r, or w.

(• , .)p

p

q

Q

The print command prints the addressed lines; the current line (.) is left at
the last line printed. The p command may be appended to any command
other than e, f, r, or w. For example, dp deletes the current line and
prints the new current line.

The editor will prompt with a * for all subsequent commands. The P
command alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done;
however, see DIAGNOSTICS, below.

The editor exits without checking if changes have been made in the buffer
since the last w command.

($) r file
The read command reads the contents of file into the buffer. If file is not
given, the currently remembered file name, if any, is used (see the e and f
commands). The currently remembered file name is not changed unless
file is the very first file name mentioned since ed was invoked. Address a
is legal for r and causes the file to be read in at the beginning of the
buffer. If the read is successful, the number of characters read in is

Page 7

ed (1)

Page 8

ed(1)

printed; the current line (.) is set to the last line read in. If file is replaced
by!, the rest of the line is taken to be a shell [see sh(1)] command whose
output is to be read in. For example, $r ! Is appends current directory to
the end of the file being edited. Such a shell command is not remembered
as the current file name.

(. , .) s/RE/replacement/ or
(. , .) s/RE/replacement/g or
(. , .) s/RE/replacement/n n = 1-512

The substitute command searches each addressed line for an occurrence of
the specified RE. In each line in which a match is found, all (non­
overlapped) matched strings are replaced by the replacement if the global
replacement indicator g appears after the command. If the global indica­
tor does not appear, only the first occurrence of the matched string is
replaced. If a number n, appears after the command, only the n-th
occurrence of the matched string on each addressed line is replaced. It is
an error if the substitution fails on all addressed lines. Any character
other than space or new-line may be used instead of / to delimit the RE
and the replacement; the current line (.) is left at the last line on which a
substitution occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this con­
text may be suppressed by preceding it by \. As a more general feature,
the characters \n, where n is a digit, are replaced by the text matched by
the n-th regular subexpression of the specified RE enclosed between \ (
and \). When nested parenthesized subexpressions are present, n is
determined by counting occurrences of \ (starting from the left. When
the character % is the only character in the replacement, the replacement
used in the most recent substitute command is used as the replacement in
the current substitute command. The % loses its special meaning when it
is in a replacement string of more than one character or is preceded by a
\.
A line may be split by substituting a new-line character into it. The new­
line in the replacement must be escaped by preceding it by \. Such substi­
tution cannot be done as part of a g or v command list.

(.,.)ta

u

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); the current line
(.) is left at the last line copied.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j, m,
r, s, t, v, G, or V command.

(1, $)v/RE/command list
This command is the same as the global command g, except that the lines
marked during the first step are those that do not match the RE.

10/89

ed(1)

10/89

ed (1)

(l,$)V/RE/
This command is the same as the interactive global command G, except
that the lines that are marked during the first step are those that do not
match the RE.

(l,$)wfile
The write command writes the addressed lines into file. If file does not
exist, it is created with mode 666 (readable and writable by everyone),
unless your file creation mask dictates otherwise; see the description of the
umask special command on sh(1). The currently remembered file name is
not changed unless file is the very first file name mentioned since ed was
invoked. If no file name is given, the currently remembered file name, if
any, is used (see the e and f commands); the current line (.) is
unchanged. If the command is successful, the number of characters writ­
ten is printed. If file is replaced by !, the rest of the line is taken to be a
shell [see sh(1)] command whose standard input is the addressed lines.
Such a shell command is not remembered as the current file name.

(1, $)Wfile

x

($)=

This command is the same as the write command above, except that it
appends the addressed lines to the end of file if it exists. If file does not
exist, it is created as described above for the w command.

A key is prompted for, and it is used in subsequent e, r, and w commands
to decrypt and encrypt text using the crypt(1) algorithm. An educated
guess is made to determine whether text read in for the e and r com­
mands is encrypted. A null key turns off encryption. Subsequent e, r,
and w commands will use this key to encrypt or decrypt the text [see
crypt(1)]. An explicitly empty key turns off encryption. Also, see the -x
option of ed.

The line number of the addressed line is typed; the current line (.) is
unchanged by this command.

! shell comnumd
The remainder of the line after the ! is sent to the UNIX system shell [see
sh(1)] to be interpreted as a command. Within the text of that command,
the unescaped character % is replaced with the remembered file name; if a
! appears as the first character of the shell command, it is replaced with
the text of the previous shell command. Thus, !! will repeat the last
shell command. If any expansion is performed, the expanded line is
echoed; the current line (.) is unchanged.

(. +1) <new-line>
An address alone on a line causes the addressed line to be printed. A
new-line alone is equivalent to . +1p; it is useful for stepping forward
through the buffer.

Page 9

ed (1)

FILES

ed(1)

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its
command level.

Some size limitations: 512 characters in a line, 256 characters in a global command
list, and 64 characters in the pathname of a file (counting slashes). The limit on
the number of lines depends on the amount of user memory: each line takes 1
word.

When reading a file, ed discards ASOI NUL characters.

If a file is not terminated by a new-line character, ed adds one and puts out a
message explaining what it did.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the
last character before a new-line, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of commands are equivalent:

8/81/82 s/sl/s2/p
g/81 g/sl/p
?81 ?sl?

$TMPDIR if this environmental variable is not null, its value is used in place of
/var/tmp as the directory name for the temporary work file.

/var/tmp

/tmp

if /var/tmp exists, it is used as the directory name for the tem­
porary work file.
if the environmental variable TMPDIR does not exist or is null, and if
/var/tmp does not exist, then /tnp is used as the directory name
for the temporary work file.

ed. hup

SEE ALSO

work is saved here if the terminal is hung up.

edit(1), ex(1), grep(1), 8ed(1), sh(1), 8tty(1), umask(1), vi(1).
fspec(4), regexp(5) in the System Administrator's Reference Manual.

DIAGNOSTICS

NOTES

? for command errors.

?file for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the
entire buffer, ed warns the user if an attempt is made to destroyed's buffer via
the e or q commands. It prints? and allows one to continue editing. A second
e or q command at this point will take effect. The -8 command-line option inhi­
bits this feature.

The - option, although it continues to be supported, has been replaced in the
documentation by the -s option that follows the Command Syntax Standard [see
intro(1)].

The encryption options and commands are provided with the Security Adminis­
tration Utilities package, which is available only in the United States.

Page 10 10/89

ed(1)

10/89

ed(1)

A! command cannot be subject to a 9 or a v command.

The! command and the ! escape from the e, r, and w commands cannot be
used if the editor is invoked from a restricted shell [see sh(1)].

The sequence \n in a RE does not match a new-line character.

If the editor input is coming from a command file (e.g., edfile < ed_cmdJile), the
editor exits at the first failure.

Page 11

edit (1) edit(1)

NAME
edit - text editor (variant of ex for casual users)

SYNOPSIS
edit [-rl [-xl [-cl name ...

DESCRIPTION

10/89

edit is a variant of the text editor ex recommended for new or casual users who
wish to use a command-oriented editor. It operates precisely as ex with the fol­
lowing options automatically set:

novice ON

report ON

shoWIOOde ON

magic OFF

These options can be turned on or off via the set command in ex(l).

-r Recover file after an editor or system crash.

-x Encryption option; when used the file will be encrypted as it is being writ-
ten and will require an encryption key to be read. edit makes an edu­
cated guess to determine if a file is encrypted or not. See crypt(1). Also,
see the NOTES section at the end of this manual page.

-C Encryption option; the same as -x except that edit assumes files are
encrypted.

The following brief introduction should help you get started with edit. If you
are using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command edit name to
the shell. edit makes a copy of the file that you can then edit, and tells you how
many lines and characters are in the file. To create a new file, you <lIso begin
with the command edit with a filename: edit name; the editor will tell you it is
a [New File].

The edit command prompt is the colon (:), which you should see after starting
the editor. If you are editing an existing file, then you will have some lines in
edit's buffer (its name for the copy of the file you are editing). When you stCirt
editing, edit makes the last line of the file the current line. Most commands to
edit use the current line if you do not tell them which line to use. Thus if you
say print (which can be abbreviated p) and type carriage return (as you should
after all edit commands), the current line will be printed. If you delete (d) the
current line, edit will print the new current line, which is usually the next line in
the file. If you delete the last line, then the new last line becomes the current
one.

If you start with an empty file or wish to add some new lines, then the append
(a) command can be used. After you execute this command (typing a carriage
return after the word append), edit will read lines from your terminal until you
type a line consisting of just a dot (.); it places these lines after the current line.
The last line you type then becomes the current line. The insert (i) command is
like append, but places the lines you type before, rather than after, the current
line.

Page 1

edit(1) edit(1)

Page 2

edit numbers the lines in the buffer, with the first line having number 1. If you
execute the command 1, then edit will type the first line of the buffer. If you
then execute the command d, edit will delete the first line, line 2 will become
line 1, and edit will print the current line (the new line 1) so you can see where
you are .. In general, the current line will always be the last line affected by a
command.

You can make a change to some text within the current line by using the substi­
tute (s) command: s/old /new/ where old is the string of characters you want to
replace and new is the string of characters you want to replace old with.

The file (f) command will tell you how many lines there are in the buffer you
are editing and will say [Modified] if you have changed the buffer. After modi­
fying a file, you can save the contents of the file by executing a write (w) com­
mand. You can leave the editor by issuing a quit (q) command. If you run edit
on a file, but do not change it, it is not necessary (but does no harm) to write the
file back. If you try to quit from edit after modifying the buffer without writ­
ing it out, you will receive the message No write since last change (: quit!
overrides), and edit will wait for another command. If you do not want to
write the buffer out, issue the quit command followed by an exclamation point
(q!). The buffer is then irretrievably discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file,
you can make any changes you want. You should learn at least a few more
things, however, if you will use edit more than a few times.

The change (c) command changes the current line to a sequence of lines you sup­
ply (as in append, you type lines up to a line consisting of only a dot (.). You
can tell change to change more than one line by giving the line numbers of the
lines you want to change, i.e., 3, Sc. You can print lines this way too: 1, 23p
prints the first 23 lines of the file.

The undo (ti) command reverses the effect of the last command you executed that
changed the buffer. Thus if you execute a substitute command that does not
do what you want, type u and the old contents of the line will be restored. You
can also undo an undo command. edit will give you a warning message when a
command affects more than one line of the buffer. Note that commands such as
write and quit cannot be undone.

To look at the next line in the buffer, type carriage. return. To look at a number
of lines, type "'0 (while holding down the control key, press d) rather than car­
riage return. This will show you a half-screen of lines on a CRT or 12 lines on a
hardcopy terminal. You can look at nearby text by executing the z command.
The current line will appear in the middle of the text displayed, and the last line
displayed will become the current line; you can get back to the line where you
were before you executed the z command by typing ". The z command has
other options: z- prints a screen of text (or 24 lines) ending where you are; z+
prints the next screenful. If you want less than a screenful of lines, type z. 11 to
display five lines before and five lines after the current line. <Typing z. n, when
n is. an odd number, displays a total of n lines, centered about the current line;
when n is an even number, it displays n-1 lines, so that the lines displayed are
centered around the current line.) You cali give counts after other commands; for

10/89

edit (1) edit(1)

example, you can delete 5 lines starting with the current line with the command
d5.

To find things in the file, you can use line numbers if you happen to know them;
since the line numbers change when you insert and delete lines this is somewhat
unreliable. You can search backwards and forwards in the file for strings by giv­
ing commands of the form /text/ to search forward for text or ?text? to search
backward for text. If a search reaches the end of the file without finding text, it
wraps around and continues to search back to the line where you are. A useful
feature here is a search of the form f"text/ which searches for text at the begin­
ning of a line. Simil,arly /text$/ searches for text at the end of a line. You can
leave off the trailing / or ? in these commands.

The current line has the symbolic name dot (.); this is most useful in a range of
lines as in ., $p which prints the current line plus the rest of the lines in the file.
To move to the last line in the file, you can refer to it by its symbolic name $.
Thus the command $d deletes the last line in the file, no matter what the current
line is. Arithmetic with line references is also· possible. Thus the line .$-5 is the
fifth befOre the last and . +20 is 20 lines after the current line.

You can find out the current line by typing .==. This is useful if you wish to
move or copy a section of text within a file or between files. Find the first and
last line numbers you wish to copy or move. To move lines 10 through 20, type
10,20d a to delete these lines from the file and place them in a buffer named a.
edit has 26 such buffers named a through z. To put the contents of buffer a
after the current line, type put a. If you want to move or copy these lines to
another file, execute an edit (e) command after copying the lines; following the e
command with the name of the other file you wish to edit, i.e., edit chapter2.
To copy lines without deleting them, use yank (y) in place of d. If the text you
wish to move or copy is all within one file, it is not necessary to use named
buffers. For example, to move lines 10 through 20 to the end of the file, type
10,2Om $.

SEE ALSO

NOTES

10/89

ed(1), ex(1), vi(1).

The encryption options are provided with the Security Administration Utilities
package, which is available only in the United States.

Page 3

egrep(1) egrep(1)

NAME
egrep - search a file for a pattern using full regular expressions

SYNOPSIS
egrep [options] full regular expression [file ...]

DESCRIPTION

10/89

egrep (expression grep) searches files for a pattern of characters and prints all lines
that contain that pattern. egrep uses full regular expressions (expressions that
have string values that use the full set of alphanumeric and special characters) to
match the patterns. It uses a fast deterministic algorithm that sometimes needs
exponential space.

egrep accepts full regular expressions as in edO), except for \ (and \), with the
addition of:

1. A full regular expression followed by + that matches one or more
occurrences of the full regular expression.

2. A full regular expression followed by? that matches 0 or 1 occurrences of
the full regular expression.

3. Full regular expressions separated by I or by a new-line that match strings
that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for
grouping.

Be careful using the characters $, *, [, A, I, (,), and \ in full regular expression,
because they are also meaningful to the shell. It is safest to enclose the entire full
regular expression in single quotes ' ... ' .

The order of precedence of operators is [], then * ? +, then concatenation, then I
and new-line.

If no files are specified, egrep assumes standard input. Normally, each line
found is copied to the standard output. The file name is printed before each line
found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can be
useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper flower case distinction during comparisons.
-h Suppress printing of filenames when searching multiple files.
-1 Print the names of files with matching lines once, separated by new-lines.

Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-e special_expression

Search for a special expression <full regular expression that begins with a -).
-f file

Take the list of full regular expressions from file.

Page 1

egrep(1) egrep(1)

SEE ALSO
ed(1), fgrep(1), grep(1), sed(1), sh(1).

DIAGNOSTICS

NOTES

Page 2

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inacces­
sible files (even if matches were found).

Ideally there should be only one grep command, but there is not a single algo­
rithm that spans a wide enough range of space-time tradeoffs. Lines are limited
to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
/usr/include/stdio.h.

10/89

enable (1) enable(1)

NAME
enable, disable - enable/disable LP printers

SYNOPSIS
enable printers
disable [options] printers

DESCRIPTION

FILES

The enable command activates the named printers, enabling them to print
requests taken by the lp command. If the printer is remote, the command will
only enable the transfer of requests to the remote system; the enable command
must be run again, on the remote system, to activate the printer. (Run lpstat
-p to get the status of printers.)

The disable command deactivates the named printers, disabling them from
printing requests taken by lp. By default, any requests that are currently printing
on the designated printers will be reprinted in their entirety either on the same
printer or on another member of the same class of printers. If the printer is
remote, this command will only stop the transmission of jobs to the remote sys­
tem. The disable command must be run on the remote system to disable the
printer. (Run lpstat -p to get the status of printers.) Options for use with dis­
able are:

-c Cancel any requests that are currently printing on any of the desig­
nated printers. This option cannot be used with the -W option. If the
printer is remote, the -c option will be silently ignored.

-r reason Assign a reason for the disabling of the printers. This reason applies
to all printers mentioned. This reason is reported by lpstat -po If
the -r option is not present, then a default reason will be used.

-W Wait until the request currently being printed is finished before disa­
bling the specified printer. This option cannot be used with the -c
option. If the printer is remote, the -W option will be silently
ignored.

/var/spool/lp/*

SEE ALSO
lp(1), lpstat(1).

10/89 Page 1

env(1) env(1)

NAME
env - set environment for command execution

SYNOPSIS
env [-] [name=value] ... [command args]

DESCRIPTION
env obtains the current environment, modifies it according to its arguments, then
executes the command with the modified environment. Arguments of the form
name=value are merged into the inherited environment before the command is
executed. The - flag causes the inherited environment to be ignored completely,
so that the command is executed with exactly the environment specified by the
arguments.

If no command is specified, the resulting environment is printed, one name-value
pair per line.

SEE ALSO
sh(1).
exec(2) in the Programmer's Reference Manual.
profile(4), environ(S) in the System Administrator's Reference Manual.

10/89 Page 1

8x(1) 8x(1)

NAME
ex - text editor

SYNOPSIS
ex [-s] [-v] [-t tag] [-r file] [-L] [-R] [-x] [-C) [-c command] file ...

DESCRIPTION
ex is the root of a family of editors: ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display based editing is
the focus of vi. .

If you have a CRf terminal, you may wish to use a display based editor; in this
case see vi(l), which is a command which focuses on the display-editing portion
of ex.

For ad USers

10/89

If you. have used ed you will find that, in. addition to having all of the ed com­
mands available,. ex haS a number of additional features useful on CRT terminals.
Intelligent terminals and high speed terminals are very pleasant to use with vi.
Generally, the ex. editor uses far more of the capabilities of terminals than ed
does, and uses the terminal capability data base [see te:cninfo(4)] and the type of
(he terminal you are using from the environmental variable TERM to determine
how to drive your terminal efficiently. The editor makes use of features such as
i.nsert and delete character and line in its visual command (which can be abbre­
viated vi) and which is the central mode of editing when using the vi command.

ex contains a number of features for easily viewing the text of the file. The z
command gives easy access to windows of text. Typing AD (control-d) causes the
editor to scroll a half-window of text and is more useful for quickly stepping
through a file than just typing return. Of course, the screen-oriented visual
mode gives constant access to editing context.

ex gives you help when you make mistakes. The undo (u) command allows you
to reverse any single change which goes astray. ex gives you a lot of feedback,
nQrmally printing changed lines, and indicates when more than a few lines are
affected by a command so that it is easy to detect when a command has affected
more lines than it should have.

"the editor also normally prevents overwriting existing files, unless you edited
them, so that you do not accidentally overwrite a file other than the one you are
editing. If the system (or editor) crashes, or you accidentally hang up the tele­
phone, you can use the editor recover command (or -r file option) to retrieve
your work. ,This will get you back to within a few lines of where you left off.

ex. has several features for dealing with more than one file at a time. You can
give it a list of files on the command line and use the next (n) command to deal
with each in turn. The next command can also be given a list of file names, or a
pat~ern as used by the shell to specify a new set of files to be dealt with. In gen­
eral, file names in the editor may be formed with full shell metasyntax. The
metacharacter '%' is also available in forming file names and is replaced by the
name of the current file.

Page 1

ex(1) eX(1)

The editor has a group of buffers whose names are the ASaI lower-case letters
(a-z). You can place text in these named buffers where it is available to be
inserted elsewhere in the file. The contents of these buffers remain available
when you begin editing a new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In
addition, there is a confirmed substitute command. You give a range of substitu­
tions to be done and the editor interactively asks Whether each substitution is
desired.

It is possible to ignore the case of letters in searches and substitutions. ex alSo
allows regular expressions which match words to be constructed. This is con­
venient, for example, in searching for the word "edit" if your document also con­
tains the word "editor."

ex has a set of options which you can set to tailor it to your liking. One option
which is very useful is the auto indent option that allows the editor to supply
leading white space to align text automatically. You can then uSe AD as a backtab
and space or tab to move forward to align new code easily.
Miscellaneous useful features include an intelligent join (j) command that sup­
plies white space between joined lines automatically, commands < and > which
shift groups of lines, and the ability to filter portions of the buffer through com­
mands such as sort.

Invocation Options

Page 2

The following invocation options are interpreted by ex (previously documented
options are discussed in the NOTES section at the end of this manual page):

-s

-v

-t tag

-r file

-L

-R

-x

Suppress all interactive-user feedback. This is useful in processing
editor scripts.

Invoke vi.

Edit the file containing the tag and position the editor at its
definition.

Edit file after an editor or system crash. (Recovers the version of file
that was in the buffer when the crash occurred.)

List. the names of all files saved as the result of an editor or system
crash.

ReadOnly mode; the readonly flag is set, preventing accidental
overwriting of the file.

Encryption option; when used, ex simulates an X command and
prompts the user for a key. This key is used to encrypt and decrypt
text using the algorithm of the crypt command. The X command
makes an educated guess to determine whether text read in is
encrypted or not. The temporary buffer file is encrypted also, using
a transformed version of the key typed in for the -x option. See
crypt(1). Also, see the NOTES section at the end of this manual
page.

10/89

ex(1)

-c

ex(1)

Encryption option; the saine as the -x option; except that ex simu­
lates a. C command. The c command is like the X command, except
that all text read in is assumed to have been encrypted.

-c comma~d Begin editing by executing the specified editor command (usually a
search or positioning command).

The file argument indicates one or more files to be edited.

ex Statc:ts
Command Normal and initial state. Input prompted for by .. Your line kill

character cancels a partial command.
Insert Entered by a, i, or c. Arbitrary-t~xt may be entered. Insert state

normally is tetminated by a line having only " ." on it, or, abnor-
mally, with an interrupt.

VisUal Bntered by typing vi; termihated by typing Q or "' (control-\).
ex Command Names and Abbreviations

abbrev ab map set
append a mark ma. shell

se
sh

args ar inove m source 80

change c next n substitute 8

copy co number nu unabbrev unab
delete d preserve pre undo u
edit e print p unmap
file f put pu version
global 9 quit q visual

ve
vi

insert i read r write w
join j recover rEiC xit
list 1 rewind rew yank

x
ya

ex Commands
forced encryption C
resubst &

heuristic encryption X
print next CR

rshift > lshift <
scroll AD Window z
shell escape !

ex Command Addresses
n line n Ipat next with pat

previous with pat
Ii before x $

+

+n
%

10/89

current
last
next
previous
n forward
1,$

?pat
x-n
x,Y
'x

x through y
marked with x
previous context

Page 3

ex(1)

Initializing options
EXINIT
$HOME/.exrc
./.exre
set x
set nox
set x=val
set
set all
set x?

place set's here in environment variable
editor initialization file
editor initialization file
enable option x
disable option x
give value val to option x
show changed options
show all options
show value of option x

Most useful options and their abbreviations

Page 4

autoindent
autowrite
directory
exrc

ignorecase
list
magic
modelines

number
paragraphs
redraw
report

scroll
sections
shiftwidth
showmatch
showmode
slowopen
term

window
wrapmargin
wrapscan

ai
aw

ex

'i.e

nu
para

sect
sw
sm
snrl
slow

WIn

ws

supply indent
write before changing files
pathname of directory for temporary work files
allow vi/ex to read the .exre in the current

directory. This option is set in the EXINIT
shell variable or in the . exre file in the
$HOME directory.

ignore case of letters in scanning
print "I for tab, $ at end
treat. [* special in patterns
first five lines and last five lines executed as

vi/ex commands if they are of the form
ex: command: or vi: command :

number lines
macro names that start paragraphs
simulate smart terminal
informs you if the number of lines modified by

the last command is greater than the value
of the report variable

command mode lines
macro names that start sections
for < >, and input "0
to) and } as typed
show insert mode in vi
stop updates during insert
specifies to vi the type of terminal being used

(the default is the value of the environmental
variable TERM)

visual mode lines
automatic line splitting
search around end (or beginning) of buffer

ex(1)

10/89

ex(1) ex(1)

Scanning pattern formation

$

\<
\>
[str]
rstr]
[x-y1
It

beginning of line
end of line
any character
beginning of word
end of word
any character in str
any character not in str
any character between x and y
any number of preceding characters

AUTHOR

FILES

NOTES

10/89

vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

/usr/lib/exstrinqs
/usr/lib/exrecover
/usr/lib/expreserve
/usr/share/lib/terminfo/*
$HOME/ . exrc
./.exrc
/tJIp/Exnnnnn
/tJIp/Rxnnnnn
/var/preserve/login

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory
(where login is the users login)

Several options, although they continue to be supported, have been replaced in
the documentation by options that follow the Command Syntax Standard [see
intro(l)]. The - option has been replaced by -s, a -r option that is not followed
with an option-argument has been replaced by -L, and +command has been
replaced by -c command.

The encryption options and commands are provided with the Security Adminis­
tration Utilities package, which is available only in the United States.

The z command prints the number of logical rather than physical lines. More
than a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line -s option is
used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before
exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.

Page 5

ex(1)

SEE ALSO

Page 6

crypt(1), ed(1), edit(1), grep(1), sed(1), sort(1), vi(1).
curses(3X), in the Programmer's Reference Manual.
tenr(4), terminfo(4) in the System Administrator's Reference Manual.
User's Guide.
Editing Guide.
curses/terminfo chapter of the Programmer's Guide.

ex(1)

10/89

expr(1) expr (1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written
on the standard output. Terms of the expression must be separated by blanks.
Characters special to the shell must be escaped. Note that 0 is returned to indi­
cate a zero value, rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments may be preceded
by a unary minus sign. Internally, integers are treated as 32-bit, 2s complement
numbers. The length of the expression is limited to 512 characters.

The operators and keywords are listed below. Characters that need to be escaped
in the shell [see shO)] are preceded by \. The list is in order of increasing pre­
cedence, with equal precedence operators grouped within { } symbols.

expr \ I expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns o.

expr { =, \>, \>=, \<, \<=, != } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { *, I, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : compares the first argument with the second
argument, which must be a regular expression. Regular expression syn­
tax is the same as that of edO), except that all patterns are "anchored"
(Le., begin with) and, therefore, A is not a special character, in that con­
text. Normally, the matching operator returns the number of bytes
matched (0 on failure). Alternatively, the \ (... \) pattern symbols can
be used to return a portion of the first argument.

EXAMPLES

10/89

Add 1 to the shell variable a:

a=' expr $a + l'
The follOwing example emulates basename(l)-it returns the last segment of the
path name Sa. For $a equal to either lusr/abc/file or just file, the example

Page 1

expr(1) expr(1)

returns file. (Watch out for I alone as an argument: expr takes it as the divi­
sion operator; see the NOTES below.)

expr $a : ' .*1\(.*\) , \1 $a

Here is a better version of the previous example. The addition of the I I charac­
ters eliminates any ambiguity about the division operator and simplifies the
whole expression.

expr II$a: '.*1\(.*\)'
Return the number of characters in $VAR:

expr $VAR: '. * '
SEE ALSO

ed(l), sh(1).

DIAGNOSTICS

NOTES

Page 2

As a side effect of expression evaluation, expr returns the following exit values:
o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

syntax error for operator I operand errors
non-numeric argument if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an =, the command:

expr $a = '='

looks like:

expr = =

as the arguments are passed to expr (and they are all taken as the = operator).
The following works:

expr X$a = X=

10/89

exstr (1) exstr (1)

NAME
exstr - extract strings from source files

SYNOPSIS
exstr file ...
exstr -e file ...
exstr -r [-ell file ...

DESCRIPTION

10/89

The exstr utility is used to extract strings from C-Ianguage source files and
replace them by calls to the message retrieval function (see gettxt(3C». This
utility will extract all character strings surrounded by double quotes, not just
strings used as arguments to the printf command or the printf routine. In the
first form, exstr finds all strings in the source files and writes them on the stan­
dard output. Each string is preceded by the source file name and a colon. The
meanings of the options are:

-e Extract a list of strings from the named C-Ianguage source files, with
positional information. This list is produced on standard output in the
following format:

file:line:position:msgfile:msgnum:string

file the name of a C-Ianguage source file
line line number in the file
position character position in the line
msgfile null
msgnum null
string the extracted text string

Normally you would redirect this output into a file. Then you would
edit this file to add the values you want to use for msgfile and msgnum:

msgfile the file that contains the text strings that will replace
string. A file with this name must be created and
installed in the appropriate place by the mkmsgs(1) utility.

msgnum the sequence number of the string in msgfile.

The next step is to use exstr -r to replace strings in file.

-r Replace strings in a C-Ianguage source file with function calls to the mes­
sage retrieval function gettxtO.

-d This option is used together with the -r option. If the message retrieval
fails when gettxtO is invoked at run-time, then the extracted string is
printed.

You would use the capability provided by exstr on an application program that
needs to run in an international environment and have messages print in more
than one language. exstr replaces text strings with function calls that point at
strings in a message data base. The data base used depends on the run-time
value of the LC_MESSAGES environment variable (see environ(5».

Page 1

exstr (1) exstr (1)

The first step is to use exstr -e to extract a list of strings and save it in a file.
Next, examine this list and determine which strings can be translated and subse­
quently retrieved by the message retrieval function. Then, modify this file by
deleting lines that can't be translated and, for lines that can be translated, by
adding the message file names and the message numbers as the fourth (msgfile)
and fifth (msgnum) entries on a line. The message files named must have been
created by mlonsgs(l) and exist in /usr/lib/locale/locale/LC_MESSAGES. (The
directory locale corresponds to the language in which the text strings are written;
see setlocale(3C». The message numbers used must correspond to the
sequence numbers of strings in the message files.

Now use this modified file as input toexstr -r to produce a new version of the
original C-Ianguage source file in which the strings have been replaced by calls to
the message retrieval function gettxtO. The msgfile and msgnum fields are used
to construct the first argument to gettxtO. The second argument to gettxtO is
printed if the message retrieval fails at run-time. This argument is the null string,
unless the -d option is used.

This utility cannot replace strings in all instances. For example, a static initialized
character string cannot be replaced by a function call. A second example is that a
string could be in a form of an escape sequence which could not be translated. In
order not to break existing code, the files created by invoking exstr -e must be
examined and lines containing strings not replaceable by function calls must be
deleted. In some cases the code may require modifications so that strings can be
extracted and replaced by calls to the message retrieval function.

EXAMPLES

Page 2

The following examples show uses of exstr.

Assume that the file foo. c contains two strings:

main 0
{

printf(nThis is an exanple\nn);
printf(nHello world!\nn);

The exstr utility, invoked with the argument foo. c extracts strings from the
named file and prints them on the standard output.

exstr foo.c produces the following output:

foo.c:This is an exanple\n
foo.c:Hello world!\n

exstr -e foo. c > foo. stringsout produces the following output in the file
foo. stringsout:

foo.c:3:8:::This is an exanple\n
foo.c:4:8:::Hello world!\n

You must edit foo.stringsout to add the values you want to use for the msgfile
and msgnum fields before these strings can be replaced by calls to the retrieval
function. If UX is the name of the message file, and the numbers 1 and 2
represent the sequence number of the strings in the file, here is what
foo. stringsout looks like after you add this information:

10/89

exstr (1) exstr (1)

FILES

foo.c:3:8:UX:l:This is an example\n
foo.c:4:8:UX:2:Hello world!\n

The exstr utility can now be invoked with the -r option to replace the strings in
the sour~ file by calls to the message retrieval function gettxtO.

exstr -r foo. c <foo, stringsout >intlfoo. c produces the following output:

extern char *gettxt () ;
main 0
(

printf(get txt("UX:l", ""»;
printf (gettxt ("UX:2", '~"»;

exstr -rd foo. c <foo. stringsout >intlfoo. c uses the extracted strings as a
second argument to gettxtO.

extern char *gettxt () ;
main 0
{

printf(gettxt("UX:l", "This is an example\n"»;
printf(gettxt("UX:2", "~ello world!\n"»;

/usr/lib/locale/locale/LC_MESSAGES/* files created by mkmsgs(1)

SEE ALSO
gettxt(1), mkmsgs(1), printf(l), srchtxt(1).
gettxt(3C), printf(3S), setlocale(3C) in the Programmer's Reference Manual.
environ(S) in the System Administrator's Reference Manual.

DIAGNOSTICS

10/89

The error messages produced by exstr are intended to be self-explanatory. They
indicate errors in the command line or format errors encountered within the
input me.

Page 3

face (1) face (1)

NAME
face - executable for the Framed Access Command Environment Interface

SYNOPSIS
face [-i init Jile] [-c command Jile] [-a alias Jile] [file ...]

DESCRIPTION

FILES

file is the full pathname of the file describing the object to be opened initially, and
must follow the naming convention Menu. xxx for a menu, Fonn. xxx for a form,
and Text. xxx for a text file, where xxx is any string that conforms to the UNIX
system file naming conventions. The FMLI descriptor lifetime will be ignored
for all frames opened by argument to. face. These frames have a lifetime of
imm::lrtal by default. If file is not specified on the command line, the AT&T
FACE Menu will be opened along with thoSe objects specified by the LOGINWIN
environment variables. These variables are found in 'the user's . environ file.

$HOME/pref/.environ
SEE ALSO

env(4)

DIAGNOSTICS

10/89

The face command will exit with a non-zero exit code if the user is not properly
set up as a FACE user.

Page 1

factor(1) factor (1)

NAME
factor - obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, it waits for you to give it an integer.
After you give it a positive integer less than or equal to 1014, it factors the integer,
prints its prime factors the proper number of times, and then waits for another
integer. factor exits if it encounters a zero or any non-numeric character.

If you invoke factor with an argument, it factors the integer as described above,
and then it exits.

The maximum time to factor an integer is proportional to..J7i. factor will take
this time when n is prime or the square of a prime.

DIAGNOSTICS

10189

factor prints the error message, Ouch, for input out of range or for garbage
input.

Page 1

fgrep(1) fgrep(1)

NAME
fgrep - search a file for a character string

SYNOPSIS
fgrep [options] string [file ...]

DESCRIPTION
fgrep (fast grep) seaches files for a character string and prints all lines that con­
tain that string. fgrep is different from grep(1) and egrep(l) because it searches
for a string, instead of searching for a pattern that matches an expression. It uses
a fast and compact algorithm.

The characters $, *, [, ", \, (,), and \ are interpreted literally by fgrep, that is,
fgrep does not recognize full regular expressions as does egrep. Since these
characters have special meaning to the shell, it is safest to enclose the entire string
in single quotes ' ... ' .

If no files are specified, fgrep assumes standard input. Normally, each line
found is copied to the standard output. The file name is printed before each line
found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can be
useful in locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-h Suppress printing of filenames when searching multiple files.
-i Ignore upper flower case distinction during comparisons.
-1 Print the names of files with matching lines once, separated by new-lines.

Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).
-v Print all lines except those that contain the pattern.
-x Print only lines matched entirely.
-e special_string

Search for a special string (string begins with a -).
-f file

Take the list of strings from file.

SEE ALSO
ed(1), egrep(1), grep(1), sed(1), sh(1).

DIAGNOSTICS

NOTES

10/89

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inacces­
sible files (even if matches were found).

Ideally there should be only one grep command, but there is not a single algo­
rithm that spans a wide enough range of space-time tradeoffs. Lines are limited
to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
fusr/inc1ude/stdio.h.

Page 1

file (1) file (1)

NAME
file - determine file type

SYNOPSIS
file [-h) [-m mfile] [-f !file] arg ...
file [-h) [-m mfile] -f!file
file -c [-m mfile]

DESCRIPTION

FILES

file performs a series of tests on each file supplied by arg and, optionally, on
each file supplied in !file in an attempt to classify it. If arg appears to be a text
file, file examines the first 512 bytes and tries to guess its programming
language. If arg is an executable a. out, file prints the version stamp, provided
it is greater than O. If arg is a symbolic link, by default the link is followed and
file tests the file that the symbolic link references.

-c Check the magic file for format errors. For reasons of efficiency, this
validation is normally not carried out.

-f !file !file contains the names of the files to be examined.

-h Do not follow symbolic links.

-m mfile Use mfile as an alternate magic file, instead of /etc/magic.

file uses /etc/magic to identify files that have a magic number. A magic
number is a numeric or string constant that indicates the file type. Commentary
at the beginning of /etc/magic explains its format.

/etc/magic
SEE ALSO

filehdr(4) in the System Administrator's Reference Manual.
DIAGNOSTICS

10/89

If the -h option is specified and arg is a symbolic link, file prints the error mes­
sage:

symbolic link to arg

Page 1

find (1) find (1)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION

10/89

find recursively descends the directory hierarchy for each path name in the path­
name-list (that is, one or more path names) seeking files that match a boolean
expression written in the primaries given below. In the descriptions, the argument
n is used as a decimal integer where +n means more than n, -n means less than
nand n means exactly n. Valid expressions are:

-name pattern True if pattern matches the current file name. Normal shell file
name generation characters (see sh(1» may be used. A
backslash (\) is used as an escape character within the pattern.
The pattern should be escaped or quoted when find is invoked
from the shell.

-perm [-]onum

-size n[c]

-atime n

-mtime n

-ctime n

-exec cmd

-ok cmd

-print

-newer file

-depth

-roount

True if the file permission flags exactly match the octal number
onum (see chm:ld(l». If onum is prefixed by a minus sign (-),
only the bits that are set in onum are compared with the file
permission flags, and the expression evaluates true if they
match.

True if the file is n blocks long (512 bytes per block). If n is fol­
lowed by a c, the size is in characters.

True if the file was accessed n days ago. The access time of
directories in path-name-list is changed by find itself.

True if the file's data was modified n days ago.

True if the file's status was changed n days ago.

True if the executed cmd returns a zero value as exit status. The
end of cmd must be punctuated by an escaped semicolon. A
command argument {} is replaced by the current path name.

Like -exec except that the generated command line is printed
with a question mark first, and is executed only if the user
responds by typing y.

Always true; cause~ the current path name to be printed.

True if the current file has been modified more recently than the
argument file.

Always true; causes descent of the directory hierarchy to be
done so that all entries in a directory are acted on before the
directory itself. This can be useful when find is used with
cpio(l) to transfer files that are contained in directories without
write permission.

Always true; restricts the search to the file system containing
the directory specified.

Page 1

find (1) find (1)

-local

(expression)

-type c

-follow

-links n

-user uname

-nouser

-group gname

-nogroup

-fstype type
-inurn n

True if the file physically resides on the local system.

True if the parenthesized expression is true (parentheses are
special to the shell and must be escaped).

True if the type of the file is c, where c is b, e, d, 1, p, or f for
block special file, character special file, directory, symbolic link,
fifo (named pipe), or plain file, respectively.

Always true; causes symbolic links to be followed. When fol­
lowing symbolic links, find keeps track of the directories
visited so that it can detect infinite loops; for example, such a
loop would occur if a symbolic link pointed to an ancestor.
This expression should not be used with the -type 1 expres­
sion.

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric
and does not appear as a login name in the /ete/passwd file, it
is taken as a user ID.

True if the file belongs to a user not in the /ete/passwd file.

True if the file belongs to the group gname. If gname is numeric
and does not appear in the fete/group file, it is taken as a
group ID.

True if the file belongs to a group not in the fete/group file.

True if the filesystem to which the file belongs is of type type.

True if the file has inode number n.
-prune Always yields true. Do not examine any directories or files in

the directory structure below the pattern just matched. See the
examples, below.

The primaries may be combined using the following operators (in order of
decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition
of two primaries). '

3) Alternation of primaries (-0 is the or operator).

Note that when you use find in conjunction with epio, if you use the -L option
with epio then you must use the -follow expression with find and vice versa.
Otherwise there will be undesirable results.

EXAMPLES

Page 2

Remove all files in your home directory named a. out or *.0 that have not been
accessed for a week:

find $HOME \ (-name a.out -0 -name '*.0' \) -atime +7 -exec nn {} \;

10/89

find (1) find (1)

FILES

Recursively print all file names in the current directory and below, but skipping
sees directories:

find . -name sees -prune -0 -print

Recursively print all file names in the current directory and below, skipping the
contents of sees directories, but printing out the sees directory name:

find . -print -name sees -prune

/etc/passwd, /etc/group

SEE ALSO

NOTE

10/89

chIood(1), sh(1), test(l).
stat(2), and umask(2) in the Programmer's Reference Manual.
fs(4) in the System Administrator's Reference Manual.

When using find to determine files modified within a range of time, one must
use the ?time argument BEFORE the -print argument otherwise find will give
all files.

The following option is obsolete and will not be supported in future releases.

-epio device Always true; write the current file on device in epio(1) format
(5120-byte records).

Page 3

finger (1) finger(1)

NAME
finger - display information about local and remote users

SYNOPSIS
finger [-bfhilnpqsw] username ...

finger [-1] username@hostname ... (TC/IP)

DESCRIPTION

10/89

By default, the finger command displays information about each, logged-in
user, including login name, full name, terminal name (prepended with a '*' if
write-permission is denied), idle time, login time, and location if known.

Idle time is minutes if it is a single integer, hours and minutes if a ':' is present,
or days and hours if a d is present.

When one or more usemame arguments are given, more detailed information is
given for each username specified, whether they are logged in or not. username
must be that of a local user, and may be a first or last name, or an account name.
When finger is used to find users on a remote device, the user and the name of
the remote device are specified in the form username@hostname. Information is
presented in a multi-line format, and includes, in addition to the information
mentioned above:

the user's home directory and login shell

time the user logged in if currently logged in, or the time the user last
logged in if not, as well as the terminal or host from which the user
logged in and, if a terminal.

last time the user received mail, and the last time the user read their mail

any plan contained in the file .plan in the user's home directory

and any project on which the user is working described in the file .pro­
ject (also in the user's home directory)

The following options are available:

-b Suppress printing the user's home directory and shell in a long format
printout.

-f

-h

-i

-1

-m
-p

-q

Suppress printing the header that is normally printed in a non-long format
printout.

Suppress printing of the .project file in a long format printout.

Force "idle" output format, which is similar to short format except that
only the login name, terminal, login time, and idle time are printed.

Force long output format.

Match arguments only on user name (not first or last name).

Suppress printing of the . plan file in a long format printout.

Force quick output format, which is similar to short format except that
only the login name, terminal, and login time are prhlted.

Page 1

finger(1)

FILES

-s Force short output format.

-w Suppress printing the full name in a short format printout.

Within the TCP/IP network, the -1 option can be used remotely.

/var/adm/utnp
/etc/passwd
/var/adm/lastlog
-/.plan
-/. project

who is logged in
for users' names
last login times
plans
projects

SEE ALSO
passwd(l), who(1), whois(1)

NOTES
Only the first line of the -/ . project file is printed.

Page 2

finger (1)

10/89

fmli (1) fmll (1)

NAME
fmli - invoke FMLI

SYNOPSIS
fmli [-a aliasJilel [-c commandJile] [-i initializationJilel file ...

DESCRIPTION
The fmli command invokes the Form and Menu Language Interpreter and opens
the frame(s} specified by the file argument. The file argument is the pathname of
the initial frame definition file(s}, and must follow the naming convention
Menu. xxx, Form. xxx or Text. xxx for a menu, form or text frame respectively,
where xxx is any string that conforms to UNIX system file naming conventions.
The FMLI descriptor lifetime will be ignored for all frames opened by argu­
ment to fmli. These frames have a lifetime of iIrm:>rtal by default.

The available options are as follows:

-a If -a is specified, alias Jile is the name of a file which contains lines of the
form alias=pathname. Thereafter, $alias can be used in definition files to
simplify references to objects or devices with lengthy pathnames, or to
define a search path (similar to $PATH in the UNIX system shell).

-c If -c is specified, command Jile is the name of a file in which default
FMLI commands can be disabled, and new application-specific com­
mands can be defined. The contents of command Jile are reflected in the
FMLI Command Menu.

-i If -i is specified, initialization Jile is the name of a file in which the fol-
lowing characteristics of the application as a whole can be specified:

- A transient introductory frame displaying product information

- A banner, its position, and other elements of the banner line

- Color attributes for all elements of the screen

- Screen Labeled Keys (SLKs) and their layout on the screen.

Environment Variables
LOADPFK

10/89

Leaving this environment variable unset tells FMLI, for certain terminals like the
AT&T 5620 and 630, to download its equivalent character sequences for using
function keys into the terminal's programmable function keys, wiping out any
settings the user may already have set in the function keys. Setting LOADPFK=NO
in the environment will prevent this downloading. See Appendix A of the
Programmer's Guide: Character User Interface (FMLI and ETI).

COLUMNS
Can be used to override the width of the logical screen defined for the terminal
set in TERM. For terminals with a 132-column mode, for example, invoking FMLI
with the line

COLUMNS=132 fmli frame-file

will allow this wider screen wiqth to be used.

Page 1

fmll(1) fmll (1)

LINES
Can be used to override the length of the logical screen defined for the terminal
set in TERM.

EXAMPLES
To invoke fmli:

fmli Menu. start

where Menu. start is an example of file named according to the file name con­
ventions for menu definition files explained above.

To invoke fmli and name an initialization file:

fmli -i init.myapp Menu.start

where init. myapp is an example of initialization Jile.
DIAGNOSTICS

FILES

If file is not supplied to the fmli command, fmli returns the message:

Initial object must be specified.

If file does not exist or is not readable, fmli returns an error message and exits.
The example command line above returns the following message and exits:

Can't open object "Menu.start"

If file exists, but does not start with one of the three correct object names (Menu.,
Form., or Text.) or if it is named correctly but does not contain the proper data,
fmli starts to build the screen by putting out the screen labels for function keys,
after which it flashes the message:

I do not recognize that kind of object

and then exits.

/usr/bin/fmli

SEE ALSO
vsig(lF).

Page 2 10/89

fmt(1) fmt (1)

NAME
fmt - simple text formatters

SYNOPSIS
fmt [-cs] [-w width] [file ...

DESCRIPTION
fmt is a simple text formatter that fills and joins lines to produce output lines of
(up to) the number of characters specified in the -w width option. The default
width is 72. fmt concatenates the inputfiles listed as arguments. If none are given,
fmt formats text from the standard input.

Blank lines are preserved in the output, as is the spacing between words. fmt
does not fill lines beginning with a "." (dot), for compatibility with nroff(l).
Nor does it fill lines starting with "From:".

Indentation is preserved in the output, and input lines with differing indentation
are not joined (unless -c is used).

fmt can also be used as an in-line text filter for vi(1); the vi command:

! }fmt

reformats the text between the cursor location and the end of the paragraph.

OPTIONS
-c

-s

-w width

Crown margin mode. Preserve the indentation of the first two lines
within a paragraph, and align the left margin of each subsequent
line with that of the second line. This is useful for tagged para­
graphs.

Split lines only. Do not join short lines to form longer ones. This
prevents sample lines of code, and other such formatted text, from
being unduly combined.

Fill output lines to up to width columns.

SEE ALSO

NOTES

10/89

nroff(1)r vi(1)

The -width option is acceptable for BSD compatibility, but it may go away in
future releases.

Page 1

fmtmsg fmtmsg

NAME
fmtmsg - display a message on stderr or system console

SYNOPSIS
fmtmsg [-c class) [-u subclass) [-1 label) [-s severity) [-t tag) [-a action) text

DESCRIPTION
Based on a message's classification component, fmtmsg either writes a formatted
message to stderr or writes a formatted message to the console.

A formatted message consists of up to five standard components as defined
below. The classification and subclass components are not displayed as part of
the standard message, but rather define the source of the message and direct the
display of the formatted message. The valid options are:

-c class Describes the source of the message. Valid keywords are:

hard The source of the condition is hardware.
soft The source of the condition is software.
firm The source of the condition is firmware.

-u subclass A list of keywords (separated by commas) that further defines the
message and directs the display of the message. Valid keywords
are:

appl The condition originated in an application. This key­
word should not be used in combination with either
util or opsys.

util The condition originated in a utility. This keyword
should not be used in combination with either appl
or opsys.

opsys The message originated in the kernel. This keyword
should not be used in combination with either appl
or uti!.

recov The application will recover from the condition. This
keyword should not be used in combination with
nrecov.

nrecov The application will not recover from the condition.
This keyword should not be used in combination
with recov.

print Print the message to the standard error stream
stderr.

console Write the message to the system console. print,
console, or both may be used.

-1 label Identifies the source of the message.

-s severity Indicates the seriousness of the error. The keywords and definitions
of the standard levels of severity are:

halt The application has encountered a severe fault and is
halting.

10/89 Page 1

fmtmsg fmtmsg

Page 2

-t tag

error
warn

info

The application has detected a fault.
The application has detected a condition that is out
of the ordinary and might be a problem.
The application is providing information about a
condition that is not in error.

The string containing an identifier for the message.
-a action A text string describing the first step in the error recovery process.

This string must be written so that the entire action argument is
interpreted as a single argument. fmtmsq precedes each action
string with the TO FIX: prefix.

text A text string describing the condition. Must be written so that the
entire text argument is interpreted as a single argument. .

The environment variables MSGVERB and SEV LEVEL . control the behavior of
fmtmsq. MSGVERB is set by the administrator in the fete/profile for the system.
Users can override the value of MSGVERB set by the system by resetting MSGVERB
in their own . profi~e files or by changing the value in their current shell ses-
~ion. SEV_LEVEL can.be Used in shell~pts.. .
MSGVE:RB tellsfmt,msq which message components to select when writing mes­
sages to stderr. The value of MSGvERBisa colon Separated listof optionallqly­
words. ~GVERB Cart be set as follows:

MS<M:RB=[keyword[: keyword[: ... m
E!ltpOrt MSGVERB .

Valid keywords are: label, severity, text, action, andtaq. If MSGVERB con-'
tains a keyword for a component and the component's value. is not the
component's null value, fmtmsq includes that component in the message when
writing the message. to stderr. . If MsGVE:RB does not include a keyWord for a
message component, that component is not included in the display of the mes­
sage. The keywords may appear in any order. If MSGVERB is not defined, if its
value is the null string, if its value is· not of· the correct format, or if it contains
keywords other than the valid ones listed above, fmtmsq selects all components.

MSGVERBaffects only which message components are selected for display. All
message components are inclUded in console messages.

SEV _ LEVEL defines severity levels and associates print strings with them for use
by fmtmsq .. The standard severity levels shown below cannot be modified. Addi­
tional severity levels can be defined, redefined, and removed.

o (no severity is used)
1 HALT
2 ERROR
3 WARNING
4 INFO

10/89

fmtmsg fmtmsg

SEV_LEVEL is set as follows:
SEV _ LEVEL=-[description[: description[: ... m
export SEV LE. VEL

. -
description is a comma-separated list containing three fields:

description=severi.ty Jreyword, level, printstring
severity Jreyword is a character string used as the keyword with the -s severity
option to fmtmsg.

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3,
or 4, which are reserved for the standard severity levels). If the keyword
seoerityJreyword is used, level is the severity value p~sed on to fmtmsg(3C).

printstring is the character string used by fmtmsg in the standard message format
whenever the severity value level is used.

If SEV _LEVEL is not defined, or if its value is null, no severity levels other than
the defaults are available. If a description in the colon separated list is not a
comma separated list containing three fields, or if the second field of a comma
separated list does not evaluate to a positive integer, that description in the colon
separated list is ignored.

DIAGNOSTICS
The exit codes for fmtmsg are the following:

o All the requested functions were executed successfully.

1 The command contains a syntax error, an invalid option, or an
invalid argument to an option.

2 The function executed with partial success, however the message
was not displayed on stderr.

4 The function executed with partial success, however the message
was not displayed on the system console.

32 No requested functions were executed successfully.

EXAMPLES

10189

Example 1: The following example of fmtmsg produces a complete message in the
standard message format and displays· it to the standard error stream:

fmt:msg -c soft -u recov,print,awl -1 UX:cat ...,s error -t
UX:cat:OOl -a "refer to manual" "invalid syntax"

produces:

OX: cat: ERROR: invalid syntax
TO FIX: refer to manual OX: cat: 138

Example 2: When the environment variable MSGVERB is set as follows:

MSGVERB-severity:text:action

Page 3

fmtmsg

and Example 1 is used, fmtmsq produces:

ERROR: invalid syntax
TO FIX: refer to manual

Example 3: When the environment variable SEV _LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following fmtmsq command:

fmtmsg

fmtmsq --c soft -u print -1 UX:cat -s note -a "refer to
manual" "invalid syntax"

produces:

UX:cat: NOTE: invalid syntax
TO FIX: refer to manual

and displays the message on stderr.

SEE ALSO
addsverity(3C), fmtmsq(3C) in the Programmer's Reference Manual.

Page 4 10/89

fold (1) fold (1)

NAME
fold - fold long lines

SYNOPSIS
fold [-w width I -width 1 [filename ...

DESCRIPTION
Fold the contents of the specified filenames, or the standard input if no files are
specified, breaking the lines to have maximum width width. The default for width
is 80. width should be a multiple of 8 if tabs are present, or the tabs should be
expanded.

SEE ALSO
pr(l)

NOTES

10/89

Folding may not work correctly if underlining is present.

The -width option is provided as a transition tool only. It will be removed in
future releases.

Page 1

ftp(1) ftp(1)

NAME
ftp - file transfer program

SYNOPSIS
ftp [-dqintv] [hostname]

DESCRIPTION

\ 10/89

The ftp command is the user interface to the ARPANET standard File Transfer
Protocol (FI'P). ftp transfers files to and from a remote network site.

The client host with which ftp is to communicate may be specified on. the com­
mand line. If this is done, ftp immediately attempts to establish a connection to
an FTP server on that host; otherwise, ftp enters its command interpreter and
awaits instructions from the user. When ftp is awaiting commands from the
user, it displays the prompt ftp>.

The following options may be specified at the command line, or to the command
interpreter:

-d Enable debugging.

-q Disable filename globbing.

-i Turn off interactive prompting during multiple file transfers.

-n Do not attempt auto-login upon initial connection. If auto-login is not dis-
abled, ftp checks the .netrc file in the user's home directory for an entry
describing an account on the remote machine. If no entry exists, ftp will
prompt for the login name of the account on the remote machine (the
default is the login name on the local machine), and, if necessary, prompts
for a password and an account with which to login.

-t Enable packet tracing (unimplemented).

-v Show all responses from the remote server, as well as report on data
transfer statistics. This is turned on by default if ftp is running interac­
tively with its input coming from the user's terminal.

The following commands can be specified to the command interpreter:

[command]
Run command as a shell command on the local machine. If no command is
given, invoke an interactive shell.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef com­
mand. Arguments are passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access
to resources once a login has been successfully completed. If no argument
is included, the user will be prompted for an account password in a non­
echoing input mode.

Page 1

ftp(l)

Page 2

ftp(l)

append local-file [remote-file 1
Append a local file to a file on the remote machine. If remote-file is not
specified, the local file name is used, subject to alteration by any ntrans
or nmap settings. File transfer uses the current settings for representation
type, file structure, and transfer mode.

ascii Set the representation type to network ASCII. This is the default type.

bell Sound a bell after each file transfer command is completed.

binary
Set the representation type to image.

bye Terminate the FTP session with the remote server and exit ftp. An EOF
will also terminate the session and exit.

case Toggle remote computer file name case mapping during mget commands.
When case is on (default is off), remote computer file names with all
letters in upper case are written in the local directory with the letters
mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

cdup Change the remote machine working directory to the parent of the current
remote machine working directory.

close Terminate the FIP session with the remote server, and return to the com­
mand interpreter. Any defined macros are erased.

cr Toggle RETURN stripping during network ASCII type file retrieval.
Records are denoted by a RETURN/LINEFEED sequence during network
ASCII type file transfer. When cr is on (the default), RETURN characters
are stripped from this sequence to conform with the UNIX system single
LINEFEED record delimiter. Records on non-UNIX-system remote hosts
may contain single LINEFEED characters; when an network ASCII type
transfer is made, these LINEFEED characters may be distinguished from a
record delimiter only when cr is off.

delete remote-file

debug

Delete the file remote-file on the remote machine.

Toggle debugging mode. When debugging is on, ftp prints each com­
mand sent to the remote machine, preceded by the string -->.

dir [remote-directory 1 [local-file 1
Print a listing of the directory contents in the directory, remote-directory,
and, optionally, placing the output in local-file. If no directory is specified,
the current working directory on the remote machine is used. If no local
file is specified, or local-file is -, output is sent to the terminal.

disconnect
A synonym for close.

10/89

ftp(1)

10/89

ftp(1)

form [format-name]
Set the carriage control format subtype of the representation type to
format-name. The only valid format-name is non-print, which corresponds
to the default non-print subtype.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file
name is not specified, it is given the same name it has on the remote
machine, subject to alteration by the current case, ntrans, and runap set­
tings. The current settings for representation type, file structure, and
transfer mode are used while transferring the file.

glob Toggle filename expansion, or globbing, for mdelete, mget and nput. If
globbing is turned off, filenames are taken literally.

Globbing for nput is done as in sh(1). For mdelete and mget, each
remote file name is expanded separately on the remote machine, and the
lists are not merged.

Expansion of a directory name is likely to be radically different from
expansion of the name of an ordinary file: the exact result depends on the
remote operating system and FTP server, and can be previewed by doing
mls remote-files -.

mget and nput are not meant to transfer entire directory subtrees of files.
You can do this by transferring a tar(l) archive of the subtree (using a
representation type of image as set by the binary command).

hash Toggle hash-sign (It) printing for each data block transferred. The size of
a data block is 8192 bytes.

help [command]
Print an informative message about the meaning of command. If no argu­
ment is given, ftp prints a list of the known commands.

lcd [directory]
Change the working directory on the local machine. If no directory is
specified, the user's home directory is used.

Is [remote-directory] t local-file]
Print an abbreviated listing of the contents of a directory on the remote
machine. If remote-directory is left unspecified, the current working direc­
tory is used. If no local file is specified, or if local-file is -, the output is
sent to the terminal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name; a
null line (consecutive NEWLINE characters in a file or RETURN characters
from the terminal) terminates macro input mode. There is a limit of 16
macros and 4096 total characters in all defined macros. Macros remain
defined until a close command is executed.

The macro processor interprets $ and \ as special characters. A $ fol­
lowed by a number (or numbers) is replaced by the corresponding argu­
ment on the macro invocation command line. A $ followed by an i sig­
nals that macro processor that the executing macro is to be looped. On the

Page 3

ftp(1)

Page 4

ftp(1)

first pass $i is replaced by the first argument on the macro invocation
command line, on the second pass it is replaced by the second argument,
and so on. A \ followed by any character is replaced by that character.
Use the \ to prevent special treatment of the $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive
prompting is on, ftp will prompt the user to verify that the last argument
is indeed the target local file for receiving mdir output.

mget remote-files
Expand the remote-files on the remote machine and do a get for each file
name thus produced. See glob for details on the filename expansion.
Resulting file names will then be processed according to case, ntrans,
and nmap settings. Files are transferred into the local working directory,
which can be changed with led directory; new local directories can be
created with ! mkdir directory.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like ls(1), except multiple remote files may be specified. If interactive
prompting is on, ftp will prompt the user to verify that the last argument
is indeed the target local file for receiving mls output.

m:xie [mode-name]
Set the transfer mode to mode-name. The only valid mode-name is stream,
which corresponds to the default stream mode. This implementation only
supports stream, and requires that it be specified.

!!put local-files
Expand wild cards in the list of local files given as arguments and do a
put for each file in the resulting list. See glob for details of filename
expansion. Resulting file names will then be processed according to
ntrans and nmap settings.

nmap [inpattern outpattem]
Set or unset the filename mapping mechanism. If no arguments are
specified, the filename mapping mechanism is unset. If arguments are
specified, remote filenames are mapped during !!put commands and put
commands issued without a specified remote target filename. If argu­
ments are specified, local filenames are mapped during mget commands
and get commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote
host with different file naming conventions or practices. The mapping fol­
lows the pattern set by inpattern and outpattern. inpattern is a template for
incoming filenames (which may have already been processed according to
the ntrans and case settings). Variable templating is accomplished by
including the sequences $1, $2, ... , $9 in inpattern. Use \ to prevent this

10/89

ftp(1)

10/89

ftp(1)

special treatment of the $ character. All other characters are treated
literally, and are used to determine the nmap inpattern variable values.

For example, given inpattern $1. $2 and the remote file name
mydata.data, $1 would have the value Il!idata, and $2 would have the
value data.

The outpattern determines the resulting mapped filename. The sequences
$1, $2, ... , $9 are replaced by any value resulting from the inpattern tem­
plate. The sequence $0 is replaced by the original mename. Additionally,
the sequence [seql, seq21 is replaced by seql if seql is not a null string;
otherwise it is replaced by seq2.
For example, the command runap $1.$2.$3 [$1,$2]. [$2, file] would
yield the output filename myfile. data for input filenames myfile. data
and myfile. data. old, myfile. file for the input filename myfile, and
myfile.myfile for the input filename Il!ifile. SPACE characters may be
included in outpattern, as in the example nmap $1 I sed "s/ *$/ /" >
$1. Use the \ character to prevent special treatment of the $, [,], and"
characters.

ntrans [inchars [outchars 1 1
Set or unset the mename character translation mechanism. If no argu­
ments are specified, the filename character translation mechanism is unset.
If arguments are specified, characters in remote filenames are translated
during nput commands and put commands issued without a specified
remote target filename, and characters in local filenames are translated
during mget commands and get commands issued without a specified
local target filename.

