=—ATaTl

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide: STREAMS

UNIX Software Operation




i

ATsl

UNIX® SYSTEM V
RELEASE 4

Programmer's Guide: STREAMS

UNIX Software Operation



Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984, 1983 AT&T
All Rights Reserved
Printed in USA

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

No part of this publication may be reproduced or transmitted in any form or by any means—graphic,
electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap-
ing, by any computer or information storage and retrieval systems, etc., without prior permissions in
writing from AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T
assumes no liability to any party for any loss or damage caused by errors or omissions or by state-
ments of any kind in this document, its updates, supplements, or special editions, whether such er-
rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth-
er assumes no liability arising out of the application or use of any product or system described
herein; nor any liability for incidental or consequential damages arising from the use of this docu-
ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular purpose.
AT&T makes no representation that the interconnection of products in the manner described herein
will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this description.

AT&T reserves the right to make changés without further notice to any products herein to improve
reliability, function, or design.

TRADEMARKS

UNIX is a registered trademark of AT&T.

Datakit is a registered trademark of AT&T.

Starlan is a registered trademark of AT&T.

Intel is a registered trademark of Intel Corporation.
XENIX is a registered trademark of Microsoft Corporation.

10987654321

ISBN 0-13-947003-4

UNIX
PRESS

A Prentice Hall Title



P R ENTI CE H A L L

ORDERING INFORMATION

UNIX® SYSTEM V, RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V, Release 4 documentation,
please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies please write to:

Corporate Sales

Prentice Hall

Englewood Cliffs, N.J. 07632.

Or call: (201) 592-2498.

ATTENTION GOVERNMENT CUSTOMERS: For GSA and other pricing
information please call (201) 767-5994.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



AT&T UNIX® System V Release 4

General Use and System Administration

UNIX® System V Release 4 Network User’s and Administrator’s Guide
UNIX® System V Release 4 Product Overview and Master Index
UNIXS System V Release 4 System Administrator’s Guide

UNIX System V Release 4 System Administrator’s Reference Manual
UNIX® System V Release 4 User’s Guide

UNIX® System V Release 4 User’s Reference Manual

General Programmer’s Series

UNIX® System V Release 4 Programmer’s Guide: ANSI C
and Programming Support Tools

UNIX® System V Release 4 Programmer’s Guide: Character User Interface
(FMLI and ETI)

UNIX® System V Release 4 Programmer’s Guide: Networking Interfaces
UNIX® System V Release 4 Programmer’s Guide: POSIX Conformance
UNIX® System V Release 4 Programmer’s Guide: System Services

and Application Packaging Tools

UNIX® System V Release 4 Programmer’s Reference Manual

System Programmer’s Series

UNIX® System V Release 4 ANSI C Transition Guide
UNIX® System V Release 4 BSD / XENIX® Compatibility Guide

UNIX® System V Release 4 Device Driver Interface / Driver—Kernel
Interface (DDI / DKI) Reference Manual

UNIX® System V Release 4 Migration Guide
UNIX® System V Release 4 Programmer’s Guide: STREAMS

Available from Prentice Hall



Contents

1 Introduction
Introduction to This Guide 1-1

2 Overview of STREAMS

What Is STREAMS? 2-1
Basic Streams Operations 25
STREAMS Components 2-9
Multiplexing 2-15
Benefits of STREAMS 2-20

3 STREAMS Mechanism
STREAMS Mechanism Overview 3-1
Stream Construction 3-3

4 STREAMS Processing Routines
Put and Service Procedures 4-1
An Asynchronous Protocol Stream Example 4-4

5 Messages

Messages , 5-1
Message Structure 5-4
Message Queues and Message Priority 5-15
Service Interfaces 5-34
Message Allocation and Freeing 5-54
Extended STREAMS Buffers 5-60

Table of Contents i



Table of Contents

Polling and Signaling

Input/Output Polling 6-1
Stream as a Controlling Terminal 6-9
7 Overview of Modules and Drivers
Module and Driver Environment 7-1
Module and Driver ioctls 7-9
Flush Handling 7-31
Driver-Kernel Interface 7-37
Design Guidelines 7-42
8 Modules
Modules 8-1
Flow Control 8-11
Design Guidelines 8-14
9 Drivers
Drivers 9-1
Cloning 9-18
Loop-Around Driver 9-20
Design Guidelines 9-30
1 0 Multiplexing
Multiplexing 10-1
Connecting/Disconnecting Lower Streams 10-13
Multiplexor Construction Example 10-16
Multiplexing Driver 10-19

Programmer’s Guide: STREAMS



Table of Contents

Persistent Links 10-32
Design Guidelines 10-37

1 1 STREAMS-Based Pipes and FIFOS
STREAMS-based Pipes and FIFOs 11-1

1 2 STREAMS-Based Terminal Subsystem
STREAMS-based Terminal Subsystem 121
STREAMS-based Pseudo-Terminal Subsystem 12-15

A Appendix A: STREAMS Data Structures
STREAMS Data Structures ‘ A1

B Appendix B: Message Types

Message Types B-1
Ordinary Messages B-2
High Priority Messages B-14

C Appendix C: STREAMS Utilities

STREAMS Utilities C-1
Utility Descriptions : C-3
Utility Routine Summary C-22

Table of Contents iii



Table of Contents

D Appendix D: Debugging
Debugging D-1

E Appendix E: Configuration

Configuration E-1

F Appendix F: Manual Pages
Manual Pages F-1

G Appendix G: Hardware Examples

Hardware Examples G-1
3B2 STREAMS-based Ports Driver G-2
3B2 STREAMS-based Console Driver G-10
3B2 STREAMS-based XT Driver G-15
Extended STREAMS Buffers G-35
Glossary
Glossary 1

| Index
Index I-1

iv Programmer’s Guide: STREAMS



Figures and Tables

Figure 2-1: Simple Stream 2-2
Figure 2-2: STREAMS-based Pipe 2-3
Figure 2-3: Stream to Communications Driver 2-7
Figure 2-4: A Message 2-10
Figure 2-5: Messages on a Message Queue 2-11
Figure 2-6: A Stream in More Detail 2-13
Figure 2-7: Many-to-one Multiplexor 2-15
Figure 2-8: One-to-many Multiplexor 2-16
Figure 2-9: Many-to-many Multiplexor 2-16
Figure 2-10: Internet Multiplexing Stream 2-17
Figure 2-11: X.25 Multiplexing Stream 2-18
Figure 2-12: Protocol Module Portability 2-22
Figure 2-13: Protocol Migration 2-23
Figure 2-14: Module Reusability 2-24
Figure 3-1: Upstream and Downstream Stream Construction 3-3
Figure 3-2: Stream Queue Relationship 3-4
Figure 3-3: Opened STREAMS-based Driver 3-7
Figure 3-4: Creating STREAMS-based Pipe 3-9
Figure 3-5: Case Converter Module 3-13
Figure 4-1: Idle Stream Configuration for Example 4-5
Figure 4-2: Operational Stream for Example 4-7
Figure 4-3: Module Put and Service Procedures 4-9
Figure 5-1: Message Form and Linkage 5-7
Figure 5-2: Message Ordering on a Queue 5-15
Figure 5-3: Message Ordering with One Priority Band 5-16
Figure 5-4: Data Structure Linkage on non-EFT Systems 5-25
Figure 5-5: Flow Control 5-29
Figure 5-6: Protocol Substitution 5-36
Figure 5-7: Service Interface 5-37
Figure 7-1: Flushing The Write-Side of A Stream 7-33
Figure 7-2: Flushing The Read-Side of A Stream 7-34
Figure 7-3: Interfaces Affecting Drivers 7-38
Figure 9-1: Device Driver Streams 9-8
Figure 9-2: Loop-Around Streams 9-21
Figure 10-1: Protocol Multiplexor 10-3

Table of Contents v



Table of Contents

Figure 10-2:
Figure 10-3:
Figure 10-4:
Figure 10-5:
Figure 10-6:
Figure 10-7:
Figure 10-8:
Figure 10-9:

Before Link _

IP Multiplexor After First Link

IP Multiplexor

TP Multiplexor

Internet Multiplexor Before Connecting
Internet Multiplexor After Connecting
open() of MUXdriver and Driver1
Multiplexor After |_PLINK

Figure 10-10: Other Users Opening a MUXdriver

Figure 11-1
Figure 11-2
Figure 11-3
Figure 12-1
Figure 12-2
Figure B-1:
Figure D-1:
Figure G-1:
Figure G-2:
Figure G-3:
Figure G-4:
Figure G-5:
Figure G-6:
Figure G-7:

vi

: Pushing Modules on a STREAMS-based Pipe

: Server Sets Up a Pipe

: Processes X and Y Open [usr/toserv

: STREAMS-based Terminal Subsystem

: Pseudo-tty Subsystem Architecture
M_PROTO and M_PCPROTO Message Structure
Error and Trace Logging
STREAMS-based XT Driver (before link)
STREAMS-based XT Driver (after link)
STREAMS-based XT Driver
STREAMS-based XT Driver over Starlan
STREAMS-based XT Driver Data Flow
UNIX IO on 3B2
UNIX I/O on a 386 Box

10-5
10-6
10-7
10-9
10-16
10-17
10-33
10-34
10-35
11-3
11-11
11-12
12-2
12-16
B-8
D-18
G-16
G-17
G-18
G-20
G-27
G-36
G-38

Programmer’s Guide: STREAMS









1 Introduction

Introduction to This Guide
Audience

Organization

Conventions Used

Other Documentation

Table of Contents

—_. ek ek —d
1] 1]
DW=






Introduction to This Guide

This guide provides information to developers on the use of the STREAMS
mechanism at user and kernel levels.

STREAMS was incorporated in UNIX® System V Release 3 to augment the
character input/output (I/O) mechanism and to support development of com-
munication services.

STREAMS provides developers with integral functions, a set of utility routines,
and facilities that expedite software design and implementation.

Audience

The guide is intended for network and systems programmers, who use the
STREAMS mechanism at user and kernel levels for UNIX system communica-
tion services.

Readers of the guide are expected to possess prior knowledge of the UNIX sys-
tem, programming, networking, and data communication.

Organization

This guide has several éhapters, each discussing a unique topic. Chapters 2, 3,
and 4 have introductory information and can be ignored by those already fami-
liar with STREAMS concepts and facilities.

m Chapter 1, “Introduction,” describes the organization and purpose of the
guide. It also defines an intended audience and an expected background
of the users of the guide.

m Chapter 2, “Overview of STREAMS,” presents an overview and the
benefits of STREAMS.

m Chapter 3, “STREAMS Mechanism,” describes the basic operations for
constructing, using, and dismantling Streams. These operations are per-
formed using open(2), close(2), read(2), write(2), and ioctl(2).

m Chapter 4, “STREAMS Processing Routines,” gives an overview of the
STREAMS put and service routines.

Introduction 1-1



Introduction to This Guide

Chapter 5, “Messages,” discusses STREAMS messages, their structure,
linkage, queuing, and interfacing with other STREAMS components.

Chapter 6, “Polling and Signaling,” describes how STREAMS allows user
processes to monitor, control, and poll Streams to allow an effective utili-
zation of system resources.

Chapter 7, “Overview of Modules and Drivers,” describes the STREAMS
module and driver environment, ioctls, routines, declarations, flush han-
dling, driver—kernel interface, and also provides general design guidelines
for modules and drivers.

Chapter 8, “Modules,” provides information on module construction and
function.

Chapter 9, ““Drivers,” discusses STREAMS drivers, elements of driver flow
control, flush handling, cloning, and processing.

Chapter 10, “Multiplexing,” describes the STREAMS multiplexing facility.

Chapter 11, “STREAMS-based Pipes and FIFOs,” provides information on
creating, writing, reading, and closing of STREAMS-based pipes and
FIFOs and unique connections.

Chapter 12, “STREAMS-based Terminal Subsystem,” discusses
STREAMS-based terminal and and pseudo-terminal subsystems.

Appendix A, “STREAMS Data Structures,” summarizes data structures
commonly used by STREAMS modules and drivers.

Appendix B, “Message Types,” describes STREAMS messages and their
use.

Appendix C, “STREAMS Utilities,” describes STREAMS utility routines
and their usage.

Appendix D, “Debugging,” provides debugging aids for developers.

Appendix E, “Configuration,” describes how modules and drivers are
configured into the UNIX system, tunable parameters, and the autopush
facility.

Appendix F, “Manual Pages,” has STREAMS related manual pages.

Programmer’s Guide: STREAMS



Introduction to This Guide

m Appendix G, “Hardware Examples,” provides information pertaining to
certain hardware types, for example the AT&T 3B2, used in the STREAMS
environment.

m “Glossary”’ defines terms unique to STREAMS.

Conventions Used

Throughout this guide, the word "STREAMS" will refer to the mechanism and
the word "Stream" will refer to the path between a user application and a
driver. In connection with STREAMS-based pipes "Stream" refers to the data
transfer path in the kernel between the kernel and one or more user processes.

Examples are given to highlight the most important and common capabilities of
STREAMS. They are not exhaustive and, for simplicity, reference fictional
drivers and modules.

System calls, STREAMS utility routines, header files, and data structures are
given in bold, when they are mentioned in the text.

Variable names, pointers, and parameters are in italics. Routine, field, and struc-
ture names unique to the examples are also in ifalics when they are mentioned
in the text.

Declarations and short examples are in constant width.

N7 The caution sign is used to show possible harm or damage to a system,

an application, a process, a piece of hardware, etc.

Introduction 1-3



Introduction to This Guide

The note sign is used to emphasize points of interest, to present parentheti-
cal information, and to cite references to other documents and commands.

Other Documentation

Though the Programmer’s Guide: STREAMS is a principal tool to aid in develop-
ing STREAMS applications, readers are encouraged to obtain more information
on system calls used by STREAMS (section 2 manual pages), and STREAMS
utilities from section 1M manual pages. STREAMS specific input-output control
(ioctl) calls are provided in streamio(7). STREAMS modules and drivers are
described on section 7 manual pages. STREAMS is also described to some
extent in the System V Interface Definition, Third Edition.

For a complete list of books about AT&T UNIX System V Release 4.0, see the
Product Overview and Master Index for this release.

1-4 Programmer’s Guide: STREAMS









2 Overview of STREAMS

What Is STREAMS? 2-1
Basic Streams Operations 2-5
STREAMS Components 2-9
Queues 29
Messages 2-9
m Message Types 2-10
m Message Queueing Priority 2-11
Modules 2-12
Drivers 2-14
Multiplexing 2-15
Benefits of STREAMS 2-20
Standardized Service Interfaces 2-20
Manipulating Modules 2-20
m Protocol Portability 2-21
m Protocol Substitution 2-22
m Protocol Migration 2-22
m Module Reusability 2-23

Table of Contents i






What Is STREAMS?

STREAMS is a general, flexible facility and a set of tools for development of
UNIX system communication services. It supports the implementation of ser-
vices ranging from complete networking protocol suites to individual device
drivers. STREAMS defines standard interfaces for character input/output
within the kernel, and between the kernel and the rest of the UNIX system. The
associated mechanism is simple and open-ended. It consists of a set of system
calls, kernel resources, and kernel routines.

The standard interface and mechanism enable modular, portable development
and easy integration of high performance network services and their com-
ponents. STREAMS does not impose any specific network architecture. The
STREAMS user interface is upwardly compatible with the character I/O user
level functions such as open, close, read, write, and ioctl. Benefits of STREAMS
are discussed in more detail later in this chapter.

A Stream is a full-duplex processing and data transfer path between a STREAMS
driver in kernel space and a process in user space (see Figure 2-1). In the ker-
nel, a Stream is constructed by linking a Stream head, a driver, and zero or
more modules between the Stream head and driver. The Stream head is the end
of the Stream nearest to the user process. All system calls made by a user level
process on a Stream are processed by the Stream head.

Pipes are also STREAMS-based. A STREAMS-based pipe (see Figure 2-2) is a
full-duplex (bidirectional) data transfer path in the kernel. It implements a con-
nection between the kernel and one or more user processes and also shares pro-
perties of STREAMS-based devices.

A STREAMS driver may be a device driver that provides the services of an
external I/O device, or a software driver, commonly referred to as a pseudo-
device driver. The driver typically handles data transfer between the kernel and
the device and does little or no processing of data other than conversion
between data structures used by the STREAMS mechanism and data structures
that the device understands.

A STREAMS module represents processing functions to be performed on data
flowing on the Stream. The module is a defined set of kernel-level routines and
data structures used to process data, status, and control information. Data pro-
cessing may involve changing the way the data are represented,
adding/deleting header and trailer information to data, and/or
packetizing/depacketizing data. Status and control information includes signals
and input/output control information. Each module is self-contained and func-
tionally isolated from any other component in the Stream except its two

Overview of STREAMS 2-1



What Is STREAMS?

neighboring components. The module communicates with its neighbors by
passing messages. The module is not a required component in STREAMS,
whereas the driver is, except in a STREAMS-based pipe where only the Stream

head is required.
User Space

Figure 2-1: Simple Stream

Kernel Space

downstream
Stream Head

Module
(optional)

Driver

upstream

External Interface

2-2 Programmer’s Guide: STREAMS



What Is STREAMS?

One or more modules may be inserted into a Stream between the Stream head
and driver to perform intermediate processing of messages as they pass between
the Stream head and driver. STREAMS modules are dynamically intercon-
nected in a Stream by a user process. No kernel programming, assembly, or
link editing is required to create the interconnection.

Figure 2-2: STREAMS-based Pipe

Stream Head Stream Head | Kernel

STREAMS uses queue structures to keep information about given instances of a
pushed module or opened STREAMS device. A queue is a data structure that
contains status information, a pointer to routines processing messages, and
pointers for administering the Stream. Queues are always allocated in pairs;
one queue for the read-side and other for the write-side. There is one queue
pair for each driver and module, and the Stream head. The pair of queues is
allocated whenever the Stream is opened or the module is pushed (added) onto
the Stream.

Data are passed between a driver and the Stream head and between modules in
the form of messages. A message is a set of data structures used to pass data,
status, and control information between user processes, modules, and drivers.
Messages that are passed from the Stream head toward the driver or from the
process to the device, are said to travel downstream (also called write-side). Simi-
larly, messages passed in the other direction, from the device to the process or
from the driver to the Stream head, travel upstream (also called read-side).

Overview of STREAMS 2-3



What Is STREAMS?

A STREAMS message is made up of one or more message blocks. Each block is a
3-tuple consisting of a header, a data block, and a data buffer. The Stream head
transfers data between the data space of a user process and STREAMS kernel
data space. Data to be sent to a driver from a user process are packaged into
STREAMS messages and passed downstream. When a message containing data
arrives at the Stream head from downstream, the message is processed by the
Stream head, which copies the data into user buffers.

Within a Stream, messages are distinguished by a type indicator. Certain mes-
sage types sent upstream may cause the Stream head to perform specific actions,
such as sending a signal to a user process. Other message types are intended to
carry information within a Stream and are not directly seen by a user process..

2-4 Programmer’s Guide: STREAMS



Basic Streams Operations

This section describes the basic set of operations for manipulating STREAMS
entities.

A STREAMS driver is similar to a traditional character I/O driver in that it has
one or more nodes associated with it in the file system and it is accessed using
the open system call. Typically, each file system node corresponds to a separate
minor device for that driver. Opening different minor devices of a driver will
cause separate Streams to be connected between a user process and the driver.
The file descriptor returned by the open call is used for further access to the
Stream. If the same minor device is opened more than once, only one Stream
will be created; the first open call will create the Stream, and subsequent open
calls will return a file descriptor that references that Stream. Each process that
opens the same minor device will share the same Stream to the device driver.

Once a device is opened, a user process can send data to the device using the
write system call and receive data from the device using the read system call.
Access to STREAMS drivers using read and write is compatible with the tradi-
tional character I/O mechanism.

The close system call will close a device and dismantle the associated Stream
when the last open reference to the Stream is given up.

The following example shows how a simple Stream is used. In the example, the
user program interacts with a communications device that provides point-to-
point data transfer between two computers. Data written to the device are
transmitted over the communications line, and data arriving on the line can be
retrieved by reading from the device.

Overview of STREAMS 2-5



Basic Streams Operations

In the example, /dev/comm/01 identifies a minor device of the communications
device driver. When this file is opened, the system recognizes the device as a
STREAMS device and connects a Stream to the driver. Figure 2-3 shows the
state of the Stream following the call to open.

2-6 Programmer’s Guide: STREAMS



Basic Streams Operations

Figure 2-3: Stream to Communications Driver

Communications
Driver

This example illustrates a user reading data from the communications device
and then writing the input back out to the same device. In short, this program
echoes all input back over the communications line. The example assumes that
a user is sending data from the other side of the communications line. The pro-
gram reads up to 1024 bytes at a time, and then writes the number of bytes just
read.

The read call returns the available data, which may contain fewer than 1024
bytes. If no data are currently available at the Stream head, the read call blocks
until data arrive.

Similarly, the write call attempts to send count bytes to /dev/comm/01. How-
ever, STREAMS implements a flow control mechanism that prevents a user from
exhausting system resources by flooding a device driver with data.

Flow control is a STREAMS mechanism that controls the rate of message transfer
among the modules, drivers, Stream head, and processes. Flow control is local
to each Stream and advisory (voluntary). It limits the number of characters that
can be queued for processing at any queue in a Stream. This mechanism limits
buffers and related processing at any queue and in any one Stream, but does
not consider buffer pool levels or buffer usage in other Streams. Flow control is
not applied to high priority messages (message priority will be discussed later).

Overview of STREAMS 2-7



Basic Streams Operations

If the Stream exerts flow control on the user, the write call blocks until flow
control has been relieved. The call will not return until it has sent count bytes to
the device. exit is called to terminate the user process. This system call also
closes all open files, thereby dismantling the Stream in this example.

2-8 Programmer’s Guide: STREAMS



STREAMS Components

This section gives an overview of the STREAMS components and discusses how
these components interact with each other. A more detailed description of each
STREAMS component is given in the later chapters.

Queues

A queue is an interface between a STREAMS driver or module and the rest of
the Stream. Queues are always allocated as an adjacent pair. The queue with
the lower address in the pair is a read queue, and the queue with the higher
address is used for the write queue.

A queue’s service routine is invoked to process messages on the queue. It usu-
ally removes successive messages from the queue, processes them, and calls the
put routine of the next module in the Stream to give the processed message to
the next queue.

A queue’s put routine is invoked by the preceding queue’s put and/or service
routine to add a message to the current queue. If a module does not need to
enqueue messages, its put routine can call the neighboring queue’s put routine.
(Chapter 4 discusses the service and put routines in more detail.)

Each queue also has a pointer to an open and close routine. The open routine of
a driver is called when the driver is first opened and on every successive open
of the Stream. The open routine of a module is called when the module is first
pushed on the Stream and on every successive open of the Stream. The close
routine of the module is called when the module is popped (removed) off the
Stream. The close routine of the driver is called when the last reference to the
Stream is given up and the Stream is dismantled.

Messages

All input and output under STREAMS is based on messages. The objects passed
between STREAMS modules are pointers to messages. All STREAMS messages
use two data structures (msgb and datab) to refer to the message data. These
data structures describe the type of the message and contain pointers to the data
of the message, as well as other information. Messages are sent through a
Stream by successive calls to the put procedure of each module or driver in the
Stream.

Overview of STREAMS 2-9



STREAMS Components

Message Types

All STREAMS messages are assigned message types to indicate their intended
use by modules and drivers and to determine their handling by the Stream
head. A driver or module can assign most types to a message it generates, and
a module can modify a message type during processing. The Stream head will
convert certain system calls to specified message types and send them down-
stream, and it will respond to other calls by copying the contents of certain mes-
sage types that were sent upstream.

Most message types are internal to STREAMS and can only be passed from one
STREAMS component to another. A few message types, for example M_DATA,
M_PROTO, and M_PCPROTO, can also be passed between a Stream and user
processes. M_ DATA messages carry data within a Stream and between a
Stream and a user process. M_PROTO or M_PCPROTO messages carry both
data and control information.

As shown in Figure 2-4, a STREAMS message consists of one or more linked
message blocks that are attached to the first message block of the same message.

Figure 2-4: A Message

Me
Bli)s&ge Message Message | - - - >
(type) Block Block

Messages can exist stand-alone, as in Figure 2-4, when the message is being pro-
cessed by a procedure. Alternately, a message can await processing on a linked
list of messages, called a message queue. In Figure 2-5, Message 2 is linked to
Message 1.

2-10 Programmer’s Guide: STREAMS



STREAMS Components

Figure 2-5: Messages on a Message Queue

|

: Message |
| l |
| |
| |

queue ! Message next ! Message

header = ~ ] Block message | Block
| (type) l| (type)
I :
| [
| |
| |
i |Message i | Message
| | Block i | Block
l |
l LV
I |
1 |
I | Message !
I |
1 | Block I
R i
Ly i
I

Message

message

When a message is on a queue, the first block of the message contains links to
preceding and succeeding messages on the same message queue, in addition to
the link to the second block of the message (if present). The message queue
head and tail are contained in the queue.

STREAMS utility routines enable developers to manipulate messages and mes-

sage queues.

Message Queueing Priority

In certain cases, messages containing urgent information (such as a break or
alarm conditions) must pass through the Stream quickly. To accommodate
these cases, STREAMS provides multiple classes of message queuing priority.
All messages have an associated priority field. Normal (ordinary) messages
have a priority of zero. Priority messages have a priority greater than zero.
High priority messages are high priority by virtue of their message type. The

Overview of STREAMS

2-11



STREAMS Components

priority field in high priority messages is unused and should always be set to
zero. STREAMS prevents high priority messages from being blocked by flow
control and causes a service procedure to process them ahead of all ordinary
messages on the queue. This results in the high priority message transiting each
module with minimal delay.

Non-priority, ordinary messages are placed at the end of the queue following all
other messages in the queue. Priority messages can be either high priority or
priority band messages. High priority messages are placed at the head of the
queue but after any other high priority messages already in the queue. Priority
band messages that enable support of urgent, expedited data are placed in the
queue after high priority messages but before ordinary messages.

Message priority is defined by the message type; once a message is created, its
priority cannot be changed Certain message types come in equivalent high
priority /ordinary pairs (for example, M_PCPROTO and M_PROTO), so that a
module or device driver can choose between the two priorities when sending
information.

Modules

A module performs intermediate transformations on messages passing between
a Stream head and a driver. There may be zero or more modules in a Stream
(zero when the driver performs all the required character and device process-
ing).

Each module is constructed from a pair of queue structures (see "Au/Ad" and
"Bu/Bd" in Figure 2-6). One queue performs functions on messages passing
upstream through the module ("Au" and "Bu" in Figure 2-6). The other set
("Ad" and "Bd") performs another set of functions on downstream messages.

Each of the two queues in a module will generally have distinct functions, that
is, unrelated processing procedures and data. The queues operate indepen-
dently and "Au" will not know if a message passes through "Ad" unless "Ad" is
programmed to inform it. Messages and data can be shared only if the
developer specifically programs the module functions to perform the sharing.

Each queue can directly access the adjacent queue in the direction of message
flow (for example, "Au" to "Bu" or "Bd" to "Ad"). In addition, within a module,
a queue can readily locate its mate and access its messages and data.