This command is useful when connecting to a non-UNIX-system remote
host with different file naming conventions or practices. Characters in a
filename matching a character in inchars are replaced with the correspond­
ing character in outchars. If the character's position in in chars is longer
than the length of outchars, the character is deleted from the file name.

open host [port 1
Establish a connection to the specified host FTP server. An optional port
number may be supplied, in which case, ftp will attempt to contact an
FTP server at that port. If the auto-login option is on (default setting), ftp
will also attempt to automatically log the user in to the FTP server.

pronpt
Toggle interactive prompting. Interactive prompting occurs during multi­
ple file transfers to allow the user to selectively retrieve or store files. By
default, prompting is turned on. If prompting is turned off, any mget or
nput will transfer all files, and any nrlelete will delete all files.

proxy fip-command
Execute an FTP command on a secondary control connection. This com­
mand allows simultaneous connection to two remote FTP servers for
transferring files between the two servers. The first proxy command
should be an open, to establish the secondary control connection. Enter

Page 5

ftp(1)

Page 6

ftp(1)

the .command proxy ? to see other FTP commands executable on the
secondary connection.

The following commands behave differently when prefaced by proxy:
open will not define new macros during the auto-login process, close will
not erase existing macro definitions, get and mget transfer files from the
host on the primary control connection to the host on the secondary con­
trol connection, and put, nputd, and append transfer files from the host
on the secondary control connection to the host on the primary control
connection.

Third party file transfers depend upon support of the PASV command by
the server on the secondary control connection.

put local-file [remote-file 1
Store a local file on the remote machine. If remote-file is left unspecified,
the local file name is used after processing according to any rttrans or
nrnap settings in naming the remote file. File transfer uses the current set­
tings for representation type, file structure, and transfer mode.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote argl atg2 ...
Send the arguments specified, verbatim, to the remote FTP Server. A sin­
gle FTP reply code is expected in return. (The rernotehelp command
displays a list of valid arguments.)

quote should be used only by experienced users who are familiar with
the FrP protocol.

recv remote-file [local-file 1
A synonym for get.

rerootehelp [command-name 1
Request help from the remote FTP server. If a command-name is specified it
is supplied to the server as well.

rename from to
Rename the file from on the remote machine to have the name to.

reset Clear reply queue. This command re-synchronizes command/reply
sequencing with the remote FTP server. Resynchronization may be neces­
sary following a violation of the FTP protocol by the remote server.

rm:iir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. If a file
already exists with a name equal to the target local filename for a get or
mget command, a . 1 is appended to the name. If the resulting name
matches another existing file, a .2 is appended to the original name. If
this process continues up to .99, an error message is printed, and the
transfer does not take place. The generated unique filename will be

10/89

ftp(1)

10/89

ftp(1)

reported. runique will not affect local files generated from a shell com­
mand. The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp will attempt to use a
PORT command when establishing a connection for each data transfer.
The use of PORT commands can prevent delays when performing multiple
file transfers. If the PORT command fails, ftp will use the default data
port. When the use of PORT commands is disabled, no attempt will be
made to use PORT commands for each data transfer. This is useful when
connected to certain FrP implementations that ignore PORT commands but
incorrectly indicate they have been accepted.

status
Show the current status of ftp.

struct [strud-name]
Set the file structure to struct-name. The only valid strud-name is file,
which corresponds to the default file structure. The implementation only
supports file, and requires that it be specified.

sunique
Toggle storing of files on remote machine under unique file names. The
remote FTP server must support the STOU command for successful comple­
tion. The remote server will report the unique name. Default value is off.

tenex Set the representation type to that needed to talk to TENEX machines.

trace Toggle packet tracing (unimplemented).

type [type-name]
Set the representation type to type-name. The valid type-names are ascii
for network ASOI, binary or image for image, and tenex for local byte
size with a byte size of 8 (used to talk to TENEX machines). If no type is
specified, the current type is printed. The default type is network ASOI.

user user-name [password 1 [account 1
Identify yourself to the remote FTP server. If the password is not specified
and the server requires it, ftp will prompt the user for it (after disabling
local echo). If an account field is not specified, and the FTP server requires
it, the user will be prompted for it. If an account field is specified, an
account command will be relayed to the remote server after the login
sequence is completed if the remote server did not require it for logging
in. Unless ftp is invoked with auto-login disabled, this process is done
automatically on initial connection to the FrP server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FrP server
are displayed to the user. In addition, if verbose mode is on, when a file
transfer completes, statistics regarding the efficiency of the transfer are

Page 7

ftp(1} ftp(1)

reported. By default, verbOse mode is on if ftp's commands are coming
from a terminal, and off otherwise.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (")
marks.

If any command argument which is not indicated as being optional is not
specified, ftp·will prompt for that argument.

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key. Sending transfers will be
immediately halted. Receiving transfers will be halted by sending an FTP protO­
col ABOR command to the remote server, and discarding any further data
received. The speed at which this is accomplished depends upon the remote
server's support for ABOR processing. If the remote server does not support the
ABOR command, an ftp> prompt will not appear until the remote server has com­
pleted sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any
local processing and is awaiting a reply from the remote server. A long delay in
this mode may result from the ABOR processing described above, or from unex­
pected behavior by the remote server, including violations of the ftp protocol. If
the delay results from unexpected remote server behavior, the local ftp program
must be killed by hand.

FILE NAMING CONVENTIONS

Page 8

Local files specified as arguments to ftp commands are processed according to
the following rules.

1) If the file name - is specified, the standard input (for reading) or standard
output (for writing) is used.

2)

3)

4)

5)

If the first character of the file name is I, the remainder of the argument is
interpreted as a shell command. ftp then forks a Shell, using popen(3S)
with the argument supplied, and reads (writes) from the standard output
(standard input) of that shell. If the shell command includes SPACE char­
acters, the argument must be quoted; for example" I ls -It''. A partic­
ularly useful example of this mechanism is: "dir I IOOre".

Failing the above checks, if globbing is enabled, local file names are
expanded according to the rules used in the sh(1); see the glob command.
If the ftp command expects a single local file (for example, put), only the
first filename generated by the globbing operation is used.

For mget commands and get commands with unspecified local file names,
the local filename is the remote filename, which may be altered by a case,
ntrans, or nmap setting. The resulting filename may then bee altered if
runique is on.

For lIpUt commands and put commands with unspecified remote file
names, the remote filename is the local filename, which may be altered by
a ntrans or nmap setting. The resulting filename may then be altered by
the remote server if sunique is on.

10/89

ftp(1) ftp(1)

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which may affect a file transfer.

The representation type may be one of network ASOI, EBCDIC, image, or local
byte size with a specified byte size (for PDP-la's and PDP-20's mostly). The net­
work ASCII and EBCDIC types have a further subtype which specifies whether
vertical format control (NEWLINE characters, form feeds, etc.) are to be passed
through (non-print), provided in TELNET format (TELNET format controls), or pro­
vided in ASA (FORTRAN) (carriage control (ASA» format. ftp supports the net­
work ASCII (subtype non-print only) and image types, plus local byte size with a
byte size of 8 for communicating with TENEX machines.

The file structure may be one of file (no record structure), record, or page. ftp
supports only the default value, which is file.

The transfer mode may be one of stream,. block, or corrpressed. ftp supports
only the default value, which is stream.

SEE ALSO

NOTES

10/89

ls(1), rcp(1), tar(1), sh(1), ftpd(1M), popen(3S), netrc(4).

Correct execution of many commands depends upon proper behavior by the
remote server.

An error in the treatment of carriage returns in the 4.2 BSD code handling
transfers with a representation type of network ASCII has been corrected. This
correction may result in incorrect transfers of binary files to and from 4.2 BSD
servers using a representation type of network ASCII. A void this problem by
using the image type.

Page 9

gcore(1}

NAME
qcore - get core images of running processes

SYNOPSIS
qcore [-0 filename 1 process-id ...

DESCRIPTION

gcore(1 }

qcore creates a core image of each specified process. Such an image may be
used with debuggers such as sdb. The name of the core image file for the pro­
cess whose process ID is process-id will be core. process-id.

FILES

The -0 option substitutes filename in place of core as the first part of the name of
the core image files.

core . process-id core images
SEE ALSO

kill(1), csh(1)
sdb(l), ptrace(2) in the Programmer's Reference Manual.

10/89 Page 1

gencat(1) gencat{1)

NAME
gencat - generate a formatted message catalogue

SYNOPSIS
gencat [-m] catfile msgfile ...

DESCRIPTION

10/89

The gencat utility merges the message text source file(s) msgfile into a formatted
message database catfile. The database catfile will be created if it does not already
exist. If catfile does exist its messages will be included in the new catfile. If set
and message numbers collide, the new message-text defined in msgfile will replace
the old message text currently contained in catfile. The message text source file
(or set of files) input to gencat can contain either set and message numbers or
simply message numbers, in which case the set NL_SETD [see nl_types(S)] is
assumed.

The format of a message text source file is defined as follows. Note that the
fields of a message text source line are separated by a single ASCII space or tab
character. Any other ASCII spaces or tabs are considered as being part of the
subsequent field.

$set n com:nent
Where n specifies the set identifier of the following messages until the next
$set, $delset or end-of-file appears. n must be a number in the range
(l-{NL_SETMAX}). Set identifiers within a single source file need not be con­
tiguous. Any string following the set identifier is treated as a comment. If
no $set directive is specified in a message text source file, all messages will
be located in the default message set NL _ SETD.

$delset n comment
Deletes message set n from an existing message catalogue. Any string fol­
lowing the set number is treated as a comment.

(Note: if n is not a valid set it is ignored.)

$ com:nent
A line beginning with a dollar symbol $ followed by an ASCII space or tab
character is treated as a comment.

m message-text
The m denotes the message identifier, which is a number in the range (1-
{NL_MSGMAX}). The message-text is stored in the message catalogue with the
set identifier specified by the last $set directive, and with message
identifier m. If the message-text is empty, and an ASCII space or tab field
separator is present, an empty string is stored in the message catalogue. If a
message source line has a message number, but neither a field separator nor
message-text , the existing message with that number (if any) is deleted
from the catalogue. Message identifiers need not be contiguous. The length
of message-text must be in the range (O-{NL_TEXTMAX}).

$quote c
This line specifies an optional quote character c, which can be used to sur­
round message-text so that trailing spaces or null (empty) messages are visi­
ble in a message source line. By default, or if an empty $quote directive is
supplied, no quoting of message-text will be recognized.

Page 1

gencat{1) gencat{1)

Empty lines in a message text source file are ignored.

Text strings can contain the special characters and escape sequences defined in
the following table:

Description Symbol Sequence
newline NL(LF) \n
horizontal tab HT 't
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
bit pattern ddd 'ddd

The escape sequence \ddd consists of backslash followed by 1, 2 or 3 octal digits,
which are taken to specify the value of the desired character. If the character fol­
lowing a backslash is not one of those specified, the backslash is ignored.

Backslash followed by an ASCII newline character is also used to continue a
string on the following line. Thus, the following two lines describe a single mes­
sage string:

1 This line continues \
to the next line

which is equivalent to:

1 This line continues to the next line

NOTES

Page 2

This version of gencat is built upon the mkmsgs utility. The gencat database
comprises of two files catfile.m which is an mkmsgs format catalogue and the file
catfile which contains the information required to translate an set and message
number into a simple message number which can be used in a call to gettxt.

Using gettxt constrains the catalogues to be located in a subdirectory under
/usr/lib/locale. This restriction is lifted by placing only a symbolic link to the
catalogue in the directory /usr/lib/locale/Xopen/LC_MESSAGES when the
catalogue is opened. It is this link that gettxt uses when attempting to access
the catalogue. The link is removed when the catalogue is closed but occasionally
as applications exit abnormally without closing catlogues redundant symbolic
links will be left in the directory.

For compatibility with previous version of gencat released in a number of spe­
cialized internationalization products, the -m option is supplied. This option will
cause gencat to build a single file catfile which is compatible with the format
catalogues produced by the earlier versions. The retrieval routines detect the type
of catalogue they are using and will act appropriately.

10/89

gencat(1)

SEE ALSO
mkmsgs(1)

gencat(1)

catopen(3C), catgets(3C), catclose(3C), gettxt(3C), nl_types(S) in the
Programmer's Reference Manual.

10/89 Page 3

getopt(1) getopt(1)

NAME
getopt - parse command options

SYNOPSIS
set - 'getopt optstring $* '

DESCRIPTION
The getopts command supercedes getopt. For more information, see the NOTES
below.

getopt is used to break up options in command lines for easy parsing by shell
procedures and to check for legal options. optstring is a string of recognized
option letters; see getopt(3C). If a letter is followed by a colon, the option is
expected to have an argument which mayor may not be separated from it by
white space. The special option -- is used to delimit the end of the options. If it
is used explicitly, getopt recognizes it; otherwise, getopt generates it; in either
case, getopt places it at the end of the options. The positional parameters ($1
$2 ...) of the shell are reset so that each option is preceded by a - and is in its
own positional parameter; each option argument is also parsed into its own posi­
tional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a
command that can take the options a or b, as well as the option 0, which requires
an argument:

set - 'getopt abo: $*'
if [$? != 0]
then

fi
for i
do

done

echo $USAGE
exit 2

in $*

case $i in
-a I -b)
-0)
--)
esac

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break;;

This code accepts any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

SEE ALSO
getopts(l), sh(1).
getopt(3C) in the Programmer's Reference Manual.

110/89 Page 1

getopt(1) getopt(1)

DIAGNOSTICS

NOTES

Page 2

getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

getopt will not be supported in the next major release. For this release a conver­
sion tool has been provided, getoptcvt. For more information about getopts
and getoptcvt, see getopts(l).

Reset optind to 1 when rescanning the options.

getopt does not support the part of Rule 8 of the command syntax standard [see
intro(1)] that permits groups of option-arguments following an option to be
separated by white space anci quoted. For example,

cmd -a -1::1 -0 "xxx Z yy" file

is not handled correctly. To correct this deficiency, use the getopts command in
place of getopt.

If an option that takes an option-argument is followed by a value that is the same
as one of the options listed in optstring (referring to the earlier EXAMPLE section,
but using the following command line: cmd -0 -a file), getopt always treats
-a as an option-argument to -0; it· never recognizes -a as an option. For this
case, the for loop in the example shifts past the file argument.

10/89

getopts(1) getopts(1)

NAME
getopts, getoptcvt - parse command options

SYNOPSIS
getopts optstring name [arg ...]
/usr/lib/getoptcvt [-b] file

DESCRIPTION
getopts is used by shell procedures to parse positional parameters and to check
for valid options. It supports all applicable rule!; of the command syntax stan­
dard (see Rules 3-10, intro(l)). It should be used in place of the getopt com­
mand. (See the NOTES section below.)

optstring must contain the option letters the command using getopts will recog­
nize; if a . letter is followed by a colon, the option is expected to have an argu­
ment, or group of arguments, which must be separated from it by white space.

Each time it is invoked, getopts places the next option in the shell variable name
and the index of the next argument to be processed in the shell variable OPTIND.
Whenever the shell or a shell procedure is invoked, OPTIND is in.itialized to L

When an option requires an option-argument, getopts places it in the shell vari­
able OPTARG.

If an illegal option is encountered, ?will be placed in 1UIme .
When the end of options is encountered, getopts exits with a non-zero exit
status. The special option - may be used to delimit the end of the option!>.

By default, getopts·parses the positional parameters. If extra arguments (arg ...)
are given on the getopts comm!lnd line, getopts parsees them instead.

/usr/lib/getoptcvt reads the shell script in file, converts it to use getopts
instead of getopt, and writes the results on the standard output.

-b ,Make the converted script portable to earlier releases of the UN1X system.
/usr/lib/getoptcvt modifies the shell script in file so that when the
resUlting shell script is executed, it determines at run time whether to
invoke getopts or getopt.

So all new commands will adhere to the command syntax standard described in
intro(1), they should use getopts or getopt to parse positional parameters and
check for options that are valid for that command (see the NOTES section below).

EXAMPLE

10/89

The following fragment of a shell program shows how one might process the
arguments for a command that. can take the options a or b, as well as the option
0, which requires an option-argument:

while getopts abo: c
do

case $c in
a I b)
0)
\?)

esac

FLAG=$c; ;
OARG=$OPTARG; ;
echo $USAGE
exit 2;;

Page 1

getopts(1) getopts(1)

done
shift 'expr $OPTIND - I'

This code accepts any of the following as equivalent:

cmj -a -b -0 "xxx z yy" file
cmj -a -b -0 "xxx z yy" -- file
cmj -ab -0 xxx,z,yy file
cmj -ab -0 "xxx z yy" file
cmj -0 xxx,z,yy -b -a file

SEE ALSO

NOTES

intro(1), sh(1).
getopt(3C) in the Programmer's Reference Manual.

Although the following command syntax rule [see intro(1») relaxations are per­
mitted under the current implementation, they should not be used because they
may not be supported in future releases of the system. As in the EXAMPLE sec­
tion above, a and b are options, and the option 0 requires an option-argument.
The following example violates Rule 5: options with option-arguments must not
be grouped with other options:

cmj -aboxxx file

The following example violates Rule 6: there must be white space after an option
that takes an option-argument:

cmj -ab -oxxx file

Changing the value of the shell variable OPTIND or parsing different sets of argu­
ments may lead to unexpected results.

DIAGNOSTICS

Page 2

getopts prints an error message on the standard error when it encounters an
option letter not included in optstring.

10/89

gettxt(1) gettxt(1)

NAME
gettxt - retrieve a text string from a message data base

SYNOPSIS
gettxt msgfile:msgnum [dflt_msg]

DESCRIPTION
gettxt retrieves a text string from a message file in the directory
/usr/lib/locale/locale/LC_MESSAGES. The directory name locale corresponds to
the language in which the text strings are written; see setlocale(3C).

msgfile Name of the file in the directory
/usr/lib/locale/locale/LCj£SSAGES to retrieve msgnum from. The
name of msgfile can be up to 14 characters in length, but may not con­
tain either'i) (null) or the ASOI code for / (slash) or : (colon).

msgnum Sequence number of the string to retrieve from msgfile. The strings in
msgfile are numbered sequentially from 1 to n, where n is the number
of strings in the file.

dflt_msg Default string to be displayed if gettxt fails to retrieve msgnum from
msgfile. Nongraphic characters must be represented as alphabetic
escape sequences.

The text string to be retrieved is in the file msgfile, created by the mJansgs(1) util­
ity and installed under the directory /usr/lib/locale/locale/LC_MESSAGES.
You control which directory is searched by setting the environment variable
LC MESSAGES. If LC MESSAGES is not set, the environment variable LANG will be
used. If LANG is not set, the files containing the strings are under the directory
/usr/lib/locale/C/LC_MESSAGES.

If gettxt fails to retrieve a message in the requested language, it will try to
retrieve the same message from /usr/lib/locale/C/LC_MESSAGES/msgfile. If
this also fails, and if dflt _ msg is present and non-null, then it will display the
value of dflt _ msg; if dflt _ msg is not present or is null, then it will display the
string Message not found!!.

EXAMPLE

FILES

If the environment variables LANG or LC MESSAGES have not been set to other
than their default values, -

gettxt UX:10 "hello world\n"

will try to retrieve the 10th message from /usr/lib/locale/C/UX/msgfile. If the
retrieval fails, the message "hello world," followed by a new-line, will be
displayed.

/usr/lib/locale/C/LC_MESSAGES/* default message files created by
mkmsgs(1)

/usr/lib/locale/locale/LC_MESSAGES/* message files for different languages
created by mJansgs(1)

10/89 Page 1

gettxt(1) gettxt(1)

SEE ALSO
exstr(1), mkmsgs(l), srchtxt(l).
gettxt{3C), setlocale(3C) in the Programmer's Reference Manual.

Page 2 10/89

grep(1) grep(1)

NAME
grep - search a file for a pattern

SYNOPSIS
grep [options] limited regular expression [file ...]

DESCRIPTION
grep searches files for a pattern and prints all lines that contain that pattern.
grep uses limited regular expressions (expressions that have string values that
use a subset of the possible alphanumeric and special characters) like those used
with ed(1) to match the patterns. It uses a compact non-deterministic algorithm.

Be careful using the characters $, *, [, "', I, (,), and \ in the limited regular expres­
sion because they are also meaningful to the shell. It is safest to enclose the entire
limited regular expression in single quotes ' ... ' .

If no files are specified, grep assumes standard input. Normally, each line found
is copied to standard output. The file name is printed before each line found if
there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was found. This can be
useful iri.locating block numbers by context (first block is 0).

-c Print only a count of the lines that contain the pattern.
-i Ignore upper/lower case distinction during comparisons.
-h Prevents the name of the file containing the matching line from being

appended to that line. Used when searching multiple files.
-1 Print the names of files with matching lines once, separated by new-lines.

Does not repeat the names of files when the pattern is found more than
once.

-n Precede each line by its line number in the file (first line is 1).
-s Suppress error messages about nonexistent or unreadable files
-v Print all lines except those that contain the pattern.

SEE ALSO
ed(1), egrep(1), fgrep(1), sed(1), sh(1).

DIAGNOSTICS

NOTES

10/89

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inacces­
sible files (even if matches were found).

Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h.
If there is a line with embedded nulls, grep will only match up to the first null; if
it matches, it will print the entire line.

Page 1

groups(1)

NAME
<Jr0ups - print group membership of user

SYNOPSIS.
groups [user]

DESCRIPTION

groups(1)

The command groups prints on standard output the groups to which you or the
optionally specified user belong. Each user belongs to a group specified in
/ ete/passwd and possibly to other groups as specified in / etc/group.

SEE ALSO

FILES

10/89

setgroups(2), group(4), passwd(4).

/ete/pas8wd
fete/group

Page 1

head(1) head(1)

NAME
head - display first few lines of files

SYNOPSIS
head [-n J [file ... J

DESCRIPTION
head copies the first n lines of each file to the standard output. If no file is given,
head copies lines from the standard input. The default value of n is 10 lines.

When more than one file is specified, the start of each file will look like:

=>file<=
Thus, a common way to display a set of short files, identifying each one, is:

head -9999 filel file2 ...

SEE ALSO
eat(l), IIPre(1), pg(l), tail(1)

10/89 Page 1

iconV(1) Iconv(1)

NAME
iconv - code set conversion utility

SYNOPSIS
iconv -f fromcode -t tocode [file]

DESCRIPTION

10/89

iconv converts the characters or sequences of characters in file from one code set
to another and writes the results to standard output. Should no conversion exist
for a particular character then it is converted to -the underscore ''': in the target
codeset.

The required arguments fromcode and tocode identify the input and ()utput code
sets, respectively. If no file argument is specified on the command line, iconv
reads the standard input.

iconv will always convert to or from the ISO 8859-1 Latin alphabet No.1, from or
to an ISO 646 ASCII variant codeset for a particular language. The ISO 8859-1
codeset will support the majority of 8 bit codesets. The conversions attempted by
iconv accommodate the most commonly used languages.

The following table lists the supported conversions.

Code Set Conversions Supported
Code Symbol Target Code Symbol comment

ISO 646 646 ISO 8859-1 8859 US Ascii
ISO 646de 646de ISO 8859-1 8859 German
ISO 646da 646da ISO 8859-1 8859 Danish
ISO 646en 646en ISO 8859-1 8859 English Ascii
ISO 646es 646es ISO 8859-1 8859 Spanish
ISO 646fr 646fr ISO 8859-1 8859 French
ISO 646it 646it ISO 8859-1 8859 Italian
ISO 646sv 646sv ISO 8859-1 8859 Swedish
ISO 8859-1 8859 ISO 646 646 7 bit Ascii
ISO 8859-1 8859 ISO 646de 646de German
ISO 8859-1 8859 ISO 646da 646da Danish
ISO 8859-1 8859 ISO 646en 646en English Ascii
ISO 8859-1 8859 ISO 646es 646es Spanish
ISO 8859-1 8859 ISO 646fr 646fr French
ISO 8859-1 8859 ISO 646it 646it Italian
ISO 8859-1 8859 ISO 646sv 646sv Swedish

The conversions are performed according to the tables found on the iconv(5)
manual page.

Page 1

iconv(1) iconv(1)

EXAMPLES
The following converts the contents of file maill from code set 8859 to 646fr
and stores the results in file mail.local.

FILES

iconv -f 8859 -t 646fr maill > mail.local

/usr/lib/iconv/iconv data
/usr/lib/iconv/*.t -

lists the conversions supported.
conversion tables.

SEE ALSO
iconv(5) in the System Administrator's Reference Manual.

DIAGNOSTICS
iconv returns a upon successful completion, 1 otherwise.

Page 2 10/89

Id(1M) Id(1M)

NAME
id - print the user name and ID, and group name and ID

SYNOPSIS
id [-a]

DESCRIPTION
id displays the calling process's ID and name. It also displays the group ID and
name. If the real effective IDs do not match, both are printed.

The -a option reports all the groups to which the invoking process belongs. ID,
and your username. If your real and effective IDs do not match, both are printed.

The -a option reports all the groups to which the invoking user belongs.
SEE ALSO

getuid(2) in the Programmer's Reference Manual.

10/89 Page 1

Ipcrm(1) Iperm (1)

NAME
ipc:rm - remove a message queue, semaphore set, or shared memory ID

SYNOPSIS
ipc:rm [options 1

DESCRIPTION
ipc:rm removes one or more messages, semaphores, or shared memory identifiers.
The identifiers are specified by the following options:
-q msqid Remove the message queue identifier msqid from the system and

destroy the message queue and data structure associated with it.

-In shmid Remove the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are
destroyed after the last detach.

-s semid Remove the semaphore identifier semid from the system and destroy
the set of semaphores and data structure associated with it.

-Q msgkey Remove the message queue identifier, created with key msgkey, from
the system and destroy the message queue and data structure associ­
ated with it.

-M shmkey Removes the shared memory identifier, created with key shmkey,
from the system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

-s semkey Remove the semaphore identifier, created with key semkey, from the
system and destroy the set of semaphores and data structure associ­
ated with it.

The details of the removes are described in rnsgctl(2), shnctl(2), and sem:::tl(2).
Use the ipcs command to find the identifiers and keys.

SEE ALSO
ipcs(l).
rnsgctl(2), rnsgget(2), rnsgop(2), sem:::tl(2), semget(2), sem;,p(2), shnctl(2),
shmget(2), shmop(2) in the Programmer's Reference Manual.

10/89 Page 1

ipcs(1) ipcs(1)

NAME
ipcs - report inter-process communication facilities status

SYNOPSIS
ipcs [options]

DESCRIPTION

10/89

ipcs prints information about active inter-process communication facilities.
Without options, information is printed in short format for message queues,
shared memory, and semaphores that are currently active in the system. Other­
wise, the information that is displayed is controlled by the following Clptions:

-q Print information about active message queues.

-m Print information about active shared memory segments.

-s Print information about active semaphores.

If -q, -m, or -s are specified, information about only those indicated is printed. If
none of these three are specified, information about all three is printed subject to
these options:

-b Print information on biggest allowable size: maximum number of bytes in
messages on queue for message queues, size of segments for shared
memory, and number of semaphores in each set for semaphores. See
below for meaning of columns in a listing.

-c Print creator's login name and group name. See below.

-0 Print information on outstanding usage: number of messages on queue
and total number of bytes in messages on queue for message queues and
number of processes attached to shared memory segments.

-p Print process number information: process ID of last process to send a
message, process ID of last process to receive a message on message
queues, process ID of creating process, and process ID of last process to
attach or detach on shared memory segments. See below.

-t Print time information: time of the last control operation that changed the
access permissions for all facilities, time of last msgsnd and last msgrcv on
message queues, time of last shmat and last shnrlt on shared memory,
time of last semop on semaphores. See below.

-a Use all print options. ([his is a shorthand notation for -b, -c, -0, -p, and
-t.)

-c corefile
Use the file corefile in place of /dev/kmem.

-N namelist
Use the file namelist in place of /stand/unix.

The column headings and the meaning of the columns in an ipcs listing are
given below; the letters in parentheses indicate the options that cause the
corresponding heading to appear; "all" means that the heading always appears.
Note that these options only determine what information is provided for each
facility; they do not determine which facilities are listed.

Page 1

ipcs(1) ipcs(1)

Page 2

T (all) Type of the facility:
q message queue
m shared memory segment
s semaphore

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument to msgget, semget, or shmget to
create the facility entry. (Note: The key of a shared memory
segment is changed to IPC _PRIVATE when the segment has
been removed until all processes attached to the segment detach
it.)

MODE (all) The facility access modes and flags: The mode consists of 11

OWNER (all)

GROUP (all)

CREATOR (a,c)

CGROUP (a,c)

CBYTES (a,o)

QNUM (a,o)

characters that are interpreted as follows. The first two charac­
ters are:

R A process is waiting on a msgrcv.
S A process is waiting on a msgsnd.
D The associated shared memory segment has been

removed. It will disappear when the last process
attached to the segment detaches it.

C The associated shared memory segment is to be cleared
when the first attach is executed.
The corresponding special flag is not set.

The next nine characters are interpreted as three sets of three
bits each. The first set refers to the owner's permissions; the
next to permissions of others in the user-group of the facility
entry; and the last to all others. Within each set, the first char­
acter indicates permission to read, the second character indi­
cates permission to write or alter the facility entry, and the last
character is currently unused.

The permissions are indicated as follows:

r Read permission is granted.
w Write permission is granted.
a Alter permission is granted.

The indicated permission is not granted.

The login name of the owner of the facility entry.

The group name of the group of the owner of the facility entry.

The login name of the creator of the facility entry.

The group name of the group of the creator of the facility entry.

The number of bytes in messages currently outstanding on the
associated message queue.

The number of messages currently outstanding on the associ­
ated message queue.

10/89

ipcs{1 } Ipcs{1 }

FILES

NOTES

QBYTES (a,b)

LSPID (a,p)

LRPID (a,p)

STIME (a,t)

RTIME (a,t)

CTIME (a,t)

NATTCH (a,o)

SEGSZ (a,b)

CPID (a,p)

LPID (a,p)

ATlME (a,t)

DTlME (a,t)

NSEMS (a,b)

OTlME (a,t)

/stand/unix
/dev/kmem
/etc/passwd
/etc/group

The maximum number of bytes allowed in messages outstand­
ing on the associated message queue.

The process ID of the last process to send a message to the asso­
ciated queue.

The process ID of the last process to receive a message from the
as~iated queue.

The time the last message was sent to the associated queue.

The time the last message was received from the associated
queue.

The time when the associated entry was created or changed.
The number of processes attached to the associated shared
memory segment.

The size of the associated shared memory segment.

The process ID of the creator of the shared memory entry.

The process ID of the last process to attach Or detach the shared
memory segment.

The time the last attach was completed to the associated shared
memory segment.

The time the last detach was completed on the associated
shared memory segment.
The number of semaphores in the set associated with the sema­
phore entry.
The time the last semaphore operation was completed on the set
associated with the semaphore entry.

system' namelist
memory
user names
group names

If the user specifies either the -C or -N flag, the real and effective UID /GID is set
to the real UID/GID of the user invoking ipcs.

Things can change while ipcs is running; the information it gives is guaranteed
to be accurate only when it was retrieved.

SEE ALSO
msgop(2), semop(2), shIrop(2) in the Programmer's Reference Manual.

10/89 Page 3

ismpx(1)

NAME
isnpx - return windowing terminal state

SYNOPSIS
isnpx [-s]

DESCRIPTION

Ismpx(1)

The isnpx command reports whether its standard input is connected to a multi­
plexed xt channel; i.e., whether it's running under layers or not. It is useful for
shell scripts that download programs to a windowing terminal.

isnpx prints yes and returns 0 if invoked under layers, and prints no and
returns 1 otherwise.

-s Do not print anything; just return the proper exit status.

SEE ALSO
layers(1), jwin(1), xt(7).

EXAMPLE

10/89

if isnpx -s
then

jwin
fi

Page 1

join (1) join (1)

NAME
join - relational database operator

SYNOPSIS
join [options] fUel fi1e2

DESCRIPTION
join forms, on the standard output, a join of the two relations specified by the
lines of filel and file2. If filel is -, the standard input is used.

fi1el and fi1e2 must be sorted in increasing ASOI collating sequence on the fields
on which they are to be joined, normally the first in each line [see sort(1)].

There is one line in the output for each pair of lines in fi1el and fi1e2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line from filel, then the rest of the line from file2 .

The default input field separators are blank, tab, or new-line. In this case, multi­
ple separators count as one field separator, and leading separators are ignored.
The default output field separator is a blank.

Some of the options below use the argument n. This argument should be a 1 or
a 2 referring to either filel or file2, respectively. The following options are recog­
nized:

-an In addition to the normal output, produce a line for each unpairable line
in file n, where 11 is 1 or 2.

-e s Replace empty output fields with string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each
file. Fields are numbered starting with 1.

-0 list Each output line includes the fields specified in list, each element of which
has the form n. m, where n is a file number and m is a field number. The
comlIlon field is not printeq unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in a
line is significant. The character c is used as the field separator for both
input and output.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the group
name and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /ete/passwd fete/group

SEE ALSO

NOTES

10/89

awk(l), corrm(1), sort(1), uniq(1).

With default field separation, the collating sequence is that of sort -b; with -t,
the sequence is that of a plain sort.

Page 1

join (1)

Page 2

join (1)

The conventions of the join, sort, comrq. uniq, and awk commands are wildly
incongruous.

Filenames that are numeric may cause conflict when the -0 option is used just
before listing filenames.

10/89

jterm (1) jterm (1)

NAME
jterm - reset layer of windowing terminal

SYNOPSIS
jterm

DESCRIPTION
The jterm command is used to reset a layer of a windowing terminal after
downloading a terminal program that changes the terminal attributes of the layer.
It is functional only under layers. In practice, it is most commonly used to res­
tart the default terminal emulator after using an alternate one provided with a
terminal-specific application package. For example, on the AT&T 630 MTG termi­
nal, after executing the xproof command in a layer, issuing the jterm command
will restart the default terminal emulator in that layer.

EXIT STATUS

NOTES

Returns 0 upon successful completion, 1 otherwise.

The layer that is reset is the one attached to standard error - that is, the window
you are in when you type the jterm command.

SEE ALSO
layers(1).

10/89 Page 1

jwln(1)

NAME
jwin - print size of layer

SYNOPSIS
jwin

DESCRIPTION

jwln(1)

jwin is functional only under layers(1) and is used to determine the size of the
window associated with the current process. It prints the width and the height of
the window in bytes (number of characters across and number of lines, respec­
tively). For bit-mapped terminals only, it also prints the width and height of the
window in bits.

EXIT STATUS
Returns 0 on successful completion, 1 otherwise.

DIAGNOSTICS
If layers(1) has not been invoked, an error message is printed:

jwin: not npx

NOTE
The window whose size is printed is the one attached to standard input; that is,
the window you are in when you type the jwin command.

SEE ALSO
layers(1).

EXAMPLE

10/89

jwin
bytes:
bits:

86 25
780 406

Page 1

kill (1) kill(1)

NAME
kill - terminate a process by default

SYNOPSIS
kill [-signal] pid .. .
kill -signal -pgid .. .
kill -1

DESCRIPTION
kill sends a signal to the specified processes. The value of signal may be
numeric or symbolic. [see signal(5)]. The symbolic signal name is the name as it
appears in /usr/include/sys/signal.h, with the SIG prefix stripped off. Sig­
nal 15 (SIGTERM) is sent by default; this will normally kill processes that do not
catch or ignore the signal.

pid and pgid are unsigned numeric strings that identify which process(es) should
receive the signal. If pid is used, the process with process ID pid is selected. If
pgid is used, all processes with process group ID pgid are selected.

The process number of each asynchronous process started with & is reported by
the shell (unless more than one process is started in a pipeline, in which case the
number of the last process in the pipeline is reported). Process numbers can also
be found by using ps(1).

When invoked with the -1 option, kill will print a list of symbolic signal names.
The details of the kill are described in kill(2). For example, if process number 0 is
specified, all processes in the process group are signaled.

The signalled process must belong to the current user unless the user is the
super-user.

SEE ALSO
ps(1), sh(1).
kill(2), signal(2), signal(5) in the Programmer's Reference Manual.

10/89 Page 1

ksh(1)

NAME

ksh(1)

ksh, rksh - KornShell, a standard/restricted command and programming
language

SYNOPSIS
ksh [±aefhikmnprstuvx] [±o option] ... [-c string] [arg ...]
rksh [±aefhikmnprstuvx] [±o option] ... [-c string] [arg ...]

DESCRIPTION
Ksh is a command and programming language that executes commands read
from a terminal or a file. Rksh is a restricted version of the command interpreter
ksh; it is used to set up login names and execution environments whose capabili­
ties are more controlled than those of the standard shell. See Invocation below for
the meaning of arguments to the shell.

Definitions.
A metacharader is one of the following characters:

& 1 < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters, digits, or
underscores starting with a letter or underscore. Identifiers are used as names for
functions and variables. A word is a sequence of charaders separated by one or
more non-quoted metacharacters.

A command is a sequence of characters in the syntax of the shell language. The
shell reads each command and carries out the desired action either directly or by
invoking separate utilities. A special command is a command that is carried out
by the shell without creating a separate process. Except for documented side
effects, most special commands can be implemented as separate utilities.

Commands.

10/89

A simple-command is a sequence of blank separated words which may be preceded
by a variable assignment list (see Environment below). The first word specifies
the name of the command to be executed. Except as specified below, the remain­
ing words are passed as arguments to the invoked command. The command
name is passed as argument 0 [see exec(2)]. The value of a simple-command is
its exit status if it terminates normally, or (octal) 200+status if it terminates abnor­
mally [see signal(2) for a list of status values].

A pipeline is a sequence of one or more commands separated by I. The standard
output of each command but the last is connected by a pipe(2) to the standard
input of the next command. Each command is run as a separate process; the
shell waits for the last command to terminate. The exit status of a pipeline is the
exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or 1 I, and
optionally terminated by ;, &, or 1 &. Of these five s~bols, ;, &, and 1 & have
equal precedence, which is lower than that of && and 1 I. The symbols && and
1 I also have equal precedence. A semicolon (;) causes sequential execution of
the preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (Le., the shell does not wait for that pipeline to finish). The
symbol I & causes asynchronous execution of the preceding command or pipeline
with a two-way pipe established to the parent shell. The standard input and out­
put of the spawned command can be written to and read from by the parent

Page 1

ksh(1)

Page 2

ksh(1)

Shell using. the -p option of the special commands read and print described
later. The symbol && (I I) Causes the list following it to be executed only if the
preceding pipeline returns a zero (non-zero) value. An arbitrary number of new­
lines may appear in a list, instead of a semicolon, to delimit a command.

A command is either a simple-command or one of the follOwing. Unless other­
wise stated, the value returned by a command is that of the last simple-command
executed in the command.

for identifier [in word ... 1 ; do list ; done
Each time a for command is executed, identifier is set to the next word
taken from the in word list. If in word ... is omitted, then the for com­
mand executes the do list once for each positional parameter that is set
(see Parameter Substitution below). Execution ends when there are no
more words in the list.

select identifier [in word ... 1 ; do list ; done
A select command prints on stanclard error (file descriptor 2), the set of
words, each preceded by a number.' If in word ... is omitted, then the
positional parameters are used instead (see Parameter Substitution below).
The PS3 prompt is printed and a line is read from the standard input. If
this line consists of the number of one of the listed words, then the value
of the parameter identifier is set to the word corresponding to this number.
If this line is empty the selection list is printed again. Otherwise the value
of the parameter identifier is set to null. The contents of the line read
from standard input is saved in the variable REPLY. The list is executed
for each selection until a break or end-oj-file is encountered.

case word in [[(lpattern [I pattern 1 ...) list ;; 1 ... esac
A case command executes the .list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file­
name generation (see File Name Generation below).

if list ; then list [elif list ; then list 1 ... [; else list 1 ; fi
The list following if is executed and, if it returns a zero exit status, the
list following thE! first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next then
is executed. Failing that, the else list is executed. If no else list or then
list is executed, then the if command returns a zero exit status.

while list ; do list ; done
until list ; do list ; done

(list)

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; other­
wise the loop terminates. If no commands in the do list are executed, then
the while command returns a zero exit status; until may be used in
place of while to negate th,e loop termination test.

Execute list in a separate environment. Note, that if two adjacent open
parentheses are needed for nesting, a space must be inserted to avoid
arithmetic evaluation as described below.

10/89

ksh(1)

{ list; }

ksh(1)

list is simply executed. The { must be followed by a space. Note that
unlike the metacharacters (and), { and} are reserved words and must be
typed at the beginning of a line or after a ; in order to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expression is true.
See Conditional Expressions below, for a description of expression.

function identifier { list ;}
identifier 0 {list;}

Define a function which is referenced by identifier. The body of the func­
tion is the list of commands between { and }. (see Functions below). The
{ must be followed by a space.

time pipeline
The pipeline is executed and the elapsed time as well as the user and sys­
tem time are printed on standard error.

The following reserved words are only recognized as the first word of a com­
mand and when not quoted:

if then else elif
until do done { }

fi case
function

esac
select

for
time

while
[[]]

Comments.
A word beginning with t causes that word and all the following characters up to
a new-line to be ignored.

Aliasing.

10/89

The first word of each command is replaced by the text of an alias if an alias
for this word has been defined. An alias name consists of any number of charac­
ters excluding meta-characters, quoting characters, file expansion characters,
parameter and command substitution characters and "". The replacement string
can contain any valid Shell script including the metacharacters listed above. The
first word of each command in the replaced text, other than any that are in the
process of being replaced, will be tested for aliases. If the last character of the
alias value is a blank then the word following the alias will also be checked for
alias substitution. Aliases can be used to redefine special builtin commands but
cannot be used to redefine the reserved words listed above. Aliases can be
created, listed, and exported with the alias command and can be removed with
the unalias command. Exported aliases remain in effect for scripts invoked by
name, but must be reinitialized for separate invocations of the Shell (see Invoca­
tion below).

Aliasing is performed when scripts are read, not while they are executed. There­
fore, for an alias to take effect the alias definition command has to be executed
before the command which references the alias is read.

Aliases are frequently used as a short hand for full path names. An option to the
aliasing facility allows the value of the alias to be automatically set to the full
pathname of the corresponding command. These aliases are called tracked aliases.
The value of a tracked alias is defined the first time the corresponding command is
looked up and becomes undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference will redefine the

Page 3

ksh(1) ksh(1)

value. Several tracked aliases are compiled into the shell. The -h option of the
set command makes each referenced command name into a tracked alias.

The following exported aliases are compiled into the shell but can be unset or
redefined:

autoload='typeset -fu'
false='let 0'
functions='typeset -f'
hash='alias -t'
history='fc -1'
integer='typeset -i'
nohup='nohup ,
r='fc -e -'
true=': '
type='whence -v'

Tilde Substitution.
After alias substitution is performed, each word is checked to see if it begins with
an unquoted -. If it does, then the word up to a I is checked to see if it matches
a user name in the letc/passwd file. If a match is found, the - and the matched
login name is replaced by the login directory of the matched user. This is called
a tilde substitution. If no match is found, the original text is left unchanged. A­
by itself, or in front of a I, is replaced by $HOME. A - followed by a + or - is
replaced by $PWD and $OLDPWD respectively.

In addition, tilde substitution is attempted when the value of a variable assignment
begins with a -.

Command Substitution.
The standard output from a command enclosed in parentheses preceded by a dol­
lar sign ($ ()) or a pair of grave accents (\ \) may be used as part or all of a
word; trailing new-lines are removed. In the second (archaic) form, the string
between the quotes is processed for special quoting characters before the com­
mand is executed (see Quoting below). The command substitution $ (cat file)
can be replaced by the equivalent but faster $ «file). Command substitution
of most special commands that do not perform input/output redirection are car­
ried out without creating a separate process.

An arithmetic expression enclosed in double parentheses and preceded by a dol­
lar sign [$ (()) 1 is replaced by the value of the arithmetic expression within the
double parentheses.

Parameter Substitution.

Page 4

A parameter is an identifier, one or more digits, or any of the characters *, @, I, ?,
-, $, and !. A variable (a parameter denoted by an identifier) has a value and
zero or more attributes. Variables can be assigned values and attributes by using
the typeset special command. The attributes supported by the Shell are
described later with the typeset special command. Exported parameters pass
values and attributes to the environment.

10/89

ksh(1}

10/89

ksh(1}

The shell supports a one-dimensional array facility. An element of an array vari­
able is referenced by a subscript. A subscript is denoted QY a . [, followed by an
arithmetic expression (see Arithmetic Evaluation below) followed by a]. To assign
values to an array, use set -A name value.... The value of all subscripts must
be in the range of 0 through 1023. Arrays need not be declared. Any reference
to a variable with a valid subscript is legal and an array will be created if neces­
sary. Referencing an array withOut a subscript is equivalent to referencing the
element zero ..

The value of a variable may also be assigned by writing:
name=value [name-value] ...

If the integer attribute, -i, is set for name the value is subject to arithmetic evalua­
tion as described below.
Positional parameters, parameters denoted by a number, may be assigned values
with the set special command. Parameter $0 is set from argument zero when
the shell is invoked.
The character $ is used to introduce substitutable parameters.
$ {parameter }

The shell reads all the characters from $ { to the matching } as part of the
same word even if it contains braces or metacharacters. The value, if any,
of the parameter is substituted. The·braces are required when parameter is
followed by a letter, digit,. or underscore that is not: to be interpreted as
part of its name or when a variable is subscripted. If parameter is one or
more digits then it is a positional parameter. A positional parameter of
more than one digit must be enclosed in braces .. If parameter is * or @,
then all the positional parameters, starting with $11 are substituted
(separated by a field separator character). If an array identifier with sub­
script * or @ is used, 'then the value for each of the elements is substituted
(separated by a field separator character).

$ { tparameter }
If parameter is * or @, the number of positional parameters is substituted.

. Otherwise, the length of the value of the parameter is substituted.
$ {tidentifier [*] }

The number of elements in the array identifier is substituted.
$ {parameter: .:...word}

If parameter is set and is non-null then substitute its value; otherwise sub­
stitute word.

$ {parameter: =word}
If parameter is not set or is null then set it to word; the value of the param­
eter is then substituted. Positional parameters may not be assigned to in
this way.

$ {parameter: ?word }
If parameter is set and is non-null then substitute its value; otherwise, print
'word and exit from the shell. If word is omitted then a standard message
is printed.

$ {parameter: +word}
If parameter is set and is non-null then substitute word; otherwise substi­
tute nothing.

Page 5

ksh(1)

Page 6

ksh(1)

$ {parametertpattern}
$ {parameter t tpattern }

If the Shell pattern matches the beginning of the value of parameter, then
the value of this substitution is the value of the parameter with the
matched portion deleted; otherwise the value of this parameter is substi­
tuted. In the first form the smallest matching pattern is deleted and in the
second form the largest matching pattern is deleted.

$ {parameter%pattern }
$ {parameter%%pattern}

If the Shell pattern matches the end of the value of parameter, then the
value of this substitution is the value of the parameter with the matched
part deleted; otherwise substitute the value of parameter. In the first form
the smallest matching pattern is deleted and in the second form the largest
matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set or is
null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

The following parameters are automatically set by the shell:
t The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last executed command.
$ The process number of this shell.

Initially, the value _ is an absolute pathname of the shell or script
being executed as passed in the environment. Subsequently it is
assigned the last argument of the previous command. This param­
eter is not set for commands which are asynchronous. This param­
eter is also used to hold the name of the matching MAIL file when
checking for mail.

! The process number of the last background command invoked.
ERRNO The value of errno as set by the most recently failed system call.

This value is system dependent and is intended for debugging pur­
poses.

LlNENO
The line number of the current line within the script or function
being executed.

OLDPWD
The previous working directory set by the cd command.

OPTARG

OPTIND

The value of the last option argument processed by the getopts
special command.

The index of the last option argument processed by the getopts
special command.

10/89

ksh (1)

10/89

PPID The process number of the parent of the shell.
PWD The present working directory set by the cd command.
RANOCM

ksh(1)

Each time this variable is referenced, a random integer, uniformly
distributed between 0 and 32767, is generated. The sequence of
random numbers can be initialized by assigning a numeric value to
RANOCM.

REPLY This variable is set by the select statement and by the read spe­
cial command when no arguments are supplied.

SECONDS
Each time this variable is referenced, the number of seconds since
shell invocation is returned. If this variable is assigned a value,
then the value returned upon reference will be the value that was
assigned plus the number of seconds since the assignment.

The following variables are used by the shell:
CDPATH

The search path for the cd command.
COLUMNS

If this variable is set, the value is used to define the width of the
edit window for the shell edit modes and for printing select lists.

EDITOR
If the value of this variable ends in vi and the VISUAL variable is
not set, then the corresponding option (see Special Command set
below) will be turned on.

ENV If this variable is set, then parameter substitution is performed on
the value to generate the pathname of the script that will be exe­
cuted when the shell is invoked (see Invocation below). This file is
typically used for alias and function definitions.

FCEDIT
The default editor name for the fc command.

FPATH The search path for function definitions. This path is searched
when a function with the -u attribute is referenced and when a
command is not found. If an executable file is found, then it is
read and executed in the current environment.

IFS Internal field separators, normally space, tab, and new-line that
is used to separate command words which result from command
or parameter substitution and for separating words with the spe­
cial command read. The first character of the IFS variable is used
to separate arguments for the "$*" substitution (see Quoting
below).

HISTFILE
If this variable is set when the shell is invoked, then the value is
the pathname of the file that will be used to store the command
history (see Command re-entry below).

HISTSIZE
If this variable is set when the shell is invoked, then the number of
previously entered commands that are accessible by this shell will
be greater than or equal to this number. The default is 128.

Page 7

ksh(1)

Page 8

ksh(1)

HOME The default argument (home directory) for the cd command.
LINES If this variable is set, the value is used to determine the column

length for printing select lists. Select lists will print vertically
until about two-thirds of LINES lines are filled.

MAIL If this variable is set to the name of a mail file and the MAILPATH
variable is not set, then the shell informs the user of arrival of mail
in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will check
for changes in the modification time of any of the files specified by
the MAILPATH or MAIL variables. The default value is 600 seconds.
When the time has elapsed the shell will check before issuing the
next prompt.

MAILPATH
A colon (:) separated list of file names. If this variable is set then
the shell informs the user of any modifications to the specified files
that have occurred within the last MAILCHECK seconds. Each file
name can be followed by a? and a message that will be printed.
The message will undergo parameter substitution with the vari­
able, $_ defined as the name of the file that has changed. The
default message is you have mail in $_.

PATH The search path for commands (see Execution below). The user
may not change PATH if executing under rksh (except in .profile).

PSl The value of this variable is expanded for parameter substitution
to define the primary prompt string which by default is "$ ". The
character! in the primary prompt string is replaced by the com­
mand number (see Command Re-entry below).

PS2 Secondary prompt string, by default "> ".
PS3 Selection prompt string used within a select loop, by default "f?

"
PS4 The value of this variable is expanded for parameter substitution

and precedes each line of an execution trace. If omitted, the execu­
tion trace prompt is "+ ".

SHELL The pathname of the shell is kept in the environment. At invoca­
tion, if the basename of this variable matches the pattern *r*sh,
then the shell becomes restricted.

TMOUT If set to a value greater than zero, the shell will terminate if a com­
mand is not entered within the prescribed number of seconds after
issuing the PSl prompt. (Note that the shell can be compiled with
a maximum bound for this value which cannot be exceeded.)

VISUAL
If the value of this variable ends in vi then the corresponding
option (see Special Command set below) will be turned on.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, TMOUT and IFS.
HOME, MAIL and SHELL are set by login(1).

10/89

ksh(1) ksh(1)

Blank Interpretation.
After parameter and command substitution, the results of substitutions are
scanned for the field separator characters (those found in IFS) and split into dis­
tinct arguments where such characters are found. Explicit null arguments (" II or
, ') are retained. Implicit null arguments (those resulting from parameters that
have no values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the characters *, ?,
and [unless the -f option has been set. If one of these characters appears then
the word is regarded as a pattern. The word is replaced with lexicographically
sorted file names that match the pattern. If no file name is found that matches
the pattern, then the word is left unchanged. When a pattern is used for file
name generation, the character . at the start of a file name or immediately fol­
lowing a I, as well as the character I itself, must be matched explicitly. In other
instances of pattern matching the I and . are not treated specially.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of characters

separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening "[" is a "!"
then any character not enclosed is matched. A - can be included
in the character set by putting it as the first or last character.

A pattern-list is a list of one or more patterns separated from each other with a I.
Composite patterns can be formed with one or more of the following:

? (pattern-list)
Optionally matches anyone of the given patterns.

* (pattern-list)
Matches zero or more occurrences of the given patterns.

+ (pattern-list)
Matches one or more occurrences of the given patterns.

@ (pattern-list)
Matches exactly one of the given patterns.

! (pattern-list)
Matches anything, except one of the given patterns.

Quoting.

10189

Each of the metacharacters listed above (see Definitions above) has a special mean­
ing to the shell and causes termination of a word unless quoted. A character may
be quoted (i.e., made to stand for itself) by preceding it with a \. The pair \new­
line is removed. All characters enclosed between a pair of single quote marks
(' '), are quoted. A single quote cannot appear within single quotes. Inside dou­
ble quote marks (" "), parameter and command substitution occurs and \ quotes
the characters \, " ", and $. The meaning of $* and $@ is identical when not
quoted or when used as a variable assignment value or as a file name. However,
when used as a command argument, "$*" is equivalent to "$ld$2ti ... ", where d
is the first character of the IFS v'lriable, whereas "$@" is equivalent to
"$1 "d"$2"d. .. Inside grave quote marks (, ,) \ quotes the characters \, " and
$. If the grave quotes occur within double quotes then \ also quotes the charac­
ter ".

Page 9

ksh(1) ksh(1)

The special meaning of reserved words or aliases can be removed by quoting any
character of the reserved word. The recognition of function names or special
command names listed below cannot be altered by quoting them.

Arithmetic Evaluation.
An ability to perform integer arithmetic is provided with the special command
let. Evaluations are performed using long arithmetic. Constants are of the form
[basel ln where base is a decimal number between two and thirty-six representing
the arithmetic base and n is a number in that base. If basel is omitted then base
10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of
expression of the C language. All the integral operators, other than ++, - -, ?:,
and, are supported. Variables can be referenced by name within an arithmetic
expression without using the parameter substitution syntax. When a variable is
referenced, its value is evaluated as an arithmetic expression.

An internal integer representation of a variable can be specified with the -i option
of the typeset special command. Arithmetic evaluation is performed on the
value of each assignment to a variable with the -i attribute. If you do not
specify an arithmetic base, the first assignment· to the variable determines the
arithmetic base. This base is used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the
let command is provided. For any command which begins with a «, all the
characters until a matching » are treated as a quoted expression. More pre-
cisely, « ... » is equivalent to let

Prompting.
When used interactively, the shell prompts with the parameter expanded value of
PSi before reading a command. If at any time a new-line is typed and further
input is needed to complete a command, then the secondary prompt (Le., the
value of PS2) is issued.

Conditional Expressions.
A conditional expression is used with the [[compound command to test attributes
of files and to compare strings. Word splitting and file name generation are not
performed on the words between [[and] 1. Each expression can be constructed
from one or more of the following unary or binary expressions:
-a file True, if file exists. .
-b file True, if file exists and is a block special file.
-c file True, if file exists and is a character special file.
-d file True, if file exists and is a directory.
-f file True, if file exists and is an ordinary file.
-g file True, if file exists and is has its setgid bit set.
-k file True, if file exists and is has its sticky bit set.
-n string True, if length of string is non-zero.
-0 option True, if option named option is on.
-p file True, if file exists and is a fifo special file or a pipe.
-r file True, if file exists and is readable by current process.

Page 10 10/89

ksh(1) ksh(1)

-s file True, if file exists and has size greater than zero.
-t fildes True, if file descriptor number fildes is open and associated with

a terminal device.
-u file
-w file
-x file

-z string
-L file
-0 file

-G file

-8 file
file1 -nt file2
file1 -ot file2
file1 -ef file2
string = pattern
string ! = pattern
string1 < string2

True, if file exists and is has its setuid bit set.
True, if file exists and is writable by current process.
True, if file exists and is executable by current process. If file
exists and is a directory, then the current process has permis­
sion to search in the directory.
True, if length of string is zero.
True, if file exists and is a symbolic link.
True, if file exists and is owned by the effective user id of this
process.
True, if file exists and its group matches the effective group id
of this process.
True, if file exists and is a socket.
True, if file1 exists and is newer than file2.
True, if file1 exists and is older than file2.
True, if file1 and file2 exist and refer to the same file.
True, if string matches pattern.
True, if string does not match pattern.
True, if string1 comes before string2 based on ASCII value of
their characters.

string1 > string2 True, if string1 comes after string2 based on ASCII value of their
characters.

exp1 -eq exp2 True, if exp1 is equal to exp2.
exp1 -ne exp2 True, if exp1 is not equal to exp2.
exp1 -It exp2 True, if exp1 is less than exp2.
exp1 -gt exp2 True, if exp1 is greater than exp2.
exp1 -Ie exp2 True, if exp1 is less than or equal to exp2.
exp1 -ge exp2 True, if exp1 is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/fd/n, where n is an
integer, then the test applied to the open file whose descriptor number is n.

A compound expression can be constructed from these primitives by using any of
the following, listed in decreasing order of precedence.
(expression)

True, if expression is true. Used to group expressions.
! expression

True if expression is false.
expression1 && expression2

True, if expression1 and expression2 are both true.
expression1 I I expression2

True, if either expression1 or expression2 is true.

Input/Output.

10/89

Before a command is executed, its input and output may be redirected using a
special notation interpreted by the shell. The following may appear anywhere in
a simple-command or may precede or follow a command and are not passed on to
the invoked comm~nd. Command and parameter substitution occurs before word

Page 11

ksh{1> ksh{1>

or digit is used except as noted below. File name generation occurs only if the
pattern matches a single file and blank interpretation is not performed.

<word 'Use file word as standard input (file descriptor 0).

>word

>1 word

»word

<>word

«[-Jword

<&digit

<&-

<&P

>&P

Use file word as standard output (file descriptor 1). If the file does
not exist then it is created. If the file exists, is a regular file, and
the noclobber option is on, this causes an error; otherwise, it is
truncated to zero length.

Sames as >, except that it overrides the noclobber option.

Use file word as standard output. If the file exists then output is
appended to it (by first seeking to the end-of-file); otherwise, the
file is created.

Open file word for reading and writing as standard input.

The shell input is read up to a line that is the same as word, or to
an end-of-file. No parameter substitution, command substitution
or file name generation is performed on word. The resulting docu­
ment, called a here-document, becomes the standard input. If any
character of word is quoted, then no interpretation is placed upon
the characters of the document; otherwise, parameter and com­
mand substitution occurs, \new-line is ignored, and \ must be
used to quote the characters \, $, " and the first character of
word. If - is appended to «, then all leading tabs are stripped
from word and from the document.

The standard input is duplicated from file descriptor digit [see
dup(2) J. Similarly for the standard output using >& digit.

The standard input is closed. Similarly for the standard output
using >&-.

The input from the co-process is moved to standard input.

The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, then the file descriptor number referred
to is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor
1.

The order in which redirections are specified is significant. The shell evaluates
each redirection in terms of the (file descriptor, file) association at the time of
evaluation. For example:

... l>fname 2>&1

first associates file descriptor 1 with file fname. It then associates file descriptor 2
with the file associated with file descriptor 1 (i.e. fname). If the order ofredirec­
tions were reversed, file descriptor 2 would be associated with the terminal
(assuming file descriptor 1 had been) and then file descriptor 1 would be associ­
ated with file fname .

Page 12 10/89

ksh(1) ksh(1)

If a command is followed by & and job control is not active, then the default stan­
dard input for the command is the empty file /dev/null. Otherwise, the
environment for the execution of a command contains the file descriptors of the
invoking shell as modified by input/output specifications.

Environment.
The environment [see environ(S)] is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The names must
be identifiers and the values are character strings. The shell interacts with the
environment in several ways. On invocation, the shell scans the environment and
creates a variable for each name found, giving it the corresponding value and
marking it export. Executed commands inherit the environment. If the user
modifies the values of these variables or creates new ones, using the export or
typeset -x commands they become part of the environment. The environment
seen by any executed command is thus composed of any name-value pairs origi­
nally inherited by the shell, whose values may be modified by the current shell,
plus any additions which must be noted in export or typeset -x commands.

The environment for any simple-command or function may be augmented by
prefixing it with one or more variable assignments. A variable assignment argu­
ment is a word of the form identifier=value. Thus:

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of cmd is concerned except for com­
mands listed with one or two daggers, t, in the Special Commands section).

If the -k flag is set, all variable assignment arguments are placed in the environ­
ment, even if they occur after the command name. The following first prints a=b
c and then c:

echo a=b c
set -k
echo a=b c

This feature is intended for use with scripts written for early versions of the shell
and its use in new scripts is strongly discouraged. It is likely to disappear some­
day.

Functions.

10/89

The function reserved word, described in the Commands section above, is used
to define shell functions. Shell functions are read in and stored internally. Alias
names are resolved when the function is read. Functions are executed like com­
mands with the arguments passed as positional parameters (see Execution below).