2-12 Programmer’s Guide: STREAMS



STREAMS Components

Figure 2-6: A Stream in More Detail

User
Process
Stream | .. .. 7
Kernel Space
Head P

QUEUE QUEUE
B "Bd" ke —--=> "Bu"
................................ Message
~~~~~ Voo "Bu"
Module QUEUE e
A AL e el AW
Message| N\ AT

"Ad"

upstream

Driver

QUEUE
pair

Stream

External

Interface

End

Each queue in a module points to messages, processing procedures, and data:

m Messages — These are dynamically attached to the queue on a linked list
("message queue”, see "Ad" and "Bu" in Figure 2-6) as they pass through

the module.

Overview of STREAMS



STREAMS Components

m Processing procedures — A put procedure processes messages and must
be incorporated in each queue. An optional service procedure can also be
incorporated. According to their function, the procedures can send mes-
sages upstream and/or downstream, and they can also modify the private
data in their module.

m Data - Developers may use a private field in the queue to reference
private data structures (for example, state information and translation
tables).

In general, each of the two queues in a module has a distinct set of all of these
elements.

Drivers

STREAMS device drivers are an initial part of a Stream. They are structurally
similar to STREAMS modules. The call interfaces to driver routines are identical
to the interfaces used for modules.

There are three significant differences between modules and drivers. A driver
must be able to handle interrupts from the device, a driver can have multiple
Streams connected to it, and a driver is initialized /deinitialized via open and
close. A module is initialized/deinitialized via the I_PUSH ioctl and I_POP
ioctl.

Drivers and modules can pass signals, error codes, and return values to
processes via message types provided for that purpose.

2-14 Programmer’s Guide: STREAMS



Multiplexing

Earlier, Streams were described as linear connections of modules, where each
invocation of a module is connected to at most one upstream module and one
downstream module. While this configuration is suitable for many applications,
others require the ability to multiplex Streams in a variety of configurations.
Typical examples are terminal window facilities, and internetworking protocols
(which might route data over several subnetworks).

An example of a multiplexor is one that multiplexes data from several upper
Streams over a single lower Stream, as shown in Figure 2-7. An upper Stream is
one that is upstream from a multiplexor, and a lower Stream is one that is down-
stream from a multiplexor. A terminal windowing facility might be imple-
mented in this fashion, where each upper Stream is associated with a separate
window.

Figure 2-7: Many-to-one Multiplexor

A second type of multiplexor might route data from a single upper Stream to
one of several lower Streams, as shown in Figure 2-8. An internetworking proto-
col could take this form, where each lower Stream links the protocol to a dif-
ferent physical network.

Overview of STREAMS 2-15



Multiplexing

Figure 2-8: One-to-many Multiplexor

T

A third type of multiplexor might route data from one of many upper Streams
to one of many lower Streams, as shown in Figure 2-9.

Figure 2-9: Many-to-many Multiplexor

HEE

MUX

The STREAMS mechanism supports the multiplexing of Streams through spe-
cial pseudo-device drivers. Using a linking facility, users can dynamically build,
maintain, and dismantle multiplexed Stream configurations. Simple configura-
tions like the ones shown in three previous figures can be further combined to
form complex, multi-level multiplexed Stream configurations.

2-16 Programmer’s Guide: STREAMS



Multiplexing

STREAMS multiplexing configurations are created in the kernel by interconnect-
ing multiple Streams. Conceptually, there are two kinds of multiplexors: upper
and lower multiplexors. Lower multiplexors have multiple lower Streams
between device drivers and the multiplexor, and upper multiplexors have multi-
ple upper Streams between user processes and the multiplexor.

Figure 2-10: Internet Multiplexing Stream

User Processes

| Multiplexor or

I Module

/

Multiplexor
Module 1 Module 2

Lo d

Driver

( Driver 1 ) ( Driver 2

e’
e

Driver 3 )

Figure 2-10 is an example of the multiplexor configuration that would typically
occur where internetworking functions were included in the system. This
configuration contains three hardware device drivers. The IP (Internet Protocol)
is a multiplexor.

Overview of STREAMS 2-17



Multiplexing

The IP multiplexor switches messages among the lower Streams or sends them
upstream to user processes in the system. In this example, the multiplexor
expects to see the same interface downstream to Module 1, Module 2, and
Driver 3.

Figure 2-10 depicts the IP multiplexor as part of a larger configuration. The
multiplexor configuration, as shown in the dashed rectangle, would generally
have an upper multiplexor and additional modules. Multiplexors could also be
cascaded below the IP multiplexor driver if the device drivers were replaced by
multiplexor drivers.

Figure 2-11: X.25 Multiplexing Stream

P
Proc\égses PrgcYegses Processes

Modules Modules Modules
A

|
y

X.25

Packet Layer Protocol
Muitiplexor Driver

2-18 Programmer’s Guide: STREAMS



Muitiplexing

Figure 2-11 shows a multiplexor configuration where the multiplexor (or multi-
plexing driver) routes messages between the lower Stream and one of the upper
Streams. This Stream performs X.25 multiplexing to multiple independent SVC
(Switched Virtual Circuit) and PVC (Permanent Virtual Circuit) user processes.
Upper multiplexors are a specific application of standard STREAMS facilities
that support multiple minor devices in a device driver. This figure also shows
that more complex configurations can be built by having one or more multi-
plexed drivers below and multiple modules above an upper multiplexor.

Developers can choose either upper or lower multiplexing, or both, when
designing their applications. For example, a window multiplexor would have a
similar configuration to the X.25 configuration of Figure 2-11, with a window
driver replacing Packet Layer, a tty driver replacing the driver XYZ, and the
child processes of the terminal process replacing the user processes. Although
the X.25 and window multiplexing Streams have similar configurations, their
multiplexor drivers would differ significantly. The IP multiplexor of Figure 2-10
has a different configuration than the X.25 multiplexor, and the driver would
implement its own set of processing and routing requirements in each
configuration.

In addition to upper and lower multiplexors, more complex configurations can
be created by connecting Streams containing multiplexors to other multiplexor
drivers. With such a diversity of needs for multiplexors, it is not possible to
provide general purpose multiplexor drivers. Rather, STREAMS provides a
general purpose multiplexing facility. The facility allows users to set up the
inter-module/driver plumbing to create multiplexor configurations of generally
unlimited interconnection.

Overview of STREAMS 2-19



Benefits of STREAMS

STREAMS provides a flexible, portable, and reusable set of tools for develop-
ment of UNIX system communication services. STREAMS allows an easy crea-
tion of modules that offer standard data communications services and the ability
to manipulate those modules on a Stream. From user level, modules can be
dynamically selected and interconnected; kernel programming, assembly, and
link editing are not required to create the interconnection.

STREAMS also greatly simplifies the user interface for languages that have com-
plex input and output requirements. This is discussed in Chapter 12.

Standardized Service Interfaces

STREAMS simplifies the creation of modules that present a service interface to
any neighboring application program, module, or device driver. A service inter-
face is defined at the boundary between two neighbors. In STREAMS, a service
interface is a specified set of messages and the rules that allow passage of these
messages across the boundary. A module that implements a service interface
will receive a message from a neighbor and respond with an appropriate action
(for example, send back a request to retransmit) based on the specific message
received and the preceding sequence of messages.

In general, any two modules can be connected anywhere in a Stream. However,
rational sequences are generally constructed by connecting modules with com-
patible protocol service interfaces. For example, a module that implements an
X.25 protocol layer, as shown in Figure 2-12, presents a protocol service inter-
face at its input and output sides. In this case, other modules should only be
connected to the input and output side if they have the compatible X.25 service
interface.

Manipulating Modules AN

STREAMS provides the capabilities to manipulate modules from user level, to
interchange modules with common service interfaces, and to change the service
interface to a STREAMS user process. These capabilities yield further benefits
when implementing networking services and protocols, including;:

2-20 Programmer’s Guide: STREAMS



Benefits of STREAMS

m User level programs can be independent of underlying protocols and phy-
sical communication media.

m Network architectures and higher level protocols can be independent of
underlying protocols, drivers, and physical communication media.

m Higher level services can be created by selecting and connecting lower
level services and protocols.

The following examples show the benefits of STREAMS capabilities for creating
service interfaces and manipulating modules. These examples are only illustra-
tions and do not necessarily reflect real situations.

Protocol Portability

Figure 2-12 shows how the same X.25 protocol module can be used with dif-
ferent drivers on different machines by implementing compatible service inter-
faces. The X.25 protocol module interfaces are Connection Oriented Network
Service (CONS) and Link Access Protocol — Balanced (LAPB).

Overview of STREAMS 2-21



Benefits of STREAMS

Figure 2-12: Protocol Module Portability

MACHINE A MACHINE B
CONS
_______________ INTERFACE [
X.25 SAME X.25
Protocol Layer Protocol Layer
Module MODULE Module
LAPB
"""""""""" INTERFACE ~~~~~ "~~~ ==7~7
LAPB LAPB
Driver DIFFERENT Driver
Machine A DRIVER Machine B

Protocol Substitution

Alternate protocol modules (and device drivers) can be interchanged on the
same machine if they are implemented to an equivalent service interface.

Protocol Migration

Figure 2-13 illustrates how STREAMS can move functions between kernel
software and front end firmware. A common downstream service interface
allows the transport protocol module to be independent of the number or type
of modules below. The same transport module will connect without
modification to either an X.25 module or X.25 driver that has the same service
interface.

By shifting functions between software and firmware, developers can produce
cost effective, functionally equivalent systems over a wide range of
configurations. They can rapidly incorporate technological advances. The same
transport protocol module can be used on a lower capacity machine, where

2-22 Programmer’s Guide: STREAMS



Benefits of STREAMS

economics may preclude the use of front-end hardware, and also on a larger
scale system where a front-end is economically justified.

Figure 2-13: Protocol Migration

Class 1 Class 1
Transport SAME Transport
Protocol MODULES Protocol
L ¢coNns
Interface
X.25
Packet Layer
Protocol
X.25
éA.‘PB KERNEL Packet Layer
- river = e emm e . -
HARDWARE Driver '

Module Reusability

Figure 2-14 shows the same canonical module (for example, one that provides
delete and kill processing on character strings) reused in two different Streams.
This module would typically be implemented as a filter, with no downstream
service interface. In both cases, a tty interface is presented to the Stream’s user
process since the module is nearest the Stream head.

Overview of STREAMS 2-23



Benefits of STREAMS

Figure 2-14: Module Reusability

User SAME User
Process INTERFACE Process

Canonical SAME Canonical
Module MODULE Module

Terminal
Emulator
Module

Class 1
Transport
Protocol

X.25
Packet Layer
Protocol

LAPB
Driver

Raw )

Driver

2-24 Programmer’s Guide: STREAMS









3 STREAMS Mechanism

STREAMS Mechanism Overview 3-1
STREAMS System Calls 3-1
Stream Construction 33
Opening a STREAMS Device File 35
Creating a STREAMS-based Pipe 3-8
Adding and Removing Modules 3-10
Closing the Stream 3-11
Stream Construction Example 3-11
m Inserting Modules 3-11
m Module and Driver Control 3-14

Table of Contents






STREAMS Mechanism Overview

This chapter shows how to construct, use, and dismantle a Stream using
STREAMS-related systems calls. General and STREAMS-specific system calls
provide the user level facilities required to implement application programs.
This system call interface is upwardly compatible with the traditional character
/0O facilities. The open(2) system call will recognize a STREAMS file and create
a Stream to the specified driver. A user process can receive and send data on
STREAMS files using read(2) and write(2) in the same manner as with tradi-
tional character files. The ioctl(2) system call enables users to perform functions
specific to a particular device. STREAMS ioctl commands [see streamio(7)] sup-
port a variety of functions for accessing and controlling Streams. The last
close(2) in a Stream will dismantle a Stream.

In addition to the traditional ioctl commands and system calls, there are other
system calls used by STREAMS. The poll(2) system call enables a user to poll
multiple Streams for various events. The putmsg(2) and getmsg(2) system calls
enable users to send and receive STREAMS messages, and are suitable for
interacting with STREAMS modules and drivers through a service interface.

STREAMS provides kernel facilities and utilities to support development of
modules and drivers. The Stream head handles most system calls so that the
related processing does not have to be incorporated in a module or driver.

STREAMS System Calls

The STREAMS-related system calls are:

open(2) Open a Stream

close(2) Close a Stream

read(2) Read data from a Stream

write(2) Write data to a Stream

ioctl(2) Control a Stream

getmsg(2) Receive a message at the Stream head
putmsg(2) Send a message downstream

STREAMS Mechanism 3-1



STREAMS Mechanism Overview

poll(2) Notify the application program when selected events
occur on a Stream

pipe(2) Create a channel that provides a communication path
between multiple processes

3-2 Programmer’s Guide: STREAMS



Stream Construction

STREAMS constructs a Stream as a linked list of kernel resident data structures.
The list is created as a set of linked queue pairs. The first queue pair is the
head of the Stream and the second queue pair is the end of the Stream. The
end of the Stream represents a device driver, pseudo device driver, or the other
end of a STREAMS-based pipe. Kernel routines interface with the Stream head
to perform operations on the Stream. Figure 3-1 depicts the upstream (read)
and downstream (write) portions of the Stream. Queue H2 is the upstream half
of the Stream head and queue H1 is the downstream half of the Stream head.
Queue E2 is the upstream half of the Stream end and queue E1 is the down-
stream half of the Stream end.

Figure 3-1: Upstream and Downstream Stream Construction

Stream Head

Stream End

At the same relative location in each queue is the address of the entry point, a
procedure to process any message received by that queue. The procedure for
queues H1 and H2 process messages sent to the Stream head. The procedure
for queues E1 and E2, process messages received by the other end of the Stream,
the Stream end (tail). Messages move from one end to the other, from one
queue to the next linked queue, as the procedure specified by that queue is exe-
cuted.

Figure 3-2 shows the data structures forming each queue: queue, qinit, qband,
module_info, and module_stat. The qband structures have information for
each priority band in the queue. The queue data structure contains various
modifiable values for that queue. The qinit structure contains a pointer to the
processing procedures, the module_info structure contains initial limit values,

STREAMS Mechanism 3-3



Stream Construction

and the module_stat structure is used for statistics gathering. Each queue in the
queue pair contains a different set of these data structures. There is a queue,
qinit, module_info, and module_stat data structure for the upstream portion of
the queue pair and a set of data structures for the downstream portion of the
pair. In some situations, a queue pair may share some or all of the data struc-
tures. For example, there may be a separate qinit structure for each queue in
the pair and one module_stat structure that represents both queues in the pair.
These data structures are described in Appendix A.

Figure 3-2: Stream Queue Relationship

gband gband

module

Stream Head / _stat

infg ke g info it
| queue |o =~ queue |: !
| (write) (read) |: \ module
downstream ..................................... upstream ——lnfo
q_next q_next

queue | > queue

Stream End

gband gband

3-4 Programmer’s Guide: STREAMS



Stream Construction

Figure 3-2 shows two neighboring queue pairs with links (solid vertical arrows)
in both directions. When a module is pushed onto a Stream, STREAMS creates
a queue pair and links each queue in the pair to its neighboring queue in the
upstream and downstream direction. The linkage allows each queue to locate
its next neighbor. This relation is implemented between adjacent queue pairs
by the g_next pointer. Within a queue pair, each queue locates its mate (see
dashed arrows in Figure 3-2) by use of STREAMS macros, since there is no
pointer between the two queues. The existence of the Stream head and Stream
end is known to the queue procedures only as destinations towards which mes-
sages are sent.

Opening a STREAMS Device File

One way to construct a Stream is to open [see open(2)] a STREAMS-based
driver file (see Figure 3-3). All entry points into the driver are defined by the
streamtab structure for that driver. The streamtab structure has a format as fol-
lows:

The streamtab structure defines a module or driver. st_rdinit points to the read
qinit structure for the driver and st_wdinit points to the driver’s write qinit
structure. st_muxrinit and st_muxwinit point to the lower read and write qinit
structures if the driver is a multiplexor driver.

If the open call is the initial file open, a Stream is created. (There is one Stream
per major/minor device pair.) First, an entry is allocated in the user’s file table
and a vnode is created to represent the opened file. The file table entry is ini-
tialized to point to the allocated vnode (see f vnode in Figure 3-3) and the vnode
is initialized to specify a file of type character special.

STREAMS Mechanism 3-5



Stream Construction

Second, a Stream header is created from an stdata data structure and a Stream
head is created from a pair of queue structures. The content of stdata and
queue are initialized with predetermined values, including the Stream head pro-
cessing procedures.

The snode contains the file system dependent information. It is associated with
the vnode representing the device. The s_commonup field of the snode points to
the common device vnode. The vnode field, v_data, contains a pointer to the
snode. Instead of maintaining a pointer to the vnode, the snode contains the
vnode as an element. The sd_vnode field of stdata is initialized to point to the
allocated vnode. The v_stream field of the vnode data structure is initialized to
point to the Stream header, thus there is a forward and backward pointer
between the Stream header and the vnode. There is one Stream header per
Stream. The header is used by STREAMS while performing operations on the
Stream. In the downstream portion of the Stream, the Stream header points to
the downstream half of the Stream head queue pair. Similarly, the upstream
portion of the Stream terminates at the Stream header, since the upstream half
of the Stream head queue pair points to the header. As shown in Figure 3-3,
from the Stream header onward, a Stream is constructed of linked queue pairs.

3-6 Programmer’s Guide: STREAMS



Stream Construction

Figure 3-3: Opened STREAMS-based Driver

file
table
entry

f node

vnode

v_stream

v_data

@ streamtab

s_commonuvp sd_strtab
v_stream

vnode stdata
common

sd_vnode
sd_wrq
v_data

)

Stream Head

queue | .| queue

(write) (read)
............................. I
q_next
q_next
queue |__ | queue
(write) (read)
.............. S B

STREAMS Mechanism 3-7



Stream Construction

Next, a queue structure pair is allocated for the driver. The queue limits are
initialized to those values specified in the corresponding module_info structure.
The queue processing routines are initialized to those specified by the
corresponding qinit structure.

Then, the g_next values are set so that the Stream head write queue points to
the driver write queue and the driver read queue points to the Stream head
read queue. The g_next values at the ends of the Stream are set to null. Finally,
the driver open procedure (located via its read qinit structure) is called.

If this open is not the initial open of this Stream, the only actions performed are
to call the driver open and the open procedures of all pushable modules on the
Stream. When a Stream is already open, further opens of the same device will
result in the open routines of all modules and the driver on the Stream being
called. Note that this is in reverse order from the way a Stream is initially set
up. That is, a driver is opened and a module is pushed on a Stream. When a
push occurs the module open routine is called. If another open of the same
device is made, the open routine of the module will be called followed by the
open routine of the driver. This is opposite from the initial order of opens
when the Stream is created.

Creating a STREAMS-based Pipe

In addition to opening a STREAMS-based driver, a Stream can be created by
creating a pipe [see pipe(2)]. Since pipes are not character devices, STREAMS
creates and initializes a streamtab structure for each end of the pipe. As with
modules and drivers, the streamtab structure defines the pipe. The st_rdinit,
however, points to the read qinit structure for the Stream head and not for a
driver. Similarly, the st wdinit points to the Stream head’s write qinit structure
and not to a driver. The st_muxrinit and st_muxwinit are initialized to null
since a pipe cannot be a multiplexor driver.

When the pipe system call is executed, two Streams are created. STREAMS fol-
lows the procedures similar to those of opening a driver; however, duplicate
data structures are created. That is, two entries are allocated in the user’s file
table and two vnodes are created to represent each end of the pipe, as shown in
Figure 3-4. The file table entries are initialized to point to the allocated vnodes
and each vnode is initialized to specify a file of type FIFO.

3-8 Programmer’s Guide: STREAMS



Stream Construction

Next, two Stream headers are created from stdata data structures and two
Stream heads are created from two pairs of queue structures. The content of
stdata and queue are initialized with the same values for all pipes.

Each Stream header represents one end of the pipe and it points to the down-
stream half of each Stream head queue pair. Unlike STREAMS-based devices,
however, the downstream portion of the Stream terminates at the upstream por-
tion of the other Stream.

Figure 3-4: Creating STREAMS-based Pipe

file file
table table
entry streamtab entry streamtab
f_vnode f vnode
v_stream v_stream
vnode stdata sd_strtab vnode stdata| sd_strtab
sd_vnode sd_vnode
sd_wrg - sd_wrg
......... Stream Head ., oo Stream Head
queue I.<__> queue |: ‘| queue |« | queue
(write (read) |: : [ (write) (read)
q_next q_next

The q_next values are set so that the Stream head write queue points to the
Stream head read queue on the other side. The g_next values for the Stream
head’s read queue points to null since it terminates the Stream.

STREAMS Mechanism 3-9



Stream Construction

Adding and Removing Modules

As part of constructing a Stream, a module can be added (pushed) with an ioctl
I_PUSH [see streamio(7)] system call. The push inserts a module beneath the
Stream head. Because of the similarity of STREAMS components, the push
operation is similar to the driver open. First, the address of the qinit structure
for the module is obtained.

Next, STREAMS allocates a pair of queue structures and initializes their con-
tents as in the driver open.

Then, g_next values are set and modified so that the module is interposed
between the Stream head and its neighbor immediately downstream. Finally,
the module open procedure (located via qinit) is called.

Each push of a module is independent, even in the same Stream. If the same
module is pushed more than once on a Stream, there will be multiple
occurrences of that module in the Stream. The total number of pushable
modules that may be contained on any one Stream is limited by the kernel
parameter NSTRPUSH (see Appendix E).

An ioctl I_POP [see streamio(7)] system call removes (pops) the module
immediately below the Stream head. The pop calls the module close procedure.
On return from the module close, any messages left on the module’s message
queues are freed (deallocated). Then, STREAMS connects the Stream head to
the component previously below the popped module and deallocates the
module’s queue pair. I PUSH and I_POP enable a user process to dynamically
alter the configuration of a Stream by pushing and popping modules as
required. For example, a module may be removed and a new one inserted
below the Stream head. Then the original module can be pushed back after the
new module has been pushed.

3-10 Programmer’s Guide: STREAMS



Stream Construction

Closing the Stream

The last close to a STREAMS file dismantles the Stream. Dismantling consists
of popping any modules on the Stream and closing the driver. Before a module
is popped, the close may delay to allow any messages on the write message
queue of the module to be drained by module processing. Similarly, before the
driver is closed, the close may delay to allow any messages on the write mes-
sage queue of the driver to be drained by driver processing. If O NDELAY (or
O_NONBLOCK) [see open(2)] is clear, close will wait up to 15 seconds for each
module to drain and up to 15 seconds for the driver to drain. If O NDELAY
(or O_NONBLOCK) is set, the pop is performed immediately and the driver is
closed without delay. Messages can remain queued, for example, if flow control
is inhibiting execution of the write queue service procedure. When all modules
are popped and any wait for the driver to drain is completed, the driver close
routine is called. On return from the driver close, any messages left on the
driver’s queues are freed, and the queue and stdata structures are deallocated.

STREAMS frees only the messages contained on a message queue. Any
message or data structures used internally by the driver or module must be
freed by the driver or module close procedure.

I

Finally, the user’s file table entry and the vnode are deallocated and the file is
closed.

Stream Construction Example

The following example extends the previous communications device echoing
example (see the section “‘Basic Streams Operations” in Chapter 2) by inserting
a module in the Stream. The (hypothetical) module in this example can convert
(change case, delete, duplicate) selected alphabetic characters.

Inserting Modules

An advantage of STREAMS over the traditional character I/O mechanism stems
from the ability to insert various modules into a Stream to process and manipu-
late data that pass between a user process and the driver. In the example, the
character conversion module is passed a command and a corresponding string
of characters by the user. All data passing through the module are inspected

STREAMS Mechanism 3-11



Stream Construction

for instances of characters in this string; the operation identified by the com-
mand is performed on all matching characters. The necessary declarations for
this program are shown below:

The first step is to establish a Stream to the communications driver and insert
the character conversion module. The following sequence of system calls
accomplishes this:

3-12 Programmer’s Guide: STREAMS



Stream Construction

The I_PUSH ioctl call directs the Stream head to insert the character conversion
module between the driver and the Stream head, creating the Stream shown in
Figure 3-5. As with drivers, this module resides in the kernel and must have
been configured into the system before it was booted.

Figure 3-5: Case Converter Module

________ ¥ _______ UserSpace
[ Stream -I Kernel Space

Character
Converter

Communications
Driver

An important difference between STREAMS drivers and modules is illustrated
here. Drivers are accessed through a node or nodes in the file system and may
be opened just like any other device. Modules, on the other hand, do not
occupy a file system node. Instead, they are identified through a separate nam-
ing convention, and are inserted into a Stream using I PUSH. The name of a
module is defined by the module developer.

Modules are pushed onto a Stream and removed from a Stream in Last-In-First-
Out (LIFO) order. Therefore, if a second module was pushed onto this Stream,
it would be inserted between the Stream head and the character conversion
module.

STREAMS Mechanism 3-13



Stream Construction

Module and Driver Control

The next step in this example is to pass the commands and corresponding
strings to the character conversion module. This can be accomplished by issu-
ing ioctl calls to the character conversion module as follows:

ioctl requests are issued to STREAMS drivers and modules indirectly, using the
I_STR ioctl call [see streamio(7)]. The argument to I_STR must be a pointer to a
strioct] structure, which speafies the request to be made to a module or driver.
This structure is defined in <stropts.h> and has the following format:

3-14 Programmer’s Guide: STREAMS



Stream Construction

where ic_cmd identifies the command intended for a module or driver, ic_timout
specifies the number of seconds an I_STR request should wait for an acknowl-
edgement before timing out, ic_len is the number of bytes of data to accompany
the request, and ic_dp points to that data.

In the example, two separate commands are sent to the character conversion
module. The first sets ic_cmd to the command XCASE and sends as data the
string "AEIOU"; it will convert all uppercase vowels in data passing through the
module to lowercase. The second sets ic_cmd to the command DELETE and
sends as data the string "xX"; it will delete all occurrences of the characters 'x’
and "X’ from data passing through the module. For each command, the value of
ic_timout is set to zero, which specifies the system default timeout value of 15
seconds. The ic_dp field points to the beginning of the data for each command;
ic_len is set to the length of the data.

I_STR is intercepted by the Stream head, which packages it into a message,
using information contained in the strioctl structure, and sends the message
downstream. Any module that does not understand the command in ic_cmd
will pass the message further downstream. The request will be processed by
the module or driver closest to the Stream head that understands the command
specified by ic_cmd. The ioctl call will block up to ic_timout seconds, waiting for
the target module or driver to respond with either a positive or negatlve
acknowledgement message. If an acknowledgement is not received in ic_timout
seconds, the ioctl call will fail.

Only one | STR request can be active on a Stream at one time. Further
requests will block until the active |_STR request is acknowledged and the
system call completes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR
request. If data are returned by the target module or driver, ic_dp must point to
a buffer large enough to hold that data, and ic_len will be set on return to indi-
cate the amount of data returned.

The remainder of this example is identical to the example in Chapter 2:

STREAMS Mechanism 3-15



Stream Construction

Notice that the character conversion processing was realized with no change to
the communications driver.

The exit system call will dismantle the Stream before terminating the process.
The character conversion module will be removed from the Stream automati-
cally when it is closed. Alternatively, modules may be removed from a Stream
using the I_POP ioctl call described in streamio(7). This call removes the top-
most module on the Stream, and enables a user process to alter the
configuration of a Stream dynamically, by popping modules as needed.

A few of the important ioctl requests supported by STREAMS have been dis-
cussed. Several other requests are available to support operations such as deter-
mining if a given module exists on the Stream, or flushing the data on a Stream.
These requests are described fully in streamio(7).

3-16 Programmer’s Guide: STREAMS









STREAMS Processing Routines

Put and Service Procedures 4-1
Put Procedure 4-1
Service Procedure 4-2
An Asynchronous Protocol Stream
Example 4-4
Read-Side Processing 4-8
m Driver Processing 4-8
m CHARPROC 4-8
m CANONPROC 4-10
Write-Side Processing 4-10

Analysis

Table of Contents






Put and Service Procedures

The put and service procedures in the queue are routines that process messages
as they transit the queue. The processing is generally performed according to
the message type and can result in a modified message, new message(s), or no
message. A resultant message, if any, is generally sent in the same direction in
which it was received by the queue, but may be sent in either direction. Typi-
cally, each put procedure places messages on its queue as they arrive, for later
processing by the service procedure.

A queue will always contain a put procedure and may also contain an associ-
ated service procedure. Having both a put and service procedure in a queue
enables STREAMS to provide the rapid response and the queuing required in
multi-user systems.

The service and put routines pointed at by a queue, and the queues themselves,
are not associated with any process. These routines may not sleep if they can-
not continue processing, but must instead return. Any information about the
current status of the queue must be saved by the routine before returning.

Put Procedure

A put procedure is the queue routine that receives messages from the preceding
queues in the Stream. Messages are passed between queues by a procedure in
one queue calling the put procedure contained in the following queue. A call to
the put procedure in the appropriate direction is generally the only way to pass
messages between STREAMS components. There is usually a separate put pro-
cedure for the read and write queues because of the full-duplex operation of
most Streams. However, there can be a single put procedure shared between
both the read and write queues.

The put procedure allows rapid response to certain data and events, such as
echoing of input characters. It has higher priority than any scheduled service
procedure and is associated with immediate, as opposed to deferred, processing
of a message. The put procedure executes before the scheduled service pro-
cedure of any queue is executed.

Each STREAMS component accesses the adjacent put procedure as a subroutine.
For example, consider that modA, modB, and modC are three consecutive com-
ponents in a Stream, with modC connected to the Stream head. If modA receives
a message to be sent upstream, modA processes that message and calls modB’s
read put procedure, which processes it and calls modC’s read put procedure,

STREAMS Processing Routines 4-1



Put and Service Procedures

which processes it and calls the Stream head’s read put procedure. Thus, the
message will be passed along the Stream in one continuous processing sequence.
This sequence has the benefit of completing the entire processing in a short time
with low overhead (subroutine calls). On the other hand, if this sequence is
lengthy and the processing is implemented on a multi-user system, then this
manner of processing may be good for this Stream but may be detrimental for
others. Streams may have to wait too long to get their turn, since each put pro-
cedure is called from the preceding one, and the kernel stack (or interrupt stack)
grows with each function call. The possibility of running off the stack exists,
thus panicking the system or producing undeterminate results.

Service Procedure :
In addition to the put procedure, a service procedure may be contained in each
queue to allow deferred processing of messages. If a queue has both a put and
service procedure, message processing will generally be divided between the
procedures. The put procedure is always called first, from a preceding queue.
After completing its part of the message processing, it arranges for the service