Functions execute in the same process as the caller and share all files and present
working directory with the caller. Traps caught by the caller are reset to their
default action inside the function. A trap condition that is not caught or ignored
by the function causes the function to terminate and the condition to be passed
on to the caller. A trap on EXIT set inside a function is executed after the func­
tion completes in the environment of the caller. Ordinarily, variables are shared
between the calling program and the function. However, the typeset special
command used within a function defines local variables whose scope includes the
current function and all functions it calls. .

Page 13

ksh(1) ksh(1)

The special command return is used to return from function calls. Errors within
functions return control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset special
command. The text of functions may also be listed with -f. Function can be
undefined with the -f option of the unset special command.

Ordinarily, functions are unset when the shell executes a shell script. The -xf
option of the typeset command allows a function to be exported to scripts that
are executed without a separate invocation of the shell. Functions that need to be
defined across separate invocations of the shell should be specified in the ENV file
with the -xf option of typeset.

Jobs.
If the monitor option of the set command is turned on, an interactive shell asso­
ciates a job with each pipeline. It keeps a table of current jobs, printed by the
jobs command, and assigns them small integer numbers. When a job is started
asynchronously with &, the shell prints a line which looks like:

[1]1234

indicating that the job which was started asynchronously was job number 1 and
had one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key "'z
(ctrl-z) which sends a STOP signal to the current job. The shell will then nor­
mally indicate that the job has been 'Stopped', and print another prompt. You
can then manipulate the state of this job, putting it in the background with the bg
command, or run some other commands and then eventually bring the job back
into the foreground with the foreground command fg. A"'z takes effect immedi­
ately and is like an interrupt in that pending output and unread input are dis­
carded when it is typed.

A job being run in the background will stop if it tries to read from the terminal.
Background jobs are normally allowed to produce output, but this can be dis­
abled by giving the command "stty tostop". If you set this tty option, then back­
ground jobs will stop when they try to produce output like they do when they
try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by
the process id of any process of the job or by one of the follOwing:
%number

The job with the given number.
%string

Any job whose command line begins with string.
%?string

Any job whose command line contains string.
%% Current job.
%+ Equivalent to %%.
%- Previous job.

This shell learns immediately whenever a process changes state. It normally
informs you whenever a job becomes blocked so that no further progress is possi­
ble, but only just before it prints a prompt. This is done so that it does not other­
wise disturb your work.

Page 14 10/89

ksh(1) ksh(1)

When the monitor mode is on, each background job that completes triggers any
trap set for CHID.

When you try to leave the shell while jobs are running or stopped, you will be
warned that 'You have stopped(running) jobs.' You may use the jobs command
to see what they are. If you do this or immediately try to exit again, the shell
will not warn you a second time, and the stopped jobs will be terminated.

Signals.
The INT and QUIT signals for an invoked command are ignored if the command
is followed by & and job monitor option is not active. Otherwise, signals have
the values inherited by the shell from its parent (but see also the trap command
below).

Execution.
Each time a command is executed, the above substitutions are carried out. If the
command name matches one of the Speciill Commands listed below, it is executed
within the current shell process. Next, the command name is checked to see if it
matches one of the user defined functions. If it does, the positional parameters
are saved and then reset to the arguments of the function call. When the function
completes or issues a return, the positional parameter list is restored and any
trap set on EXIT within the function is executed. The value of a function is the
value of the last command executed. A function is also executed in the current
shell process. If a command name is not a speciJ21 command or a user defined func­
tion, a process is created and an attempt is made to execute the command via
exec(2).

The shell variable PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default
path is /usr/bin: (specifying /usr/bin and the current directory in that order).
The current directory can be specified by two or more adjacent colons, or by a
colon at the beginning or end of the path list. If the command name contains a /
then the search path is not used. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but is not a
directory or an a. out file, it is assumed to be a file containing shell commands.
A sub-shell is spawned to read it. All non-exported aliases, functions, and vari­
ables, are removed in this case. A parenthesized command is executed in a sub­
shell without removing non-exported quantities.

Command Re-entry.

10/89

The text of the last HISTSIZE (default 128) commands entered from a terminal
device is saved in a history file. The file $HOME/. sh _history is used if the file
denoted by the HISTFILE variable is not set or is not writable. A shell can access
the commands of all interactive shells which use the same named HISTFILE. The
special command fc is used to list or edit a portion of this file. The portion of
the file to be edited or listed can be selected by number or by giving the first
character or characters of the command. A single command or range of com­
mands can be specified. If you do not specify an editor program as an argument
to fc then the value of the variable FCEDIT is used. If FCEDIT is not defined then
/usr/bin/ed is used. The edited command(s) is printed and re-executed upon
leaving the editor. The editor name - is used to skip the editing phase and to
re-execute the command. In this case a substitution variable of the form old=new

Page 15

ksh(1) ksh(1)

can be used to modify the command before execution. For example, if r is
aliased to 'fc -e -' then typing 'r bad=good c' will re-execute the most recent
command which starts with the letter c, replacing the first occurrence of the
string bad with the string good.

In-line Editing Options
Normally, each command line entered from a terminal device is simply typed fol­
lowed by a new-line ('RETURN' or 'LINE FEED'). If the vi option is active, the
user can edit the command line. To be in this edit mode set the vi option. An
editing option is automatically selected each time the VISUAL or EDITOR variable
is assigned a value ending in either of these option names.

The editing features require that the user's terminal accept 'RETURN' as carriage
return without line feed and that a space (' ') must overwrite the current charac­
ter on the screen. ADM terminal users should set the "space - advance" switch to
'space'. Hewlett-Packard series 2621 terminal users should set the straps to
'bcGHxZ etX'.

The editing mode implements a concept where the user is looking through a win­
dow at the current line. The window width is the value of COLUMNS if it is
defined, otherwise 80. If the line is longer than the window width minus two, a
mark is displayed at the end of the window to notify the user. As the cursor
moves and reaches the window boundaries the window will be centered about
the cursor. The mark is a > «, *) if the line extends on the right (left, both)
side(s) of the window.

The search commands in each edit mode provide access to the history file. Only
strings are matched, not patterns, although a leading " in the string restricts the
match to begin at the first character in the line.

Vi Editing Mode
There are two typing modes. Initially, when you enter a command you are in the
input mode. To edit, the user enters control mode by typing ESC (\033) and
moves the cursor to the point needing correction and then inserts or deletes char­
acters or words as needed. Most control commands accept an optional repeat
count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled and
the command will be echoed again if the speed is 1200 baud or greater and it
contains any control characters or less than one second has elapsed since the
prompt was printed. The ESC character terminates canonical processing for the
remainder of the command and the user can then modify the command line.
This scheme has the advantages of canonical processing with the type-ahead
echoing of raw mode.

If the option viraw is also set, the terminal will always have canonical processing
disabled.

Input Edit Commands

Page 16

By default the editor is in input mode.
erase (User defined erase character as defined by the stty command,

usually "H or t.) Delete previous character.

10/89

ksh (1)

10/89

ksh(1)

"'w Delete the previous blank separated word.
"'0 Terminate the shell.
"'V Escape next character. Editing characters, the user's erase or

kill characters may be entered in a command line or in a search
string if preceded by a "'V. The"'V removes the next character's
editing features (if any).

\ Escape the next erase or kill character.
Motion Edit Commands

These commands will move the cursor.

[count]l Cursor forward (right) one character.

Cursor forward one alpha-numeric word. [count]w

[count]W

[count]e

[count]E

[count]h

[count]b

[count]B

[count] I

Cursor to the beginning of the next word that follows a blank.

Cursor to end of word.

Cursor to end of the current blank delimited word.

Cursor backward (left) one character.

Cursor backward one word.

Cursor to preceding blank separated word.

Cursor to column count.

[count]fc Find the next character c in the current line.

[count]Fc Find the previous character c in the current line.

[count]tc Equivalent to f followed by h.

[count]Tc Equivalent to F followed by l.

[count]; Repeats count times, the last single character find command, f,
F, t, or T.

[count], Reverses the last single character find command count times.

o Cursor to start of line.

Cursor to first non-blank character in line.

$ Cursor to end of line.

Search Edit Commands
These commands access your command history.

[count]k Fetch previous command. Each time k is entered the previous
command back in time is accessed.

[count]­

[count]j

[count]+

[count]G

Equivalent to k.

Fetch next command. Each time j is entered the next com­
mand forward in time is accessed.

EqUivalent to j.

The command number count is fetched. The default is the least
recent history command.

Page 17

ksh(1)

/string

?string

ksh(1)

Search backward through history for a previous command con­
taining string. String is terminated by a "RETURN" or
"NEW LINE". If string is preceded by a ", the matched line
must begin with string. If string is null the previous string will
be used.

Same as / except that search will be in the forward direction.

n Search for next match of the last pattern to / or? commands.

N Search for next match of the last pattern to / or ?, but in
reverse direction. Search history for the string entered by the
previous / command.

Text Modification Edit Commands

Page 18

These commandslwill modify the line.

a Enter input mode and enter text after the current character.

A A ppend text to the end of the line. Equivalent to $a.

[count]cmotion
c[count]motion

Delete current character through the character that motion
would move the cursor to and enter input mode. If motion is c,
the entire line will be deleted and input mode entered.

C Delete the current character through the end of line and enter
input mode. Equivalent to c$.

S Equivalent to cc.

D Delete the current character through the end of line.
Equivalent to <1$.

[count]dmotion

d[countlmotion

i

I

[count]P

lcount]p

R

[countlrc

[countlx

[count]X

pelete current character through the character that motion
would move to. If motion is d, the entire line win be deleted.

Enter input mode and insert text before the current character.

Insert text before the beginning of the line. Equivalent to Oi.

Place the previous text modification before the cursor.

Place the previous text modification after the cursor.

Enter input mode and replace characters on the screen with
characters you type overlay fashion.

Replace the count character(s) starting at the current cursor
position with c, and advance the cursor.

Delete current character.

Delete preceding character.

10/89

ksh(1)

10/89

[countl.

[count]-

[countl_

*

ksh(1)

Repeat the previous text modification command.

Invert the case of the count character(s) starting at the current
cursor position and advance the cursor.

Causes the count word of the previous command to be
appended and input mode entered. The last word is used if
count is omitted.

Causes an * to be appended to the current word and file name
generation attempted. If no match is found, it rings the bell.
Otherwise, the word is replaced by the matching pattern and
input mode is entered.

\ Filename completion. Replaces the current word with the long­
est common prefix of all filen,,~es matching the current word
with an asterisk appended. If the match is unique, a I is
appended if the file is a directory and a space is appended if
the file is not a directory.

Other Edit Commands
Miscellaneous commands.

[count lymotion

y[countlmotion
Yank current character through character that motion would
move the cursor to and puts them into the delete buffer. The
text and cursor are unchanged.

Y Yanks from current position to end of line. Equivalent to y$.

u Undo the last text modifying command.

U Undo all the text modifying commands performed on the line.

[count]v Returns the command fc -e ${VISUAL:-${EDlTOR:-vi}}
count in the input buffer. If count is omitted, then the current
line is used.

"L Line feed and print current line. Has effect only in control
mode.

"J (New line) Execute the current line, regardless of mode.

AM (Return) Execute the current line, regardless of mode.

4t Sends the line after inserting a 4t in front of the line. Useful for
causing the current line to be inserted in the history without
being executed.

@letter

List the file names that match the current word if an asterisk
were appended it.

Your alias list is searched for an alias by the name _letter and if
an alias of this name is defmed, its value will be inserted on
the input queue for processing.

Page 19

ksh(1) ksh(1)

Special Commands.
The following simple-commands are executed in the shell process. Input/Output
redirection is permitted. Unless otherwise indicated, the output is written on file
descriptor 1 and the exit status, when there is no syntax error, is zero. Com­
mands that are preceded by one or two t are treated specially in the following
ways:
1.

2.
3.
4.

Variable assignment lists preceding the command remain in effect when
the command completes.
I/O redirections are processed after variable assignments.
Errors cause a script that contains them to abort.
Words, following a command preceded by tt that are in the format of a
variable assignment, are expanded with the same rules as a variable
assignment. This means that tilde substitution is performed after the =
sign and word splitting and file name generation are not performed.

t : [arg .. , J
The command only expands parameters.

t . file [arg . ..]
Read the complete file then execute the commands. The commands are
executed in the current Shell environment. The search path specified by
PATH is used to find the directory containing file. If any arguments arg are
given, they become the positional parameters. Otherwise the positional
parameters are unchanged. The exit status is the exit status of the last
command executed.

tt alias [-tx J [name[=value J J .••
Alias with no arguments prints the list of aliases in the form name=value
on standard output. An alias is defined for each name whose value is
given. A trailing space in value causes the next word to be checked for
alias substitution. The -t flag is used to set and list tracked aliases. The
value of a tracked alias is the full pathname corresponding to the given
name. The value becomes undefined when the value of PATH is reset but
the aliases remain tracked. Without the -t flag, for each name in the argu­
ment list for which no value is given, the name and value of the alias is
printed. The -x flag is used to set or print exported aliases. An exported
alias is defined for scripts invoked by name. The exit status is non-zero if
a name is given, but no value, for which no alias has been defined.

bg [job ... J
This command is only on systems that support job control. Puts each
specified job into the background. The current job is put in the back­
ground if job is not specified. See Jobs for a description of the format of
job.

t break [n J
Exit from the enclosing for, while, until or select loop, if any. If n is
specified then break n levels.

t continue [n J

Page 20

Resume the next iteration of the enclosing for, while, until or select
loop. If n is specified then resume at the n-th enclosing loop.

10/89

ksh(1)

10/89

cd[arg]
cd old new

ksh(1)

This command can be in either of two forms. In the first form it changes
the current directory to arg. If arg is - the directory is changed to the pre­
vious directory. The shell variable HOME is the default arg. The variable
FWD is set to the current directory. The shell variable CDFATH defines the
search path for the directory containing arg. Alternative directory names
are separated by a colon (:). The default path is <null> (specifying the
current directory). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or between
the colon delimiters anywhere else in the path list. If arg begins with a /
then the search path is not used. Otherwise, each directory in the path is
searched for arg.

The second form of cd substitutes the string new for the string old in the current
directory name, FWD and tries to change to this new directory.

The cd command may not be executed by rksh.

echo [arg ... I
See echo(1) for usage and description.

t eva1 [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

texec[arg ...]
If arg is given, the command specified by the arguments is executed in
place of this shell without creating a new process. Input/output argu­
ments may appear and affect the current process. If no arguments are
given the effect of this command is to modify file descriptors as prescribed
by the input/output redirection list. In this case, any file descriptor
numbers greater than 2 that are opened with this mechanism are closed
when invoking another program.

t exit [n]
Causes the shell to exit with the exit status specified by n. If n is omitted
then the exit status is that of the last command executed. An end-of-file
will also cause the shell to exit except for a shell which has the ignoreeof
option (see set below) turned on.

tt export [name[=value I I ...
The given names are marked for automatic export to the environment of
subsequently-executed commands.

fc [-e ename I [-n1r I [first [last I I
fc -e - [old=new I [command I

In the first form, a range of commands from first to last is selected from
the last HISTSIZj!: commands that were typed at the terminal. The argu­
ments first and last may be specified as a number or as a string. A string
is used to locate the most recent command starting with the given string.
A negative number is used as an offset to the current command number.
If the flag -1, is selected, the commands are listed on standard output.
Otherwise, the editor program ename is invoked on a file containing these

Page 21

ksh(1) ksh(1)

keyboard commands. If ename is not supplied, then the value of the vari­
able FCEDIT (default /usr/bin/ed) is used as the editor. When editing is
complete, the edited command(s) is executed. If last is not specified then
it will be set to first. If first is not specified the default is the previous
command for editing and -16 for listing. The flag -r reverses the order
of the commands and the flag -n suppresses command numbers when
listing. In the second form the command is re-executed after the substitu­
tion old=new is performed.

fg [job ... 1
This command is only on systems that support job control. Each job
specified is brought to the foreground. Otherwise, the current job is
brought into the foreground. See Jobs for a description of the format of
job.

getopts optstring name [arg ... 1
Checks arg for legal options. If arg is omitted, the positional parameters
are used. An option argument begins with a + or a -. An option not
beginning with + or - or the argument - - ends the options. optstring con­
tains the letters that getopts recognizes. If a letter is followed by a :,
that option is expected to have an argument. The options can be
separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each
time it is invoked with a + prepended when arg begins with a +. The
index of the next arg is stored in OPT IND. The option argument, if any,
gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid
option in OPTARG, and to set name to? for an unknown option and to :
when a required option is missing. Otherwise, getopts prints an error
message. The exit status is non-zero when there are no more options.

jobs [-lnp 1 [job ... 1
Lists information about each given job; or all active jobs if job is omitted.
The -1 flag lists process ids in addition to the normal information. The-n
flag only displays jobs that have stopped or exited since last notified. The
-p flag causes only the process group to be listed. See Jobs for a descrip­
tion of the format of job.

kill [-sig 1 job ...
kill-1

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by
names (as given in /usr/ inc1ude/ signal. h, stripped of the prefix
"SIG"). If the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process will be sent a CONT (continue) signal if it is
stopped. The argument job can the process id of a process that is not a
member of one of the active jobs. See Jobs for a description of the format
of job. In the second form, kill -1, the signal numbers and names are
listed.

Page 22 10/89

ksh(1)

10/89

ksh(1)

let arg ...
Each arg is a separate arithmetic expression to be evaluated. See Arithmetic
Evaluation above, for a description of arithmetic expression evaluation.

The exit status is 0 if the value of the last expression is non-zero, and 1
otherwise.

t newqrp [arg ... 1
Equivalent to exec /usr/bin/newqrp arg

print [-Rnprsu[n 1 1 [arg •.. 1
The shell output mechanism. With no flags or with flag - or - - the argu­
ments are printed on standard output as described by echo(l). In raw
mode, -R or -r, the escape conventions of echo are ignored. The-R
option will print all subsequent arguments and options other than -no
The -p option causes the arguments to be written onto the pipe of the
process spawned with I & instead of standard output. The -8 option
causes the arguments to be written onto the history file instead of stan­
dard output. The -u flag can be used to specify a one digit file descriptor
unit number n on which the output will be placed. The default is 1. If
the flag -n is used, no new-line is added to the output.

pwd Equivalent to print -r - $PWD

read [-prsu[n 1 1 [name?prompt 1 [name ... 1
The shell input mechanism. One line is read and is broken up into fields
using the characters in IFS as separators. In raw mode, -r, a \ at the
end of a line does not signify line continuation. The first field is assigned
to the first name, the second field to the second name, etc., with leftover
fields assigned to the last name. The -p option causes the input line to be
taken from the input pipe of a process spawned by the shell using I &. If
the -8 flag is present, the input will be saved as a command in the history
file. The flag -u can be used to specify a one digit file descriptor unit to
read from. The file descriptor can be opened with the exec special com­
mand. The default value of n is O. If name is omitted then REPLY is used
as the default name. The exit status is 0 unless an end-of-file is encoun­
tered. An end-of-file with the -p option causes cleanup for this process so
that another can be spawned. If the first argument contains a ?, the
remainder of this word is used as a prompt on standard error when the
shell is interactive. The exit status is 0 unless an end-of-file is encoun­
tered.

tt readonly [name[=Value 1 1 ...
The given names are marked readonly and these names cannot be changed
by subsequent assignment.

t return [n 1
Causes a shell function to return to the invoking script with the return
status specified by n. If n is omitted then the return status is that of the
last command executed. If return is invoked while not in a function or a
. script, then it is the same as an exit.

Page 23

ksh(1} ksh(1}

set [±aefhlannpstuvx] [±o option] ... [±A name] [arg...]
The flags for this command have meaning as follows:
-A Array assignment. Unset the variable name and assign values

sequentially from the list arg. If +A is used, the variable name is
not unset first.

-a

-e

-f
-h
-k

-In

-n

-0

All subsequent variables that are defined are automatically
exported.
If a command has a non-zero exit status, execute the ERR trap, if
set, and exit. This mode is disabled while reading profiles.
Disables file name generation.
Each command becomes a tracked alias when first encountered.
All variable assignment arguments are placed in the environment
for a command, not just those that precede the command name.
Background jobs will run in a separate process group and a line
will print upon completion. The exit status of background jobs is
reported in a completion message. On systems with job control,
this flag is turned on automatically for interactive shells.
Read commands and check them for syntax errors, but do not exe­
cute them. Ignored for interactive shells.
The following argument can be one of the following option names:
allexport Same as -a.
errexit Same as-e.
bgnice All background jobs are run at a lower priority.

This is the default mode.
ignoreeof The shell will not exit on end-of-file. The command

keyword
markdirs

exit must be used.
Same as -k.
All directory names resulting from file name genera­
tion have a trailing / appended.

monitor Same as -In.

noclobber Prevents redirection > from truncating existing files.
Require> I to truncate a file when turned on.
Same as -no noexec

noglob
noloq
nounset
privileged
verbose
trackall
vi

viraw

Same as -f.
00 not save function definitions in history file.
Same as-u.
Same as-p.
Same as-v.
Same as -h.
Puts you in insert mode of a vi style in-line editor
until you hit escape character 033. This puts you in
move mode. A return sends the line.
Each character is processed as it is typed in vi
mode.

xtrace Same as -x.
If no option name is supplied then the current option settings are
printed.

Page 24 10/89

ksh(1)

10/89

ksh(1)

-p Disables processing of the $H~/. profile file and uses the file
/etc/suidyrofile instead of the ENV file. This mode is on
whenever the effective uid (gid) is not equal to the real uid (gid).
Turning this off causes the effective uid and gid to be set to the
real uid and gid.

-s Sort the positional parameters lexicographically.
-t Exit after reading and executing one command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Turns off -x and -v flags and stops examining arguments for flags.
Do not change any of the flags; useful in setting $1 to a value
beginning with -. If no arguments follow this flag then the posi­
tional parameters are unset.

Using + rather than - causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $-. Unless -A is specified, the remaining arguments are posi­
tional parameters and are assigned, in order, to $1 $2 If no argu­
ments are given then the names and values of all variables are printed on
the standard output.

tshift[n]
The positional parameters from $n+1 ... are renamed $1 ... , default
n is 1. The parameter n can be any arithmetic expression that evalu­
ates to a non-negative number less than or equal to St.

t times Print the accumulated user and system times for the shell and for
processes run from the shell.

t trap [arg] [sig] ...
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Each sig can be given as a number or as
the name of the signal. Trap commands are executed in order of signal
number. Any attempt to set a trap on a Signal that was ignored on
entry to the current shell is ineffective. If arg is omitted or is -, then
all trap(s) sig are reset to their original values. If arg is the null string
then this signal is ignored by the shell and by the commands it
invokes. If sig is ERR then arg will be executed whenever a command
has a non-zero exit status. sig is DEBUG then arg will be executed after
each command. If sig is 0 or EXIT and the trap statement is executed
inside the body of a function, then the command arg is executed after
the function completes. If sig is 0 or EXIT for a trap set outside any
function then the command arg is executed on exit from the shell. The
trap command with no arguments prints a list of commands associ­
ated with each signal number.

tt typeset [±HLRZfilrtux[n 1] [name[=value]] ...
Sets attributes and values for shell variables. When invoked inside

Page 25

ksh(1)

Page 26

ksh(1)

a function, a new instance of the variable name is created. The parame­
ter value and type are restored when the function completes. The fol­
lowing list of attributes may be specified:
-H This flag provides UNIX to host-name file mapping on non­

UNIX machines.
-L Left justify and remove leading blanks from value. If n is

non-zero it defines the width of the field, otherwise it is deter­
mined by the width of the value of first assignment. When
the variable is assigned to, it is filled on the right with blanks
or truncated, if necessary, to fit into the field. Leading zeros
are removed if the -z flag is also set. The -R flag is turned
off.

-R Right justify and fill with leading blanks. If n is non-zero it
defines the width of the field, otherwise it is determined by
the width of the value of first assignment. The field is left
filled with blanks or truncated from the end if the variable is
reassigned. The L flag is turned off. .

-z Right justify and fill with leading zeros if the first non-blank
character is a digit and the -L flag has not been set. If n is
non-zero it defines the width of the field, otherwise it is deter­
mined by the width of the value of first assignment.

-f The names refer to function names rather than variable names. No· assignments can be made and the only other valid flags
are -t, -u and -x. The flag -t turns on execution tracing for
this function. The flag -u causes this function to be marked
undefined. The FPATH variable will be searched to find the
function definition when the· function is referenced. The flag
-x allows the function definition to remain in effect across
shell procedu~s invoked by name.

-i Variable is an integer. This makes arithmetic faster. If n is
non-zero it defines the output arithmetic base, otherwise the
first assignment determines the output base.

-1 All upper-case characters converted to lower-case. The
upper-case flag, -u is turned off.

-r The given names are marked readonly and these names cannot
be changed by subsequent assignment.

-t Tags the variables. Tags are user definable and have no spe­
cial meaning to the shell.

-u All lower-case characters are converted to upper-case charac­
ters. The lower-case flag, -1 is turned off.

-x The given names are marked for automatic export to the
environment of subsequently-executed commands ..

Using + rather than - causes these flags to be turned off. If no name
arguments are given but flags are specified, a list of names (and option­
ally the values) of the variables which have thes.e flags set is printed.
(Using + rather than - keeps the values from being printed.) If no
names and flags are given, the names and attributes of all variables are
printed.

10/89

ksh(1) ksh(1)

10/89

ulimit [-[HS][a I c:dfnstv]]

ulimit [- [HS][c I d I fin I sit I v]] limit
ulimit prints or sets hard or soft resource limits. These limits are
described in getrlimit(2).

If limit is not present, ulimit prints the specified limits. Any number
of limits may be printed at one time. The -a option prints all limits.

If limit is present, ulimit sets the specified limit to limit. The string
unlimited requests the largest valid limit. Limits may be set for only
one resource at a time. Any user may set a soft limit to any value
below the hard limit. Any user may lower a hard limit. Only a
super-user may raise a hard limit; see su(1).

The -H option specifies a hard limit. The -S option specifies a soft
limit. If neither option is specified, ulimit will set both limits and
print the soft limit.

The following options specify the resource whose limits are to be
printed or set. If no option is specified, the file size limit is printed or
set.
-c maximum core file size (in 512-byte blocks)

-d maximum size of data segment or heap (in kbytes)

-f maximum file size (in 512-byte blocks)

-n maximum file descriptor plus 1

-s maximum size of stack segment (in kbytes)

-t maximum CPU time (in seconds)

-v maximum size of virtual memory (in l<,bytes)

If no option is given, -f is assumed.
umask [mask]

The user file-creation mask is set to mask [see umask(2)]. mask can
either be an octal number or a symbolic value as described in chm::xi(1).
If a symbolic value is given, the new umask value is the complement of
the result of applying mask to the complement of the previous umask
value. If mask is omitted, the current value of the mask is printed.

unalias name ..•
The variables given by the list of names are removed from the alias list.

unset [-f] name ...
The variables given by the list of names are unassigned, i. e., their
values and attributes are erased. Read-only variables cannot be unset.
If the flag, -f, is set, then the names refer to function names. Unsetting
ERRNO, LlNENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, 'lM)UT,
and _ causes removes their special meaning even if they are subse­
quently assigned to.

Page 27

ksh(1) i<sh(1)

t wait [job)
Wait for the speCified job and report its termination status. If job is not
given then all currently active child processes are waited for. The eXit
status from this command is that of the process waited for. See Jobs
for a description of the format of job.

whence [-pv) name ...
For each name, indicate how it would be interpreted if used as a com­
mandname.

-v produces a more verbose report.

-p does a path search for name even if name is an alias, a function,
or a reserved word.

Invocation.
If the shell is invoked by exec(2), and. the first character of argument zero ($0) is
-, then the shell is assumed to be a login shell and commands are read from
fete/profile and then from either .profile in the current directory or
$HOME/ . profile, if either file exists. Next, commands are read from the file
named by performing parameter substitution on the value of the environment
variable ENV if the file exists. If the -s flag is not present and arg is, then a path
search is performed on the first arg to determine the name of the script to exe­
cute. The script arg must have read permission and any setuid and setgid set­
tings will be ignored. Commands are then read as described below; the following
flags are interpreted by the shell when it is invoked:

-c string If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are

read from the standard input. Shell output, except for the output of
the SpeCial commands listed above, is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to
a terminal (as told by ioctl(2» then this shell is interactive. In this
case TERM is ignored (so that kill 0 does not kill an interactive shell)
and INTR is caught and ignored (so that wait is interruptible). In all
cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Rksh Only.
Rksh is used to set up login names and execution environments whose capabilities
are more controlled than those of the standard shell. The actions of rksh are
identical to those of sh, except that the following are disallowed:

changing directory [see ed(l»),
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing /,
redirecting output (>, > i , <> , and »).

The restrictions above are enforced after . profile and the ENV files are inter­
preted.

Page 28 10/89

ksh(1) ksh(1)

When a command to be executed is found to be a shell procedure, rksh invokes
ksh to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a limited
menu of commands; this scheme assumes that the end-user does not have write
and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete con­
trol over user actions, by performing guaranteed setup actions and leaving the
user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e., /usr/rbiri)
that can be safely invoked by rksh.

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. Otherwise, the shell returns the exit status of the last com­
mand executed (see also the exit command above). If the shell is being used
non-interactively then execution of the shell file is abandoned. Run time errors
detected by the shell are reported by printing the command or function name and
the error condition. If the line number that the error occurred on is greater than
one, then the line number is also printed in square brackets ([]) after the com­
mand or function name.

/etc/passwd
/ etc/profile
/ etc/ suid -profile
$HOME/ . profile
/tmp/sh*
/dev/null

SEE ALSO

NOTES

10/89

eat(n, cd(l), chIood(1), cut(1), echa(1), env(1), paste(1), stty(l), test(1),
wnask(1), and vi(1).
dyp(2), exec(2), fork(2), ioctl(2), lseek(2), pipe(2), signal(2), umask(2),
ulimit(2), wait(2), and rand(3q in the Programmer's Reference Manual.
newgl:p(1M), a.out(4), profile(4), and environ(4) in the System Administrator's
Reference Manual.

Morris I. Bolsky and David G. Korn, The KornShell Command and Programming
Language, Prentice Hall, 1989.

If a command which is a tracked alias is executed, and then a command with the
same name is installed in a directory in the search path before the directory
where the original command was found, the shell will continue to exec the origi­
nal command. Use the -t option of the alias command to correct this situation.

Some very old shell scripts contain a" as a synonym for the pipe character. I.
Using the £c built-in command within a compound command will cause the
whole command to disappear from the history file.

Page 29

ksh(1) ksh(1)

The built-in command . file reads the whole file before any commands are exe­
cuted. Therefore, alias and unalias commands in the file will not apply to any
functions defined in the file.

Traps are not processed while a job is waiting for a foreground process. Thus, a
trap on CHLD won't be executed until the foreground job terminates.

Page 30 10/89

last (1) last(1}

NAME
last - indicate last user or terminal logins

SYNOPSIS
last [-n number I -number] [-f filename] [name I tty] ...

DESCRIPTION

FILES

The last command looks in the /var/adm/wtnp, file which records all logins
and logouts, for information about a user, a terminal or any group of users and
terminals. Arguments specify names of users or terminals of interest. Names of
terminals may be given fully or abbreviated. For example last 10 is the same as
last term/10. If multiple arguments are given, the information which applies
to any of the arguments is printed. For example last root console lists all of
root's sessions as well as all sessions on the console terminal. last displays the
sessions of the specified users and terminals, most recent first, indicating the
times at which the session began, the duration of the session, and the terminal
which the session took place on. If the session is still continuing or was cut short
by a reboot, last so indicates.

The pseudo-user reboot logs in at reboots of the system, thus

last reboot

will give an indication of mean time between reboot.

last with no arguments displays a record of all logins and logouts, in reverse
order.

If last is interrupted, it indicates how far the search has progressed in
/var/adm/wttIp. If interrupted with a quit signal (generated by a CTRL-\) last
indicates how far the search has progressed so far, and the search continues.

The following options are available:

-n number I -number
Limit the number of entries displayed to that specified by number.
These options are identical; the -number option is provided as a
transition tool only and will be removed in future releases.

-f filename Use filename as the name of the accounting file instead of
/var/adm/wtnp.

/var/adm/wttIp accounting file
SEE ALSO

utnp(4) in the System Administrator's Reference Manual.

10/89 Page 1

layers{1) layers{1)

NAME
layers - layer multiplexor for windowing terminals

SYNOPSIS
layers [-s] [-t] [-0 [-m max-pkt] [-d] [-p] [-h modlist] [-f file] [layersys-prgm]

DESCRIPTION

10/89

layers manages asynchronous windows [see layers(5)] on a windowing termi­
nal. Upon invocation, layers finds an unused xt(7) channel group and associ­
ates it with the terminal line on its standard output. It then waits for commands
from the terminal.

Command-line options:

-s Report protocol statistics on standard error at the end of the session after
you exit from layers. The statistics may be printed during a session by
invoking the program xts(1M).

-t Turn on xt(7) driver packet tracing, and produces a trace dump on stan­
dard error at the end of the session after you exit from layers. The
trace dump may be printed during a session by invoking the program
xtt(1M).

-0 Send debugging messages to standard error.

-m max-pkt
Set maximum size for the data part of regular xt packets sent from the
host to the terminal. Legal values are 32 to 252. This option also implies
that regular rather than network xt protocol should be used. See
xtproto(5).

-d If a firmware patch has been downloaded, print out the sizes of the text,
data, and bss portions of the firmware patch on standard error.

-p If a firmware patch has been downloaded, print the down-loading proto­
col statistics and a trace on standard error.

-h modlist
Push a list of STREAMS modules separated by a comma on a layer.

-f file Start layers with an initial configuration specified by file. Each line of
the file represents a layer to be created, and has the following format:

origin _x origin'y corner _ x corner'y command_list

The coordinates specify the size and position of the layer on the screen
in the terminal's coordinate system. If all four are 0, the user must define
the layer interactively. command _list, a list of one or more commands,
must be provided. It is executed in the new layer using the user's shell
(by executing: $SHELL -i -c "command _list"). This means that the last
command should invoke a shell, such as /usr/bin/sh. (If the last com­
mand is not a shell, then, when the last command has completed, the
layer will not be functional.)

layersys-prgm
A file containing a firmware patch that the layers command downloads
to the terminal before layers are created and command _list is executed.

Page 1

layers(1) layers (1)

Each layer is in most ways functionally identical to a separate terminal. Charac­
ters typed on the keyboard are sent to the standard input of the UNIX system pro­
cess attached to the current layer (called the host process), and characters written
on the standard output by the host process appear in that layer. When a layer is
created, a separate shell is established and bound to the layer. If the environment
variable SHELL is set, the user gets that shell: otherwise, /usr/bin/sh is used. In
order to enable communications with other users via write(1), layers invokes
the command relogin(1M) when the first layer is created. relogin(1M) will
reassign that layer as the user's logged-in terminal. An alternative layer can be
designated by using relogin(1M) directly. layers will restore the original
assignment on termination.

Layers are created, deleted, reshaped, and otherwise manipulated in a terminal­
dependent manner. For instance, the AT&T 630 MTG terminal provides a mouse­
activated pop-up menu of layer operations. The method of ending a layers ses­
sion is also defined by the terminal.

If a user wishes to take advantage of a terminal-specific application software
package, the environment variable OMD should be set to the path name of the
directory where the package was installed. Otherwise OM:> should not be set.

EXAMPLES

FILES

A typical startup command is:

layers -f startup

where startup contains

8 8 700 200 date ; pwd ; exec $SHELL
8 300 780 850 exec $SHELL

The command

layers -h FILTER, LDTERM

pushes the STREAMS modules FILTER and LDTERM on each layer that is opened.

/dev/xt/?? [0-7]
/usr/lib/layersys/lsys.8;7;3
$OMD/lib/layersys/lsys.8;?;?

SEE ALSO

NOTES

Page 2

isnpx(1), jterm(l), jwin(1), sh(1), write(l).
relogin(1M), wtinit(1M), xts(1M), xtt(1M), jagent(S), layers(S), xtproto(S),
and xt(7).
libwindows(3X) in the Programmer's Reference Manual.

The xt(7) driver supports an alternate data transmission scheme known as
ENCODING MODE. This mode makes layers operation possible even over data
links which intercept control characters or do not transmit 8-bit characters.
ENCODING MODE is selected either by setting a setup option on your windowing
terminal or by setting the environment variable OMDLOAD to the value hex before
running layers:

10/89

layers(1) layers (1)

10/89

OMDLOAD=hex; export OMDLOAD

If, after executing layers -f file, the terminal does not respond in one or more
of the layers, often the last command in the command Jist for that layer did not
invoke a shell.

To access this version of layers, make sure /usr/bUi appears before any other
directory, such as $OMD/bin, you have in your path that contains a layers pro­
gram. [For information about defining the shell environmental variable PATH in
your .profile, see profile(4j.] Otherwise, if there is a terminal-dependent ver­
sion of layers, you may get it instead of the correct one.

layers sen4s all debugging and error messages to standard error. Therefore,
when invoking layers with the -D, -d, or -p option, it is necessary to redirect
standard error to a file. For example,

layers -0 2>layers.msgs

If layers encounters an error condition and standard error is not redirected, the
last error encountered will be printed when the layers commands exits.

When rising layers the mimimum acceptable baud rate is 1200. Behavior of
layers is unpredictable when using baud rate below 1200.

When using V7/BSD/Xenix applications (e.g., the jim editor) layers should be
invoked as

layers -h ldterm,ttcompat

This pushes the ttcarpat module on each window and converts the BSD inter­
face into the termio(7) interface.

Page 3

line(1)

NAME
line read one line

SYNOPSIS
line

DESCRiPtioN

IIn8(1)

line copies one line (up to a new-line) from the standard input and writes it on
the standard output. It returns an exit code of 1 on EOI!' and always prints at least
a new-line. It is often used within shell files to read from the user's terminal.

SEE ALSO
sh(l).
read(2) in the Programmer's Reference Manual.

10/89 Page 1

IIstusers{1) IIstusers{1)

NAME
listusers - list user login information

SYNOPSIS
listusers [--q groups] [-llogins]

DESCRIPTION

NOtES

10/89

Executed without any options, this command displays a list of all user logins,
sorted by login, and the account field value associated with each login in
/etc/passwd.

--q Lists all user logins belonging to group, sorted by login. Multiple groups
can be specified as a comma-separated list.

-1 Lists the user login or logins specified by 109ins; sorted by login. Multi­
ple logins can be specified as a comma-separated list.

A user login is one that has a UID of 100 or greater.

The -1 and --q options can be combined. User logins will be listed only once,
even if they belong to more than one of the selected groups.

Page 1

In (1) In(1}

NAME
In - link files

SYNOPSIS
In [-f] [-n] [-8] fi1el [fi1e2 ...] target

DESCRIPTION

10/89

The In command links fi1en to target by creating a directory entry that refers to
target. By using In with one or more file names, the user may create one or mote
links to target.
The In command may be used to create both hard links and symbolic linksj by
default it creates hard links. A hard link to a file is indistinguishable from the
original directory entry. Any changes to a file are effective independent of the
name used to reference the file. Hard links may not span file systems and may
not refer to directories.

Without the -8 option, In is used to create hard links.fi1en is linked to target. If
target is a directory, another file named fi1en is created in target and linked to the
original fi1en. If target is a file, its contents are overwritten.

If In determines that the mode of target forbids writing, it will print the mode
(see chrood(2», ask for a response, and read the standard input for one line. If
the line begins with y, the link occurs, if permissiblej otherwise, the command
exits.

The following options are recognized:
-f In will link files without questioning the user, even if the mode of target

forbids writing. Note that this is the default if the standard input is not a
terminal,

-n If the linkname is an existing file, do not overwrite the contents of the file.
The -f option overrides this option.

-8 In will create a symbolic link. A symbolic link contains the name of the file
to which it is linked. Symbolic links may span file systems and may refer to
directories.

If the -8 option is used with two arguments, target may be an existing directory
or a non-existent file. If target already exists and is not a directory, an error is
returned. fi1en may be any path name and need not exist. If it exists, it may be a
file or directory and may reside on a different file system. from target. If target is
an existing directory, a file is created in directory target whose name is fi1en or the
last component of fi1en. This file is a symbolic link that references fi1en. If target
does not. exist, a file with name target is created and it is a symbolic link that
references fi1en.

If the -8 option is used with more than two arguments, target must be an existing
directory or art error will be returned. For each filen, a file is created in target
whose name is fi1en or its last componentj each new fi1en is a symbolic link to the
original fi1en. The files and target may reside on different file systems.

Page 1

In (1) In (1)

SEE ALSO
chm:xi(1), cp(1), mv(1), rm(l), link(2), readlink(2), stat(2), symlink(2).

Page 2 10/89

logln(1) login (1)

NAME
login - sign on

SYNOPSIS
login [-d device] [name [environ . . .]]

DESCRIPTION

10/89

The login command is used at the beginning of each terminal session and allows
you to identify yourself to the system. It may be invoked as a command or by
the system when a connection is first established. It is invoked by the system
when a previous user has terminated the initial shell by typing a cntrl-d to indi­
cate an end-of-file.

If login is invoked as a command it must replace the initial command inter­
preter. This is accomplished by typing

exee login

from the initial shell.

login asks for your user name (if it is not supplied as an argument), and if
appropriate, your password. Echoing is turned off (where possible) during the
typing of your password, so it will not appear on the written record of the ses­
sion.

If there are no lower-case characters in the first line of input processed, login
assumes the connecting 1TY is an upper-case-only terminal and sets the port's
termio(7) options to reflect this.

login accepts a device option, device. device is taken to be the path name of the
1TY port login is to operate on. The use of the device option can be expected to
improve login performance, since login will not need to call ttyname(3).

If you make any mistake in the login procedure, the message

Login incorrect

is printed and a new login prompt will appear. If you make five incorrect login
attempts, all five may be logged in /var/adm/loginlog (if it exists) and the TIY
line will be dropped.

If you do not complete the login successfully within a certain period of time (e.g.,
one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the fete/profile script is
executed, the time you last logged in is printed, / etc/II'Otd is printed, the user-
10, group-ID, supplementary group list, working directory, and command inter­
preter (usually sh) are initialized, and the file .profile in the working directory
is executed, if it exists. The name of the command interpreter is - followed by
the last component of the interpreter's path name (e.g., -sh). If this field in the
password file is empty, then the default command interpreter, /usr/bin/sh is
used. If this field is .. , then the named directory becomes the root directory, the
starting point for path searches for path names beginning with a /. At that point
login is re-executed at the new level which must have its own root structure,
including /var/adm/login and /etc/passwd.

Page 1

login (1) login(1)

FILES

The basic environment is initialized to:

HOME=your-login-directory
LOGN1tME=your-login-name
PATH=/usr/bin
SHEU.=last-field-of-passwd-entry
MAIL=/var /mail/your-Iogin-name
Tz=timezone-specification

The environment may be expanded or modified by supplying additional argu­
ments to login, either at execution time or when login requests your login
name. The arguments may take either the form xxx or xxx=yyy. Arguments
without an equal sign are placed in the environment as

Ln=xxx

where n is a number starting at 0 and is incremented each time a new variable
name is required. Variables containing an = are placed in the environment
without modification. If they already appear in the environment, then they
replace the older value. There are two exceptions. The variables PATH and SHELL
cannot be changed. This prevents people, logging into restricted shell environ­
ments, from spawning secondary shells which are not restricted. login under­
stands simple single-character quoting conventions. Typing a backslash in front
of a character quotes it and allows the inclusion of such characters as spaces and
tabs.

/var/adm/utrrp
/var/adm/wtnp
/var/mail/your-name
/var/adm/loginlog
/etc/Iootd
/etc/passwd
/etc/profile
. profile
/var/adm/lastlog

accounting
accounting
mailbox for user your-name
record of failed login attempts
message-of-the-day
password file
system profile
user's login profile
time of last login

SEE ALSO
mail(l), newgrp(1M), sh(1), su(1M).
loginlog(4), passwd(4), profile(4),
Manual.

environ(S) in the Programmer's Reference

DIAGNOSTICS

Page 2

login incorrect if the user name or the password cannot be matched.
No shell, cannot open password fil~ or no directory: consult a sys­
tem engineer.
No utllp entry. You lTllst exec "login" from the lowest level "sh" if
you attempted to execute login as a command without using the shell's exec
internal command or from a shell other than the initial shell.

logname(1)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION
logname returns the name of the user running the process.

FILES
fete/profile

SEE ALSO

10/89

env(1), login(l).
euserid(3C) in the Programmer's Reference Manual.
environ(S) in the System Administrator's Reference Manual.

logname(1)

Page 1

Ip (1) Ip(1)

NAME
lp, cancel - send/cancel requests to an LP print service

SYNOPSIS
lp [printing-options] files
lp -i request-IDs printing-options
cancel [request-ID] [printer]
cancel -u login jD [printer]

DESCRIPTION
The first form of the lp shell command arranges for the named files and associ­
ated information (collectively called a request) to be printed. If no file names are
specified on the shell command line, the standard input is assumed. The stan­
dard input may be specified along with named files on the shell command line by
listing the file name(s) and specifying - for the standard input. The files will be
printed in the order in which they appear on the shell command line.

The second form of lp is used to change the options for a request. The print
request identified by the request-ID is changed according to the printing options
specified with this shell command. The printing options available are the same as
those with the first form of the lp shell command. If the request has finished
printing, the change is rejected. If the request is already printing, it will be
stopped and restarted from the beginning (unless the -P option has been given).

lp associates a unique request-ID with each request and prints it on the standard
output. This request-ID can be used later when canceling or changing a request,
or when determining its status. [See the section on cancel for details about can­
celing a request, the previous paragraph for an explanation of how to change a
request, and lpstat(1) for information about checking the status of a print
request.]

Sending a Print Request

10/89

The first form of the lp command is used to send a print request to a particular
printer or group of printers.

Options to lp must always precede file names, but may be listed in any order.
The following options are available for lp:

-c

-<idest

Make copies immediately of the files to be printed when lp is
invoked. Normally, files will not be copied, but will be linked when­
ever possible. If the -c option is not given, then the user should be
careful not to remove any of the files before the request has been
printed in its entirety. It should also be noted that if the -c option
is not specified, any changes made to the named files after the
request is made but before it is printed will be reflected in the
printed output.

Choose dest as the printer Or class of printers that is to do the print­
ing. If dest is a printer, then the request will be printed only on that
specific printer. If dest is a class of printers, then the request will be
printed on the first available printer that is a member of the class.
Under certain conditions (unavailability of printers, file space limita­
tions, and so on) requests for specific destinations may not be
accepted [see lpstat(1)]. By default, dest is taken from the

Page 1

Ip (1)

Page 2

Ip(1)

environment variable LPoEsT (if it is set). Otherwise, a default desti­
nation (if one exists) for the computer system is used. Destination
names vary between systems [see Ipstat(1)].

-f form-name [-d any]
Print the request on the form form-name. The LP print service
ensures that the form is mounted on the printer. If form-name is
requested with a printer destination that cannot support the form;
the request is rejected. If form-name has not been defined for the
system, or if the user is not allowed to use the form, the request is
rejected [see Ipforms(1M». When the -d any option is given, the
request is printed on any printer that has the requested form
mounted and can handle all other needs of the print request.

-H special-handling .
Print the request according to the value of special-handling. Accept­
able values for special-handling are hold, resume, and i.irmediate, as
defined below:

hold Don't print the request until notified. If printing has
already begun, stop it. Other print requests will go
ahead of a held request until it is resumed.

resume Resume a held request. If it had been printing when
held, it will be the next request printed, unless subse­
quently bumped by an inmediate request.

inmediate (Available only to LP administrators)
Print the request next. If more than one request is
assigned immediate, the requests are printed in the
reverse order queued. If a request. is currently printing
on the desired printer, you have to put it on hold to
allow the immediate request to print.

-m Send mail [see mail(1)] after the files have been printed. By default,
no mail is sent upon normal completion of the print request.

-n number Print number copies (default of 1) of the output.

-0 option Specify printer-dependent options. Several such options may be col-
lected by specifying the -0 keyletter more than once (-0 option! -0

option2 ... -0 optiorln), or by specifying a list of options with more
than one -0 keyletter (that is, -0 option! option2 ... option,.). The
standard interface recognizes the follOwing options:

nobanner Do not print a banner page with this request. (The
administrator can disallow this option at any time.)

nofilebreak.
Do not insert a form feed between the files given, if
submitting a job to print more than one file.

length=scaled-decimal-number
Print this request with pages scaled-decimal-number lines
long. A scaled-decimal-number is an optionally scaled
decimal number that gives a size in lines, columns,

10/89

Ip (1)

10/89

Ip (1)

inches, or centimeters, as appropriate. The scale is
indicated by appending the letter "i" for inches, or the
letter "c" for centimeters. For length or width settings,
an unscaled number indicates lines or columns; for line
pitch or character pitch settings, an unscaled number
indicates lines per inch or characters per inch (the same
as a number scaled with "i"). For example, length=66
indicates a page length of 66 lines, length=lli indi­
cates a page length of 11 inches, and length=27. 94c
indicates a page length of 27.94 centimeters.

This option cannot be used with the -f option.

width=scaled-decimal-number
Print this request with page-width set to scaled-decimal­
number columns wide. (See the explanation of scaled­
decimal-numbers in the discussion of length. above.)
This option cannot be used with the -f option.

lpi=scaled-decimal-number
Print this request with the line pitch set to scaled­
decimal"number lines per inch. This option cannot be
used with the -f option.

cpi=scaled-decimal-number
Print this request with the character pitch set to scaled­
decimal-number characters per inch. Character pitch can
also be set to pica (representing 10 columns per inch)
or elite (representing 12 columns per inch), or it can
be conpressed (representing as many columns as a
printer can handle). There is no standard number of
columns per inch for all printers; see the Terminfo
database [terminfo(4)] for the default character pitch
for your printer.

This option cannot be used with the -f option.

stty=stty-option-list
A list of options valid for the stty command; enclose
the list with quotes if it contains blanks.

-p page-list Print the pages specified in page-list. This option can be used only if
there is a filter available to handle it; otherwise, the print request
will be rejected.

The page-list may consist of range(s) of numbers, single page
numbers, or a combination of both. The pages will be printed in
ascending order.

-q priority-level
Assign this request priority-level in the printing queue. The values of
priority-level range from 0, the highest priority, to 39, the lowest
priority. If a priority is not specified, the default for the print ser­
vice is used, as assigned by the system administrator.

Page 3

Ip (1) Ip(1)

-8 Suppress messages from lp such as those that begin with request
id is.

-s character-set [-d any]
-s print-wheel [-d any]

Print this request using the specified character-set or print-wheel. If a
form was requested and it requires a chara.cter set or print wheel
other than the one specified with the -s option, the request is
rejected.

For printers that take print wheels: if the print wheel specified is
not one listed by the administrator as acceptable for the printer
specified in this request, the request is rejected unless the print
wheel is already mounted on the printer.

For printers that use selectable or programmable character sets: if
the character-set specified is not one defined in the Terminfo database
for the printer [see terminfo(4)], or is not an alias defined by the
administrator, the request is rejected.

When the -d any option is used, the request is printed on any
printer that has the print wheel mounted or any printer that can
select the character set, and that can handle any other needs of ~he
request.

-t title Print title on the banner page of the output. The default is no title.

-T content-type [-r]
Print the request on a printer that can support the specified content­
type. If no printer accepts this type directly, a filter will be used to
convert the content into an acceptable type. If the -r option is
specified, a filter will not be used. If -r is specified, and no printer
accepts the content-type directly, the request is rejected. If the
content-type is not acceptable to any printer, either directly or with a
filter, the request is rejected. .

-w Write a message on the user's terminal after the files have been
printed. If the user is not logged in, then mail will be sent instead.

-y mode-list Print this request according to the printing modes listed in mode-list.
The allowed values for mode-list are locally defined. This option can
be used only if there isa filter available to handle it; otherwise, the
print request will be rejected.

Canceling a PrInt Request

Page 4

The cancel command cancels requests f(,)r print jobs made with the lp command.
To cancel a job, specify one of the following arguments: the request-ID for it(as
returned by the lp command); the name of the printer handling it; or .the login-ID
of the user who requested it. A printer class is not a valid argument ..

Users without special privileges can cancel ~nly requests associated with their
own login IDs ..

10/89

Ip (1)

NOTES

FILES

Ip(1 }

Printers for which requests are not being accepted will not be considered when
the 1p command is run and the destination is any. (Use the 1pstat -a com­
mand to see which printers are accepting requests.) On the other hand, if (1) a
request is destined for a class of printers and (2) the class itself is accepting
requests, then all printers in the class will be considered, regardless of their accep­
tance status.

For printers that take mountable print wheels or font cartridges, if you do not
specify a particular print wheel or font with the -s option, whichever one hap­
pens to be mounted at the time your request is printed will be used. Use the
1pstat -p printer -1 command to see which print wheels are available on a par­
ticular printer, or the 1pstat -s -1 command to find out what print wheels are
available and on which printers. For printers that have selectable character sets,
you will get the standard character set if you don't use the -s option.

/var/spoo1/1p/*
SEE ALSO

enab1e(1),1pstat(1),mail(1).

10/89

accept(1M), 1padmin(1M), 1pfilter(1M), 1pforms(1M), Ipsched(1M),
1psystem(lM), 1pusers(1M) in the System Administrator's Reference Manual.
terminfo(4) in the Programmer's Reference Manual.

Page 5

Ipstat(1) Ipstat (1)

NAME
1pstat - print information about the status of the LP print service

SYNOPSIS
1pstat [options]

DESCRIPTION

10/89

The 1pstat command prints information about the current status of the LP print
service.

If no options are given, then 1pstat prints the status of all output (or print)
requests made by 1p [see 1P(1)]. Any arguments that are not options are assumed
to be request-IDs as returned by 1p. The 1pstat command prints the status of
such requests. The options may appear in any order and may be repeated and
intermixed with other arguments. Some of the keyletters below may be followed
by an optional list that can be in one of two forms: a list of items separated from
one another by a comma, or a list of items separated from one another by spaces.
A list that includes spaces or shell special characters must be enclosed in double
quotes. For example:

-u "userl, user2, user3"
Specifying all after any keyletters that take list as an argument causes all infor­
mation relevant to the keyletter to be printed. For example, the command

1pstat -0 all

prints the status of all output requests.

The omission of a list following such key letters causes all information relevant to
the key letter to be prined. For example, the command

1pstat -0

prints the status of all output requests.

-a [list] Reports whether print destinations are accepting requests. list is a list of
intermixed printer names and class names.

-c [list] Reports name of all classes and their members. list is a list of class
names.

-d Reports the system default destination for output requests.

-f [list] [-1]
Prints a verification that the forms in list are recognized by the LP print
service. list is a list of forms; the default is all. The -1 option will list
the form descriptions.

-0 [list] Reports the status of output requests. list is a list of intermixed printer
names, class names, and request-IDs.

-p [list] [-0] [-1]
Reports the status of printers. list is a list of printer names. If the -0
option is given, a brief description is printed for each printer in list. If
the -1 option is given, and the printer is on the local machine, a full
description of each printer's configuration is given, including the form
mounted, the acceptable content and printer types, a printer description,
the interface used, and so on. If the -1 option is given and the printer is

Page 1

Ipstat(1) Ipstat(1)

FILES

remote, the only information given is the remote machine and printer
names, and the shell-commands used for file transfer and remote execu­
tion.

-r Reports whether the LP request scheduler is on or off.

-R Reports a number showing the position of the job in the print queue.

-8 Displays a status summary, including the status of the LP scheduler, the
system default destination, a list of class names and their members, a list
of printers and their associated devices, a list of the machines sharing
print services, a list of all forms currently mounted, and a list of all
recognized character sets and print wheels.

-s [list] [-1]
Prints a verification that the character sets or the print wheels specified
in list are recognized by the LP print service. Items in list can be charac­
ter sets or print wheels; the default for the list is all. If the -1 option is
given, each line is appended by a list of printers that can handle the
print wheel or character set. The list also shows whether the print wheel
or character set is mounted or specifies the built-in character set into
which it maps.

-t Displays all status information: all the information obtained with the -8
option, plus the acceptance and idle/busy status of all printers.

-u [login-ID-Iist]
Displays the status of output requests for users. The Iogin-lD-list argu­
ment may include any or all of the following constructs:

user name a user on the local system

system_name! user_name a user on system_name
system_name! all all users on system_name

all! user name a user not on the local system

all ! all all users not on the local system

all all users on the local system

-v [list] Reports the names of printers and the pathnames of the devices associ­
ated with them. list is a list of printer names.

/var/8pool/lp/*
/etc/lp/*

SEE ALSO
enable(1), lP(l).

Page 2 10/89

18(1) 18(1)

NAME
1s - list contents of directory

SYNOPSIS
1s [-RadLCxml.nogrtucpFbqisfl] [names]

DESCRIPTION
For each directory argument, 1s lists the contents of the directory; for each file
argument, 1s repeats its name and any other information requested. The output
is sorted alphabetically by default. When no argument is given, the current direc­
tory is listed. When several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories and their contents.

There are three major listing formats. The default format for output directed to a
terminal is multi-column with entries sorted down the columns. The -1 option
allows single column output and -m enables stream output format. In order to
determine output formats for the -c, -x. and -m options, 1s uses an environment
variable, COLUMNS, to determine the number of character positions available on
one output line. If this variable is not set, the terminfo(4) database is used to
determine the number of columns, based on the environment variable TERM. If
this information cannot be obtained, 80 columns are assumed.

The 1s command has the following options:

-R Recursively list subdirectories encountered.

-a List all entries, including those that begin with a dot (.), which are nor-
mally not listed.

-d If an argument is a directory, list only its name (not its contents); often
used with -1 to get the status of a directory.

-L If an argument is a symbolic link, list the file or directory the link refer­
ences rather than the link itself.

-C Multi-column output with entries sorted down the columns. This is the
default output format.

-x Multi-column output with entries sorted across rather than down the
page.

-m Stream output format; files are listed across the page, separated by com­
mas.

-1 List in long format, giving mode, number of links, owner, group, size in
bytes, and time of last modification for each file (see below). If the file is
a special file, the size field instead contains the major and minor device
numbers rather than a size. If the file is a symbolic link, the filename is
printed followed by "->" and the pathname of the referenced file.

-n The same as -1, except that the owner's UlO and group's GlO numbers are
printed, rather than the associated character strings.

-0 The same as -1, except that the group is not printed.

10/89 Page 1

Is(1) Is(1)

Page 2

-g The same as -1, except that the owner is not printed.

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

-t Sort by time stamp (latest first) instead of by name. The default is the last
modification time. (See -n and -c.)

-u Use time of last access instead of last modification for sorting (with the -t
option) or printing (with the -1 option).

-c Use time of last modification of the i-node (file created, mode changed,
etc.) for sorting (-t) or printing (-1).

-p Put a slash (f) after each filename if the file is a directory.

-F Put a slash (f) after each filename if the file is a directory, an asterisk (*) if
the file is an executable, and an ampersand (@) if the file is a symbolic
link.

-b Force printing of non-printable characters to be in the octal \ddd notation.

-q Force printing of non-printable characters in file names as the character
question mark (1).

-i For each file, print the i-node number in the first column of the report.

-s Give size in blocks, including indirect blocks, for each entry.

-f Force each argument to be interpreted as a directory and list the name
found in each slot. This option turns off -1, -t, -s, and -r, and turns
on -a; the order is the order in which entries appear in the directory.

-1 Print one entry per line of output.

The mode printed under the -1 option consists of ten characters. The first char­
acter may be one of the following:

d the entry is a directory;
1 the entry is a symbolic link;
b the entry is a block special file;
c the entry is a character special file;
p the entry is a fifo (a.k.a. "named pipe") special file;

the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first set
refers to the owner's pennissions; the next to pennissions of others in the user­
group of the file; and the last to all others. Within each set, the three characters
indicate permission to read, to write, and to execute the file as a program, respec­
tively. For a directory, "execute" permission is interpreted to mean permission to
search the directory for a specified file.

1s -1 (the long list) prints its output as follows:

-rwxnncrwx 1 smith dev 10876 May 16 9: 42 part2

Reading from right to left, you see that the current directory holds one file,
named part2. Next, the last time that file's contents were modified was 9:42
A.M. on May 16 .. The file contains 10,876 characters, or bytes. The owner of the
file, or the user, belongs to the group dey (perhaps indicating "development"),

10/89

18(1) 18(1)

and his or her login name is smith. The number, in this case 1, indicates the
number of links to file part2; see cp(1). Finally, the dash and letters tell you that
user, group, and others have permissions to read, write, and execute part2.

The execute (x) symbol here occupies the third position of the three-character
sequence. A - in the third position would have indicated a denial of execution
permissions.