procedure to be called by passing the message to the putq() routine. putq()
does two things: it places the message on the message queue of the queue (see
Figure 2-5) and links the queue to the end of the STREAMS scheduling queue.
When putq() returns to the put procedure, the procedure can return or continue
to process the message. Some time later, the service procedure will be automat-
ically called by the STREAMS scheduler.

The STREAMS scheduler is separate and distinct from the UNIX system process
scheduler. It is concerned only with queues linked on the STREAMS scheduling
queue. The scheduler calls each service procedure of the scheduled queues one

at a time in a First-In-First-Out (FIFO) manner.

The scheduling of queue service routines is machine dependent. However,
they are guaranteed to run before returning to user level.

STREAMS utilities deliver the messages to the processing service routine in the
FIFO manner within each priority class (high priority, priority band, ordinary),
because the service procedure is unaware of the message priority and simply
receives the next message. The service routine receives control in the order it

4-2 Programmer’s Guide: STREAMS



Put and Service Procedures

was scheduled. When the service routine receives control, it may encounter
multiple messages on its message queue. This buildup can occur if there is a
long interval between the time a message is queued by a put procedure and the
time that the STREAMS scheduler calls the associated service routine. In this
interval, there can be multiple calls to the put procedure causing multiple mes-
sages to build up. The service procedure always processes all messages on its
message queue unless prevented by flow control.

Terminal output and input erase and kill processing, for example, would typi-
cally be performed in a service procedure because this type of processing does
not have to be as timely as echoing. Use of a service procedure also allows pro-
cessing time to be more evenly spread among multiple Streams. As with the
put procedure there can be a separate service procedure for each queue in a
STREAMS component or a single procedure used by both the read and write
queues.

Rules that should be observed in put and service procedures are listed in
Chapter 7.

STREAMS Processing Routines 4-3



An Asynchronous Protocol Stream Example

In the following example, our computer runs the UNIX system and supports
different kinds of asynchronous terminals, each logging in on its own port. The
port hardware is limited in function; for example, it detects and reports line and
modem status, but does not check parity.

Communications software support for these terminals is provided via a
STREAMS based asynchronous protocol. The protocol includes a variety of
options that are set when a terminal operator dials in to log on. The options are
determined by a STREAMS user process, getstrm, which analyzes data sent to it
through a series of dialogs (prompts and responses) between the process and
terminal operator.

The process sets the terminal options for the duration of the connection by
pushing modules onto the Stream or by sending control messages to cause
changes in modules (or in the device driver) already on the Stream. The options
supported include:

m ASCII or EBCDIC character codes
m For ASCII code, the parity (odd, even or none)
m Echo or not echo input characters

m Canonical input and output processing or transparent (raw) character
handling

These options are set with the following modules:

CHARPROC Provides input character processing functions, includ-
ing dynamically settable (via control messages passed
to the module) character echo and parity checking.
The module’s default settings are to echo characters
and not check character parity.

CANONPROC Performs canonical processing on ASCII characters
upstream and downstream (note that this performs
some processing in a different manner from the stan-
dard UNIX system character I/O tty subsystem).

ASCEBC Translates EBCDIC code to ASCII upstream and
ASCII to EBCDIC downstream.

4-4 Programmer’s Guide: STREAMS



An Asynchronous Protocol Stream Example

At system initialization a user process, getstrm, is created for each tty port.
getstrm opens a Stream to its port and pushes the CHARPROC module onto
the Stream by use of an ioctl I PUSH command. Then, the process issues a
getmsg system call to the Stream and sleeps until a message reaches the
Stream head. The Stream is now in its idle state.

The initial idle Stream, shown in Figure 4-1, contains only one pushable
module, CHARPROC. The device driver is a limited function raw tty driver
connected to a limited-function communication port. The driver and port
transparently transmit and receive one unbuffered character at a time.

Figure 4-1: Idle Stream Configuration for Example

Stream Head

CHARPROC
Module

TTY
Device Driver

Upon receipt of initial input from a tty port, getstrm establishes a connection
with the terminal, analyzes the option requests, verifies them, and issues
STREAMS system calls to set the options. After setting up the options,
getstrm creates a user application process. Later, when the user terminates

STREAMS Processing Routines 4-5



An Asynchronous Protocol Stream Example

that application, getstrm restores the Stream to its idle state by use of similar
system calls.

The following figure continues the example and associates kernel operations
with user-level system calls. As a result of initializing operations and push-
ing a module, the Stream for port one has the following configuration:

4-6 Programmer’s Guide: STREAMS



An Asynchronous Protocol Stream Example

Figure 4-2: Operational Stream for Example

Stream Head

CANONPROC
Module

CHARPROC

write Module read

TTY
Device Driver

As mentioned before, the upstream queue is also referred to as the read
queue reflecting the message flow direction. Correspondingly, downstream
is referred to as the write queue.

STREAMS Processing Routines 4-7



An Asynchronous Protocol Stream Example

Read-Side Processing

In our example, read-side processing consists of driver processing, CHARPROC
processing, and CANONPROC processing.

Driver Processing

The user process has been blocked on the getmsg(2) system call while waiting
for a message to reach the Stream head, and the device driver independently
waits for input of a character from the port hardware or for a message from
upstream. Upon receipt of an input character interrupt from the port, the driver
places the associated character in an M_DATA message, allocated previously.
Then, the driver sends the message to the CHARPROC module by calling
CHARPROC's upstream put procedure. On return from CHARPROC, the
driver calls the allocb() utility routine to get another message for the next char-
acter.

CHARPROC

CHARPROC has both put and service procedures on its read-side. In the exam-
ple, the other queues in the modules also have both procedures:

4-8 Programmer’s Guide: STREAMS



An Asynchronous Protocol Stream Example

Figure 4-3: Module Put and Service Procedures

write read
CANONPRO(:% .................................. Sus
Module : (p}“) (Serxlce)
: I L . \
v .
(service) (put)
CHARPROC ................................. s
Module | 71" orsco
N & I ] :
(service) (pu)

When the driver calls CHARPROC's read queue put procedure, the procedure
checks private data flags in the queue. In this case, the flags indicate that echo-
ing is to be performed (recall that echoing is optional and that we are working
with port hardware which can not automatically echo). CHARPROC causes the
echo to be transmitted back to the terminal by first making a copy of the mes-
sage with a STREAMS utility routine. Then, CHARPROC uses another utility
routine to obtain the address of its own write queue. Finally, the CHARPROC
read put procedure calls its write put procedure and passes it the message copy.
The write procedure sends the message to the driver to effect the echo and then
returns to the read procedure.

This part of read-side processing is implemented with put procedures so that
the entire processing sequence occurs as an extension of the driver input charac-
ter interrupt. The CHARPROC read and write put procedures appear as sub-
routines (nested in the case of the write procedure) to the driver. This manner
of processing is intended to produce the character echo in a minimal time frame.

STREAMS Processing Routines 4-9



An Asynchronous Protocol Stream Example

After returning from echo processing, the CHARPROC read put procedure
checks another of its private data flags and determines that parity checking
should be performed on the input character. Parity should most reasonably be
checked as part of echo processing. However, for this example, parity is
checked only when the characters are sent upstream. This relaxes the timing in
which the checking must occur, that is, it can be deferred along with the canoni-
cal processing. CHARPROC uses putq() to schedule the (original) message for
parity check processing by its read service procedure. When the CHARPROC
read service procedure is complete, it forwards the message to the read put pro-
cedure of CANONPROC. Note that if parity checking was not required, the
CHARPROC put procedure would call the CANONPROC put procedure
directly.

CANONPROC

CANONPROC performs canonical processing. As implemented, all read queue
processing is performed in its service procedure so that CANONPROC'’s put
procedure simply calls putq() to schedule the message for its read service pro-
cedure and then exits. The service procedure extracts the character from the
message buffer and places it in the "line buffer” contained in another M_DATA
message it is constructing. Then, the message which contained the smgle char-
acter is returned to the buffer pool. If the character received was not an end-
of-line, CANONPROC exits. Otherwise, a complete line has been assembled
and CANONPROC sends the message upstream to the Stream head which
unblocks the user process from the getmsg(2) call and passes it the contents of
the message.

Write-Side Processing

The write-side of this Stream carries two kinds of messages from the user pro-
cess: ioctl messages for CHARPROC, and M_DATA messages to be output to
the terminal.

ioctl messages are sent downstream as a result of an ioctl(2) system call. When
CHARPROC receives an ioctl message type, it processes the message contents to
modify internal flags and then uses a utility routine to send an acknowledge-
ment message upstream to the Stream head. The Stream head acts on the
acknowledgement message by unblocking the user from the ioctl.

4-10 Programmer’s Guide: STREAMS



An Asynchronous Protocol Stream Example

For terminal output, it is presumed that M_DATA messages, sent by write(2)
system calls, contain multiple characters. In general, STREAMS returns to the
user process immediately after processing the write call so that the process may
send additional messages. Flow control will eventually block the sending pro-
cess. The messages can queue on the write-side of the driver because of charac-
ter transmission timing. When a message is received by the driver’s write put
procedure, the procedure will use putq() to place the message on its write-side
service message queue if the driver is currently transmitting a previous message
buffer. However, there is generally no write queue service procedure in a dev-
ice driver. Driver output interrupt processing takes the place of scheduling and
performs the service procedure functions, removing messages from the queue.

Analysis

For reasons of efficiency, a module implementation would generally avoid plac-
ing one character per message and using separate routines to echo and parity
check each character, as was done in this example. Nevertheless, even this
design yields potential benefits. Consider a case where alternate, more intelli-
gent, port hardware was substituted. If the hardware processed multiple input
characters and performed the echo and parity checking functions of CHAR-
PROC, then the new driver could be implemented to present the same interface
as CHARPROC. Other modules such as CANONPROC could continue to be
used without modification.

STREAMS Processing Routines 4-11












5 Messages

Messages 5-1
Message Types 5-1
Expedited Data 5-3
Message Structure 5-4
Message Linkage 5-6
Sending/Receiving Messages 5-8
Control of Stream Head Processing 5-12
m Read Options 5-13
m Write Offset 5-14
Message Queues and Message Priority 5-15
The queue Structure 5-19
m Using queue Information 5-21
m Queue Flags 5-21
m The equeue Structure 5-22
m The gband Structure 5-22
m Using equeue and gband Information 5-24
Message Processing 5-26
= Flow Control 5-28
Service Interfaces 5-34
Service Interface Benefits 5-35
Service Interface Library Example 5-38
m Accessing the Service Provider 5-40
m Closing the Service Provider 5-43
m Sending Data to Service Provider 5-44

Table of Contents i



Table of Contents

m Receiving Data 5-45
m Module Service Interface Example 5-47
Message Allocation and Freeing 5-54
Recovering From No Buffers 5-57
Extended STREAMS Buffers 5-60

ji Programmer’s Guide: STREAMS



Messages

Messages are the means of communication within a Stream. All input and out-
put under STREAMS is based on messages. The objects passed between
Streams components are pointers to messages. All messages in STREAMS use
two data structures to refer to the data in the message. These data structures
describe the type of the message and contain pointers to the data of the mes-
sage, as well as other information. Messages are sent through a Stream by suc-
cessive calls to the put routine of each queue in the Stream. Messages may be
generated by a driver, a module, or by the Stream head.

Message Types

There are several different STREAMS messages (see Appendix B) and they are
defined in sys/stream.h. The messages differ in their intended purpose and
their queueing priority. The contents of certain message types can be
transferred between a process and a Stream by use of system calls.

Below, the message types are briefly described and classified according to their
queueing priority.

Ordinary Messages (also called normal messages):

M_BREAK Request to a Stream driver to send a "break”

|

= M CTL Control/status request used for inter-module
communication

m M _DATA User data message for I/O system calls

= M_DELAY Request a real-time delay on output

m M_IOCTL Control/status request generated by a Stream head

= M _PASSFP File pointer passing message

= M_PROTO Protocol control information

m M _RSE Reserved for internal use

m M _SETOPTS Set options at the Stream head, sent upstream

m M SIG Signal sent from a module/driver to a user

Messages 5-1



Messages

High Priority Messages:
m M_COPYIN  Copy in data for transparent ioctls, sent upstream

M_START Restart stopped device output
M_STARTI Restart stopped device input
M_STOP Suspend output

M_STOPI Suspend input

m M_COPYOUT Copy out data for transparent ioctls, sent upstream
m M_ERROR Report downstream error condition, sent upstream
= M_FLUSH Flush module queue

m M_HANGUP Set a Stream head hangup condition, sent upstream
m M_IOCACK  Positive ioctl(2) acknowledgement

® M_IOCDATA Data for transparent ioctls, sent downstream

m M_IOCNAK Negative ioctl(2) acknowledgement

m M_PCPROTO Protocol control information

m M_PCRSE Reserved for internal use

m M_PCSIG Signal sent from a module/driver to a user

s M_READ Read notification, sent downstream

[

u

n

]

Transparent ioctls support applications developed prior to the introduction of
STREAMS.

5-2 Programmer’s Guide: STREAMS



Messages

Expedited Data

The Open Systems Interconnection (OSI) Reference Model developed by the
International Standards Organization (ISO) and International Telegraph and
Telephone Consultative Committee (CCITT) provides an international standard
seven-layer architecture for the development of communication protocols.
AT&T adheres to this standard and also supports the Transmission Control Pro-
tocol and Internet Protocol (TCP/IP).

OSI and TCP/IP support the transport of expedited data (see note below) for
transmission of high priority, emergency data. This is useful for flow control,
congestion control, routing, and various applications where immediate delivery
of data is necessary.

Expedited data are mainly for exceptional cases and transmission of control sig-
nals. These are emergency data that are processed immediately, ahead of nor-
mal data. These messages are placed ahead of normal data on the queue, but
after STREAMS high priority messages and after any expedited data already on
the queue.

Expedited data flow control is unaffected by the flow control constraints of nor-
mal data transfer. Expedited data have their own flow control because they can
easily run the system out of buffers if their flow is unrestricted.

Drivers and modules define separate high and low water marks for priority
band data flow. (Water marks are defined for each queue and they indicate the
upper and lower limit of bytes that can be contained on the queue; see
M_SETOPTS in Appendix B). The default water marks for priority band data
and normal data are the same. The Stream head also ensures that incoming
priority band data are not blocked by normal data already on the queue. This is
accomplished by associating a priority with the messages. This priority implies
a certain ordering of the messages in the queue. (Message queues and priorities
are discussed later in this chapter.)

Within the STREAMS mechanism and in this guide expedited data are also
referred to as priority band data.

Messages 5-3



Message Structure

All messages are composed of one or more message blocks. A message block is
a linked triplet of two structures and a variable length data buffer. The struc-
tures are a message block (msgb) and a data block (datab). The data buffer is a
location in memory where the data of a message are stored.

5-4 Programmer’s Guide: STREAMS



Message Structure

Messages 5-5



Message Structure

UNIX System V Release 4.0 includes a feature called Expanded Fundamental
Types (EFT) that does not support previously designed modules and drivers. If
the system supports EFT, a variable STYPES is defined and different data
structure definitions are used. If the system must maintain binary compatibility
with existing modules and drivers _STYPES should not be defined. (Appendix
A includes several STREAMS data structures.)

If the system does not support the Expanded Fundamental Types (non-EFT)
feature, the message priority band is stored in the data block. Conceptually the
band belongs in the message block since it is associated with the message and
not just with the data. However, the size of a message block is visible to
modules and drivers, so the band is placed in the data block instead. Modules
and drivers should have no knowledge of the size of the data block.

If the system supports the Expanded Fundamental Types feature, the message
priority is stored in the message block. To increase the portability of modules
and drivers between EFT and non-EFT systems, the field b_band is defined. This
field is the priority band. It is defined as b_datap->db_band on non-EFT sys-
tems.

The field b_band determines where the message is placed when it is enqueued
using the STREAMS utility routines. This field has no meaning for high priority
messages and is set to zero for these messages. When a message is allocated via
allocb(), the b_band field will be initially set to zero. Modules and drivers may
set this field if so desired.

Message Linkage

The message block is used to link messages on a message queue, link message
blocks to form a message, and manage the reading and writing of the associated
data buffer. The b_rptr and b_wptr fields in the msgb structure are used to
locate the data currently contained in the buffer. As shown in Figure 5-1, the
message block (mblk_t) points to the data block of the triplet. The data block
contains the message type, buffer limits, and control variables. STREAMS allo-
cates message buffer blocks of varying sizes. db_base and db_lim are the fixed
beginning and end (+1) of the buffer.

5-6 Programmer’s Guide: STREAMS



Message Structure

A message consists of one or more linked message blocks. Multiple message
blocks in a message can occur, for example, because of buffer size limitations, or
as the result of processing that expands the message. When a message is com-
posed of multiple message blocks, the type associated with the first message
block determines the message type, regardless of the types of the attached mes-

sage blocks.

Figure 5-1: Message Form and Linkage

| I
: Message | Message
I 1 ! 2
I |
queue : b_next 1 bnext -
-<— = — = 1 e —m
header: mblk t b_prev ' | mblk _t b_prev
\ b_datap |
: b data : data
! -omt N block ! block
! (type) \ ! (type) \
| | mblk_t buffer | 1 | mblk_t butffer
|
i b_datap |
: )
! b_cont data b_datap
: block \ |
' I
! I
: mblk__t buffer : mblk_t
I {
I \ ' A
: : \ b \ : : \ \‘
v \ v N
Messages 5-7



Message Structure

A message may occur singly, as when it is processed by a put procedure, or it
may be linked on the message queue in a queue, generally waiting to be pro-
cessed by the service procedure. Message 2, as shown in Figure 5-1, links to
message 1.

Note that a data block in message 1 is shared between message 1 and another
message. Multiple message blocks can point to the same data block to conserve
storage and to avoid copying overhead. For example, the same data block, with
associated buffer, may be referenced in two messages, from separate modules
that implement separate protocol levels. (Figure 5-1 illustrates the concept, but
data blocks would not typically be shared by messages on the same queue).

The buffer can be retransmitted, if required because of errors or timeouts, from
either protocol level without replicating the data. Data block sharing is accom-
plished by means of a utility routine [see dupmsg() in Appendix C]. STREAMS
maintains a count of the message blocks sharing a data block in the db_ref field.

STREAMS provides utility routines and macros, specified in Appendix C, to
assist in managing messages and message queues, and to assist in other areas of
module and driver development. A utility routine should always be used when
operating on a message queue or accessing the message storage pool. If mes-
sages are manipulated on the queue without using the STREAMS utilities, the
message ordering may become confused and lead to inconsistent results.

Sending/Receiving Messages

Most message types can be generated by modules and drivers. A few are
reserved for the Stream head. The most commonly used messages are
M_DATA, M_PROTO, and M_PCPROTO. These messages can also be passed
between a process and the topmost module in a Stream, with the same message
boundary alignment maintained on both sides of the kernel. This allows a user
process to function, to some degree, as a module above the Stream and maintain
a service interface. M_PROTO and M_PCPROTO messages are intended to
carry service interface information among modules, drivers, and user processes.
Some message types can only be used within a Stream and cannot be sent or
received from user level.

Modules and drivers do not interact directly with any system calls except
open(2) and close(2). The Stream head handles all message translation and
passing between user processes and STREAMS components. Message transfer
between processes and the Stream head can occur in different forms. For

5-8 Programmer’s Guide: STREAMS



Message Structure

example, M_DATA and M_PROTO messages can be transferred in their direct
form by the § getmsg(2) and putmsg(2) system calls. Alternatively, write(2)
causes one or more M_DATA messages to be created from the data buffer sup-
plied in the call. M_DATA messages received at the Stream head will be con-
sumed by read(2) and copied into the user buffer. As another example, M_SIG
causes the Stream head to send a signal to a process.

Any module or driver can send any message in either direction on a Stream.
However, based on their intended use in STREAMS and their treatment by the
Stream head, certain messages can be categorized as upstream, downstream, or
bidirectional. M_DATA, M_PROTO, or M_PCPROTO messages, for example,
can be sent in both directions. Other message types are intended to be sent
upstream to be processed only by the Stream head. Messages intended to be
sent downstream are silently discarded if received by the Stream head.

STREAMS enables modules to create messages and pass them to neighboring
modules. However, the read(2) and write(2) system calls are not sufficient to
enable a user process to generate and receive all such messages. First, read and
write are byte-stream oriented with no concept of message boundaries. To sup-
port service interfaces, the message boundary of each service primitive must be
preserved so that the beginning and end of each primitive can be located. Also,
read and write offer only one buffer to the user for transmitting and receiving
STREAMS messages. If control information and data were placed in a single
buffer, the user would have to parse the contents of the buffer to separate the
data from the control information.

The putmsg system call enables a user to create messages and send them down-
stream. The user supplies the contents of the control and data parts of the mes-
sage in two separate buffers. The getmsg system call retrieves M_DATA or
M_PROTO messages from a Stream and places the contents into two user
buffers.

The format of putmsg is as follows:

int putmsg(
int £d,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int flags);

Messages 5-9



Message Structure

fd identifies the Stream to which the message will be passed, ctlptr and dataptr
identify the control and data parts of the message, and flags may be used to
specify that a high priority message (M_PCPROTO) should be sent. When a
control part is present, setting flags to 0 generates an M_PROTO message. If
flags is set to RS_HIPRI, an M_PCPROTO message is generated.

The Stream head guarantees that the control part of a message generated
by putmsg(2) is at least 64 bytes in length. This promotes reusability of the
bufter. When the buffer is a reasonable size, modules and drivers may

I reuse the buffer for other headers.

The strbuf structure is used to describe the control and data parts of a message,
and has the following format:

buf points to a buffer containing the data and len specifies the number of bytes
of data in the buffer. maxlen specifies the maximum number of bytes the given
buffer can hold, and is only meaningful when retrieving information into the
buffer using getmsg.

The getmsg system call retrieves M_DATA, M_PROTO, or M_PCPROTO mes-
sages available at the Stream head, and has the following format:

int getmsg(
int f£d,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int *flagsp):

The arguments to getmsg are the same as those of putmsg except that the flagsp
parameter is a pointer to an int.

5-10 Programmer’s Guide: STREAMS



Message Structure

putpmsg() and getpmsg() [see putmsg(2) and getmsg(2)] support multiple
bands of data flow. They are analogous to the system calls putmsg and getmsg.
The extra parameter is the priority band of the message.

putpmsg() has the following interface:

int putpmsg(

int fd,

struct strbuf *ctlptr,

struct strbuf *dataptr,

int band,

int flags):
The parameter band is the priority band of the message to put downstream. The
valid values for flags are MSG_HIPRI and MSG_BAND. MSG_BAND and
MSG_HIPRI are mutually exclusive. MSG_HIPRI generates a high priority mes-
sage (M_PCPROTO) and band is ignored. MSG_BAND causes an M_PROTO or
M_DATA message to be generated and sent down the priority band specified
by band. The valid range for band is from 0 to 255 inclusive.

The call

putpmsg (fd, ctlptr, dataptr, 0, MSG_BAND);
is equivalent to the the system call

putmsg (fd, ctlptr, dataptr, 0);
and the call

putpmsg (fd, ctlptr, dataptr, 0, MSG_HIPRI);
is equivalent to the system call

putmsg (fd, ctlptr, dataptr, RS_HIPRI);

If MSG_HIPRI is set and band is non-zero, putpmsg() fails with EINVAL.

Messages 5-11



Message Structure

getpmsg() has the following format:

int getpmsg(
int £d,
struct strbuf *ctlptr,
struct strbuf *dataptr,
int *bandp,
int *flagsp);

bandp is the priority band of the message. This system call retrieves a message
from the Stream. If *flagsp is set to MSG_HIPRI, getpmsg() attempts to retrieve
a high priority message. If MSG_BAND is set, getpmsg() tries to retrieve a mes-
sage from priority band *bandp or higher. If MSG_ANY is set, the first message
on the Stream head read queue is retrieved. These three flags (MSG_HIPR],
MSG_BAND, and MSG_ANY) are mutually exclusive. On return, if a hxgh
priority message was retrieved, *flagsp is set to MSG_HIPRI and *bandp is set to
0. Otherwise, *flagsp is set to MSG_BAND and *bandp is set to the band of the
message retrieved.

The call

int band = 0;
int flags = MSG_ANY;
getpmsg(fd, ctlptr, dataptr, &band, &flags):

is equivalent to
int flags = 0;
getmsg(fd, ctlptr, dataptr, &flags);

If MSG_HIPRI is set and *bandp is non-zero, getpmsg() fails with EINVAL.

Control of Stream Head Processing

The M_SETOPTS message allows a driver or module to exercise control over
certain Stream head processing. An M_SETOPTS can be sent upstream at any
time. The Stream head responds to the message by altering the processing asso-
ciated with certain system calls. The options to be modified are specified by the
contents of the stroptions structure (see Appendix A) contained in the message.

5-12 Programmer’s Guide: STREAMS



Message Structure

Six Stream head characteristics can be modified. Four characteristics correspond
to fields contained in queue (min/max packet sizes and high/low water marks).
The other two are discussed here.

Read Options

The value for read options (so_readopt) corresponds to two sets of three modes a
user can set via the I_SRDOPT ioctl [see streamio(7)] call. The first set deals
with data and message boundaries:

byte-stream (RNORM)
The read(2) call completes when the byte count is satisfied,
the Stream head read queue becomes empty, or a zero length
message is encountered. In the last case, the zero length
message is put back on the queue. A subsequent read will
return 0 bytes.

message non-discard (RMSGN)
The read(2) call completes when the byte count is satisfied or
at a message boundary, whichever comes first. Any data
remaining in the message are put back on the Stream head
read queue.

message discard (RMSGD)
The read(2) call completes when the byte count is satisfied or
at a message boundary. Any data remaining in the message
are discarded.

Byte-stream mode approximately models pipe data transfer. Message non-
discard mode approximately models a TTY in canonical mode.

The second set deals with the treatment of protocol messages by the read(2) sys-
tem call:

normal protocol (RPROTNORM)
The read(2) call fails with EBADMSG if an M_PROTO or
M_PCPROTO message is at the front of the Stream head read
queue. This is the default operation protocol.

protocol discard (RPROTDIS)
The read(2) call will discard any M_PROTO or M_PCPROTO
blocks in a message, delivering the M_DATA blocks to the
user.

Messages 5-13



Message Structure

protocol data (RPROTDAT)
The read(2) call converts the M_PROTO and M_PCPROTO
message blocks to M_DATA blocks, treating the entire mes-
sage as data.

Write Offset

The value for write offset (so_wroff) is a hook to allow more efficient data han-
dling. It works as follows: In every data message generated by a write(2) sys-
tem call and in the first M_DATA block of the data portion of every message
generated by a putmsg(2) call, the Stream head will leave so_wroff bytes of space
at the beginning of the message block. Expressed as a C language construct:

bp—>b_rptr = bp->b_datap->db_base +write offset.

The write offset value must be smaller than the maximum STREAMS message
size, STRMSGSZ (see the section titled “Tunable Parameters” in Appendix E).
In certain cases (e.g., if a buffer large enough to hold the offset+data is not
currently available), the write offset might not be included in the block. To han-
dle all possibilities, modules and drivers should not assume that the offset exists
in a message, but should always check the message.

The intended use of write offset is to leave room for a module or a driver to
place a protocol header before user data in the message rather than by allocat-
ing and prepending a separate message.

5-14 Programmer’s Guide: STREAMS



Message Queues and Message Priority

Message queues grow when the STREAMS scheduler is delayed from calling a
service procedure because of system activity, or when the procedure is blocked
by flow control. When called by the scheduler the service procedure processes
enqueued messages in a First-In-First-Out (FIFO) manner. However, expedited
data support and certain conditions require that associated messages (e.g., an
M_ERROR) reach their Stream destination as rapidly as possible. This is accom-
plished by associating priorities to the messages. These priorities imply a cer-
tain ordering of messages on the queue as shown in Figure 5-2. Each message
has a priority band associated with it. Ordinary messages have a priority of
zero. High priority messages are high priority by nature of their message type.
Their priority band is ignored. By convention, they are not affected by flow
control. The putq() utility routine places high priority messages at the head of
the message queue followed by priority band messages (expedited data) and
ordinary messages.

Figure 5-2: Message Ordering on a Queue

normal priority priority priority high
band 0 band 1 band 2 band n priority
messages messages messages messages messages
tail head

When a message is queued, it is placed after the messages of the same priority
already on the queue (i.e., FIFO within their order of queueing). This affects the
flow control parameters associated with the band of the same priority. Message
priorities range from 0 (normal) to 255 (highest). This provides up to 256 bands
of message flow within a Stream. Expedited data can be implemented with one
extra band of flow (priority band 1) of data. This is shown in Figure 5-3.

Messages 5-15



Message Queues and Message Priority

Figure 5-3: Message Ordering with One Priority Band

normal expedited high
tail (band 0) (band 1) priority head
messages messages messages

High priority messages are not subject to flow control. When they are queued
by putq(), the associated queue is always scheduled (in the same manner as any
queue; following all other queues currently scheduled). When the service pro-
cedure is called by the scheduler, the procedure uses getq() to retrieve the first
message on queue, which will be a high priority message, if present. Service
procedures must be implemented to act on high priority messages immediately.
The above mechanisms—priority message queueing, absence of flow control,
and immediate processing by a procedure—result in rapid transport of high
priority messages between the originating and destination components in the
Stream.

Since the priority band information is contained in the data block on non-EFT
systems, care must be taken if a message is duplicated via dupb() or dupmsg().
This could lead to the possibility that a message may be out of order on the
queue. For example, a module may want take a message off its queue, dupli-
cate it, and put the original message back on its queue. It may then pass the
new message on to the next module. If the priority band of the new message is
changed somewhere else on the Stream, the original message will be out of
order on the queue. Therefore, if the reference count of the message is greater
than one, it is recommended that the module copy the message via copymsg(),
free the duplicated message, and then change the priority of the copied mes-
sage.

Several routines are provided to aid users in controlling each priority band of
data flow. These routines are flushband(), bcanput(), strqget(), and strqset().
The flushband() routine is discussed in the section titled “‘Flush Handling” in
Chapter 7, the becanput() routine is discussed under “Flow Control” later in this
chapter, and the other two routines are described next. Appendix C also has a
description of these routines.

5-16 Programmer’s Guide: STREAMS



Message Queues and Message Priority

The strqget() routine allows modules and drivers to obtain information about a
queue or particular band of the queue. This provides a way to insulate the
STREAMS data structures from the modules and drivers. The format of the
routine is:

int strqget (q, what, pri, valp)
register queue_t *q;
gfields_t what;
register unsigned char pri;
long *valp;

The information is returned in the long referenced by valp. The fields that can
be obtained are defined by the following:

typedef enum gfields ({
QHIWAT = 0, /* q hiwat or gb_hiwat */

QLOWAT =1, /* q lowat or gb_lowat */
OMAXPSZ = 2, /* g maxpsz */
OMINPSZ = 3, /* q minpsz */
QCOUNT = 4, /* q_count or gb_count */
QFIRST =5, /* q first or gb_first */
QLAST = 6, /* q_last or gb_last */
QFLAG = 7, /* q_flag or gb_flag */
QBAD 8

} gfields_t;

This routine returns 0 on success and an error number on failure.

The routine strqset() allows modules and drivers to change information about a
queue or particular band of the queue. This also insulates the STREAMS data
structures from the modules and drivers. Its format is:

int strgset (q, what, pri, wval)
register queue t *q;
gfields_t  what;
register unsigned char pri;
long val;

The updated information is provided by val. strqset() returns 0 on success and
an error number on failure. If the field is intended to be read-only, then the
error EPERM is returned and the field is left unchanged. The following fields
are currently read-only: QCOUNT, QFIRST, QLAST, and QFLAG.

Messages 5-17



Message Queues and Message Priority

The ioctls I FLUSHBAND, I_CKBAND, I GETBAND, I_CANPUT, and
I_ATMARK support multiple bands of data flow. The ioctl I FLUSHBAND
allows a user to flush a particular band of messages. It is discussed in more
detail in the section titled “Flush Handling”” in Chapter 7.

The ioctl I CKBAND allows a user to check if a message of a given priority
exists on the Stream head read queue. Its interface is:

ioctl(fd, I_CKBAND, pri);

This returns 1 if a message of priority pri exists on the Stream head read queue
and 0 if no message of priority pri exists. If an error occurs, -1 is returned.
Note that pri should be of type int.

The ioctl I GETBAND allows a user to check the priority of the first message on
the Stream head read queue. The interface is:

ioctl(fd, I_GETBAND, prip);

This results in the integer referenced by prip being set to the priority band of the
message on the front of the Stream head read queue.

The ioctl I_CANPUT allows a user to check if a certain band is writable. Its
interface is:

ioctl (fd, I_CANPUT, pri);

The return value is 0 if the priority band pri is flow controlled, 1 if the band is
writable, and -1 on error.

The field b_flag of the msgb structure can have a flag MSGMARK that allows a
module or driver to mark a message. This is used to support TCP’s (Transport
Control Protocol) ability to indicate to the user the last byte of out-of-band data.
Once marked, a message sent to the Stream head causes the Stream head to
remember the message. A user may check to see if the message on the front of
its Stream head read queue is marked or not with the I_ ATMARK ioctl. If a user
is reading data from the Stream head and there are multiple messages on the
read queue, and one of those messages is marked, the read(2) terminates when it
reaches the marked message and returns the data only up to that marked mes-
sage. The rest of the data may be obtained with successive reads.

5-18 Programmer’s Guide: STREAMS



Message Queues and Message Priority

The ioctl I ATMARK has the following format:
ioctl(fd, I_ATMARK, flag);

where flag may be either ANYMARK or LASTMARK. ANYMARK indicates
that the user merely wants to check if the message is marked. LASTMARK indi-
cates that the user wants to see if the message is the only one marked on the
queue. If the test succeeds, 1 is returned. On failure, 0 is returned. If an error
occurs, -1 is returned.

The queue Structure

Service procedures, message queues, message priority, and basic flow control
are all intertwined in STREAMS. A queue will generally not use its message
queue if there is no service procedure in the queue. The function of a service
procedure is to process messages on its queue. Message priority and flow con-
trol are associated with message queues.

The operation of a queue revolves around the queue structure:

Messages 5-19



Message Queues and Message Priority

Queues are always allocated in pairs (read and write); one queue pair per a
module, a driver, or a Stream head. A queue contains a linked list of messages.
When a queue pair is allocated, the following fields are initialized by
STREAMS:

5-20 Programmer’s Guide: STREAMS



Message Queues and Message Priority

m g_ginfo - from streamtab
W q_minpsz, q_maxpsz, q_hiwat, g_lowat - from module_info

Copying values from module_info allows them to be changed in the queue
without modifying the streamtab and module_info values.

q_count is used in flow control calculations and is the number of bytes in mes-
sages on the queue.

Using queue Information

Modules and drivers should use STREAMS utility routines (see Appendix C) to
alter q_first, q_last, q_count, and g_flag.

Modules and drivers can change g_ptr, q_minpsz, q_maxpsz, q_hiwat, and q_lowat.

Modules and drivers can read but should not change q_ginfo, q_next, q_bandp,
and q_nband.

Modules and drivers should not touch q_link, q_padl, and q_pad?2.

Modules and drivers should not change any fields in the equeue structure.
They can only reference eq_bandp.

Queue Flags

Programmers using the STREAMS mechanism should be aware of the following
queue flags:

m QENAB - queue is enabled to run the service procedure (it is on the run
queue)

m QWANTR - someone wants to read from the queue

m QWANTW - someone wants to write to the queue

m QFULL - queue is full

m QREADR - set for read queues

m QUSE - queue has been allocated

m QNOENSB - do not enable the queue when data are placed on it

Messages 5-21



Message Queues and Message Priority

m QBACK - queue has been back-enabled

m QOLD - queue supports module/driver interface to open/close developed
prior to UNIX System V Release 4.0

m QHLIST - the Stream head write queue is scanned

The equeue Structure

The extended queue structure equeue is only present for non-EFT systems. It

contains the field eg_link that is a pointer to the next queue for scheduling (i.e.,
when the queue is on the run queue). eq bandp is a pointer to the flow control
information for the bands. The equeue structure is defined as follows:

The gband Structure

The queue flow information for each band is contained in a qband structure. It
is defined as follows:

5-22 Programmer’s Guide: STREAMS



Message Queues and Message Priority

This structure contains pointers to the linked list of messages on the queue.
These pointers, gb_first and gb_last, denote the beginning and end of messages
for the particular band. The gb_count field is analogous to the queue’s g_count
field. However, gb_count only applies to the messages on the queue in the band
of data flow represented by the corresponding qband structure. In contrast,
g_count only contains information regarding normal and high priority messages.

Each band has a separate high and low water mark, gb_hiwat and gb_lowat.
These are initially set to the queue’s q_hiwat and g_lowat respectively. Modules
and drivers may change these values if desired through the strqset() function.
Three flags, QB_FULL, QB_WANTW, and QB_BACK, are defined for gb_flag.
QB_FULL denotes that the particular band is full. QB_WANTW indicates that
someone tried to write to the band that was flow controlled. QB BACK is set
when the service procedure runs as a result of being back-enabled because the
queue is no longer flow-controlled.

The gband structures are not preallocated per queue. Rather, they are allocated
when a message with a priority greater than zero is placed on the queue via
putq(), putbq(), or insq(). Since band allocation can fail, these routines return 0
on failure and 1 on success. Once a gband structure is allocated, it remains

Messages 5-23



Message Queues and Message Priority

associated with the queue until the queue is freed. strgset() and strqget() will
cause qband allocation to occur.

Using equeue and gband Information

The STREAMS utility routines should be used when manipulating the fields in
the equeue and gband structures. The routines strqset() and strqget() should
be used to access band information.

Drivers and modules should not change any fields in the equeue structure.
They are only allowed to reference eq_bandp.

Drivers and modules are allowed to change the gp_hiwat and qp_lowat fields of
the gband structure.

Drivers and modules may only read the gb_count, qb_first, gb_last, and gb_flag
fields of the qband structure.

The pad fields should not be used in the gband structure; they are intended for
future use.

The following figure depicts a queue with two extra bands of flow.

5-24 Programmer’s Guide: STREAMS



Message Queues and Message Priority

Figure 5-4: Data Structure Linkage on non-EFT Systems

queue equeue
structure structure
_eq / band |
oy gband
structures
band 1 band 2
qb_next [T\____| qb_next 1
qb_first qb_first
qfirst gb_last gb_last
q_last
normal priority priority high
(band 0) band band priority
1 2
head
messages
Messages 5-25



Message Queues and Message Priority

Message Processing

Put procedures are generally required in pushable modules. Service procedures
are optional. If the put routine enqueues messages, there must exist a
corresponding service routine that handles the enqueued messages. If the put
routine does not enqueue messages, the service routine need not exist.

The general processing flow when both procedures are present is as follows:

1. A message is received by the put procedure in a queue, where some pro-
cessing may be performed on the message.

2. The put procedure places the message on the queue by use of the putq()
utility routine for the service procedure to perform further processing at
some later time.

3. putq() places the message on the queue based on its priority.

4. Then, putq() makes the queue ready for execution by the STREAMS
scheduler following all other queues currently scheduled.

5. After some indeterminate delay (intended to be short), the STREAMS
scheduler calls the service procedure.

6. The service procedure gets the first message (g_first) from the message
queue with the getq() utility.

7. The service procedure processes the message and passes it to the put pro-
cedure of the next queue with putnext().

8. The service procedure gets the next message and processes it.

This processing continues until the queue is empty or flow control blocks
further processing. The service procedure returns to the caller.

N/ A service procedure must never sleep since it has no user context. It
must always return to its caller.

If no processing is required in the put procedure, the procedure does not have
to be explicitly declared. Rather, putq() can be placed in the qinit structure

5-26 Programmer’s Guide: STREAMS



Message Queues and Message Priority

declaration for the appropriate queue side to queue the message for the service
procedure, e.g.,

static struct qinit winit = { putq, modwsrv, ...... }:

More typically, put procedures will, at a minimum, process high priority mes-
sages to avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is
delayed processing. When a service procedure is used in a module, the module
developer is implying that there are other, more time-sensitive activities to be
performed elsewhere in this Stream, in other Streams, or in the system in gen-
eral. The presence of a service procedure is mandatory if the flow control
mechanism is to be utilized by the queue.

The delay for STREAMS to call a service procedure will vary with implementa-
tion and system activity. However, once the service procedure is scheduled, it
is guaranteed to be called before user level activity is resumed.

If a module or driver wishes to recognize priority bands, the service procedure
is written to the following algorithm:

Messages 5-27



Message Queues and Message Priority

Flow Control

The STREAMS flow control mechanism is voluntary and operates between the
two nearest queues in a Stream containing service procedures (see Figure 5-5).
Messages are generally held on a queue only if a service procedure is present in
the associated queue.

Messages accumulate on a queue when the queue’s service procedure process-
ing does not keep pace with the message arrival rate, or when the procedure is
blocked from placing its messages on the following Stream component by the
flow control mechanism. Pushable modules contain independent upstream and
downstream limits. The Stream head contains a preset upstream limit (which
can be modified by a special message sent from downstream) and a driver may
contain a downstream limit.

Flow control operates as follows:

1. Each time a STREAMS message handling routine (for example, putq)
adds or removes a message from a message queue, the limits are checked.
STREAMS calculates the total size of all message blocks (bp—>b_wptr -
bp->b_rptr) on the message queue.

2. The total is compared to the queue high water and low water values. If
the total exceeds the high water value, an internal full indicator is set for
the queue. The operation of the service procedure in this queue is not
affected if the indicator is set, and the service procedure continues to be
scheduled.

3. The next part of flow control processing occurs in the nearest preceding
queue that contains a service procedure. In Figure 5-5, if D is full and C
has no service procedure, then B is the nearest preceding queue.

5-28 Programmer’s Guide: STREAMS



Message Queues and Message Priority

Figure 5-5: Flow Control

QUEUE QUEUE QUEUE

B C D
| i
| |
Message Message
Queue Queue

4. The service procedure in B uses a STREAMS utility routine to see if a
queue ahead is marked full. If messages cannot be sent, the scheduler
blocks the service procedure in B from further execution. B remains
blocked until the low water mark of the full queue, D, is reached.

5. While B is blocked, any messages except high priority messages arriving
at B will accumulate on its message queue (recall that high priority mes-
sages are not subject to flow control). Eventually, B may reach a full state
and the full condition will propagate back to the module in the Stream.

6. When the service procedure processing on D causes the message block
total to fall below the low water mark, the full indicator is turned off.
Then, STREAMS automatically schedules the nearest preceding blocked
queue (B in this case), getting things moving again. This automatic
scheduling is known as back-enabling a queue.

Modules and drivers need to observe the message priority. High priority mes-
sages, determined by the type of the first block in the message,
(mp—>b_datap->db_type >= QPCTL),

are not subject to flow control. They are processed immediately and forwarded,
as appropriate.

For ordinary messages, flow control must be tested before any processing is per-
formed. The canput() utility determines if the forward path from the queue is
blocked by flow control.

Messages 5-29



Message Queues and Message Priority

This is the general flow control processing of ordinary messages:
1. Retrieve the message at the head of the queue with getq().

2. Determine if the message type is high priority and not to be processed
here.

3. If so, pass the message to the put procedure of the following queue with
putnext().

4. Use canput() to determine if messages can be sent onward.

5. If messages should not be forwarded, put the message back on the queue
with putbq() and return from the procedure.

6. Otherwise, process the message.
The canonical representation of this processing within a service procedure is as
follows:

while (getq != NULL)

if (high priority message || canput)
process message
putnext
else
putbqg
return

Expedited data have their own flow control with the same general processing as
that of ordinary messages. bcanput() is used to provide modules and drivers
with a way to test flow control in the given priority band. It returns 1 if a mes-
sage of the given priority can be placed on the queue. It returns 0 if the priority
band is flow controlled. If the band does not yet exist on the queue in question,
the routine returns 1.

If the band is flow controlled, the higher bands are not affected. However, the
same is not true for lower bands. The lower bands are also stopped from send-
ing messages. If this didn’t take place, the possibility would exist where lower
priority messages would be passed along ahead of the flow controlled higher
priority ones.

5-30 Programmer’s Guide: STREAMS



Message Queues and Message Priority

The call bcanput (g, 0); is equivalent to the call canput (q) ;.

A service procedure must process all messages on its queue unless flow
control prevents this.

A service procedure continues processing messages form its queue until getq()
returns NULL. When an ordinary message is enqueued by putq(), putq() will
cause the service procedure to be scheduled only if the queue was previously
empty, and a previous getq() call returns NULL (that is, the QWANTR flag is
set). If there are messages on the queue, putq() presumes the service procedure
is blocked by flow control and the procedure will be automatically rescheduled
by STREAMS when the block is removed. If the service procedure cannot com-
plete processing as a result of conditions other than flow control (e.g., no
buffers), it must ensure it will return later [e.g., by use of bufcall() utility rou-
tine] or it must discard all messages on the queue. If this is not done,
STREAMS will never schedule the service procedure to be run unless the
queue’s put procedure enqueues a priority message with putq().

High priority messages are discarded only if there is already a high priority
message on the Stream head read queue. That is, there can be only one
high priority message present on the Stream head read queue at any time.

putbq() replaces messages at the beginning of the appropriate section of the
message queue in accordance with their priority. This might not be the same
position at which the message was retrieved by the preceding getq(). A subse-
quent getq() might return a different message.

putq() only looks at the priority band in the first message. If a high priority
message is passed to putq() with a non-zero b_band value, b_band is reset to 0
before placing the message on the queue. If the message is passed to putq()
with a b_band value that is greater than the number of gband structures associ-
ated with the queue, putq() tries to allocate a new qband structure for each
band up to and including the band of the message.

The above also applies to putbq() and insq(). If an attempt is made to insert a
message out of order in a queue via insq(), the message is not inserted and the
routine fails.

Messages 5-31



Message Queues and Message Priority

putq() will not schedule a queue if noenable(q) had been previously called for
this queue. noenable() instructs putq() to enqueue the message when called by
this queue, but not to schedule the service procedure. noenable() does not
prevent the queue from being scheduled by a flow control back-enable. The
inverse of noenable() is enableok(q).

Driver upstream flow control is explained next as an example. Although device
drivers typically discard input when unable to send it to a user process,
STREAMS allows driver read-side flow control, possibly for handling temporary
upstream blockages. This is done through a driver read service procedure
which is disabled during the driver open with noenable(). If the driver input
interrupt routine determines messages can be sent upstream (from canput), it
sends the message with putnext(). Otherwise, it calls putq() to queue the mes-
sage. The message waits on the message queue (possibly with queue length
checked when new messages are enqueued by the interrupt routine) until the
upstream queue becomes unblocked. When the blockage abates, STREAMS
back-enables the driver read service procedure. The service procedure sends
the messages upstream using getq() and canput(), as described previously.

This is similar to looprsrv() (see “Loop-Around Driver” in Chapter 9) where the
service procedure is present only for flow control.

genable(), another flow control utility, allows a module or driver to cause one
of its queues, or another module’s queues, to be scheduled. qenable() might
also be used when a module or driver wants to delay message processing for
some reason. An example of this is a buffer module that gathers messages in its
message queue and forwards them as a single, larger message. This module
uses noenable() to inhibit its service procedure and queues messages with its
put procedure until a certain byte count or "in queue” time has been reached.
When either of these conditions is met, the module calls genable() to cause its
service procedure to run.

Another example is a communication line discipline module that implements
end-to-end (i.e., to a remote system) flow control. Outbound data are held on
the write-side message queue until the read-side receives a transmit window
from the remote end of the network.

5-32 Programmer’s Guide: STREAMS



Message Queues and Message Priority

STREAMS routines are called at different priority levels. Interrupt routines

are called at the interrupt priority of the interrupting device. Service routines

are called with interrupts enabled (hence service routines for STREAMS

I drivers can be interrupted by their own interrupt routines). Put routines are
generally called at str priority.

Messages 5-33



Service Interfaces

STREAMS provides the means to implement a service interface between any
two components in a Stream, and between a user process and the topmost
module in the Stream. A service interface is defined at the boundary between a
service user and a service provider (see Figure 5-7). A service interface is a set of
primitives and the rules that define a service and the allowable state transitions
that result as these primitives are passed between the user and the provider.
These rules are typically represented by a state machine. In STREAMS, the ser-
vice user and provider are implemented in a module, driver, or user process.
The primitives are carried bidirectionally between a service user and provider in
M_PROTO and M_PCPROTO messages.

PROTO messages (M_PROTO and M_PCPROTO) can be multi-block, with the
second through last blocks of type M_DATA. The first block in a PROTO mes-
sage contains the control part of the primitive in a form agreed upon by the
user and provider. The block is not intended to carry protocol headers.
(Although its use is not recommended, upstream PROTO messages can have
multiple PROTO blocks at the start of the message. getmsg(2) will compact the
blocks into a single control part when sending to a user process.) The M_DATA
block(s) contains any data part associated with the primitive. The data part may
be processed in a module that receives it, or it may be sent to the next Stream
component, along with any data generated by the module. The contents of
PROTO messages and their allowable sequences are determined by the service
interface specification.

PROTO messages can be sent bidirectionally (upstream and downstream) on a
Stream and between a Stream and a user process. putmsg(2) and getmsg(2) sys-
tem calls are analogous, respectively, to write(2) and read(2) except that the
former allow both data and control parts to be (separately) passed, and they
retain the message boundaries across the user-Stream interface. putmsg(2) and
getmsg(2) separately copy the control part (M_PROTO or M_PCPROTO block)
and data part (M_DATA blocks) between the Stream and user process.

An M_PCPROTO message is normally used to acknowledge primitives com-
posed of other messages. M_PCPROTO insures that the acknowledgement
reaches the service user before any other message. If the service user is a user
process, the Stream head will only store a single M_PCPROTO message, and
discard subsequent M_PCPROTO messages until the first one is read with
getmsg(2).

5-34 Programmer’s Guide: STREAMS



Service Interfaces

A STREAMS message format has been defined to simplify the design of service
interfaces. System calls, getmsg(2) and putmsg(2) are available for sending mes-
sages downstream and receiving messages that are available at the Stream head.

This section describes the system calls getmsg and putmsg in the context of a
service interface example. First, a brief overview of STREAMS service interfaces
is presented.

Service Interface Benefits

A principal advantage of the STREAMS mechanism is its modularity. From
user level, kernel-resident modules can be dynamically interconnected to imple-
ment any reasonable processing sequence. This modularity reflects the layering
characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like functions.
For example, two distinct transport protocols, implemented as STREAMS
modules, may provide a common set of services. An application or higher layer
protocol that requires those services can use either module. This ability to sub-
stitute modules enables user programs and higher level protocols to be indepen-
dent of the underlying protocols and physical communication media.

Each STREAMS module provides a set of processing functions, or services, and
an interface to those services. The service interface of a module defines the
interaction between that module and any neighboring modules, and is a neces-
sary component for providing module substitution. By creating a well-defined
service interface, applications and STREAMS modules can interact with any
module that supports that interface. Figure 5-6 demonstrates this.

Messages 5-35



Service Interfaces

Figure 5-6: Protocol Substitution

Application
A

TCP
Transport
Protocol

Lower Layer
Protocol
Suite A

Application
A

ISO
Transport
Protocol

Lower Layer
Protocol
Suite B

User Space

By defining a service interface through which applications interact with a tran-
sport protocol, it is possible to substitute a different protocol below that service
interface in a manner completely transparent to the application. In this exam-
ple, the same application can run over the Transmission Control Protocol (TCP)
and the ISO transport protocol. Of course, the service interface must define a
set of services common to both protocols.

The three components of any service interface are the service user, the service
provider, and the service interface itself, as seen in the following figure.

5-36

Programmer’s Guide: STREAMS



Service Interfaces

Figure 5-7: Service Interface

Service
User
Request
Primitives
............. ¢ oo, Service Interface
Response and
Event Primitives
Service
Provider

Typically, a user makes a request of a service provider using some well-defined
service primitive. Responses and event indications are also passed from the
provider to the user using service primitives.

Each service interface primitive is a distinct STREAMS message that has two
parts; a control part and a data part. The control part contains information that
identifies the primitive and includes all necessary parameters. The data part
contains user data associated with that primitive.

An example of a service interface primitive is a transport protocol connect
request. This primitive requests the transport protocol service provider to estab-
lish a connection with another transport user. The parameters associated with
this primitive may include a destination protocol address and specific protocol
options to be associated with that connection. Some transport protocols also
allow a user to send data with the connect request. A STREAMS message
would be used to define this primitive. The control part would identify the
primitive as a connect request and would include the protocol address and
options. The data part would contain the associated user data.

Messages 5-37



Service Interfaces

Service Interface Library Example
The service interface library example presented here includes four functions that
enable a user to do the following:

m establish a Stream to the service provider and bind a protocol address to
the Stream,

m send data to a remote user,
m receive data from a remote user, and
m close the Stream connected to the provider

First, the structure and constant definitions required by the library are shown.
These typically will reside in a header file associated with the service interface.

(continued on next page)

5-38 Programmer’s Guide: STREAMS



Service Interfaces

Five primitives have been defined. The first two represent requests from the
service user to the service provider. These are:

BIND_REQ This request asks the provider to bind a specified proto-
col address. It requires an acknowledgement from the
provider to verify that the contents of the request were

N syntactically correct.

UNITDATA_REQ NS
This request asks the provider to send data to the

specified destination address. It does not require an
acknowledgement from the provider.

Messages 5-39



Service Interfaces

The three other primitives represent acknowledgements of requests, or indica-
tions of incoming events, and are passed from the service provider to the service
user. These are:

OK_ACK This primitive informs the user that a previous bind
request was received successfully by the service pro-
vider.

ERROR_ACK This primitive informs the user that a non-fatal error

was found in the previous bind request. It indicates
that no action was taken with the primitive that caused
the error.

UNITDATA_IND This primitive indicates that data destined for the user
have arrived.

The defined structures describe the contents of the control part of each service
interface message passed between the service user and service provider. The
first field of each control part defines the type of primitive being passed.

Accessing the Service Provider

The first routine presented, inter_open, opens the protocol driver device file
specified by path and binds the protocol address contained in addr so that it may
receive data. On success, the routine returns the file descriptor associated with
the open Stream; on failure, it returns -1 and sets errno to indicate the appropri-
ate UNIX system error value.

5-40 Programmer’s Guide: STREAMS



Service Interfaces

After opening the protocol driver, inter_open packages a bind request message to
send downstream. putmsg is called to send the request to the service provider.
The bind request message contains a control part that holds a bind_req structure,
but it has no data part. ctlbuf is a structure of type strbuf, and it is initialized
with the primitive type and address. Notice that the maxlen field of ctlbuf is not
set before calling putmsg. That is because putmsg ignores this field. The
dataptr argument to putmsg is set to NULL to indicate that the message contains
no data part. Also, the flags argument is 0, which specifies that the message is
not a high priority message.

After inter_open sends the bind request, it must wait for an acknowledgement
from the service provider, as follows:

Messages 5-41



Service Interfaces

getmsg is called to retrieve the acknowledgement of the bind request. The ack-
nowledgement message consists of a control part that contains either an ok_ack
or error_ack structure, and no data part.

5-42 Programmer’s Guide: STREAMS



Service Interfaces

The acknowledgement primitives are defined as priority messages. Messages
are queued in a first-in-first-out manner within their priority at the Stream head;
high priority messages are placed at the front of the Stream head queue
followed by priority band messages and ordinary messages. The STREAMS
mechanism allows only one high priority message per Stream at the Stream
head at one time; any further high priority messages are queued until the
message at the Stream head is processed. (There can be only one high priority
message present on the Stream head read queue at any time.) High priority
messages are particularly suitable for acknowledging service requests when the
acknowledgement should be placed ahead of any other messages at the Stream
head.

Before calling getmsg, this routine must initialize the strbuf structure for the
control part. buf should point to a buffer large enough to hold the expected
control part, and maxlen must be set to indicate the maximum number of bytes
this buffer can hold.

Because neither acknowledgement primitive contains a data part, the dataptr
argument to getmsg is set to NULL. The flagsp argument points to an integer
containing the value RS_HIPRI. This flag indicates that getmsg should wait for
a STREAMS high priority message before returning. It is set because we want
to catch the acknowledgement primitives that are priority messages. Otherwise
if the flag is zero the first message is taken. With RS_HIPRI set, even if a nor-
mal message is available, getmsg will block until a high priority message
arrives.

On return from getmsg, the len field is checked to ensure that the control part of
the retrieved message is an appropriate size. The example then checks the
primitive type and takes appropriate actions. An OK_ACK indicates a success-
ful bind operation, and inter_open returns the file descriptor of the open Stream.
An ERROR_ACK indicates a bind failure, and errno is set to identify the prob-
lem with the request.

Closing the Service Provider

The next routine in the service interface library example is inter_close, which
closes the Stream to the service provider.

Messages 5-43



Service Interfaces

The routine simply closes the given file descriptor. This will cause the protocol
driver to free any resources associated with that Stream. For example, the
driver may unbind the protocol address that had previously been bound to that
Stream, thereby freeing that address for use by some other service user.

Sending Data to Service Provider

The third routine, inter_snd, passes data to the service provider for transmission
to the user at the address specified in addr. The data to be transmitted are con-
tained in the buffer pointed to by buf and contains len bytes. On successful
completion, this routine returns the number of bytes of data passed to the

service provider; on failure, it returns -1 and sets errno to an appropriate UNIX
system error value.

5-44 Programmer’s Guide: STREAMS



Service Interfaces

o

In this example, the data request primitive is packaged with both a control part
and a data part. The control part contains a unitdata_req structure that identifies
the primitive type and the destination address of the data. The data to be
transmitted are placed in the data part of the request message.

Unlike the bind request, the data request primitive requires no acknowledge-
ment from the service provider. In the example, this choice was made to
minimize the overhead during data transfer. If the putmsg call succeeds, this
routine assumes all is well and returns the number of bytes passed to the
service provider.

Receiving Data

The final routine in this example, inter_rcv, retrieves the next available data. buf
points to a buffer where the data should be stored, len indicates the size of that
buffer, and addr points to a long integer where the source address of the data
will be placed. On successful completion, inter_rcv returns the number of bytes
in the retrieved data; on failure, it returns -1 and sets the appropriate UNIX
system error value.

Messages 5-45



Service Interfaces

getmsg is called to retrieve the data indication primitive, where that primitive
contains both a control and data part. The control part consists of a unitdata_ind
structure that identifies the primitive type and the source address of the data
sender. The data part contains the data itself.

In ctlbuf, buf must point to a buffer where the control information will be stored,
and maxlen must be set to indicate the maximum size of that buffer. Similar ini-
tialization is done for databuf.

The integer pointed at by flagsp in the getmsg call is set to zero, indicating that
the next message should be retrieved from the Stream head, regardless of its
priority. Data will arrive in normal priority messages. If no message currently
exists at the Stream head, getmsg will block until a message arrives.

5-46 Programmer’s Guide: STREAMS



Service Interfaces

The user’s control and data buffers should be large enough to hold any incom-
ing data. If both buffers are large enough, getmsg will process the data indica-
tion and return 0, indicating that a full message was retrieved successfully.
However, if either buffer is not large enough, getmsg will only retrieve the part
of the message that fits into each user buffer. The remainder of the message is
saved for subsequent retrieval (if in message non-discard mode), and a positive,
non-zero value is returned to the user. A return value of MORECTL indicates
that more control information is waiting for retrieval. A return value of
MOREDATA indicates that more data are waiting for retrieval. A return value
of (MORECTL | MOREDATA) indicates that data from both parts of the
message remain. In the example, if the user buffers are not large enough (that
is, getmsg returns a positive, non-zero value), the function will set errno to EIO
and fail.

The type of the primitive returned by getmsg is checked to make sure it is a
data indication (UNITDATA_IND in the example). The source address is then
set and the number of bytes of data is returned.

The example presented is a simplified service interface. The state transition
rules for such an interface were not presented for the sake of brevity. The
intent was to show typical uses of the putmsg and getmsg system calls. See
putmsg(2) and getmsg(2) for further details. For simplicity, this example did
not also consider expedited data.

Module Service Interface Example

The following example is part of a module which illustrates the concept of a ser-