The permissions are indicated as follows:

r the file is readable
w the file is writable
x the file is executable

the indicated permission is not granted
1 mandatory locking occurs during access (the set-group-ID bit is on

and the group execution bit is off)
s the set-user-ID or set-group-ID bit is on, and the corresponding user

or group execution bit is also on
S undefined bit-state (the set-user-ID bit is on and the user execution bit

is off)
t the 1000 (octal) bit, or sticky bit, is on [see chm:xi(1)], and execution is

on
T the 1000 bit is turned on, and execution is off (undefined bit-state)

For user and group permissions, the third position is sometimes occupied by a
character other than x or -. s also may occupy this position, referring to the state
of the set-ID bit, whether it be the user's or the group's. The ability to assume
the same ID as the user during execution is, for example, used during login when
you begin as root but need to assume the identity of the user you login as.

In the case of the sequence of group permissions, 1 may occupy the third posi­
tion. 1 refers to mandatory file and record locking. This permission describes a
file's ability to allow other files to lock its reading or writing permissions during
access.

For others permissions, the third position may be occupied by t or T. These refer
to the state of the sticky bit and execution permissions.

EXAMPLES

10/89

An example of a file's permissions is:

-rwxr--r--
This describes a file that is readable, writable, and executable by the user and
readable by the group and others.

Another example of a file's permissions is:

-rwsr-xr-x

This describes a file that is readable, writable, and executable by the user, read­
able and executable by the group and others, and allows its user-ID to be
assumed, during execution, by the user presently executing it.

Page 3

Is(1)

FILES

Is(1)

Another example of a file's permissions is:
-rw-rw1-··

This describes a file that is readable and writable only by the user and the group
and can be locked during access.

An example of a command line:

ls -a

This command prints the names of all files in the current directory, including
those that begin with a dot (.), which normally do not print.

Another example of a command lirie:

ls -aisn

This command provides information on all files, including those that begin with a
dot (a), the i-number-the memory address of the i-node associated with the
file-printed in the left.;.hand column Wi the size (in blocks) of the files, printed
in the column to the right of the i-numbers (s)i finally, the report is displayed. in
the numQriC. version of the long list, printing the UlD (instead of user name) and
GlD (instead of group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks, inclild.;.
ing indirect blocks, is printed.

/etc/pCl.SS~
/etc/gr~
lusr/s~r~/lib/terminfo/?/*

user IDs for 18 -1 and ls -0

group IDs for 18 -1 and 18 -g
terminal information database

SEE ALSO

NOTES

Page ..

chntxi(l), find(l).

In a Remote File Sharing environment, you may not have the permissions that the
output of the 18 -1 command leads you to believe. For more information see
the System Administrator's Gllide.

Unprintable characters in file names may confuse the columnar output options.
The total block count will be incorrect if if there are hard links among the files.

10/89

machid(1) machld(1)

NAME
machid: pdpll, u3b, u3b2, u3b5, u3b15, vax, u370 - get processor type truth
value

SYNOPSIS
pdpll
u3b
u3b2
u3b5
u3b15
vax
u370

DESCRIPTION
The following commands will return a true value (exit code of 0) if you are on a
processor that the command name indicates.

pdpll True if you are on a PDP-ll/45™ or PDP-ll/70TM.

u3b True if you are on a 3B20 computer.

u3b2 True if you are on a 3B2 computer.

u3b5 True if you are on a 3B5 computer.

u3b15 True if you are on a 3B15 computer.

vax True if you are on a VAX-ll/750™ or VAX-ll/780™.

u370 True if you are on an IBM® System/370™ computer.

The commands that do not apply will return a false (non-zero) value. These com­
mands are often used within makefiles [see make(1») and shell procedures [see
sh(1») to increase portability.

SEE ALSO

NOTES

10/89

sh(1), test(l), true(1), uname.
make(1) in the Programmer's Reference Manual.

The machid family of commands is obsolescent. Use uname -p and uname -m
instead.

Page 1

mall (1) mail (1)

NAME
mail, :r:mail - read mail or send mail to users

SYNOPSIS
Sending mall:

mail [-tw] [-m message_type J recipient . . .
:r:mail [-tw] [-m message_type] recipient ...

Reading mall:
mail [-ehpPqr J [-f file]

Forwarding mall:
mail -F recipient . . .

Debugging:
mail [-xdebug_level] [other _mail_options] recipient . ..

mail -T mailsurr Jile recipient ...

DESCRIPTION
A recipient is usually a user name recognized by login(1). When recipients are
named, mail assumes a message is being sent (except in the case of the -F
option). It reads from the standard input up to an end-of-file (cntrl-d) or, if read­
ing from a terminal device, until it reads a line consisting of just a period. When
either of those indicators is received, mail adds the letter to the mailfile for each
recipient.

A letter is composed of some header lines followed by a blank line followed by the
message content. The header lines section of the letter consists of one or more UNIX
postmarks:

From sender date _and_time [reIOOte from remote_system _name]

followed by one or more standardized message header lines of the form:

keyword-name: [printable text]

where keyword-name is comprised of any printable, non-whites pace, characters
other than colon (':'). A Content-Length: header line, indicating the number of
bytes in the message content will always be present. A Content-Type: header line
that describes the type of the message content (such as text, binary, multipart, etc.)
will always be present unless the letter consists of only header lines with no mes­
sage content. Header lines may be contined on the following line if that line
starts with white space.

Sending mail:

10/89

The following command-line arguments affect SENDING mail:
-m causes a Message-Type: line to be added to the message header with the

value of message_type.
-t causes a To: line to be added to the message header for each of the

intended recipients.
-w causes a letter to be sent to a remote recipient without waiting for the

completion of the remote transfer program.

Page 1

mail(1) mail (1)

If a letter is found to be undeliverable, it is returned to the sender with diagnos­
tics that indicate the location and nature of the failure. If mail is interrupted
during input, the message is saved in the file dead . letter to allow editing and
resending. dead. letter is always appended to, thus preserving any previous
contents. The initial attempt to append to (or create) dead. letter will be in the
current directory. If this fails, dead. letter will be appended to (or created in)
the user's login directory. If the second attempt also fails, no dead. letter pro­
cessing will be done.

rmail only permits the sending of mail; uuCP(lC) uses rmail as a security pre­
caution. Any application programs that generate mail messages should be sure to
invoke rmail rather than mail for message transport and/or delivery.

If the local system has the Basic Networking Utilities installed, mail may be sent
to a recipient on a remote system. There are numerous ways to address mail to
recipients on remote systems depending on the transport mechanisms available to
the local system. The two most prevalent addressing schemes are UUCP-style
and Domain-style. With UUCP-style addressing, remote recipients are specified
by prefixing the recipient name with the remote system name and an exclamation
point (such as sysa!user). A series of system names separated by exclamation
points can be Uf,ed to direct a letter through an extended network (such as
sysa! sysb! sysc! user). With Domain-style addressing, remote recipients are
specified by appc~lding an '@' and domain (and possibly sub-domain) information
to the recipient name (such as user@sf.att.com). (The local System Administra­
tor should be consulted for details on which addressing conventions are available
on the local system.)

Reading Mail:

Page 2

The following command-line arguments affect READING mail:
-e causes mail not to be printed. An exit value of 0 is returned if the user

has mail; otherwise, an exit value of 1 is returned.
-h causes a window of headers to be initially displayed rather than the latest

message. The display is followed by the '1' prompt.
-p causes all messages to be printed without prompting for disposition.
-p causes all messages to be printed with all header lines displayed, rather

than the default selective header line display.
-q causes mail to terminate after interrupts. Normally an interrupt causes

only the termination of the message being printed.
-r causes messages to be printed in first-in, first-out order.
-f file causes mail to use file (such as Iri:>ox) instead of the default mailfile.

mail, unless otherwise influenced by command-line arguments, prints a user's
mail messages in last-in, first-out order. The default mode for printing messages
is to display only those header lines of immediate interest. These include, but are
not limited to, the UNIX From and >From postmarks, From:, Date:, Subject:,
and Content-Length: header lines, and any recipient header lines such as To:,
Cc:, Bee:, etc. After the header lines have been displayed, mail will display the
contents (body) of the message only if it contains no unprintable characters. Oth­
erwise, mail will issue a warning statement about the message having binary
content and not display the content. (This may be overridden via the p com­
mand. See below.)

10/89

mail(1) mall (1)

10/89

For each message, the user is prompted with a ?, and a line is read from the stan­
dard input. The following commands are available to determine the disposition
of the message:

t Print the number of the current message.

<new-line>, +, or n
!command

a
d, or dp

dn

dq

h

hn

ha

hd

m [persons]

n

p

p

q, or cntrl-D
r [users]

s [files]

u [n]

w [files]

x

Print previous message.

Print the next message.

Escape to the shell to do command.

Print message that arrived during the mail session.

Delete the current message and print the next message.

Delete message number n. Do not go on to next message.

Delete message and quit mail.

Display a window of headers around current message.

Display a window of headers around message number n.
Display headers of all messages in the user's mail file.

Display headers of messages scheduled for deletion.

Mail (and delete) the current message to the named
person(s).

Print message number n.
Print current message again, overriding any indications of
binary (that is, unprintable) content.

Override default brief mode and print current message
again, displaying all header lines.

Put undeleted mail back in the mailfi1e and quit mail.

Reply to the sender, and other user(s), then delete the mes­
sage.
Save message in the named fi1e(s) (mbox is default) and
delete the message.
Undelete message number n (default is last read).

Save message contents, without any header lines, in the
named files (mbox is default) and delete the message.

Put all mail back in the mailfi1e unchanged and exit mail.

. y [files] Same as save.

? Print a command summary.

When a user logs in, the presence of mail, if any, is usually indicated. Also,
notification is made if new mail arrives while using mail.

The permissions of mailfi1e may be manipulated using chJood in two ways to alter
the function of mail. The other permissions of the file may be read-write (0666),
read-only (0664), or neither read nor write (0660) to allow different levels of
privacy. H changed to other than the default (mode 0660), the file will be

Page 3

mail (1) mail (1)

preserved even when empty. to perpetuate the desired permissions. (The
administrator may override this file preservation using the DEL_EMPTY _ MAILFlLE
option of mailcnfg.)

The group id of the mailfile must be mail to allow new messages to be delivered,
and the mailfile must be writable by group mail.

Forwarding mall:

Page 4

The following command-line argument affects FORWARDING of mail:

-F recipients
Causes all incoming mail to be forwarded to recipients. The mailbox must
be empty.

The -F option causes the mailfi1e to contain a first line of:

Forward to recipient . ..

Thereafter, all mail sent to the owner of the mailfi1e will be forwarded to each reci­
pient.

An Auto-Forwarded-From: ... line will be added to the forwarded message's
header. This is especially useful in a multi-machine environment to forward all a
person's mail to a single machine, and to keep the recipient informed if the mail
has been forwarded.

Installation and removal of forwarding is done with the -F invocation option. To
forward all your mail to systema! user enter:

mail -F systema!user

To forward to more than one recipient enter:

mail -F "userl,user2@att.com,system::!system::l.!user3"

Note that when more than one recipient is specified, the entire list should be
enclosed in double quotes so that it may all be interpreted as the operand of the
-F option. The list can be up to 1024 bytes; either commas or white space can be
used to separate users.

If the first character of any forwarded-to recipient name is the pipe symbol ('1'),
the remainder of the line will be interpreted as a command to pipe the current
mail message to. The command, known as a Personal Surrogate, will be executed
in the environment of the recipient of the message (that is, basename of the
mail fi'e). For example, if the mailfile is /var/mail/foo, foo will be looked up in
/ etc/passwd to determine the correct userID, groupID, and HOME directory. The
command's environment will be set to contain only HOME, LOGNAME, TZ, PATH (=
/usr/usr/bin:), and SHELL (= /usr/bin/sh), and the command will execute in
the recipient's HOME directory. If the message recipient cannot be found in
/etc/passwd, the command will not be executed and a non-delivery notification
with appropriate diagnostics will be sent to the message's originator.

After the pipe symbol, escaped double quotes should be used to have strings
with embedded whitespace be considered as single arguments to the command
being executed. No shell syntax or metacharacters may be used unless the com­
mand specified is /usr/bin/ sh. For example,

10/89

mail (1) mall (1)

mail -F "I /bin/sh -c \"shell_cOIIIIIillld_line\''''

will work, but is not advised since using double quotes and backslashes within
the shell_commandJine is difficult to do correctly and becomes tedious very
quickly.

Certain %keywords are allowed within the piped-to command specification and
will be textually substituted for before the command line is executed.

%R Return path to the message originator.
%c Value of the Content-Type: header line if present.
%S Value of the Subject: header line if present.

If the command being piped to exits with any non-zero value, mail will assume
that message delivery failed and will generate a non-delivery notification to the
message's originator. It is allowable to forward mail to other recipients and pipe
it to a command, as in

mail -F "carol, joe, Imyvacationprog %R"

Two UNIX System facilities that use the forwarding of messages to commands
are notify(l), which causes asynchronous notification of new mail, and vaca­
tion(1), which provides an auto-answer capability for messages when the reci­
pient will be unavailable for an extended period of time.

To remove forwarding enter:

mail -F ""
The pair of double quotes is mandatory to set a NULL argument for the - F
option.

In order for forwarding to work properly the mailfi1e should have mail as group
ID, and the group permission should be read-write.

mail will exit with a return code of 0 if forwarding was successfully installed or
removed.

Debugging:

10/89

The following command-line arguments cause mail to provide DEBUGGING
information:

-T mailsurr Jile causes mail to display how it will parse and interpret the
mailsurr file.

-xdebug_1evel causes mail to create a trace file containing debugging
information.

The -T option requires an argument that will be taken as the pathname of a test
mailsurr file. If NULL (as in -T ''''), the system mailsurr file will be used. To
use, type 'mail -T test Jile recipient' and some trivial message (like "testing"), fol­
lowed by a line with either just a dot ('.') or a cntrl-D. The result of using the -T
option will be displayed on standard output and show the inputs and resulting
transformations as mailsurr is processed by the mail command for the indicated
recipient. Mail messages will never actually be sent or delivered when the -T
option is used.

Page 5

mail(1) mall(1)

The -x option causes mail to create a file named /tnp/MLDBGprocess _ id that con­
tains debugging information relating to how mail processed the current message.
The absolute value of debugJevel controls the verboseness of the debug informa­
tion. Zero implies no debugging. If debugJevel is gteater than zero, the debug file
will be retained only if mail encountered some problem while processing the
message. If debugJevel is less than zero the debug file will always be retained.
The debugJevel specified via -x overrides any specification of DEBUG in
/etc/mail/mailcnfq. The information provided by the -'-x option is esoteric and
is probably only useful to System Administrators. The output produced by the
-x option is a superset of that provided by the -T option.

Delivery Notification

FILES

Page 6

Several forms of notification are available for mail by including one of the follow­
ing lines in the message header.

Transport-options: [/options 1
Default-options: [/options 1
>To: recipient [/ options 1
Where the "/ options" may be one or more of the following:

/delivery Inform the sender that the message was successfully delivered to the
recipient's mailbox.

/nodelivery
Do not inform the sender of successful deliveries.

Do not inform the sender of unsuccessful deliveries. /iqnore

/return Inform the sender if mail delivery fails; Return the failed message
to the sender.

/report Same as /return except that the original message is not returned.

The default is /nodelivery/return. If contradictory options are used, the first
will be recognized and later, conflicting, termS will be ignored.

dead. letter unmailable text
/etc/passwd to identify sender and locate recipients
/etc/mail/mailsurr

routing / name translation information
/etc/mail/mailcnfq

$HOME/nbox
$MAIL

initialization information
saved mail
variable containing path name of mailfi1e
temporary file
debug trace file
lock for mail directory

/tnp/ma*
/trtp/MLDBG*
/var/mail/*.lock
/var/mail/:saved directory for holding temp files to prevent loss of data in

the event of a system crash.
/var/mail/user incoming mail for user; that is, the mailfi1e

10/89

mail (1) mail (1)

SEE ALSO

NOTES

10/89

cluood(1), login(l), mailx(l), notify(l), write(1), vacation(l)
mailJ?ipe(1M), mailsurr(4), mailcnfg(4) in the System Administrator's Reference
Manual.
User's Guide.

The "Forward to recipient" feature may result in a loop. Local loops (messages
sent to usera, which are forwarded to userb, which are forwarded to usera)
will be detected immediately. Rem()te loops (mail sent to sysl! useral which is
forwarded to sys2! userb, which is forwarded to sysl! usera) will also be
detected, but only after the message has exceeded the built-in hop count limit of
20. Both cases of forwarding loops will result in a non-delivery notification being
sent to the message originator.

As a security precaution, the ~uivalent of a cluood s+g is performed on the
mailfile whenever forwarding is activated via the -F option, and a cluood S-9 is
done when forwarding is removed via the -F option. If the setGID mode bit is
not set when mail attempts to forward an incoming message to a command, the
operation will fail and a non-delivery report with appropriate diagnostics will be
sent to the message's originator.

The interpretation and resulting action taken because of the header lines
described in the Delivery Notifications section above will only occur if this ver­
sion of mail is installed on the system where the delivery (or failure) happens.
Earlier versions of mail may not support any types of delivery notification.

Conditions sometimes result in a failure to remove a lock file,

After an interrupt, the next message may not be printed; printing may be forced
by typing a p.

Page 7

mailalias (1) mallalias(1)

NAME
mailalias - translate mail alias names

SYNOPSIS
mailalias [-s] [-v] name ...

DESCRIPTION

FILm

mailalias is called by mail. It places on the standard output a list of mail
addresses corresponding to name. The mail addresses are found by performing
the following steps:

1. Look for the file /var/mail/name. if found, print name and exit.

2. Look for a match in the user's local alias file $HOME/l1b/names. If a line is
found beginning with the word name, print the rest of the line on standard
output and exit.

3. Look for a match in the system-wide alias files, which are listed in the master
path file /ete/mail/namefiles. If a line is found beginning with the word
name, print the rest of the line on standard output and exit.

If an alias file is a directory name dir, then search the file dir/name. By default,
the file /ete/mail/namefiles lists the directory fete/mail/lists and the file
fete/mail/names.

4. Otherwise print name and exit.

The alias files may contain comments (lines beginning with t) and information
lines of the form:

name list-of-addresses
Tokens on these lines are separated by white-space. Lines may be continued by
placing a backslash (\) at the end of the line.

If the -s option is not specified and more than one name is being translated, each
line of output will be prefixed with the name being translated.

The -v option causes debugging information to be written to standard output.

$HOME/l1b/names
/ete/mail/namefiles
fete/mail/names

private aliases
list of files to search
standard file to search

SEE ALSO

10/89

uucp(1), mail(1).
smtp(lM), smtpd(lM), smtpqer(1M), smtpsched(1M), tosmtp(1M) in the System
Administrator's Reference Manual.

Page 1

mallx(1) mailx(1)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [options] [name . ..]

DESCRIPTION
The command mailx provides a comfortable, flexible environment for sending
and receiving messages electronically. When reading mail, mailx provides com­
mands to facilitate saving, deleting, and responding to messages. When sending
mail, mailx allows editing, reviewing and other modification of the message as it
is entered.

Many of the remote features of mailx work only if the Basic Networking Utilities
are installed on your system.

Incoming mail is stored in a standard file for each user, called the mailbox for
that user. When mailx is called to read messages, the mailbox is the default
place to find them. As messages are read, they are marked to be moved to a
secondary file for storage, unless specific action is taken, so that the messages
need not be seen again. This secondary file is called the nbox and is normally
located in the user's HOME directory [see MBOX (ENVIRONMENT VARIABLES) fora
description of this file]. Messages can be saved in other secondary rues named by
the user. Messages remain in a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mailx com­
mand. Messages in the secondary file can then be read or otherwise processed
using the same COMMANDS as in the primary mailbox. This gives rise within
these pages to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other arguments are
taken to be destinations (recipients). If no recipients are specified, mailx
attempts to read messages from the mailbox. Command-line options are:

-d Turn on debugging output.

-e Test for presence of mail. mailx prints nothing and exits
with a successful return code if there is mail to read.

-f [filename] Read messages from filename instead of mailbox. If no
filename is specified, the mbox is used.

-F Record the message in a file named after the first recipient.
Overrides the record variable, if set (see ENVIRONMENT
VARIABLES).

-h number The number of network "hops" made so far. This is pro­
vided for network software to avoid infinite delivery
loops. This option and its argument is passed to the
delivery program.

-H Print header summary only.

-i Ignore interrupts. See also ignore (ENVIRONMENT VARI-
ABLES).

10/89 Page 1

mallx(1) mailx(1)

Page 2

-I

-n
-N
-r address

-s subject
-T file

-u user

Include the newsgroup and article-id header lines when
printing mail messages. This option requires the -f option
to be specified.

Do not initialize from the system default mailx.rc file.

Do not print initial header summary.

Use address as the return address when invoking the
delivery program. All tilde commands are disabled. This
option and its argument is passed to the delivery program.

Set the Subject header field to subject.
Message-id and article-id header lines are recorded in file
after the message is read. This option will also set the -I
option.

Read user's mailbox. This is only effective if user's mail­
box is not read protected.

-0 Convert uucp style addresses to internet standards. Over­
rides the cony environment variable.

-v Print the mailx version number and exit.

When reading mail, mailx is in command mode. A header summary of the first
several messages is displayed, followed by a prompt indicating mailx can accept
regular commands (see COMMANDS below). When sending mail, mailx is in
input mode. If no subject is specified on the command line, a prompt for the sub­
ject is printed. (A subject longer than 1024 characters causes mailx to print the
message mail: ERROR signa110j the mail will not be delivered.) As the message is
typed, mailx reads the message and store it in a temporary file. Commands may
be entered by beginning a line with the tilde r) escape character followed by a
single command letter and optional arguments. See TILDE ESCAPFS for a sum­
mary of these commands.

At any time, the behavior of mailx is governed by a set of environment variables.
These are flags and valued parameters which are set and cleared ~a the set and
unset commands. See ENVIRONMENT VARIABLES below for a summary of these
parameters.

Recipients listed on the command line may be of three types: login names, shell
commands, or alias groups. Login names may be any network address, including
mixed network addressing. If mail is found to be undeliverable, an attempt is
made to return it to the sender's mailbox. If the recipient name begins with a pipe
symbol (I), the rest of the name is taken to be a shell command to pipe the mes­
sage through. This provides an automatic interface with any program that reads
the standard input, such as lp(l) for recording outgoing mail on paper. Alias
groups are set by the alias command (see COMMANDS below) and are lists of
recipients of any type.

Regular commands are of the form

10/89

mailx(1) mailx(1)

[command] [msglist] [arguments]
If no command is specified in command mode, print is assumed. In input mode,
commands are recognized by the escape character, and lines not treated as com­
mands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the notion
of a current message, marked by a right angle bracket (» in the header summary.
Many commands take an optional list of messages (msglist) to operate on. The
default for msglist is the current message. A msglist is a list of message identifiers
separated by spaces, which may include:

n

$

*

Message number n.

The current message.

The first undeleted message.

The last message.

All messages.

n-m An inclusive range of message numbers.

user All messages from user.

/string
All messages with string in the subject line (case ignored).

:c All messages of type c, where c is one of:

d deleted messages

n new messages

o old messages

r read messages

u unread messages
Note that the context of the command determines whether this type of
message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command
involved. File names, where expected, are expanded via the normal shell conventions
[see sh(1)]. Special characters are recognized by certain commands and are documented
with the commands below.

At start-up time, mailx tries to execute commands from the optional system-wide file
(/ etc/mail/mailx. rc) to initialize certain parameters, then from a private start-up file
($HOME/ .mailrc) for personalized variables. With the exceptions noted below, regular
commands are legal inside start-up files. The most common use of a start-up file is to set
up initial display options and alias lists. The following commands are not legal in the
start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply, Reply, shell,
and visual. An error in the start-up file causes the remaining lines in the file to be
ignored. The .mailrc file is optional, and must be constructed locally.

COMMANDS
The following is a complete list of mailx commands:

10/89 Page 3

mailx(1) mallx(1)

Page 4

! shell-command
Escape to the shell. See SHELL (ENVIRONMENT VARIABLES).

t comment
Null command (comment). This may be useful in .mailrc files.

Print the current message number.

? Prints a summary of commands.

alias alias name .. .
group alias name .. .

Declare an alias for the given names. The names are substituted when
alias is used as a recipient. Useful in the . mailrc file.

alternates name ...
Declares a list of alternate names for your login. When responding to a
message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of alter­
nate names. See also allnet (ENVIRONMENT VARIABLES).

cd [directory]
chdir [directory]

Change directory. If directory is not specified, $HaME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved. Other­
wise equivalent to the save command.

copy [msglistj
Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If autoprint is set, the next message
after the last one deleted is printed (see ENVIRONMENT VARIABLES).

discard [header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are status and
cc. The fields are included when the message is saved. The Print and
Type commands override this command. If no header is specified, the
current list of header fields being ignored will be printed. See also the
undiscard and unignore commands.

dp [msglist]
dt [msglist]

Delete the specified messages from the mailbox and print the next mes­
sage after the last one deleted. Roughly equivalent to a delete command
followed by a print command.

10/89

mailx(1) mallx(1)

10/89

echo string ...
Echo the given strings [like echo(1»).

edit [msglist]

exit

Edit the given messages. The messages are placed in a temporary file and
the EDITOR variable is used to get the name of the editor (see ENVIRON­
MENT VARIABLES). Default editor is ed(1).

xit Exit from mailx. without changing the mailbox. No messages are saved
in the nbox (see also quit).

file [filename)
folder [filename)

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names, with
the following substitutions:

% the current mailbox.
%user the mailbox for user.
t the previous file.
& the current nt>ox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the folder variable (see
ENVIRONMENT VARIABLES).

followup [message)
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the record variable, if
set. See also the Followup, Save, and copy commands and out folder
(ENVIRONMENT VARIABLES).

Followup [msglist)
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from the
first message and the response is recorded in a file whose name is derived
from the author of the first message. See also the followup, Save, and
Copy commands and outfolder (ENVIRONMENT VARIABLES).

from [msglist)
Prints the header summary for the specified messages.

group alias name .. .
alias alias name .. .

Declare an alias for the given names. The names are substituted when
alias is used as a recipient. Useful in the .mailrc file.

headers [message)
Prints the page of headers which includes the message specified. The
screen variable sets the number of headers per page (see ENVIRONMENT
VARIABLES). See also the z command.

Page 5

mailx(1) mallx(1)

Page 6

help Prints a summary of commands.

hold [msglistJ
preserve [msglistJ

Holds the specified messages in the mailbox.

if sir
mail-commands
else
mail-commands
endif Conditional execution, where s executes following mail-commands, up to an

else or end if, if the program is in send mode, and r causes the mail­
commands to be executed only in receive mode. Useful in the .mailrc file.

ignore [header-field ... J
discard [header-field ... J

Suppresses printing of the specified header fields when displaying mes­
sages on the screen. Examples of header fields to ignore are status and
ce. All fields are included when the message is saved. The Print and
Type commands override this command. If no header is specified, the
current list of header fields being ignored will be printed. See also the
undiscard and unignore commands.

list Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

Mail name
Mail a message to the specified user and record a copy of it in a file
named after that user.

IOOoX [msglistJ
Arrange for the given messages to end up in the standard rrbox save file
when mailx terminates normally. See MBOX (ENVIRONMENT VARIABLES)
for a description of this file. See also the exit and quit commands.

next [message J
Go to next message matching message. A msglist may be specified, but in
this case the first valid message in the list is the only one used. This is
useful for jumping to the next message from a specific user, since the
name would be taken as a command in the absence of a real command.
See the discussion of msglists above for a description of possible message
specifications.

pipe [msglistl [shell-commandl
I [msglistl [shell-commandl

Pipe the message through the given shell-command. The message is treated
as if it were read. If no arguments are given, the current message is piped
through the command specified by the value of thecm.:i variable. If the
page variable is set, a form feed character is inserted after each message
(see ENVIRONMENT VARIABLES).

10/89

mallx{1) mailx(1)

10/89

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglist]
type [msglist]

Print the specified messages. If crt is set, the messages longer than the
number of lines specified by the crt variable are paged through the com­
mand specified by the PAGER variable. The default command is pg(l) (see
ENVIRONMENT VARIABLES).

quit Exit from mailx, storing messages that were read in nbox and unread
messages in the mailbox. Messages that have been explicitly saved in a
file are deleted.

Reply [msglist]
Respond [msglist]

Send a response to the author of each message in the msglist. The subject
line is taken from the first message. If record is set to a file name, the
response is saved at the end of that file (see ENVIRONMENT VARIABLES).

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the mes­
sage. If record is set to a file name, the response is saved at the end of
that file (see ENVIRONMENT VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
Copy, followup, and Followup commands and out folder (ENVIRON­
MENT VARIABLES).

save [filename]
save [msglist] filename

set

Save the specified messages in the given file. The file is created if it does
not exist. The file defaults to mbox. The message is deleted from the
mailbox when mailx terminates unless keepsave is set (see also
ENVIRONMENT VARIABLES and the exit and quit commands).

set name
set name=string
set name=number

Define a variable called name. The variable may be given a null, string, or
numeric value. Set by itself prints all defined variables and their values.

Page 7

mallx(1 } mallx(1 }

Page 8

See ENVIRONMENT VARIABLES for detailed descriptions of the mailx vari­
ables.

shell Invoke an interactive shell [see also SHELL (ENVIRONMENT VARIABLES».

size [msglist]
Print the size in characters of the specified messages.

source filename _
Read commands from the given file and return to command mode.

top [msglist]
Print the top few lines of the specified messages. If the toplines variable
is set, it is taken as the number of lines to print (see ENVIRONMENT V ARI­
ABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not specifically
saved in a me, it is placed in the ni:x)x, Or the me specified in the MBOX
environment variable, upon normal termination. See exit and quit.

Type [msglist]
print [msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

type [msglist]
print [msglist]

Print the specified messages. If crt is set, the messages longer than the
number of lines specified by the crt variable are paged through the com­
mand specified by the PAGER variable. The default command is pg(l) (see
ENVIRONMENT VARIABLES).

undelete [msglist]
Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If autoprint is set, the last message
of those restored is printed (see ENVIRONMENT VARIABLES).

undiscard header-field ...
unignore header-field ...

Remove the specified header fields from the list being ignored.

unset name ...
Causes the specified variables to be erased. If the variable was imported
from the execution environment (i.e., a shell variable) then it cannot be
erased.

version
Prints the current version.

visual [msglist]
Edit the giveri messages with a screen editor. The messages are placed in

10/89

mallx(t) mallx(1)

a temporary file and the VISUAL variable is used to get the name of the
editor (see ENVIRONMENT VARIABLES).

write [msglist] filename

xit

Write the given messages on the specified file, minus the header and trail­
ing blank line. Otherwise equivalent to the save command.

exit Exit from mailx, without changing the mailbox. No messages are saved
in the nbox (see also quit).

z[+ I -]
Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the screen variable (see ENVIRON­
MENT VARIABLES).

TILDE ESCAPES

10/89

The following commands may be entered only from input mode, by beginning a
line with the tilde escape character n. See escape (ENVIRONMENT VARIABLES)
for changing this special character.

-! shell-command
Escape to the shell.

Simulate end of file (terminate message input).

-: mail-command
mail-command

Perform the command-level request. Valid only when sending a message
while reading mail.

-? Print a summary of tilde escapes.

-A Insert the autograph string Sign into the message (see ENVIRONMENT
VARIABLES).

-a Insert the autograph string sign into the message (see ENVIRONMENT
VARIABLES).

-b names ...
Add the names to the blind carbon copy (Bec) list.

-c names ...
Add the names to the carbon copy (Cc) list.

-d Read in the dead . letter file. See DEAD (ENVIRONMENT VARIABLES) for
a description of this file.

-e Invoke the editor on the partial message. See also EDITOR (ENVIRON­
MENTVARIABLES).

- f [msglist]
Forward the specified messages. The messages are inserted into the mes­
sage without alteration.

Page 9

mailx(1)

-h

mailx(1)

Prompt for Subject line and To, Cc, and Bec lists. If the field is displayed
with an initial value, it may be edited as if you had just typed it.

-i string
Insert the value of the named variable into the text of the message. For
example, -A is equivalent to Envirorunent variables set and
exported in the shell are also accessible by -i.

-m [msglistl
Insert the specified messages into the letter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading
mail.

-p Print the message being entered.

-q Quit from input mode by Simulating an interrupt. If the body of the mes-
sage is not null, the partial message is saved in dead. letter. See DEAD
(ENVIRONMENT VARIABLES) for a description of this file.

-r filename
-< filename
-< !shell-command

Read in the specified file. If the argument begins with an exclamation
point (0, the rest of the string is taken as an arbitrary shell command and
is executed, with the standard output inserted into the message.

-s string ...
Set the subject line to string.

-t names ...
Add the given names to the To list.

-v Invoke a preferred screen editor on the partial message. See also VISUAL
(ENVIRONMENT VARIABLES).

-w filename
Write the message into the given file, without the header.

-x Exit as with -q except the message is not saved in dead. letter.

- I shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the command
replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment
and are not alterable within mailx.

HOME=directory
The user's base of operations.

MA.Iffic=filename
The name of the start-up file. Default is $HOME/.mailrc.

Page 10 10/89

mailx(1) mailx(1)

10/89

The following variables are internal mailx variables. They may be imported from
the execution environment or set via the set command at any time. The unset
command may be used to erase variables.

allnet
All network names whose last component (login name) match are treated
as identical. This causes the msglist message specifications to behave simi­
larly. Default is noallnet. See also the alternates command and the
metoo variable.

append
Upon termination, append messages to the end of the JIbox file instead of
prepending them. Default is noappend.

askcc Prompt for the Cc list after the Subject is entered. Default is noaskcc.

askbcc
Prompt for the Bec list after the Subject is entered. Default is noaskbcc.

asksub
Prompt for subject if it is not specified on the command line with the -s
option. Enabled by default.

autoprint
Enable automatic printing of messages after delete and undelete com­
mands. Default is noautoprint.

bang Enable the special-casing of exclamation points (!) in shell escape com­
mand lines as in vi(1). Default is nobang.

crtd=shell-command
Set the default command for the pipe command. No default value.

conv=conversion
Convert. uucp addresses to the specified address style. The only valid
conversion now is internet, which uses domain-style addressing.
Conversion is disabled by default. See also the -u command-line option.

crt=number
Pipe messages having more than number lines through the command
specified by the value of the PAGER variable [pg(l) by defaultl. Disabled
by default.

DEAD=filename
The name of the file in which to save partial letters in case of untimely
interrupt. Default is $HOME/dead.letter.

debug Enable verbose diagnostics for debugging. Messages are not delivered.
Default is nodebug.

dot Take a period on a line by itself during input from a terminal as end-of­
file. Default is nodot.

EDlTOR=shell-command
The command to run when the edit or -e command is used. Default is
ed(1).

Page 11

mallx(1) mallx(1)

escape=c
Substitute c for the - escape character. Takes effect with next message
sent.

folder=tiirectory
The directory for saving standard mail files. User-specified file names
beginning with a plus (+) are expanded by preceding the file name with
this directory name to obtain the real file name. If directory does not start
with a slash (/), $HOME is prepended to it. In order to use the plus (+)
construct on a mailx command line, folder must be an exported sh
environment variable. There is no default for the folder variable. See
also outfolder below.

header
Enable printing of the header summary when entering mailx. Enabled by
default.

hold Preserve all messages that are read in the mailbox instead of putting them
in the standard JIbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-up lines.
Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated by a
period (.) on a line by itself or by the N. command. Default is noig­
noreeof. See also dot above.

keep When the mailbox is empty, truncate it to zero length instead of remov­
ing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox instead
of deleting them. Default is nokeepsave.

!IBOx=fi1ename
The name of the file to save messages which have been read. The xit
command overrides this function, as does saving the message explicitly in
another file. Default is $HOME/JIbox.

metoo If your login appears as a recipient, do not delete it from the list. Default
is nometoo.

LISTER=shell-command
The command (and options) to use when listing the contents of the
folder directory. The default is ls(1).

onehop

Page 12

When responding to a message that was originally sent to several reci­
pients, the other recipient addresses are normally forced to be relative to
the originating author's machine for the response. This flag disables
alteration of the recipients' addresses, improving efficiency in a network
where all machines can send directly to all other machines (i.e., one hop
away).

10/89

mallx(1) mailx(1)

10/89

out folder
Causes the files used to record outgoing messages to be located in the
directory specified by the folder variable unless the path name is abso­
lute. Default is nooutfolder. See folder above and the Save, Copy, fol­
lowup, and Followup commands.

page Used with the pipe command to insert a form feed after each message
sent through the pipe. Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg(l).

pronpt=string
Set the command mode prompt to string. Default is "? ".

quiet Refrain from printing the opening message and version when entering
mailx. Default is noquiet.

record=filename
Record all outgoing mail in filename. Disabled by default. See also out­
folder above. If you have the record and out folder variables set but
the folder variable not set, messages are saved in +filename instead of
filename.

save Enable saving of messages in dead . letter on interrupt or delivery error.
See DEAD for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the headers com­
mand. It must be a positive number.

sendmail=shell-command
Alternate command for delivering messages. Default is /usr/bin/rmail.

sendwait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL=she"-command
The name of a preferred command interpreter. Default is sh(1).

showto
When displaying the header summary and the message is from you, print
the recipient's name instead of the author's name.

sign=string
The variable inserted into the text of a message when the -a (autograph)
command is given. No default [see also -i (TILDE ESCAPES)].

Sign=string
The variable inserted into the text of a message when the -A command is
given. No default [see also -i (TILDE ESCAPES)].

Page 13

mailx(1) mallx(1)

FILES

toplines=number
The number of lines of header to print with the top command. Default is
5.

VIsUAL=shell-comman4
The name of a preferred screen editor. Default is viet).

$HOME/ . mai1rc
$HM/nbox
/var/mail/*
/usr/share/1ib/mai1xlmai1x.he1p*
/etc/mai1/mailx.rc
/tnp/R[enqsx]*

personal start-up file
secondary storage file
post office directory
help message files
optional global start-up file
temporary files

SEE ALSO

NOTES

ls(1), mail(1), pg(t).

The -h and -r options can be used only if mailxis using a delivery program
other than /usr/bin/rmail.

Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

lnternal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx, The new standards
need some time to settle down.

Attempts to send a message having a line consisting only of a fl." are treated as
the end of the message by mail(t) (the standard mail delivery prpgram).

Page 14 10/89

makekey(1) makekey(1)

NAME
makekey - generate encryption key

SYNOPSIS
!usr/lib/makekey

DESCRIPTION
makekey improves the usefulness of encryption schemes depending on a key by
increasing the amount of time required to search the key space. It attempts to
read 8 bytes for its key (the first eight input bytes), then it attempts to read 2
bytes for its salt (the last two input bytes). The output depends oh the input in a
way intended to be difficult to compute (I.e., to require a substantial fraction of a
second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The
last two (the salt) are best chosen from the set of digits, ., /, and upper- and
lower-case letters. The salt characters are repeated as the first two characters of
the output. The remaining ·11 output characters are chosen from the same set as
the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to
select one of 4,096 cryptographic machines all based on the National Bureau of
Standards DES algorithm, but broken in 4,096 different ways. Using the input key
as key, a constant string is fed into the machine and recirculated a number of
times. The 64 bits that come out are distributed into the 66 output key bits in the
result.

makekey is intended for programs that perform encryption. Usually, its input
and output will be pipes.

SEE ALSO

NOTES

10/89

ed(l), crypt(1), vi(1). .
passwd(4) in the System Administrator's Reference Manual.

makekey can produce different results depending upon Whether the input is
typed at the terminal or redirected from a file.

This command is provided with the Security Administration Utilities, which is
only available in the United States.

Page 1

mesg(1}

NAME
mesq - permit or deny messages

SYNOPSIS
mesq [-n] [-y]

DESCRIPTION

mesg(1}

mesq with argument -n forbids messages via write(1) by revoking non-user
write permission on the user's terminal. mesq with argument -y reinstates per­
mission. All by itself, mesq reports the current state without changing it.

FILES
/dev/ttY*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

10/89 Page 1

mkdlr(1) mkdir(1)

NAME
mkdir - make directories

SYNOPSIS
mkdir [-In mode] [~] dirname ...

DESCRIPTION
mkdir creates the named directories in mode 777 (possibly altered by umask(1».

Standard entries in a directory (e.g., the files ., for the directory itself, and .. , for
its parent) are made automatically. mkdir cannot create these entries by name.
Creation of a directory requires write permission in the parent directory.

The owner ID and group ID of the new directories are set to the process's real
user ID and group ID, respectively.

Two options apply to mkdir:

-In This option allows users to specify the mode to be used for new directories.
Choices for modes can be found in chm:xi(l).

~ With this option, mkdir creates dirname by creating all the non-existing
parent directories first.

EXAMPLE
To create the subdirectory structure Itr/jd/jan, type:

mkdir -p Itr/jd/jan

SEE ALSO
sh(1), rn(l), umask(1).
intro(2), mkdir(2) in the Programmer's Reference Manual.

DIAGNOSTICS

10/89

mkdir returns exit code 0 if all directories given in the command line were made
successfully. Otherwise, it prints a diagnostic and returns non-zero.

Page 1

mkmsgs(1) mkmsgs(1)

NAME
mkmsgs - create message files for use by gettxt

SYNOPSIS
mkmsgs [-0] [-i locale] inputstrings msgfile

DESCRIPTION
The mkmsgs utility is used to create a file of text strings that can be accessed
using the text retrieval tools (see gettxt(1), srchtxt(1), exstr(1), and
gettxt(3C». It will take as input a file of text strings for a particular geographic
locale (see setlocale(3C» and create a file of text strings in a format that can be
retrieved by both gettxt(1) and gettxt(3C). By using the -i option, you can
install the created file under the /usr/lib/locale/locale/U::_MESSAGES directory
(locale corresponds to the language in which the text strings are written).

inputstrings the name of the file that contains the original text strings.

msgfile the name of the output file where mkmsgs writes the strings in a for­
mat that is readable by gettxt(1) and gettxt(3C). The name of
msgfile can be up to 14 characters in length, but may not contain
either \0 (null) or the ASCII code for / (slash) or : (colon).

-i locale install msgfile in the /usr/lib/locale/locale/U::_MESSAGES directory.
Only someone who is super-user or a member of group bin can
create or overwrite files in this directory. Directories under
/usr/lib/locale will be created if they don't exist.

-0 overwrite msgfile, if it exists.

The input file contains a set of text strings for the particular geographic locale.
Text strings are separated by a new-line character. Nongraphic characters must
be represented as alphabetic escape sequences. Messages are transformed and
copied sequentially from inputstrings to msgfile. To generate an empty message in
msgfile, leave an empty line at the correct place in inputstrings.

Strings can be changed simply by editing the file inputstrings. New strings must
be added only at the end of the file; then a new msgfile file must be created and
installed in the correct place. If this procedure is not followed, the retrieval func­
tion will retrieve the wrong string and software compatibility will be broken.

EXAMPLES

10/89

The following example shows an input message source file c . str:

File %s:\t cannot be opened\n
%s: Bad directory\n

write error\n

The following command uses the input strings from c. str to create text strings
in the appropriate format in the file ux in the current directory:

mkmsgs c. str UX

Page 1

mkmsgs(1) mkmsgs(1)

FILES

The following command uses the input strings from FR. str to create text strings
in the appropriate format in the me ux in the directory
/usr/lib/locale/french/LC_MESSAGES/UX.

mkmsgs -i french FR.str UX

These text strings would be accessed if you had set the environment variable
LC MESSAGES=french and then invoked one of the text retrieval tools listed at
thebeginning of the DESCRIPTION section.

/usr/lib/locale/locale/LC~SAGES/* message mes created by rnlcmsgs(1M)

SEE ALSO
exstr(1), gettxt(1), srchtxt(1).
gettxt(3C), setlocale(3C) in the Programmer's Reference Manual.

Page 2 10/89

more(1) more(1)

NAME
more, paqe - browse or page through a text file

SYNOPSIS
more [-cdf1rsuw] [-lines] [+linenumber] [+Ipattern] [filename ...]
paqe [-cdflrsuw] Hines] [+linenumber] [+Ipattern] [filename .•.]

DESCRIPTION
more is a filter that displays the contents of a text file on the terminal, one screen­
ful at a time. It normally pauses after each screenful, and prints --More- at the
bottom of the screen. more provides a two-line overlap between screens for con­
tinuity. If more is reading from a file rather than a pipe, the percentage of char­
acters displayed so far is also shown.

more scrolls up to display one more line in response to a RETURN character; it
displays another screenful in response to a SPACE character. Other commands are
listed below.

paqe clears the screen before displaying the next screenful of text; it only pro­
vides a one-line overlap between screens. .

more sets the terminal to noecho mode, so that the output can be continuous.
Commands that you type do not normally show up on your terminal, except for
the I and ! commands.

If the standard output is not a terminal, more acts just like cat(1V), except that a
header is printed before each file in a series.

OPTIONS

10/89

The following options are available with more:

-c Clear before displaying. Redrawing the screen instead of scrolling
for faster displays. This option is ignored if the terminal does not
have the ability to clear to the end of a line.

-d Display error messages rather than ringing the terminal bell if an
unrecognized command is used. This is helpful for inexperienced
users.

-f

-1

-r

-s

Do not fold long lines. This is useful when lines contain nonprint­
ing characters or escape sequences, such as those generated when
nroff(1) output is piped through u1(1).

Do not treat FORMFEED characters (CI'RL-D) as page breaks. If -1 is
not used, more pauses to accept commands after any line containing
a "L character (CI'RL-D). Also, if a file begins with a FORMFEED, the
screen is cleared before the file is printed.

Normally, more ignores control characters that it does not interpret
in some way. The -r option causes these to be displayed as "C
where C stands for any such control character.

Squeeze. Replace multiple blank lines with a single blank line. This
is helpful when viewing nroff(1) output, on the screen.

Page 1

more(1) more(1)

USAGE

-u

-w

-lines

Suppress generation of underlining escape sequences. Normally,
m:>re handles underlining, such as that produced by nroff(1), in a
manner appropriate to the terminal. If the terminal can perform
underlining or has a stand-out mode, m:>re supplies appropriate
escape sequences as called for in the text file.

Normally, m:>re exits when it comes to the end of its input. With-w
, however, m:>re prompts and waits for any key to be struck before
exiting.

Display the indicated number of lines in each screenful, rather than
the default (the number of lines in the terminal screen less two).

+linenumber Start up at linenumber.

+Ipattern Start up two lines above the line containing the regular expression
pattern. Note: unlike editors, this construct should not end with a
, I' . If it does, then the trailing slash is taken as a character in the
search pattern.

Environment
m:>re uses the terminal's termcap(5) entry to determine its display characteristics,
and looks in the environment variable for any preset options. For instance, to
page through files using the -c mode by default, set the value of this variable to
-c. (Normally, the command sequence to set up this environment variable is
placed in the . login or .profile file).

Commands

Page 2

The commands take effect immediately; it is not necessary to type a carriage
return. Up to the time when the command character itself is given, the user may
type the line kill character to cancel the numerical argument being formed. In
addition, the user may type the erase character to redisplay the '--More-- (xx%) ,
message.

In the following commands, i is a numerical argument (1 by default).

iSPACE Display another screenful, or i more lines if i is specified.

iRETURN Display another line, or i more lines, if specified.

i"D (CTRL- D) Display (scroll down) 11 more lines. If i is given, the scroll
size is set to i .

id Same as "'d.

iz Same as SPACE, except that i, if present, becomes the new default
number of lines per screenful.

is Skip i lines and then print a screenful.

if

i"'B

b

Skip i screenfuls and then print a screenful.

(CTRL-B) Skip back i screenfuls and then print a screenful.

Same as "'B (aRL-D).

10/89

more(1) more(1)

FILES

q
Q Exit from IIDre.

Display the current line number.

v Drop into the editor indicated by the EDITOR environment variable, at
the current line cjf the current file. The default editor is ed(l).

h Help. Give a description of all the IIDre commands.

i/pattern Search forward for the i th occurrence of the regular expression pat­
tern. Display the screenful starting two lines before the line that con­
tains the i th match for the regular expression pattern, or the end of a
pipe, whichever comes first. If oore is displaying a file and there is no
such match, its position in the file remains unchanged. Regular
expressions can be edited using erase and kill characters. Erasing back
past the first column cancels the search command.

in Search for the i th occurrence of the last pattern entered.

Single quote. Go to the point from which the last search started. If no
search has been performed in the current file, go to the beginning of
the file.

!command Invoke a shell to execute command. The characters % and !, when
used within command are replaced With the current filename and the
previous shell command, respectively; If there is no current filename,
% is not expanded. Prepend a backslash to these characters to escape
expansion.

i : n Skip to the i th next. filename given in the command line, or to the last
filename in the list if i is out of range.

i : p Skip t() the i th previous filename given in the command line, or to the
first filename if i is out of range. If given while IIDre is positioned
Within a file, go to the beginning of the file. If IIDre is reading from a
pipe, IIDre simply rings the terminru bell.

: f Display the current filename and line number.
:q
:Q Exit from IIDre (same as q or Q).

Dot. Repeat the previous command.

A \ Halt a partial display of text. IIDre stops sending output, and displays
the usual ~-More-- prompt. Unfortunately, some output is lost as a
result.

/usr/share/lib/termcap

/usr/lib/lIDre.help
SEE ALSO

terminal data base
help file

cat(1), csh(1), man(1), script(1), sh(1)
environ(SV), termcap(S) in the System Administrator's Reference Manual.

10/89 Page 3

more(1) more(1)

NOTES
Skipping backwards is too slow on large files.

Page 4 10/89

mv(1) mV(1)

NAME
mv - move files

SYNOPSIS
mv [-f 1 [-i 1 filel [file2 ... 1 target

DESCRIPTION

NOTES

The mv command moves filen to target. filen and target may not have the same
name. (Care must be taken when using sh(1) metacharacters). If target is not a
directory, only one file may be specified before it; if it is a directory, more than
one file may be specified. If target does not exist, mv creates a file named target.
If target exists and is not a directory, its contents are overwritten. If target is a
directory the file(s) are moved to that directory.

If mv determines that the mode of target forbids writing, it will print the mode
(see ehm:xi(2», ask for a response, and read the standard input for one line. If
the line begins with y, the mv occurs, if permissible; otherwise, the command
exits. When the parent directory of filen is writable and has the sticky bit set, one
or more of the following conditions must be true:

the user must own the file
the user must own the directory
the file must be writable by the user
the user must be a privileged user

The following options are recognized:

-i mv will prompt for confirmation whenever the move would overwrite an
existing target. A y answer means that the move should proceed. Any
other answer prevents mv from overwriting the target.

-f mv will move the file(s) without prompting even if it is writing over an
existing target. This option overrides the -i option. Note that this is the
default if the standard input is not a terminal.

If filen is a directory, target must be a directory in the same physical file system.
target and filen do not have to share the same parent directory.

If filen is a file and target is a link to another file with links, the other links remain
and target becomes a new file.

If filen and target are on different file systems, mv copies the file and deletes the
original; any links to other files are lost.

A -- permits the user to mark explicitly the end of any command line options,
allowing mv to recognize filename arguments that begin with a -. As an aid to
BSD migration, mv will accept - as a synonym for --. This migration aid may
disappear in a future release. If a -- and a - both appear on the same command
line, the second will be interpreted as a filename.

SEE ALSO
ehm:xi(1), cp(1), cpio(l), In(1), pn(l).

10/89 Page 1

nawk(1) nawk(1)

NAME
nawk - pattern scanning and processing language

SYNOPSIS
nawk [-F re] [-vvar=value] ['prog'] [jile ...]
nawk [-F re] [-v var=value] [-f progfile] [file ...]

DESCRIPTION

10/89

nawk scans each input file for lines that match any of a set of patterns specified in
prog. The prog string must be enclosed in single quotes (') to protect it from the
shell. For each pattern in prog there may be an associated action performed when
a line of a file matches the pattern. The set of pattern-action statements may
appear literally as prog or in a file specified with the -f progfile option. Input files
are read in order; if there are no files, the standard input is read. The file name -
means the standard input.

Each input line is matched against the pattern portion of every pattern-action
statement; the associated action is performed for each matched pattern. Any file
of the form var=value is treated as an assignment, not a filename, and is executed
at the time it would have been opened if it were a filename, and is executed at
the time it would have been opened if it were a filename. The option -v fol­
lowed by var=value is an assignment to be done before prog is executed; any
number of -v options may be present.

An input line is normally made up of fields separated by white space. (This
default can be changed by using the FS built-in variable or the -F re option.) The
fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:

pattern {action }

Either pattern or action may be omitted. If there is no action with a pattern, the
matching line is printed. If there is no pattern with an action, the action is per­
formed on every input line. Pattern-action statements are separated by newlines
or semicolons.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of rela­
tional expressions and regular expressions. A relational expression is one of the
following:

expression relop expression
expression matchop regular_expression
expression in array-name
(expression, expression, ...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either -
(contains) or ! - (does not contain). An expression is an arithmetic expression, a
relational expression, the special expression

var in array

or a Boolean combination of these.

Page 1

nawk(1) nawk(1)

Page 2

Regular expressions are as in egrep(l). In patterns they must be surrounded by
slashes. Isolated regular expressions in a pattern apply to the entire line. Regular
expressions may also occur in relational expressions. A pattern may consist of
two patterns separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next occurrence of the
second pattern.

The special patterns BEGIN and END may be used to capture control before the
first input line has been read and after the last input line has been read respec­
tively. These keywords do not combine with any other patterns.

A regular expression may be used to separate fields by using the -F re option or
by assigning the expression to the built-in variable FS. The default is to ignore
leading blanks and to separate fields by blanks and/or tab characters. However,
if FS is assigned a value, leading blanks are no longer ignored.

Other built-in variables include:

command line argument count

command line argument array

array of environment variables; subscripts are names

name of the current input file

ARGC

ARGV

ENVIRON

FILENAME

FNR

FS

ordinal number of the current record in the current file

input field separator regular expression (default blank and
tab)

NF

NR

OFMT

OFS

ORS

RS

SUBSEP

number of fields in the current record

ordinal number of the current record

output format for numbers (default %. 6g)

output field separator (default blank)

output record separator (default new-line)

input record separator (default new-line)

separates multiple subscripts (default is 034)

An action is a sequence of statements. A statement may be one of the following:

if (expression) statement [else statement 1
while (expression) statement
do statement while (expression)
for (expression ; expression ; expression) statement
for (var in array) statement
delete array[subscriptl #delete an array element
break
continue
{ [statement] ... }
expression # commonly variable = expression
print [expression-list 1 [>expression 1
printf format [, expression-list 1 [>expression 1
next # skip remaining patterns on this input line

10/89

nawk(1) nawk(1)

exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are tenninated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole input line. Expressions take on string or
numeric values as appropriate, and are built using the operators +, -, *, I, %, "
and concatenation (indicated by a blank). The operators ++ - +- - * ... I'" %= "=
> >- < <- - !- ?: are also available in expressions. Variables may be scalars,
array elements (denoted x[i», or fields. Variables are initialized to the null string
or zero. Array subscripts may be any string, not necessarily numeric; this allows
for a form of associative memory. Multiple subscripts such as [i, j, k] are per­
mitted; the constituents are concatenated, separated by the value of SUBSEP.
String constants are quoted (....), with the usual C excapes recognized within.

The print statement prints its arguments on the standard output, or on a file if
>expression is present, or on a pipe if I and is present. The arguments are
separated by the current output field separator and terminated by the output
record separator. The printf statement formats its expression list according to
the format [see printf(3S) in the Programmer's Reference Manual]. The built-in func­
tion close(expr) closes the file or pipeexpr.

The mathematical functions: atan2, cos, exp, log, sin, sqrt, are built-in.

Other built-in functions include:

gsublfor, repl, in)

indexes, t)

int
length(s)

match (s, re)

behaves like sub (see below), except that it replaces successive
occurrences of the regular expression (like the ed global substi­
tute command).

returns the position in string s where string t first occurs, or 0 if
it does not occur at all.

truncates to an integer value.

returns the length of its argument taken as a string, or of the
whole line if there is no argument.

returns the position in string s where the regular expression re
occurs, or 0 if it does not occur at all. RSTART is set to the start-
ing position (which is the same as the returned value), and
RLENGTH is set to the length of the matched string.

rand random number on (0, 1).

split(s, a, fs) splits the string s into array elements a[l], a[2], a[n], and
returns n. The separation is done with the regular expression fs
or with the field separator FS if fs is not given.

srand sets the seed for rand

sprintf (font, expr, expr, ...)
formats the expressions according to the printf(3S) format
given by font and returns the resulting string.

10/89 Page 3

nawk(1} nawk(1}

sub(jor, repl, in) substitutes the string repl in place of the first instance of the reg­
ular expression for in string in and returns the number of substi­
tutions. If in is omitted, nawk substitutes in the current record
($0).

substr(s, m, n) returns the n-character substring of s that begins at position m.

The input/output built-in functions are:

close (filename) closes the file or pipe named filename.

and I get line pipes the output of cmd into get line; each successive call to
get line returns the next line of output from cmd.

get line

get line <file

get line x

get line x <file

system (and)

sets $0 to the next input record from the current input file.

sets $0 to the next record from file.

sets variable x instead.

sets x from the next record of file.

executes cmd and returns its exit status.

All forms of getline return 1 for successful input, 0 for end of file, and -1 for an
error.

nawk also provides user-defined functions. Such functions may be defined (in the
pattern position of a pattern-action statement) as

function name (args, ...) { stmts }
Function arguments are passed by value if scalar and by reference if array name.
Argument names are local to the function; all other variable names are global.
Function calls may be nested and functions may be recursive. The return state­
ment may be used to return a value.

EXAMPLES

Page 4

Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ", [\tJ*1 [\tJ+" }
{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END {print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

10/89

nawk(1) nawk(1)

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Simulate echo(l):

BEGIN {
for (i = 1; i < ARGC; i++)

printf "%S", ARGV[i]
printf "\n"
exit
}

Print a file, filling in page numbers starting at 5:

/page/ { $2 = n++; }
{ print }

Assuming this program is in a file named prog, the following command line
prints the file input numbering its pages starting at 5: nawk -f prog n=5
input.

SEE ALSO

NOTES

10/89

egrep(l), grep(1), sed(1).
lex(1), printf(3S) in the Programmer's Reference Manual.
The awk chapter in the User's Guide.
A. V. Aho, B. W. Kerninghan, P. J. Weinberger, The A WK Programming Language
Addison-Wesley, 1988.

nawk is a new version of awk that provides capabilities unavailable in previous
versions. This version will become the default version of awk in the next major
UNIX system release.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an
expression to be treated asa number add 0 to it; to force it to be treated as a
string concatenate the null string (" ") to it.

Page 5

newform(1) newform(1)

NAME
newfonn - change the format of a text file

SYNOPSIS
newfonn [-s] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f] [-cchar] [-In]
[files]

DESCRIPTION
newfonn reads lines from the named files, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformatted
in accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be repeated,
and may be intermingled with the optional files. Command line options are pro­
cessed in the order specified. This means that option sequences like "-e15 -160"
will yield results different from "-160 -e15". Options are applied to all files on
the command line.

-s Shears off leading characters on each line up to the first tab and places
up to 8 of the sheared characters at the ~d of the line. If more than 8
characters (not counting the first tab) are sheared, the eighth character
is replaced by a * and any characters to the right of it are discarded.
The first tab is always discarded.

An error message and program exit will occur if this option is used on
a file without a tab on each line. The characters sheared off are saved
internally until all other options specified are applied to that line. The
characters are then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after the
first expanded to spaces, padded with spaces out to column 72. (or
truncated to column 72), and the leading digits placed starting at
column 73, the command would be:

newform -8 -i -1 -a -e file-name

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tab8(1). In addition, tabspec may be -, in which
newfonn assumes that the tab specification is to be found in the first
line read from the standard input (see fspec(4». If no tabspec is given,
tabspec defaults to -8. A tabspec of -0 expects no tabs; if any are
found, they are treated as 1.

-otabspec Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for
:'-'itabspec. If no tabspec is given, tabspec defaults to -8. A tabspec of -:-0
means that no spaces will be converted to tabs on output.

-bn Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see -In). Default is to
truncate the number of characters necessary to obtain the effective line
length. The default value is used when -b with no n is used. This
option can be used to delete tile sequence numbers from a COBOL pro­
gram as follows:

10/89 Page 1

newform(1) newform(1)

newform -11 -b7 file-name
-en Same as -bn except that characters are truncated from the end of

the line.

-pn Prefix n characters (see -ck) to the beginning of a line when the
line length is less than the effective line length. Default is to
prefix the number of characters necessary to obtain the effective
line length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab. specification format line on the standard output
before any other lines are output. The tab specification format
line which is printed will correspond to the format specified in
the last -0 option. If no -0 option is specified, the line which is
printed will contain the default specification of -8.

-ck Change the prefix/append character to k. Default character for k
is a space.

-In Set the effective line length to n characters. If n is not enter~,
-1 defaults to 72. The default line length without the -1 option.
is SO characters. Note that tabs and backspaces are conSidered to
be one character (use -i to expand tabs to spaces).

The '-11 must be used to set the effective line iength shorter than any
existing line in the file so that the -b option is activated.