vice interface. The module implements a simple service interface and mirrors
the service interface library example given earlier. The following rules pertain
to service interfaces:

® Modules and drivers that support a service interface must act upon all
PROTO messages and not pass them through.

® Modules may be inserted between a service user and a service provider to
manipulate the data part as it passes between them. However, these
modules may not alter the contents of the control part (PROTO block, first
message block) nor alter the boundaries of the control or data parts. That
is, the message blocks comprising the data part may be changed, but the
message may not be split into separate messages nor combined with other
messages.

Messages 5-47



Service Interfaces

In addition, modules and drivers must observe the rule that high priority mes-
sages are not subject to flow control and forward them accordingly.

Declarations
The service interface primitives are defined in the declarations:

5-48 Programmer’s Guide: STREAMS



Service Interfaces

(continued on next page)

Messages 5-49



Service Interfaces

In general, the M_PROTO or M_PCPROTO block is described by a data
structure containing the service interface information. In this example, union
primitives is that structure.

Two commands are recognized by the module:

BIND_REQ Give this Stream a protocol address (i.e., give it a
name on the network). After a BIND_REQ is com-
pleted, data from other senders will find their way
through the network to this particular Stream.

UNITDATA REQ  Send data to the specified address.

Three messages are generated:

OK_ACK A positive acknowledgement (ack) of BIND_REQ.

ERROR_ACK A negative acknowledgement (nak) of BIND_REQ.

UNITDATA_IND Data from the network have been received (this code is
not shown).

The acknowledgement of a BIND_REQ informs the user that the request was
syntactically correct (or incorrect if ERROR_ACK). The receipt of a BIND_REQ
is acknowledged with an M_PCPROTO to insure that the acknowledgement
reaches the user before any other message. For example, a UNITDATA_IND
could come through before the bind has completed, and the user would get con-
fused.

5-50 Programmer’s Guide: STREAMS



Service Interfaces

The driver uses a per-minor device data structure, dgproto, which contains the
following:

state current state of the service provider IDLE or BOUND
addr network address that has been bound to this Stream

It is assumed (though not shown) that the module open procedure sets the write
queue g _ptr to point at the appropriate private data structure.

Service Interface Procedure
The write put procedure is:

(continued on next page)

Messages 5-51



Service Interfaces

'(continued on next page)

5-52 Programmer’s Guide: STREAMS



Service Interfaces

The write put procedure switches on the message type. The only types
accepted are M_FLUSH and M_PROTO. For M_FLUSH messages, the driver
will perform the canonical flush handling (not shown). For M_PROTO mes-
sages, the driver assumes the message block contains a union primitive and
switches on the type field. Two types are understood: BIND_REQ and
UNITDATA_REQ.

For a BIND_REQ), the current state is checked; it must be IDLE. Next, the mes-
sage size is checked. If it is the correct size, the passed-in address is verified for
legality by calling chkaddr. If everything checks, the incoming message is con-
verted into an OK_ACK and sent upstream. If there was any error, the incom-
ing message is converted into an ERROR_ACK and sent upstream.

For UNITDATA_REQ, the state is also checked; it must be BOUND. As above,
the message size and destination address are checked. If there is any error, the
message is simply discarded. If all is well, the message is put on the queue, and
the lower half of the driver is started.

If the write put procedure receives a message type that it does not understand,
either a bad b_datap->db_type or bad proto->type, the message is converted
into an M_ERROR message and sent upstream.

The generation of UNITDATA_IND messages (not shown in the example)
would normally occur in the device interrupt if this is a hardware driver or in
the lower read put procedure if this is a multiplexor. The algorithm is simple:
The data part of the message is prepended by an M_PROTO message block that
contains a unitdata_ind structure and sent upstream.

Messages 5-53



Message Allocation and Freeing

The allocb() utility routine is used to allocate a message and the space to hold
the data for the message. allocb() returns a pointer to a message block contain-
ing a data buffer of at least the size requested, providing there is enough
memory available. It returns null on failure. Note that allocb() always returns a
message of type M_DATA. The type may then be changed if required. b_rptr
and b_wptr are set to db_base (see msgb and datab) which is the start of the
memory location for the data.

allocb() may return a buffer larger than the size requested. If allocb() indicates
buffers are not available [allocb() fails], the put/service procedure may not call
sleep() to wait for a buffer to become available. Instead, the bufcall() utility can
be used to defer processing in the module or the driver until a buffer becomes
available.

If message space allocation is done by the put procedure and allocb() fails, the
message is usually discarded. If the allocation fails in the service routine, the
message is returned to the queue. bufcall() is called to enable to the service
routine when a message buffer becomes available, and the service routine
returns.

The freeb() utility routine releases (de-allocates) the message block descriptor
and the corresponding data block, if the reference count (see datab structure) is
equal to 1. If the reference counter exceeds 1, the data block is not released.

The freemsg() utility routine releases all message blocks in a message. It uses
freeb() to free all message blocks and corresponding data blocks.

In the following example, allocb() is used by the bappend subroutine that
appends a character to a message block:

5-54 Programmer’s Guide: STREAMS



Message Allocation and Freeing

bappend receives a pointer to a message block pointer and a character as argu-
ments. If a message block is supplied (*bpp != NULL), bappend checks if there
is room for more data in the block. If not, it fails. If there is no message block,
a block of at least MODBLKSZ is allocated through allocb().

If the allocb() fails, bappend returns success, silently discarding the character.
This may or may not be acceptable. For TTY-type devices, it is generally
accepted. If the original message block is not full or the allocb() is successful,
bappend stores the character in the block.

The next example, subroutine modwput processes all the message blocks in any
downstream data (type M_DATA) messages. freemsg() deallocates messages.

Messages 5-55



Message Allocation and Freeing

Data messages are scanned and filtered. modwput copies the original message
into a new block(s), modifying as it copies. nbp points to the current new mes-
sage block. nmp points to the new message being formed as multiple M_DATA
message blocks. The outer for () loop goes through each message block of the

5-56 Programmer’s Guide: STREAMS



Message Allocation and Freeing

original message. The inner while () loop goes through each byte. bappend is
used to add characters to the current or new block. If bappend fails, the current
new block is full. If nmp is NULL, nmp is pointed at the new block. If nmp is
not NULL, the new block is linked to the end of nmp by use of the linkb() util-
ity.

At the end of the loops, the final new block is linked to nmp. The original mes-
sage (all message blocks) is returned to the pool by freemsg(). If a new message
exists, it is sent downstream.

Recovering From No Buffers

The bufcall() utility can be used to recover from an allocb() failure. The call
syntax is as follows:

bufcall (size, pri, func, arg);
int size, pri, (*func) ();
long arg; ‘

bufcall() calls (*func)(arg) when a buffer of size bytes is available. When func is
called, it has no user context and must return without sleeping. Also, because
of interrupt processing, there is no guarantee that when func is called, a buffer
will actually be available (someone else may steal it).

On success, bufcall() returns a nonzero identifier that can be used as a parame-
ter to unbufcall() to cancel the request later. On failure, 0 is returned and the
requested function will never be called.

CAUTION7 Care must be taken to avoid deadlock when holding resources while wait-
ing for bufcall() to call (*func)(arg). bufcall() should be used sparingly.

Two examples are provided. The first example is a device receive interrupt
handler:

Messages 5-57



Message Allocation and Freeing

dev_rintr is called when the device has posted a receive interrupt. The code
retrieves the data from the device (not shown). dev_rintr must then give the
device another buffer to fill by a call to dev_re_load, which calls allocb(). If

allocb() fails, dev_re_load uses bufcall() to call itself when STREAMS determines
a buffer is available.

5-58 Programmer’s Guide: STREAMS



Message Allocation and Freeing

Since bufcall() may fail, there is still a chance that the device may hang. A
better strategy, in the event bufcall() fails, would be to discard the current

:| input message and resubmit that buffer to the device. Losing input data is

I generally better than hanging.

The second example is a write service procedure, mod_wsrv, which needs to
prepend each output message with a header. mod_wsrv illustrates a case for
potential deadlock:

However, if allocb() fails, mod_wsrv wants to recover without loss of data and
calls bufcall(). In this case, the routine passed to bufcall() is qenable(). When a
buffer is available, the service procedure will be automatically re-enabled.
Before exiting, the current message is put back on the queue. This example
deals with bufcall() failure by resorting to the timeout() operating system utility
routine. timeout() will schedule the given function to be run with the given
argument in the given number of clock ticks (there are HZ ticks per second). In
this example, if bufcall() fails, the system will run genable() after two seconds
have passed.

Messages 5-59



Extended STREAMS Buffers

Some hardware using the STREAMS mechanism supports memory-mapped 1/0
that allows the sharing of buffers between users, kernel, and the I/O card.

If the hardware supports memory-mapped I/O, data received from the network
are placed in the DARAM (dual access RAM) section of the I/O card. Since
DARAM is a shared memory between the kernel and the I/0O card, data transfer
between the kernel and the I/O card is eliminated. Once in kernel space, the
data buffer can be manipulated as if it were a kernel resident buffer. Similarly,
data being sent downstream are placed in DARAM and then forwarded to the
network.

In a typical network arrangement, data are received from the network by the

I/O card. The disk controller reads the block of data into the card’s internal
buffer. It interrupts the host computer to denote that data have arrived. The
STREAMS driver gives the controller the kernel address where the data block is
to go and the number of bytes to transfer. After the disk controller has read the
data into its buffer and verified the checksum, it copies the data into main
memory to the address specified by the the DMA (direct memory access)
memory address. Once in the kernel space, the data are packaged into message
blocks and processed on the usual manner.

When data are transmitted from user process to the network, data are copied
from the user space to the kernel space, and packaged as a message block and
sent to the downstream driver. The driver interrupts the 1/O card signaling
that data are ready to be transmitted to the network. The controller copies the
data from the kernel space to the internal buffer on the I/O card, and from
there data are placed on the network.

The STREAMS buffer allocation mechanism enables the allocation of message
and data blocks to point directly to a client-supplied (non-STREAMS) buffer.
Message and data blocks allocated this way are indistinguishable (for the most
part) from the normal data blocks. The client-supplied buffers are processed as
if they were normal STREAMS data buffers.

Drivers may not only attach non-STREAMS data buffers but also free them.
This is accomplished as follows:

m Allocation - If the drivers are to use DARAM without wasting STREAMS
resources and without being dependent on upstream modules, a data and
message block can be allocated without an attached data buffer. The

5-60 Programmer’s Guide: STREAMS



routine to use is called esballoc(). This returns a message block and data
block without an associated STREAMS buffer. Rather, the buffer used is
the one supplied by the caller.

m Freeing - Each driver using non-STREAMS resources in a STREAMS
environment must fully manage those resources, including freeing them.
However, to make this as transparent as possible, a driver-dependent rou-
tine is executed in the event freeb() is called to free a message and data
block with an attached non-STREAMS buffer.

freeb() detects if a buffer is a client supplied, non-STREAMS buffer. If it
is, freeb() finds the free_rtn structure associated with that buffer. After
calling the driver-dependent routine (defined in free_rtn) to free the
buffer, the freeb() routine frees the message and data block.

The format of the free_rtn structure is as follows:

The structure has two fields: a pointer to a function and a location for any argu-
ment passed to the function. Instead of defining a specific number of argu-
ments, free_arg is defined as a char *. This way, drivers can pass pointers to
structures in the event more than one argument is needed.

The STREAMS utility routine, esballoc(), provides a common interface for allo-
cating and initializing data blocks. It makes the allocation as transparent to the
driver as possible and provides a way to modify the fields of the data block,
since modification should only be performed by STREAMS. The driver calls
this routine when it wants to attach its own data buffer to a newly allocated
message and data block. If the routine successfully completes the allocation and
assigns the buffer, it returns a pointer to the message block. The driver is
responsible for supplying the arguments to esballoc(), namely, a pointer to its
data buffer, the size of the bulffer, the priority of the data block, and a pointer to
the free_rtn structure. All arguments should be non-NULL. See Appendix C
for a detailed description of esballoc. Appendix G has examples of extended
STREAMS buffers implemented in different hardware.

Messages 5-61

Extended STREAMS Buffers












6 Polling and Signaling

Input/Output Polling 6-1
Synchronous Input/Output 6-1
Asynchronous Input/Output 6-6
Signals 6-7
= Extended Signals 6-8
Stream as a Controlling Terminal 6-9
Job Control 6-9
Allocation and Deallocation 6-12
Hung-up Streams 6-12
Hangup Signals 6-13
Accessing the Controlling Terminal 6-13

Table of Contents i






Input/Output Polling

This chapter describes the synchronous polling mechanism and asynchronous
event notification within STREAMS. Also discussed is how a Stream can be a
controlling terminal.

User processes can efficiently monitor and control multiple Streams with two
system calls: poll(2) and the I_SETSIG ioctl(2) command. These calls allow a
user process to detect events that occur at the Stream head on one or more
Streams, including receipt of data or messages on the read queue and cessation
of flow control.

To monitor Streams with poll(2), a user process issues that system call and
specifies the Streams to be monitored, the events to look for, and the amount of
time to wait for an event. The poll(2) system call will block the process until
the time expires or until an event occurs. If an event occurs, it will return the
type of event and the Stream on which the event occurred.

Instead of waiting for an event to occur, a user process may want to monitor
one or more Streams while processing other data. It can do so by issuing the
I_SETSIG ioctl(2) command, specifying one or more Streams and events [as with
poll(2)]. This ioctl does not block the process and force the user process to wait
for the event but returns immediately and issues a signal when an event occurs.
The process must request signal(2) to catch the resultant SIGPOLL signal.

If any selected event occurs on any of the selected Streams, STREAMS will
cause the SIGPOLL catching function to be executed in all associated requesting
processes. However, the process(es) will not know which event occurred, nor
on what Stream the event occurred. A process that issues the I_SETSIG can get
more detailed information by issuing a poll after it detects the event.

Synchronous Input/Output

The poll(2) system call provides a mechanism to identify those Streams over
which a user can send or receive data. For each Stream of interest users can
specify one or more events about which they should be notified. The types of
events that can be polled are POLLIN, POLLRDNORM, POLLRDBAND,
POLLPRI, POLLOUT, POLLWRNORM, POLLWRBAND, POLLMSG:

POLLIN A message other than an M_PCPROTO is at the front
of the Stream head read queue. This event is main-
tained for compatibility with the previous releases of
the UNIX System V.

Polling and Signaling 6-1



Input/Output Polling

POLLRDNORM A normal (non-priority) message is at the front of the
Stream head read queue.

POLLRDBAND A priority message (band > 0) is at the front of the
Stream head queue.

POLLPRI A high priority message (M_PCPROTO) is at the
front of the Stream head read queue.

POLLOUT The normal priority band of the queue is writable
(not flow controlled).

POLLWRNORM The same as POLLOUT.

POLLWRBAND A priority band greater than 0 of a queue down-
stream exists and is writable.

POLLMSG An M_SIG or M_PCSIG message containing the SIG-

POLL signal has reached the front of the Stream
head read queue.

Some of the events may not be applicable to all file types. For example, it is not
expected that the POLLPRI event will be generated when polling a regular file.
POLLIN, POLLRDNORM, POLLRDBAND, and POLLPRI are set even if the
message is of zero length.

The poll system call will examine each file descriptor for the requested events
and, on return, will indicate which events have occurred for each file descriptor.
If no event has occurred on any polled file descriptor, poll blocks until a
requested event or timeout occurs. poll(2) takes the following arguments:

® an array of file descriptors and events to be polled

m the number of file descriptors to be polled

m the number of milliseconds poll should wait for an event if no events are
pending (-1 specifies wait forever)

The following example shows the use of poll. Two separate minor devices of
the communications driver are opened, thereby establishing two separate
Streams to the driver. The pollfd entry is initialized for each device. Each
Stream is polled for incoming data. If data arrive on either Stream, data are
read and then written back to the other Stream.

6-2 Programmer’s Guide: STREAMS



Input/Output Polling

The variable polifds is declared as an array of the pollfd structure that is defined
in <poll.h> and has the following format:

For each entry in the array, fd specifies the file descriptor to be polled and events
is a bitmask that contains the bitwise inclusive OR of events to be polled on that
file descriptor. On return, the revents bitmask will indicate which of the
requested events has occurred.

The example continues to process incoming data as follows:

Polling and Signaling 6-3



Input/Output Polling

The user specifies the polled events by setting the events field of the pollfd
structure to POLLIN. This requested event directs poll to notify the user of any
incoming data on each Stream. The bulk of the example is an infinite loop,
where each iteration will poll both Streams for incoming data.

The second argument to the poll system call specifies the number of entries in
the pollfds array (2 in this example). The third argument is a timeout value indi-
cating the number of milliseconds poll should wait for an event if none has
occurred. On a system where millisecond accuracy is not available, timeout is
rounded up to the nearest value available on that system. If the value of timeout
is 0, poll returns immediately. Here, the value of timeout is -1, specifying that
poll should block until a requested event occurs or until the call is interrupted.

6-4 Programmer’s Guide: STREAMS



Input/Output Polling

If the poll call succeeds, the program looks at each entry in the pollfds array. If
revents is set to 0, no event has occurred on that file descriptor. If revents is set
to POLLIN, incoming data are available. In this case, all available data are read
from the polled minor device and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must have
occurred on that Stream, because POLLIN was the only requested event. The
following are poll error events:

POLLERR A fatal error has occurred in some module or driver on the
Stream associated with the specified file descriptor. Further
system calls will fail.

POLLHUP A hangup condition exists on the Stream associated with
the specified file descriptor. This event and POLLOUT are
mutually exclusive; a Stream can’t be writable if a hangup
has occurred.

POLLNVAL The specified file descriptor is not associated with an open
Stream.

These events may not be polled for by the user, but will be reported in revents
whenever they occur. As such, they are only valid in the revents bitmask.

The example attempts to process incoming data as quickly as possible. How-
ever, when writing data to a Stream, the write call may block if the Stream is
exerting flow control. To prevent the process from blocking, the minor devices
of the communications driver were opened with the O NDELAY (or
O_NONBLOCK, see note) flag set. The write will not be able to send all the
data if flow control is exerted and O_NDELAY (O_NONBLOCK) is set. This
can occur if the communications driver is unable to keep up with the user’s rate
of data transmission. If the Stream becomes full, the number of bytes the write
sends will be less than the requested count. For simplicity, the example ignores
the data if the Stream becomes full, and a warning is printed to stderr.

For conformance with the IEEE operating system interface standard, POSIX,
it is recommended that new applications use the O_ NONBLOCK flag, whose
behavior is the same as that of O_NDELAY unless otherwise noted.

Polling and Signaling 6-5



Input/Output Polling

This program continues until an error occurs on a Stream, or until the process is
interrupted.

Asynchronous Input/Output

The poll system call described before enables a user to monitor multiple
Streams in a synchronous fashion. The poll(2) call normally blocks until an
event occurs on any of the polled file descriptors. In some applications, how-
ever, it is desirable to process incoming data asynchronously. For example, an
application may wish to do some local processing and be interrupted when a
pending event occurs. Some time-critical applications cannot afford to block,
but must have immediate indication of success or failure.

The I_SETSIG ioctl call [see streamio(7)] is used to request that a SIGPOLL sig-
nal be sent to a user process when a specific event occurs. Listed below are
events for the ioctl I_SETSIG. These are similar to those described for poll(2).

S_INPUT A message other than an M_PCPROTO is at the front of
the Stream head read queue. This event is maintained for
compatibility with the previous releases of the UNIX Sys-
tem V.

S_RDNORM A normal (non-priority) message is at the front of the
Stream head read queue.

S_RDBAND A priority message (band > 0) is at the front of the Stream
head read queue.
S_HIPRI A high priority message (M_PCPROTO) is present at the

front of the Stream head read queue.

S_OUTPUT A write queue for normal data (priority band = 0) is no
longer full (not flow controlled). This notifies a user that
there is room on the queue for sending or writing normal
data downstream.

S_WRNORM The same as S_ OUTPUT.

S_WRBAND A priority band greater than 0 of a queue downstream
exists and is writable. This notifies a user that there is
room on the queue for sending or writing priority data
downstream.

6-6 Programmer’s Guide: STREAMS



Input/Output Polling

S_MSG An M_SIG or M_PCSIG message containing the SIGPOLL
flag has reached the front of Stream head read queue.

S_ERROR An M_ERROR message reaches the Stream head.

S_HANGUP An M_HANGUP message reaches the Stream head.

S_BANDURG When used in conjunction with S RDBAND, SIGURG is
generated instead SIGPOLL when a priority message
reaches the front of the Stream head read queue.

S_INPUT, S_ RDNORM, S RDBAND, and S_HIPRI are set even if the message is
of zero length. A user process may choose to handle only high priority mes-
sages by setting the arg to S_HIPRI.

Signals

STREAMS allows modules and drivers to cause a signal to be sent to user
process(es) through an M_SIG or M_PCSIG message. The first byte of the
message specifies the signal for the Stream head to generate. If the signal is not
SIGPOLL [see signal(2)], the signal is sent to the process group associated with
the Stream. If the signal is SIGPOLL, the signal is only sent to processes that
have registered for the signal by using the I_SETSIG ioctl(2).

An M_SIG message can be used by modules or drivers that wish to insert an
explicit inband signal into a message Stream. For example, this message can be
sent to the user process immediately before a particular service interface
message to gain the immediate attention of the user process. When the M_SIG
message reaches the head of the Stream head read queue, a signal is generated
and the M_SIG message is removed. This leaves the service interface message
as the next message to be processed by the user. Use of the M_SIG message is
typically defined as part of the service interface of the driver or module.

Polling and Signaling 6-7



Input/Output Polling

Extended Signals

To enable a process to obtain the band and event associated with SIGPOLL
more readily, STREAMS supports extended signals. For the given events, a
special code is defined in <siginfo.h> that describes the reason SIGPOLL was
generated. The following table describes the data available in the siginfo_t
structure passed to the signal handler.

event si_signo si_code si_band si_errno
S_INPUT SIGPOLL | POLL_IN band readable | unused
S_OUTPUT | SIGPOLL | POLL OUT | band writable | unused
S_MSG SIGPOLL | POLL_MSG | band signaled | unused
S_ERROR SIGPOLL | POLL_ERR | unused Stream error
S_HANGUP | SIGPOLL | POLL_HUP | unused unused
S_HIPRI SIGPOLL | POLL_PRI unused unused

Programmer’s Guide: STREAMS




Stream as a Controlling Terminal

Job Control

An overview of Job Control is provided here for completeness and because it
interacts with the STREAMS-based terminal subsystem. More information on
Job Control may be obtained from the following manual pages: exit(2),
getpgid(2), getpgrp(2), getsid(2), kill(2), setpgid(2), setpgrp(2), setsid(2),
sigaction(2), signal(2), sigsend(2), termios(2), waitid(2), waitpid(3C), signal(5),
and termio(7).

Job Control is a feature supported by the BSD UNIX operating system. It is also
an optional part of the IEEE P1003.1 POSIX standard. Job Control breaks a
login session into smaller units called jobs. Each job consists of one or more
related and cooperating processes. One job, the foreground job, is given complete
access to the controlling terminal. The other jobs, background jobs, are denied
read access to the controlling terminal and given conditional write and ioctl
access to it. The user may stop an executing job and resume the stopped job
either in the foreground or in the background.

Under Job Control, background jobs do not receive events generated by the ter-
minal and are not informed with a hangup indication when the controlling pro-
cess exits. Background jobs that linger after the login session has been dissolved
are prevented from further access to the controlling terminal, and do not inter-
fere with the creation of new login sessions.

The following defines terms associated with Job Control:

m Background Process group - A process group that is a member of a ses-
sion that established a connection with a controlling terminal and is not
the foreground process group.

m Controlling Process - A session leader that established a connection to a
controlling terminal.

® Controlling Terminal - A terminal that is associated with a session. Each
session may have at most one controlling terminal associated with it and a
controlling terminal may be associated with at most one session. Certain
input sequences from the controlling terminal cause signals to be sent to
the process groups in the session associated with the controlling terminal.

m Foreground Process Group - Each session that establishes a connection
with a controlling terminal distinguishes one process group of the session

Polling and Signaling 6-9



Stream as a Controlling Terminal

6-10

as a foreground process group. The foreground process group has certain
privileges that are denied to background process groups when accessing
its controlling terminal.

Orphaned Process Group - A process group in which the parent of every
member in the group is either a member of the group, or is not a member
of the process group’s session.

Process Group - Each process in the system is a member of a process
group that is identified by a process group ID. Any process that is not a
process group leader may create a new process group and become its
leader. Any process that is not a process group leader may join an exist-
ing process group that shares the same session as the process. A newly
created process joins the process group of its creator.

Process Group Leader - A process whose process ID is the same as its
process group ID.

Process Group Lifetime - A time period that begins when a process
group is created by its process group leader and ends when the last pro-
cess that is a member in the group leaves the group.

Process ID - A positive integer that uniquely identifies each process in the
system. A process ID may not be reused by the system until the process
lifetime, process group lifetime, and session lifetime ends for any process
ID, process group ID, and session ID sharing that value.

Process Lifetime - A time period that begins when the process is forked
and ends after the process exits, when its termination has been acknow-
ledged by its parent process. . o

Session - Each process group is a member of a session that is identified
by a session ID.

Session ID - A positive integer that uniquely identifies each session in the
system. It is the same as the process ID of its session leader.

Session Leader - A process whose session ID is the same as its process
and process group ID.

Session Lifetime - A time period that begins when the session is created
by its session leader and ends when the lifetime of the last process group
that is a member of the session ends.

Programmer’s Guide: STREAMS



Stream as a Controlling Terminal

The following signals manage Job Control: [see also signal(5)]

SIGCONT Sent to a stopped process to continue it.

SIGSTOP Sent to a process to stop it. This signal cannot be
caught or ignored.

SIGTSTP Sent to a process to stop it. It is typically used when
a user requests to stop the foreground process.

SIGTTIN Sent to a background process to stop it when it
attempts to read from the controlling terminal.

SIGTTOU Sent to a background process to stop it when one
attempts to write to or modify the controlling termi-
nal.

A session may be allocated a controlling terminal. For every allocated control-
ling terminal, Job Control elevates one process group in the controlling process’s
session to the status of foreground process group. The remaining process
groups in the controlling process’s session are background process groups. A
controlling terminal gives a user the ability to control execution of jobs within
the session. Controlling terminals play a central role in Job Control. A user
may cause the foreground job to stop by typing a predefined key on the control-
ling terminal. A user may inhibit access to the controlling terminal by back-
ground jobs. Background jobs that attempt to access a terminal that has been so
restricted will be sent a signal that typically will cause the job to stop. (See
“Accessing the Controlling Terminal” later in this chapter.)

Job Control requires support from a line discipline module on the controlling
terminal’s Stream. The TCSETA, TCSETAW, and TCSETAF commands of ter-
mio(7) allow a process to set the following line discipline values relevant to Job
Control:

susp A user defined character that, when typed, causes the
- line discipline module to request that the Stream
head sends a SIGTSTP signal to the foreground pro-
cess with an M_PCSIG message, which by default
stops the members of that group. If the value of
SUSP is zero, the SIGTSTP signal is not sent, and the
SUSP character is disabled.

Polling and Signaling 6-11



Stream as a Controlling Terminal

TOSTOP If TOSTOP is set, background processes are inhibited
from writing to their controlling terminal.

A line discipline module must record the SUSP suspend character and notify the
Stream head when the user has typed it, and record the state of the TOSTOP bit
and notify the Stream head when the user has changed it.

Allocation and Deallocation

A Stream is allocated as a controlling terminal for a session if:
m The Stream is acting as a terminal,
m The Stream is not already allocated as a controlling terminal, and

m The Stream is opened by a session leader that does not have a controlling
terminal.

Drivers and modules can inform the Stream head to act as a terminal Stream by
sending an M_SETOPTS message with the SO_ISTTY flag set upstream. This
state may be changed by sending an M_SETOPTS message with the SO_ISNTTY
flag set upstream.

Controlling terminals are allocated with the open(2) system call. A Stream head
must be informed that it is acting as a terminal by an M_SETOPTS message sent
upstream before or while the Stream is being opened by a potential controlling
process. If the Stream head is opened before receiving this message, the Stream
is not allocated as a controlling terminal.

Hung-up Streams

- When a Stream head receives an M_HANGUP message, it is marked as hung-
up. Streams that are marked as hung-up are allowed to be reopened by their
session leader if they are allocated as a controlling terminal, and by any process
if they are not allocated as a controlling terminal. This way, the hangup error
can be cleared without forcing all file descriptors to be closed first.

6-12 Programmer’s Guide: STREAMS



Stream as a Controlling Terminal

If the reopen is successful, the hung-up condition is cleared.

Hangup Signals

When the SIGHUP signal is generated via an M_HANGUP message (instead of
an M_SIG or M_PCSIG message), the signal is sent to the controlling process
instead of the foreground process group, since the allocation and deallocation of
controlling terminals to a session is the responsibility of that process group.

Accessing the Controlling Terminal

If a process attempts to access its controlling terminal after it has been deallo-
cated, access will be denied. If the process is not holding or ignoring SIGHUP,
it is sent a SIGHUP signal. Otherwise, the access will fail with an EIO error.

Members of background process groups have limited access to their controlling
terminals:

m If the background process is ignoring or holding the SIGTTIN signal or is
a member of an orphaned process group, an attempt to read from the
controlling terminal will fail with an EIO error. Otherwise, the process is
sent a SIGTTIN signal, which by default stops the process.

m If the process is attempting to write to the terminal and if the terminal’s
TOSTORP flag is clear, the process is allowed access.

The TOSTOP flag is set upon reception of an M_SETOPTS message with
the SO_TOSTOP flag set in the so_flags field. It is cleared upon reception
of an M _SETOPTS message with the SO_TONSTOP flag set.

m If the terminal’s TOSTOP flag is set and a background process is attempt-
ing to write to the terminal, the write will succeed if the process is ignor-
ing or holding SIGTTOU. Otherwise, the process will stop except when it
is a member of an orphaned process group, in which case it is denied
access to the terminal and it is returned an EIO error.

Polling and Signaling 6-13



Stream as a Controlling Terminal

m If a background process is attempting to perform a destructive ioctl (an
ioctl that modifies terminal parameters), the ioctl call will succeed if the
process is ignoring or holding SIGTTOU. Otherwise, the process will stop
except when the process is a member of the orphaned process group. In
that case the access to the terminal is denied and an EIO error is returned.

6-14 Programmer’s Guide: STREAMS