DIAGNOSTICS
All diagnostics are fatal.
usage: newform was called with a bad option.
"not -s format" There was no tab on one line.
"can't open file" Self-explanatory.
"internal line too long"

A line exceeds 512 characters after being expanded in the
internal work buffer.

"tabspec in error" A tab specification is incorrectly formatted, or specified
tab stops are not ascending.

"tabspee indirection illegal"

o - normal execution
1 - for any error

A tabspec read from a file (or standard input) may not
contain a tabspec referencing another file (or standard
input).

SEE ALSO
csplit(1), tabs(1).
fspec(4) in the System Administrator's Reference Manual.

Page 2 10/89

newform(1) newform(1)

NOTES

10/89

newform normally only keeps· track of physical characters; however, for the -i
and -0 options, newform will keep track of backspaces in order to line up tabs in
the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the standard
input (by use of -i-- or -0--).

If the -f option is used, and the last -0 option specified was -0--, and was pre­
ceded by either a -0-- or a -i--, the tab specification format line will be
incorrect.

Page 3

newgrp{1M) newgrp{1M)

NAME
newgzp - log in to a new group

SYNOPSIS
newg%p [-] [group]

DESCRIPTION

FILES

newg%p changes a user's real and effective group ID. The user remains logged in
and the current directory is unchanged. The user is always given a new shell,
replacing the current shell, by newg%p, regardless of whether it terminated suc­
cessfullyor due to an error condition (Le., unknown group).

Exported variables retain their values after invoking newgrp; however, all unex­
ported variables are either reset to their default value or set to null. System vari­
ables (such as PSI, PS2, PATH, MAIL, and HOME), unless exported by the system or
explicitly exported by the user, are reset to default values. For example, a user
has a primary prompt string (PSI) other than $ (default) and has not exported
PSI. After an invocation of newg%p, successful or not, the user's pst will now be
set to the default prompt string $. Note that the shell command export [see the
sh(1) manual page] is the method to export variables so that they retain their
assigned value when invoking new shells.

With no arguments, newg%p changes the user's group IDs (real and effective) back
to the group specified in the user's password file entry. This is a way to exit the
effect of an earlier newg%p command.

If the first argument to newgrp is a -, the environment is changed to what would
be expected if the user actually logged in again as a member of the new group.

A password is demanded if the group has a password and the user is not listed
in /etc/group as being a member of that group.

/ etc/group system's grou£ file
/ etc/passwd system s password file

SEE ALSO

10/89

login(1), sh(l) in the User's Reference Manual.
group(4), passwd(4), environ(S) in the System Administrator's Reference Manual.
see intro(2) "Effective User ID and Effective Group ID" in Programmer's Reference
Manual

Page 1

news(1) news(1)

NAME
news - print news items

SYNOPSIS
news [-a 1 [-n 1 [-s 1 [items 1

DESCRIPTION

FILES

news is used to keep the user informed of current events. By convention, these
events are described by files in the directory /var/news.

When invoked without arguments, news prints the contents of all current files in
/var/news, most recent first, with each preceded by an appropriate header. news
stores the "currency" time as the modification date of a file named .news_time
in the user's home directory (the identity of this directory is determined by the
environment variable $HOME); only files more recent than this currency time are
considered "current."

-a option causes news to print all items, regardless of currency. In this case,
the stored time is not changed.

-n option causes news to report the names of the current items without print­
ing their contents, and without changing the stored time.

-s option causes news to report how many current items exist, without print­
ing their names or contents, and without changing the stored time. It is
useful to include such an invocation of news in one's .profile file, or in
the system's fete/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next
item is started. Another delete within one second of the first causes the program
to terminate.

fete/profile
/var/news/*
$HOME/.news_time

SEE ALSO
profile(4), environ(5) in the System Administrator's Reference Manual.

10/89 Page 1

nice(1) nlce(1)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment] command [arguments]

DESCRIPTION
nice executes command with a lower CPU scheduling priority. The priocntl
command is a more general interface to scheduler functions.

The invoking process (generally the user's shell) must be in the time-sharing
scheduling class. The command is executed in the time-sharing class.

If the increment argument (in the range 1-19) is given, it is used; if not, an incre­
ment of 10 is assumed.

The super-user may run commands with priority higher than normal by using a
negative increment, e.g., --10.

SEE ALSO
nohup(l), priocntl(1).
nice(2) in the Programmer's Reference Manual.

DIAGNOSTICS
nice returns the exit status of command.

NOTES
An increment larger than 19 is equivalent to 19.

10/89 Page 1

nl (1) nl (1)

NAME
nl - line numbering filter

SYNOPSIS
nl [-btype] [-ftype] [-htype] [-vstart#] [-iincr] [-p] [-lnum] [-ssep] [-wwidth]
[-nformat] [-ddelim] [file]

DESCRIPTION
nl reads lines from the named file, or the standard input if no file is named, and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset at
the start of each logical page. A logical page consists of a header, a body, and a
footer section. Empty sections are valid. Different line numbering options are
independently available for header, body, and footer. For example, -bt (the
default) numbers non-blank lines in the body section and does not number any
lines in the header and footer sections.

The start of logical page sections are signaled by input lines containing nothing
but the following delimiter character(s):

Line contents Start of
\:\:\:

\:\:

\:

header

body

footer

Unless optioned otherwise, nl assumes the text being read is in a single logical
page body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered. Recog­
nized types and their meanings are:

-ftype

-htype

a number all lines
t number lines with printable text only
n no line numbering
pexp number only lines that contain the regular expression

specified in exp (see ed(l»

Default type for logical page body is t (text lines numbered).

Same as -btype except for footer. Default type for logical page footer
is n (no lines numbered).

Same as -btype except for header. Default type for logical page header
is n (no lines numbered).

-vstart# start# is the initial value used to number logical page lines. Default
start# is 1.

10/89 Page 1

nl(1) nl(1)

-iincr incr is the increment value used to number logical page lines. Default
incr is l.

-p Do not restart numbering at logical page delimiters.

-lnum num is the number of blank lines to be considered as one. For exam-
ple, -12 results in only the second adjacent blank being numbered (if
the appropriate -ha, -ba, and/or -fa option is set). Default num is l.

-ssep sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth width is the number of characters to be used for the line number.
Default width is 6.

-nformat format is the line numbering format. Recognized values are: ln, left
justified, leading zeroes suppressed; rn, right justified, leading zeroes
suppressed; rz, right justified, leading zeroes kept. Default format is
rn (right justified).

-ddelim The two delimiter characters specifying the start of a logical page sec­
tion may be changed from the default characters 1\:) to two user­
specified characters. If only one character is entered, the second char­
acter remains the default character (:). No space should appear
between the -d. and the delimiter characters. To enter a backslash, use
two backslashes.

EXAMPLE
The command:

nl -vlO -ilO -d.!+ filel
will cause the first line of the page body to be numbered 10, the second line of
the page body to be numbered 20, the third 30, and so forth. The logical page
delimiters are !+.

SEE ALSO
pr(1), ed(1).

Page 2 10/89

nohup(1) nohup(1)

NAME
nohup - run a command immune to hangul's and quits

SYNOPSIS
nohup command [arguments 1

DESCRIPTION
nohup executes command with hangups and quits ignored. If output is not re­
directed by the user, both standard. output and standard error are sent to
nohup. out. If nohup. out is not writable in the current directory, output is
redirected to $~/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands. This
can be done only by placing pipelines and command lists in a single file, called a
shell procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to be exe­
cuted often, then the need to type sh can be eliminated by giving file execute per­
mission. Add an ampersand and the contents of file are run in the background
with interrupts also ignored (see sh(1»:

nohup file &

An example of what the contents of file could be is:

sort ofile > nfile

SEE ALSO
cluood(l), nice(1), sh(l),
signal(2) in the Programmer's Reference Manual.

NOTES
In the case of the following command

nohup commandl; command2

nohup applies only to commandl. the command

nohup (coIilmandl; command2)

is syntactically incorrect.

10/89 Page 1

notlfy(1) notify (1)

NAME
notify - notify user of the arrival of new mail

SYNOPSIS
notify -y [-m mail file]
notify [-n]

DESCRIPTION

FILES

10/89

When a new mail message arrives, the mail command first checks if the
recipient's mailbox indicates that the message is to be forwarded elsewhere (to
some other recipient or as the input to some command). notify is used to set up
forwarding on the user's mailbox so that the new message is saved into an alter­
native mailbox and, if the user is currently logged in, he or she is notified
immediately of the arrival of new mail.

Command-line options are:

-m mailfi1e File to save mail messages into while automatic notification is
activated. If not specified, it defaults to $HOME/.mailfile.

-n Remove mail notification facility
-y Install mail notification facility

If invoked with no arguments, notify reports whether automatic mail
notification is activated or not.

The notification is done by looking in /var/adm/utnp to determine if the reci­
pient is currently logged in, and if so, on which terminal device. Then the termi­
nal device is opened for writing and the user is notified about the new message.
The notification will indicate who the message is from. If the message contains a
Subject: header line it will be included. (For security, all unprintable characters
within the header will be converted to an exclamation point.)

If the user is logged in multiple times he or she will get multiple notifications,
one per terminal. To disable notifications to a particular login session, the
mesg(l) command can be used to disable writing to that terminal.

If there are multiple machines connected together via RFS or NFS, notify will
look up the /var/adm/utnp files on the other systems as well. To do this, the
file / etc/mail/notify. sys will be consulted, which will contain two columns,
the first being the name of a system and the second being a path to find the root
filesystem for that machine.

If notify has troubles delivering the mail to the specified mailfile, notify will
look up the directory of the mailfile in /etc/mail/notify. fsys. If the file's
directory is found in the first column of the file, the mail will be forwarded to the
system listed in the second column instead of being returned to the sender.

/tnp/notif* temporary file
/var/mail/* users' standard mailboxes
/usr/lib/mail/notify2

program that performs the notification

Page 1

notify (1) notify(1)

/etc/mail/notify.fsys
list of file systems and home systems

/etc/mail/notify.sys
list of machines and paths to their root filesystems

/var/adm/uttrp list of users who are logged in

SEE ALSO

NOTES

Page 2

mail(1), JDesg(l).
User's Guide.

Because notify uses the "Forward to I command" facility of mail to implement
notifications, /var/mail/usenlllme should not be specified as the place to put
newly arrived messages via the .-m invocation option. Themail command uses
/var/mail/username to hold either mail messages, or indications of mail for­
warding, but not both simultaneously.

If the user is using layers(l), the notification will only appear in the login win­
dow.

10/89

od (1) od(1)

NAME
od - octal dump

SYNOPSIS
od [-bcOdFfOoS8VXx 1 [file 1 [[+ loffset[. I b 1 1

DESCRIPTION

10/89

od displays file in one or more formats, as selected by the first argument. If the
first argument is missing, --0 is default. If no file is specified, the standard input
is used. For the purposes of this description, "word" refers to a 16-bit unit,
independent of the word size of the machine; "long word" refers to a 32-bit unit,
and "double long word" refers to a 64-bit unit. The meanings of the format
options are:

-b Interpret bytes in octal.

-c Interpret bytes as single-byte characters. Certain non-graphic characters
appear as C-Ianguage escapes: null=\O, backspace=\b, form-feed=\f, new­
line=\n, return=\r, tab=\t; others appear as 3-digit octal numbers. For
example:

echo "hello world" I od -c
0000000 h ell 0

0000014
w 0 r 1 d\n

-0 Interpret long words in unsigned decimal.

-d Interpret words in unsigned decimal.

-F Interpret double long words in extended precision.

-f Interpret long words in floating point.

-0 Interpret long words in unsigned octal.

-0 Interpret words in octal.

-S Interpret long words in signed decimal.

-8 Interpret words in signed decimal.

-v Show all data (verbose).

-x Interpret long words in hex.

-x Interpret words in hex.

offset specifies an offset from the beginning of file where the display will begin.
offset is normally interpreted as octal bytes. If . is appended, offset is interpreted
in decimal. If b is appended, offset is interpreted in blocks of 512 bytes. If file is
omitted, offset must be preceded by +.
The display continues until an end-of-file is reached.

Page 1

pack(1) pack(1)

NAME
pack, peat, unpack - compress and expand files

SYNOPSIS
pack [-] [-f] name ...

peat name ...
unpack name ...

DESCRIPTION

10/89

pack attempts to store the specified files in a compressed form. Wherever possi­
ble (and useful), each input file name is replaced by a packed file name. z with the
same access modes, access and modified dates, and owner as those of name. The
-f option will force packing of name. This is useful for causing an entire direc­
tory to be packed even if some of the files will not benefit. If pack is successful,
name will be removed. Packed files can be restored to their original form using
unpack or peat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the
- argument is used, an internal flag is set that causes the number of times each
byte is used, its relative frequency, and the code for the byte to be printed on the
standard output. Additional occurrences of - in place of name will cause the
internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first part
of each . z file, it is usually not worthwhile to pack files smaller than three blocks,
unless the character frequency distribution is very skewed, which may occur with
printer plots or pictures.
Typically, text files are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of charac­
ters, show little compression, the packed versions being about 90% of the original
size.

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name. z already exists;
the . z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters to
allow space for the appended . z extension. Directories cannot be compressed.

Page 1

pack(1) pack(1)

peat does for packed files what cat(1) does for ordinary files, except that peat
cannot be used as a filter. The specified files are unpacked and written to the
standard output. Thus to view a packed file named name. z use:

peat name.z
or just:

peat name

To make an unpacked copy, say nnn, of a packed file named name. z (without
destroying name. z) use the command:

peat name >nnn

pcat returns the number of files it was unable to unpack. Failure may occur if:

the file name (exclusive of the . z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

unpack expands files created by pack. For each file name specified in the com­
mand, a search is made for a file called name. z (or just name, if name ends in . z).
If this file appears to be a packed file, it is replaced by its expanded version. The
new file has the . z suffix stripped from its name, and has the same access modes,
access and modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in peat, as well as for the fol­
lowing:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

SEE ALSO
cat(1), conpress(1).

Page 2 10/89

passwd(1) passwd (1)

NAME
passwd - change login password and password attributes

SYNOPSIS
passwd [name]

passwd [-1 I -d) [-f] [-n min] [-x max] [-w warn] name

passwd -s [-a]

passwd -s [name]

DESCRIPTION

10/89

The passwd command changes the password or lists password attributes associ­
ated with the user's login name. Additionally, privileged-users may use passwd
to install or change passwords and attributes associated with any login name.

When used to change a password, passwd prompts ordinary users for their old
password, if any. It then prompts for the new password twice. When the old
password is entered, passwd checks to see if it has "aged" sufficiently. If "aging"
is insufficient, passwd terminates; see shadow(4).

Assuming aging is sufficient, a check is made to ensure that the new· password
meets construction requirements. When the new password is entered a second
time, the two copies of the new password are compared. If the two copies are
not identical the cycle of prompting for the new password is repeated for at most
two more times.

Passwords must be constructed to meet the following requirements:

Each password must have at least six characters. Only the first eight char­
acters are significant. PASSLEN is found in /etc/defau1t/passwd and is
set to 6.

Each password must contain at least two alphabetic characters and at least
one numeric or special character. In this case, "alphabetic" refers to all
upper or lower case letters.

Each password must differ from the user's login name and any reverse or
circular shift of that login name. For comparison purposes, an upper case
letter and its corresponding lower case letter are equivalent.

New passwords must differ from the old by at least three characters. For
comparison purposes, an upper case letter and its corresponding lower
case letter are equivalent.

Super-users (e.g., real and effective uid equal to zero, see id(lM) and su(1M»
may change any password; hence, passwd does not prompt privileged-users for
the old password. Privileged-users are not forced to comply with password
aging and password construction requirements. A privileged-user can create a
null password by entering a carriage return in response to the prompt for a new
password. (This differs from passwd -d because the "password" prompt will still
be displayed.)

Page 1

passwd(1) passwd(1)

Page 2

Any user may use the -s option to show password attributes for his or her own
login name.
The format of the display will t>e:

name status mm/dd/yy min max warn
or, if password aging information is not present,

name status
where

name
status

mm/dd/yy

min

max

The login ID of the user.

The password status of name: "PS" stands for passworded or locked,
"LK" stands for locked, and "NP" stands for no password.

The date password was last changed for name. (Note that all pass­
word aging dates ate determined using Greenwich Mean Time and,
therefore, may differ by as much as a day in other time zones.)

The minimum number of days required between password changes
for name. MINWEEKS is found in / etc/ defau1t/passwd and is set to
NULL.

The maximum number of days the password is valid for name.
MAXWEEKS is found in /etc/default/passWd and is set to NULL.

warn The number of days relative to max before the password expires that
the name will be warned.

Only a privileged-user can use the following options:

-1 Locks password entry for name.
-d

-n

~x

-w

-a

-f

Deletes password for name. The login name will not be prompted for
password.

Set minimum field for name. The min field contains the minimum
number of days betWeen password changes for name. If min is greater
than max, the user may not change the password. Always use this
option with the -x option, unless max is set to -1 (aging turned off).
In that case, min need not be set.

Set. maximum field for name. The max field contains the number of
days that the password is valid for name. The aging. for name will be
turned off immediately if max is set to -1. If it is set to 0, then the user
is forced to change the password at the next login session and aging is
turned off.

Set warn field for name. The warn field conta.inS the number of days
before the password expires that the user will be warned.

Show password attributes for all entries. Use only with -8 option;
name must not be provided.

Force the user to change password at the next login by expiring the
password for name.

10/89

passwd(1)

FILES
fete/shadow, /ete/passwd, /ete/oshadow

SEE ALSO
login(l).

passwd{1)

crypt(3C), passwd(4), shadow(4) in the Programmer's Reference Manual.
useradd(lM), userm:x1(1M), userdel(1M), id(1M), passm;Jlllt(lM), pwconv(lM),
su(1M), in the System Administrator's Reference Manual.

DIAGNOSTICS

10/89

The passwd command exits with one of the following values:

o SUCCESS.

1

2

3

4

5
6

Permission denied.

Invalid combination of options.

Unexpected failure. Password file unchanged.

Unexpected failure. Password file(s) missing.

Password file(s) busy. Try again later.

Invalid argument to option.

Page 3

paste(1) paste (1)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paf!te filel file2 ...
paste -d list filel file2 ...
paste -s [--d list] filel file2 ...

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files filel, file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the counter­
part of cat(1) which concatenates vertically, Le., one file after the other. In the
last form above, paste replaces the function of an older command with the same
name by combining subsequent lines of the input file (serial merging). In all
cases, lines are glued together with the tab character, or with characters from an
optionally specified list. Output is to the standard output, so it can be used as
the start of a pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or
last line in case of the -s option) are replaced by a tab character. This
option allows replacing the tab character by one or more alternate charac­
ters (see below).

list One or more characters immediately following --d replace the default tab
as the line concatenation character. The list is used circularly, Le., when
exhausted, it is reused. In parallel merging (i.e., no -s option), the lines
from the last file are always terminated with a new-line character, not
from the list. The list may contain the special escape sequences: \n (new­
line), \t (tab), \ \ (backslash), and \0 (empty string, not a null character).
Quoting may be necessary, if characters have special meaning to the shell
(e.g., to get one backslash, use -d \\\\).

-s Merge subsequent lines rather than one from each input file. Use tab for
concatenation, unless a list is specified with --d option. Regardless of the
list, the very last character of the file is forced to be a new-line.

May be used in place of any file name, to read a line from the standard
input. (There is no prompting).

EXAMPLES
Is I paste -d" n -

Is I paste

paste -s -d"\t\n" file

SEE ALSO
cut(1), grep(l), pr(1).

10/89

list directory in one column

list directory in four columns

combine pairs of lines into lines

Page 1

paste (1)

DIAGNOSTICS
"line too long"

"too many files"

Page 2

paste(1)

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input files may
be specified.

10/89

pg(1) pg(1)

NAME
pg - file perusal filter for CRTs

SYNOPSIS
pg [-number] [-p string] [-cefnrs] [+linenumber] [+/pattern/] [file ...

DESCRIPTION

10/89

The pg command is a filter that allows the examination of files one screenful at a
time on a CRT. (If no file is specified or if it encounters the file name -, pg reads
from standard input.) Each screenful is followed by a prompt. If the user types
a carriage return, another page is displayed; other possibilities are listed below.

This command is different from previous paginators in that it allows you to back
up and review something that has already passed. The method for doing this is
explained below.

To determine terminal attributes, pg scans the terminfo(4) data base for the ter­
minal type specified by the environment variable TERM. If TERM is not defined,
the terminal type dumb is assumed.

The command line options are:
-number

An integer specifying the size (in lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default win­
dow size is 23).

-c Home the cursor and clear the screen before displaying each page. This
option is ignored if clear_screen is not defined for this terminal type in
the terminfo(4) data base.

-e Causes pg not to pause at the end· of each file.

-f Normally, pg splits lines longer than the screen width, but some sequences
of characters in the text being displayed (e.g., escape sequences for under­
lining) generate undesirable results. The -f option inhibits pg from split-·
ting lines.

-n Normally, commands must be terminated by a <newline> character. This
option causes an automatic end of command as soon as a command letter
is entered.

-p string
Causes P9 to use string as the prompt. If the prompt string contains a %d,
the first occurrence of %d' in the prompt will be replaced by the current
page number when the prompt is issued. The default prompt string is
":" .

-r Restricted mode. The shell escape is disallowed. P9 will print an error
message but does not exit.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

+linenumber
Start up at linenumber.

Page 1

pg(1)

Page 2

pg(1)

+/pattern/
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that modify
the perusal environment.

Commands that cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the
command. A signed address specifies a point relative to the current page or line,
and an unsigned address specifies an address relative to the beginning of the file.
Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+ 1)<newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+1) 1 With a relative address this causes P9 to simulate scrolling the screen, for­
ward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified line.

(+1) d or 0
Simulates scrolling half a screen forward or backward.

if Skip i screens of text.

iz Same as <newline> except that i, if present, becomes the new default
number of lines per screenful.

The following perusal commands take no address .
. or L

Typing a single period causes the current page of text to be redisplayed.

$ Displays the last windowful in the file. Use with caution when the input
is a pipe.

The following commands are available for searching for text patterns in the text.
The regular expressions described in ed(1) are available. They must always be
terminated by a <newline>, even if the -n option is specified.

i/pattern/
Search forward for the ith (default i=l) occurrence of pattern. Searching
begins immediately after the current page and continues to the end of the
current file, without wrap-around.

j pattern
i?pattern?

Search backwards for the ith (default i=1) occurrence of pattern. Search­
ing begins immediately before the current page and continues to the
beginning of the current file, without wrap-around. The ~ notation is use­
ful for Adds 100 terminals which will not properly handle the ?

10/89

pg(1) pg(1)

After searching. pq will normally display the line found at the top of the screen.
This can be modified by appending m or b to the search command to leave the
line found in the middle or at the bottom of the window from now on. The
suffix t can be used. to restore the original situation.

The user of pq can modify the environment of perusal with the following com­
mands:

in Begin perusing the i th next file in the command line. The i is an unsigned
number, default value is 1.

ip Begin perusing the ith previous file in the command line. i is an unsigned
number, default is 1.

iw Display another window of text. If i is present, set the window size to i.

s filename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This com­
mand must always be terminated by a <newline>, even if the -n option is
specified.

h Help by displaying an abbreviated summary of available commands.

q or Q Quit pq.

!command
Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a <newline>, even if the - n
option is specified.

At any time when output is being sent to the terminal, the user can hit the quit
key (normally crRL-\) or the interrupt (break) key. This causes pq to stop send­
ing output, and display the prompt. The user may then enter one of the above
commands in the normal manner. Unfortunately, some output is lost when this
is done, because any characters waiting in the terminal's output queue are flushed
when the quit signal occurs.

If the standard output is not a terminal, then pq acts just like cat(1), except that a
header is printed before each file (if there is more than one).

EXAMPLE
The following command line uses pq to read the system news:

news I pq -p "(Page %d):"

FILES
/usr/share/lib/terminfo/?/*

terminal information database
/trtp/pq* temporary file when input is from a pipe

SEE ALSO
ed(1), grep(1), llDre(1)
terminfo(4) in the System Administrator's Reference Manual.

10/89 Page 3

pg(1)

NOTES

Page 4

pg(1)

While waiting for terminal input, pg responds to BREAK, DEL, and CTRL-\ by ter­
minating execution. Between prompts, however, these signals interrupt pg's
current task and place the user in prompt mode. These should be used with cau­
tion when input is being read from a pipe, since an interrupt is likely to terminate
the other commands in the pipeline.

The terminal /, ", or? may be omitted from the searching commands.

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O
options, terminal settings may not be restored correctly.

10/89

postdaisy(1) postdaisy{1)

NAME
postdaisy - PostScript translator for Diablo 630 files

SYNOPSIS
postdaisy [options] [files]

DESCRIPTION

10/89

The postdaisy filter translates Diablo 630 daisy-wheel files into PostScript and
writes the results on the standard output. If no files are specified, or if - is one of
the input files, the standard input is read. The following options are understood:

-cnum

-f name

-hnum

-mnum

-nnum

-0 list

-p mode

-r num

-s num

-vnum

-xnum

-ynum

Print num copies of each page. By default only one copy is
printed.

Print files using font name. Any PostScript font can be used,
although the best results will be obtained only with constant­
width fonts. The default font is Courier.

Set the initial horizontal motion index to num. Determines the
character advance and the default point size, unless the -s
option is used. The default is 12.

Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin, which is located near the upper left
corner of each page. The default magnification is 1.0.

Print num logical pages on each piece of paper, where num can
be any positive integer. By default, num is set to 1.

Print pages whose numbers are given in the comma-separated
list. The list contains single numbers N and ranges Nl - N2. A
missing Nl means the lowest numbered page, a missing N2
means the highest.

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

Selects carriage return and line feed behavior. If num is 1, a line
feed generates a carriage return. If num is 2, a carriage return
generates a line feed. Setting num to 3 enables both modes.

Use point size num instead of the default value set by the initial
horizontal motion index.

Set the initial vertical motion index to num. The default is 8.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed near the upper
left corner of the page, with positive x to the right and positive
y down the page. Positive num moves everything right. The
default offset is 0.25 inches.

Translate the origin num inches along the positive y axis. Posi­
tive num moves text up the page. The default offset is -0.25
inches.

Page 1

postdaisy(1) postdaisy(1)

DIAGNOSTICS

FILES

An exit status of 0 is returned if files were successfully processed.

/usr/lib/postscript/postdaisy.ps
/usr/lib/postscript/forms.ps
/usr/lib/postscript/ps.requests

SEE ALSO

Page 2

download(1), (!post(l). postdm1(l). postio(1), postm:i(l), postprint(1),
postreverse(1), posttek(1}.

10189

postdmd(1) postdmd(1)

NAME
postdmd - PostScript translator for DMD bitmap files

SYNOPSIS
postdmd [options] [files]

DESCRIPTION
postdmd translates DMD bitmap files, as produced by dmdps, or files written in the
Ninth Edition bitfile(9.5) format into PostScript and writes the results on the
standard output. If no files are specified, or if - is one of the input files, the stan­
dard input is read. The following options are understood:

-b num Pack the bitmap in the output file using num byte patterns. A
value of 0 turns off all packing of the output file. By default,
num is 6.

-cnum

-f

-mnum

-nnum

-0 list

-p mode

-xnum

-ynum

Print num copies of each page. By default only one copy is
printed.

Flip the sense of the bits in files before printing the bitmaps.

Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin, which by default is located at the
center of each page. The default magnification is 1.0.

Print num logical pages on each piece of paper, where num can
be any positive integer. By default num is set to 1.

Print pages whose numbers are given in the comma-separated
list. The list contains single numbers N and ranges Nl - N2. A
missing Nl means the lowest numbered page, a missing N2
means the highest.

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed at the center of
the page, with positive x to the right and positive y up the
page. Positive num moves everything right. The default offset
is 0 inches.

Translate the origin num inches along the positive y axis. Posi­
tive num moves everything up the page. The default offset is O.

Only one bitmap is printed on each logical page, and each of the input files must
contain complete descriptions of at least one bitmap. Decreasing the pattern size
using the -b option may help throughput on printers with fast processors (such
as PS-810s), while increasing the pattern size will often be the right move on older
models (such as PS-BOOs).

DIAGNOSTICS

FILES

10/89

An exit status of 0 is returned if files were successfully processed.

/usr/lib/postscript/postdmd.ps
/usr/lib/postscript/forms.ps
/usr/lib/postscript/ps.requests

Page 1

postdmd(1} postdmd(1}

SEE ALSO

Page 2

download(1), dpost(l), postdaisy(l), postio(1), postnd(1), postprint(1),
postreverse(l), posttek(l).

10/89

postlo(1) postio(1)

NAME
postio - serial interface for PostScript printers

SYNOPSIS
postio -1 line [options] [files]

DESCRIPTION

10/89

postio sends files to the PostScript printer attached to line. If no files are
specified the standard input is sent. The first group of options should be sufficient
for most applications:

-b speed Transmit data over line at baud rate speed. Recognized baud
rates are 1200, 2400, 4800, 9600, and 19200. The default speed is
9600 baud.

-1 line

-q

-B num

-0

-L file

-p string

-Rnum

Connect to the printer attached to line. In most cases there is no
default and postio must be able to read and write line. If the
line doesn't begin with a / it may be treated as a Datakit desti­
nation.

Prevents status queries while files are being sent to the printer.
When status queries are disabled a dummy message is
appended to the log file before each block is transmitted.

Set the internal buffer size for reading and writing files to num
bytes. By default num is 2048 bytes.

Enable debug mode. Guarantees that everything read on line
will be added to the log file (standard error by default).

Data received on line gets put in file. The default log file is stan­
dard error. Printer or status messages that don't show a change
in state are not normally written to file but can be forced out
using the -0 option.

Send string to the printer before any of the input files. The
default string is simple PostScript code that disables timeouts.

Run postio as a single process if num is 1 or as separate read and
write processes if num is 2. By default postio runs as a single
process.

The next two options are provided for users who expect to run postio on their
own. Neither is suitable for use in spooler interface programs:

-i

-t

Run the program in interactive mode. Any files are sent first
and followed by the standard input. Forces separate read and
write processes and overrides many other options. To exit
interactive mode use your interrupt or quit character. To get a
friendly interactive connection with the printer type executive
on a line by itself.

Data received on line and not recognized as printer or status
information is written to the standard output. Forces separate
read and write processes. Convenient if you have a PostScript
program that will be returning useful data to the host.

Page 1

postlo(1) postlo(1)

The last option is not generally recommended and should only be used if all else
fails to provide a reliable connection:

-s Slow the transmission of data to the printer. Severely limits
throughput, runs as a single process, disables the -q option,
limits the internal buffer size to 1024 bytes, can use an excessive
amount of CPU time, and does nothing in interactive mode.

The best performance will usually be obtained by using a large internal buffer
(the -B option) and by running the program as separate read and write processes
(the -R 2 option). Inability to fork the additional process causes postio to con­
tinue as a single read/write process. When one process is used, only data sent to
the printer is flow controlled.

The options are not all mutually exclusive. The -i option always wins, selecting
its own settings for whatever is needed to run interactive mode, independent of
anything else found on the command line. Interactive mode runs as separate
read and write processes and few of the other options accomplish anything in the
presence of the -i option. The -t option needs a reliable two way connection to
the printer and therefore tries to force separate read and write processes. The-S
option relies on the status query mechanism, so -q is disabled and the program
runs as a single process.

In most cases postio starts by making a connection to line and then attempts to
force the printer into the IDLE state by sending an appropriate sequence of "'T
(status query), "'C (interrupt), and "'D (end of job) characters. When the printer
goes IDLE, files are transmitted along with an occasional "'T (unless the -q option
was used). After all the files are sent the program waits until it's reasonably sure
the job is complete. Printer generated error messages received at any time except
while establishing the initial connection (or when running interactive mode) cause
postio to exit with a non-zero status. In addition to being added to the log file,
printer error messages are also echoed to standard error.

EXAMPLES

Page 2

Run as a single process at %00 baud and send filel and file2 to the printer
attached to /dev/ttyOl:

postio -1 /dev/ttyOl filel file2

Same as above except two processes are used, the internal buffer is set to 4096
bytes, and data returned by the printer gets put in file log:

postio -R2 -B4096 -l/dev/ttyOl -Llog filel file2

Establish an interactive connection with the printer at Datakit destination
my/printer:

postio -i -1 my/printer

Send me program to the printer connected to /dev/tty22, recover any data in
me results, and put log messages in file log:

postio -t -1 /dev/tty22 -L log program >results

10/89

postio(1) postio(1)

NOTES
The input files are handled as a single PostScript job. Sending several different
jobs, each with their own internal end of job mark ("'D) is not guaranteed to work
properly. postio may quit before all the jobs have completed and could be res­
tarted before the last one finishes.

All the capabilities described above may not be available on every machine or
even across the different versions of the UNIX system that are currently supported
by the program. For example, the code needed to connect to a Datakit destina­
tion may work only on System V and may require that the DKHOST software
package be available at compile time.

There may be no default line, so using the -1 option is strongly recommended. If
omitted, postio may attempt to connect to the printer using the standard output.
If Datakit is involved, the -b option may be ineffective and attempts by postio
to impose flow control over data in both directions may not work. The -q option
can help if the printer is connected to RADIAN. The -s option is not generally
recommended and should be used only if all other attempts to establish a reliable
connection fail.

DIAGNOSTICS
An exit status of 0 is returned if the files ran successfully. System errors (such as
an inability to open the line) set the low order bit in the exit status, while
PostScript errors set bit 1. An exit status of 2 usually means the printer detected
a PostScript error in the input files.

SEE ALSO

10/89

down1oad(1), dpost(1), postdaisy(l), postdmd(1), postmd(1), postprint(1),
postreverse(1), posttek(1).

Page 3

postmd(1) postmd(1)

NAME
postm:i - matrix display program for PostScript printers

SYNOPSIS
postm:i [options] [files]

DESCRIPTION

10/89

The postm:i filter reads a series of floating point numbers from files, translates
them into a PostScript gray scale image, and writes the results on the standard
output. In a typical application the numbers might be the elements of a large
matrix, written in row major order, while the printed image could help locate
patterns in the matrix. If no files are specified, or if - is one of the input files, the
standard input is read. The following options are understood:

-bnum

-cnum

-ddimen

-g list

-i list

-mnum

-nnum

-0 list

Pack the bitmap in the output file using num byte patterns. A
value of 0 turns off all packing of the output file. By default,
num is 6.

Print num copies of each page. By default, only one copy is
printed.

Sets the default matrix dimensions for all input files to dimen.
The dimen string can be given as rows or rowsxcolumns. If
columns is omitted it will be set to rows. By default, postm:i
assumes each matrix is square and sets the number of rows and
columns to the square root of the number of elements in each
input file.

List is a comma or space separated string of integers, each lying
between 0 and 255 inclusive, that assigns PostScript gray scales
to the regions of the real line selected by the -i option. 255
corresponds to white, and 0, to black. The postm:i filter assigns
a default gray scale that omits white (that is, 255) and gets
darker as the regions move from left to right along the real line.

List is a comma, space or slash(f) separated string of N floating
point numbers that partition the real line into 2N+ 1 regions.
The list must be given in increasing numerical order. The parti­
tions are used to map floating point numbers read from the
input files into gray scale integers that are either assigned
automatically by postm:i or arbitrarily selected using the -g
option. The default interval list is -1, 0, 1, which partions the
real line into seven regions.

Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin which, by default, is located at the
center of each page. The default magnification is 1.0.

Print num logical pages on each piece of paper, where num can
be any positive integer. By default, num is set to 1.

Print pages whose numbers are given in the comma separated
list. The list contains single numbers N and ranges Nl - N2. A
missing Nl means the lowest numbered page, a missing N2
means the highest.

Page 1

postmd(1)

-p mode

-w window

-xnum

-ynum

postmd(1)

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

Window is a comma or space separated list of four positive
integers that select the upper left and lower right corners of a
submatrix from each of the input files. Rowand column indices
start at 1 in the upper left comer and the numbers in the input
files are assumed to be written in row major order. By default,
the entire matrix is displayed.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed at the center of
the page, with positive x to the right· and positive y up the
page. Positive num moves everything right. The default offset
is 0 inches.

Translate the origin num inches along the positive y axis. Posi~
tive num moves everything up the page. The default offset is O.

Only one matrix is displayed on each logical page, and each of the input files
must contain complete descriptions of exactly one matrix. Matrix elements are
floating point numbers arranged in row major order in each input file. White
space, including newlines, is not used to determine matrix dimensions. By
default, postmi assumes each matrix is square and s.ets the number of rows and
columns to the square root of the number of elements in the input file. Supply­
ing default dimensions on the command line with the -d option overrides this
default behavior, and in that case the dimensions apply to all input files.

An optional header can be supplied with each input file and is used to set the
matrix dimensions, the partition of the real line, the gray scale map, and a win­
dow into the matrix. The header consists of keyword/value pairs, each on a
separate line. It begins on the first line of each input file and ends with the first
unrecognized string, which should be the first matrix element. Values set in the
header take precedence, but apply only to the current input file. Recognized
header keywords are dimension, interval, grayscale, and window. The syntax
of the value string that follows each keyword parallels what's accepted by the -d,
-i, -g, and -w options.

EXAMPLES

Page 2

For example, suppose file initially contains the 1000 numbers in a 20xSO matrix.
Then you can produce exactly the same output by completing three steps. First,
issue the following command line:

postmi -d20x50 -i"-100 100" -gO,128,254,128,0 file

Second, prepend the following header to file:

dimension 20x50
interval -100.0 .100e+3
grayscale 0 128 254 128 0

Third, issue the following command line:

10/89

postmd(1) postmd(1)

NOTES

postnn file

The interval list partitions the real line into five regions and the gray scale list
maps numbers less than -100 or greater than 100 into 0 (that is, black), numbers
equal to -100 or 100 into 128 (that is, 50 percent black), and numbers between
-100 and 100 into 254 (that is, almost white).

The largest matri~ that can be adequately displayed is a function of the interval
a)ld gray scale lists, the printer resolution, and the paper size. A 600x600 matrix
is an optimistic upper bound wr a two element interval list (that is, five regions)
using 8.5xll inch paper on a 300 dpi printer.

Using white (that is, 255) in a gray scale li!!t is not recommended and won't s~ow
up in the legend and bar graph that postnn displays below each image.

DIAGNOSTICS

FILES

An exit statu!! of 0 is returned if files were succe!!sfully processed.

/usr/lib/postscript/postnd.ps
/usr/lib/postscript/fozms.ps
/usr/lib/postscript/ps.requests

SE~ ALSO

10/89

dpost(1), postdaisy(l), postdnd(1), postio(1), postprint(1), postreverse(1),
posttek(1).

Page 3

postplot(1 } postplot (1)

NAME
postplot - PostScript translator for plot(4) graphics files

SYNOPSIS
postplot [options] [files]

DESCRIPTION
The postplot filter translates plot(4) graphics files into PostScript and writes the
results on the standard output. If no files are specified, or if - is one of the input
files, the standard input is read. The following options are understood:

-c num Print num copies of each page. By default, only one copy is
printed.

-f name

-mnum

-nnum

-0 list

-pmode

-w nutn

-xnum

-ynum

Print text using font name. Any PostScript font can be used,
although the best results will be obtained only with cOnstant
width fonts. The default font is Courier.

Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin which, by default, is located at the
center of each page. The default magnification is 1.0.
Print nu11i logical pages on each piece of paper, where num can
be any positive integer. By default, num is set to 1.

Print pages whose numbers are given in the comma-separated
list. The list contains single numbers N and ranges Nl - N2. A
missing Nl means the lowest numbered page, a missing N2
means the highest.

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The delault mode is landscape.

Set the line width USed for graphics to num points, where a
point is approximately 1/72 of an inch. By default, num is set
to 0 points, which forces lines to be one pixel wide.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed at the center of
the page, with positive x to the right and positive y. up the
page. Positive num moves everything right. The default offset
is 0.0 inches.

Translate the origin nutn inches along the positive y axis. Posi­
tive num moves everything up the page. The default offset is
0.0.

DIAGNOSTICS

NOTES

FILES

10189

An exit status of 0 is returned if files were successfully processed.

The default line width is too small for write-white print engines, such as the one
used by the PS-2400.

/usr/lib/postscript/postplot.ps
/usr/lib/postscript/foImS.ps
/usr/lib/postscript/ps.requests

Page 1

postplot (1) postplot(1)

SEE ALSO
download(l), dpost(1), postdaisy(1), postdmd(1), postio(l), postmd(l), post­
print(1), postreverse(l), plot(4).

Page 2 10/89

postprint (1) postprint (1)

NAME
postprint - PostScript translator for text files

SYNOPSIS
postprint [options] [files]

DESCRIPTION

10/89

The postprint filter translates text files into PostScript and writes the results on
the standard output. If no files are specified, or if - is one of the input files, the
standard input is read. The following options are understood:

-c num

-f name

-1 num

-mnum

-nnum

-0 list

-p mode

-rnum

-s num

-t num

-xnum

-ynum

Print num copies of each page. By default, only one copy is
printed.

Print files using font name. Any PostScript font can be used,
although the best results will be obtained only with constant
width fonts. The default font is Courier.

Set the length of a page to num lines. By default, num is 66.
Setting num to 0 is allowed, and will cause postprint to guess a
value, based on the point size that's being used.

Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin, which is located near the upper left
corner of each page. The default magnification is 1.0.

Print num logical pages on each piece of paper, where num can
be any positive integer. By default, num is set to 1.

Print pages whose numbers are given in the comma-separated
list. The list contains single numbers N and ranges Nl - N2. A
missing Nl means the lowest numbered page, a missing N2
means the highest.

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is portrait.

Selects carriage return behavior. Carriage returns are ignored if
num is 0, cause a return to column 1 if num is I, and generate a
newline if num is 2. The default num is O.

Print files using point size num. When printing in landscape
mode num is scaled by a factor that depends on the imaging
area of the device. The default size for portrait mode is 10.

Assume tabs are set every num columns, starting with the first
column. By default, tabs are set every 8 columns.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed near the upper
left corner of the page, with positive x to the right and positive
y down the page. Positive num moves everything right. The
default offset is 0.25 inches.

Translate the origin num inches along the positive y axis. Posi­
tive num moves text up the page. The default offset is -0.25
inches.

Page 1

postprint (1) postprint (1)

A new logical page is started after 66 lines have been printed on the current page,
or whenever an ASCII form feed character is read. The number of lines per page
can be changed using the -1 option. Unprintable ASOI characters are ignored,
and lines that are too long are silently truncated by the printer.

EXAMPLES
To print filel and file2 in landscape mode, issue the following command:

postprint -p1and filel file2

To print three logical pages on each physical page in portrait mode:

postprint -n3 file

DIAGNOSTICS

FILES

An exit status of 0 is returned if files were successfully processed.

/usr/1ib/postscript/postprint.ps
/usr/1ib/postscript/forms.ps
/usr/1ib/postscript/ps.requests

SEE ALSO

Page 2

down1oad(1), dpost(1), postdaisy(l), postdm:i(1), postio(l), postm:i(1),
postreverse(1), posttek(1).

10/89

postreverse (1) postreverse (1)

NAME
postreverse - reverse the page order in a PostScript file

SYNOPSIS
postreverse [options] [file]

DESCRIPTION
The postreverse filter reverses the page order in files that conform to Adobe's
Version 1.0 or Version 2.0 file structuring conventions, and writes the results on
the standard output. Only one input file is allowed and if no file is specified, the
standard input is read. The following options are understood:

-0 list Select pages whose numbers are given in the comma-separated
list. The list contains single numbers N and ranges Nl - N2. A
missing Nl means the lowest numbered page, a missing N2
means the highest.

-r Don't reverse the pages in file.

The postreverse filter can handle a limited class of files that violate page
independence, provided all global definitions are bracketed by %%BeginGlobal
and %%EndGlobal comments. In addition, files that mark the end of each page
with %%EndPage: label ordinal comments will also reverse properly, provided
the prologue and trailer sections can be located. If postreverse fails to find an
%%EndProlog or %%EndSetup comment, the entire file is copied, unmodified, to
the standard output.

Because global definitions are extracted from individual pages and put in the pro­
logue, the output file can be minimally conforming, even if the input file wasn't.

EXAMPLES
To select pages 1 to 100 from file and reverse the pages:

postreverse -01-100 file

To print four logical pages on each physical page and reverse all the pages:

postprint -n4 file I postreverse

To produce a minimally conforming file from output generated by dpost without
reversing the pages:

dpost file I postreverse -r

DIAGNOSTICS

NOTES

An exit status of 0 is returned if file was successfully processed.

No attempt has been made to deal with redefinitions of global variables or pro­
cedures. If standard input is used, the input file will be read three times before
being reversed.

SEE ALSO

10/89

download(1), dpost(1), postdaisy(l), postdmi(1), postio(1), postnx:l.(1), post­
print(1), posttek(1).

Page 1

posttek(1) posttek(1)

NAME
posttek - PostScript translator for tektronix 4014 files

SYNOPSIS
posttek [options] [files]

DESCRIPTION
The posttek filter translates tektronix 4014 graphics files into PostScript and
writes the results on the standard output. If no files are specified, or if - is one of
the input files, the standard input is read. The following options are understood:
-cnum

-f name

-mnum

-nnum

-0 list

-p mode

-wnum

-xnum

-ynum

Print num copies of each page. By default, only one copy is
printed.

Print text using font name. Any PostScript font can be used,
although the best results will be obtained only with constant
width fonts. The default font is Courier.

Magnify each logical page by the factor num. Pages are scaled
uniformly about the origin which, by default, is located at the
center of each page. The default magnification is 1.0.

Print num logical pages on each piece of paper, where num can
be any positive integer. By default, num is set to 1.

Print pages whose numbers are given in the comma-separated
list. The list contains single numbers N and ranges Nl - N2. A
missing Nl means the lowest numbered page, a missing N2
means the highest.

Print files in either portrait or landscape mode. Only the first
character of mode is significant. The default mode is landscape.

Set the line width used for graphics to num points, where a
point is approximately 1/72 of an inch. By default, num is set
to 0 points, which forces lines to be one pixel wide.

Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed at the center of
the page, with positive x to the right and positive y up the
page. Positive num moves everything right. The default offset
is 0.0 inches.

Translate the origin num inches along the positive y axis. Posi­
tive num moves everything up the page. The default offset is
0.0.

DIAGNOSTICS

NOTES

FILES

10/89

An exit status of 0 is returned if files were successfully processed.

The default line width is too small for write-white print engines, such as the one
used by the 1'5-2400.

/usr/lib/postscript/posttek.ps
/usr/lib/postscript/fozms.ps
/usr/lib/postscript/ps.requests

Page 1

posttek(1) posttek(1)

SEE ALSO
download(l), c!post(1), postdaisy(l), postdm:i(1), postio(l), postmd(l), post­
print(1),postreverse(1).

Page 2 10/89

pr(1) pr(1)

NAME
pr - print files

SYNOPSIS
pr [[-columns] [-wwidth] [-all [-eck] [-ick] [-drtfp] [+page] [-nck] [-ooffset]

[-!length] [-sseparator] [-hheader] [-F] [file ...]

pr [[-m] [-wwidthll [-eck] [-ick] [-drtfp] [+page] [-nck] [-ooffset] [-1 length]
[-sseparator] [-hheader] [-F] [filel file2 ...]

DESCRIPTION
The pr command formats and prints the contents of a file. If file is -, or if no
files are specified, pr assumes standard input. pr prints the named files on stan­
dard output.

By default, the listing is separated into pages, each headed by the page number,
the date and time that the file was last modified, and the name of the file. Page
length is 66 lines which includes 10 lines of header and trailer output. The
header is composed of 2 blank lines, 1 line of text (can be altered with -h), and 2
blank lines; the trailer is 5 blank lines. For single column output, line width may
not be set and is unlimited. For multicolumn output, line width may be set and
the default is 72 columns. Diagnostic reports (failed options) are reported at the
end of standard output associated with a terminal, rather than interspersed in the
output. Pages are separated by series of line feeds rather than form feed charac­
ters.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not truncated
and columns are separated by the separator character.

Either -columns or -m should be used to produce multi-column output. -a
should only be used with -columns and not -m.

Command line options are

+page Begin printing with page numbered page (default is 1).

-columns Print columns columns of output (default is 1). Output appears as if
-e and -i are on for multi-column output. May not use with -m.

-a Print multi-column output across the page one line per column.
columns must be greater than one. If a line is too long to fit in a
column, it is truncated.

-m Merge and print all files simultaneously, one per column. The max­
imum number of files that may be specified is eight. If a line is too
long to fit in a column, it is truncated. May not use with -column.

-d Double-space the output. Blank lines that result from dOUble-spacing
are dropped when they occur at the top of a page.

-eck Expand input tabs to character positions k+ 1, 2*k+ 1, 3* k+ 1, etc. If k is
o or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the appropri­
ate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character).

10/89 Page 1

pr(1) pr(1)

Page 2

-ick In output, replace white space wherever possible by inserting tabs to
character positions k+l, 2*k+l, 3*k+l, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. If c (any
non-digit character) is given, it is treated as the output tab character
(default for c is the tab character).

-F

10/89

pr(1) pr(1)

EXAMPLES

FILES

Print fHel and fHe2 as a double-spaced, three-column listing headed by "fHe
list": .

pr -3dh "file list" fHel fHe2

Copy fHel to file2, expanding tabs to columns 10, 19, 28, 37, ... :

pr -e9 -t < file1 > file2

Print fHel and fHe2 simultaneously in a two-column listing With no header or
trailer where both columns have line numbers:

pr -t -n filel I pr -t -m -n fHe2 -

/d.ev/tty* If standard output is directed to one of the special files
/dev/ttY*, then other output directed to this terminal is delayed
until standard output is completed. This prevents error messages
from being interspersed throughout the output.

SEE ALSO
cat(1), fold(1), more(1), pg(l), page(l).

10/89 Page 3

printf(1) printf(1)

NAME
printf - print formatted output

SYNOPSIS
printf format [arg ... J

DESCRIPTION

10/89

The printf command converts, formats, and prints its args under control of the
format. It fully supports conversion specifications for strings (%8 descriptor);
however, the results are undefined for the other conversion specifications sup­
ported by printf(3S).

format

arg

a character string that contains three types of objects: 1) plain charac­
ters, which are simply copied to the output stream; 2) conversion
specifications, each of which results in fetching zero or more args; and
3) C-Ianguage escape sequences, which are translated into the
corresponding characters.

string(s) to be printed under the control of format. The results are
undefined if there are insufficient args for the format. If the format is
exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

An optional field, consisting of a decimal digit string followed by a $,
specifying the next arg to be converted. If this field is not provided, the
arg following the last arg converted is used.

An optional decimal digit string specifying a minimum field width. If the
converted value has fewer characters than the field width, it is padded on
the left (or right, if the left-adjustment flag '-' has been given) to the field
width. The padding is with blanks unless the field width digit string
starts with a zero, in which case the padaing is with zeros.

An optional precision that gives the maximum number of characters to be
printed from a string in %8 conversion. The precision takes the form of a
period (.) followed by a decimal digit string; a null digit string is treated
as zero (nothing is printed). Padding specified by the precision overrides
the padding specified by the field width. That is, if precision is specified,
its value is used to control the number of characters printed.

A field width or precision or both may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the field
width or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or precision
must appear before the arg (if any) to be converted. A negative field width
argument is taken as a '-' (left-adjustment) flag followed by a positive
field width. If the precision argument is negative, it is changed to zero
(nothing is printed). In no case does a non-existent or small field width
cause truncation of a field; if the result of a conversion is wider than the
field width, the field is simply expanded to contain the conversion result.

Page 1

prlntf(1) prlntf(1)

The conversion characters and their meanings are:

% 8 The arg is taken to be a string and characters from the string are printed
until a null character (\0) is encountered or the number of characters indi­
cated by the precision specification is reached. If the precision is missing.
it is taken to be infinite, so all characters up to the first null character are
printed. A null value for arg yields undefined results.

%% Print a %; no argument is converted.

EXAMPLES
The command

printf ' %8 %8 %s\n' Good Morning World

results in the output:

Good Morning World

The following command produces the same output.

printf ' %2$s %s %1$s\n' World Good Morning
Here is an example that prints the first 6 characters of $PATH left-adjusted in a
lO-character field:

printf 'First 6 chars of %s are %-10.6s.\n' $PATH $PATH

If $PATH has the value IU8r/bin:/u8r/locallbin, then the above command
would print the following output:

First 6 chars of lusrlbin:/usr/locallbin are lusr/b .
SEE ALSO

printf(3S) in the Programmer's Reference Manual.

Page 2 10/89

prlocntf (1) prlocntl (1)

NAME
priocnt1 - process scheduler control

SYNOPSIS
priocnt1 -1
priocntl-d [-i idtype] [idlist]
priocntl -s [-c class] [class-specific options] [-i idtype] [idlist]
priocnt1 -e [-c class] [class-specific options] command [argument(s)]

DESCRIPTION
The priocnt1 command displays or sets scheduling parameters of the specified
process(es). It can also be used to display the current configuration information
for the system's process scheduler or execute a command with specified schedul­
ing parameters.

Processes fall into distinct classes with a separate scheduling policy applied to
each class. The two process classes currently supported are the real-time class
and the time-sharing class. The characteristics of these two classes and the class­
specific options they accept are described below under the headings REAL-TIME
CLASS and TIME-SHARING CLASS. With appropriate permissions, the priocntl
command can change the class and other scheduling parameters associated with a
running process.

In the default configuration, a runnable real-time process runs before any other
process. Therefore, inappropriate use of real-time processes can have a dramatic
negative impact on system performance.

The command

priocnt1 -1

displays a list of classes currently configured in the system along with class­
specific information about each class. The format of the class-specific information
displayed is described under the appropriate heading below.

The -d and -s options to priocnt1 allow the user to display or set the schedul­
ing parameters associated with a set of processes. The -i option and its associ­
ated idtype argument, together with the idlist arguments to priocnt1 (if any),
specify one or more processes to which the priocnt1 command is to apply. The
interpretation of idlist depends on the value of idtype. The valid idtype arguments
and corresponding interpretations of idlist are as follows:

-i pid idlist is a list of process IDs. The priocnt1 command applies to
the specified processes.

-i ppid idlist is a list of parent process IDs. The priocnt1 command
applies to all processes whose parent process ID is in the list.

-i pgid idlist is a list of process group IDs. The priocnt1 command
applies to all processes in the specified process groups.

-i sid idlist is a list of session IDs. The priocht1 command applies to all
processes in the specified sessions.

10189 Page 1

priocntl (1) prlocntl (1)

Page 2

-i class idlist consists of a single class name (RT for real-time or TS for
time-sharing). The priocntl command applies to all processes in
the specified class.

-i uid idlist is a list of user IDs. The priocntl command applies to all
processes with an effective user ID equal to an ID from the list.

-i qid idlist is a list of group IDs. The priocntl command applies to all
processes with an effective group 10 equal to an 10 from the list.

-i all The priocntl command applies to all existing processes. No idlist
should be specified (if one is it is ignored). The permission restric­
tions described below still apply.

If the -i idtype option is omitted when using the -d or -s options the default
idtype of pid is assumed.

If an idlist is present it must appear last on the command line and the elements of
the list must be separated by white space. If no idlist is present an idtype argu­
ment of pid, ppid, pgid, sid, class, uid, or qid specifies the process 10, parent
process 10, process group 10, session ID, class, user 10, or group 10 respectively
of the priocntl command itself.

The command

priocntl -d [-i idtype] [idlist]

displays the class and class-specific scheduling parameters of the process(es)
specified by idtype and idlist.

The command

priocntl -s [-c class] [class-specific options] [-i idtypel [idlist]

sets the class and class-specific parameters of the specified processes to the values
given on the command line. The -c class option specifies the class to be set. (The
valid class arguments are RT for real-time or TS for time-sharing). The class­
specific parameters to be set are specified by the class-specific options as
explained under the appropriate heading below. If the -c class option is omitted,
idtype and idlist must specify a set of processes which are all in the same class,
otherwise an error results. If no class-specific options are specified the process's
class-specific parameters are set to the default values for the class specified by -c
class (or to the default parameter values for the process's current class if the -c
class option is also omitted).

In order to change the scheduling parameters of a process using priocntl the
real or effective user 10 of the, user invoking priocntl must match the real or
effective user 10 of the receiving process or the effective user 10 of the user must
be super-user. These are the minimum permission requirements enforced for all
classes. An individual class may impose additional permissions requirements
when setting processes to that class or when setting class-specific scheduling
parameters.

When idtype and idlist specify a set of processes, priocntl acts on the processes
in the set in an implementation-specific order. If priocntl encounters an error
for one or more of the target processes, it mayor may not continue through the
set of processes, depending on the nature of the error. If the error is related to

10/89

priocntl (1) priocntl (1)

permissions, priocnt1 prints an error message and then continue through the
process set, resetting the parameters for all target processes for which the user
has appropriate permissions. If priocnt1 encounters an error other than permis­
sions, it does not continue through the process set but prints an error message
and exits immediately.

A special sys scheduling class exists for the purpose of scheduling the execution
of certain special system processes (such as the swapper process). It is not possi­
ble to change the class of any process to sys. In addition, any processes in the
sys class that are included in the set of processes specified by idtype and idlist are
disregarded by priocntl. For example, if idtype were uid, an idlist consisting of
a zero would specify all processes with a UID of zero except processes in the sys
class and (if changing the parameters using the -s option) the init process.

The init process (process ID 1) is a special case. In order for the priocnt1 com­
mand to change the class or other scheduling parameters of the init process,
idtype must be pid and idlist must be consist of only a 1. The init process may
be assigned to any class configured on the system, but the tim~haring class is
almost always the appropriate choice. (Other choices may be highly undesirable;
see the System Administrator's Guide for more information.)

The command

priocntl -e [-c class] [class-specific options] command [argument(s)]

executes the specified command with the class and scheduling parameters
specified on the command line (arguments are the arguments to the command). If
the -c class option is omitted the command is run in the user's current class.

REAL-TIME CLASS

10/89

The real-time class provides a fixed priority preemptive scheduling policy for
those processes requiring fast and deterministic response and absolute
user/application control of scheduling priorities. If the real-time class is
configured in the system it should have exclusive control of the highest range of
scheduling priorities on the system. This ensures that a runnable real-time pro­
cess is given CPU service before any process belonging to any other class.

The real-time class has a range of real-time priority (rtpri) values that may be
assigned to processes within the class. Real-time priorities range from 0 to x,
where the value of x is configurable and can be displayed for a specific installa­
tion by using the command

priocntl -1

The real-time scheduling policy is a fixed priority policy. The scheduling priority
of a real-time process never changes except as the result of an explicit request by
the user/application to change the rtpri value of the process.

For processes in the real-time class, the rtpri value is, for all practical purposes,
eqUivalent to the scheduling priority of the process. The rtpri value completely
determines the scheduling priority of a real-time process relative to other
processes within its class. Numerically higher rtpri values represent higher priori­
ties. Since the real-time class controls the highest range of scheduling priorities in
the system it is guaranteed that the runnable real-time process with the highest
rtpri value is always selected to run before any other process in the system.

Page 3

prloentl (1) prloentl (1)

Page 4

In addition to providing control over priority, priocntl provides for control over
the length of the time quantum allotted to processes in the real-time class. The
time quantum value specifies the maximum amount of time a process may run
assuming that it does not complete or enter a resource or event wait state
(sleep). Note that if another process becomes runnable at a higher priority the
currently runhing process may be preempted before receiving its full time quan­
tum.

The command

priocntl -d [-i idtype] [idlist]

displays the real-time priority and time quantum (in millisecond resolution) for
each real-time process in the set specified by idtype and idlist.

The valid class-specific options for setting real-time parameters are:

-p rtpri Set the real-time priority of the specified process(es) to
rtpri.

-t tqntm [-r res] Set the time quantum of the specified process(es) to
tqntm. You may optionally specify a resolution as
explained below.

Any combination of the -p and -t options may be used with priocntl -s or
priocntl -e for the real-time class. If an option is omitted and the process is
currently real-time the associated parameter is unaffected. If an option is omitted
when changing the class of a process to real-time from some other class, the asso­
ciated parameter is set to a default value. The default value for rtpri is 0 and the
default for time quantum is dependent on the value of rtpri and on the system
configuration; see rt_dptbl(4).

When using the -t tqntm option you may optionally specify a resolution using
the -r res option. (If no resolution is specified, millisecond resolution is
assumed.) If res is specified it must be a positive integer between 1 and
1,000,000,000 inclusive and the resolution used is the reciprocal of res in seconds.
For example, specifying -t 10 -r 100 would set the resolution to hundredths of
a second and the resulting time quantum length would be 10/100 seconds (one
tenth of a second). Although very fine (nanosecond) resolution may be specified,
the time quantum length is rounded up by the system to the next integral multi­
ple of the system clock's resolution. For example the finest resolution currently
available on the 3B2 is 10 milliseconds (1 "tick"). If the -t and -r options are
used to specify a time quantum of 34 milliseconds, it is rounded up to 4 ticks (40
milliseconds) on the 3B2. Requests for time quantums of zero or quantums
greater than the (typically very large) implementation-specific maximum quantum
result in an error.