7 Overview of Modules and Drivers

Module and Driver Environment 7-1
Module and Driver Declarations 7-2
= Null Module Example 7-6
Module and Driver ioctls 7-9
General ioctl Processing 7-10
|_STR ioctl Processing 7-12
Transparent ioctl Processing 7-14
Transparent ioctl Messages 7-17
Transparent ioctl Examples 7-17
m M_COPYIN Example 7-18
m M_COPYOUT Example 7-22
m Bidirectional Transfer Example 7-24
I_LIST ioctl 7-29
Flush Handling 7-31
Driver—Kernel Interface 7-37
Device Driver Interface and Driver-Kernel Interface 7-39
STREAMS Interface 7-40
Design Guidelines 7-42
Modules and Drivers 7-42
m Rules for Open/Close Routines 7-43
m Rules for ioctls 7-43
m Rules for Put and Service Procedures 7-44

Table of Contents i



Table of Contents

Data Structures 7-47

m Dynamic Allocation of STREAMS Data Structures 7-47
Header Files 7-48
Accessible Symbols and Functions 7-49

Programmer’s Guide: STREAMS



Module and Driver Environment

Modules and drivers are processing elements in STREAMS. A Stream device
driver is similar to a conventional UNIX® system driver. It is opened like a
conventional driver and is responsible for the system interface to the device.

STREAMS modules and drivers are structurally similar. The call interfaces to
driver routines are identical to interfaces used for modules. Drivers and
modules must declare streamtab, qinit, and module_info structures. Within the
STREAMS mechanism drivers are required elements, but modules are optional.
However, in the STREAMS-based pipe mechanism and the pseudo-terminal sub-
system only the Stream head is required.

There are three significant differences between modules and drivers. A driver
must be able to handle interrupts from a device, so the driver will typically
include an interrupt handler routine. Another difference is that a driver may
have multiple Streams connected to it. The third difference is the
initialization/deinitialization process that happens via open/close with a driver
and via the ioctls I PUSH/I_POP with a module. (I_PUSH/I_POP results in
calls to open/close.)

User context is not generally available to STREAMS module procedures and
drivers. The exception is during execution of the open and close routines.
Driver and module open and close routines have user context and may access
the u_area structure (defined in user.h, see “/Accessible Symbols and Functions”
later in this chapter) although this is discouraged. These routines are allowed to
sleep, but must always return to the caller. That is, if they sleep, it must be at
priority numerically <= PZERO, or with PCATCH set in the sleep priority.
Priorities are higher as they decrease in numerical value. The process will never
return from the sleep call and the system call will be aborted if:

®m A process is sleeping at priority > PZERO,
m PCATCH is not set, and

m A process is sent signal via kili(2).

Overview of Modules and Drivers 7-1



Module and Driver Environment

STREAMS driver and module put procedures and service procedures
have no user context. They cannot access the u_area structure of a pro-
cess and must not sleep.

The module and driver open/close interface has been modified for UNIX
System V Release 4.0. However, the system defaults to UNIX System V
Release 3.0 interface unless prefixflag is defined. This is discussed in the
section titled “Driver—Kernel Interface” later in this chapter. Examples and
descriptions in this chapter reflect Release 4.0 interface.

Module and Driver Declarations

A module and driver will contain, at a minimum, declarations of the following
form:

The contents of these declarations are constructed for the null module example
in this section. This module performs no processing. Its only purpose is to
show linkage of a module into the system. The descriptions in this section are
general to all STREAMS modules and drivers unless they specifically reference
the example.

7-2 Programmer’s Guide: STREAMS



Module and Driver Environment

The declarations shown are: the header set; the read and write queue (rminfo
and wminfo) module_info structures; the module open, read-put, write-put, and
close procedures; the read and write (rinit, and winit) qinit structures; and the
streamtab structure.

The header files, types.h and stream.h, are always required for modules and
drivers. The header file, param.h, contains definitions for NULL and other
values for STREAMS modules and drivers as shown in the section titled ““Acces-
sible Symbols and Functions” later in this chapter.

When configuring a STREAMS module or driver (see Appendix E) the
streamtab structure must be externally accessible. The streamtab structure
name must be the prefix appended with "info." Also, the driver flag must be
e:’(t%rf?ally accessible. The flag name must be the prefix appended with

" e ag-"

The streamtab contains qinit values for the read and write queues. The qinit
structures in turn point to a module_info and an optional module_stat struc-
ture. The two required structures are:

Overview of Modules and Drivers 7-3



Module and Driver Environment

The qinit contains the queue procedures: put, service, open, and close. All
modules and drivers with the same streamtab (i.e., the same fmodsw or cdevsw
entry) point to the same upstream and downstream qinit structure(s). The
structure is meant to be software read-only, as any changes to it affect all instan-
tiations of that module in all Streams. Pointers to the open and close pro-
cedures must be contained in the read qinit structure. These fields are ignored
on the write-side. Our example has no service procedure on the read-side or
write-side.

The module_info contains identification and limit values. All queues associated
with a certain driver/module share the same module_info structures. The
module_info structures define the characteristics of that driver/module’s
queues. As with the qinit, this structure is intended to be software read-only.

7-4 Programmer’s Guide: STREAMS



Module and Driver Environment

However, the four limit values (q_minpsz, g_maxpsz, q_hiwat, q_lowat) are copied
to a queue structure where they are modifiable. In the example, the flow con-

trol high and low water marks are zero since there is no service procedure and
messages are not queued in the module.

Three names are associated with a module: the character string in fmodsw,
obtained from the name of the master.d file used to configure the module; the
prefix for streamtab, used in configuring the module; and the module name
field in the module_info structure. The module name must be the same as that
of master.d for autoconfiguration. Each module ID and module name should be
unique in the system. The module ID is currently used only in logging and
tracing. It is 0x08 in the example.

Minimum and maximum packet sizes are intended to limit the total number of
characters contained in M_DATA messages passed to this queue. These limits
are advisory except for the Stream head. For certain system calls that write to a
Stream, the Stream head will observe the packet sizes set in the write queue of
the module immediately below it. Otherwise, the use of packet size is
developer dependent. In the example, INFPSZ indicates unlimited size on the
read-side.

The module_stat is optional. Currently, there is no STREAMS support for sta-
tistical information gathering.

Overview of Modules and Drivers 7-5



Module and Driver Environment

Null Module Example

The null module procedures are as follows:

The form and arguments of these procedures are the same in all modules and
all drivers. Modules and drivers can be used in multiple Streams and their pro-
cedures must be reentrant.

If a module or driver uses the definition 1 dev t *devp instead of
dev_t *devp, then that module or driver willonly work on a system
where _STYPES is not defined (that is, types have been expanded). If a
driver or module is being used in environments where STYPES may or may
not be defined, then a driver should use dev t *devp, because dev t
changes dependmg on whether STYPES is defined.

7-6 Programmer’s Guide: STREAMS



Module and Driver Environment

modopen illustrates the open call arguments and return value. The arguments
are the read queue pointer (g), the pointer (devp) to the major/minor device
number, the file flags (flag, defined in sys/file.h), the Stream open flag (sflag),
and a pointer to a credentials structure (credp). The Stream open flag can take
on the following values:

MODOPEN normal module open
0 normal driver open
CLONEOPEN clone driver open

The return value from open is 0 for success and an error number for failure. If
a driver is called with the CLONEOPEN flag, the device number pointed to by
the devp should be set by the driver to an unused device number accessible to
that driver. This should be an entire device number (major and minor device
number). The open procedure for a module is called on the first I PUSH and
on all subsequent open calls to the same Stream. During a push, a nonzero
return value causes the I PUSH to fail and the module to be removed from the
Stream. If an error is returned by a module during an open call, the open fails,
but the Stream remains intact.

The module open fails if not opened by the super-user (also referred to as a
privileged user) that in future releases will be a user with "driver/special" per-
missions. Permission checks in module and driver open routines should be
done with the drv_priv() routine. For UNIX System V Release 4.0, there is no
need to check if u.u_uid == 0. This and the suser() routine are replaced
with:

error = drv_priv(credp);
if (error) /* not super-user */
return errno;

In the null module example, modopen simply returns successfully. modput illus-
trates the common interface to put procedures. The arguments are the read or
write queue pointer, as appropriate, and the message pointer. The put pro-
cedure in the appropriate side of the queue is called when a message is passed
from upstream or downstream. The put procedure has no return value. In the
example, no message processing is performed. All messages are forwarded
using the putnext macro (see Appendix C). putnext calls the put procedure of
the next queue in the proper direction.

Overview of Modules and Drivers 7-7



Module and Driver Environment

The close routine is only called on an I_POP ioctl or on the last close call of the
Stream. The arguments are the read queue pointer, the file flags as in modopen,
and a pointer to a credentials structure. The return value is 0 on success and
errno on failure.

7-8 Programmer’s Guide: STREAMS



Module and Driver ioctls

STREAMS is an addition to the UNIX system traditional character input/output
(I/O) mechanism. In this section, the phrases "character I/O mechanism" and
"I/O mechanism" refer only to that part of the mechanism that pre-existed
STREAMS.

The character I/O mechanism handles all ioctl(2) system calls in a transparent
manner. That is, the kernel expects all ioctls to be handled by the device driver
associated with the character special file on which the call is sent. All ioctl calls
are sent to the driver, which is expected to perform all validation and process-
ing other than file descriptor validity checking. The operation of any specific
ioctl is dependent on the device driver. If the driver requires data to be
transferred in from user space, it will use the kernel copyin() function. It may
also use copyout() to transfer out any data results back to user space.

With STREAMS, there are a number of differences from the character 1/O
mechanism that impact ioctl processing.

First, there are a set of generic STREAMS ioctl command values [see ioctl(2)]
recognized and processed by the Stream head. These are described in
streamio(7). The operation of the generic STREAMS ioctls are generally
independent of the presence of any specific module or driver on the Stream.

The second difference is the absence of user context in a module and driver
when the information associated with the ioctl is received. This prevents use of
copyin() or copyout() by the module. This also prevents the module and driver
from associating any kernel data with the currently running process. (It is likely
that by the time the module or driver receives the ioctl, the process generating
it may no longer be running.)

A third difference is that for the character I/O mechanism, all ioctls are handled
by the single driver associated with the file. In STREAMS, there can be multiple
modules on a Stream and each one can have its own set of ioctls. That is, the
ioctls that can be used on a Stream can change as modules are pushed and
popped.

STREAMS provides the capability for user processes to perform control func-
tions on specific modules and drivers in a Stream with ioctl calls. Most
streamio(7) ioctl commands go no further than the Stream head. They are fully
processed there and no related messages are sent downstream. However, cer-
tain commands and all unrecognized commands cause the Stream head to create
an M_IOCTL message which includes the ioctl arguments and send the message
downstream to be received and processed by a specific module or driver. The

Overview of Modules and Drivers 7-9



Module and Driver ioctis

M_IOCTL message is the initial message type which carries ioctl information to
modules. Other message types are used to complete the ioctl processing in the
Stream. In general, each module must uniquely recognize and take action on
specific M_IOCTL messages.

STREAMS ioctl handling is equivalent to the transparent processing of the char-
acter I/O mechanism. STREAMS modules and drivers can process ioctls gen-
erated by applications that are implemented for a non-STREAMS environment.

General ioctl Processing

STREAMS blocks a user process which issues an ioctl and causes the Stream
head to generate an M_IOCTL message. The process remains blocked until
either:

m a module or a driver responds with an M_IOCACK (ack, positive
acknowledgement) message or an M_IOCNAK (nak, negative acknowl-
edgement) message, or

m no message is received and the request "times out," or
m the ioctl is interrupted by the user process, or
® an error condition occurs.

For the ioctl I_STR the timeout period can be a user specified interval or a
default. For the other M _IOCTL ioctls, the default value (infinite) is used.

For an I_STR, the STREAMS module or driver that generates a positive
acknowledgement message can also return data to the process in that message.
An alternate means to return data is provided with transparent ioctls. If the
Stream head does not receive a positive or negative acknowledgement message
in the specified time, the ioctl call fails.

A module that receives an unrecognized M_IOCTL message should pass it on
unchanged. A driver that receives an unrecognized M_IOCTL should produce a
negative acknowledgement.

The form of an M_IOCTL message is a single M_IOCTL message block followed
by (see Figure B-1 in Appendix B) zero or more M_DATA blocks. The M_IOCTL
message block contains an iocblk structure, defined in <sys/stream.h>:

7-10 Programmer’s Guide: STREAMS



Module and Driver ioctls

For an I_STR ioctl, ioc_cmd contains the command supplied by the user in the
strioctl structure defined in streamio(7).

If a module or driver determines an M_IOCTL message is in error for any
reason, it must produce the negative acknowledgement message. This is typi-
cally done by setting the message type to M_IOCNAK and sending the message
upstream. No data or a return value can be sent to a user in this case. If
ioc_error is set to 0, the Stream head will cause the ioctl call to fail with
EINVAL. The driver has the option of setting ioc_error to an alternate error
number if desired.

Overview of Modules and Drivers 7-11



Module and Driver ioctls

ioc_error can be set to a nonzero value in both M_IOCACK and M_IOCNAK.
This will cause that value to be returned as an error number to the process
that sent the ioctl.

If a module wants to look at what ioctls of other modules are doing, the module
should not look for a specific M_IOCTL on the write-side but look for
M_IOCACK or M_IOCNAK on the read-side. For example, the module sees
TCSETA [see termio(7)] going down and wants to know what is being set. The
module should look at it and save away the answer but not use it. The read-
side processing knows that the module is waiting for an answer for the ioctl.
When the read-side processing sees an "ack" or "nak” next time, it checks if it is
the same ioctl (here TCSETA) and if it is, the module may use the answer previ-
ously saved.

The two STREAMS ioctl mechanisms, I_STR and transparent, are described
next. [Here, I_STR means the streamio(7) I  STR command and implies the
related STREAMS processing unless noted otherwise.] I_STR has a restricted
format and restricted addressing for transferring ioctl-related data between user
and kernel space. It requires only a single pair of messages to complete ioctl
processing. The transparent mechanism is more general and has almost no
restrictions on ioctl data format and addressing. The transparent mechanism
generally requires that multiple pairs of messages be exchanged between the
Stream head and module to complete the processing.

| STR ioctl Processing

The I_STR ioctl provides a capability for user applications to perform module
and driver control functions on STREAMS files. I_STR allows an application to
specify the ioctl timeout. It requires that all user ioctl data (to be received by
the destination module) be placed in a single block which is pointed to from the
user strioctl structure. The module can also return data to this block.

If the module is looking at for example the TCSETA/TCGETA group of ioctl
calls as they pass up or down a Stream, it must never assume that because
TCSETA comes down that it actually has a data buffer attached to it. The user
may have formed TCSETA as an I_STR call and accidentally given a null data
buffer pointer. One must always check b_cont to see if it is NULL before using
it as an index to the data block that goes with M_IOCTL messages.

712 Programmer’s Guide: STREAMS



Module and Driver ioctls

The TCGETA call, if formed as an I_STR call with a data buffer pointer set to a
value by the user, will always have a data buffer attached to b_cont from the
main message block. If one assumes that the data block is not there and allo-
cates a new buffer and assigns b_cont to point at it, the original buffer will be
lost. Thus, before assuming that the ioctl message does not have a buffer
attached, one should check first.

The following example illustrates processing associated with an I_STR ioctl.
Ipdoioctl is called to process trapped M_IOCTL messages:

Overview of Modules and Drivers 7-13



Module and Driver ioctls

Ipdoioctl illustrates driver M_IOCTL processing which also applies to modules.
However, at case default, a module would not "nak" an unrecognized command,
but would pass the message On. In this example, only one command is recog-
nized, SET_OPTIONS. ioc_count contains the number of user supplied data
bytes. For this example, it must equal the size of a short. The user data are
sent directly to the printer interface usmg Ipsetopt. Next, the M_IOCTL message
is changed to type M_IOCACK and the ioc_count field is set to zero to indicate
that no data are to be returned to the user. Finally, the message is sent
upstream using qreply(). If ioc_count was left nonzero, the Stream head would
copy that many bytes from the 2nd - Nth message blocks into the user buffer.

Transparent ioctl Processing

The transparent STREAMS ioctl mechanism allows application programs to per-
form module and driver control functions with ioctls other than I STR. It is
intended to transparently support applications developed prior to the introduc-
tion of STREAMS. It alleviates the need to recode and recompile the user level
software to run over STREAMS files.

The mechanism extends the data transfer capability for STREAMS ioctl calls
beyond that provided in the I_STR form. Modules and drivers can transfer data
between their kernel space and user space in any ioctl which has a value of the
command argument not defined in streamio(7). These ioctls are known as tran-
sparent ioctls to differentiate them from the I_STR form. Transparent process-
ing support is necessary when existing user level applications perform ioctls on
a non-STREAMS character device and the device driver is converted to
STREAMS. The ioctl data can be in any format mutually understood by the
user application and module.

The transparent mechanism also supports STREAMS applications that want to
send ioctl data to a driver or module in a single call, where the data may not be
in a form readily embedded in a single user block. For example, the data may
be contained in nested structures, different user space buffers, etc.

This mechanism is needed because user context does not exist in modules and
drivers when ioctl processing occurs. This prevents them from using the kernel
copyin()/copyout() functions. For example, consider the following ioctl call:

7-14 Programmer’s Guide: STREAMS



Module and Driver ioctls

To read (or write) the elements of ioctl_struct, a module would have to perform
a series of copyin()/copyout() calls using pointer information from a prior
copyin() to transfer additional data. A non-STREAMS character driver could
directly execute these copy functions because user context exists during all
UNIX system calls to the driver. However, in STREAMS, user context is only
available to modules and drivers in their open and close routines.

The transparent mechanism enables modules and drivers to request that the
Stream head perform a copyin() or copyout() on their behalf to transfer ioctl
data between their kernel space and various user space locations. The related
data are sent in message pairs exchanged between the Stream head and the
module. A pair of messages is required so that each transfer can be ack-
nowledged. In addition to M_IOCTL, M_IOCACK, and M_IOCNAK messages,
the transparent mechanism also uses M_COPYIN, M_COPYOUT, and
M_IOCDATA messages.

The general processing by which a module or a driver reads data from user
space for the transparent case involves pairs of request/response messages, as
follows:

1. The Stream head does not recognize the command argument of an ioctl
call and creates a transparent M_IOCTL message (the iocblk structure has
a TRANSPARENT indicator, see ““Transparent ioctl Messages™) contain-
ing the value of the arg argument in the call. It sends the M_IOCTL mes-
sage downstream.

2. A module receives the M_IOCTL message, recognizes the ioc_cmd, and
determines that it is TRANSPARENT.

Overview of Modules and Drivers 7-15



Module and Driver ioctis

. If the module requires user data, it creates an M_COPYIN message to

request a copyin() of user data. The message will contain the address of
user data to copy in and how much data to transfer. It sends the message
upstream.

The Stream head receives the M_COPYIN message and uses the contents
to copyin() the data from user space into an M_IOCDATA response mes-
sage which it sends downstream. The message > also contains an indicator
of whether the data transfer succeeded (the copyin() might fail, for
instance, because of an EFAULT [see intro(2)] condition).

. The module receives the M_IOCDATA message and processes its con-

tents.

The module may use the message contents to generate another
M_COPYIN. Steps 3 through 5 may be repeated until the module has
requested and received all the user data to be transferred.

. When the module completes its data transfer, it performs the ioctl pro-

cessing and sends an M_IOCACK message upstream to notify the Stream
head that ioctl processing has successfully completed.

Writing data from a module to user space is similar except that the module uses
an M_COPYOUT message to request the Stream head to write data into user
space. In addition to length and user address, the message includes the data to
be copied out. In this case, the M_IOCDATA response will not contain user
data, only an indication of success or failure.

The module may intermix M_COPYIN and M_COPYOUT messages in any
order. However, each message must be sent one at a time; the module must
receive the associated M_IOCDATA response before any subsequent
M_COPYIN/M_COPYOUT request or "ack/nak" message is sent upstream.
After the last M_COPYIN/M_COPYOUT message, the module must send an
M_IOCACK message (or M_IOCNAK in the event of a detected error condi-

tlon)

7-16

Programmer’s Guide: STREAMS



Module and Driver ioctis

7 For a transparent M_IOCTL, user data can not be returned with an
M_IOCACK message. The data must have been sent with a preceding
M_COPYOUT message.

Transparent ioctl Messages

The form of the M_IOCTL message generated by the Stream head for a tran-
sparent ioctl is a single M_IOCTL message block followed by one M_DATA
block. The form of the iocblk structure in the M_IOCTL block is the same as
described under ““General ioctl Processing.” However, ioc_cmd is set to the value
of the command argument in the ioctl system call and ioc_count is set to TRAN-
SPARENT, defined in <sys/stream.h>. TRANSPARENT distinguishes the case
where an I_STR ioctl may specify a value of ioc_cmd equivalent to the command
argument of a transparent ioctl. The M_DATA “block of the message contains
the value of the arg parameter in the call.

N7/ Modules that process a specific ioc_cmd which did not validate the
ioc_count field of the M_IOCTL message will break if transparent ioctls
with the same command are performed from user space.

M_COPYIN, M_COPYOUT, and M_IOCDATA messages and their use are
described in more detail in Appendix B.

Transparent ioctl Examples
Following are three examples of transparent ioctl processing. The first illus-
trates M_COPYIN. The second illustrates M_COPYOUT. The third is a more

complex example showing state transitions combining both M_COPYIN and
M_COPYOUT.

Overview of Modules and Drivers 717



Module and Driver ioctls

M_COPYIN Example

In this example, the contents of a user buffer are to be transferred into the ker-
nel as part of an ioctl call of the form

ioctl(fd, SET_ADDR, é&bufadd)
where bufadd is a structure declared as

struct address {
int ad_len; /* buffer length in bytes */
caddr_t ad_addr; /* buffer address */

}:

This requires two pairs of messages (request/response) following receipt of the
M_IOCTL message. The first will copyin the structure and the second will
copyin the buffer. This example illustrates processing that supports only the
transparent form of ioctl. xxxwput is the write-side put procedure for module
or driver xxx:

(continued on next page)

7-18 Programmer’s Guide: STREAMS



Module and Driver ioctls

xxxwput verifies that the SET_ADDR is TRANSPARENT to avoid confusion with
an I_STR ioctl which uses a value of ioc_cmd equivalent to the command argu-
ment of a transparent ioctl. When sending an M_IOCNAK, freeing the linked
M_DATA block is not mandatory as the Stream head will free it. However, this
returns the block to the buffer pool more quickly.

Overview of Modules and Drivers 7-19



Module and Driver ioctls

In this and all following examples in this section, the message blocks are reused
to avoid the overhead of deallocating and allocating.

The Stream head will guarantee that the size of the message block contain-
ing an iocblk structure will be large enough also to hold the copyreq and
copyresp structures.

cq_private is set to contain state information for ioctl processing (tells us what
the subsequent M_IOCDATA response message contains). Keeping the state in
the message makes the message self-describing and simplifies the ioctl process-
ing. M_IOCDATA processing is done in xxxioc. Two M_IOCDATA types are
processed, GETSTRUCT and GETADDR:

(continued on next page)

7-20 Programmer’s Guide: STREAMS



Module and Driver ioctls

xxx_set_addr is a routine (not shown in the example) that processes the user
address from the ioctl. Since the message block has been reused, the fields that
the Stream head will examine (denoted by "may have been overwritten") must
be cleared before sending an M_IOCNAK.

Overview of Modules and Drivers 7-21



Module and Driver ioctls

M_COPYOUT Example

In this example, the user wants option values for this Stream device to be placed
into the user’s options structure (see beginning of example code, below). This
can be accomplished by use of a transparent ioctl call of the form

ioctl(fd, GET_OPTIONS, &optadd)
or, alternately, by use of a streamio call
ioctl(fd, I_STR, &opts_strioctl) call

In the first case, optadd is declared struct options. In the I_STR case, opts_strioctl
is declared struct strioctl where opts_strioctl.ic_dp points to the user options struc-
ture.

This example illustrates support of both the I_STR and transparent forms of an
ioctl. The transparent form requires a single M_COPYOUT message following
receipt of the M_IOCTL to copyout the contents of the structure. xxxwput is the
write-side put procedure for module or driver xxx:

(continued on next page)

7-22 Programmer’s Guide: STREAMS



Module and Driver ioctls

(continued on next page)

Overview of Modules and Drivers 7-23



Module and Driver ioctls

Bidirectional Transfer Example

This example illustrates bidirectional data transfer between the kernel and user
space during transparent ioctl processing. It also shows how more complex
state information can be used.

The user wants to send and receive data from user buffers as part of a tran-
sparent ioctl call of the form

ioctl(fd, XXX IOCTL, &addr_xxxdata)

The user addr_xxxdata structure defining the buffers is declared as struct xxxdata,
shown below. This requires three pairs of messages following receipt of the
M_IOCTL message: the first to copyin the structure; the second to copyin one
user buffer; and the last to copyout the second user buffer. xxxwput is the
write-side put procedure for module or driver xxx:

7-24 Programmer’s Guide: STREAMS



Module and Driver ioctls

'('éontlnuedmori' next page)

Overview of Modules and Drivers 7-25



Module and Driver ioctis

xxxwput allocates a message block to contain the state structure and reuses the
M_IOCTL to create an M_COPYIN message to read in the xxxdata structure.

M_IOCDATA processing is done in xxxioc:

7-26 Programmer’s Guide: STREAMS



Module and Driver ioctls

(continued on next page)

Overview of Modules and Drivers 7-27



Module and Driver ioctls

At case GETSTRUCT, the user xxxdata structure is copied into the module’s state
structure (pointed at by cp_private in the message) and the M_IOCDATA mes-
sage is reused to create a second M_COPYIN message to read in the user data.
At case GETINDATA, the input user data are processed by the xxx_indata routine
(not supplied in the example) which frees the linked M_DATA block and
returns the output data message block. The M _IOCDATA message is reused to
create an M_COPYOUT message to write the user data. At case PUTOUTDATA,
the message > block containing the state structure is freed and an acknowledge-
ment is sent upstream.

7-28 Programmer’s Guide: STREAMS



Module and Driver ioctls

Care must be taken at the "can’t happen" default case since the message block
containing the state structure (cp_private) is not returned to the pool because it
might not be valid. This might result in a lost block. The ASSERT will help
find errors in the module if a "can’t happen" condition occurs.

|_LIST ioctl

The ioctl I_LIST supports the strconf and strchg commands [see strchg(1)] that
are used to query or change the configuration of a Stream. Only the super-user
or an owner of a STREAMS device may alter the configuration of that Stream.
The strchg command does the following;:

m Push one or more modules on the Stream.

m Pop the topmost module off the Stream.

m Pop all the modules off the Stream.

m Pop all modules up to but not including a specified module.
The strconf command does the following:

m Indicate if the specified module is present on the Stream.

m Print the topmost module of the Stream.

m Print a list of all modules and topmost driver on the Stream.

If the Stream contains a multiplexing driver, the strchg and strconf commands
will not recognize any modules below that driver.

The ioctl I_LIST performs two functions. When the third argument of the ioctl
call is set to NULL, the return value of the call indicates the number of modules,
including the driver, present on the Stream. For example, if there are two
modules above the driver, 3 is returned. On failure, errno may be set to a value
specified in streamio(7). The second function of the I_LIST ioctl is to copy the
module names found on the Stream to the user supplied buffer. The address of
the buffer in user space and the size of the buffer are passed to the ioctl through
a structure str_list that is defined as:

Overview of Modules and Drivers 7-29



Module and Driver ioctls

where sI_nmods is the number of modules in the sl_modlist array that the user
has allocated. Each element in the array must be at least FMNAMESZ+1 bytes
long. FMNAMESZ is defined by <sys/conf.h>.

The user can find out how much space to allocate by first invoking the ioctl
[_LIST with arg set to NULL. The I_LIST call with arg pointing to the str_list
structure returns the number of entries that have been filled into the sI_modlist
array (the number includes the number of modules including the driver). If
there is not enough space in the sl_modlist array (see note) or sl_nmods is less
than 1, the I_LIST call will fail and errno is set to EINVAL. If arg or the
sl_modlist array points outside the allocated address space, EFAULT is returned.

It is possible, but unlikely, that another module was pushed on the Stream
after the user invoked the I_LIST ioctl with the NULL argument and before
the |_LIST ioctl with the structure argument was invoked.

7-30 Programmer’s Guide: STREAMS



Flush Handling

All modules and drivers are expected to handle M_FLUSH messages. An
M_FLUSH message can originate at the Stream head or from a module or a
driver. The first byte of the M_FLUSH message is an option flag that can have
following values:

FLUSHR Flush read queue.
FLUSHW Flush write queue.
FLUSHRW Flush both, read and write, queues.
FLUSHBAND Flush a specified priority band only.

The following example shows line discipline module flush handling:

The Stream head turns around the M_FLUSH message if FLUSHW is set
(FLUSHR will be cleared). A driver turns around M_FLUSH if FLUSHR is set
(should mask off FLUSHW).

The next example shows the line discipline module flushing due to break:

Overview of Modules and Drivers 7-31



Flush Handling

The next two figures further demonstrate flushing the entire Stream due to a
line break. Figure 7-1 shows the flushing of the write-side of a Stream, and Fig-
ure 7-2 shows the flushing of the read-side of a Stream. In the figures dotted
boxes indicate flushed queues.

7-32 Programmer’s Guide: STREAMS



Flush Handling

Figure 7-1: Flushing The Write-Side of A Stream

STREAM
WR RD
HEAD
@l e (3) FLUSHW
MODULE @ WR -
@l FLUSHW (2) M_BREAK
orver | (O il

'®

BREAK

The following takes place:
1. A break is detected by a driver.

2. The driver generates an M_BREAK message and sends it upstream.
3. The module translates the M_BREAK into an M_FLUSH message with

FLUSHW set and sends it upstream.

4. The Stream head does not flush the write queue (no messages are ever

queued there).

Overview of Modules and Drivers

7-33



Flush Handling

5. The Stream head turns the message around (sends it down the write-
side).

6. The module flushes its write queue.
7. The message is passed downstream.

8. The driver flushes its write queue and frees the message.

This figure shows flushing read-side of a Stream.

Figure 7-2: Flushing The Read-Side of A Stream

STREAM WR
HEAD
MODULE WR
FLUSHR @
DRIVER WR

The events taking place are:

7-34 Programmer’s Guide: STREAMS



Flush Handling

1. After generating the first M_FLUSH message, the module generates an
M_FLUSH with FLUSHR set and sends it downstream.

The driver flushes its read queue.
The driver turns the message around (sends it up the read-side).
The module flushes its read queue.

The message is passed upstream.

SN

The Stream head flushes the read queue and frees the message.

The flushband() routine (see Appendix C) provides the module and driver with
the capability to flush messages associated with a given priority band. A user
can flush a particular band of messages by issuing:

ioctl(fd, I_FLUSHBAND, bandp);

where bandp is a pointer to a structure bandinfo that has a format:

struct bandinfo {
unsigned char bi pri;
int bi_flag;
}i

The bi_flag field may be one of FLUSHR, FLUSHW, or FLUSHRW.

The following example shows flushing according to the priority band:

Overview of Modules and Drivers 7-35



Flush Handling

Note that modules and drivers are not required to treat messages as flowing in
separate bands. Modules and drivers can view the queue having only two
bands of flow, normal and high priority. However, the latter alternative will
flush the entire queue whenever an M_FLUSH message is received.

One use of the field b_flag of the msgb structure is provided to give the Stream
head a way to stop M_FLUSH messages from being reflected forever when the
Stream is being used as a pipe. When the Stream head receives an M_FLUSH
message, it sets the MSGNOLOOP flag in the b_flag field before reflecting the
message down the write-side of the Stream. If the Stream head receives an
M_FLUSH message with this flag set, the message is freed rather than reflected.

7-36 Programmer’s Guide: STREAMS



Driver—Kernel Interface

The Driver—Kernel Interface (DKI) is an interface between the UNIX system ker-
nel and drivers. These drivers are block interface drivers, character interface
drivers, and drivers and modules supporting a STREAMS interface. Each driver
type supports an interface from the kernel to the driver. This kernel-to-driver
interface consists of a set of driver-defined functions that are called by the ker-
nel. These functions are the entry points into the driver.

One benefit of defining the DKI is increased portability of driver source code
between various UNIX System V implementations. Another benefit is a gain in
modularity that results in extending the potential for changes in the kernel
without breaking driver code.

The interaction between a driver and the kernel can be described as occurring
along two paths. (See Figure 7-3).

One path includes those functions in the driver that are called by the kernel.
These are entry points into the driver. The other path consists of the functions
in the kernel that are called by the driver. These are kernel utility functions
used by the driver. Along both paths, information is exchanged between the
kernel and drivers in the form of data structures. The DKI identifies these
structures and specifies a set of contents for each. The DKI also defines the
common set of entry points expected to be supported in each driver type and
their calling and return syntaxes. For each driver type, the DKI lists a set of
kernel utility functions that can be called by that driver and also specifies their
calling and return syntaxes.

Overview of Modules and Drivers 7-37



Driver—Kernel Interface

Figure 7-3: Interfaces Affecting Drivers

kernel

driver entry points utility functions

hardware access functions
device register

hardware > driver

interrupts device

register o
hooks in driver

for boot/autoconfig.

device information

boot/autoconfig.
software

The set of STREAMS utilities available to drivers are listed in Appendix C. No
system-defined macros that manipulate global kernel data or introduce structure
size dependencies are permitted in these utilities. Therefore, some utilities that
have been implemented as macros in the prior UNIX system releases are imple-
mented as functions in UNIX System V Release 4.0. This does not preclude the
existence of both macro and function versions of these utilities. It is envisioned
that driver source code will include a header file (see “Header Files” later in
this chapter) that picks up function declarations while the core operating system
source includes a header file that defines the macros. With the DKI interface the

7-38 Programmer’s Guide: STREAMS



Driver-Kernel Interface

following STREAMS utilities are implemented as C programming language
functions: datamsg, OTHERQ, putnext, RD, splstr, and WR.

Replacing macros such as RD() with function equivalents in the driver source
code allows driver objects to be insulated from changes in the data structures
and their size, further increasing the useful lifetime of driver source code and
objects.

The DKI interface defines an interface suitable for drivers and there is no need
for drivers to access global kernel data structures directly. The kernel functions
drv_getparm and drv_setparm are provided for reading and writing informa-
tion in these structures. This restriction has an important consequence. Since
drivers are not permitted to access global kernel data structures directly,
changes in the contents/offsets of information within these structures will not
break objects. The drv_getparm and drv_setparm functions are described in
more detail in the Device Driver Interface/Driver—Kernel Interface (DDI/DKI) Refer-
ence Manual.

Device Driver Interface and Driver—Kernel Interface

The Device Driver Interface (DDI) is an AT&T interface that facilitates driver
portability across different UNIX system versions on the AT&T 3B2 hardware.
The Driver-Kernel Interface (DKI) is an interface that also facilitates driver
source code portability across implementations of UNIX System V Release 4.0
on all machines. DKI driver code, however, will have to be recompiled on the
machine on which it is to run.

The most important distinction between the DDI and the DKI lies in scope. The
DDI addresses complete interfaces (see note below) for block, character, and
STREAMS interface drivers and modules. The DKI defines only driver inter-
faces with the kernel with the addition of the kernel interface for file system
type (FST) modules. The DKI interface does not specify the system initialization
driver interface [i.e., init() and start() driver routines] nor hardware related
interfaces such as getvec for the AT&T 3B2.

Overview of Modules and Drivers 7-39



Driver—Kernel Interface

The "complete interface” refers to hardware- and boot/configuration-related
driver interface in addition to the interface with the kernel.

STREAMS Interface

The entry points from the kernel into STREAMS drivers and modules are
through the qinit structures (see Appendix A) pointed to by the streamtab
structure, prefixinfo. STREAMS drivers may need to define additional entry
points to support the interface with boot/autoconfiguration software and the
hardware (for example, an interrupt handler).

If the STREAMS module has prefix mod then the declaration is of the form:

where

modrput is the module’s read queue put procedure,

modrsrv is the module’s read queue service procedure,

modopen is the open routine for the module,

modclose is the close routine for the module,

modwput is the put procedure for the module’s write queue, and
modwsrv is the service procedure for the module’s write queue.

7-40 Programmer’s Guide: STREAMS



Driver-Kernel Interface

Each qinit structure can point to four entry points. (An additional function
pointer has been reserved for future use and must not be used by drivers or
modules.) These four function pointer fields in the qinit structure are: gi_putp,
qi_srvp, qi_gopen, and gi_close.

The utility functions that can be called by STREAMS drivers and modules are
listed in Appendix C. They must follow the call and return syntaxes specified
in the appendix. Manual pages relating to the Driver-Kernel Interface and Dev-
ice Driver Interface are provided in the Device Driver Interface/Driver—Kernel
Interface (DDI/DKI) Reference Manual.

Overview of Modules and Drivers 7-41



Design Guidelines

This section summarizes guidelines common to the design of STREAMS
modules and drivers. Additional rules pertaining to modules and drivers can
be found in Chapter 8 for modules and Chapter 9 for drivers.

Modules and Drivers

1.

7-42

Modules and drivers cannot access information in the u_area of a process.
Modules and drivers are not associated with any process, and therefore
have no concept of process or user context, except during open and close
routines (see “Rules for Open/Close Routines”).

. Every module and driver must process an M_FLUSH message according

to the value of the argument passed in the message.

. A module or a driver should not change the contents of a data block

whose reference count is greater than 1 [see dupmsg() in Appendix C]
because other modules/drivers that have references to the block may not
want the data changed. To avoid problems, data should be copied to a
new block and then changed in the new one.

. Modules and drivers should manipulate queues and manage buffers only

with the routines provided for that purpose, (see Appendix C).

Modules and drivers should not require the data in an M_DATA message
to follow a particular format, such as a specific alignment.

Care must be taken when modules are mixed and matched, because one
module may place different semantics on the priority bands than another
module. The specific use of each band by a module should be included
in the service interface specification.

When designing modules and drivers that make use of priority bands one
should keep in mind that priority bands merely provide a way to impose
an ordering of messages on a queue. The priority band is not used to
determine the service primitive. Instead, the service interface should rely
on the data contained in the message to determine the service primitive.

Programmer’s Guide: STREAMS



Design Guidelines

Rules for Open/Close Routines

1. open and close routines may sleep, but the sleep must return to the rou-
tine in the event of a signal. That is, if they sleep, they must be at prior-
ity <= PZERO, or with PCATCH set in the sleep priority.

2. The open routine should return zero on success or an error humber on
failure. If the open routine is called with the CLONEOPEN flag, the dev
ice number should be set by the driver to an unused device number
accessible to that driver. This should be an entire device number
(major/minor).

3. open and close routines have user context and can access the u_area.

4. Only the following fields can be accessed in the u_area (user.h): u_procp,
u_ttyp, u_uid, u_gid, u_ruid, and u_rgid. The fields u_uid, u_gid, u_ruid,
and u_rgid are for backward compatibility with previously designed dev-
ice drivers. The actual user credentials are passed directly to the driver
and need not be accessed in the u_area. These fields may not support
valid uids or gids when the system is configured with large user ids. See
note.

5. Only the following fields can be accessed in the process table (proc.h):
p_pid, p_pgrp. See note.

6. If a module or a driver wants to allocate a controlling terminal, it should
send an M_SETOPTS message to the Stream head with the SO_ISTTY flag
set. Otherwise signaling will not work on the Stream.

The DKl interface provides the drv_getparm and drv_setparm functions to
read/write these data and the driver/module need not access them directly.

Rules for ioctls

® Do not change the ioc_id, ioc_uid, ioc_gid, or ioc_cmd fields in an M_IOCTL
message.

® The above rule also applies to fields in an M_IOCDATA, M_COPYIN, and
M_COPYOUT message. (Field names are different; see Appendix A)

Overview of Modules and Drivers 7-43



Design Guidelines

m Always validate ioc_count to see whether the ioctl is the transparent or
I_STR form.

Rules for Put and Service Procedures

To ensure proper data flow between modules and drivers, the following rules
should be observed in put and service procedures:

® Put and service procedure must not sleep.

® Return codes can be sent with STREAMS messages M_IOCACK,
M_IOCNAK, and M_ERROR.

® Protect data structures common to put and service procedures by using

splstr().

® Put and service procedures cannot access the information in the u_area of
a process.

m Processing M_DATA messages by both put and service procedures could
lead to messages going out of sequence. The put procedure should check
if any messages were queued before processing the current message.

On the read-side, it is usually a good idea to have the put procedure check if
the service procedure is running because of the possibility of a race condition.
That is, if there are unprotected sections in the service procedure, the put pro-
cedure can be called and run to completion while the service procedure is run-
ning (the put procedure can interrupt the service procedure on the read-side).
For example, the service procedure is running and it removes the last message
from the queue, but before it puts the message upstream the put procedure is
called (e.g., from an interrupt routine) at an unprotected section in the service
procedure. The put procedure sees that the queue is empty and processes the
message. The put procedure then returns and the service procedure resumes;
but at this point data are out of order because the put procedure sent upstream
the message that was received after the data the service procedure was process-

ing.

7-44 Programmer’s Guide: STREAMS



Design Guidelines

Put Procedures

1. Each queue must define a put procedure in its qinit structure for passing
messages between modules.

2. A put procedure must use the putq() (see Appendix C) utility to enqueue
a message on its own queue. This is necessary to ensure that the various
fields of the queue structure are maintained consistently.

3. When passing messages to a neighboring module, a module may not call
putq() directly, but must call its neighbor module’s put procedure [see
putnext() in Appendix C].

However, the q_qinfo structure that points to a module’s put procedure
may point to putq() [i.e., putq() is used as the put procedure for that
module]. When a module calls a neighbor module’s put procedure that is
defined in this manner, it will be calling putq() indirectly. If any module
uses putq() as its put procedure in this manner, the module must define a
service procedure. Otherwise, no messages will ever be processed by the
next module. Also, because putq() does not process M_FLUSH messages,
any module that uses putq() as its put procedure must define a service
procedure to process M_FLUSH messages.

4. The put procedure of a queue with no service procedure must call the
put procedure of the next queue using putnext(), if a message is to be
passed to that queue.

5. Processing many function calls with the put procedure could lead to
interrupt stack overflow. In that case, switch to service procedure pro-
cessing whenever appropriate to switch to a different stack.

Service Procedures

1. If flow control is desired, a service procedure is required. The canput()
or becanput() routines should be used by service procedures before doing
putnext() to honor flow control.

2. The service procedure must use getq() to remove a message from its mes-
sage queue, so that the flow control mechanism is maintained.

3. The service procedure should process all messages on its queue. The
only exception is if the Stream ahead is blocked [i.e., canput() fails] or
some other failure like buffer allocation failure. Adherence to this rule is
the only guarantee that STREAMS will enable (schedule for execution) the

Overview of Modules and Drivers 7-45



Design Guidelines

service procedure when necessary, and that the flow control mechanism
will not fail.

If a service procedure exits for other reasons, it must take explicit steps to
assure it will be re-enabled.

4. The service procedure should not put a high priority message back on the
queue, because of the possibility of getting into an infinite loop.

5. The service procedure must follow the steps below for each message that
it processes. STREAMS flow control relies on strict adherence to these
steps.

Step 1: Remove the next message from the queue using getq(). It
is possible that the service procedure could be called when
no messages exist on the queue, so the service procedure
should never assume that there is a message on its queue.
If there is no message, return.

Step 2: If all of the following conditions are met:
m canput() or becanput() fails and
m the message type is not a high priority type and
m the message is to be put on the next queue,
continue at Step 3. Otherwise, continue at Step 4.

Step 3: The message must be replaced on the head of the queue
from which it was removed using putbq() (see Appendix
C). Following this, the service procedure is exited. The
service procedure should not be re-enabled at this point. It
will be automatically back-enabled by flow control.

Step 4: If all of the conditions of Step 2 are not met, the message
should not be returned to the queue. It should be pro-
cessed as necessary. Then, return to Step 1.

7-46 Programmer’s Guide: STREAMS



Design Guidelines

Data Structures

Only the contents of g_ptr, g_minpsz, g maxpsz, q_hiwat, and q_lowat in the queue
structure may be altered. q_minpsz, g_maxpsz, q_hiwat, and q_lowat are set when
the module or driver is opened, but they may be modified subsequently.

Drivers and modules should not change any fields in the equeue structure. The
only field of the equeue structure they are allowed to reference is eq_bandp.
(Note that STYPES must be defined to use the equeue structure.)

Drivers and modules are allowed to change the gb_hiwat and gb_lowat fields of
the gband structure. They may only read the gb_count, gb_first, qb_last, and
gb_flag fields.

The routines strqget() and strqset() can be used to get and set the fields associ-
ated with the queue. They insulate modules and drivers from changes in the
queue structure and also enforce the previous rules.

Dynamic Allocation of STREAMS Data Structures

Prior to UNIX System V Release 4.0, STREAMS data structures were statically
configured to support a fixed number of Streams, read and write queues, mes-
sage and data blocks, link block data structures, and Stream event cells. The
only way to change this configuration was to reconfigure and reboot the system.
Resources were also wasted because data structures were allocated but not
necessarily needed.

With Release 4.0 the STREAMS mechanism has been enhanced to dynamically
allocate the following STREAMS data structures: stdata, queue, linkblk,
strevent, datab, and msgb. STREAMS allocates memory to cover these struc-
tures as needed.

Dynamic data structure allocation has the advantage of the kernel being initially
smaller than a system with static configuration. The performance of the system
may also improve because of better memory utilization and added flexibility.
However, allocb(), bufcall(), and freeb(), the routines that manage these data
structures, may be slower at times because of extra overhead needed for
dynamic allocation.

Overview of Modules and Drivers 7-47



Design Guidelines

Header Files

The following header files are generally required in modules and drivers:

types.h contains type definitions used in the STREAMS header files

stream.h contains required structure and constant definitions

stropts.h primarily for users, but contains definitions of the argu-
ments to the M_FLUSH message type also required by
modules

ddi.h contains definitions and declarations needed by drivers to

use functions for the UNIX System V Device Driver Inter-
face or Driver—Kernel Interface. This header file should be
the last header file included in the driver source code (after
all #include statements).

One or more of the header files described next may also be included. No stan-
dard UNIX system header files should be included except as described in the
following section. The intent is to prevent attempts to access data that cannot or
should not be accessed.

errno.h defines various system error conditions, and is needed if
errors are to be returned upstream to the user

sysmacros.h contains miscellaneous system macro definitions

param.h defines various system parameters, particularly the value of
the PCATCH sleep flag

signal.h defines the system signal values, and should be used if sig-
nals are to be processed or sent upstream

file.h defines the file open flags, and is needed if O_NDELAY (or

O_NONBLOCK) is interpreted

7-48 Programmer’s Guide: STREAMS



Design Guidelines

Accessible Symbols and Functions

The following lists the only symbols and functions that modules or drivers may
refer to (in addition to those defined by STREAMS; see Appendices A and O), if
hardware and system release independence is to be maintained. Use of symbols
not listed here is unsupported.

m user.h (from open/close procedures only)

u_procp process structure pointer
u_ttyp tty group ID pointer

m proc.h (from open/close procedures only)
p_pid process ID
P_Pgrp process group ID

m functions accessible from open/close procedures only
sleep(chan, pri) sleep until wakeup
delay(ticks) delay for a specified time

m universally accessible functions
bcopy(from, to, nbytes) copy data quickly
bzero(buffer, nbytes) zero data quickly
max(a, b) return max of args
min(a, b) return min of args
rmalloc(mp, size) allocate memory space
rmfree(mp, size, i) de-allocate memory space
rminit(mp, mapsize) initialize map structure
vtop(vaddr, NULL) translate from virtual to physical address
cmn_err(level, ...) print message and optional panic
spln() set priority level
splstr() set processor level for Streams
timeout(func, arg, ticks) schedule event
untimeout(id) cancel event
wakeup(chan) wake up sleeper

® sysmacros.h

The first four functions are used to get the major/minor part of the expanded
device number.

getemajor(x) return external major part

getmajor(x) return internal major part

Overview of Modules and Drivers 7-49



Design Guidelines

7-50

geteminor(x)
getminor(x)
makedev(x, y)
makedevice(x, y)
cmpdev(x)
expdev(x)

systm.h
Ibolt
time
param.h

PZERO
PCATCH
HZ
NULL

types.h

return external minor part
return internal minor part
create a old device number
create a new device number
convert to old device format
convert to new device format

clock ticks since boot in HZ
seconds since epoch

zero sleep priority
catch signal sleep flag
clock ticks per second
0

Everything in types.h can be used.

Programmer’s Guide: STREAMS









8 Modules

Modules 8-1
Module Routines 8-1
Filter Module Example 8-5
Flow Control 8-11
Design Guidelines 8-14

Table of Contents






Modules

A STREAMS module is a pair of queues and a defined set of kernel-level rou-
tines and data structures used to process data, status, and control information.
A Stream may have zero or more modules. User processes push (insert)
modules on a Stream using the I PUSH ioctl and pop (remove) them using the
I POP ioctl. Pushing and popping of modules happens in a LIFO (Last-In-
First-Out) fashion. Modules manipulate messages as they flow through the
Stream.

Module Routines

STREAMS module routines (open, close, put, service) have already been
described in the previous chapters. This section shows some examples and
further describes attributes common to module put and service routines.

A module’s put routine is called by the preceding module, driver, or Stream
head and before the corresponding service routine. The put routine should do
any processing that needs to be done immediately (for example, processing of
high priority messages). Any processing that can be deferred should be left for
the corresponding service routine.

The service routine is used to implement flow control, handle de-packetization
of messages, perform deferred processing, and handle resource allocation. Once
the service routine is enabled, it always runs before any user level code. The
put and service routines must not call sleep() and cannot access the u_area area,
because they are executed asynchronously with respect to any process.

The following example shows a STREAMS module read-side put routine:

Modules 8-1



Modules

The following briefly describes the code:

m A pointer to a queue defining an instance of the module and a pointer to
a message are passed to the put routine.

m The put routine switches on the type of the message. For each message
type, the put routine either enqueues the message for further processing
by the module service routine, or passes the message to the next module
in the Stream.

m High priority messages are processed immediately by the put routine and
passed to the next module.

m Ordinary (or normal) messages are either enqueued or passed along the
Stream.

8-2 Programmer’s Guide: STREAMS



Modules

This example shows a module write-side put routine:

The write-side put routine, unlike the read-side, may be passed M_IOCTL mes-
sages. It is up to the module to recognize and process the ioctl command, or
pass the message downstream if it does not recognize the command.

The following example shows a general scenario employed by the module’s ser-
vice routine:

Modules 8-3



Modules

The steps are:

8-4

Retrieve the first message from the queue using getq().

If the message is high priority, process it immediately, and pass it along
the Stream.

Otherwise, the service routine should use the canput() utility to determine
if the next module or driver that enqueues messages is within acceptable
flow control limits. The canput() routine goes down (or up on the read-
side) the Stream until it reaches a module, a driver, or the Stream head
with a service routine. When it reaches one, it looks at the total message
space currently allocated at that queue for enqueued messages. If the
amount of space currently used at that queue exceeds the high water
mark, the canput() routine returns false (zero). If the next queue with a
service routine is within acceptable flow control limits, canput() returns
true (nonzero).

If canput() returns false, the service routine should return the message to
its own queue using the putbq() routine. The service routine can do no
further processing at this time, and it should return.

Programmer’s Guide: STREAMS



Modules

m If canput() returns true, the service routine should complete any process-
ing of the message. This may involve retrieving more messages from the
queue, (de)-allocating header and trailer information, and performing con-
trol function for the module.

m When the service routine is finished processing the message, it may call
the putnext() routine to pass the resulting message to the next queue.

m Above steps are repeated until there are no messages left on the queue
(that is, getq() returns NULL) or canput() returns false.

Filter Module Example

The module shown next, crmod, is an asymmetric filter. On the write-side, new-
line is converted to carriage return followed by newline. On the read-side, no
conversion is done. The declarations of this module are essentially the same as
those of the null module presented in the previous chapter:

Modules 8-5



Modules

A master.d file to configure crmod is shown in Appendix E. stropts.h includes
definitions of flush message options common to user level, modules and drivers.
modopen and modclose are unchanged from the null module example shown in
Chapter 7. modrput is like modput from the null module.

Note that, in contrast to the null module example, a single module_info struc-
ture is shared by the read-side and write-side. The module_info includes the
flow control high and low water marks (512 and 128) for the write queue.
(Though the same module_info is used on the read queue side, the read-side
has no service procedure so flow control is not used.) The qinit contains the
service procedure pointer.

The write-side put procedure, the beginning of the service procedure, and an
example of flushing a queue are shown next:

8-6 Programmer’s Guide: STREAMS



Modules

modwput, the write put procedure, switches on the message type. High priority
messages that are not type M_FLUSH are putnext to avoid scheduling. The
others are queued for the service procedure. An M_FLUSH message is a
request to remove messages on one or both queues. It can be processed in the
put or service procedure.

modwsrv is the write service procedure. It takes a single argument, a pointer to
the write queue. modwsrv processes only one high priority message, M_FLUSH.
No other high priority messages should reach modwsrv.

Modules 8-7



Modules

For an M_FLUSH message, modwsrv checks the first data byte. If FLUSHW
(defined in stropts.h) is set, the write queue is flushed by use of the flushq()
utility (see Appendix C). flushq() takes two arguments, the queue pointer and a
flag. The flag indicates what should be flushed, data messages (FLUSHDATA)
or everything (FLUSHALL). In the example, data includes M_DATA,
M_DELAY, M_PROTO, and M_PCPROTO messages. The choice of what types
of 1 messages to ) flush is module ¢ specific.

Ordinary messages will be returned to the queue if
canput (q->q_next)

returns false, indicating the downstream path is blocked. The example contin-
ues with the remaining part of modwsrv processing M_DATA messages:

8-8 Programmer’s Guide: STREAMS



Modules

Modules 8-9



Modules

The differences in M_DATA processing between this and the example in
Chapter 5 (see “Message Allocation and Freeing”) relate to the manner in which
the new messages are forwarded and flow controlled. For the purpose of
demonstrating alternative means of processing messages, this version creates
individual new messages rather than a single message containing multiple mes-
sage blocks. When a new message block is full, it is immediately forwarded
with the putnext() routine rather than being linked into a single, large message
(as was done in the Chapter 5 example). This alternative may not be desirable
because message boundaries will be altered and because of the additional over-
head of handling and scheduling multiple messages.

When the filter processing is performed (following push), flow control is
checked [with canput()] after, rather than before, each new message is for-
warded. This is done because there is no provision to hold the new message
until the queue becomes unblocked. If the downstream path is blocked, the
remaining part of the original message is returned to the queue. Otherwise,
processing continues.

8-10 Programmer’s Guide: STREAMS



Flow Control

To utilize the STREAMS flow control mechanism, modules must use service
procedures, invoke canput() before calling putnext(), and use appropriate values
for the high and low water marks.

Module flow control limits the amount of data that can be placed on a queue. It
prevents depletion of buffers in the buffer pool. Flow control is advisory in
nature and it can be bypassed. It is managed by high and low water marks and
regulated by QWANTW and QFULL flags. Module flow control is imple-
mented by using the canput(), getq(), putq(), putbq(), insq(), and rmvq() rou-
tines.

The following scenario takes place normally in flow control when a module and
driver are in sync:

m A driver sends data to a module using the putnext() routine, and the
module’s put procedure queues data using putq(). The putq() routine
then increments the module’s g_count by the number of bytes in the mes-
sage and enables the service procedure. When STREAMS scheduling runs
the service procedure, the service procedure then retrieves the data by
calling the getq() utility, and getq() decrements g4_count by an appropriate
value.

If the module cannot process data at the rate at which the driver is sending the
data, the following happens:

m The module’s g_count goes above its high water mark, and the QFULL
flag is set by putq(). The driver’s canput() fails, and canput() sets
QWANTW flag in the module’s queue. The driver may send a command
to the device to stop input, queue the data in its own queue, or drop the
data. In the meanwhile, the module’s q_count falls below its low water
mark [by getq()] and getq() finds the nearest back queue with a service
procedure and enables it. The scheduler then runs the service procedure.

The next two examples show a line discipline module’s flow control. The first
example is a read-side line discipline module:

Modules 8-11



Flow Control

The following shows a write-side line discipline module:

8-12 Programmer’s Guide: STREAMS



Flow Control

Modules 8-13



Design Guidelines

Module developers should follow these guidelines:

Messages types that are not understood by the modules should be passed
to the next module.

The module that acts on an M_IOCTL message should send an
M_IOCACK or M_IOCNAK message in response to the ioctl. If the
module does not understand the ioctl, it should pass the M_IOCTL mes-
sage to the next module.

Modules should be designed in such way that they don’t pertain to any
particular driver but can be used by all drivers.

In general, modules should not require the data in an M_DATA message
to follow a particular format, such as a specific alignment. This makes it
easier to arbitrarily push modules on top of each other in a sensible
fashion. Not following this rule may limit module reusability.

Filter modules pushed between a service user and a service provider may
not alter the contents of the M_PROTO or M_PCPROTO block in mes-
sages. The contents of the data blocks may be manipulated, but the mes-
sage boundaries must be preserved.

Also see “Design Guidelines” in Chapter 7.

8-14

Programmer’s Guide: STREAMS






)




9 Drivers

Drivers

9-1

Overview of Drivers 9-1

m Driver Classification 9-1

m Driver Configuration 9-2

m Writing a Driver 9-3

m Major and Minor Device Numbers 9-5

STREAMS Drivers 9-6

m Printer Driver Example 9-9
m Driver Flow Control 9-16
Cloning 9-18
Loop-Around Driver 9-20
Design Guidelines 9-30

Table of Contents






Drivers

This chapter describes the operation of a STREAMS driver and also discusses
some of the processing typically required in drivers.

Unlike a module, a device driver must have an interrupt routine so that it is
accessible from a hardware interrupt as well as from the Stream. A driver can
have multiple Streams connected to it. Multiple connections occur when more
than one minor device of the same driver is in use and in the case of multiplex-
ors (multiplexing is discussed in Chapter 10). However, these particular differ-
ences are not recognized by the STREAMS mechanism. They are handled by
developer-provided code included in the driver procedures.

Overview of Drivers

This section provides a brief overview of the UNIX® system drivers. This is not
an all-inclusive description, but an introduction and general information on
drivers. For more detailed information, see Block and Character Interface (BCI)
Driver Development Guide and Block and Character Interface (BCI) Driver Reference
Manual.

A driver is software that provides an interface between the operating system
and a device. The driver controls the device in response to kernel commands,
and user-level programs access the device through system calls. The system
calls interface with the file system and process control system, which in turn
access the drivers. The driver provides and manages a path for the data to and
from the hardware device, and services interrupts issued by the device con-
troller.

Driver Classification

In general, drivers are grouped according to the type of the device they control,
the access method (the way data are transferred), and the interface between the
driver and the device.

The type can be hardware or software. A hardware driver controls a physical
device such as a disk. A software driver, also called a pseudo device, controls
software, which in turn may interface with a hardware device. The software
driver may also support pseudo devices that have no associated physical device.

Drivers 9-1



Drivers

Drivers can be character-type or block-type, but many support both access
methods. In character-type transfer, data are read a character at a time or as a
variable length stream of bytes, the size of which is determined by the device.
In block-type access, data transfer is performed on fixed-length blocks of data.
Devices that support both block- and character-type access must have a separate
special device file for each access method. Character access devices can also use
"raw" (also called unbuffered) data transfer that takes place directly between
user address space and the device. Unbuffered data transfer is used mainly for
administrative functions where the speed of the specific operation is more
important than overall system performance.

The driver interface refers to the system structures and kernel interfaces used by
the driver. For example, STREAMS is an interface.

Driver Configuration

For a driver to be recognized as part of the system, information on driver type,
where object code resides, interrupts, and so on, must be stored in appropriate
files.

The following summarizes information needed to include a driver in the system
(this information is unique to the AT&T 3B2):

/etc/master.d This directory contains the master files. A master file sup-
plies information to the system initialization software to
describe different attributes of a driver. There is one master
file for each driver in the system.

/stand/system  This file contains entries for each driver and indicates to the
system initialization software whether a driver is to be
included or excluded during configuration.

/dev This directory contains special files that provide applications
with a way to access drivers via file operators.
/boot This directory contains bootable object files that are used to

create a new version of the UNIX operating system when the
processor is booted.

9-2 Programmer’s Guide: STREAMS



Drivers

Writing a Driver

All drivers are identified by a string of up to four characters called the prefix.
The prefix is defined in the master file for the driver and is added to the name
of the driver routines. For example, the open routine for the driver with the
"xyz" prefix is xyzopen.

The location of the driver source code is determined by whether the driver is a
part of the core operating system or an add-on to the core operating system.

Writing a driver differs from writing other C programs in the following ways:

m A driver does not have a main.c routine. Rather, driver entry points are
given specific names and accessed through switch tables.

m A driver functions as a part of the kernel. Consequently, a poorly written