In order to change the class of a process to real-time (from any other class) the
user invoking priocntl must have super-user privileges. In order to change the
rtpri value or time quantum of a real-time process the user invoking priocntl
must either be super-user, or must currently be in the real-time class (shell run­
ning as a real-time process) with a real or effective user JD matching the real or
effective user ID of the target process.

10/89

priocntl (1) prlocntl (1)

The real-time priority and time quantum are inherited across the fork(2) and
exec(2) system calls.

Examples
priOCllt1 -8 -c RT -t 1 -r 10 -i idtype idlist

sets the class of any non-real-time processes selected by idtype and idlist to real­
time and sets their real-time priority to the default value of O. The real-time
priorities of any processes currently in the real-time class are unaffected. The
time quantums of all of the specified processes are set to 1/10 seconds.

priocnt1 -e -c RT -p 15 -t 20 com11'l!lnd

executes command in the real-time class with a real-time priority of 15 and a time
quantum of 20 milliseconds.

TIME-SHARING CLASS

10/89

The time-sharing scheduling policy provides for a fair and effective allocation of
the C;:::PU resource among prQcesses with varying CPU consumption characteris­
tics. The objectives of the time-sharing policy are to provide good response time
to interactive processes and good throughput to CPU-bound jobs while providing
a ~egree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (tsupri) values
that may be assigned to processes within the class. User priorities range from -x
to +x, where the value of x is configurable. The range for a specific installation
can be displayed by using the command

priocnt1 -1

The pUrp9se of the user priority is to provide some degree of user/application
control over the scheduling of processes in the time-sharing class. Raising or
lowering the tsupri value of a process in the time-sharing class raises or lowers
the schE)duling priority of the process. It is not guC\rahteed, however, that a
time-sharing process with a higher tsupri value will run before one with a lower
tsupri value. This is because the tsupri value is just one factor used to determine
the scheduling priority of a time-sharing process. The system may dynamically
adjust the internal scheduling priority of CI- time-sharing process baSlad on other
factors.such as recent CPU usage.

In addition to the system-wide limits on user priority (displayed with priocntl
-1), there is a per process user priority limit (tsuprilim), which specifies the max­
imum tsupri value that may be set for a given process.

The command

priocnt1 -d [-i idtype] [idlist]

displays the u,ser priority and user priority limit for each time-sharing process in
the set specified by idtype and idlist.

The valid class-specific options for setting time-sharing parameters are:

-In tsuprilim Set the user priority limit of the specified process(es) to
tsuprilim.

Page 5

prlocntl (1) prlocntl (1)

-p tsupri Set the user priority of the specified process(es) to tsupri.
Any time-sharing process may lower its own tsuprilim (or that of another process
with the same user 10). Only a time-sharing process with super-user privileges
may raise a tsuprilim. When changing the class of a process to time-sharing from
some other class, super-user privileges are required in order to set the ipitial
tsuprilim to a value greater than zero.

Any time-sharing process may set its own tsupri (or that of another process with
the same user ID) to any value less than or equal to the process's tsuprilim.
Attempts to set the tsupri above the tsuprilim (and/or set the tsuprilim below the
tsupn) result in the tsupri being set equal to the tsuprilim.
Any combination of the -1 and -p options may be used with priocnt1 -s or
priocnt1 -e for the time-sharing class. If an option is omitted and the process
is currently time-sharing the associated parameter is normally unaffected. The
exception is when the -p option is omitted and -1 is used to set a tsuprilim below
the current tsupri. In this case the tsupri is set equal to the tsuprilim which is
being set. If an option is omitted when changing the class of a process to time­
sharing from some other class, the associated parameter is set to a default value.
The default value for tsuprilim is 0 and the default for tsupri is to set it equal to
the tsuprilim value which is being set.

The time-sharing user priority and user priority limit are· inherited across the
fork(2) and exec(2) system calls.

Examples
priocnt1 -s -c TS -i idtype idlist

sets the class of any non-time-sharing processes selected by idtype and idlist to
time-sharing and sets both their user priority limit and user priority to O.
Processes already in the time-sharing class are unaffected.

priocntl -e -c TS -1 0 -p -15 command [arguments]
executes command with the arguments arguments in the time-sharing class with a
user priority limit of 0 and a user priority of -15.

SEE ALSO
ps(l), nice(l), priocnt1(2), rt_clptb1(4).

DIAGNOSTICS

Page 6

priocnt1 prints the following error messages:

Process (es) not found: None of the specified processes exists.

Specified processes from different classes: The -s option is being
used to set parameters, the -c class option is not present, and processes from
more than one class are specified.

Invalid option or argument: An unrecognized or invalid option or option
argument is used.

10/89

ps(1} ps(1}

NAME
ps - report process status

SYNOPSIS
ps [options]

DESCRIPTION

10/89

ps prints information about active processes. Without options, ps prints informa­
tion about processes associated with the controlling terminal. The output con­
tains only the process ID, terminal identifier, cumulative execution time, and the
command name. Otherwise, the information that is displayed is controlled by the
options.
Some options accept lists as arguments. Items in a list can be either separated by
commas or else enclosed in double quotes and separated by commas or spaces.
Values for proclist and grplist must be numeric.

The options are:

-e
-d
-a

-j
-f

-1
-c

-t termlist

-p proclist

-u uidlist

-q grplist

-s sesslist

Print information about every process now running.
Print information about all processes except session leaders.
Print information about all processes most frequently requested: all
those except process group leaders and processes not associated
with a terminal.
Print session 10 and process grOup ID.
Generate a full listing. (See below for significance of columns in a
full listing.)
Generate a long listing. (See below.)
Print information in a format that reflects scheduler properties as
described in priocntl(1). The -c option affects the output of the
-f and -1 options, as described below.
List only process data associated with the terminal given in termlist.
Terminal identifiers may be specified in one of two forms: the
device's me name (e.g., tty04) or, if the device's file name starts
with tty, just the digit identifier (e.g., 04).
List only process data whose process ID numbers are given in pro­
clist.
List only process data whose user ID number or login name is given
in uidlist. In the listing, the numerical user ID will be printed unless
you give the -f option, which prints the login name.
List only process data whose group leader's ID number(s) appears in
grplist. (A group leader is a process whose process ID number is
identical to its process group ID number.
List information on all session leaders whose IDs appear in sesslist.

Under the -f option, ps tries to. determine the command name and arguments
given when the process was created by examining the user block. Failing this,
the command name is printed, as it would have appeared without the -f option,
in square brackets.

Page 1

pS(1)

Page 2

ps(1)

The column headings and the meaning of the columns in a ps listing are given
below; the letters f and 1 indicate the option (full or long, respectively) that
causes the corresponding heading to appear; all means that the heading always
appears. Note that these two options determine only what information is pro­
vided for a process; they do not determine which processes will be listed.

F (1) Flags (hexadecimal and additive) associated with the process

S

UlD (f,1)

PlD (all)

PPlD (f,1)

C (f,l)

CLS (f,1)

PRl (1)

Nl (1)

ADDR (1)

00 Process has terminated: process table entry now avail­

01
02
04

08
10

able.
A system process: always in primary memory.
Parent is tracing process.
Tracing parent's signal has stopped process: parent is
waiting [ptrace(2) J.
Process is currently in primary memory.
Process currently in primary memory: locked until an
event completes.

The state of the process:

o Process is running on a processor.
S Sleeping: process is waiting for an event to complete.
R Runnable: process is on run queue.
I Idle: process is being created.
Z Zombie state: process terminated and parent not wait­

T

x

ing.
Traced: process stopped by a signal because parent is
tracing it.
SXBRK state: process is waiting for more primary
memory.

The user ID number of the process owner (the login name is
printed under the -f option).

The process ID of the process (this datum is necessary in order
to kill a process).

The process ID of the parent process.

Processor utilization for scheduling. Not printed when the -c
option is used.

Scheduling class. Printed only when the -c option is used.

The priority of the process. Without the -c option, higher
numbers mean lower priority. With the -c option, higher
numbers mean higher priority.

Nice value, used in priority computation. Not printed when
the -c option is used. Only processes in the time-sharing class
have a nice value.

The memory address of the process.

10/89

ps(1)

FILES

sz

WCHAN

STIME

TTY

ps(1)

(1) The size (in pages or clicks) of the swappable process's image
in main memory.

(1) The address of an event for which the process is sleeping, or in
SXBRK state, (if blank, the process is running).

(f) The starting time of the process, given in hours, minutes, and
seconds. (A process begun more than twenty-four hours
before the ps inquiry is executed is given in months and days.)

(all) The controlling terminal for the process (the message, ?, is
printed when there is no controlling terminal).

TIME (all) The cumulative execution time for the process.

COMMAND (all) The command name (the full command name and its argu-
ments are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for by the
parent, is marked <defunct>.

/dev
/dev/sxt/*
/dev/tty*
/dev/xt/*
/dev/kmem
/dev/swap
/dev/rrem
/etc/passwd
/etc/ps_data

terminal ("tty") names searcher files
kernel virtual memory
the default swap device
memory
UID information supplier
internal data structure

SEE ALSO

NOTES

10/89

kill(1), nice(1), priocntl(1).
getty(lM) in the System Administrator's Reference Manual.

Things can change while ps is running; the snap-shot it gives is true only for a
split-second, and it may not be accurate by the time you see it. Some data
printed for defunct processes is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout, and
stderr in that order, looking for the controlling terminal and will attempt to
report on processes associated with the controlling terminal. In this situation, if
stdin, stdout, and stderr are all redirected, ps will not find a controlling ter­
minal, so there will be no report.

On a heavily loaded system, ps may report an lseek error and exit. ps may seek
to an invalid user area address: having obtained the address of a process' user
area, ps may not be able to seek to that address before the process exits and the
address becomes invalid.

ps -ef may not report the actual start of a tty login session, but rather an earlier
time, when a getty was last respawned on the tty line.

Page 3

pwd(1)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1).

DIAGNOSTICS

pwd(1)

"Cannot open .. " and ''Read error in .. " indicate possible file system trouble and
should be referred to a UNIX system administrator.

NOTES

10/89

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd(1) command with a full path name to correct this situation.

Page 1

relogin(1M) relogin(1M)

NAME
relogin - rename login entry to show current layer

SYNOPSIS
/usr/lib/layersys/relogin [-s1 [line1

DESCRIPTION

FILES

The relogin command changes the terminal line field of a user's utnp entry to
the name of the windowing terminal layer attached to standard input. write
messages sent to this user are directed to this layer. In addition, the who com­
mand will show the user associated with this layer. relogin may only be
invoked under layers.

relogin is invoked automatically by layers to set the utnp entry to the terminal
line of the first layer created upon startup, and to reset the utnp entry to the real
line on termination. It may be invoked by a user to designate a different layer to
receive write messages.

-s Suppress error messages.

line Specifies which utmp entry to change. The utnp file is searched for an
entry with the specified line field. That field is changed to the line asso­
ciated with the standard input. (To learn what lines are associated with
a. given user, say jdoe, type ps -f -u jdoe and note the values shown
in the TTY field [see ps(1)]).

/var/adm/utnp database of users versus terminals

SEE ALSO
layers(1), mesg(l), ps(1), who(1), write(1), in the User's Reference Manual.
utmp(4).

DIAGNOSTICS

NOTES

10/89

Returns 0 upon successful completion, 1 otherwise.

relogin will fail, if line does not belong to the user issuing the relogin com­
mand or standard input is not associated with a terminal.

Page 1

rep (1) rep (1)

NAME
rep - remote file copy

SYNOPSIS
rep [-p 1 filenamel filename2
rep [-pr 1 filename . . . directory

DESCRIPTION

FILES

The rep command copies files between machines. Each filename or directory argu­
ment is either a remote file name of the form:

hostname :path

or a local file name (containing no : characters, or a / before any: characters).

If a filename is not a full path name, it is interpreted relative to your home direc­
tory on hostname. A path on a remote host may be quoted (using \, ", or ') so
that the metacharacters are interpreted remotely.

rep does not prompt for passwords; your current local user name must exist on
hostname and allow remote command execution by rsh(1).

rep handles third party copies, where neither source nor target files are on the
current machine. Hostnames may also take the form

username@hostname:filename

to use username rather than your current local user name as the user name on the
remote host. rep also supports Internet domain addressing of the remote host, so
that:

username@host . domain: filename

specifies the usemame to be used, the hostname, and the domain in which that
host resides. Filenames that are not full path names will be interpreted relative to
the home directory of the user named username, on the remote host.

The destination hostname may also take the form hostname.username:filename to
support destination machines that are running older versions of rep.

The following options are available:

-p Attempt to give each copy the same modification times, access times, and
modes as the original file.

-r Copy each subtree rooted at filename; in this case the destination must be a
directory.

$HOME/ • profile

SEE ALSO

NOTES

10/89

ftp(1), rlogin(1), rsh(1), hosts. equiv(4).

rep is meant to copy between different hosts; attempting to rep a file onto itself,
as with:

Page 1

rcp (1)

Page 2

rqp tmp/file myhost:/tmp/file
results in a severely corrupted file.

rcp(1}

rep does not detect all cases where the target of a copy might be a file in cases
where only a directory should be legal.

rep can become confused by output generated by commands in a
$HOME:/ . profile on the remote host.

rep requires that the source host have permission to execute commands on the
remote host when doing third-party copies.

If you forget to quote metacharacters intended for th~ remote host you get an
incomprehensible error message.

10/89

rlogin (1) rlogin(1)

NAME
r10gin - remote login

SYNOPSIS
r10gin [-L 1 [-8 1 [-e c 1 [-1 username 1 hostname

DESCRIPTION

10/89

rlogin establishes a remote login session from your terminal to the remote
machine named hDstname.

Hostnames are listed in the hosts database, which may be contained in the
/ etc/hosts file, the Internet domain name server, or in both. Each host has one
official name (the first name in the database entry), and optionally one or more
nicknames. Either official hostnames or nicknames may be specified in hostname.

Each remote machine may have a file named / etc/hosts. equiv containing a list
of trusted hostnames with which it shares usernames. Users with the same user­
name on both the local and remote machine may r10gin from the machines list­
ed in the remote machine's /etc/hosts.equiv file without supplying a pass­
word. Individual users may set up a similar private equivalence list with the file
. rhosts in their home directories. Each line in this file contains two names: a
host name and a username separated by a space. ~n entry in a remote user's
. rhosts file permits the user named username who is logged into hostname to log
in to the remote machine as the remote user without supplying a password. If
the name of the local host is not found in the /etc/hosts.equiv file on the re­
mote machine, and the local username and hostname are not found in the remote
user's. rhosts file, then the remote machine will prompt for a password. Host­
names listed in /etc/hosts.equiv and .rhosts files must be the official host­
names listed in the hosts database; nicknames may not be used in either of these
files.

To counter security problems, the . rhosts file must be owned by either the re­
mote user or by root.

The remote terminal type is the same as your local terminal type (as given in
your environment TERM variable). The terminal or window size is also copied to
the remote system if the server supports the option, and changes in size are
reflected as well. All echoing takes place at the remote site, so that (except for
delays) the remote login is transparent. Flow control using Ctr1-S and Ctr1-Q
and flushing of input and output on interrupts are handled properly.

The following options are available:

-L Allow the r10gin session to be run in litout mode.

-8 Pass eight-bit data across the net instead of seven-bit data.

-e c Specify a different escape character, c, for the line used to disconnect from
the remote host.

-1 username
Specify a different username for the remote login. If you do not use this
option, the remote username used is the same as your local username.

Page 1

rlogln (1) rlogln(1)

Escape Sequences

FILES

Lines that you type which start with the tilde character are escape sequences (the
escape character can be changed using the -e options):

Disconnect from the remote host - this is not the same as a logout,
because the local host breaks the connection with no warning to the
remote end.

susp Suspend the login session (only if you are using a shell with Job Control).
susp is your suspend character, usually see tty(l).

/etc/passwd
/usr/hosts/*
/etc/hosts.equiv
$HOME/ .rhosts

for hostname version of the command
list of trusted hostnames with shared usernames
private list of trusted hostname/username combinations

SEE ALSO

NOTES

Page 2

rsh(1), stty(1), tty(l), narred(lM), hosts(4), hosts. equiv(4).

When a system is listed in hosts. equi v, its security must be as good as local
security. One insecure system listed in hosts.equiv can compromise the secu­
rity of the entire system.

If you use a windowing terminal and you intend to run layers(1) on the remote
system, then you must invoke rlogin with the -8 option.

This implementation can only use the TCP network service.

10/89

rm(1) rm(1)

NAME
rIll, rmdir - remove files or directories

SYNOPSIS
rm (-f) (-i) file ...
rm -r (-f) (-i) dirname ... (file ...)

rmdir (-p) (-8) dirname .. .

DESCRIPTION
rm removes the entries for one or more files from a directory. If a file has no
write permission and the standard input is a terminal, the full set of permissions
(in octal) for the file are printed followed by a question mark. This is a prompt
for confirmation. If the answer begins with y (for yes), the file is deleted, other­
wise the file remains.

If file is a symbolic link, the link will be removed, but the file or directory to
which it refers will not be deleted. A user does not need write permission on a
symbolic link to remove it, provided they have write permissions in the directory.

Note that if the standard input is not a terminal, the command will operate as if
the -f option is in effect.

Three options apply to rm:

-f This option causes the removal of all files (whether write-protected or not)
in a directory without prompting the user. In a write-protected directory,
however, files are never removed (whatever their permissions are), but no
messages are displayed. If the removal of a write-protected directory is
attempted, this option will not suppress an error message.

-r This option causes the recursive removal of any directories and subdirec­
tories in the argument list. The directory will be emptied of files and
removed. Note that the user is normally prompted for removal of any
write-protected files which the directory contains. The write-protected files
are removed without prompting, however, if the -f option is used, or if the
standard input is not a terminal and the -i option is not used.

Symbolic links that are encountered with this option will not be traversed.

If the removal of a non-empty, write-protected directory is attempted, the
command will always fail (even if the -f option is used), resulting in an
error message.

-i With this option, confirmation of removal of any write-protected file occurs
interactively. It overrides the -f option and remains in effect even if the
standard input is not a terminal.

Two options apply to rmdir:

-p This option allows users to remove the directory dirname and its parent
directories which become empty. A message is printed on standard output
about whether the whole path is removed or part of the path remains for
some reason.

10/89 Page 1

rm(1) rm(1)

-8 This option is used to suppress the message printed on standard error when
-p is in effect.

DIAGNOSTICS
All messages are generally self-explanatory.
It is forbidden to remove the files and in order to avoid the conse­
quences of inadvertently doing something like the following:

on -r .*
Both on and ondir return exit codes of 0 if all the specified directories are
removed successfully. Otherwise, they return a non-zero exit code.

SEE ALSO

NOTES

Page 2

unlink(2), ondir(2) in the Programmer's Reference Manual.

A -- permits the user to mark explicitly the end of any command line options,
allowing on to recognize filename arguments that begin with a -; As an aid to
BSD migration, on will accept - as a synonym for --. This migration aid may
disappear in a future release. If a -- and a - both appear on the same command
line, the second will be interpreted as a filename.

10/89

rsh (1) rsh(1)

NAME
rsh - remote shell

SYNOPSIS
rsh [-n] [-1 username] hostname command

rsh hostname [-n] [-1 username] command
hostname [-n] [-1 username] command

DESCRIPTION

10/89

rsh connects to the specified hostname and executes the specified command. rsh
copies its standard input to the remote command, the standard output of the
remote command to its standard output, and the standard error of the remote
command to its standard error. Interrupt, quit and terminate signals are pro­
pagated to the remote command; rsh normally terminates when the remote com­
mand does.

If you omit command, instead of executing a single command, rsh logs you in on
the remote host using r1oqin(1). Shell metacharacters which are not quoted are
interpreted on the local machine, while quoted metacharacters are interpreted on
the remote machine. See EXAMPLFS.

Hostnames are given in the hosts database, which may be contained in the
/ etc/hosts file, the Internet domain name database, or both. Each host has one
official name (the first name in the database entry) and optionally one or more
nicknames. Official hostnames or nicknames may be given as hostname.
If the name of the file from which rsh is executed is anything other than rsh,. rsh
takes this name as its hostname argument. This allows you to create a symbolic
link to rsh in the name of a host which, when executed, will invoke a remote
shell on that host. By creating a directory and populating it wih symbolic links in
the names of commonly used hosts, then including the directory in your shell's
search path, you can run rsh by typing hostname to your shell.

Each remote machine may have a file named / etc/hosts. equi v containing a list
of trusted hostnames with which it shares usernames. Users with the same user­
name on both the local and remote machine may rsh from the machines listed in
the remote machine's /etc/hosts file. Individual users may set up a similar
private equivalence list with the file . rhosts in their home directories. Each line
in this file contains two names: a hostname and a username separated by a space.
The entry permits the user named username who is logged into hostname to use
rsh to access the remote machine as the remote user. If the name of the local
host is not found in the / etc/hosts. equi v file on the remote machine, and the
local username and hostname are not found in the remote user's . rhosts file,
then the access is denied. The hostnames listed in the /etc/hosts.equiv and
. rhosts files must be the official hostnames listed in the hosts database; nick­
names may not be used in either of these files.

rsh will not prompt for a password if access is denied on the remote machine
unless the command argument is omitted.

Page 1

rsh (1) rsh(1)

OPTIONS
-1 username

Use username as the remote usemame instead of your local usemame. In
the absence of this option, the remote usemame is the same as your local
username.

-n Redirect the input of rsh to /dev/null. You sometimes need this option
to avoid unfortunate interactions between rsh and the shell.which invokes
it. For example, if you are running reh and invoke a rsh in the back­
ground without redirecting its input away from the terminal, it will block
even if no reads are posted by the remote command. The -n option will
prevent this.

The type of remote shell (sb, rsb. or other) is determined by the user's entry in
the file /etc/passwd on the remote system.

EXAMPLES

FILES

The command:

rsh lizard cat lizard.file » example.file

appends the remote file lizard. file from the machine called '1izard" to the file
called example. file on the machine called "example," while the command:

rsh lizard cat lizard.file "»" lizard.file2

appends the file lizard. file on the machine called '~ard" to the file
another. lizard. file which also resides on the machine called '1izard."

/ete/hosts
/ete/passwd

SEE ALSO

NOTES

Page 2

rloqin(t), viet), named(tM), hosts(4), hosts. equiv(4).

When a system is listed in hosts.equiv, its security must be as good as local
security. One inseCure systepl listed in hosts.equiv can compromise the secu­
rity of the entire system.

You cannot run an interactive command [such as vi(1»); use rloqin if you wish
to do so.

Stop signals stop the local rsh process only; this is arguably wrong, but currently
hard to fix for reasons too complicated to explain here.

The current local environment is not passed to the remote shell.

Sometimes the -n option is needed for reasons that are less than obvious. For
example, the command:

reh somehost dd if-/dev/nrmtO bsz 20b I tar xvpBf -

will put your shell into a strange state. Evidently, what happens is that the tar
termmates before the rsb. The rsh then tries to write into the "broken pipe"
and, instead of terminating neatly, proceeds to compete with your shell for its
standard input. Invoking rsh with the ...,n option avoids such incidents.

10/89

rsh(1)

10/89

rsh{1)

This bug occurs only when J;'sh is at the beginning of a pipeline and is not read­
ing standard input. Do not use the -n if rsh actually needs to read standard
input. For example,

tar cf - . I rsh sundial dd of=/dev/rmtO Obs=20b

does not produce the bug. If you were to use the -n in a case like this, rsh
would incorrectly read from /dev/null instead of from the pipe.

Page 3

ruptime(1) ruptime(1)

NAME
ruptime - show host status of local machines

SYNOPSIS
ruptime [-a1rtu I

DESCRIPTION

FILES

ruptime gives a status line like uptime for each machine on the local network;
these are formed from packets broadcast by each host on the network once a
minute.

Machines for which no status report has been received for 5 minutes are shown
as being down.

Normally, the listing is sorted by host name, but this order can be changed by
specifying one of the options listed below.

The following options are av~lable:
-a Count even those users who have been idle for an hour or more.

-1 Sort the display by load average.
-r Reverse the sorting order.

-t Sort the display by up time.

-u Sort the display by number of users.

/var/spoo1/rwho/whod.*

SEE ALSO
rwho(l), rwhod(lM).

10/89 Page 1

rwho(1) rwho (1)

NAME
rwho - who's logged in on local machines

SYNOPSIS
rwho [-a 1

DESCRIPTION

FILES

The rwho command produces output similar to who(l), but for all machines on
your network. If no report has been received from a machine for 5 minutes, rwho
assumes the machine is down, and does not report users last known to be logged
into that machine.

If a user has not typed to the system for a minute or more, rwho reports this idle
time. If a user has not typed to the system for an hour or more, the user is omit­
ted from the output of rwho unless the -a flag is given.

The -a option reports all users whether or not they have typed to the system in
the past hour.

/var/spool/rwho/whod. oJ< information about other machines

SEE ALSO

NOTES

10/89

finger(1), ruptime(1), who(1), rwhod(1M).

Does not work through gateways.

This is unwieldy when the number of machines on the local net is large.

The rwho service daemon, rwhod(lM), must be enabled for this command to
return useful results.

Page 1

sag(1) sag(1)

NAME
sag - system activity graph

SYNOPSIS
sag [options]

DESCRIPTION
sag graphically displays the system activity data stored in a binary data file by a
previous sar(l) run. Any of the sar data items may be plotted singly, or in com­
bination; as cross plots, or versus time. Simple arithmetic combinations of data
may be specified. sag invokes sar and finds the desired data by string-matching
the data column header (run sar to see what is available). These options are
passed through to sar:

-s time Select data later than time in the form hh [:mm]. Default is 08:00.

-e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-f file Use file as the data source for sar. Default is the current daily data file
lusrl adm/ sal sadd.

Other options:

-T term Produce output suitable for terminal term. See tplot(1G) for known
terminals. Default for term is $TERK

-x spec x axis specification with spec in the form:
"name lop name] ... [10 hi]"

-y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report, with an
optional device name in square brackets, e.g., r+w/s [dsk-11, or an integer value.
Op is + - * or I surrounded by blanks. Up to five names may be specified.
Parentheses are not recognized. Contrary to custom, + and - have pre­
cedence over * and I". Evaluation is left to right. Thus A I A + B * 100 is
evaluated (A/(A+B»*l00, and A + B / C + D is (A+B)/(C+D). Lo and hi are
optional numeric scale limits. If unspecified, they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5
spec's separated by ; may be given for -yo Enclose the -x and -y arguments in
" " if they include whitespace. The -y default is:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES

10189

To see today's CPU utilization:
sag

To see activity over 15 minutes of all disk drives:
TS=date +%H:%M
sar -0 tempflle 60 15
TE=date +%H:%M
sag -f tempfile -s $TS -e $TE -y "r+w/s[dsk]"

Page 1

sag(1)

FILES
/usr/adm/sa/satid

SEE ALSO
sar(1).

Page 2

sag(1)

daily data file for day dd.

10/89

sar (1) sar (1)

NAME
sar - system activity reporter

SYNOPSIS
sar [-ubdycwaqvnpgrkxDSAC] [-0 file] t [n]

sar [-ubdycwaqvmpgrkxDSAC 1 [-s time 1 [-e time 1 [-i sec 1 [-f file 1
DESCRIPTION

sar in the first instance, samples cumulative activity counters in the operating
system at n intervals of t seconds, where t should be 5 or greater. If t is specified
with more than one option, all headers are printed together and the output may
be difficult to read. (If the sampling interval is less than 5, the activity of sar
itself may affect the sample.) If the -0 option is specified, it saves the samples in
file in binary format. The default value of n is 1. In the second instance, with no
sampling interval specified, sar extracts data from a previously recorded file,
either the one specified by the -f option or, by default, the standard system
activity daily data file /var/adm/sa/sadd for the current day dd. The starting
and ending times of the report can be bounded via the -s and -e time arguments
of the form hh[:mm[:ss)). The -i option selects records at sec second intervals.
Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running
in system mode, idle with some process waiting for block I/O, and other­
wise idle. When used with -0, %sys is split into percent of time servicing
requests from remote machines (%sys remote) and all other system time
(%sys local). If you are using a 3B2 Computer with a co-processor the CPU
utilization (default) report will contain the following fields:
%usr, %sys, %idle, scall/s - where scalls/s is the number of system calls, of
all types, encountered on the co-processor per second.

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers and
disk or other block devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, i. e., (l-bread/lread) as a percentage;
pread/s, pwrit/s - transfers via raw (physical) device mechanism. When
used with -0, buffer caching is reported for locally-mounted remote
resources.

-d Report activity for each block device, e. g., disk or tape drive, with the
exception of XDC disks and tape drives. When data is displayed, the device
specification dsk- is generally used to represent a disk drive. The device
specification used to represent a tape drive is machine dependent. The
activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer
request, average number of requests outstanding during that time;
r+w Is, blks/ s - number of data transfers from or to device, number of
bytes transferred in 512-byte units;

10/89 Page 1

sar(1)

Page 2

sar(1)

avwait, avserv - average time in ms. that transfer requests wait idly on
queue, and average time to be serviced (which for disks includes seek, rota­
tional latency and data transfer times).

-y Report TIY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate pro­
cessed by canon, output character rate;
revin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt rates.

-c Report system calls:
scall/s - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system calls.
When used with -0, the system calls are split into incoming, outgoing, and
strictly local calls. No incoming or outgoing fork and exec calls are
reported.

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of
512-byte units transferred for swapins and swapouts (including initial load­
ing of some programs);
pswch/ s - process switches.

-a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - these are no longer reported by sar.

-v Report status of process, i-node, file tables:
proc-sz, inod-sz, file-sz, lock-sz - entries/size for each table, evaluated once
at sampling point;
ov - overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-p Report paging activities:
atch/s - page faults per second that are satisfied by reclaiming a page
currently in memory (attaches per second);
pgin/s - page-in requests per second;
ppgin/s - pages paged-in per second;
pflt/s - page faults from protection errors per second (illegal access to
page) or "copy-on-writes";
vflt/s - address translation page faults per second (valid page not in
memory);
slock/s - faults per second caused by software lock requests requiring phy­
sicall/O.

-g Report paging activities:
pgout/s - page-out requests per second;
ppgout/s - pages paged-out per second;
pgfree/s - pages per second placed on the free list by the page stealing dae­
mon;

10/89

sar(1) sar (1)

pgscan/s - pages per second scanned by the page stealing daemon.
%s5ipf - the percentage of 55 inodes taken off the freelist by iget which had
reusable pages associated with it. These pages are flushed and cannot be
reclaimed by processes. Thus this is the percentage of igets with page
flushes.

-r Report unused memory pages and disk blocks:
freemem - average pages available to user processes;
freeswap - disk blocks available for page swapping.

-k Report kernel memory allocation (KMA) activities:
smt mem, alloc, fail - information about the memory pool reserving and
allocating space for small requests: the amount of memory in bytes KMA
hal; for the small pool, the number of bytes allocated to satisfy requests for
small amounts of memory, and the number of requests for small amounts of
memory that were not satisfied (failed);
Ig_ mem; alloc, fail - information for the large memory pool (analogous to
the information for the small memory pool);
ovsz _alloc, fail - the amount of memory allocated for oversize requests and
the number of oversize requests which could not be satisfied (because over­
sized memory is allocated dynamically, there is not a pool).

-x Report remote file sharing (RFS) operations:
open/s,create/s, lookup/s, readdir/s,getpage/s, putpage/s, other/s - The
number of open, create, lookup, readdir, getpage, putpage, and other opera­
tions made per second by clients (incoming) and by the server (outgoing).

-0 Report Remote File Sharing activity:
When used in combination with -u, -b or -c, it causes sar to produce the
remote tile sharing version of the corresponding report. -Ou is assll!l'ed
when only -0 is specified.

-s Report server and request queue status: .
serv flo-hi - average number of Remote File Sharing servers on the system
00 and hi are the minimum and maximum number of servers respectively.)
request %busy - % of time receive descriptors are on the request queue
request avg 19th - average number of receive descriptors waiting for service
when queue is occupied
server %avail - % of time there are idle servers
server avg avail - average number of idle servers when idle ones exist

-A Report all data. Equivalent to -u~wcaywpgrkxSDC.

-C Report Remote File Sharing data caching overhead:
snd-inv/s - number of invalidation messages per second sent by your
machine as a server.
snd-msg/s - total outgoing RFS messages sent per second.
rcv-inv / s - number of invalidation messages received from the remote
server.
rcv-msg/ s - total number of incoming RFS messages received per second.
dis:bread/s - number of read messages that would be eligible for caching if
caching had not been turned off because of an invalidation message. (Indi­
cates the penalty incurred because of the invalidation message.)

10/89 Page 3

sar(1) sar(1)

blk-inv /s - number of pages removed from the client cache in response to
cache invalidation messages.

EXAMPLES

FILES

To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -0 tenp 60 10

To tater review disk and tape activity from that period:

sar -d -f tenp

Ivar/admlsa/sadd daily data file, where dd are digits representing the day of
the month.

SEE ALSO
sag(1G), sar(1M).

Page 4 10/89

script(1) script (1)

NAME
script - make typescript of a terminal session

SYNOPSIS
script [-a 1 [filename 1

DESCRIPTION

NOTES

10/89

script makes a typescript of everything printed on your terminal. The
typescript is written to filename, or appended to filename if the -a option is given.
If no file name is given, the typescript is saved in the file typescript.

The script ends when the forked shell exits or when ctrl-D is typed.

script places everything that appears on the screen in the log file, including
prompts.

Page 1

sdiff(1) sdlff(1)

NAME
sdiff - print file differences side-by-side

SYNOPSIS
sdiff [options J filel file2

DESCRIPTION
sdiff uses the output of the diff command to produce a side-by-side listing of
two files indicating lines that are different. Lines of the two files are printed with
a blank gutter between them if the lines are identical, a < in the gutter if the line
appears only in filel, a > in the gutter if the line appears only in file2, and a I for
lines that are different. For example:

x I y
a a
b <
c <
d d

> c

Valid options are:

-w n Use the argument n as the width of the output line. The default line
length is 130 characters.

-1 Print only the left side of any lines that are identical.

-s Do not print identical lines.

-0 output Use the argument output as the name of a third file that is created as
a user-controlled merge of filel and file2. Identical lines of filel and
file2 are copied to output . . Sets of differences, as produced by diff,
are printed; where a set of differences share a common gutter charac­
ter. After printing each set of differences, sdiff prompts the user
with a % and waits for one of the following user-typed commands:

1 Append the left column to the output file.
r Append the right column to the output file.
s Turn on silent mode; do not print identical lines.
v Turn off silent mode.
e 1 Call the editor with the left column.
e r Call the editor with the right column.
e b Call the editor with the concatenation of left and right.
e Call the editor with a zero length file.
q Exit from the program.

On exit from the editor, the resulting file is concatenated to the end
of the output file.

SEE ALSO
diff(1), ed(1).

10/89 Page 1

sed (1) sed(1)

NAME
sed - stream editor

SYNOPSIS
sed [-n] [-e script] [-f sfile] [file ... 1

DESCRIPTION

10/89

sed copies the named file (standard input default) to the standard output, edited
according to a script of commands. The -f option causes the script to be taken
from file sfile; these options accumulate. If there is just one -e option and no -f
options, the flag -e may be omitted. The -n option suppresses the default out­
put. A script consists of editing commands, one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all com­
mands whose addresses select that pattern space, and at the end of the script
copies the pattern space to the standard output (except under -n) and deletes the
pattern space.

Some of the commands use a hold space to save all or part of the pattern space for
subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively across
files, a $ that addresses the last line of input, or a context address, i.e., a/regular
expression/ in the style of ed(1) modified thus:

In a context address, the construction \?regular expression?, where? is any
character, is identical to /regular expression/. Note that in the con­
text address \xa.bc\xd.efx, the second x stands for itself, so that
the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern space.
A period (.) matches any character except the terminal new-line of the

pattern space.
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches

the address.
A command line with two addresses selects the inclusive range from the

first pattern space that matches the first address through the next
pattern space that matches the second address. (If the second
address is a number less than or equal to the line number selected
by the first address, only the line corresponding to the first address
is selected.) Thereafter the process is repeated, looking again for
the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function! (below).

In the following list of functions the maximum number of permissible addresses
for each function is indicated in parentheses.

Page 1

sed(1)

Page 2

sed(1)

The text argument consists of one or more lines, all but the last of which end
with \ to hide the new-line. Backslashes in text are treated like backslashes in the
replacement string of an s command, and may be used to protect initial blanks
and tabs against the stripping that is done on every script line. The rfile or wfile
argument must terminate the command line and must be preceded by exactly one
blank. Each wfile is created before processing begins. There can be at most 10
distinct wfile arguments.

(l)a\
text Append. Place text on the output before reading the next input line.

(2)b label Branch to the: command bearing the label. If label is empty, branch

(2)c\
text

(2)d

(2)0

(2)g

(2)G

(2)h

(2)H

(1)1\
text
(2) 1

(2)n

(2)N

(2)p

(2)p

(1)q

(2) r rfile

to the end of the script.

Change. Delete the pattern space. Place text on the output. Start the
next cycle.

Delete the pattern space. Start the next cycle.

Delete the initial segment of the pattern space through the first new­
line. Start the next cycle.

Replace the contents of the pattern space by the contents of the hold
space.

Append the contents of the hold space to the pattern space.

Replace the contents of the hold space by the contents of the pattern
space.

Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.

List the pattern space on the standard output in an unambiguous
form. Non-printable characters are displayed in octal notation and
long lines are folded.

Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.

Append the next line of input to the pattern space with an embedded
new-line. (The current line number changes.)

Print. Copy the pattern space to the standard output.

Copy the initial segment of the pattern space through the first new­
line to the standard output.

Quit. Branch to the end of the script. Do not start a new cycle.

Read the contents of rfile. Place them on the output before reading the
next input line.

(2) s / regular expression / replacement / flags
Substitute the replacement string for instances of the regular expression
in the pattern space. Any character may be used instead of /. For a
fuller description see ed(1). flags is zero or more of:

10/89

sed (1) sed (1)

n n= 1 - 512. Substitute for just the nth occurrence of the regu­
lar expression.

q Global. Substitute for all nonoverlapping instances of the reg­
ular expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfi1e Write. Append the pattern space to wfi1e if a replacement
was made.

(2) t label Test. Branch to the : command bearing the label if any substitutions
have been made since the most recent reading of an input line or exe­
cution of a t. If label is empty, branch to the end of the script.

(2) w wfi1e Write. Append the pattern space to wfi1e. The first occurrence of w
will cause wfi1e to be cleared. Subsequent invocations of w will
append. Each time the sed command is used, wfi1e is overwritten.

(2) x Exchange the contents of the pattern and hold spaces.

(2) y / stringl / string2 /
Transform. Replace all occurrences of characters in stringl with the
corresponding characters in string2. stringl and string2 must have the
same number of characters.

(2)! function
Don't. Apply the function (or group, if function is {) only to lines not
selected by the addressees).

(0): label This command does nothing; it bears a label for band t commands to
branch to.

(1) = Place the current line number on the standard output as a line.

(2) { Execute the following commands through a matching } only when the
pattern space is selected.

(0) An empty command is ignored.

(0) I If a I appears as the first character on a line of a script file, then that
entire line is treated as a comment, with one exception: if a I appears
on the first line and the character after the I is an n, then the default
output will be suppressed. The rest of the line after In is also ignored.
A script file must contain at least one non-comment line.

SEE ALSO
awk(l), ed(1), qrep(l).

10/89 Page 3

sh(1)

NAME

sh(1)

sh, jsb, rsh - shell, the standard, job control, and restricted command inter­
preter

SYNOPSIS
sh [-acefhiknprstuvx] [args]
jsh [-acefhiknprstuvx] [args]
rsh [-acefhiknprstuvx] [args]

DESCRIPTION
sh is a command programming language that executes commands read from a
terminal or a file. The command jsh is an interface to the shell which provides
all of the functionality of sh and enables Job Control (see "Job Control," below).
rsh is a restricted version of the standard command interpreter sh; It is used to
restrict logins to execution environments whose capabilities are more controlled
than those of the standard shell. See '1nvocation," below for the meaning of
arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of ASCII letters, digits, or
underscores, beginning with a letter or an underscore. A parameter is a name, a
digit, or any of the characters *, @, t, ?, -, $, and ! \

Commands

10/89

A simple-command is a sequence of non-blank words separated by blanks. The first
word specifies the name of the command to be executed. Except as specified
below, the remaining words are passed as arguments to the invoked command.
The command name is passed as argument 0 [see exec(2)]. The value of a simple­
command is its exit status if it terminates normally, or (octal) 200+status if it ter­
minates abnormally; see signal(S) for a list of status values.

A pipeline is a sequence of one or more commands separated by I. The standard
output of each command but the last is connected by a pipe(2) to the standard
input of the next command. Each command is run as a separate process; the shell
waits for the last command to terminate. The exit status of a pipeline is the exit
status of the last command in the pipeline.

A list is a sequence of one or more pipelines separated by ;, &, &&, or 1 I, and
optionally terminated by ; or &. Of these four symbols, ; and & have equal pre-
cedence, which is lower than that of && and 1 I. The symbols && and 1 1 also
have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline (Le., the shell waits for the pipeline to finish before executing
any commands following the semicolon); an ampersand (&) causes asynchronous
execution of the preceding pipeline (Le., the shell does not wait for that pipeline
to finish). The symbol && (1 I) causes the list following it to be executed only if
the preceding pipeline returns a zero (non-zero) exit status. An arbitrary number
of new-lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last simp/e-command exe­
cuted in the command.

Page 1

sh(1) sh(1)

for name [in word ... 1 do list done
Each time a for command is executed, name is set to the next word taken
from the in word list. If in word ... is omitted, then the for command
executes the do list once for each positional parameter that is set (see
"Parameter Substitution," below). Execution ends when there are no
more words in the list.

case word in [pattern [I pattern 1 ...) list ;; 1 ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file­
name generation (see "File Name Generation") except that a slash, a lead­
ing dot, or a dot immediately following a slash need not be matched
explicitly.

if list then list [elif list then list 1 ... [else list 1 fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next then
is executed. Failing that, the else list is executed. If no else list or then
list is executed, then the if command returns a zero exit status.

while list do list done

(list)

A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; other­
wise the loop terminates. If no commands in the do list are executed, then
the while command returns a zero exit status; until may be used in
place of while to negate the loop termination test.

Execute list in a sub-shell.
{list;}

list is executed in the current (that is, parent) shell. The { must be fol­
lowed by a space.

name () {list;}
Define a function which is referenced by name. The body of the function
is the list of commands between { and }. The { must be followed by a
space. Execution of functions is described below (see "Execution"). The {
and} are unnecessary if the body of the function is a command as defined
above, under "Commands."

The following words are only recognized as the first word of a command and
when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with t causes that word and all the following characters up to
a new-line to be ignored.

Command Substitution

Page 2

The shell reads commands from the string between two grave accents (, ,) and
the standard output from these commands may be used as all or part of a word.
Trailing new-lines from the standard output are removed.

10/89

sh(1) sh(1)

No interpretation is done on the string before the string is read, except to remove
backslashes (\) used to escape other characters. Backslashes may be used to
escape a grave accent (,) or another backslash (\) and are removed before the
command string is read. Escaping grave accents allows nested command substi­
tution. If the command substitution lies within a pair of double quotes (" ... '

, ..• II), a backslash used to escape a double quote (\ II) will be removed;
otherwise, it will be left intact.

If a backslash is used to escape a new-line character (\new-line), both the
backslash and the new-line are removed (see the later section on "Quoting"). In
addition, backslashes used to escape dollar signs (\$) are removed. Since no
parameter substitution is done on the command string before it is read, inserting
a backslash to escape a dollar sign has no effect. Backslashes that precede charac­
ters other than \, , , ", new-line, and $ are left intact When the command string
is read.

Parameter Substitution

10/89

The character $ is used to introduce substitutable parameters. There are two types
of parameters, positional and keyword. If parameter is a digit, it is a positional
parameter. Positional parameters may be assigned values by set. Keyword
parameters (also known as variables) may be assigned values by writing:

name=value [name=value 1 ...
Pattern-matching is not performed on value. There cannot be a function and a
variable with the same name .

$ {parameter }
The value, if any, of the parameter is substituted. The braces are required
only when parameter is followed by a letter, digit, or underscore that is not
to be interpreted as part of its name. If parameter is * or @, all the posi­
tional parameters, starting with $1, are substituted (separated by spaces).
Parameter $0 is set from argument zero when the shell is invoked.

$ {parameter: -word}
If parameter is set and is non-null, substitute its value; otherwise substitute
word.

$ {parameter: =word}
If parameter is not set or is null set it to word; the value of the parameter is
substituted. Positional parameters may not be assigned in this way.

$ {parameter: ?word}
If parameter is set and is non-null, substitute its value; otherwise, print
word and exit from the shell. If word is omitted, the message "parameter
null or not set" is printed.

$ {parameter: +word}
If parameter is set and is non-null, substitute word; otherwise substitute
nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not set or is
null:

Page 3

sh(1)

Page 4

sh(1)

echo ${d:-' pwd' }

If the colon (:) is omitted from the above expressions, the shell only checks
whether parameter is set or not.

The following parameters are automatically set by the shell.
t The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed

command.
$ The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell. The parameters in this section
are also referred to as environment variables.

HOME The default argument (home directory) for the cd command, set to
the user's login directory by login(l) from the password file [see
passwd(4)].

PATH The search path for commands (see "Execution," below). The user
may not change PATH if executing under rsh.

CDPATH
The search path for the cd command.

MAIL If this parameter is set to the name of a mail file and the MAILPATH
parameter is not set, the shell informs the user of the arrival of
mail in the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell will check
for the arrival of mail in the files specified by the MAILPATH or
MAIL parameters. The default value is 600 seconds (10 minutes).
If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified
files. Each file name can be followed by % and a message that will
be printed when the modification time changes. The default mes­
sage is you have mail.

PSl Primary prompt string, by default"$ ".
PS2 Secondary prompt string, by default"> ".
IFS Internal field separators, normally space, tab, and new-line (see

"Blank Interpretation").
LANG If this parameter is set, the shell will use it to determine the

current locale; see environ(S), setlocale(3C).
SHACCT

If this parameter is set to the name of a file writable by the user,
the shell will write an accounting record in the file for each shell
procedure executed.

10/89

sh(1) sh(1)

SHELL When the shell is invoked, it scans the environment (see "Environ­
ment," below) for this name. If it is found and rsh is the file
name part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH" PS1, PS2, MAILCHECK. and IFS. HCME and
MAIL are set by loqin(1).

Blank Interpretation
After parameter and command substitution, the results of SUbstitution are
scanned for internal field separator characters (those found in IFS) and split into
distinct arguments where such characters are found. Explicit null arguments (""
or ' ,) are retained. Implicit null arguments (those resulting from parameters
that have no values) are removed.

Input/Output

10/89

A command's input and output may be redirected using a special notation inter­
preted by the shell. The following may appear anywhere in a simple-commJlnd or
may precede or follow a commJlnd and are not passed on as arguments to the
invoked command. Note that parameter and command substitution occurs before
word or digit is used.

<word
>word

»word

«[-lword

<&digit

Use file word as standard ~nput (file descriptor 0).
Use file word as standard output (file descriptor 1). If the file does
not exist, it is created; otherwise, it is truncated to zero length.
Use file word as standard output. If the file exists, output is
appended to it (by first seeking to the end-of-file); otherwise, the
file is created.
After parameter and command substitution is done on word, the
shell input is read. up to the first line that literally matches the
resulting word, or to an end-of-file. If, however, - is appencled to
«:
1) leading tabs are stripped from word before the shell input is

read (but after parameter and command substitution is done
on word),

2) leading tabs are stripped from the shell input as it is read and
before each line is compared with word, and

3) shell input is read up to the first line that literally matches the
resulting word, or to an end-of-file.

If any character of word is quoted (see "Quoting," later), no addi­
tional processing is done to the shell input. If no characters of
word are quoted:
1) parameter and command substitution occurs,
2) (escaped) \new-lines are removed, and
3) \ must be used to quote the characters \, $, and ...
The resulting document becomes the standard input.
Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.

Page 5

sh(1} sh(1}

<&- The standard input is closed. Similarly for the standard output
using >&-.

If any of the above is preceded by a digit, the file descriptor which will be associ­
ated with the file is that specified by the digit (instead of the default 0 or 1). For
example:

..• 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is Significant. The shell evaluates
redirections left-to-right. For example:

... l>xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with
the file associated with file descriptor 1 (Le., xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the terminal (assuming
file descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

Using the terminology introduced on the first page, under "Commands," if a
command is composed of several simple commands, redirection will be evaluated
for the entire command before it is evaluated for each simple command. That is, the
shell evaluates redirection for the entire list, then each pipeline within the list, then
each command within each pipeline, then each list within each command.

If a command is followed by & the default standard input for the command is the
empty file Idev/null. Otherwise, the environment for the execution of a com­
mand contains the file descriptors of the invoking shell as modified by
input/ output specifications.

Redirection of output is not allowed in the restricted shell.

File Name Generation
Before a command is executed, each command word is scanned for the characters
*, ?, and [. If one of these characters appears the word is regarded as a pattern.
The word is replaced with alphabetically sorted file names that match the pattern.
If no file name is found that matches the pattern, the word is left unchanged.
The character. at the start of a file name or immediately following a I, as well
as the character I itself, must be matched explicitly.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches anyone of the enclosed characters. A pair of characters

separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening [is a !, any
character not enclosed is matched.

Note that all quoted characters (see below) must be matched explicitly in a
filename.

Quoting

Page 6

The following characters have a special meaning to the shell and cause termina­
tion of a word unless quoted:

10/89

sh(1) sh(1)

& < > new-line space tab
A character may be quoted (i.e., made to stand for itself) by preceding it with a
backslash (\) or inserting it between a pair of quote marks (, , or 1111). During
processing, the shell may quote certain characters to prevent them from taking on
a special meaning. Backslashes used to quote a single character are removed
from the word before the command is executed. The pair \new-line is removed
from a word before command and parameter substitution.

All characters enclosed between a pair of single quote marks (, ,), except a sin­
gle quote, are quoted by the shell. Backslash has no special meaning inside a pair
of single quotes. A single quote may be quoted inside a pair of double quote
marks (for example, II , II), but a single quote can not be quoted inside a pair of
single quotes.

Inside a pair of double quote marks (" II), parameter and command substitution
occurs and the shell quotes the results to avoid blank interpretation and file name
generation. If $* is within a pair of double quotes, the positional parameters are
substituted and quoted, separated by quoted spaces ("$1 $2 ... 11); however, if $@
is within a pair of double quotes, the positional parameters are substituted and
quoted, separated by unquoted spaces ("$1" "$2" ...). \ quotes the characters
\, ... , ", and $. The pair \new-line is removed before parameter and command
substitution. If a backslash precedes characters other than \, ... , ", $, and new­
line, then the backslash itself is quoted by the shell.

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a
command. If at any time a new-line is typed and further input is needed to com­
plete a command, the secondary prompt (i.e., the value of PS2) is issued.

Environment

10/89

The environment [see environ(S)] is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The shell interacts
with the environment in several ways. On invocation, the shell scans the environ­
ment and creates a parameter for each name found, giving it the corresponding
value. If the user modifies the value of any of these parameters or creates new
parameters, none of these affects the environment unless the export command is
used to bind the shell's parameter to the environment' (see also set -a). A
parameter may be removed from the environment with the unset command.
The environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, minus any pairs
removed by unset, plus any modifications or additions, all of which must be
noted in export commands.

The environment for any simple-command may be augmented by prefixing it with
one or more assignments to parameters. Thus:

TERM=450 cmd and
(export TERM; TERM=450; cmd)

are equivalent as far as the execution of cmd is concerned if cmd is not a Special
Command. If cmd is a Special Command, then

Page 7

sh(1) sh(1)

TERM=450 cmd

will modify the TERM variable in the current shell.

If the -k flag is set, all keyword arguments are placed in the environment, even if
they occur after the command name. The following first prints a=b c and c:

echo a=b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &; otherwise signals have the values inherited by the
shell from its parent, with the exception of signal 11 (but see also the trap com­
mand below).

Execution
Each time a command is executed, the command substitution, parameter substitu­
tion, blank interpretation, input/output redirection, and filename generation
listed above are carried out. If the command name matches the name of a
defined function, the function is executed in the shell process (note how this
differs from the execution of shell procedures). If the command name does not
match the name of a defined function, but matches one of the Special Commands
listed below, it is executed in the shell process. The positional parameters $1, $2,
.... are set to the arguments of the function. If the command name matches nei­
ther a Special Command nor the name of a defined function, a new process is
created and an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default
path is /usr/bin. The current directory is specified by a null path name, which
can appear immediately after the equal sign, between two colon delimiters any­
where in the path list, or at the end of the path list. If the command name con­
tains a / the search path is not used; such commands will not be executed by the
restricted shell. Otherwise, each directory in the path is searched for an execut­
able file. If the file has execute permission but is not an a. out file, it is assumed
to be a file containing shell commands. A sub-shell is spawned to read it. A
parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by
the shell (to help avoid unnecessary execs later). If the command was found in a
relative directory, its location must be re-determined whenever the current direc­
tory changes. The shell forgets all remembered locations whenever the PATH vari­
able is changed or the hash -r command is executed (see below).

Special Commands

Page 8

Input/output redirection is now permitted for these commands. File descriptor 1
is the default output location. When Job Control is enabled, additional Special
Commands are added to the shell's environment (see "Job Control").

No effect; the command does nothing. A zero exit code is returned.

10/89

sh(1}

10/89

sh(1}

. file Read and execute commands from file and return. The search path
specified by PATH is used to find the directory containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified, break
n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified, resume at the n-th enclosing loop.

ed [arg]
Change the current directory to arg. The shell parameter Ham is the
default argo The shell parameter (l)PATH defines the search path for the
directory containing arg. Alternative directory names are separated by a
colon (:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name, which can
appear immediately after the equal sign or between the colon delimiters
anywhere else in the path list. If arg begins with a / the search path is not
used. Otherwise, each directory in the path is searched for argo The cd
command may not be executed by rsh.

echo [arg ...]
Echo arguments. See echo(l) for usage and description.

eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell
without creating a new process. Input/output arguments may appear
and, if no other arguments are given, cause the shell input/output to be
modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted
the exit status is that of the last command executed (an end-of-file will
also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environment of
subsequently executed commands. If no arguments are given, variable
names that have been marked for export during the current shell's execu­
tion are listed. (Variable names exported from a parent shell are listed
only if they have been exported again during the current shell's execu­
tion.) Function names are not exported.

getopts
Use in shell scripts to support command syntax standards [see intro(1)]i
it parses positional parameters and checks for legal options. See
getopts(l) for usage and deSCription.

hash [-r] [name ...]
For each name, the location in the search path of the command specified
by name is determined and remembered by the shell. The -r option
causes the shell to forget all remembered locations. If no arguments are

Page 9

sh(1) sh(1)

given, information about remembered commands is presented. Hits is the
number of times a command has been invoked by the shell process. Cost
is a measure of the work required to locate a command in the search path.
If a command is found in a "relative" directory in the search path, after
changing to that directory, the stored location of that command is recalcu­
lated. Commands for which this will be done are indicated by an asterisk
(*) adjacent to the hits information. Cost will be incremented when the
recalculation is done.

newcp:p [arg]
Equivalent to exec newcp:p argo See newgz:p(1M) for usage and descrip­
tion.

pwd Print the current working directory. See pwd(1) for usage and description.
read name ...

One line is read from the standard input and, using the internal field
separator, IFS (normally space or tab), to delimit word boundaries, the
first word is assigned to the first name, the second word to the second
name, etc., with leftover words assigned to the last name. Lines can be
continued using \new-line, Characters other than new-line can be
quoted by preceding them with a backslash. These backslashes are
removed before words are assigned to names, and no interpretation is
done on the character that follows the backslash. The return code is 0,
unless an end-of-file is encountered.

readonly[name ...]
The given names are marked readonly and the values of the these names
may not be changed by subsequent assignment. If no arguments are
given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is
omitted, the return status is that of the last command executed.

set [--aefhkntuvx [arg ...]]
-a Mark variables which are modified or created for export.
-e Exit immediately if a command exits with a non-zero exit status.
-f Disable file name generation
-h Locate and remember function commands as functions are defined

-k

-n
-t
-u
-v

(function commands are normally located when the function is exe­
cuted).
All keyword arguments are placed in the environment for a com­
mand, not just those that precede the command name.
Read commands but do not execute them.
Exit after reading and executing one command.
Treat unset variables as an error when substituting.
Print shell input lines as they are read.

Page 10 10/89

sh(1)

10/89

sh(1)

-x Print commands and their arguments as they are executed.
Do not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned off. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $-. The remaining arguments are positional parameters and are
assigned, in order, to $1, $2, If no arguments are given the values of
all names are printed.

shift [n]

test

times

The positional parameters from $n+l ... are renamed $1 If n is not
given, it is assumed to be 1.

Evaluate conditional expressions. See test(1) for usage and description.

Print the accumulated user and system times for processes run from the
shell.

trap [arg] [n] ...
The command arg is to be read and executed when the shell receives
numeric or symbolic signal(s) (n). (Note that arg is scanned once when
the trap is set and once when the trap is taken.) Trap commands are exe­
cuted in order of signal number or corresponding symbolic names. Any
attempt to set a trap on a signal that was ignored on entry to the current
shell is ineffective. An attempt to trap on signal 11 (memory fault) pro­
duces an error. If arg is absent all trap(s) n are reset to their original
values. If arg is the null string this signal is ignored by the shell and by
the commands it invokes. If n is 0 the command arg is executed on exit
from the shell. The trap command with no arguments prints a list of
commands associated with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a command
name.

ulimit [-[HS][a I cdfnstv]]
ulimit [- [HS][c I d I fin I sit I v]] limit

ulimit prints or sets hard or soft resource limits. These limits are
described in getrlimit(2).
If limit is not present, ulimit prints the specified limits. Any number of
limits may be printed at one time. The -a option prints all limits.
If limit is present, ulimit sets the specified limit to limit. The string
unlimited requests the largest valid limit. Limits may be set for only one
resource at a time. Any user may set a soft limit to any value below the
hard limit. Any user may lower a hard limit. Only a super-user may
raise a hard limit; see su(1).
The -H option specifies a hard limit. The -S option specifies a. soft limit.
If neither option is specified, ulimit will set both limits and print the soft
limit.

Page 11

sh(1) sh(1)

The following options specify the resource whose limits are to be printed
or set. If no option is specified, the file size limit is printed or set.

-c maximum core file size (in 512-byte blocks)
-d maximum size of data segment or heap (in kbytes)
-f maximum file size (in 512-byte blocks)
-n maximum file descriptor plus 1
-8 maximum size of stack segment (in kbytes)
-t maximum CPU time (in seconds)
-v maximum size of virtual memory (in kbytes)

uma8k [nnn
The user file-creation mask is set to nnn [see uma8k(1)]. If nnn is omitted,
the current value of the mask is printed.

unset [name ...]
For each name, remove the corresponding variable or function value. The
variables PATH, PS1, PS2, MAILCHECK, and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report its
termination status. If n is omitted, all your shell's currently active back­
ground processes are waited for and the return code will be zero.

Invocation
If the shell is invoked through exee(2) and the first character of argument zero is
-, commands are initially read from fete/profile and from $HOME/ . profile, if
such files exist. Thereafter, commands are read as described below, which is also
the case when the shell is invoked as /u8r/bin/8h. The flags below are inter­
preted by the shell on invocation only. Note that unless the -c or -8 flag is
specified, the first argument is assumed to be the name of a file containing com­
mands, and the remaining arguments are passed as positional parameters to that
command file:

-e string If the -e flag is present commands are read from string.
-i If the -i flag is present or if the shell input and output are attached to

a terminal, this shell is interactive. In this case TERMINATE is ignored
(so that kill· 0 does not kill !in interactive shell) and INTERRUPT is
caught and ignored (so that wait is interruptible). In all cases, QUIT is
ignored by the shell.

-p If the -p flag is present, the shell will not set the effective user and
group IDs to the real user and group IDs.

-r If the -r flag is present the shell is a restricted shell.
-s If the -8 flag is present or if no arguments remain, commands are read

from the standard input. Any remaining arguments specify the posi­
tional parameters. Shell output (except for Special Commands) is writ­
ten to file descriptor 2.

The remaining flags and arguments are described under the set command above.

Page 12 10/89

sh(1) sh(1)

Job Control (Jsh)

10189

When the shell is invoked as jsh, Job Control is enabled in addition to all of the
functionality described previously for sh. Typically Job Control is enabled for the
interactive shell only. Non-interactive shells typically do not benefit. from the
added functionality of Job Control.