driver can degrade system performance or corrupt the system.

m A driver cannot use system calls or the C library, because the driver func-
tions at a lower level.

m A driver cannot use floating point arithmetic.

m A driver cannot use archives or shared libraries, but frequently used sub-
routines can be put in separate files in the source code directory for the
driver.

Driver code, like other system software, uses the advanced C language capabili-
ties. These include: bit-manipulation capabilities, casting of data types, and use
of header files for defining and declaring global data structures.

Driver code includes a set of entry point routines:

m initialization entry points that are accessed through io_init and
io_start arrays during system initialization.

m switch table entry points that are accessed through bdevsw (block-
access) and cdevsw (character-access) switch tables when the appropriate
system call is issued.

m interrupt entry points that are accessed through the interrupt vector table
when the hardware generates an interrupt.

Drivers 9-3



Drivers

The following lists rules of driver development:

All drivers must have an associated file in the master.d directory.

All drivers should have #include system header files that define data
structures used in the driver.

Drivers may have an init and/or a start routine to initialize the driver.

Software drivers will usually have little to initialize, because there is no
hardware involved. An init routine is used when a driver needs to initial-
ize but does not need any system services. init routines are run before
system services are initialized (like the kernel memory allocator, for exam-
ple). When a driver needs to do initialization that requires system ser-
vices, a start routine is used. The start routines are run after system ser-
vices have been initialized.

m Drivers will have open and close routines.

Most drivers will have an interrupt handler routine.

The driver developer is responsible for supplying an interrupt routine for
the device’s driver. The UNIX system provides a few interrupt handling
routines for hardware interrupts, but the developer has to supply the
specifics about the device.

In general, a prefixint interrupt routine should be written for any device
that does not send separate transmit and receive interrupts. TTY devices
that request separate transmit and receive interrupts can have two
separate interrupt routines associated with them; prefixxinit to transmit an
interrupt, and prefixrint to receive an interrupt.

In addition to hardware interrupts, many computers also support software
interrupts. For example, AT&T computers support Programmed Interrupt
Requests (PIRs). A PIR is generated by writing an integer into a logical
register address assigned to the interrupt vector table.

Most drivers will have static subordinate driver routines to provide the
functionality for the specific device. The names of these routines should
include the driver prefix, although this is not absolutely required since the
routine is declared as static.

Programmer’s Guide: STREAMS



Drivers

m A bootable object file and special device files are also needed for a driver
to be fully functional.

Major and Minor Device Numbers

The UNIX System V operating system identifies and accesses peripheral devices
by major and minor numbers. When a driver is installed and a special device
file is created, a device then appears to the user application as a file. A device is
accessed by opening, reading, writing, and closing a special device file that has
the proper major and minor device numbers.

The major number identifies a driver for a controller. The minor number
identifies a specific device. Major numbers are assigned sequentially by either
the system initialization software at boot time for hardware devices, by a pro-
gram such as drvinstall, or by administrator direction. The major number for a
software device is assigned automatically by the drvinstall command. Minor
numbers are designated by the driver developer.

Major and minor numbers can be external or internal.

External major numbers for software devices are static and assigned sequentially
to the appropriate field in the master file by the drvinstall(1M) command.
External major numbers for hardware devices correspond to the board slot and
are dynamically assigned by the autoconfig process at system boot time. The
mknod(1M) command is then used to create the files (or nodes) to be associated
with the device. External major numbers are those visible to the user.

Internal major numbers serve as an index into the cdevsw and bdevsw switch
tables. These are assigned by the autoconfiguration process when drivers are
loaded and they may change every time a full-configuration boot is done. The
system uses the MAJOR table to translate external major numbers to the internal
major numbers needed to access the switch tables.

One driver may control several devices, but each device will have its own exter-
nal major number and all those external major numbers are mapped to one
internal major number for the driver.

Minor numbers are determined differently for different types of devices. Typi-
cally, minor numbers are an encoding of information needed by the controller
board.

Drivers 9-5



Drivers

External minor numbers are controlled by a driver developer, although there
are conventions enforced for some types of devices by some utilities. For exam-
ple, a tape drive may interface with a hardware controller (device) to which
several tape drives (subdevices) are attached. All tape drives attached to one
controller will have the same external major number, but each drive will have a
different external minor number.

Internal minor numbers are used with hardware drivers to identify the logical
controller that is being addressed. Since drivers that control multiple devices
(controllers) usually require a data structure for each configured device, drivers
address the per-controller data structure by the internal minor number rather
than the external major number.

The logical controller numbers are assigned sequentially by the central controller
firmware at self-configuration time. The internal minor device number is calcu-
lated from the MINOR array in the kernel by multiplying the logical controller
number by the value of the #DEV field (number of devices per controller) in the
master file.

The internal minor number for all software drivers is 0.

The MAJOR and MINOR tables map external major and minor numbers to the
internal major number. The switch tables will have only as many entries as
required to support the drivers installed on the system. Switch table entry
points are activated by system calls that reference a special device file that sup-
plies the external major number and instructions on whether to use bdevsw or
cdevsw. By mapping the external major number to the corresponding internal
major number in the MAJOR table, the system knows which driver routine to
activate. The routines getmajor() and getminor() return an internal major and
minor number for the device. The routines getemajor() and geteminor() return
an external major and minor number for the device.

STREAMS Drivers

At the interface to hardware devices, character I/O drivers have interrupt entry
points; at the system interface, those same drivers generally have direct entry
points (routines) to process open, close, read, write, poll, and ioctl system calls.

9-6 Programmer’s Guide: STREAMS



Drivers

STREAMS device drivers have interrupt entry points at the hardware device
interface and have direct entry points only for the open and close system calls.
These entry points are accessed via STREAMS, and the call formats differ from
traditional character device drivers. (STREAMS drivers are character drivers,
too. We call the non-STREAMS character drivers traditional character drivers or
non-STREAMS character drivers.) The put procedure is a driver’s third entry
point, but it is a message (not system) interface. The Stream head translates
write and ioctl calls into messages and sends them downstream to be processed
by the driver’s write queue put procedure. read is seen directly only by the
Stream head, which contains the functions required to process system calls. A
driver does not know about system interfaces other than open and close, but it
can detect the absence of a read indirectly if flow control propagates from the
Stream head to the driver and affects the driver’s ability to send messages
upstream.

For input processing, when the driver is ready to send data or other information
to a user process, it does not wake up the process. It prepares a message and
sends it to the read queue of the appropriate (minor device) Stream. The
driver’s open routine generally stores the queue address corresponding to this
Stream.

For output processing, the driver receives messages in place of a write call. If
the message can not be sent immediately to the hardware, it may be stored on
the driver’s write message queue. Subsequent output interrupts can remove
messages from this queue.

Figure 9-1 shows multiple Streams (corresponding to minor devices) to a com-
mon driver. There are two distinct Streams opened from the same major device.
Consequently, they have the same streamtab and the same driver procedures.

The configuration mechanism distinguishes between STREAMS devices and
traditional character devices, because system calls to STREAMS drivers are pro-
cessed by STREAMS routines, not by the UNIX system driver routines. In the
cdevsw file, the field d_str provides this distinction. See Appendix E for details.

Multiple instantiations (minor devices) of the same driver are handled during
the initial open for each device. Typically, the queue address is stored in a
driver-private structure array indexed by the minor device number. This is for
use by the interrupt routine which needs to translate from device number to a
particular Stream. The g_ptr of the queue will point to the private data struc-
ture entry. When the messages are received by the queue, the calls to the driver

Drivers 9-7



Drivers

put and service procedures pass the address of the queue, allowing the pro-
cedures to determine the associated device.

A driver is at the end of a Stream. As a result, drivers must include standard
processing for certain message types that a module might simply be able to pass
to the next component.

During the open and close routine the kernel locks the device snode. Thus
only one open or close can be active at a time per major/minor device pair.

Figure 9-1: Device Driver Streams

major/dev0 major/devl
vnode vnode
Stream Stream
Head Head
: Module(s) Module(s) :
l Queue Pair 1 | Queue Pair |
Driver Procedures

T
|
and :
Interrupt Code |

Il

Port Port
0 1

9-8 Programmer’s Guide: STREAMS



Drivers

Printer Driver Example

The next example shows how a simple interrupt-per-character line printer driver
could be written. The driver is unidirectional and has no read-side processing.
It demonstrates some differences between module and driver programming,
including the following;:

Open handling A driver is passed a device number or is asked to select
one.
Flush handling A driver must loop M_FLUSH messages back upstream.

ioctl handling A driver must send a negative acknowledgement for
ioctl messages it does not understand. This is discussed
under “Module and Driver ioctls” in Chapter 7.

Declarations

The driver declarations are as follows (see also “Module and Driver Declara-
tions” in Chapter 7):

Drivers 9-9



Drivers

Configuring a STREAMS driver requires only the streamtab structure to be
externally accessible. For hardware drivers, the interrupt handler must also be
externally accessible. All other STREAMS driver procedures would typically be
declared static.

The streamtab structure must be defined as prefixinfo, where prefix is the value
of the prefix field in the master file for this driver. The values in the module
name and ID fields in the module_info structure should be unique in the sys-
tem. Note that, as in character I/O drivers, extern variables are assigned
values in the master file when configuring drivers or modules.

There is no read-side put or service procedure. The flow control limits for use
on the write-side are 50 bytes for the low water mark and 150 bytes for the high
water mark. The private Ip structure is indexed by the minor device number
and contains these elements:

9-10 Programmer’s Guide: STREAMS



Drivers

flags A set of flags. Only one bit is used: BUSY indicates that output is
active and a device interrupt is pending.

msg A pointer to the current message being output.

qptr A back pointer to the write queue. This is needed to find the write
queue during interrupt processing.

Driver Open

The STREAMS mechanism allows only one Stream per minor device. The
driver open routine is called whenever a STREAMS device is opened. Opening
also allocates a private data structure. The driver open, Ipopen in this example,
has the same interface as the module open:

Drivers 9-11



Drivers

The Stream flag, sflag, must have the value 0, indicating a normal driver open.
devp is a pointer to the major/minor device number for this port. After check-
ing sflag, the STREAMS open flag, Ipopen extracts the minor device pointed to by
devp, using the getminor() function. credp is a pointer to a credentials structure.

The minor device number selects a printer. The device number pointed to by
devp must be less than Ip_cnt, the number of configured printers. Otherwise
failure occurs.

The next check, if (q->q_ptr) ..., determines if this printer is already open.
If it is, EBUSY is returned to avoid merging printouts from multiple users. q_ptr
is a driver/module private data pointer. It can be used by the driver for any
purpose and is initialized to zero by STREAMS. In this example, the driver sets
the value of g_ptr, in both the read and write queue structures, to point to a
private data structure for the minor device, Ip_Ipldevice].

There are no physical pointers between queues. WR is a queue pointer macro.
WR(q) generates the write pointer from the read pointer. RD and OTHER are
also the queue pointer macros. RD(q) generates the read pointer from the write
pointer, and OTHER(q) generates the mate pointer from either. With the DD],
WR, RD, and OTHER are functions.

Driver Flush Handling

The following write put procedure, Ipwput, illustrates driver M_FLUSH han-
dling. Note that all drivers are expected to incorporate flush handling.

If FLUSHW is set, the write message queue is flushed, and (in this example) the
leading message (1p->msg) is also flushed. spl5 is used to protect the critical
code, assuming the device interrupts at level 5.

Normally, if FLUSHR is set, the read queue would be flushed. However, in this
example, no messages are ever placed on the read queue, so it is not necessary
to flush it. The FLUSHW bit is cleared and the message is sent upstream using
qreply(). If FLUSHR is not set, the message is discarded.

The Stream head always performs the following actions on flush requests
received on the read-side from downstream. If FLUSHR is set, messages wait-
ing to be sent to user space are flushed. If FLUSHW is set, the Stream head
clears the FLUSHR bit and sends the M_FLUSH message downstream. In this
manner, a single M_FLUSH message sent from the driver can reach all queues
in a Stream. A module must send two M_FLUSH messages to have the same
affect.

9-12 Programmer’s Guide: STREAMS



Drivers

Ipwput enqueues M_DATA and M_IOCTL messages and, if the device is not
busy, starts output by calling Ipout. Messages types that are not recognized are
discarded.

Drivers 9-13



Drivers

Driver Interrupt
The following example shows the interrupt routine in the printer driver.

Ipint is the driver interrupt handler routine.

Ipout simply takes a character from the queue and sends it to the printer. For
convenience, the message currently being output is stored in 1p->msg.

Ipoutchar sends a character to the printer and interrupts when complete. Printer
interface options need to be set before being able to print.

9-14 Programmer’s Guide: STREAMS



Drivers

(continued on next page)

Drivers 9-15



Drivers

Driver Close
The driver close routine is called by the Stream head. Any messages left on the
queue will be automatically removed by STREAMS. The Stream is dismantled

and the data structures are de-allocated.

Driver Flow Control

The same utilities (described in Chapter 8) and mechanisms used for module
flow control are used by drivers.

9-16 Programmer’s Guide: STREAMS



Drivers

When the message is queued, putq() increments the value of q_count by the size
of the message and compares the result against the driver’s write high water
limit (g_hiwat) value. If the count exceeds q_hiwat, the putq() utility routine will
set the internal FULL indicator for the driver write queue. This will cause mes-
sages from upstream to be halted [canput() returns FALSE] until the write
queue count reaches g_lowat. The driver messages waiting to be output are
dequeued by the driver output interrupt routine with getq(), which decrements
the count. If the resulting count is below g_lowat, the getq() routine will back-
enable any upstream queue that had been blocked.

Device drivers typically discard input when unable to send it to a user process.
However, STREAMS allows flow control to be used on the driver read-side to
handle temporary upstream blocks.

To some extent, a driver or a module can control when its upstream transmis-
sion will become blocked. Control is available through the M_SETOPTS message
(see Appendix B) to modify the Stream head read-side flow control limits.

Drivers 9-17



Cloning

In many earlier examples, each user process connected a Stream to a driver by
opening a particular minor device of that driver. Often, however, a user process
wants to connect a new Stream to a driver regardless of which minor device is
used to access the driver. In the past, this typically forced the user process to
poll the various minor device nodes of the driver for an available minor device.
To alleviate this task, a facility called clone open is supported for STREAMS
drivers. If a STREAMS driver is implemented as a cloneable device, a single
node in the file system may be opened to access any unused device that the
driver controls. This special node guarantees that the user will be allocated a
separate Stream to the driver on every open call. Each Stream will be associ-
ated with an unused major/minor device, so the total number of Streams that
may be connected to a particular cloneable driver is limited by the number of
minor devices configured for that driver.

The clone device may be useful, for example, in a networking environment
where a protocol pseudo-device driver requires each user to open a separate
Stream over which it will establish communication.

The decision to implement a STREAMS driver as a cloneable device is
made by the designers of the device driver.

Knowledge of clone driver implementation is not required to use it. A
description is presented here for completeness and to assist developers who
must implement their own clone driver.

There are two ways to create a clone device node in the file system. The first is
to have a node with major number 63 (major of the clone driver) and with a
minor number equal to the major number of the real device one wants to open.
For example, /dev/starlan00 might be major 40, minor 0 (normal open), and
/dev/starlan might be major 63, minor 40 (clone open).

The second way to create a clone device node is for the driver to designate a
special minor device as its clone entry point. Here, /dev/starlan might be major
40, minor 0 (clone open).

The former example will cause sflag to be set to CLONEOPEN in the open rou-
tine when /dev/starlan is opened. The latter will not. Instead, in the latter case
the driver has decided to designate a special minor device as its clone interface.
When the clone is opened, the driver knows that it should look for an unused
minor device. This implies that the reserved minor for the clone entry point
will never be given out.

9-18 Programmer’s Guide: STREAMS



Cloning

In either case, the driver returns the new device number as:

Drivers

*devp = makedevice (getmajor (*devp), newminor);

makedevice is unique to the DDI interface. If the DDI interface is not used,
makedev can be used instead of makedevice.

9-19



Loop-Around Driver

The loop-around driver is a pseudo driver that loops data from one open
Stream to another open Stream. The user processes see the associated files
almost like a full-duplex pipe. The Streams are not physically linked. The
driver is a simple multiplexor that passes messages from one Stream’s write
queue to the other Stream’s read queue.

To create a connection, a process opens two Streams, obtains the minor device
number associated with one of the returned file descriptors, and sends the dev-
ice number in an I_STR ioctl(2) to the other Stream. For each open, the driver
open places the passed queue pointer in a driver interconnection table, indexed
by the device number. When the driver later receives the I_STR as an
M_IOCTL message, it uses the device number to locate the other Stream’s inter-
connection table entry, and stores the appropriate queue pointers in both of the
Streams’ interconnection table entries.

Subsequently, when messages other than M_IOCTL or M_FLUSH are received
by the driver on either Stream’s write-side, the messages are switched to the
read queue following the driver on the other Stream’s read-side. The resultant
logical connection is shown in Figure 9-2 (in the figure, the abbreviation QP
represents a queue pair). Flow control between the two Streams must be han-
dled by special code since STREAMS will not automatically propagate flow con-
trol information between two Streams that are not physically interconnected.

9-20 Programmer’s Guide: STREAMS



Loop-Around Driver

Figure 9-2: Loop-Around Streams

CLONE/
CLONE/
loop/dev3 loop/dev7
Stream Stream
Head Head
Module(s) ' Module(s)
SN [ aor/ ]

\_/
Loop-Around Driver

The next example shows the loop-around driver code. A master file to
configure the loop driver is shown in Appendix E. The loop structure contains
the interconnection information for a pair of Streams. loop_loop is indexed by
the minor device number. When a Stream is opened to the driver, the address
of the corresponding loop_loop element is placed in g_ptr (private data structure
pointer) of the read-side and write-side queues. Since STREAMS clears q_ptr
when the queue is allocated, a NULL value of g4_ptr indicates an initial open.
loop_loop is used to verify that this Stream is connected to another open Stream.

The declarations for the driver are:

Drivers 9-21



Loop-Around Driver

The open procedure includes canonical clone processing which enables a single
file system node to yield a new minor device/vnode each time the driver is
opened:

9-22 Programmer’s Guide: STREAMS



Loop-Around Driver

In loopopen, sflag can be CLONEOPEN, indicating that the driver should pick an
unused minor device (i.e., the user does not care which minor device is used).
In this case, the driver scans its private loop_loop data structure to find an
unused minor device number. If sflag has not been set to CLONEOPEN, the
passed-in minor device specified by getminor—>(*devp) is used.

Drivers 9-23



Loop-Around Driver

Since the messages are switched to the read queue following the other Stream’s
read-side, the driver needs a put procedure only on its write-side:

A(continued on next page)

9-24 Programmer’s Guide: STREAMS



Loop-Around Driver

loopwput shows another use of an I_STR ioctl call (see Chapter 7, “Module and
Driver ioctls””). The driver supports a LOOP_SET value of ioc_cmd in the iocblk
of the M_IOCTL message. LOOP_SET instructs the driver to connect the
current open Stream to the Stream indicated in the message. The second block
of the M_IOCTL message holds an integer that specifies the minor device
number of the Stream to connect to.

The driver performs several sanity checks: Does the second block have the
proper amount of data? Is the "to" device in range? Is the "to" device open? Is
the current Stream disconnected? Is the "to" Stream disconnected?

Drivers 9-25



Loop-Around Driver

If everything checks out, the read queue pointers for the two Streams are stored
in the respective ogptr fields. This cross-connects the two Streams indirectly, via
loop_loop.

Canonical flush handling is incorporated in the put procedure:

Finally, loopwput enqueues all other messages (e.g., M_DATA or M_PROTO) for
processing by its service procedure. A check is made to see if the Stream is
connected. If not, an M_ERROR is sent upstream to the Stream head.

9-26 Programmer’s Guide: STREAMS



Loop-Around Driver

Certain message types can be sent upstream by drivers and modules to the
Stream head where they are translated into actions detectable by user
process(es). The messages may also modify the state of the Stream head:

M_ERROR

M_HANGUP

M_SIG/M_PCSIG

Causes the Stream head to lock up. Message transmis-
sion between Stream and user processes is terminated.
All subsequent system calls except close(2) and poll(2)
will fail. Also causes an M_FLUSH clearing all mes-
sage queues to be sent downstream by the Stream
head.

Terminates input from a user process to the Stream.
All subsequent system calls that would send messages
downstream will fail. Once the Stream head read mes-
sage queue is empty, EOF is returned on reads. Can
also result in the SIGHUP signal being sent to the pro-
cess group.

Causes a specified signal to be sent to a process.

putctll() and putctl() are utilities that allocate a non-data (i.e., not M_DATA,
M_DELAY, M_PROTO, or M_PCPROTO) type message, place one byte in the
message (for putctll) and call the put procedure of the specified queue.

Service procedures are required in this example on both the write-side and
read-side for flow control:

Drivers

9-27



Loop-Around Driver

The write service procedure, loopwsrv, takes on the canonical form. The queue
being written to is not downstream, but upstream (found via ogptr) on the other
Stream.

In this case, there is no read-side put procedure so the read service procedure,
looprsru, is not scheduled by an associated put procedure, as has been done pre-
viously. looprsrv is scheduled only by being back-enabled when its upstream
becomes unstuck from flow control blockage. The purpose of the procedure is

9-28 Programmer’s Guide: STREAMS



Loop-Around Driver

to re-enable the writer (loopwsrv) by using ogptr to find the related queue.
loopwsrv can not be directly back-enabled by STREAMS because there is no
direct queue linkage between the two Streams. Note that no message ever gets
queued to the read service procedure. Messages are kept on the write-side so
that flow control can propagate up to the Stream head. The genable() routine
schedules the write-side service procedure of the other Stream.

loopclose breaks the connection between the Streams:

loopclose sends an M_HANGUP message up the connected Stream to the Stream
head. '

This driver can be implemented much more cleanly by actually linking the
q_next pointers of the queue pairs of the two Streams.

Drivers 9-29



Design Guidelines

Driver developers should follow these guidelines:

Messages that are not understood by the drivers should be freed.

A driver must process an M_IOCTL message. Otherwise, the Stream head
will block for an M_IOCNAK or M_IOCACK until the timeout (poten-
tially infinite) expires.

If a driver does not understand an ioctl, an M_IOCNAK message must be
sent to upstream.

Terminal drivers must always acknowledge the EUC ioctls whether they
understand them or not.

The Stream head locks up the Stream when it receives an M_ERROR mes-
sage, so driver developers should be careful when using the M_ERROR
message.

m A hardware driver must have an interrupt routine.

If a driver wants to allocate a controlling terminal, it should send an
M_SETOPTS message with the SO_ISTTY flag set upstream.

A driver must be a part of the kernel for it to be opened.

Also see “Design Guidelines” in Chapter 7.

9-30

Programmer’s Guide: STREAMS









1 0 Multiplexing

Multiplexing 10-1
Building a Multiplexor 10-2
Dismantling a Multiplexor 10-11
Routing Data Through a Multiplexor 10-12

Connecting/Disconnecting Lower Streams 10-13

Connecting Lower Streams 10-13
Disconnecting Lower Streams 10-15
Multiplexor Construction Example 10-16
Multiplexing Driver 10-19
Upper Write Put Procedure 10-23
Upper Write Service Procedure 10-27
Lower Write Service Procedure 10-28
Lower Read Put Procedure 10-28
Persistent Links 10-32
Design Guidelines 10-37

Table of Contents i






Multiplexing

This chapter describes how STREAMS multiplexing configurations are created
and also discusses multiplexing drivers. A STREAMS multiplexor is a driver
with multiple Streams connected to it. The primary function of the multiplexing
driver is to switch messages among the connected Streams. Multiplexor
configurations are created from user level by system calls.

STREAMS related system calls are used to set up the "plumbing,” or Stream
interconnections, for multiplexing drivers. The subset of these calls that allows
a user to connect (and disconnect) Streams below a driver is referred to as the
multiplexing facility. This type of connection is referred to as a 1-to-M, or
lower, multiplexor configuration. This configuration must always contain a
multiplexing driver, which is recognized by STREAMS as having special charac-
teristics.

Multiple Streams can be connected above a driver by use of open(2) calls. This
was done for the loop-around driver and for the driver handling multiple minor
devices in Chapter 9. There is no difference between the connections to these
drivers, only the functions performed by the driver are different. In the multi-
plexing case, the driver routes data between multiple Streams. In the device
driver case, the driver routes data between user processes and associated physi-
cal ports. Multiplexing with Streams connected above is referred to as an N-to-
1, or upper, multiplexor. STREAMS does not provide any facilities beyond
open(2) and close(2) to connect or disconnect upper Streams for multiplexing
purposes.

From the driver’s perspective, upper and lower configurations differ only in the
way they are initially connected to the driver. The implementation require-
ments are the same: route the data ard handle flow control. All multiplexor
drivers require special developer-provided software to perform the multiplexing
data routing and to handle flow control. STREAMS does not directly support
flow control among multiplexed Streams.

M-to-N multiplexing configurations are implemented by using both of the above
mechanisms in a driver.

As discussed in Chapter 9, the multiple Streams that represent minor devices
are actually distinct Streams in which the driver keeps track of each Stream
attached to it. The STREAMS subsystem does not recognize any relationship
between the Streams. The same is true for STREAMS multiplexors of any
configuration. The multiplexed Streams are distinct and the driver must be
implemented to do most of the work.

Multiplexing 10-1



Multiplexing

In addition to upper and lower multiplexors, more complex configurations can
be created by connecting Streams containing multiplexors to other multiplexor
drivers. With such a diversity of needs for multiplexors, it is not possible to
provide general purpose multiplexor drivers. Rather, STREAMS provides a
general purpose multiplexing facility. The facility allows users to set up the
inter-module/driver plumbing to create multiplexor configurations of generally
unlimited interconnection.

Building a Multiplexor

This section builds a protocol multiplexor with the multiplexing configuration
shown in Figure 10-1. To free users from the need to know about the underlying
protocol structure, a user-level daemon process will be built to maintain the
multiplexing configuration. Users can then access the transport protocol directly
by opening the transport protocol (TP) driver device node.

An internetworking protocol driver (IP) routes data from a single upper Stream
to one of two lower Streams. This driver supports two STREAMS connection
beneath it. These connections are to two distinct networks; one for the IEEE
802.3 standard via the 802.3 driver, and other to the IEEE 802.4 standard via the
802.4 driver. The TP driver multiplexes upper Streams over a single Stream to
the IP driver.

10-2 Programmer’s Guide: STREAMS



Multiplexing

Figure 10-1: Protocol Multiplexor

TP
Driver

IP
Driver

802.4
Driver

802.3
Driver

The following example shows how this daemon process sets up the protocol
multiplexor. The necessary declarations and initialization for the daemon pro-

gram are as follows:

Multiplexing

10-3



Multiplexing

This multi-level multiplexed Stream configuration will be built from the bottom
up. Therefore, the example begins by first constructing the Internel Protocol (IP)
multiplexor. This multiplexing device driver is treated like any other software
driver. It owns a node in the UNIX file system and is opened just like any
other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, thus creat-
ing separate Streams above each driver as shown in Figure 10-2. The Stream to
the 802.4 driver may now be connected below the multiplexing IP driver using
the I_LINK ioctl call.

10-4 Programmer’s Guide: STREAMS



Multiplexing

Figure 10-2: Before Link

daemon

______ -I— ~|“"'——_]_ """_12&;1& Space

8024 1P
Driver Driver

The sequence of instructions to this point is:

I_LINK takes two file descriptors as arguments. The first file descriptor, fd_ip,
must reference the Stream connected to the multiplexing driver, and the second
file descriptor, fd_802_4, must reference the Stream to be connected below the
multiplexor. Figure 10-3 shows the state of these Streams following the I_LINK
call. The complete Stream to the 802.4 driver has been connected below the IP

Multiplexing 10-5



Multiplexing

driver. The Stream head’s queues of the 802.4 driver will be used by the IP
driver to manage the lower half of the multiplexor.

Figure 10-3: IP Multiplexor After First Link

daemon

Kernel Space

1P
Driver

802.4
Driver

[_LINK will return an integer value, called muxid, which is used by the multi-
plexing driver to identify the Stream just connected below it. This muxid is
ignored in the example, but it is useful for dismantling a multiplexor or routing
data through the multiplexor. Its significance is discussed later.

The following sequence of system calls is used to continue building the internet-
working protocol multiplexor (IP):

10-6 Programmer’s Guide: STREAMS



Multiplexing

All links below the IP driver have now been established, giving the
configuration in Figure 10-4.

Figure 10-4: IP Multiplexor

daemon

_____________ e _User Space_
[- I Kernel Space
Controlling S
Stream
IP
Driver
802.4 802.3
Driver Driver

Multiplexing 10-7



Multiplexing

The Stream above the multiplexing driver used to establish the lower connec-
tions is the controlling Stream and has special significance when dismantling the
multiplexing configuration. This will be illustrated later in this chapter. The
Stream referenced by fd_ip is the controlling Stream for the IP multiplexor.

The order in which the Streams in the multiplexing configuration are opened

is unimportant. If it is necessary to have intermediate modules in the Stream

between the IP driver and media drivers, these modules must be added to

| the Streams associated with the media drivers (using |_PUSH) before the
media drivers are attached below the multiplexor.

The number of Streams that can be linked to a multiplexor is restricted by the
design of the particular multiplexor. The manual page describing each driver
(typically found in section 7) describes such restrictions. However, only one
I_LINK operation is allowed for each lower Stream; a single Stream cannot be
linked below two multiplexors simultaneously.

Continuing with the example, the IP driver will now be linked below the tran-
sport protocol (TP) multiplexing driver. As seen earlier in Figure 10-1, only one
link will be supported below the transport driver. This link is formed by the
following sequence of system calls:

The multi-level multiplexing configuration shown in Figure 10-5 has now been
created.

10-8 Programmer’s Guide: STREAMS



Multiplexing

Figure 10-5: TP Multiplexor

daemon

_____________ e _____UserSpace_
l_ J— Kernel Space
Controlling S
Stream
TP
Driver
1P
Driver
8024 802.3
Driver Driver

Because the controlling Stream of the IP multiplexor has been linked below the
TP multiplexor, the controlling Stream for the new multi-level multiplexor
configuration is the Stream above the TP multiplexor.

At this point the file descriptors associated with the lower drivers can be closed
without affecting the operation of the multiplexor. If these file descriptors are
not closed, all subsequent read, write, ioctl, poll, getmsg, and putmsg system
calls issued to them will fail. That is because I_LINK associates the Stream head
of each link