With Job Control enabled every command or pipeline the user enters at the termi­
nal is called a job. All jobs exist in one of the following states: foreground, back­
ground or stopped. TheIlE! terms are defined as follows:. 1) a job in the fore­
ground has read and write access to the controlling terminal; 2) a job in the back­
ground is denied read access and has conditional write access to the controlling
terminal [see stty(1)]; 3) a stopped job is a job that has been placed in a
suspended state, usually as a result of a SIGTSTP signal [see signal(S)].

Every job that the shell starts is assigned a positive integer, called a job number
which is tracked by the shell and will be used as an identifier to indicate a
specific job. Additionally the shell keeps track of the current and previous jobs.
The current job is the most recent job to be started or restarted. The previQus job is
the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%jobid

where, jobid may be specified in any of the following formats:

% or + for the current job

for the previous job

?<string> specify the job for which the command line uniquely contains
string.

n for job number n, where n is a job number

pref where pref is a unique prefix of the command name (for exam­
ple, if the command ls -1 foo were running in the back­
ground, it could be referred to as %1s); pre! cannot contain
blanks unless it is quoted.

When Job Control is enabled, the following commands are added to the user's
environment to manipulate jobs:

bq [%jobid ...]
Resumes the execution of a stopped job in the background. If %jobid is
omitted the current job is assumed.

f9 [%jobid ...]
Resumes the execution of a stopped job in the foreground, also moves an
executing background job into the foreground. If %jQ~id is omitted the
current job is assumed.

jobs [-pl-l] [%jobid ...]

Page 13

sh(1) sh(1)

jobs -x command [arguments]
Reports all jobs that are stopped or executing in the background. If %jobid
is omitted, all jobs that are stopped or running in the background will be
reported. The following options will modify/enhance the output of jobs:

-1 Report the process group ID and working directory of the jobs.

-p Report only the process group ID of the jobs.

-x Replace any jobid found in command or arguments with the
corresponding process group ID, and then execute command pass­
ing it arguments.

kill [-signal] %jobid
Builtin version of kill to provide the functionality of the kill command
for processes identified with a jobid.

stop %jobid ...
Stops the execution of a background job(s).

suspend
Stops the execution of the current shell (but not if it is the login shell).

wait [%jobid ...]
wait builtin accepts a job identifier. If %jobid is omitted wait behaves as
described above under Special Corrmands.

Restricted Shell (rsh) Only
rsh is used to set up login names and execution environments whose capabilities
are more controlled than those of the standard shell. The actions of rsh are
identical to those of sh, except that the following are disallowed:

changing directory [see cd(l)],
setting the value of $PATH,
specifying path or command names containing I,
redirecting output (> and »).

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways: (1) rsh is the file
name part of the last entry in the /etc/passwd file [see passwd(4)]; (2) the environ­
ment variable SHELL exists and rsh is the file name part of its value; (3) the shell
is invoked and rsh is the file name part of argument 0; (4) the shell is invoke
with the -r option.

When a command to be executed is found to be a shell procedure, rsh invokes
sh to execute it. Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a limited
menu of commands; this scheme assumes that the end-user does not have write
and execute permissions in the same directory.

The net effect of these rules is that the writer of the :profile [see profile(4)] has
complete control over user actions by performing guaranteed setup actions and
leaving the user in an appropriate directory (probably not the login directory).

Page 14 10/89

sh(1) sh(1)

The system administrator often sets up a directory of commands (i.e., /usr/rbin)
that can be safely invoked by a restricted shell. Some systems also provide a res­
tricted editor, red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively execution of the
shell file is abandoned. Otherwise, the shell returns the exit status of the last
command executed (see also the exit command above).

Jsh Only

FILES

If the shell is invoked as jsh and an attempt is made to exit the shell while there
are stopped jobs, the shell issues one warning:

There are stopped jobs.

This is the only message. If another exit attempt is made, and there are still
stopped jobs they will be sent a SIGHUP signal from the kernel and the shell is
exited.

/etc/profile
$HOME/ . profile
/tnp/sh*
/dev/null

SEE ALSO

NOTES

10/89

cd(1), echo(l), getopts(1), intro(1), loqin(1), pwd(1), stty(1), test(1), umask(1),
wait(1).
dup(2), exec(2), fork(2), getrlimit(2), pipe(2), ulimit(2), setlocale(3Q in the
Programmer's Reference Manual.
newgrp(1M), profile(4), environ(S), signal(S) in the System Administrator's
Reference Manual.

Words used for filenames in input/output redirection are not interpreted for
filename generation (see ''File Name Generation," above). For example, cat
filel >a* will create a file named a*.

Because commands in pipelines are run as separate processes, variables set in a
pipeline have no effect on the parent shell.

If you get the error message cannot fork, too many processes, try using the wait(1)
command to clean up your background processes. If this doesn't help, the sys­
tem process table is probably full or you have too many active foreground
processes. (There is a limit to the number of process ids associated with your
lOgin, and to the number the system can keep track of.)

Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was
found, the shell will continue to exec the original command. Use the hash com­
mand to correct this situation.

Page 15

shl (1) shl(1)

NAME
shl - shell layer manager

SYNOPSIS
shl

DESCRIPTION
shl allows a user to interact with more than one shell from a single terminal.
The user controls these shells, known as layers, using the commands described
below.

The current layer is the layer which can receive input from the keyboard. Other
layers attempting to read from the keyboard are blocked. Output from multiple
layers is multiplexed onto the terminal. To have the output of a layer blocked
when it is not current, the stty option loblk may be set within the layer.

The stty character swtch (set to ·Z if NUL) is used to switch control to shl from
a layer. shl has its own prompt, »>, to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device (/dev/sxt???).
The virtual device can be manipulated like a real tty device using stty(l) and
ioctl(2). Each layer has its own process group id.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line. Only
the first eight characters are significant. The names (1) through (7) cannot be
used when creating a layer. They are used by shl when no name is supplied.
They may be abbreviated to just the digit.

Commands

10/89

The following commands may be issued from the shl prompt level. Any unique
prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no argument
is given, a layer will be created with a name of the form (#) where # is the
last digit of the virtual device bound to the layer. The shell prompt vari­
able PSl is set to the name of the layer followed by a space. A maximum
of seven layers can be created.

block name [name ... I
For each name, block the output of the corresponding layer when it is not
the current layer. This is equivalent to setting the stty option -loblk
within the layer.

delete name [name ... J
For each name, delete the corresponding layer. All processes in the pro­
cess group of the layer are sent the SIGHUP signal (see signal(2».

help (or 1)
Print the syntax of the shl commands.

layers [-1] [name ...]
For each name, list the layer name and its process group. The -1 option
produces a ps(1)-like listing. If no arguments are given, information is
presented for all existing layers.

Page 1

shl(1)

FILES

shl (1)

resume [name 1

toggle

Make the layer referenced by name the current layer. If no argument is
given, the last existing current layer will be resumed.

Resume the layer that was current before the last current layer.
unblock name [name ... 1

For each name, do not block the output of the corresponding layer when it
is not the current layer. This is equivalent to setting the stty option
-loblk within the layer.

quit Exit shl. All layers are sent the SIGHUP signal.
name Make the layer referenced by name the current layer.

/dev/sxt???
$SHELL

Virtual tty devices
Variable containing path name of the shell to use (default is
/bin/sh).

SEE ALSO
sh(l), stty(1).
ioct1(2), signal(2) in the Programmer's Reference Manual.
sxt(7) in the System Administrator's Reference Manual.

WARNING

Page 2

To avoid disabling the suspend character when in the job control environment,
the swtch character must be redefined.

10/89

sleep(1)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIP:rION

sleep(1)

sleep suspends execution for time seconds. It is used to execute a command
after a certain amount of time, as in:

(sleep 105; command) &

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
alan(2), sleep(3C) in the Programmer's Reference Manual.

10/89 Page 1

sort(1) sort (1)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emul [-ooutputl [-ykmeml [-zrecszl [-dfiMnrl [-btxl
[+posl [-pos2JJ [filesl

DESCRIPTION
The sort command sorts lines of all the named files together and writes the
result on the standard output. The standard input is read if - is used as a file
name or no input files are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is lexi­
cographic by bytes in machine collating sequence.

The following options alter the default behavior:

-c Check that the input file is sorted according to the ordering rules; give no
output unless the file is out of sort.

-In Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-ooutput
The argument given is the name of an output file to use instead of the stan­
dard output. This file may be the same as one of the inputs. There may be
optional blanks between -0 and output.

-ykmem
The amount of main memory used by sort has a large impact on its perfor­
mance. Sorting a small file in a large amount of memory is a waste. If this
option is omitted, sort begins using a system default memory size, and
continues to use more space as needed. If this option is presented with a
value, kIrem, sort will start using that number of kilobytes of memory,
unless the administrative minimum or maximum is violated, in which case
the corresponding extremum will be used. Thus, -yO is guaranteed to start
with minimum memory. By convention, -y (with no argument) starts with
maximum memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so buffers can
be allocated during the merge phase. If the sort phase is omitted via the -c
or -In options, a popular system default size will be used. Lines longer than
the buffer size will cause sort to terminate abnormally. Supplying the
actual number of bytes in the longest line to be merged (or some larger
value) will prevent abnormal termination.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits, and blanks (spaces and tabs) are
significant in comparisons.

10/89 Page 1

sort (1) sort (1)

Page 2

-f Fold lower-case letters into upper case.

-i Ignore non-printable characters.

-M Compare as months. The first three non-blank characters of the field are
folded to upper case and compared. For example, in English the sorting
order is "JAN" < "FEB" < ... < "DEC". Invalid fields compare low to "JAN".
The -M option implies the -b option (see below).

-n An initial numeric string, consisting of optional blanks, optional minus sign,
and zero or more digits with optional decimal point, is sorted by arithmetic
value. The -n option implies the -b option (see below). Note that the -b
option is only effective when restricted sort key specifications are in effect.

-r Reverse the sense of comparisons.
When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When attached to a
specific sort key (described below), the specified ordering options override all glo­
bal ordering options for that key.

The notation +pos1 -pos2 restricts a sort key to one beginning at pos1 and ending
just before pos2. The characters at position pos1 and just before pos2 are included
in the sort key (provided that pos2 does not precede pos1). A missing -pos2
means the end of the line. .

SpeCifying pos1 and pos2 involves the notion of a field, a minimal sequence of
characters followed by a field separator or a new-line. By default, the first blank
(space or tab) of a sequence of blanks acts as the field separator. All blanks in a
sequence of blanks are eonsidered to be part of the next field; for example, all
blanks at the beginning of a line are considered to be part of the first field. The
treatment of field separators can be altered using the options:

-b Ignore leading blanks when determining the starting and ending positions
of a restricted sort key. If the -b option is specified before the first +posl
argument, it will be applied to all +pos1 arguments. Otherwise, the b flag
may be attached independently to each +pos1 or -pos2 argument (see
below).

-tx Use x as the field separator character; x is not considered to be part of a
field (although it may be included in a sort key). Each occurrence of x is
significant (for example, xx delimits an empty field).

pos1 and pos2 each have the form m. n optionally followed by one ot more of the
flags bdfinr. A starting position specified by +m. n is interpreted to mean the
n+lst character i~ the 7rl+lst field. A missing .nmeans .0, indicating the first
character of the m+lst field. If the b flag is in effect n is counted from the first
non-blank in the m+lst field; +m.Ob refers to the first non-blank character in the
m+lst field.

A last position specified by -m.n is interpreted to mean the nth character (includ­
ing separators) after the last character of the m th field. A missing .n means .0,
indicating the last character of the mthfield .. If the b flag is in effect n is counted
from the last leading blank in the m+ 1st field; -m. Ib refers to the first non-blank
in the m+lst field.

10/89

sort(1) sort (1)

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all
bytes significant.

EXAMPLES

FILES

Sort the contents of infi1e with the second field as the sort key:

sort +1 -2 infi1e

Sort, in reverse order, the contents of infi1el and infi1e2, placing the output in
outfi1e and using the first character of the second field as the sort key:

sort -r -0 outfi1e +1.0 -1. 2 infi1el infile2
Sort, in reverse order, the contents of infi1el and infile2 using the first non-blank
character of the second field as the sort key:

sort -r +l.Ob -l.lbinfi1el mfi1e2

Print the password file [passwd(4) 1 sorted by the numeric user ID (the third
colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the options -urn with just one
input file make the choice of a unique representative from a set of equal lines
predictable):

sort -urn +2 -3 infile

/var/tnp/stm???

SEE ALSO

NOTES

10/89

co_I), join(1), uniq(1).

Comments and exits with non-zero status for various trouble conditions (for
example, when input lines are too long), and for disorder discovered under the
-c option. When the last line of an input file is missing a new-line character,
sort appends one, prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

Page 3

spell(1} spell(1}

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-1] [+localJile] [files]

/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/ spell/hashcheck spelling)ist

DESCRIPTION

10189

spell collects words from the named files and looks them up in a spelling list.
Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are printed
on the standard output. If no files are named, words are collected from the stan­
dard input.

spell ignores most troff(1), tbl(1), and eqn(l) constructions.

-v

-b

-x

-1

+localJile

All words not literally in the spelling list are printed, and plaUSible
derivations from the words in the spelling list are indicated.

British spelling is checked. Besides preferring centre, colour,
proqranme, speciality, travelled, etc., this option insists upon -
ise in words like standardise, Fowler and the OED (Oxford English
Dictionary) to the contrary notwithstanding.

Every plausible stem is displayed, one per line, with = preceding
each word.

Follow the chains of all included files. By default, spell (like der­
off(l» follows chains of included files (. so and .nx troff(1)
requests), unless the names of such included files begin with
/usr/lib.

Words found in localJile are removed from spell's output. localJile
is the name of a user-provided file that contains a sorted list of
words, one per line. The list must be sorted with the ordering used­
by sort(1) (e.g. upper case preceding lower case). If this ordering is
not followed, some entries in localJile may be ignored. With this
option, the user can specify a set of words that are correct spellings
(in addition to spell's own spelling list) for each job.

The spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, is also more effective with respect to proper names and
popular technical words. Coverage of the specialized vocabularies of biology,
medicine, and chemistry is light.

Alternate auxiliary files (spelling lists, stop list, history file) may be specified on
the command line by using environment variables. These variables and their
default settings are shown in the FILFS section. Copies of all output are accumu­
lated in the history file. The stop list filters out misspellings (e.g.,
thier=thy-y+ier) that would otherwise pass.

Page 1

spell(1) spell (1)

FILES

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output. This is
the first step in creating a new spelling list or adding words to an
existing list; it must be used prior to using spellin.

spellin Reads n hash codes (created by hashmake) from the standard input
and writes a compressed spelling list on the standard output. Use
spellin to add words to an existing spelling list or create a new
spelling list.

hashcheck Reads a compressed spelling_'ist and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard
output. It takes as input an existing spelling list (hlista or hlistb)
or a list created or modified by spellin. By using hashcheck on
an existing compressed spelling Jist and hashmake on a file of
selected words, you can compare the two output files to determine
if the selected words are present in the existing spellingJist.

D_SPELL=/usr/share/lib/spell/hlist[ab]

S_SPELL=/usr/share/lib/spell/hstop
H_SPELL=/var/admlspellhist
/usr/lib/spell/spellproq

hashed spelling lists, American
& British
hashed stop list
history file
program

SEE ALSO

NOTES

Page 2

deroff(l), sed(1), sort(1), tee(1).
eqn(l), tbl(1), troff(1) in the DOCUMENTER'S WORKBENCH Software Technical
Discussion and Reference Manual.

The spelling list's coverage is uneven; new installations will probably wish to
monitor the output for several months to gather local additions; typically, these
are kept in a separate local file that is added to the hashed spellingJist via -
spellin.

10/89

split(1) split (1)

NAME
split - split a file into pieces

SYNOPSIS
split [-n 1 [file [name 1 1

DESCRIPTION
split reads file and writes it in n-line pieces (default 1000 lines) onto a set of out­
put files. The name of the first output file is name with aa appended, and so on
lexicographically, up to zz (a maximum of 676 files). The maximum length of
name is 2 characters less than the maximum filename length allowed by the
filesystem. See statvfs(2). If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is
used.

SEE ALSO
bfs(1), csplit(1).
statvfs(2) in the Programmer's Reference Manual.

10/89 Page 1

srchtxt(1) srchtxt(1)

NAME
srchtxt - display contents of, or search for a text string in, message data bases

SYNOPSIS
srchtxt [-s] [-1 locale] [-In msgfile, ...] [text]

DESCRIPTION
The srchtxt utility is used to display all the text strings in message data bases,
or to search for a text string in message data bases (see mlansgs(1». These data
bases are files in the directory /usr/1ib/1oca1e/locale/LC_MESSAGES (see
set1oca1e(30), unless a file name given with the -In option contains a /. The
directory locale can be viewed as the name of the language in which the text
strings are written. If the -1 option is not specified, the files accessed will be
determined by the value of the environment variable LC _MESSAGES. If
LC _MESSAGES is not set, the files accessed will be determined by the value of the
environment variable LANG. If LANG is not set, the files accessed will be in the
directory /usr/1ib/1oca1e/C/LC_MESSAGES, which contains default strings.

If no text argument is present, then all the text strings in the files accessed will be
displayed.

The meanings of the options are as follows:

-s suppress printing of the message sequence numbers of the messages
being displayed

-1 locale access files in the directory /usr/1ib/1oca1e/locale/LC_MESSAGES.
If -m msgfile is also supplied, locale is ignored for msgfiles containing
a /.

-m msgfile access file(s) specified by one or more msgfiles. If msgfile contains a
/ character, then msgfile is interpreted as a pathnamej otherwise, it
will be assumed to be in the directory determined as described
above. To specify more than one msgfile, separate the file names
using commas.

text search for the text string specified by text and display each one that
matches. text can take the form of a regular expression (see ed(1».

If the -s option is not specified, the displayed text is prefixed by message
sequence numbers. The message sequence numbers are enclosed in angle brack­
ets: <msgfile: msgnum>.

msgfile name of the file where the displayed text occurred

msgnum sequence number in msgfile where the displayed text occurred

This display is in the format used by qettxt(1) and gettxt(30.

EXAMPLES

10/89

The following examples show uses of srchtxt.

Example 1:

If message files have been installed in a locale named french by using
mkmsgs(1), then you could display the entire set of text strings in the
french locale (/usr/1ib/1oca1e/french/LC_MESSAGES/*) by typing:

Page 1

srchtxt(1) srchtxt(1)

FILES

srchtxt -1 french

Example 2:

If a set of error messages associated with the UNIX operating system have
been installed in the file UX in the french locale
(/usr/lib/1oca1e/french/LC_MESSAGES/UX), then, using the value of
the LANG environment variable to determine the locale to be searched, you
could search that file in that locale for all error messages dealing with files
by typing:

LANG=french; export LANG
srchtxt -In UX "[Ff] ichier"

If /usr/1ib/1oca1e/french/LC MESSAGES/UX contained the following
strings: -

Erreur E/S\n
Liste d'arguments trap longue\n
Fichier inexistant\n
Argument inva1ide\n
Trop de fichiers otiverts\n
Fichier trop long\n
Trop de liens\n
ArgUment hors du domaine \n
Identificateur supprim\n
Etreinte fata1e\n

then the following strings would be displayed:
<ux:3>Fichier inexistant\n
<UX:S>Trop de fichiers ouverts\n
<ux:6>Fichier trop long\n

Example 3:

If a set of error messages associated with the UNIX operating system have
been installed in the file UX and a set of error messages associated with the
INGRESS data base product have been installed in the file ingress, both
in the gellllaIl locale, then you could search for the pattern rOd] atei in
both the files UX and ingress in the gellllaIl locale by typing:

srchtxt -1 german -In UX, ingress "[Oci] atei"

/usr/1ib/1oca1e/C/LC_MESSAGES/* default files created by mkmsgs(1)

/usr/1ib/1oca1e/locale/LC_MESSAGES/* message files created by mkmsgs(1)

SEE ALSO
ed(l), exstr(l), gettxt(1), mkmsgs(1).
gettxt(3C), setloca1e(3C) in the Programmer's Reference Manual.

Page 2 10/89

srchtxt(1) srchtxt (1)

DIAGNOSTICS

10/89

The error messages produced by srchtxt are intended to be self-explanatory.
They indicate an error in the command line or errors encountered while searching
for a particular locale and/or message file.

Page 3

strchg(1) strchg(1)

NAME
strchg, strconf - change or query stream configuration

SYNOPSIS
strchg -h modulel [, module2 .••]
strchg -p [-a I -u module]
strchg -f file
strconf [-t I -In module]

DESCRIPTION
These commands are used to alter or query the configuration of the stream asso­
ciated with the user's standard input. The strchg command pushes modules on
and/or pops modules off the stream. The strconf command queries the
configuration of the stream. Only the super-user or owner of a STREAMS device
may alter the configuration of that stream.
With the -h option, strchg pushes modules onto a stream; it takes as arguments
the names of one or more pushable streams modules. These modules are pushed
in order; that is, modulel is pushed first, module2 is pushed second, etc.

The -p option pops modules off the stream. With the -p option alone, strchg
pops the topmost module from the stream. With the -p and -a options, all the
modules above the. topmost driver are popped. When the -p option is followed
by -u module, then all modules above but not including module are popped off the
stream. The -a and -u options are mutually exclusive.

With the -f option, the user can specify a file that contains a list of modules
representing the desired configuration of the stream. Each module name must
appear on a separate line where the first name represents the topmost module
and the last name represents the module that should be closest to the driver. The
strchg command will determine the current configuration of the stream and pop
and push the necessary modules in order to end up with the desired
configuration.

The -11. -f and -p options are mutually exclusive.

Invoked without any arguments, streonf prints a list of all the modules in the
stream as well as the topmost driver. The list is printed with one name per line
where the first name printed is the topmost module on the stream (if one exists)
and the last item printed is the name of the driver. With the -t option, only the
topinost module (if one exists) is printed. The -m option determines if the named
module is present on a stream .. If it is, strconf prints the message yes and
returns zero. If not, strconf prints the message no and returns a non-zero value.
The -t and -m options are mutually exclusive.

EXAMPLES

10/89

The following command pushes the module ldterm on the stream associated
with the user's standard input:

strchg -h ldterm

The following command pops the topmost module from the stream associated
with /dev/term/24. The user must be the owner of this device or the super­
user.

Page 1

,

strchg (1) strchg (1)

strchg -p < /dev/ter.m/24

If the file fileconf contains the following:

coIl'pat
ldterm
ptem

then the command

strchg -f fileconf

will configure the user's standard input stream so that the module ptem is
pushed over the driver, followed by ldterm and conpat closest to the stream
head.

The strconf command with no arguments lists the modules and topmost driver
on the stream; for a stream that has only the module ldterm pushed above the
ports driver, it would produce the following output:

ldterm
ports

The following command asks if ldterm is on the stream

strconf ~m ldterm

and produces the following output while returning an exit status of 0:

yes

SEE ALSO
streamio(7) in the Programmers Guide: STREAMS.

DIAGNOSTICS

NOTES

Page 2

strchg returns zero on success. It prints an error message and returns non-zero
status for various error conditions, including usage error, bad module name, too
many modules to push, failure of an ioctl on the stream, or failure to open file
from the -f option.

strconf returns zero on success (for the -m or -t option, "success" means the
named or topmost module is present). It returns a non-zero status if invoked
with the -m or -t option and the module is not present. It prints an error mes­
sage and returns non-zero status for various error conditions, including usage
error or failure of an ioctl on the stream.

If the user is neither the owner of the stream nor the super-user, the strchg com­
mand will fail. If the user does not have read permissions on the stream and is
not the super-user, the strconf command will fail.

If modules are pushed in the wrong order, one could end up with a stream that
does not function as expected. For ttys, if the line discipline module is not
pushed in the correct place, one could have a terminal that does not respond to
any commands.

10/89

strlngS(1) strings (1)

NAME
strings - find printable strings in an object file or binary

SYNOPSIS
strings [-a] [-0] [-n number I -number] filename . ..

DESCRIPTION
The strings command looks for ASCII strings in a binary file. A string is any
sequence of 4 or more printing characters ending with a newline or a null charac­
ter.

strings is useful for identifying random object files and many other things.

The following options are available:

-a Look everywhere in the file for strings. If this flag is omitted,
strings only looks in the initialized data space of object files.

-0 Precede each string by its offset in the file.

-n number Use number as the minimum string length rather than 4.

SEE ALSO
od(1)

NOTES

10/89

The algorithm for identifying strings is extremely primitive.

For backwards compatibility, -number can be used in place of -n number. Simi­
larly, the -a and a - option are interchangeable. The - and the -number varia­
tions are obsolescent.

Page 1

stty(1) stty(1)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-q] [options]

DESCRIPTION
stty sets certain terminal I/O options for the device that is the current standard
input; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret n, then the value of that
option is the corresponding control character (e.g., ""h" is CfRL-h; in this case,
recall that CfRL-h is the same as the ''back-space'' key.) The sequence ",,'"
means that an option has a null value.

-a reports all of the option settings;

-q reports current settings in a form that can be used as an argument to
another stty command.

For detailed information about the modes listed from Control Modes through
Local Modes, below, see termio(7). For detailed information about the modes
listed under Hardware Flow Control Modes and Clock Modes, below, see
tenniox(7). Options described in the Combination Modes section are imple­
mented using options in the earlier sections. Note that many combinations of
options make no sense, but no sanity checking is performed. Hardware flow con­
trol and clock modes options may not be supported by all hardware interfaces.
The options are selected from the following:

Control Modes

10/89

parenb (-parenb) enable (disable) parity generation and detection.

parext (-parext) enable (disable) extended parity generation and detection
for mark and space parity.

parodd (-parodd) select odd (even) parity, or mark (space) parity if parext is
enabled.

csS cs6 cs7 cs8 select character size [see tennio(7)].
o hang up line immediately.

110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal baud rate to the number given, if possible.
(All speeds are not supported by all hardware interfaces.)

ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal input baud rate to the number given, if possi­
ble. (Not all hardware supports split baud rates.) If the
input baud rate is set to zero, the input baud rate will be
specified by the value of the output baud rate.

ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal output baud rate to the number given, if possi­
ble. (Not all hardware supports split baud rates.) If the
output baud rate is set to zero, the line will be hung up
immediately.

Page 1

stty(1)

hupel (-hupcl)

hup (-hup)

estopb (-estopb)

eread (-eread)

elocal (-clocal)

lOOlk (-lOOlk)

Input Modes
ignbrk (-ignbrk)

brkint (-brkint)

ignpar (-ignpar)

parmrk (-parmrk)

inpck (-inpck)

istrip (-istrip)

inlcr (-inlcr)

igner (-igncr)

iernl (-iernl)

iuele (-iuele)

ixon (-ixon)

ixany (-ixany)

ixoff (-ixoff)

imaxbel (-imaxbel)

Output Modes
opost (-opost)

Page 2

olcuc (-oleue)

onlcr (-onlcr)

ocrnl (-ocrnl)

onocr (-onocr)

hang up (do not hang up) connection on last close.

same as hupel (-hupel).

use two (one) stop bits per character.

enable (disable) the receiver.

n assume a line without (with) modem control.

stty(1)

block (do not block) output from a non-current layer.

ignore (do not ignore) break on input.

signal (do not signal) INTR on break.

ignore (do not ignore) parity errors.

mark (do not mark) parity errors [see termio(7»).

enable (disable) input parity checking.

strip (do not strip) input characters to seven bits.

map (do not map) NL to CR on input.

ignore (do not ignore) CR on input.

map (do not map) CR to NL on input.

map (do not map) upper-case alphabetics to lower case on
input.

enable (disable) START/STOP output control. Output is
stopped by sending STOP control character and started by
sending the START control character.

allow any character (only DCl) to restart output.

request that the system send (not send) START/STOP charac­
ters when the input queue is nearly empty/full.

echo (do not echo) BEL when the input line is too long.

post-process output (do not post-process output; ignore all
other output modes).

map (do not map) lower-case alphabetics to upper case on
output.

map (do not map) NL to CR-NL on output.

map (do not map) CR to NL on output.

do not (do) output CRs at column zero.

10/89

stty (1)

onlret (-onlret)

of ill (-of ill)

of del (-of de I)

crO crl cr2 cr3

n10 n11

stty (1)

on the terminal NL performs (does not perform) the CR
function.

use fill characters (use timing) for delays.

fill characters are DELs (NULs).

select style of delay for carriage returns [see termio(7)].

select style of delay for line-feeds [see termio(7)].

tabO tabl tab2 tab3

bsO bsl

ffO ffl

vtO vtl

Local Modes
isig (-isig)

10/89

icanon (-icanon)

xcase (-xcase)

echo (-echo)

echoe (-echoe)

echok (-echok)

lfkc (-lfkc)

echonl (-echonl)

noflsh (-noflsh)

stwrap (-stwrap)

tostop (-tostop)

echoctl(-echoctl)

echoprt(-echoprt)

echoke (-echoke)

select style of delay for horizontal tabs [see termio(7)].

select style of delay for backspaces [see termio(7)].

select style of delay for form-feeds [see termio(7)].

select style of delay for vertical tabs [see termio(7)].

enable (disable) the checking of characters against the spe­
cial control characters INTR, QUIT, and SWTGI.

enable (disable) canonical input (ERASE and KILL process­
ing).

canonical (unprocessed) upper /lower-case presentation.

echo back (do not echo back) every character typed.

echo (do not echo) ERASE character as a backspace-space­
backspace string. Note: this mode will erase the ERASEed
character on many CRT terminals; however, it does not keep
track of column position and, as a result, may be confusing
on escaped characters, tabs, and backspaces.

echo (do not echo) NL after KILL character.

the same as echok (-echok); obsolete.

echo (do not echo) NL.

disable (enable) flush after INTR, QUIT, or SWTGI.

disable (enable) truncation of lines longer than 79 characters
on a synchronous line. (Does not apply to the 3B2.)

send (do not send) SIGTIOU when background processes
write to the terminal.

echo (do not echo) control characters as "char, delete as "?

echo (do not echo) erase character as character is "erased".

BS-SP-BS erase (do not BS-SP-BS erase) entire line on line
kill.

Page 3

sHy(1) SHy(1)

flusho (-flusho) output is (is not) being flushed.

pendin (-pendin) retJpe (do not retype) pending input at next read or input
character.

iexten (-iexten) enable (disable) extended (implementation-defined) func­
tions for input data.

stflush (-stflush) enable (disable) flush on a synchronous line after every
write(2).

stappl (-stappl) use application mode (use line mode) on a synchronous
line.

Hardware Flow Control Modes
rtsxoff (-rtsxoff) enable (disable) RTS hardware flow control on input.

etsxon (-ctsxon) enable (disable) as hardware flow control on output.

dtrxoff (-dtrxoff) enable (disable) DTR hardware flow control on input.

edxon (-edxon)

isxoff (-isxoff)

enable (disable) CD hardware flow control on output.

enable (disable) isochronous hardware flow control on
input.

Clock Modes
xeibrg get transmit clock from internal baud rate generator.

Page 4

xetset

xerset

reibrg

ret set

rerset

tseteoff

tseterbrg

tsetetbrg

tsetetset

get the transmit clock from transmitter signal element tim­
ing (DCE source) lead, CCITT V.24 circuit 114, EIA-232-D
pin 15.

get transmit clock from receiver signal element timing (DCE
source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

get receive clock from internal baud rate generator.

get receive clock from transmitter signal element timing
(DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin
15.

get receive clock from receiver signal element timing (DCE
source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

transmitter signal element timing clock not provided.

output receive baud rate generator on transmitter signal
element timing (DTE source) lead, ccm V.24 circuit 113,
EIA-232-D pin 24.

output transmit baud rate generator on transmitter signal
element timing (DTE source) lead, ccm V.24 circuit 113,
EIA-232-D pin 24.

output tranmitter signal element timing (DCE source) on
transmitter signal element timing (DTE source) lead, ccm
V.24 circuit 113, EIA-232-D pin 24.

10/89

stty(1)

tsetcrset

rsetcoff

rsetcrbrg

rsetctbrg

rsetctset

rsetcrset

Control Assignments
control-cmzracter c

min, time number

line i

Combination Modes
evenp or parity

10/89

oddp

spacep

markp

-parity,or-evenp

-oddp

-spacep

-markp

stty(1)

output receiver signal element timing (DCE source) on
transmitter signal element timing (DTE source) lead, CCITT
V.24 circuit 113, EIA-232-D pin 24.

receiver signal element timing clock not provided.

output receive baud rate generator on receiver signal ele­
ment timing (DTE source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin.

output transmit baud rate generator on receiver signal ele­
ment timing (DTE source) lead, CCITT V.24 circuit 128, no
EIA-232-D pin.

output transmitter signal element timing (DCE source) on
receiver signal element timing (DTE source) lead, CCITT
V.24 circuit 128,no EIA-232-D pin.

output receiver signal element timing (DCE. source) on
receiver signal element timing (DTE source) lead, CCITT
V.24 circuit 128, no EIA-232-D pin.

set control-cmzracter to c, where control-cmzrader is ctab,
discard, dsusp, eof, eol, eol2, erase, intr, kill, lnext,
quit, reprint, start, stop, susp, swtch, or werase.
[ctab is used with -stapp I [see termio(7)j. If c is pre­
ceded by a caret (....) indicating an escape from the shell,
then the value used is the corresponding control character
(e.g., lI d" is a CTRL-d). II ?" is interpreted as DEL and
" _" is interpreted as undefined.

Set the value of min or time to number. MIN and TIME are
used in Non-Canonical mode input processing (-icanon).

set line discipline to i (0 < i < 127).

enable parenb and cs7.

enable parenb, cs7, and parodd.

enable parenb, cs7, and parext.

enable parenb, cs7, parodd, and parext.

disable parenb, and set csS.

disable parenb and parodd, and set csS.

disable parenb and parext, and set csS.

disable parenb, parodd, and parext, and set csS.

Page 5

stty (1)

raw (-raw or cooked)

stty(1)

enable (disable) raw input and output (no ERASE, KILL,
INTR, QUIT, SWTQ-I, EDT, or output post processing).

nl (-nl) unset (set) ieml, onler. In addition -nl unsets inlcr,
igncr, ocrnl, and onlret. .

lease (-lease) set (unset) xease, iuele, and olcuc.

LCASB (-LCASB) same as lease (-lease).

tabs (-tabs or tab3)

ek

sane

term

async

preserve (expand to spaces) tabs when printing.

reset ERASE and KILL characters back to normal t and @.

resets all modes to some reasonable values.

set all modes suitable for the terminal type term, where term
is one of tty33, tty37, vt05,tn300, ti 700, or tek.

set normal asynchronous communications where clock set­
tings are xeibrg, rcibrg, tsetcoff and rsetcoff.

Window Size
rows n set window size to n rows.

colmms n

ypixels n

set window size to n columns.

set vertical window size to n pixels.

lIPixels n set horizontal window size to n pixels.

SEE ALSO

Page 6

tabs(1) in the User's Reference Manual.
ioctl(2).
termio(7), termiox(7) in the System Administrator's Reference Manual.

10/89

su(1M) su(1M)

NAME
su - become super-user or another user

SYNOPSIS
su [-) [name [arg ...))

DESCRIPTION
su allows one to become another user without logging off. The default user name
is root (that is, super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new shell with the real and
effective user and group IDs and supplementary group list set to that of the
specified user. The new shell will be the optional program named in the shell
field of the specified user's password file entry [see passwd(4») or /usr/bin/sh if
none is specified [see sh(1»). To restore normal user ID privileges, type an EOF
character (CTRL-d) to the new shell.

Any additional arguments given on the command line are passed to the program
invoked as the shell. When using programs such as sh,. an arg of the form -e
string executes string via the shell and an arg of -r gives the user a restricted
shell.

The following statements are true only if the optional program named in the shell
field of the specified user's password file entry is like sh. If the first argument to
su is a -, the environment will be changed to what would be expected if the user
actually logged in as the specified user. This is done by invoking the program
used as the shell with an argO value whose first character is -, thus causing first
the system's profile (fete/profile) and then the specified user's profile (.pro­
file in the new HOME directory) to be executed. Otherwise,' the environment is
passed along with the possible exception of $PATH, which is set to
/sbin:/usr/sbin:/usr/bin:/ete for root. Note that if the optional program
used as the shell is /usr/bin/sh, the user's .profile can check argO for -sh or
-su to determine if it was invoked by login or su, respectively. If the user's
program is other than /usr/bin/sh,. then .profile is invoked with an argO of
-program by both login and su.

All attempts to become another user using su are logged in the log file
/var/adm/sulog.

EXAMPLES

10/89

To become user bin while retaining your previously exported environment, exe­
cute:

su bin

To become user bin but change the environment to what would be expected if
bin had originally logged in, execute:

su - bin

To execute command with the temporary environment and permissions of user
bin, type:

su - bin -e "command args"

Page 1

SU (1M)

FILES
/ete/passwd
fete/profile
$HOME/.profile
/var/adm/sulog
/ete/default/su

SULOG:

CONSOLE:

PATH:

SUPATH:

SEE ALSO

system's password file
system's profile
user's profile
log file
the default parameters that live here are:

If defined, all attempts to su to
another user are logged in the indicated file.

If defined, all attempts to suroot
are logged on the console.

Default path.

Default path for a user invoking suroot.

env(l), login(1), sh(1) in the User's Reference Manual.
passwd(4), profile(4), environ(5) in the Programmer's Reference Manual.

Page 2

su(1M)

10/89

sum(1)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION

sum(1)

sum calculates and prints a 16-bit checksum for the named file, and also prints the
number of 512 byte blocks in the file. It is typically used to look for bad spots, or
to validate a file communicated over some transmission line. The option -r
causes an alternate algorithm to be used in computing the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS
''Read error" is indistinguishable from end of file on most devices; check the
block count.

10/89 Page 1

sync(1M) sync(1M)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

NOTE

sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. It will flush all previously unwrit­
ten system buffers out to disk, thus assuring that all file modifications up to that
point will be saved. See sync(2) for details.

If you have done a write to a file on a remote machine in a Remote File Sharing
environment, you cannot use sync to force buffers to be written out to disk on
the remote machine. sync will only write local buffers to local disks.

SEE ALSO
sync(2) in the Programmer's Reference Manual.

10/89 Page 1

tabs(1) tabs (1)

NAME
tabs - set tabs on a tenninal

SYNOPSIS
tabs [tabspec 1 [-Ttype 1 [+mn 1

DESCRIPTION
tabs sets the tab stops on the user's tenninal according to the tab specification
tabspec, after clearing any previous settings. The user's tenninal must have
remotely settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec. They are
described below: canned (-code), repetitive (-n), arbitrary (nl,n2, ...), and
file (--file). If no tabspec is given, the default value is -8, i.e., UNIX sys­
tem "standard" tabs. The lowest column number is 1. Note that for
tabs, column 1 always refers to the leftmost column on a terminal, even
one whose column markers begin at 0, e.g., the DASI 300, DASI 300s, and
DASI450.

-code Use one of the codes listed below to select a canned set of tabs. The legal
codes and their meanings are as follows:
-a 1,10,16,36,72

Assembler, IBM 5/370, first fonnat
-a2 1,10,16,40,72

Assembler, IBM 5/370, second format
-c 1,8,12,16,20,55

COBOL, nonnal format
-c2 1,6,10,14,49

COBOL compact fonnat (columns 1-6 omitted). Using this code,
the first typed character corresponds to card column 7, one
space gets you to column 8, and a tab reaches column 12. Files
using this tab setup should include a format specification as fol­
lows (see fspec(4»:

<:t-c2 m6 s66 d:>
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs
than -c2. This is the recommended format for COBOL. The
appropriate format specification is [see fspec(4)]:

<:t-c3 m6 s66 d:>
-f 1,7,11,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PL/I
-s 1,10,55

SNOBOL
-u 1,12,20,44

UNIVAC 1100 Assembler

10/89 Page 1

tabs (1)

-n

nl,n2,. ..

tabs(1)

A repetitive specification requests tabs at columns l+n, 1+2*n, etc. Of
particular importance is the value 8: this represents the UNIX system
"standard" tab setting, and is the most likely tab setting to be found at a
terminal. Another special caSe is the value 0, implying no tabs at all.

The arbitrary format permits the user to type any chosen set of numbers,
separated by commas, in ascending order. Up to 40 numbers are
allowed. If any number (except the first one) is preceded by a plus sign,
it is taken as an increment to be added to the previous value. Thus, the
formats 1,10,20,30, and 1,10,+10,+10 are considered identical.

--file If the name of a file is given, tabs reads the first line of the file, search­
ing for a format specification [see fspec(4»). If it finds one there, it sets
the tab stops according to it, otherwise it sets them as -8. This type of
specification may be used to make sure that a tabbed me is printed with
correct tab settings, and would be used with the pr command:

tabs -- file; pr file

Any of the following also may be used; if a given flag occurs more than once, the
last value given takes effect:

-Ttype tabs usually needs to know the type of terminal in order to set tabs and
always needs to know the type to set margins. type is a name listed in
tern(S). If no -T flag is supplied, tabs uses the value of the environ­
ment variable TERM. If TERM is not defined in the environment [see
environ(S»), tabs tries a sequence that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all tabs
to be moved over n columns by making column n+l the left margin. If
+m is given without a value of n, the value assumed is 10. For a Ter­
miNet, the first value in the tab list should be 1, or the margin will move
even further to the right. The normal (leftmost) margin on most termi­
nals is obtained by +mO. The margin for most terminals is reset only
when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.

EXAMPLES
tabs -a example using -code (canned specification) to set tabs to the set­

tings required by the IBM assembler: columns 1, 10, 16, 36, 72.

tabs -8 example of using -n (repetitive specification), where n is 8, causes
tabs to be set every eighth position:
1+(1*8),1+(2*8), ... which evaluate to columns 9,17, ...

tabs 1,8,36 example of using nl,n2,... (arbitrary specification) to set tabs at
columns 1, 8, and 36.

Page 2 10/89

tabs(1) tabs(1)

tabs --$HOME/fspec.list/att4425
example of using --file (jile specification) to
should be set according to the
$HOME/fspec.list/att4425 [see fspec(4)].

indicate that tabs
first line of

DIAGNOSTICS
illegal tabs when arbitrary tabs are ordered incorrectly
illegal increment

when a zero or missing increment is found in an arbitrary
specification

unknown tab code
when a canned code cannot be found

can't open if -file option used, and file can't be opened
file indirection

if --file option used and the specification in that file points to
yet another file. Indirection of this form is not permitted

SEE ALSO

NOTES

10/89

newform(l), prO), tput(l).
fspec(4), termi.nfo(4), environ(S), term(S) in the System Administrator's Reference
Manual.

There is no consistency among different terminals regarding ways of clearing tabs
and setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to
set 64.

The tabspec used with the tabs command is different from the one used with the
newform command. For example, tabs -8 sets every eighth position; whereas
newform -i-8 indicates that tabs are set every eighth position.

Page 3

tall (1) tall (1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± number lbcr] [file]
tail [-lbcr] [file]
tail [± number !bef] [file]
tail [-!bef] [file]

DESCRIPTION
tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end
of the input (if number is null, the value 10 is assumed). Number is counted in
units of lines, blocks, or characters, according to the appended option 1, b, or c.
When no units are specified, counting is by lines.

With the -f (follow) option, if the input file is not a pipe, the rrogram will not
terminate after the line of the input file has been copied, but wil enter an endless
loop, wherein it sleeps for Ci second and then attempts to read and copy further
records from the input file. Thus it may be used to monitor the growth of a file
that is being written by some other proces$. For example, the command:

tail -f f;red

will print the last ten lines of the file f;red, followed by any lines that are
appended to f;re!:! between the time tail is initiated and killed. As another
example, the command:

tail -150f f;red

will print the last 15 characters of the file f;red, followed by any lines that are
appended to fred between the time tail is initiated and killed.
The ;r option copies lines from the specified starting point in the file in reverse
order. The default for ;r i$ to print the entire file in reverse order.

The ;r Cind f options are mutually exclusive.

SEe ALSO

NOTES

10/89

cat(1), head(l), ~;r~(n p~l), tail(l).
dd(lM) in the System Mrni?l~tr~tot ~ IWfergnae Manual.

Tails relative to the end of the file are stored in a buffer, and thus are limited in
length. Various kinds of anomalous behavior may happen with character special
files.

The tail command will only tail the last 4096 bytes of a file regardless of its line
count.

Page 1

talk (1) talk(1)

NAME
talk - talk to another user

SYNOPSIS
talk username [ttyname]

DESCRIPTION

FILES

talk is a visual communication program that copies lines from your terminal to
that of a user on the same or on another host. username is that user's login name.

The program is architecture dependent; it works only between machines of the
same architecture.

If you want to talk to a user who is logged in more than once, the ttyname argu­
ment may be used to indicate the appropriate terminal name.

When first called, talk sends the message:

Message from TallcDaem:m@ her machine at time ...
talk: connection requested by your _ name@your_machine
talk: respond with: talk your_name@your_machine

to the user you wish to talk to. At this point, the recipient of the message should
reply by typing:

talkyour _ name@your_machine

It does not matter from which machine the recipient replies, as long as the login
name is the same. Once communication is established, the two parties may type
simultaneously, with their output appearing in separate windows. Typing Ctrl-L
redraws the screen, while your erase, kill, and word kill characters will work in
talk as normal. To exit, just type your interrupt character; talk then moves the
cursor to the bottom of the screen and restores the terminal.

Permission to talk may be denied or granted by use of the mesg(1) command. At
the outset talking is allowed. Certain commands, such as pr(1), disallow mes­
sages in order to prevent messy output.

/etc/hosts
/var/adm/utJlp

to find the recipient's machine
to find the recipient's tty

SEE ALSO
mail(1), mesg(1), prO), who(1), write(1), talkd(1M).

10/89 Page 1

tar(1) tar (1)

NAME
tar - tape file archiver

SYNOPSIS
/usr/sbin/tar -c[vwfbL[#sll device block files .. .
/usr/sbin/tar -r[vwfbL[#sll device block files .. .
/usr/sbin/tar -t[vfL[#sJ device [files ... J
/usr/sbin/tar -u[vwfbL[#sl] device block files ...
/usr/sbin/tar -x[lm:>vwfL[#sll device [files ... J

DESCRIPTION

10/89

tar saves and restores files on magnetic tape. Its actions are controlled by the
key argument. The key is a string of characters containing one function letter (c,
r, t, U, or x) and possibly followed by one or more function modifiers (v, w, f, b,
and i). Other arguments to the command are files (or directory names) specifying
which files are to be dumped or restored. In all cases, appearance of a directory
name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

c Create a new tape; writing begins at the beginning of the tape, instead of
after the last file. This key implies the r key.

r Replace. The named files are written on the end of the tape. The c and
u functions imply this function.

t Table. The names and other information for the specified files are listed
each time that they occur on the tape. The listing is similar to the format
produced by the ls -1 command. If no files argument is given, all the
names on the tape are listed.

u Update. The named files are added to the tape if they are not already
there, or have been modified since last written on that tape. This key
implies the r key.

x Extract. The named files are extracted from the tape. If a named file
matches a directory whose contents had been written onto the tape, this
directory is (recursively) extracted. Use the file or directory's relative
path when appropriate, or tar will not find a match. The owner,
modification time, and mode are restored (if possible). If no files argu­
ment is given, the entire content of the tape is extracted. Note that if
several files with the same name are on the tape, the last one overwrites
all earlier ones.

The characters below may be used in addition to the letter that selects the desired
function. Use them in the order shown in the synopsis. Note: the only applicable
device information for the 3B2 Computer is as follows:

#s

/dev/mt/ctape [12 ...]

This modifier determines the drive on which the tape is mounted
(replace # with the drive number) and the speed of the drive (replace s
with 1, In, or h for low, medium or high). The modifier tells tar to use a
drive other than the default drive, or the drive specified with the -f
option. For example, with the Sh modifier, tar would use /dev/mt/Sh
or / dev /mtO instead of the default drives / dev /mt/Om or / dev /mtO,
respectively. However, if for example, -f /dev/r:rm:.O Sh appeared on

Page 1

tar (1)

FILES

v

w

f

b

1

m

o

L

tar (1)

the command line, tar would use /dev/rmt5h or /devmtO. The default
entry is Om
Verbose. Normally, tar does its work silently. The v (verbose) option
causes it to type the name of each file it treats, preceded by the function
letter. With the t function, v gives more information about the tape
entries than just the name.
What. This causes tar to print the action to be taken, followed by the
name of the file, and then wait for the user's confirmation. If a word
beginning with y is given, the action is performed. Any other input
means no. This is not valid with the t key.
File. This causes tar to use the device argument as the name of the
archive instead of /dev/mt/Om or /dev/mtO. If the name of the file is
-, tar writes to the standard output or reads from the standard input,
whichever is appropriate. Thus, tar can be used as the head or tail of a
pipeline. tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - . (cd todir; tar xf -)

Blocking Factor. This causes tar to use the block argument as the block­
ing factor for tape records. The default is 1, the maximum is 20. This
function should not be supplied when operating on regular archives or
block special devices. It is mandatory however, when reading archives
on raw magnetic tape archives (see f above). The block size is deter­
mined automatically when reading tapes created on block special devices
(key letters x and t).
Link. This tells tar to complain if it cannot resolve all of the links to the
files being dumped. If 1 is not specified, no error messages are printed.
Modify. This tells tar to not restore the modification times. The
modification time of the file will be the time of extraction.
Ownership. This causes extracted files to take on the user and group
identifier of the user running the program, rather than those on tape.
This is only valid with the x key.
Follow symbolic links. This causes symbolic links to be followed. By
default, symbolic links are not followed.

/dev/mt/*
/dev/mt*
/dev/mt/ctape
/dev/mt/Om
/dev/rmt/Om
/tnp/tar*

SEE ALSO
ar(l), cpio(1), Is(1).

DIAGNOSTICS

Page 2

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

10/89

tar (1)

NOTES

10/89

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.

tar (1)

The b option should not be used with archives that are going to be updated. The
current magnetic tape driver cannot backspace raw magnetic tape. If the archive
is on a disk file, the b option should not be used at all, because updating an
archive stored on disk can destroy it.
The current limit on file name length is 100 characters.
tar doesn't copy empty directories or special files.

Page 3

tee (1) tee (1)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION

10/89

tee transcribes the standard input to the standard output and makes copies in
the files. The

-i

-a
ignore interrupts;

causes the output to be appended to the files rather than overwriting
them.

Page 1

telnet(1} telnet(1 }

NAME

10/89 Page 1

telnet(1)

z

telnet(1)

Suspend telnet. This command only works when the user is using a
shell that supports job control, such as sh(l).

IOOde type
type is either line (for line by line mode) or character (for character at a
time mode). The remote host is asked for permission to go into the
requested mode. If the remote host is capable· of entering that mode, the
requested mode will be entered.

status
Show the current status of telnet. This includes the peer one is con­
nected to, as well as the current mode.

dhplay [argument ... 1
Display all, or some, of the set and toqgle values (see toqgle, argu­
ments).

? [command 1
Get help. With no arguments, telnet print a help summary. If a com­
mand is specified, telnet will print the help information for just that
command.

send arguments
Send one or more special character sequences to the remote host. The fol­
lowing are the arguments which may be specified (more than one argu­
ment may be specified at a time):

escape
Send the current telnet escape character (initially"']).

synch Send the TELNET SYNCH sequence. This sequence discards all pre­
viously typed (but not yet read) input on the remote system. This
sequence is sent as Tep urgent data (and may not work if the
remote system is a 4.2 BSD system - if it does not work, a lower
case r may be echoed on the terminal).

brk Send the TELNET BRK (Break) sequence, which may have
significance to the remote system.

ip Send the TELNET IP (Interrupt Process) sequence, which aborts the
currently running process on the remote system.

ao Sends the TELNET AO (Abort Output) sequence, which flushes all
output fran the remote system to the user's terminal.

ayt Sends the TELNET AYT (Are You There) sequence, to which the
remote system mayor may not choose to respond.

ec Sends the TELNET EC (Erase Character) sequence, which erases the
last character entered.

el Sends the TELNET EL (Erase Line) sequence, which should cause
the remote system to erase the line currently being entered.

ga Sends the TELNET GA (Go Ahead) sequence, which likely has no
significance to the remote system.

Pa~e 2 10/89

telnet(1) telnet(1)

10/89

nop Sends the TELNET NOP (No Operation) sequence.

? Ptints out help information for the send command.

set argument value
Set anyone of a number of telnet variables to a specific value. The spe­
cial value off turns off the function associated with the variable. The
values of variables may be interrogated with the disPlay command. The
variables which may be specified are:

eCho This is the value (initially "E) which, when in line by line mode,
toggles between doing local echoing of entered characters (for nor­
mal processing), and suppressing echoing of entered characters (for
example, entering a password).

escape
This is the telnet escape character (initially AJ) which enters tel­
net command mode (when connected to a remote system).

interrupt
If telnet is in loealchars mode (see toggle localChars) and
the interrupt character is typed, a TELNET IP sequence (see send
and ip) is sent to the remote host. The initial value for the inter~
rupt character is taken to be the terminal's in~ character.

quit If telnet is in localChars mode (see toggle localChars) and
the quit character is typed, a TELNET BRK sequence (see send.,
brk) is sent to the remote host. The initial value for the quit char­
acter is taken to be the terminal's quit character.

flushoutput
If telnet is in localchars mode (see toggle loealchars) and
the flushoutput character is typed, a TELNET AO sequence (see
send., ao) is sent to the remote host. The initial va1ue for the flush
character is taken to be the terminal's flush character.

erase If telnet is in localChars mode (see toggle localchars), and if
telnet is operating in character at a time mode, then when this
character is typed, a TELNET EC sequence (see send, ec) is sent to
the remote system. The initial value for the erase character is
taken to be the terminal's erase character.

kill If telnet is in localChars mode (see toggle localchars), and if
telnet is operating in. character at a time ~ode, then when this
character is typed, a TELNET EL sequence (see send, el) is sent to
the remote system. The initial value for the kill character is taken
to be the terminal's kill character.

eof If telnet is operating in line by line mode, entering this character
as the first character on a line sends this character to the remote
system. The initial value of the eof character is taken to be the
terminal's eof character.

Page 3

telnet (1) telnet(1)

toggle arguments ...

Page 4

Toggle (between TRUE and FALSE) various flags that control how telnet
responds to events. More than one argument may be specified. The state
of these flags may be interrogated with the display command. Valid
arguments are:

autoflush
If autoflush and localchars are both TRUE, then when the ao,
intr, or quit characters are recognized (and transformed into TEL­
NET sequences; see set for details), telnet refuses to display any
data on the user's terminal until the remote system acknowledges
(using a TELNET Timing Mark option) that it has processed those
TELNET sequences. The initial value for this toggle is TRUE if the
terminal user had not done an stty noflsh, otherwise FALSE [see
stty(l)].

autosyneh
If autosyneh and localehars are both TRUE, then when either the
intr or quit characters are typed (see set for descriptions of the
intr and quit characters), the resulting TELNET sequence sent is
followed by the TELNET SYNCH sequence. This procedure should
cause the remote system to begin throwing away all previously
typed input until both of the TELNET sequences have been read
and acted upon. The initial value of this toggle is FALSE.

erm:xi Toggle RETURN mode. When this mode is enabled, most RETURN
characters received from the remote host will be mapped into a
RETURN followed by a line feed. This mode does not affect those
characters typed by the user, only those received from the remote
host. This mode is not very useful unless the remote host only
sends RETURN, but never LINEFEED. The initial value for this tog­
gle is FALSE.

debug Toggle socket level debugging (useful only to the super-user). The
initial value for this toggle is FALSE.

localehars
If this is TRUE, then the flush, interrupt, quit, erase, and kill
characters (see set) are recognized locally, and transformed into
appropriate TELNET control sequences (respectively ao, ip, brk, ee,
and el; see send). The initial value for this toggle is TRUE in line
by line mode, and FALSE in character at a time mode.

netdata
Toggle the display of all network data (in hexadecimal format).
The initial value for this toggle is FALSE.

options
Toggle the display of some internal telnet protocol processing
(having to do with TELNET options). The initial value for this tog­
gle is FALSE.

10/89

telnet(1) telnet(1)

? Display the legal to<JC]le commands.
SEE ALSO

NOTES

10/89

rlogin(1), sh(1), stty(l), hosts(4), inet(7).

Do not attempt to run layers(1) while using telnet.

There is no adequate way for dealing with flow control.

On some remote systems, echo has to be turned off manually when in line by line
mode.

There is enough settable state to justify a . telnetrc file.

In line by line mode, the terminal's EOF character is only recognized (and sent to
the remote system) when it is the first character on a line.

Page 5

test (1) test (1)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr]

DESCRIPTION

10/89

test evaluates the expression expr and, if its value is true, sets a zero (true) exit
status; otherwise, a non-zero (false) exit status is set; test also sets a non-zero
exit status if there are no arguments. When permissions are tested, the effective
user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS
line) must be separate arguments to the test command; normally these items are
separated by spaces.

The following primitives are used to construct expr:

-r file true if file exists and is readable.

-w file true if file exists and is writable.

-x file true if file exists and is executable.

-f file true if file exists and is a regular file. Alternatively, if /usr/sh users

-d file

-h file

-c file

-b file

-p file

-u file

-g file

-k file

-8 file

-t [fildes]

-z s1

-n s1

s1 = s2

specify /usr/ucb before /usr/bin in their PATH environment vari­
able, then test will return true if file exists and is
(not-a-directory). This is also the default for /usr/bin/csh
users.

true if file exists and is a directory.

true if file exists and is a symbolic link. With all other primitives
(except -L file), the symbolic links are followed by default.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.

true if the length of string s1 is zero.

true if the length of the string 51 is non-zero.

true if strings s1 and s2 are identical.

Page 1

test (1)

51 != 52

51

nl -eq n2

-L file

true if strings 51 and 52 are not identical.

true if 51 is not the null string.

test (1)

true if the integers n1 and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -le may be used in place of
-eq.

true if file exists and is a symbolic link. With all other primitives
(except -h file), the symbolic links are followed by default.

These primaries may be combined with the following operators:

-a

-0

(expr)

unary negation operator.

binary and operator.

binary or operator (-a has higher precedence than -0).

parentheses for grouping. Notice also that parentheses are meaning­
ful to the shell and, therefore, must be quoted.

SEE ALSO

NOTES

Page 2

find(1), sh(l).

The not-a-directory alternative to the -f option is a transition aid for BSD
applications and may not be supported in future releases.

The -L option is a migration aid for users of other shells which have similar
options and may not be supported in future releases.

If you test a file you own (the -r, -W, or -x tests), but the permission tested does
not have the owner bit set, a non-zero (false) exit status will be returned even
though the file may have the group or other bit set for that permission. The
correct exit status will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n opera­
tors, and = and != always expect arguments; therefore, = and != cannot be used
with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the first
argument is examined; the others are ignored, unless a -a or a -0 is the second
argument.

10/89

tftp(1) tftp(1)

NAME
tftp - trivial file transfer program

SYNOPSIS
tftp [host 1

DESCRIPTION

USAGE

tftp is the user interface to the Internet TFfP (Trivial File Transfer Protocol),
which allows users to transfer files to and from a remote machine. The remote
host may be specified on the command line, in which case tftp uses host as the
default host for future transfers (see the connect command below).

Commands

10/89

Once tftp is running, it issues the prompt tftp> and recognizes the following
commands:

connect host-name [port]
Set the host (and optionally port) for transfers. The TFfP protocol, unlike
the FTP protocol, does not maintain connections between transfers; thus,
the connect command does not actually create a connection, but merely
remembers what host is to be used for transfers. You do not have to use
the connect command; the remote host can be specified as part of the get
or put commands.

mode transfer-mode
Set the mode for transfers; transfer-mode may be one of ascii or binary.
The default is ascii.

put filename
put local file remotefile
put filenamel filename2 ... filenameN remote-diredory

Transfer a file, or a set of files, to the specified remote file or directory.
The destination can be in one of two forms: a filename on the remote host
if the host has already been specified, or a string of the form

host: filename

to specify both a host and filename at the same time. If the latter form is
used, the specified host becomes the default for future transfers. If the
remote-directory form is used, the remote host is assumed to be running
the UNIX system.

get filename
get remotename localname
get filenamel filename2 filename3 ... filenameN

Get a file or set of files (three or more) from the specified remote sources.
source can be in one of two forms: a filename on the remote host if the
host has already been specified, or a string of the form

host: filename

to specify both a host and filename at the same time. If the latter form is
used, the last host specified becomes the default for future transfers.

Page 1

tftp(1)

NOTES

Page 2

quit Exit tftp. An EOF also exits.

verbose
Toggle verbose .mode.

trace Toggle packet tracing.

status
Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii Shorthand for m:xie ascii.

binary
Shorthand for m:xie binary.

? command-name. . .]
Print_help information.

tftp(1)

Because there is no user-login or validation within the TFIP protocol; many
remote sites restrict file access in various ways. Approved methods for file access
are specific to each site, and therefore cannot be documented here.

When using the get command to transfer multiple files from a remote host, three
or more files must be specified. The command returns an error message if only
two files are specified.

10/89

time(1)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION

time(1)

The command is executed; after it is complete, time prints the elapsed time during
the command, the time spent in the system, and the time spent in execution of
the command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO
timex(1)
time(2) in the Programmer's Reference Manual.

10/89 Page 1

tlmex(1) timex(1)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time
spent in execution are reported in seconds. Optionally, process accounting data
for the command and all its children can be listed or summarized, and total system
activity during the execution interval can be reported.

The output of timex is written on standard error.

The options are:

-p List process accounting records for command and all its children. This
option works only if the process accounting software is installed. Subop­
tions f, ~ ~ J'I1, r, and t modify the data items reported. The options are
as follows:

-f Print the fork(2) / exec(2) flag and system exit status columns
in the output.

-n Instead of mean memory size, show the fraction of total avail­
able CPU time consumed by the process during its execution.
This ''hog factor" is computed as (total
CPU time)/(elapsed time).

-k Instead of memory size, show total kcore-minutes.

-m Show mean COre size (the default).

-r Show CPU factor (user time/(system-time + user-time).

-t Show separate system and user CPU times. The number of
blocks read Or written and the number of characters transferred
are always reported.

-0 Report the total number of blocks read or written and total characters
transferred by command and all its children. This option works only if the
process accounting software is installed.

-s Repprt total system activity (not just that due to command) that occurred
during the execution interval of command. All the data items listed in
sar(l) are reported.

SEE ALSO

NOTES

10189

time(1), sar(1).
times(2) in the Programmer's Reference Manual.

Process records associated with command are selected from the accounting file
/var/adm/pacct by inference, since prOcess genealogy is not available. Back­
ground processes having the same user 10, terminal 10, and execution time win­
dow will be spuriously included.

Page 1

timex(1) timex (1)

EXAMPLES
A simple example:

timex -cps sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

timex -opskmt sh

session commands
EOT

Page 2 10/89

touch(1) touch (1)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-am::] [mmddhhmm[yy]] files

DESCRIPTION
touch causes the access and modification times of each argument to be updated.
The file name is created if it does not exist. If no time is specified [see date(1)]
the current time is used. The -a and -m options cause touch to update only the
access or modification times respectively (default is -am). The -c option silently
prevents touch from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not
be successfully modified (including files that did not exist and were not created).

SEE ALSO
date(1).

NOTES

10/89

utime(2) in the Programmer's Reference Manual.

Users familiar with the BSD environment will find that the -f option is accepted,
but ignored. The -f option is unnecessary since touch will succeed for all files
owned by the user regardless of the permissions on the files.

Page 1

tput(1 } tput (1)

NAME
tput - initialize a terminal or query terminfo database

SYNOPSIS
tput [-Ttype] capname [parms ...]

tput [-Ttype] init

tput [-Ttype] reset

tput [-Ttype] longname

tput-S «
DESCRIPTION

10/89

tput uses the terminfo database to make the values of terminal-dependent capa­
bilities and information available to the shell (see sh(1», to initialize or reset the
terminal, or return the long name of the requested terminal type. tput outputs a
string if the attribute (capability name) is of type string, or an integer if the attri­
bute is of type integer. If the attribute is of type boolean, tput simply sets the
exit code (0 for TRUE if the terminal has the capability, 1 for FALSE if it does not),
and produces no output. Before using a value returned on standard output, the
user should test the exit code [$?, see sh(1}] to be sure it is o. (See the EXIT
COOPS and DIAGNOSTICS sections.) For a complete list of capabilities and the
capname associated with each, see terminfo(4}.

-Ttype indicates the type of terminal. Normally this option is unnecessary,
because the default is taken from the environment variable TERM. If
-T is specified, then the shell variables LINES and COLUMNS and the
layer size [see layers(1}] will not be referenced.

capname
parms

-S

init

indicates the attribute from the terminfo database.

If the attribute is a string that takes parameters, the arguments parms
will be instantiated into the string. An all numeric argument will be
passed to the attribute as a number.

allows more than one capability per invocation of tput. The capabil­
ities must be passed to tput from the standard input instead of from
the command line (see example). Only one capname is allowed per
line. The -S option changes the meaning of the 0 and 1 boolean and
string exit codes (see the EXIT CODES section).

If the terminfo database is present and an entry for the user's termi­
nal exists (see -Ttype, above), the following will occur: (1) if present,
the terminal's initialization strings will be output (isl, is2, is3, if,
iprog), (2}any delays (e.g., newline) specified in the entry will be set
in the tty driver, (3) tabs expansion will be turned on or off according
to the specification in the entry, and (4) if tabs are not expanded,
standard tabs will be set (every 8 spaces). If an entry does not con­
tain the information needed for any of the four above activities, that
activity will silently be skipped.

Page 1

tput(1) tput(1)

reset Instead of putting out initialization strings, the terminal's reset strings
will be output if present (rs1, rs2, rs3, rf). If the reset strings are
not present, but initialization strings are, the initialization strings will
be output. Otherwise, reset acts identically to init.

longname If the terminfo database is present and an entry for the user's termi­
nal exists (see -Ttype above), then the long name of the terminal will
be put out. The long name is the last name in the first line of the
terminal's description in the tenninfo database [see term(5)].

EXAMPLES

Page 2

tput init Initialize the terminal according to the type of terminal in the
environmental variable TERM. This command should be
included in everyone's .proffie after the environmental vari­
able TERM has been exported, as illustrated on the profile(4)
manual page.

tput -T5620 reset

tput cup 0 0

tput clear

Reset an AT&T 5620 terminal, overriding the type of terminal
in the environmental variable TERM.

Send the sequence to move the cursor to row 0, column 0 (the
upper left corner of the screen, usually known as the "home"
cursor position).

Echo the c1ear-screen sequence for the current terminal.

tput cols Print the number of columns for the current terminal.

tput -T450 cols Print the number of columns for the 450 terminal.

bold= 'tput SJIISO'

offbold='tput rmso'

tput hc

tput cup 23 4

tput longname

tput -8 «~I
> clear
> cup 10 10
> bold
>!

Set the shell variables bold, to begin stand-out mode
sequence, and offbold, to end standout mode sequence, for
the current terminal. This might be followed by a prompt:
echo "${bold}Please type in your name:
${offbold}\c"

Set exit code to indicate if the current terminal is a hardcopy
terminal.

Send the sequence to move the cursor to row 23, column 4.

Print the long name from the terminfo database for the type
of terminal specified in the environmental variable TERM.
This example shows tput processing several capabilities in
one invocation. This example clears the screen, moves the
cursor to position 10, 10 and turns on bold (extra bright)
mode. The list is terminated by an exclamation mark (I) on"
a line by itself.

10/89

tput (1) tput (1)

FILES
/usr/share/lib/terminfo/?/*

/usr/include/curses.h
/usr/include/term.h
/usr/lib/tabset/*

compiled terminal description database
curses(3X) header file
terminfo header file
tab settings for some terminals, in a format appropri­
ate to be output to the terminal (escape sequences that
set margins and tabs); for more information, see the
'Tabs and Initialization" section of terminfo(4)

SEE ALSO
clear(1), stty(l), tabs(1).
profile(4), terminfo(4) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

EXIT CODES
If capname is of type boolean, a value of 0 is set for TRUE and 1 for FALSE unless
the -5 option is used.

If capname is of type string, a value of 0 is set if the capname is defined for this
terminal type (the value of capname is returned on standard output); a value of 1
is set if capname is not defined for this terminal type (a null value is returned on
standard output).

If capname is of type boolean or string and the -5 option is used, a value of 0 is
returned to indicate that all lines were successful. No indication of which line
failed can be given so exit code 1 will never appear. Exit codes 2, 3, and 4 retain
their usual interpretation.

If capname is of type integer, a value of 0 is always set, whether or not capname is
defined for this terminal type. To determine if capname is defined for this termi­
nal type, the user must test the value of standard output. A value of -1 means
that capname is not defined for this terminal type.

Any other exit code indicates an error; see the DIAGNOSTICS section.

DIAGNOSTICS

10/89

tput prints the following error messages and sets the corresponding exit codes.
exit
code error message

o

1
2
3
4

-1 (capname is a numeric variable that is not specified in the
terminfo(4) database for this terminal type, e.g.
tput -T450 lines and tput -T2621 xmc)
no error message is printed, see the EXIT CODES section.
usage error
unknown terminal type or no terminfo database
unknown terminfo capability capname

Page 3

tr(1) tr (1)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [stringl [string2 1 1

DESCRIPTION
tr copies the standard input to the standard output with substitution or deletion
of selected characters. Input characters found in stringl are mapped into the
corresponding characters of string2. Any combination of the options -cds may
be used:

-c Complements the set of characters in stringl with respect to the universe
of characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in stringl.

-s Squeezes all strings of repeated output characters that are in string2 to
single characters.

The following abbreviation conventions may be used to introduce ranges of char­
acters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASOI codes run from character
a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered
octal; otherwise, n is taken to be decimal. A zero or missing n is taken
to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning
from any character in a string. In addition, \ followed by 1, 2, or 3 octal digits
stands for the character whose ASOI code is given by those digits.

EXAMPLE
The following example creates a list of all the words in file1 one per line in file2,
where a word is taken to be a maximal string of alphabetics. The strings are
quoted to protect the special characters from interpretation by the shell; 012 is the
ASOI code for newline.

tr -cs n [A-Z] [a-z]" n [\012*]" <filel>file2

SEE ALSO
ed(1), sh(1).
ascii(5) in the System Administrator's Reference Manual.

NOTES
Will not handle ASCII NUL in stringl or string2; always deletes NUL from input.

10/89 Page 1

true (1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

true (1)

true does nothing, successfully. false does nothing, unsuccessfully. They are
typically used in input to sh such as:

SEE ALSO
sh(1).

DIAGNOSTICS

while true
do

command
done

true has exit status zero, false nonzero.

10/89 Page 1

truss(1) truss (1)

NAME
truss - trace system caUs and signals

SYNOPSIS
truss [-p] [-f] [-c] [-a] [-e] [-i] H tvx] [!] syscall ...] [-s [!] signal ...] [-m [!]
fault...] [-[rw] [!] fd ...] [-0 outfi1e1 c~mmand .

DESCRIPTION

10/89

truss executes the specified command and produces a trace of the system calls it
performs, the signals it receives, and the machine faults it incurs. Each line of the
trace output reports either the fawt or signal name or the system call name with
its arguments and return value(s). System call arguments are displayed symboli­
cally when possible using defines from relevant system header files; for any path­
name pointer argument, the pointed-to string is displayed. Error returns are
reported using the error code names described in intro(2).

The following options are recognized. For those options which take a list argu­
ment, the name all can be used as a shorthand to specify all possible members
of the list. If the list begins with a !, the meaning of the option is negated (e.g.,
exclude rather than trace). Multiple occurrences of the SClme option may be
specified. For the same name in a list, subsequent options (those to the right)
override previous ones (those to the left).

-p Interpret the arg1.lIIlents to truss as a list of process-ids for exist­
ing processes (see ps(l» rather than as a command to be executed.
truss takes control of each process and begins tracing it provided
that the userid and groupid of the process match those of the user
or that the user is a privilege<! user. Processes may also be
specified by their names in the /proc directory, e.g., /proc/1234;
this works for remotely-mounted /proc directories as well.

-f Follow all children created by forkO and include their signals,
faults, and system calls in the trace output. Normally, only the
first-level command or process is traced. When -f is specified,
the process-id is included with each line of trace output to indi­
cate which process executed the system call or received the signal.

-c

-a

-e

-i

Count traced system calls, faults, and signals rather than display­
ing the trace line-by-line. A summary report is produced after the
traced command terminates or when truss is interrupted .. If -f
is also speci.fied, the counts include all traced system calls, faults,
and signals for child processes.

Show the argument strings which are passed in each execO sys­
tem call.

Show the environment strings which are passed in each exec()
system call.

Don't display interruptible sleeping system calls. Certain system
calls, such as openO and· read() on terminal devices or pipes can
sleep for indefinite periods and are interruptible. Normally,
truss reports such sleeping system calls if they remain asleep for
more than one second. The system call is reported again a second

Pllge 1

truss (1)

-t [!] syscall, ...

-v [!] syscall, ...

-x [!] syscall, ...

truss(1)

time when it completes. The -i option causes such system calls
to be reported only once, when they complete.

System calls to trace or exclude. Those system calls specified in
the comma-separated list are traced. If the list begins with a'!',
the specified system calls are excluded from the trace output.
Default is -tall.

Verbose. Display the contents of any structures passed by address
to the specified system calls (if traced). Input values as well as
values returned by the operating system are shown. For any field
used as both input and output, only the output value is shown.
Default is -v I all.

Display the arguments to the specified system calls (if traced) in
raw form, usually hexadecimal, rather than symbolically. This is
for unredeemed hackers who must see the raw bits to be happy.
Default is -x I all.

-s [I] signal,... Signals to trace or exclude. Those signals specified in the
comma-separated list are traced. The trace output reports the
receipt of each specified signal, even if the signal is being ignored
(not blocked) by the process. (Blocked signals are not received
until the process releases them.) Signals may be specified . by
name or number (see <sys/signal.h». If the list begins with a
'I', the specified signals are excluded from the trace output.
Default is -sall.

-m [I] fault,... Machine faults to trace or exclude. Those machine faults specified
in the comma-separated list are traced. Faults may be specified by
name or number (see <sys/fault. h». If the list begins with a'!',
the specified faults are excluded from the trace output. Default is
-mall -ml fltpage.

-r [I] fd,... Show the full contents of the I/O buffer for each readO on any of
the specified file descriptors. The output is formatted 32 bytes per
line and shows each byte as an ascii character (preceded by ol)e
blank) or as a2-character C language escape. sequence for control
characters such as horizontal tab (\t) and newline (\n). If ascii
interpretation is not possible, the byte is shoWn in 2-chclracter hex­
adecimal representation. (The first 16 bytes of the If,0 buffer for
each traced read() are shown even in the absence of -r.) Default
is -rlall. .

-w [!] fd,... Show the contents of the I/O buffer for each writeO on any of the
specified file descriptors (see -r). Default is -wlall ..

-0 outfile File to be used for the trace output. By default, the output goes to
st!U\dard error.

Page 2 10/89

truss(1 } truss(1}

See Section 2 of the Programmer's Reference Manual for syscall names accepted
by the -t, -v, and -x options. System call numbers are also accepted.

If truss is used to initiate and trace a specified command and if the -0 option is
u~ or if standard error is redirected to a non-terminal me, then truss runs
with hangup, interrupt, and quit signals ignored. This facilitates tracing of
interactive programs which catch interrupt and quit signals from the terminal.

If the trace output remains directed to the terminal, or if existing processes are
traced (the -p option), then truss responds to hangup, interrupt, and quit signals
by releasing all traced processes and exiting. This enables the user to terminate
excessive trace output and to release previously-existing processes. Released
processes continue normally, as though they had never been touched.

EXAMPLES

FILES

NOTES

10/89

This example produces a trace of the find(1) command on the terminal:

truss find . -print >find.out

Or, to see only a trace of the open, close, read, and write system calls:

truss -t open,close,read,write find. -print >find.out

This produces a trace of the spell(1) command on the me truss. out:

truss -f -0 truss.out spell document

spell is a shell script, so the -f flag is needed to trace not only the shell but also
the processes created by the shell. (The spell script runs a pipeline of eight con­
current processes.)

A particularly boring example is:

truss nroff ~ document >nroff.out

because 97% of the output reports lseek(), read(), and writeO system calls. To
abbreviate it:

truss -t !lseek,read,write nroff -mm document >nroff.out

This example verbosely traces the activity of process #1, init(1M) (provided you
are a privileged user):

truss -p -vall 1

Interrupting truss returns init to normal operation.

/proc/nnnnn process files

Some of the system calls described in Section 2 of the Programmer's Reference
Manual differ from the actual operating system interfaces. Do not be surprised by
minor deviations of the trace output from the descriptions in Section 2.

Page 3

truss(1) truss (1)

Every machine fault (except a page fault) results in the posting of a signal to the
process which incurred the fault. A report of a received signal will immediately
follow each report of a machine fault (except a page fault) unless that signal is
being blocked by the process.

The operating system enforces certain security restrictions on the tracing of
processes. In particular, any command whose object file (a. out) cannot be read
by a user cannot be traced by that user; set-uid and set-gid commands can be
traced only by a privileged user. Unless it is run by a privileged user, truss
loses control of any process which performs an exec(2) of a set-id or unreadable
object file; such processes continue normally, though independently of truss,
from the point of the execO.

To avoid collisions with other controlling processes, truss will not trace a pro­
cess which it detects is being controlled by another process via the /proc inter­
face. This allows truss to be applied to proc(4)-based debuggers as well as to
another instance of itself.

The trace output contains tab characters under the assumption that standard tab
stops are set (every eight positions).

The trace output for multiple processes is not produced in strict time order. For
example, a readO on a pipe may be reported before the corresponding writeO.
For anyone process, the output is strictly time-ordered.

The system may run out of per-user process slots when tracing of children is
requested. When tracing more than one process, truss runs as one controlling
process for each process being traced. For the example of the spell command
shown above, spell itself uses 9 process slots, one for the shell and 8 for the 8-
member pipeline, while truss adds another 9 processes, for a total of 18. This is
perilously close to the usual system-imposed limit of 25 processes per user.

truss uses shared memory and semaphores when dealing with more than one
process (-f option or -p with more than one pid). It issues a warning message
and proceeds when these are needed but not configured in the system. However,
the trace output may become garbled in this case and the output of the -c option
reports only the top-level command or first pid and no children are counted.

Not all possible structures passed in all possible system calls are displayed under
the -v option.

SEE ALSO
intro(2), proc(4)

Page 4 10/89

tty(1) tty(1)

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-1] [-s]

DESCRIPTION
tty prints the path name of the user's terminal.

-1 prints the synchronous line number to which the user's terminal is con­
nected, if it is on an active synchronous line.

-s inhibits printing of the terminal path name, allowing one to test just the
exit code.

EXIT CODES
2 if invalid options were specified,
o if standard input is a terminal,
1 otherwise.

DIAGNOSTICS

10/89

"not on an active synchronous line" if the standard input is not. a syn­
chronous terminal and -1 is specified.
"not a tty" if the standard input is not a terminal and -s is not specified.

Page 1

umask(1) umask(1)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000 1

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively (see
chm:x:l(2) and umask(2». The value of each specified digit is subtracted from the
corresponding "digit" specified by the system for the creation of a file (see
creat(2». For example, umask 022 removes group and others write permission
(files normally created with mode 777 become mode 755; files created with mode
666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell.

umask can be included in the user's .profile (see profile(4» and invoked at
login to automatically set the user's permissions on files or directories created.

SEE ALSO

10/89

chIood(1), sh(1).
chm:>d(2), creat(2), umask(2) in the Programmer's Reference Manual.
profile(4) in the System Administrator's Reference Manual.

Page 1

uname(1} uname(1}

NAME
uname - print name of current UNIX system

SYNOPSIS
uname [-annpr$v I
uname [-s system_name I

DESCRIPTION
uname prints the current system name of the UNIX system to standard output. It
ill mainly useful to determine which system one is using. The options cause
selected information returned by uname(2) and/or sysinfo(2) to be printed:

-~ Print aU information.
-m Print the machine hardware name.

-n Print the nodename (the nodename is the name by which the system is
known to a communications network). This is the default.

-p Print the current host's processor type.

-r Print the operating system release .

..... s Print the name of the operating system (e.g. UNIX System V).

-v Print the operating system version.

On the 382 computer, the riodename may be changed by specifying a system
name argument to the. -s option. . The system name argument is restricted to
SYS _ NMLN characters. SYS _ NMLN is an .implementation specific value defined
in <sys/utsname.h>. Only the super-user is allowed this capability.

SEE ALSO

sysinfo(2), uname(2) in the Programmer's Reference Manual.

10/89 Page 1

uniq (1) uniq(1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
uniq reads the input file comparing adjacent lines. In the normal ease, the
second and succeeding copies of repeated lines are removed; the remainder is
written on the output file. Input and output should always be different. Note
that repeated lines must be adjacent in order to b~ found; see sart(l). If the -u
flag is used, just the lines that are not repeated in the original file are output.
The -d option specifies that one copy of just the repeated lines is to be written.
The normal mode output is the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates ail output report in default
style but with each line preceded by a count of the number of times it occurred.

The n arguments specify slOpping an initial portion of each line in the com­
parison:

-n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated by
tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
connil), sort(1).

10/89 Page 1

unlts(1) units(1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FILES

10/89

units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.540000e+OO
13.937008e-01

A quantity is specified as a multiplicative combination of units optionally pre­
ceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: 15 lbs force/in2
You want: attn

'" 1.020689e+OO
19.797299e-01

unit$ only does multiplicative scale changes; thus it can convert {<elvin to Rank­
ine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric
prefixes are recognized, together with a generous leavening of exotica and a few
constants 9f nature including:

pi
c
e
9'
force
mole
'!later
au

ratio of circumference to diameter,
sp~ of light,
charge on an electron,
acceleration pf gravity,
same as 9!
Avogadro's number,
pressure head per unit height of water,
astronomical unit.

Pounp is not recognized asa unit of mass; lb is, Compound names are run
together~ (e.g., li9ht~~~). British units that differ from their U.S. counterparts
are pre~edthus: pr9lltlo~ .. For a complete list of units, type:

cat lusr/l!b/Unittab

lusr/tib/unittab

Page 1

uucp(1C) uucp(1C)

NAME
uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file
uulog [options] system
uuname [options]

DESCRIPTION
uucp

10/89

uucp copies files named by the source-file arguments to the destination-file argu­
ment. A source file name may be a patname on your machine, or, may have the
form:

system-name! pathname
where system-name is taken from a list of system names that uucp knows about.
The destination system-name may also include a list of system names such as

system-name! system-name! ... ! system-name! pathname

In this case, an attempt is made to send the file, via the specified route, to the
destination. Care should be taken to ensure that intermediate nodes in the route
are willing to forward information (see NOTES below for restrictions).

The shell metacharacters ?, * and [...] appearing in pathname will be
expanded on the appropriate system.

Path names may be one of:

(1) a full pathname;

(2) a pathname preceded by -user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a pathname preceded by -I destination where destination is appended
to /var/spool/uucppublic; (NOTE: This destination will be
treated as a file name unless more than one file is being transferred
by this request or the destination is already a directory. To ensure
that it is a directory, follow the destination with a '1'. For example
-Idanl as the destination will make the directory
Ivarlspool/uucppublic/dan if it does not exist and put the
requested file(s) in that directory).

(4) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system, the copy will fail.
If the destination-file is a directory, the last part of the source-file name is used.

uucp removes execute permissions across the transmission and gives 0666 read
and write permissions (see chmod(2».

The following options are interpreted by uucp:

-c Do not copy local file to the spool directory for transfer to the remote
machine (default).

Page 1

uucp(1C} uucp(1C}

-c
-d

-f

-ggrade

-j

-In

Force the copy of local files to the spool directory for transfer.
Make all necessary directories for the file copy (default).

Do not make intermediate directories for the file copy.

grade can be either a single letter/number or a string of alphanumeric
characters defining a service grade. The uuglist command can deter­
mine whether it is appropriate to use the single letter/number or a
string of alphanumeric characters as a service grade. The output from
the uuglist command will be a list of service grades that are available
or a message that says to use a single letter/number as a grade of ser­
vice.

Output the uucp job identification string on the standard output. This
job identification can be used by uustat to obtain the status of a uucp
job or to terminate a uucp job. It is valid as long as the job remains
queued on the local system.

Send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-sfile Report status of the transfer to file. This option overrides the -In

option.

-xdebug_'evel
Produce debugging output on standard output. debug_level is a
number between 0 and 9; as it increases to 9, more detailed debugging
information is given. This option may not be available on all systems.

uulog
uulog queries a log file of uucp or uuxqt transactions in file
/var/uucp/ . Log/uucico/system or /var/uucp/ . Log/uuxqt/system.

These options cause uulog to print logging information:

-ssys Print information about file transfer work involving system sys.

-fsystem Does a "tail -f" of the file transfer log for system (You must hit
BREAK to exit this function.)

Other options used in conjunction with the above options are:

-x Look in the uuxqt log file for the given system.

-number Indicates that a "tail" command of number lines should be executed.

uuname

Page 2

uuname lists the names of systems known to uucp. uuname recognizes the follow­
ing options:

-c Returns the names of systems known to cu. (The two lists are the
same, unless your machine is using different Systems files for cu and
uucp. See the Sysfiles file.)

10/89

uucp(1C) UUCp(1C)

FILES

-1 Return the local system name.

/var/spool/uucp spool directories
/var/spool/uucppublic/*public directory for receiving and

/usr /lib/uucp/*
/etc/uucp/*

sending
other program files
other data files

SEE ALSO

NOTES

NOTES

10/89

mail(1), uuglist(1C), uustat(1C), uux(lC), uuxqt(1M).
chrood(2) in the Programmer's Reference Manual.

For security reasons, the domain of remotely accessible files may be severely res­
tricted. You will very likely not be able to access files by pathname; ask a
responsible person on the remote system to send them to you. For the same rea­
sons you will probably not be able to send files to arbitrary pathnames. As dis­
tributed, the remotely accessible files are those whose names begin
/var/spoo1/uucppublic (equivalent to -I).
All files received by uucp will be owned by uucp.

The -In option will only work sending files or receiving a single file. Receiving
multiple files specified by special shell characters? * [...] will not activate
the -In option.

The forwarding of files through other systems may not be compatible with the
previous version of uucp. If forwarding is used, all systems in the route must
have compatible versions of uucp.

Protected files and files that are in protected directories that are owned by the
requester can be sent by uucp. However, if the requester is root, and the direc­
tory is not searchable by "other" or the file is not readable by "other", the request
will fail.

Page 3

uuencode (1 C) uuencode (1 C)

NAME
uuencode, uudecode - encode a binary file, or decode its ASCII representation

SYNOPSIS
uuencode [source-file 1 file-label

uudecode [encoded-file 1
DESCRIPTION

uuencode converts a binary file into an ASCII-encoded representation that can be
sent using mail(1). It encodes the contents of source-file, or the standard input if
no source-file argument is given. The file-label argument is required. It is included
in the encoded file's header as the name of the file into which uudecode is to
place the binary (decoded) data. uuencode also includes the ownership and per­
mission modes of source-file, so that file-label is recreated with those same owner­
ship and permission modes.

uudecode reads an encoded-file, strips off any leading and trailing lines added by
mailer programs, and recreates the original binary data with the filename and the
mode and owner specified in the header.

The encoded file is an ordinary ASCII text file; it can be edited by any text editor.
But it is best only to change the mode or file-label in the header to avoid corrupt­
ing the decoded binary.

SEE ALSO

NOTES

10/89

mail(l), uucp(lC), Uux(lC).
uuencode (5) in the System Administrator's Reference Manual.

The encoded file's size is expanded by 35% (3 bytes become 4, plus control infor­
mation), causing it to take longer to transmit than the equivalent binary.

The user on the remote system who is invoking uudecode (typically uucp) must
have write permission on the file specified in the file-label.

Since both uuencode and uudecode run with user ID set to uucp, uudecode can
fail with permission denied when attempted in a directory that does not have
write permission allowed for other.

Page 1

uugllst(1C) uugllst(1C)

NAME
uuglist - print the list of service grades that are available on this UNIX system

SYNOPSIS
uuglist [-u]

DESCRIPTION

FILES

uuglist prints the list of service grades that are available on the system to use
with the -g option of uucp(lC) and uux(lC). The -u option lists the names of
the service grades that the user is allowed to use with the - g option of the uucp
and uux commands.

/usr/lib/uucp/Grades contains the list of service grades

SEE ALSO
uuCP(lC), uux(1C).

10/89 Page 1

uustat(1C) uustat(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-q] or [-m] or [-kjobid [-n)) or [-rjobid [-n)) or [-p]
uustat [-a] [-ssystem [-j)) [-uuser] [-Sqric]
uustat -tsystem [-dnumber] [-c)

DESCRIPTION

10/89

uustat functions in the following three areas: displays the general status of, or
cancels, previously specified uucp commands; provides remote system perfor­
mance information, in terms of average transfer rates or average queue times;
provides· general remote system-specific and user-specific status of uucp connec­
tions to other systems.

Here are the options that obtain general status of, or cancel, previously specified
uucp commands; uustat allows only one of these options to appear on each uus­
tat command line execution:

-a List all jobs in queue.

-j

-kjobid

-m

-n

-p

-q

List the total number of jobs displayed. The -j option can be used in
conjunction with the -a or the -s option.

Kill the uucp request whose job identification is jobid. The killed uucp
request must belong to the person issuing the uustat command unless
one is the super-user or uucp administrator. If the job is killed by the
super-user or uucp administrator, electronic mail is sent to the user.

Report the status of accessibility of all machines.

Suppress all standard out output, but not standard error. The-n
option is used in conjunction with the -k and -r options.

Execute the command ps -flp for. all the process-ids that are in the
lock files.

List the jobs queued for each machine. If a status me exists for the
machine, its date, time and status information are reported. In addi­
tion, if a number appears in parentheses next to the number of C or X
mes, it is the age in days of the oldest C. Ix. file for that system. The
Retry field represents the number of hours until the next possible call.
The Count is the number of failure attempts. NOTE: for systems with
a moderate number of outstanding jobs, this could take 30 seconds or
mQre of real-time to execute. Here is an example of the output pro­
duced by thE;! -q option:

eagle 3C 04/07-11:07 NO DEVICES AVAILABLE
mh3bs3 2C 07/07-10:42 SUCCESSFUL

The above output tells how many command mes are waiting for each
system .. Each command file may have zero or more files to be sent
(zero means. to call the system and see if work is to be done). The
date and time refer to the previous interaction with the system fol­
lowed by the status of the interaction.

Page 1

uustat(1C) uustat(1C)

Page 2

-rjobid Rejuvenate jobid. The files associated with jobid are touched so that
their modification time is set to the current time. This prevents the
cleanup daemon from deleting the job until the jobs' modification time
reaches the limit imposed by the daemon.

Here are the options that provide remote system performance information, in
terms of average transfer rates or average queue times; the -c and -d options can
only be used in conjunction with the -t option:

-tsystem Report the average transfer rate or average queue time for the past 60
minutes for the remote system. The following parameters can only be
used with this option:

-dnumber number is specified in minutes. Used to override the 60 minute default
used for calculations. These calculations are based on information
contained in the optional performance log and therefore may not be
available. Calculations can only be made from the time that the per­
formance log was last cleaned up.

-c Average queue time is calculated when the --c parameter is specified
and average transfer rate when --c is not specified. For example, the
command

uustat -teagle -d50 -c

produces output in the following format:

average queue time to eagle for last 50 minutes: 5 seconds

The same command without the -c parameter produces output in the
following format:

average transfer rate with eagle for last 50 minutes: 2000.88
bytes/sec

Here are the options that provide general remote system-specific and user-specific
status of uucp connections to other systems. Either or both of the following
options can be specified with uustat. The -j option can be used in conjunction
with the -s option to list the total number of jobs displayed:

-ssystem Report the status of all uucp requests for remote system system.

-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eagleN1bd7 4/07-11:07 S eagle dan 522 /home/dan/A
eagleC1bd8 4/07-11:07 S eagle dan 59 D.3b2a12ce4924

4/07-11:07 S eagle dan rmail mike

With the above two options, the first field is the jobid of the job. This is followed
by the date/time. The next field is an S if the job is sending a file or an R if the
job is requesting a file. The next field is the machine where the file is to be
transferred. This is followed by the user-id of the user who queued the job. The
next field contains the size of the file, or in the case of a remote execution (rmail
is the command used for remote maiD, the name of the command. When the size
appears in this field, the file name is also given. This can either be the name

10/89

uustat(1C) uustat(1C)

FILES

given by the user or an internal name (e.g., D.3b2alce4924) that is created for
data files associated with remote executions (rmail in this example).

-Sqric Report the job state: q for queued jobs, r for running jobs, i for inter­
rupted jobs, and c for completed jobs.

A job is queued if the transfer has not started. A job is running when
the transfer has begun. A job is interrupted if the transfer began but
was terminated before the file was completely transferred. A com­
pleted job, of course, is a job that successfully transferred. The com­
pleted state information is maintained in the accounting log, which is
optional and therefore may be unavailable. The parameters can be
used in any combination, but at least one parameter must be specified.
The -s option can also be used with -s and -u options. The output
for this option is exactly like the output for -s and -u except that the
job states are appended as the last output word. Output for a com­
pleted job has the following format:

eagleClbd3 completed

When no options are given, uustat outputs the status of all uucp requests issued
by the current user.

/var/spool/uucp/*
/var/uucp/.Admin/account
/var/uucp/.Admin/perflog

spool directories
accounting log
performance log

SEE ALSO
uuCP(lC).

DIAGNOSTICS

NOTES

10/89

The -t option produces no message when the data needed for the calculations is
not being recorded.

After the user has issued the uucp request, if the file to be transferred is moved
or deleted or was not copied to the spool directory with the -c option when the
uucp request was made ,uustat reports a file size of -99999. This job will even­
tually fail because the file(s) to be transferred can not be found.

Page 3

uuto(1C) uuto(1C)

NAME
uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uuto [options] source-files destination
uupick [-s system]

DESCRIPTION
uuto sends source-files to destination. uuto uses the uucp(1C) facility to send files,
while it allows the local system to control the file access. A source-file name is a
path name on your machine. Destination has the form:

system[fsystem] ... fuser

where system is taken from a list of system names that uucp knows about (see
uuname(1C». User is the login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-In Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system,
where PUBDIR is a public directory defined in the uucp source. By default, this
directory is /var/ spool/uucppublic. Specifically the files are sent to

PUBDIR/receive/user/mysystem/files.

The destined recipient is notified by mail(1) of the arrival of files.

uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or directory)
found, the following message is printed on the standard output:

from system sysname: [file file-name] [dir dirname] ?

uupick then reads a line from the standard input to determine the disposition of
the file:

<new-line> Go on to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir. If dir is not specified as
a complete path name (in which $HOME is legitimate), a desti­
nation relative to the current directory is assumed. If no desti­
nation is given, the default is the current directory.

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file.

q Stop.

EOT (control-d) Same as q.

uuto(1C) uuto(1C)

FILES

!command

*
Escape to the shell to do command.

Print a command summary.

uupick invoked with the -s system option will only search the PUBDIR
for files sent from system.

PUBDIR /var/spool/uucppublic public directory

SEE ALSO

NOTES

Page 2

mail(1), uuCP(lC), uustat(1C), uux(1C).
uucleanup(1M) in the System Administrator's Reference Manual.

In order to send files that begin with a dot <e.g., . profile), the files must be
qualified with a dot. For example, the following files are correct:

.profile .prof* .profil?

The following files are incorrect:

prof ?profile

10/89

uux(1C) UUX(1C)

NAME
uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [options 1 comnand-strinq

DESCRIPTION

10/89

uux will gather zero or more files from various systems, execute a command on a
specified system and then send standard output to a file on a specified system.

NOTE: For security reasons, most installations limit the list of commands execut­
able on behalf of an incoming request from uux, permitting only the receipt of
mail (see mail(1». (Remote execution permissions are defined in
/ ete/uucp/Permissions.)

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by
system-name!. A null system-name is interpreted as the local system.

File names may be one of:

(1) a full pathnamej

(2) a pathname preceded by -xxx, where xxx is a login name on the
specified system and is replaced by that user's login directoryj

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diff sysl!/hane/dan/filel sys2!/a4/dan/file2 >
!-/dan/file.diff"

will get the file1 and fi1e2 files from the "sys1" and "sys2" machines, execute a
diff(1) command and put the results in fi1e.diff in the local PUBDIR/dan/ direc­
tory. PUBDIR is a public directory defined in the uucp source. By default, this
directoryis/var/spool/uucppublie

Any special shell characters such as <, >, ;, I should be quoted either by
quoting the entire command-string, or quoting the special characters as individual
arguments.

uux will attempt to get all appropriate files to the specified system where they
will be processed. For files that are output files, the file name must be escaped
using parentheses. For example, the command:

uux "a!eut -f1 b!/usr/file > e!/usr/file"

gets "/usr/file" from system "b" and sends it to system "a", performs a cut com­
mand on that file and sends the result of the eut command to system "c".

uux will notify you if the requested command on the remote system was disal­
lowed. This notification can be turned off by the -n option. The response comes
by remote mail from the remote machine.

The following options are interpreted by uux:

Page 1

uux(1C) uux(1C)

FILES

NOTES

Page 2

-aname

-b

-c

-c
-ggrade

-j

-n
-p

-r

The standard input to uux is made the standard input to the
command-string.

Use name as the user job identification replacing the initiator user-id.
(Notification will be returned to user-id name.)

Return whatever standard input was provided to the uux command if
the exit status is non-zero.

Do not copy local file to the spool directory for transfer to the remote
machine (default).

Force the copy of local files to the spool directory for transfer.

grade can be either a single letter, number, or a string of alphanumeric
characters defining a service grade. The uuglist(1C) command deter­
mines whether it is appropriate to use the single letter, number, or a
string of alphanumeric characters as a service grade. The output from
the uuglist command will be a list of service grades that are available
or a message that says to use a single letter or number as a grade of
service.

Output the jobid string on the standard output which is the job
identification. This job identification can be used by uustat(1C) to
obtain the status or terminate a job.

Do not notify the user if the command fails.

Same as -: The standard input to uux is made the standard input to
the command-string.

Do not start the file transfer, just queue the job.

-sfile Report status of the transfer in file.

-xdebug_level
Produce debugging output on the standard output. debug_level is a
number between a and 9; as it increases to 9, more detailed debugging
information is given.

-z Send success notification to the user.

/var/spooljuucp
/ etc/uucp /Permissions
/usr/lib/uucp/*
/etc/uucp/*

spool directories
remote execution permissions

other programs
other data and programs

Only the first command of a shell pipeline may have a system-name!. All other
commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do.
The shell tokens « and » are not implemented.

The execution of commands on remote systems takes place in an execution direc­
tory known to the uucp system. All files required for the execution will be put
into this directory unless they already reside on that machine. Therefore, the

10/89

uux(1C) uux(1C)

simple file name (without path or machine reference) must be unique within the
uux request. The following command will NOT work:

uux "a!diff b!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"

but the command

uux "a!diff a!/home/dan/xyz C!/home/dan/xyz > !xyz.diff"

will work. (If diff is a permitted command.)

Protected files and files that are in protected directories that are owned by the
requester can be sent in commands using uux. However, if the requester is root,
and the directory is not searchable by "other", the request will fail.

SEE ALSO
cut(1), mail(1), uuglist(1C), uucp(lC), uustat(1C).

10/89 Page 3

vacatlon(1) vacatlon(1)

NAME
vacation - automatically respond to incoming mail messages.

SYNOPSIS
vacation [-llogfile] [-mmailfile] [-M canned_msgjilel [-F failsafe]

DESCRIPTION

FILES

When a new mail message arrives, the mail command first checks if the
recipient's mailbox indicates that the message is to be forwarded elsewhere (to
some other recipient or as the input to some command). vacation is used to set
up forwarding on the user's mailbox so that the new message is saved into an
alternative mailbox and a canned response is sent to the message's originator.

Command-line options are:

-1 logfile File to keep track of which originators have already seen the canned
response. If not specified, it defaults to $HOME/ .maillog.

-m mailfile Alternate mailbox to save new messages into. Ifnotspecified,it
defaults to $HOME/ .maUfile.

-M canned _ msgjile
File to send back as the canned response. If canned _ msgjile is not
specified, it defaults to /usr/lib/maU/std_vac_msg, which con­
tains:

Subject: AUTOANSWERED!!!

I am on vacation. I will read (and answer if necessary)
your e-mail message when I return.

This message was generated automatically and you will
receive it only once, although all messages you send
me while I am away WILL be saved.

-F failsafe If mail has troubles delivering to the mailfile specified, it may
optionally be forwarded to another login id <failsafe) instead of being
returned to the sender.

-d The log file will have the day's date appended.

To remove the vacation functionality, use

mail -F ""

/tIlp/notif* temporary file
/usr/share/lib/mail/std vac msg

- default canned response
/var/mail/* users' standard mailboxes
/usr/lib/mail/vacation2 program that actually sends back the canned

response

SEE ALSO

10/89

mail(1)
User's Guide.

Page 1

vacation (1) vacation(1)

NOTES

Page 2

Because vacation uses the "Forward to I command" facility of mail to imple­
ment notifications, /var/mail/username should not be specified as the place to
put newly arrived messages via the -m invocation option. The mail command
uses /var/mail/username to hold either mail messages, or indications of mail
forwarding, but not both simultaneously.

10/89

vi(1) vi(1)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag] [-r file] [-i] [-L] [-wn] [-R] [-x] [-C] [-c command] file ...
view [-t tag] [-r file] [-1] [-L] [-wn] [-R] [-x] [-c] [-c command] file .. .
vedit [-t tag] [-r file] [-1] [-L] [-wn] [-R] [-x] [-C] [-c command] file .. .

DESCRIPTION
vi (visual) is a display-oriented text editor based on an underlying line editor ex.
It is possible to use the command mode of ex from within vi and vice-versa.
The visual commands are described ori this manual page; how to set options (like
automatically numbering lines and automatically starting a new output line when
you type carriage return) and all ex line editor commands are described on the
ex(l) manual page.

When using vi, changes you make to the file are reflected in what you see on
your terminal screen. The position of the cursor on the screen indicates the posi­
tion within the file.

Invocation Options

10/89

The following invocation options are interpreted by vi (previously documented
options are discussed in the NOTES section of this manual page):

-t tag Edit the file containing the tag and position the editor at its
definition.

-r file

-1

-L

-wn

-R

-x

-C

Edit file after an editor or system crash. (Recovers the version of
file that was in the buffer when the crash occurred.)

Set up for editing LISP programs.

LiSt the name of all files saved as the result of an editor or system
crash.

Set the default window size to n. This is usefUl when using the
editor over a slow speed line.

Readon1y mode; the readon1y flag is set, preventing accidental
overwriting of the file.

Encryption option; when used, vi simulates the X command of ex
and prompts the user for a key. This key is used to encrypt and
decrypt text using the algorithm of the crypt command. The X
commahd makes an educated guess to determine whether text
read in is encrypted or not. The temporary buffer file is
encrypted also, using a transformed version Of the key typed in
for the -x option. See crypt(1). Also, see the WARNING section
at the end of this manual page.

Encryption option; same as the -x option, except that vi simulates
the c command of ex. The c command is like the X command of
ex,. except that all text read in is assumed to have been encrypted.

Page 1

vl(1) vl(1)

-c command Begin editing by executing the specified editor command (usually a
search or positioning command).

The file argument indicates.one or more files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. It is the same as vi except that
the report flag is set to I, the showm:xle and novice flags are set, and magic is
turned off. These defaults make it easier to learn how to use vi.

vi Modes
Command Normal and initial mode. Other modes return to command

mode upon completion. ESC (escape) is used to cancel a partial
command.

Input

Last line

Entered by setting any of the following options: a A i I 0 0 c
C s SR. Arbitrary text may then be entered. Input mode is
normally terminated with ESC character, or, abnormally, with an
interrupt.

Reading input for : / ? or I; terminate by typing a carriage
return; an interrupt cancels termination.

COMMAND SUMMARY
In the descriptions, CR stands for carriage return and ESC stands for the escape
key.

Sample commands
+-- J. t--+ arrow keys move the cursor

same as arrow keys h j k 1
itexiEsc
CwnewESC
eaSESC

x
dw
dd
3dd
u
ZZ
:q!CR
/textCR
.... u 0
:cmdCR

insert text
change word to new
pluralize word (end of word; append s;

escape from input state)
delete a character
delete a word
delete a line
delete 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

Counts before vi commands

Page 2

Numbers may be typed as a prefix to some commands. They are interpreted in
one of these ways.

10/89

vi (1)

line/column number
scroll amount
repeat effect

z G
.... 0 U

most of the rest

Interrupting, canceling
ESC end insert or incomplete cmd
DEL (delete or rubout) interrupts

File manipulation
ZZ if file modified, write and exit; otherwise, exit
: wCR write back changes
: w I CR forced write, if permission originally not valid
:qCR quit
: q ! CR quit, discard changes
: e nameCR edit me name
: e ! CR reedit, discard changes
: e + nameCR edit, starting at end
: e +nCR edit starting at line n
: e tCR edit alternate me
: e! tCR edit alternate me, discard changes
: w nameCR write file .name
: w! nameCR overwrite file name
: shCR run shell, then return
: ! cmdCR run cmd, then return
: nCR edit next file in arglist
:n argsCR specify new arglist
"'G show current file and line
: ta tageR pOSition cursor to tag

vl(1)

In general, any ex or ed command (such as substitute or global) may be typed,
preceded by a colon and followed by a carriage return.

Positioning within file

10/89

"'F forward screen
"'S backward screen
"'0 scroll down half screen
"'U scroll up half screen
nG go to the beginning of the specified line

lpat
?pat
n
N
lpatl+n
?pat?-n
]]
[[
(
)

(end default), where n is a line number
next line matching pat
previous line matching pat
repeat last / or ? command
reverse last / or ? command
nth line after pat
nth line before pat
next section/function
previous section/function
beginning of sentence
end of sentence

Page 3

vl(1 }

{
}
%

beginning of paragraph
end of paragraph
find matching () {or}

Adjusting the screen
"'L clear and redraw window
"'R clear and redraw window if "'L is ~ key
zCR redraw screen with current line at top of window
z-cR redraw screen with current line at bottom of window
z . CR redraw screen with current line at center of window
/pat/z-cR move pat line to bottom of window
zn . CR use n-line window
"'E scroll window down 1 line
"'Y scroll window up 1 line

Marking and returning
move cursor to previous context
move cursor to first non-white space in line

mx mark current position with the ASOI lower-case letter x
, x move cursor to mark x
'x move cursor to first non-white space in line marked by x

Line positioning
H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white

CR
J, or j
i or k

previous line, at first non-white
return, same as +
next line, same column
previous line, same column

Character positioning

Page 4

'" first non white-space character
o beginning of line
$ end of line
h or ~ forward
1 or +- backward
"'H same as+-(backspace)
space same as~(space bar)
fx find next x
Fx find previous x
tx move to character prior to next x
Tx move to character following previous x

repeat last f F t or T
repeat inverse of last f F t or T

n I move to column n
% find matching (() or }

vl(1}

10/89

vi(1) vl(1)

Words, sentences, paragraphs
w forward a word
b back a word
e end of word
) to next sentence
} to next paragraph
(back a sentence
{ back a paragraph
W forward a blank-delimited word
B back a blank-de1imited word
E end of a blank-delimited word

Corrections during Insert
.... H erase last character (backspace)
.... w erase last word
erase your erase character, same as H (backspace)
kill your kill character, erase this line of input
\ quotes your erase and kill characters
ESC ends insertion, back to command mode
DEL interrupt, terminates insert mode
.... 0 backtab one character; reset left margin

of autoindent
........ 0 caret n followed by control-d CD);

backtab to beginning of line;
do not reset left margin of autoindent

0 0 backtab to beginning of line;
reset left margin of autoindent

.... v quote non-printable character

Insert and replace
a 'append after cursor
A append at end of line
i insert before cursor
I insert before first non-blank
o open line below
o open above
rx replace single char with x
RtextESC replace characters

Operators
Operators are followed by a cursor motion, and affect all text that would have
been moved over. For example, since w moves over a word, dw deletes the word
that would be moved over. Double the operator, e.g., dd to affect whole lines.

10/89 Page 5

vi (1)

d
c
y
<
>

delete
change
yank lines to buffer
left shift
right shift
filter through command

vi (1)

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cl)
S substitute lines (cc)
J join lines
x delete characters (dl)
X delete characters before cursor (dh)
Y yank lines (yy)

Yank and Put
Put inserts the text most recently deleted or yanked; however, if a buffer is
named (using the ASOI lower-case letters a - z), the text in that buffer is put
instead.

3yy yank 3 lines
3yl yank 3 characters
p put back text after cursor
P put back text before cursor
n xp put from buffer x
n xy yank to buffer x
n xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
u restore current line

repeat last change
ndp retrieve d'th last delete

AUTHOR

FILES

Page 6

vi and ex were developed by The University of California, Berkeley California,
Computer Science Division, Department of Electrical Engineering and Computer
Science.

/tnp default directory where temporary work files are
placed; it can be changed using the directory option
[see the ex(1) set command)

/usr/share/lib/terminfo/?/*
compiled terminal description database

/usr/lib/ .COREterm/?/* subset of compiled terminal description database

10/89

vi (1)

NOTES

vi (1)

Two options, although they continue to be supported, have been replaced in the
documentation by options that follow the Command Syntax Standard [see
intro(l)). A -r option that is not followed with an option-argument has been
replaced by -L and +command has been replaced by -c command.

The encryption options are provided with the Security Administration Utilities
package, which is available only in the United States.

Tampering with entries in /usr/share/lib/terminfo/?/* or
/usr/share/lib/terminfo/?/* (for example, changing or removing an entry)
can affect programs such as vi that expect the entry to be present and correct. In
particular, removing the "dumb" terminal may cause unexpected problems.

Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete
character operations in the terminal.

SEE ALSO

10/89

ed(l), edit(l), ex(1).
User's Guide.
Editing Guide.
curses/terminfo chapter of the Programmer's Guide.

Page 7

wait(1) walt(1)

NAME
wait - await completion of process

SYNOPSIS
wait [n]

DESCRIPTION
Wait for your background process whose process id is n and report its termina­
tion status. If n is omitted, all your shell's currently active background processes
are waited for and the return code will be zero.

The shell itself executes wait, without creating a new process.
SEE ALSO

sh(1).

NOTES

10/89

If you get the error message cannot fork, too many processes, try using the
wait command to clean up your background procesSes. If this doesn't help, the
system process table is probably full or you have too many active foreground
processes. (There is a limit to the number of process ids associated with your
lOgin, and to the number the system can keep track of.)

Not all the processes of a 3- or more-stage pipeline are children of the shell, and
thus cannot be waited for.

If n is not an active process id, all your shell's currently active background
processes are waited for and the return code will be zero.

Page 1

wc(1) wc(1)

NAME
we - word count

SYNOPSIS
we [-lwc] [names]

DESCRIPTION

10/89

we counts lines, words, and characters in the named files, or in the standard input
if no names appear. It also keeps a total count for all named files. A word is a
maximal string of characters delimited by spaces, tabs, or new-lines.

The options 1, w, and c may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is -lwc.

When names are specified on the command line, they will be printed along with
the counts.

Page 1

who(1} who(1}

NAME
who - who is on the system

SYNOPSIS
. who [-uTlHqpdbrtas) [file)

who -qn x [file)

who am i

who am I

DESCRIPTION
who can list the user's name, terminal line, login time, elapsed time since activity
occurred on the line, and the process-ID of the command interpreter (shell) for
each current UNIX system user. It examines the /var/adm/utJrp me to obtain its
information. If file is given, that file (which must be in utJrp(4) format) is exam­
ined. Usually, file will be /var/adm/wtJrp, which contains a history of all the
logins since the file was last created.

who with the am i or am I option identifies the invoking user.

The general format for output is:

name [state] line time [idle] [pid] [comment] [exit]
The name, line, and time information is produced by all options except -q; the
state information is produced only by -T; the idle and pid information is produced
only by -u and -1; and the comment and exit information is produced only by
'-a. The information produced for -p, -d, and -r is explained during the discus­
sion of each option, below.

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the init process. These options
are:

-u This option lists only those users who are currently logged in. The name is
the user's login name. The line is the name of the line as found in the
directory /dev. The time is the time that the user logged in. The idle
column contains the number of hours and minutes since activity last
occurred on that particular line: A dot (.) indicates that the terminal has
seen activity in the last minute and is therefore "current". If more than
twenty-four hours have elapsed or the line has not been used since boot
time, the entry is marked old. This field is useful when trying to deter­
mine whether a person is working at the terminal or not. The pid is the
process-ID of the user's shell. The comment is the comment field associated
with this line as found in /sbin/inittab [see inittab(4»). This can con­
tain information about where the terminal is located, the telephone number
of the dataset, type of terminal if hard-wired, etc.

-T This option is the same as the -s option, except that the state of the termi­
nal line is printed. The state describes whether someone else can write to
that terminal. A + appears if the terminal is writable by anyone; a -
appears if it is not. root can write to all lines having a + or a - in the state
field. If a ba4 line is encountered, a? is printed.

10/89 Page 1

who(1) who(1)

FILES

-1 This option lists only those lines on which the system is waiting for some­
one to login. The name field is IOOIN in such cases. Other fields are the
same as for user entries except that the state field does not exist.

-H This option will print column headings above the regular output.

-q This is a quick who, displaying only the names and the number of users
currently logged on. When this option is used, all other options are
ignored.

-p This option lists any other process which is currently active and has been
previously spawned by Init. The name field is the name of the program
executed by init as found in !sbin!inittab. The state, line, and idle
fields have no meaning. The comment field shows the id field of the line
from !sbin!inittab that spawned this process. See inittab(4).

-d This option displays all processes that have expired and not been
respawned by init. The exit field appears for dead processes and con­
tains the termination and exit values [as returned by wait(2)], of the dead
process. This can be useful in determining why a process terminated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process. In addition,
it produces the process termination status, process id, and process exit
status [see utl'lp(4)] under the idle, pid, and comment headings, respectively.

-t This option indicates the last change to the system clock (via the date
command) by root. See su(1M).

-a This option processes !var!adm/utl'lp or the named file with all options
turned on.

-s This option is the default and lists only the name, line, and time fields.

-n x This option takes a numeric argument, x, which specifies the number of
users to display per line. x must be at least 1. The -n option must be
used with -q.

Note to the super-user: after a shutdown to the single-user state, who returns a
prompt; the reason is that since !var!adm/utrrp is updated at login time and
there is no login in single-user state, who cannot report accurately on this state.
who am i, however, returns the correct information.

!var!admlutnp
!var!admlwtllp
!sbin!inittab

SEE ALSO

Page 2

date(1), 109in(1), mesg(l), su(1M).
init(1M), inittab(4), utl'lp(4) in the System Administrator's Reference Manual.
wait(2) in the Programmer's Reference Manual.

10/89

whois(1) whols(1)

NAME
whois - Internet user name directory service

SYNOPSIS
whois [-h host] identifier

DESCRIPTION
whois searches for an Internet directory entry for an identifier which is either a
name (such as "Smith") or a handle (such as "SRI-NIC"). To force a name-only
search, precede the name with a period; to force a handle-only search, precede
the handle with an exclamation point.

To search for a group or organization entry, precede the argument with * (an
asterisk). The entire membership list of the group will be displayed with the
record.

You may of course use an exclamation point and asterisk, or a period and aster­
isk together.

EXAMPLES

10/89

The command

whois Smith

looks for the name or handle SMITH.

The command

whois !SRI-HIe

looks for the handle SRI-NIC only.

The command

whois . Smith, John

looks for the name JOHN SMITH only.

Adding . .. to the name or handle argument will match anything from that
point; that is, ZU • •• will match ZUL, ZUM, and so on.

Page 1

write (1) write (1)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION

10/89

write copies lines from your terminal to that of another user. When first called,
it sends the message:

Message from yourname (tty??) [date] . .•

to the person you want to talk to. When it has successfully completed the con­
nection, it also sends two bells to your own terminal to indicate that what you
are typing is being sent.

The recipient of the message should write back at this point. Communication
continues until an end of me is read from the terminal, an interrupt is sent, or the
recipient has executed "mesg nn. At that point write writes BOT on the other ter­
minal and exits.

If you want to write to a user who is logged in more than once, the line argu­
ment may be used to indicate which line or terminal to send to (e.g., term/12);
otherwise, the first writable instance of the user found in /var/adm/utrnp is
assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg command.
Writing to others is normally allowed by default. Certain commands, such as the
pr command, disallow messages in order to prevent interference with their out­
put. However, if the user has super-user permissions, messages can be forced
onto a write-inhibited terminal.

If the character! is found at the beginning of a line, write calls the shell to exe­
cute the rest of the line as a command.

write runs setgid() [see setuid(2)] to the group ID tty, in order to have write
permissions on other user's terminals.

write will detect non-printable characters before sending them to the user's ter­
minal. Control characters will appear as a ',,' followed by the appropriate ASOI
character; characters with the high-order bit set will appear in meta notation. For
example, '\003' is displayed as '''C: and '\372' as 'M-z'.

The follOWing protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each person
should end a message with a distinctive signal (Le., (0) for "over") so that the
other person knows when to reply. The signal (00) (for "over and out") is sug­
gested when conversation is to be terminated.

Page 1

write (1) write (1)

FILES
/var/adm/ut:rrp

to find user
/usr/bin/sh

to execute!

SEE ALSO
mail(1), mesg(l), pr(l), sh(1), who(1), setuid(2).

DIAGNOSTICS
user is not logged on if the person you are trying to

write to is not logged on.
Permission denied if the person you are trying to

write to denies that permission
(with mesg).

Warning: cannot respond, set mesg -y if your terminal is set to mesg n
and the recipient cannot respond
to you.

Can no longer write to user if the recipient has denied permis­
sion (mesg n) after you had
started writing.

Page 2 10/89

xargs{1} xargs{1 }

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags] [command [initial-arguments]]

DESCRIPTION

10/89

xargs combines the fixed initial-arguments with arguments read from standard
input to execute the specified command one or more times. The number of argu­
ments read for each com1n4nd invocation and the manner in which they are com­
bined are determined by the flags specified..

command, which may be a shell file, is searched for, using one's $PATH. If com­
mand is omitted, /usr/bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new-lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted. Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) escapes the next character.
Each argument list is constructed starting with the initial-arguments, followed by
some number· of arguments· read from standard input (Exception: see ,....i flag).
Flags -i, -1, and -n determine how arguments are selected for each command
invocation. When none of these flags are coded, the initial-arguments are followed
by arguments read continuously from standard input until an internal buffer is
full, and then c(Jmmand is executed with the accumulated args. nus process is
repeated until there are no more args. WhEm there are flag conflicts (e.g., -1 vs.
-n), the last flag has precedence. Valid flags are:

-lnumber

-ireplstr

-nnumber

command is executed for each non-empty number lines of argu­
ments from standard input. The last invocation of command will
be with fewer lines of arguments if fewer than number remain. A
line is considered to end with the first new-line unless the last
character of the line is a blank or a tab; a trailing blank/tab sig­
nals continuation through the next non-empty line. If number is
omitted, 1 is assumed. Option -x is forced.

Insert mode: command is executed for each line from standard
input, taking the entire line as a single arg, inserting it in initial­
arguments for each occurrence of replstr. A maximum of 5 argu­
ments in initial-arguments may each contain one or more
instances of replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not grow larger
than 255 characters, and option -x is also forced. {} is assumed
for replstr if not specified.

Execute command using as many standard input arguments as
possible, up to number arguments maximUm. Fewer arguments
are used if their total size is greater than size characters, and for
the last invocation if there are fewer than number arguments
remaining. If option -x is also coded, each number arguments
must fit in the size limitation,.else xargs terminates execution.

Page 1

xargs(1) xargs(1)

-t

-p

-x

-ssize

-eeofstr

Trace mode: The command and each constructed argument list are
echoed to file descriptor 2 just prior to their execution.

Prompt mode: The user is asked whether to execute command
each invocation. Trace mode (-t) is turned on to print the
comnand instance to be executed, followed by ~ ? ..
pronpt. A reply of y (optionally followed by Ilnything) exe­
cutes the command; anything else, including just a carriage
return, skips that particular invocation of command.

Causes xargs to terminate if any argument list would be greater
than size characters; -x is forced by the options -i and -1.
When neither of the options -i, -1, or -n are coded, the total
length of all arguments must be within the size limit.

The maximum total size of each argument list is set to si7:e char­
acters; size must be a positive integer less than or equal to 470. If
-s is not coded, 470 is taken as the default. Note that the char­
acter count for size includes one extra character for each argu­
ment and the count of characters in the command name.

eofstr is taken as the logical end-of-file string. Underbar C) is
assumed for the logical EOF string if -e is not coded. The value
-e with no eofstr coded turns off the logical EOF string capability
(underbar is taIs.en literally). xargs reads standard input until
either end-of-file or the logical BOP string is encountered.

xargs terminates if either it receives a return cod~ of -1 from, or if it cannot exe­
cute, command. When command isa shell program, it should explicitly exit ("ee
sh(l» with art appropriate value to avoid accidentally returning with -l.

EXAMPLES
The following examples moves all files from directory $1 to directory $2, and
echo each move command just before doing it:

1s $1 I xargs -:-i -t mv $1/{} $2/{}

The following example combines the output of the parenthesized commands onto
one line, which is then echoed to the end of file log:

(1ogname; date; echo $0 $*) I xargs »1og

The user is asked which files in the current directory are to be archived and
archives them into arch (1.) one at a time, or (2.) many at a time.

1. 1s I xargs -p -1 ar, r arch
2. 1s I xargs ~ -1 I xargs ar r arch

The following example executes diff"(1)" with successive pairs of arguments ori­
ginally typed as shell arguments:

echo $* I xargs -n2 diff
SEE ALSO

sh(l).

Page 2 10/89

